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Summary 

The low selectivity of chemotherapy is an ongoing problem in the treatment 

of cancer. Prodrugs that are activated in vivo provide a therapeutic advantage for 

selective cytotoxicity. Here we have designed redox-active compounds that are 

electrochemically reduced in hypoxic (poorly oxygenated) tissue, resulting in release 

of a nitrogen mustard cytotoxin. This thesis describes the synthesis of novel 

macrocyclic N-mustard drugs and the development of their Cu(II) complexes as 

hypoxia-selective prodrugs. 
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The (2-trimethylsilyl)ethanesulfonyl (SES) protecting group is very versatile. 

It is removed under mild conditions using fluoride. The published synthesis of the 

sulfonyl chloride A gave variable yield and purity, but we have improved the 

conditions to give consistently pure material in high yield (70-86% overall) (Scheme 

1). 
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Triamines with carbon bridges longer than three are difficult to prepare, often 

requiring multistep ~yntheses. A route was developed to synthesize linear triamines, 

using the SES-amide B. This route produces these triamines in relatively high yields 

(60-80% overall), via simple reactions with little purification necessary (Scheme 2). 

A variation on the Richman-Atkins synthesis has been exploited to reach 

known and. novel triaz~acrocyclic compounds D (Scheme 3), in order to explore 

their structure-activity relationship as N-mustard drugs E (made as shown in Scheme 

4). Eight novel macrocyclic N-mustards E were found to be potent DNA cross

linking agents (nM range) by Prof. John Hartley at University College London. 

Three of the novel triazamacrocycles' b were assessed in vitro for anti-parasitic 



activity by Dr. Michael Barrett at the University of Glasgow. They showed 

moderate activity against Leishmania mexicana and Trypanosoma brucei. 
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Scheme 4 

Water soluble Cu(II) complexes of cytotoxic macrocyclic nitrogen mustards 

have been prepared and their structures have been determined using X-ray 

crystallography by Dr. Louis Farrugia in this department. The redox behaviour and 

reduction potentials (Cu[II] to Cu[lD of the complexes in phosphate buffer were 

assessed using cyclic voltammetry. The thermodynamic stabilities of the Cu(II) 

complexes in aqueous solution were analysed qualitatively using UV-Vis 

spectroscopy: The mustard complexes F and G showed irreversible redox behaviour 

and low thermodynamic stability, and were not hypoxia-selective but behaved as 

typical mustard drugs. The cyclen-based mustard complex H showed reversible 

redox behaviour and had high thermodynamic stability under aqueous conditions. H 

exhibited excellent hypoxia selectivity (the best so far in the lung tumour cell line 

tested) and is an attractive lead compound for further development or" this novel 

approach to cancer chemotherapy. 
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Chapter 1 

1. Introduction 

1.1. Cancer 

Cancer is the second most frequent cause of death in the western world. One 

in three people contract cancer at some point in their lives. Roughly two-thirds of 

those people die as a result of their cancer, bringing the total death toll by cancer to 

one in four people. 1 For decades we have been searching for 'the cure;' but it became 

apparent long ago that things were not going to be that simple. 

A wealth of data exists describing the biological and environmental origins 

and characteristics of cancer. The post-genomic era provides a new environment in 

which to seek out and understand the genetic basis for tumour development. As we 
r 

come to grips with the biological mechanisms inherent in cancer development, new 

strategies in the fight against it emerge. Better aims in tissue targeting, fewer side 

effects and improved length and quality of life for cancer sufferers bring us closer to 

the holy grail of complete treatment and control. However, like a mathematical 

asymptote, we will probably never reach that ultimate goal; cellular evolution will 

always be one step ahead of us. 

.. 
1.1.1. Biology of cancer development 

The biological irregularities that eventually lead to cancer are extremely 

complex. Many steps are involved, beginning with genetic changes and culminating 

in regulatory defects that allow the uncontrolled proliferation of cells. . The/ process 

has been compared to Darwinian evolution: genetic mutations allowing a better 

chance for survival and thus being carried on to further generations? Advanced 

tumours are almost perfect examples of 'the surVival of the fittest.' Cancer cells have 

forgotten they are an integral part of an .organism. With an adequate supply of 

nutrients, they can continue to grow and reproduce virtually indefinitely, even being 
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termed 'immortal.' One of the first samples of human tumour cells, the Hela cell line 

isolated in 1951, is still alive and growing today. 

Cells have built-in obstacles that must be overcome in order for them to 

become cancerous. Hanahan and Weinberg3 describe the six major traits that must be 

acquired to begin tumour development: self-sufficiency in growth signals; 

insensitivity to growth-inhibitory signals; evasion of apoptosis (programmed cell 

death); limitless replicative potential; sustained angiogenesis (blood vessel growth); 

and tissue invasion and metastasis (aggressive spread of cancer via release and 

migration of tumour tissue to other tissues). 

Cell growth is regulated by countless pathways within the cell, but also 

importantly by the cell's external environment. For example, cells in normal tissue 

are mostly instructed to replicate or cease replication by contact with their 

neighbours.3 Some tumours are able to co-opt their neighbouring normal cells into 

abnormal growth.4 Ignoring growth-inhibitory signals also involves a combination of 

inter- and intra-cellular factors. Normally the tissue environment tells its cells to stop 

mUltiplying. The commands are carried out via signalling pathways within the cell. 

Unrestricted growth requires circumvention of those pathways. Essentially, 

cancerous cells stop responding to the messages telling them not to replicate. 

Evasion of apoptosis is a hallmark of almost every type of cancer. Tumour 

cell populations explode because far more cells are being produced than destroyed. 

Apoptosis . usually occurs in old and abnormal C'ells via a cascade of proteases called 

caspases.5 Caspases cause cell death by taking apart the genome and various 

organelles and sub-c~llular struc,tures. Cancer cells acquire resistance to apoptosis 

through genetic mutations, losing genes for key apoptosis-inducing responses. 

Limitless replicative potential goes beyond the combined abilities to ignore 

cell-growth messaging and to avoid self-degradation. Normal cells have built-in 

restrictions ~n their replic'ative potential: Each.cell cycle results in the shortening of 

telomeres (protective sequences of DNA at the ends of the chromosomes). Eventually 

the' telomeres have been shortened to a ·critical length, causing disadvantageous 

chromosomal fusion, disarray and widespread cell death (the 'crisis' state). However, 
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those cells that have adapted to maintain the length of their telomeres survive past the 

crisis state and become 'immortalised' ,6 replicating indefinitely. 

Another requirement for cancer development is the ability to sustain 

continuous angiogenesis to supply the tumour tissue with blood. Regulation of 

angiogenesis is carried out through an array of homeostatic pathways. Vascular 

endothelial growth factor (VGEF) is closely involved in the stimulation of 

angiogenesis. These relationships have been demonstrated using anti-VGEF 

antibodies to impair the growth of implanted tumours in mice.7 Integrins (cell-surface 

proteins that participate in cellular adhesion and intercellular communication) are also 

essential to the process of angiogenesis and interfering with their signalling pathways 

can have an inhibitory effect. Many proteases are also involved in controlling the 

levels of various activating and inhibiting factors in the angiogenic response. 

Lastly, 90% of lethal cancers develop the ability to invade and colonise other 

tissues.s This activity, called metastasis, is the culmination of the tumour's progress 

towards 'survival of the fittest.' Its enhanced speed of growth and facility to use 

nutrients gives it an advantage over the normal tissues it invades. In order to begin 

metastasis, tumour cells must be able to release themselves from their extracellular 

matrix and eventually create entrances into new tissue. These processes involve the 

impairment of integrins and other cell-adhesion proteins, as well as stimulation of 

extracellular proteases to degrade the matrix. Without metastasis, the tumour would 

eventually use all the nutrients in its immediate area and its growth would be halted. 

With this process, it can keep its progeny cells alive by sending them to distant 

territories with plentiful resources; that is, until the cancer completely overwhelms the 

organism it has invaded and destroys its own environment. 

Since all of the above processes are highly complex and no one instigator for 

any of them can be identified, it is important to maintain a holistic mindset when 

developing ~ancer treat~ent.3 The disciplines of biochemistry, immunology, 

genetics, molecular biology, pharmacology and synthetic chemistry all need to be 

considered in a comprehensive cancer treatment strategy. This thesis discusses our 
.. . 

synthetic chemistry approach to drug design in the struggle against cancer. 
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1.1.2. Cancer therapy 

Classical cancer therapy takes on a number of forms. Sometimes various 

therapies are applied concurrently. When the cancer takes the form of a solid tumour, 

physical removal of the tumour is common. However, when tumours are difficult to 

access surgically or have already begun to metastasise, chemical or radiotherapies are 

employed. Radiotherapy takes advantage of the damaging hydroxyl radicals 

produced following the exposure of water to ionising radiation (Scheme 1.1.2.1). 

Unfortunately the damage is difficult to localise, resulting in damage to healthy 

tissues and highly unpleasant side effects. Occasionally radiotherapy induces 

secondary cancers, especially in children. Chemotherapy uses toxic chemicals to kill 

the tumour cells, often focusing on rapidly proliferating cells by targeting the cell 

cycle.9 Recent chemotherapy advances have exploited the cytotoxic effects of a 

number of natural products, e.g. daunorubicin1o and taxol. ll Other strategies employ 

toxic analogues of cellular components, such as 5-fluorouracil.12
, 13 Again, toxicity is 

often unselective, resulting in side effects especially to fast-growing cells like hair ,., 

follicles and bone marrow. 

Scheme 1.1.2.1 

H20 + ionising energy 

----... ~ + H+. 

! 
DNA damage 

Cellular hypoxia (lowered intracellular oxygen concentration) is common in 

solid tumours.1
4-16 The rapid proliferation of cancer cells and the resulting 

insufficient growth of supporting vasculature creates an environment in which the 

cells adapt to survive under anaerobic conditio.ns. This often results in resistance to 

normal chemo- and radio-therapy. However, it advantageously provides a key 

difference between cancer cells and normal cells, offering opportunities for more 

directed targeting of tumour. cells, as well as allowing for therapeutic differentiation 
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between types of cancers via the specific enzyme profiles of the various cell typeS.17 

The targeting of hypoxic cells with bioreducible alkylating agents, through the 

exploitation of tumour hypoxia, is the principal aim of this project. Therefore, the 

discussion of cancer therapies herein will focus on the use of these drugs. 

1.2. Bioreductive drugs 

1.2.1. Hypoxia 

Tumour hypoxia is highly heterogeneous; changing with tumour size, stage of 

development, extent of necrosis and histological environment.18. 19 Almost all solid 

murine tumours (commonly used for in vivo drug studies) contain large proportions of 

hypoxic cells. 20 There is also a large body of experimental evidence for the existence 

of hypoxia in human tumour cells.14-16 Hypoxic environments have been found in 

cervical cancer, squamous cell carcinoma of the head and neck, melanoma, breast 

cancer, prostate cancer and brain tumours. Lactate levels give an indication of the 

degree of anaerobic metabolism present and thus the degree of oxygenation of tissue, 

but are less quantitative for determination of hypoxia.21-24 Oxygen levels can be 

detected quantitatively by electrode methods, although electrodes are unable to 

distinguish between cell viabilities and cell types.23.2S Chemical marker methods are 

more reliable, such as radiolabelled or fluorescently labelled nitroimidazoles, which 

bind to ~ypoxic cells in vitro and in vivo.26
-
28 In addition, bis(thiosemicarbazone) 

ligands (e.g. 1) act as vectors for bioreducible C~u(II) isotopes which are deposited in 

hypoxic cells upon reduction to Cu(l).29 

Tumour hypoxia has been linked tQ the unsuccessful outcome of therapeutic 

treatments, especially radiotherapy. The dose of radiation required to kill hypoxic 
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cells is three times that necessary to kill well-oxygenated cells; therefore at safe levels 

of radiation for treatment, most hypoxic cells survive. Chemotherapy is often 

inhibited in hypoxic cells due to the requirement for molecular oxygen in the toxicity 

of many anti-cancer agents (e.g. bleomycin). In addition, cell proliferation is greatly 

reduced as a result of lowered oxygen concentration, so agents that specifically target 

the mechanism of fast proliferation are less toxic in hypoxic cells. Lastly, since 

hypoxia often occurs as a result of insufficient vasculature and oxygen delivery, drug 

delivery through these same channels is also affected and can result in lower effective 

doses to the hypoxic regions.30 

Aside from contributing to treatment resistance, hypoxia also contributes to 

adverse malignant effects within the tumour microenvironment by promoting 

metastasis and angiogenesis. Metastasis is promoted through the increased expression 

of matrix metalloproteinases (MMPs) under hypoxic conditions.31. 32 MMPs are 

essential to the metastasis process.33. 34 They degrade the basement membrane and 

extracellular matrix to facilitate the release of migrating tumour cells. There is some 

evidence that hypoxia contributes to cell adhesion processes required for metastasis, 

by reducing the levels of cell surface integrins and allowing the migration of cells 

from their originallocation?5. 36 Hypoxia also increases the levels of interleukin-8, an 

inflammatory factor associated with tumourigenicity, angiogenesis and metastasis in 

many types of tumours. The same processes (MMP production, cell adhesion 

changes) are important in the beginning of angiogenesis. Angiogenesis begins when 

the cells 'respond to the initiation of production of VEGF and its receptors (mediated 

by hypoxia inducible factor [HIP-I] which is des~ribed later).3o 

Clinically, hypoxia in known to affect adversely the average success of 

treatment for a population, specifically resulting in lower levels of two-year local 

control of the cancer, disease-free survival and survival.3o.37 Because hypoxia opens 

up numerous avenues for the promotion of tumour malignancy, there is a need to 

target hypoxJa both as ~ cellular process and as an opportunity to differentiate 

between normal healthy cells and cancer cells?o. 
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1.2.2. Exploiting tumour hypoxia 

Gene therapy approach38 

The adaptation of cells to hypoxic conditions is dependent upon the induction 

of key genes that regulate for glucose transporters, glycolytic enzymes, production of 

red blood cells and stimulation of angiogenesis. The products of these genes all 

participate in the viability of anaerobic metabolism either directly (glycolysis 

participants) or indirectly (by increasing oxygen delivery). Hypoxia inducible factor

I (HIF-I) is the primary activator protein for transcription in one of the key genes 

involved in the hypoxic response.39
-
41 The protein is a heterodimer comprised of a 

novel subunit, HIF-Ia, and a previously identified subunit, HIF-I~, identical to a 

protein involved in the xenobiotic response.42 Under oxic conditions, the proline-564 

residue in HIF-Ia is normally hydroxylated by a prolyl hydroxylase enzyme with an 

absolute requirement for oxygen and iron, enabling its binding to the product of the 

Von Hippel Lindau (VHL) tumour suppressor gene which targets the HIF-I protein 
r 

for proteolysis.43 Thus, in the presence of normal oxygen levels, induction of the 

hypoxia response genes is inhibited via the breakdown of their activator, HIF-I. If 

oxygen levels are lowered, the prolyl hydroxylase protein is unable to perform its 

crucial proline-564 hydroxylation; HIF-I will no longer bind to the VHL protein; and 

HIP-I is able to accumulate in sufficient quantities to activate the hypoxic response. 

Hlf-1 synthesis 
prolyl 
hydroxylase I O2 

Pro564 Fe Pro564 

( Hif.1a( --.."...--+l> (Hif.~a( OH 

j 
HYPOXIC RESPONSE 
GENES TRIGGERED 

DEGRADATION 

NO HIF-1a 
NO HYPOXIC RESPONSE 
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IDF-l is a target for cancer therapies in its own right. Without activation of 

the hypoxic response, cells without sufficient oxygen for aerobic metabolism cannot 

survive. Some strategies have been proposed such as blocking of IDF-la production 

through anti-sense and have met with moderate success.44,45 

Another way to exploit the IDF-l response involves placing a gene for a 

therapeutic protein under the transcriptional regulation of IDF-l. Following the 

hypoxia-specific production of IDF-l, the therapeutic enzyme will be expressed. The 

enzyme could be therapeutic in itself, or it could be used to activate a prodrug. In the 

case of the expressed enzyme being a prodrug activator, the process is called gene 

directed enzyme prodrug therapy (GDEPT).38, 46 Although promising, the classic 

problems of gene therapy arise in the development of suitable gene delivery vectors. 

A related but possibly less problematic approach involves the use of antibodies as 

therapeutic enzyme delivery systems (called antibody directed enzyme prodrug 

therapy [ADEPT]).17, 38, 47 In ADEPT, the therapeutic enzyme is attached to an 

antibody that can bind to a cell-surface protein expressed during hypoxia (e.g. ,. 

angiogenic proteins such as flk_l).48 The prodrug would only be activated in the 

immediate vicinity of the targeted cell, with the aim of diffusion of the active drug 

into the desired location. 

Bioreductive drug approach 

Bioreductive drug activation operates on the principle that hypoxic cells 

provide an environment in which reductive electron transfer can· occur in one 

direction, without subsequent back oxidation by molecular oxygen. . The electron 

affinity of radiosensiti,sing drugs allows them to act as substitutes for the molecular 

oxygen required for the production of the hydroxyl radical (key to the toxicity of 

ionising radiation). Other hypoxia selective cytotoxins employ prodrug sqategies to 

mask their effects until reductase enzymes in the hypoxic tissue can activate them. 

The optimum_ redox poten~al for cellular reduction has been suggested to be between 

-200 and -400 mV vs. the normal hydrogen electrode (NHE),49 but many bioreductive 

drugs with different potentials still have useful clinical activity.50 
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Various problems appear in the bioreductive approach to prodrug design. 

Because of the heterogeneous nature of tumour hypoxia, important activation factors, 

such as pH, level of oxygen concentration, blood flow and enzyme levels, can differ 

even between neighbouring hypoxic cells within a tumour.47 Additionally, it can be 

very difficult to predict the efficiency of bioreductive activation in human cells, as 

they often exhibit much slower rates of bioreduction than rodent cells?8 Even when 

some human cell lines show appropriate levels of bioreduction, in vivo reduction 

behaviour for individual patients could be completely different due to the inherent 

genetic polymorphism in enzyme expression displayed between different people.51 

Even in the best-case scenario of hypoxia selective drug activation, the aerobic back

oxidation may provide unwanted side effects through the production of superoxide 

radicals (Scheme 1.2.2.1).38 However, in life-threatening diseases such as cancer, 

some chances can be taken and the practical goal is to minimise side effects rather 

than completely eliminate them. 

Scheme 1.2.2.1 

~od~ n · (active drug I 

5J O2 

potentially 
harmful! 

There are two possibilities for bioreductive drug delivery. systems: 

a) designing the prodrug as a release system, whi9h masks the activity <?f a drug that is 

released under the bioreductive conditions; or b) designing the prodrug as an inactive 

form of a drug, which can be converted directly into an active form. For either type 

of delivery system, Denny and Wilson propose a three-component design involving 

trigger (deactivating functionality) and effector (active drug) units joined by a linker 

(method for activation, either conceptual or chemical).s2 Their terminology will be 

used in this review. 

Release systems 

The release systems (termed 'self-inactivating' delivery systems by 

Naughtoni3 involve attaching the effector by a molecular linker to a separate trigger 
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molecule, which masks the drug's activity. This method often avoids some of the 

unwanted side effects of cytotoxicity in the intermediates of the bioreductive process. 

There are three main types of self-inactivating delivery systems: the quinone 

lactonisation system; the self-alkylating bioreductives; and vitamin E analogues. 

Quinone lactonisation systems contain a quinone moiety attached to a 

propionic acid linker, which is easy to attach to alcohol or amine functionality on the 

desired drug.53 Reduction of the quinone triggers lactonisation of the masked acid, 

resulting in release of the drug. Gem-dimethyl substitution on the propionic acid 

chain, along with a methyl substituent on the quinone ring (called a 'trimethyllock'), 

imparts a Thorpe-Ingold-type effect on the drug-linked ester or amide, encouraging 

lactonisation (Scheme 1.2.2.2).53 Generally, the lability of quinone delivery systems 

is not well controlled under biological conditions and they require further 

development in order to be clinically usefu1.53 

Scheme 1.2.2.2 
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Most bioreductive agents form alkylating intermediates which can react with 

DNA and other biological macI'9molecules, which is not advantageous in diseases 

where the hypoxic tissue is to be preserved (e.g. arthritic tissue) rather than destroyed 

(as for tumour tissue). The self-alkylating bioreductives are simil~ to the 

'deactivated drug' -type prodrugs, but are designed to undergo intramolecular 

alkylation up~m reduction~ to avoid the generation of cytotoxic intermediates. One 

such system uses the active drug as a leaving group, linking it to a nitroaniline that 

releases the drug upon reduction of the nitro group to a dianiline and cyclisation to a 

be~zopiperazine (Scheme 1.2.2.3).38 
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Scheme 1.2.2.3 
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Vitamin E analogues exploit the propensity of vitamin E to undergo reductive 

cyclisation to a hydroquinone derivative. The hydroxyl group is ejected as a result of 

the cyclisation, offering the opportunity to attach and mask a drug moiety to oxidised 

vitamin E analogues (Scheme 1.2.2.4). Trolox®, in which a water-soluble vitamin E 

analogue has been oxidised and conjugated to aspirin, shows effective release of 

aspirin in chemical model systems.54 

Scheme 1.2.2.4 
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Direct sctlvstlon systems 

When limiting damage to the hypoxic tissue is not an issue, the delivery 

system can ignore or even exploit the formation of toxic intermediates upon 

bioreduction. For this type of targeting, the direct conversion of the molecule from 

trigger-deactivated prodrug into activated effector is usually employed. The linkers 

are usually conceptual, for example intramolecular electron release to change electron 

density within the molecule, or intramolecplar fragmentation to generate more than 

one cytotoxic product. The prodrugs can be activated by endogenous enzymes in the 
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tumour environment, by enzymes introduced or exploited using ADEPT or GDEPT, 

or by radiotherapy utilising the reducing species produced from water in the presence 

of ionising radiation and absence of oxygen. DNA affinic agents and alkylating 

agents (quinone methides, cyclopropyldienone precursors and nitrogen mustards) are 

the most commonly employed effectors.52 

Effectors 

I 
OH 0 HN~N, 

~ yyy 
OH 0 HN~N/ 

I 

2 

H:~ 
R 

R = polyarylamide 

3 

DNA affinic agents such as AQ4 (2) are excellent DNA intercalators, binding 

tightly to DNA and inhibiting topoisomerase II. Usually this type of compound has , 

little effect on non-cycling cells, as topoisomerase II activity is specific to the cell 

cycle. However, in the case of AQ4, although the binding capability is activated 

under hypoxic conditions, the effector binds tightly enough to be retained by the DNA 

for a long time, until the cells are reoxygenated and recommence their normal cycle 

and topoisomerase II resumes activity.55 

Cyclopropyldienone precursors deliver highly potent DNA alkylating agents 

upon bioreduction, with IC50 values in the pico~olar range.56. 57 They are based on 

the cyclopropylpyrroloindoles, e.g. CPI (cyclopropylpyrroloindoloquinol1e [3]), which 

react solely with the N-3 of adenine in the minor groove of double stranded DNA.58 

They do not react with proteins, RNA, or single-stranded DNA; therefore their 

selectivity is easier to control. Upon reduction, the cyclopropyl moiety opens and 

alkylates DNA. The active effector in carzelesin (another cyclopropylpyrroloindole 

drug) reacts too quickly, preventing useful absorption into tissues. The cyclopropyl 

group is masked as a chloromethyl substituent, which is hydrolysed to the 

hydroxymethyl followed by cyclisation to the cyclopropyl ring. 57 This allows the 
" . 

drug to be adequately distributed throughout tumour tissues before conversion into the 

active cyclopropyl analogue and subsequent alkylation. One disadvantage is that the 
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trigger is not very tumour-specific, with activation occurring under most cellular 

conditions. 57 

Scheme 1.2.2.5 
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Quinone methides are reactive intermediates generated from the reduction of 

quinones. They are activated via an elimination ~- to the quinone, usually of a 

hydroxyl group. The activated species (4) of mitomycin C, formed after nucleophilic 

attack of a nucleophile (nucleophilic sites in DNA or proteins) on an .aziridinium ion, 

i~ a quinone methide. It can bond covalently with nucleophiles (Scheme 1.2.2.5), 

e.g. N-7 of guanine in DNA or thiol-containing proteins.59 

5: R = Me 

Nitrogen mustards, such as mechloretha.J}1ine (5) and chlotam~ucil (6) have 

historically-proven clinical effectiveness. They were developed from the analogous 

sulfur mustard gas after World War IT and present a number of advantages for 

therapeutic use. Their cytotoxicify is fairly indiscriminate, giving them the ability to 

kill almost all types of tumour cells, both cycling and non-cycling. Without prodrug 

deactivation, this can be a disadvantage, as they generally exhibit cytotoxicity in 

normal cells as well. The mechanism of action of nitrogen mustards via aziridinium 

ion intermediates is shown in Scheme 1.2.2.6.60
• The reactivity of these compounds is 

almost completely dependent on the electron density on the nitrogen. This allows for 

versatile and stable deactivation through the..manipulation of the electronic properties 

of the molecule around the central nitrogen. The traditional nitrogen mustard 
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effectors present challenges, since they generally exhibit lower potency when 

activated; but design of more potent nitrogen mustards would allow for further 

clinical investigation of these compounds. These compounds will be discussed 

further in a later section. 

Scheme 1.2.2.6 
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Triggers 

A variety of trigger functionality has been used for the activation of the 

common effectors. Previously studied triggers include nitroaromatics (as 

functionality within the parent drug compound and also as quaternary nitrobenzyl 

salts of active amines), N-oxides (aromatic and aliphatic), quinones and transition 

metal complexes.52• 61. 62 Nitroaromatics have been extensively studied as 
"I 

bioreductive drugs, mostly due to their potential as radiosensitisers.· Numerous 

nitroimidazole, nitrothiophene and nitrofuran derivatives (such as misonidazole [7], 

and others [8 and 9]) have shown promising radiosensitisation activity in vitro, but 

7 

9 
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solubilities and systemic toxicities have slowed their development as clinical 

agents.63, 64 Other nitrofuran and nitroimidazole derivatives can be used as release 

systems (Scheme 1.2.2.7).65,66 Nitroaromatic nitrogen mustards, such as nitroaniline 

and nitrobenzamide derivatives,62 have reduced electron density on the central 

nitrogen atom, affecting the formation of the active aziridinium ion and thus the 

activity. Reduction of the nitro group to the amino group shifts the electron density 

back onto the mustard nitrogen, re-establishing its potential for alkylation. Nitroaryl 

quaternary salts of tertiary nitrogen mustards take advantage of the propensity of the 

nitroaryl functionality to fragment upon one-electron reduction of the nitro group.67 

These prodrugs have high hypoxia selectivity in vitro (up to 10,000 fold),68 but 

exhibit unpredictable cytotoxicity in vivo. Nitrobenzyl salts have low activities,68 and 

other nitro aryl salts show non-specific toxicity to normal cells.69 

Scheme 1.2.2.7 
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N-Oxides provide three types of prodrug trigger. The tirapazamine prodrug 10 

can undergo 9xygen-reve~sible fragmen~ation upon reduction, generating reactive 

drug species and hydroxyl radicals under hypoxic conditions, causing DNA damage. 

70 DNA affinic agents, such as AQ4, can be masked as their N-oxides (e.g. 11) to 
.c 

prevent DNA binding until they reach hypoxic tissues. N-Oxides of nitrogen 

mustards also have their activity masked by changing the electron density of the 
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central nitrogen, as previously described for nitroaromatic mustards.7} So far, only 

tirapazamine derivatives are being investigated for clinical use.70 

10 11 

Transition metal ions are common components of anticancer drugs, 

e.g. cis-platin 12. However, their use as trigger agents has only emerged within the 

past 13 years. Some metal ions can be reduced from stable complexes (e.g. Co[llI]) 

to less stable ones (Co [liD by reductase enzymes.72 Molecular oxygen should reverse 

this process, as with other hypoxia selective drugs. However, if the reduced complex 

is too labile, the active agent may be released before reoxidation of the complex and 

th.is may reduce the selectivity.52 Thermodynamic lability of the oxidised form of the 

complex may also cause problems. This is discussed in more depth in Chapter 4. 

NHs 
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One of the first nitrogen mustard metal complexes 13 was designed as a 

radiosensitiser, not as a masked alkylating agent. It showed mild hypoxic activity 

(although it was actually more active in oxygenated cells) and evidence of alkylating 

activity as compared to a similar non-alkylating complex.73 Soon after, Denny, 

Wilson and Ware published a series of Co(lll) complexes of bifunctional alkylating 

agents. Their use of ethylenediamine mustards as chelating ligands increased the 

stability of the reduced Co(lI) complex sufficiently to provide the first transition metal 

complex with bioreducible. hypoxia selectivity (-six-fold).74 Originally, a 
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one-electron mechanism was suggested for the hypoxic activation of these complexes 

(Scheme 1.2.2.8). 

Scheme 1.2.2.8 
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These promising results were followed by a rapid succession of further 

characterisation studies of similar Co(m) complexes. Correlations were found 

between ligand structure, redox potential and activity. Hypoxia selectivity was 

increased to approximately 20-fold with SN 24771 (14). It was subjected to more 

detailed investigations into the oxygen dependence of its cytotoxicity.61 The released 

mustard showed extensive killing in multi-cellular spheroids, demonstrating'its ability 

to diffuse into surrounding tissue. Pulse radiolysis studies to determine the kinetics of 

reduction revealed an unexpected result: the activation mechanism did not appear to 

follow the one-electron pathway, common to other hypoxia selective drugs (as in 

Scheme 1.2.2.8).75 Instead, it appears that 14 may compete with 02 for available 

reductants, with low oxygen concentrations freeing those reductants to activate the 

Co(m) complex. Since this result in 1996, there have been few reports of these 

complexes in. the literaturl? Problems with their aqueous solubility and selectivity 

(compared to some other N-oxides etc.) could be the reason for the lack of 

de,,-~lopment. 
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Cu(ll) complexes of bis(thiosemicarbazone) ligands have also shown hypoxia 

selectivity.76 Their redox potentials are easily tuned by changing the ligand 

substituents and the complexes with the lowest reduction potentials are the most 

selective." These complexes have cytotoxic properties, but so far have been 

primarily employed as vectors for Cu(ll) radionucleotides for hypoxia-targeted 

radiotherapy. Radiolabelled 60Cu_ and 62CU_ ATSM (e.g. 15) are used in the imaging 

of hypoxic tissue.'8-80 Macrocyclic Cu(ll) complexes of cyclen and cyclam 

derivatives (e.g. 16) have also been shown to release 64CU into tumour tissue, 

s~ggesting lower stability of the bioreduced complex.81 All of these Cu(ll) complexes 

are water-soluble and bioreducible, as shown clinically. Generally, the bioreduction 

of Cu(ll) to Cu(I) shows great versatility, practicality and promise for new 

bioreductive drug development. 

1.2.3. Enzymology of bioreduction 

A ntlmber of enzymes have been implicated in the activation of bioreductive 

drugs, including cytochrome p450, cytochrome p450 reductase, NQOl and xanthine 

oxidase.82 The activation generally proceeds via a one-electron reduction, with the 

exception of NQOl, which can also utilise an aerobic two-electron reduction pathway 

in the reduction of quinones, causing possible loss of selectivity.82 'Within key 

enzymatic pathways, different enzymes activate particular drugs to various extents. 

For example, _mitomycin <; and other quinone drugs are often activated by NQOl 

(albeit sometimes in the presence of oxygen), while cytochrome p450 reductase and 

cytochrome p450 isozymes dominate in the hypoxia selective activation of 
.. . 

nitroimidazoles.49 Although the relationships between drug activation and 

enzymology are highly complex, they do offer some useful opportunities for drug 
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development. Occasionally, bioreductive drugs can be targeted specifically to 

different types of cancer by combining knowledge of the role of a specific enzyme in 

the activation of a particular drug with an understanding of tumour cell lines that 

express elevated levels of that enzyme.83 

NQOl has been extensively studied, due to its overexpression in many 

cancers.84
-
87 However its behaviour is widely variable depending on the tumour type 

and cell line. Diaphorases such as NQOl, called "coenzyme factors," catalyse 

electron transfer between reduced pyridine nucleotides and redox indicators. NQOl 

is a two- or four-electron reductase flavoprotein (using FAD as a cofactor) that is 

unique in its ability to use both NADH and NADPH as cofactors as well.88
,89 Given 

its propensity to activate bioreducible drugs under oxic as well as hypoxic conditions 

and the complexity of its in vivo behaviour, NQO 1 can be a difficult enzyme to target 

in predictive bioreducible drug design. The one-electron reductases, such as xanthine 

oxidase and cytochrome p450 reductase, perform much more predictably and 

correlations can be made between reduction potentials and rates of 

r~ductionlactivation of drugs.82 However, NQOl activity still needs to be considered 

in any screening regime, as it is commonly overexpressed in tumours.49 

The enzyme profile of hypoxia, along with computerised databases of tumour 

enzyme expression and enzymatic drug activation,90 provide a unique opportunity to 

target tumours without extensive toxicity to healthy cells. 

1.2.4. Electrochemiatry of bioreductlon50 

Thorough inv~stigation of electrochemical properties can be useful in 

predicting the activity of bioreductive drugs. Many factors influence the fate and 

mode of action of such drugs in vivo, so it is dangerous to base assumptions on in 

vitro electrochemical data. Hdwever, techniques such as cyclic voltammetry (CV) 

can provide information on important parameters such as ionisation potentials, 

electrcm affinity and redox potentials. The conditions and standards used for analysis 

must be carefully considered in order to obtain biologically relevant information. As 

yet;' there are no standardised procedures for assaying bioelectrochemical data, but 

common sense and reference.to previous studies can be used to develop possibilities 
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for suggestive, if not predictive, ways of modelling biological electrochemical 

activity. 

In addition to the parameters listed above, cyclic voltammetry can be used to 

study the reactivity of reduced chemical species by monitoring the reversibility of the 

system. Reversible systems indicate that the reduced species is thermodynamically 

stable and doesn't change chemically before in vivo reoxidation under oxic 

conditions. This positively affects the selectivity of the release of cytotoxin, as well 

as contributing to bystander effect diffusion into the surrounding tissue before 

reaction with biomolecules. It is important to evaluate the redox potential in both 

aqueous and non-protic conditions, as at least one essential reductase enzyme, 

cytochrome p450, has domains in both the lipophilic cell membrane and the aqueous 

cytoplasm.91 Although the redox potential provides a possible starting point for 

prediction of activity, it is not prudent to use their values as a screening method, since 

the technique can be less accurate for slower electron transfer reactions and is highly 

dependent on pH and other unpredictable effects such as in vivo metabolism. so 
" 

The aforementioned ionisation potential and electron affinity provide useful 

information about the drug's ability to exchange protons and accept electrons, 

respectively. The pH of hypoxic cells is generally lower than in normal tissues, thus 

the ionisation potential can be of greater significance to its interaction with 

biomolecules as well as inter- and intra-cellular transport. so An optimum electron 

affinity can' also be important, as molecules that accept electrons too readily will be 

quickly metabolised and excreted, while those with lower affinities risk poor levels of 

activation by reductase enzymes. 

The most relevant information that can be obtained from reduction potentials 

is the comparison of reduction rates under hypoxic and oxic conditions, as it c.an give 

a good indication of the selectivity of cytotoxicity based on whether or not it is 

possible to gene!ate the reactive species under oxic conditions.so So although it is not 

possible to correlate electrochemical behaviour with bioactivity directly, it is useful to 

consider electrochemical characterisation when performing a full exploration of in 

vitro bioreductive drug activity. Additionally, knowledge of optimum redox 

potentials for enzymatic reduction can contribute to directed bioreductive drug design. 
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1.2.5. Bioreductive drug design 

Many aspects of the cellular environment contribute to the efficacy of 

bioreductive drugs, including the enzymes present, the level of hypoxia and the rate of 

metabolism of the prodrug and activated drug.92 Additionally, the reduction potential 

of the prodrug and the stability of the activated drug can be significant for the drug's 

selectivity. It is thought that the reduction potential should fall within an appropriate 

range for reduction by one of the common enzymatic activation pathways (ca. -200 to 

-400 mV vs. NHE).50 The reduced compound must be stable enough to allow for 

reoxidation in the presence of oxygen in order to prevent activation under aerobic 

conditions. 

There are many approaches available for design. The affinity of drugs for 

reductase enzymes can be assessed experimentally or by computer modelling of the 

compounds in the enzyme active sites. The reduction potentials can be estimated 

using Hammett calculations (based on certain constants for substituents). Metal 

complexes provide a particularly attractive avenue for bioreducible drug design. 

Their potential as hypoxia selective agents has only been touched on so far: their 

redox potentials are easily tuned by changing the metal ion or the ligand substituents; 

and a wealth of data already exists describing their synthesis and complexation 

properties. 93-99 Accordingly, the development of cytotoxic ligands for bioreductive 

release from a redox metal trigger has been the primary focus of the work described 

herein. 

1.3. Nitrogen mustard alkylating agents 

1.3.1. Biological effects 

Nitrogen mustard alkylating agents can interact covalently with many cellular 

components, especially enzymes and DNA. As. detailed in Scheme 1.2.2.6, the 

reactive aziridinium ions formed can alkyl ate nuc1eophiles such as histidine (17) and 

cystei~e (18) residues of proteins,lOO or guanine residues (19) of DNA.IOI Binding to 

enzyme backbone peptides can cause conformational changes of the active site and 
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these can result in deactivation of the enzyme. Such is the case for the vesicant 

(blistering) effect of mustard compounds on skin and mucous membranes. lOO 

The primary toxicity of mustards upon inhalation or skin contact arises from 

their vesicant effect. Mustard exposure causes epithelial cells to change shape, detach 

from each other and form blisters. The mustard agents alkyl ate muscarinic 

acetylcholine receptors (mAChRs) in epithelial cells. These receptors control cell 

adhesion together with acetylcholine (20, an important cellular transmitter). Their 

interaction with mAChR proteins may be enhanced by the similarity of aziridinium 

ions to the trimethylammonium group of acetylcholine. 100 

20 

Some lipophilic nitrogen mustards (e.g. 21) are able to cross the blood-brain 

barrier to bind to neural muscarinic receptors, resulting in cholinergic effects (such as 

seizures). 102 These compounds bind irreversibly JO mAChRs, targeting them for 

protease degradation. However, the use of reversible cholinergic drugs can moderate 

the adverse effects of mustards on the cholinergic systems by occupying the active 

sites of the enzymes a~d reducing the conformational changes induced by the 

alkylation. Thus, drugs such as atropine (22, the racemate of hyoscyamine) can 

'diminish the adverse vesicant effects of mustard drugs. IOO 

cTB
0 

0 ~CI 
O~N 

~ ~ 
I ~ fj_~ . CI 

21 22 26 



23 

Bifunctional nitrogen mustards are known to form DNA cross-links. 103, 104 

When guanines on different strands of DNA are cross-linked, DNA unwinding is 

obstructed, triggering apoptosis (23). Resistance can develop through the up

regulation of DNA repair pathways. IDS However, the cytotoxic effects of DNA cross

linking can be enhanced with the concurrent use of DNA repair inhibitors or via 

inactivation of other repair pathways. IDS, 106 Similarly, DNA-rep air-deficient mutant 

cell lines (e.g. UV4) are more sensitive to alkylating agents than cells with normal 

repair mechanisms. Other pathways of cytotoxicity may arise from the linking of 

DNA to proteins. 107 Generally, the cytotoxicity of mustard drugs is non-specific and 

potent (IC50 values around 10-6 M), which is useful in the design of anti-cancer agents. 

Specificity of drug action encourages the development of resistance to the treatment.47 

Non-specific action ensures a multiplicity of pathways for drug activity, all of which 

must be overcome before resistance will succeed. 

1.3.2. Previous developments in mustard drugs 

Nitrogen mustard alkylating agents provided an entry into the previously 

unknown world of cancer chemotherapeutics. One of the first anti-cancer drugs 

developed was the N-mustard mechlorethamine (5). During World War II, medical 

technicians noticed that exposure to mustard gas dramatically lowered the white blood 

cell counts of survivors (among other toxic effects). Dr. Cornelius Rl10ad~, who 

treated many patients poisoned by mustard gas, postulated that similar drugs might be 

used to inhibit leukaemia, as it involves the cancerous overproduction of white blood 

cells. !Os Louis Goodman and Alfred Gilman pioneered the clinical trials of 

mechlorethamine in the first attempts at chemotherapy in the 1940s.109 Although the 

initial trials were not successful, they represented the birth of medical oncology and 
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mechlorethamine is still used today for the treatment of Hodgkin's disease and other 

lymphomas. Modifications of mechlorethamine to improve stability, membrane 

transport and solubility led to the development of analogues such as chlorambucil (6). 

Chlorambucil had its first clinical trials in the 1950s and is currently used in the 

treatment of lymphomas and leukaemia. Its analogue melphalan (24) is used to treat 

mUltiple myeloma and ovarian carcinomaYo, 111 
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Although mustard drugs have experienced some success in cancer treatment, 

theirr side effects can be severe and dangerous. Seizures, reduced immunity, blistering 

of mucous membranes and instigation of new cancers are unpleasant and potentially 

life threatening. Therefore, it was a priority to develop prodrugs of these compounds 

in order to improve their selectivity and minimise the adverse effects to normal 

tissues. Cyclophosphamide (25) was one of the first of these prodrugs.112 Developed 

in 1958, it was designed for activation by phosphoramidase enzymes in vivo, cleaving 

the mustard moiety from the phosphoramide.1l2 Unexpectedly, cyclophosphamide is 

actually activated via hydroxylation by cytochrome p450 and breakdown into 
,) 

phosphoramide mustard (26) and acrolein (27) (Scheme 1.3.2.1). The production of 

acrolein is unfortunate, as it causes cystitis and other bladder problems. However, 

overall the side effects are less severe than with naked mustard drugs. Accordingly, 

cyclophosphamide is the most commonly used alkylating agent. 112 
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Scheme 1.3.2.1 
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Extensive research has been conducted in the drive to improve the selectivity 

of alkylating agents and only the most recent developments will be discussed here. 

Studies on the kinetics of chlorambucil hydrolysis in biological model systems have 

yielded useful information about the reactivity of mustard drugs. For example, the 

rates of reaction of mustards at physiological pH with various biologically available 

nucleophiles proceeded in the following order: water « phosphate < imidazole « 

thio1.6o This suggests that mustard drugs may have some selectivity towards thiol

containing proteins. Conjugates of chlorambucil with polyamines have been 

studied60
• 113 in an attempt to exploit the increased uptake of polyamines by tumour 

cells. Indeed, a chlorambucil-spermidine conjugate (28) exhibited a 104 increase in 

potency over chlorambuci1.6o It was not clear whether the increase was due to an 

intrinsic enhancement of the mustard's reactivity, Qr an increased association of the . , 

conjugate with DNA via the affinity of polyamines for DNA. If the increase was due 

to increased DNA interaction, it w~ non-sequence specific.114 

Other nitrogen mustard conjugates have been investigated, including poly-

"arylamide (29) and distamycin-type compounds (30).115-117 Like polypyrrole 

antibiotics (e.g. distamycin), these compounds have planar conformations that are 

complementary-to the minor· groove of DNA. Th~se mustards are bifunctional, with 

the alkylating groups on the same nitrogen or on different nitrogens separated by a 

spacer. The polyamide backbones confer rigidity on the spacer between mustard 

moieties, allowing for control of the distance between the nitrogens. 
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In vitro tests of these compounds showed enhanced DNA-crosslinking activity 

and IC50 values in the micro- to nano-molar ranges against human cancer cell 

lines. 115-117 A hairpin polyamide-chlorambucil conjugate was particularly effective 

against leukaemia, with an IC50 value of 2.2 nM.116 Its polyamide sequence targeted a 

specific sequence of DNA. Distamycin mustard conjugates (e.g. 30) were also 
" 

effective against human leukaemia cells in vitro, with ICso values in the sub

micromolar range. In vivo tests of the polyamide mustard 29 showed a 37% increased 

lifespan in tumour-bearing animals, which was equal to the activity of 

chlorambucil. 115 

Our group began working with alkylating agents in the mid 1990s. In order to 

prepare N-oxide prodrugs, Nicola Henderson first synthesised a series of bifunctional 

mustards based on piperidine (31) during her PhD research.us It was hoped that the 

conformational restriction inherent in cyclic nitrogen mustard analogues would 

temper the reactivity in .setting up ·the necessary conformation for aziridinium ion 

formation. The best of these compounds showed good cytotoxicity against human 

.colon carcinoma cell lines (-8 fAM).119 However, their N-oxide derivativ~s were 

inactive under both oxic and hypoxic conditions. Their reduction potentials were 

probably not within an appropriate range for cellular reduction. 

M 
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Rather than concentrating on improving the potential for prodrug activation, 

Henderson focused on· further increasing the selectivity of the alkylation. She 

extended her work to a series of bispiperidine derivatives, e.g. 32. They showed 

improved selectivity for N-7 of guanine over melphalan and were cytotoxic in three 

cisplatin-resistant cell lines.120 Although these compounds cross-linked DNA at 

lower concentrations than melphalan, their IC50 values showed they were not as 

potent. A relationship began to emerge between the linker chain length and the 

reactivity. Compound 32, with an ethylene linker, was twice as reactive as its longer

chain analogues. This suggested that there might be an optimum distance between 

nitrogens for cross-linking activity. 

34 
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During her PhD research, Fiona Anderson carried out further investigations 

int~ this issue. 121 She synthesised a series of homochiral bispyrrolidine mustard 

derivatives (33) and a number of alkyl cyclic and linear mustards (34 and 35).122 The 

bispyrrolidine compounds showed a relationship between linker length and alkylating 

activity, with the 2-, 5- and 6- carbon linkers giving the best alkylation. Surprisingly, 

the 3- and 4- carbon linkers resulted in no DNA cross-linking activity. Also, in 

contrast to conventional mustard drugs, there was no clear correlation between 

alkylating ability and cytotoxicity. None of the linear or cyclic mustards showed 

cytotoxicity within a useful range « 100 JAM). The reasons for the lack of activity 

were not apparent. Perhaps cells did not take up the inactive compounds efficiently, 

or they may have been more reaytive with other cellular components (e.g. thiol

containing proteins). 

In order to expand the previous work, macrocyclic polyamines provided an 

attractive aven~e to compounds with multiple alkylating moieties, variable carbon 

chain lengths and the possibility for metal ion .chelation to generate bioreducible 

prodrugs. Macrocyclic polyamines (e.g. cyclen 36) are well known in the field of 

inorganic chemistry as ligands for chelation.97
, 98, 123-125 They offer a range of 

n 
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possibilities for variation of structure, including multiple substituents at carbons and 

nitrogens, as well as variation in the size of the macrocycle. They also have the 

biological advantage of being natural polyamine analogues, e.g. cyclic spennidine 

(37). Linear polyamines show a range of interesting biological activities, including 

anti-malarial and anti-cancer and will be discussed in a later section. 
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During his work with the Robins group, Dr. Stephen Lacy synthesized the 

cyclen derivative 38, which had phenomenal DNA cross-linking activity (100% cross

linked DNA at 0.1 JAM) and higher cytotoxicity (ICso = 22 JAM) than chlorambucil , 

(ICso = 45 JlM) against a human colon carcinoma cell line. 126 Fiona Anderson 

followed up this line of work and synthesised a series of polY-2-chloroethylated 

macrocyclic polyamines such as 39.42, from commercially available starting 

materials. Some had very promising biological activity (Table 1.3.2.1) and she 

extended her work to vary ring size, carbon chain length between nitrogens and 

number of nitrogens in the ring. However, she encountered difficulties in the 

synthesis of many of these compounds, such that she was unable to reach her targets. 

As a result, the primary synthetic aims of this project have been to develop a flexible, 

reliable method to obtain azamacrocycles of variable ring size with different carbon 

chain lengths between the nitrogen atoms. 

Table 1.3.2.1. DNA cross-linking and cytotoxicity data for previously tested 
macrocycllc N-mustards 

% crosslinked DNAa 

Compound - 0.01fJ.M 0.1fJ,M 1fJ,M 10fJ,M 
38 100 .-
39 64 100 
40 16.4 93.7 100 

"41 77 100 
42 30 100 

• details of testing procedures published previously121 

IC50
a 

(fJ,M) 

22 
10 
7.5 
9 
13 
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1.4. Synthesis of macrocyclic polyamines 

1.4.1. Cyclisation 

Polyazamacrocyc1es are notoriously difficult to synthesise. As is the case for 

other types of cyclisation, the reaction conditions must be designed to ensure 

intramolecular cyclisation as opposed to intermolecular oligomerisation. This can be 

achieved in a number of ways: using high dilution conditions; templating the starting 

polyamine with a metal ion or carbon-based backbone; or using sulfonamides for 

preorganisation in the Richman-Atkins-type synthesis.127 The details of these 

methods, particularly the Richman-Atkins synthesis, will be discussed in this mini

review. 

High dilution cycllsations 

Up until the 1970s, polyazamacrocyc1es were typically isolated in low yields 

from complex mixtures of oligomers formed in simple amine-substitution· 

reactions.128-130 Amines protected as sulfonamides were first used by Stetter and Roos 

in the 1950s131, 132 and by Stetter and Mayer in the 1960S133 with limited success

yields were still very low «15% overall) and reactions required high dilution to 

prevent oligomerization. High dilution conditions are usually characterised by 

maintaining a concentration of less than 0.1 M reactant, under the assumption that 

fewer collisions will take place between reactants, ~nd thus an intermediate will have 

time to react with itself in a cyclisation before meeting another reactant molecule. 

This effect can be achieved either by using a large excess of solvent or by slow 

addition of reactants (e.g. with a syringe pump). The main disadvantages of this 

technique are the large volumes of solvent required and the long reaction times 

.. necessary. Even on a small scale (0.5-1 g), high dilution cyclisations can take longer 

than two weeks to reach completion. Still, these conditions often result in high yields 

and can involve fewer protection-deprotection steps than some other methods. 

- The 'crab-like' cyclisation is one e)5.ample of very effective high dilution 

synthesis of selectively N-substituted cyc1am derivatives (Scheme 1.4.1.1). A wide 

variety of cyc1am derivatives were produced in just three steps giving ca. 80% yield 
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in the cyclisation.134 This method still results in the formation of 2:2 and 3:3 

cyclisation byproducts; however they are easily separated by filtration through a short 

silica gel column. The drawback is that the efficiency of the cyclisation is highly 

dependent on the ring size formed, so it is not very effective for the production of 

macrocycles other than cyclam. Also, the reduction of the diamide precludes the 

incorporation of reduction-sensitive functionality. 

Scheme 1.4.1.1 
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Similar diamide cyclisations have analogous problems. Diester-triamine 

condensations give very low yields «13%) and require long reaction times (>5 days), 

135, 136 however they do allow the potential for selective alkylation (Scheme 1.4.1.2). 

Scheme 1.4.1.2 
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In general, diamide formation is useful in certain situations, especially when 

selective N-substitution is desired. However, it can be lengthy and low yielding and is 

dependent on the ring size formed so it is not a good general method for producing a 

range of polyazamacrocycles. 

Templated cycllsations 

Metal ion templates 

One way to reduce the need for high dilution is to template the polyamine in 

some way in order to preorganise it for cyclisation. The complexation of amines with 

metal ions has been exploited for this purpose.137-140 The first of these methods used a 

diamine-Ni(II) complex which was condensed with acetone (Scheme 1.4.1.3) to 

produce two structural isomers of a cyclam derivative (43 and 44). The resulting 

diimine complex must be reduced to the alkylazamacrocycle.137 

Scheme 1.4.1.3 
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Another classic example of this type of m.acrocycle synthesis is the Ni(II)

templated synthesis of cyclam (Scheme 1.4.1.4). This method starts from the readily 

available, low-cost 1,2-bis(3-amin~propyl)-1,2-ethanediamine and gives good yields 
.. 

of cyclam. However, the Ni(1I) must be removed via displacement of the cyclam 

ligand with cyanide, so this method is not suitable for industrial production of 

"' macrocycles.138 

Scheme 1.4.1.4 -

-(l (l 2+ 0 0 (l 'U (NH NH, Ni2+, H2O N NH 1. (HHN) + C' I Ni(CN)/" 
\ I .. . ,Ni, .. 

NH NH2 N' 'NH 2. NaBH4 
NHHN 

V V V 3. CN" 
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Carbon templates 

Carbon-based templates can also be employed for macrocyclic polyamine 

synthesis. These strategies are also high-yielding and the template is usually removed 

by simple hydrolysis, avoiding the toxic reagents required for metal-template 

removal. 

Triazamacrocyc1es can be synthesised using bicyc1ic guanidine 

templates,141-144 as in Scheme 1.4.1.5. This allows for reasonably large-scale 

synthesis of a number of triazamacrocyc1es (-3 g macrocyc1e obtained), but the 

bicyclic guanidines are not commercially available and must be made beforehand. 

Also, the intermediate tricyclic guanidinium salts can be difficult to purify, as their 

crystallinity varies with ring size. 

Scheme 1.4.1.5 

K 
Br Br 

n = 0,1 
m= 0-2 

Tetraamines can also be templated using carbon-based structures. Cyc1en (36) 

can be synthesised from a tricyclic b~samidine precursor via reductive ring expansion 

(Scheme 1.4.1.6).145 This method· produces cyclen in high yields with minimal 

purification necessary. However the synthesis of the bisamidine precursor produces 

'stoichiometric amounts of ethanethiol, which reduces the industrial viability of this 

procedure. 
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Scheme 1.4.1.6 
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Other similar syntheses using glyoxal as the template, forming the bisaminal, 

are mostly useful for producing N-substituted macrocycles (e.g. Scheme 1.4.1.7) due 

to the difficulties in removing the template from the unsubstituted tetracycle at the 
end. 146, 147 

Scheme 1.4.1.7 

n = 1,2 

More recently, two very simple carbon-templated tetraazamacrocycle 

syntheses have appeared in the literature. The first uses butanedione as the template, 

fOrming a rigid tricyclic bisaminal. Once cyclised t~ the protected macrocycle, the C

substituted bisaminal is much easier to remove than the aforementioned glyoxal 

derivative and the acid salt of the tetraazamacrocycle can be obtained in good yield by 

simple hydrolysis (Sche~e 1.4.1.8).148 

. Scheme 1.4.1.8 

rf-\)n 
HCI .. (NHHN'l 2HCI 

EtOH NHHNf )n 

4l)n 

n = 1,2 

37 



Scheme 1.4.1.9 
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Unfortunately, the success of the cyclisation to the tetracyclic bisamidine is 

highly dependent on the conformation of the tricyclic compound. The 3,2,3-

tetraamine 45 forms two conformational isomers of the tricyclic guanidine (46 and 

47), neither of which allows the cyclisation of the final six-membered ring (Scheme 

1.4.1.9).148 The 2,3,2-tetraamine does provide access to cyclam, but it is much more 

expensive than the 3,2,3-tetraamine. 

Scheme 1.4.1.10 
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The second recent method uses a bisimidazoline to form cyclen through a 

diaminocarbene intermediate (Scheme 1.4.1.10).149, 150 This route uses cheap starting 

materials and gives good overall yield of cyclen (36). The diaminocarbene 

dimerisation mechanism was confirmed by using ethylene carbonate (48) as the 

electrophile, giving the product 49: Unfortunately, this route was found not to be 

suitable for the production of other tetraazamacrocycles. This observation is 

. discussed further in Chapter 2. 

.. 
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Template methods can provide good yields and convenient access to 

polyazamacrocycles, but all are highly dependent on the ring size and the 

conformation of the templated intermediates. This restricts the range of carbon 

bridges available to two and three carbons. Although those bridge lengths were useful 

for some of the macrocycles desired for this project, this restriction was not 

satisfactory for the production of all of the nitrogen mustard alkylating agents we 

wished to produce. Thus it was important to investigate other strategies as well. 

Richman-Atkins cyclisation of sulfonamides 

Sulfonamide cyclisation has emerged as the most flexible synthesis of 

polyazamacrocycles. Variations in type of sulfonamide, base and deprotection 

strategy have allowed for the production of a wide range of ring sizes and structural 

features. One disadvantage of the p-toluenesulfonamides traditionally used is the 

harsh conditions required for their deprotection. Usually hydrolysis in H2S04 or 

HBr/AcOH is necessary, but reductive removal, e.g. with sodium or lithium in , 

ammonia can sometimes be effective. More recent variations have used sulfonamides 

that are removed under milder conditions, such as the (2-trimethylsilyl)ethanesulfonyl 

(SES)151 and 2- and 4-nitrobenzenesulfonyl (2- and 4_Ns)152, 153 groups. 

p-To/uenesu/fonam/de eye/Isatlon 

The first efficient cyclisation of sulfonamides was developed in the 1970s by 

Richman and Atkins.127 The initial conditions in' the Richman-Atkins. cyclisation 

combined the pre-formed disodium salt of a p-toluenesulfonamide in DMF with a diol 

ditosylate or dihaloalkane, heating a~ 100°C for 2 hours, followed by detosylation in 

conc. sulfuric over two days (Scheme 1.4.1.11). This process did not require high 

dilution and gave very high yields for the synthesis of cyclen (36) and other - . 
macrocycles including triazamacrocycles (e.g. tacn [53]) and dioxodiazamacrocycles 

(e.g. [54]). 
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Scheme 1.4.1.11 
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A number of notable observations were reported in this paper. Importantly, 

ditosylates (or dimesylates) were found to give the best yields in the cyc1isation. The 

rates of reaction were measured for different leaving groups -X (1, Br, OTs, OMs and 

CI) and found to give second-order kinetics for the disappearance of sulphonamide 

(suggesting an sN2 mechanism); however only the dimesylate gave a clean second

order plot. Curvature in the plots for the dihalo-compounds indicated competing 

pro~esses e.g. elimination and/or oligomerization. Also, Richman and Atkins found 

that the high yield was not due to a template effect on the cyclisation by the sodium 

ion. Replacing the sodium with a tetramethylammonium cation did not significantly 

decrease the yield. However subsequent groups have reported a dependence on the 

cation suggesting some degree of template effect.154. 155 Synthesis of cyc10phanes 

with the modified Richman-Atkins conditions also indicates that there is not a 

template effect and so it is best to assume that some combination of factors applies. 

~s_ 

~
<.. CoTs 

Ts N'~ 
I N~ bulky groups are forced apart, \. ~0N0 ~ movlngll1e ends closer together 

"- Ts '-A~ 
.../ 

Although the reasons for the improved intramolecular reaction were not immediately 

clear, it was later suggested that the sulfonami3e groups contributed to the success of 

the cyclisation in two ways:151 they rendered the amine hydrogens sufficiently acidic 

40 



for facile deprotonation; and the steric bulk of the p-toluenesulfonyl groups 

conferred a Thorpe-Ingold-type effect on the intennediate 55, encouraging 

intramolecular reaction. 

Soon after it was found that the sulfonamide salt could be fonned in situ 

using CS2C03156 or K2C03.154 The yields were still good and the reaction no longer 

required high temperatures (although the reaction time was increased to -24 h). 

Using K2C03 gave better yields for smaller rings, allowing improved access to 

triazamacrocycles. Some cyc10phanes (e.g. 56) were also fonned and deprotected 

with sodium-mercury amalgam. These 'modified Richman-Atkins conditions' using 

CS2C03 or K2C03 are now regarded as the most effective for the fonnation of most 

polyazamacrocyc1es. However the yield was still somewhat dependent on the ring 

size being fonned and the deprotection of the alkylazamacrocyc1es was still difficult 

with typical hydrolysis procedures. 

TS'NrCn T w- S 

~N NJ 
/ '--..I \ 

Ts Ts 

56 

It was apparent that although thi~ method was much more general than 

template methods and more convenient than high dilution syntheses, there were still 

problems with inconsistencies in cyclisation and deprotection yields. Numerous 
.) 

adaptations of the Richman-Atkins synthesis have appeared over the years, each 

providing its own advantages. Although none stands out as the definitive ideal 

method, a few do proVide distirtct improvements in protection strategy or 

practicality. 

Scheme 1.4.1.12 
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For example, use of phase-transfer conditions (Scheme 1.4.1.12) improved 

the cyclisation yields for some ring sizes. 155 Presumably this is because it allows for 

the use of NaOH, a stronger base, which is also kept separate from the ditosylate 

(preventing possible elimination of the tosylate groups and loss of this starting 

material). Another interesting use of the tosyl group involves the synthesis of 

triazamacrocycles by closing 57 with tosylamide (Scheme 1.4.1.13).157,158 With the 

right solvent and base, this reaction is quantitative for certain ring sizes (e.g. [2,2,2]). 

This route is amenable to laboratory scale production of some triazamacrocycles. 

However, this route encounters the same problems with deprotection of the 

tosylamide macrocycles as for traditional Richman-Atkins synthesis. 

Scheme 1.4.1.13 
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Some alternative sulfonamides have been used in attempts to simplify the 
. 

deprotection. Each has advantages and disadvantages, however they do provide 

higher yieldS of some azamacrocycles. 

Using trifluoromethylsulfonamides (triflamides) allows for dilution-specific 

control over the cyclisation process, giving either 1: 1 or 2:2 cyclisation products 

(Scheme 1.4.1.14).159 Reactant concentrations of 0.02 M give predOminantly the 1: 1 

.~yclised product, whereas concentrations -0.5 M result in the 2:2 'dim~rised' 

macrocycle. The process still avoids oligomerisation, so it can be used to prepare 

certain ring siz~s ([3,3,3]; [3,3,4]; [3,3,3,3,3,3]; and [3,3,4,3,3,4]) in a reliable 

manner. The deprotection is achieved using' lithium in ammonia and the 

macro~ycles are obtained as their hydrochloride salts after ion-exchange 

chromatography. 
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Scheme 1.4.1.14 
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The 2- or 4-nitrobenzenesulfonyl (nosyl, Ns) group has also been used. It 

most specifically provides an advantage in the synthesis of 

cyclophanes-pyridinophanes, naphthalenophanes and anthracenophanes.152, 153 The 

deprotection is mild enough for the N-benzylic functionality to survive. The 

(2-trimethylsilyl)ethanesulfonyl group is also removed under mild conditions and is 

also useful for the synthesis of the aforementioned cyclophanes as well as for 

alky)triazamacrocycles. The synthesis of polyazamacrocycles using these protecting 

groups is discussed in more detail in Chapter 2. 

Overall, the Richman-Atkins route provides the most flexible, generally 

applicable synthesis of polyazamacrocycles. It is not as sensitive to ring size and 

intermediate conformation as the template routes and does not require high dilution 

and extended reaction times as do diamide condensations. This route was chosen for 

this project as.· the primary method with which to prepare a series of 

triazamacrocycles of various carbon-bridge lengths aild ring sizes. 

1.5. Other biological ,considerations 

Polyazamacrocycles have numerous interesting biological activities in 

addition to their potential use as bioreductive prodrugs. As analogues of natural 

polyamines, they may show- anti-fungal and anti-parasitic activity. N-Substituted 

polyazamacrocycles have a range of activities, such as anti-tumour and 

anti_IDV.160-163 As complexes with transitioQ metals, they are useful as magnetic 

resonance imaging (MRI) contrast agents. They can also act as catalysts and mimics 

of various enzymes including ribonucleases and proteases. In order to understand 
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fully the biological characteristics of the novel polyazamacrocycles and complexes 

produced in this project, it is important to investigate these alternatives for biological 

activity. 

1.5.1. Polyamine analogues 

Polyamines are present in all living systems, playing a key role in the 

replication and proliferation of cells. 164, 165 Introduction of unnatural polyamines 

into the natural pathway can have a therapeutically useful impact on stopping the 

proliferation of cells such as cancer cells, which usually show elevated levels of 

polyamine activity.166 

Four key aspects of polyamines could be exploited in the treatment of 

disease. 167 Firstly, the uptake and transport systems are not highly specific. They 

will transport polyamine analogues with diverse functionality and structure. Indeed, 

it is, possible to 'tag' compounds with polyamines in order to exploit the transport 

system for their uptake. 168 Second, certain tissues have increased levels of 

polyamine transport, including tumours and prostate tissues (as shown by 

radiolabelling studies). They can be targeted with strategies involving unnatural 

polyamine analogues. Third, intracellular polyamines can be depleted with drugs 

such as (+1-) 2-(difluoromethyl)ornithine ~DFMO, 58), further increasing the uptake 

of artificiaily introduced analogues by polyamine-dependent cells. DFMO is 

especially active in tumour cells versus normal cells in vivo. Last, polycationic •. 
polyamines such as spermidine (59) and spermine (60) have a high affinity for DNA. 

Drugs based on these structures that are transported by the polyamine system will 

collect in the nucleus, in high local concentrations near DNA. 
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Unnatural polyamine analogues (e.g. with unusual chain lengths or 

substitution) can act in a number of ways: by inhibiting polyamine transport systems 

and preventing uptake of extra-cellular polyamines; by being incorporated into the 

cell via polyamine transport systems and inhibiting the biosynthetic and metabolic 

pathway of polyamines (as does DFMO); and by acting as vectors for cytotoxic and 

imaging agents.167 Polyamines are essential for cell reproduction, so disrupting these 

h
r 

11 d th 169 170 U all . . . pat ways can cause ce ea.' su y It IS necessary to combme drugs with 

complementary effects on the polyamine system to ensure maximum therapeutic 

viability, e.g. depleting cellular polyamine levels with DFMO combined with a 

polyamine transport inhibitor disabling the uptake system, preventing extracellular 

replenishing of polyamine levels. 

Bergeron et ai. showed that even small variations in structure, such as length 

of carbon bridges between nitrogen atoms, h3:ve drastic effects on the. biological 

activity. 169 Polyamine analogues have also shown useful anti-parasitic activity 

against trypanosomes, le.ishmania ~d malaria, as well as anti-fungal activity.171-173 

Polyamine levels and metabolism in these organisms are also susceptible to 

disruption by unnatural substrate analogues. N-Benzyl analogues appear to be 

especially active, perhaps due to their increased lipophilicity. This would imply that 

their uptake is 1'!0t through polyamine transport systems, but instead due to increased 

ability to cross cell membranes.167 N-Aryl substituted polyamines also function well 

as anti-cancer agents, probably by interacting with DNA via both ionic effects and 

hydrophobic intercalation.174 However, if lipophilicity is increased too much the 

compounds lose some of the selectivity of their cytotoxicity. 167 
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N-Substituted polyazamacrocycles have shown a variety of biological 

activities, including anti-tumour (61)160 and anti-malarial (e.g. 62).173 They are also 

used commercially for their anti-microbial and anti-fungal properties. 175 

There is scope for the use of new polyazamacrocycles as polyamine 

analogues. It is of interest to consider the polyamine transport system as a target for 

polyazamacrocyclic drug delivery.168 It is also important to keep in mind the 

possible polyamine analogue activity of polyazamacrocyclic drugs targeted towards ,. 
other systems, in the light of possible side effects or potentiation of cytotoxicity. 

1.5.2. Catalysts and enzyme mimics 

Metal ions, either alone or complexed to various ligands, are well known as 

catalysts. They are also essential components of many enzyme active sites. 

Complexation with peptides holds the metal in place and nearly always contributes 

to the reactivity of the metal for the desired enzymatic catalysis. Accordingly, small 

molecule metal complexes can act as artificial enzymes. Polyazamacrocycle 

complexes have a range. of catalytic activities. Manganese complexes of cross

bridged cyclams (e.g. 63) are peroxide oxidation catalysts used in laundry 

.detergents.176 Complexes of tetra- and triazamacrocycles with various meta!s can 

catalyse the hydrolysis of carboxyesters, phosphate esters and peptide bonds. 

63 
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Carboxyesters 

Experimental evidence from Kimura et al. shows zinc to be the best metal ion 

for hydrolysis of carboxyesters by polyazamacrocycle complexes. 177 Zinc 

complexes readily bind water molecules. The nature of the ligand can lower the pKa 

of the bound water, facilitating ionisation at neutral pH. For optimum activity, the 

ligand should have alcohol functionality that can also be deprotonated in order to 

participate in an initial transesterification reaction. This is followed by hydrolysis of 

the newly formed ester (Scheme 1.5.2.1) by the bound hydroxyl ion.178 Dinuclear 

Zn(ll) complexes provide two reactive centres, increasing rate constants by 

approximately 2.4. 179 These complexes provide useful model systems for 

elucidating the mechanism of zinc enzyme-catalysed ester hydrolysis. 177-179 

Scheme 1.5.2.1 

Phosphate esters 

-O-R 

) ~ 

The phosphate esters that make up the DNA and RNA backbones are 
.' 

incredibly stable to hydrolysis. With half-lives (under physiological conditions) 

estimated at 106 and 103 years, respectively, RNA is relatively less stable'to 

hydrolysis than DNA.180 H~wever, they are both essentially inert to hydrolysis 

within biological systems without the catalysis of nuclease enzymes. The anionic 

charge of the backbone hinders the approach bf nucleophiles, so nuclease enzymes 

often utilise cationic metal centres to neutralise the charge. The complexed metal 
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can also serve to activate water molecules for deprotonation to hydroxide ions, 

facilitating the hydrolysis. 

In order to be useful, a catalyst needs to increase the rate of DNA hydrolysis 

by at least 1014.180 The efficiency of the catalysis is dependent on a number of 

factors, such as the attraction of the catalyst to DNA, the strength of the substrate 

binding and the pKa of the bound water. These properties are all adjusted by 

changing the nature of the active site. Metal complexes of organic ligands are used 

as model systems, allowing for broad variation in the active site components and 

correlation of the behaviour with structure. 

Metal complexes of polyazamacrocycles can have artificial nuclease 

activity,181-18s although so far only limited success has been achieved (increasing 

hydrolysis rates by up to 7 orders of magnitude). Usually a large excess of complex 

relative to DNA substrate is required to effect even minimal cleavage. The 

mecl)anism is similar to that for carboxyester hydrolysis, however the need for large 

'catalyst' excess implies that the cycle may often stop at transesterification. The 

activity is highly dependent on the substitution around the ligand macrocycle and the 

metal involved. Lanthanide complexes of substituted cyclen increase the rate of 

RNA hydrolysis to -0.65 M-Is-I. Peptide and peptide-nucleic acid functionality can 

improve the interaction of the complex . with oligonucleotides. For example, a 

hexapeptide derivatised with two Zn(ll) triazacyclononane complexes lowered the 

pKa of the water bound to zinc to -7.7, which increased the hydrolysis of DNA by 

about 107
•
180 

These are only the more promising of a wide range of results from 

polyazamacrocycle complex catalysis of phosphate ester hydrolysis. There is still 

.extensive scope for further development in this area, especially given the 

improvement in macrocycle synthesis and substitution methods. Also, Cu(ll) 

complexes usually need to be reductively activated to Cu(I) in order to function in 

~ this way. Thus, it is feasible they could provide another mode of hypoxia selective 

action .. increasing cytotoxicity to tumours w~ile remaining unreactive in normal 

cells. 
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Peptide bonds 

Amides are also very stable to hydrolysis under physiological conditions. 

Peptide linkages normally have half-lives between 500 and 1000 years. Free metal 

ions can catalyse the hydrolysis of amides, but only if the substrate contains a 

proximal metal binding site.186 However, metal complexes are more useful, as they 

usually avoid the problem of metal hydroxide precipitation (which makes 

mechanistic studies difficult). Incorporating substrate binding moieties in the ligand 

can improve the efficiency of amide hydrolysis. 

H 
Nf(NH2 

+NH~ 1 ° 

/ 

-On ~N)lR 
° H 

. too randomly distributed 
for short peptides to reach 
catalytic metal centre 
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The Cu(II) complex of cyclen was randomly attached to polystyrene (64), 

along with guanidinium ions to attract negatively charged protein components 

(e.g. carboxylate groups of aspartate resid~es and C-termini of peptide chains). The 

guanidinium ion made the catalyst a mimic of carboxypeptidase A.187 The polymer

supported catalyst improved hydrolysis rates by up to 2 X 108 (from normal 
..l 

physiological conditions).188 However, the active site of the catalyst was too large to 

bind small peptides for hydrolysis. The guanidinium ions and the metal complex 

were distributed too widely to bring bound small peptides sufficiently close to the 
1 

catalytic centre. The catalyst was improved by attaching the guanidinium ion 

directly to the metal complexing component of the polymer, in order to ensure 

binding of peptides in close proximity to the active moiety (65). This is the first 

example of a general artificial ~peptidase. 
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A selective artificial peptidase has been prepared by attaching cyclen 

complexes to peptide nucleic acid (PNA) chains. A combinatorial selection strategy 

found PNA sequences that selectively bound myoglobin over bovine serum albumin, 

y-globulin, elongation factor P and gelatins A and B. When the sequences were 

ligated to cyclen complexes, they did selectively cleave myoglobin. The authors 

claim that this provides a paradigm for the design of drugs to cleave specific disease

related proteins. However, optimisation of catalytic centres and binding sequences 

for those specific proteins would be necessary in order for this to be practiCal. l89, 190 

Artificial peptidases are biochemically and pharmaceutically interesting. 

Very few examples of artificial peptidases based on polyazamacrocyles have been 

published. As yet, work has focused on the use of commercially available 

compounds such as cyclen and tacn. A non-specific, high-turnover artificial catalyst 

to hydrolyse proteins to their component-amino acids for analysis would be very 

useful and S0 far is not forthcoming. Perhaps new macrocycle synthesis strategies 

will allow detailed structure-activity investigations, leading to catalysts that are more 

effective. Very few groups are concentrating work in this area, thus it offers scope 

for extensive development. 
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Chapter 2 

2. Synthesis of parent macrocycles 

2.1. Initial strategy using the mesitylenesulfonyl protecting 

group 

In her PhD project, Fiona Anderson used amines protected with 

p-toluenesulfonyl (tosyl) groups in the Richman-Atkins polyazamacrocycle 

synthesis. 121 Her difficulties in the deprotection step indicated that a different 

protecting group was necessary. . Our initial approach involved the use of 

mesitylenesulfonamides in place of tosylamides (Scheme 2.1.1). The deprotection 

of mesitylenesulfonamides is reported to occur under milder conditions than for 

tosylamides, e.g. stirring at room temperature with conc. HBr/glacial acetic acid.191 

A series of tris-N-(mesitylenesulfonyl) (Mts) triazamacrocycles was prepared via a 

modified Richman-Atkins cyclisation, using the required triamines and diol 

ditosylates. The triamines 66 and 67 were protected under phase transfer conditions 

using triethyl-benzylammonium chloride (TEBACI) according to Scheme 2.1.2 

giving the Mts-amides 68 and 69 in moderate to good yield (41% and 75%, 

respectively). Attempts to cyclise 68 aJways resulted in a complex mixture of 

oligomers. The yields for cyclisation and deprotection of triazamacrocycles using 69 

are listed in Table 2.1.1. For simplicity, macrocysle 'ring size' will be described 

either according to the abbreviations previously listed in this thesis (e.g. 53 = tacn, 

36 = cyclen), or by the convention [nbnl,n3 etc.], where nl etc. indicates the length 

of carbon chain between nitrogens (see 53 and 37 below for examples). 

53 
[2,2,2] 

4 n 
·CNH.HJN 
3 ~ 3 

. 37 
[3,3,4] 
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Scheme 2.1.1 

Scheme 2.1.2 

A2 
OTs OTs 

66: n = 0 
67: n = 1 

.. 

TEBACI 
NaOH 

Mts Mts 
I I 
NH HN 

• (~~J)n 
R 

68: n =0, R=H 
69: n = 1, R = Mts 

Unfortunately, the deprotection of mesitylenesulfonyl-protected 

triazamacrocycles proved to be just as difficult as for tosylamides. Only one 

compound, the 3,3,3 macrocycle 71, was successfully deprotected under hydrolysis 

conditions to give 73 and then only after 14 days of reflux and 14 days of standing at 

room temperature. Although the yield was good, the unpredictable behaviour and 

still harsh hydrolysis conditions for the deprotection, were undesirable. 

Table 2.1.1 

K2 ~ Mts .. Mts 
'N N"": NH HN . 3HBr 

(4.:-~J )n, (4;~J)n1 
1 Mts 

n1,n2 ring size cycllsation deprotectlon 

yield (%) yield (%) 

1,0 [3,3,2] 70:'8 nfa 

1,1 [3,3,3] 71: 15 73:84 

1,2 [3,3,4] '72:39 n/a 
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A route was necessary that would provide reliable synthesis of a range of 

polyazamacrocycles. The route also needed to be flexible enough to accommodate 

various types of functionality within the ring. It was clear that it was crucial to find a 

protecting group that could be removed dependably and under milder conditions. It 

was also desirable to stay within the Richman-Atkins-type cyclisation of 

sulfonamides, as it offered the required flexibility in ring size construction. 

2.2. Alternative protecting group strategies 

A number of alternative sulfonamide protecting groups were available. The 

2- and 4-nitrobenzenesulfonyl (nosyl, 74) and (2-trimethylsilyl)ethanesulfonyl (SES, 

75) protecting groups have been used for the synthesis of polyazamacrocycles. Both 

were attractive: the nosyl group was reported to give good yields for the cyclisation 

and mild deprotection could be carried out using a thiol; 152, 153 and the SES group 

provided high yields in the cyclisation and mild deprotection was accomplished 

using fluoride. 151, 192 

QQ, 
0=8=0 

I 
'V\IV" 

74 75 

Initially both groups were investigated; ho\\,)ever the use of the nosyl group 

proved to be more difficult than expected. Preliminary attempts at the protection of 

triamines with 2- or 4-nitrobenzenesulfonyl chloride under phase transfer conditions 
. " 

using TEBACI (Scheme 2.2.1) were complicated by the low solubility of the 

N:N"'-bis-nosylated material in diethyl ether and the steric hindrance at the 

"secondary amine. This was particularly a problem in the protection of 

diethylenetriamine (66). 

, . 
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Scheme 2.2.1 

N02 

(}1 
Y+ 

0==8==0 
I 

CI 66: n = 0 
67: n = 1 

TEBACI 
NaOH .. NS'N~N~N .. NS 

H n I n H 
Ns 

76: n = 0 
77: n = 1 

Following the initial protection of the primary amine functionality, some of 

the bis-protected material precipitated from solution. This resulted in a mixture of 

bis- and tris-protected triamines that was difficult to separate and gave low yields of 

the desired tris-nosylated triamine. This primary amine selectivity has been reported 

previously and with the right conditions can provide an advantage for orthogonal 

protection.193 However, this did not suit the purposes of our project. Changing the 

solvent to dichloromethane or N,N-dimethylformamide reduced the precipitation, but 

still gave a mixture of products. Column chromatography could be used to achieve 

-90% purity but the yield was unsatisfactory (29%). 

Scheme 2.2.2 

NS'N~N~N .. NS 
H n I n H 

Ns 
DMF 

NS,(),NS 

(C~J\ 
Ns 

.. 

78: n = 0, m = 2; >95% crude yield 
79: n", = 1, m = 0; 94% crude yield 

Additionally, the cyclisation and deprotection of nosyl-amides was not 

straightforward. The cyclisation of two nosylated triamines was attempted with 

moderate success, giving the products 78 and 79 (Scheme 2.2.2). The crude 

.. macrocyclic sulfonamides were not purified, as TLC and IH NMR spectra s~owed 

complex mixtures although they contained mostly the desired material. Attempts to 

deprotect the compounds w~re unsuccessful. The deprotection of nosylamides is 

reported to occur as in Scheme 2.2.3.194 The product then needs to be separated 

from ~l1e byproducts either by chromatography or by aqueous extraction. 
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Scheme 2.2.3 

. . ,..... .. 
- ·0· l,fO • ....N-::. • . . 
~ .~~SR' 

:0==5==0. . 
• I • 

N 
R" 'R 

- :O~N~O: . . 

Q • 

SR' 

A one-pot cyclisationldeprotection strategy for nosylated polyazamacrocyc1es 

has been previously reported. However the primary advantage lay in the synthesis of 

polyaza[n]naphthalenophanes and polyaza[n]anthracenophanes, e.g. 80 and 81.152 

n((r;NH 

d~ 
l$NH 

n 
80 

n(ICNH 

a\~ ~ 7f // 
(~NH 

n 
81 

The purification of the deprotected material was not described in detail, but it is 

likely that the increased hydrophobicity of the cyc10phanes allowed them to be 

purified by column chromatography or by extraction from aqueous solution. This 

, was not possible with the highly water-soluble alkyl triazamacrocycles. Thus it was 

difficult to separate the free amines from the byproducts of the deprotection. 3-

Mercaptopropionic acid (82) was used as the thiol, in the hope that the carboxylic 

acid byproduct 83 could, be separated from the triazamacrocyc1es using acidlbase 

extraction techniques. It was possible to precipitate the bulk of 83 upon acidification 

of the solution. However, it was too difficult to separate the desired material from - . 
the resulting crude mixture. During this time the SES-protecting group was showing 

promise, so the 110syl route was abandoned. 
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The method of Hoye et al. 151 was used for the synthesis, cyc1isation and 

deprotection of SES-amides according to Scheme 2.2.4. 2-(Trimethylsilyl)

ethane sulfonyl chloride (SES-CI, 85) is not commercially available, so it was 

synthesised according to the procedure -of Weinreb et al. from the corresponding 

sulfonate salt 84 (either purchased from Aldrich or synthesised from 

vinyltrimethylsilane) as in Scheme 2.3.1.195 

Scheme 2.2.4 

o RI 
\ II 

-SI'~~'C' + H N/'I... .ANi.... ...v""-.NH 2 \~/nl \~/n2 2 
/ 0 .. 

~s I CS2C03 

r 1 DMF 
OTs OTs r.t. 

.. ,k-,)...,ns r - -1 CsF 

CN~HJN • DMF 

( N ) 100°C 
n nl 2 

2.3. Synthesis of (2-trlmethylsilyl)ethanesulfonyl chloride 

The formation of the sulfonyl chlpride (Scheme 2.3.1) was variable. The 

first attempt, gave a high yield of pure material, but subsequent attempts resulted in 

low conversion arid significant amounts of anhydri~,e byproduct 86 (as observed by 

1H and 13C NMR spectroscopy). The conditions were kept under strict c'ontrol: the 

sulfonate salt was thoroughly dried before use; glassware was oven-dried and argon

cooled; and the thionyl chloride (SOCh) was predistilled. However, after mUltiple 

attempts the yield of 85 was consistently lower than 30%. 

Scheme 2.3.1 

NaHSO; 

.. ~SI/ PhC03t-!3u 
, ............ MaOH/H20 cat. DMF 

84 ' 

e'~lt 
85 86 
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The variation of factors such as dryness of 84, brand of SOCh used and 

length of reaction time had no consistent effect on yield. Over the course of 30-40 

repetitions the only recognisable differences were obtained by ensuring efficient 

dispersion of 84 during the addition of SOCh (by crushing 84 to a fine powder 

before use and using twice the amount of SOCh). However, even that provided only 

a marginal increase in reliability of the reaction. The resulting mixture of 85 and 86 

required separation by distillation. Even under high vacuum the heat necessary for 

the distillation caused significant decomposition of 85 to 86 and HC!. Finally it was 

found that increasing the amount of DMF from 0.04 eq. to 0.4 eq. ensured the 

production of 85 exclusively. It was then possible to produce pure 85 consistently in 

high yield (70-86% overall from vinyltrimethylsilane) without the need for 

distillation. Representative IH NMR spectra are shown in Figs. 2A and 2B to 

illustrate the purity achieved with 0.4 eq. DMF (2A), compared with the crude 

material when only 0.04 eq. DMF was used (2B). 

2.4,. SES-triamines 

Practical difficulties were also encountered in the protection of the 

commercially available triamines (Scheme 2.2.4). Again, yields and purities were 

inconsistent even after repetitions of the same reaction. Reaction times of less than 

16 hours resulted in lower yields. Reactio.n temperatures above 5-10 °c resulted in a 

brown odor~)Us byproduct and reduced yield. The best yields were obtained by 

adding the SES-CI sufficiently slowly to keep ,~e temperature below 10°C; 

monitoring the temperature of the reaction with an internal thermometer; and using 

an immersion cooler to keep the reaction below 5 °c while stirring overnight. The 

compounds 87·89 were obtained in 46, 71 and 87% yield, respectively. 

SES .... N~N~N ... SES 

H "1 SES "2 H 

87: n1,2 = 0 
88: n1,2 = 1 
89: n1 = 1; n2 = 2 

In some cases, triamines with the desired carbon bridge lengths were not 

commercially available. For access to macrocycles with these bridge lengths, a route 
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was developed from primary sulfonamides and the corresponding haloalkanenitriles 

to give the bisalkanenitrile sulfonamides. The nitriles could be reduced to the 

primary amines and subsequently protected as sulfonamides for cyclisation to 

macrocycles. The initial strategy used nosylsulfonamide 90 (Scheme 2.4.1). The 

alkylation of the sulfonamide and reduction of the resulting bis-alkanenitrile to the 

diamine were straightforward, giving the products 91 and 92 in 67 and 78% yields, 

respectively. However, the nosyl group rendered the diamine 92 difficult to purify 

and it was not possible to separate the byproduct of nosyl deprotection 83 (as 

described by Scheme 2.2.3) from the desired triamine 93. 

Scheme 2.4.1 

+ Br~N • 

90 

j BHaTHF 

THF . 

HN~NH2"'·_~_M_PA_F __ NS2'~NH2 
93 NH2) 92 NH2 83 

'---------y 
inseparable 
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Fig. 2A. SES-CI (crude) when 0.4 eq. DMF was used 
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Fig. 2B. Mixture of SES-CI and SES-anhydride when 0.04 eq. DMF was used 
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With ease of deprotection in mind, the protecting group was changed to SES 

(Scheme 2.4.2). 94 was obtained in good yield from SES-CI and gaseous ammonia 

(generated by warming stirred conc. aqueous NH3). 

Scheme 2.4.2 

94 n = 1-3 

95: n = 1 
96: n = 2 
97: n = 3 

DMF 

BH3THF .. 
THF 

98: n = 1 
99: n = 2 
100: n = 3 

The mono-N-SES-triamines 98·100 were acquired in good overall yield 

( .... 70% from 94) with little or no purification required. The selective protection of 
f' 

the secondary amine provides the opportunity for orthogonal protection of the 

subsequent triazamacrocycles. Also, the SES group can be removed in good yield 

(to achieve 50-60% yield overall from 94), offering better yields than previously 

published for the synthesis of the biologically interesting 

triamines 101.103.191.196.197 Yields for building triamines are given in Table 2.4.1 . 
. 

The mono-N-SES-triamines 98·100 were also tris-protected to give the tris-SES-

triamines 104.106, which were cyclised as in Scheme 2.2.4. 

Table 2.4.1 

n 

l' 

2 

3 

R=CN 

95: 96% 

96: 76% 

97: 73% 

H2N~~~NH2 
101: n = 0 
102: n = 1 
103: n = 2 

R = CHaNHa 
deprotected 

trlamine 

98: 96% 101: 84% 

99: 95% 102: 84% 

100: 97% 103: 46% 

over three 
steps 

77% 

61% 

32% 

Trls-SES
trlamlne 

104: 52% 

105: 62% 

106: 65% 
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2.5. Cyclisation and deprotection 

Scheme 2.5.1 

TsCI + K pyridine 
• 

OH OH 
K 
OTs OTs 

107: n = 0 
108: n = 1 
109: n = 2 
110: n = 3 

Ditosylate formation (Scheme 2.5.1) was straightforward and high-yielding. 

The cyclisation (Scheme 2.2.4) generally proceeded smoothly at room temperature. 

The reaction could be monitored for disappearance of ditosylate by TLC of 

evaporated aliquots. Little or no oligomerization was observed for the larger ring 

sizes (e.g. n > 0) and the macrocyclic sulfonamides 111-121 could usually be 

purified by crystallisation from MeOH or 2-PrOH. The only combination of 
r, 

sulfonamide and ditosylate to produce significant quantities of oligomer was 87 and 

109, which gave the dimer 122. The production of 122 was concentration dependent 

and could be minimised by increasing the dilution (from 0.08 M to 0.03 M 

sulfonamide/ditosylate in DMF). The dimerisation was not immediately recognised, 

as the two compounds co-eluted during column chromatography and the mixture 

gives a IH NMR spectrum that can be rationalised as representing the triaza-[2,2,4] 

compound '112 (Fig. 2C). The dimer was eventually identified from mass 

spectrometry and analytically pure material was obtained from multiple columns. 

The spectroscopic identification of these two compounds is illustrated in Figs. 2D, 

2E and 2F. Yields for cyclisation and deprotection are given in Table 2.5.1. 
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Table 2.5.1 

~3 ~n3 
SES'N N"SES CsF 

(?) (C~J )" • 
DMF 

100°C ( N )n 
1 SES n1 2 

n1, n2, n3 ring size cyclisation yield (%) deprotection yield (%) 

0,0,1 [2,2,3] 111: 53 123:55 

0,0,2 [2,2,4] 112:29 124: 521 

1,1,0 [3,3,2] 113:45 125: 442 

1,1,1 [3,3,3] 114:48 126:58 

1,1,2 [3,3,4] 115: 64 37: 392 

1,1,3 [3,3,5] 116:54 127:622 

2,2,1 [4,4,3] 117: 41 128: 332 

1,2,3 [3,4,5] 118:47 129: 342 

2,2,2 [4,4,4] 119: 29 130: 672 

3,3,2 [5,5,4] 120:29 131: 332 

r 4,4,2 [6,6,4] 121:21 132: 31 2 

(0,0,2)2 [2,2,4]2 122:51 133: 282 

hexaaza 

1 deprotected using TBAFj reported as apparent yield after distillation relative to 
TBAOH (deduced from 1H NMR spectroscopy) 

2 purified by Kugelrohr distillation 

The deprotection of SES-amides proceeded according to Scheme 2.5.2,192 

using caesi~m fluoride. Although IH and l3e NMR spectra of aliquots showed when 
.) 

the material was fully deprotected and there was no significant amount of byproduct, 

only relatively low yields of deprotected material were isolated. No water was used 

in the workup, which might have reduced recovery of the highly water-soluble 

amines and the parent macrocycles are not volatile under normal solvent evaporation 

.. pressures. Some possible reasons for this lower yield are discussed in the next 

section. 

Scheme 2.5.2 

.. 

Si(Me)gF 
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Fig. 2C. Crude SES-[2,2,4] (112 and 122) 
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Fig. 20. 1H NMR spectra of 122 (top) and 112 (bottom) 
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Fig.2E. 13C NMR spectra of 122 (top) and 112 (bottom) 
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Flg.2F. Mass spectra of 122 (top) and 112 (bottom) 
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2.6. Purification of parent macrocycles 

Most of the free triazamacrocycles were purified by Kugelrohr distillation. 

The compounds that were not distilled were produced during an earlier stage of the 

project and time did not allow their syntheses to be repeated. Consequently, only the 

distilled macrocyc1es were successfully converted into mustard drugs. Their high 

purity facilitated this process. Previous work in the group had encountered 

difficulties with the purities of the parent macrocyc1es. The purity can be judged 

from the definition of the peaks in the IH NMR spectra, which are broad and less 

distinguishable from each other in the crude material (Fig. 2G). Upon Kugelrohr 

distillation, some pure amine was obtained as a clear oil, but a significant amount of 

yellow oil remained in the original flask. It was not possible to distill this material 

even at temperatures exceeding 250°C and pressures below 0.1 mmHg. IH NMR 

spectroscopy of the yellow material showed it contained mostly the macrocyclic 

amine. However, slight chemical shift changes indicated that the free amine may 

have complexed to residual Cs+ ions (Fig. 2H). Small macrocyclic heterocycles are 

known to chelate to alkali metal ions, e.g. 18-crown-6 forms a strong complex with 

K+. Also, a 'perfect fit' between ion size and macrocycle cavity is not necessary for 

complexation to occur. 198 Attempts to free the parent amine using EDTA, or 

forming the HCI salt, were not successful. 

2.7. Alternative fluoride sources 

To circumvent the problem of metal ion chelation, alternative fluoride 

sources were investigated. Althoug~ tetraalkylammonium fluorides will successfully 
.. , 

remove the SES-groups, their byproducts are very difficult to remove from the 

desired amines. Separation by Kugelrohr distillation was repeatedly unsuccessful. 

.. The tetraalkylammonium compounds distilled together with the product. Although 

they should decompose to their corresponding triamines with heat, this was not seen 

in practice. -Other fluoride sources were u!lsuccessful at deprotecting the 

sulfonamides. The results are given in Table 2.7.1. The success of the deprotection 

was "assessed by IH NMR spectroscopy af evaporated aliquots, looking for 

disappearance of peaks corresponding to the SES group. 
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Table 2.7.1 

fluoride solvent conditions result 

deprotected, but 
TBAF THF reflux byproducts wouldn't 

separate 

100°C 
deprotected, but 

TBAF on alumina DMF byproducts wouldn't 
separate 

tetraethylammonium 100°C 
deprotected, but 

DMF byproducts wouldn't fluoride (TEAF) 
separate 

incomplete 
tetramethylammonium DMF 100°C deprotection, 
fluoride (TMAF) byproducts difficult to 

separate 

polymer-supported 
10-20 eq. 

THF reflux no reaction fluoride (Aldrich) 3 days 

polymer-supported 
10-20 eq. 

DMF 100°C no reaction fluoride (Aldrich) 5 days 
<, 

ammonium difluoride DMSO-d6 100°C no reaction 

ammonium fluoride DMF 
Overnight 
100°C no reaction 

Microwave 
ammonium fluoride DMF 110°C no reaction 

15min 

some deprotection, 

KF/18-crown-6 DMF 
10 eq .. , but no product 
100°C isolated from 

residual 18-crown-6 

sonication 
HF/pyridine DMF' 35°C no reaction 

overnight 

Sonication 
.' 40% aq. HF DMF 35°C no reaction 

overnight 
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Fig. 2G. 1H NMR spectra of distilled (top) and crude (bottom) 37. 
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2.8. Synthesis of triazacyclophanes 

As a secondary synthetic goal, it was desirable to demonstrate the utility of the 

SES-group for synthesising macrocycles with sensitive functionality. CYclophanes 

(e.g. general structure 134) were good candidates for this, since their benzyl linkages 

are more susceptible to hydrolysis under the harsh conditions usually employed in 

the Richman-Atkins synthesis. Indeed, Hoye et al. 151 showed that the SES 

deprotection was mild enough for the synthesis of the (naphthaleno )phanes 135 and 

80 and the (anthraceno)phanes 136 and 81. 

134 

n(/tNH 

cl~ 
If 
(~NH 

n 

135: n = 0 
80: n = 1 

n(ICNH 

a~\~ ~ 7f ~ 
(~NH 

n 

136: n = 0 
81: n = 1 

MacrocYcles with anthraquinone (137) and quinoline (138) linkers were chosen 

as targets, as their cyclophanes have not been reported previously. The naphthalene 

linker was also chosen. All three of ~ese groups have previously exhibited the 

ability to intercalate with DNA.199 Mustards with intercalation ability show 

enhanced cytotoxicity,200 and the addition of aromatic functionality within the ring 
,) 

would increase the lipophilicity of the resulting macrocycles. 

o 
137 

\ 

i 

138 
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Scheme 2.8.1 

NBS 

139 140 

Neither the bis(bromomethyl) nor the bis(hydroxymethyl) derivatives of 

naphthalene, anthraquinone and quinoline are commercially available. It was 

therefore necessary to synthesise the bis(bromomethyl) compounds from their 

dimethyl derivatives with N-bromosuccinimide in CC4.201 The regiochemistry of 

the bromomethyl groups was restricted to the corresponding commercially available 

dimethyl compounds. l,4-Bis(bromomethyl)naphthalene 140 was prepared in 53% 

yield and purified by crystallisation from MeCNlhexane (Scheme 2.8.1). Similarly, 

2,3-dimethylanthraquinone 141 was reacted to give 142 in 37% yield and was 

purified by recrystallisation from ethanol (Scheme 2.8.2). 
( 

Scheme 2.8.2 

0 
NBS 

.. Br 
CCI4 Br 
hv 

0 0 

.' 141 142 

Attempts to form the 2,7 -bis(bromomethyl)quinoline in this way were 

unsuccessful due to over-bromination on the aromatic ring, even when only two 

equivalents of NBS were used. The resulting mixture did not contain a significant 

amount of the desired material and it could not be separated by column 

.. chromatography. Also unfortunately, the preliminary attempt at cyclisation of 

2,3-bis(bromomethyl)anthraquinone with tris-SES-spermidine was unsuccessful. It 

produced a complex mixture "that could not be separated by column chromatography. 

Similar halide substitution reactions with this compound are known,202.203 so it may 

still be possible to synthesise the macrocycle. . 
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The bis(bromomethyl)naphthalene compounds were cyclised with tris-SES

spermidine according to Scheme 2.8.3 [the 1,8-bis(bromomethyl)naphthalene was 

formerly available from Aldrich but has since been discontinued]. 

Scheme 2.8.3 

5 4 rBr 
X= 6~~3 
7~vJ2 

a 1 LBr 
140: 1 ,4-substituted 
143: 1 ,a-substituted 

H 
SES'N~N~N'SES 

H SES 

89 

• 
DMF 

144: X = (1,4-naphth) 
145: X = (1 ,a-naphth) 

As would be expected, the yield for the cyclisation of the sterically-hindered 

([1,8]naphthaleno)phane 145 was relatively low at only 18%. The deprotection 

proceeded in variable but sufficient yield (146 [1,4] and 147 [1,8], respectively, 25% 

and 93%). However the compounds decompose upon distillation so they cannot be 

purified in the same way as the alkyltriazamacrocycles. 

The synthesis of the (naphthaleno)phanes only marginally improves the 

demonstration of utility of the SES-group (with respect to the article by Hoye et 

al. ISI
). It is likely, however, that farther optimisation of the synthesis of additional 

bis(bromomethyl) aromatic compounds and also of the cyclisation of SES-amides 

., with sensitive linkers is possible. Unfortunately, this strategy was taken up near the 

end of the project and it was not possible to carry it on. 

2.9. Alternative routes to polyazamacrocycles 

The use of SES-protecting groups in the modified Richman-Atkins synthesis of 

polyazamacrocycles is flexible 'and allows access to a range of compounds for drug 
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discovery. However, it is not very convenient or cost-efficient. Carbon-template 

methods were investigated in the interest of finding more efficient routes to 

polyazamacrocycles. The primary targets were the tetraazamacrocycles that were 

less efficiently obtained using the SES route. Unfortunately, not all of these attempts 

met with success. 

Scheme 2.9.1 

K 
n 

(l (:l 
Br Br (:l i. HCI (aq) (l K2C03 EtOH 

CNH HNj c:t) MeOH c:t) ii. NaOH (HHN) .. .. II 

NH2 NH2 MeCN NH HN 
H H L....J LJ 

148 149 150 151 

As described in section 1.4.1 of this thesis, the [2,2,2,3] tetraazamacrocycle 151 

was synthesised from the aminal-templated linear tetraamine 149 (Scheme 2.9.1). 

The yields were not as high as reported in the literature (only 12% overall yield of 
r' 

the free base as opposed to 77% reported for the HCI salt148) but they were sufficient 

to provide a useful amount of parent macrocycle for the synthesis of the nitrogen 

mustard derivatives. The low yield was probably due to low purity of the 

1,4-butanedione-it may be necessary to distill it before use. 

Cyclen (36) was prepared in only 8% overall yield from 153 (Scheme 2.9.3) 

according to the bis-imidazoline diamino-carbene method (Scheme 1.4.1.10, section 

1.4.1).149 Again, the yields were not as good as published (52% overall from 

triethylenetetraamine) but a sufficient amount of material was produced so the route 

was not optimised. It was desirable to apply this short method to the synthesis of 

cyclam and other tetraazamacrocycles from cheap starting amines, 

e.g. bis(3-aminopropyl)ethane-l,2-diamine (Scheme 2.9.3). Accordingly, 153 and 

two bis-tetrahydropyrimidines (154 and 155) were synthesised by condensing the 

tetraamines with N,N-dimeth:ylformamide dimethyl acetal (152). Their cyclisation to 

tricyclic bromide salts (and subsequent hydrolysis' to the free macrocycles 156-158) 

was ~ttempted. IH and l3C NMR spectroscopy of the intermediates, thought to be 

the crude bromide salts, looked promising. However, only the starting tetraamine 

was obtained after hydrolysis, with just trace amounts. of the macrocycles produced 
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at best. It was possible that the diaminocarbene insertion was taking place, but that 

the conformations were unfavourable for the formation of the fourth ring. This route 

was not pursued further. 

Scheme 2.9.3 

2.10. Conclusions 

153: n1,3 = 0, n2 = 1 
154: n1.3 = 1 
155: n1,3 = 1, n2 = 2 

rN~:~ 
1--+N,H I IiNf.1 

"1"-t-1 "3 
"4 

156: n1,3 = 0; n2 = 1; n4 = 2 
157: n1.4 = 1 
158: n 1.3 = 1 ; n4 = 2 

Four key synthetic observations are reported in this work. First, we have 

found that the synthesis of SES-chloride is greatly simplified by using ten times as 

much DMF catalyst as reported in the literature;! resulting in higher yields, and 

virtually no purification is required. Second, the scale up of macrocycle synthesis 

using SES-amides is ~ot as simple as it appears in the previous publication. 

However, it can be used to produce a range of triazamacrocycles, including four 

novel compounds, for derivatisation and testing as N-mustard analogues. . Third, 

although CsF causes problems for the purification and yield of the triazamacrocycles 

synthesised, it i~ the best reagent found so far for their deprotection and the products 

can be effectively purified using Kugelrohr distillation. Finally, linear triamines can 

also be built from SES-amides in high yield with little purification necessary. All of 

these results provide practical improvements on what has been reported in the 

literature. They also offered access to the series of compounds desired initially for 
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comparison of the cross-linking efficiency of macrocyclic N-mustards with different 

carbon bridge lengths. The successful synthesis of linear triamines and the range of 

novel triazamacrocycles described here, including the improved synthesis of SES

chloride, has been accepted for publication.204 
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Chapter 3 

3. Synthesis of polyazamacrocyclic nitrogen 

mustard derivatives 

Initially, the formation of the mustard derivatives proved problematic for 

some of the triazamacrocycles, especially for compounds with unsymmetrical carbon 

bridge lengths. Attempts at hydroxyethylation in water and ethanol with excess 

ethylene oxide (as used previously in the groUp)121 resulted in polymerisation of the 

material to give poly(ethyleneglycol)-substituted amines. Using less than a large 

excess of ethylene oxide gave mixtures of material that was not fully alkylated. Two 

alternative routes to N-(2-chloroethyl) derivatives were investigated, but were not 

successful. During this investigation, the ethylene oxide alkylation was optimised. 

3.1. Unsuccessful 

chloroacetamides 

routes: 

3.1.1. Reductive alkylation 

reductive alkylation; 

Using 1,4,7-triazacyclononane (tacn, 53) as a model triazamacrocycle, a one

step reductive alkylation process was investigated for the synthesis of 

poly-N-(2-chloroethyl) derivatives (Scheme 3.1.l.1). This type of reductive 

alkylation has been reported before with linear amines, using NaCNBHlo5 and 

Na(OAchBH2o6 as red\~dng agen~s. The reaction was carried out using each 

borohydride. Using an excess of NaCNBH3 as the reducing agent in methanoVaq. 

Hel at pH 6 for four days resulted in a mixture of products, as shown by TLC ~nd IH 

NMR spectroscopy. Although this mixture did appear to contain some of the desired 

tri-substituted p~oduct 159, too many amine impurities were present for purification 

via conversion into an acid salt. The material was too sensitive to aziridinium ion 

formation and hydrolysis to purify by column chromatography. 
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Scheme 3.1.1.1 

53 

o 
~CI 

a) NaCNBH3 
or 
b) Na(OAc)sBH 

---------------~ 
a) MeOH, pH 6 
or 
b) AcOH 

159 

Using Na(OAc)3BH in acetic acid also appeared to give some of the desired 

product. After 2.75 hours, IH NMR spectroscopy showed that most of the tacn was 

unreacted, but mono-, di- and tri-substituted material were also present. Repeating 

the reaction and monitoring it by TLC showed that the reaction was still incomplete 

after three days, but beyond that time side reactions took place that resulted in a 

complex mixture of products. IH NMR spectroscopy of the mixture showed it did 

not contain a significant amount of the desired material. 

Given the protonation behaviour of triazamacrocycles such as 53,207 it is 

probable in solutions of pH 4-6 (as in the above reactions), that the macrocycle is not 

fully protonated. This could allow the formation of aziridinium ions, resulting in 

alkylation of residual amines from starting material that was not fully reacted. The 

observation that the material initially ~oes react to some degree, but over time 

produces a complex mixture of similar compounds supports this hypothesis. Given 

the relative simplicity of other routes, the reductive alkylation strategy was 

abandoned. 

3.1.2. Chloroacetamides 

Parker et al. reported the synthesis of N-(2-chloroethyl) macrocycles via 

acylation to their chloroacetamide intermediates.208 Three of the triazamacrocycles 

(126, 37 and_ 127) were acylated with chloroacetyl chloride to give the 

chloroacetamides (Scheme 3.1.2.1), which Could be purified by column 

chron;:mtography. Parker et ai. used BH3.S(Me)2 to reduce the chloroacetamides.208 

Use of BH3.THF gave a mixture of products, some of which appeared to be over

reduced to the N-ethyl derivatives. None of the desired N-(2-chloroethyl) material 
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could be isolated from the mixture. During this time, the ethylene oxide alkylation 

procedure was optimised so this route was also abandoned. 

Scheme 3.1.2.1 

o 
CI~CI 

126: n1,n2,n3 = 1 ([3,3,3]) 
37: n1 = 2, n2,n3 = 1 ([3,3,4]) 

127: n1 = 3, n2 = 2, n3 = 1 ([3,4,5]) 

TEA 

OCM 
.. 

o ~10 
CI0~\ '~~CI 

J~~J)n2 
CI 

160: [3,3,3] 
161: [3,3,4] 
162: [3,3,5] 

: BH3'THF 
I 

t THF 

CI~~1~CI 
N N 

nJC~J)n2 
CI 

3.2. Poly-N-(2-hydroxyethyl) derivatives 

The parent macrocyc1es were converted into their poly-N-(2-hydroxyethyl) 

derivatives .using ethylene oxide.209 The optimum reaction conditions were found to 

be stirring in ethanol overnight at less than 10°C,; with a large excess of ethylene 
. -' 

oxide (Scheme 3.2.1). Details of compounds 163·183 and yields are given in Table 

3.3.1. In this way, most of the triazamacrocycles could be successfully tri

substituted (examples of spectroscopic identification for 170 are given in Figs. 3A 

and 3D). The [3,3,4] and [3,3,5] macrocyc1es 37 and 127 proved to be particularly 

.. difficult to alkylate at all three nitrogens. However, the products of various degrees 

of alkylation could be separated by Kugelrohr distillation. In one case, the 

symmetrically eli-substituted' derivative of the [3,~,5] compound (167) was isolated 

in high purity from the distillations. It was converted into its mustard derivative and 

included in the testing to compare the effects of di-substituted vs. tri-substituted 

macrocyclic mustards. The [2,2,2,3] tetraazamacrocycle was also synthesised as 
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detailed in Section 2.9 and converted into its hydroxyethyl derivative (184) in 85% 

yield. 

Fig.3A. FAB Mass spectrum of 170 
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Scheme 3.2.1 

o 
excess D 

EtOH 
.. 
HO~~~OH 

N N 

n3(~J)n' 
OH 

3.3. Macrocyclic nitrogen mustard derivatives 

The mustard derivatives were formed by heating the poly-N-(2-hydroxyethyl) 

compounds in thionyl chloride overnight (Scheme 3.3.1).210 The material was 

usually isolated without the need for purification, but could be precipitated from 

methanol with diethyl ether if necessary. The peaks in the IH and 13C NMR spectra 

for these hydrochloride salts were usually broad and sometimes unclear, but the 

evidence for the presence of each compound could be obtained by mass 

spectrometry. An example of the characterisation using IH NMR and mass 

spectrometry (for bis-substituted mustard 177) is given in Fig. 3C. Compound 

details and yields are given in Table 3.3.1. 

The macrocyclic nitrogen mustards were tested for their ability to cross-link 

DNA and for their cytotoxicity against the human chronic myeloid leukaemia cell 

line K562.. The biological test procedures are discussed in Chapter 5. One 

additional tetraazamacrocyclic mustard was latet,l prepared (185) in quantitative 

yield, but was not included in the first round of testing. 

184: X=OH 
185: X = CI (2HCI salt) 
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Scheme 3.3.1 

Table 3.3.1 

X'lJ~-~fX 
N N 163-173: X = OH 

~(c~)~ 174-183: X = CI (HCI salt) 

X 

n1, n2, n3 ring size yield X= OH yield X= CI 
(%) (%) 

0,0,0 [2,2,2] 163:85 174:99 

0,1,1 [2,3,3] 164:85 nla 

1,1,1 [3,3,3] 165:88 175:61 

1,1,2 [3,3,4] 166:44 176:89 

1,1,3 [3,3,5] (bis) 167: 13 (bis) 177: 99 

1,1,3 [3,3,5] 
. 

(tris) 168: 57 (tris) 178: 93 

1,2,2 [3,4,4] 169:68 179:85 

1,2,3 [3,4,5] 170:96 180:99 

3,3,1 [5,5,4] 171:99 181:99 

4,4,1 [6,6,4] 172:99 182:99 
2(1,1,2) ,. [2,2,4,2,2,4] 173:74 183:83 
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Fig.3C. Characterisation ot bis-substituted [3,3,5] mustard 177. 1H NMR spectrum 
(top) and FAB mass spectrum (bottom) 
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Chapter 4 

4. Coordination chemistry 

polyazamacrocycles 

4.1. Synthesis of metal complexes 

Scheme 4.1.1 

38: n = 0 
185: n = 1 

.. 

of 

186: n = 0 
187: n = 1 

novel 

+ 
CI 

+2HCI 

The formation of metal complexes of the poly-N-(2-chloroethyl) ligands was 

not always simple, because the typical way to complex an azamacrocycle (from its 

halide salt) with a metal is to neutralise the salt first then add a solution of a desired 

metal salt.93
-
96 The neutralisation of the mustard ligands is complicated by how 

easily they can be hydrolysed in water .. At neutral or basic pH, aziridinium ion 

formation and hydrolysis of the 2-chloroethyl functionality causes decomposition of 

the ligand. Fortunately, the Cu(lI) complexes of 3~ and 185 (186 and 187) could be 

formed from their hydrochloride salts (Scheme 4.1.1) and precipitated in acceptable 

yield from the resulting solution. Yields are given in Table 4.1.1 (eight pages on). 

186 was crystallised as its tetrafluoroborate salt and analysed by X-ray 

,. crystallography. All X-ray crystallography was performed by Louis Farrugia'in this 

department. The crystal structure is illustrated in Fig. 4A. The complex exhibits 

bowl-shaped conformation ·and the geometry around the Cu(lI) ion is square

pyramidal with the Cu(U) sitting well out of the plane of the four coordinating 

nitrogen atoms. 
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Fig.4A. X-ray crystal structure of 186. 

C13 

Bond I~ngths Bond angles 
(A) (0) 

Cu1-N1 2.099 N1-Cu1-N4 85.11 

Cu1-N4 2.060 N1-Cu1-N7 146.0 

Cu1-N7 2.062 N4-Cu1-N7 86.51 

Cu1-N10 2.065 N4-Cu1-N10 148.95 

Cu1-CIS 2.361 (8) N7-Cu1-N10 87.03 

N10-Cu1-N1 85.33 
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Fig.4B. Crystal structure of 187. 

Bond I~ngths Bond angles 
(A) (0) 

Cu1-N1 2.077 N1-Cu1-N4 84.87 

Cu1-N4 2.097 N1-Cu1-N7 162.25 

Cu1-N7 2.126 t-J4-Cu1-N7 84.96 

Cu1-N11 2.116 N4-Cu1-N11 149.2 

Cu1-C11 2.406(3) N7-Cu1-N11 95.27 

N11-Cu1-N1 86.14 
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The complex of homocyclen N-mustard [2,2,2,3] (187) was crystallised as its 

hexafluorophosphate salt. The crystal structure and important bond lengths and 

angles are given in Fig. 4B. The Cu(ll) ion adopts a similar geometry to that for 186 

(square pyramidal), however this complex has Z- (or saddle-) shaped conformation. 

Unfortunately, easy complexation from the acid salt was not the case for 

ligands 40, 174 or 175. Initial attempts to complex the hydrochloride salt of 40 with 

Cu(ll) without neutralisation resulted in no complex formation. Neutralising the salt 

with either 1 M NaOH or triethylamine resulted in swift hydrolytic decomposition 

and complexation of the resulting 2-hydroxyethyl compound 188 (as indicated by the 

crystal structure shown in Fig. 4C and UV-Vis spectroscopic analysis). 

CI~n~CI 
C )'2HCI 

N N 
CI/'JV~CI 

40 

CI 

lNr\N~CI 
(,NJ '3HCI 

( 
CI 

174 

The Amax of the tetra-N-(2-hydroxyethyl) compound 188 is significantly 

higher than that for the tetra-N-(2-chloroethyl) complex 190. This allowed the 

identification of 188 (using UV-Vis spectroscopy) as the primary complex in the 

solution from which it crystallised. This was supported by X-ray crystallographic 

analysis. The crystal structure shows that the 2-cl))oroethyl substituents have been 

hydrolysed to 2-hydroxyethyl, either before or after complexation. This 

phenomenon is discussed further in ,section 4.2. Here the Cu(ll) sits only slightly out 

of the plane of the foUr coordinating nitrogen atoms and one of the oxygens 

coordinates as well to give the complex overall square pyramidal geometry, with the 

.. Cll atom participating in a non-bonding interaction (Fig. 4C). 
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Fig.4C. X-ray structure of 188. 

0 5 

Bond I~ngths Bond angles 
(A) (0) 

Cu1-N1 2.070 N1-Cu1-NS 93.83 

Cu1-N5 2.080 N1-Cu1-N8 1n.11 

Cu1-N8 2.086 NS-Cu1-N8 84.68 

Cu1-N12 2.102 N5-Cu1-N12 157.6 

Cu1-01 2.275 N8-Cu1-N12 96.68 

Cu1-C11 4.006 N12-Cu1-N1 85.65 
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In order to obtain the complex of the cyc1am mustard (190), it was necessary 

to first form the complex of the corresponding 2-hydroxyethyl compound 189. 

Heating the resulting material with thionyl chloride did lead to formation of the 

chloroethyl derivative, but also resulted in displacement of the Cu(II) ion. 

Dissolving the resulting chloroethyl derivative/CuCh mixture in a minimum of water 

and adding a few drops of I M NaOH solution gave the complex 190, which was 

isolated as the dihydrochloride trihydrate (as indicated by microanalysis, Scheme 

4.1.2). Perhaps the excess chloride ion present in solution from the thionyl chloride 

reaction discouraged the hydrolysis (Le. release of more chloride into solution was 

unfavourable to the equilibrium). See Table 4.1.1 for yield. 

Scheme 4.1.2 

HO~n~OH 
C ) 

HO~U~OH 

189 

190 

CuCI2 
MaOH II 

HO~n/"....., 
C

· .. 'I I 
'Cu2+- - - -OH . . ., .) 

HO~O~OH 
188 

j SOCI, 

40 + CuCI2 

Similarly, the ligands 174 and 175 would not form complexes from their 

hydrochloride salts. Addition of I M NaOH resulted in some complex formation, as 

apparent from the color change of the solution. However, the complexation of 174 

resulted in the mono-N-(2-hydroxyetbyl) compound 191 [as shown by isolatien and 

X-ray crystallography of the PF6- salt (Fig. 4D)]. A proposed mechanism for this 

selective hydrolysis is shownin Scheme 4.1~3. 

The complex 191 adopts distorted octahedral geometry, as evidenced by the 

elongated bonds for Cul-Clll and Cul-N4, and the distortion from 90° of the angles 
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between CuI and the coordinating atoms around the central plane (NI, N7, 071 and 

Cll, Fig. 4D). 

Scheme 4.1.3 

CuCI2 
NH4PFe 
1 M NaOH 

+ 
PFe -

Free coordination sites at the metal centre in the complexation of 174 with 

Cu(II) could allow for the coordination of a water molecule. The Cu(II) acts as a 

Lewis-acid, allowing the water to be deprotonated at neutral pH and activating it for 

intramolecular hydrolytic attack on a 'nearby 2-chloroethyl substituent on N7 

(Fig 4D). The resulting 2-hydroxyethyl substituent then occupies the coordination 

site, preventing further water complexation and hydrolysis. This type of Lewis-acid 

activation in macrocyclic metal complexes is well known for CU(II)183, 184 and also 

for Zn(II) , 178 and may be. an issue fQr most tridentate complexes of triazamacrocyclic 

mustards (e.g. also for 175). Although this is an interesting outc~me, it may have an 

adverse effect on the potency of the parent mustard compound. Also, the yield~ were 

,. unsatisfactory (Table 4.1.1)-in fact no significant amount of the complex of 175 

could be isolated or crystallised for X-ray analysis. The complexation of 

triazamacrocyc1es is known to be more difficult, than for tetraazamacrocycles, as 

their formation/stability constants are generally lower, which could account for the 
. 

problem of low yields. Attempts to form the complex of 175 from the 

2-hydroxyethyl analogue in a similar manner to Scheme 4.1.2 were unsuccessful. 
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Fig. 40. X-ray crystal structure of 191. 

Bond I~ngths Bond angles 
(A) (0) 

Cu1-N1 2.048(7) N1 -Cu1-N4 85.22 

Cu1-N4 2.249(0) N1-Cu1-N7 85.38 

Cu1-N7 2.030(5) N4-Cu1-N7 84.42 

Cu1-0(7)1 2.029(9) N1-Cu1-CI1 98.06 

Cu1-C11 2.268(3) N1-Cu1-0(7)1 166.32 

Cu1-C111 3.086(1 ) N4-Cu1-CI1 99.92 

N4-Cu1-0(7)1 101.62 

N7-Cu1-CI1 174.64 

N7-Cu1-0(7)1 83.53 
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In addition to the tetra-N-(2-hydroxyethyl)cyclam complex 188, complexes of 

the other tetra-N-(2-hydroxyethyl) compounds were also made (192 and 193) in 

order to compare their properties with those of the tetraazamacrocyclic mustard 

complexes. Aside from the tacn mustard complex 191 (of which there was not 

enough material for analysis), all complexes were analysed by UV-Vis spectroscopy 

and yields and spectroscopic data are given in Table 4.1.1. The 2-hydroxyethyl and 

2-chloroethyl derivatives are listed next to each other for comparison. 

+ 

~ CI 

HO~N N~OH 

C 'Cu2-L:LCI , . ) 
N 'N 

HO/"---/ '---l ~OH 

192: n = 0 
193: n = 1 

Table 4.1.1 , 
complex yield structural Amax £~ff 

(%) analysis (nm) (Lcm" mor1
) 

192 >99 607 309 

186 75 [1:1 ] 622 515 

193 >99 588 315 

187 22 [1:1 ] 599 315 

188 >99 [1:1 ] 636 n.d. 

190 23 590 817 

191 10 [1:1 ] .' n.d. n.d. 
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4.2. Stability of polyazamacrocycle metal complexes 

4.2.1. Discussion of stability 

Although they are different qualities, the selectivity of a ligand for various 

metal ions and the stability of the resulting complex can often be correlated.97 The 

'size-match selectivity' idea is the most popularly accepted theory for stability and 

selectivity in macrocycle-metal complexation. It holds that macrocycles will 

favourably bind metal ions whose atomic radii best match their cavity size. Despite 

the widespread use of this theory, most of the evidence suggests that chelate ring size 

is much more important in predicting the relative thermodynamic stabilities between 

macrocycles with different carbon bridge lengths and metal ions of various sizes. 

The conformation adopted by the ligand (determined by the chelate rings) plays an 

important role in the preorganisation of the ligand for complexation and can 

contribute to the thermodynamic stability. The denticity (number of chelating 

moieties in the molecule) vs. metal ion size is also a factor. 

n (l 
[NHHNJ (HHN) 

NHHN NH HN LJ V 
36 194 

Accordingly, (and as suggested by molecular mechanics calculations),98 it is 

expected that macrocycles complexing to form five-membered chelate rings are less 

strained when complexi~g with (an,d thus 'prefer') bigger metal ions. Macrocycles 

complexing to form six -membered chelate rings are less strained when complexing 

with smaller metal ions. Thus, cyclam (194), with its two six-membered ~d two 

five-membered chelate rings, has a higher stability constant (defined by Kstab 

according to Eq. 4.2.1.1) wi~h Cu(II) than that for cyclen (36) which has four five

membered chelate rings (Table 4.2.1.1). 

Eq.4.2.1.1 

M + L ===== ML 
K _ [ML] 

stab - [M][L] 
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The addition of donor pendant arms such as N-(2-hydroxyethyl) to cyclam 

and cyclen decreases the stabilities of their complexes. The decrease is most 

pronounced with smaller metal ions, especially Cu(II) (see Table 4.2.1.1). A 

number of factors contribute to this change. The primary contribution is probably 

from the higher strain created by the increased steric bulk, as a similar effect is seen 

with the tetra-N-methyl substituted derivatives. It is interesting to note, though, that 

the decrease in stability for cyclen is less pronounced than for cyclam. Indeed, as the 

size of the N-alkyl group increases, the substituted cyclen Cu(II) complex is 

eventually more stable than that of the corresponding cyclam complex. This is 

probably due to the tetrahedral nitrogens being preorganised for coordination to a 

small ion such as Cu(II). 

Table 4.2.1.1 98 

R,n,R 
C ) 
R"U'R 
194,195,189 

parent backbone 

Cyclam[Cu(II)] (log K) 

Cyclen[Cu(II)] (log K) 

R=H 

194 (28.09) 

36 (24.8~ 

36,196,197 

R=Me 

195 (18.3) 

196 (18.37) 

189 (15.7) 

197 (-19.5) 

There are a number of reasons why it was not possible to determine stability 

constants for the ligands reported here. In order to be relevant for comparison to 

existing data, the stabil~ty constan!s for metal complexes' need to be determined 

under specific conditions with specialised titration equipment, as detailed by Martell 

and Motekaitis.99 However, the facile hydrolysis of these ligands in neutral o~ basic 

solution makes it nearly impossible to obtain meaningful titration data. Other 

methods using .:uv -Vis spe~troscopy, such as competition studies, are unsuitable 

because they require the protonation constants ·for the ligand to be known.211 

Protonation constants are also very difficult to determine for the nitrogen mustard 

ligands, because the ligands decompose under neutral or basic conditions. However, 
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the stabilities of the novel complexes in relation to each other could be qualitatively 

estimated from UV -Vis decomposition and cyclic voltammetry data. 

4.2.2. 'Aqueous stability' of mustard macrocycle complexes 

The mustard ligands are highly susceptible to hydrolysis and decomposition 

at neutral pR. When complexed with a metal ion, they should only hydrolyse to a 

significant extent if there is a sufficient concentration of the free ligand present at 

equilibrium (Scheme 4.2.2.1). Complexes with high thermodynamic stability will 

only have low concentrations of free ligand and should not decompose in aqueous 

solution. Complexes with low thermodynamic stability will decompose to their 

2-hydroxyethyl analogues. 

Scheme 4.2.2.1 

R 

R'-(l~ 
N N 

C ::Cu.: ) 
N N 

~V'-R R 

(' 

+2 

]

1) aziridinium ion formation 
2) hydrolysis , 

initially all R = CI 

now some R = OH 

In Scheme 4.2.2.1, initially R = Cl. If the complex is less stable, a cycle 

begins whereby the 2-chloroethyl substiiuents. are successively hydrolysed to 

R = OR. This may continue until R = OR for all substituents, or it may stop at some 

point if the intermediate complex is sufficiently stable. The Amax values for Cu(II) 

complexes of the 2-hydroxyethyl substituted ligands are sufficiently different from 
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those of the tetra-N-(2-chloroethyl) analogues. Thus the 'decomposition' of each 

mustard complex can be monitored by UV -Vis spectroscopy, giving qualitative 

information about the stability of that complex in aqueous solution. 

4.2.3. Electrochemistry and complex stability 

The electrochemistry of metal complexes in solution can be studied using a 

variety of techniques, including polarography, cyclic, square wave and differential 

pulse voltammetry.212 Although these techniques can provide valuable information 

on the viability of biological electron transfer, factors such as metabolism, 

membrane transport and tissue pH can have unpredictable effects on actual redox 

behaviour in vivo. Therefore it is not possible to correlate the behaviour observed by 

electroanalytical techniques directly with in vivo bioreduction or oxidation. 

However, reduction potentials measured through these techniques can provide 

benchmark estimates for the feasibility of bioreduction. It is generally accepted that 

cOJ;npounds with reduction potentials between -0.2 and -0.4 V vs. the normal 

hydrogen electrode (NHE) can be reduced by endogenous reductase enzymes.50 

However, many compounds with reduction potentials outside this range still exhibit 

bioreductive activity in vivo, suggesting that reductive activation is unpredictable 

and values obtained in the laboratory should not be used exclusively for screening 

purposes. Still, electroanalytical techn\ques can be employed in the interest of 

characterising the properties of new potentially bioreducible drugs as long as the 

conditions are reproducible and relevant to bi~logical systems. Here cyclic 

voltammetry has been used to examine the redox behaviour and estimate the 

reduction potentials of the mustard complexes under simulated approximations of 

physiological conditions: 

Cyclic voltammetry uses a changing potential in an electrochemical 'cell to 

monitor the electron transfer behaviour of the components of the solution studied. 

The potential is scanned through a range of voltages to a maximum and back again 

and an electrode measures the current produced in the sample when the compound is 

oxidised and reduced. The voltage (V or m V) of potential applied is plotted against 

the observed current density (J.1A), giving a spectrum representing the reduction and 

subsequent back oxidation of the species in the solution. The reduction produces a 
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negative peak (cathodic peak ipe at potential Epe) and the oxidation gives a positive 

peak (anodic peak ipa at potential Epa). The redox potential (BII2) is the halfway 

point between those two peaks [E1I2 = (Epe + Epa)/2] . The speed of the potential scan 

is the 'scan rate.' The shape of the peak illustrates the change in concentration of the 

reacting species vs. the product near the electrode. The size and appearance of the 

peaks are a function of the scan rate and the 'reversibility' of the redox reaction, 

depending on whether the reduced species remains in contact with the measuring 

electrode within the time scale for reoxidation. Reversible behaviour is characterised 

by the spectrum shown in Fig. 4E. For a system to be classically reversible, the 

potential difference between the cathodic and anodic peaks should be less than 60 

mY. Greater distances between the peaks indicates a 'quasi-reversible' process. 

Fig. 4E. Example of a reversible cyclic voltammagram.213 

1 -....... 

B 
Epa 

c 
C 

~ 0 /-::::::A_-=.....-t--r------l 
::J 
U 

Epc 

D 

-100 0 200 400 600 
Potential (mV) 

The speed of the electron transfer reaction also affects the appearance of the 

cyclic voltammagram. Fast electron transfer generally gives the same peak 

potentials even with increasing scan rate, resulting in conditions nearer to 'ideal' 

which can show predictable diffusion and concentration behaviour. Slow electron 

transfer results in a maximum peak potential shift towards more positive values with 

increasing scan rate, due to a slower decrease in the concentration of the reduced 
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species at the electrode. Metal deposition on the electrode can cause sharp spikes in 

the current and is usually remedied by thorough polishing of the working electrode. 

Other spectral abnormalities can occur as a result of adsorption of other solution 

components onto the electrode, including reactant species, reduction products, or 

their intermediates. 

Irreversible behaviour produces a cathodic peak, but no corresponding equal 

but opposite anodic peak, implying that the back oxidation does not occur reliably. 

The oxidation peak for an irreversible reaction may just be smaller than the reduction 

peak, or it may not appear at all. The cause of the irreversibility is sometimes a 

chemical change in the reduced species, but can be physical (e.g. due to precipitation 

of the reduced species from solution). 

The reversibility of the cyclic voltammagram can give valuable information 

about the thermodynamic stability of the reduced complex. Thermodynamically 

staple reduced complexes will remain intact near the electrode until the potential is 

reversed and they are reoxidised (Scheme 4.2.2.1A). If the reduced complex 

changes significantly during the sweep time, the redox behaviour will change and 

thus the voltammagram will show irreversible or quasi-irreversible behaviour. 

Complexes of lower stability can undergo irreversible chemical change before they 

are reoxidised (Scheme 4.2.2.1B), resuJting in less reliable redox reactions and 

negative sh~fts in the Epc with increasing scan rate. However it is sometimes possible 

to obtain reversible spectra by increasing the sqan rate and thus oxidising the 

d b ed . . 212 214 compoun elOre eCOmposltlon can occur. ' 

Scheme 4.2.2.1 

A: 

B: chemical 

Bred 
reaction C 0 
---_. + etc. 
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These properties can have implications for the selectivity of bioreductive 

drugs. For example, the Co(ITI) complexes like 14, described previously by Denny 

and Wilson showed quasi-irreversible redox behaviour.72 They also showed fairly 

high toxicity to oxygenated tumour cells. Denny and Wilson originally proposed 

that the cytotoxicity of the compounds in the presence of O2 was probably due to the 

dissociation of the reduced Co(IT) complex before reoxidation to the Cocm) complex 

could occur.7S However, they also reported that the half life of the activity of their 

complex when incubated in the medium was only a few hours. The complexes lost 

their aerobic and anaerobic cytotoxicity after short periods of time in aqueous 

solution. This implies that the complex dissociated in solution and was hydrolysed 

to the inactive 2-hydroxyethyl analogue even without being reduced by cellular 

systems. Additionally, the complexes like 14 showed significant cytotoxicity that 

was independent of the oxygenation of the cell culture. Complexes of this linear 3° 

amine ligand are much less thermodynamically stable in general compared to 

complexes of 1° amine as well as linear and macrocyclic 2° amine ligands.2IS It is 

possible that the Co(IIT) metal itself was toxic, but it does appear that there is some 

other mechanism of activity taking place, e.g. the mustard was available in the 

uncomplexed form in solution. 

II 

CI 

CI,-- {"\,-1 
N N 

C ''co~~CI -- ,'\ / N N . 

rL.l~CI 
CI 

199 
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Excessive toxicity was observed for the Co(TII) complex of our macrocyclic 

mustard ligand 198 as well, which was formed from the Co(II) complex 199.216 If 

thermodynamic stability is lower, the eqUilibrium for the complex formation reaction 

will lie to the W + L side. That leaves the free ligand available for reaction with 

nucleophiles before the metal is reduced. Reaction of L with nucleophiles (N) 

decreases the concentration of L as it forms LN, which in turn means that more free 

L will be produced by the eqUilibrium process (Scheme 4.2.3.1). So, it seems 

possible that the low selectivity observed for Co(III) complexes of macrocyclic 

nitrogen mustards is due to the inherent instability of the oxidised complex itself. 

Scheme 4.2.3.1 

low stability constant K: 

as L is removed, 
eqUilibrium shifts 
to produce more L 

ML 

Accordingly, it was desirable to produce mustard complexes that showed 

sufficient thermodynamic stability to prevent hydrolysis and/or reaction while 

oxidised. It was also important that the reduced complex should be sufficiently 

stable to allow time for reoxidation, to ensure that active mustard release would be 

minimal in aerobic tissue. 

The known in vivo hypoxia selectivity of Cu(TI) bis(thiosemicarbazone) 

complexes76 (e.g. 15, section 1.2.2), made Cu(II) an attractive candidate for mustard 

complex formation. More powerfully, empirical evidence from biodistribution 

studies of radiolabelled Cu(II) complexes of cyclen and cyclam derivatives (e.g. 16, 

"section 1.2.2) suggests that they are bioreducible. 24 hours after injection with 

64Cu(II) complexes of a variety of azamacrocycle complexes, the highest 

concentration of 64Cu was found in the tUmour ,tissue of tumour-bearing Golden 

Syrian hamsters.s1 The authors suggested that the observance of 64CU in tumours as 

well as other tissues was due to transchelation with enzymatic cold Cu(II). This 

should be seen most frequently.where the 64Cu(II) ion was reduced to the less stable 
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64Cu(I), as in hypoxic tissue. These data were simply reported as 'good tumour 

uptake' as compared to uptake by tissues in normal Sprague-Dawley rats, but it can 

also be interpreted to suggest that bioreductive behaviour will probably be observed 

for Cu(ll) complexes of cyclam and cyclen derivatives. 

4.3. Electrochemistry of novel mustard complexes 

186: n1 = 0; n2 = 0 
187: n 1 = 1; n2 = 0 
190: n1 = 1; n2= 1 

200: n1 = 0; n2 = 0 
201: n1 = 1; n2 = 0 
202: n1 = 1; n2 = 1 

The novel macrocyclic mustard complexes studied (186, 187, 190 and 191) 

showed a marked difference in their aqueous stability and their electrochemical 

behaviour. The redox potential of each compound was measured with cyclic 

voltammetry in aqueous phosphate buffer at pH 7.2 with ferrocenecarboxylic acid 

(PCA) as an internal standard (+533 mV vs. NHE, or +334 mV vs. sat. AglAgCI),217 

using a three-electrode cell with a Pt macrodisc working electrode (2.0 mm), Pt wire 

counter electrode and either the AgI AgN03 electrode [EO(vs. AgI AgN03) = EO + 253 
~} 

mV (vs. AglAgCI)], or the saturated AglAgCI reference electrode [EO(vs·. AglAgCI) 

= EO _ 199 mV (vs. NHE)].218 The potentials were corrected for the published 

potential of PCA and reported vs. Sat. AgI AgCl. The solutions were degassed with 

N2 before analysis, to simulate the hypoxic environment. 

Scheme 4.3.1 
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The redox potentials of the parent macrocyc1e complexes [cyc1en[Cu(II)]Ch 

(200), homocyc1en[Cu(II)]Ch (201) and cyc1am[Cu(Il)]Ch (202)] and the 2-

hydroxyethyl analogues (188, 192 and 193) were also measured, in order to compare 

the reduction potentials with the stability constants. The tetra-N-ethyl derivative of 

cyc1am was prepared and complexed as well (204) (as in Scheme 4.3.1), in order to 

investigate if the 2-chlorethyl substituents had an effect on the reduction potential. 

The tetra-N-ethyl derivative of cyc1en could not be synthesised in the same way as 

for cyc1am (due to difficulties in fully acylating the compound), so it was not 

prepared. The two most significant voltammagrams, for 186 and 190, are shown in 

Figs. 4F and 4G. The rest are reproduced in Appendix 1. For comparison of the 

reduction potentials of various complexes to each other, they are listed to at least two 

significant figures. However due to experimental variation, these values are only 

accurate to one significant figure when comparing them to data obtained from other 

published experiments. Results are listed in Table 4.3.1 (four pages on). 

The voltammagram for 190 shown in Fig. 4G probably represents either an 

electrochemical-chemical-electrochemical (ECE) reaction pathway (Fig. 4H top), or 

a electrochemical-chemical (BC) pathway (Fig 4H bottom).213 In the ECE pathway, 

the initial reduction of the mustard complex is followed by a chemical reaction, 

probably the dissociation and hydrolysis of the ligand. Subsequent complexation of 

the new ligand with Cu(II) [from Cu(I) that had been reoxidised] in solution results 

in another electrochemical reaction taking place, giving the additional smaller peaks. 

The EC pathway would occur if the ligand was diss9ciating and hydrolysing after the 

reduction took place, so the reoxidation would be less apparent. This could be the 

case for many of the other irreversible spectra as well (Appendix 1). 
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Fig. 4H. ECE (top) and EC (bottom) voltammagrams 
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Table 4.3.1. Reduction potentials for main peaks Epc (mV) vs. sat. Ag/AgC( of Cu(lI) 
complexes In 100 mM phosphate buffer (pH 7.2) unless otherwise stated, with FCA as 
Internal standard (E112 = 344 m V vs. sat. Ag/ AgCI) 

backbone 
parent parent tetra-N- tetra-N- tetra-N-

(aqueous) (OMF) ethyl (2-hydroxyethyl) (2-chloroethyl) 

compound # 200 200 192 186 

cyclen 
[2,2,2,2] -749 -914 nla -464 -404 -236 -191 

(behaviour) Irrevers. Revers. E112 Revers. E112 
compound # 201 193 187 
homocyclen 

[2,2,2,3] -833 nla nla -536 -459 
(behaviour) Irrevers. Irrevers. Irrevers. 

compound # 202 202 204 188 190 

cyclam 
[2,3,2,3] -1221 -971 -470 -406 -341 

(behaviour) Irrevers. Irrevers. Irrevers. Irrevers. Irrevers. 

• (for values vs. NHE add 199 mY) 

The reversible behaviour of the two substituted cyclen complexes is very 

int~resting, especially in contrast to the behaviour of the parent cyclen complex. 

Reversibility implies sufficient stability of the reduced complex, so 186 and 192 

seem to be more stable when reduced than the rest of the complexes studied. 

Additionally, however, higher chelate ring strain is characterised by a more negative 

redox potential.219 The more negative reduction potential observed for 192 suggests 

that its chelate rings are more strained-' a property that would normally result in 

lower themlodynamic stability for the complex. Also, the reduction potential for 204 

is more negative than for 190, so it is possible tllat the 2-chloroethyl substituents 

facilitate the reduction of these complexes. 

The redox potential of 186 was also evaluated under other relevant simulated 

conditions: lower pH (tumours are typically more acidic than normal tissue), ,higher 

oxygen concentration at normal pH (normal tissue) and in DMF (with ferrocene as 

internal standa:d) to com~are the behaviour in a lipophilic vs. hydrophilic 

. environment. 186 was not very soluble in DMF, but addition of ~BF4 and 

sonication for 20 minutes allowed the preparation of a 1.0 mM solution. Aside from 

analy~is of 190 at lower pH, these additional tests were not performed with other 

compounds due to lack of material. The results are listed in Table 4.3.2. 
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Table 4.3.2. Epc (vs. sat. Ag/AgClf under alternative conditions 

N2• pH 7.2, aq. N2, pH 4.9, aq. O2, pH 7.2, aq. 
compound phosphate phosphate phosphate N2,DMF 

buffer buffer buffer 
186 -236 mV -270 mV -303 mV Epc: -963 mV 

(behaviour) Reversible Reversible Reversible Irreversible 

190 Epc: -341 Epc: -349 m V . 

(behaviour) Irreversible Irreversible 

• (for values vs. NHE add 199 mY) 

Again, the difference in E1I2 for 186 under oxic vs. hypoxic conditions 

appears to be significant (comparison of the voltammagrams shown in Fig. 41). The 

reduction potential difference observed (70-80 m V) can lead to a lO-fold change in 

the reduction rate.50 The slower reduction rate in the presence of oxygen might well 

playa part in the selective release of the cytotoxin under hypoxic conditions. 

Another point of interest is the large difference between the redox behaviour 

of (186 in DMF vs. phosphate buffer. The redox reaction is no longer reversible 

(Fig. 4J). There appear to be two reduction peaks (although one is more likely to 

correspond to 186 and the other perhaps to another component of the solution). 

Denny and Wilson 72 measured the reduction potentials of their bioreducible Co(III) 

complexes in dichloromethane (as their complexes were not soluble in aqueous 

solution) and also saw irreversible reduetions. The redox behaviour observed for 

186 in DMF corresponds better to the behaviour seen by Denny and Wilson. It 

appears that reduction potentials measured in non-protic solvents don't compare 

easily with those measured in aqueous solution. Without knowing the precise 

mechanism for enzymatic reducti?n of these complexes (and thus whether the 

reduction takes place in the aqueous or the lipophilic membrane environment), it is 

difficult to know which potential is more relevant to the activity. However, aqueous 

.. systems provide better information about the thermodynamic stabilities of the 

oxidised (Cu[II]) and reduced (Cu[l]) complexes and so are more useful in predicting 

hypoxia selectivity (discussed further in Chapter 5). 
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4.4. Aqueous stability of novel complexes 

The aqueous stability was assessed by observing the hydrolysis from the 

tetra-N-(2-chloroethyl) complex (186,· 187 and 190) to a poly-N-(2-hydroxyethyl) 

complex (Scheme 4.2.2.1). The reaction was monitored by UV -Vis spectroscopy, 

with the Amax known for each complex, watching for a shift towards the Amax for the 

tetra-N-(2-hydroxyethyl) complex. The Arnax values were sufficiently different so 

that the hydrolysis could be effectively observed. The aqueous stability is defined 

here as t1l2(O): the time necessary for a Amax shift of half the difference between those 

for their mustard and poly-(2-hydroxyethyl) derivatives. If the complex is 

thermodynamically stable, no change in Amax should be seen even after the material is 

left for extended periods of time in aqueous solution. If it is not thermodynamically 

stable, it should go through the series of reactions shown in Scheme 4.2.2.1. 

Table 4.4.1 

complex 186 187 190 

t112(8) > 14 days > 7 days - 24 hours 

Values for tln<O) for three of the mustard complexes are given in Table 4.4.1. 

186 and 187 exhibited no significant change in Amax (622 nm and 599 nm 

respectively) after long periods of time' at concentrations of 1-5 mM in 100 mM 

aqueous phosphate buffer at pH 7.2 (see Fig. 4K for 186 and 4L for 187). 

Additionally, 186 retained its potency against Trypanosoma brucei even after three 

weeks as a 2 mM solution in water (this is discussed further in Chapter 5). A 1 mM 

solution of the cyclam-based must~d complex 190 in 100 mM aqueous phosphate 

buffer at pH 7.2, however, showed a marked shift in its Amax after just 48 h (from 636 

nm to 624 nm) (Fig. 4M). This indicated the ligand was decomposing and the 

resulting 2-hydroxyethyl substituted cyclam was then complexing with Cu(II) 

(Scheme 4.2.2.1). Althoug~ it was not possible to quantify the extent of hydrolysis 

of 190, it was clear that the complex was not stable under aqueous conditions. 
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Fig.4K. t1l2(0) analysis (UV-Vis spectroscopy) for 186. 
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Fig. 4L. tll2(O) analysis (UV-Vis spectroscopy) for 187. 
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Fig. 4M. tl/2(~) analysis (UV-Vis spectroscopy) for 190. 
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4.5. Additional complexation 

4.5.1. Co(lI) complex of cyclen mustard 

The Co(IT) complex 199 was fonned easily and crystallised as the PF6- salt. 

The crystal structure is given in Fig. 4N and the chel;:tte rings formed are similar in 

conformation to those in the Cu(II) co.mplex. The Co(II) ion exhibits square 

pyramidal geometry and, as for the Cu(II) complex, the cobalt sits well out of the 

plane created by the four coordinating nitrogen atoms. This complex is much more 

soluble in organic solvents e.g. acetonitrile or methanol than in water; in fact it does 

not dissolve significantly in 100 ruM phosphate buffer at pH 7.2. Oxidation of the 

Co(Il) to Co(ID) was attempted but only starting material 199 was obtained. 

Alternative methods involving oxidation of the cobalt prior to complexation were 

. also attempted, but the product could not be isolated. Due to the difficulties 

encountered with bioreducible cobalt complex formation and the relative success 

with Cu(II) complexation, cobalt complexes were not pursued further. 

+ 
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Fig.4N. Co(II) complex of cyclen mustard (199). 

ClIO 
e ll 

Bond I~ngths (Cu(II) Bond (Cu(II) 
(A) complex) angles (0) complex) 

Co-N1 2.1503 (2.099) N1-Co-N4 83.90 (85.11 ) 

Co-N4 2.1426 (2.060) N1-Co-N7 139.01 (146.0) 

Co-N7 2.1565 (2.062) N4-Co-N7 83.02 (86.51 ) 

Co-N10 2.1515 (2.065) N4-Co-N10 139.70 (148.95) 

Co-CI 2.2490 (2.3618) N7-Co-N10 82.15 (87.03) 

N10-Co-N1 83.22 (85.33) 
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4.5.2. Complexation of novel parent triazamacrocycles 

Attempts were made to prepare and crystallise complexes of the [4,4,3] (128) 

and [3,4,5] (129) novel triazamacrocycles with Cu(N03h. Initially very small yields 

of crystals did form in the complexation reaction solutions, but they were not of x
ray quality and attempts to recrystallise the materials resulted in decomposition to a 

deep green solution from which no crystallisation would occur, even upon 

evaporation to dryness. The color change [from bright blue Cu(N03h solution to a 

dark green solution of the ligand with the Cu(II) salt] indicated that some kind of 

coordination was taking place. Since X-ray crystallography was proving 

problematic, NMR spectroscopic studies of the complexations were undertaken 

using Zn(II), since it does not have an effect on the acquisition of interpretable NMR 

spectra. Compounds 128 and 129 were titrated with a solution of ZnBr2 and 

monitored by IH NMR spectroscopy with the addition of increasing amounts of the 

ZnBr2 solution. The degree of formation of the 1: 1 complex could be observed at 

each step, as shown in Figs. 40 and 4P. For both 128 and 129, the changes in 

chemical shift induced in all of the signals corresponding to CH2-N indicated that all 

three of the amine groups of each macrocycle were complexing to the Zn(II). The 

structures of the complexes were analysed by 2-dimensional NMR spectroscopy 

(COSY, HMQC, HMBC) and the structural assignments are suggested in the 

experimental section for this chapter (refer to Appendix 2 for 2-dimensional NMR 

spectra). The circled peak in the final complex of 129 (Fig. 40) may correspond to a 

coordinated water molecule (supported by the lack of HMQC and HMBC 

correlations for that proton peak). Titration of this complex with base would provide 

some insight into the pKa of this bound water, however this was beyond the scope of 
.. 

the present studies. Initial attempts to crystallise these complexes were unsuccessful, 

but changing the crystallisation conditions (e.g. solvent system, counter ion, etc.) 
-

.. may allow for the production of X-ray quality crystals and structural 

characterisation. 
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Fig. 40. Titration of 128 with Zn(lI) 
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Fig. 4P. Titration of 129 with Zn(lI) 

1 

, 1 .' 

4.5 

2 

, , , 
1 , 

4.5 

~ 
4 

, I , 
4.5 

1 i 

4.5 

4.5 

Eq. Zn(") 
added 

, 1 ' 
4.0 

, 1 , 
4.0 

i 1 , 
4.0 

, 1 
4.0 

4.0 

, 1 ' , 1 ' 
3.5 3.0 

, 
1 

, , 1 i 

~.5 3.0 

, 1 i , 
1 , 

3.5 3.0 

, I ' ii' 
3.5 3.0 

3.5 3.0 

1 2 

o 0.25 

1 ' , 1 ' , 1 ' 
2.5 2.0 1.5 

1 ' 
1.0 

, , 1 

ppm 

• I· , , 1 , i 1 , , 
i , i , 

i 
2.5 2.0 1.5 1.0 ppm 

, 
1 , 

i .1 i , 
I , , 

1 i , , 
1 

., . 
2.5 2.0 1.5 1.0 ppm 

, 1 i 1 i iii 
2.5 2.0 1.5 1.0 ppm 

2.5 2.0 1.5 1.0 ppm 

3 4 5 

0.50 0.75 1.0 

117 



4.6. Conclusions 

As suggested in the literature, it was found that azamacrocycles generally fonn 

thennodynamically stable Cu(II) complexes. The substituted cyclen-based mustard 

ligand gave the most stable complex, which was advantageous for its biological 

activity. The thennodynamic stability of the oxidised [Cu(II)] and reduced [Cu(l)] 

complexes could be assessed using cyclic voltammetry and UV -Vis spectroscopy 

and reversible redox behaviour and high thennodynamic stability were found to 

correlate positively with the desired biological activity. The reduction potential for 

the hypoxia selective complex was less negative than the so-called 'ideal range,' but 

the activity and selectivity were still better than previously published for this type of 

bioreducible prodrug (discussed Chapter 5). 
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Chapter 5 

5. Biological testing and results 

5.1. DNA-crosslinking 

uncomplexed mustards 

and cytotoxicity of 

The novel nitrogen mustards 174·183 (see Table 3.3.1 for structures) were 

assessed for their cytotoxicity and DNA cross-linking efficiency by Prof. John 

Hartley at University College London. The results are listed in Table 5.1.1. The 

cytotoxicities were determined against the human chronic myeloid leukemia cell line 

K562 using the MTT cell proliferation assay after a one hour exposure to each drug. 

For the cross-linking assays, the drugs were each reacted with linearised plasmid 

DNA for 2 h, after which the DNA was precipitated and incubated with strand , 
separation buffer. Gel electrophoresis was performed against single-stranded and 

double-stranded DNA as controls, reSUlting in the cross-linked DNA migrating with 

the double-stranded control. The percent double-stranded DNA in each band was 

determined from densitometry of autoradiographed images of the gels. The cross

linking activity is expressed as XLso: the concentration of drug which resulted in 

50% cross-linked DNA. 

Table 5.1.1 " 

Compound 174 175 176 177 178 179 180 181 
[rlf,lg size] [2,2,2] [3,3,3] [3,3,4] [3,3,5]· [3,3,5]- [3,4,4] [3,4,5] [5,5,4] 

bis Ids 
ICso- (J-tM) 10.5 6 25 6.25· 25 >100 21 >100 :to.9 :t2 :t14 :t1 :t12 :t7 

XL50 (JA;!III) 0.060 0.090 0.045 0.010 0.035 n.d.b n.d.b 0.035 

# ofatoms 
9 12 13 In ring 14 14 14 14 17 

-against human chronic myeloid leukaemia cell line' K562j bunable to acquire 
meaningful cross-linking data 

182 
[6,6,4] 

35 

0.100 

20 

The cytotoxicities vary widely, and don't show an obvious relationship to the 

cross-linking efficiency. This is probably due to hydrolytic decomposition of the 
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183 
[2,2,4]2 

100 

>0.300 
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mustard drugs in cell growth medium, but could also result from differences in 

uptake of the drugs. It is possible that the hydrolysis was not as rapid under the 

conditions required for the cross-linking reaction. With the exception of the 

hexaaxamacrocyclic mustard, all of the compounds are remarkably potent DNA 

cross-linking agents, with XLso activities in the nanomolar range. Particularly 

notable is the increased cross-linking efficiency in the bis-substituted mustard 177 as 

opposed to the tris-substituted compound 178. It is likely that the free secondary 

amine in 177 exists in its protonated form at physiological pH, thus the improvement 

may arise from the increased possibility for electrostatic interaction of 177 with 

DNA. 

Otherwise, it is difficult to see a clear structure-activity relationship for the 

cross-linking activities of this series of drugs. It seems roughly that 9 to 

17 -membered rings are all capable of highly efficient cross-linking, but ring sizes 

greater than 17 are too large. This agrees with previous cross-linking data from the 

group, with XLso values (inferred) falling between 10 and 100 nM for macrocyclic 

mustards with 12-15-membered rings. 

Flg.5A 

'cis-ring' 'trans-ring' 

It is not possible to determine which bifunctional cross-links are being 

.. formed from the tetra-substituted mustards-Leo between 'cis-' or 'trans-ring' 

alkylating substituents (Fig. SA). Bifunctional N-mustard drugs usually form 

'diagonal' cross-links between non-adjacent guanines (5'-GNC-3'/3'-CNG-5'), 

rather than forming the 5'-GC-3'/3'-CG-5' cross-link (Fig. SB). This is thought to 

be due to distortion of the classical B-DNA str.ucture induced by the initial alkylation 

to the mono-functional adduct. 220 All of the parent ring structures are quite flexible, 

so it is probable that nearly all the possible cross-links are being formed. Without 
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detailed molecular modelling of these compounds in aqueous solution, it is difficult . 

to estimate the diameters of the different rings and between alkylating moieties. 

Thus it is not possible at this time to compare the actual distances with the cross

linking efficiency. 

Fig. 58 
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5.2. Hypoxia selectivity of Cu{lI) complexes of 

selected macrocycllc mustards 

186 190 

Results for the testing of 186, 190 and 191 as bioreducible prodrugs were 

very exciting. They were tested in vitro, by Prof. Ian Stratford's group at the 

University of Manchester, under aerobic and anaerobic conditions against the lung

derived tumour cell line A549 using the MTT cell proliferation assay. The 

cytotoxicities of the complexes under aerobic and hypoxic conditions supported the 

prediction that redox revet:sibility would, give hypoxia selective release of the N

mustard. The water solubility of the complexes' (up to at least 10 mM) made their 

testipg and possible use as pharmaceutic~s much more practical than for the 

previous Co(III) complexes. 186 is one of the best hypoxia selective cytotoxins that 

has been tested on the cell line used in this study, the lung-derived A549. The results 
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of the testing are given in Table 5.2.1. The cytotoxicities of the free ligands (against . 

K562) and the reduction potentials for the complexes are included for comparison. 

Table 5.2.1 

Parent Free ICso• Cu(U) Ttl2(o) Etl2 (rev) Cell kill {J.tMt 

macro- ligand (~M) complex (days) or ICso (air) ICso (N2) HCRd ACRe 
cycle E (b) 

pc 

Cyclen 38 22 186 >14 -37 53.35 2.18 24 
(rev) ±9.71 ±0.25 

Cyclam 40 7.5 190 1 -142 10.10 51.28 
(irrev) ± 1.29 ± 10.58 

Tacn 174 10.5 191 n.d. -240 8.44 15.87 
(irrev) ±0.68 ±O.85 

a against human chronic myeloid leukaemia cell line K562; b mV (vs. NHE)j C against 
human lung tumour cell line A549; d HCR is the hypoxic cytotoxicity ratio: ICso (air) I 
ICso (N2); e ACR Is the aerobic cytotoxicity ratio: ICso (N2) IIC50 (air) 

186 was 24 times more active under hypoxic conditions, indicating that it 

targets slow-growing hypoxic cells selectively in vitro through reduction of the 
( 

complex and release of the mustard (probably via cytochrome p450 or a similar 1 e-

reductase). Its aerobic toxicity was approximately ten times less than that previously 

reported for the most promising Co (III) complex of a linear mustard, 

SN24771 (14).72 So the complexation of this mustard to Cu(II) as a bioreducible 

prodrug also provided the advantage of ~otent delivery of the cytotoxin. 

190 and 191 showed no evidence of deactivation via complexation. They 

exhibited typical characteristics of classical nitrogen mustard drugs. . Their 1Cso 

values under aerobic conditions were similar to those for their free ligands and they 

even showed some degree of aeroJ)ic selectivity, common behaviour in drugs which 

target fast growing oxic cells. This supported the observations from UV -Vis 

analysis that suggested the stability of the oxidized complex was very important for 

deactivation of the mustard ligand. It is likely that these complexes (190 and 191) 

exist significantly as their fr:~ ligands in solution, making bioreduction less relevant 

as a mechanism for activation. They could iilso be activated via a different 

biore.duction pathway, e.g. by NQOI (which ~s oxygen-independent). However, it is 

clear that in essence, these compounds have no selectivity for hypoxia and are not 

good prodrugs. As discussed in Chapter 4, polyazamacrocycle metal complex 
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stabilities can vary widely depending on the metal ion, parent ring size and the 

conformation of the chelate rings formed.98, 124, 21S The biological evidence given 

here shows that these properties are critical to the behaviour of metal complexes as 

prodrugs. 

Two new key observations have been made in this work regarding the 

characteristics that are necessary in the design of hypoxia selective, metal

complexed N-mustard prodrugs. Firstly, the thermodynamic stability of the oxidised 

complex must be sufficient to render the complex robust in aqueous solution. 

Secondly, reversible redox behaviour suggests optimum stability of the reduced 

complex for avoiding undesirable release of the cytotoxin under oxic conditions. 

Also, previous applications of macrocyclic Cu(II) complexes for targeting hypoxic 

tissue have used the ligands as vectors for radioactive copper.81 Here, we have used 

the copper as a delivery agent for the cytotoxic ligand. This new strategy could 

provide a significant therapeutic advantage in the fields of alkylating agent 

therapeutics and selective targeting of hypoxic tissue. 

5.3. Anti-parasitic activity of polyazamacrocycles 

and selected Cu(lI) complexes 

Anti-parasitic activity of polyazamacrocycles has not been published 

previously: We were interested in assessing the activity of these polyamine 

analogues against parasites, which are known to be sensitive to disruption of their 

polyamine metabolism and transport. A series of polyazamacrocycles was tested by 

Dr. Michael Barrett (University of Glasgow) against Leishmania mexicana and 

Trypanosoma brucei. This included some tetraazamacrocyclic N-(2-hydroxyethyl)

substituted derivatives [e.g. 1,4,7,1O-tetra(2-hydroxyethyl)cyclen (197)] and three of 

the novel triazamacrocyc1es reported in this thesis (128, 129 and 146). Cultures of 

the two parasites in logarithmic phase wert~ treated with serial concentrations of the 

drugs and incubated at 37°C for five days. ICso values for the activity against 

L. me.~icana were determined from the acid-p~osphatase activity assay. Survival of 

the parasite was measured from the extent of bis-p-nitrophenylphosphate hydrolysis 

by acid-phosphatase in live cells, giving yellow p-nitrophenolate ion which could be 
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measured using UV -Vis spectroscopy. ICso values for the activity against T. brucei 

were determined from the alamar blue cell staining assay.221 living parasites 

convert the alamar blue dye into a colourless form, thus the level of surviving 

parasites can be determined from the concentration of alamar blue left in the culture 

after incubation at 37°C for 24 h (measured by UV-Vis spectroscopy). The results 

are listed in Table 5.3.1. 

n 
[NHHNJ NHHN 

LJ 
36 

128 129 

Table 5.3.1. Screening for anti-parasitic activity of polyazamacrocycles 

compound 

36 

197 

148 

184 

194 

128 

129 

146 

186 

ICso (JAM) 
L. mexlcllnll 

>3,000 

no effect 

120 

90 

135 

150 

250 

65 

52 

IC50 (JAM) 
T. brucel 

75 

no effect 

430 

no effect 

600 

no effect 

no effect 

45 

5 

It is difficult to determine any trends in the activities from these results. 

However it is clear that the activity profiles of polyazamacrocycles in the two 

parasites are quite different. Cyclen (36) was moderately active against T. brucei, 

yet virtually inactive in L. mexicana. The opposite was true for the un substituted 
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novel triazamacrocycles 128 [3,4,4] and 129 [3,4,5], as well as for the 

N-(2-hydroxyethyl)-substituted [2,2,2,3] tetraazamacrocycle 184. These differences 

could suggest that L. mexicana and T. brucei use different pathways in the uptake of 

polyazamacrocycles, or that they have variable sensitivity to transition metal 

sequestration by chelating drugs. The only compound which gave similar activity in 

the two parasites was the novel naphthyl-bridged triazamacrocycle 146 

[3,4,(l,4-naphth)]. This was probably due to its greater lipophilicity, which would 

increase its cell membrane permeability. 

The high potency and interesting activity difference for the cyclen mustard 

complex 186 prompted further investigation. Trypanosomatid parasites, including 

L. mexicana and T. brucei, are known to have increased levels of reductase as a 

protection against oxidative stress imposed as a defence strategy by their host 

organisms.222
• 223 Trypanothione reductase (TRYR) is their primary reductase 

enzyme, similar to glutathione reductase but specific to these types of parasites.222 It 

seemed possible that the nitrogen mustard was being selectively released in T. brucei 

through reduction of the Cu(II) to Cu(I), in a similar manner to the selective release 

in hypoxic tumour cells (Section 5.2). Alternatively, if the organisms were merely 

sensitive to copper or copper complexes, other ligands complexed to copper should 

show similar cytotoxicity. To probe the mechanism of the cytotoxicity, the Cu(m 

complex of the inactive ligand 197 (192) was tested again on T. brucei alongside the 

mustard complex 186, as well as the free ligands for both. A previously prepared 

solution of 186 (three weeks old) which had been stored under refrigeration was also 

included, in order to assess whether the mustard complex would retain its activity 

after storage in aqueous solution. ~esults are given in Table 5.3.2. 
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CI~N~~CI 
C ) 2HCI 

CI~N\_.r~CI 
38 

Table 5.3.2. Comparison of cytotoxicities for complexes of active and Inactive ligands 
against T. brucel 

Compound 197 192 38 

IC50 (PM) >600 >450 21 4.3 4.5 

a freshly prepared; b stored at 4 °c for three weeks 

Like its corresponding ligand 197, the Cu(II) complex 192 was essentially 

inactive at concentrations below 200 J..tglml. This supported the theory that the 

cytotoxicity arose from the mustard being released due to bioreduction of the Cu(II), 

rather than some general Cu(II) toxicity. The mustard complex was approximately 

five times more active than its corresponding ligand, which showed that 

complexation seemed to be protecting the mustard from being deactivated by 

hydrolysis to 197 in the aqueous test medium. Also, the complex retained its activity 

after reasonably long storage in aqueous solution. This agreed with the lack of Amax 

shift observed for this complex by UV -Vis spectroscopy after extended storage in 

water (Chapter 4), further supporting the qualitative determination of the high 

thermodynamic stability of this complex .. 

It is not clear why the mustard complex 18,~ is less cytotoxic to 1:. mexicana 

than for T. brucei. As was the case for the free polyazamacrocycles, the difference 

may be due to some variation in uptake or metabolism of the compound. 

Alternatively the specifiCity of the reductase may be slightly different in leishmania 

parasites. More testing is necessary to find possible reasons for all these activity 

.. differences. Methotrexate-resistant mutant leishmania cell lines have been found to 

over-express the pteridine reductase PfR1.224 If these cell lines show increased 

sensitivity to bloreducible drugs, the mustard c?mplex could provide a possible 

solution to methotrexate-type resistance. 

Given the encouraging results for trypanosomes and leishmania, the activity 

of the cyc1en mustard complex was also assessed against malaria parasites. Due to 
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the short time frame remaining for the project, we decided to perform in vivo tests 

first in order to obtain some qualitative information about the toxiciology of these 

mustard prodrugs. The susceptibility of malaria parasites to oxidative stress and 

bioreducible drugs has been documented.22s-227 In the light of the apparent 

bioreductive activation in trypanosomes, it seemed plausible that this complex would 

also be reduced by malarial reductases (of which glutathione reductase dominates). 

Given the structural differences between human and malarial glutathione reductase 

(the latter of which has a much larger active site),228 it was hoped that malaria 

parasites would be more sensitive to cytotoxins released through bioreduction than 

their host organism. At this time we are still waiting for the results of the in vivo 

antimalarial testing. 

5.4. Conclusions 

The series of polyazamacrocyclic nitrogen mustards described here generally 

showed potent DNA cross-linking activity, but the cytotoxicities were variable. 

Polyazamacrocycles were found to have variable but generally low activity in vitro 

against two parasites, L. mexicana and T. brucei. The cyclen mustard Cu(II) 

complex showed interesting biological activity in a number of areas. It was 

somewhat selective for T. brucei over L. mexicana, which may have been due to 

bioreductive activation in the reductase-rich trypanosomes. Most importantly, this 

complex was found to be an effective bioreducible cytotoxin in tumour cells in vitro. 

This is the first example of a macrocyclic N-mustard complex that shows hypoxia 

selectivity and provides an exciting lead into the further development of this new 

strategy for bioreducible prodrug d~sign. 
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5.5. Future Work 

It would be useful to investigate further the utility of the SES-protecting group 

for the synthesis of azamacrocycles. The heterocycle cyclophane synthesis 

discussed in this thesis could be optimised and expanded to include other 

heterocycles and sensitive functionality. Also, it is important to find an alternative 

deprotection and purification route in order to improve the yields of the parent 

macrocycles. One possibility is to use TBAF or TEAF to remove the SES-group and 

to separate the byproducts from the macrocycle using ion-exchange chromatography. 

This would require some method development, but could provide far better yields of 

material. 

It would also be interesting to produce more macrocyclic polyamine analogues 

for anti-parasitic testing. Analogues with increased lipophilicity and/or polyamine 

tags168 should show better uptake into parasites and thus perhaps better activity. 

Another area that could be explored further is the mechanism of uptake and 

cytotoxicity of the macrocycles tested in L. mexicana and T. brucei. Given the 

difference in the profiles of activity seen for polyazamacrocycles in the two 

parasites, it would be useful to investigate whether they are acting as unnatural 

polyamine analogues or by some other pathway. 

Mo~t importantly, there is extensive opportunity for the development of 

macrocyclic N-rriustard complexes as bioreducibl~ prodrugs. The first. aim is to 

produce a series of analogues of 186, looking to find compounds with more negative 

reduction potentials in order to obtain increased hypoxia selectivity (as reported for 

Cu-ATSM derivatives by Maurer et al.).77 This can be achieved by increasing the 

electron-withdrawing character of the ligand.77 There are a number of .structural 

.. features which should impart this effect. The simplest variation would be to alter the 

leaving group of the mustard (e.g. from CI to Br, mesylate, or tosylate, Scheme 

5.5.1) Given tlie trend observed in the reduction potentials of cYclen-based Cu(m 

complexes (Table 4.3.1), this should have an effect on the electron transfer to and 

from Cu(IT) and therefore the reduction potential. 
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Scheme 5.5.1 

SOBr2, 
MsCI, or 
TsCI 

" 

x X 
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X X 
X= Br, Ms, Ts 

Another possibility is to substitute the parent cyclen-based ring with 

functionality that will change its electronic character. Although not trivial, there are 

a few possible routes to synthesise these analogues. The bisimidazoline route 

(Scheme 1.4.1.10, section 1.4) is a cheap and straightforward option and various 

substituted dibromoalkanes or diol ditosylates could be used (e.g. Scheme 5.5.2). 

The dibromoalkanes or ditosylates could either be purchased (if commercially 

available) or synthesised from alkenyl or styryl precursors.229
• 230 The main 

drawback of this approach is the susceptibility of the dibromoalkanes etc. to 

eliInination.231
• 232 However with the right choice of base this problem might be 

overcome. 

Scheme 5.5.2 

n 
N N 

X 1)base n 

C4~J + 
n MeCNIl eNHHNJ 

Br Br 
.. N N 2) KOH, H20 N~ 

X 

,. " 

Another novel route to substituted cyclen-based macrocycles could involve 

coupling N-protected amino acids to ethane-1,2-diamin~ with 

.. dicyc1ohexylcarbodiimide (DCC) or 1,1-carbonyldiimidazole (CDI), followed by 

reduction of the resulting diamide to the tetraamine (Scheme 5.5.3). 
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Scheme 5.5.3 
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These tetraamines could then be cyclised as in Scheme 5.5.2, or via normal 

Richman-Atkins cyclisation after conversion into the sulfonamides. Fluorine 

substituents could be incorporated through the use of protected fluoroglycine (205) 

(synthesised as in Scheme 5.5.4 using the potassium salt of bis-BOC-protected 

ammonia233.234). C-Fluorinated amides are known to be stable to reduction using 

lithium aluminium hydride235 and borane.236-238 An advantage of building 

tetraamines from amino acids is that the stereochemistry of the substituents could be 

more easily controlled. Another advantage of this route is that it may circumvent 

any problems with elimination of substituted dibromoalkanes etc. Using lysine as 

the amino acid would allow for the preparation of polyamine-tagged macrocycles 

(Scheme 5.5.5), which should be able to utilise the polyamine transport system for 

entrance into cells,168 which might improve the targeting of the mustard complexes. 

Scheme 5.5.4. 

o 
HOYyN(BOC)2 

F 

205 

Cyclen analogues syflthesised by these routes could be converted into their 

mustard derivatives and complexed to Cu(II). Mustards substituted with linear 

polyainine functionality should still complex to Cu(II) preferentially with the 

macrocyclic hydrochloride salt over the linear triamine salt. The reduction potentials 

and thermodynamic stabilities of the oxidised (Cu[IID and reduced (Cu[lD 
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complexes could be assessed using UV -Vis spectroscopy and cyclic voltammetry 

(as in Chapter 4). This should provide improved selectivity for the bioreduction of 

the complex and release of the cytotoxin. 

Scheme 5.5.5 

!J1) deprotect 

2) convert to mustard 

Eventually it will be important to understand the biodistribution of these 

complexes. This can be accomplished by complexing the ligand to a radioactive 

copper ion~ e.g .. 64CU(IT) or 67CU(IT) and tracking the levels of radioactivity in 
.) 

different tissues over time. Indeed, if accumulation of radioactive copper is seen in 

tumour tissue (as for similar Hgands),81 this strategy might also provide a two

pronged attack against tumours: tatgeted radiotherapy and release of cytotoxin. 

Cu(IT) complexes of the analogues described above would be assessed for 

hypoxia selectivity by Prof. Stratford's group. The best candidates from in vitro 

testing against tl range of tUJ:nour cell lines. would be selected for in vivo studies by 

the Stratford group. It should be possible to progress rapidly towards more selective 

compounds and a better understanding of these drugs. The results presented in this . . 
thesis should stimulate the discovery and development of new hypoxia selective 

cytotoxins that are useful in the treatment of cancer. 
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Chapter 6 

6. Experimental Section 

All experiments were carried out under an atmosphere of N2 or Ar. 

Glassware was oven-dried and N2 cooled. Chemicals were purchased from Aldrich 

Chemical Company (Gillingham, Dorset, UK) or Lancaster Synthesis Ltd 

(Morecambe, Lancs, UK) and used without further purification. DMF and ethanol 

were dried by 3 times sequential drying over 3 A molecular sieves.239 'Wet DMF' 

refers to DMF that was used as purchased and not dried. Melting points were 

measured with a GaUenkamp apparatus and are uncorrected. IH and 13C NMR 

spectra were recorded on a Bruker DPX 400 spectrometer, with chemical shift values 

reported in on the ~ scale (TMS = 0) relative to residual chloroform (~H = 7.27 or ~c 

= 77.2) as internal standards unless otherwise stated. Coupling constants (1) are 

reported in Hertz (Hz). Mass spectrometry was performed on a JEOL JMS-700 

spectrometer and infrared spectra obtained via solution phase (in CDCl)) IR using an 

Ff-IR spectrophotometer. 

6.1. Experimental to Chapter 2 

Generalpr0c.edures 2a-1 

a) Formation of diol tosylates:24o p-Toluenesulfonyl chloride (1.5 eq., 2.3 M) 

was dissolved i~ dry pyridi~e and held below 0 °C. A solution of the diol (1 

eq, 6 M) in dry pyridine was added slowly dropwise while stirring. After 4 

h, the mixture was poured into water and the resulting precipitate filtered 

and washed well with water. It was dried by suction and recrystallized from 

hot ethanol. 

b) Formation of mesitylenesulfonamides:240 The triamine (1 eq., 1 M) was 

dissolved in 10% aqueous NaOH solution. A solution of mesitylenesulfonyl 

chloride (3 eq., 1 M) in diethyl ether was added very slowly dropwise and 

the mixture stirred extremely vigorously overnight. Methanol was added to 
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the resulting coagulated precipitate and it was filtered, washed with " 

methanol and dried under vacuum. 

c) Richman-Atkins cyclisation of Mts-protected sulfonamides:24o The 

sulfonamide (1 eq., 0.02 M) was dissolved in dry DMF. NaH (3 eq., 60% 

suspension in oil) was added, causing fizzing. After stirring for 1 hour, a 

solution of the diol ditosylate (1 eq., 0.2 M in dry DMF) was added 

dropwise. The mixture was heated to 100 ·C while stirring overnight. The 

solvent was concentrated in vacuo to approximately 10% of its original 

volume and dripped into 20 times its volume of ice water while stirring. The 

resulting cream coloured precipitate was filtered, washed well with water 

and purified by column chromatography (99: 1 CHCIJ-MeOH, alumina) or 

recrystallization. 

d) Deprotection of mesitylenesulfonamide-macrocycles (adapted from Reddy et 

al.):170 

1) Attempted deprotection: The protected macrocycle (1 eq., 0.09 M) 

was dissolved in dichloromethane. A solution of phenol (40 eq., 2 M in 

30% HBr/AcOH) was added and the mixture stirred very vigorously at 

reflux for 7 - 9 d. The solqtion was cooled to r.t., distilled water was 

added and the mixture extracted with dichloromethane (3 x 50" ml) to 

remove phenol, some of the acid and unreacted starting material. The 
... ) . , 

dichloromethane was removed via rotary evaporation, the residue was 

taken up in acetone and left in the freezer to crystallize the unreacted 

sulfonamide". The aqueous layer of the extraction was concentrated to 

dryness via rotary evaporation at - 1.0 mm Hg (achieved with a vacuum 

pump). The resulting crude hydrobromide salt of the polyazamaciocycle 

was taken up in a minimum of distilled water, basified to above pH 12 

with NaOH and extracted with dichloromethane (3 x 50 ml). The 

organic layer was dried with MgS04, filtered and the solvent removed 

via rotary evaporator to give an oil which contained the desired 

macrocycle plus impurities. Column chromatography was attempted 
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using 80:20 CHCh-MeOH as eluent on alumina, but no product was 

isolated. 

2} Reaction conditions were as above, except that benzyltriethylammonium 

chloride (0.02 eq.) was also added to the initial reaction mixture and the 

solution heated at reflux for 14 days followed by 14 days of standing at 

room temperature. By the end of this period, crystals had formed in the 

solution, which were filtered off and shown by IH NMR spectroscopy to 

be the HBr salt of the product. The filtrate was worked up as above, but 

the crude HBr salt from the aqueous layer was washed in hot ethanol 

and isolated instead of being converted into the free base. 

e} Synthesis of 2-(trimethylsilyl}ethanesulfonic acid, sodium salt (adapted from 

Weinreb et al.}:195 Vinyltrimethylsilane (28 ml, 1 eq.) was combined in a 

250 ml round-bottom flask, equipped with a two-neck adaptor, reflux 

condenser and thermometer, with 70 ml MeOH and t-butyl peroxybenzoate 

(0.02 eq.). A solution of 36.1 g sodium bisulfite in 70 ml distilled water was 

added and the suspension stirred and heated to 50°C for 48-72 h (monitoring 

the internal temperature). Upon completion, the suspension was transferred 

to alL flask and the solvent removed by rotary evaporation, adding 50 mL 

of MeOH twice to assist the removal of residual water. The resulting white 

solid was taken up in 200 ml MeOH and stirred for 10 min, after which it 

was filtered through a pad of Celite. The filter cake was removed from the 

Celite and stirred again with an additional 200 ml of MeOH for 10 min. The 

process was repeated once more, for a total of 3 washes of the solid. All the 

filtrates were combined in· a tared 500 ml round bottom flask and rotary 

evaporated. The solid product was dried on the rotary evaporator with a 

water bath temperature of 60-80 °C for 4 hours. 

f) Synthesis of 2-(trimethylsilyl)ethanesu~fonyl chloride (adapted from 

Weinreb et al.}:195 The sulfonate salt (1 eq.), was crushed to a fine powder 

. in a round bottom flask equipped with stir bar, oil bubbler and pressure

equalizing addition funnel and cooled to 0 ·C with an ice water bath. 

Thionyl chloride (16 eq.) was added dropwise via the addition funnel, 
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causing evolution of S02. After all the thionyl chloride was added, catalytic 

DMF (0.4 eq.) was added slowly via syringe. The solution was allowed to 

come to room temperature and stirred overnight. The excess thionyl 

chloride was removed by rotary evaporation and the resulting slurry diluted 

twice with hexane and the hexane evaporated. The slurry was washed well 

with 200 ml hexane and filtered through a pad of Celite, thoroughly washing 

through with more hexane. The filtrate was concentrated under reduced 

pressure to yield the pure product. No further purification was necessary. 

g) Formation of primary sulfonamides from sulfonyl chlorides: The sulfonyl 

chloride was pre-cooled in an ice-water bath. A solution of concentrated 

NH3 (0.88) was added dropwise with stirring. The resulting suspension was 

held at reflux for 2 h. After cooling to room temperature, water was added 

to assist precipitation of the product, which was filtered off under suction 

and washed with water. The resulting crystalline solid was dried under 

vacuum at 100°C. 

h) Alkylation of primary sulfonamides and cyclisation of SES-protected 

sulfonamides: 151 The sulfonamide was dissolved in dry DMF (1 eq., 0.05 M 

in DMF) in a 3-neck round bottom flask fitted with a pressure equalizing 

addition funnel. Caesium carbonate (3 eq.) was added and the mixture 

stil!ed. For the alkylation of primary sulfonamides, the alkyl bromide was 

added via syringe. For the cyclisations, th,~ diol ditosylate was ~ssolved in 

dry DMF (1 eq., 0.18 M in DMF) and added via syringe. The suspension 

was stirred for 3 - 4 d. The reaction was monitored by TLC (20: 1 CH2Ch

EtOAc, silica) of evaporated aliquots, watching for disappearance of starting 

material. Upon completion, the solvent was thoroughly removed in vacuo, 

the residue taken up in CH2Ch and washed with 25 ml distilled water and 25 

ml brine. The organic layer was dried with Na2S04 and rotary evaporated to 

give the crude product. The material was,purified by flash chromatography 

(for tris-SES-sulfonamides: 20: 1 CH2Ch-EtOAc, silica; for nitriles and 

. alcohols: as specified). 
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i) Reduction of nitriles:241 The nitrile was dissolved in dry THF in a 3-necked -

round-bottom flask with reflux condenser. BH3-THF complex (8 eq., 1 Min 

THF) was added via syringe. The solution was held at reflux for 2 h. Upon 

cooling to room temperature, the excess borane was carefully quenched with 

6 M HCI (5-10 mI). The solution was basified to pH 13-14 with NaOH 

pellets, extracted with CH2Ch (3 x 75 ml), dried with Na2S04, filtered and 

rotary evaporated to give the pure amine. 

j) Formation of SES-sulfonamides (Hoye et al.):151 The triamine in dry DMF 

(1 eq., 0.7 M in DMF) was combined with triethylamine (5 eq.) in a round 

bottom flask with a septum and brought to 0 ·C. The sulfonyl chloride in 

dry DMF (4 eq., 3 Min DMF) was added via pressure-equalizing addition 

funnel. The mixture was stirred overnight at 0 °C. The solvent was 

thoroughly removed in vacuo and the residue taken up in distilled water and 

extracted with dichloromethane (3 x 50 ml). The organic extracts were 

combined, dried with Na2S04 and concentrated under reduced pressure to 

give the crude product. The material was purified either by recrystallization 

in methanol or 2-propanol, or by flash chromatography (9: 1 CH2Ch-EtOAC, 

silica), giving the product as a white solid. 

k) Deprotection of macrocyclic 2-(trimethylsilyl)ethanesulfonamides: 151 The 

m~crocyclic sulfonamide was dissolved in dry DMF (1 eq., 0.05 Min DMF) 

in a round bottom flask fitted with a reflux condenser and oil bubbler. 
- ,-

Caesium fluoride was added (20 eq.) and the mixture held at 95 ·C while 

stirring overnight. The solvent was thoroughly removed in vacuo, the white 

solid residue taken up in CHCh and filtered through Celite with CH2Ch. 

The filtrate was concentrated to give the products as oils or waxy solids, 

which were purified by Kugelrohr distillation. 

I) Synthesis of bisbromomethyl aromatic compounds: 201 The dimethyl 

aromatic compound (1 eq.) and N-bromosuccinimide (NBS) (4 eq.) were 

. dissolved in CC4. The solution was exposed to UV radiation while stirring. 

The reaction was monitored by TLC (9:1 DCMlEtOAc) for disappearance of 

the dimethyl compound. Upon completion, DCM was added (50 ml) to 

136 



dissolve all solids and the solvent was evaporated. The residue was purified . 

by recrystallisation to give the bisbromomethyl compound. 

Experimental details 

6.1.1. Diol ditosylate formation 

n 
TsO OTs 

107 

1,2-Ethanediol ditosylate (107) 

Using 1,2-ethanediol (3.50 g, 56.1 mmol), 107 was prepared according to general 

procedure 2a as white crystals (17.2 g, 90% yield). m.p. 121.3-123.7·C (lit. m.p. 

123-125 ·C); NMR spectroscopy agreed with literature values.24o OH (CDCI3) 2.47 (6 

H,. s, ArCH3), 4.19 (4 H, s, TsOCHz), 7.34-7.76 (8 H, m (AA'BB'), ArH); Oc 22.1 

(CH3), 67.1 (CH2), 128.4 and 130.4 (CH), 132.7 and 145.7 (C) 

(l 
OTs OTs 

f08 

1,3-Propanediol ditosylate (108) 

Using 1,3-propanediol (5.00 g, 65.7 mmol), 108 was prepared according to general 

procedure 2a as white crystals (18.'3 g, 79% yield). m.p. 90.4-92.8 ·C (lit. m.p. 91-

93 ·C); NMR spectroscopy agreed with literature values.240 OH (CDCh) 2.01 (2 H, 

quintet, J 5.6, CHz), 2.47 (6 H, s, ArCH3), 4.07 (4 H, t, J 6.0, TsOCHz), 7.35-1.77 (8 

H, m (AA'BB'), ArH); Oc 22.1 (CH3), 29.1 (CH2), 66.2 (TSOCH2), 128.3 and 130.4 

(CH), 133.0 and 145.5 (C) 
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n 
OTs OTs 

109 

1,4-Butanediol ditosylate (109) 

Using 1,4-butanediol (3.50 g, 38.8 mmol) , 109 was prepared according to general 

procedure 2a as white crystals (10.28 g, 66% yield). m.p. 79.7-80.6 'C (lit. m.p. 80-

81 'C); NMR spectroscopy agreed with literature values.242 OH (CDCh) 1.70 (4 H, 

broad s, CHz), 2.46 (6 H, s, ArCH3), 3.99 (4 H, broad s, TsOCHz), 7.34-7.78 (8 H, m 

(AA'BB'), ArH); Oc 22.1 (CH3), 25.4 and 69.8 (CH2), 128.2 and 130.3 (CH), 133.3 

and 145.3 (C) 

() 
OTs OTs 

110 

1,5-Pentanediol ditosylate (110) 

Using 1,5-pentanediol (6.84 g, 65.7 mmol), 110 was prepared according to general 

procedure 2a as white crystals (22.5 g, 90% yield). m.p. 73.9-75.0 'C; NMR 

spectroscopy agreed with literature vahies.243 OH (CDCh) 1.26-1.39 (2H, m), 1.57-

1.64 (4H, m), 2.46 (6H, s), 3.96-3.99 (4H, m), 7.34-7.78 (8H, aa'bb'); Oc (CDCh) 

22.0 (CH3), 21.9, 28.6 and 70.4 (CH2), 128.2 antI 130.3 (ArCH), 133.4 and 145.2 

(ArC). 
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6.1.2. Mesitylenesulfonamides 

H 
Mts'N/"....../N~N~Mts 

H . H 

68 . 

1,7-Bis(mesitylenesulfonyl)triazaheptane (68) 

According to general procedure 2b, using 66 (10.0 g, 96.9 mmol), 68 was isolated as 

a white powder (10.4 g, 23% yield). m.p. 108.9-111.3 'C; Vmax (CDCb solution cell) 

1160, 1322, 1560, 1604, 2855, 2984, 3310, 3406 cm,I; OH (CDCb) 2.30 (6 H, s, 

CH2NHS02C~2-o-(CH3)2-P-CH3), 2.63 (12 H, s, CH2NHS02C~2-o-(CH3)rP

CH3), 2.65 (4 H, t, J 5.2, (CH2)2NH), 2.94 (4 H, m, Mts-NHCH2), 6.96 (4 H, s, 

CH2NHS02C6H2(CH3)3); Oc 21.3 (P-CH3), 23.3 (m-CH3), 42.2 (HNCH2), 48.2 (Mts

NHCH2) , 132.4 (CH), 133.7, 139.5 and 142.6 (C); mlz (C:r mode isobutane) 468.2 

([M+H]\ 38%), 255.2 (100), 119.2 (45). Found: [M+Ht 468.1988. C22H340~2S2 

requires 468.1991. 

Mts'N~~~N~Mts 
H Mts H 

. 70 

1,5,9-Tris(mesitylenesulfonyl)triazanonane (69) 

According to general procedure 2b, using 67 (10.0 g, 76.2 mmol), 69 was isolated as 

a white powder (47.7 g. 92 % yield). m.p. 121.3-124.3 'C; Vmax (CDCb solution cell) 

1154, 1213, 1320, 1604, 2508, 2898, 2984, 3390 cm,I; OH (CDCh) 1.61 (4 H, 

quintet, J 6.4, NHCH2CH2CH2N), 2.29 (3H, s, (CH2)2NS02C~2-0-(CH3)2-p-CH3), 

2.30 (6 H, s, CH2NHS02C6H2-o-(CH3)2-P-CH3), 2.54 (6 H, s, (CH2hNS02C~2-o

(CH3)rp-CH3), 2.59 (12 H! s, CH2NHSO~C6H2-o-(CH3h-p-CH3), 2.80 (4 H, broad 

q, J 5.6, NHCH2CH2), 3.19 (4 H, t, J 6.8, CH2CHzNR,), 4.77 (2 H, broad t, NHCH2), 

6.93 (2 H, s, (CH2)zNS02C6H2(CH3h), 6.95 (4 H, s, CH2NHS02C6H2(CH3h); Oc . . 
21.3 (P-CH3), 23.3 (m-CH3), 28.0 (CH2) , 39.7 (Mts-NCH2), 43.3 (Mts-NHCH2), 

132.4 and 132.6 (CH), 139.3, 140.4, 142.5 and 143.4 (C); mlz (C:r mode isobutane) 
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678.2 ([M+Ht, 15%), 494.2 (42), 439.2 (10), 283.2 (31), 269.2 (20), 183.1 (19),-

119.2 (100), 105.1 (36). Found: [M+Ht 678.2714. C33I4806N3S3 requires 

678.2705. 

6.1.3. Cyclisation of mesitylenesulfonamides 

MtS .... ['WMts 

CN~ 
I 

Mts 

70 

1,4,8-Tris(mesitylenesulfonyl)-1 ,4,8-triazacycloundecane (70) 

Using 69 (3.60 g, 5.31 mmol) and 107 (1.82 g, 5.31 mmol), 70 was prepared 

according to general procedure 2c and purified by column chromatography as a 

white foamy solid (0.282 g, 7.5% yield). Vmax (CDCh solution cell) 1158, 1311, 

1605, 1645, 2896, 2975 cm'I; OH (CDCh) 1.97 (4 H, quintet, J 6.4, MtsNCH2CHz), 

2.30 (3 H, s, (CH2)3N(S02C6H2-o-(CH3h-p-CH3)(CH2h), 2.32 (6 H, s, 

(CH2hN(S02C6H2-o-(CH3h-p-CH3)(CH2)2), 2.50 (6 H, s, (CH2hN(S02C~2-o

(CH3)2-P-CH3)(CH2h), 2.58 (12 H, s, (CH2hN(S02C6H2-0-(CH3h-p-CH3)( CH2)2), 

3.19-3.28 (8 H, m, MtsNCHzCH2CH2), 3.47 (4 H, s, MtsNCHz), 6.94 (2 H, s, 

(CH2hN(S02C6Hz-o-(CH3h-p-CH3)(CH2)3), 6.97 (4 H, s, (CH2hN(S02C6HZ-o

(CH3h-p-CH3K CH2h); oe 21.3, 23.3 and 23.8 (CH3), 24.9, 42.6, 47.5 and 49.4 . -

(CH2) , 132.4 and 132.7 (CH), 139.6, 140.7, 143.1 and 144.3 (C); mlz (FAB+ mode) 

704.4 ([M+Ht, 100%), 521.4 (20), 520.4 (62), 338.3 (26), 336.3 (12), 226.1 (13), 

183.1 (19), 119.2 (98). -Found: [M+Ht 704.2862. C3sHso06N3S3 requires 704.2862. 

Microanalysis results: 59.71% C, 7.18% H, 5.79% N. Theoretical: 59.71% C, 

7.02% H, 5.97% N. 
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MtS .... () .. Mts 

C~J 
Mts 

71 

1,5,9-Tris(mesitylenesulfonyl)-1 ,5,9-triazacyclododecane (71) 

Using 69 (6.10 g, 9.00 mmol) and 108 (3.17 g, 9.00 mmol), 71 was prepared 

according to general procedure 2c and purified by column chromatography as a 

white foamy solid (0.983 g, 15% yield). m.p. 206.4-208.9 ·C; Vmax (CDCh solution 

cell) 1154, 1213, 1315, 2898, 2973 cm- I
; OH (CDCh) 1.98 (6 H, quintet, J 6.8, 

[CH2hCH2), 2.31 (9 H, s, S02C6H2-0-(CH3)z-P-CH3), 2.58 (18 H, s, S02C~2-0-

(CH3)z-P-CH3), 3.24 (12 H, t, J 6.8, MtsNCH2), 6.95 (6 H, s, S02C6H2-0-(CH3)z-p

CH3); oe 21.2 and 23.4 (CH3), 26.2 and 44.5 (CH2) , 132.5 (CH), 140.6 and 143.1 

(C); m/z (FAB+ mode) 718.4 ([M+Ht, 19%), 534.4 (11), 307.1 (31), 289.1 (12). 

Found: [M+Ht718.3016. C3~520~3S3 requires 718.3018. Microanalysis results: 

60.04% C, 7.14% H, 5.75% N. Theoretical: 60.22% C, 7.16% H, 5.85% N. 

MtS .... (1 .. Mts 

C~~ 
Mts 

72 

1,5,9-Tris(mesitylenesulfonyl)-1 ,5,9-triazacyclotridecane (72) 

Using 69 (4.07 g, 6.00 mmol) and 109 (2.39 g, 6.00 mmol) , 72 was prepared 

according to general procedure 2c and purified by recrystallization from' EtOAc as 

white crystals (1.7 g, 39% yield). m.p. 211.3-213.1 ·C; Vmax (CDCh solution cell) 

1152, 1310, 1565, 1610, 1732, 2861, 298.5 cm-I
; 0 H (CDCh) 1.79-1.88 (8 H, m, 

CH2CH2N), 2.299 and 2.306 (3 H and 6 H, s, i'J"C6H2-0-(CH3)2-p-CH3), 2.55 and 

2.57.,(6 H and 12 H, S, NC6H2-0-(CH3)z-p-C~3), 3.12 (4 H, t, J 5.9, NCH2CH2), 3.23 

(8 H, m, NCH2CH2CH2N), 6.93 and 6.96 (2 Hand 4 H, s, NC6H2-0-(CH3)2-P-CH3); 

oe 21.3 (P-CH3), 23.2 and 23.5 (m-CH3), 27.1 and 28.6 (CH2), 43.3, 47.9 and 49.6 
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(NCH2), 132.4 and 132.6 (CH), 132.8, 133.1, 140.4, 140.6, 142.8, 143.0 (Ck 

Microanalysis results: 60.47% C, 7.27% H, 5.64% N. Theoretical: 60.71 % C, 7.30% 

H,5.74%N. 

6.1.4. Deprotection of mesitylenesulfonamides 

'3HBr 

73 

1,5,9-Triazacyclododecane trihydrobromide (73) 

Using 71 (0.500 g, 0.696 mrnoles), 73 was prepared according to general procedure 

2d-2 as a peach powder (0.256 g, 89% yield); NMR spectroscopy agreed with 

literature values.244 OH (D20 ) 2.16 (6 H, quintet, J 6.8, (NCH2)zCHZ), 3.28 (12 H, t, J 
r 

6.8, NCHz); Oc (D20IDMSO) 20.5 (CH2), 42.3 (NCH2). 

6.1.5. Synthesis of SES-chloride 

o - + 
\. /'0.. •. 8,.0 Na 

-Sl~ .............. " 
\ 0 

84 

2-(Trimethylsilyl)ethanesulfonic acid, sodium salt (84) 

.. ~, 

Using vinyltrimethylsilane (28 mI, 181 mrnol), 84 was prepared according to general 

procedure 2e as a white solid (32.0 g, 86% yield); NMR spectroscopy agre~d with 

.. literature values.195 OH (DMSO); 0.00 (9H, s), 0.83-0.88 (2H, m), 2.36-2.41 (2H, m); 

Oc (DMSO) 0.00 (CH3), 13.6 and 48.2 (CH2). 
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o \ S .... CI 
-Si~\I 

\ 0 

85 

2-(Trimethylsilyl)ethanesulfonyl chloride (85) . 

Using 84 (30.8 g, 151 mmol), 85 was prepared according to general procedure 2f as 

a clear oil (25.7 g, 85% yield). TLe (1:1 Pet. Ether-EtOAc, silica) rf. 0.80; NMR 

spectroscopy agreed with literature values.19S OH (eDeh) 0.12 (9 H, s, Si(eH3)3), 

1.30-1.34 (2 H, m, SieH2), 3.59-3.64 (2 H, m, S02eH2); -1.61 (SieH3), 12.4 

(SieH2), 63.8 (S02eH2). 

6.1.6. Building triamines from sulfonamides 

2-Nitrobenzenesulfonamide (90) 

Using 2-nitrobenzenesulfonyl chloride (10.0 g, 45.1 mmol) and conc. NH3 (100 ml), 

90 was prepared according to general procedure 2g and recrystallized n:om EtOH to 

give light yellow crystals (5.3 g, 58% yield). Melting point agreed with literature 

value.24S m.p. 190-193 °e (lit. 190-191 °e); OH (DMSO) 7.83-7.96 (6 H, m, ArH and 

NH2); Oc (DMSO) 124.6, 129.2, 133.0 and 133.8 (eH), 136.1 and 147.5 (e). 

~ 
'si~*-NH2 

.,; \ 0 

94 

(2-Trimethylsilyl)ethanesulfonamide (94) 

Ammonia gas, produced by gentle warming (30-40 °e) of 8M aqueous ammonia 

solution, was bubbled through a stirred solution of 85 (11.0 g, 55 mmol) in 
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dichloromethane (100 ml) at 0 °c. After 2 h the reaction mixture was filtered, 

washed with water, dried (MgS04) and concentrated to give 94 as a cream crystalline 

solid (8.73 g, 88% yield) m.p. 85-88 °C; IR: Vmax (Golden Gate) 1147, 1271, 1327, 

1547, 2900 and 2952 cm-I
; OH (CDCl) 0.08 (9 H, s, Si(CH3h), 1.08-1.12 (2 H, m, 

SiCHz), 3.03-3.08 (2 H, m, S02CHz) and 4.59 (2 H, bs, NHz); Oc (CDCl) -1.60 

(SiCH3), 11.3 (SiCH2) and 52.0 (S02CH2); m/z (FAB+ mode) 352.5 ([M+Ht 

100%), 226.2 (7), 169.2 (3), 84.6 (24), 73.7 (95). Found [M+Ht 352.2452, 

CIsH3802N3SiS requires 352.2454. 

91 

N-(2-Nitrobenzenesulfonyl)-bis-(3-cyanopropyl)amine (91) 

Using 90 (5.00 g, 24.7 mmol) and 4-bromobutyronitrile (7.32 g, 49.5 mmol), 91 was 

prepared according to general procedure 2h and recrystallized from MeOH to give 

yellow crystals (5.6 g, 67% yield); m.p. 85-86 °C; Vmax (CDCl) solution cell) 1126, 

1165, 1217, 1371, 1468, 1547, 2401, 2902, 2947 and 3020 cm-I; OH (CDCI3) 1.93-

2.00 (4 H, quintet, J = 7.2, CHz), 2.40-4.44 (4 H, t, J = 7.1, CHzCN), 3.42-3.46 (4 H, 

t, J = 7.4, NCHz), 7.66-8.10 (4 H, m, ArH); Oc (CDCl) 14.9,24.8 and 46.9 (CH2), 

124.9, 131.7, 132.6 and 134.7 (ArCH), 118.9~nd 148.4 (ArC); m/~ (CI+ mode 

isobutane) 363.2 (5%), 337.2 ([M+Ht, 100),307.2 (32), 290.3 (18),288.3 (3), 276.1 

(2), 240.1 (2), 208.2 (2), 181.2 (4), 152.2 (68), 150.1 (28), 124.1 (4), 97.1 (4) and 

69.1 (5); Found [M+Ht 337.0971·~ CI4H170~4S requires 337.0971. 
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95 

N-(2-(Trimethylsilyl )ethansulfonyl )-bis-(3-cyanopropyl )amine (95) 

Using 94 (2.00 g, 11.0 mmol) and 4-bromobutyronitrile (3.27 g, 22.1 mmol), 95 was 

prepared according to general procedure 2h (no purification necessary) as a beige oil 

(3.35 g, 96% yield); IR: Vmax (Golden Gate) 1138, 1167, 1250, 1327, 1421, 1460, 

1672, 2247 and 2953 em-I; OH (CDCh) 0.07 (9 H, s, Si(CH3)3), 0.98-1.04 (2 H, m, 

SiCH2), 1.95-2.03 (4 H, quintet,J = 7.2, CH2), 2.44-2.48 (4 H, t, J = 7.0, CH2CN), 

2.84-2.96 (2 H, m, S02CH2), 3.32-3.36 (4 H, t, J = 7.1, NCH2); m/z (FAB+ mode) 

338.1 ([M+Nat, 100%), 271.1 (10), 73.8 (30); Found [M+Nat 338.1334, C13H-

2s02N3SiSNa requires 338.5017. 

N-(2-(Trimethylsilyl)ethanesulfonyl)-bis-( 4-cyanobutyl) amine (96) 

"" 
Using 94 (1.5 g, 8.27 mmol) and 5-bromovaleronitrile (2.68 g, 16.54~ol), 96 was 

prepared according to general procedure 2h and purified by column chromatography 

(EtOAc, silica) to give 11 yellow oil (2.16 g, 76% yield); r.f. = 0.64 (EtOAc); IR: Vmax 

(Golden Gate) 1140, 1167, 1250, 1329, 2249 and 2952 em-I; IH NMR: OH (CDCh) 

.. 0.06 (9 H, s), 0.97-1.01 (2 H, m), 1.68-1.81 (8 H, m), 2.42-2.45 (4 H, t, J = 6.6), 

2.85-2.90 (2H, m), 3.24-3.28 (4 H, t, J = 6.8); 13C NMR: Oc (CDCh) -1.6, 10.7, 

17.1,22.6,47.8,48.0, 119.6; MS: m/z (CI+ mode) 344.3 ([M+Ht, 35%), 316.2 (9), 

280.3 (2),252.2 (30), 226.2 (4), 211.2 (3), 180.2 (2), 138.2 (1), 111.1 (1), 73.1 (3), 

57.1"(100); Found [M+Ht 344.1827, CIsH3002N3SiS requires 344.1828. 
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SES'N~N 

··~N 
97 

N -[ (2-Trimethylsilyl)ethanesulfonyl]-bis-( cyanopentyl)amine (97) 

Using 94 (1.5 g, 8.27 mmol) and 6-bromocapronitrile (2.91 g, 16.5 mmol), 97 was 

prepared according to general procedure 2h purified by column chromatography 

(EtOAc, silica) to give a yellow oil (2.26 g, 73% yield); rJ. = 0.61 (EtOAc); IR: Vmax 

(Golden Gate) 1139, 1250, 1327 and 2951 cm-I; IH NMR: OH (CDCb) 0.06 (9 H, s), 

0.97-1.02 (2 H, m), 1.45-1.53 (4 H, m), 1.61-1.74 (8 H, m), 2.35-2.39 (4 H, t, J = 
7.0), 2.84-2.88 (2 H, m), 3.19-3.22 (4 H, t, J = 7.5); l3C NMR: Be (CDCb) -1.6, 

10.7, 17.5, 25.3, 26.1, 29.0, 48.2, 48.3, 119.85; MS: m/z (FAB+ mode) 372.4 

([M+Ht 12%), 280.4 (92), 226.2 (12), 197.2 (12), 149.1 (28), 73.7 (100), 56.0 (9). 

Found [M+Ht 372.2153, C17H3402N3SiS requires 372.2141. 

N-(2-Nitrobenzenesulfonyl)-bis-(3-aminopropyl)amine (92) 

Using 91 (1.00 g, 2.97 mmol), 92 was prepared according to general procedure 2i as 

an orange oil (0.70 g, 70% yield); 8H (CDCh) 1.37-1.44 (4 H, m, CH2), 1.51-1.64 (4 

H, m, CHz), 2.66-2.69 (4 H, t, J =7.0, Ns-NCHz), 3.28-3.32 (4 H, t, J = 7.8, NCHz), 

.. 7.60-8.03 (4 H, m, ArH). 
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98 

6-[(2-Trimethylsilyl)ethanesulfonyl]-l ,6, 11-triazaundecane (98) 

Using 95 (3.28 g, 10.4 mmol), 98 was prepared according to general procedure 2i as 

a clear oil (3.24 g, 96% yield); IR: Vmax (Golden Gate) 1136, 1165, 1215, 1252, 1323, 

1458, 1560,2341,2360 and 2943 cm-1
; OH (CDCh) 0.06 (9 H, s, Si(CH3)3, 0.98-1.04 

(2 H, m, SiCHz), 1.42-1.49 (4 H, m, CHz), 1.60-1.68 (4 H, m, CHz), 2.71-2.73 (4 H, 

t, J =7.0, SES-NCHz), 3.20-3.24 (4 H, t, J = 7.7, NCHz); Oc (CDCh) -1.6 (SiCH3), 

10.7 (SiCHz), 26.9, 31.1, 42.1, 48.4 and 48.9 (CHz); m/z (FAB+ mode) 324.2 

([M+Ht, 50%), 253.1 (10),226.1 (5), 136.1 (6), 101.4 (5), 73.8 (100) and 70.9 (23); 

Found [M+Ht 324.2147, Cl3H340zN3SiS requires 324.2141. 

7-[(2-Trimethylsilyl)ethanesulfonyl]-1,7,13-triazatridecane (99) 

Using 96 (2.10 g, 6.11 mmol), 99 was prepared according to general procedure 2i as 

a clear oil (2.05 g, 95% yield); IR: Vmax (Golden Gate) 1167, 1248, 1327, 1560,2862 

and 2927 em-I; IH~: OH (CDCh) 0.06 (9H, s), 0.98-1.02 (2H, m), 1.24-1.51 (12 

H, m), 1.56-1.64 (4 H, quintet, J = 7.3), 2.68-2.72 (4 H, t, J = 7.0), 2.83-2.88 (2 H, 

m), 3.18-3.22 (4 H, t, J = 7.6); 13C NMR: Oc (CDCh) -1.7, 10.7, 24.3,29:3, 33.6, 

42.3,48.1,48.3; MS: m/z (FAB+ mode) 352.5 ([M+Ht 100%),226.2 (7), 169.2 (3), 

84.6 (24), 73.7 (95). Found lM+Ht 352.2452, ClsH3sOzN3SiS requires 352.2454. 
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8-[(2-Trimethylsilyl)ethanesulfonyl]-1,8,15-triazapentadecane (100) 

Using 97 (2.24 g, 6.03 mmol), 100 was prepared according to general procedure 2i 

as a clear oil (2.22 g, 97% yield); IR: Vmax (Golden Gate) 1165, 1250, 1325, 1464, 

1572, 2856 and 2929 cm-I; IH NMR: OH (CDCh) 0.04 (9 H, s), 0.97-1.01 (2 H, m), 

1.21-1.48 (16 H, m), 1.54-1.61 (4 H, quintet, J = 7.4), 2.68 (4H, t, J = 6.9), 2.82-2.86 

(2 H, m), 3.18 (4 H, t, J = 6.7); 13C NMR: Oc (CDCh) -1.6, 10.7, 26.9, 26.9, 29.4, 

33.9,42.3,48.1,48.3; MS: mlz (FAB+ mode) 380.5 ([M+Ht 72%),288.4 (3), 226.2 

(4), 185.3 (4), 98.5 (16), 73.7 (100). Found [M+Ht 380.2773, CI7I-4202N3SiS 

requires 380.2767. 

6.1.7. SES-amide synthesis 

H H 
SES ... N~N~N'SES 

I 
SES 

87 

1,4,7-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,4,7-triazaheptane (87) 
.l 

Using 66 (1.5 g, 14.5 mmol) and 85 (10.2 g, 50.9 mmol), 87 was prepared according 

to general procedure 2j and puriied by column chromatography to give a cream 

solid (4.03 g, 46% yield); IH and 13C NMR data agreed with literature values. lS1
oH 

(CDCh) 0.06 (27 H, S, Si(CH3)3), 1.00-1.05 (6 H, m, SiCH2), 2.96-3.05 (6 H, m, 

S02CH2), 3.34-3.38 (4 H, q, J 6.0, NHCH2), 3.44-3.46 (4 H, t, J 5.6, N(CH2h), 5.09 

(2 H, broad s, NH); Oc -1.~9 (CH3), 10.4 and 10.8 (SiCH2), 43.0 (NCH2), 47.8 and 

49.4 (S02CH2), 50.8 (NHCH2) 
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SES"'N~N~N ... SES 
H SES H 

88 

1,5,9-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,5,9-triazanonane (88) 

Using 67 (0.820 g, 6.23 mmol) and 85 (5.00 g, 24.9 mmol) , 88 was prepared 

according to general procedure 2j and purified by column chromatography to give a 

white waxy solid (2.77 g, 71 % yield); m.p. 100.2-101.5 °c (lit. 106.5-107.5 °Cl5l); 

IH and 13C NMR and IR data agreed with literature values. lSI Vrnax (CDCh solution 

cell) 1340, 1166, 1213, 1253, 1330, 1711,2897,2978, 3398 em-I; OH (CDCh) 0.07 

(27 H, s, Si(CH3)3), 0.97-1.04 (6 H, m, SiCHa), 1.85 (4 H, quintet, J 8.0, 

(CH2)zCHa), 2.89-2.96 (6 H, m, S02CHa), 3.21 (4 H, broad q, J 7.9, CHaNH), 3.36 

(4 H, t, J 8.0, CHaN), 4.94 (2 H, t, J 8.0, NH); Oc -1.58 (SiCH3), 10.6 and 10.9 

(SiCH2), 32.7 (CH2), 41.9 (NCH2), 48.7 and 48.9 (S02CH2), 50.8 (NHCH2). 

H 
SES"'N~N~N"'SES 

H SES 

89 

1,5,10-Tris[(2-trimethylsilyl)ethanesulf~nyl]-1,5,10-triazadecane (89) 

Using 59' (2.60 g, 36.1 mmol) and 85 (14.5 g, 72.2 mmol) , 89 was prepared 

according to general procedure 2j and recrysta1li;ed from methanoVwater (-1 :2) to 

give a cream powder (10.0 g, 87% yield); m.p. 104-106°C; Vrnax (CDCh solution 

cell) 1142, 1169, 1254, 1327, 1383, 1468, 2900, 2956, 3294 and 3394 em-I; OH 

(CDCh) 0.06 (27 H, s, SiCH3), 0.98-1.04 (6 H, m, SiCH2), 1.57-1.64 (2 H, quintet, J 

= 6.8, CHa), 1.69-1.76 (2 H, quintet, J = 6.8, CHa), 1.82-1.88 (2 H, quintet, f = 6.0, 

CHa), 2.87-2.96 (6 H, m, S02CHa), 3.12-3.37 (8 H, m, NCHa), 4.63-4.66 (1 H, t, J = 
6.4, NH) and_5.15-5.18 (l H, t, J = 6.8, NH); Oc (CDCh) -1.60 (SieH3), 10.9 

(SiCH2), 26.5, 27.7, 30.6, 40.3, 43.0, 46.1, 47.7 'and 49.0 (CH2); mlz (FAB+ mode 

NaI).660.1 ([M+Na]+, 100 %), 494.2 (11.5),.330.2 (6.5), 273.1 (7), 147.1 (5), 73.8 

(98) and 60.0 (8); Found [M+Nat 660.2457, C22HSS06N3ShS3Na requires 660.2459. 
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104 

1,6,II-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,6,II-triazaundecane (104) 

Using 98 (1.27 g, 3.97 mmol) in DMF (10 ml) and 85 (2.00 g, 9.94 mmol), 104 was 

prepared according to general procedure 2j and purified by column chromatography 

to give a white solid (1.33 g, 52% yield); m.p. 145.5-146.8 °C; IR: Vmax (Golden 

Gate) 1036, 1072, 1109, 1130, 1171, 1244, 1267, 1284, 1311, 1421,2954 and 3278 

cm- l ; IH NMR: OH (CDCh) 0.07 (27 H, s), 0.98-1.03 (6 H, m), 1.60-1.67 (4 H, m), 

1.74-1.80 (4 H, m), 2.86-2.97 (6 H, m), 3.14-3.20 (4 H, q, J = 6.2),3.23-3.27 (4 H, t, 

J = 7.2), 4.93-4.96 (2 H, t, J = 6.2); 13C NMR: oe (CDCh) -1.6, 10.5, 10.9, 26.5, 

27.6, 43.0, 47.6, 48.7, 49.2; MS: mlz (FAB+ mode NaI) 674.1 ([M+Nat, 56 %), 

560.2 (13), 486.1 (10), 305.1 (22), 136.0 (9), 73.3 (100); Found [M+Nat 674.2609, 

CZ3H5706N3SbS3Na requires 674.2615. 

SES"'N~N~N ... SES 

H SES H 

105 

1,7,13-Tris[(2-trimethylsilyl)ethanesulfonyl-l,7,13-triazatridecane (105) 

Using 99 (2.00 g, 5.69 mmol) and 85 (2.86 g; 14.2 mmol), 105 was prepared 

according to general procedure 2j and recrystallised from isopropanol/water (-2: 1) 

to give a cream solid ~2.42 g, 62~ yield); m.p. 95-99 °C; IR: Vmax (Golden Gate) 

1171, 1246, 1315 and 2951 cm- l
; IH NMR: OH (CDCh) 0.05 (9 H, s), 0.06 (18 H, s), 

0.97-1.03 (6 H, m), 1.39-1.45 (4 H, m), 1.57-1.67 (8 H, m), 2.84-2.88 (2 H, m), 2.91-

.. 2.95 (4 H, m), 3.12 (4 H, q, J= 6.6),3.20 (4 H, t, J = 7.4), 4.49 (2 H, t, J = 6.1); 13C 

NMR: Oe (CD~h) -1.6, 1~.7, 11.0, 23.8, ?9.0, 30.3, 43.4, 48.0, 48.4, 49.0, 138.4; 

MS: mlz (FAB+ mode NaI) 702.6 ([M+Nat 38%), 664.5 (5), 616.6 (6), 588.6 (18), 

516.5 (22), 514.5 (18), 333.4 (18), 279.3 (9),215.2 (8), 136.1 (20), 73.4 (99); Found 
" . 

[M+Nat 702.2898, C25~lN306SbS3Na requires 702.2928. 
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H H 
SES~N~N~N'SES 

I 
SES 

106 

1,8,15-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,8,15-triazapentadecane (106) 

Using 100 (2.20 g, 5.79 mmol) and 85 (3.02 g, 15.0 mmol), 106 was prepared 

according to general procedure 2j and purified by column chromatography to give 

white crystals (2.67 g, 65%); m.p. 89-91 °C; IR: Vmax (Golden Gate) 1173, 1246, 

1284, 1313, 1460,2856 and 2929 cm-l
; IH NMR: ~H (CDCh) 0.05 (9 H, s), 0.06 (18 

H, s), 0.97-1.03 (6 H, m), 1.35-1.44 (8 H, m), 1.54-1.63 (8 H, m), 2.83-2.88 (2 H, 

m), 2.91-2.95 (4 H, m), 3.11 (4 H, q, J = 6.7), 3.19 (4 H, t, J = 7.5), 4.50 (2 H, t, J = 
6.1); 13C NMR: ~c (CDCh) -1.6, 1.4, 10.7, 11.0, 26.3, 29.3, 30.7, 43.5, 48.1, 48.3, 

49.0; MS: mlz (FAB+ mode NaI) 730.7 ([M+Nat 12%),616.7 (4), 542.5 (3),293.3 

(1), 226.2 (1), 147.1 (2), 73.3 (100), 44.1 (12); Found [M+Nat 730.3224, 

C27~5N306ShS3Na requires 730.3241. 

6.1.8. Cyclisation of SES-amides 

SES,(l~SES 

(~) 
SES .\ 

111 

1,4,7-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,4,7-triazacyclodecane (111) 

Using 87 (0.650 g, 1.09 mmol) and 108 (0.380 g, 1.09 mmol) in DMF (20 ml), 111 

was prepared according to general procedure 2h and purified by column 

chromatography to give a ",:,hite solid (0.334 g, 53% yield); mp = 82.1-84.5 °C; Vmax 

(Golden Gate) 1068, 1136, 1167, 1248, 1325, 1454 and 2952 cm-l
; OH (CDCh) 0.07 

(27 H, s, Si(CH3h), 1.02-1.06 (6 H, m, SiCH2), 1.67 (2 H, m, NCH2CH2), 2.95-3.00 - .' 
(6 H, m, S02CH2), 3.31-3.54 (12 H, m, NCHz); Oc -1.61 (SiCH3), 9.97 and 10.2 

(SiCH2), 30.7 (CH2), 45.9 and 46.4 (S02CH2), 48.2,52.4 and 52.7 (NCH2); mlz (EI+ 
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mode) 620.3 ([M-CH3]+' 6%), 470.3 (45), 406.3 (10), 378.3 (10), 350.3 (7), 212.2 

(10), 140.2 (13), 73.1 (100); Found [M-CH3t 620.2170, C2IHsoN306S3Sh requires 

621.0990. 

112 

1,4,7 -Tris[(2-trimethylsilyl)ethanesulfonyl]-1 ,4,7 -triazacycloundecane (112) 

Using 87 (0.570 g, 0.954 mmol) and 109 (0.380 g, 0.954 mmol), 112 was prepared 

according to general procedure 2h and purified by column chromatography to give a 

cream solid (0.176 g, 28% yield); m.p. 193-195 °c (dec.); Vmax (Golden Gate) 978, 

1009,1136,1167,1248,1325,1367,1417,1464 and 2952 cm-1;llH (CDCh) 0.07 (27 

Ii, s, Si(CH3)3), 0.975-1.10 (6 H, m, SiCHz), 1.93 ( 4 H, broad m, NCH2CHz), 2.91-

3.08 (6 H, m, S02CHZ), 3.30-3.49 (12 H, m, NCHz); llc-1.60 (SiCH3), 10.2 (SiCH2), 

25.1 (CH2), 45.7 (S02CH2), 50.2, 51.5 and 53.8 (NCH2); m/z (FAB+ mode NaI) 

1322.0 ([2M+Nat, 13%), 672.3 ([M+Nat, 100%), 484.4 (68), 342.3 (23), 136.1 

(63), 73.4 (98); Found [M+Nat 672.2478, C23HssN306ShS3Na requires 672.2459. 

113 

1,5,9-Tris[ (2-trimethylsilyl)ethanesulfonyl]-I,5,9-triazacycloundecane (113) _ 

Using 88 (0.98 g, 1.57 mmol) and 107 (0.54 g, 1.57 mmol), 113 was prepared 

according to general procedure 2h and recrystallised from MeOH to give a cream 

solid (0.43 g, 45% yield); m.p. 181.4-184.6 °C;vmax (Golden Gate) 1016, 1134, 1164, 

1248", 1325, 1417, 1454 and 2952 cm-I; llH (CDCh) 0.07 (27 H, s, Si(CBJ)3), 0.98-

1.04 (6 H, m, SiCHz), 2.02-2.05 (4 H, m, NCH2CHz), 2.85-2.97 (6 H, m, S02CHZ), 

3.19-3.49 (12 H, m, NCHz); llc (CDCh) -1.61, 10.1, 10.4, 26.1, 44.3, 45.4, 46.7, 
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49.2, 52.6; m/z (FAB+ mode NaI) 1321.8 ([2M+Nat, 20%),. 672.3 ([M+Nat, 

100%), 586.5 (37), 484.4 (37), 136.1 (60), 73.4 (37); Found [M+Nat 672.2478, 

C23H55N306ShS3Na requires 672.2459. 

SES ... n ... SES 

C~J 
SES 

114 

1,5,9-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,5,9-triazacyclododecane (114) 

Using 88 (2.00 g, 3.20 mmol) and 108 (1.23 g, 3.20 mmol) in DMF (40 ml), 114 was 

prepared according to general procedure 2h and purified by column chromatography 

to give a white solid (1.03 g, 48% yield); m.p. 176.3-178.2 °c (lit. 177.6-178.7 . 
°C151); IH and 13C NMR data agreed with literature values;151 DH (CDCh) 0.07 (27 H, 

s~ Si(CH3h), 0.98-1.03 (6 H, m, SiCHz), 2.01-2.06 (6 H, m, NCH2CHz), 2.85-2.90 (6 

H, m, SiCHz), 3.37-3.41 (12 H, m, NCHz); Dc -1.73 (SiCH3), 10.4 (SiCH2)' 28.4 

(CH2), 45.8 (NCH2), 46.5 (S02CH2)' 

SES ... n ... SES 

C~~ 
SES 

115 

1,5,9-Tris[ (2-trimethylsilyl)ethanesulfonyl]-1 ,5,9-triazacyclotridecane (115) 

Using 88 (2.00 g, 3.13 mmol) and 109 (1.20 g, 3.13 mmol) in DMF (40 ml), 

115 was prepared according to general procedure 2h and recrystallised from MeOH 

to give a white solid (1.38 g, 64% yield); m.p. 189.4-191.8 ·C; Vmax (Golden Gate) - . . 

1018, 1064, 1107, 1130, 1167, 1215, 1248, 1325', 1358, 1450, 1466 and 2952 cm-I ; 

DH (CDCh) 0.05-0.06 (27 H, 2s, Si(CH3)3), 0.98-1.01 (6 H, m, CH2CHzSi), 1.84 (4 
. . 

H, broad s, CHzCH2NSES), 1.95 (4 H, m, CHz(CH2NSESh), 2.83-2.89 (6 H, m, 

S02CHZ), 3.32-3.35 (8 H, m, CH2(SESNCHzh), 3.45-3.48 (4 H, m, SESNCHzCH2); 
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Oc (ref. CHCh = 79.0) 0.00 and 0.048 (CH3Si), 12.1 and 12.3 (CH2Si), 30.1 and 30.7 

(S02CH2), 45.5, 47.7, 49.8, 51.4 and 53.6 (CH2); mlz (FAB+ mode) 678.3 ([M+Ht, 

9%), 614.4 (10%), 512.3 (25%), 348.3 (12%), 210.1 (9.5%); Found: [M+Ht 

678.2955, C2sH6006N3ShS3 requires 678.2952. 

SES-n-SES 

C70 
SES 

116 

1,5,9-Tris[ (2-trimethylsilyl)ethanesulfonyl]-1 ,5 ,9-triazacyclotetradecane (116) 

Using 88 (2.00 g, 3.20 mmol) and 110 (1.32 g, 3.20 mmol) in DMF (40 ml), 116 was 

prepared according to general procedure 2h and purified by column chromatography 

to give a white solid (1.21 g, 54% yield); m.p. 175.0-177.3 °C; Vmax (CDCh solution 
( 

cell) 1142, 1167, 1254, 1333, 1381, 1464, 2866, 2902 and 2956 em-I; OH (CDCh) 

0.06 (27 H, s, SiCH3), 0.96-1.04 (6 H, m, SiCHz), 1.57-1.64 (2 H, m, CHz), 1.67-

1.72 (4 H, m, CHz), 1.90-1.97 (4 H, m, CHz), 2.84-2.89 (6 H, m, S02CHZ), 3.23-

3.40 (12 H, m, NCHz); oc(CDCh) -1.6 (SiCH3), 10.4 and 10.6 (SiCH2), 23.7, 29.4, 

31.0,45.8,46.9,48.5,48.7 and 50.7 (C!l2); mlz (FAB+ mode NaI) 714.1 ([M+Nat, 

15%),548.2 (4), 526.2 (4), 362.2 (3), 360.2 (2.9), 268.2 (1), 210.1 (5), 98.S. (5) and 

73.8 (100); Found [M+Nat 714.2930, C26~I06N3ShS3Na requires 714.2928. 
:..) 

SES,(l ... SES ···C7:) 
SES 

117 

1,5,10-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,5,~0-triazacyclotetradecane (117) 

Using 89 (2.00 g, 3.13 mmol) and 109 (1.25 g, 3.13 mmol) in DMF (40 ml), 117 was 

prepared according to general procedure 2h and purified by column chromatography 

to give a white solid (0.90 g, 41 % yield); m.p. 145.0-147.6 °C; Vmax (CDCh solution 

154 



cell) 1142, 1167, 1254, 1333, 1379, 1460, 2866, 2922 and 2956 cm-1; BH (CDCh) 

0.05 (27 H, s, SiCH3), 0.97-1.03 (6 H, m, SiCH2), 1.76 (8 H, bs, CH2), 1.99-2.05 (2 

H, m, CH2), 1.90-1.97 (4 H, m, CH2), 2.83-2.88 (6 H, m, S02CH2), 3.20-3.30 (12 H, 

m, NCH2); Be (CDCh) -1.6 (SiCH3), 10.37 and 10.42 (SiCH2), 27.5, 27.6, 32.8, 

45.9, 49.0, 50.4 and 51.6 (CH2); mlz (FAB+ mode NaI) 714.1 ([M+Nat, 27%), 

548.2 (6), 362.2 (5), 360.2 (4), 305.2 (1), 210.1 (5), 142.1 (2), 84.5 (10), 73.8 (100) 

and 59.9 (5); Found [M+Nat 714.2926, C26H6106N3Si3S3Na requires 714.2928. 

SES-n,SES 

. C7~ 
SES 

118 

1 ,5,10-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,5,10-triazacyclopentadecane (118) 

Using 89 (5.00 g, 7.82 mmol) and 110 (3.23 g, 7.82 mmol) , 118 was prepared 

according to general procedure 2h and purified by column chromatography to give a 

white glassy solid (2.41 g, 47% yield); m.p. 95.2-97.5 °C; Vmax (CDCh solution cell) 

1140, 1167, 1254, 1333, 1377, 1464,2868,2902 and 2956 cm-I
; BH (CDCh) 0.06 (27 

H, s, SiCH3), 0.96-1.03 (6 H, m, SiCHz.), 1.55-1.65 (10 H, m, CH2), 1.94-1.98 (2 H, 

m, CH2), 2.84-2.89 (6 H, m, S02CH2), 3.20-3.34 (12 H, m, NCH2); mlz (FAB+ 

mode NaI) 728:1 ([M+Nat, 93%), 654.1 (1.5),_,562.2 (17), 540.2 (4), 490.2 (1), 

420.2 (1), 398.2 (11), 376.2 (2.5), 341.2 (1), 210.1 (5), 177.2 (1.5), 84.7 (6.5) and 

73.8 (100); Found [M+Nat 728.3083, C27H630~3ShS3Na requires 728.3085. 

SES,('j ... SES 

C~:J 
SES 

119 

1,6, f 1-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,6, II-triazacyclopentadecane (119) 
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Using 104 (0.940 g, 1.45 mmol) and 109 (0.580 g, 1.45 mmol), 119 was prepared 

according to general procedure 2h and purified by column chromatography to give a 

white solid (0.294 g, 29% yield). m.p. 133.2-135.0 °C; Vmax (Golden Gate) 1045, 

1105, 1134, 1167, 1211, 1248, 1325, 1376, 1417, 1456, 2952 and 3020 em-I; OH 

(CDCh) -0.07 (27 H, s, Si(CH3)3), 0.80-0.93 (6 H, m, SiCH2), 1.58 (12 H, broad s, 

CH2), 2.66-2.81 (6 H, m, S02CH2), 3.11 (12 H, broad s, NCH2); Oc (CDCh) -1.59 

(SiCH3), 10.5,27.3,46.2 and 50.1 (CH2). m/z (FAB+ mode NaI) 728.3 ([M+Nat, 

70%), 690.2 (13), 642.3 (15), 540.3 (60), 476.3 (6), 376.2 (42), 374.2 (27), 210.0 

(31), 142.1 (10); Found [M+Nat728.3054, C27Fl()306N3Si3S3Na requires 728.3084. 

SES, (1 ... SES 

CN~ 
I 
SES 

120 

1,6, 12-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,6, 12-triazacyclo heptadecane (120) 

Using 105 (1.80 g, 2.64 mmol) and 109 (0.97 g, 2.64 mmol), 120 was prepared 

according to general procedure 2h and purified by column chromatography to give a 

white solid (0.56 g, 29% yield); m.p. 129-124°C; IR: Vmax (Golden Gate) 1136, 1165, 

1250, 1327 and 2951 em-I; IH NMR: OH (CDCh) 0.05 (27 H, s), 0.97-1.02 (6 H, m), 

1.40-1.47 (4 H,m), 1.59-1.69 (12 H, m), 2.84-2.~8 (6 H, m), 3.18-3.2~(12 H, m); 

l3C NMR: Oc (CDCh) -1.6, 1.4, 10.6, 10.7, 23.6, 27.6, 29.4, 30.1,47.3,47.7,48.6, 

49.6,49.7; MS: mlz (FAB+ mode) 734.8 ([M+Ht 2%), 718.7 (2), 670.8 (4),614.7 

(4), 568.6 (6), 404.5 (6),402.5 (4), 210.2 (6), 147.1 (3), 73.7 (100); Found [M+Ht 

734.3541, C29Fl()S06N3SbS3 requires 734.3578. 
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SES,n ... SES 

CN:J 
I 
SES 

121 

1,6, 13-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,6,13-triazacyc1o nonadecane (121) 

Using 106 (2.60 g, 3.66 mmol) and 109 (1.34 g, 3.66 mmol), 121 was prepared 

according to general procedure 2h and purified by column chromatography to give a 

white solid (0.59 g, 21% yield); m.p. 129-134°C; IR: Vmax (Golden Gate) 1167, 1248, 

1327,2860 and 2929 cm-I; IH NMR: BH (CDCb) 0.05 (27 H, s), 0.97-1.01 (6 H, m), 

1.37-1.44 (8 H, m), 1.62-1.68 (12 H, m), 2.83-2.88 (6 H, m), 3.16-3.23 (12 H, m); 

13C NMR: Be (CDCb) -1.6, 1.3, 10.5, 26.3, 26.3, 27.1, 29.7, 29.9,46.7,46.9,49.3, 

49.9, 50.0; MS: m/z (FAB+ mode) 762.8 ([M+Ht 2%), 746.8 (3),698.8 (7),642.7 

(6), 596.7 (17), 432.6 (13), 430.6 (11), 210.2 (6), 147.1 (3) 73.7 (100); Found 

[M+Ht 762.3885, ClsH3002N3SiS requires 762.3891. 

SE~n ... SES 
(N N") 

SES-N' N-SES 

eN N-.J 
SEs"U'SES 

122 

1,5,9,12,17,20-Hexa[(2-trimethylsilyl)ethanesulfonyl]-1,5,9,12,17,20-

hexaazacyclodocosane (122) 

Using 87 (2.00 g, 3.35 mmol) and 109 (1.30 g, 3.35 mmol) in DMF (40 mil, 122 was 

prepared general procedure' 2h and washed with boiling 2-PrOH (50 mI) for 2 h to 

~ - give a cream solid (1.12 g, 51 % yield); m.p. 218.1-221.2 °C; Vmax (Golden Gate) 989, 

1136, 1167, 1248, 1335, 1456 and 2954 cm.ol; OH (CDCb) 0.07 (54 H, s), 0.97-1.05 

(12 H, m), 1.72 (8 H, broad s), 2.91-2.98 (12 H, m), 3.30 (8 H, broad m), 3.46-3.80 

(16 H, broad m); oe(CDCb) -1.60, 10.2, 10.7,25.5,46.6,47.7,48.1,48.4,49.9; m/z 
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(FAB+ mode NaI) 1322.51 ([M+Nat, 20%), 1157.8 (6), 1135.8 (8), 991.7 (7) and 

969.7 (6); Found [M+Nat 1322.5068, C46HlllN6012Si6S<fia requires 1322.5098. 

6.1.9. Deprotectlon of SES-amides 

H2N~N~NH2 
H 

101 

1,6,11-triazaundecane (101) 

Using 98 (3.24 g, 10.0 mmol), 101 was prepared according to general procedure 2k 

to give a beige oil (1.34 g, 84%); IH and 13C NMR spectra agreed with literature 

values.196 OH (CDCh) 1.39-1.52 (8H, m), 2.57 (4H, t, J = 6.9), 2.66 (4H, t, J = 6.7); 

oe (CDCh) 27.8, 31.8, 42.4, 50.1. 

H2N~N~NH H 2 

102 

1,7,13-triazatridecane (102) 

Using 99 (0.200 g, 0.569 mmol) , 102.was prepared to give an oil (0.089 g, 84% 

yield); IH and 13C NMR spectra agreed with literature values. 169 OH (CDCh) 1.34-

1.61 (10H, m), 2.62 (4H, t, J = 7.2), 2.71 (4H, !, J = 6.9); oe (CDCI~) 25.1, 30.4, 

34.1,42.5,50.4. 

H2N~N~NH2 
H 

103 

1,8,15-triazapentadecane (103) 

Using 100 (1.45 g, 3.82 mmol), 103 was prepared according to general procedure 2k 

to give an oil (0.38 g, 46% yield); IH and I?C NMR spectra agreed with literature 

values.197 OH (CDCh) 1.33-1.~5 (12H, m), 2.60 (4H, t, J= 7.2),2.69 (4H, t, J= 6.9); 

oe (CDCh) 27.2, 27.7, 30.6, 34.2,42.5, 50.4. 
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1,4,7 -Triazacyclodecane (123) 

(l 

C~J 
123 

Using 111 (0.731 g, 1.15 mmol), 123 was prepared according to general procedure 

2k as an orange oil (0.090 g, 55% yield); IH and l3C NMR spectra were consistent 

with values reported for the trihydrochloride salt;207 OH (CDCh) 1.55-1.60 (2 H, m), 

2.52-2.83 (12 H, m); oe (CDCh) 26.8, 47.0, 48.3, 49.4. 

124 

1,4,7 -Triazacycloundecane (124) 

Using 112 (0.111 g, 0.170 mmol), 124 was prepared according to general procedure 

2k (using TBAF in place of CsF) and not isolated from byproduct (0.014 g, 52% 

yield); IH and l3C NMR spectra were consistent with values reported for the 

trihydrochloride salt;246] OH (CDCh) 1.82-1.88 (4H, m), 2.55-2.90 (12H, m); oe 
(CDCh) 26.5, 27.2, 46.8, 48.5 and 49.8: 

.. 1,5,9-Triazacycloundecane (125) 

Using 113 (0.960 g, 1.47 nlmol), 125 was prepared according to general procedure 

2k and purified by Kugelrohr distillation (0.035 mmHgl191 °C) to give a clear oil 

(0.102 g, 44% yield). IH and l3C NMR spectra were consistent with values reported 

for the trihydrochloride salt;24~ OH (CDCh) 1.78-1.84 (4 H, quintet, J = 5.2), 2.71 (4 

H, s), 2.79-3.00 (8 H, broad m); oe (CDCh) 24.2,46.8,48.3,48.5. 
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(l 

C~) 
126 

1,5,9-Triazacyclododecane (126) 

Using 114 (0.788 g, 1.18 mmol), 126 was prepared according to general procedure 

2k as an orange oil (0.117 g, 58% yield); IH and 13C NMR spectra agreed with 

literature values. l5l OH (CDCh) 1.81-1.87 (6 H, quintet, J 5.3), 2.87-3.0 (12 H, t, J 

5.4); oc(CDCh) 26.2 (CH2), 49.1 (NCH2). 

1;5,9-Triazacyclotridecane (37) 

n 
C~2) 

37 

Using 115 (0.670 g, 0.992 mmol), 37 was prepared according to general procedure 

2k and purified by Kugelrohr distillation (1.0 mmHglI44°C) to give a pale yellow oil 

(0.073 g, 39 % yield). IH and 13C NMR spectra were consistent with values reported 

for the trihydrochloride salt;159 Vrnax (CDCh solution cell) 2203, 2422. 2711. 2846, 

2924 cm-~; OH (CDCh) 1.80-1.87 (8 H. m. NCH2CH2). 2.77-2.78 (4 H. m, 

NCH2CH2), 2.80-2.89 (8 H. m. NCH2CH2CH2N);~c 26.9 and 27.6 (CHz), 49.2. 51.1 

and 50.5 (NCH2). 

127 

1.5,9-Triazacyclotetradecane (127) 

Using 116 (1.21 g, 1.75 mmol), 127 was prepared according to general procedure 2k 

and purified by Kugelrohr distillation (0.035 mmHg/l71 °C) to give a clear oil 
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(0.216 g, 62% yield); IH and 13C NMR spectra were consistent with values reported 

for the trihydrobromide salt;248 Vrnax (CDC!) solution cell) 1383, 1473, 1645, 1672, 

2856 and 2933; OH (CDC!) 1.43-1.57 (8 H, m, CHz), 1.67-1.73 (2 H, m, CHz), 2.65-

2.73 (12 H, m, NCHz); Oc (CDC!)} 20.9,25.7,28.5,47.2,47.5 and 49.2 (CH2); mlz 

(EI+ mode) 199.2 ([M"t,18%), 198.2 (3), 170.2 (2), 155.1 (5), 141.1 (6), 112.11 

(15), 98.1 (48), 82.9 (100), 70.1 (28) and 47.0 (30); Found [M"t 199.2049, 

CllH25N3 requires 199.2048. 

128 

1,5,10-Triazacyclotetradecane (128) 

Using 117 (0.897 g, 1.28 mmol) , 128 was prepared according to general procedure 

2k and purified by Kugelrohr distillation (0.1 mmHgl170 °C) to give a pale yellow 

oil (0.084 g, 33% yield); Vrnax (CDC!) solution cell) 1383, 1470, 1560, 1643, 1672, 

2902 and 2983; OH (CDC!) 1.55-1.64 (8 H, m, CHz), 1.68-1.74 (2 H, m, CHz), 2.64-

2.74 (12 H, m, NCHz); oe (CDC!) 25.2, 25.9, 46.2, 48.2 and 49.1 (CH2); mlz (EI+ 

mode) 199.2 ([M"t, 19%), 182.2 (3), 154.1 (5), 141.1 (7), 112.1 (15),98.1 (26),84.0 

(100), 63.~ (51) and 44.1 (23); Found [M"t 199.2047, CllH25N3 requires 199.2048. 

() 
'C() 

129 

1,5,10-Triazacyclopentadecane (129) 

Using 118 (0.898 g, 1.27 mmol), 129 was prepared according to general procedure 

2k and purified by Kugelrohr distillation (0.1 mmHgl170 °C) to give a pale yellow 

oil (0.093 g, 34% yield); Vrnax (CDCh solution cell) 1383, 1470, 1560, 1645, 1672, 

2854, 2933 and 2983; OH (CDC h) 1.49-1.60 (10 H, m, CHz), 1.64-1.70 (2 H, m, 
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CHz), 2.61-2.74 (12 H, m, NCHz); oe (CDCh) 23.9, 27.2, 27.9, 28.1, 28.6, 28.8, 

47.9,48.3,48.6,49.7 and 50.2 (CH2); m/z (El+ mode) 213.2 ([M't, 19%), 196.2 (3), 

183.2 (3), 155.2 (6), 141.1 (6), 126.1 (13),98.1 (53), 84.0 (100), 82.9 (48), 70.1 (36) 

and 47.0 (34); Found [M't 213.2206, C12H27N3 requires 213.2205. 

130 

1,6,11-Triazacyclopentadecane (130) 

Using 119 (0.294 g, 0.416 mmol), 130 was prepared and purified by Kugelrohr 

distillation (0.05 mmHgl160 °C) to give a pale tan oil (0.060 g, 67% yield); IH 

NMR: OH (CDCh) 1.59 (12 H, broad s), 2.68 (12 H, broad s); 13C NMR: oe (CDCh) 

2'J.3, 48.7; MS: m/z (FAB+ mode) 214.2 ([M+Ht, 100%), 212.2 (11), 126.1 (12), 

84.6 (7), 73.7 (10),48.0 (6); Found [M+Ht 214.2285, C12H28N3 requires 214.2283. 

131 

1,6,12-Triazacycloheptadecane (131) 

Using 120 (0.50 g, 0.681 mmol), 131 was prepared according to general procedUre 

2k and purified by Kugelrohr distillation (0.05 rinnHgl150 °C) to give 'a clear oil 

(0.054 g, 33% yield); IH NMR: BH (CDCh) 1.35-1.59 (19 H, m), 2.62-2.66 (12 H, 

m); 13C NMR~ Be (CDCh),24.7, 27.7, 29:1, 29.3, 48.7, 49.0, 49.1; MS: m/z (El+ 

mode) 241.3 ([M+Ht, 14%),225.3 (2),200.3 (3), 183.2 (4), 155.2 (11), 140.2 (22), 

112.2 (21), 84.1 (100), 70.1 (34), 44.1 (23); Found [M+Ht 241.2520, Cl.Ji31N3 - . 
requires 241.2518. 
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132 

1,6,13-Triazacyclononadecane (132) 

Using 121 (0.49 g, 0.643 mmol), 132 was prepared according to general procedure 

2k and purified by Kugelrohr distillation (0.05 mmHg/165 °C) to give a clear oil 

(0.054 g, 31 % yield); IH NMR: ~ (CDCh) 1.38-1.58 (23 H, m), 2.62-2.68 (12 H, 

m); 13C NMR: Be (CDCh) 26.5, 26.7, 27.7, 29.4, 29.6, 28.7, 49.0, 49.4; MS: mlz 

(EI+ mode) 269.4 ([M+Ht, 43%), 237.3 (5), 225.3 (6),211.3 (14), 169.2 (25), 154.2 

(23), 126.2 (33), 112.2 (97), 84.1 (100), 70.1 (57), 55.1 (44); Found [M+Ht 

241.2520, CIJf31N3 requires 241.2518. 

n 
(NH HN~ 
NH HN 

CNH HN~ 
U 

133 

1,5,9,12,17,20-Hexaazacyclodocosane (133) 

Using 122 (1.35 g, 1.03 mmol), 13~ was prepared according to general procedure 2k 
.. " 

and purified by Kugelrohr distillation (0.035 mmHg/220 °C) to give a pale yellow 

solid (0.092 g, 28% yield); IH and 13C NMR spectra were consistent with values 

.. reported for the hexahydrochloride salt;249 OH (CDCh) 1.54-1.56 (8 H, m), 1.67 (6 

H, broad s), 2.63 (8 H, broad s), 2.67-2.75 (16 H, m); oe (CDCIJ) 28.5, 49.1, 49.6, 

50.1. 
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6.1.10. Synthesis of cyclophanes 

1,4-Bis(bromomethyl)naphthalene (140) 

Using 1,4-dimethylnaphthalene (1.00 g, 6.40 mmol) and NBS (4.6 g, 25.6 mmol), 

140 was prepared in 3 h according to general procedure 21 and recrystallised from 

MeCNlhexane (-1:2) to give yellow crystals (0.593 g, 30% yield); IH and 13C NMR 

spectra agreed with literature values;2S0 OH (CDCh) 4.95 (4H, s, CH;zBr), 7.50 (2H, 

s, ArH), 7.66-7.70 (2H, m, ArH), 8.20-8.24 (2H, m, ArH); oc(CDCh) 31.4 (CH2), 

125.0, 127.3, 127.6 (ArCH), 132.3, 135.3 (ArC). 

o 
142 

2,3-Bis(bromomethyl)anthraquinone (142) 

Br 
Br 

Using 2,3-dimethylanthraquinone (0.50 g, 2.1 mmol) and NBS (1.51 g, 8.47 mmol), 

142 was prepared overnight acc~rding to general procedure 21 and recrystallised 

from BtOH to give a yellow solid (0.224 g, 37% yield); IH and 13e NMR spectra 

agreed with literature values;251 OH (CDCh) 4.77 (4H, s, CH;zBr), 7.82-7.85 ~2H, m, 

ArH), 8.32-8.34 (4H, m, ArH); oc(CDCh) 28.2 (CH2), 127.4, 130.0, 134.5, (ArCH), 

133.4, 133.7, 142.8 (ArC), 182.2 (CO). 
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144 

1,5,10-Tris [(2-trimethylsil yl)ethanesulfonyl]-1 ,5,1 O-triaza( 1,4 )naphthalenophane 

(144) 

Using 140 (0.593 g, 1.89 mmol) and 89 (1.21 g, 1.89 mmol) , 144 was prepared 

according to general procedure 2h and recrystallised from 2-propanol to give a 

cream solid (0.795 g, 53% yield); OH (CDCh) 0.00 (9H, s, CH3Si), 0.13 (18H, s, 

CH3Si), 0.69-0.87 (6H, m), 1.14-1.21 (4H, m), 1.27-1.36 (2H, m), 2.14-2.27 (2H, 

m), 2.51-2.69 (4H, m), 2.92-3.13 (6H, m), 3.24-3.41 (2H, m), 4.10-4.13 (IH, d, J = 

13.2),4.20-4.17 (1H, d, J = 13.2),5.45-5.48 (IH, d, J = 13.2), 5.53-5.56 (1H, d, J = 
13.2),7.47-7.53 (2H, m), 7.65-7.70 (2H, m), 8.49-8.63 (2H, m); oc(CDCh) -1.6 and 

-1.5 (CH3), 10.5, 10.6,25.7,26.2,28.2,30.9,45.9,46.1,46.8,46.9, 47.5, 48.6,48.7, 

53.1, 53.9 and 64.8 (CH2), 125.4, 125.7, 127.6, 127.8, 128.4 and 128.7 (ArCH), 

132.7, 132.9, 133.8 and 134.1 (ArC); m/z (FAB+ modelNOBA) 790.7 ([M+Ht, 

6%), 726.7 (13), 698.7 (11),624.6 (32); 560.6 (4),458.5 (7), 252.3 (5), 226.2 (16), 

141.1 (11) and 73.7 (100). Found [M+Ht 790.3272, C3J164N306S3Sh requires 

790.3265. 
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145 

1,5,10-Tris[(2-trimethylsilyl)ethanesulfonyl]-1,5,10-triaza(1,8)naphthalenophane 

(145) 

Using 1,8-bisbromomethylnaphthalene (0.50 g, 1.59 mmol) and 89 (1.02 g, 1.59 

mmol), 145 was prepared according to general procedure 2b and purified by column 

chromatography to give a white foamy solid (0.23 g, 18% yield); OH (CDCh) 0.06 

(9H, s), 0.14 (18H, s), 0.76-0.81 (2H, m), 1.13-1.29 (8H, m), 2.59-2.63 (2H, m), 

2.91-2.97 (4H, m), 3.05-3.15 (4H, m), 3.39-3.45 (4H, m), 7.44-7.53 (2H, m), 7.69-

7.90 (4H, m). 
( 

1,5,10-Triaza(1 ,4 )naphthalenophane (146) 

., 
Using 144 (0.795 g, 1.00 mmol), 146 was prepared according to general procedure 

2k to give a clear oil (0.074 g, 25% yield); OH (CDCh) 0.68-1.02 (4H, m), 1.~5-1.34 

.. (2H, m), 1.38-1.51 (2H, m), 1.64-1.78 (1H, m), 1.91-2.04 (IH, m), 2.12-2.27 (2H, 

m), 2.42-2.85 (5H, m), 3.70-3.91 (2H, m), 4.68-4.87 (2H, m), 7.32-7.67 (4H, m), 

8.20-8.33 (2H,-m); Oc (CDCh) 26.1, 28.0, 29.1, 4J.9, 45.7, 47.3, 48.0,50.9 and 51.7 

(CH2) , 124.7, 124.8, 125.9, 125.93, 126.6 and 126.9 (ArCH), 132.4, 132.5, 136.3 

and 137.2 (ArC); m/z (FAB+ mode) 298.3 UM+Ht, 96%), 280.3 (5), 254.3 (4), 

224.2 (8), 196.2 (5), 168.1 (8), .155.1 (19), 141.1 (12),98.4 (11), 73.7 (29), 70.8 (17), 

45.1 (8); Found [M+Ht 298.2222, C19H2SN3 requires 298.2283. 
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147 

1,5,10-Triaza(1 ,8)naphthalenophane (147) 

Using 145 (0.233 g, 0.294 mmoI), 147 was prepared according to general procedure 

2k to give a It. brown oil (0.082 g, 93% yield); OH (CDCh) 1.52-1.76 (9H, m), 2.70-

2.73 (4H, m), 2.89-2.96 (4H, m), 4.23 (2H, s), 4.63 (2H, s). 

6.1.11. Carbon template routes 

9a,9b-Dimeth yl-octahydro-1 ,3a,6a,9-tetraaza-phenalene (149) 

N,N'-Bis(2-aminoethyl)-1,3-propanediamine (1.00 g, 6.24 mmol) was dissolved in .. . 

dry MeCN (12.5 ml) and cooled to 0 °c on an ice bath. A solution of butanedione 

(0.540 g, 6.24 mmol) in MeCN (12.5 ml) was dripped in slowly and the mixture 

stirred for 2 h. The solvent was removed by rotary evaporation and the resulting 

residue recrystallised from hexane to give 149 as white crystals (0.94 g, 69% yield); 

.. m.p. = 98-100 °c (lit. 110°C); IH and 13C NMR spectra agreed with literature 

values;148 OH (CDCh) 1.16-1.21 (IH, m), 1.33 (3H, s), 1.41 (3H, s), 2.21-2.63 (7H, 

m), 2.72-2.77 (lH, m), 2.91-2.94 (IH, m),3.13-3.35 (3H, m), 3.58-3.63 (IH, m); Oc 

(CDCh) 10.8 and 23.7 (CH3), 18.4,39.3,42.1,45.8,46.7,49.1 and 51.3 (CH2), 68.2 

and 73.4 (C). 
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150 

9b,9c-Dimethyl-decahydro-2a,4a, 7 a,9a-tetraaza-cyclopenta[ cd]phenalene (150) 

149 (0.940 g, 4.33 mmol) was dissolved in MeCN (43 ml) with K2C03 (6.00 g, 43.2 

mmol). 1,2-Dibromoethane (1.22 g, 6.49 mmol) was added via syringe and the 

mixture stirred at room temperature for 6 h. The solution was filtered, the solvent 

evaporated and the residue was purified by column chromatography (99: 1 

CHCl:JMeOH, neutral alumina) to give 150 as a yellow oil (0.47 g, 44% yield); IH 

and l3C NMR spectra agreed with literature values;148 OH (CDCh) 1.15 (3H, s), 1.17-

1.20 (lH, m), 1.40 (3H, s), 2.31-2.82 (HH, m), 2.92-2.96 (2H, m), 3.19-3.30 (3H, 

m), 3.63-3.74 (lH, m); Oc (CDCh) 12.06 and 13.1 (CH3), 18.7, 45.0, 46.1, 46.4, 

46.8, 48.6, 50.0 and 50.6 (CH2), 72.6 and 78.4 (C). 

151 

1,4,7,1O-Tetraazacyclotridecane (151) 

150 (0.467 g, 1.92 mm,ol) was cOtnbined with 10% aqueous HCI (40 ml) in EtOH 

(20 ml) and stirred at reflux for 2 days. The solvent was evaporated and the residue 

basified to pH 14 with NaOH. Toluene was added and the water removed using 

0' Dean-Stark apparatus. The toluene was evaporated and the residue recrystallised 

from hexane to give 151 as beige crystals (0.146 g, 39% yield); IH and l3C NMR 

spectra agreed-with literat~ values;252 o~ (CDCI3) 1.67-1.76 (2H, m), 2.67-2.85 

(16H, m); Oc (CDCh) 25.6, 44.3, 44.6, 45.8 and 46.9. 
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n 
CN~~J 

N N 
153 

1,I-Ethylenedi-2-imidazoline (153) 

152 (S.15 g, 68.3 mmol) was added to triethylenetetraamine (5.00 g, 34.2 mmol) and 

the mixture was refluxed for 1 h. Excess solvent (MeOH, NH(Meh) was removed in 

vacuo and the residue recrystallised from THF to give 153 as white hygroscopic 

crystals (2.43 g, 43% yield); IH and 13C NMR spectra agreed with literature 

values;149 ~H (CDCh) 3.20-3.25 (SH, m), 3.S0-3.S5 (4H, m), 6.7S-6.79 (2H, m); ~c 

(CDCh) 47.1, 49.0 and 55.2 (CH2), 157.4 (CH3). 

154 

1,I-Ethylenedi-2-(1,4,5,6-tetrahydro-pyrimidine) (154) 

152 (20.5 g, 172 mmol) was added to N,N'-Bis(3-aminopropyl)-I,2-ethanediamine 

(15.0 g, S6.1 mmol) and the mixture was refluxed for 1 h. Excess solvent (MeOH, 

NH(Meh) was r,emoved in vacuo to give 154 as a white hygroscopic solid (16.7 g, 

99.9% yield); IH and 13C NMR spectra agreed with literature values;253 ~H (CDCh) 

1.77-1.S3 (4H, m), 3.11-3.15 (SH, m), 3.24-3.26 (4H, m), 6.89 (2H, s); ~c (CDCh) 

21.4,42.6,44.3 and 51..5 (CH2), 149.S (CH). 

CN~N~ .) ~ .. ) 
N N 

152 

1, I-Propylenedi-3-(1 ,4,5,6-tetrahydro-pyrimidine) (155) 

152 (0.640 g, 5.32 mmol) was added to N,N'-Bis(3-aminopropyl)-1,3-

propanediamine (0.500 g, 2.66' mmol) and the mixture was refluxed for 1 h. Excess 
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solvent (MeOH, NH(Meh) was removed in vacuo to give 155 as a clear oil which 

was distilled using Kugelrohr apparatus (212 °C/0.2 mmHg) (0.44 g, 78% yield); IH 

and l3C NMR spectra agreed with literature values;253 ~H (CDCh) 1.70-1.87 (6H, m), 

3.05-3.14 (6H, m), 3.23-3.35 (4H, m), 3.45 (2H, s), 6.95 (2H, s); ~c (CDCh) 21.5, 

27.2,43.3,44.0 and 50.4 (CH2), 150.2 (CH). 

1,4,7,10-Tetraazacyclododecane (cyclen) (36) 

The templated bromide salt (2.79 g, 10.2 mmol) was dissolved in water (10 ml) and 

dripped into a refluxing solution of KOH (3.19 g, 81.7 mmol) in water (10 ml). The 

solution was refluxed for 1 h, then filtered and concentrated until a white solid began 

to precipitate. This was filtered and the filtrate concentrated further, precipitating 

more white solid. The solids were combined (0.513 g, 29% yield); IH and l3C NMR 

spectra agreed with literature values;149 ~H (CDCh) 2.59 (16H, s); ~c(CDCh) 46.1. 

6.2. Experimental to Chapter 3 

Genera] procedures 3a-c 

a) Acylation of polyazamacrocycles:254 The polyazamacrocycle (either the 

free base or as an acid satt) was dissolved (or suspended) in dry DCM and 

cooled to 0 °c on an ice bath. Triethylamine (4 eq. for free bases, 8 eq. for 

salts) was added via syringe and the mixture stirred until dissolved. 

Chloroacetyl chloride was added via syringe and the solution stirred for 20 

min. - The ice bath was removed and the solution stirred at room 

temperature overnight. The solution was washed with water (2 x 25 ml), 

the organic layer dried with Na2S04 .. filtered and rotary evaporated to an oil. 

The crude amide was purified by column chromatography (97:3 CH2Ch

MeOH, silica). 

170 



b) N-Hydroxyethylation of macrocyc1ic polyamines:209 The macrocyclic 

polyamine free base (1 eq.) was dissolved in EtOH (1 mllmg) in a round 

bottom flask fitted with a cold finger, was cooled to - 5 °c with a 

cryocooler. Ethylene oxide (approximately 10 drops) was dripped in by 

condensing on the cold finger. The mixture was stirred and held at 5 ·C 

overnight, after which the solvent was removed by rotary evaporation. The 

residue was typically pure, but could be purified by Kugelrohr distillation if 

necessary. 

c) Conversion to chloroethyl derivative:210 The hydroxyethyl macrocyc1ic 

polyamine was stirred with thionyl chloride as reagent and solvent while 

heating to -50°C overnight. The excess thionyl chloride was removed in 

vacuo leaving the trishydrochloride salt, which was usually sufficiently 

pure for analysis and testing. If necessary, the salt could be recrystallized in 

methanol or 2-propanol. 

Experimental details 

6.2.1. Chloroacetamides 

1,5,9-Tris-chloroacetyl-l ,5,9-triazacyclododecane (160) 

Using 1,5,9-triazacyclododecane trihydrobromide (0.100 g, 0.242 mmol), 160 was 

prepared according to general procedure 3a to give a tan oil (0.034 g, 35% yield); OH 

(CDCh) 2.10 (6 H, broad s, CHz), 3.52-3.54 (12 H, broad m, NCHz),4.1O (6 H, s, 

CHl~I); oe (CDCh) (rotamers present) 28.3, 41.4, 45.2 and 47.2 (CH2), 170.0 and 

172.1 (CO); mlz (EI+ mode) 364 ([M-Clt, 7%), 350 (100), 322 (83), 286 (15), 267 

(11), 231 (7), 217 (18), 203 (24), 189 (14), 162 (13), 160 (30), 134 (69), 124 (15), 
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112 (20), 91 (34), 70 (100), 56 (76), 44 (55); Found [M-Clt 364.1193, 

ClsH2403N3Ch requires 364.1195. 

1,6,10-Tris-chloroacetyl-l ,6, 10-triazacyclotridecane (161) 

Using 37 (0.112 g, 0.602 mmol), 161 was prepared according to general procedure 

3a to give a tan oil (0.046 g, 18% yield); OH (CDCh) 1.78 (4 H, broad s, CH2), 1.96-

2.04 (4 H, broad m, CH2), 3.38-3.56 (12 H, m, NCH2), 4.05-4.12 (6 H, m, CH2CI); 

Oc (CDCh) (rotamers present) 27.2, 28.2, 29.7, 41.4, 41.7, 44.6, 46.3, 47.5, 48.2, 

48.6 and 50.8 (CH2), 167.3, 167.8,168.6 and 169.4 (CO). 
( 

1,7 ,11-Tris-chloroacetyl-l,7 ,11-triazacyclotetradecane (162) 

Using 127 (HC} salt, 0.128 g, 0.418 mmol), 162 was prepared according to general 

procedure 3a to give a tan oil (0.042 g, 23% yield); OH (CDCb) 1.47 (2 H, ~road s, 

CH2) , 1.72-1.75 (4 H, broad m, CH2), 1.92-1.99 (4 H, broad m, CH2), 3.32-3.47 (12 

H, m, NCH2), 4.07-4.09 (6 H, m, CH2Cl); Oc (CDCh) (rotamers present) 23.0, 23.8, 

26.9, 27.5, 27.5, 28.4, 28.6; 28.9,29.5, 29:9, 30.5,41.6,41.7,45.2,45.6,45.9,46.6, 

48.1, 48.6, 49.1, 49.2, 49.4, 50.0 and 50.2 (CH2), 167.6, 167.7 (CO); m/z (FAB+ 

mode) 430.1 ([M+Ht, 98%, e 7CI]), 428.1 (fM+Ht, 100, eSCI]), 350.1 (12),316.2 

(2), 295.1 (5), 134.1 (5), 98.5 (10) and 56.1 (10); Found [M+Ht 428.1277, 
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C17H2903Nl5Ch requires 428.1275; Found [M+Ht 430.1269, C17H2903Nl7Ch 

requires 430.1247. 

6.2.2. Hydroxyethyl derivatives 

HO "(I eN N-/",OH 

N-J 
~ 

HO 163 

1,4,7-Tris(2-hydroxyethyl)-1,4,7-triazacyclononane (163) 

Using 1,4,7-triazacyclononane (0.050 g, 0.387 mmol) and ethylene oxide (1 ml), 163 

was prepared according to general procedure 3b to give a clear oil (0.086 g, 85% 

yield); IH and 13C NMR spectra agreed with literature values;255 OH (CDCI3) 2.63 
" 

(12 H, s), 2.75-2.77 (6 H, t, J 5.1), 3.58-3.61 (6 H, t, J 5.1, ); Oc 53.3, 59.8 and 60.4 

(CH2)' 

HO'-l\f
OH 

eN) 
( 
OH 

164 

1,5,9-Tris(2-hydroxyethyl)-1,5,9-triazacycloundecane (164) 

.. Using 125 (0.039 g, 0.25 mmol), 164 was prepared according to general procedure 

3b as a light yellow oil (0.044 g, 65% yield); Vmax (CDCh solution cell) 1423, 1475, 

2401,2812,2954 and 3683~ OH (CDCh) 1.65 (4H, bs), 2.35-2.60 (18H, m), 3.50-3.69 

(6H, m); Oc (CDCh) 24.9, 52.8, 54.6, 55.4, 59.4, 70.9, 72.8; m/z (FAB+ mode) 290.3 

([M+Ht, 100%), 288.3 (9), 246.3 (2), 227.'1. (2), 203.2 (1), 166.2 (4), 154.1 (50), 

136.1 (33), 107.4 (10), 88.6 (12), 73.8 (9) and 56.1 (6); Found [M+Ht 290.2443, 

Cl.JI3203N3 requires 290.2444. 
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HO~(l~OH 

eN) 
< OH 

165 

1,5,9-Tris(2-hydroxyethyl)-1,5,9-triazacyclododecane (165) 

Using 1,5,9-triazacyclododecane (0.050 g, 0.29 mmol), 165 was prepared according 

to general procedure 3b as a clear oil (0.079 g, 88% yield); OH (CDCh) 1.74 (6H, 

quintet, J = 6.0),2.35-2.65 (12H, m), 3.63-3.66 (6H, m); oc(CDCh) 24.1, 51.0, 56.0, 

58.7. 

HO~n~OH 

eN.) 
( 
OH 

166 

1,5,9-Tris(2-hydroxyethy)I-1,5 ,9-triazacyclotridecane (166) 

Using 37 (0.040 g, 0.22 mmol), 166 was prepared according to general procedure 3b 

and purified by Kugelrohr distillation to give a clear oil (0.030 g, 44% yield); OH 

(CDCh) 1.62-1.65 (4H, m), 1.67-,1.71 (4H, m), 2.49-2.58 (18H, m), 3.59-3.63 (6H, 

m); Oc (CDCh) 23.6, 24.3, 51.7, 52.7, 53.3, 55.1, 56.4, 57.7, 57.9. 
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167 

1,9-Bis(2-hydroxyethyl)-1,5,9-triazacyclotetradecane (167) 

Using 127 (0.075 g, 0.38 mmol), 167 was isolated from an attempted preparation of 

168 according to general procedure 3b and purified by Kugelrohr distillation to give 

a clear oil (0.014 g, 13% yield); OH (CDCh) 1.40-1.57 (6H, m), 1.76 (4H, quintet, J 

= 5.6),2.42-2.64 (12H, m), 2.65-2.71 (4H, m), 3.60-3.64 (4H, m); Oc (CDCh) 23.1, 

25.4, 26.7, 49.1, 51.3, 54.1, 56.8, 60.4; m/z (FAB+ mode) 288.2 ([M+Ht, 100%), 

286.2 (10), 128.1 (5), 98.4 (7), 73.7 (17); Found [M+Ht 288.2653, ClSH3402N3 

requires 288.2651 

168 

~ 

1,5,9-Tris(2-hydroxyethyl)-1 ,5 ,9-triazacyclotetradecane (168) 

Using 127 (0'<~60 g, 0.30. mmol), 168 was prepared according to general 

procedure 3b as a clear oil (0.057 g, 57% yield); OH (CDCh) 1.55-1.78 (10H, m), 

2.42-2.71 (18H, m), 3.54-3.67 (6H, m); Oc (CDCh) 23.2, 24.5, 25.1, 25.5, 26;3,49.1, 

51.0, 52.2, 52.5, 53.3, 53.4, 56.4, 56.7, 57.5, 58.9, 59.1 and 59.7; m/z (CI+ 

mode/isobutan~) 388.4 (1O~), 349.2 (33)~ 332.3 ([M+Ht, 43), 288.3 (100), 279.2 

(22), 270.3 (10), 244.3 (6), 195.2 (4), 151.2 (7), 107.1 (8), 91.1 (4). Found [M+Ht 

332.2907, C17H3SN303 requires 332.2913. 
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169 

1,5,10-Tris(2-hydroxyethyl)-1,5,10-triazacyclotetradecane (169) 

Using 128 (0.041 g, 0.21 mmol) , 169 was prepared according to general procedure 

3b as a clear oil (0.046 g, 68% yield); OH (D20) 1.38-1.89 (10H, m), 2.36-2.59 (18H, 

m), 3.44-3.58 (6H, m); Oc (020 + CD30D) 21.3, 27.2, 27.8, 55.4, 56.8, 57.0, 57.4, 

59.7, 60.8 and 63.6; mlz (CI+ mode/isobutene) 388.4 (20%), 332.3 ([M+Ht, 100), 

330.3 (10), 288.3 (7). Found [M+Ht 332.2909, C17H38N303 requires 332.2913. 

170 

1,5,10-Tris(2-hydroxyethyl)-1,5,10-triazacyclopentadecane (170) 

Using 129 (0.040 g, 0.19 mmol), 170 was prepared according to general procedure 

3b as a clear oil (0.06~ g, 96% yield); OH (CDC13) 1.35-1.66 (12H, m), 2.37-2.57 

(18H, m), 3.53-3.57 (6H, m); Oc (CDCh) 25.7, 26.0, 27.7, 27.9, 53.9, 54.1, 54.2, 

55.1, 55.4, 56.0, 56.6, 57.5, 57.8, 59.3, 59.4; mlz (FAB+ mode) 346.3 ([M+Ht, 

100%), 344.3 (20), 302.3 (10), 128.1 (15), 98.4 (14), 84.6 (13), 73.7 (11), 56.9 (6); 

Found [M+Ht 346.3072, C18Rw03N3 requires 346.3070 
~ . . 
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CN~ 
~. 

HO 171 

1,6,12-Tris(2-hydroxyethyl)-1 ,6, 12-triazacyclopentadecane (171) 

Using 131 (0.040 g, 0.17 mmol), 171 was prepared according to general procedure 

3b as a clear oil (0.061 g, >99% yield); OH (CDCh) 1.32-1.49 (16H, m), 2.28-2.48 

(18H, m), 3.45-3.48 6H, m); oc (CDCh) 25.6, 26.5, 27.8, 28.0, 54.3, 54.4, 54.6, 56.4, 

58.4, 58.9 and 59.0 (CH2); mlz (FAB+ modelNOBA) 374.6 ([M+Ht, 40%), 372.6 

(12),327.2 (5), 281.2 (4), 207.1 (7), 147.1 (14),98.5 (9), 73.7 (100),44.1 (8); Found 

[M+Ht 374.3378, C2oH44N303 requires 374.3383. 

1,6,13-Tris(2-hydroxyethyl)-1,6,13-triazacyclononadecane (172) 

Using 132 (0.040 g, 0.15 mmol) , 172 was prepared according to general procedure 

3b as a clear oil (0.060 g, >99% yield); OH (CDCh) 1.26-1.51 (20H, m), 2.42-2.61 

(18H, m), 3.49-3.55 (6H, m); oc(CDCh) 25.8, 27.1, 27.2, 27.5, 27.6, 53.8, 54.1, 

54.3, 56.7, 56.9, 58.6, 58.7 and 77.5 (CH2); mlz (EI+ mode) 401.7 ([M+Ht, 7%), 

.. 371.6 (84), 370.6 (83), 324.6 (29), 323.6 (28), 255.4 (14), 225.4 (15), 170.3 (16), 

142.2 (38), 112.2 (96), 84.1 (100),55.1 (100); Found [M+Ht 401.3616, C22RnN30 3 

requires 401.3617. 
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1,4,7,10-Tetra(2-hydroxyethyl)-1 ,4,7, lO-tetraazacyclotridecane (184) 

Using 148 (0.080 g, 0.41 mmol), 184 was prepared according to general procedure 

3b as a clear oil that crystallised upon standing to a waxy solid (0.130 g, 85% yield); 

aH (CDCh) 1.66-1.73 (2H, m), 2.44-2.73 (24H, m), 3.59-3.65 (8H, m); ac (CDCh) 

25.9,52.0,52.4,53.5,54.6,57.1,57.5,59.6 and 59.8. 

1,4,8,11-Tetra(2-hydroxyethyl)-1 ,4,8, II-tetraazacyclotetradecane (189) 

Using 1,4,8,1l-tetraazacyclotetradecane (0.200 g, 0.998 mmol), 189 was prepared 

according to general procedure 3b and recrystallised from CHChlEt20 (-1:4) to give 

white crystals (0.190 g, 51% yield); IHand l3C NMR spectra and m.p. agreed with 
.o' • , 

literature values;209 aH (CDCh) 1.51-1.76 (4H, m), 2.24-2.59 (24H, m), 3.44-3.56 

(8H, m); ac (CDCh) 25.4, 49.3, 52.1, 55.8 and 59.5 (CH2). 
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173 

1,5,9,12,17 ,20-Hexa(2-hydroxyethyl)-1 ,5,9, 12,17 ,20-hexaazacyclodocosane (173) 

Using 133 (0.040 g, 0.13 mmol), 173 was prepared according to general procedure 

3b to give a clear oil (0.055 g, 74% yield); SH (CDCh) 1.47-1.56 (8H, m), 2.45-2.67 

(36H, m), 3.54-3.60 (l2H, m); Sc (CDCh) 25.3, 52.1, 52.5, 55.3, 56.3, 57.6, 59.5, 

59.7; m/z (FAB+ mode) 579.5 ([M+Ht, 37%), 535.4 (35), 491.4 (17), 393.3 (10), 

322.2 (13), 290.2 (8), 171.1 (22), 114.2 (80), 84.6 (100), 73.7 (87); Found [M+Ht 

579.4817, C28~306N6 requires 579.4809. 

6.2.3. Synthesis of chloroethyl derivatives 

CI 

~(I L N-/CI 

N~ '3HCI 
~ " 

CI 

174 

1,4,7 -Tris(2-chloroeth yl )-1,4,7 -triazacyclononane trihydrochloride (174) < 

Using 163 (0.086 g, 0.329 mmol) and thionyl chloride (2 ml), 174 was prepared 

according to general procedure 3c to give.a cream hygroscopic solid (0.138 g, 99% 

yield); SH (DMSO-~) 2.94 (6H, broad s), 3.20 (6H, broad s), 3.39 (6H, broad s); Sc 

(DMSO-~) 40.5 (CICH2), 49.3 (N'lrCH2), 56.5 (N'lrCH2CH2CI); m/z (FAB+, 

glycerol) 316.1 ([(M-3HCI)+Ht, 100%), 197.1 (5%), 147.0 (8), 106.3 (20), 70.8 (4), 
+ 35 57.0 (4); Found [(M-3HCl)+H] 316.1106, C12H24N3 Ch requires 316.1114. 
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CI 

175 

1,5,9-Tris-(2-chloroeth yl)-1 ,5 ,9-triazacyc1ododecane trih ydrochloride (175) 

Using 165 (0.032 g, 0.11 mmol), 175 was prepared according to general procedure 

3c as a cream solid (0.030 g, 61% yield); OH (020) 1.90-1.93 (6H, m), 3.04-3.07 

(12H, m), 3.16-3.19 (6H, m), 3.62-3.65 (6H, m); oe (020, ref. to internal MeOH = 
38.0) 18.2, 38.7, 48.9 and 55.5; mlz (FAB+, glycerol) 358.1 ([(M-3HCI)+Ht, 

100%),340.2 (13), 324.2 (6), 296.1 (4),232.1 (4), 132.0 (13), 106.3 (33), 84.6 (12), 

70.8 (11), 58.9 (7); Found [(M-3HCl)+Ht 360.1553, ClsH31NlsCll7CI requires 

360.1556. 
( 

CI~n~CI 
N N 
CN~ '3HCI 

( 
CI 

176 

1,5,9-Tris(2-chloroethy)1-1,5,9-triazacyc1otridecane trihydrochloride (176) 

Using 166 (0.030g, 0.094 mmol), 176 was prepared according to general procedure 

3c as a yellow foamy solid (0.041 g, 89% yield); OH (020) 1.85-1.98 (4H, m), 2.13-

.. 2.19 (4H, m), 3.33-3.61 (18H, m), 3.91-3.98 (6H, m); oe (020) 17.7, 20.4, 37.8, 

38.0, 48.8, 49.4, 49.7, 51.4, 56.7, 56.8, 56.9; mlz (FAB+, NOBA) 372.3 ([(M-

3HCI)+Ht, 12%),357.3 (5),310.3 (10), 238.3 (5), 169.1 (54),85.6 (100), 84.6 (15), 

66.8 (5); Found [(M-3HCI)+Ht 372.1738, C16H33NlsCh requires 372.1740. 
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177 

1 ,9-Bis(2-chloroethyl)-1 ,5,9-triazacyc1otetradecane trihydrochloride (177) 

Using 167 (0.014 g, 0.042 mmol), 177 was prepared according to general procedure 

3c as a yellow foamy solid (0.022 g, >99% yield); OH (D20) 1.59 (2H, broad m) 1.73 

(4H, broad m), 2.01-2.09 (4H, broad m), 3.26-3.38 (12H, m), 3.59-3.64 (4H, m), 

3.91-3.94 (4H, m); Oc (D20) 16.9, 18.5, 20.2, 37.8, 40.1, 47.3, 49.6, 55.9; mlz 

(FAB+) 324.4 ([(M-3HCI)+Ht, 100%), 288.3, (22), 262.3 (11), 222.3 (4), 130.2 

(38), 102.3 (36),98.3 (22); Found [(M-3HCI)+Ht 324.1970, C17H3SN33SCh requires 

324.1973. 

178 

1,5,9-Tris(2-chloroethyl)-1 ,5,9-triazacyc1otetradecane trihydrochloride (178) 

Using 168 (0.057 g, 0.17 mmol), 178 was prepared according to general procedure 

3c as a yellow foamy solid (0.079 g, 93% yield); OH (D20) 1.28 (2H, broad m), 1.43-

1.44 (4H, broad m), 1.74-1.75 (4H, broad m); Oc (D20, [ref. CD30D 0 48.4]) 19.9, 

.. 20.6, 35.2, 37.0, 37.7, 50.4, 52.0, 56.2; mlz (FAB+) 386.3 ([(M-3HCl)+Ht, 63%), 

352.4 (10), 324.3 (100), 288.3 (21), 262.3 (20), 210.3 (12), 167.2 (5), 106.2 (35); 

Found [(M-3HCl)+Ht 386.1902, C17H3SNlsCh requires 386.1897. 
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179 

1,5,10-Tris(2-chloroeth yl)-l ,5,1 O-triazacyc1otetradecane trihydrochloride (179) 

Using 169 (0.040 g, 0.12 mmol), 179 was prepared according to general procedure 

3c as a tan foamy solid (0.051 g, 85% yield); ()H (D20) 1.51-1.98 (lOH, broad m), 

3.05-3.22 (12H, broad m), 3.30-3.39 (6H, m), 3.58-3.67 (6H, m); ()c (D20, [ref. 

CD30D () 48.4]) 19.9,20.6,35.2,37.0,37.6,37.7,50.4,52.0,56.2,56.3; mlz (FAB+) 

387.2 ([(M-3HCI)+H]+, 18%),326.2 (6), 289.2 (4), 240.0 (4), 191.1 (28), 135.0 (25), 

97.4 (100), 96.4 (93), 77.6 (44), 56.0 (32); Found [(M-3HCI)+Ht 386.1903; 

C17H3SNlsCh requires 386.1896. 

180 

1,5,10-Tris(2-chloroethyl )-1,5 ,I O-~azacyc1opentadecane trihydrochloride (180) 

Using 170 (0.053 g, 0.15 mmol), 180 was prepared according to general procedure 

.. 3c as a yellow foamy solid (0.079 g, >99% yield); ()H (D20) 1.42-1.99 (lOH, broad 

m), 2.05-2.25 (2H, broad m), 3.20-3.53 (12H, broad m), 3.58-3.67 (6H, m), 3.87-

3.94 (6H, m); ()c (D20) 20.6; 21.2, 21.6, 21;8, 35.~, 37.6, 37.8, 48.5, 50.9, 51.3, 52.2, 

56.0,56.2,56.4; ; mlz (FAB+) 401.2 ([(M-3HCI)+Ht, 48%), 400.2 (13), 367.2 (11), 

340.2 (8), 303.2 (5), 190.1 (35), 189.1 (23), 146.0 (22), 96.4 (100), 95.4 (53), 77.6 

(33),56.0 (19); Found [(M-3HCI)+Ht 402.2221; C1SH39NlsCh requires 402.2210. 
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1,6,12-Tris(2-chloroethyl)-1 ,6, 12-triazacyc1opentadecane trihydrochloride (181) 

Using 171 (0.055 g, 0.15 mmol), 181 was prepared according to general procedure 

3c as a yellow solid (0.080 g, >99% yield); OH (D20) 1.42-1.54 (4H, broad m), 1.71-

1.90 (12H, broad m), 3.15-3.98 (24H, broad m); Oc (D20) 20.6, 21.3, 22.0, 22.3, 

51.6, 52.0, 52.5, 52.7, 53.1, 54.8, 55.1; m/z (FAB+ mode) 428.5 ([(M-3HCl)+Ht, 

100%) 394.5 (43), 392.5 (25), 366.4 (18). 253.2 (19), 202.2 (22), 148.2 (52), 98.3 

(95); Found [(M-3HCl)+Ht 428.2360, C2oHnN3Ch requires 428.2366. 

1,6,13-Tris(2-chloroeth yl)-1 ,6, 13-triazacyc1ononadecane trihydrochloride (182) 

Using 172 (0.048 g, 0.12 mmol), 182 was prepared according to general procedure 

3c as a yellow solid (0.068g, >99!1o yield); OH (D20) 1.33-1.57 (8H, broad s), 1.61-

1.87 (12H, broad m), 3:12-3.98 (24H, m); Oc (D20) 20.3, 21.4, 21.6, 22.2, 22.6, 51.5, 

51.9,52.3,52.5,53.3,55.0,55.2; m/z (FAB+ mode) 456.6 ([(M-3HCl)+Ht, 100%), 

.- 359.5 (10), 329.5 (9),271.3 (8), 216.3 (15), 190.2 (35), 112.3 (32), 96.5 (100), 56.0 

(90); Found [(M-3HCl)+Ht 456.2680, C22:i-4sN3Ch requires 456.2679. 
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1,4,7,10-Tetra(2-chloroethyl)-1 ,4,7,1 O-tetraazacyc1otridecane dihydrochloride (185) 

Using 184 (0.044 g, 0.12 mmol), 185 was prepared according to general procedure 

3c as a yellow solid (0.062 g, 99.9% yield); ()H (DMSO-dt;) 2.10-2.20 (2H, broad s), 

2.90-3.43 (24H, broad m), 3.95-4.00 (8H, m); ()e (COCh) 15.5, 49.4, 49.7, 51.1, 

54.2,54.8,55.7,56.8, and 65.3 .. 

CI~ (l/'-.../CI 
N N C ) '2HCI 

CI....-.........-N N~ V CI 

40 

1,4,8,11-Tetra(2-chloroethyl}-1 ,4,8,II-tetraazacyclotetradecane dihydrochloride (40) 

Using 197 (0.188 g, 0.499 mmol), 40 was prepared according to general procedure 

3c to give a cream solid (0.258 g, 98% yield); IH and 13C NMR spectra agreed with 
. 256 

literature values; ()H (020) 1.92-2.18 (4H, Ill), 3.13-3.37 (16H, rn), 3.72-3.79 

(16H, m); ()e (020) 17.5,43.5,47.9,56.1 and 57.9 (CH2)' 
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183 

1,5,9,12,17 ,20-Hexa(2-chloroethyl)-I,5,9, 12, 17 ,20-hexaazacyclodocosane 

hexahydrochloride (183) 

Using 173 (0.055 g, 0.095 mmol), 183 was prepared according to general procedure 

3c to give a tan powder (0.071 g, 83% yield); OH (D20) 1.82-1.95 (8H, broad m), 

2.94-3.97 (48H, broad m); Oc (D20) 20.5, 20.6, 37.8,48.8,53.1,55.2,55.6,56.0. 

6.3. Experimental to Chapter 4 

6.3.1. Formation of Cu(lI) complexes 

1,4,7,10-Tetra(2-hydroxyethyl)-I,4,7,10-tetraazacyclododecane[Cu(IT)]Ch (192) 

192 was formed from 197 (100 mg, 0.29 mmol) and anhydrous CuCh (39 mg, 0.29 

mmol) in methanol (4 ml). The solution was warmed to -50°C for 10 minutes. The 
~ . . 

deep blue-colored solution was evaporated to give 192 as a blue powder (121 mg, 

87% yield). 
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1,4,7,10-Tetra(2-chloroethyl)-1 ,4,7,1 O-tetraazacyclododecane[Cu(II)]Clz (186) 

186 was formed from the hydrochloride salt of 38 (754 mg, 1.52 mmol) and 

anhydrous CuClz (205 mg, 1.52 mmol) in methanol/water (30 ml, 5:1). The solution 

was warmed to -50°C for 10 minutes. The deep blue-colored complex precipitated 

upon cooling the solution and was filtered and dried with suction to give 186 as a 

blue powder (716 mg, 75% yield). m/z (FAB+ mode, glycerol) 520.3 (12%),485.3 

([(M-2CI)+Ht, 100%) 483.3 (57), 421.3 (7), 419.3 (3), 185.1 (14), 147.1 (6), 93.5 

(79), 75.7 (37), 57.9 (27); Found [(M-2CI)+Ht 485.0650, C16H32Nl5Cll7CICu 

requires 485.0651. The material was crystallized as its tetrafluoroborate salt by 

adding excess ~BF4 to a hot, saturated solution of the chloride in water. The 

crystals were analysed by X-ray crystallography to confirm the structure (shown in 

Fig.4A). 

1,4,7,10-Tetra(2-chloroethyl)-1,4,7,10-tetraazacyclododecane[Co(II)]Clz (199) 

199 (synthesised by Stephen Lacy) was dissolved in MeCNIH20 (10 n;ll, 1:1). 

.. Excess ~PF6 was added and the solution left open to the air. Slow evaporation of 

the MeCN gave long needle-like purple crystals that were of sufficient quality for X

ray analysis. The crystal structure is given in Fig. 4N. m/z (FAB+ mode, glycerol) 

516.3 ([(M-PF6)+Ht, 43%), 514.3 (29), 480.3 (4), 355.3 (4), 263.2 (6), 235.1 (5), 

171.1' (63), 157.1 (60), 79.6 (100). 46.1 (I). Found [(M-PF6)+Ht 516.0380. 

C16H32Nl5Cll7CICu requires 5.16.0373. 
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1,4,7, 10-Tetra(2-hydroxyethyl)-1,4,7, 10-tetraazacyclotridecane[ Cu(II)]Ch (193) 

193 was formed from 184 (45 mg, 0.12 mmol) and anhydrous CuCh (16 mg, 0.12 

mmol) in methanol (3 mI). The solution was warmed to -50°C for 10 minutes. The 

deep blue-violet-coloured solution was evaporated to give 187 as a foamy blue

purple solid (61 mg, >99% yield). 

+ 

CI~()/'o....../CI 
C ''ci~c, " \.,J N N 

CI~'--1~CI 

CI 

187 

1,4,7,10-Tetra(2-chloroethyl)-1,4,7,10-tetraazacyclotridecane[Cu(II)]Ch (187) 

187 was formed from the hydrochloride salt of 18S (34 mg, 0.065 mmol) and 

anhydrous CuCh (9 mg, 0.065 mmol) in methan~Vwater (3 mI, 5:1). -The solution 

was warmed to -50°C for 10 minutes. The bright green-coloured complex 

precipitated upon coolil}g the solution and was filtered and dried with suction to give 

187 as a light green powder (8 mg, 22% yield). m/z (FAB+, glycerol) 499.3 ([(M-

2CI)+Ht, 95%) 437.3 (40), 373.3 (12), 294.3 (5), 247.1 (4), 202.2 (18), 175.1 (5), 

,- 120.2 (7), 110.3 (48), 70.8 (8), 43.2 (3); Found [(M-2CI)+Ht 499.0982, 

C17H36Nl5C4~u requires _ 499.0990. !he material was crystallized as its 

hexafluorophosphate salt by adding excess NRJ>F6 to a hot, saturated solution of the 

chloride in water. The resulting precipitate was redissolved by heating in the 

supe~atant and the solution was left to crystallise. Blue-green crystals of X-ray 

quality grew from the solution after 5 d. The crystals were analysed by X-ray 

crystallography to confirm the structure (shown in Fig. 4B). 
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1,4,8,11-Tetra(2-hydroxyethyl}-1 ,4,8, II-tetraazacyclotetradecane[Cu(II) ]Ch (188) 

188 was formed from 197 (50 mg, 0.13 mmol) and anhydrous CuCh (18 mg, 0.13 

mmol) in methanol (2 ml). The solution was warmed to -50°C for 10 minutes. The 

blue-coloured solution was evaporated to give 188 as a bright blue solid (68 mg, 

>99% yield). "'max = 636 nm (phosphate buffer pH 7.2) [lit. "'max = 630 nm 

(EtOH)].257] 

1,4,8,11-Tetra(2-chloroethyl)-1 ,4,8, II-tetraazacyclotetradecane[Cu(II)]Ch (190) 

40 required neutralization in order to effect complexation. A solution of 40 

(159 mg, 0.256 mmol) and CuCh (36 mg, 0.26 mij'lol) in H20 (5 ml) was neutralized 

with 1 M aq. NaOH (15 drops), causing a color change to deep blue-violet. The 

solvent was removed in vacuo to give 190 as a bright green solid, which was washed 

with H20 (10 ml) and filtered (23mg, 14% yield). MS: mlz (FAB+, glycerol) 513.3 

([(M-2Cl)+Ht, 11%),511.3 (6),451.4 (23),449.4 (20), 387.4 (9), 369.3 (6), 277.2 

.. (15), 185.1 (100), 106.3 (16), 75.7 (67), 57.9 (77). Found [(M-2CI)+Ht 513.0969. 

ClSH36Nl5Ch37CICu requires 513.0965. Attempts to crystallize 190, regardless of 

counter-ion, resulted in hydrolysis of the ligan~ to the Cu(II) complex of 188 

(indicated by crystal structure shown in Fig. 4C). Microanalysis results: 31.86% C, 

5.30% H, 8.29% N, 39.47% Cl. Ttieoretical: -C19H39N4CI6Cu(2HCI)(3H20) requires 

31.40% C, 6.52% H, 7.70% N, 39.03% Cl. 
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+ 
PFs -

1,4-Bis(2-chloroeth yl)-7 -(2-h ydrox yeth yl)-l ,4,7 -triazacyclononane[Cu(II) ]Ch (191) .. 

191 was formed from the hydrochloride salt of 174 (115 mg, 0.270 mmol), 

neutralised with 5 drops 1 M aq. NaOH and anhydrous CuCh (36 mg, 0.270 mmol) 

in methanol/water (8 ml, 5:1). The solvent was removed in vacuo to give a green 

glassy solid which was taken up in H20 (5 ml). Excess Nl4PF6 was added and the 

solvent evaporated until dark blue-green crystals formed, which were suitable for x
ray crystallography (15 mg, 10% yield). The crystal structure is given in Fig. 4D. 

rp/z (FAB+, glycerol) 362.3 ([(M-CIPF6)+Ht, 64%), 326.3 (6), 277.4 (13), 262.3 

(4), 185.2 (100), 93.5 (74), 75.7 (14), 58.0 (4), 46.1 (3). Found [(M-CIPF6)+Ht 

362.0648, C12H2SN303SCt37CICu requires 362.0647. 

1,4,8,11-Tetraacetyl-1 ,4,8, 11-tetraazacyclotetradecane (203) 

1,4,8,11-Tetraazacyclotetradecane (0.100 g, 0.499 mmol) was dissolved in 

dry MeCN (10 ml) with potassium carbonate (0.69 g, 4.99 mmol) and cooled to 0 °c 
with an ice batl.1. Acetyl ch!oride (0.31 g, 3.99 mmol) was added dropwise and the 

mixture was allowed to come to room temperature and stirred overnight. The solid 

was filtered off and the filtrate evaporated to give a clear oil which was washed with 

hot EtOAc to give 203 as a white solid (0.150 g, 82% yield); OH (CDCh) 1.91-2.01 

(4H, m), 2.12 (6H, s), 2.18 (6H, s), 3.41-3.63 (16H, m); Oc (CDCh) 21.6 and 22.0 

(CH3), 29.0,45.8,47.6,48.7,49.1 (CH2), 171.6 and 172.2 (CO). 
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1,4,S,12-Tetraethyl-l,4,S,12-tetraazacyclotetradecane[Cu(ll)]Ch (204) 

203 (0.156 g, 0.423 mmol) was dissolved in dry THF (20 ml) and treated 

with 1.0 M BH3'THF solution in THF (6.S ml). The solution was refluxed for 2h 

then cooled and carefully quenched with methanol (30 ml) 6 M aq. HCI (15 ml). 

The solution was concentrated to - 10 ml via rotary evaporation, basified to pH 14 

with NaOH pellets and extracted with DCM (10 x 30 ml). The combined organic 

layers were dried with Na2S04, filtered and evaporated to give a clear oil (0.047g, 

36% yield), which was taken up in MeOH (10 ml). CuCh was added (0.020 g, 0.15 

mmol) and the resulting blue-violet solution evaporated to give 204 as a purple solid. 
( 

6.3.2. X-ray crystallography 

Details of data collection procedures and structure refinement are given in 

Table 6.4.1. CIF data can be accessed online at 

http://www.chem.gla.ac.ukl-louis/datal (186: UFOS9; 188: UF096; 191: UFl00; 199: 

UF101; 187: UF102). Single crystals of suitabl~ size were attached t? glass fibres 

using acrylic resin and mounted on a goniometer head in a general position. Data were 

collected on an Enraf-Nonius KappaCCD diffractometer, running under Nonius Collect 

software and using graphite monoChromated X-radiation (.1..=0.71073 A). All data sets 

were collected at a temperature of 150K using an Oxford Instruments Cryostream. 

Typically scan angles of 1_20 were used, with integration times of 50-100 s pe~ image. 

Precise unit cell dimensions were determined by post-refinement of the setting angles 

of a large proportion of the data set. The ~e images were integrated using 

Denzo(SMN)258 and the resultant raw intensity files processed using a locally modified 

versic;m of DENZOX.259 Absorption corrections, either by gaussian quadrature,260 

based on the measured crystal faces, or by a semi-empirical correction261 were applied 

to all data sets. Data were then sorted and merged using SORTAV.262 Structures were 

190 



solved either by Patterson interpretation (DIRDIF_99)263 or by direct methods 

(SIR92).264 All structures except 191 showed disorder in the macrocyclic ring system, 

with the major component having - 80-90% occupancy and all structures showed some 

disorder in their respective cr, BF£ or PF6- anions. For the major componenent only, 

all non-H atoms were allowed anisotropic thennal motion. Aliphatic C-H hydrogen 

atoms were included at calculated positions, with C-H = 0.96 A and were refined with 

a riding model and with Uiso set to 1.2 times that of the attached C-atom. Refinement 

with SHELXL97_2265 using full-matrix least-squares on r and all the unique data. 

Neutral atom scattering factors, coefficients of anomalous dispersion and absorption 

coefficients were obtained from published work.266 The absolute configuration for 

structure 199 was confinned by the refinement of the Flack absolute structure 

parameter, which refined to zero within error. Calculations using PLATON267 indicated 

that there were no voids in the lattice capable of containing solvent molecules. Thennal 

ellipsoid plots were obtained using the program ORTEP-3 for Windows.268 All 

calculations were carried out using the WinGX package269 of crystallographic 
f 

programs. 

6.3.3. UV-Vls spectroscopy 

6.3.3.1. Characterisation: "-max and £coeff 

The "'max and Ecoeff were evaluated by measuring the absorbance of various 
" .. 

concentrations of the complex in aqueous solution in a quartz cuvette (3 ml) with a 1 

cm path length (1). The extinction coefficient was determined from Beers' Law (A = 

Ecl). Absorbances (A) vs. concentrations (c) for various dilutions were plotted, 

giving slope = Ecoeff. The "-max was taken as the average of the wavelengths at which 

the absorbance was greatest for each concentration. 

6.3.3.2. Aqueous stabl~ity of complexes 

A solution of the complex (1.0 mM) in 100 mM aqueous phosphate buffer, 

pH 7.2, was allowed to stand for the required period of time. The "'max of the 

solution was monitored by UV-Vis spectroscopy, watching for a shift towards the 

"'max known for the 2-hydroxyethyl complex. The time required for a "-max shift of 
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half the difference between those for the two complexes was defined as tll2(8). 

Solutions were monitored for a maximum of two weeks. 

6.3.4. Cyclic voltammetry 

The redox potential of each compound was measured with cyclic voltammetry using 

a PGZ301 Dynamic-EIS VoltaLab potentiostat. The analysis was performed on 

freshly prepared solutions of the complexes (1.0 mM) in aqueous phosphate buffer 

(100 mM) at pH 7.2, with ferrocenecarboxylic acid (PCA) as an internal standard 

(+533 mV vs. NHE, or +334 mV vs. sat. AglAgCI),217 using a three-electrode cell 

with a Pt macrodisc working electrode (2.0 mm), Pt wire counter electrode and either 

the AglAgN03 electrode [EO(vs. AglAgN03) = EO + 253 mV (vs. AglAgCl)], or the 

saturated AgI AgCI reference electrode. The potentials were corrected for the 

published potential of FCA and reported vs. NHE (correction factor: EO [vs. NHE] = 
EO [vs. AglAgCI] + 199 mY). The solutions were degassed with N2 for at least ten 

( 

minutes before analysis, to simulate the hypoxic environment. 
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Table 6.4.1. Experimental crystallography details 

Compound number 186 188 191 

Compound formula C16H32BCI5CuF 4N4 C1sH40C12CuN404 C12H25CIsCuF6NsOP 

Compound color blue' blue blue 

M, 608.06 510.98 542.21 

Space group P2.1/C P2.1/n P2.1/C 
Crystal system Monoclinic Monoclinic Monoclinic 

alA 15.0036(2) 15.4336(4) 8.0906(2) 
blA 8.3325(1) 9.3240(3) 18.3838(4) 

dA 20.3516(3) 15.7847(5) 13.7631(3) 

f3/deg 104.162(1) 103.472(1) 93.519(1) 
VlA's 2466.98(6) 2208.96(12) 2043.21(8) 
Z 4 4 4 
Des/dg cmoS 1.637 1.536 1.763 
F(OOO) 1244 1084 1100 
J.L(Mo-Ka)fmm,l 1.470 1.263 1.601 
Crystal size/mm 0.30x 0.12xO.09 0.25x 0.15xO.15 0.44x 0.38xO.30 
Transmission coefficients 0.882 - 0.672 0.709 - 0.645 0.644 - 0.490 
(range) 

e range/deg 2.06 - 27.52 1.26 - 27.55 1.85 - 30.01 
No. of data measured 41179 25122 31765 
No. of unique data 5651 5024 5945 

Rlnt 0.0517 0.0498 0.0350 
No. of data in refinement 5651 5024 5945 
No. of refined parameters 364 362 270 
Final R [I > 20'1+] (all data) 0.0296 0.0478 0.0322 

R/ [/ > 20'1'1 (all data) 0.0435 0.0702 0.0389 
Flack parameter nfa nfa n/a 
Goodness of fit s 1.039 ".082 1.034 
Largest residuals / eA's 0.418, -0.341 0.497, -0.643, 0.723, -0.518 
Max shift/esd in last clcle 0.001 0.566 0.009 

cont. next page 
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Compound number 199 187 

Compound formula C1sH32ClsCoFsN4P C17H34ClsCuFsN4P 

Compound color purple blue 

M, 661.61 680.24 

Space group P.212121 P.21/C 

Crystal system Orthorhombic Monoclinic 

alA 8.8203(1) 12.1978(3) 

blA 14.1553(2) 17.1387(5) 

dA 21.0638(4) 13.3259(3) 

~/deg 90 107.033(2) 
V/A"3 2629.90(7) 2663.64(12) 

Z 4 4 
DcaJclgcm-3 1.671 1.696 
F(OOO) 1348 1388 
/J.(Mo-Ka)/mm-1 1.278 1.439 
Crystal size/mm 0.47x 0.13xO.11 0.50x 0.30xO.15 
Transmission coefficients (range) 0.894 - 0.745 0.802 - 0.618 

( 
a range/deg 2.41 - 27.51 1.75 - 30.08 
No. of data measured 19793 46816 
No. of unique data 5999 7760 
Rint 0.0382 0.0403 
No. of data in refinement 5999 7760 
No. of refined parameters 362 463 
Final R [/ > 2(J1~ (all data) 0.0279 0.0553 

R/ [I > 2(J1~ (all data) 0.0347' 0.0720 
Flack parameter 0.002(10) n/a 
Goodness of fit S 1.026 1.004 
Largest residuals / eA"3 0.243, -0.272 1.658, ·1.025 
Max shifVesd in last cycle 0.001 0.056 

R = 1: ( I Fo I • I Fe I )II: (Fo); Rw = (I:(w(Fo • Fe)2) /I:(W(Fo)2\} 112; Rw 2 = {I:(w(Fo 2 • Fe 2)2) 
/I:(W(Fo2)2)}112; Ra = 1: [a(F02)] I 1: [F!]; RJnt = 1: {n/(n.1}1~ I Fo2. Fo2(mean) 111: Fo2 
(summation Is carried out only where more than one symmetry equivalent is 
averaged) 
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6.3.5. Complexation of novel triazamacrocycles 

The triazamacrocycle was dissolved in D20 in an NMR tube. A solution of 

ZnBr2 in D20 (100 mM) was added in four portions stepwise, providing 0.25 eq., 

0.50 eq., 0.75 eq. and 1.0 eq. ZnBr2 respectively. After the addition of each portion, 

the tube was shaken vigorously and analysed by IH NMR spectroscopy. After a total 

of 1.0 eq. ZnBr2 had been added, the resulting complex was analysed by 2-

dimensional NMR correlation spectra (COSY, HMQC and HMBC) to determine the 

extent of complexation and the structure of the ligand complex. 

1 

(12 +2 

G
NH,N~H 3 

Zn2+ 
NH 4 

6 5 

206 

1,5,10-Triazacyclotetradecane[Zn(lnlBr2 (206) 

128 (0.013 g, 0.0163 mmol) was dissolved in D20 (0.50 ml) and titrated as described 

above. The structure was analysed in situ and the complexed product was not 

isolated. See Appendix 2 for spectra. . 

Characterisation of 206 

assign. 'M shift (ppm) 13C shift (ppm) 
(Integ., multip.) 

1 1.78-1.86 (2H, m) 24.3 

2 2.96-3.02 (4H, m) 47.7 

3 2.86-2.92 (4H, m) 42.5 

4 1.66-1.75 (8H, m) 19.9 

5 22.8 

6 3.05-3.12 (4H, m) 45.9 
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1 12n2 
11 3 

10cN'fr;~\4 
9 NHJS 

8 7 6 

207 

1,5,10-Triazacyclopentadecane[Zn(II) ]Br2 (207) 

+2 

129 (0.013 g, 0.0163 mmol) was dissolved in D20 (0.50 ml) and titrated as described 

above. The structure was analysed in situ and the complexed product was not 

isolated. See Appendix 2 for spectra. 

Characterisation of 207 

assign. 'H shift (ppm) 13C shift (ppm) 
(Integ., multlp.) 

1 1.40-1.49 (2H, m) 22.9 

2 1.58-1.74 (8H, m) 24.1 

3 2.98-3.08 (6H, m) 45.9 

4 2.67-2.74 (2H, m) 47.7 

5 See 2 25.4 

6 See 2 25.5 
7 2.90-2.95 (2H, m) 46.6 
8 See 3 48.7 
9 1.74-1.80 (2H, m) 23.3 

~, 

10 2.85-2.90 (2H, m) 48.4 
11 See 3 43.3 
12 3.05-3.12 (4H, m) See 2 
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6.4. Experimental to Chapter 5 

6.4.1. Anti-cancer testing 

6.4.1.1. Cytotoxicity of free mustard ligands (Prof. Hartley) 

The cytotoxic effects of the free ligands studied were measured against the human 

chronic myeloid leukaemia cellIine K562. Cells were maintained as a suspension in 

RPMI 1640 medium supplemented with 10% fretal calf serum (PCS) and 2 mM 

glutamine (GIn) at 37°C in a humidified atmosphere containing 5% C02/ 95% air. 

The ICso values of the series of analogues following a 1 hour exposure to drug were 

deterrrlined using the MTT assay 270 as has been previously described.271 This is 

based on the ability of viable tumor cells to convert a yellow tetrazoli~m salt (3-(4,5-

dimethylthiazol-2yl)-2,5-diphenyl-2H-tetrazolium bromide, MTT) into mauve 

formazan crystals. 

6.4.1.2. Cytotoxicity and hypoxia-selectivity of complexes (Prof. 

Stratford) 

The toxicities of the complexes were determined using the MTT proliferation 

assay.272 . All media, plates and other plastic material were placed into the anoxic 

incubator for at least 24 h prior to the hypoxic experiments. The lung-derived tumor 

cell line, A549, was exposed to each of the three drugs for 24 h under aerobic or 

hypoxic conditions. After 24 h ~xposure, the drug was removed and fresh media 

instilled into each well. After 96 h incubation at 37°C, the MTT proliferation assay 

was performed. The ICso results were expressed as the mean of at le~t three 

.. different experiments (± SEM). HCR is the hypoxic cytotoxicity ratio [ICso (air) / 

ICso (N2)] and ACR is the aerobic cytotoxicity ratio [ICso (N2) / ICso (air)]. 
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6.4.2. Anti-parasitic testing 

6.4.2.1. Cytotoxicity against Leishmania mexicana (Dr. Barrett) 

Serial dilutions of the drugs (starting at 200 ,."glrnL) in a 96-well plate were 

incubated at 37°C with a culture of L. mexicana in the logarithmic phase for 5 d. 

The ICso values were determined using the acid phosphatase assay, which assesses 

the level of active (live) phosphatase enzyme present in the culture. p

Nitrophenylphosphate (40 mglrnL), NaOAc (1.0 M, pH 5.5) and Triton X-IOO (1%) 

were added to the plates and the culture incubated at 37°C for 1 h. The level of 

phosphatase activity was determined using UV -Vis spectroscopy (to detect p

nitrophenolate ion at 405 nm). 

6.4.2.2. Cytotoxicity against Trypanosoma brucei (Dr. Barrett) 

Serial dilutions of the drugs (starting at 200 p,glrnL) in a 96-well plate were 

incubated at 37°C with a culture of T. brucei for 36 h. All experiments were 

performed in duplicate. The cytotoxicities were determined using the alamar blue 

assay,221 which measures the ability of viable parasite cells to convert a blue dye to a 

colorless compound. The cultures wer~ incubated at 37°C with the dye for a further 

24h. ICso values were determined from UV-Vis spectroscopy, detecting dead cells 

by the concentration of alamar blue dye left in so~ption. 
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Appendix 1 

Cyclic voltammagrams for all complexes 

a. Cyclen[Cu(II)]CI2 (200) in phosphate buffer 

100 J 1 

\. 
SD 

I 

... 
• II 
u 

· 

I 
I 

r 

;m~~ 
-T 

:1 ... 
" c 

r ,-----r-

--t----t------t'- / 
· , 
L 
L -!to, "r 

I 
~ 
v /' 

I .r 
I 

T ~ -~oOI 

I ' Epc Epc 

I 1 ! 

1 t 
- ~5 

I 

Fc/Fc+ 

T 
VS. AgIA9r'03 electrode 

-~ . ~ -1.2 - 1 - 11 . 6 - II . L - II . ~ -0.2 o 
PDtontid [V) 

b. Cyclen[Cu(II)]CI2 (200) in DMF 

J 
I 

-
-2 

~ 
u 
~ 

Epc 
:1 .... -~ D 

" c .. 
L 

• L 
~ .... 

-~Ol 

- 60 

L 1 VS[ AgIAgCI electrode j 
- 1 .5 1 -o.s o o.s 

210 



c. Cyclam[Cu(II)]CI2 (202) in phosphate buffer 

1 
~.:-~~ 

-- /,/- I -- -- --- .... Fc/Fc+ 
-}OO +-

· ~o .., 
,. 
v .... ... 
:1 ... -30 

" ~ 
L 
L 
~ 

V 
· qO l- - -- ------ .-. 

-500 

I 
-~Ollt 

vs. Ag/AgCI ele trode _____ _ L 
-~ -}.5 - } -0 . 5 0 

Patontid (V] 

d. Cyclam[Cu(II)]CI2 (202) in DMF 

, 
Epa -- - --

/--, ~ 

~-~ 
~/ 

/. -----71--.., Epc 
~ .... / I ... 
:I. 

! I 

... 
-}S .. 

L .. 
L 
L 
~ 
v 

- 20 

- 250 ~ 

:] J VS. glAgCI electrode 
~-- - .1. 

- 2 - ], . 5 - } - 0 . 5 0 0 . 5 
Patonthl (V] 

211 



e. 1,4,7, 10-Tetra(2-hydroxyethyl)cyclen[Cu(II)]CI2 (192) in phosphate buffer 
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g. 1,4,8,11-Tetra(2-hydroxyethyl)cyclam[Cu(II)]Cb (188) in phosphate buffer 
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Appendix 2 

Two-dimensional NMR sp,ectra of Zn(lI) titrations 

1. 206: COSY, HMQC and HMBC 

A. COSY spectrum for 206 (refer to section 6.2.6 for assignments) 
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B. HMQC spectrum for 207 
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