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Abstract 

The use of green plants to remediate contaminated land (phytoremediation) has been 

proposed as a sustainable and cost-effective technique. Plants have been shown to 

have the potential to remediate land contaminated by organic and inorganic 

contaminants. The work presented here focuses on the potential for phytoremediation 

of land contaminated with the metals cadmium, chromium, copper, lead, nickel, and 

zinc. 

The consideration of herbaceous plants which have the potential to produce a 

marketable end product as phytoremediation crops, has been limited. In this work the 

non-food species Linum usitatissimum (flax), Brassica napus var. oleifera (oilseed 

rape), Miscanthus x giganteus (miscanthus) and Urtica dioica (nettle) were 

investigated to assess their potential as phytoremediation crops. 

Germination experiments using flax and oilseed rape established that seedling 

germination was not inhibited by exposure to metals in solution except at the highest 

concentrations considered. Germination was, however, not a reliable indicator of 

plant metal tolerance as metal toxicity to emerged seedlings was evident in 

contaminated soil treatments exhibiting good germination rates. 

Four plant species were grown in soils containing six metals at both highly and 

marginally spiked levels, to reproduce genuine contaminated soils whilst allowing 

the study of each metal in isolation. A sewage sludge treated soil with a high metal 

and organic matter content was also included in the study. Miscanthus was the 

species most tolerant of the highly contaminated soils. The highest tissue 

concentrations recorded in plants exposed to the highly contaminated soils were (969 

mg Zn!kg) in stems of miscanthus and (919 mg Cd/kg) in stems of nettle, but plant 

growth in these soils was generally poor. The plant species survived well in the 

sewage sludge soil, although metal uptake from this matrix was low. 

Oilseed rape and nettle accumulated the highest tissue metal concentrations in the 

study of marginally contaminated soils. Indeed the highest tissue concentration 

recorded for plants grown in all of the soils was found in nettle grown in the 

ii 



marginally contaminated Zn soils (1937 Jlg/g). Miscanthus, was able to remove a 

greater weight of metal from the soil owing to its higher biomass, despite having a 

lower tissue metal concentration than the other species. 

The survival and growth response of flax to metals as well as metal uptake to flax 

tissues were studied in greater depth using hydroponic growth techniques. The upper 

solution concentrations of the six metals required to cause plant death were 

investigated using a nutrient film technique (Nfl). Twelve varieties of flax assessed 

in a static hydroponic system indicated that there were only minor varietal 

differences in metal tolerance and metal uptake for the six metals at the 

concentrations investigated, however, Viola was the variety able to take up high 

metal tissue concentration relative to the other varieties consistently across all 

metals. 

The manipulation of plant uptake response to metals in solution using both 

buthionine sulphoxamine(BSO) and histidine was investigated. Phytochelatins are a 

class of plant peptides implicated in detoxification of Cd in plant cells. The effect of 

buthionine sulphoximine, a chemical known to inhibit phytochelatin production, on 

flax plants grown in Cd-containing nutrient solution was investigated. The combined 

presence of BSO and Cd had no effect on plant yield compared to plants exposed to 

Cd alone, but did cause a reduction in root tissue Cd concentration. The response of 

flax to Cu and Ni solutions in the presence of histidine was also investigated. 

Histidine, which has been shown to protect plants from the toxic effect of Ni and 

increase Ni movement from roots to shoots, did not reduce the toxic effect of Cu on 

plant yield or of Ni on shoot yield. The presence of histidine reduced the toxic effect 

of Ni on root yield and lowered root Ni concentration. The simultaneous presence of 

histidine and Cu in nutrient solution increased flax root tissue Cu concentration and 

reduced shoot tissue Cu concentration. 

Flax, miscanthus, nettle and oilseed rape have been shown to have potential to act as 

part of a phytoremediation programme, however, more work with these crops is 

required before firm advice can be given on commercial application of the crops in 

contaminated land remediation. 
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1 Introduction 

The removal of the legacy of pollution that has been inherited from the industrial activities 

of the past, as well as from present pollution sources, is an important aspiration of today's 

society. Remediation of such sites is desirable from an economic, environmental and 

human health point of view. Traditional remediation strategies which normally involve 

"dig and dump" or encapsulation techniques are expensive and rather than addressing the 

problem of removing contaminants, simply transport the contaminants to another location 

or cover them up. Phytoremediation differs from traditional remediation strategies by its 

very nature. Phytoremediation is both sustainable, using renewable green plants, and 

systematic, conceptualising the pollution problem as part of a soil-plant system. 

Phytoremediation also aims to remove pollutants from the contaminated matrix into plant 

biomass, or in the case of organic pollutants by transformation to a less toxic form. 

1.1 Contaminated land 

1.1.1 Sources of contaminant metals in the environment 

The most important sources of contaminant metals include fly ash, plastics, textiles, 

microelectronics, refineries and sewage sludge (Alloway, 1995; Nriagu and Pacyna, 1988). 

Several of the resulting contaminants are Cd, Cr, Cu, Pb, Ni and Zn. 

1.1.2 Contaminated land in Scotland 

A survey of Scottish Vacant and Derelict land was carried out in 2000 by the Scottish 

Executive (Scottish Executive, 2001). Vacant and derelict land were not necessarily 

contaminated nor was land in either category necessarily free from contamination, 

although where contamination was known or suspected the land was classified as derelict. 

Derelict land was defined by the Scottish Executive as follows: 

Derelict land (or buildings) is that which has been so damaged by development or use 

that it is incapable of being developed for beneficial use without rehabilitation, and 

which is not being used for the purpose for which it is held or for a use acceptable to a 

local plan. 
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The Vacant and Derelict land survey found that 11,683 ha of land in Scotland was either 

vacant or derelict in 2000, the greater part of which was derelict (7,432 ha). This area is 

less than 0.15% of the total land area of Scotland, however, the majority of these sites are 

in or near urban areas, situated mainly in the central belt. Major former uses of derelict 

land included 'mineral activity' (37%) and manufacturing (20%). Of the 1,622 ha of 

derelict land known to be contaminated, 10 ha were contaminated with Cr and 4 ha were 

contaminated with either Cu, Ni or Zn. Whilst the single largest known contaminant of 

derelict land was coal (539 ha), 682 ha were either unknown or listed as 'other 

contaminants' . 

The true extent of land contaminated with metals is likely to have been underestimated 

since contamination has only been confirmed for sites where metal analysis has been 

conducted. The relatively small area of land in Scotland reported to be contaminated by 

metals does not reflect the impact such sites may have on human health and the 

environment. The location of contaminated land in predominantly urban areas increases the 

potential exposure of local populations to contaminants and poses problems for the 

redevelopment of otherwise geographically attractive sites. The former Ravenscriag 

steelworks site is a prime example of a contaminated site within an urban area requiring 

remediation and redevelopment (Scottish Enterprise, 2001). 

The juxtaposition of contaminated sites to areas earmarked for economic regeneration can 

put a serious barrier on the redevelopment of an area. The high costs of conventional 

remediation techniques can often inhibit redevelopment of a site, and thus a lower cost 

option such as phytoremediation would be beneficial. However, phytoremediation is a long 

term remediation technique, compared with conventional remediation techniques, and 

requires financial input over the medium to long term. A phytoremediation technique 

which may be self financing or at least part funding, through the growing of crops which 

have a market value, is therefore an attractive concept. 
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1.2 Phytoremediation 

Phytoremediation, from the Greek phyto (plant) and Latin remedium (to correct or remove 

evil), is defined as the use of green plants to remove pollutants from the environment or to 

render them harmless (Raskin et aI., 1994). Plants act like a wick, with a high surface area 

in the soil for collection of the soil solution and its soluble contents. This 'wick' is coupled 

to an efficient plumbing system driven by evaporation of water from the stomata, leaving 

non volatile soil solution components in the plant tissues Where they can be removed by 

harvesting the plant. This system is an engineering solution to the problem of extracting 

soluble species intimately associated with soil perfected by 400 million years of evolution 

(Campbell, 1990). 

The concept of utilising plants to decontaminate anthropogenic waste is very old; indeed 

secondary treatment of municipal sewage using plant based systems was recorded over 300 

years ago and plants have been used for this purpose ever since (Cunningham et ai., 1996). 

Recently there has been renewed interest in this type of technology, including a garden 

designed to treat the sewage from a typical household exhibited in the 2002 Chelsea 

Flower Show (Royal Horticultural Society, 2002). Current interest in phytoremediation, 

however, extends beyond the treatment of sewage. 

Hung et al. (1997) stated that the aim of phytoremediation is to reduce the Pb content of 

contaminated sites to acceptable levels in 3-20 years. This strict definition of 

phytoremediation is useful in highlighting the time scale for remediation. However, other 

authors have used the less constrained definition of phytoremediation proposed by Raskin 

et al. (1994), allowing the possibility of a longer term approach as well as the use of plants 

to stabilise rather than reduce the site contamination. 
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1.2.1 Phytoremediation techniques 

Phytoremediation has been further subdivided into several distinct techniques: 

phytoextraction, phytodegradation, phytostabilization, phytovolatilization and 

rhizofiltration (Salt et al., 1998). With the exception of phytodegredation, each of these 

techniques can be used to remediate land contaminated with heavy metals. 

Phytodegredation is limited to the remediation of organic pollutants which can be 

biologically metabolised to an acceptable end point. This is accomplished using the 

metabolic processes of both green plants and the micro-organisms associated with the 

rhizosphere of the green canopy (Burken and Schnoor, 1997; Cunniningham et at, 1996). 

The remaining techniques use a variety of strategies to remediate both organic and 

inorganic pollutants. Phytoextraction is the use of green plants to extract pollutants from 

soils and sequester them in harvestable plant tissues (Kumar et al., 1995). 

Phytostabilization uses the ability of green plants and their associated micro-organisms to 

transform pollutants to a form with a lower bioavailability to the environment (Dushenkov 

et al., 1995). The definition of phytostabilization can be broadened to include the use of 

plants to prevent the physical movement of contaminants from contaminated sites such as 

reducing dust migration or the leaching of contaminants by establishing a green cover 

(Stomp et al., 1993; Vangronsveld et al., 1995). Phytovolatilization is the use of plants to 

promote the transfer of volatile species from the contaminated matrix to the atmosphere. 

Phytovolatization is the only phytoremediation technique which is a dilute and disperse 

mechanism (Burken and Schnoor, 1998; Schnabel et al., 1997). Rhizofiltration is the use of 

plant roots to remove contaminants from water courses (Dushenkov et al., 1995). 

Continuous and chelate-assisted phytoextraction 

Salt et al. (1998) further defined phytoextraction of metals into two strategies. The first of 

these, continuous phytoextraction, is the use of green plants which are both tolerant of, and 

able to accumulate, the contaminant metals for remediation. This strategy relies on plants 

removing metals from the soil into their above ground tissues steadily over the growing 

season. The plants initially proposed for this strategy were primarily metal 

hyperaccumulating plants (Baker et al., 1988; Reeves et al., 1996) and more recently high 

biomass species (Blaylock et al., 1997, Robinson et al., 1997). The second strategy 

reviewed by Salt et al. (1998), they termed induced phytoextraction or chelate-assisted 

phytoextraction. This strategy differs from the continuous phytoextraction in that the plants 

grown in the soil need not accumulate the metals in their tissues steadily over the growing 
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season. Instead, plants that are tolerant of the soil metals and able to produce a high 

harvestable biomass can be grown in contaminated soil. When the plants reach an optimum 

biomass, a chelating agent is added to the soil. The chelating agent mobilises the 

contaminant metal(s) by desorption from solid phase soil constituents into the soil solution, 

the soluble chelated metals can then be drawn into the harvestable plant tissues by mass 

flow in the transpiration stream. Thus metals are removed from the soil and out of the soil 

system upon harvest of the crop biomass. 
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1.2.2 Current trends in phytoremediation research 

Phytoremediation has been extensively reviewed (Black, 1999; Chaney et ai., 1997; 

Cunningham et ai., 1995; Flathman and Lanza, 1998; Glass, 1998; Raskin, 1996; Raskin et 

ai., 1997; Salt et ai., 1998). Interest in the identification and characterisation of metal 

hyperaccumulating plants largely growing on naturally metaliferous or serpentine soils 

(Baker et ai., 1988; Reeves et ai., 1996) has more recently been augmented by the study of 

high biomass crops with similar characteristics to the metal hyperaccumulating crops, often 

in related plant families (Kumar et ai., 1995). Several researchers have investigated the use 

of trees for phytoremediation, in particular willow short rotation coppice, reviewed by 

Pulford and Watson (2002). There has, however, bee!llimited study of other high-biomass 

crops and existing non-food crops for phytoremediation. 

1.2.2.1 Prospects for the use of transgenic phytoremediator crops 

The existence of the biochemical mechanisms for metal hyperaccumulation in combination 

with the emerging technologies of genomics and of genetic manipulation has the potential 

to enable plants with high biomass and metal accumulating traits to be engineered. The use 

of biotechnology to engineer an ideal phytoremediation crop has been highlighted (Ow, 

1996; Salt et ai., 1998; Stomp et ai., 1993; Zhu et ai., 1999). The co-occurrence of both 

high biomass crops, such as Indian mustard, and hyperaccumulating plants, such as Thiaspi 

caeruiescens, in the genus Brassicaceae may facilitate efforts to engineer such plants. 

Gleba et ai. (1999) were able to produce a somatic hybrid of the hyperaccumulator species 

Thaiaspi caeruiescens with the high biomass species Brassica juncea which extracted 

more lead from the soil than either of its parents. This technology will, however, be limited 

to remediating soils contaminated with metals for which accumulating traits have evolved. 

There are important contaminants for which few accumulating plants have been reported, 

including lead (Salt et ai., 1998), although recent reports of lead accumulating species 

indicate that plant uptake mechanisms may exist allowing remediation of a wider range of 

metals than was first proposed (He et ai., 2002; Sahi et ai., 2002). 
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Genetic modification using both phytochelatins (PCs) and metalothionines (MTs) to 

increase plant tolerance to Cd has been investigated. Zhu and colleagues (1999) showed 

that the use of genetic modification can improve plant tolerance to Cd and increase Cd 

removal from the rhizosphere to the harvestable portion of the crop. They reported that 

transgenic Brassica juncea plants over expressing a glutathione synthase protein 

(Eshcerichia coli gshII gene) had a greater biomass production and 40% greater shoot Cd 

concentration, than the wild type plants. In contrast, Maiti and colleagues (1989) reported 

that Brassica nap us and tobacco, genetically modified to express mouse MT genes, also 

gave an increased tolerance to Cd, however this was accompanied by reduced Cd 

concentration in the leaves. 
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1.2.3 Hyperaccumulators and continuous phytoextraction 

The ability of plants to accumulate high levels of heavy metals is not a new concept. In 

1885, Baumann reported atypically elevated levels of zinc in plants growing on naturally 

zinc enriched soils. More recently a model of continuous phytoextraction using metal 

hyperaccumulating plants has been introduced by Chaney (1983) and supported by Baker 

et al. (1988). Continuous phytoextraction of sites contaminated with metals such as Ni and 

Zn is proposed using plant species endemic to naturally occurring metaliferous soils which 

have evolved the ability to accumulate the metals in their tissues at unusually high levels 

(Salt et al., 1998). Many of these plant have the ability to accumulate a tissue metal 

concentration greater than the metal concentration of ~he surrounding soil and are therefore 

known as hyperaccumulators. 

Reasons for plant uptake 

Plants which have the ability to grow on soils with high heavy metal concentrations can 

exploit an ecotype unavailable to other species and thereby encounter reduced competition. 

This explains the evolution of metal tolerant ecotypes, however, hyperaccumulator species 

must gain some additional advantage in having increased tissue metal concentrations. Boyd 

and Martens (1994) found that the leaf tissue of the hyperaccumulator Thlaspi montanum 

contained 3000 Ilg/g Ni and was acutely toxic to cabbage white butterfly larvae. The 

presence of Ni-containing sap was demonstrated to deter insect predation of Sebertia 

acuminata using Drosophila (Sagner et al., 1998). The brassica, Serptanthus polygaloides, 

which was found to accumulate Ni, gave protection against pathogens: biotrophic fungus 

(powdery mildew, Erysiphe polygoni), bacteria (Xanthomonas campestris pv. Campestris) 

and prevented necrotic fungus Alternaria brassicicola growing on detached leaves or 

wound sites (Boyd et aI., 1994). These predator- and disease-inhibiting effects of the metal 

content of the hyperaccumulator plants would appear to explain their evolution. Gabbrielli 

et al. (1991) speculated that a high concentration of Ni in the leaves of Alyssum bertolonii 

and the subsequent shedding of leaves lead to further concentration of Ni in the soil layer 

immediately surrounding the plant, making the soil matrix yet more inhospitable for 

potential competitors. 
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More than 80 hyperaccumulators (defined as those plants which were able to accumulate 

tissue concentrations >1000 JLglg Ni) growing on serpentine soils in Cuba have been 

identified (Reeves et aI., 1996). The serpentine soils of Cuba were thought to have a 

particularly large number of hyperaccumulators due to the length of time serpentine soils 

have been continuously supporting plant populations. 

Plants growing on serpentine soils fall into two groups: those with metal tolerating 

strategies which exclude metal from their tissues and those which accumulate metal in 

their tissues (Reeves et at., 1996). Gabbrielli et al. (1990) studied two species, Silene 

italica and Alyssum bertolonii, that had evolved a Ni-excluding and Ni-tolerating strategy, 

respectively. When exposed to 7.5 JLM Ni, S. italica exhibited root growth inhibition 

accompanied by an increase in peroxidase activity and phenol concentration in both root 

and shoot tissue, but A. bertolonii did not exhibit any of these responses. Gabbrielli and 

colleagues (1990) also reported that A. bertolonii accumulated Ni at greater concentrations 

in shoot tissue than root tissue, whereas S. italica held Ni predominantly in root tissue. 

Nickel accumulated in root and shoot tissue of A. bertolonii was associated with malic acid 

and this may be linked with Ni tolerance (Gabbrielli et al., 1991). 

To establish whether the roots of a hyperaccumulator had a greater ability to acidify or 

reduce the surrounding soil matrix than a non-accumulator, Bernal et al. (1994) compared 

the accumulator plant Alyssum murale, with the non-accumulating crop plant Raphanus 

sativus (radish). Alyssum murale did not excrete more protons or reductants than R. sativus 

indicating the hyperaccumulator had another strategy for mobilising soil Ni, likely by 

secretion of root exudates. Kramer et al. (1996) reported that exposure of Alyssum 

lesbiacum (an accumulator species) to 0.3 mM Ni resulted in a 36-fold increase in the 

amino acid L-histidine in xylem sap. Non-accumulator species, A. montanum, did not 

exhibit any change in amino acid content in the xylem sap. The hyperaccumulator species 

Assylum lesbiacum, Alyssum murale, and Alyssum bertolonii were all observed to have a 

linear relationship between xylem Ni and histidine concentrations. The authors also 

supplied histidine to the non-tolerant A. montanum species and found that, in the presence 

of Ni, biomass production was doubled and xylem transport of Ni was increased. Kramer 

et al. (1996) concluded that histidine was important in affording hyperaccumulating 

Assylum species their tolerance to Ni and allowing Ni to be transported in the xylem to the 

shoot. 
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Thlaspi caerulescens has been found to accumulate the metals: Ag, AI, Cd, Co, Cr, Cu, Fe, 

Mn, Mo, Ni, Pb and Zn (Baker et al., 1994). Some metals were readily transported to the 

shoots (Zn, Cd and Ni) whereas others were held predominantly in the roots (Cr, Cu and 

Pb). A study of Thlaspi caerulescens in solution culture revealed a greater accumulation of 

metal than was observed for plants grown in metal-containing soils, with metal 

bioaccumulation in plant tissue between 300 and 2000 times the solution concentration 

(Baker et al., 1994). The metals were accumulated from solution in increasing quantities in 

the order: Pb, Cr, Ni, Zn, Cd and Cu. Roots held 10-100 times more metal than shoots for 

Cr, Cu and Pb. For Zn and Ni, more metal was held in the shoots than the roots and the 

rootshoot ratio for Cd was - 1. Baker et al. (1994) speculated that Thlaspi caerulescens 

has a constitutive metal tolerance mechanism which' allows the accumulation of a wide 

range of metals. 

Brown et al. (1995a) also observed Thlaspi caerulescens to be an effective 

hyperaccumulator of both Cd and Zn and proposed that it may be a suitable species for 

phytoremediation. However, in a study comparing Thlaspi caerulescens with Silene 

vulgaris and cos lettuce grown in a long term sewage sludge plots, it was found that T. 

caerulescens was not any more efficient in removing Cd than S. vulgaris or lettuce (Brown 

et al., 1995b). Furthermore, the growth habit of T. caerulescens was less appropriate for 

phytoremediation than the other plants (Brown et al., 1995b). Kramer et al. (1997) 

reported that Thlaspi goesingense, a hyperaccumulator of Ni was able to accumulate high 

concentrations of Ni in its tissues as a result of an enhanced tolerance mechanism in the 

protoplast rather than as a result of enhanced transport of Ni. Investigations of a Ni

accumulating tree, Sebertia acuminata, revealed a latex Ni content of 15-30% and have 

shown that Ni was predominantly localised in phloemic laticifers where it was associated 

with citrate and possibly nitrate anions (Sagner et al., 1998). 
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1.2.4 High biomass crops for phytoremediation 

Most hyperaccumulators have a low biomass and/or slow growth rates and so are 

inefficient plants for phytoextraction (Salt et al., 1998; Gleba et al., 1999). For this reason 

the identification of fast growing high biomass plant species able to accumulate 

contaminant metals has been undertaken (Kumar et al., 1995; Pulford and Watson, 2002; 

Robinson et al., 1997; Wilkins, 1997). These plants may allow a more efficient form of 

continuous phytoextraction with the possibility of generating revenue through use 

commercial exploitation of the plant biomass. 

Tissue concentrations have been reported for high ~iomass plant species. Metal tissue 

concentrations of willow clones have been measured as: 3-76 J.Lg Cd/g, 4-25 J.Lg Culg, 17-

157 J.Lg Pb/g, 3-27 J.Lg Ni/g and 77-702 J.Lg Zn/g (Pulford et al., 2002; Punshon and 

Dickinson, 1997a; Riddell-Black, 1994). Another high biomass crop, Berkheya coddii, was 

found able to accumulate a Ni concentration of 1 % as well as a biomass of 20 tlha 

(Robinson et al., 1997). Shoot tissue Pb concentrations for Brassica juncea grown in 

contaminated soil (2500 mg/kg) ranged from 30-129 J.Lg/g. However, Pb accumulation in 

maize shoots has been reported at the higher concentration of 225 J.Lg/g (Huang and 

Cunningham, 1996). 

A number of researchers have studied Brassica juncea. Kumar et al. (1995) found B. 

juncea had the remarkable ability to transport Pb from roots to shoots particularly at high 

concentrations although the roots still had 5-fold more Pb than shoots. Brassica juncea had 

five times more Cd in roots than shoots and more Cd in both roots and shoots than the 

accumulator plant T. caerulescens (Salt et al., 1995). Gleba et al. (1999) found B. juncea 

combined a high shoot biomass with an ability to absorb EDTA-chelated Pb from 

Contaminated soils and transport it to the shoots. B. juncea can produce a biomass of 18 

tlha although these yields will probably not be possible in contaminated soils (Blaylock et 

al., 1997). Huang et al. (1996) found that Zea mays, a perennial C4 grass, extracted more 

Pb from both hydroponic culture and soil than B. juncea, and the hyperaccumulator T. 

calurescenes, T. rotundifolium and Ambrosia artemislifolia. 

The use of trees with rapid growth habits to remove metals from contaminated sites has 

been proposed as an alternative strategy for phytoremediation to the use of 

hyperaccumulators. In particular trees managed by short rotation coppicing including 

Willow and alder have been studied (Pulford and Watson, 2002). Trees like other high 
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biomass crops compensate for the lower tissue metal concentrations found in their tissues 

by virtue of the quantity of plant tissue produced per m2 of contaminated land. 

1.2.5 Chelate-assisted phytoextraction 

Chelate-assisted phytoextraction has been proposed as a strategy for the remediation of 

contaminant metals for which there are few or no identified hyperaccumulating plants. The 

lack of identified natural plant adaptations to hyperaccumulate some metals means that the 

rapid removal of soil contaminants, possible for metals such as Zn and Ni using 

hyperaccumulating plants, or transgenic plants produced using their genes, is not possible. 

This chelate-assisted phytoremediation method has be.en studied particularly with relation 

to Pb. Chelate-assisted phytoremediation uses the ability of high biomass crops to provide 

a substantial weight of plant tissue to act as a sink for sequestered metals. 

Chelate-assisted phytoextraction has two distinct stages: upon addition to the soil the 

chelating agent forms a metal-chelate complex with the metal in the soil thus mobilising 

the metal to the free soil solution; after mobilisation in the soil solution the metal-chelate 

complex is taken up by the plant roots and transported to above ground plant tissues (Salt 

et ai., 1998). 

Using EDTA for chelate-assisted phytoextraction shoot tissue, concentrations of 1471 /Lg/g 

have been achieved using B. juncea and it has also been found that metal uptake by B. 

juncea is proportional to the affinity of the chelating agent to the metal in question 

(Blaylock et ai., 1997). Investigation of the effect of addition of HEDTA to the soil 

established that Zea mays shoot Pb concentration increased from 40 mglkg to 10600 mg/kg 

in maize (Huang et ai., 1996). Increased removal of Pb from the roots as found upon 

addition of chelating agents (Huang et ai., 1996) and acidification of the soil matrix 

(Blaylock et ai., 1997) could enhance the performance of perennial crops such as 

miscanthus and willow since the root tissues would have lower metal concentration and 

therefore have a lower risk of suffering metal toxicity in their unharvested perennial 

tissues. For Pb, removal rates could be as much as 180-530 kg/ha per year with the 

addition of appropriate chelating agents (Blaylock et ai., 1997; Huang et ai., 1997). 
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1.2.6 Mechanisims for metal uptake 

Heavy metal hyperaccumulating plants reqUire the ability to withstand tissue metal 

concentrations other plants would find fatally toxic. There are several mechanisms 

proposed for the tolerance of different plants to different metals, these include: chelation, 

compartmentalisation, biotransformation (the chemical reduction of metalloids e.g. Cr, Se 

and As or their incorporation into organic molecules) and cellular repair mechanisms (Salt 

et ai., 1998). 

1.2.6.1 Phytochelatins 

A group of short-chained peptides synthesised by green plants has been implicated in 

metabolic mechanisms for plant-metal tolerance; these peptides have been given the name 

phytochelatins (PCs) and homo-phytochelatins (hPCs). Phytochelatins have the structure 

(y-Glu-Cys)n-Gly (n=2-11) whilst homo-phytochelatins have the structure (y-Glu-Cys)n

~-Ala (n=2-7) (Grill et aI., 1985; Rauser, 1990; Zenk, 1996). The biochemical role of PCs 

has been investigated and their function in regulating metal homeostasis in cells is 

analogous to MTs. Mammalian MTs contain 61 amino-acid residues and therefore are 

much bigger than PCs which, with n=2-11, have 5-23 amino acids (Grill et ai., 1985). The 

PCs also differ from animal metalothionines (MTs) in that the recurrent y-carboxyamide is 

not known to be synthesised by ribosomes and so, unlike animal MTs, PCs are not primary 

gene products (Grill et aI., 1985; Rauser, 1990). Phytochelatins have therefore been shown 

to differ both structurally and in their synthesis from animal MTs (1 and 2). Class 1 and 2 

MTs have been reported in metal tolerant ecotypes of Arabidopsis thaliana (Murphy and 

Taiz, 1995; Murphy et ai., 1997). 

Cadmium is the metal species which has been most frequently linked with PC production 

and complexation, although other metals have also been shown to induce PC production 

and form complexes with PCs (Rauser, 1990). Phytochelatin synthesis has been reported in 

the presence of Cd2+, Zn2+, Cu2+, Hg2+ and also to a lesser extent Pb2+, Sb3+ and Ni2+ (Grill 

et ai., 1985). In a survey of the plant kingdom, all plants investigated synthesised PCs or h

PCs in response to Cd exposure (Gekeler et ai., 1989). The study included over 200 plants 

with representatives from both gymnospermae and angiospermae (including both 

dicotyledons and monocotyledons). They also found that the homo-phytochelatins were 

associated exclusively with some members of the angiosperm order Fabales 

(Leguminosae) which produce homo-glutathione rather than glutathione. Whilst PCs have 

been found in organisms outside the kingdom Phyta, notably in some fungi, their 
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ubiquitous occurrence in members of the kingdom Phyta seem to be sufficient justification 

for the name phytochelatin (Gekeler et ai., 1989). 

Since the ability to synthesise PCs is ubiquitous in plant species they have been proposed 

as bio-markers for potential human health problems as their presence is indicative of heavy 

metal stress and, therefore, the potential presence of hazardous metals within the plant 

derived foodstuffs (Keltjens and van Beuichem, 1998). 

Clemens et ai. (1999) isolated a family of genes mediating PC production called PCS 

Cllhyto£helatin ~ynthesis) genes. PCS genes were shown to mediate PC production and play 

a central role in Cd tolerance. When the PCS genes were deleted, PCs were notsynthesised 

and plants were no longer tolerant to Cd. Inclusion of the PCS genes in an organism with 

no PCS homologue resulted in the organism gaining Cd tolerance. 

Phytochelatins detoxify metals by forming co-ordinate (mercaptide) complexes with the 

metal ions via the thiolate groups of cysteine (Grill et ai., 1985). It is proposed that PCs 

reduce metal toxicity within the plant cell by preventing metal sulfohydryl group 

interference by sequestering free metal from the cytosol, allowing normal cellular 

metabolism (Rauser, 1990). Clemens et al. (1999) observed that Cd detoxification was not 

solely a function of PC synthesis, but PCs gave the plant the capacity to buffer the metal in 

the cytosol prior to sequestration in the vacuole. Phytochelatins can reactivate Cd 

Inactivated enzymes more effectively than other chelating agents, GSH or citrate, due to 

their high affinity for Cd (Kneer and Zenk, 1992). Grill et al. (1987) showed that exposure 

to Cu arrested growth of Rauvoifia serpentinia cells for a lO-h period after which PCs were 

synthesised. After two days, 80% of the Cu had been removed from the culture medium 

and normal cell growth had resumed giving evidence for PC conferred detoxification of 

Cu. 

Parallels have been drawn between PCs and phytosiderophores as well as exogenous 

chelating agents such as humic acids citrate or EDT A as they are all chelating agents 

Which provide plant cells with balanced metal homeostasis to allow optimum function of 

cellular processes for plant yield maximisation (Kinnersley, 1993). 
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1.2.6.2 Buthionine sulphoximine (BSO) 

BSO is a powerful and specific inhibitor of the glutathione biosynthesis pathway (Reese 

and Wagner, 1987). Cadmium-tolerant plants exposed simultaneously to Cd and BSO 

showed growth inhibition, however, the plants were unaffected by exposure to BSO in the 

absence of Cd (Rauser, 1990). Moreover, when glutathione was supplied artificially to the 

plant cells, PC biosynthesis proceeded in the presence of BSO showing that glutathione 

synthesis is a necessary precursor of PC synthesis (Rauser, 1990). 

Gussarsson et al. (1996) found that birch exposed to both Cd and BSO suffered a 

detrimental change in nutrient status, inhibition of growth of both roots and shoots, and 

that Cd accumulation in all parts of the plant was reduced in the BSO treated plants. Krotz 

et al. (1989) indicated that PCs protect cells against metal-induced damage by removing 

free metal from solution but that compartmentalisation of Cd in the vacuole occurs 

irrespective of the presence of PCs. 

1.2.6.3 PC synthesis as a response to metal stress 

Since the discovery and characterisation of PCs as metal-binding peptides the synthesis of 

PCs has been proposed as a mechanism for metal tolerance in plants. Several authors, 

however, have argued that the synthesis of PCs is a response to metal-induced stress and 

their presence does not in itself confer metal tolerance to plant species able to synthesis 

PCs. 

Although heavy metal tolerance in some cells has been correlated with rapid and early 

formation of Cd-PC complexes, not all plants exhibit metal tolerance via PC synthesis 

(Rauser, 1990). Although PC synthesis has been shown to be ubiquitous in the plant 

kingdom (Gekeler et al., 1989), relatively few plants have been shown to be tolerant of 

excessive cell loadings of heavy metals. Phytochelatin production does not, therefore, 

necessarily confer heavy metal tolerance to plants (de Knecht et al., 1992; de Knecht et al., 

1994; Schat and Klaff, 1992). It has also been reported that PC production was induced in 

the presence of heavy metal in both tolerant and non-tolerant plants (Shat and Klaff, 1992), 

however, in tolerant plants, PC synthesis took place at higher metal concentrations than in 

non-tolerant plants, suggesting that the presence of PCs was an indication of tolerance 

independent metal stress. Comparison of Cd-tolerant and Cd-sensitive Silene vulgaris 

plants established that upon exposure to Cd, both plants produced PCs (de Knecht et al., 

1992). Although the Cd-sensitive plants produced more PC than the Cd-tolerant plants, the 

Cd-sensitive plants had twice as much Cd in their root tissue compared to the Cd-tolerant 
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plants. Phytochelatin production was inhibited in both the Cd-sensitive and Cd-tolerant 

plants when exposed simultaneously to BSO and Cd, however, this only affected the 

growth of the Cd-sensitive plants. Cadmium-tolerant plants produced lower rates of PC 

than Cd-sensitive plants whilst the PC chain length in Cd-tolerant plants was longer than 

that of Cd-sensitive plants (de Knecht et ai., 1994). Differential tolerance in Silene vulgaris 

may be the result of faster transport of Cd from the cytoplasm to the vacuole, thus reducing 

the cytosol Cd concentration and consequently PC production (de Knecht et ai., 1994). 

Whilst PC production may contribute to the mechanism of Cd detoxification, the ability of 

plants to produce PC in higher quantities does not confer differential metal tolerance. 

These reports imply that metal tolerant plants have additional or more efficient 

detoxification mechanisms compared to non-tolerant plans, and that these mechanisms do 

not necessarily involve PC production. 

1.2.6.4 Root exudates 

An ideal phytoextractor crop must have the ability to tolerate, solubilise and subsequently 

remove toxic metals from the soil. Plants must be able to extract essential nutrient elements 

from soils and consequently they have evolved mechanisms to exploit the reservoirs of 

metal ions not normally available in the soil solution. Three important root induced metal 

solubilising processes have been identified: changes of pH in the rhizosphere, increased 

reducing capacity of the roots and synthesis of root exudates (Bernal et al., 1994). 

Root exudates, known as phytosiderophores, can increase metal solution concentration in 

soil intimately associated with root tissue, facilitating efficient removal of metals from the 

rhizosphere. Phytosiderophore compounds identified include mugenic acid and avenic acid 

(Kinnersley, 1993). 

Phytosiderophores are normally synthesised in response to a deficiency of essential 

nutrients and have been well documented in mediating the uptake of Fe in Fe-deficient 

soils (Higuchi et al., 1994). Phytosiderophores are also known to chelate Cu, Zn and Mn 

(Romheld, 1991). The phytosiderophores form soluble metal-chelate complexes, 

mobilising metals from the solid phase to the soil solution from where they are transported 

across the root plasma membrane by specialised transporters (Von Wiren et al., 1996). A 

Fe-phytosiderophore membrane transport protein, in maize, was reported to also transport 

Zn-phytosiderophore complexes and that the transport of free Zn was also observed (Von 

Wiren et ai., 1996). Zinc efficient maize ecotypes with enhanced phytosiderophore 

synthesis and enhanced phytosiderophore-mediated Zn transport have also been observed 
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to increase the mobility of Zn, both from the rhizosphere to the plants, and within the plant 

(Cakmak et al., 1996). Both Cakmak et al. (1996) and Von Wiren et al. (1996) studied 

maize responses to Zn deficiency, rather than the higher levels of Zn present in Zn 

contaminated soils, however, the existence of mechanisms for phytosiderophore 

production and transport present the opportunity for exploitation of such traits by genetic 

engineering. 

In a study of B. juncea grown in metal-containing nutrient solution, significantly more Cd, 

Cr, Cu, Zn and Ni was removed from solution than was recovered in root tissue, an 

observation speculated to be attributable to metal precipitation by root exudates in the 

solution (Dushenkov et al., 1995). Dushenkov et al. "(1995) also found that lead was 

precipitated in the roots mainly as lead phosphate. 

In addition to the use of phytosiderophores, plants can also use reductase enzymes in the 

rhizosphere to release elements in their soluble form; alternatively, plants can pump 

protons from their roots acidifying the rhizosphere to solubilise acid soluble elements 

(Crowley et al., 1991). 

1.2.6.5 Non-PC detoxification mechanisms 

Detoxification mechanisms which do not involve PCs have been identified. Murphy and 

Taiz (1995) reported that Cu-tolerant ecotypes of Arabidopsis thaliana synthesised both 

MTl and MT2; in roots MTl was synthesised constitutively and MT2 synthesis was 

induced by Cu stress, whereas in leaf tissue, MTl synthesis was induced by Cu stress 

whilst MT2 was synthesised constitutively. Furthermore, Cd sensitive Arabidopsis 

thaliana, which lacks an ability to synthesis PCs, showed little reduction in Cu or Zn 

tolerance, suggesting PCs were important for Cd tolerance but did not play an important 

role in Cu or Zn tolerance (Howden et al., 1995; Murphy et al., 1997). 

Precipitation of Zn as zinc phytate in globular bodies within the vacuole has been observed 

and was proposed as a detoxification method in Deschampsia caepitosa (Van Steveninck 

et al., 1987); these globular deposits have been located in parenchyma cells of Lemna 

minor (Van Steveninck et al., 1990). Organic acids other than phytic acid have been 

implicated in metal tolerance strategies. Ni accumulation in tissues of ryegrass and maize 

Was aSSociated with citric and malic acid (Yang et al., 1997) and both Cd and Zn can be 

complexed by organic acids and compartmentalised in the vacuole of tobacco cell

suspension culture (Krotz et al., 1989). Organic acid levels in cell-suspension culture were 
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reported to exceed Cd and Zn levels, even at growth inhibiting Cu and Zn concentrations 

(600 J..lM and 2000 J..lM, respectively); malic acid was the predominant acid followed by 

oxalic acid and citric acid, all of which, in addition to Cd, were found predominantly 

isolated in the vacuole (Krotz et al., 1989). 

Salt et al. (1995) reported that Cd did not appear to be transported by PCs in xylem sap as 

Cd was found to interact with oxygen or nitrogen molecules. They speculated that these 

oxygen and nitrogen elements were probably present in organic acids. In an investigation 

of the transport of Ni in tissues of Alyssum lesbiacum, the principal organic acids (citrate 

and malate) did not increase in concentration in response to Ni exposure (Kramer et al., 

1996). The chelating agent identified as facilitating the transport and detoxification of Ni 

was histidine (Kramer et al., 1996). Both Kramer et al. (1996) and Yang et al. (1997) 

found Ni was transported in the xylem. Transgenically enhanced plants tolerant to Cd have 

shown increased Cd translocation in the xylem transpiration stream (Zhu et al., 1999). 

Other authors have reported metal transport in the xylem transpiration stream: Salt et al. 

(1995) found Cd accumulation to the shoots appeared to be driven by mass flow in the 

transpiration stream, although, Cd uptake to the roots was independent of transpiration rate 

Whilst Blaylock et al. (1997) were able to show by inhibiting evapotranspiration that the 

transpiration stream was important in the translocation of Pb. 

Plants can detoxify toxic metal species by biotransformation mechanisms which change 

the chemical properties of the metal species. This can be achieved by chemical reduction 

of the metal species to a less toxic form, for example Cr(VI) to Cr(lll) (Dushenkov et al., 

1995). Other biotransformations include plant incorporation of metal species into organic 

molecules, thereby preventing them from taking part in other cellular reactions, as 

described for Astagalus species which accumulate Se. These plants are able to avoid Se 

toxicity by incorporating Se into the non-protein amino acids methylselenocysteine and 

selenocystathionine; channelling the toxic metal into these amino acids prevents the Se 

being incorporated into selenocysteine and selenomethionine, compounds which would 

otherwise disrupt protein function (Lauchli, 1993). 

1.2.6.6 Compartmetalisation 

Compartmentalisation at the whole plant level 

Hyperaccumulator species differ from non-accumulator species in that they tend to have 

higher metal tissue concentrations in above ground tissues than in root tissues (Baker et al., 

1994; L'Huillier et al., 1996), whereas non-accumulator crops tend to have metals 
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predominantly compartmentalised in roots (Pulford et al., 2001; Punshon and Dickinson, 

1997). Dicotyledonous plants have been found, independent of soil solution metal 

concentration, to accumulate up to 4-fold more Pb in their roots than monocotyledonous 

plants (Huang and Cunningham, 1996). It has been indicated that this may be due to 

dicotyledonous plants being more efficient in transporting Pb from the apoplastic stream 

into root cells via a voltage-gated Pb2+ (Ca2+) transporter. 

Compartmentalisation in plant tissues 

Trichomes are hair-like projections from plant epidermal cells. Some trichomes· have 

evolved specialist functions, for example, the stinging barbs of nettle plants and the 

polyphenol oxidase containing insect traps of solanum species (Yu et ai., 1992). In the leaf 

tissue, Cd was preferentially accumulated in the trichomes, resulting in a trichome Cd 

concentration of 556 Ilg/g, which was 43 times more concentrated than leaf tissue Cd 

concentration (Salt et al., 1995). Trichomes are an external tissue which have been shown 

to accumulate metals in other plants: Mn in sunflower foliar trichomes (Blarney et al., 

1986), Cu in glandular trichomes of Solanum species (Kowalski et al., 1992), and Pb in 

trichomes of tobacco (Martell, 1974). Metalothoinines have been found associated with 

foliar trichomes (Foley and Singh, 1994) and it has been speculated that MT synthesis is 

confined to specialist plant tissues such as trichomes (Murphy et al., 1997). 
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Compartmentalisation at the sub-cellular level 

An investigation of Ni transport in the tonoplast of oat roots found that the lack of transport 

mechanisms at the vacuole minimised Ni sequestration in the vacuole compared to Ca and 

Cd, therefore the vacuole was found not to be an important compartment for Ni in oat roots 

(Gries and Wagner, 1998). In the metalophyte Thlaspi caerulescens, which has been found 

to tolerate Cd and Zn, Cd was sequestered in the apoplast whilst Zn was found 

predominantly in the vacuole (Vasquez et al., 1992). Cd was also found in the vacuole 

where it was associated with dense fibrous material but this storage site was less significant 

than the apoplast, similarly, Zn was found in the cell walls, but to a lesser extent than in the 

vacuole. These findings indicated that within plant specjes the preferred compartment for 

sequestration varies according to metal. 

Ow (1996) using yeast Schizosaccharomyces pombe as a model system, reported that Cd 

storage capacity was increased by incorporation of sulphide in the vacuole. Cadmium in 

shoots of Brassicajuncea was found to be bound with S-ligands possibly as Cd-S4 (Salt et 

al., 1995). The formation of Cd-S crystallites surrounded by PC peptides has been reported 

(Dameron et al., 1989). The presence of these crystallites increased the ratio Cd:PC and 

also increased the stability of the Cd complex in the vacuole (Ow, 1996). Speiser et al. 

(1992) found that Cd forms a high molecular weight Cd-PC-Sulphide complex in cell free 

extracts from Brassica juncea seedlings. The high molecular weight Cd-PC-Sulphide 

complex was more stable than the low molecular weight PC-Cd complex formed in the 

cytoplasm and so may lead to higher metal tolerance through more efficient sequestration. 

Transgenic Brassica juncea plant, which overexpressed a glutathione synthase (GS) 

protein, also had greater sulphide concentrations than the wild type plants (Zhu et al., 

1999). 

Vogeli-Iang and Wagner (1990) reported that Cd was located in the vacuole of tobacco 

cells, associated with PCs and that the PC-Cd complex formed in the cytoplasm and was 

then transported into the vacuole. Speculation followed that PCs act as a shuttle system to 

Carry Cd to the vacuole (Gussarsson et al., 1996). A protein, named HMT1 (heavy metal 

!olerance), has been found to transport cytoplasmic PC-Cd complexes into the vacuole 

(Ow, 1996). Ow (1996) also found a Cd-induced sulphide generating pathway where the 

S2- is derived via a novel synthetic pathway from cysteine and concluded that the sulphide 

generating pathway may be as important in sequestering high levels of Cd in the vacuole as 

the PC-Cd transport protein. This supported the argument that PC synthesis alone does not 

confer metal tolerance to plants. 
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Two mechanisms for sequestration of Cd from the cytoplasm to the vacuole have been 

identified. Salt and Wagner (1993) described a pH gradient-dependant Cd active transport 

system. This was shown to be a Cd2+/l-r antiport driven by V-type ATPase generated pH 

gradient and was proposed as a mechanism for Cd2
+ transport from the cytoplasm to the 

vacuole at both high and low Cd exposure. Salt and Rauser (1995) proposed that a Mg 

ATP-dependent transporter was responsible for the sequestration of both PC and Cd-PC 

from the cytosol across the tonoplast into the vacuole of oat root cells. They suggested this 

transporter belonged to the superfamily of ABC type transporters. The ATP-dependent 

transport mechanism was unaffected by pH gradient inhibition and so is in addition to the 

pH gradient driven Cd2+1H+ antiport (Salt and Wagner, 1993). 
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1.3 Plants used in the study 

Novel applications of crop for industry may provide appropriate end uses for 

phytoremediation crop biomass. Crops grown in contaminated land, with the explicit goal 

of concentrating heavy metals in their harvested tissues, may be unwelcome feedstocks for 

some processes and end uses but may be appropriate for others. In particular, the use of 

plant biomasss for energy production through combustion would be an ideal application as 

plants would have a marketable value and the combustion process would allow 

concentration and containment of the metals as ash. Biomass crops have been proposed as 

an alternative source of fuel for energy production (Grassi, 1999; Hunter, 1996; Speller, 

1993; Wilkins and Abrutat, 1995). 

1.3.1 Flax 

The use of flax as a fibre crop has a long history as cloth woven from flax has been found 

in the tombs of Egypt (Grieve, 1931). Linum usitatissimum is commonly known as flax or 

linseed. Dahlke et ai. (1998) identified natural fibres as being suitable for the production of 

automotive interiors. In particular the use of flax, hemp and sisal based automotive interior 

trims are cited as having similar, and in some cases, preferable properties to those of the 

glass fibre based products currently used. Natural fibres would be cost effective and 

environmentally friendly substitute for current materials. The application of flax fibres to 

the manufacture of composite materials is of current interest (Aurich and Mennig, 2001; 

Bos et ai., 2002; Hodzic et ai., 2002; Zafeiropoulos et ai., 2001). 

When used for oil production, varieties Linum usitatissimum are known as linseed and 

when used for fibre production they are known as flax. These two groups of Linum 

usitatissimum varieties have developed morphologically differences, each having been 

bred to optimise yield of the desired end product. However, the use of dual purpose 

Varieties of Linum usitatissimum for the simultaneous production of oil and fibre has been 

proposed to maximise returns from the crops, for example, the use of Linum usitatissimum 

for the production of oil and for fibre for textile with the residue processed to pulp for 

paper making (Shaikh et ai., 1992). 
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1.3.2 Miscanthus 

Miscanthus x giganteus (miscanthus) is a perennial grass with woody stems which reach 

heights of 2-4 m. The stems senesce in autumn, but the plant is able to regenerate stems in 

the spring from its rhizomatus root system (Speller, 1993). Miscanthus x giganteus is an 

interspecific hybrid of Miscanthus sinensis and Miscanthus saccharijlorus (Hodkinson et 

ai., 1997) which occurs naturally in sub-tropical areas of East Africa and Asia but has been 

successfully grown in the cool temperate climate of northern Europe (Beale and Long, 

1995; Beale et ai., 1996; Bullard et ai., 1997; Christian et ai., 1997). 

Miscanthus is proposed as a potential biomass crop to p~ovide a carbon neutral feed stock 

for energy production (Bullard et ai., 1997; Christian et ai., 1997; Wilkins, 1997) 

Miscanthus foliage dies at the end of the growing season and so can be harvested at a high 

dry matter content giving the biomass favourable combustion properties (Speller, 1993). 

Other potential uses for miscanthus include geotextiles, building applications and paper 

pulp (Huisman et ai., 1997; Ellison and McNaught, 2000). 

In common with maize, miscanthus has a C-4 photosynthetic pathway. Miscanthus has 

been demonstrated to achieve close to maximum light interception and conversion 

efficiency for C-4 plants which exceed those of C-3 crop plants traditionally grown in 

northern Europe (Beale and Long, 1995). Miscanthus has also been shown to be less 

sensitive to cold-induced growth reduction than maize (Beale et ai., 1996) indicating that 

miscanthus may be better suited to the UK climate than maize. Maize is currently grown 

commercially in the UK as a forage crop and extends as far north as Ayrshire in south west 

Scotland. 

The yield of miscanthus grown on the Cambridgeshire fens in its 4th year of establishment 

is reported to have reached 20 t dry weightlha with a maximum plant height of 2.5 m 

(Bullard et ai., 1997), whilst total biomass, reported for miscanthus in its second year of 

establishment at a site in Essex, was 25 t dry weightlha (Beale and Long, 1995). These 

yields demonstrate the ability of miscanthus to generate large quantities of biomass 

compared to other potential bioenergy crops such as willow and poplar which have yields 

of 12.5 and 6.6 t dry weightlha/year (Armstrong and Johns, 1997). Miscanthus yield 

potential also compares favourably to the high biomass crop Berkhya coddii which can 

achieve a yield of 22 tlha/year (Robinson et ai., 1997). 
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Wilkins and Abrutat (1995) reported miscanthus tissue metal concentrations of 16-37 f.tg 

ZnJg and 10-17 f.tg Culg when grown on soils contaminated with Zn (292 f.tglg) and Cu 

(188 f.tglg). They also reported significant improvement in yield (- 10 times) when sewage 

sludge was added to the polluted soil although a similar response was not seen on sewage 

sludge amended mine waste. 

1.3.3 Nettle 

Nettle fibre has been reported to be stronger than that of flax and less coarse than that of 

hemp. A deep rich loam under shaded growth conditions is required to give optimum fibre 

length and plant yield for nettle, but despite th~se particular growth condition 

requirements, nettle was used as a cotton substitute in the manufacture of German army 

uniforms in 1918 (Grieve, 1931). Nettles are currently being grown as a trial crop for the 

production of fibres for the textiles industry (Ruckenbauer et ai., 2002) and has also been 

considereed as a source of fibre for the manufacture of automotive interiors (Ellison and 

McNaught, 2000). Nettles have been shown to accumulate metals from Danube soils in 

above ground biomass in the decreasing order: Pb>Cr>Cd>Hg (Uhercikova and Hajduk, 

1998), Otte and Wijte (1993) reported Cd, Cu and Zn uptakes in nettle of up to 8.5 f.tglg, 

39 f.tglg and 490 f.tglg, respectively, in plants grown on the flood plain of the Rhine estuary 

1.3.4 Oilseed rape 

Oilseed rape is the main oilseed crop grown in northern Europe. Oils produced from 

agricultural crops are used for lubricants surface coatings and polymers (IENICA, 2000). 

Some 2.45 million tonnes of oil derived from agricultural sources, mainly oilseed rape and 

sunflower, is used for industrial applications in Europe annually (Oliver, 2001). Oilseed 

rape has been cited as a potential crop for transfer of hyperaccumulating traits from Thiaspi 

caeruiescens (Brown et ai., 1995b). 



Kerr, J. 2003, Introduction 25 

1.4 Aims and objectives 

The objective of this work was to elucidate the potential of flax, miscanthus, nettle and 

oilseed rape for phytoremediation of land contaminated with Cd, Cr, Cu, Pb, Ni and Zn. 

The aims of the work presented in this thesis were: 

• to observe the growth response and quantify above ground tissue metal concentration, 

of flax, miscanthus, nettle and oilseed rape in highly and marginally contaminated 

soils. 

• to indicate the minimum threshold solution concentration which results in the death of 

flax plants grown in hydroponic culture. 

• to assess the influence of genetic variation on growth response to and metal uptake of 

Cd, Cr, Cu, Pb, Ni and Zn. 

• to investigate the response of flax to the addition of chemical agents known to 

influence plant metal uptake in other plant systems. 
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2 Materials and methods 

2.1 Water 

2.1.1 Deionised water 

Unless otherwise stated the water was deionised water. The deionised water was prepared 

by purifying tap water using a mixed anion and cation ion exchange resin, which was 

housed in a 100 mm x 500 mm column. The deionised water filled a 60-1 reservoir tank. 

The pipe between the column and the tank was fitted with a conductivity meter to monitor 

the quality of the water. The lowest acceptable water quality was 0.5 M Q. 

2.1.2 Tap water 

Untreated tap water was used to water the pot experiment plants and for first rinses during 

glassware cleaning. 

2.1.3 Purite water 

Solutions prepared for AA analysis were made up using water deionised by a Purite system 

(Purite Select Analyst). The heavy metal content of this water was 'guaranteed' <0.0001 

mg/I. This will be referred to as Purite water hereafter. 

2.2 Glassware 

All volumetric glassware used in the study was Analytical Grade B glassware. 

Cleaning glassware 

All glassware, plastic items and other pieces of equipment which came into contact with 

solutions or samples were cleaned thoroughly prior to use. Items were soaked for at least 

twelve hours in 10% Decon 90 solution made up in deionised water. Items were rinsed 

three times under running tap water and a further three times using deionised water. Items 

were then dried either in a pie oven (40°C) or, in the case of larger items, on a drying rack. 

Clean items were stored in closed drawers or cupboards covered in paper towel to prevent 

contamination with dust or other extraneous material. 

Glassware used in acid digestion for atomic absorption (A A) analysis was soaked 

overnight in Decon 90 solution made up in deionised water, then rinsed three times using 

tap water. The glassware was then transferred to a 2% nitric acid solution where it was left 
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to soak for at least 4 hours, before rinsing three times using tap water followed by a further 

three rinses using deionised water. The glassware was given a final rinse with Purite water. 

The glass extraction unit for the digestion block was dismantled and similarly washed if it 

had been used for digests other than nitric acid or aqua regia. Care was taken when the 

digestion block had been used for metal catalysed digestions, particularly Kjeldahl digests, 

which were catalysed using copper sulphate and selenium tablets and thus posed a high 

risk of contamination. 

2.3 Matrix components 

Plants were germinated and grown in both solution and s.oil matrices. Solutions were made 

up in either purite water (germination study; Section 2.5) or nutrient solution (hydroponic 

studies; Section 2.8-2.11). 

2.3.1 Knops nutrient solution salts 

Knops nutrient solution, as described by McGregor (1999), was made up using the salts 

detailed in Table 2.1 in deionised water. 

Table 2.1 Salts used in full strength Knops nutrient solution. Weights are the weight of 
salts added to 22 I of deionised water to obtain full strength nutrient solution. Full 
strength nutrient solution included 2.2 ml of K solution (Table 2.2). 

Salt Formula Weight (g) 

Calcium nitrate Ca(N03)z'4H20 18.04 

Iron citrate C6~07Fe'3H20 0.52 

Magnesium sulphate MgS04 10.80 

Potassium nitrate KN03 11.00 

Potassium orthophosphate K2HP04 3.80 

Knops solution included an addition of a trace element solution (K Solution, Table 2.2). 

Table 2.2 Knops trace element solution (K solution). Weights are the weight of salts 
added to 100 ml of Purite water. 

Salt Formula Weight (g) 

Boric acid H3BO 2.86 

Manganese sulphate MnS04'4H20 1.38 

Zinc sulphate ZnS04'7H20 0.22 

Copper sulphate CuS04'5H20 0.08 

Molybdic acid H2Mo0 4 0.09 
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2.3.2 Component salts of metal-containing solutions 
All metal-containing solutions were made up using metal-nitrate salts (Table 2.3). 

Table 2.3 Component salts of metal-containing solutions. The purity is the certified 
percentage purity of the supplied salts. All salts were supplied by Avocado. 

Salt Formula Purity (%) 

Cadmium nitrate tetrahydrate Cd(N03)2'4H2O 99 

Chromium (III) nitrate nonahydrate Cr(N03)3'9H2O 99 

Copper (II) nitrate trihydrate CU(N03)2'3H20 98 

Lead (II) nitrate Pb(N03)2 99 

Nickel (III) nitrate hexahydrate Ni(N03)3'6H2O 99 

Zinc (II) nitrate hexahydrate Zn(N03h'6H2O 99 

These salts are deliquescent and/or hygroscopic; therefore, after opening the bottles, 

Parafilm 'M' laboratory film was used to seal their lids. They were also placed in a 

desiccator containing silica crystals which was vacuum sealed. Care was taken to weigh 

the salts out quickly allowing minimal exposure of the salt to ambient air. The nitrate salts 

were used as they have greater solubility relative to other metal salts. 

2.3.3 Salt solution preparation 
All salt solutions in the study were prepared as follows unless otherwise stated. 

Calculations 

The weight of salt required equalled the weight of metal ion multiplied by the weight ratio 

of salt metal ion (including any water of hydration). The weight of metal ion required 

equalled the target concentration multiplied by the final solution volume. 

Example: To prepare a 500 mg/l cadmium solution in a 500 ml volumetric flask using 

cadmium nitrate tetrahydrate. The formula masses of cadmium and cadmium nitrate 

tetrahydrate are 112.41 and 308.48, respectively. 
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Weight of cadmium (mg) = 500 (mg/l) x 0.5 (1) = 250 (mg) 

formula mass salt 
Weight of salt = weight of cadmium x ---------

formula mass cadmium 

Weight of salt (mg) = 250X(308.48J = 686.06 (mg) 
112.41 

Preparation method 

Weight of salt (g) = 686.06 = o. 6860 (g) 
1000 

The calculated weight of metal salt was weighed out using a four figure balance. If the 

weight was greater than 0.5 g, the salt was weighed directly into a beaker. If the weight 

was less then 0.5 g, the salt was weighed onto an ahiminium foil weighing boat then 

transferred to the beaker with washings. Once the correct weight of salt was in the beaker 

the solvent matrix was added and the mixture was stirred until the salt had completely 

dissolved. The stirring was either done manually using a glass rod or automatically using a 

magnetic stirrer and stirrer bar. 

The resulting solution was then transferred to a volumetric flask. The beaker and stirrer 

bar/rod were then rinsed with the solvent matrix and the rinses transferred to the 

volumetric flask. The 'washing' procedure was repeated three times. The solvent matrix 

was then carefully added to the volumetric flask until the bottom of the meniscus was 

exactly on the mark. The solution was then homogenised by completely inverting the 

volumetric flask at least nine times. 

Additional steps in Knops solution preparation 

Knops solution was made up in a 22-1 flask. Each of the salts detailed in Table 2.1 were 

brought into solution separately before addition to the 22-1 flask, to avoid co-precipitation 

of the salts. A 2.2 ml volume of K solution (Table 2.2) was added to 22-1 of Knops nutrient 

solution. Potassium orthophosphate solution was added last, after full dissolution of the 

other salts, to minimise the formation of phosphate precipitates. Prepared Knops solution 

was stored in a 22-1 flask wrapped in double sided hydroponic NFf sheeting to prevent 

algal growth. Modification of the Knops solution included: the omission of potassium 

orthophospate to produce a phosphate free solution; the adjustment of weights of salt 

added to produce a reduced strength nutrient solution. Where such modifications were 

made is indicated in the corresponding sections. 
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2.3.4 Component salts of metal-containing soils 
The component metal salts of the artificial soils are detailed in Table 2.4. 

Table 2.4 Component salts of metal-containing soils. Salts used to prepare TI-T4 
artificial soils (pot experiments; Section 2.6, 2.7). RDHASH is an abbreviation for 
Riedle-De Haen Ag Seelze-Hennser. 

Salt Formula Supplier 

Cadmium chloride hemipentahydrate CdCh·2.5H20 Aldrich 

Copper (II) chloride hydrate CuCh·H20 Aldrich 

Lead nitrate Pb(N03) RDHASH 

Nickel (II) chloride hexahydrate NiCh·6H2O Aldrich 

Potassium dichromate K2Cr20 7 RDHASH 

Zinc chloride ZnCh Aldrich 

2.4 Plant species 

The plant species considered in the study were Linum usitatissimum (flax), 

Brassica nap us var. oleifera (oilseed rape), Miscanthus x giganteus (miscanthus grass or 

elephant grass, referred to from now on as miscanthus) and Urtica dioica (stinging nettle, 

referred to from now on as nettle). Flax and oilseed rape seeds were kindly donated by 

NIAB, Cambridge and miscanthus rhizomes were kindly donated by ADAS, Arthur 

Rickwood. Nettle rhizomes and seeds were collected from wild populations growing in 

Glasgow University grounds (Garscube estate). Where appropriate, the agricultural variety 

names of the species are discussed in the relevant sections. 
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2.5 Germination of flax and oilseed rape 

Two plant species were used in the germination study: flax (varieties Belinka and Viking) 

and oilseed rape (varieties Martina and Rocket). 

25.1 Germination procedure 
Each of the plant varieties were germinated in Petri dishes (sterile crystal polystyrene 

single vent 90 mm diameter; Bibby Sterilin) containing vermiculite. Vermiculite was used 

as it was available in large amounts at low cost relative to the expense of germination 

paper and it had the water holding capacity necessary to provide a reservoir for the 

seedlings over the 12-d germination period. To prepare the vermiculite, -500 ml of 

vermiculite was ground in a Waring blender for 30 seconds after which it was passed 

through a 2 mm stainless steel sieve. Four teaspoons (approximately 20 ml) of this fine 

vermiculite was put into Petri dishes. This provided a moist evenly surfaced mat for 

germination. Twenty seeds of each variety were sown per Petri dish. Each treatment was 

replicated five times giving a maximum possible germination of 100 seeds. 

25.1.1 Micro-growth chambers preparation 
Petri dishes were modified to form micro-growth chambers after an initial 3-4-d 

germination period. Micro-growth chambers were prepared by cutting A4 overhead 

projector acetates into 15 cm x 28.8 cm pieces (the circumference of the Petri dish being 

28.26 cm). The pieces were then stapled into a closed tube, which fitted against the inside 

wall of the Petri dish exactly. Finally, the lid was placed on top of the tube to provide a 

chamber with minimal loss of moisture due to evaporation. 

2.5.2 Growth phase 
Each Petri dish received 20 ml of either a control or metal solution. Purite was used as the 

control solution. Metals were added as their nitrate salts (Section 2.3.2) and all solutions 

were made up in Purite water. The metal solution concentrations used in the germination 

study are detailed in Table 2.5. All the varieties were germinated at the lower of the two 

concentrations. Additionally, flax, variety Viking, was also treated with the higher metal 

concentrations (Table 2.5). 
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Table 2.5 Metal concentrations of the solutions added to the germination Petri dishes. 
Values shown are solution concentrations added to: (a) each variety of flax (Martina, 
Rocket) and oilseed rape (Belinka, Viking) and (b) flax (Viking) only. 

Concentration (JLglml) 
(a) (b) 

Cadmium 500 1037 

Chromium 1000 1560 

Copper 500 .950 

Lead 500 1130 

Nickel 500 1000 
~inc 1000 2000 

After sowing the seeds and adding solution to the Petri dishes, the lids were replaced to 

prevent evaporation of the solutions. The Petri dishes were then placed in a growth 

chamber with a 16-h photoperiod. When the first seedlings germinated, the acetate tubes 

were placed in the Petri dishes creating the micro-growth chambers. The seedlings were 

allowed to germinate and grow for a 12-d period after which they were counted. The flax 

variety Viking seedlings were allowed to grow for a total of 17 days after which they were 

also counted and in addition, their shoot lengths were measured. 

2.6 Pot Experiment One 

Elucidating plant responses to highly metal contaminated soil matrices 

2.6.1 Preparation of highly metal contaminated soils 
The soils used for Pot Experiment One were artificial soils which had been prepared three 

years earlier by McGregor (1999). These soils were made up to represent a highly metal 

contaminated spoil type matrix with a high gravel and stone content. The soils were 

prepared as described by McGregor (PhD Thesis, 1999; Chapter 2). The method is 

reproduced in Section 2.6.1.1 (shown in Arial font). The control soil was the topsoil/grit 

mixture described in Section 2.6.1.1 without the addition of the metal salts. 

2.6.1.1 Soil preparation (McGregor, 1999) 
Five tons of uncontaminated top soil obtained from building excavations was mixed with 

commercially purchased grit to prepare a topsoil/grit mixture suitable for the experiment. 

The mixture consisted of approximately ten wheelbarrow loads of soil mixed with five 25 

kg bags of medium to coarse grit. After mixing, the mixture was passed through a rotating 

drum garden shredder to break down the soil aggregates and further mix the material. 
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The weight of metal salt required to create the chosen soil concentration was calculated 

on the basis of each pot containing 8 kg of the prepared soil/grit mix. Due to the overall 

volume of soil used and the relatively dry nature of the soil, no attempt was made to adjust 

the weight of added salt to take account of the moisture content of the soil. 

Metal salts were chosen on the basis of their solubility in water although the availability 

and cost was also taken into consideration. It was also important that a similar type of salt 

was used where possible such as metal chlorides. The commercial name and 

manufacturer of each salt are given in [Section 2.3.2]. The weight of salts added to each 

pot are detailed in [Table 2.6]. 

Table 2.6 Weight of salts added to pot soils. 

Soil metal Formula weight of Weight of salt 
treatments (mg/kg) salt added to 8 kg of 

500 zinc 136.28 8.32 
3000 zinc 136.28 49.92 
500 copper 170.48 8.44 
2000 copper 170.48 33.76 
500 nickel 237.71 16.2 
1000 nickel 237.71 32.4 
300 cadmium 228.34 4.87 
1000 cadmium 228.34 16.24 
2000 chromium 294.19 45.12 
2000 lead 331.20 25.6 

Eight kilograms of the prepared planting soil was weighed into a large plastic bucket and a 

pre-weighed weight of the desired metal salt was emptied into the bucket and mixed 

thoroughly with the soil. Finally the glass jar containing the metal salt was rinsed with 

deionised water and the washings were added to the soil. All mixing buckets were washed 

between different metal treatments. 

In total, McGregor prepared 40 x 8 kg pots for each of the zinc, copper, nickel and 

cadmium soil treatments and 20 x8 kg pots for the chromium and lead treatments. In the 

three years prior to Pot Experiment One the soils were used by McGregor to grow trees in 

a polytunnel in Garscube Estate and received add lib watering during that time. 

The pH and loss of ignition of the Pot Experiment One parent soils were established upon 

preparation. The soil, at a water to soil ratio of 1:2.5, had a pH of 5.3 and, at a 0.01 M 

CaCh to soil ratio of 1:2.5, had a pH of 4.9. The loss on ignition was 7.4% (McGregor 

1999). 
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2.6.1.2 Soil homogenisation 

The containers used in Pot Experiment One were window box style pots with internal 

dimensions of 640 mm x 250 mm x 240 mm. These pots held 28 kg of soil and each 

treatment was replicated four times, therefore, 112 kg of each soil was required in total. To 

ensure that the soils used in Pot Experiment One were homogenous, each of the soil 

treatments prepared and used by McGregor (1999) were re-mixed. Approximately 30 kg of 

each soil was transferred into a large plastic drum. The drum was then rolled back and 

forth and tipped end over end to thoroughly mix the soil material. Samples of the 

homogenised material were placed in plastic bags ready for acid digestion. The remaining 

soil was transferred to the window box style pots. The plastic drum was rinsed thoroughly 

three times with tap water before mixing each soil treatment. 

2.6.1.3 Final soil metal concentrations 
The metal concentrations of the re-mixed Pot Experiment One soils as determined by aqua 

regia digestion (Section 2.12.1) and AA analysis (Section 2.13) are shown in Table 2.7. 

Table 2.7 Pot Experiment One aqua regia digestible soil metal concentrations. 
Standard deviations are shown (st. dev.) with n = 4. 

Soil metal treatment Abbreviation 

2.6.1.4 Sewage sludge soil 
The sewage sludge soil was taken from a sewage farm (Stoke Bardolph). Sewage sludge 

had been applied to this site for over 50 years resulting in a high metal content. (Rundel 

and Holt, 1983). This soil was collected form the Stoke Bardolph site and used in the pot 

experiment study without any further treatment. 
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2.6.2 Method of growing flax, miscanthus and nettle in highly metal contaminated 
soils 

Pot Experiment One was conducted in a poly tunnel within the walled garden at Glasgow 

University's Garscube estate. The plant species observed were flax, miscanthus and nettle. 

The flax was sown as seeds whilst the nettle and miscanthus plants were planted as 

rhizomes. The miscanthus and nettle rhizomes pieces were thoroughly cleaned using tap 

water prior to planting. Exactly 50 seeds of flax, variety Viking, were sown and four 

rhizome pieces of both nettle and miscanthus were planted per pot. 

To replicate the soil conditions as closely as possible, each of the three plant species was 

planted in a communal pot which was subdivided into th~ee sections using hardboard cut to 

fit exactly the internal pot diameter. This ensured that the plant species had identical 

growth conditions whilst any root interaction was prevented. The plant species were 

arranged randomly both within pots and within the polytunnel. These random positions 

were determined by drawing lots. Each pot was replicated four times. 

The plants were grown over a 16-week period during which time they were watered such 

that a moist, rather than dry or waterlogged, soil environment was maintained. The number 

and maximum height of shoots was recorded throughout the growth period. At the end of 

the growth period the shoots of all the plants were harvested, however, only the roots from 

the flax plants were harvested. 

2.6.3 Method of growing oilseed rape in highly metal contaminated soils 

Latterly, oilseed rape was also sown in pots to ascertain their growth in highly metal 

contaminated soils. Fifty oilseed rape seeds were sown into lO-inch pots containing the 

treated soils prepared in the manner described in Section 2.6.2. Each treatment was 

replicated four times. None of the oilseed rape plants survived in the Pot Experiment One 

soils. 
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2.7 Pot Experiment Two 

Elucidating plant responses to marginally metal contaminated soil matrices 

Pot Experiment Two soils contained the same metals as Pot Experiment One (Cd, Cr, Cu, 

Pb, Ni and Zn) but lower soil metal concentrations were chosen due to poor growth of the 

plants in the Pot Experiment One soils. Additionally, dilution of the soil allowed the plant's 

response to metal concentrations close to the Inter-departmental Committee on the 

Redevelopment of Contaminated Land (ICRCL) guideline levels for contaminated land 

(Guidance Note 59/83) to be investigated. The ICRCL threshold levels for the metals in the 

study are shown in Table 2.8. 

Table 2.8 ICRCL 59/83 Trigger concentrations. The group A values shown are for 
domestic gardens and allotments. The group B values shown are for any land use 
where plants are grown 

130 
70 
300 

To produce soils at the desired concentrations whilst retaining the aged characteristics of 

the artificial soils, Pot Experiment Two soils were derived from Pot Experiment One soils. 

This was achieved by diluting Pot Experiment One soils with a combination of vermiculite 

and potting sand. This dilution matrix combined the bulking and strong water holding 

capacity of the vermiculite with the density and free drainage properties of the potting 

sand. These qualities made the new soil matrices less structurally hostile to the plants than 

the parent soils. 

Four replicates pots were prepared for each plant-treatment combination. Four plant 

species (flax, miscanthus, nettle and oilseed rape) for each of six metals, each at two 

concentrations, in addition to three control soils (A, B and C) and a sewage sludge soil 

resulted in a total of 64 pots. 
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2.7.1 Preparation of marginally metal contaminated soils 

Pot Experiment One soils were passed through a 2 mm steel slab soil sieve and allowed to 

air dry. Removing the larger stones and water allowed the soils to be accurately diluted. 

2.7.1.1. Soil dilution 
Each pot contained 400 g of soil matrix: 15 g of vermiculite was added to each pot and the 

remaining 385 g was made up of Pot Experiment One soil and sand. The weight of sand 

added was determined by the weight of Pot Experiment One soil required, such that the 

final combined weight of sand and soil was 385 g (Table 2.9). 

Air dried and sieved Pot Experiment One soil (Tl), veimiculite and sand fractions were 

weighed using a two-figure balance and transferred to a plastic bag. The bag was then 

shaken for 5 seconds to homogenise the matrix before immediately transferring the matrix 

to the pot. Each of the 16 replicate pots, for each treatment, was prepared individually. 

Control soils 

Control soils were prepared by dilution of the Pot Experiment One control soil. Two 

control soils (A and B) were required to reflect the range in dilution factors used in 

preparing the metal-containing soils. Control soils containing 30% (control soil A) and 

10% (control soil B) of the Pot Experiment One soil were, therefore, prepared by dilution 

with sand and vermiculite (Table 2.9). 

A third control soil, collected from the Garscube walled garden (Control soil C), was used 

undiluted. 

Metal-containing soils 

The target concentrations for the Pot Experiment Two soils were 100% and 120% of the 

ICRCL 59/83 (Second Edition) threshold levels for contaminated land. The dilution factor 

for each soil was calculated by dividing the target concentration (Table 2.8) by the original 

soil concentration (Tl soils; Table 2.7). The weight of sieved and air dried Pot Experiment 

One soil (Tl) required per pot was the dilution factor multiplied by the total weight of soil 

per pot (400 g). The weights of Tl soil, vermiculite and sand added to each pot for each 

treatment are shown in Table 2.9. 
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Table 2.9 Weights of prepared Pot Experiment One soil, vermiculite and sand added 
to each experiment two pot. Tl Soil denotes sieved and air dried Pot Experiment 
One soil. T3 and T4 denote metal soil concentrations 100% and 120% of the ICRCL 
threshold trigger values, respectively. 

Sand 
Treatment 
Control soil A 265.00 
Control soil B 345.00 

15.00 381.40 
15.00 297.81 
15.00 289.38 

PbTI 15.00 317.00 
15.00 346.63 
15.00 221.00 

15.00 380.60 
15.00 280.63 
15.00 270.63 

PbT4 15.00 303.38 
15.00 339.00 
15.00 188.19 

Sewage sludge soil 

The sewage sludge soil used was described in Section 2.6.1.4. 

2.7.2 Method of growing flax, miscanthus, nettle and oilseed rape in marginally metal 
contaminated soils 

Pot Experiment Two was conducted in a greenhouse within the walled garden at Glasgow 

University's Garscube estate. The plant species observed were flax, miscanthus, nettle and 

oilseed rape. Flax, nettle and oilseed rape were sown as seeds whilst miscanthus was 

planted as rhizomes. Fifty flax seeds (variety Viking) were sown into each of four replicate 

pots for each of the soil treatments. Similarly, 30 nettle seeds and also 20 oilseed rape 

seeds (variety Synergy), were sown into each of the species' four replicate pots for each 

soil treatment. For miscanthus, one rhizome piece with several buds was selected and 

planted into each of the four replicate pots for each soil treatment. 

The plants were grown over a 15-week period. After sowing, the pots containing flax, 

nettle and oilseed rape, were covered with plastic bags to retain moisture and therefore 

promote germination. The bags were removed on an ad hoc basis once several seedlings 

had emerged from each pot. During week five (Day 40), it was necessary to replant some 

of the miscanthus plants as the rhizome pieces did not produce any shoots. In week five, 
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each pot was fertilised using 50 ml of full strength Knops solution. For the remainder of 

the growth period, each species was grown without further nutrient addition. Water was 

supplied to maintain a moist soil environment. 

During week eight, the oilseed rape plant were subject to severe herbivorous attack by 

cabbage white caterpillars. The oilseed rape plants were successfully treated using a 

malithion insecticide according to the manufacturers instructions: additionally the other 

plant species were treated prophylactically. 

At the end of the growth period the numbers of surviving plants in each pot were recorded 

as were the heights of the flax and miscanthus plants. The shoots of all the plants were 

harvested. 

2.8 Nutrient film technique (NFT) study 

2.8.1 NFT System 
The system comprised 14 specialist NFf channels (132 x 15 x 8 cm), 14 small pumps (5 

watts Mini jet Aquarian Systems), pipe and 56 right angle pipe fittings, all purchased from 

Sunlighter Systems. Fourteen 5-1 reservoir bottles (thoroughly rinsed Decon 90 containers) 

and a metal frame (Handy angle) completed the system (Fig. 2.1). A hole was cut in the top 

of the 5-1 reservoir containers to allow access of the pump. The NFf channels had ridged 

floors to allow the solution to run along the grooves in an even, regular flow. A large filter 

funnel was placed in the lid of the reservoir container to catch the solution flowing from 

the end of the NFf channel. The system was assembled as shown in Figure 2.1. 

Throughout the NFf experiment the slope of the channels was maintained at 10%. 



NFT Channel 

Funnel 

-+-- 5-1 Reservoir container 

-,---Pump 
'----__ .l.....-L---' 
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Figure 2.1 NFT system set up. The diagram shows the circulation of NFT solution ( ). 
The direction of flow is indicated by the arrows. The equipment is not drawn to 
scale. 

2.8.2 Hydroponic growth collars 

Brown plastic drainpipe with an internal diameter of 70 mm was purchased from a 

plumber's merchant. The pipe was cut into 30 mrn lengths. Ballet netting with a mesh size 

of 2.5 mm, purchased from a haberdashery, was used as a membrane for the base of the 

collar to contain the growing matrix and the seeds. Shorter pieces of drainpipe were cut 

into 20 mm sections, then cut along their lengths to form a split ring. The ballet netting was 

glued to the outside 30 mm section then the 20 mm spilt ring was glued in place round the 

outside of the 30 mm section to clamp the ballet netting securely. The growth collar was 

held tightly with an elastic band whilst the glue set. This produced a cheap effective 

container for the support matrix and seeds (Fig. 2.2). 

T T 
70mm 30mm 

1 1 
Ballet Netting Hat} /IN 

Figure 2.2 Hydroponic growth collars. 
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Black Innovex linear low density polyethylene beads (ICI) were used to support the seeds 

while providing an inert matrix which would not interfere with the metal solutions. A layer 

of beads (~1 0 mm) was placed in the collar followed by a ~2 mm layer of vermiculite 

(prepared as described in Section 2.5.1) on to which the seeds were sown. The seeds were 

covered by a further ~2 mm layer of vermiculite and fmally a second ~ 15 mm layer of 

beads to complete the growth collar seed bed (Fig. 2.3). 

Vermiculite 

Figure 2.3 Cross section of a hydroponic growth collar seed bed. 

The NFT system was covered using specialist plastic NFT sheeting (Sunlighter Systems). 

The sheeting had a white surface with high albedo, which was placed uppermost to reflect 

the heat and light energy, and a dark surface placed facing the nutrient solution to minimise 

algal growth. 

2.8.3 NFT Growth phase 

There were 14 channels in the NFT system available for the experiment. Two metals at six 

different concentrations could, therefore, be observed in separate channels simultaneously: 

the seventh and fourteenth channels contained a control solution for each of the two 

metals. Each channel had five replicate growth collars uniformly spaced along its length. 

Flax plants were established in growth collars prior to transfer to the NFT system. Fifty 

flax seeds were sown in each growth collar and the collars placed in seed trays. The collars 

were then moistened by applying 2/5th strength Knopps nutrient to the top of the collars to 

initiate germination before being placed in an incubator with a 16-h photoperiod at 25°C 

for 14-d. After the 14-d establishment period, the growth collars were transferred into the 

NFT system. The NFT system was located in a greenhouse where a 16-h photoperiod was 

maintained using 400 watt mercury halide growth lights (Philips HPl Plus Bus B, 

Sunlighter systems). The temperature was maintained at 20°C throughout using a 

thermostatically controlled heater. 
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Five litres of metal solutions, of the concentrations detailed in Table 2.10, were prepared in 

2/Sth strength phosphate free Knops nutrient. Solutions of each of the six concentrations for 

two metals were prepared simultaneously. Once prepared these solutions were decanted 

into the S-l NFl' reservoir containers. The solutions were then run through the NFl' system 

using the pumps. After 7 d the reservoir containers were replaced with containers filled 

with freshly prepared metal solutions. 

Table 2.10 NFT solution concentrations. Values shown are the target concentrations for 
the NFl' solutions. 

Metal Target solution concentration (J.f.glml) 
Cd 1 I 21 I 51 I ' 101 I·· 151 20 
Cr 0.025 0.1 1 0.25 1 0511< 11 2 
Cu 1 2 1 5 1 '1011," 

, 
151 20 

Pb 4 10 I 20 I ' .401 I· 601 80 
Ni 0.2 0.6 I 1 I 211 61 10 
Zn 10 I 201 I 4011 601 I 751 I 100 

After 14 d growth in the NFl' system, the number of surviving plants and the extent of 

plant chlorosis relative to the control plants were recorded. 

2.9 Flax varietal comparison study 

Twelve varieties of flax were used in the flax varietal comparison study: Argos, Ariane, 

Diane, Electra, Elise, Escalina, Evelin, Hermes, Martta, Rasia, Viking and Viola. Each 

variety was grown in a separate growth collar (Section 2.8.2) into which SO seeds were 

sown. The 12 collars were placed in a seed tray containing either the control solution or a 

metal treatment solution. 

The metals used in the flax varietal comparison study were Cd, Cr, Cu, Ni, Pb and Zn; a 

control solution was also included. The metals solutions were made up from their nitrate 

salts (Section 2.3.2). The solutions were made up in 2/Sths strength phosphate free Knops 

solution (Section 2.3.1). The target concentration for each metal is shown in Table 2.11. 

Each treatment was replicated four times. To ensure identical growing conditions for each 

of the treatments, a seed tray for each metal and one control tray were grown 

simultaneously. This procedure was repeated four times. Owing to limited growth space, it 

was not possible to grow four replicates of each metal treatment concurrently, thus, the 

replicate treatments were grown consecutively. 
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Table 2.11 Flax varietal comparison study target solution metal concentrations. 

Treatment [Phosphate free Knops solution] Target [metal] (Jlglml) 

Control 2/5ths strength 

Cd 2/5ths strength 5.00 

Cr 2/Sths strength 1.00 

Cu 2/Sths strength 2.00 

Pb 2/5ths strength 40.00 

Ni 2/5ths strength 1.00 

Zn 2/5ths strength 10.00 

Seven seed trays were prepared simultaneously allowing one tray for each treatment and 

one control tray. Once prepared and sown, the trays were watered using the prepared metal 

or control solution. Prior to germination, control and metal-containing solutions were 

added to the top of the collar in order to moisten the vermiculite seedbed layer. The trays 

were then placed in an incubator at 2SoC with a 16-h photoperiod for 7 d. Post

germination, the solutions were added directly into the seed tray rather than watering from 

above, to avoid contamination of the stem and leaf material with any metal solution. After 

the 7-d period in the incubator, the plants were moved to a greenhouse where a 16-h 

photoperiod was maintained using 400 watt mercury halide growth lights (Philips HP1 

Plus Bus B, Sunlighter systems). The temperature was maintained at 20°C throughout 

using a thermostatically controlled heater. For the first two days the seed trays were 

watered with 2/Sths Knops solution containing phosphate (Section 2.3.1), to prevent the 

plants suffering from phosphate deficiency. After the 2-d growth period in the normal 2/5ths 

strength Knops solution, the solutions were replaced with the metal-containing solutions 

once more. The plants were then grown in these metal-containing solutions for a further 

19-d period, during which time the trays were topped up with the treatment solution 

according to the plants requirement for water. Depending on the rate of evapotranspiration, 

the seed trays received between six and eight litres of treatment solution. The total growth 

period was 28 d during which time the plants were exposed to the metal solutions for 26 d. 

After the 4-week growth period, the maximum plant height and fresh weight of stem and 

leaf material, in each collar, was measured to allow comparisons between varieties to be 

made. Additionally, signs of chlorosis were recorded. The plants in each collar were 

harvested and separated into two fractions: a stem and leaf fraction and a root fraction .. 

The plant material contained within the internal volume of the collar was discarded along 

with the black beads and vermiculite support material to prevent any vermiculite 
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contamination in the subsequent acid digests. The plant fractions were then washed under 

tap water and rinsed with deionised water and any residual vermiculite attached to the 

roots, carefully removed. The plant material was then put in folded 25 cm Whatman No.1 

filter paper envelopes and oven dried (80°C). Once dry, the stem and leaf material was 

weighed (shoot dry weight) and the root material was also weighed (root dry weight). The 

dried shoot and root material from each variety was stored in a self seal plastic bag until 

required. 

The oven dried root fractions and stem and leaf fractions, for each of the replicate 

treatments, were pooled to give a bulk sample which was then prepared for acid digestion 

and AA analysis (Section 2.12). The varieties grown in the flax varietal comparison study 

did not yield sufficient root material to allow replication of the acid digestion analysis, 

however, a single bulk sample from all the replicates was prepared and analysed. 
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2.10 Buthionine sulfoximine (BSO) study 

Collars, as described in Section 2.8.2, were sown with 50 flax seeds of variety Viking. The 

collars were then placed in an incubator at 25°C with a 16-h photoperiod for 7 d to allow 

the seeds to germinate before transferral to Kilner jars containing the treatment solutions 

(Table 2.12). Each treatment was replicated six times. 

Table 2.12 Treatment solutions used in the BSO study. Values represent the target 
concentrations for Cd and BSO. Each treatment solution was made up in phosphate 
free Knops nutrient solution to a final strength of 2/5ths normal strength (Section 
2.3). Buthionine sulfoximine (BSO) was added at either 100 IlM or 25 IlM and Cd 
was added at 44.5IlM. 

Treatment [Phosphate free Knops solution] Target [Cd] Target[BSO] 

Control 2/5ths strength - -

Cd 2/5ths strength 44.5 IlM (5 Ilg/ml) -

BSO(a) 2/5ths strength - 100 IlM 

BSO(a) + Cd 2/5ths strength 44.5 IlM (5 Ilg/ml) 100 IlM 

BSO(b) + Cd 2/5ths strength 44.5 IlM (5 Ilg/ml) 251lM 

The Kilner jars (1.5-litre) were wrapped in aluminium foil to prevent any light from 

stimulating algal growth within the jars. The necks of the Kilner jars had the same internal 

diameter as the external diameter of the growth collars, thus, the collars were supported 

when placed directly in the neck of the Kilner jars. Care was taken when transferring the 

seedlings to the Kilner jars not to damage their delicate root systems. 

The Kilner jars were then placed in the greenhouse where they were given a 16-h 

photoperiod using 400 watt mercury halide growth lights (Philips lIP1 Plus Bus B, 

Sunlighter systems). The temperature was maintained at 20°C throughout using a 

thermostatically controlled heater. 

The plants were grown for a 14-d period during which the nutrient solution was 

replenished to prevent the plants drying out. However, evaporation from the Kilner jars 

was minimised by the seal provided by the tight fit of the collars in the neck of the jars. 

Representative samples of the solution were taken during the growth period for AA 

analysis (Fig. 6.4; Section 6.1.2). Additionally, the Kilner jars were shaken daily to ensure 

the treatment solutions remained homogeneous. 



Kerr, J. 2003, Materials and methods 46 

After the 14-d growth period, the plants were harvested. For each collar the number of 

shoots and the fresh weight of shoot tissue were recorded. The shoots were then dried in a 

pie oven (40°C). The collars were removed from the Kilner jars, again taking care not to 

break the brittle hydroponic roots. Roots were collected from the base of the collars by 

being tom off. Cutting the roots from the collars was not a viable option as this sampling 

method would have destroyed the netting, preventing re-use of the collars and allowing the 

vermiculite and beads to spill out and contaminate the root sample. The roots were washed 

carefully to prevent loss of the root material but thoroughly to remove all traces of 

vermiculite and the nutrient solution. Washing of the roots included three rinses with tap 

water, followed by two rinses with deionised water and finally a rinse with Purite water. 

For each treatment, the roots from each of the five collar replicates were pooled as the 

yield was too low for separate analysis. The roots were then placed on clock glasses and 

dried in a pie oven (40°C). The dry shoot and root material was weighed and stored in self 

seal plastic bags. 

2.11 Histidine study 

The experimental procedure for the histidine study was conducted in the same way as for 

the B.S.O. study (Section 2.10). Two criteria were modified: the treatment solutions (Table 

2.13) and the length of the growth period which was extended from 14-d to 19-d. 

Table 2.13 Treatment solutions used in the histidine study. Values shown are the mM 
target concentrations for Ni, Cu and histidine (His) in Each treatment solution was 
made up in phosphate free Knops nutrient solution to 2/5ths normal strength (Section 
2.3). The metal concentrations were equivalent to 9.98 Jlglml and 21.60 Jlglml for Ni 
and Cu, respectively. The solutions were made up in 1.51 Kilner Jars. 

Treatment Phosphate free 
Knops solution 

Control 2/5ths strength 

Histidine 2/5ths strength 

Nickel 2/5ths strength 

Copper 2/5ths strength 

Histidine + Nickel 2/5ths strength 

Histidine + Copper 2/5ths strength 

[Ni] 

0.17mM 

0.17mM 

[Cui 

0.34mM 

0.34mM 

[His] 

0.34mM 

0.17 mM 

0.34mM 
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2.12 Sample metal analysis 

Plant and soil analyses were conducted according to the Glasgow University A.F.E. 

Chemistry Department standard protocol. The analysis protocol included sample 

preparation, sample digestion and atomic absorption analysis. Extraction procedures were 

also used. 

2.12.1 Sample preparation 

2.12.1.1 Soil preparation 
Soils and spoils were air dried on clean plastic sheeting before sieving through a i mm 

steel sieve. A - 50g representative sub-sample of sieved soil was ground in a mortar and 

pestle to a fine powder before being stored in a self seal plastic bag. 

2.12.1.2 Plant preparation 
Plant samples were washed three times with tap water, followed by two rinses with 

deionised waste and given a final rinse with Purite water. The plant sample was dried in a 

pie oven (40°C, 12 h) to remove the bulk of the moisture before transferral to an oven set at 

80°C for 12 h. The sample was then ground in a hammer cutter mill (Glen Creston 

"Cullattic") with a mesh size of 1 mm. Bulky or woody samples were ground in a larger 

hammer cutter mill (Fritsch 'Pulverisette 19') which had a mesh size of 2 mm. Separation 

of fibrous components of plant tissues occurred during milling of some samples 

(particularly flax). Manual cutting of this fibrous material into short lengths using scissors 

was necessary before mixing the material back into the milled sample. The homogenised 

sample was then stored in a self seal plastic until required. 

2.12. 2 Soil extraction 
Soils were extracted using solutions of increasing strength to give an indication of the plant 

availability of the soil metals. These extracting solutions, in order of increasing strength 

were: 0.5 M calcium chloride (CaCh), 0.05 M ammonium EDT A (EDT A) and aqua regia. 

The CaCh and EDT A extractions were carried out sequentially whereas the aqua regia 

digest was conducted using a fresh soil sample. 
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2.12.2.1 Calcium chloride and EDT A preparation 
Salt solutions were prepared as described in Section 2.3.3. A two figure balance was 

deemed sufficiently accurate for the weighing of the salts. The solvent matrix was 'Purite' 

water. Analar ammonia solution (BDH) was added to the ~DTA solution to promote 

the dissolution of the EDT A salt, prior to adjusting the salt solution to pH 7. 

2.12.2.2 Extraction procedure 

A sub-sample of -2 g of prepared soil material was weighed accurately using a four figure 

balance and transferred to a 4-oz glass jar. A 20-ml volume of either the CaCh- or EDT A

extracting solution was added to each jar using a calibr~ted dispenser. The contents of the 

4-oz jar was then shaken for 16 h on an end over end shaker. At the end of the 16-h 

shaking period, the extracts were filtered through Whatman No. 1 filter papers into plastic 

bottles and stored until required. The procedure was carried out for each soil sample in 

triplicate. 

2.12.3 Acid digestion 

2.12.3.1 Aqua regia digestion of soil material 

Acid digestion of soil was possible using an aqua regia solution consisting of a 3: 1 ratio of 

hydrochloric acid (HCI):nitric acid (RN03). The acids used were 6 M HCI (,AnalaR', 

35.4%, BDH) and 69% RN03 ('AnalaR', 68.5-69.5%, BDH). 

Approximately 0.25g of the soil sample was weighed out on an aluminium weighing boat 

using a four figure balance; the exact weight was recorded to four decimal places. The 

sample was transferred carefully into an acid digest tube. The tube was then tapped once 

on the bench to ensure all sample rested at the base of the tube. The aluminium weighing 

boat was then re-weighed to allow the precise weight of sample, to four figures of 

accuracy, to be recorded. After the second weight was recorded, the aluminium weighing 

boat was cleaned using a balance brush before continuing with the next sample. The 

procedure was carried out for each soil sample in triplicate. 

Aqua regia (10 ml) was dispensed into each acid digest tube and then left, covered with 

paper towel, for at least 12 h, in a fume cupboard to allow the acid to equilibrate with the 

soil. The tubes were then transferred to a digest block (Tecator Digestion System 40 1016 

Digester). A total of 40 tubes could be accommodated per run, out of which three blanks, 

at least, were included. The digest block was set to and thereafter thermostatically 
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maintained at 125°C. An extraction unit designed to fit in the necks of the digestion tubes 

was used to remove N02 gas evolved during the digestion process. The digestion block 

was run for at least three hours or until gas emissions ceased, whichever took longer. 

Once the digestion was complete, the block was switched off and the tubes allowed to 

cool. The contents of the tubes, with Purite washings, were then filtered through hardened 

Whatman No. 50 filter paper into 25-ml or 50-ml volumetric flasks. The smaller 25-ml 

flasks were used when the concentration of the metal in the soil was anticipated to be low. 

The filter papers were allowed to drain fully then these were also rinsed with Purite water 

to ensure all the solution was transferred into the volumetric flask. The volumetric flasks 

were then allowed to cool before making up to the mark.· 

2.12.3.2 Nitric acid digestion of plant material 
Plant digests were conducted in the same way as soil digests (Section 2.12.3.1) with the 

following exceptions: 

The dried ground plant material was digested using 69% nitric acid rather than aqua regia. 

The acid used was BDH 'AnalaR' nitric acid. The digest block was set to a lower 

temperature of 120°C. All plant digests were filtered into 25-ml volumetric flasks. 

2.12.4 Flame atomic absorption analysis 
The atomic absorption spectrophotometer (AAS) used for all the analyses in the study was 

a Perkin Elmer 1100B spectrophotometer. The spectrophotometer was used in normal 

Acetylene/Air Flame mode. 

2.12.4.1 AA standards 
The atomic absorption spectrometer was calibrated using a range of standard solutions for 

each element in the study. Atomic absorption standard solutions were made up in 100-ml 

volumetric flasks. With the exception of lead this required an intermediate dilution step to 

bring the solutions into the necessary range. Two sets of standard solutions were made up 

for every element in the study. One of these sets were calibration standards the other set 

were a set of check standards. The standard solutions used were BDH 'Spectrosol' 

solutions and Reagecon 'AAS Standard Solutions'. Both of these manufacturers produce 

standard solutions as a 1000 ppm solution of the metal nitrate salts in 0.5 M nitric acid. 

Each metal standard was made up separately. All AA standards were made up in the matrix 

of the solutions to be analysed. 
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The Perkin Elmer 1100B spectrophotometer theoretically allows calibration up to six times 

the linear range, however in practice the machine did not give a sufficiently stable response 

for all the elements over this range. Each element was therefore calibrated using the 

following standards. 

Cadmium and Nickel 

Cadmium and nickel had a linear range of 2 ppm and the response of the calibration 

standards was sufficiently stable and accurate response to allow calibration up to three 

times the linear range. Cadmium and nickel standard solutions were made up at 2 ppm and 

6 ppm; check solutions were made up at 1 ppm and 4 ppm. The limit of detection of 

0.02 ppm. 

Chromium and Copper 

Copper and chromium had a linear range of 5 ppm and the response of the calibration 

standards was only sufficiently stable and accurate to allow calibration up to the linear 

range. Chromium and copper standards were made up at 5 ppm; check standards were 

made up at 3 ppm. The limit of detection of 0.05 ppm. 

Lead 

Lead had a linear range of 20 ppm making it the least sensitive of all the elements in the 

study. The response of the calibration graph was only sufficiently stable and accurate up to 

the linear range. The calibration standards were made up to 20 ppm and the check 

standards were made up to 10 ppm The limit of detection for lead was 0.2 ppm. 

Zinc 

Zinc was the most stable element in the study and was the only element which gave a 

sufficiently stable response to allow calibration to six times the linear range. Zinc also had 

the lowest linear range of all the elements in the study of 1 ppm. It was possible to use 

calibration standards up to 6 ppm the check solutions up to this range being accurate to 

within 5%. Zinc calibration standards were made up at 1 ppm, 3 ppm and 6 ppm; check 

standards were made up at 0.5 ppm, 2 ppm and 5 ppm. The limit of detection for zinc was 

0.01 ppm. 



Kerr, J. 2003, Materials and methods 51 

Table 2.14 Limit of detection of elements in solution by AA. The corresponding limits 
of quantification in tissue and soil samples are also shown. These figures are based 
on a 0.2500 g sample digested and made up to a volume 25.00 ml. 

Element Atomic adsorption Minimum detectable 
solution tissue/soil concentration 
(mg/l) (JLg/g) 

Cd 0.02 2.00 

Cr 0.05 5.00 

Cu 0.05 5.00 

Pb 0.20 20.00 

Ni 0.02 2.00 

Zn 0.01 1.00 

2.12.4.2 AA Calibration 

The calibration of the machine was checked at the start of each run and then re-checked 

every 20 samples. The AA was auto zeroed initially after each sample was run and if the 

machine was drifting either up or down then the auto zero was used after each sample, 

however, it was usually only necessary to auto zero the machine after every third sample. 

2.12.4.3 AA Sample analysis 

The burner head position was always optimised at the start of each batch of analysis 

although it was not necessary to do this between elements. If the sensitivity check fell 

below the minimum acceptable value then the burner head was cleaned using a sonic bath 

(Sonicor SO/60Hz) and the nebuliser was optimised, before restarting the machine. 

Care was taken to ensure the samples, and any dilutions, were homogenised before 

analysis by inverting each flask nine times. The solutions were not shaken as air bubbles 

suspended in the matrix caused an underestimate of the true concentration. The AA was set 

to read each sample three time then give an average result. The aspiration time was three 

seconds. The machine was auto zeroed at regular intervals or at least every third sample. 

The top standard was checked, to ensure the top of the calibration graph was not drifting, 

every 20 samples or at least after 40 samples if the zero was stable. 
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3 Plant growth initiation 

The initiation of plant growth was investigated using flax, miscathus, nettle and oilseed 

rape. However, a detailed investigation of germinations was conducted using only species 

that had commercially available seed: flax and oilseed rape. The other two species, 

miscanthus and nettle, were rhizomatous species and thus were propagated using rhizome 

pieces. This chapter will focus primarily on the ability of flax and oilseed rape seeds to 

germinate in the presence of heavy metals. 

3.1 Germination of flax and oilseed rape 

3.1.1 Micro-growth chamber development 

During the initial method development for the germination procedure, the seeds were 

placed in a Petri dish containing vermiculite (Section 2.5). However, seed germination was 

not synchronous. Consequently, the first germinating seedlings raised the Petri dish lids 

which lead to rapid evaporation of the solutions. This evaporation was a source of non

uniform variability which it was necessary to eliminate from the experiment. 

The Petri dish method not only provided a cheap and compact germination compartment 

but also allowed ease of replication and was convenient for the addition of the metal 

solutions. For these reasons and due to the limited space in the growth cabinet, a 

propagator was not considered a practical alternative. Thus, the Petri dishes were modified 

using overhead projector acetates to create 'micro-growth chambers' (Section 2.5.1.1). 

These chambers allowed for 150 mm of growth height by the seedlings whilst maintaining 

a sealed growth chamber, thereby preventing loss of moisture. The transparency of the 

chambers allowed the seedlings full exposure to the 16-h photoperiod. 

3.1.2 Germination study 
The germination study was designed to establish whether or not the seeds of flax and 

oilseed rape could germinate in the presence of Cd, Cr, Cu, Pb, Ni or Zn in solution. As an 

initial investigation into the feasibility of flax and oilseed rape to act as phytoremediating 

crops, the germination rate of two varieties of each species in the presence of the six metals 

was observed. The flax varieties used were Belinka and Viking. The oilseed rape varieties 

used were Martina and Rocket. The seedlings were germinated over a period of twelve 

days. 
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In addition, the flax variety Viking was considered in more detail than the other varieties: 

both its germination and shoot length responses to solution concentrations of two strengths 

were observed after 17 days. Positive germinations for all other varieties were recorded 

when the root and shoot lengths were both > 1 mm. The metal concentration of the 

solutions are detailed in Section 2.5 .2 (Table 2.5). 

3.1.2.1 Germination in control solutions 
The control plant germination of flax variety Viking and oilseed rape varieties Martina and 

Rocket were consistently high (Fig. 3.1), with all varieties giving a germination 2: 95% of 

the total number of seeds. The germination for flax variety Belinka was lower at an 

average of 86%. 
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Figure 3.1 Germination of flax and oilseed rape varieties in control solutions. Mean 
germinations of flax (_) and oilseed rape (_) varieties per Petri dish are shown and 
values above bars represent % germination. Error bars represent SE of mean . 
Maximum number of possible germinations (20) indicated by····. 
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3.1.2.2 Germination in metal solutions 

Initial germination study 

Comparison of seedling germination in the control solution (Fig. 3.1) with those of the 

metal solutions (Fig. 3.2) revealed that there was little impact on the germination of all 

varieties for five out of the six metals studied. The exception was the germination of 

varieties exposed to the Cr solutions; seeds of all four plant species exposed to the Cr 

solution (1000 JLglml) had lower germinations than the seeds exposed to the control 

solutions (Fig. 3.1, 3.2) this difference was significant (t test, P<0.05) for Viking, Martina 

and Rocket. In the Cr solution, the flax variety Viking had the smallest reductIon in 

germination (5%) whilst the oilseed rape variety Martina had the greatest reduction (23%). 

None of the other metals in the study, when compared to the control, gave significant 

reductions in germination. 
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Figure 3.2 Germination of flax and oilseed rape varieties in metal-containing solutions. 
Mean germinations of flax ( ) and oilseed rape (_) varieties per Petri dish are 
shown and values above bars represent % germination. Error bars represent SE of 
mean. The metal concentrations used are detailed in Section 2.5.2; Table 2.5a. 
Maximum number of possible germinations (20) indicated by ····. 
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SuppLemental germination study 

The germination of the flax variety Viking, which had the highest germination in the 

control plants as well as the least reduction in germination in the chromium solution, was 

tested using higher metal concentrations for each of the six metals (Section 2.5.2; Table 

2.5b). The solution concentrations used for the supplementary germination tests on flax 

variety Viking were approximately twice those of the initial test solutions for each of the 

six metals with the exception of Cr. The solution concentration of Cr, which had the 

greatest impact, at the concentrations used, on the initial germinations (Fig. 3.2), was 

increased in the supplementary germination study by 1.5 times the concentration used in 

the initial germination study (Table 2.5). These high metal concentrations were chosen to 

investigate the plant germination response to matrix solutions with extreme metal loadings. 
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Figure 3.3 Germination of flax variety Viking at initial and supplemental metal 
concentrations. Mean germinations per Petri dish are shown for: the control (_), 
(a, _) initial and (b, _) supplemental solution concentrations (Section 2.5.2; Table 
2.5). Values above bars represent % germination. Error bars represent SE of mean. 
Columns with no fill (D) represent germination of plants that produced roots only 
these plants cannot be considered to have germinated successfully. 

The high solution metal concentrations (Section 2.5.2; Table 2.5b) of three of the metals, 

Cd, Cu and Ni, had a dramatic effect on the Viking plants seeds: the plants exposed to Cd, 

Cu and Ni failed to germinate successfully as the shoots either did not emerge or did not 

grow more than 1 mm (Fig. 3.3) although all plants produced roots. In addition to the 

failure of the plants in the Cd, Cu and Ni solutions to germinate, the Viking plant 

germination in the Cr solution fell by 12%, the germination rates in both the Cr a and Cr b 

(Fig. 3.3) were significantly different from the control (t test P<0.05). The marginal 

decrease in germination observed for Viking seeds exposed to the high Pb and Zn solutions 

was not significant. 
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3.1.2.3 Shoot length of Viking seedlings 
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Figure 3.4 Shoot length of flax variety Viking at initial and supplemental metal 
concentrations. Mean length of germinating shoots per Petri dish are shown for: the 
control (_), (a, _) initial and (b, _) supplemental solution concentrations (Section 
2.5.2; Table 2.5). Error bars represent SE of mean. Samples with height <0.5 111111 
represent root growth only. 

Shoot lengths were recorded for the Viking plants germinated in both the initial and 

supplementary solutions (Fig. 3.4). The shoot length data varied from that of the 

germination data in that, with the exception of the initial Pb solution, all shoot lengths were 

markedly shorter than those of the control seedlings. In the initial solution concentrations 

(Section 2.5.2; Table 2.5a) the shoot lengths decreased in the following order: 

Pb » Zn > Cu > Ni > Cd = Cr 

Whilst in the supplementary solution concentrations (Section 2.5.2; Table 2.5b) the shoot 

lengths decreased in the following order: 

Pb» Zn > Cr >Cu > Cd=Ni 

Lead was the metal which had the least impact on shoot extension in both the initial and 

more concentrated solutions at the concentrations considered, followed by zinc. 
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3.1.2.4 Germination summary 
At the concentrations considered Pb, had the least impact on the germination and seedling 

shoot extension of flax variety Viking. Cadmium and Ni were the only metals to prevent 

any of the plants in the study from germinating and did so at solution concentrations 

greater than would be expected even in heavily contaminated matrices. Therefore, this data 

indicated that metal induced inhibition of germination is unlikely to prevent successful 

phytoremediation. However, the shoot length data for flax variety Viking indicated that 

solution metal loading can have a dramatic effect on seedling growth to the extent that 

seedlings may fail to emerge from contaminated soils. Thus germination data alone was 

not a reliable indicator of the effect that high solution metal loading can have on plant 

growth initiation and establishment in contaminated matrices. 

3.2 Rhizome propagation 

Miscanthus and nettle are rhizomatous plants which can be vegetatively propagated using 

rhizome pieces. It was not possible to conduct an analogous study of rhizome propagation 

as they were too large to feasibly study the necessary number of replicate individuals used 

in the study of seeds. Additionally, there was insufficient miscanthus material available to 

conduct a propagation study. For these reasons miscanthus and nettle propagation were 

only considered as part of the pot experiments. 
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4 Pot Experiments 

Two pot experiments, conducted on successive growing seasons over the period of the 

study, aimed to establish the response of the plants to elevated metal concentrations in a 

soil matrix. The plants used in both experiments were: flax, miscanthus, nettle and oilseed 

rape. The three plant responses of primary interest were: survival in the contaminated 

matrix, biomass yield and tissue metal concentration. In both pot experiments, plants were 

exposed to each contaminant metal in isolation (Cd, Cr, Cu, Pb, Ni and Zn) and also a 

sewage sludge treated soil, which contained elevated levels of all the metals considered in 

the study. The metal concentrations used, together with the convention used to refer to 

these soils, is detailed in Table 4.1. 

The first of the two pot experiments was conducted at high levels of metal contamination 

(Pot Experiment One; Section 4.1). The soils used represented contamination levels 

encountered in mine tailings or slag heaps, exemplified by dumps of chromium waste in 

and around Glasgow with surface soil chromium concentrations of 1500 flglg (unpublished 

data). 

The second pot experiment was conducted at contamination levels at, or close to, the Inter

departmental Committee on the Redevelopment of Contaminated Land (ICRCL) threshold 

trigger values for each of the six metals in the study (Pot Experiment Two; Section 4.2). 

These concentrations were chosen to establish whether the plant species in the study could 

reduce metal concentrations of marginally contaminated land to within the guideline levels. 

The Pot Experiment Two soil concentrations were also chosen to elucidate the growth and 

uptake response of the plant species in the study to soils with a less extreme metal loading 

than the Pot Experiment One soils. 
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Table 4.1 Naming conventions and corresponding total metal concentrations for the 
soil metal treatments used in Pot Experiment One and two (Section 2.6, 2.7). 

Pot Experiment Soil metal Abbreviation Soil total metal 
treatment concentration (Jlg/g) 

low cadmium CdT! 326 
high cadmium CdTI 1067 

chromium* CrT! 2757 

low copper CUT! 545 

One 
high copper CUTI 2250 

(Tl & T2 soils) 
lead* PbT! 2937 

low nickel NiT! 729 
high nickel NiTI 1,348 

low zinc ZnT! 731 
high zinc ZnTI 2940 

low cadmium CdTI 3.53 
high cadmium CdT4 4.64 

low chromium CrTI 829 
high chromium CrT4 846 

low copper CUTI 124 

Two 
high copper CUT4 131 

(T3 & T4 soils) low lead PlJ.n 544 
high lead Plrr4 619 

low nickel NiTI 90 
high nickel Nh4 103 

low zinc ZnTI 282 
high zinc ZnT4 330 

* In Pot Experiment One Cr and Pb were used at one concentration only. 
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4.1 Pot Experiment One 
Elucidating plant responses to highly metal contaminated soil matrices 

The aim of Pot Experiment One was to study the survival of the plants and their metal 

uptake in soils containing the six metals in the study (Cd, Cr, Cu, Pb, Ni and Zn) at values 

representing a highly contaminated matrix. Each metal in the study was represented at 

either one or two concentrations in Pot Experiment One (Table 4.1). Chromium and lead 

were studied at one concentration only as they were considered unlikely candidate metals 

for phytoremediation when the soils were initially produced (McGregor, 1999; Section 

2.6.1.1). Having artificial soils which were prepared three years in advance of the study 

allowed time for the metal salts come to equilibrium with the soil the other soil 

constituents and so more closely resemble real contaminated soils. 

4.1.1 Soil metal concentrations 
Extracting solutions of increasing strength were used to give an indication of the plant 

availability of the soil metals (Tables 4.5-4.7). The Pot Experiment One soils were 

extracted using calcium chloride (CaCh), EDTA and aqua regia (Section 2.12.2, 2.12.3). 

The CaCh-extractable fraction represented the most available metal fraction in the soil; 

metal ions in this fraction were present in the soil solution or held on weak exchange sites. 

The EDT A-extractable fraction represented soil metal ions held on strong exchange sites or 

organically bound metal ions, some of this fraction was likely to be available to plants over 

the period of a growing season, particularly in the presence of root exudates and soils rich 

in soluble organic ligands. Aqua regia was considered efficient in extracting the metal from 

the soil matrix and henceforth is referred to as the soil total metal concentration. This soil 

metal fraction will include some metal unavailable to plants over the growing season. 

Expressing the CaCh- and EDT A-extractable concentration as a percentage of the soil total 

metal concentration facilitated visualisation of the proportion of the soil metal loading 

available to the plants (Tables 4.3, 4.6 and 4.9). Expressing these data in this way also 

allowed comparison of the mobility of each of the metals relative to each other. From this 

information an order of relative mobility for all the metals was produced (Table 4.4, 4.7, 

4.10). 
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4.1.1.1 Control soil 
In the control soil, Zn and Ni were the only metals present at high enough concentrations 

in the CaCh-extractable fraction to be detected by AAS (Table 4.2). The control soil 

EDT A-extractable fraction also had low metal concentrations with the exception of Pb. 

The control soil total metal concentrations were below the ICRCL threshold trigger values 

for each of the metals in the study (Section 2.7; Table 2.8), although the total Pb 

concentration was elevated above anticipated normal values (Ross, 1994; SEP A, 2001). 

Table 4.2 Control soil metal concentrations. Standard deviations are shown (st. dev.); n 
= 4. Values below the limit of detection are denoted L.D . 

• Zinc, the metal present in the control soil at the highest soil total concentration (Table 4.2), 

was the most mobile metal in the CaCh-extractable fraction (Table 4.3, 4.4). The most 

mobile metal in the EDTA-extractable fraction was Cd (69% of the soil total 

concentration). Lead was readily mobilised by EDT A with more than half the soil total Pb 

concentration present in the EDT A-extractable fraction (Table 4.3). 

Table 4.3 Control soil metal concentrations expressed as a percentage of the soil total 
metal concentration. 

The decreasing orders of mobility for the control in the CaCh- and EDT A-extractable 

fractions, relative to the soil total metal concentration, are shown in Table 4.4. 
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Table 4.4 Order of decreasing metal mobility in Pot Experiment One control soils. 

Extractin solution 

CaCh 

EDTA 
Zn > Ni » Cd = Cu = Pb = Cr 

Cd > Pb > Cu > Zn » Ni » Cr 

4.1.1.2 Tl And T2 artificial soils 

In each of the artificial soils (Table 4.5) the metals were present above both ICRCL 

threshold trigger values (Section 2.7; Table 2.8) and levels accepted as phytotoxic. 

Table 4.5 Tl and T2 soil metal concentrations. Values presented are mg of metal 
extracted per kg of dried, ground and sieved soils (Section 2.12.1.1). Standard 
deviations are shown (st. dev.); n = 4. 

Treatment 

In the CaCh-extractable fraction CdTl, CdTZ, NiTl , NiTZ, ZnTl and ZnTZ were present at 

concentrations of 25-50% of the soil total metal concentration (Table 4.6); CrT! and PbTl 

were the least mobile in the CaCh-extractable fraction, present at <0.5% of the soil total 

metal concentration. In the CaCh-extractable fraction, CUTl and CUTZ were present at 1.5-

7.6% of the soil total metal concentration and so had an intermediate mobility with relation 

to the other metals. The solubility of the soil metals was much more consistent between 

metal species in the EDT A-extractable fraction (Table 4.6). With the exception of CrT!, the 

metals in the study were present in the EDT A-extractable fraction at 76-100% of the soil 

total metal concentration. ChromiumTl, present in the EDT A-extractable fraction at <2% of 

the soil total metal concentration, was not considered available to plants over the growing 

season; this level of Cr mobility has been reported for other soils (Neale et ai., 1997). 
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Table 4.6 Soil extracts expressed as a percentage of the soil total metal concentration. 

The decreasing orders of metal mobility in the T1 and T2 soils for both CaCh- and EDTA

extractable fractions are summarised in Table 4.7. 

Table 4.7 Order of decreasing metal mobility in the Tl and T2 soils. 

Extractin solution 

CaCh Cd ~ Zn ~ Ni » Cu > Pb = Cr 

EDT A Cd > Zn > Pb > Cu > Ni » Cr 

4.1.1.3 Sewage sludge soil 

Metal concentrations in the sewage sludge soil were above the ICRCL threshold trigger 

values (Section 2.7; Table 2.8) for all of the metals in the study (Table 4.8). The sewage 

sludge Cu, Ni and Zn soil concentrations were also higher than the NiT! and ZnT! soil 

concentrations (Table 4.5, 4.8). The CaCh-extractable fraction of the sewage sludge soil 

had little or no detectable metal present for each of the metals in the study (Table 4.8); the 

highest CaCh-extractable metal concentration was Ni, present at 4.80 Ilg/g, representing 

only 1.11 % of the soil total Ni concentration (Table 4.9). Considering the CaCh

extractable fraction as a percentage of the soil total metal concentration, Cd, Cu, Ni and Zn 

were markedly less mobile than in the corresponding T1 and T2 soils (Table 4.6, 4.9). 

Since all metals were present at <1.2% of the soil total metal concentration, the availability 

of metals in the sewage sludge soil's most mobile fraction was comparable to the 

availability of Pb and Cr, the least mobile metals, in the T1 and T2 soils (Table 4.6, 4.9). 

The low mobility of the metals in the sewage sludge soil was likely due to the high organic 

matter content of the sewage sludge soil. 
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Table 4.8 Sewage sludge soil metal concentrations. Standard deviations are shown (st. 
dev.); n = 4. Values below the limit of detection are denoted L.D. 

Metal EDTA-extractable ;%S·fiil~tne~:c'OI~~{; 
st. dev. ( ) .) st. dev. 

Cd 23 3.67 

Cr 148 
Cu 46 

Ph 33 

Ni 24 

Zn 157 

Table 4.9 Sewage sludge soil metal concentrations expressed as a percentage· of the 
soil total metal concentration. 

The EDTA-extractable fraction of the sewage sludge soil, like that of the CaCh-extractable 

fraction, contained less metal relative to the soil total metal concentration than the 

corresponding metals in the Tl and T2 soils. On average, EDTA extracted 37% less metal 

from the sewage sludge soil than from the Tl and T2 soils. The difference in relative 

mobility between the Tl and T2 soils (Table 4.7) and the sewage sludge soils (Table 4.10) 

was metal dependant. Differing soil total metal concentrations prevented direct comparison 

of the EDTA-extractable concentrations between the sewage sludge soil and the Tl and T2 

soils, however, the orders of relative mobility could be compared. 

Table 4.10 Order of decreasing metal mobility in Pot Experiment One sewage sludge 
soil. 

Extractin solution 

CaCh 

EDTA 
Ni > Cu > Zn > Cd = Pb = Cr 

Cu > Cd > Zn > Pb > Ni » Cr 

Comparison between the orders of mobility of the Tl and T2 soils (Table 4.7) and the 

sewage sludge soil (Table 4.10) indicated that in the CaCh-extractable fraction Ni replaced 

Cd as the most mobile metal, however, the percentage of CaCl2-extractable metal was low. 
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From the Tl and T2 soils to the sewage sludge soil, the relative mobility of Zn decreased 

such that Zn became the least mobile metal present above the limit of detection. Cadmium, 

the most mobile metal in the Tl and T2 soils CaClz-extractable fraction, was not detected 

in the sewage sludge soil CaClz-extractable fraction. 

The only change in the order of mobility in the EDT A-extractable fraction, from Tl and T2 

soils to the sewage sludge soil, was the relative mobility of copper; Cu, the fourth most 

mobile metal in the Tl and T2 soils, became the most mobile metal in the sewage sludge 

soil. All of the metals had a lower EDT A-extractable concentration in the sewage sludge 

soil than in the Tl and T2 soils. The reduction in the mobility of Cu, however, was less 

than the reduction in the mobility of Cd, Pb, Ni, and Zn, with the result that Cu was the 

most mobile metal in the sewage sludge soil. 
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4.1.2 Plant Growth 

The survival, height and yield of each plant species in the study was considered (Section 

2.6). The plant species investigated were: flax, miscanthus, nettle and oilseed rape. No 

oilseed rape plants survived in the T1 and T2 soils and thus no further reference will be 

made to oilseed rape in relation to Pot Experiment One. 

4.1.2.1 Survival and height data 

Different phenotypic characteristics between plant species dictated that only intra-species 

comparisons of survival and height data be made. 

4.1.2.1.1 Flax 

Flax survival 
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Figure 4.1 Emergence and survival of flax shoots in T1 , T2 and sewage sludge (SS) soils. 
The total number of flax plants emerging ( ) and surviving until the end of the 
growth period (0) are expressed as a percentage of the number of seeds sown. 

The survival of the flax plants in the highly contaminated environment of the T1 and T2 

soils was poor (Fig. 4.1). In the NiT!, NiT2 and ZnT2 soils, there was no flax plant 

germination. In the CdT2, CUT2 and Znn soils, all the plants which initially germinated did 

not survive until the end of the growth period; of these treatments Znn gave an initial 

germination of over 80%, whereas the CdT2, CUT2 treatments exhibited germination of 

<10%. Control and Pbn soils were the only treatments which gave a greater germination 

than the ZnTI soil. The germination in the CdT!, Crn and CUT! soils was 53%, 56% and 

81 %, respectively, however, the number of plants surviving at the end of the growth period 

was <1iJ of the number of seeds sown. Only the control, PbT!, and sewage sludge soils had 
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within 10% of the number of germinated plants surviving until the end of the growth 

period. In each of these treatments >50% of the seeds sown germinated, with Pb exhibiting 

the highest fmal number of surviving plants of all the flax-metal treatments. 

Flax height 
The height data for the flax plants (Fig. 4.2) supported the survival data. Again the control, 

sewage sludge and PbT) treatments produced the best growth, with mean maximum heights 

>70 cm. ChromiumT) and CUT) were the only other soil treatments to produce plants with 

fmal maximum mean heights significantly >0 cm, at mean heights of approximately 10 cm. 
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Figure 4.2 Mean maximum height of flax plants in Tl, T2 and sewage sludge (SS) soils. 
Treatments include: • control, • CdT) , ~ CdT2, • CrT), • 
CUT), -A-- CUT2, • PbT), • ZnT), • sewage sludge. The NiT), NiT2 
and ZnT2 treatments have been omitted as plants in these soils did not germinate. 
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4.1.2.1.2 Miscanthus 

Miscanthus survival 

The survival of the rniscanthus plants in the Tl and T2 soils (Fig. 4.3) was better than the 

survival of the flax plants (Fig. 4.2) relative to the their respective control plants. Unlike 

flax which was sown from seed, miscanthus was planted as pieces of rhizome material. 

Although the rhizomes planted were of a uniform size with an equal number of nodes, the 

final number of shoots produced by each rhizome, if any, was unpredictable. The greatest 

number of shoots was produced by plants in ZnTl and CUTl soils at 15 and 14 shoots, 

respectively, not in the control soil, which, like the sewage sludge and CdTl soils, produced 

11 shoots. The tolerance of the emerging miscanthus . plants to the CdT1 , PbT1 , ZnTI and 

sewage sludge soils was greater than in flax as, in these treatments, all of the rniscanthus 

shoots which emerged survived to the end of the growth period. Thus, for these treatments 

there was no difference in the toxicity of the soil to shoot emergence and shoot survival. 
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Figure 4.3 Emergence and survival of miscanthus shoots in Tl, T2 and sewage sludge 
(SS) soils. Values shown are the total number of rniscanthus shoots emerging ( II1II) 
and surviving until the end of the growth period (D). Emergence and survival have 
been expressed in numbers of shoots rather than a % (Fig. 4.1) since maximum 
shoot emergence could not be predicted. 

None of the treatments was sufficiently toxic to prevent rniscanthus shoot emergence as all 

treatments produced some rniscanthus shoots. In the case of the CdT2 and ZnT2 soils, 

however, none of the plants survived to the end of the growth period (Fig. 4.3). Of the 

treatments where plants survived until the end of the growing period, the poorest 

treatments were Nhl and NiT2 each with only one shoot surviving. In both the CdT2 and 

CrTI soils, five of the emerging shoots subsequently died. 
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Miscanthus height 
The control shoots grew to a mean maximum height of 160 cm and were >50% taller than 

the next tallest treatment's shoots (Fig. 4.4). The PbT! and ZnTl miscanthus shoots were the 

tallest of the T1 and T2 miscanthus shoots followed by sewage sludge soil; these 

treatments had shoot heights of 90, 87 and 70 cm respectively. The CUT! and CdT! 

produced plants which were stunted at a mean height of up to 40 cm. Several of the 

miscanthus treatments produced plant mean shoot heights <21 cm, these were CdT2, CrTI, 

CUT2, NiTl Nh2 and ZnT2. 
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Figure 4.4 Mean maximum height of miscanthus plants in T1, T2 and sewage sludge (SS) 
soils. Treatments include: • CdT! , --A- CdT2, • CrT1, • CUT1, -A----
CUT2, • PbTl , • NiT! , --A- NiT2, • ZnTl, --A- ZnT2, • 
control and • sewage sludge. 
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4.1.2.1.3 Nettle 

Nettle survival 
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Figure 4.5 Emergence and survival of nettle shoots in T1, T2 and sewage sludge (SS) 
soils. The total number of nettle shoots emerging (. ) and surviving until the end of 
the growth period (D). 

As with miscanthus, nettle plants were also planted as rhizomes, thus shoot emergence 

from individual rhizome pieces was variable (Fig. 4.5). There was a large difference in 

nettle plant emergence and survival between the sewage sludge treatment and the other 

treatments in the experiment with emergence and survival in sewage sludge soil more than 

double that of the control. Of the 22 sewage sludge shoots that emerged, 19 survived to the 

end of the growth period, three times the number that survived in the control soil. ZincTi 

produced a total of nine shoots only three of which survived the duration of the growth 

period. LeadTl , which produced five shoots, was the only treatment with all emerging 

shoots surviving to the end of the growth period. Only two treatments, NiTI and ZnTI, 

failed to produce any shoots at all. There were three treatments where shoots did emerge 

but died before the end of the growth period; these were CdTI, CUT2 and NiTi . As with flax 

no plants survived in either of the Ni treated soils. 
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Nettle height 
The difference between the heights of the sewage sludge and the control plants (Fig. 4.6) 

was not as marked as the difference between the survivals of the plants grown in these 

treatments (Fig. 4.5); the sewage sludge plants grew 12% taller than the control plants as 

opposed to the 300% difference in fmal survival. The extension of the individual shoots 

was not affected to the same degree as the promotion of shoot emergence in the sewage 

sludge soil compared to the control soil. At 21 cm high, the Pbn soil produced nettle plants 

half the height of the tallest sewage sludge plants. The heights of the nettle plants in the 

remaining surviving treatments Znn, Crn, CdT ] and Cun were:s 12 cm. 
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Figure 4.6 Mean maximum height of nettle plants in Tl, T2 and sewage sludge (SS) soils. 
Treatments include: • control, • Cdn , ---A- CdT2, • CrT], • 
CUn, ---A- CUT2, • Pbn , • Nin , • Znn and • sewage 
sludge. The NiT2 and ZnT2 treatments have been omitted as plants in these soils did 
not emerge. 
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4.1.2.2 Yield data 

Plant yields from each treatment within plant species were expressed as a percentage of 

that plant species control biomass (Table 4.11), allowing inter-species comparison of yield 

response to the metal treatments. In this section the % yields discussed refer to the 

treatment plant biomass as a percentage of control treatment plant biomass. The CdT2, CUT2 

and ZnT2 soils did not yield sufficient plant biomass « 0.15 g) to allow yields to be 

calculated for any of the plants in the study, no further reference will be made to these 

treatments in this section. 

Table 4.11 Fresh weight yield of above ground plant tissue. 
Yield of plants grown in Tl and T2 soils expressed as a percentage of the control plant biomass. Yields are 
calculated from the mean of four replicate pots (n=4). Where n<4 this is indicated by: t n=3, :j: n=2, 1- n=1. 

Soil Treatment Flax Miscanthus Nettle 
(g) I st. dev. (g) 1 st. dev. (g) I st. dev. 

Control 51.851 6.88 59.651 35.26 9.99] 2.50t 

(%) 1 st. dev. 

1 

(%) 
61 st4~;;'tl (%) I st. dev. 

CdT! 01 0 10.431 1-
CrTI 0.51 1- I 0.41 1-1 501 1-
CUT! 31 2.1O:j: I 101 10.781 631 1-
PbT! 691 0.79:j: I 921 67.47 :j:1 841 1-
NiT! 01 0 I 0.31 1-1 01 0 
Nin 01 0 I 21 1-1 01 0 
ZnTl 01 0 I 721 23.351 3~ 84.15 :j: 
Sewage Sludge 6~ 29.20 261 11.83 3861 63.52 

Flax yield 

The control soil yielded the greatest above ground biomass producing approximately 52 g 

of material (Table 4.11). The highest yielding plants in the Tl and T2 soils grew in the 

Pdn soil with a biomass of 69%. The sewage sludge soil yield was 66%, despite the 

sewage sludge soil plants, on average, being taller than the Pdn soil plants. This reduction 

in yield was due to a higher flax germination in the PdT1 soil (Fig. 4.1). The other Tl and 

T2 soils gave low biomass yields with CUTI and Crn yielding only 3% and 0.5 %, 

respectively. 
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Miscanthus yield 

The miscanthus plants grown in the control soil yielded the greatest above ground biomass 

(-60 g) of all the soil-plant systems in Pot Experiment One. For the treated soils, the 

miscanthus yield data (Table 4.11) was broadly in agreement with the height and survival 

data (Section 4.1.2.1.2). The plants grown in the PbT1 soil had the greatest yield at 92%. 

The ZnT! plants, which despite having both a greater maximum mean height and more 

shoots than PbT! soil, had a lower yield (72%). The sewage sludge soil gave a plant yield 

of 26% followed by the CUT! and CdT! which gave yields of 10% and 6%, respectively. 

The poorest plant yields for treatments with plants surviving until the end of the growth 

period, all of which were <5%, were from the NiT!, NiTZ and CrT! soils. 

Nettle yield 

The most notable feature of the yield data for the nettle plants was the extent to which the 

sewage sludge plants outgrew the other treatments including the control plants (Table. 

4.11). The yield response of nettles grown in the sewage sludge soil compared to the plants 

grown in the control soil supported the observed shoot emergence response (Section 

4.1.2.1.3); this indicated that the height data, which was not markedly different for the 

control and sewage sludge soils, was not a true reflection of the plants' ability to produce 

biomass. The P~l yield of 84% also supported the similarity between yield response and 

shoot survival, as the survival of the PbT! shoots was 83% of the control shoots survival. 

Nettle yields in the Cu, Cr, Zn and Cd soils were better relative to the control soil than the 

miscanthus and flax yields (Table 4.11). Given the yield response in sewage sludge soil, 

nettle was the species which showed the greatest potential for improving growth by 

incorporation of fertiliser into the remediation strategy. 
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4.1.2.3 Growth summary 

Miscanthus plants performed well in most of the soil treatments in terms of emergence 

relative to the control plants. The control miscanthus plant height of 160 cm observed for 

the control plants was lower than heights reported by Bullard and Kilpatrick (1997). Post

emergence, survival rates for miscanthus were also better than the other plant species as in 

five out of 12 treatments (edTl , PbTl ZnTl, control and sewage sludge) all of the emerging 

plants survived. The only other plant species-treatment where all the emerging plants 

survived to the end of the growth period was the nettle-Pbrl treatment. Miscanthus was 

also the highest yielding plant species, however, the growth of the plants was markedly 

affected by the metal treatments with only the PbTl , ZnTl and sewage sludge treatments 

yielding biomass >25% of the control biomass. In contrast to miscanthus, flax growth was 

poor in most of the Tl and T2 soils, the exceptions being the PbTl and sewage sludge 

treatments. Flax, after oilseed rape, was the least tolerant plant species to the Tl and T2 

soils with Ni proving to be the most toxic followed by Zn. 

The ability of the flax plants to germinate in the soil was not directly related to their ability 

to survive in that soil (Section 3); for instance, ZnTl allowed good initial germination but 

did not have any seedlings surviving to the end of the growth period. Soil toxicity to the 

flax plants was manifest in two distinct ways: prevention of seedling emergence (NiTl ), or 

post emergence seedling death (ZnTl). These toxic effects were also observed in the nettle 

and miscanthus plants although to a lesser extent. 

Each plant species performed well in the sewage sludge soil despite it's high metal 

loading. In particular the nettle plants grown in the sewage sludge soil yielded - four fold 

more biomass than the control plants. This was likely attributable to nettles' ability to 

thrive in fertile soils (Grieve, 1931). Furthermore, flax plants did not survive in the ZnTl 

soil yet the flax growth performance in the sewage sludge soil, which had a higher soil Zn 

concentration than ZnTl soil, was comparable to that of the control. Thus, both the 

availability of the soil metals to the plants and the fertility of the soil are fundamental in 

understanding growth of plants in contaminated soils. It is also necessary to consider the 

suitability of the plants to the growth conditions of the contaminated matrix as this has 

major implications for the use of nettles in phytoremediation. Many contaminated soils are 

low in nutrients, in which nettles will not thrive, however, it may be possible to overcome 

this problem by the addition of a fertiliser treatment or the inclusion of a soil amendment 

such as sewage sludge in the remediation strategy. This strategy may significantly improve 

the ability of nettle to act as a phytpremediator. 
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The poor growth response of the plants in the study to the T4 soils broadly agreed with the 

observed survival rates of tree species grown in the same soils in an earlier study 

(McGregor, 1999); the tree species also had poor survivals in the T4 soils after 10 months 

growth. 

4.1.3 Plant tissue metal concentrations 

To elucidate the plant species' potential as effective phytoremediators it was essential to 

measure their tissue metal concentrations. The plant tissue metal concentrations (Jlglg) for 

each plant species are shown in Tables 4.12-4.14. For the Tl and T2 soils, these values 

were also expressed as a percentage of the soil total metal concentration (Fig. 4.7-4.12) 

allowing visualisation of metal uptake and metal mobility in the soil-plant system. Flax 

stem and leaf tissues were analysed together and in addition flax roots were analysed. The 

stem and leaf tissues of miscanthus and nettle were analysed separately, however, root 

tissues were not analysed (Section 2.6.2). 
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4.1.3.1 Control soil 

Table 4.12 Tissue metal concentrations of plants grown in the control soil. Mean plant 
tissue metal concentrations (Jlglg) for: (a) flax, (b) miscanthus and (c) nettle. Values 
are the average of four replicate pots (n=4) except for (c) nettle where n=3 . Where 
the values are below the limit of detection these are indicated by L.D. 

(a) Flax Cd Cr Cu 
(Jlglg) 1 st. dey. (Jlglg)1 st. dey. ~g)1 st. dey. 

Roots 5.761 1.28 L.D·I 8.941 4.86 

Stem + Leaf 3.361 0.16 L.D·I 6.901 5.55 

Pb Ni Zn 
(Jlglg) 1 st. dey. (Jl~ st. dey. ~I st. dey. 

Roots 158.471 305.51 0.741 1.48 84.211 22.15 

Stem + Leaf 21.691 43.38 0.251 0.50 59.731 13.37 

(b) Miscanthus Cd Cr Cu 
(Jlg/g) 1 st. dey. (Jlglg) 1 st. dey. (Jlglg) 1 st. dey. 

Stem L.D.I 2.10] 0.57 5.871 1.27 

Leaf 0.501 0.99 3.261 1.45 3.311 0.46 

Pb Ni Zn 
(Jlglg) 1 st. dey. (Jlg/g) 1 st. dey. (Jlglgll st. dey. 

Stem L.D.I 2.111 0.70 101.921 45.53 

Leaf L.D.I 2.951 0.56 43.371 15.41 

(c) Nettle Cd Cr Cu 
(Jlglg) 1 st. dey. (Jlglg) 1 st. dey. (Jlglg) 1 st. dey. 

Stem 0.691 1.20 L.D·I 3.531 1.06 

Leaf 0.811 1.40 L.D·I 9.541 5.36 

Pb Ni Zn 
(Jlglg)1 st. dey. (Jlglg)l st. dey. (Jlg/gll st. dey. 

Stem L.D·I 5.471 0.83 114.481 42.75 

Leaf 11.401 0.02 7.051 2.84 191.821 65.01 
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Flax 

In the control soils all of the metals measured that were above detectable levels, were 

present at higher concentrations in the root tissue than in the above ground (stem + leaf) 

tissues (Table 4.12a). Lead was taken up in the greatest concentration in root tissue but had 

the greatest reduction in tissue concentration from root to above ground tissue (root to 

shoot ratio of 7: 1). In the above ground tissue, Zn was present at the highest tissue metal 

concentration (59 flg/g). Chromium was not detected in flax tissues, and above ground 

tissue concentrations of both Ni and Cu were low. 

Miscanthus 

Zinc was present at the highest tissue metal concentration in the control soils (Table 

4.12b). The miscanthus stems contained more Zn than the miscanthus leaves (102 flg/g and 

43 flg/g, respectively). Lead, despite being present in the control soil at the highest soil 

metal concentration (Table 4.2), was not detected in the miscanthus tissues. The other 

metals were present in the miscanthus tissues at low concentrations. 

Nettle 

The distribution of Zn in the tissues of nettle plants grown in the control soil differed from 

that of miscanthus in that nettles had a higher tissue concentration in the leaves (192 flg/g) 

than nettle shoots (114 flg/g). Like miscanthus and flax, Zn was also taken up in above 

ground tissue of nettle at the highest concentration of all the metals. Chromium was the 

only metal which was not detected in the nettle-control plant tissues, uptake of the 

remaining metals into the nettle tissue was low. 
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4.1.3.2 Tl And T2 artificial soils 

Of the Tl and T2 soil treatments, CdT2, CUT2 and ZnT2 soils did not produce sufficient plant 

material to allow analysis of flax , miscanthus or nettle. In the remaining soil treatments 

(Table 4.13): miscanthus plants produced sufficient material for analysis although it was 

necessary to pool the stem and leaf tissue from the CrT! and Nhl soils; nettle produced 

sufficient material for analysis in all but the two Ni soils; flax yielded enough plant 

biomass for analysis in only two of the soil treatments, CUTl and PbTl . 

Table 4.13 Tissue metal concentrations of plants grown in the Tl and T2 soils. Mean 
plant tissue metal concentrations (l1g!g) for: (a) flax, (b) miscanthus and (c) nettle. 
The 'n' number represents the number of replicate pots. The standard deviation is 
given (st. dev.). * denotes stem + leaf tissue. Values are calculated from the mean of 
four replicate pots (n=4). Where n<4 this is indicated by: t n=3, * n=2, -L n=l. 

Soil Plant Flax Miscanthus Nettle 
Treatment Tissue (Ilg/g) st. dev. (Ilg/g) st. dev (Ilg/g) st. dev 

CdT! 
Stem No growth 15.00 21 :j: 918.88 .1. 
Leaf No growth 176.00 180t 851.68 .1. 

CrT! 
Stem No growth 

1 
55.00*1 .1.1 

7.79 .1. 
Leaf No growth 17.47 .r 
Root 175.55 79* 

I 1~:~1 ~I CUT! Stem 
18.94* 1.4 * 

4.32 .1. 
Leaf 10.97 .1. 
Root 416.53 589* 

Pl>n Stem 
33.46* 47* 

52.00 17:j: 194.20 .1. 
Leaf 119.00 1 :j: 111.00 .1. 

NiT! 
Stem No growth 

1 
186.00*1 .1.1 

No growth 
Leaf No growth No_growth 

NiT2 
Stem No growth 

1 
4.001 ~I No~owth 

Leaf No growth 5.00 No growth 

ZnT! 
Stem No growth 969.00 50 171.47 .1. 
Leaf No growth 868.00 109 19l.96 .1. 
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Flax 

Flax roots grown in the PbT1 soil had the highest tissue metal concentration at 417 Ilg/g, 

however, this result had a high standard deviation owing to one of the two samples 

analysed giving a high uptake of Pb whilst the other replicate sample yielded no detectable 

Pb. Uptake of Cu and Pb by the roots of the flax plants was 9 and 12 times greater than the 

metal transported to the above ground (stem + leaf) tissue, respectively (Table 4.13; Fig. 

4.7). Lead was present in both flax root and above ground tissues at higher concentrations 

than Cu (Table 4.13 , 4.14). However, flax above ground tissue extracted a greater 

proportion of the Cu from the CUT! soil than Pb from the PbT1 soil in proportion to. the soil 

metal loadings of these treatments, indicating that Cu was more mobile in the soil-flax 

system than Pb (Table 4.14; Fig. 4.7). 
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Figure 4.7 Tissue metal concentration of flax grown in Tl and T2 soils. Values, expressed 
as a percentage of the soil total metal concentration, represent root (D) and stem + 
leaf (_) tissues. 

Table 4.14 Order of total metal uptake and mobility in flax tissue. Values expressed: 
(a) by tissue metal concentration (uptake), (b) by tissue metal concentration 
expressed as a percentage of the soil total metal concentration (mobility). 
Abbreviations used: R, root tissue; B, both stem and leaf tissue. 

(a) Order of decreasing uptake 

(b) Order of decreasing mobility 
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Miscanthus 

The highest miscanthus tissue metal concentrations were recorded in the ZnT! soil , where 

the stems were found to contain more Zn than the leaves at 969 Ilg/g and 868 Ilg/g, 

respectively (Table 4.13 ; Fig. 4.8). Zinc, the most mobile element in the soil-miscanthus 

system (Table 4.15), present at 133% of the ZnTI soil total Zn concentration, was the only 

metal to be accumulated by miscanthus plants (Fig. 4.8). 
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Figure 4.8 Tissue metal concentration of miscanthus grown in T1 and T2 soils. Values 
represent stem ( ), leaf (_) and stem + leaf (_) tissues and are expressed as a 
percentage of the soil total metal concentration. 

The treatment which gave the lowest miscanthus tissue metal concentration, NiTI also had 

the lowest mobility in the miscanthus-soil system (Table 4.15; Fig. 4.8). However, the 

behaviour of Ni in the miscanthus plants was peculiar in that the NiT! plants had tissue 

concentrations 40 times greater than NiTI plants. The low Ni uptake by the single 

miscanthus plant surviving in the NiTI soil may be the result of a plant mechanism which 

prevented Ni uptake by this individual. Such a mechanism was not evident in other plants 

growing in either of the Ni soils (Table 4.13). The data suggested that the single 

miscanthus plant surviving in the Nhl soil was more representative of the miscanthus 

population, and that the high Ni tissue concentration in this individual, resulted from the 

plant having no ability to exclude Ni from its tissues, leading to poor growth and the death 

of it' s cohorts (Section 4.1.2). 
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Table 4.15 Order of total metal uptake and mobility in miscanthus tissue. Values 
expressed: (a) by tissue metal concentration (uptake), (b) by tissue metal 
concentration expressed as a percentage of the soil total metal concentration 
(mobility). Abbreviations used: S, stem tissue; L, leaf tissue; B, both stem and leaf 
tissue. 

(a) Order of decreasing uptake 

(b) Order of decreasing mobility 

ZnTlS> ZnTlL» CdTlL> NiTlB> CdTlS> PbTlL~ CrTlB> CuTlL> PbTlS> CUTIS> NiT2B 

The behaviour of Cd and Pb was similar with leaf concentration exceeding stem 

concentrations. The leaf tissue concentrations of Cd and Pb were 11 times and 2.3 times 

greater than the stem tissue concentration for Cd and Pb, respectively, this suggested that 

the plants were actively transporting metal to the leaves rather than passively depositing 

metal on exchange sites along transpiration stream. 

Although the Zn concentration in the miscanthus stems was approximately 100 /-tg/g 

greater than the concentration of Zn in the miscanthus leaves, the difference was not 

significant (t test, P>0.05). Thus the similarity in concentration between the tissues of 

miscanthus indicated that the Zn was neither transported preferentially to the leaves nor the 

stems of the miscanthus plants. In CUT! and Nh2 the metals within the stem and leaf tissues 

were also present at similar concentrations therefore like Zn there was no indication of a 

mechanism for preferential deposition of these metals in either tissue. This does not 

necessarily imply the same transport mechanism was operating for all three metals as the 

concentration of Zn in the plant tissues was two orders of magnitude greater than the tissue 

concentrations of Cu and Ni. 

Nettle 

In nettle, like miscanthus, the metal present at the highest tissue metal concentrations was 

also the most mobile metal in the soil-plant system, however, for nettle this metal was Cd 

(Tables 4.13 and 4.16; Fig. 4.9). Cadmium was the only metal in the Tl and T2 soils to be 

accumulated by nettle. Conversely Cr and Cu were present in nettle tissues at the lowest 

tissue concentrations, and were the least mobile metals in the soil-nettle system. Mean 

tissue Cd concentrations were 18 times higher in the nettle-soil system than in the 

miscanthus-soil system, however, the reverse was true for Zn, which had a mean nettle 

tissue concentrations five times lower than miscanthus. 
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Figure 4.9 Tissue metal concentration of nettle grown in Tl and T2 soils. Values represent 
stem (_) and leaf (_) tissues and are expressed as a percentage of the soil total 
metal concentration. 

Table 4.16 Order of total metal uptake and mobility in nettle tissue. Values expressed: 
(a) by tissue metal concentration (uptake), (b) by tissue metal concentration 
expressed as a percentage of the soil total metal concentration (mobility). 
Abbreviations used: S, stem tissue; L, leaf tissue. 

(a) Order of decreasing uptake 

(b) Order of decreasing mobility 

In the CUTI, CrT! and PbTI nettle treatments there were a low number of surviving 

replicates, however, the data from the surviving plants was interesting as the distribution of 

metals between tissues in nettle contrasted with that of miscanthus. Copper and Cr were 

present in the nettle leaf tissue at higher concentrations than in the nettle stem tissue 

whereas in miscanthus these metals were present in both tissues at similar levels. These 

nettle tissue concentrations indicated a preferential deposition of both Cr and Cu in the 

leaves rather than the stems. Lead was present in the nettle stem tissue at a higher 

concentration than in the leaf tissue whereas in the miscanthus tissues the reverse was true. 
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4.1.3.3 Sewage sludge soil 

The metal concentrations in the plant tissues were generally low (Table 4.17) despite the 

sewage sludge soil containing a high soil metal concentration (Table 4.8). 

Table 4.17 Tissue metal concentrations of plants grown in the sewage sludge soil. 
Mean plant tissue metal concentrations (J-tglg) for: (a) flax, (b) miscanthus and (c) 
nettle. Values are the average of four replicate pots (n=4). Where the values are 
below the limit of detection these are indicated by L.D. 

(a) Flax Cd Cr Cu 
(Ilg/g) 1 st. dev. (Ilg/g) 1 st. dev. Ql.g/g)1 st. dev. 

Roots 16.301 3.58 20.991 6.95 70.771 18.39 

Stem + Leaf 2.621 1.17 L.D.I 3.661 1.88 

Pb Ni Zn 
(Ilg/g) I st. dev. (Ilg/g) I st. dev. (Ilg/g) I st. dev. 

Roots 13.071 8.72 71.691 17.20 170.991 42.26 

Stem + Leaf L.D·I 16.381 7.36 65.171 29.49 

(b) Miscanthus Cd Cr Cu 
(Ilg/g) I st. dev. (Ilg/g) I st. dev. (Ilg/g) I st. dev. 

Stem 17.641 28.28 L.D.I 8.381 4.40 

Leaf 43.081 83.53 1.771 0.72 11.491 7.90 

Pb Ni Zn 
(Ilg/g) I st. dev. (Ilg/g) I st. dev. (llg/g)1 st. dev. 

Stem L.D.I 16.491 11.47 79.921 57.74 

Leaf L.D.I 12.331 18.87 24.661 13.44 

(c) Nettle Cd Cr Cu 
(Ilg/g) I st. dev. (Ilg/g) I st. dev. QJ.g/g)1 st. dev. 

Stem 0.361 0.71 L.D·I 7.881 0.49 

Leaf L.D·I 2.201 4.40 12.231 2.90 

Pb Ni Zn 
(Ilg/g) I st. dev. (Ilg/g) I st. dev. (~g)1 st. dev. 

Stem L.D.I 29.311 1.46 79.461 21.52 

Leaf 13.911 4.99 39.151 3.85 46.341 16.94 
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Flax sewage sludge 

As observed in the control, T1 and T2 soils (Table 4.12, 4.13), flax plants grown in sewage 

sludge soil exhibited higher root tissue concentrations than shoot tissue concentrations for 

all of the metals studied (Table 4.17a). Both Cr and Pb were present in the root tissue of 

flax plants but were not present in detectable quantities in the above ground (stem + leaf) 

tissue (Table 4.17a). In the above ground tissue, Ni and Zn were present at the highest 

concentrations, 16 Jlg/g and 65 Jlg/g, respectively. In terms of the soil total metal 

concentration, the above ground tissue Ni was present at 4% and Zn at only 3%, whereas, 

in the root tissue these percentages were higher with , Ni and Zn present at 17% and 8%, 

respectively (Fig. 4.10). In the sewage sludge soil, Ni and Zn were the only metals in the 

above ground tissue present at higher concentrations than their corresponding 

concentrations in plants grown in the control soil (Table 4.12, 4.17). 
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Figure 4.10 Tissue metal concentration of flax grown in sewage sludge soil. Values, 
expressed as a percentage of the soil total metal concentration, represent root (D) 
and stem + leaf (_) tissues. 

Cadmium was present in above ground tissue at 6% of the soil total Cd concentration and 

as such was the most mobile metal in the flax-sewage sludge system, relative to the soil 

metal loading. The mobility of Cu and Pb in the CUTI and PbTl soils (the only surviving 

flax-T1 and flax- T2 soil treatments) was greater than the mobility of these metals in the 

sewage sludge soil (Fig. 4.7 , 4.10). 
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Miscanthus sewage sludge 

Cadmium was present in the stems of miscanthus grown in the sewage sludge soil at 18 

jlg/g, (Table 4.17b), a similar concentration to the miscanthus plants grown in the CdT( 

soil, however, the leaves of the plants grown in the CdT( contained four fold more Cd than 

the plants grown in the sewage sludge soil (Table 4.13, 4.17b). This high uptake of Cd 

from the sewage sludge soil by miscanthus highlighted Cd as the only metal more mobile 

in the sewage sludge soil than the corresponding Tl and T2 soils (Fig. 4.8, 4.11). However, 

uptake of Cd by miscanthus from the sewage sludge soil was variable; the result obtained 

was a mean of one replicate pot with a high cadmium concentration and another three 

replicate pots with lower cadmium concentrations. 

~ 

'3 
45 11) 

S 
105 ~~v __________________________________ ~ 

'0 40 
CI) 

'3 35 
8 
'+- 30 0 

~ 
CI) 25 o:s ._._-------------. 
~ 

'3 20 
11) 

.§. 
15 

11) 
:l 
CI) 

.p 10 
CI) 

:l 
5 -5 

c:: o:s 
u 0 CI) 

::E Cd Cr Cu Ph Ni Zn 

Metal 

Figure 4.11 Tissue metal concentration of miscanthus grown in sewage sludge soil. Values 
represent stem (_) and leaf (_) tissues and are expressed as a percentage of the soil 
total metal concentration. The data have been shown on a scale of up to 45%, for 
comparison with the flax and nettle (Fig. 4.10, 4.12), with the exception of 
cadmium leaf which has been labelled accordingly. 

Zinc, unlike Cd, was present at a higher stem than leaf tissue metal concentration, than was 

observed for Znn. Of all the metals Zn was taken up into miscanthus tissue at the highest 

concentration from the sewage sludge soil (80 jlg/g in stems, Table 4.17b), however, this 

represented only 3.8% of the sewage sludge soil Zn concentration (Fig. 4.11). Although the 

sewage sludge soil had a total Zn concentration 16 fold greater than the control soil, 

miscanthus grown in the sewage sludge soil had Zn tissue concentrations lower than those 

of the control plants. Copper and Ni had low mobility in the sewage sludge soil

miscanthus system present at between 8 jlg/g and 16 jlg/g; this was < 1.4% and 4% of the 

sewage sludge soil total metal concentration for Cu and Ni, respectively. Lead was not 
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detectable in the miscanthus tissue and Cr was only detectable in miscanthus leaves thus 

these were the least mobile metals in the sewage sludge-miscanthus system. 

With the exception of Cd, the mobility of the each of the metals in the sewage sludge soil 

was lower than the metal mobility in the corresponding Tl and T2 soils; this reduction in 

relative mobility was most evident when comparing ZnTl soil and the sewage sludge soil 

(Fig. 4.8, 4.11). 

Nettle sewage sludge 

As with miscanthus plants, Zn was taken up by nettle stem tissue at the highest 

concentration (Table 4.17c), however, again this represented only 3.7% of the sewage 

sludge soil total Zn concentration (Fig. 4.12). Nickel was the most mobile metal in the 

nettle-sewage sludge soil system despite being present in plant tissue at <10% of the 

sewage sludge soil total Ni concentration. The mobilities of Zn, Ni and the remaining 

metals were lower in nettles grown in the sewage sludge soil than in the surviving nettles 

grown in the corresponding Tl and T2 soils (Fig. 4.9, 4.12). 
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Figure 4.12 Tissue metal concentration of nettle grown in sewage sludge soil. Values 
represent stem (_) and leaf (_) tissues and are expressed as a percentage of the soil 
total metal concentration. 

Cadmium was found in tissues of both flax and miscanthus grown in sewage sludge soil at 

higher concentrations than in tissues of nettle, where it was only found in stem tissue 

«1 %). This result was surprising as the CdTl- nettle system had the highest metal mobility 

of all the metal- plant species systems in Pot Experiment One. 
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4.1.3.4 Metal uptake summary 
In Pot Experiment One, the highest plant tissue metal concentration recorded was for Zn in 

the stems of miscanthus plants. At 969 Jlg/g the Zn concentration in miscanthus stems was 

approximately 100 Jlg/g higher than the concentration of Zn in miscanthus leaves. These 

results were of a similar order of magnitude to those obtained for CdT ! in nettle stem and 

leaf tissues which had concentrations of 919 Jlg/g and 852 Jlg/g, respectively. These two 

combinations, the miscanthus-ZnT! and nettle-CdT!, each with tissues concentrations 

between 800 and 1000 Jlg/g, gave above ground metal yields greater than twice that of any 

other plant-soil treatment combination in Pot Experiment One. The root tissue of flax 

plants grown in PbT! soil had the next highest metal concentration. 

For each metal-plant species combination the metal mobility in the plant-sewage sludge 

soil system was lower than the corresponding plant-Tl or plant-T2 soil system (except Cd 

in miscanthus-sewage sludge soil), despite metal loadings of a similar order of magnitude. 

These metal mobilities indicated that the properties of the contaminated soils, such as soil 

organic matter content, are important factors in the possible success of any 

phytoremediation strategy. 
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4.2 Pot Experiment Two 

Elucidating plant responses to marginally metal contaminated soils matrices 

The aim of Pot Experiment Two was to study the survival of the plants and their metal 

uptake in soils containing the six metals in the study (Cd, Cr, Cu, Pb, Ni and Zn) at and 

closely exceeding the ICRCL threshold trigger values (Section 2.7; Table 2.8). Soils were 

made up to represent 100% and 120% of the ICRCL threshold trigger values (Section 

2.7.1). 

4.2.1 Soil metal concentrations 

The metal concentrations of each of the Pot Experiment Two soils were derived from aqua 

regia digestion (Section 2.12.3.1) thus they represent the soil total metal concentrations 

(Tables 4.18-4.20). 

4.2.1.1 Control soils 

Three control soils were included in Pot Experiment Two (Table 4.18). The T3 and T4 

soils were diluted in varying proportions in order to achieve the target concentration, thus 

two diluted control soils were produced to reflect the dilution range of the treated soils, 

control soils A and B (Section 2.7.1.1). Control soil C was unaltered soil from the 

Garscube walled garden which was a clay loam soil that had habitually received an annual 

application of farm yard manure prior to the study. Control soil C had low metal 

concentrations compared to the sewage sludge soil coupled with a high organic matter 

content and was therefore a suitable control for the sewage sludge soil. 

Table 4.18 Pot Experiment Two control soil composition. 

Control soil 
A 
B 
C 

Com osition 
30% of Pot Experiment One control 
10% of Pot Experiment One control 
Garscube soil 

No Cd was detected in any of the control soils (Table 4.19a). As expected (Section 4.1.1.1) 

control soils A and B had low soil total metal concentrations and, with the exception of Cr, 

control soil A had higher soil total metal concentrations than control soil B. Of all the 

control soils, control soil C had the highest soil metal concentration for each of the metals 

considered. Apart from Cd, which was not detected, the soil metal concentrations in 

control soil C ranged from 25% to 80% of ICRCL threshold trigger values (Table 4.19b), 

representing an elevated metal loading. 
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Table 4.19 Pot Experiment Two control soil metal concentrations. Values below the 
limit of detection are indicated by L.D. 

(a) Control soil total metal concentrations (p,glg). Standard deviations are shown 
(st. dev.); n = 3. 

Control soil Cd Cr Cu 
(Jlg/g) I st. dev. (Jlg/g)I st. dev. (Jlg/g)I st. dev. 

A L.D·I 86.141 19.18 8.661 0.50 

B " L.D·I I 107.641 49.2611 . 4.11 1 0.601 

C L.D·I 146.701 42.34 33.401 2.35 

Control soil Pb Ni Zn 
(Jlg/g)I st. dev. (jlg/g) 1 st. dev. (Jlg/g)1 st. dev. 

A 77.731 43.86 39.401 18.73 44.731 1.84 

B 18.871 6.02 I 25.861 4.961 23.301 2.66 

C 153.131 7.06 55.821 9.98 170.551 10.74 

(b) Control soil total metal concentrations expressed as a percentage of the ICRCL 
thresh9ld trigger values 

Control soil Cd Cr Cu Pb Ni Zn 
(%) (%) (%) (%) (%) (%) 

A L.D. 14 7 16 56 15 
B L.D.I I 181 1 311 411 371 1 8 

C L.D.I I 24 26 31 801 1 57 
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4.2.1.2 T3 And T4 artificial soils 
The values in Table 4.20 show the Pot Experiment Two T3 and T4 artificial soil total metal 

concentrations. The target concentrations, also shown, are 100% (T3) and 120% (T4) of 

the ICRCL threshold trigger values (Section 2.7; Table 2.8). The concentration achieved 

for T3 and T4 soils of Cd, Cr, Pb and Ni exceeded 100% and 120% of the ICRCL 

threshold trigger values, respectively; these soils were within 20% of the target 

concentration with the exception of the CrT3, Nh3 and NiT4 soils. The Zn and Cu T3 and T4 

soil concentrations, however, fell below the 100% and 120% of the ICRCL threshold 

trigger values by up to 16% (Table 4.20). 

Table 4.20 T3 and T4 target and actual soil total metal concentrations. Values 
presented are flg of metal extracted per g of dried, sieved and ground soils (Section 
2.12.1.1). Standard deviations are shown (st. dev.); n = 3. 

Treatment Target Soil total metal concentration 
concentration % of target 

(JJ.g/g) (JJ.g/g) st. dev. concentration 
CdT3 3 3.53 0.58 118 
CdT4 4 4.64 1.95 116 

CrT3 600 I 829 40 138 
CrT4 720 I 846 45 118 

CUT3 130 I 124 10 95 
CUT4 156 I 131 12 84 

PbT3 500 I 544 32 109 
PbT4 600 I 619 33 103 

Nh3 70 I 90 13 129 
Nh4 

, 
84 I 103 26 123 

ZnT3 300 I 282 14 94 
ZnT4 360 I 330 15 92 
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4.2.1.3 Sewage sludge soil 

The sewage sludge soil used for Pot Experiment Two was from the same source as used in 

Pot Experiment One (Section 2.6.1.4). The soil total metal concentrations for the sewage 

sludge soil (Table 4.21) were similar to those described in the Pot Experiment One (Tables 

4.8 and 4.9). All the metals in the study were present at soil total metal concentrations in 

excess of the ICRCL threshold trigger values (Table 4.21). 

Table 4.21 Sewage sludge soil total metal concentrations. Other details as table 4.20. 

Treatment Soil total metal concentration 
% of ICRCL 

threshold 
(/lg/g) st. dev. trigger values 

Cd 44.25 2.99 1475 

Cr II 1856.53 565.41 309 

Cu II 902.82 50.26 694 

Pb II 756.43 36.27 151 

Ni II 489.69 19.10 700 

Zn II 1908.81 185.06 636 

All the metal concentrations in the sewage sludge soil exceeded the ICRCL threshold 

trigger values by at least three fold with the exception of Pb which was 1.5 times the 

ICRCL threshold trigger value. With a low ICRCL threshold (3 /lglg) Cd was the most 

polluting metal in terms of the ICRCL guidelines. Copper, Ni and Zn were the next most 

contaminating metals in the sewage sludge soil. Considering the soil total metal 

concentrations alone, the sewage sludge soil appeared to be the most toxic soil in Pot 

Experiment Two by up to 11 fold more than the other soils. 
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4.2.2 Plant growth 

4.2.2.1 Survival and height data 
Height and survival data was recorded only for the flax and miscanthus plants (Fig. 4.13-

4.16). Of the four plant species in the study, these two species grew tall with a measurable 

variation in height. Height data for the nettle and oilseed rape plants was not reported as 

these plants did not grow tall «20 cm) thus it was not possible to accurately distinguish 

height variations between treatments. Analysis of the growth response of nettle and oilseed 

rape was based on yield data alone (Section 4.2.2.2). 

4.2.2.1.1 Flax 

Flax survival 

CJ:l ..... o 
e<j 

35 

30 

0. 25 
0.( 
o ..... 
> 
.~ 20 -

CJ:l 
....... 
o 
~ 15 -

~ 
Z 10 

CdT3 CdT4 CrT3 CrT4 CuT3 CuT4 PbT3 PbT4 NiT3 NiT4 ZnT3 ZnT4 CtrlA CtrlB CtrlC SS 

Treatment 

Figure 4.13 Mean survival of flax in Pot Experiment Two soils. Treatments include: T3, 
T4, control and sewage sludge soils. Error bars represent SE of mean. 

Plants grown in the CdTI and NiT4 soils had the best survival with a mean of over 30 plants 

per pot. For most of the treatments, a mean of 20-30 of the 50 flax seeds sown survived 

until the end of the growth period (Fig. 4.13). Plants grown in the control and sewage 

sludge soils gave lower mean survivals than the T3 and T4 soils with the exception of Pb 

in which survival was extremely poor. The poor survival of the plants grown in the Pb soils 

was due to a low emergence rate for these treatments, and was not consistent with either 

the germination study results or the Pot Experiment One results. 
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Flax height 
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Figure 4.14 Mean maximum height of flax grown in Pot Experiment Two soils. 
Treatments include: T3, T4, control and sewage sludge soils. Error bars represent 
SE of mean. 

The tallest flax plants were those grown in the PbTI and PbT4 soils (Fig. 4.14). The next 

tallest plant growth was in control soil C followed by the two Cu treatments and the two 

Zn treatments. The plants with the smallest mean heights were grown in CdTI and CdT4 

soils and control soil B. 
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4.2.2.1.2 Miscanthus 

Miscanthus survival 
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Figure 4.15 Mean survival of miscanthus in Pot Experiment Two soils. Treatments 
include: T3, T4, control and sewage sludge soils. Error bars represent SE of mean. 

Miscanthus, grown form rhizome pieces, gave a lower and more uniform survival than flax 

(Fig. 4.15). Most of the treatments had a mean of 1-2 plants surviving per pot at the end of 

the growth period. Differences in the number of plants surviving in each pot were likely 

due to the number of active buds on the rhizome pieces and therefore did not necessarily 

reflect effect of the metals on miscanthus. 



Kerr, J. 2003, Pot Experiment 96 

Miscanthus height 
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Figure 4.16 Mean maximum height of miscanthus grown in Pot Experiment Two soils. 
Treatments include: T3, T4, control and sewage sludge soils. Error bars represent 
SE of mean. 

The tallest miscanthus plants were those grown in the Cr, Ni and Zn artificial soils and had 

similar heights at 177-191 cm (Fig. 4.16), close to heights of 2 m reported by Bullard and 

Kilpatrick (1997). For these three metals there was little difference between the height 

response of the plants grown in the T3 and T4 soils. The next tallest plants were PbT4 and 

control A. The poorest heights were found in control soil C and the Cu soils. 
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4.2.2.2 Yield data 
The yields in Pot Experiment Two were expressed as weights rather than as percentages, as 

was the case for Pot Experiment One, in which samples were compared to a single control 

(Section 4.1.2.2). In Pot Experiment Two, the inclusion of three controls prevented the 

conversion of the data to percentages. Each plant species performance in the T3, T4 and 

sewage sludge soils could be elucidated, however, direct inter-species comparisons could 

not be made (Fig. 4.17~.20). 

4.2.2.2.1 Flax 
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Figure 4.17 Air dried yields of flax tissue from plants grown in T3 and T4 soils. Yields of 
above ground plant tissue in each Pot Experiment Two treatment are expressed as a 
mean of the air dried biomass per pot. Error bars represent SE of mean. 

Flax plants yielded above ground biomass in the range 0.6-3.5 g (Fig. 4.17). The flax 

plants grown in the control soils did not produce high yields compared with flax plants 

grown in the other treatments in the study. Control soils A and B yields were among the 

poorest of all the flax yields (0.7 g and 0.9 g respectively) . The lowest yield for flax in Pot 

Experiment Two was from plants grown in the PbT4 soil; both Pb treatments gave low 

yields, despite producing tall plants (Section 4.2.2.1.1), due to the low number of plants 

surviving until the end of the growth period. The Zn soils gave the highest yields with ZnT4 

yielding slightly more than ZnTI, at 3.5 g and 3.4 g respectively. 

Cadmium, Cu and Zn had slightly higher yields in the T4 soils than in the T3 soils (Fig. 

4.17) indicating that the increase in soil total metal concentration did not inhibit plant 

biomass production. The difference in yields between the T3 andT 4 soils was not such that 
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the T4 treatments could be considered to have had any promotional effect on flax biomass 

production. The yields of the Nh3 and Nh4 treatments were very similar, whilst the 

remaining two metals, Cr and Pb, showed a marked decrease in yield from the T3 to the T4 

soils. These data indicated that in the region of the ICRCL threshold trigger values, Cr and 

Pb were the only metals to exhibit an inhibitory effect on flax biomass production in 

response to the increase in soil total metal concentration. 

Flax biomass production in the sewage sludge soil was greater than the three control 

treatments (Fig. 4.17). The sewage sludge soil also yielded greater flax biomass than each 

of the Cd, Cr, Pb and Ni soils. Only the eu and Zn soils produced a higher yield than the 

sewage sludge soil. 

4.2.2.2.2 Miscanthus 
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Figure 4.18 Air dried yields of miscanthus tissue from plants grown in T3 and T4 soils. 
Yields of above ground plant tissue in each Pot Experiment Two treatment are 
expressed as a mean of the air dried biomass per pot. The CUTI treatment is labelled 
"CuT3R" where "R" denotes the yield as a mean taken from replanted pots which 
had a five week growth disadvantage (Section 2.7.2). Error bars represent SE of 
mean. 

Miscanthus was the highest yielding of all the plants grown in Pot Experiment Two with 

above ground biomass mean yields ranging from 4.2 g (Cu) to 14.7 g (Ni) (Fig. 4.18). The 

control treatments did not produce the greatest yields, however, the miscanthus plants 

growing in the control soils performed better than the flax plants growing in the control 

soils, especially with respect to control soil A. Several of the miscanthus pots failed to 

produce shoots, which was likely attributable to the rhizome pieces having no viable 
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nodes. Where shoots failed to appear, the pots were replanted with new rhizome pieces, 

however, these pots were at a five week disadvantage over the growth period compared to 

the other treatments (Section 2.7.2). If a treatment had some pots which failed and others 

which were successful then only the successful treatments were used to calculate the mean 

yield. The CUT3 soil was the only treatment in which shoots failed to appear in all replicate 

pots, this was reflected in the low yield observed (Fig. 4.18). 

The highest yielding treatment was NiTI (14.7 g) whilst the lowest yielding treatment was 

the replanted Cu treatment CUTI (4.2 g) (Fig. 4.2). For three of the six metals, Cd, Cr, and 

Ni, the lower soil total metal concentration (T3) gave a higher yield than the higher soil 

total metal concentrations (T4) , suggesting the metals were inhibiting plant growth. The 

metal which produced the greatest reduction in yield from the T3 to the T4 soil was Ni 

with a reduction of 28%. The remaining two metals, Pb and Zn, gave higher yields in the 

higher than the lower soil total metal concentrations, indicating the increase in soil metal 

concentration from the T3 to the T4 soils did not inhibit miscanthus biomass production. 

This data indicated that the yield response of miscanthus to an increase in metal 

contamination, in the region of the ICRCL threshold trigger values, was dependant upon 

the contaminant metal. 

The yield of the miscanthus plants grown in the sewage sludge soil was greater than the 

yields of miscanthus plants grown in the other soils apart from CrTI, NiTI, Nh4, ZnT4 and 

control soil A. 
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Figure 4.19 Air dried yields of nettle tissue from plants grown in T3 and T4 soils. Yields 
of above ground plant tissue in each Pot Experiment Two treatment are expressed 
as a mean of the air dried biomass per pot. Error bars represent SE of mean. 

The yields of the nettle plants grown in the Pot Experiment Two soils were low compared 

to the yields of flax and miscanthus (Fig. 4.17-4.19). The nettle plants grown in the 

sewage sludge soil produced the highest biomass of all the treatments followed by control 

soil C (Fig. 4.19). These two soils were the most fertile of the Pot Experiment Two soils 

and the nettle plants responded well to the soil properties of these treatments relative to the 

other treatments. In contrast, the two artificial control soils, control soils A and B, were 

among the six poorest yielding soils in the experiment (0.4 and 0.3 g of above ground 

biomass, respectively). The poorest yields were produced in the two Cd soils, both yielding 

0.28 g and the ~h3 and ~h4 soils (0.26 g and 0.35 g, respectively). ZincT4 and ZnT3, 

produced the highest yielding nettle plants grown in the T3 and T4 soils followed by the 

CUT4, CrTI and CUT3 soils. Chromium and Pb produced lower yields in the T4 than in the 

T3 soil treatments indicating increased inhibition of growth as the metal concentrations 

increased. 
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4.2.2.2.4 Oilseed Rape 
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Figure 4.20 Air dried yields of oilseed rape tissue from plants grown in T3 and T4 soils. 
Yields of above ground plant tissue in each Pot Experiment Two treatment 
expressed as a mean of the air dried biomass per pot. Enor bars represent SE of 
mean. 

Like the nettle plants the yields of the oilseed rape plants were low and again the sewage 

sludge soil produced the highest yield at 2.2 g (Fig. 4.20). An infestation of cabbage white 

caterpillars resulted in a significant loss of plant tissue over the growth phase of the 

experiment and contributed to the low yields recorded for the oilseed rape plants. ZincT4 

was the second highest yielding treatment at 1.9 g followed by control soil C (1.5 g). The 

two artificially made control soils controls A and B produced among the lowest yielding 

plants in Pot Experiment Two. The only metal in which the T4 soil gave a lower yield than 

the T3 soil was Cd, which also gave the poorest yields (0.4 and 0.3 g, respectively). The 

other five metals gave higher yields in the T4 than the T3 soils, however, only Cu and Zn 

gave a large difference in yield between the T3 and T4 treatments (Fig. 4.20). For these 

two metals the yields were not adversely affected by increased soil metal loading as the 

higher concentrations resulted in a yield gain. 
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4.2.2.3 Growth summary 
Miscanthus plants gave higher yields than flax, nettle and oilseed rape for all the 

treatments in Pot Experiment Two (Fig. 4.15-4.18). The yield of miscanthus was between 

2 and 56 times the yield of the other plants (flax in CUTI and nettle in NiTI, respectively). 

Of all the plant species, miscanthus, with a mean yield of (8.97 g), produced five times the 

mean yield of flax (1.85 g), 10 times the mean yield of oilseed rape (0.87 g) and 14 times 

the mean yield of nettle (0.64 g); hence, in terms of biomass production, miscanthus was 

the best tolerator of the growing conditions of all the plant species in the study. The range 

in mean yield per pot over all the Pot Experiment Two soils in decreasing order, was: 1.9-

14.7 g for miscanthus , 0.6-3.5 g for flax, 0.3-2.2 g for oilseed rape and 0.3-1.4 g for 

nettle plants (Fig. 4.15-4.18). Miscanthus plants were also the tallest in Pot Experiment 

Two in each treatment, with plants in all treatments exceeding 1 m (Fig. 4.16). 

It was not surprising that miscanthus should be established as having the best growth 

response to the conditions in Pot Experiment Two as the plant species is a massive 

perennial grass and was grown in relatively hot conditions which were favourable to 

miscanthus plants. The growth of the other plants in the study, particularly the oilseed rape 

and the nettles, was poor and again this was probably in part due to the hot growing 

conditions which were unfavourable to these temperate broad leafed plants. 

Another likely contributory factor to the poor growth of these plants was the poor nutrient 

status of all the treated soils in the study. The inclusion of control soil C and the sewage 

sludge soil tested the plants response to nutrient status and soil physical properties; indeed, 

both oilseed rape and nettle gave higher yields in the sewage sludge soil and control C soils 

in than all but one of the other soils, confirming their preference for soils with a higher 

nutrient status. Notwithstanding, the yields of these treatments were disappointing. Flax 

yields were greater than oilseed rape and nettle therefore flax showed greater potential as a 

tolerator of the unfavourable growing medium. 

The highest yielding plant-treatment combination was the miscanthus plant-NiTI soil 

system. In striking contrast, the same soil also produced the lowest yielding plant-treatment 

combination with nettle plants. This gave a clear demonstration that it is not possible to 

generalise how plants will respond to contaminated soils. The yield response of the 

miscanthus plants to the Nh3 soil was in fact not typical of the plant species in the study as 

for flax, nettle and oilseed rape the Zn and Cu soil treatments all gave better yields than the 

Ni soils (Fig. 4.15-4.18). 
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For all the plants species in the study, the growth response of the plants to control soils A 

and B was poor in comparison to the other soil treatments. This indicated that metals at 

around the ICRCL threshold trigger values did not inhibit plant growth in the contaminated 

matrix used in the study. 

Plants of all four species grown in the sewage sludge soil gave favourable yield responses 

compared to the T3, T4 and control soils; yields of flax and miscanthus grown in the 

sewage sludge soil were within the top six yielding soil treatments for these plant species, 

whilst nettle and oilseed rape grown in the sewage sludge soil had highest yields of all 

treatments for these plant species. The sewage sludge soil gave these high yields ih spite of 

the high loading of multiple contaminant metals. Th~ low availability of the metals and the 

high nutrient status of the sewage sludge soil contributed to the high yields of the plants 

grown in the soil. The growth response of the nettle and oilseed rape plants to the nutrient 

rich and well structured control C and sewage sludge soils suggested that significant 

improvements in the yields of these plants could be made by providing nutrients as part of 

a phytoremediation programme. 
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4.2.3 Plant tissue metal concentrations 

Miscanthus was established as the plant species producing the greatest biomass (Section 

4.2.2.2), however, to be a suitable candidate for phytoremediation, a plant species must 

also have the ability to transport metal from the rhizosphere to above ground plant tissues. 

Measurement of the metal concentration within the plant tissue can give an insight into the 

species' ability to accumulate metal. The plant tissue metal concentration, when expressed 

as a percentage of the soil metal concentration (Fig. 4.21-4.26), showed the plants' ability 

to take up metal, with respect to the soil metal loading, and allowed direct comparison 

between the mobility's of the six metals. Plant tissue metal concentrations > 100% of the 

soil metal concentration represented an accumulation of the metal. In Pot Experiment One 

(Section 4.1.3), some of the stem and leaf tissues were analysed separately, however, in 

Pot Experiment Two, all above ground biomass was consistently analysed as pooled stem 

and leaf tissue, which allowed clear inter-plant species comparisons in aerial plant tissue 

metal concentrations to be made. Metal uptake of each of the six metals was considered 

separately for the four plant species under investigation before comparisons between all of 

the metal-plant combinations were made. 

4.2.3.1 Control soils 

Studying the uptake of the metals to above ground tissues in the plant species-control soil 

systems allowed the behaviour of the metals at background levels in soils, with differing 

organic matter contents, to be elucidated. Soil total metal concentrations for the control 

soils are detailed in Section 4.2.1.1. 

Cadmium 

The control soils, despite having soil Cd concentrations below the limit of detection (Table 

4.19), produced plant tissue Cd concentrations of up to 2.58 I-tg/g. Oilseed rape was the 

plant species able to accumulate the greatest tissue concentration of Cd closely followed by 

flax (Table 4.22). Nettle growing in control soil A was the only plant-control soil system 

which had a Cd tissue concentrations below the limit of detection. 
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Table 4.22 Tissue metal concentrations of plants grown in the control soils. Mean plant 
tissue metal concentrations (f.Lg/g) of Cd, Cr, Cu, Pb, Ni , and Zn in: flax, miscanthus, 
nettle and oilseed rape. Values are calculated from four replicate pots (n=4). L.D. 
denotes plant tissue metal concentration below the limit of detection. 

Control Flax Miscanthus Nettle Oilseed rape 
soil 

(lJ.glg) st. dev. (lJ.g/g) st. dev. (lJ.glg) st. dev. (lJ.g/g) st. dev. 
Cd 

A 2.32 0.79 0.58 0.67 L.D. 2.57 0.63 

B 2.47 0.33 1.04 0.71 1.47 0.87 2.58 0.91 
C 2.41 0.50 1.75 0.74 2.41 0.50 2.24 0.68 

Control Flax Miscanthus Nettle Oilseed rape 
soil 

(lJ.glg) st. dev. (lJ.glg) st. dev. (lJ.glg) st. dev. (lJ.g/g) st. dev. 
Cr 

A L.D. L.D. L.D. L.D. 
B 7.48 n=l L.D. L.D. L.D. 
C L.D. L.D. L.D. L.D. 

Control Flax Miscanthus Nettle Oilseed rape 
soil 

(lJ.g/g) st. dev. (lJ.glg) st. dev. Wg/g) st. dev. (f.Lglg) st. dev. 
Cu 

A 1.00 1.22 L.D. 13.94 7.91 0.79 n=l 
B 1.63 0.75 0.25 n=l 10.16 3.76 3.29 3.1 
C 1.58 1.83 L.D. 3.16 0.24 0.37 n=l 

Control Flax Miscanthus Nettle Oilseed rape 
soil 

(lJ.g/g) st. dev. (jlglg) st. dev. (lJ.g/g) st. dev. (lJ.g/g) st. dev. 
Pb 

A L.D. L.D. L.D. L.D. 

B L.D. L.D. L.D. L.D. 
C L.D. L.D. L.D. L.D. 

Control Flax Miscanthus Nettle Oilseed rape 
soil 

(f.Lglg) st. dev. (f.Lglg) st. dev. (lJ.g/g) st. dev. (jJ,g/g) st. dev. 
Ni 

A 5.74 1.87 7.41 3.30 4.70 3.54 24.41 24.16 
B 8.85 3.21 12.57 8.28 5.13 3.73 7.62 3.53 
C 7.64 2.44 27.74 33.11 7.64 2.44 5.31 1.03 

Control Flax Miscanthus Nettle Oilseed rape 
soil 

(lJ.g/g) st. dev. (lJ.g/g) st. dev. (Ilglg) st. dev. (lJ.glg) st. dev. 
Zn 

A 40.39 2.92 38.19 6.53 48.02 15.58 64.21 32.73 
B 26.49 3.45 28.73 3.31 35.50 13.95 37.82 8.72 
C 28.17 5.03 22.73 2.61 28.17 5.03 28.36 2.93 
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Chromium 

All the plant species grown in the control soils had tissue Cr concentrations below the limit 

of detection, with the exception of flax plants grown in control soil B (Table 4.22). The 

behaviour of Cr in the control soils directly contrasted with Cd; what little Cd was present 

in the control soils was taken up by the plant species, however, Cr was not detectable in the 

majority of plants growing in the control soils despite being present in the soils at 14-24% 

of its ICRCL threshold trigger value (Table 4.19). The one plant-soil system which 

produced a detectable Cr tissue concentration, flax-control soil B, gave a low plant tissue 

concentration of7% of the soil total Cr concentration (Table 4.23). 

Table 4.23 Uptake and accumulation of metals by plants grown in the control 
soils. Values shown are the mean control soil plant tissue metal concentrations 
expressed as a percentage of the soil total metal concentrations for Cr, Cu, Ni, and 
Zn. Mean tissue Pb concentrations could not be calculated as the plant tissue 
concentrations were below the detection limit and have been omitted: tissue 
concentration below the detection limit for other metals are denoted by "-". Where 
plant tissue concentration are > 100% the figures are highlighted in bold. Tissue 
concentrations above the detection limit for Cd, where the soil metal concentration 
was less than the detection limit are denoted by "+". 

Flax Control soil Cd Cr Cu Ni Zn 

A + - 12 15 90 
B + 7 40 34 114 

G + - 5 14 17 

lMiscanthus Control soil Cd Cr Cu Ni Zn 

A + - - 19 85 

~ + - 6 49 123 

C + - - 50 13 

lNettle Control soil Cd Cr Cu Ni Zn 

A - - 161 12 107 

~- + - 147 20 152 
C + - 9 14 17 

~ilseed rape Control soil Cd Cr Cu Ni Zn 

A + - 9 62 144 
B + - 38 29 162 
C + - 1 10 17 
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Copper 

The maximum tissue Cu concentrations for miscanthus, oilseed rape and flax were all 

found in the plants grown in control soil B, whilst in nettles the maximum tissue Cu 

concentration was found in the plants grown in control soil A (Table 4.22). The higher 

uptake from control soils A and B than from control soil C did not correlate with the soils 

Cu loading as control soil C had four times and eight times more Cu than control soils A 

and B, respectively. Thus the control soils with a lower organic matter, control soils A and 

B, had a higher Cu uptake than control soil C despite its' higher Cu loading. Nettle plants 

grown in control soil A had the highest tissue Cu concentration of all the plant species

control soil systems with a tissue concentration - four fold that of the plant species with 

the next highest tissue Cu concentration, oilseed rape grown in control soil B. 

Copper was one of two metals most accumulated from the control soils, as the nettle tissue 

Cu concentration in plants grown in control soil A was 161 % of the control soil A total Cu 

concentration (Table 4.23). 

Lead 

Lead was present in control soil A at approximately one sixth of the ICRCL threshold 

trigger value and in control soil C at one third of the ICRCL threshold trigger value (Table 

4.19), despite this significant soil loading of Pb, none of the plants growing in the control 

soils had any detectable Pb in their tissues (Table 4.22). 

Nickel 

Control soil C had the highest soil total Ni concentration of all the Pot Experiment Two 

controls at 56 Jlglg (Table 4.19). Miscanthus-nickel and nettle-nickel were the only two of 

the 24 plant-metal systems where the plant tissue metal concentrations were greater in the 

plants grown in control soil C than in control soils A and B (Table 4.22). Nickel was taken 

up in the greatest quantity by miscanthus grown in control soil C, however, due to the high 

soil metal loading of control soil C, Ni was most mobile in the oilseed rape-control soil A 

system (Table 4.23). 
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Zinc 

In control soils A and B, Zn was present at 15% and 7.6% of the ICRCL threshold trigger 

value, respectively, but Zn was more concentrated in control soil C at 57% of the ICRCL 

threshold trigger value (Table 4.19). Despite the higher Zn loading in control soil C, Zn 

uptake was highest, for all the plant species, from control soil A (Table 4.22). Plants from 

the oilseed rape-control soil A system had the highest tissue Zn concentration. All the 

plant species grown in control soils A and B had a Zn uptake of 2: 85% of the soil total Zn 

concentration whereas all the plant species grown in control soil C had a Zn uptake of < 

18% of the soil total Zn concentration (Table 4.23). Zinc uptake in controls soils A and B 

was consistently high for all of the plant species in the study; out of the eight soil-plant 

species systems, six accumulated a Zn tissue concentration in excess of the soil Zn 

concentration. Conversely, uptake of Zn was consistently low from control soil C across all 

the plant species in the study (Table 4.23). Zinc was the metal present in each plant 

species' tissue at the highest concentration with the exception of Ni in the miscanthus

control soil C system and was the most mobile metal in all but two plant species-soil 

systems, the exceptions being Ni in the miscanthus-control soil C system and Cu in the 

nettle-control soil A system. 
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4.2.3.2 T3 And T4 artificial soils 
It was of key interest to elucidate above ground tissue metal concentrations of the plant 

species grown in the T3 and T4 soils in order to identify suitable phytoremediators for the 

six metals in the study. The soil total metal concentrations for the T3 and T4 soils were 

detailed in Section 4.2.1.2. 

Table 4.24 Tissue metal concentrations of plant species grown in the T3 and T4 soils. 
Mean plant tissue metal concentrations (flglg) for flax, miscanthus, nettle and oilseed 
rape. Unless otherwise indicated there were 4 replicate samples (n=4), t denotes n=3 
and * denotes a single sample with 3 analytical replicates. This result (*) did not 
take part in the t test. For each element values sharing the same letter are not 
significantly different (t test using Bonferroni correction, P < 0.05). 

Mean stem and leaf metal concentration 
Cd Cr Cu 

(Jlg/g) I st. dev.1 t test (Jlg/g) I st. dev.j t test (Jlg/g) I st. dev.1 t test 
Flax T3 38.161 6.2olab 18.101 6.501 ab 2.831 1.341 a 
Flax T4 48.771 3.431a II 23.271 5.841 abl 6.161 1.661 a 

Miseanthus T3 2.411 2.811e II 8.671 4.991 al 8.901 2.461 a 
Miseanthus T4 3.661 2.531e II 2.801 0.321 al 7.401 6.711 a 

Nettle T3 12.001 14.731bed II 11.721 8.161 abl 28.631 3.751 b 

Nettle T4 10.341 5. 161bed II 15.621 4.221 abl 35.341 6.191 be 

Oilseed rape T3 38.771 17. 141ad II 21.341 15.421 abl 49.731 10.671 c 

Oilseed rape T4 52.211 22.681a I 34.711 18.231 bl 38.371 7.621 be 

Pb Ni Zn 
(Jlg/g) I st. dev.1 t test (Jlg/g)1 st. devJ t test (Jlg/g) I st. dev·1 t test 

Flax T3 23.31 5.73*1 * 42.001 3.701 ab 2751 41 a 

Flax T4 32.01 14.46tl abl 56.911 5.371 abl 3211 271 a 

Miscanthus T3 75.71 14.201 abl 9.861 2.181 al 2241 541 a 

Miseanthus T4 61.61 30.081 abl 15.891 3.231 al 2611 44tl a 

Nettle T3 107.31 37.32tl al 90.781 35.351 bl 13851 2411 b 
Nettle T4 87.81 32.421 abl 189.681 56.111 el 19371 1541 e 
Oilseed rape T3 22.71 6.72tl bl 166.261 45.761 el 7071 911 d 
Oilseed rape T4 62.81 22.801 abl 187.141 20.011 el 9951 1461 d 

Cadmium 

An increase in plant tissue Cd concentration from the T3 to the T4 soils (Table 4.24) was 

observed for miscanthus, flax and oilseed rape. Nettle had a small reduction «2 flglg) in 

plant tissue Cd concentrations from the T3 to T4 soil. However, within each plant species, 

none of the differences between T3 and T4, for each metal, were significant (Table 4.24). 
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The highest plant uptake of Cd was found in flax and oilseed rape, with the T4 soils 

producing flax and oilseed rape plant tissue concentrations of 48.77 Ilg/g and 52.211lg/g, 

respectively (Table 4.24); these tissue concentrations represented a significant 

accumulation of Cd from the soil matrix (Fig. 4.21). In both T3 and T4 soils, flax and 

oilseed rape had tissue Cd concentrations between 10 and 12 fold the soil Cd 

concentration; these were the only soil-plant species systems in Pot Experiment Two 

where an accumulation of > 1000% of the soil metal concentration was observed in the 

plant tissue (Table 4.24 and Fig. 4.21-4.26). Nettle plants also accumulated Cd from both 

T3 and T4 soils, the greater accumulation being in the T3 soil where the tissue 

concentration was 340% of the soil concentration (Fig. 4.21). Cadmium, in the oilseed 

rape- and flax-T3 and T4 soil systems, however, was the most highly mobile metal 

observed in the Pot Experiment Two. 

1200 
ab a 

::0 
~ 1000 -·0 
'" -C1:I 800 ..... 
0 ..... 

...... 
0 

~ 
600 

'" C1:I 

::0 
~ 
(1) 400 
::l 

'" '" .~ 

..... 
§ 200 ' 

15::: 

0 

Aax T3 Aax T4 Misc. TJ Misc. T4 Nettle TJ Nettle T4 OSR TJ OSRT4 

Species- soil treatment 

Figure 4.21 Stem and leaf tissue Cd concentrations of plant species grown in T3 and T4 
soils. Plant tissue Cd concentration expressed as a % of soil total Cd concentration 
(Table 4.20, 4.24) for flax, miscanthus (Misc.), nettle and oilseed rape (OSR). Bars 
sharing the same letter are not significantly different (t test using Bonferroni 
correction, P < 0.05). 

Only miscanthus plants failed to accumulate Cd, with tissue concentrations in the T3 and 

T4 soils of 68% and 79% of the soil concentration, respectively. The Cd concentration in 

miscanthus tissue grown in the CdTJ soil was the lowest tissue concentration observed in 

all of the T3 and T4-plant species systems. 
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Chromium 

Uptake of Cr from the soil matrix was consistently low for all the plant species studied and 

only the oilseed rape-T4 soil and the miscanthus-T3 and T4 soils were significantly 

different (Fig. 4.22). Miscanthus had the lowest Cr uptake with a mean tissue concentration 

of 2.80 Jlg/g for the plants grown in the CrT4 soil, which was only 0.33% of the soil Cr 

loading. Miscanthus plants had lower tissue Cr concentrations in the plants grown in the 

CrT4 soil than the CrTI soil (Table 4.24). Flax, oilseed rape and nettle plants grown in the 

CrT4 soils all contained higher tissue Cr concentrations than the plants grown in the T3 

soils. Of all the T3- and T4-plant species systems in Pot Experiment Two, the 

miscanthus-CrT4 soil system gave the lowest uptake with respect to the soil total metal 

loading. 

4.50 

b 
'>:' 4.00 

~ - 3.50 ·0 
'" "; 

3.00 ..... 
ab 0 ..... 

ab ...... 
0 2.50 
~ 
'" ~ 2.00 .... 
~ 
Q) 1.50 
;::l 

'" '" .;:l 
1.00 ..... 

§ 
0: 0.50 

0.00 

Flax T3 Flax T4 Misc. T3 Misc. T4 Nettle T3 Nettle T4 OSR T3 OSRT4 

Species-soil treatment 

Figure 4.22 Stem and leaf tissue Cr concentrations of plant species grown in T3 and T4 
soils. Plant tissue Cr concentration expressed as a % of soil total Cr concentration 
(Table 4.20, 4.24) for flax, miscanthus (Misc.), nettle and oilseed rape (OSR). Bars 
sharing the same letter are not significantly different (t test using Bonferroni 
correction, P < 0.05). 

Oilseed rape and flax had the highest tissue Cr concentrations (Table 4.24). The greatest 

uptake of Cr was by the oilseed rape plants grown in the CrT4 soil. The oilseed rape-T4 

plants had a mean tissue concentration of 35 Jlg/g Cr, amounting to 4% of the soil Cr 

concentration, however, due to the sample variability, the Cr uptake in the oilseed rape-T4 

system was only significantly different from the Cr uptake in miscanthus. Of the six metals 

in the study, Cr, had the lowest uptake from the T3 and T4 soils to the plant tissue in all the 

plant species studied, with respect to the soil total metal concentration (Fig. 4.22). 
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Chromium was therefore considered the least mobile of the metals for all of the soil-plant 

systems at concentrations around the ICRCL threshold trigger values. 

Copper 

The oilseed rape plants in the CUT3 soil had the highest Cu tissue concentration of all of the 

plants grown in the Cu treated soils. The oilseed rape plant tissue Cu concentration in the 

CUT3 soil, at 50 /1g/g, was 29% higher than the next most Cu concentrated plant tissue, 

oilseed rape grown in the CUT4 soil (Table 4.24; Fig. 4.23). The oilseed rape- CuT3 and -

CUT4 systems were the only systems in Pot Experiment Two where the tissue concentration 

in the plant species-T3 soil exceeded the tissue concentration in the plant species-T4 soil, 

however, none of the T3 and T4 soils gave differences in tissue metal concentrations which 

were significantly different within plant species. The uptake of Cu in the nettle and oilseed 

rape plants was significantly higher than the Cu uptake in flax and miscanthus. The 

maximum plant tissue Cu concentration of 50 /1g/g, found in the oilseed rape plants, 

represented 40% of the soil Cu concentration (Fig. 4.23). Therefore Cu was not 

accumulated by any of the plants in Pot Experiment Two at soil concentrations close to the 

ICRCL threshold trigger values, although Cu was accumulated by nettle grown in control 

soils A and B (Fig. 4.23; Table 4.23). 
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Figure 4.23 Stem and leaf tissue Cu concentrations of plant species grown in T3 and T4 
soils. Plant tissue Cu concentration expressed as a % of soil total Cu concentration 
(Table 4.20,4.24) for flax, miscanthus (Misc.), nettle and oilseed rape (OSR). Bars 
sharing the same letter are not significantly different (t test using Bonferroni 
correction, P < 0.05). 
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Lead 

The variability in the concentrations of replicates meant that the differences observed 

between treatments were not significant except the nettle-PbTI and the oilseed rape-PbTI 

(Table 4.24). Nettle had the highest tissue Pb concentration of all the plants species grown 

in the PbT3 and PbT4 soils. The maximum mean tissue concentration, 107 f,lg/g for the nettle 

plants grown in the PbT3 soil, was 20% of the soil Pb concentration (Fig. 4.24). Nettles 

grown in the T4 soil had a tissue concentration of 14% of the soil total Pb concentration 

which matched the Pb uptake by miscanthus grown in the T3 soil, with respect to the soil 

total Pb concentration. Lead was the only metal for which miscanthus achieved tissue 

metal concentrations greater than or equal to those of flax and oilseed rape. The three 

remaining treatments, flax grown in the T3 and T4 soils and oilseed rape in the T3 soil, all 

had tissue Pb concentrations of < 6% of the soil total Pb concentration making metal 

uptake in these systems among the lowest from the T3 and T4 soils. 
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Figure 4.24 Stem and leaf tissue Pb concentrations of plant species grown in T3 and T4 
soils. Plant tissue Pb concentration expressed as a % of soil total Pb concentration 
(Table 4.20,4.24) for flax , miscanthus (Misc.), nettle and oilseed rape (OSR). Bars 
sharing the same letter are not significantly different (t test using Bonferroni 
correction, P < 0.05). The flax-T3 result was based on one replicate and was 
removed from t test. 
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Nickel 

For all the plant species in Pot Experiment Two, the tissue Ni concentration was greater in 

the plants grown in the T4 soil than those grown in the T3 soil (Table 4.24) although this 

difference was only significant for nettles. Both oilseed rape and nettle had similar tissue 

Ni concentrations in the T4 soil of - 188 J-tg/g, the highest Ni tissue concentration in the 

experiment. The soil total Ni concentration of the Nh4 soil was 103 J-tg/g (Table 4.20), thus 

the tissue concentrations of Ni in oilseed rape and nettle grown in the T4 soils showed a Ni 

accumulation of 180% of the soil total Ni concentration (Fig. 4.25). Nickel was extracted 

from the soil by the plant species and accumulated in the above ground plant tissues of 

oilseed rape grown in the T3 and T4 soil treatments and in the nettles grown in the T4 soil 

treatment. Nettles grown in the NiT3 soil had a tissue concentration of 100% of the soil 

total Ni concentration so plants in this treatment did not accumulate Ni although they 

extracted more Ni from the soil than the flax and miscanthus plants (Fig. 4.25). Flax grown 

in the Ni treated soils had tissue Ni concentrations between 47% (T3 soil) and 55% (T4 

soil) of the soil total Ni concentration, this was approximately one third of the tissue Ni 

concentration of oilseed rape and nettle in the T4 soil. Miscanthus had the lowest tissue Ni 

concentration of all the species with tissue Ni concentration <20% that of the soil Ni 

concentration. 
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Figure 4.25 Stem and leaf tissue Ni concentrations of plant species grown in T3 and T4 
soils. Plant tissue Ni concentration expressed as a % of soil total Ni concentration 
(Table 4.20, 4.24) for flax, miscanthus (Misc.), nettle and oilseed rape (OSR). Bars 
sharing the same letter are not significantly different (t test using Bonferroni 
correction, P < 0.05). 
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Zinc 

As was observed in the Cu treatments, the uptake of Zn by the plant species fell into two 

groups; lower Zn uptakes were observed for miscanthus and flax compared to the higher 

uptakes observed for nettle and oilseed rape (Table 4.24). Nettle plants had the highest 

tissue Zn concentration of all the plant species in Pot Experiment Two. Nettle plants grown 

in the T4 soil accumulated 1937 Ilg/g Zn in their tissue, an accumulation of 587% of the 

soil total Zn concentration (Fig. 4.26). Furthermore, the nettle plants in the T4 soil 

accumulated almost twice as much Zn as the second highest accumulator in the T4 soil, 

oilseed rape. Nettle plants grown in T4 soils had significantly higher tissue Zn 

concentrations than the plants in the T3 soil. Additionally, the nettle and oilseed rape plants 

grown in the T4 soil accumulated more Zn in proportion to the soil Zn concentration than 

the plants grown in the T3 soil. In the case of nettle, the increase in Zn content from the 

Znn to ZnT4 soil had a significant effect on the accumulation of Zn by this plant species. 
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Figure 4.26 Stem and leaf tissue Zn concentrations of plant species grown in T3 and T4 
soils. Plant tissue Zn concentration expressed as a % of soil total Zn concentration 
(Table 4.20, 4.24) for flax , rniscanthus (Misc.), nettle and oilseed rape (OSR). Bars 
sharing the same letter are not significantly different (t test using Bonferroni 
correction, P < 0.05). 
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For flax, miscanthus and oilseed rape, the observed rise in tissue concentration between the 

T3 and T4 soils was not significant (Table 4.24) indicating that the differences in soil 

concentrations were not sufficient to elicit a detectable response in uptake. For these plants 

there was no difference in the proportion of the soil total Zn concentration removed from 

the soil by the plants grown in either treatment (Fig. 4.26). Neither the miscanthus nor the 

flax plants accumulated Zn, with their plant tissue concentrations between 79% and 97% of 

the soil total Zn concentration. In miscanthus, the tissue Zn concentration was the higher 

than for any other metal taken up by miscanthus (Table 4.24). Zinc was also one of the two 

most mobile metals with respect to the soil total metal concentration (Fig. 4.21--4.26). 
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4.2.3.3 Sewage sludge soil 

Studying the above ground tissue concentration of the six metals in the plant species-

sewage sludge soil system allowed the behaviour of the metals in a heavily contaminated 

soil with a high organic matter content to be elucidated. Soil total metal concentrations for 

the sewage sludge soil were detailed in Section 4.2.1.3. 

Cadmium 

The sewage sludge soil had the greatest soil total Cd concentration (44 Jlglg) of all the Pot 

Experiment Two soils (Table 4.19-4.21). Despite the sewage sludge soil Cd loading, 

approximately 10 fold that of CdT4, the plants growing in the sewage sludge soil did not 

accumulate Cd (Table 4.26). Oilseed rape plants had the greatest tissue Cd concentration 

(4.82 Jlglg) of all the plants grown in the sewage sludge soil (Table 4.25), but this 

represented a tissue concentration only - 10% of the soil total Cd concentration (Table 

4.26), a marked decrease from the accumulation of > 1000% seen in flax and oilseed rape 

plants growing in the CdT3 and CdT4 soils (Fig. 4.21). This decrease in mobility highlighted 

the impact the matrix properties had on the mobility of the metals between the soil-plant 

systems. Although Cd was not taken up from the sewage sludge soil to the same extent as 

from the T3 and T4 soils, Cd gave the highest mobility in the plant-sewage sludge soil 

systems (oilseed rape-sewage sludge soil system) equal with Ni (nettle-sewage sludge soil 

system) (Table 4.26). 

Table 4.25 Tissue metal concentrations of plants grown in the sewage sludge soil. 
Mean plant tissue metal concentrations (Jlglg) for: flax, miscanthus, nettle and 
oilseed rape. Values are calculated from four replicate pots (n=4). L.D. denotes plant 
tissue metal concentrations below the limit of detection. 

Plant species Cd Cr Cu 

(Ilg/g) st. dey. (Ilg/g) st. dey. (Ilg/g) st. dey. 

Flax 4.24 0.41 L.D. 1.58 1.83 

Miscanthus 1.87 1.28 1 L.D·I 1 2.91 n=l 

Nettle 2.33 0.19 1 L.D·I 1 38.44 4.36 

Oilseed rape 4.82 0.82 8.57 n=l 25.54 3.23 

Ph Ni Zn 

(Ilg/g) st. dey. (Ilg/g) st. dey. (Ilg/g) st. dey. 

Flax L.D. 3.82 0.41 62.30 9.92 

Miscanthus L.D. I 9.821 8.581 100.89 126.33 

Nettle L.D. I 51.761 10.911 44.68 4.70 

Oilseed rape L.D. 43.50 6.36 150.97 45.27 
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Chromium 

Of the four plant specIes grown m the sewage sludge soil only, oilseed rape tissue 

contained detectable quantities of Cr (Table 4.25); this was only - 1 % of the soil total Cr 

concentration (Table 4.26), despite a soil Cr loading of > three times the Cr ICRCL 

threshold trigger value (Table 4.21). 

Table 4.26 Uptake of metals by plants grown in the sewage sludge soil. Values shown 
are the mean sewage sludge soil plant tissue metal concentrations expressed as a 
percentage of the soil total metal concentrations. Tissue concentrations < 0.5% are 
denoted by "t"; below the detection limit are denoted by "-". 

Plant species Cd Cr Cu Pb Ni Zn 

Flax 10 - t - 1 3 

Miscanthus 4 I -I I tl I -I I 21 5 

Nettle 5 I -I I 411 -I I 111 2 

Oilseed rape 11 t 3 - 9 8 

The lImIt of detectIOn mdIcates that Cr IS present at <1 % of the soil total Cr concentration 
whilst Pb is present at <3% of the soil total Pb concentration. 

Copper 

Miscanthus, flax and oilseed rape grown in the sewage sludge soil, which had a soil eu 

concentration - seven fold more than the Cu IeRCL threshold trigger value (Table 4.21), 

had lower Cu tissue concentrations than the plants grown in the T3 and T4 soils (Table 

4.24, 4.25). Flax plants grown in the sewage sludge soil, the plant species with the lowest 

tissue Cu concentration, had a similar tissue eu concentration to the flax plants grown in 

the control soils (Table 4.22, 4.25). Nettle, which had the highest tissue eu concentration, 

was the only plant species whose tissue concentration was greater in the sewage sludge soil 

than in the T3 and T4 soils, albeit marginally. The mobility of Cu in the sewage sludge soil 

(Table 4.26) was> 10 fold less than Cu mobility in the T3 and T4 soils (Fig. 4.23) for all 

the plant species except nettle where the mobility in the sewage sludge soil was only - six 

fold less. 

Lead 

The sewage sludge soil had a soil Pb concentration of 1.5 times the Pb ICRCL threshold 

trigger value (Table 4.21) yet none of the plants grown in this soil had any detectable Pb in 

their tissues (Table 4.25). Lead was the only metal which was not taken up into plant 

tissues in detectable quantities although this metal has the highest detection limit of the 

metals in the study (Section 2.12.4; Table 2.14). 
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Nickel 

The Ni loading of the sewage sludge soil was seven fold greater than the Ni ICRCL 

threshold trigger value (Table 4.21), however, the tissue Ni concentrations in the plants 

grown in the sewage sludge soil were up to 14 fold less than the tissue Ni concentrations of 

the plants grown in the Nh4 soils (Table 4.24, 4.25). The exception to this was miscanthus 

for which the plant tissue concentration taken up from the sewage sludge soil was equal to 

that taken up from the NiTI soil. In the sewage sludge soil-nettle system, Ni was the most 

mobile of the six metals studied and overall, this system was equal with Cd in the sewage 

sludge soil-oilseed rape system in producing the two most mobile metals in the sewage 

sludge soil-plant systems (Table 4.26). 

Zinc 

The sewage sludge soil had a soil Zn concentration > six times the Zn ICRCL threshold 

trigger value (Table 4.21). Despite the high Zn loading of the sewage sludge soil, the 

uptake of Zn by the plants in the study was low at < 9% of the soil total Zn concentration 

(Table 4.26). The tissue Zn concentrations of the plant species grown in the sewage sludge 

soil were all lower than the tissues of those species grown in the ZnTI and ZnT4 soils (Table 

4.24, 4.25). The highest uptake of Zn from the sewage sludge soil was recorded in oilseed 

rape at 151 p,glg which was the highest tissue metal concentration recorded for plants 

grown in the sewage sludge soil (Table 4.25). Zinc was the metal present at the highest 

concentration in flax, miscanthus, and oilseed rape tissues. The high tissue Zn 

concentrations were offset by the high Zn loading of the sewage sludge soil and therefore 

Zn was observed to be the most mobile metal in the miscanthus-sewage sludge soil system 

only (Table 4.26). 
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4.2.3.4 Metal uptake summary 

Of all the metals in the study, the highest tissue concentrations were seen in plants grown 

in the ZnTI and ZnT4 soils, nettles in the ZnT4 soil had the highest plant tissue metal 

concentration recorded in Pot Experiment Two (1937jLg/g, Table 4.24). In terms of the 

proportion of the soil metal accumulated by the species in Pot Experiment Two, the flax 

and oilseed rape-CdTI and -CdT4 soil systems produced the highest tissue concentrations 

with respect to the soil total metal concentration, with all four systems having tissue Cd 

concentrations greater than 1000% of the soil Cd concentration. The lowest tissue 

concentrations were recorded for Cr and the plants grown in the Cr soils also had the 

lowest tissue concentrations when expressed as a percentage of soil total metal 

concentration. The low uptake of Cr was in agreement with the low mobility of Cr 

observed in the Tl and T2 soils (the parent soils of the T3 and T4 soils), as well as the 

sewage sludge soil, using CaCh and EDT A extractant solutions. Cadmium, Ni and Zn 

were the only metals where the plant tissue metal concentrations exceeded the soil metal 

concentrations, indicating metal accumulation. 

Nettle not only had the greatest tissue metal concentration in the ZnT4 soil, it was also the 

plant species which had the highest tissue concentration for Pb and Ni although oilseed 

rape plants in the Ni soils had similar tissue Ni concentrations. In the Cd, Cr and Cu soils, 

oilseed rape plants had the highest tissue metal concentrations of all the plant species in the 

experiment. For four of the six metals (Cd, Cr, Ni and Zn) the poorest uptake of metal to 

plant tissue was recorded for miscanthus, while in the remaining two soils (Cu and Pb) 

miscanthus plants only had a plant tissue metal concentration greater than flax. 

For each plant, the order of mobility of the metals was seen by ranking the tissue metal 

concentrations expressed as a percentage of the soil metal concentration. These 

percentages were ranked as follows, the highest mobility appearing on the left: 

Miscanthus: Zn ~Cd » Ni = Pb > Cu >Cr 

Flax: Cd» Zn » Ni » Pb ~ Cu ~ Cr 

Oilseed rape: Cd » Zn » Ni » Cu » Pb >Cr 

Nettle: Zn » Cd » Ni » Cu > Pb » Cr 
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It can be seen from the ranking of the metals (above) that the metals fell into a similar 

order across each plant species with Cr, Cu and Pb less mobile than Cd, Ni and Zn. 

However, the extent of the mobility of the metals and the precise order of rankings varied 

according to the plant species in question. Most notably, the behaviour of Pb and Ni in the 

miscanthus showed the Pb tissue concentration of miscanthus, expressed as a percentage of 

the soil concentration, to be similar to that of Ni, whereas in the other plants in the study, 

Ni was present in plant tissue at a considerably higher percentage of the soil Ni 

concentration than Pb. Furthermore, the behaviour of Ni indicated the difficulty of making 

generalised statements regarding the mobility of metals within soil plant systems. Nickel 

was a metal which was accumulated by two of the four plant species under investigation, 

however, simultaneously Ni was a metal whose mobility in miscanthus was similar to the 

mobility of Pb, a metal normally considered as having low mobility (Lasat, 2002). 

For each of the metals in the study, the relative suitability of the four plant species with 

respect to each other was determined by ranking the plant tissue metal concentration (/lg! g) 

of the plants grown in the T3 and T4 soils (Table 4.24). These were ranked as follows, the 

highest tissue concentration appearing on the left: 

Cadmium: OSR-T4 > Flax-T4 > OSR-T3 ;::: Flax-T3 » Nettle» Misc. 

Chromium: OSR-T4 > Flax-T4 > OSR-T3 > Flax-T3 > Nettle >Misc. 

Copper: OSR> Nettle» Misc. > Flax 

Lead: Nettle> Misc.-T3 ;::: OSR-T4;::: Misc.-T4» Flax> OSR-T3 

Nickel: OSR ;::: Nettle-T4 » Nettle-T3 > Flax » Misc. 

Zinc: Nettle> OSR > Flax> Misc. 

The plant species rankings (above) showed that oilseed rape was the species which had the 

highest tissue concentrations for four (Cd, Cr, Cu and Ni) of the six metals studied, 

although for nickel, the tissue concentrations in nettle were similar to those of oilseed rape. 

The two remaining metals (Pb and Zn) had the highest tissue concentration in nettle. Nettle 

also had the second highest tissue concentrations of Cu and Ni. On the basis of above 

ground plant tissue concentrations, oilseed rape and nettle were the most promising 

phytoremediator candidates. 

In the sewage sludge soil, with its high concentration of all the metals in the study, it was 

consistently seen that the plant tissue concentration of each metal, was lower than that of 
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the plants grown in the corresponding contaminated soils. This behaviour was also seen in 

the control soils. Control soil C, despite having a higher soil concentration of all the metals 

studied than the control soils A and B, gave plant tissue concentrations lower than control 

soils A and B (with the exception of Cd and Ni uptake by miscanthus in control soil C). 

The sewage sludge soil and the Garscube control soil C were both soils with a high organic 

matter content; the reduced uptake of metals from these soils compared to the artificially 

made contaminated and control soils indicated that the organic matter content of the 

contaminated soil may be a key factor in the mobility of the metals in the soil-plant 

system. 

4.2.4 Total quantities of metal removed from the 'soil 
The goal of phytoremediation is to extract as much of the polluting metal from the soil as 

possible. It is therefore essential when evaluating potential phytoremediators to establish 

plant species capable of high metal uptake coupled with high biomass production. The 

product of the plant tissue metal concentration (Section 4.2.3) and the yield of plant tissue 

(Section 4.2.2.2) gave the total quantity of metal removed from the soil matrix (Fig. 4.27-

4.32). Each of the metals were considered in tum before summarising the findings. 
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4.2.4.1 Cadmium total uptake 

Miscanthus was previously reported to give the highest yield of plant tissue in the Cd 

treated soils (Section 4.2.2.2). Flax and oilseed rape were found to contain the highest 

tissue Cd concentrations (Section 4.2.3.2), however, flax was the plant species which 

extracted the greatest quantity of Cd (68 /lg in CdT4) from the soil matrix (Fig. 4.27). This 

was attributable to a flax tissue concentration ten times greater than that of miscanthus and 

a flax yield more than double that of oilseed rape. Despite having the poorest Cd uptake, 

rniscanthus, owing to its high yield relative to the other plant species, was able to extract 

more Cd from the treated soils than the oilseed rape and nettle plants (Fig. 4.27). 
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Figure 4.27 Total weight of Cd removed from the T3 and T4 artificial soils and sewage 
sludge soil (SS) by each plant species. Weight expressed as /lg removed from soil 
by flax, rniscanthus (Misc.), nettle (Net.) and oilseed rape (OSR). 

For flax, miscanthus and oilseed rape, less Cd was taken up from sewage sludge soil than 

from the CdT3 and CdT4 soils, despite the sewage sludge having a soil Cd concentration 

-10 times higher than the CdT3 and CdT4 soils. Only nettle plants removed as much Cd 

from the sewage sludge soil as from the CdT3 and CdT4 soils and this was due to the nettle 

plants grown in the sewage sludge having a yield> four times higher than the CdT3 and 

CdT4 soil yields. 
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4.2.4.2 Chromium total uptake 

The greatest quantity of Cr (103 flg) was removed from the contaminated soils by 

miscanthus grown in the Crn soil (Fig. 4.28). Although oilseed rape, flax and nettle all had 

higher tissue Cr concentrations than miscanthus (Section 4.2.3.2; Fig. 4.22), the higher 

yield of miscanthus compensated for the lower uptake (Section 4.2.2.2), resulting in the 

greater remediation of the Cr contaminated soil by miscanthus observed. The miscanthus 

plants in the T3 soil removed three times as much Cr as the next most effective plant- soil 

system (flax-T4). In the T4 soil, a poorer yield of miscanthus accompanied by a poorer 

uptake of Cr from the soil meant that both flax and oilseed rape were able to remove more 

Cr from the T4 soil than rniscanthus (Fig. 4.28). 
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Figure 4.28 Total weight of Cr removed from the T3 and T4 artificial soils and sewage 
sludge soil (SS) by each plant species. Weight expressed as flg removed from soil 
by flax, rniscanthus (Misc.), nettle (Net.) and oilseed rape (OSR). 

Oilseed rape was the only plant species able to extract a detectable quantity of Cr from the 

sewage sludge soil due to the low mobility of Cr in the sewage sludge soil (Table 4.8). 
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4.2.4.3 Copper total uptake 
Copper, the most mobile metal in the EDT A-extractable fraction of the sewage sludge soil 

(Table 4.9), was extracted at higher quantities from the sewage sludge soil than the CUTI 

and CUT4 soils by both oilseed rape and nettle (Fig. 4.29). Uptake of Cu from sewage 

sludge by flax and miscanthus was lower than for the CUT3 and CUT4 soils. The greater 

uptake by nettle and oilseed rape was due to the greater yield of oilseed rape and nettle 

biomass in the sewage sludge soil compared to the T3 and T4 soils. 
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Figure 4.29 Total weight of Cu removed from the T3 and T4 artificial soils and sewage 
sludge soil (SS) by each plant species. Weight expressed as J,tg removed from soil 
by flax, miscanthus (Misc.), nettle (Net.) and oilseed rape (OSR). 

Miscanthus and oilseed rape plants grown in CUT4 both removed similar quantities of Cu 

from the soil, 49 J,tg and 40 J,tg respectively (Fig. 4.29). The total uptake of Cu by 

miscanthus grown in the T4 soil was calculated using the yield of the original plants 

(6.63 g) grown in this treatment rather than the yield of the replacement plants (1.89 g) 

(Section 2.7.2). Of all the treatments in the study the Cu treated soils gave the lowest yields 

of miscanthus (Section 4.2.2.2). In contrast, the oilseed rape grown in the CUT4 treatment 

gave a higher yield than any of the other oilseed rape-metal soils, with the exception of the 

Zn soils. Although miscanthus yield in the Cu soils was so poor, the miscanthus plants 

grown in the Cu soils had a small yield advantage over other plant species in the study. 

Miscanthus had a yield around six times that of oilseed rape, whereas oilseed rape had a 

tissue Cu concentration 5.2 fold higher than that of miscanthus. The resulting remediation 

by both miscanthus and oilseed rape was similar despite the contrasting mechanisms of Cu 

removal. 
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4.2.4.4 Lead total uptake 

Lead was the only metal where the miscanthus tissue metal concentration was greater than 

or equal to the tissue concentrations of flax and oilseed rape in T3 and T4 soils (Section 

4.2.3.2). Only nettle plants had a greater tissue Pb concentration than miscanthus (Table 

4.24). The combination of miscanthus having a greater uptake of Pb than the other plants, 

except nettle, accompanied by its high yield, resulted in the total quantity of Pb removed 

from the soil by miscanthus being nine times greater than oilseed rape (T4), the next most 

effective Pb remediating plant (Fig. 4.30). Miscanthus removed 574 Ilg and 559 Ilg of Pb 

from the T3 and T4 soils, respectively. 
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Figure 4.30 Total weight of Pb removed from the T3 and T4 artificial soils by each plant 
species. Weight expressed as Ilg removed from soil by flax, miscanthus (Misc.), 
nettle (Net.) and oilseed rape (OSR). 

Lead tissue concentrations in all species grown in sewage sludge soils were below the limit 

of detection and thus the total weight of Pb removed was not quantifiable. 
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4.2.4.5 Nickel total uptake 

Miscanthus removed the greatest quantity of Ni from both the NiTI and NiT4 soils (Fig. 

4.31), despite having the lowest tissue Ni concentrations of all the plant species. Again, 

miscanthus' ability to remove the most metal from the soil was a result of its high biomass. 

Oilseed rape and nettle, the plants with the highest tissue Ni concentration, had the lowest 

yields of the plants grown in the Ni soils. As a result flax plants, whose tissue Ni 

concentrations were between one third and a half that of oilseed rape and nettle, removed 

more metal than the oilseed rape and nettle plants. 
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Figure 4.31 Total weight of Ni removed from the T3 and T4 artificial soils and sewage 
sludge soil (SS) by each plant species. Weight expressed as jlg removed from soil 
by flax, miscanthus (Misc.), nettle (Net.) and oilseed rape (OSR). 

Removal of Ni from the sewage sludge soil by flax and miscanthus was lower than from 

the T3 and T4 soils due to the low tissue Ni concentration of these plant species. Both 

oilseed rape and nettle had a higher uptake of Ni grown in sewage sludge soil than flax and 

miscanthus, although the tissue Ni concentration in the plants grown in the sewage sludge 

soil was lower than those grown in the T3 and T4 soils. The yield achieved meant that the 

total Ni removed from sewage sludge soil by nettle and oilseed rape, was similar to that 

removed from the T4 soils. 
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4.2.4.6 Zinc total uptake 

The highest quantity of Zn was removed from the contaminated soils by miscanthus (Fig. 

4.32). Miscanthus grown in the ZnT4 removed 2601 /kg of Zn from the soil , the largest 

amount of metal removed by any of the plant- metal combinations and 737 /kg more Zn 

than was removed by oilseed rape in the ZnT4 soil, the next best Zn remediator. Miscanthus 

was again able to remove the highest quantity of Zn, despite having the lowest tissue Zn 

concentration (Section 4.2.3.2), as a result of its high biomass (Section 4.2.2.2). Nettle, 

which had the highest tissue Zn concentration of all the plants (Section 4.2.3.2) was able to 

remove more Zn than the flax plants and oilseed rape grown in the ZnT3 soil. 
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Figure 4.32 Total weight of Zn removed from the T3 and T4 artificial soils and sewage 
sludge soil (SS) by each plant species. Weight expressed as /kg removed from soil 
by flax , miscanthus (Misc.), nettle (Net.) and oilseed rape (OSR). 

The low tissue Zn concentration of the plants grown in the sewage sludge soil was 

reflected in the low total Zn removal from the sewage sludge soil by the each of the plant 

species compared to the T3 and T4 soils. 
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4.2.4.7 Total uptake summary 

Each of the metals in the study was removed in the greatest quantity from the contaminated 

soils by miscanthus, with the exception of Cd. For Cr, Ni and Zn, miscanthus had the 

lowest tissue metal concentrations of all the plant species, while Cu tissue concentrations 

were only lower in flax than miscanthus and Pb tissue concentrations were lower in flax 

and oilseed rape than miscanthus. Despite miscanthus having poor uptake of the metals 

compared to the other plant species it was able to remove more metal due to its high yield. 

Zinc was removed from the contaminated soils in the greatest quantities by all of the plant 

species in the experiment, although both Cr and Pb were present at higher soil 

concentrations. 

Uptake of metals from the sewage sludge soil indicated that yield improvements within 

species can compensate for lower uptake of metals in species-soil system; this was most 

apparent in the nettle-Cu and oilseed rape-Cu sewage sludge systems compared to the T3 

and T4 systems, but was also evident in the nettle and oilseed rape responses to Cd and Ni. 

This suggested that improving the yield of these plants would improve their metal removal 

rates from soils like the T3 and T4 soils. 

These results indicated the importance of the combination of plant yield and plant tissue 

metal concentration have in optimising metal removal from the contaminated matrix. 

Therefore, to deploy a successful remediation strategy, a balance must be struck between 

these two factors. 



Kerr, J. 2003, Hydroponics 130 

5 Hydroponics 

Hydroponics is the growth of plants in a medium which contains no soil. Several types of 

hydroponic growth systems are possible. In this chapter two techniques have been used: 

nutrient film technique (NFf) hydroponics (Section 5.1) and static hydroponics (Section 

5.2). In both techniques, two key roles usually played by the soil matrix have been 

substituted for using soil free alternatives. Firstly, the nutrients needed by the plant, usually 

obtained from the soil matrix, were provided in the nutrient solution. Secondly, the 

structural support normally provided by the soil was provided by using growth collars 

(Section 2.8.2). 

The static and NFf hydroponic techniques were distinctly different. In the static 

hydroponic technique, plant roots were immersed in the nutrient solution thus the solutions 

had to be agitated in order to aerate the nutrient solution. Therefore, the plant roots were 

subjected to a matrix which became increasingly anaerobic between agitations. By 

contrast, the principle of the NFf hydroponic technique was that the plant roots were 

simultaneously surrounded by nutrient solution and by air (Section 2.8.1). This was 

achieved by having a nutrient film sufficiently shallow that the root was not completely 

submerged in the solution. Furthermore, the solution itself was kept aerated by constant 

trickling through the system coupled with a high surface area in the NFf troughs. 

Both systems allowed a study to be made of plant response to precisely controlled solution 

metal concentrations free from complications attributable to metal-soil interactions. 
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5.1 NFT study 

A NFl' system was used to establish the growth response of flax to a range of solution 

concentrations of Cd, Cr, Cu, Pb, Ni and Zn. This system gave an insight into the plants' 

tolerance of the contaminant metals independent of any soil conditions or other matrix 

interference. In the NFl' system, constant flow of solution over the roots prevented the 

rhizosphere becoming anaerobic and maintained solution homogeneity through continuous 

mixing of the solution. 

Of the four plant species: flax, miscanthus, nettle and oilseed rape, flax alone was 

considered in the NFl' study; the variety Viking was used in the Nfl study. It was not 

possible to grow miscanthus and nettle rhizome pieces in the NFl' system using the method 

developed (Section 2.8), as there was insufficient contact between the large root systems of 

these plants and the thin film of metal solution in the NFl' troughs. Additionally, the time 

required to establish an effective and reproducible Nfl system and the pressure of other 

users for green house space, meant that there was insufficient time to study more than one 

plant species. 

5.1.1 Method development 

A NFl' system must provide a steady flow of nutrient solution to plant roots of a depth 

shallow enough to prevent the roots becoming anaerobic, while ensuring an even 

distribution of the solution across the roots such that the roots do not dry out. Design of a 

NFl' system incorporated measures to minimise algal growth as algae could remove 

nutrientsand possibly metals from the system in addition to promoting disease. 

In the original design, large (-50-1) NFl' reservoir tubs (Sunlighter Systems) supported the 

NFl' channels. In practice the Nfl reservoir tubs were unsuitable due to their large size. 

The size of the tubs meant solution evaporation was high due to the high surface area of 

the solution, and the pumps tended to run dry even when there was around 2 litres of 

solution left in the tub. The size also dictated that the channels had to be run in alternating 

directions, making the system awkward to work with. Additionally, using the tubs to 

support the channels was impractical as the system had to be completely dismantled every 

time the solutions were changed. 

A metal frame was constructed (Handy Angles) to support the channels removing the need 

to support the trays on the reservoir tubs. The reservoir tubs were replaced by 5-1 reservoir 

containers: these enclosed containers, in which the solution has a low surface area, 
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minimised solution evaporation (Section 2.8.1). The smaller size of the 5-1 reservoir 

containers allowed the channels to be run in the same direction and simplified changing the 

solutions as replacement containers could be filled and transported to the greenhouse 

whilst the system was running. 

Evaporation of the solution from the system remained problematic due to the high surface 

area and black colour of the channels. The dark colour of the channels resulted in the 

channels becoming warm due to efficient absorption of energy from light sources. 

Specialist plastic NFf sheeting was used to minimise evaporation problems in the NFf 

system (Section 2.8.2). 

In an NFf system the plants are provided with nutrients from solution rather than soil. 

However, soil also provides structural support, a soil function which had to be recreated in 

the NFf system design. A voidance of metal-matrix interactions was the reason for using a 

soil-less growth system, therefore, it was important that new support structure was as inert 

as possible. Rockwool slabs are a common support matrix used with NFf channels to 

provide an inert growing matrix with good water holding capacity and root aeration 

characteristics. 

Rockwool slabs (Sunlighter Systems) were cut into slices in which the young seedling 

plants were germinated. Although the rockwool slices provided an effective support 

matrix, which had good contact with the nutrient solution, it was found unsuitable as both 

algae and fungi proliferated on the slices. An attempt was made to minimise the algal and 

fungal growth on the rockwool slices by partially covering the slices with Nfl sheeting. 

Positioning the Nfl sheeting was problematic and algal and fungal growth persisted at the 

base of the seedling stems, therefore, the rockwool slices proved unsuitable as a support 

matrix in the experiment. A method isolating the uppermost layer of the support matrix 

entirely from the nutrient solution was required to prevent algal and fungal growth. 
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Hydroponic growth collars 

A container constructed using plastic drainpipe and ballet netting was used to retain a 

support matrix of inert plastic beads and vermiculite (Section 2.8.2), whilst allowing roots 

to grow through into the nutrient solution beneath. 

The beads were chosen, for both static and NFT nutrient solution experiments, for two 

reasons: their black colour acted as an effective inhibitor of algal and fungal growth, and 

their size and weight did not inhibit root or shoot elongation. The beads alone, however, 

did not have sufficient water holding capacity to promote seed germination. A layer of 

vermiculite was included surrounding the seeds to stimulate germination. Thus a sandwich 

layer of vermiculite containing seeds between two fayers of beads was used as an effective 

support matrix; the lower layer isolated the vermiculite from the NFT solution preventing 

the clay mineral adsorbing the metals and the upper layer prevented algal and fungal 

growth on the vermiculite seed bed (Fig. 5.1). 

The collars were also advantageous as their uniform size and shape allowed holes which 

exactly fitted the external diameter of the collars, to be cut in a single piece ofNFT 

sheeting. The whole NFT sheet was cut to exactly fit the internal size of the NFT tray. The 

sheeting was supported by a lip on the sides of the tray and by the clamp portion of the 

collars. The exact fit allowed the sheeting to be supported without coming into direct 

contact with the NFT solution. Both algal and fungal growth, and evaporation of solution 

was also prevented as the plastic sheeting was held firmly in place and covered the whole 

surface area of the NFT channel. 

NFT sheeting 

NFT channel 

Figure 5.1 Hydroponic growth collar in the NFT tray. The cross-section view shows the 
growth collar seed bed supported on the ridged base of the NFT channel. The NFT 
sheeting is also shown suported by the collar and channel. 
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5.1.2 Flax in the NFT system 
It was established in pot experiment 2 (Section 4.2.2) that the growth response of flax to 

elevated soil metal concentrations around the JCRCL threshold trigger levels was better 

than those of nettle and oilseed rape. Only miscanthus produced plants with greater height 

and yield than flax. Flax, an established fibre crop (Grieve, 1931; Ruckenbauer et ai., 

2002), was a suitable plant species for the Nfl study as large numbers of seeds were 

readily germinated (50 seeds sown per 70 mm diameter growth collar; Section 2.8.3), 

giving a rapid preparation time and good replication. Oilseed rape and nettle, also grown 

from small seeds, were suitable candidates for use in a Nfl system. However, the broad 

leaves of the oilseed rape plants, prevented the same level of replication compared to flax 

in the growth collars, as overcrowding would have occurred. Nettle, unlike flax, was not 

considered in the germination study (Chapter 3) and thus was a less appropriate candidate 

than flax for the Nfl study. Flax variety Viking was used in the NFf study. 

5.1.3 NFT metal solution concentrations 
Metal solutions were made up from their nitrate salts (Section 2.3). Each of the six metals 

was considered at six concentrations (Section 2.8.3; Table 2.10). The solution 

concentrations were chosen based on previous work conducted in the department (I. D. 

Pulford; personal communication). 

All the metals were added at the same concentration on day 0 and day 7 with the exception 

of Zn. Zinc solutions concentration were increased by 40-65% in the second week. The Zn 

concentrations were increased as after the first week the plants growing in the most 

concentrated solutions did not show symptoms of metal toxicity to the same extent as the 

other metals in the study. 
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5.1.4 Metal removal from NFT solutions by flax 

The NFf solution concentrations were measured at the start and end of the two 7 -d periods 

(Fig. 5.2). These concentrations revealed the extent to which the plants removed the metals 

from the solution. The NFf system was constructed such that any loss of solution through 

evaporation was minimised, however, the solution volumes did decrease over the 7-d 

period due to evapotranspiration, and a small amount of evaporation. This decrease in 

volume would have resulted in an increased solution metal concentration. Changes in 

solution concentration were tempered by renewing the solutions half way through the 14-d 

growth period. 

No increase in solution concentration was obserVed in any of the flax-metal systems, 

however, several flax-metal systems had no substantial reduction in metal solution 

concentration during the 7-14-d treatment period. These systems were flax grown in: 

20 JLglml Cd, 20 JLglml Cu, 10 JLglml Ni and 75 JLglml Zn (Fig. 5.2). 

The metal removed in the greatest quantity was Pb (Fig. 5.2d); more than 50 JLglml was 

removed from the most concentrated Pb solution during both the 0-7-d and 7-14-d 

treatment periods, an amount equivalent to a removal of> 60% of the total solution metal. 

Lead and Cr were the only metals where a high percentage of total solution metal was 

removed during both the 0-7-d and 7-14-d treatment periods. The two most concentrated 

Ni solutions had the greatest difference in the proportion of metal removed between the 0-

7-d and the 7-14-d treatment periods with - 40% less metal removed in the 7-14-d than 

the 0-7-d treatment period (Fig. 5.2e). 

Chromium differed from the other metals in the study in that it was almost completely 

removed from solution at every concentration considered (Fig. 5.2b). However, the 

concentration of the Cr solutions was less than that of the other metals in the study by five 

times or more and therefore the quantity of Cr removed from the solutions was relatively 

low. Despite the use of phosphate free nutrient solution in the NFf study to minimise the 

precipitation of metals as insoluble salts (Huang et al., 1996; Section 2.8.3), both the Cr 

and Pb may have been removed from solution by precipitation as a metal-root exudate 

complexes (Dushenkov et al., 1995), rather than by plant uptake. 
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Figure 5.2 NFT metal solution concentrations. Values represent the actual solution 
concentrations in the newly prepared solutions on: day 0 (_) and day 7 (_) and the 
concentrations of the same solutions after 7-d plant growth: day 7 (_) and 
day 14 (_), respectively. Individual histograms represent (a) Cd, (b) Cr, (c) Cu, 
(d) Pb, (e) Ni and (f) Zn. Target concentrations are detailed in Table 2.10 (Section 
2.8.3). 
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5.1.5 Growth response of flax to the NFT solutions 
The plant growth response was determined by a qualitative assessment of the plants grown 

in the NFl' solutions compared to plants grown in control solutions. Plants were assessed 

based on their appearance at the end of the 14-d treatment period and assigned a score of 

0-5. The criteria used to assess the plants and the associated scores given are detailed in 

Table 5.1. 

Table 5.1 Plant growth response scores and criteria 

Score Plant condition criteria with respect to contro(pJants. 

5 Plants at least as healthy as control plants. 

4 Plants showing mild chlorosis and/or a small reduction in shoot and/or 
root length. 

3 Plants showing more pronounced chlorosis and reduction in shoot and/or 
root length. 

2 
Plants severely chlorotic with either browning or loss of leaves and/or 
pronounced stunting or browning of roots. 

1 
Plants severely chlorotic with many leaves lost and/or some dead plants 
present. No root growth observed during the 14-d treatment period. 

0 Fewer than 10% of plants alive and surviving plants condition as score 1. 

The plants grown in each solution in the NFl' system had a uniform growth response 

within each of the troughs. 
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10 

Solution metal concentration (~glml) 
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Figure 5.3 Flax growth response to NFT solution concentrations. Plots represent the plant 
growth response score for Cd (---), Cr ( ___ ), Cu ( ... ), Pb (~), Ni (---) and Zn ( ___ ). 
Plant growth response criteria for each score are detailed in Table 5.1. 

Three metals (Cr, Ni and Zn) were lethally toxic to > 90% of the flax plants grown at their 

highest solution concentration (Fig. 5.3). Many dead plants were observed at the highest 

Cd and Cu NFT solution concentrations, although fewer than 90%, generating a growth 

response score of 0.5 . The plants grown in the Pb solutions were the only plants to score 

greater than 1 at the highest NFT solution concentration. Chromium was the most toxic 

metal to the flax plants as it was lethal at a concentration of 2 f.lg/mL Plants grown in the 

Pb and Zn solutions were exposed to the highest solution concentrations, 80 and 

100 f.lg/rnl, respectively and Pb was found to be less toxic than Zn as the plants grown in 

the 80 f.lg/ml Pb solution had a better growth response than the plants grown in the 

75 f.lg/ml Zn solution (Fig. 5.2). Thus, Pb was the least toxic metal to flax plants in the 

NFT study. The metals can be ranked in order of observed decreasing toxicity as follows: 

Cr > Ni > Cu ~ Cd > Zn > Pb 

5.1.6 NFT summary 
The NFT study revealed that, of the six metals in the study, Cr was the most toxic to flax. 

Lead was observed not only to be the least toxic metal to flax but also to be removed in the 

greatest quantity from solution. The NFT study provided a valuable guide to the toxicity of 

the metals in solution indicating their toxicity independent of matrix interferences. 
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5.2 Flax varietal response to metal solutions 

The ability of flax to take up Cd and Pb into its tissues has been reported to differ between 

varieties (Cieslinski et ai. , 1996; Lukipudis, 1994). The growth responses of 12 flax 

varieties to the metals Cd, Cr, Cu, Pb, Ni and Zn were studied, over a 28-d growth period, 

to identify varieties able to maintain biomass productivity when grown in metal solutions. 

The tissue metal concentrations for the varieties were determined at the end of the growth 

period to highlight potential phytoremediation candidates. From a total of 24 flax varieties 

on the UK national list, 12 varieties were available through kind provision by NIAB. These 

varieties studied were Argos, Ariane, Diane, Electra, Elise, Escalina, Evelin, Hermes, 

Martta, Rasia, Viking and Viola. The flax varietie~ were grown in solutions of each of the 

six metals at the concentration detailed in Table 5.2. The solution concentrations used were 

chosen to be below the acute toxic levels - where death or severe growth problems 

occurred in the NFT experiment. These concentrations were chosen in order to identify 

varieties with higher and lower tolerance to the metals than variety Viking. 

Table 5.2 Metal solution concentrations used in flax varietal comparisons. The 
colours used to represent the elements in Fig. 5.4-5.16 are also shown. 

Element 

5.2.1 Flax plant growth response to metal solutions. 

In the screening experiment the flax plants were germinated and grown in growth collars 

(Section 2.8.2). The growth collars were placed in seed trays with 12 collars per tray, with 

one collar for each variety (Section 2.9). As the metal solutions were added to the seed 

trays, this ensured that the roots of each of the 12 varieties shared the same solution. 

5.2.1.1 Germination and survival 

The number of flax plants recorded for each variety- metal solution system (Fig. 5.4) was a 

measure of the number of plants able to germinate and survive until the end of the growth 

period. 
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Viking Diane Argos Rasia Hennes Evelin Electra EscaLina Martta Elise 

Diane Argos Escalina Hermes Rasia Evelin Viola Martta Elise Electra 

Ariane Argos Martta Evelin Hennes Rasia Escalina Elise Diane Electra 

Viola Rasia Diane Hennes Esca1ina Evelin Electra Argos Elise Martta 

Ariane Hennes Viking Argos Escalina Evelin ELectra Rasia Martta Elise 

Ariane Hermes Diane Argos Viola EveLin Martta Rasia Viking Esca1ina Elise Electra 

Flax variety 

Figure 5.4 Mean number of plants per flax-metal system. Values shown are the mean 
number of plants for each flax variety, per collar, grown in: Cd (_), Cr (_), Cu (_), 
Pb (_), Ni (_), Zn (_) and control (_) solutions. The control treatments for each 
variety are shown with each metal treatment to allow comparison. Error bars 
represent SE of the mean. 
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For each variety the numbers of flax plants surviving until the end of the growth period 

was greater for the plants grown in the metal treated solutions than the plants grown in the 

control solutions. Viola grown in the Cr solution was the exception, as the number of Viola 

plants in the control solution exceeded those in the Cr solution. Additionally, for the 

variety Electra, the number of plants surviving in the Cr and Zn solutions was equal to the 

survival in the control solutions. 

The flax variety Arian had the greatest number of plants surviving at the end of the growth 

period in four of the metal solutions (Cd, Cr, Pb and Zn) and had the third greatest survival 

rate in the remaining solutions (Cu and Ni). 
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Figure 5.5 Number of plants surviving until the end of the growth period by variety. The 
values shown represent the number of plants surviving for each variety as a mean 
of all the treatment solutions. Error bars represent SE of the mean. 

The number of plants surviving until the end of the growth period for each variety, 

expressed as a mean of all the treatment solutions, allowed comparison between varieties 

across all treatments (Fig. 5.5). The variety Ariane had the greatest number of plants 

followed by Viola and Viking. The variety with the lowest plant germination and survival 

was Elise, equivalent to a survival 64% that of Ariane. 
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The number of plants surviving until the end of the growth period for each treatment 

solution, expressed as a mean of all the varieties, allowed comparison between treatment 

solutions across all varieties (Fig. 5.6). For all six metal treatments, the mean flax plant 

germination and survival at the end of the growth period was greater than in the control 

solution. The increase in germination and survival from the control solution to the metal 

treated solutions may be due to the increased ionic strengths of the metal solutions. Lead 

had the highest value for germination and survival followed by Cu and Cd. 
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Figure 5.6 Number of plants surviving at the end of the growth period by treatment 
solution. The values shown represent the mean shoot survival number over all 
varieties for the Cd (_), Cr (_), Cu (_), Pb (- ), Ni (- ), Zn (_) and control (_) 
treatments. Error bars represent SE of the mean. All of the values for the metal 
treatments were significantly different from the control value (t test, P<0.05). 
Comparisons were not made directly between metals which were not at equimolar 
concentrations. 
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5.2.1.2 Root dry weight 

Dry weight of root tissue indicated the impact of the metal solutions on the plants ability to 

produce root biomass. In order to compensate for the variation in survival, the dry weight 

of root tissue was expressed as the mean weight per plant (Fig. 5.7). 

For each of the metals studied, the mean dry weight of roots showed a gradual decline in 

root tissue weight from the varieties with the highest to the lowest root weights (Fig. 5.7). 

Lead was the exception to this decline, where the variety with the second highest root 

tissue yield (Viking) had a root yield less than half that of the highest root tissue yielding 

variety (Argos). Lead was also the treatment which had the largest difference (2.8 mg) 

between the highest (Argos) and lowest (Elise) root tissue yielding varieties, with Elise 

root yield being < 20% that of Argos. Cadmium was the metal treatment with the smallest 

difference (0.87 mg) between the maximum and minimum root tissue yielding varieties; 

Argos, the lowest yielding variety, had a root tissue concentration 62% that of the highest 

yielding variety, Rasia. The minimum yielding varieties in the remaining metals (Cr, Cu, 

Ni and Zn) had yields 42--47% of the maximum yielding varieties. 

Individual varieties could not be singled out as consistently yielding higher root material, 

over all the metals, as all but two varieties, Ariane and Hermes, yielded root tissue weights 

within the top three values for one or more of the metals (Fig. 5.7). The highest root tissue 

yielding variety for each metal was Rasia (Cd), Electra (Cr), Argos (Cu and Pb) Elise (Ni), 

and Viking (Zn) (Fig. 5.7). This indicated that optimising varietal root metal tolerance 

must be done on an element by element basis. 
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Figure 5.7 Mean dry weight of flax plant root tissue. Values shown are the mean dry 
weight (mg/plant) of root tissue per plant. These values were calculated by dividing 
the total tissue weight per growth collar by the number of plants in that collar, 
before a mean from the four replicate growth collars was obtained. Other details as 
in Fig. 5.4. 
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5.2.1.3 Shoot dry weight 

Dry weight of shoot tissue indicated the impact of the metal solutions on the plants ability 

to produce shoot biomass. In order to compensate for the variation in survival, again, the 

dry weight of shoot tissue was expressed as the mean weight per plant (Fig. 5.8). 

As with the mean dry weights of roots, a gradual decline in the mean dry weights of shoot 

tissue from the highest to the lowest yielding varieties, for each of the metals studied, was 

observed (Fig. 5.8). The control solution gave a higher yield, per plant, than the metal 

solutions for all the varieties, with the exception of three variety-metal systems (Argos-Cr, 

Elise-Ni and Elise-Zn). For all of the metal solutions, the lowest yielding variety gave a 

shoot tissue yield at least 60% of the highest yielding variety, therefore the difference 

between shoot tissue response was less than the differences seen in root tissue response. 

No single variety consistently yielded a higher shoot biomass than the other varieties, nor 

did any single variety-metal system produce a markedly higher shoot yield than any of the 

other variety-metal combinations (Fig 5.7). 

Flax grown in the Cd solution had the smallest difference between the highest (Martta) and 

lowest (Argos) variety mean shoot weight per plant (4.73 mg) with Argos having a yield 

73% that of Martta. The Zn solution produced the largest difference in the mean shoot 

weight per plant from the highest to the lowest yielding variety, with the lowest (Argos) 

62% that of the highest (Elise). As with roots, optimum varietal shoot weights can only be 

determined on an element by element basis. 
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Figure 5.8 Mean dry weight of flax plant shoot tissue. Values shown are the mean dry 
weight (mg/plant) of shoot tissue per plant. Other details as Fig. 5.7. 
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5.2.1.4 Shoot length 
Of the growth response criteria: root weight, shoot weight and shoot length, the flax shoot 

length response gave the smallest differences between varieties (Fig. 5.7-5.9). The largest 

difference between the highest and lowest shoot length was observed in Zn where the 

variety with lowest shoot length (Viking) was 68% that of the variety with the highest 

(Elise). The metal treatment with the smallest difference between the variety with the 

highest and lowest shoots lengths was Pb, where the variety with lowest shoot length 

(Escalina) was 80% that of the variety with the highest shoot length (Martta). 

For each of the varieties, plants grown in the control solutions had higher shoot lengths 

than plants grown in the metal solutions with the exception of four variety-metal systems: 

the variety Electra grown in Cu and the varieties Electra, Eveline and Argos, all grown in 

Cr. 

There was a gradual decline in shoot length from the tallest to the shortest variety for each 

of the metals, with no individual variety having a large height advantage over the other 

varieties either within or between metal treatments. 
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Figure 5.9 Mean shoot length of flax plants. Values shown are the mean of the maximum 
shoot lengths for each growth collar. Other details as in Fig. 5.4. 
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5.2.1.5 Growth response summary 

Germination and survival data for the varieties grown in the treatment solutions was of a 

relatively uniform response (Fig. 5.4). However, in each of the metal solutions, a greater 

number of plants emerged and survived to the end of the growth period than in the control 

solutions (Fig. 5.5). For the remaining growth parameters considered in the experiment 

(Fig. 5.7-5.9), all 12 flax varieties had a relatively uniform response with the exception of 

root weight in the Argos-Pb system. All the metal solutions gave rise to a reduction in root 

and shoot dry weights compared to the plants grown in the control solutions, with the 

exception of root weight in the Argos-Pb system and root and shoot weight in the Elise-Ni 

system. 

The effect of the metal treatments versus the control solution on the growth parameters: 

(root weight, shoot weight and shoot length) can be seen by expressing the mean growth 

responses of all the varieties for each treatment (Fig. 5.10). 

The mean root yield response for the 12 flax varieties studied showed a reduction in root 

weight for each of the metal solutions when compared to the control solutions (Fig. 5.lOa). 

The metal treatments had a mean root tissue yield 48-70% of the mean control plants root 

tissue yields. 

The mean shoot tissue yield had a similar response to that of roots with each metal solution 

producing, averaged over all the varieties, plants with a lower shoot yield than the plants 

grown in the control solutions (Fig. 5. lOb). The yield reduction of 18-41 % from the mean 

control shoot weight to the metal solution shoot weight was not as marked as the reduction 

in root yields. Therefore, at the concentrations considered in the experiment, the metal 

solutions had a greater effect on root biomass than on shoot biomass production relative to 

the plants grown in the control solutions. 
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Figure 5.10 Mean dry weights of flax roots, shoots and shoot length in each of the metal 
solutions. Values shown are means of (a) root dry weight (mg/plant), (b) shoot dry 
weight (mg/plant) and (c) maximum shoot length (mm). Means are the mean of 
each growth response criteria, per plant, over all varieties grown in each metal 
treatment. Error bars represent SE of the mean. Shoot length of plants grown in the 
Cr solution was the only value which was not significantly different from the 
control values (t test, P<0.05). Comparisons were not made directly between metals 
which were not at equimolar concentrations. 
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The mean shoot lengths of the flax plants, across all varieties, was the growth criterion that 

showed the smallest difference between the plants grown in the metal solutions and the 

control solutions. The greatest reduction in shoot length occurred in Cd which had a mean 

shoot length 71 % that of the plants grown in the control solutions. The smallest reduction 

occurred in Cr whose mean shoot length was only 3% less than the mean shoot length of 

the control plants. 

The varieties with the highest values for each of the metal solutions, as measured by root 

weight, shoot weight and shoot length, are detailed in Table 5.3. No one variety was 

highest in all three of the criteria: dry weight root yield, dry weight shoot yield and shoot 

length (Table 5.3). 

Table 5.3 Varieties with the highest values for each of the three growth parameters in 
each of the metal treatments 

Element I I Root Weight I I Shoot weight I I Shoot Length 

Cadmium I Rasia I Martta I I Diane 

Chromium I El ectralEli se I Rasia I [Martta 

Copper I Argos I Electra I [Electra 

Lead I Argos I Evelin I [Martta 

Nickel I Elise I Elise I I Martta 

Zinc I Viking I Elise I I Elise 

Control I I Electra I I Viking 11Diane 

The flax varietal responses to the metal solution concentrations investigated, revealed that 

none of the twelve varieties included in the study had a large advantage over the other 

varieties, in terms of their growth response (with the exception of root yield in the Argos

Pb system). 
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5.2.2 Metal uptake into flax tissues 

Flax plant shoot and root tissue concentrations for Cd, Cr, Cu, Pb, Ni and Zn were 

calculated for each of the twelve varieties. Due to the small weight of root tissue yielded 

by the plants it was not possible to replicate the root analyses (Section 2.9). Values have 

nevertheless been shown to give an indication of root concentration and are discussed. 

Individual root and shoot tissue metal concentrations were considered (Fig. 5.11-5.16) and 

the highest yielding varieties with their corresponding metal uptake values, for each metal, 

are summarised at the end of the section (Table 5.4). Data for the mean uptake over all flax 

varieties are also presented (Table 5.5). 

Cadmium 

Viola was the variety with the highest shoot tissue Cd concentration, 191 /Lg/g, which was 

significantly more than the shoot Cd concentration of variety Martta, the next most 

concentrated shoot tissue (Fig. 5.11a; Table 5.4). The variety with the lowest Cd shoot 

tissue concentration was Escalina (118/Lg/g) which had a shoot Cd concentration 62% that 

of Viola. The shoot Cd concentration of the flax varieties was 24-38 times the solution Cd 

concentration, representing a phytoaccumulation of Cd. The mean phytoaccumulation of 

Cd into flax shoot tissue over all twelve varieties was 30 times the solution concentration 

(Table 5.5). 

In addition to having the highest shoot tissue Cd concentration Viola was also the variety 

which had the highest root tissue Cd concentration at 3051 /Lg/g (Fig. 5.11b; Table 5.4). 

The lowest root tissue Cd concentration observed was for variety Elise at 1930 /Lg/g, 

representing 63% of the maximum recorded root tissue concentration. The mean root 

concentration, over all varieties, was -500 times the Cd solution concentration and 

correspondingly, as a mean over all varieties, root Cd uptake was -17 times greater than 

shoot uptake (Table 5.5). 
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Figure 5.11 Flax tissue Cd concentration. Values shown represent: (a) mean shoot tissue 
Cd concentration (Ilglg) and (b) pooled root tissue Cd concentration ( Ilglg), for 
each variety (Section 2.9). Error bars represent SE of the mean. In (a) the values are 
significantly different, ANDV A. Values sharing the same letter are not significantly 
different, t test with Bonferroni correction, P>0.05 . 
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Chromium 

None of the varieties in the experiment had detectable levels of Cr in their shoot tissues. 

Chromium was the only metal which was not detected in shoot tissue. 

All varieties had detectable levels of Cr in their root tissue with the variety Hennes having 

the highest root tissue Cr concentration at 148 /lg/g (Fig. 5.12; Table 5.4). The variety with 

the lowest root tissue Cr concentration (Argos) had 61% of the Cr concentration of 

Hermes. The mean root accumulation over all flax varieties was ~120 times the solution Cr 

concentration (Table 5.5). Chromium, of the six metals considered, was the metal 

accumulated to the lowest extent. 
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Figure 5.12 Flax tissue Cr concentration. Values shown represent the pooled root tissue Cr 
concentration (/lg/g), for each variety (Section 2.9). 
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Copper 

The highest shoot tissue Cu concentration was eight times lower than that of Cd, however, 

like Cd, the variety Viola had the highest shoot tissue Cu concentration (23 J.tg/g; Table 

5.4). Copper was, with the exception of Cr, the metal taken up at the lowest shoot tissue 

metal concentration. The variety with the second highest shoot tissue Cu concentration was 

Viking at 21 J.tg/g. The remaining varieties all had an uptake < 20 J.tg/g (Fig 5.13a). The 

lowest Cu uptake by shoots (14 J.tg/g) was shared by four varieties: Electra, Elise, Escalina 

and Rasia and accounted for an uptake 60% that of Viola. The mean shoot tissue Cu 

concentration (17 J.tg/g), over all varieties, represented a Cu accumulation by flax shoots 

eight times that of the solution concentration (Table 5.5). None of the shoot tissue Cu 

concentrations were significantly different from one another (Fig. 5.13a). 

As with the shoot tissue Cu concentration, the root tissue Cu concentration was also lower 

than that of Cd, however, the difference between the Cd and Cu root tissue concentrations 

was less than for shoot tissue concentrations (Fig. 5. 13b). The mean root tissue Cu 

concentration over all varieties (1196 J.tg/g) was half that of Cd (Table 5.5). This mean root 

uptake was 72 times greater than the shoot Cu uptake and was the largest ratio of root 

uptake:shoot uptake observed for all the metals studied, making Cu, after Cr, the metal 

transferred least efficiently from root tissue to shoot tissue by flax plants (Table 5.5). 

The variety with the highest root tissue Cu concentration, Escalina, was one of the four 

varieties with the lowest shoot tissue Cu concentration. Escalina had a root tissue 

concentration of 1537 J.tg/g which was an accumulation of 768 times the solution 

concentration. The lowest root tissue Cu concentration was observed in the variety Argos 

at 1068 J.tg/g, which was 69% of the root tissue Cu concentration of Escalina. 
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Figure 5.13 Flax tissue eu concentration. Values shown represent: (a) mean shoot tissue 
eu concentration (Jlglg) and (b) pooled root tissue eu concentration (Jlglg), for 
each variety (Section 2.9). Error bars represent SE of the mean. Using t test with 
Bonferroni correction, shoot tissue concentrations were not significantly different 
(P<0.05). 
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Lead 

The variety with the highest shoot tissue Pb concentration was Hermes (243 flglg), whilst 

the variety with the lowest shoot tissue Pb concentration was Rasia (Fig. 5.14a). Lead had 

the largest difference (80 flglg) between the variety with the highest shoot tissue metal 

concentration (Hermes) and the next highest shoot tissue metal concentration (Martta). 

This difference meant that Hermes was able to accumulate six times the solution 

concentration in the plant shoot tissue whereas Martta was only able to accumulate four 

times the solution concentration in its shoot tissue. Lead was also the metal which had the 

greatest range in shoot tissue concentration across the varieties with the shoot tissue 

concentration of Rasia accounting for only 44% of the shoot tissue concentration of 

Hermes. For the other metals studied, the varieties with the lowest shoot tissue 

concentrations were all at least 60% that of the variety with the greatest shoot tissue 

concentration. 

Whilst, as a mean of all the varieties, Pb was present in flax shoot tissue at the third highest 

concentration (Table 5.5), this tissue concentration represented a Pb accumulation of only 

four times the solution Pb concentration and was the lowest accumulation of all the metals 

in the experiment, with the exception of Cr. The accumulation of Pb in shoot tissue was 

half that of Cu, the next lowest metal accumulation. 

The varieties Elise and Viola had the highest root tissue Pb concentration with tissue 

concentrations of -9500 flglg (Fig 5.13b; Table 5.4). Argos was the variety with the lowest 

root tissue Pb concentration (4505 flglg) which was an uptake of less than half that of 

Elise. Lead was present in root tissue at a greater concentration than any of the other 

metals studied; the mean root tissue Pb concentration over all varieties was 6719 flglg 

which was more than double the root tissue Zn concentration, the next most accumulated 

metal (Table 5.5). The high root tissue Pb loading was, however, offset by the high 

solution Pb loading, therefore the accumulation of Pb by roots in proportion to the solution 

concentration was lower than the other metals, with the exception of Cr (Table 5.5). 

Flax, as a mean of all the varieties, had 46 times more Pb in the roots than shoots 

suggesting Pb, like Cr and Cu, was not readily translocated from roots to shoots 

(Table 5.5). 
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Figure 5.14 Flax tissue Pb concentration. Values shown represent: (a) mean shoot tissue 
Pb concentration (Ilglg) and (b) pooled root tissue Pb concentration (Ilg/g), for each 
variety (Section 2.9). Error bars represent SE of the mean. In (a) the values are 
significantly different, ANOV A. Values sharing the same letter are not significantly 
different, t test with Bonferroni correction, P>0.05. 

Nickel 
The variety Escalina had the highest shoot tissue Ni concentration at 31 Ilg/g but this 

treatment was not significantly different from the next six highest Ni accumulating 

varieties. The variety Diane had the lowest shoot tissue Ni concentration at 23 Ilg/g (Fig 

5.14a). Of all the metals, Ni exhibited the narrowest range of shoot tissue concentrations 

between the varieties, with Diane having a shoot tissue concentration 75% that of Escalina. 

Ni exhibited the lowest variation in metal uptake across the 12 flax varieties. 

Nickel was present in shoot tissue at 23-31 times the solution Ni concentration, with a 

mean across all varieties of 27 times the solution Ni concentration, which, was an 

accumulation similar to that of Cd, but> three times that of Cu. 
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As with shoot tissue, the range in root tissue Ni concentrations between varieties was lower 

than any of the other metals, with the exception ofCu (Fig. 5.15b). For both Cu and Ni, the 

variety with the lowest root tissue metal concentration was 69% that of the variety with the 

highest root tissue concentration. Viola was the variety which had the highest root tissue 

Ni concentration whilst Ariane had the lowest root tissue Ni concentration (Fig. 5.15b). 

The mean root Ni concentration of 479 J.1g/g, across all varieties, represented an 

accumulation similar to that of Cd, albeit at a concentration five times lower than root 

tissue Cd concentration (Table 5.5). The root:shoot uptake ratio of 18 was also similar to 

that of Cd and indicated that Ni was readily mobilised from root to shoot tissue. 
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Figure 5.15 Flax tissue Ni concentration. Values shown represent: (a) mean shoot tissue 
Ni concentration (J.1g/g)and (b) pooled root tissue Ni concentration (J.1g/g), for each 
variety (Section 2.9). Error bars represent SE of the mean. In (a) the values are 
significantly different, ANOV A. Values sharing the same letter are not significantly 
different, t test with Bonferroni correction, P>0.05. 
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Zinc 
Martta, the variety which had the highest shoot tissue Zn concentration, accumulated 

440 Ilg ZnJg, making Zn the metal present in shoot tissue at the highest concentration of all 

the metals studied (Fig. 5.15a; Table 5.4). The variety with the lowest tissue Zn 

concentration was Rasia with a shoot concentration 70% that of Martta, giving Zn the 

second smallest range in shoot tissue concentrations across all the varieties after Ni. In 

addition to being taken up in shoot tissue at the greatest concentration, of the six metals 

studied, Zn was also accumulated in the greatest quantity in proportion to the solution 

concentration, with variety Martta having a shoot concentration 44 times the solution 

concentration (Table 5.4). 

500 

450 
a a 

b 

400 
c c 

cd cd cd d d --. 
~ 350 bI) 

..3 
e e 

'2 300 
~ ., 250 
;:l 
en 
en 200 ·c 
'0 
0 150 

..r:i 
til 

100 

50 

0 
Martta Viola Ariane Hemles Electra Evelin Escalina Argos Viking Diane Elise Rasia 

Flax variety 

5000 
..-- b 

4500 

4000 r---'" 

~ 3500 , ',' -
..3 
'2 3000 

r--- r- ~ :---
r-

~ 2500 ., "-:-;- ~ r:--
;:l 
en 
en 2000 ·c 

", '.":, 
r-' .. ~ 

..... 
0 1500 
~ 

1000 

.. ' 
'( 

" 
:' , r· 

'=', ' '~" 

, I ',' '~ . 
500 

0 
. 

Viola Hennes Rasia Escalina Martta Argos Elise Electra Ariane Evelin Diane Viking 

Flax variety 

Figure 5.16 Flax tissue Zn concentration. Values shown represent: (a) mean shoot tissue 
Zn concentration (Ilg/g) and (b) pooled root tissue Zn concentration (Ilg/g), for 
each variety (Section 2.9). Error bars represent SE of the mean.In (a) the values are 
significantly different, ANOV A. Values sharing the same letter are not significantly 
different, t test with Bonferroni correction, P>0.05. 
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Unlike shoot tissue, the uptake of Zn into root tissue had a large range across all varieties. 

Notably large differences were observed in root tissue Zn concentrations between each of 

the top three root Zn accumulating varieties: Viola, Hermes and Rasia, which had root 

tissue Zn concentrations of 4766 JLg/g, 3978JLg/g and 3549JLg/g respectively. The variety 

with the lowest root tissue Zn concentration (Viking) only accumulated 44% of the Zn 

accumulated by Viola. 

The mean root Zn uptake of all varieties was 3126 JLg/g which was the second highest root 

tissue metal concentration of all the metals after Pb (Table 5.5). This was an accumulation 

of 313 times the solution Zn concentration which was greater than the root accumulation of 

Cr and Pb but lower than the root accumulation· of Cu, Cd and Ni. Zinc had the lowest 

root:shoot uptake ratio, of all the metals, indicating that Zn was the metal most efficiently 

translocated from root tissue to shoot tissue by flax plants. 
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5.2.2.1 Metal uptake summary 
An accumulation of each of the metals in both root and shoot tissue for all of the flax 

varieties grown in the experiments was observed with the exception of Cr. Chromium was 

the only metal not to be detectable in shoot tissue although this metal was accumulated in 

root tissue by all the varieties. This meant that, at the solution concentrations considered, 

even the least mobile metals (except Cr in shoot tissue) were concentrated in both below 

and above ground flax tissues. 

For all the metals except Cu, uptake to shoots was significantly influenced by the variety 

considered, and like growth response, the optimum variety for uptake varied with the metal 

considered. The variety Viola, however, was in the top three accumulators of metal into 

shoot tissue for all metals but Ni, and for root tissue for all metals but Cu (Fig. 5.11-5.16). 

Table 5.4 Flax varieties with the highest tissue metal concentrations for root and 
shoot tissues. Data shown are the varieties with the highest tissue metal 
concentrations for shoots and roots expressed as: the tissue metal concentration 
(Ilglg) and the accumulation of metal (accum.) expressed as the number of times the 
mean tissue metal concentration is greater than the solution metal concentration. 

~lement II Shoot concentration Root concentration 
I Variety Ilglg accum. Variety Ilgjg accum. 

Cadmium I Viola 191 38x I Viola 3051 610x 

Chromium I - - - I Hermes 148 148x 

Cop~er I Viola 23 23x I Escalina 1537 768x 

Lead I Hermes 243 6x I Elise 9506 238x 

Nickel I Escalina 31 31x I Viola 588 588x 

Zinc I I Martta 440 44x Viola 4766 477x 

For Cu, Ni and Zn, a gradual decline in shoot tissue metal concentration from the variety 

with the highest to the lowest shoot tissue metal concentration was observed (Fig. 5.12a, 

5.14a, 5.15a). For two of the metals, the variety with the highest shoot tissue metal 

concentration had a shoot uptake> 10% of the next highest uptake: Viola-Cd and Hermes

Pb systems took up > 16% and 50% more metal, respectively, than the other varieties 

grown in the Cd and Pb solutions (Fig. 5.lOa, 5.l3a). The tissue concentration of the flax 

varieties alone, however, did not indicate which metals were most efficiently removed 

from the matrix. For an indication of how efficiently flax removed each metal, root and 

shoot tissue metal concentrations had to be considered relative to the matrix metal 

concentrations (Table 5.5). 
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Table 5.5 Metal concentrations for root and shoot tissue as a mean over all flax 
varieties. Data shown are: the mean metal concentrations of shoot and root tissues 
(ILg!g) ; the accumulation (accum.) expressed as the number of times the mean tissue 
metal concentration is greater than the solution metal concentration and the ratio of 
mean root shoot tissue metal concentrations. 

IElement Shoot Root Rootshoot 
concentration concentration ratio 

ILg/g accum. J),fllg aCCUffi. 

Cadmium 151 30x I 2496 499x 17 

Chromium - - I 118 118x -

Copper 17 8x I 1196 598x 70 

!Lead 145 4x I 6719 168x 46 

lNickel 27 27x I 479 479x 18 

Zinc 368 37x 3126 313x 8 

Solution to shoot mobility in decreasing order: Zn > Cd ;::: Ni » Cu > Pb > Cr 

Root to shoot mobility in decreasing order: Zn > Cd ;::: Ni » Pb » Cu > Cr 

The distribution patterns of metals between flax root and shoot tissues, as a mean across all 

varieties, was such that distinct groups of metals were observed. The behaviours of Cd, Ni 

and Zn were similar to each other but distinct from those of Cr, Cu and Pb. Although Cd, 

Ni and Zn had different shoot tissue concentrations, their mean tissue metal loading was 

27-37 times the solution metal loading (Table 5.5). Metal accumulation in root tissue, like 

shoot tissue, was similar for aU three metals with a mean across all varieties of between 

300 and 500 times the solution concentration. Cadmium, Ni and Zn had rootshoot tissue 

concentration ratios of < 20 indicating that these metals were readily transported from the 

roots to shoots. The rootshoot tissue concentration ratios for Cd and Ni were very similar. 

Zinc was more efficiently transferred from roots to shoots than all of the other metals, with 

a ratio half that of Cd and Ni. 

The situation for the second group of metals (Cr, Cu and Pb) was more complex (Table 

5.5). Like the previous group of metals discussed, the shoot tissue concentrations varied. 

However, Cu and Pb were accumulated at a much lower proportion of the solution 

concentration than Cd, Ni and Zn, at a shoot tissue metal accumulation of four-eight times 

the solution concentration. Chromium was distinct from all the other metals as it was not 

detected in shoots. Chromium and Pb were both accumulated in similar proportions by flax 

roots. Mean root tissue concentrations of 118 and 168 times the solution concentration , 

respectively, made these the lowest root-metal accumulations observed. Copper differed 
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from the other two metals in this group in that flax was able to accumulate - 600 times the 

solution Cu concentration in its root tissue. This was the greatest root tissue metal 

accumulation of all the metals in the study. Chromium, Cu and Pb were less efficiently 

transferred from roots to shoots than Cd, Ni and Zn (Table 5.5). These findings agree with 

the uptake and compartmentalisation of Cd, Ni and Zn versus Cr, Cu and Pb in trees 

reviewed by Pulford and Watson (2002). 
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6 BSO and histidine 

The buthionine sulfoximine (BSO) and histidine studies were designed to look at the 

potential for manipulating flax plant growth and metal uptake responses to metal solutions. 

Plant responses to a biochemical inhibitor (BSO) or a chelating agent (histidine), after 

addition to metal solutions, was investigated. BSO is known to inhibit glutathione 

biosynthesis preventing phytochelatin (PC) formation (Section 1.2.6.2). It is hypothesised 

that PCs may playa role in removing free Cd from the cytosol. In the absence of PCs, Cd 

mobility to the plant shoots may be increased by inhibition of root sequestration. Histidine 

has been implicated in chelating Cu and Ni in vivo thereby providing protection against 

metal toxicity (Kramer et at., 1996; Lee et at., i978; Wheeler et at., 2001; White et at., 

1981). If such additives can be shown to increase the uptake of metals into shoot tissue, 

these chemical additives could be used to increase the efficiency of metal removal from 

soils by a phytoremediator crop. 

Both the BSO and histidine studies were conducted using a static hydroponic system 

(Section 2.10, 2.11). The static Kilner jar system was the preferred system used for these 

studies rather than the NFf system; the volume of solution required for the NFl' study 

would have resulted in excessive cost as BSO is an expensive reagent. Additionally, green 

house space was limited. The Kilner jar system was advantageous over the NFl' system as 

it used a smaller volume of solution which was subject to less evaporation. Flax variety 

Viking was used in both the BSO and histidine studies. 

6.1 BSO Study 
Plant growth and Cd uptake by flax exposed to Cd-containing nutrient solutions with the 

additional inclusion of BSO, was investigated. This was to establish whether the toxicity of 

the Cd solution was increased and the mobility of the Cd in the flax plant system was 

affected by the presence of BSO. 

Flax plants were grown in Kilner jars containing the treatments as detailed in Section 2.10. 

The target Cd concentration was 5l1g/ml and the BSO(a) and BSO(b) target concentrations 

were 100 11M and 25 11M, respectively. The concentration of 44.5 11M (5 l1g/ml) Cd was 

chosen as this concentration had a sub-lethal toxic effect on flax plants in both the NFl' 

study (Section 5.1) and in the flax varietal response to metal solutions study (Section 5.2). 

BSO was considered at two concentrations: 0.1 mM (Gussarsson et at., 1996) and 

0.025mM. BSO is not a competitive inhibitor of Cd chelation but rather it is an inhibitor of 
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the chelating agents' biosynthetic pathway (Reese and Wagner, 1987), therefore BSO need 

not be present at the same molarity as Cd. 

6.1.1 Growth response of flax to Cd and BSO 

Root and shoot weights were measured to assess the effect of the treatment solutions on 

biomass production of the flax plants. Root and shoot dry weights and shoot fresh weights 

were recorded (Fig. 6.1-6.3). For each of these three data sets, the same pattern was 

observed over the five treatments: the control and BSO only treatments (solutions free of 

Cd) gave similar yields of plant tissue which were higher than those of the Cd containing 

solutions (Fig. 6.1-6.3). This similarity of the BSO and control growth responses 

confirmed that BSO did not effect plant growth in the absence of Cd stress (Gussarsson et 

aI., 1996). 

For each of the root and shoot tissue yield measurements, the three Cd-containing solutions 

had a lower biomass yield than the plants grown in the control solution. The root yields for 

the plants grown in the Cd-containing solutions were all 0.08 g, equivalent to - 77% of the 

flax root yield in the control solution (Fig. 6.1). The shoot yields of plants grown in Cd

containing solutions were also similar (Fig. 6.2, 6.3). The shoot fresh weights (65-75% of 

the control yield) had a greater variation between the Cd and BSO + Cd solutions than the 

dry weight shoot yields (68-75% of the control yield). 
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Figure 6.1 Dry weight of flax roots. Values shown are the mean dry weight (g) of flax root 
tissue per growth collar (pooled root weight from all growth collars/no. of replicate 
growth collars). Percentages above the bars denote each treatment weight expressed 
as a percentage of the contol treatment weight. 
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Figure 6.2 Fresh weight of flax shoots. Values shown denote the mean fresh weight (g) of 
shoot tissue per growth collar. Enor bars represent SE of mean. The control and 
BSO values were not significantly different, nor were the values for Cd-containing 
solutions (t test, P>0.05). Other details as Fig. 6.1. 
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Figure 6.3 Dry weight of flax shoots. Values shown denote the mean dry weight (g) of 
shoot tissue per growth collar. Enor bars represent SE of mean. Other details as 
Fig. 6.2. 

These date reveal that the presence of 5 JLg/ml Cd in the nutrient solution had a detrimental 

effect on the yield of both roots and shoots of fl ax, reducing the yield by 23-35%. 

Inclusion of BSO in the nutrient solution had no significant effect on the yield response of 

the flax plants and did not increase the toxicity of the Cd solution . 
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6.1.2 Removal of Cd from nutrient solution by flax 

The nutrient solution concentration was measured during and at the end of the 14-d growth 

period (Fig. 6.4, 6.5). The prepared treatment solutions (Table 2.12; Section 2.10) either 

contained no Cd (the control and BSO solutions), or contained 5 flglml of Cd (the Cd 

solution and the two Cd + BSO solutions, Table 2.12; Section 2.10). Analysis of the 

solutions at the end of the growth period revealed that no Cd was present in the control and 

BSO solutions (Fig. 6.4, 6.5). The three Cd-containing solutions all had similar Cd 

concentrations at the end of the growth period (4.36-4.48 flglml). The variation between 

replicates for each Cd-containing treatment was also small (standard errors of 0.04-0.05). 

These data (Fig. 6.5) indicated that Cd removal from the solution by flax plants, 

accounting for 14- 15% of the Cd from solution, was highly reproducible within replicate 

treatments. The data also revealed that the inclusion of BSO, at varying concentrations in 

the nutrient solution, made little difference to the Cd removal from solution by the flax 

plants. 
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Figure 6.4 Solution Cd concentrations over the 14-d growth period. Data shown denote the 
mean solution Cd concentrations (flglml) in the Kilner jars containing the control 
solution ( ___ ), the Cd solution (---), the BSO solution (~), the BSOa + Cd 
solution (~) and the BSOb + Cd solution (-A-). Error bars represent SE of mean. 
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Figure 6.5 Solution Cd concentration remaining at the end of the 14-d growth period. 
Values shown denote the mean solution Cd concentration (Ilg/ml) after removal of 
the plant roots from the replicate Kilner jars. Percentages above the bars represent 
the final [Cd] expressed as a percentage of the initial [Cd]. En'or bars represent SE 
of mean . 

6.1.3 Flax tissue Cd concentration 

Plants grown in both the control and BSO only solutions accumulated Cd in their root and 

shoot tissues despite there having been no detectable Cd in these solutions. The quantity of 

Cd accumulated by the flax plants from the control and BSO solutions suggested the 

solution concentrations at the start of the experiment were 0.022 and 0.008 Ilg/ml , 

respectively- levels close to or below the limit of detection for Cd (0.02 Ilg/ml; Section 

2.12.4.1). Contamination may have arisen from the presence of small quantities of Cd in 

the original stock or prepared solutions prior to growing of the plants. Plants removed 

33 Ilg and 13 Ilg of Cd from the control and BSO solutions, respectively; these weights of 

Cd were <1 % of the Cd present in the Cd-containing solutions (7500 Ilg). The observed 

uptake of Cd from the control and BSO solutions (Fig. 6.6, 6.7) was analogous to previous 

results: flax plants grown in pots were able to accumulate Cd to a tissue concentration of 

2.5 Ilg/g in shoots from soils whose Cd concentration was below the limit of detection 

(Section 4.2.3.1). The shoot tissue Cd concentration of 29 and 10 Ilg/g (Fig. 6.7) observed 

in the plants grown in the control and BSO solutions, respectively, was much higher than 

that observed in the plants grown in the pot experiment soils (Section 4). The greater tissue 

Cd concentration observed in the hydroponic system compared to the soil system may have 

been due a greater availability and mobility of Cd in the Knops solution than the soil. 
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Figure 6.6 Root tissue Cd concentrations at the end of the growth period. Values shown 
denote the root tissue Cd concentrations (Ilg/g) · Mean values were calculated from 
analytical replicates drawn from a single root tissue sample pooled from all five 
replicate growth collars (Section 2.10). Percentages above the bars denote each 
treatment's Cd uptake expressed as a percentage of the Cd uptake from the Cd only 
solution. The values for Cd-containing solutions were not significantly different 
(t test, P>0.05). Error bars represent SE of mean. 

In both roots (Fig. 6.6) and shoots (Fig. 6.7), the flax plants grown in the Cd solution were 

able to accumulate more Cd than the corresponding BSO + Cd-containing solutions. The 

flax plants grown in the Cd only solution accumulated 428 times the solution concentration 

in their root tissue and 24 times the solution concentration in their shoots. The tissue Cd 

concentrations of 2186 Ilg/g for roots and 1211lg/g for shoots were slightly lower than the 

corresponding Cd uptakes observed in the flax screening experiment (Section 5). 

The flax tissue uptake data indicated that BSO did not increase Cd uptake either from 

solution to roots or from roots to shoots (Fig. 6.6, 6.7). In root tissue, Cd uptake in the 

plants grown in the BSO(a) + Cd and BSO(b) + Cd solutions was reduced by 39% and 

34%, respectively, compared to Cd uptake in plants grown in the Cd only solution. The 

results from each of the Cd + BSO solutions, however, were not significantly different 

from the Cd only solution. The plants grown the BSO(a) + Cd solution, which had the 

higher BSO concentration, had a greater reduction in Cd root tissue concentration than the 

BSO(b) + Cd solution, compared to the Cd only solution. 
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Figure 6.7 Shoot Cd concentration at the end of the growth period. Values shown denote 
the shoot tissue Cd concentration (/lglg). Percentages above the bars denote each 
treatment' s Cd uptake expressed as a percentage of the Cd uptake from the Cd only 
solution. The values for Cd-containing solutions were not significantly different 
(t test, P>0.05). Error bars represent SE of mean. 

A similar situation was observed in Cd uptake in the shoot tissue for the plants grown in 

the three Cd-containing solutions (Fig. 6.7). There was a reduction in Cd uptake from the 

Cd solution to the BSO(a) + Cd and BSO(b) + Cd solutions of 20% and 7%, respectively, 

compared to the Cd uptake of the plants grown in the Cd solution. The results from the Cd 

+ BSO solutions were not significantly different from the Cd only solution. As was 

indicated by the root uptake data, the reduction in Cd shoot uptake was greater in the plants 

grown in the more concentrated BSO solution. 
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6.1.4 Quantity and distribution of Cd in flax tissues 

The product of the flax tissue biomass and the ti ssue Cd concentrations indicated the total 

quantity of Cd removed from the solutions by the plants growing in each treatment solution 

(Fig. 6.8). 
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Figure 6.S Total weight of Cd present in flax tissue. Data represent the total weights of Cd 
(Ilg) present in: (a) root tissue ( ) and (b) shoot tissue (D) . ElTor bars in (b) 
represent SE of mean. 

The resulting total uptake data mirrored the patterns seen previously with the tissue 

concentration data (Fig. 6.6, 6.7). Combining plant biomass yield and tissue Cd 

concentration data resulted in a significant difference in Cd uptake between the Cd only 

and the Cd + BSO(a) solutions. The quantity of Cd which flax was able to remove from Cd 

containing solutions and sequester in harvestable plant tissues was reduced in the presence 

of BSQ. The small reduction in shoot tissue concentration together with the modest shoot 

tissue yield reduction , observed for plants grown in the Cd + BSO(a) solution, combined to 

have a significant reduction in total Cd uptake compared to the Cd only solution (t test 

P<0.05). 

The plants growing In the Cd blank solutions, which must have contained trace Cd 

contamination, were able to accumulate a significant quantity of Cd relative to the solution 

Cd concentration. Flax was observed to readily take up and translocate Cd at solution Cd 

concentrations below the limit of detection (Fig. 6.8) , but at the higher Cd concentration, 

the proportion of Cd taken into flax tissues from solution decreased. 

In all three Cd-containing solutions, the total quantity of Cd removed from solution could 

not be accounted for in the plant tissue. In the Cd, BSO(a) + Cd and BSO(b) + Cd 
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solutions, 1130, 1063 and 1120 /lg of Cd was removed from the 1.5 I of solution, 

respectively, whereas, only 224, 137 and 164 /lg was found in the plant tissues, 

respectively (Fig 6.8). The missing Cd could have precipitated out of solution in the Kilner 

jars as insoluble salts, Cd-root exudate complexes (Dushenkov et al., 1995) or become 

adsorbed onto insoluble particles present in the nutrient solution, such as small quantities 

of vermiculite which may have originated from the growth collars. Some Cd could have 

been loosely bound to the root surface and washed off during the rinsing process (Vasquez 

et al., 1992). 

The effect of the BSO solution on Cd distribution in flax tissue was also seen in the ratio 

rootshoot tissue Cd concentrations (Table 6.1). The control and BSO solutions had similar 

ratios with shoot tissue Cd concentrations 5-6 times greater than root tissue Cd 

concentrations. In contrast, plants grown in the 5 /lg/ml Cd solution had a higher root shoot 

ratio with root tissue Cd concentration 18 times greater than the shoot tissue Cd 

concentration. A similar tissue Cd concentration root:shoot ratio of 17 was previously 

observed in the flax varietal response to metal solutions study (for flax plants grown in 

5/lg/ml Cd solution, Table 5.5; Section 5.2.2.1). In the BSO + Cd solutions, the root:shoot 

ratio was lower than that observed in the Cd solution. Whilst both the root and shoot tissue 

Cd concentrations were reduced by the presence of BSO, the decrease in the root:shoot 

ratio was attributable to a greater reduction in root tissue Cd concentration than shoot 

tissue Cd concentration (Fig. 6.6, 6.7). 

Table 6.1 Relative distribution of Cd in flax tissues. Data shown are the ratio root:shoot 
tissue Cd concentrations of flax plants grown in each treatment solution. Treatment 
solution concentrations are detailed in Table 2.12; Section 2.10. 

Treatment 
Control 
Cd 
BSO(a) 
BSO(a) + Cd 
BSO(b) + Cd 

Root to shoot ratio 
6 

18 
5 

14 
13 

Comparison of total biomass production with total Cd uptake revealed the disparity 

between the distribution of biomass and the distribution of Cd in flax, illustrating some 

major difficulties in considering flax as a potential phytoremediation crop (Fig. 6.9). Most 

of the plant biomass, approximately 85%, was in the easily harvestable shoot tissue 

whereas the majority of the Cd (42-76%) was concentrated in the root tissue. Furthermore, 

comparison of the root to shoot ratio of the control and BSO solutions with the Cd-
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containing solutions indicated that at the higher solution Cd concentration, proportionately 

less Cd was transported to the shoot tissue. This reduction in translocation efficiency as 

solution Cd concentration increased would have to be overcome if a successful 

phytoremediation strategy were to be developed. 
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Figure 6.9 Distribution of plant biomass and Cd uptake between flax roots and shoots. 
Data shown are: (a) the mean weights of root ( ) and shoot (0) biomass expressed 
as a percentage of the mean biomass for each treatment, and (b) the mean weight of 
Cd present in roots ( ) and shoots (0) expressed as a percentage of the total weight 
of Cd taken up by plants grown in each treatment. 

6.1.5 BSO Summary 
The inhibition of flax growth by Cd was not increased by the presence of BSO in contrast 

to previous reports of the response of Cd-tolerant plants to BSO in the presence of Cd 

(Rauser, 1990). BSO did not significantly affect shoot tissue Cd concentrations at either of 

the concentrations considered. However, the combined effect of BSO on plant growth and 

plant tissue Cd concentration, both of which were reduced compared to the Cd only 

solution, resulted in a significant reduction in the quantity of Cd removed from the solution 

by sequestration in flax shoots. The flax response to BSO was dependant on BSO 

concentration as a significant effect was only seen at the higher of the two BSO 

concentrations used in the study. 

The presence of trace quantities of Cd contamination in the control and BSO only solutions 

allowed compruisons to be made between the mobility of Cd in flax at low and high 

concentrations. It was observed that proportionally more Cd was present in tissues of flax 

plants grown in solutions containing Cd below the limit of detection than in tissues of 

plants grown in 5 p,glml Cd solution. The root to shoot Cd concentration ratios of the 

control and BSO only solutions also indicated that Cd is more readily transported to 

harvestable flax tissues when present at low solution Cd concentrations. 
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6.2 Histidine study 

The purpose of this study was to determine the effect of an addition of the amino acid 

histidine on the growth and metal uptake responses of flax plants. Kramer et ai. (1996) 

reported that supplying non-accumulating species with histidine conferred enhanced 

tolerance to Ni and resulted in greater transfer of Ni to shoots. Histidine has also been 

implicated in Cu transport in the xylem of tomato and soya (White et ai., 1981). 

Copper and Ni solution concentrations were chosen at a level which was lethally toxic to 

the plants in the NFf study (Section 5.1.4). These concentrations were designed to verify 

whether an equimolar histidine solution would confer protection to flax plants exposed to a 

lethally toxic metal solution. The composition of the nutrient solutions used are detailed in 

Table 2.13, Section 2.11. 

6.2.1 Growth response of flax plants 

Both root and shoot tissue yields were observed to ascertain the growth response of flax to 

the treatment solutions (Fig. 6.10-6.12). In each of the treated solutions, the root tissue 

yield was markedly reduced compared to the yield of flax plants in the control solution 

(Fig. 6.10). The histidine only solution gave a yield of 59% of the control yield, indicating 

that histidine, in the absence of heavy metal toxicity, had a deleterious effect on flax root 

production. The reduction in root yield for the Ni and Cu solutions was greater than that 

observed in the histidine only solution. The Ni and Cu solutions were not lethally toxic to 

the flax plants grown in the Kilner jars unlike the flax response to the same concentrations 

observed in the NFT study (Fig. 5.3; Section 5.1.5). The difference in flax response to the 

similar concentration in the two different systems may be attributable to the oxidation 

status of the solution or due to a more sensitive root response under the well aerated 

rhizosphere conditions of the NFT system. The NFT system differed from the Kilner jar 

system in that the solution was continually aerated. The roots in the NFT system were also 

constantly exposed to both nutrient solution and air due to the thin nutrient film in the NFT 

troughs, unlike the roots in the Kilner jar system which were completely submerged in the 

nutrient solution and thus exposed to more anaerobic environment. 

Flax root yields in the Ni and Ni + histidine solutions were 25% and 41 % of the control 

solution root yields, respectively (Fig. 6.10). These data indicated that histidine attenuated 

Ni-induced root yield reduction. For the Cu solutions, the situation was reversed. 

Compared to the control flax root yield, the Cu solution gave a flax root yield of 30% 

whilst the Cu + histidine solution gave a root yield of 23%, which was the lowest root 
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yield observed (Fig. 6.10). Thus histidine did not confer any protection to root biomass 

production in the presence of Cu. 
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Figure 6.10 Dry weight of flax root tissue. Values shown denote the mean oven dried 
weight of root tissue (mg) for flax plants grown in each treatment. Percentages 
above the bars represent each treatment root weight expressed as a percentage of 
the control root weight. Treatment solution concentrations are detailed in Table 
2.13 , Section 2.11. 

A more complex situation was observed for shoot yield (Fig. 6.11, 6.12). For flax grown in 

the histidine only solution, there was the same reduction in yield (9%) observed in both 

fresh weight and dry weight shoot biomass compared to the control plants. In the Cu 

solution , the reduction in fresh weight shoot yield was also similar to that of dry weight 

shoot yield compared to the plants grown in the control solution at 19% and 22%, 

respectively (Fig. 6.11, 6.12). For the remaining solutions (Ni , histidine + Ni and histidine 

+ Cu) the reduction in fresh weight yield, when compared to the control plants, was much 

greater (- 2-3 times) than the reduction observed in dry weight yield. 

These data indicated that the presence of histidine had a negligible effect on shoot biomass 

production (Fig. 6.11 , 6.12). The reduction in dry weight biomass was unaffected by the 

presence of histidine in solution as aJl of the metal-containing solutions reduced the dry 

biomass production of flax by approximately 20% compared to the control plants. 
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Figure 6.11 Fresh weight of flax shoot tissue. Values shown denote the mean fresh weight 
(g) of shoot tissue for flax plants grown in each treatment. Percentages above the 
bars represent each treatment shoot weight expressed as a percentage of the control 
shoot weight. Error bars represent SE of mean. The Ni-containing solutions were 
not significantly different nor were the Cu-containing solutions (t test, P>0.05). 
Treatment solution concentrations are detailed in Table 2.13, Section 2.11. 
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Figure 6.12 Dry weight of flax shoot tissue. Values shown denote the mean oven dlied 
weight (g) of shoot tissue for flax plants grown in each treatment. Other details as 
Fig. 6.11. 

The fresh weight biomass was reduced to a greater extent than the dry weight biomass for 

both Ni-containing solutions and for the Cu + histidine solution, suggesting Ni had a 

desiccating effect on the shoot tissue which was not alleviated by the presence of histidine. 

Furthermore, Cu in combination with histidine also had a desiccating effect on the shoot 

tissue although neither Cu or histidine had this effect when present in isolation. 
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6.2.2 Removal of Ni and eu from nutrient solution by flax 

There was a small but initially rapid decrease in the solution Ni concentration over the first 

few days followed by a more gradual decrease over time in both the Ni and the Ni + 

histidine solutions (Fig. 6.13). The reduction in solution Ni concentration was lower in the 

Ni + histidine solution than the Ni only solution, suggesting histidine did not aid Ni 

removal from the contaminated matrix. 

Removal of eu from the eu solution (Fig. 6.14) followed the same initially rapid decrease 

and subsequent more gradual decrease over time seen in Ni, however, the histidine + eu 

solution exhibited a linear decrease in solution eu concentration over time. 



Kerr, 1. 2003, BSO and Histidine 179 

10.00 

9.75 

,........ 
9.50 

~ 
~ 

'--' 
9.25 ..-. ..... 

6 
d 
0 9.00 . .j:j 

E 
0 

r/) 

025

1 0.00 .: 

0 2 

: 
4 6 

• 
8 10 12 14 16 18 20 

Time (d) 

Figure 6.13 Solution Ni concentration during the growth period. Values shown are the 
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solution ( .... ), the Ni solution (~) and the histidine + Ni solution (~). Error bars 
represent SE of mean. The target concentration for the Ni solution was 9.98 Ilglml 
(Table 2.13; Section 2.11). 
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Figure 6.14 Solution eu concentration during the growth period. Values shown are the 
solution eu concentrations (Ilglml) for: the control solution ( ___ ), the histidine 
solution (---), the eu solution (-A--) and the histidine + eu solution (~). Error 
bars represent SE of mean. The target concentration for the eu solution was 
21.60 Ilglml (Table 2.13; Section 2.11). 
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6.2.3 Flax tissue Ni concentration 

Nickel uptake into root tissue of flax plants was greatest from the Ni only solution 

(Fig. 6.15). The observed root tissue Ni concentration of 4992 {tg/g, from flax grown in the 

10 {tg/ml Ni solution, was 10 times higher than that observed previously for flax plants 

grown in a 1 {tg/ml Ni solution (Fig. 5.15b; Section 5.2.2). Flax plants were grown in 

Kilner jars under similar conditions in both studies, with the exception of the difference in 

Ni concentration, and in both studies flax accumulated -500 times the solution Ni 

concentration in root tissue. The plants grown in the histidine + Ni solution had a root 

tissue Ni concentration less than half that of the plants grown in the Ni only solution. This 

indicated that histidine reduced the proportion of Ni from the nutrient solution which was 

held in the roots. 
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Figure 6.15 Flax root tissue Ni concentration . Data shown are the root tissue Ni 
concentrations ({tg/g) for flax plants grown in each treatment. Data are single 
analyses due to an insufficient yield of root tissue for replicate analyses (Section 
2.11). Treatment solution concentrations are detailed in Table 2.13, Section 2.11. 

Nickel was detected in both the root and shoot tissue of the plants grown in the control and 

histidine only solutions, at a concentration of 14 {tg/g and 15 {tg/g for roots and 7 {tg/g and 

3 {tg/g for shoots, respectively (Fig. 6.15 , 6.16). The Ni present in the control and histidine 

only solutions was below the limit of detection (0.02 {tg/ml; Section 2.12.4.1) in the 

nutrient solution and may have originated as a trace contamination in the stock solutions. 

The flax plants grown in the control solution, therefore concentrated the Ni by >700 times 

in root tissue and by >350 times in shoot tissue. 
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Figure 6.16 Flax shoot tissue Ni concentration. Data shown are the shoot tissue Ni 
concentrations (/Lglg) for flax plants grown in each treatment. Error bars represent 
SE of mean . The Ni-containing solutions were not significantly different (t test, 
P>0.05). Treatment solution concentrations are detailed in Table 2.13, Section 
2.11. 

For plants grown in the two Ni-containing solutions, the situation observed in the shoot 

tissue (Fig. 6.16) was the reverse of that observed in the root tissue (Fig. 6.15). Histidine 

appeared to promote the uptake of Ni into shoot tissue, with a tissue Ni concentration 

-17% greater than that of plants grown in the Ni only solution, however, the shoot tissue 

Ni concentrations in the Ni-containing solutions were not significantly different 

(Fig. 6.16). As was observed in the root tissue, the shoot tissue concentrations were greater 

than previously observed in the flax varietal response to metal solutions study (Table 5.5; 

Section 5.2.2), with both the Ni and histidine + Ni treatments giving a shoot tissue Ni 

concentration more than double that observed in the earlier study (Fig. 5.15a; Section 

5.2.2). The Ni accumulation in the Ni and histidine + Ni plants of 6.5 and 7.5 times the 

solution Ni concentration, respectively (Fig. 6.16), was lower than the accumulation 

observed in the flax varietal response to metal solutions experiment of 23-31 times the Ni 

solution concentration ; this was in contrast to the observed root accumulation which was 

- 500 times the solution concentration in both studies. The reduced accumulation of Ni 

between the flax varietal response to metal solutions study (where the Ni concentration 

was 1 /Lglml) and the histidine study (where the Ni concentration was 10 /Lg/ml) indicated 

that at higher solution concentrations Ni accumulation in shoot tissue was reduced. 
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6.2.4 Quantity and distribution of Ni in flax tissues 

The observed decrease of Ni accumulation in shoot tissue as the Ni solution concentration 

increased was accompanied by an increase in the rootshoot Ni concentration ratio. The 

root:shoot concentration ratio for flax grown in the control and histidine solutions were 

much lower than for the Ni-containing solutions (Table 6.2) indicating that where Ni was 

present in trace quantities «0.02 Jlg/ml), proportionally more of the Ni in the plant was 

translocated to the shoots than in plants exposed to a higher Ni solution. The root to shoot 

Ni concentration ratio for the plants grown in the Ni and histidine + Ni solutions (78 and 

29, respectively) indicated that the presence of histidine increased the proportion of Ni 

present in the shoot tissue relative to the root tissue (Table 6.2). Therefore, histidine 

increased the efficiency of Ni mobilisation to shoot tissue. 

Table 6.2 Relative distribution of Ni in flax tissues. Data shown are the ratio rootshoot 
tissue Ni concentrations of flax plants grown in each solution. Treatment solution 
concentrations are detailed in Table 2.13, Section 2.11. 

Treatment 

Control 
Histidine 
Nickel 
Histidine +Nickel 

Root to shoot ratio 

2 
6 

78 
29 

The mean rootshoot Ni concentration ratio in the flax varietal response to metal solution 

study (where the Ni concentration was 1Jlg/ml) was 18 (Table 5.5; Section 5.2.2.1). This 

ratio was greater than that observed in the control and histidine solutions but less than that 

of the Ni and histidine + Ni solutions. Therefore, these data have shown that as the Ni 

solution concentration increased, translocation of Ni to shoots, as a proportion of total Ni 

in plant tissue, decreased. 

The product of the flax tissue Ni concentration and the flax tissue weight gave the total 

weight of Ni taken up into the flax tissue (Fig. 6.17). Plants grown in the histidine + Ni 

solution contained 30% less Ni in their roots than those grown in the Ni only solution. 

However, the plants grown in the histidine + Ni solution, contained 20% more Ni in their 

shoots than those grown in the Ni only solution. Of the plants grown in each of the 

treatment solutions, more than 90% of the plant biomass was present as shoot tissue, with 

the highest percentage (97%) present in the plants grown in the Ni only solution 

(Fig.6.18a). The plants exposed to trace amounts of Ni (the control and histidine 

treatments) were able to transport 70-80% of the plant tissue Ni to their shoot tissue, 

however, the plants exposed to the 9.98 mg/l Ni solutions only transported 27-38% of the 

Ni to their shoot tissues (Fig. 6.18b). Although the histidine + Ni treatment had 16% less 
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Ni present in the flax tissues than the Ni only solution, the histidine + Ni solution did 

increase the proportion of Ni present in shoot tissue compared to the Ni only solution. This 

indicated that histidine reduced the overall plant Ni uptake but increased the proportion of 

the Ni which reached the shoot tissue. 
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Figure 6.17 Total weight of Ni present in flax tissue. Data represent the total weight of Ni 
(J.Lg) present in: (a) root tissue ( ) and (b) shoot tissue (0). Error bars in (b) 
represent SE of mean. Shoot Ni uptake from the Ni-containing solutions was not 
significantly different (t test, P>0.05) . Treatment solution concentrations are 
detailed in Table 2.13, Section 2.11. 
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Figure 6.18 Distribution of plant biomass and Ni uptake between flax roots and shoots. 
Data shown are: (a) the mean weights of root ( ) and shoot (0) biomass expressed 
as a percentage of the mean flax biomass for each treatment, and (b) the mean 
weight of Ni present in roots ( ) and shoots (0) expressed as a percentage of the 
total weight of Ni taken up by plants grown in each treatment. Treatment solution 
concentrations are detailed in Table 2.13, Section 2.11. 
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6.2.5 Flax tissue eu concentration 
Copper, like Ni, was detected in root and shoot tissue of the plants grown in the control 

and histidine only solutions at 86 and 39 p,glg for roots and 14 and 12 p,glg for shoots, 

respectively (Fig. 6.19, 6.20). The solution Cu concentration for these treatments was 

below the detection limit, therefore, trace quantities of Cu present in the nutrient solution 

were less than 0.05 p,g/ml (Section 2.12.4.1). 
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Figure 6.19 Flax root tissue Cu concentration. Data shown are the root tissue Cu 
concentrations (p,glg) for flax plants grown in each treatment. Data are single 
analyses due an insufficient yield of root tissue for replicate analyses (Section 
2.11). Treatment solution concentrations are detailed in Table 2.13, Section 2.11. 
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Figure 6.20 Flax shoot tissue Cu concentration. Data shown are the shoot tissue Cu 
concentrations (p,glg) for flax plants grown in each treatment. En"or bars represent 
SE of mean. The Cu-containing solutions were significantly different (t test, 
P<0.05). Treatment solution concentrations are detailed in Table 2.13, Section 
2.11 . 
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Flax plants grown in the Cu only solution were able to accumulate 4964 /lg!g Cu in their 

roots (Fig. 6.19), a concentration similar to the root Ni concentration of the plants grown in 

the Ni only solution (Fig. 6.15). However, the flax root tissue Cu concentration was an 

accumulation of 230 times the Cu solution concentration (22 /lg!ml), which was less than 

half the accumulation of Ni by root tissue of flax. The flax root tissue Cu concentration 

was recorded in previous experiments as 1196 /lg!g which was 598 times more 

concentrated than the 2.0 /lg!ml Cu solution (Section 5.2.2). Furthermore the accumulation 

of Cu in the root tissue of the plants grown in the control solution was> 1700 times the 

solution concentration. These results combined indicated that as the Cu concentration 

increased, the proportion of soluble Cu in the rhizosphere entering the root tissue 

decreased. This reduction in metal uptake relativelo the solution concentration was seen in 

both Cd and Ni. 

The presence of both histidine and Cu in equimolar concentrations, produced a root tissue 

Cu concentration of 6500 /lg!g which was 30% greater than observed for the Cu only 

solution (Fig. 6.19). This increase in root tissue Cu concentration by histidine was the 

reverse of the effect histidine had on root tissue Ni concentration (Fig. 6.15). 

The shoot tissue Cu concentration of the plants grown in the histidine + Cu solutions 

(190/lg!g) was less than half that of the plants grown in the Cu solution (447 /lg!g) 

(Fig. 6.20). Thus, the presence of histidine and Cu together at equimolar concentrations 

was observed to significantly reduce Cu transport to shoot tissue, the reverse of the effect 

histidine had on Ni transport to shoots. The shoot tissue Cu concentration of the plants 

grown in the Cu only solution represented a Cu accumulation of 21 times the solution Cu 

concentration compared to the histidine + Cu solution plants which accumulated only nine 

times the solution Cu concentration. The efficiency of flax in removing Cu from the 

rhizosphere to the harvestable shoot tissue was therefore reduced by >50% by the presence 

of histidine. 
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6.2.6 Quantity and distribution of Cu in flax tissues 

The observed reduction in efficiency of Cu transport in the presence of histidine resulted in 

a root:shoot tissue Cu concentration of 34 for the histidine + Cu solution compared to 11 

for the plants grown in the Cu only solution (Table 6.3). The rootshoot Cu concentrations 

in the control and histidine solutions of six and three, respectively, indicated that when Cu 

was present in trace quantities, flax plants efficiently translocated the metal from the root 

to the shoots. In the flax varietal response to metal solutions experiment the root:shoot Cu 

concentrations observed for the plants exposed to 2 JLglml Cu was 70 (Table 5.5; Section 

5.2.2.1) which was greater than the ratio in both the plants exposed to only trace amounts 

of Cu and the plants grown in the 22 JLglml Cu solutions. The combination of these results 

only partially agreed with the pattern observed in both Cd and Ni of decreasing 

translocation from roots to shoots with increasing metal solution strength. The proportion 

of plant accumulated Cu present in shoot tissue was greater in the plants exposed to trace 

quantities «0.05 JLglml Cu) than more contaminated metal solutions (22 JLglml), however, 

the lowest translocation was observed in previous work at a low Cu concentration 

(2 JLglml; Section 5.2.2.1). 

Table 6.3 Relative distribution of Cu in flax tissues. Data shown are the ratio mean 
rootshoot tissue Cu concentrations of flax plants grown in each solution. Treatment 
solution concentrations are detailed in Table 2.13, Section 2.11. 

Treatment 

Ctrl. 
His 
Cu 
His+Cu 

Root to shoot ratio 

6 
3 

11 
34 

The total quantity of Cu removed by roots of the flax plants grown in the Cu only solution 

(96 JLg) was similar to that of the histidine + Cu solution (98 JLg) (Fig. 6.21a). The 

similarity of the Cu removal by roots in the two Cu-containing solutions was owed to an 

increase in root tissue Cu concentration in the plants grown in the histidine + Cu solution 

(Fig. 6.19) being counterbalanced by a lower root yield in these plants compared to the 

plants grown in the Cu only solution (Fig. 6.10). Thus, histidine increased root tissue Cu 

concentration but inhibited root biomass production resulting in no net effect on Cu 

removal from solution by roots. 



KelT, J. 2003, BSO and Histidine 187 

100 250 
(a) 

90 
(b) 

80 200 

0; 70 
3 

0; 
3 

Ql 60 
.:£ 

.l!l 
0- 50 :::J 

Ql 150 .:£ 
ttl 
0. 
:::J 

:::J 
U 40 
0 
0 
a: 30 

:::J 
U 

100 0 
0 

.r::. 
en 

T 
1 

20 50 

10 

0 I I 0 

Ctrl His Cu His + Cu Ctrl His Cu His +Cu 

Treatment Treatment 

Figure 6.21 Total weight of Cu present in flax tissue. Data represent the total weight of eu 
(Jlg) present in root tissue (a ) and shoot tissue (b 0). Error bars represent SE of 
mean. Shoot uptake of Cu from the Cu-containing solutions were significantly 
different (t test, P<0.05). Treatment solution concentrations are detailed in Table 
2.13, Section 2.11. 

Due to the similarity in shoot yields for the Cu and histidine + Cu solutions (Fig. 6.12), the 

total uptake of Cu from these solutions followed the same pattern as the shoot tissue 

concentrations (Fig. 6.20). The total uptake of Cu by flax shoots in the Cu and histidine + 

Cu solutions was 203 Jlg and 85 Jlg, respectively (Fig. 6.21b). Histidine therefore inhibited 

the quantity of Cu flax plants were able to remove from solution and translocate to their 

shoot tissue. The effect of histidine on Cu uptake to shoots was the opposite of the effect 

on Ni shoot uptake (Fig. 6.17). 

Of the plant biomass grown in each of the treatment solutions, ~90% was shoot tissue 

(Fig. 6.22a). However, in the histidine, Cu and histidine + Cu solutions the proportion of 

plant biomass present as root tissue decreased compared to the control. The proportion of 

the total weight of Cu taken up by flax, which was present in the shoot tissue of the plants 

exposed to the Cu and histidine + Cu solutions, was greater than the proportion of the total 

weight of Cd and Ni present in the shoot tissues in the plants exposed to the cOlTesponding 

Cd and Ni solutions (Fig. 6.9b, 6.18b, 6.22b). The 46% Cu loading present in the shoot 

tissue of plants grown in the histidine + Cu solution compared to 68% in the plants 

exposed to the Cu only solution (Fig. 6.22b) illustrated the reduction in phytoremediation 

efficiency of the flax-Cu system caused by histidine. This was the only solution where the 

plant shoot tissue Cu loading was less than half of the total plant Cu uptake. 
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Figure 6.22 Distribution of plant biomass and Cu uptake between flax roots and shoots. 
Data shown are: (a) the mean total weights of root ( ) and shoot (D) biomass 
expressed as a percentage of the flax mean biomass for each treatment, and (b) the 
mean weight of Cu present in roots ( ) and shoot (D) expressed as a percentage of 
the total weight of Cu taken up by flax plants grown in each treatment. Treatment 
solution concentrations are detailed in Table 2.13, Section 2.11. 

6.2.7 Histidine summary 

As was seen with Cd in flax tissues (Section 6.1.4), the total quantity of metal , both Ni and 

Cu, removed from solution (Fig. 6.17, 6.21) was not accounted for in flax tissues: 86-99% 

of the metal removed from solution was not accounted for in flax tissues. Like Cd, the 

missing Cu and Ni may have precipitated out of solution, become adsorbed onto insoluble 

particles or lost during the sample washing process. The difference in removal of Cu from 

solution (Fig. 6.14) between the Cu only and the Cu + histidine solutions was not reflected 

in Cu uptake by the plants grown in these solutions (Fig. 6.21). Together, these data 

suggest that histidine increased Cu removal from solution but did not increase Cu uptake 

into flax tissue. 

The growth response of flax plants in the combined Ni and histidine solutions (Fig. 6.10-

6.12) suggested that, with the exception of some protection against Ni-induced root yield 

reduction, histidine did not playa role in protecting flax tissues from the yield inhibiting 

effects of Ni. These results contradicted those of Kramer et al. (1997), who repOlted that 

histidine, when supplied in solution, confened Ni tolerance to a non-tolerant plant species 

(Alyssum montanum). The growth response of flax plants in the Cu solution was also not 

affected by the presence of histidine. Several of the treatments reduced the moisture 

content of the flax plants (Fig. 6.11 , 6.12; Ni , His + Ni , His + Cu), however, during the 19-

d growth period of the experiment, this desiccation did not impair dry biomass production. 



Kerr, J. 2003, BSO and Histidine 189 

For flax plants grown in Cu and Ni solution, the equimolar presence of histidine in the 

solution did not contribute to increased phytoextraction of either element. Histidine 

reduced the root tissue Ni concentration of plants grown in the histidine + Ni solution but 

did not significantly increase the shoot tissue Ni concentration. The total quantity of Ni 

removed from the Ni + histidine solution was lower than from the Ni only solution, but 

proportionally more Ni was present in the shoot tissue of the plants exposed to the Ni + 

histidine solution. At the concentrations considered, the effect of histidine on Ni tolerance 

and uptake was marginal. Flax root tissue Cu concentration was greater in the histidine + 

Cu solution than in the Cu only solution whilst the shoot tissue Cu concentration of the 

plants exposed to both Cu and histidine was lower than those exposed only to Cu. 

Histidine, therefore, reduced the ability of flax to translocate Cu to its' above ground 

biomass possibly via Cu-histidine complex sequestered in the root tissue. 

The presence of trace quantities of Ni and Cu contamination in the control and histidine 

only solutions allowed comparisons to be made between the mobility of the elements in 

flax at low and high concentrations. It was observed that proportionally more Ni and Cu 

were present in tissues of flax plants grown in solutions containing each element below the 

limit of detection than in tissues of plants grown in more concentrated metal solutions. The 

root to shoot metal concentration ratios of the control and histidine only solutions also 

indicated that both Ni and Cu were translocated with greater efficiency to harvestable flax 

tissues when present at low solution metal concentrations. These findings were in line with 

the behaviour observed for Cd at low and high solution concentrations (Section 6.1.6). 
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7 Discussion 

Industrial activities have resulted in the contamination of land, particularly in and around 

populated areas (Scottish Executive, 2001). Contaminated land is a source of pollutants 

which could adversely affect both human health and the wellbeing of the environment, in 

addition to preventing economic regeneration of such land and adjoining areas (SEP A, 

2001). The remediation of the many contaminated sites both in Scotland and globally is an 

important goal for current and future generations (Scottish Enterprise, 2001). 

Phytoremediation has the potential to be a sustainable and economic solution to the 

problem of contaminated land (Salt et ai., 1998). 

Ph ytoremedi ati on , firstly provides a plant cover, which prevents migration of dust and 

particulate matter off-site (Stomp et ai., 1993; Vangronsveld et ai., 1995) and secondly, 

can remove or detoxify soil contaminants (Cunningham et ai., 1996; Pulford et ai., 2001, 

Lasat, 2002). Phytoremediation of metal contaminated land requires the plants to take up 

and subsequently compartmentalise the contaminant metals in harvestable tissues (Kumar 

et ai., 1995). To date, hyperaccumulators (Kramer et ai., 1997; L'Huillier and Edighoffer, 

1996; Reeves et ai., 1996) and high biomass crops, including some brassica species and 

trees, have been investigated as phytoremediator crops for metals (Blaylock et ai., 1997; 

Pulford and Watson, 2002; Robinson et ai., 1999), but little interest has been paid to other 

industrial crops which may have economic benefit as raw materials for either bio-fuel, 

industrial oil or fibre industries. In the current work, an assessment was made of four 

potential phytoremediator crop species: flax, miscanthus, nettle and oilseed rape. In order 

to evaluate the suitability of each plant species as a ph ytoremediator, their response to 

matrices containing metals commonly associated with contaminated land: Cd, Cr, Cu, Pb, 

Ni and Zn (Alloway, 1995; Neale et ai., 1997; Nriagu and Pacyna, 1988; Ross, 1994) was 

observed. This work considers plant species, which, like short rotation coppice, have the 

ability to generate an income but, unlike trees and in common with other herbaceous 

species, including hyperaccumulators, have the ability to generate plant biomass for 

harvest annually. 

For a phytoremediation strategy to be successful, the plant species of interest must be able 

to establish itself in the contaminated matrix a phase which has been highlighted as the 

period when plants are most sensitive to metal toxicity (Pulford and Watson, 2002; 

Punshon and Dickinson, 1999). 
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Germination was investigated to elucidate if plant behaviour at this initial growth stage 

was an indicator of plant tolerance to metal contamination. The germination response of 

flax and oilseed rape seeds, in specially created micro-growth chambers, revealed that 

germination was unaffected by Cd, Cu, Pb or Ni at concentrations of 500 j.tg/ml and by Zn 

at 1000 j.tg/ml, but was reduced in Cr at 1000 j.tg/ml by 5-25%. At higher concentrations, 

flax seeds were able to initiate germination but did not germinate successfully in Cd, Cu 

and Ni. Additionally, seeds which successfully germinated exhibited poor growth with the 

exception of those exposed to Pb. 

The oilseed rape and flax seeds' ability to germinate in all but the highest solution 

concentrations suggested that that these seeds were able to tolerate highly contaminated 

solution concentrations. However, this conclusion was not supported by subsequent results: 

the stunted shoot lengths of germinated flax plants, the poor emergence and survival data 

of flax and oilseed rape plants grown in the Tl and T2 soils (with the exception of the Pb 

soil), and the lethally toxic solution concentrations found in the NFf study. Germination 

data alone did not provide a guide to the plants' ability to survive exposure to 

contaminated soils. Using flax as a model system, a more accurate predictor of growth 

response of plants to metal polluted soils may be the shoot lengths of seedlings germinated 

in metal containing solutions. This proposal is supported by the case of Pb, where the 

combined germination and shoot length results for Pb in the germination study were in 

agreement with the emergence and survival rate of Viking in the PbTl soil. 

Establishment of the rhizomatous plants was observed as part of the pot experiments. The 

emergence and survival data observed for the miscanthus and nettle rhizome pieces, as 

well as for the flax seeds, in the Tl and T2 soils indicated that plant responses varied both 

between metals and between concentrations of the same metal. 

Miscanthus was the species most tolerant of the highly contaminated Tl and T2 soils of 

Pot Experiment One in terms of establishment and survival. All but two miscanthus 

treatments (CdTZ and ZnTZ) had plants surviving until the end of the growth period, 

furthermore, in several of the miscanthus-soil systems, all the plants that initially emerged 

survived to the end of the growth period. The remaining miscanthus-, nettle- and flax-soil 

systems in Pot Experiment One exhibited various toxicity symptoms. Toxicity ranged 

from: emergence of plants with only partial mortality prior to the end of the growth period; 

emergence of plants all of which subsequently died prior to the end of the growth period, 

as was the case for all species grown in the CdT4 soil; failure of plants to emerge as in the 

two flax-Ni systems. Unlike flax and nettle, none of the treatments were sufficiently toxic 
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to prevent miscanthus shoot emergence as all treatments initially produced some 

miscanthus shoots. Following subsequent growth of the emerging seedlings, sewage sludge 

and Phon soils had the highest yields, relative to the control plants, for all three species. The 

lack of toxicity found in the Pb soils may have been due to the low mobility of Pb in the 

soil system (Epstein et aI., 1999; Lasat 2002). In the NiT! and NiT2 soils, however, no nettle 

or flax plants survived, and miscanthus growth was also poor. In the T3 and T4 soils of Pot 

Experiment Two all of the species were able to establish and survive to the end of the 

growth period indicating that these more marginally contaminated soil metal 

concentrations were not prohibitively toxic for plant growth. For flax, the concentrations 

found to be lethally toxic in the NFT study were in agreement with the poor survival of 

flax plants in the Tl and T2 soils. The Tl and T2 soils had CaCh-extractable soil 

concentrations greater than the concentrations found to be lethal in all but two soils, CUTl 

and PhTh which were also the soils which had the best flax survival. 

Potential phytoremediator species should not only have the ability to become established in 

the contaminated matrix but subsequently produce sufficient plant biomass to act as a sink 

for sequestered metals. The highest tissue metals concentrations recorded in the plant 

species grown in the highly contaminated soils were 868-969 JLg Zn/g in the miscanthus

ZnT! soil system and 852-919 JLg Cdlg in the nettle-CdTl soil system. These uptakes were 

much higher than for any of the other species-soil systems. The Cd and Zn uptakes from 

these soils compared favourably with uptake of these metals by tree species grown 

previously in the same soils (McGregor, 1999). In particular, nettles had a tissue 

concentration between 2-10 times greater than poplar, pine and willow grown in the CdTl 

soil. In the case of Zn, miscanthus was able to accumulate approximately the same tissue 

Zn concentration as the poplar species (which was more than the pine species but less than 

the willow species) considered by McGregor (1999). In addition to the high metal 

concentration in the above ground tissue, the yield of the ZnTl-miscanthus plants was also 

high, making the ZnT!-miscanthus system the most promising potential candidate for 

phytoremediation observed in the Pot Experiment One soils. 

Total tissue metal concentrations in the marginally contaminated soils were greatest in the 

nettle-ZnTI and -ZnT4 soils. In these plant-soil systems the tissue Zn concentrations of 

1385-1937 JLg/g exceeded the maximum plant tissue Zn uptake recorded in the more 

contaminated Tl and T2 soils. The nettle tissue Zn concentrations observed in the T3 and 

T4 soils and the miscanthus tissue Zn concentrations in the Tl soil, were higher than those 

reported for non-accumulating willow clones but were lower than those reported for the 

hyperaccumulator Thlaspi caerulescens (Baker et ai. 1994; Brown et ai., 1995a; Pulford et 
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al., 2002; Punshon and Dickinson, 1997a & b; Riddell-Black, 1994) Oilseed rape tissue Cu 

concentrations of the plants grown in the CUT3 and CUT4 soils (50 flg/g and 38 flg/g, 

respectively) also exceeded the aerial tissue concentrations of all species surviving in the 

CUTl soil, and was greater than the Cu concentrations reported for willow clones. For Cd 

(at 52 flg/g), Cr (at 18 flg/g) and Cu, the maximum tissue metal concentration was 

recorded in the oilseed rape plants. The species with the greatest tissue Pb and Ni in the Pot 

Experiment Two soils was nettle at 107 flg/g and 190 flg/g, respectively, which 

represented relatively high shoot tissue concentrations of these metals (Pulford et al., 2002; 

Punshon and Dickinson, 1997a). 

The behaviour of individual metals in highly contaminated soils differed between plant 

species; for instance, in the CdTl-nettle system, the Cd was very mobile, present at > 250% 

of the soil total metal concentration, and there was slightly more Cd in the leaves than 

stems. In contrast, Cd mobility in the CdTl-miscanthus system was much lower, with Cd 

present at < 60% of the soil total metal concentration and the leaf tissue Cd content > 10 

fold that of the stem tissue. Behaviour between metals within an individual plant species 

also differed; for miscanthus grown in the Tl soils, Cd and Pb were deposited 

preferentially in the leaf tissue whereas Cu, Zn and Ni were deposited equally between 

stem and leaf tissues, and miscanthus tissue Zn concentrations were five fold greater than 

the next most accumulated metal. These observations indicated that it is not possible to 

make generalisations about the quantity of metal taken up or distributed in plants, rather 

each metal-plant species system must be considered individually. 

For miscanthus grown in the Tl soils, the leaf tissue concentrations of Cd and Pb were 11 

times and 2.3 times greater than the stem tissue concentration, respectively, suggesting that 

the plants were actively transporting metal to the leaves rather than passively depositing 

metal on exchange sites along the transpiration stream. This implies that the metals were 

transported as soluble metal-<:helate complexes such as the Cd-PC complex described for 

Cd (Grill et al., 1985; Rauser, 1990). The leaf tissue concentration of both Cd and Pb may 

be attributable to sequestration in particular compartments such as has been observed in 

trichomes (Martell, 1974; Salt et al., 1995). 
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Sequential extraction of the highly contaminated Tl and T2 soils revealed that the 

mobilities of soil metals, relative to the soil total metal concentration, varied according to 

the strength of the extracting agent. In the most mobile fraction (CaClz-extractable) the 

metals fell into two distinct groups where Cd, Zn and Ni were more mobile than Cu, Pb 

and Cr. In marginally contaminated soils (T3 and T4 soils), the mobilities of the metals 

followed the same general pattern, for all four plant species considered, as observed in 

highly contaminated soils. This pattern of metal behaviour has also been observed in trees 

(Pulford and Watson, 2002; Watson, 2002). In all four plant species, Cr was the least 

mobile of the metals with tissue Cr concentrations < 5% of the soil total Cr concentration, 

therefore, at around ICRCL threshold trigger values, Cr was the metal least suited for 

phytoremediation using flax, miscanthus, nettle or oilseed rape. Chromium is known to 

have a low soil mobility (Neale et al., 1997) which was confirmed by the minimal quantity 

extracted by EDT A relative to the total soil Cr content. 

Cadmium, Ni and Zn were all accumulated in the harvestable tissue of one or more of the 

plant species considered. These metals, particularly Ni and Zn, are those most often 

reported to be hyperaccumulated by plants endemic to metaliferous soils (Gabbrielll et al. 

1990; LHuillier and Edighoffer, 1996; Reeves et ai., 1996). The greatest accumulation of 

metal from the marginally contaminated soils observed was the uptake of Cd by flax and 

oilseed rape. Both plant species accumulated more than ten times the soil total Cd metal 

concentration (> 1000% ). Zinc was accumulated by nettle plants at a tissue Zn 

concentration -550% that of the soil Zn concentration representing the second highest 

metal uptake observed. For each of the metals studied, with the exception of Pb, the plant 

species with the lowest uptake was miscanthus whilst the plant species in which metals 

were most mobile were oilseed rape and nettle. Oilseed rape and nettle, however, were the 

two species which consistently had the lowest yield in each treatment and consequently 

these plant species did not remove the greatest weight of metal from the marginally 

contaminated soils. Miscanthus was the plant species able to remove the greatest weight of 

metal from each of the Cr, Cu, Pb, Ni and Zn soils by virtue of it's high biomass relative to 

the other crops. 

The mobility of the metals in the sewage sludge soil-plant systems was much lower than 

the metal mobilities in the corresponding artificial soil-plant systems. The differences in 

soil processes between the sewage sludge- and artificial soil-plant systems, responsible for 

the reduction in metal mobility, had the least effect on Cu. The positive growth response of 

all plant species in the sewage sludge soil, despite its high metal content, demonstrated that 

soil metal loading alone does not determine plant growth response to the soil. The low 
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metal uptake from the sewage sludge soil, which corresponded to low soil metal 

concentrations in the CaCh extractions, highlighted the important limitation soil metal 

availability has on the potential for successful phytoremediation (Lasat, 2002). 

Plant yield responses to the impoverished soil matrices, used in the marginally 

contaminated soils compared to the sewage sludge soils, indicated that soil properties such 

as soil structure and nutrient status may be as important for successful phytoremediation as 

soil total metal concentrations. Robinson et al. (1999) were able to triple the yield of the 

hyperaccumulator Alyssum bertolonii using fertiliser additions. The potential of oilseed 

rape and nettle to act as phytoremediation crops may be significantly improved by 

providing the plants with a more favourable growth medium, in particular by using 

fertilisers, as indicated by the growth response of these species when grown in the sewage 

sludge soils. The plant tissue metal concentrations achieved by these plant species may 

warrant further investigation of their potential as phytoremediators. 

An initial NFl' system was set up, which, with subsequent refinement, produced a system 

that minimised algal growth and solution evaporation whilst maximising operational 

efficiency. Investigation of solution metal concentrations required to cause fatality of flax 

plants in the NFl' system found lethally toxic doses of Cr (2 JLg/ml), Ni (10 JLg/ml) and Zn 

(lOOJLg/ml) whilst near lethal doses of Cd and Cu were found to be 20 JLg/ml and 15 JLg/ml, 

respectively. The CaCh-extractable metal concentrations in the Pot Experiment One soils 

were higher than these fatally toxic concentrations, with the exception of the Pb and CUT! 

soils. The lethally toxic solution concentrations were considerably lower than the solutions 

which allowed flax and oilseed rape germination. The values found to be toxic in the NFT 

study, for Cu and Ni, were similar to toxic levels in barley and ryegrass reported by Davis 

and Beckett (1978). The lethal concentrations found in the NFT study were used in 

choosing the metal concentrations for consideration in subsequent hydroponic experiments. 

Cieslinski et al., (1996) and Lukipudis, (1994) reported that the efficiency with which flax 

removed Cu, Pb and Cd from soils was dependent on the variety of flax used. Studies using 

other species have also shown differences in both metal uptake and yield response to soils 

with high metal concentrations within species according to the variety/clone used (Huang 

and Cunningham, 1996; Pulford et al., 2002; Punshon and Dickinson, 1997b; Riddle

Black, 1994). Twelve flax varieties were grown in solutions containing each of the six 

metals at concentrations below those found to be lethally toxic in the NFT study, these 

concentrations were chosen to allow identification of varieties both more and less tolerant 

of the metals than variety Viking used in the NFT study. There was little or no genotypic 



Kerr, J. 2003, Discussion 196 

advantage in the growth response between flax varieties to the six metals at the 

concentrations studied. In general the differences in metal uptake between varieties were 

small, however, there were significant differences in metal uptake into shoot tissue 

between the flax varieties. Viola and Hermes were the varieties most able to accumulate 

metal (Cd and Pb, respectively) in their shoot tissues. Viola was the variety most 

consistently able to accumulate high tissue metal concentrations. 

The distribution of metals in the tissues of flax plants grown in hydroponic solutions fell 

into two groups: Cd, Ni and Zn were transferred readily from roots to shoots and Cr, Cu 

and Pb were held in roots with a much lower proportion, if any, of the plant metal burden 

being found in the shoot tissue. Cadmium, Ni and" Zn elements were accumulated in shoot 

tissue at 27-37 times the solution concentration whereas Cr, Cu and Pb shoot 

concentrations were < 9 times the solution concentration. These findings were in line with 

the results obtained in the pot experiments. 

Plants have been reported to detoxify metals in their tissues using phytochelatins (Section 

1.2.6.1). Synthesis of glutathione, an essential precursor of PCs, is known to be inhibited 

by buthionine sulphoximine (BSO). The simultaneous exposure of plants to both Cd and 

BSO has been shown to cause Cd-induced toxic stress due to the absence of PCs but plants 

do not exhibit this stress when exposed to Cd in the absence of BSO (Rauser, 1990~ 

Gussarsson et ai., 1996). In contrast, the present work did not show increased Cd-induced 

growth inhibition in the presence of BSO. The presence of BSO did not significantly affect 

the shoot tissue Cd concentration of flax plants grown in the BSO + Cd solutions, however, 

the total quantity of Cd accumulated by shoots was reduced in the plants grown in the more 

concentrated BSO solution (100 JLM). The reduction in total weight of Cd mobilised to 

shoots suggested that glutathione may playa role in allowing flax plants to take up and 

translocate Cd from solution to shoot tissue by allowing the formation of a PC-Cd 

complex. 
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The data also revealed that the response to BSO was dependent on BSO concentration, as 

the 100 /LM BSO significantly decreased metal uptake to shoots whereas the 25 /LM BSO 

solution did not (Clemens et ai., 1999). BSO inhibited the quantity of Cd that can be 

transported from the rhizosphere to flax shoot tissue. The inhibition of PC production by 

BSO did not result in greater Cd mobility in the flax plant system. This suggested that PC

mediated Cd transport in flax plants is not localised within single cells or discrete tissues 

but that PCs may allow transport of Cd from root to shoot tissue where sequestration into 

vacuoles or specialist tissues may occur (De Knecht et ai., 1994; Ow, 1996; Rauser, 1990; 

Salt et al., 1995; Vogeli-Iang and Wagner, 1990). The results reported here agree with the 

finding of Gussarsson et al. (1996) that birch trees exposed to Cd and BSO had reduced Cd 

accumulation in both root and shoot tissues. 

The uptake and transport of Ni by the hyperaccumulator Alyssum lesbiacum has been 

shown to be facilitated by high concentrations of histidine in xylem sap (Kramer et al., 

1996). Kramer et al. (1996) were also able to confer nickel tolerance to a related non

tolerant plant species, Alyssum montanum, by supplying the plant with histidine. Supplying 

histidine to the non-tolesrant species in the presence of Ni, doubled biomass production 

and increased xylem transport of Ni. Wheeler et al. (2001) also reported that histidine gave 

Alnus protection against Ni toxicity, however, an increase in translocation of Ni from roots 

to shoots was not observed. 

Histidine has also been implicated in Cu tolerance and transport in plants (Lee et al., 1978; 

White et al., 1981). In this study, the reduction of flax tissue biomass production induced 

by both Ni and Cu toxicity was unaffected by the presence of histidine. The exposure of 

flax plants to equimolar concentrations of Ni and histidine did not significantly affect the 

shoot tissue Ni concentration, however, the combined affect of histidine on biomass 

production and shoot tissue metal uptake caused a significant reduction in the total quantity 

of metal removed from solution by plants grown in the Ni + histidine solution compared to 

plants exposed to the Ni only solution. For flax plants grown in both Cu and histidine, at 

equimolar concentrations, there was a significant decrease in shoot tissue Cu concentration 

coupled with an increase in root tissue Cu concentration. These results indicated that the 

presence of histidine reduced Cu mobility in flax plants by allowing the plant to 

immobilise the Cu in root tissues possibly as an insoluble complex (Dushenkov et ai., 

1995). Histidine did not enhance the ability of flax to tolerate either Cu or Ni solutions and 

reduced the quantity of Cu flax was able to transport to shoot tissue. 
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The results presented have shown that the plant species most tolerant of both highly and 

marginally contaminated soils was miscanthus. Miscanthus also removed the greatest 

quantity of Cd, Cr, Cu, Ni and Zn from the marginally contaminated soils as a result of its' 

high biomass, whereas flax removed the highest quantity of Pb. Nettle and oilseed rape 

were identified as the species which had the highest tissue metal concentrations for each of 

the metals in the marginally contaminated soils. The improvement in nettle and oilseed 

rape yields observed in the sewage sludge soil compared to the poor yields in artificial 

soils indicated that these plant species may have potential for improved growth in 

contaminated soils using soil amendments, in particular fertiliser treatments. These finding 

suggest that oilseed rape and nettle may playa useful role as phytoremediators under 

favourable soil conditions. 

Cultivation may be a hazard during preparation of a seedbed for any annual crop proposed 

for phytoremediation such as flax or oilseed rape. The rhizomatous nature of miscanthus 

and nettle allows the plants to regenerate in successive growing seasons without the need 

for annual sowing. This has the two-fold advantage of significant cost reductions in 

agronomy, and of reduced disturbance and possible dispersal of pollutants during 

cultivation. Miscanthus and nettle, therefore, may be the most appropriate crops for further 

investigation. Miscanthus which has high biomass and a tolerance to metal-containing soils 

may be appropriate for chelate-assisted phytoremediation. Nettle which has shown 

potential to accumulate high tissue metal concentrations could prove successful In 

continuous phytoextraction if higher yields can be achieved through soil improvements. 

This work has given insight into four plant species as potential phytoremediator crops, 

adding to the growing body of knowledge in the field of phytoremediation. The data 

presented indicated that herbaceous non-accumulator crops have the potential to tolerate 

metal contaminated soils and sequester metal in their tissues. Further work based on these 

data may provide future phytoremediation strategies. 
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Phytoremediation has been proposed as a potential solution to the problems of 

contaminated land. Whether or not phytoremediation is an appropriate technique for 

remediating a particular site will be dependent upon the objectives for the site and 

resources available. Where sites are highly contaminated and the time scale for 

remediation is limited, phytoremediation will not be an appropriate strategy. Sites which 

have a more marginal contamination level and where time scale is less important than the 

cost of clean up, phytoremediation will be a remediation option. This work has 

demonstrated that flax, miscanthus, nettle and oilseed rape have the potential to playa role 

in the remediation of land contaminated by heavy metals. On the basis of the work 

presented here, firm recommendations on the use of these plants in commercial 

remediation programmes cannot be given. The results presented in this thesis indicate that 

herbaceous crops producing moderate to high quantities of biomass such as miscanthus and 

nettle are likely to be best suited to a mixed cropping remediation strategy incorporating 

soil amendments to promote biomass yield and metal mobility in the soil-plant system. 

Resulting biomass will not only have value as a renewable energy feedstock, but in the 

process of energy production, the concentration and potential recovery of metals from the 

ash may be possible. Higher value industrial end uses of plant biomass, such as fibr~s for 

automotive interiors will also be possible, however, the fate of metal will have to be 

determined for each use. Further work into these crops in research-based remediation 

programmes is required in order to establish the merit of their use in commercial 

remediation strategies. 
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