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Abstract 

The need for light-weight, high capacity energy stores is driven by the necessity for a more 

sustainable approach to reducing the global dependency on fossil fuels. Storing hydrogen 

in the solid state is an attractive method in which the safety, sustainability and performance 

requirements for the automotive and aviation sectors may be met. 

Mechanochemical methods have been exploited in this work to modify and synthesise 

inorganic materials for hydrogen storage based on Group I and Group II metal compounds. 

The properties of un-milled and milled commercial MgH2 have been examined and milling 

conditions optimised to obtain desirable hydrogen desorption characteristics. Subsequently, 

inexpensive, non-toxic, non-oxide catalyst materials were considered for enhancing the 

hydrogen release properties and three catalysed hydride systems were examined; MgH2-

xSiC, MgH2-xgraphite and MgH2-xSiC:graphite (x = 1-20 wt%). The hydrogen desorption 

properties of the 1:1 molar SiC:graphite doped MgH2 system are shown to exhibit 

improved hydrogen release properties relative to the carbide and graphite systems alone, 

suggesting a synergistic effect. The Ea for hydrogen desorption from MgH2 could be 

decreased from 144±5 kJ/mol to 84±5 kJ/mol in the MgH2-10 wt% SiC:graphite system, 

maintaining a desirable hydrogen capacity >5 wt%. A recurring artefact of thermal analysis 

profiles for MgH2, in this work and in literature, indicates a two-step decomposition 

process under relatively mild milling conditions. Therefore, beyond the investigations 

described for optimisation of hydrogen release conditions, the effect that the 

aforementioned catalysts have on the two-step desorption anomaly using milder milling 

has also been investigated. This has given insight in to how the tuning of MgH2 may be 

made possible by selection of catalysts which have a more prominent effect on the low 

temperature desorption step relative to the higher temperature feature. 

Direct synthesis of ternary hydrides from their corresponding binary hydrides has been 

investigated by mechanical alloying of stoichiometric and non-stoichiometric binary 

hydride mixtures. High purity NaMgH3 powder (Orthorhombic space group Pnma, a = 

5.437(2) Å, b = 7.705(5) Å, c = 5.477(2) Å; Z = 4) was prepared in 5 h at high ball:powder 

ratios using a stoichiometric mixture of the respective binary hydrides. The 

dehydrogenation behaviour of the sub-micron (crystallites typically 200 – 400 nm in size) 

ternary hydride was investigated by thermal analysis. The nanostructured hydride releases 

hydrogen in two-steps with an onset temperature for the first step of 240 °C.  
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Using a range of initial binary hydride stoichiometries, a series of potentially new cubic 

ternary (Ca1-xMgxH2)n hydride phases has been proposed, such that the initial stoichiometry 

of Ca:Mg results in (non-)stoichiometric Ca-Mg-H phases relative to the known 

Ca19Mg8H54 phase. The crystallographic properties of the (Ca1-xMgxH2)n series have been 

examined by both lab and in-situ synchrotron X-ray diffraction experiments, and the 

Rietveld method employed to establish detailed structure information. The thermal 

properties of the (Ca1-xMgxH2)n hydrides have also been determined and their relative 

hydrogen desorption and gravimetric capacities compared. This work demonstrates that as 

the proportion of Mg increases, the thermal stability of the Ca-Mg-H system is lowered 

and higher hydrogen capacities are obtained. The effect of small alkali metal vs. larger 

alkaline earth metal inclusion on the Mg-H system is explored through this work. 

With a focus on new solid state synthesis routes to hydrides, mechanochemical metathesis 

reactions have been examined. Complex and ternary halides were selected as halide 

precursors, towards the synthesis of complex and ternary hydrides. The halides; LiAlCl4, 

NaMgCl3 and NaAlCl4, were synthesised using mechanochemical alloying of 

stoichiometric mixtures their respective binary metal halides. Their structures and thermal 

properties were determined and comparisons drawn between conventional synthesis in 

literature and the mechanochemical method employed in this work. The halides were then 

milled in appropriate stoichiometric ratios with alkali metal hydrides to determine whether 

a proposed metathesis reaction may result in the formation of the respective 

ternary/complex hydride. The products of the mechanochemical metathesis reactions were 

evaluated using powder diffraction and then thermal analysis, where low temperature 

hydrogen release corresponding to the desired hydride product was found. One metathesis 

route in particular highlights the potential of this approach, where analysis of the product 

suggests that the elusive “LiMgH3” hydride has been formed with hydrogen release at 

316.6 ºC. This work illustrates that the solid state metathesis route is a suitable means for 

materials synthesis and design, where tailored reactions can yield exciting results.  
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1. Introduction 

1.1. The Energy Deficit & Energy Storage 
Global energy consumption forecasts predict a 56 % increase in energy consumption 

between 2010 and 2040.1 The growth in world population over this period, particularly in 

developing countries, will play a major role in determining how the increasing energy 

requirements of society will be met.2, 3 Thus, sustainable energy production, storage, 

delivery, and consumption are among the major global development challenges (including 

poverty, health and disease prevention, food production, climate change, education and 

inequality) that must be tackled to achieve global prosperity.  

Finite energy resources, including coal, oil and gas are expected to remain providing the 

majority of energy consumed globally over the next three decades, although renewable 

energy sources are set to increase significantly over this period (Figure 1-1). The reserves 

of non-renewable energy sources are diminishing and it is inevitable that they will one day 

be depleted and become obsolete. Therefore, the ideal scenario is for usage of renewable 

energy sources to replace fossil fuels, and research into safe, environmentally benign 

alternatives has been under way for many decades.4  

   

Figure 1-1 a) Energy use projections from US DOE1, and b) European energy supply-demand 

profile.3 

It is possible to store the surplus electrical energy generated by current sustainable energy 

sources, i.e., wind, hydro, solar, wave and tidal power, by means of hybrid power 

generation-storage systems. State-of-the-art energy storage methods for this approach are 

developing rapidly, and include hybrid fuel cell or battery systems, where production of 

hydrogen (former) or storing electrical potential (latter) ensure energy waste is 

minimised.5, 6, 7 Efficient energy storage is therefore critical in ensuring sufficient, 

b) a) 
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sustainable energy supplies are produced and are available on demand for the target 

application.8 

From thermal storage in phase change materials to electrical storage in ionic conductors, 

developments in solid state inorganic materials chemistry play a pivotal role in the 

progression of modern energy storage technology. The introductory chapter of this thesis 

will focus on inorganic materials which have made the most significant progress in energy 

storage and harnessing in recent years. 

1.2. Hydrogen: A Promising Energy Store  
Effective storage of hydrogen has played a significant role in realising accessible clean 

energy for all, and many static and automotive projects worldwide are already utilising 

hydrogen as an energy carrier either as a (compressed) gas, liquid or within solids. Based 

on production via renewable energy sources, hydrogen (H2) may be considered a 

convenient sustainable energy reservoir with an energy density significantly greater than 

current fossil fuel derived fuels.9, 10 Hydrogen is conveniently the most abundant element 

on Earth, although inconveniently it is usually combined in molecules from which it must 

be extracted. A future hydrogen economy is based on a sustainable hydrogen energy 

cycle.11 Complete consideration of the hydrogen energy lifecycle, from production to 

utilisation, is highlighted in the ongoing research being conducted by the U. S. Department 

of Energy “Hydrogen and Fuel Cells Program”.12  

 

Figure 1-2 Schematic of a sustainable hydrogen energy cycle.23  
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The key processes of a sustainable hydrogen energy cycle are highlighted in Figure 1-2, 

and will now be discussed. 

1. Sustainable energy sources, solar, wind, etc., mentioned previously, may be used to 

produce hydrogen with minimum environmental impact. Biohydrogen technology is a 

rapidly developing field, and provides another sustainable hydrogen production route.13, 

14, 15 Use of organic municipal waste in the biohydrogen production process creates 

further arguments for developing this as an environmentally and economically viable 

hydrogen production route.16 

2. Hydrogen exists as a gas under standard conditions and is normally used in industry as 

a compressed gas or as a liquid.17 The potential for hydrogen to be a widespread energy 

carrier for mobile applications is dependent upon the discovery of adequate storage 

solutions. These must be capable of supplying sufficient quantities of hydrogen to meet 

the operating demands of the application. Solid state hydrogen storage presents a safer 

alternative to compressed gas, with most research focussing on high energy density 

materials with tuneable thermodynamic and kinetic properties.18, 19, 20 Consideration of 

the thermodynamics and kinetics of the hydrogen sorption processes, and optimisation 

of the gravimetric and volumetric capacities of hydrogen storage matrices have thus 

been at the forefront of hydrogen storage research. The use of hydrogen for mobile 

vehicular applications is already globally apparent, but currently technology relies on 

compressed hydrogen gas stored in high pressure tanks.21, 22 A number of factors 

related to the use of high pressure hydrogen gas, including safety implications and 

volume restrictions, are limiting the introduction of hydrogen to the wider vehicular 

market.23, 24 Recent literature on tank designs have emerged, and experimental 

assessments indicate significant steps are being made towards realising metal hydrides 

as an alternative to compressed hydrogen gas for on-board hydrogen storage for mobile 

applications. 25, 26, 27, 28, 29, 30 It is clear that a complex balance of material properties 

must be met in order for the ideal solid state hydrogen storage conditions to be realised 

(Figure 1-3).24, 31, 32 Hydrogen storage materials are the focus of this research, as will 

become evident. 
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Figure 1-3 Parameters and operating margins to be met by commercially viable solid state 

hydrogen storage materials.31 

3. Utilization of hydrogen for energy is typically in fuel cell systems.33 From detailed 

scrutiny of the composition of anode, cathode and electrolyte components, to the 

chemical processes involved therein, fuel cell design and optimization requires 

complex theoretical and experimental research to breed commercially viable systems.34, 

35 The compatibility of metal hydrides for fuel cells is of specific interest in this work, 

and developments via experiment and simulation over the past few years in hydride 

tank design and fuel delivery systems emphasise the need for more effective hydrogen 

storage materials if the performance demands of mobile applications are to be met. 28, 
36, 37, 38, 39 Most recently, a reversible proton exchange membrane (PEM) fuel cell 

system (“proton flow battery”) has been devised in which the role of a reversible metal 

hydride is fundamental to the in-situ charge-discharge system (Figure 1-4).40 

 
Figure 1-4 Novel “proton flow battery”, where M represents the metal component of the 

hydrogen storage material.40 
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4. The waste products from fuel cell systems are primarily water, heat and un-reacted 

feedstock. These environmentally benign products are in stark contrast to the harmful 

effluents of fossil fuel derived energy systems, which contribute to climate change and 

thus the quality of life of all species on Earth.41 Regeneration of hydrogen from the 

waste products by water splitting and utilisation of heat exchangers to capture the 

excess heat for other processes completes the hydrogen cycle. 

Multi-disciplinary collaborations in academia and industry are crucial for developing a 

concerted approach to high performance hydrogen production, storage and delivery 

systems for the commercial market, and interest in those based on solid state hydrogen 

storage methods is gaining momentum.42, 43 

1.2.1. Solid State Hydrogen Storage 

An abundance of literature is available on the development of solid state hydrogen storage 

materials.18 The storage of hydrogen in solid state materials may be classified broadly as 

chemical storage or physical storage. The research conducted in this work focuses on 

hydrogen stored in metallic materials, which lies in the domain of the former category. (A 

wealth of information on the latter may be found in recent literature, covering clathrate 

hydrates, MOFs (Metal Organic Frameworks), COFs (Covalent Organic Frameworks), 

polymers, various carbon structures and beyond, but will not be covered further in this 

work for brevity.44, 45, 46, 47, 48) 

1.2.1.1. Metal Hydrides 

Solid state storage of hydrogen in alkali metal hydrides is appealing because of their 

inherent light weight.49, 50, 51 It is evident from Figure 1-5 that there are a large number of 

known binary hydrides of both the alkali metals, transition metals and f-block elements, 

although use of the majority of the latter two systems is limited by cost or their harmful 

properties. This is also related to abundance of the metal component, and hydride synthesis 

requirements, i.e., harsh pressure and temperature conditions. Thus, the main focus of 

hydrogen storage research based on metal hydrides has been on those which are relatively 

easy to synthesise at a lab and industrial scale, are derived from abundant metals and meet 

(or are closest to) the margins for practical hydrogen storage.  
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Key: red = hydrogen, blue = ionic hydrides, yellow = covalent hydrides, grey = metallic 

hydrides, pink = both covalent and ionic, green = both ionic and metallic. *Hydride 

formation requires >0.1 MPa H2 pressure. 

Figure 1-5 Position of hydrogen on the periodic table and table of metals which form solid binary 

hydrides (adapted from Reference 49). 

Hydrogen release from solid state hydride systems has been studied extensively through 

experimental and theoretical research, and an overview of the current metal-hydride 

materials is provided in this chapter.  

As previously mentioned, gravimetric and volumetric capacity is of significant importance 

in the determination of the suitability of a solid state hydrogen storage material. 

Accordingly, the lightest metal hydrides have been given significant consideration in this 

field. The theoretical hydrogen storage capacities of these materials are promising, with an 

overall decrease in gravimetric hydrogen capacity upon descending Group I (12.68 wt% 

and 0.75 wt% for LiH and CsH respectively) and Group II (18.28 wt% and 1.44 wt% for 

BeH2 and BaH2 respectively), and a relative increase in gravimetric capacity from Group I 

to Group II. Much work has covered the synthesis and characterisation of light-weight 

alkali and alkaline earth metal hydrides for hydrogen storage, as will be described. 

Furthermore, some of these metal hydrides have been combined with Group XIII elements, 

e.g., aluminium and boron, to form complex hydrides that have a higher theoretical 

hydrogen capacity than the light metal hydrides (Figure 1-6). Nanostructured hydride 

materials have highlighted how the criteria for vehicular applications may be met by metal 

hydrides at this scale, and various methods have been applied to understand the properties 
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of such structures.52 First, in order to determine how light metal hydride materials may be 

modified or enhanced, a systematic review of the current technologies will be made. 

 

Figure 1-6 Comparison of the volumetric and gravimetric hydrogen storage properties of some 

potential solid state hydrogen storage materials. 53  

LiH and NaH are useful hydrides for light-weight hydrogen storage (Table 1-1), but they 

are extremely sensitive to air and moisture exposure, which makes them difficult to handle 

and store. As a result, their use as hydrogen storage materials in isolation is limited but 

they have found use in a range of composite systems in this field of research, which will be 

described later.  

Table 1-1 Key properties of the lightest known metal hydrides; LiH and NaH.54 

 Lithium Hydride Sodium Hydride 

Molecular Formula LiH NaH 

Molar Mass, g 7.95 23.99 

Theoretical Wt% H 12.7 4.21 

Density, g/cm3 0.78 1.396 

Melting Point, oC 688.7 800 

ΔfHºsolid, kJ/mol -90.63 -56.44 

Crystal System/ Space Group Cubic / 𝐹𝑚3�𝑚 (225) 
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1.2.1.2. Magnesium Hydride 

Magnesium is an abundant and inexpensive metal and plays a key role in the development 

of safe, lightweight, high hydrogen capacity storage materials. Figure 1-5 highlights MgH2 

as the transition point between the ionic hydrides (LiH, NaH and CaH2) and the covalent 

hydrides. The hindrance for the high hydrogen capacity (7.6 wt%) Mg-H system, however, 

is that it suffers from poor thermodynamics and slow kinetics; high hydrogen desorption 

temperature and slow hydrogen absorption (Equation 1-1).54  

Equation 1-1 Mg + H2 
 
↔ MgH2 ∆𝒇𝑯°𝒔𝒐𝒍𝒊𝒅 = −𝟕𝟔.𝟏𝟓𝒌𝑱/𝒎𝒐𝒍 

A number of theoretical and experimental approaches have been examined to optimise the 

properties of the Mg-H system. Two main approaches are used to drive down the hydrogen 

desorption temperature of MgH2; nanoscaling and inclusion of catalysts/additives. These 

concepts have been explored via a number of methods, and the progress made in 

nanoscaling and the most successful additives/catalysts employed to date will now be 

discussed. 

1.2.1.2.1. Nanoscaling of MgH2 

A range of Mg and MgH2 morphologies, particularly at the nanoscale, have emerged by 

preparation using novel synthesis methods to optimise (de-)hydrogenation behaviour, and 

thorough characterisation has allowed the performance of such materials to be described in 

detail.55, 56, 57 Synthesis and developments in nanostructured Mg-H materials have been 

possible by a number of methods, including milling/mechanochemistry, chemical vapour 

deposition/transport, solvated metal atom dispersion, laser ablation, and confinement.58, 59 

In the early 1980s, pure magnesium powder was hydrided to investigate whether smaller 

particle sizes, and hence larger surface areas, may enhance the performance of magnesium 

as a hydrogen store.60 The results published by Vigeholm et al. showed that when 

commercially sourced magnesium powders below 100 μm in size were hydrided, the metal 

was converted entirely to the metal hydride. After further studies into the effects of 

hydrogen cycling in small particles (< 75 microns) of pure magnesium, interesting 

structural changes were revealed.61, 62 Magnesium “whiskers” with a diameter of 500 nm 

were identified; a phenomenon that had not been observed in previous studies. After an 

increased number of hydrogen cycles further structural changes in the magnesium were 

visible; as the number of cycles increased, a significant agglomeration of the particles was 

observed, and this led to a decrease in wt% adsorption-desorption of hydrogen by the 

metal.63 Theoretical studies have now shown that Mg nanoparticles must be reduced to 
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much less than 20 nm to produce the desirable thermal and kinetic behaviour to be 

practical for reversible hydrogen storage.64 A number of experimental methods have been 

studied over decades to optimize the properties of the Mg-MgH2 system for practical 

hydrogen storage at the nano-scale, and these have been supported by comprehensive 

theoretical evaluations.65, 66, 67 Much of this work focuses on the use of milling as a suitable 

MgH2 synthesis method via reactive milling under a hydrogen atmosphere. Furthermore, 

using commercial MgH2 in the milling procedure provides a facile method of particle size 

reduction that is viable for translation into an industrial-scale manufacturing process.68, 69, 

70 

The main parameters for ball milling for the Mg-H system include milling time, 

ball:powder mass ratio, milling atmosphere, i.e., pressures of hydrogen or argon, milling 

apparatus, and mill rotation speed.71 The milling rotation speed is often not stated in the 

literature and as a result it is difficult to optimise rotation speed, and hence energy, which 

has implications for the consistency of results from one milling experiment to the next. 

There are numerous studies in the literature describing the processing of MgH2 via ball 

milling, many of those having been discussed earlier in this work, and the reader is 

directed to recent reviews and literature on the synthesis and processing of MgH2 

nanoparticles by this method.72, 73, 74 

1.2.1.2.2. Additives for Enhancing the Mg-H System 

The choice of additive plays a crucial role in lowering the desorption temperature; 

depending on the physical properties of the additive it is likely to have a direct impact on 

the milling process which will in turn modify the physical properties of the milled hydride. 

Furthermore, certain additives may also act to catalyse hydrogen sorption in the Mg-H 

system. Transition metals and their compounds and multi-component systems are all 

contributing towards the developed understanding of how the hydrogen storage properties 

of MgH2 may be understood and tuned towards real applications. (The effect of non-oxide 

additives will be described further in Chapter 3.) 

Transition Metal Additives 

The electronic structure of transition metals and their ability to readily exist in a variety of 

oxidation states allows them to act as catalysts. A brief summary of transition metals used 

in the Mg-H system will be given here and reference to relevant literature provided for 

further reading (Figure 1-7).44, 75, 76, 77, 78, 79, 80, 81, 82, 83 Being the lightest transition metals, 

significant attention has been given to the 3d metals, where Ti84, 85, 86, 87, V88, 89, 90, 91, 92 and 
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Ni93, 94, 95, 96, 97
 have received the greatest interest. Nb98, 99, 100 and Pd101

 are the most 

developed 4d transition metal catalysts for use in the Mg-H system. 

 

Figure 1-7 Summary of transition metal catalysts (highlighted in bold) used to enhance the Mg-H 

system. 

Co-catalysed composites have also been prepared, comprising Mg and two or more metal 

additives.102, 103, 104 Bi- and multi-metallic alloys have received significant attention.105, 106, 

107, 108, 109, 110, 111, 112 Mischmetal catalysts and their potential to form nano-composites for 

hydrogen storage have also been explored.113 

Numerous nanosized transition metal additives have been investigated with MgH2 in order 

to establish if the size of the additional metal component can have an effect on the hydride 

performance.81, 114 The dispersion of these nano-materials throughout the hydrogen storage 

material by, e.g., sputtering or milling, etc., is said to induce a catalytic effect, and also 

promote nucleation. Hanada et al. investigated the morphological differences observed 

when nickel nanoparticles and niobium (V) oxide were investigated as catalysts by milling 

with MgH2 under hydrogen, since previous results had shown enhanced hydrogen sorption 

characteristics in comparison to magnesium hydride alone.115 Non-agglomerated Ni 

nanoparticles were observed to exist only on the surface of MgH2 particles and were 

uniformly distributed. By contrast, nanoparticles (<10 nm) of niobium oxide were 

dispersed throughout the metal hydride, both on the surface of the bulk hydride and 

throughout the crystallites. This was observed using TEM (Transmission Electron 

Microscopy) analysis and a similar scenario was found in the work by Friedrichs et al. on 

Nb2O5 catalysed MgH2.116 In both the Ni and Nb2O5 investigations, the nano-catalyst was 

found to remain on/in the hydride after dehydrogenation under vacuum at 200 °C for 8 h, 

which is promising since it would imply that retention of the catalytic action was possible 

throughout the lifetime of the hydride.  
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Oxides 

The most studied and therefore “benchmark” catalyst for MgH2 is Nb2O5.39, 41, 117, 118, 119, 120 

The remarkable work of Hanada et al. in 2006 demonstrated that Nb2O5 (1 mol%) 

exhibited significant catalytic activity in the Mg-H system after milling, where the 

hydrogen desorption activation energy determined from Kissinger plot analysis was shown 

to be reduced to 71 kJ/mol H2.121 After the first dehydrogenation conducted at 200 °C, 

Hanada and colleagues demonstrated that hydrogen uptake (>5 wt%) in the 

dehydrogenated sample was possible at room temperature under <1 MPa, where 

hydrogenation of un-catalysed, un-milled Mg typically requires temperatures >300 °C 

under similar pressure conditions. Hydrogen desorption (~6 wt%) from the re-

hydrogenated sample occurred at 160 °C and although this is still higher than the 

temperatures typically required for a fuel cell operating system it is significantly reduced 

relative to that of unmodified MgH2. With such promising sorption characteristics 

demonstrated experimentally by Hanada et al., much work has focussed on understanding 

the mechanism of the Nb2O5 catalytic effect on MgH2.116, 122, 123, 124, 125, 126 A recent study 

by Neilsen and Jensen using SXD (Synchrotron X-ray Diffraction) confirmed that an oxide 

(MgxNb1-xO) forms upon cycling of the milled composite comprising 8 mol% Nb2O5 

milled with MgH2 for 2.5 h at 300 rpm.127 It should be highlighted that the additive 

proportion in this case is significantly greater than in earlier work (typically a catalytic 

quantity of 0.5 mol% Nb2O5 is added).128 

In 2007, a study investigating the thermal properties of a 17 wt% Nb2O5 in MgH2 

composite showed that after 200 h milling the decomposition profile determined by DSC 

(Differential Scanning Calorimetry) analysis showed two curves.129 The low temperature 

curve (Tpeak = 264 °C) was more prominent than the higher temperature curve (Tpeak = 316 

°C). No reasoning was given to explain the difference between the two peaks, but Nb2O5 

was described as acting as a lubricant to facilitate the reduction of MgH2 particle size 

whilst preventing cold welding and agglomeration effects. Recent work also showed that 

Nb2O5 decreased the Tpeak of both the low and high temperature DTA (Differential 

Thermal Analysis) peaks, with increasing proportions (5 wt%) of the catalyst exhibiting a 

pronounced effect relative to low catalyst loading (1 wt%). Again, the two peaks were 

described as being solely a result of the decomposition of the α- and γ-MgH2 phases, at the 

lower and higher temperature respectively.130 

Many other transition metal oxides have provided H2 sorption results in the Mg-H system 

where performance is improved relative to MgH2 alone.131, 132, 133 Oelerich et al. showed 
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that even a small incorporation of an oxide; Sc2O3, TiO2, V2O5 , Cr2O3, Mn2O3, Fe3O4, 

CuO, Al2O3, is capable of producing a positive effect on the sorption profiles of MgH2.134, 

135 Chromium oxide had the most pronounced effect on the adsorption profile, and the iron 

and vanadium oxides were most efficient in decreasing the time for desorption, but no 

hypotheses were proposed as to why both the adsorption profiles and desorption profiles 

were not enhanced in each case.  

Developments in the use of ball milling and non-oxide catalysts to enhance the 

performance of MgH2 will be described in more detail in Chapter 3. Therein, the thermal 

behaviour of the commercial hydride as-received and after milling under different 

conditions is probed, and a novel catalysed MgH2 composite will be examined. 

1.2.1.3. Calcium Hydride 

Calcium hydride, CaH2, is a stable ionic hydride and there are relatively few studies solely 

dedicated to the use of CaH2 as a hydrogen storage medium. This is most likely to be direct 

consequence of the higher thermal stability of CaH2 when compared with MgH2, where H2 

release from bulk CaH2 does not occur until ~600 °C. Similarly to the Mg-H system, 

hydrogen uptake and release in the Ca-H system is reversible. Typically, CaH2 is formed 

by reaction of Ca metal with high pressure hydrogen at high temperature.136 A novel 

mechanochemical synthesis route to CaH2 was studied by Ney and colleagues recently, 

however, and it was shown that nanoparticles of the hydride could be synthesised from 

phenylphosphonic acid and Ca metal via a purely solid state method.137 The study on the 

Ca-H system by Dixit et al. indicates that CaH2 is a less viable option than MgH2 when 

compared in bulk and from their computational work on MnH2n (M = Ca, Mg) clusters.138 

Nonetheless, CaH2 has been studied as a hydrogen storage component and has found use in 

a variety of composite systems, e.g., in amide, borohydride and ammonia borane 

systems.139, 140, 141 Milling of CaH2 with MgH2 has been conducted in this research, and the 

developments made through this work will be described in Chapter 4. 

1.2.1.4. Complex Hydrides 

Significant research has been conducted to evaluate the feasibility of complex hydrides, 

i.e., alanates and borohydrides, for hydrogen storage.142, 143 Despite their relatively low 

hydrogen release temperatures, much work has been focussed on the improvement of their 

reversibility and hydrogen release mechanisms. 
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Alanates 

A wealth of information is available for the synthesis, structures and hydrogen storage 

properties of the alanates, and a summary of the Group I and Group II metal alanate 

dehydrogenation mechanisms are given in Table 1-2. 

Table 1-2 Thermodynamic and relevant data for light metal alanates. 

M+ H2 Release Mechanism Theory 
wt% H2 

Tdes 
/ °C 

ΔHdes 
/ kJ/mol 

Ref. 

Li+ (1) 3 LiAlH4 → Li3AlH6 + 2 Al + 3 H2 

(2) Li3AlH6 → 3 LiH + Al + 3/2 H2 

(3) 3 LiH + 3 Al → 3 LiAl + 3/2 H2 

5.3 
2.6 
2.6 

150-175 
180-220 

400 

-10 
+25 

144, 

145, 

146 

Na+ 

 
(1) NaAlH4 ↔ 1/3 Na3AlH6 + 2/3 Al + H2 

(2) Na3AlH6 ↔ 3 NaH + Al + 3/2 H2 

3.7 
1.9 

120a 
180a 

+37 
+47 

161, 

147  

Mg2+ 
(1) Mg(AlH4)2 → MgH2 + 2 Al + 3 H2 

(2) MgH2 + 2 Al → ½ Al3Mg2 + ½ Al + H2 

9.36 150 
310 

+1.7 
+48.8 

148, 
179 

Ca2+ 
(1) Ca(AlH4)2 → CaAlH5 + Al + 3/2 H2 

(2) CaAlH5 → CaH2 + Al + 3/2 H2 

(3) CaH2 + Al → Ca4Al + H2 

7.8 
4.2 

 

127 
260-550 
600-700 

-7 
+31 

174 

a Includes Ti dopant. 

The lightest complex hydride, LiAlH4, has significant appeal for hydrogen storage 

applications (Figure 1-8 a).51, 149 With theoretical volumetric and gravimetric capacities of 

74.02 kg/m3 and 10.5 wt%H respectively, it is clear that this alanate is within the hydrogen 

storage targets for mobile applications. In addition, it does not spontaneously decompose in 

air nor does it produce toxic by-products or emissions, emphasising its appeal as a safe 

hydrogen store. The crystal structure of LiAlH4 was first determined from a single crystal 

study by Sklar and Post.149 In the mid-1980s, the Raman spectrum of LiAlH4, and its 

deuterated form, was collected and the bonding modes assigned.150 
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Figure 1-8 Unit cell of a-c) M(AlH4)n (M=Li, Na, Mg, and n=1, 2) alanates showing the tetrahedral 

orientation of the [AlH4]- anions using purple polyhedra, and the coordination orientation of the metal 

cations using grey (Li), green (Na) and blue (Mg) polyhedra. (Atom key: Li = white, Na = grey, Mg = 

blue, Al = purple, and H = red.) 

Synthesis of LiAlH4 has recently been studied by milling of LiH and Al under H2.151, 152 

More recent work looks more intensively at the properties of milled LiAlH4 with respect to 

the unmilled material and the effects of exposure to air and moisture.153 The decomposition 

process, reaction intermediates and associated thermodynamics of hydrogen evolution 

from LiAlH4 have been probed by a variety of techniques.146, 154, 155, 156 The first and 

second hydrogenation steps are the only reversible ones, and the third and final release step 

has a large thermodynamic barrier which must be overcome. Much effort has been exerted 

to determine ways to reduce the thermodynamic barrier and thus improve reversibility. For 

example, catalysts have been used in LiAlH4 studies where Ti compounds dominate this 

research.157, 158, 159, 160  

The gravimetric capacity (7.4 wt%H) of NaAlH4 is slightly diminished with respect to 

LiAlH4, but the volumetric capacity is larger (97.41 kg/m3, Figure 1-8 b).161, 162 Analysis of 

NaAlH4 and its decomposition product, Na3AlH6, by single crystal diffraction and Raman 

spectroscopy have been important for understanding the Na-Al-H system.163, 164 A solvent 

free route to NaAlH4 involves reactive milling of NaH/Al under H2(g). Additives have been 

c) 

b) a) 
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incorporated as part of the synthesis process after Bogdanovic and Schwickardi 

successfully demonstrated the reversibility of NaAlH4 using only 2 mol% TiCl3.165, 166, 167 

Thus, similarly to LiAlH4, Ti based dopants dominate research towards optimization of the 

NaAlH4 hydrogen storage characteristics.168, 169, 170, 171, 172 Nanosized TiO2 has been found 

to reduce the hydrogen release temperature of NaAlH4 to 100 ºC by TPD (Temperature 

Programmed Desorption) experiments.173 Furthermore, the alanate doped with 2 mol% of 

25 nm TiO2 particles was found to reversibly store up to 4 wt% hydrogen over 35 cycles. 

Milling of a Group II metal halides, e.g., MgCl2, or CaCl2, with the Group I alanates 

described above has been used to generate nanoscale particles of the respective Group II 

alanates, i.e., Mg(AlH4)2 and Ca(AlH4)2, and hence evaluate their structure and 

decomposition (Figure 1-8 c).174, 175, 176, 177, 178 Fichtner et al. produced magnesium alanate 

via a wet synthesis method, with particles in the 30-40 nm range.179, 180 Direct synthesis of 

Mg(AlH4)2 from Mg and Al by reactive milling has been attempted, but was not 

successful.181 The preparation of these alanates has allowed the thermal decomposition 

behaviour of nanoparticles of Mg(AlH4)2, Ca(AlH4)2 and LiMg(AlH4)2 to be determined.182 

This showed maximum hydrogen desorption values of up to 5 wt% for magnesium and 

calcium alanates, and 4 wt% for the quaternary lithium magnesium alanate.  

Novel mechanochemical metathesis routes to complex metal hydrides, LiAlH4 and 

NaAlH4, via complex halide precursors will be explored in Chapter 5. 

Borohydrides 

Borohydrides have been proposed as interesting systems with high hydrogen capacities 

(18.54 wt%H for LiBH4, and 10.68 wt%H NaBH4) for hydrogen storage, and much 

research has focussed on their synthesis, structure and hydrogen sorption characteristics.183, 

184, 185, 186 Magnesium borohydride (Mg(BH4)2) is a particularly promising hydrogen store, 

with a capacity of 14.96 wt%, and may be synthesised directly through solution chemistry 

or indirectly through mechanochemical metathesis reactions, where the latter involves 

isolation of the borohydride from a by-product.187, 188, 189, 190, 191 Zhang and co-workers, 

however, synthesised the borohydride directly from Mg and B powders using a reactive 

milling process using an H2 environment as an alternative synthesis route.192 The structure 

of this borohydride has been studied and shown to exist in a hexagonal structure at ambient 

conditions and undergoes phase changes upon variation of temperature and pressure, while 

variation of the synthesis conditions has also indicated porous configurations.193, 194, 195, 196, 

197  Decomposition characteristics of Mg(BH4)2 have been determined using a variety of 
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experimental and theoretical techniques to determine the thermodynamic, kinetics and 

reversibility kinetics, whilst identifying potential by-products and intermediates.198, 199, 200, 
201, 202 Various additives have also been used to improve the properties of Mg(BH4)2, with a 

focus on halide additives.203, 204 Nanoconfinement of Mg(BH4)2 in a carbon scaffold was 

investigated in 2010, where the integrity of the nanoparticles of the borohydride was 

maintained upon dehydrogenation, which meets one of the major challenges of using 

nanoscale materials.205 Beyond Mg(BH4)2 in isolation, borohydride combinations and 

mixed borohydride-hydride systems have been studied to establish synergistic effects.206, 

207, 208 Relevant literature has been cited in this brief overview, and discussion on 

borohydride systems will not be covered further in this work. 

1.2.1.5. Intermetallic Mg Alloy Hydrides 

Hydrogen storage alloys comprising two or more metallic components allow tailoring of 

the hydride properties by variation of the metal combinations and proportions.209 Aside 

from hydrogen storage, Mg alloys are also aiding the advancement of battery technology, 

where developments in highly conducting electrode materials are vital for optimising 

battery performance.210, 211, 212, 213, 214, 215, 216 A wealth of promising Mg alloys have been 

discovered over the past few decades as the field of hydrogen storage has gained 

momentum.217, 218, 219 Most efforts have concentrated on transition metal alloys although s- 

and p-block alloys are also known.220, 221 Mg alloys with Ti222, V223, Fe224, 225, 226, 227, Co228 

and Ni229, 230, 231, 232, 233 have been heavily studied. Alloys have also shown improved 

hydrogen storage properties when prepared by milling, indicating that particle size effects 

are also important in this class of hydrogen storage materials.234, 235 Mechanochemistry has 

enabled the synthesis of a number of new intermetallic hydrides and exploitation of this 

method towards lightweight ternary hydrides will be explored further through this research 

in Chapter 4 and Chapter 5.236, 237, 238 

1.2.1.6. Metal Hydride Composites 

Hydride composites are emerging constantly. These comprise combinations of hydrogen 

storage materials and reagents/catalysts which exhibit superior properties compared to 

those of the respective components in isolation. This approach has been building 

momentum in hydrogen energy research due to the thermodynamic, kinetic and cyclability 

limitations of metal hydrides alone. 
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Complex hydride composites have been studied fervently in order to optimise hydrogen 

yields, and include alanate-hydride, borohydride-hydride, alanate-alanate178 and alanate-

borohydride239 systems.  

1.2.1.7. Hydrolytic Hydrogen Release Systems 

Hydrolysis reactions involving hydrides are alternative hydrogen storage-release systems 

that involve the use of water to release the hydrogen held within the metal matrix.240 These 

may be described as single-use systems, since reversibility is not possible without 

reformation of the hydride from the hydroxide hydrolysis product, which is 

thermodynamically challenging. As a result, the significant limitation of this approach for 

mobile vehicular applications is that the materials must be regenerated “off-board”, i.e., 

outside of the vehicle.  

Magnesium hydride may be used in this way via the following mechanism and is 

particularly promising since it has a theoretical hydrogen capacity of 15.2 wt% H2 

(Equation 1-2). 

Equation 1-2 MgH2 + H2O  Mg(OH)2 + H2 ΔH298 K = - 277 kJ/mol 

Many of the systems are based on combinations of light metal hydrides and hydroxides, 

i.e., alkali metal hydroxide-alkaline earth metal hydride, or light metal hydride/complex 

metal hydride-hydroxide composites. Hydrolysis reactions involving MgH2-Ca/CaH2 

mixtures were studied in 2004, by Tessier et al., which showed hydrolysis to be up to 80% 

complete after only 30 minutes.241 Ultrasonic irradiation has been used with magnesium 

hydroxide to determine the enhancing effects it may have on the release of hydrogen from 

the hydrolysis reaction.242 Hiroi et al. used nanowires as well as microstructured Mg in this 

investigation and found enhanced hydrogen release from the former at an ultrasonic 

frequency of 28 kHz. More recent work to develop this system uses acids to overcome the 

formation of the Mg(OH)2 phase on the surface of the hydride, which hinders its complete 

hydrolysis.243, 244 Recently, use of catalytic quantities of hydroxides with MgH2 have 

indicated improved performance of the hydride, where the kinetics of NaOH and KOH 

doped composites were significantly altered by the formation of ternary Perovskite 

hydrides, NaMgH3 and KMgH3 respectively.245 Mg-derived systems dominate this 

emerging energy storage domain. 246, 247, 248, 249, 250, 251 
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1.2.1.8. Nitrogen-Hydrogen Systems 

Interest in metal-N-H systems has been gaining momentum in the past decade, owing to 

the synthesis and stabilisation of light-weight, high capacity storage materials (including 

amides, imides and nitrides) and a developing knowledge of their decomposition 

pathways.252, 253, 254 Hu and Ruckestein studied interactions of LiH with ammonia in 2002, 

although ammoniation of light metal halides has been known since the early 20th century. 

255, 256 Ammoniation of MgH2 has been studied by Li and Hurley, who used both purge and 

vacuum procedures between 75-150 °C, with and without halide-based dopants for 

promotion of hydrogen release.257 Hydrogen release was expected to be via the following 

reaction: 

Equation 1-3 2 NH3 + 3 MgH2 ↔ Mg3N2 + 6 H2 ΔH = - 33.52 kcal 

Their results indicated that ammoniation of the hydride was possible and hydrogen release 

from the doped systems was possible at near ambient conditions, although a wt% H2 

penalty would have been paid for inclusion of the dopants and only partial 

dehydrogenation was possible. At room temperature, ammoniation of various alkali metal 

hydrides has been conducted, and shown to form the corresponding metal amides after 24 

hours of ammonia exposure (0.5 MPa).258 They showed significantly low hydrogen release 

temperatures for these systems upon decomposition of the amide, as expected from their 

decomposition temperatures. They demonstrated the reversibility of the reactions by 

exposing the resultant amide to hydrogen at elevated temperatures, achieving partial 

conversion in the NaNH2 and KNH2 systems at as low as 50 °C, and full conversion back 

to ammonia and the metal hydride using KNH2 at 300 °C. The same research group also 

published developed work on these amide hydrogen release systems.259 Decomposition and 

synthesis of amides by ball milling methods has also been developed, and knowledge of 

their individual characteristics will be key to understanding developed decomposition 

pathways of mixtures of amides and hydrides.260 These materials form an entirely new 

category of hydrogen storage materials since they may also involve ammonia sorption, 

which will not be discussed further in this work and the reader is directed to relevant 

literature.261 However, it is worth noting that they commonly employ metal hydrides in 

composite systems for hydrogen release, which is of interest to the developments made in 

this work. Amide-hydride mixtures have been studied which form either new ternary 

amide phases or intermediates with associated low temperature hydrogen release. 259, 262, 263 
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1.3. Conclusion 
The various materials classifications employed for hydrogen storage have been 

summarized in the above literature review. Due to the wealth of literature available on the 

subject of hydrogen storage materials, however, this is not an exhaustive review and the 

reader is directed to the literature reviews cited in this work.  

It should be clear that metal hydrides are the primary subject of this work, with a focus on 

Mg based materials. Although hydrogen release from the borohydride, hydrolytic and N-H 

type systems will not be covered further in this work, development of new lightweight 

hydrides for promising new composite systems involving such materials is of significant 

importance in energy materials research with the potential for new low temperature 

hydrogen desorption systems.  

The main aims of this research are: 

1. to investigate the hydrogen release properties of MgH2 and enhance them by 

optimization of mechanochemical nanostructuring and inclusion of appropriate 

catalysts and/or additives, and 

2. determine new routes to promising Mg-based hydride materials at the nanoscale and 

determine their structure and thermal properties. 
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2. Experimental 

The domain of solid state chemistry is concerned with the properties and characteristics of 

solid materials. Philips assigns solids to five categories; simple metals, transition metals, 

ionic crystals, semiconductors, and molecular crystals.1 In this work, investigation of 

materials in the simple metal and ionic crystal classifications are covered. To describe 

these materials a number of different yet complementary analytical methods may be used; 

crystallography, spectroscopy, thermodynamic and kinetic measurements and imaging. 

The purpose of this chapter is to provide the reader with the theoretical and technical 

information about the techniques employed in this work. Furthermore, synthesis and 

analysis variables are also provided to illustrate how conditions were modified to prepare 

and characterise the materials described in subsequent results chapters. 

2.1. Sample Handling 

2.1.1. Gloveboxes 

Use of gloveboxes in chemistry preparations is a suitable means of minimising the 

oxidation or hydration of air sensitive and pyrophoric materials; it is possible to handle 

materials, prepare reactions and store samples under an inert environment. The light 

metals, hydrides and halides used in this work were acutely air sensitive; the metals and 

hydrides were pyrophoric while many of the light metal halides were exceptionally 

hygroscopic. Therefore, for the majority of the work presented in this thesis, preparatory 

work was conducted in recirculating gloveboxes filled with inert gas, i.e., dry Ar(g) or N2(g). 

Preparation tools were transferred in/out of the box using evacuable antechambers. To 

maintain low O2 and H2O levels in the box, the antechamber was evacuated and inert gas 

filled three times before opening the inner port door to the main chamber. The inert 

atmosphere of the gloveboxes was continuously filtered through a molecular sieve and a 

catalyst by a recirculation blower. (The recirculation blower was only switched off when 

sample weighing was conducted in order to maintain a steady environment for the balance 

and minimise errors in weighing reagents.) 

The Saffron scientific gloveboxes shown in Figure 2-1 a) and b) were regenerated “off-

box” meaning that the catalyst and molecular sieve chambers were removed for 

regeneration procedures.2, 3 These were conducted under a flow of the appropriate 

regeneration gas (namely 5 % H2 in Ar or 5 % H2 in N2, depending on the box 

environment) for a minimum of 12 hrs to remove water, oxygen and other contaminants. 
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The catalyst of the mBraun glovebox shown in Figure 2-1 c) was regenerated in-situ using 

a special gas blend of 5 % H2 in Ar, where the box environment was Ar(g). Conducting 

these regeneration procedures on a regular basis (every two months) ensured that the 

glovebox environments were maintained at acceptable levels, i.e., 0-5 ppm O2 and 0-30 

ppm H2O. Analysers fitted to the gloveboxes indicated the respective levels in the box and 

upon any rise in the O2 or H2O levels operational checks were conducted. Regeneration 

activities were conducted more frequently depending on operations taking place in the box 

or after long periods of down-time.  

 

Figure 2-1 Images of the a) Alpha and b) Omega models of Saffron Scientific gloveboxes 

employed for sample preparation in this thesis, and c) UniLab mBraun glovebox employed as STA 

housing (see section 2.3.5.1). 

2.2. Preparative Methods & Techniques 

2.2.1. Mechanochemistry 

2.2.1.1. Introduction to Mechanochemistry 

Mechanochemistry, also known as tribochemistry, is deep rooted in the development of 

new, functional materials and has a rich history in progression of the chemical sciences.4, 5, 

6, 7 It may be defined as: 

“the branch of chemistry which is concerned with chemical and physico-chemical changes 

of substances of all states of aggregation due to the influence of mechanical energy.” 8 

The recorded use of mechanical action in chemistry predates Christianity. The Greek 

philosopher and student of Aristotle, Theophrastus of Eresus (322 B.C.), described simple 

a) b) 

c) 
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hand grinding for extraction of mercury from its sulphide (HgS, cinnabar) in his early text 

on minerals, De Lapidibus.8, 9 Scientists throughout history, including Faraday, have since 

used mechanochemical preparatory techniques to develop and understand chemical 

processes.10 The American scientist M. C. Lea has been described as the father of modern 

day mechanochemistry.11 His initial research on the effect of mechanical action on silver 

allowed him to then distinguish between the effects of mechanical and heat treatment in a 

variety of materials, proving by experiment that the processes were distinct. In the early 

20th century, the relationship between chemical and mechanical energy formed part of the 

theories developed by Ostwald, who received a Nobel Prize in 1909 for his work on the 

“fundamental principles governing chemical equilibria and rates of reaction”, where the 

term “mechanochemistry” was coined.12  

Significant commercial interest in mechanochemistry has been growing since the 1980s to 

present day, over 100 years since the discoveries made by Lea. The shorter reaction times 

of this technique (relative to the thermochemical method) have been exploited to prepare 

materials in a solvent free environment using mechanical action alone.13 These reaction 

time reductions are due primarily to the constant generation of fresh surfaces of the solids 

being milled and shorter diffusion path lengths as a result of the continued pulverisation of 

the particles throughout milling.14 Mechanochemistry now plays a crucial role in the 

development of more environmentally responsible synthesis routes to functional solids 

(including materials for energy applications and pharmaceuticals), and plays an important 

role in developing solutions to environmental problems, such as the removal of persistent 

organic pollutants (POPs).15, 16, 17 Mechanochemistry is currently one of the key 

preparatory methods for development of solid state hydrogen storage materials, including 

new hydrides, catalysed/doped hydrides, and composite hydrogen release systems. The 

hydrogen release properties of materials prepared by mechanochemistry have been 

demonstrated as competitive and even superior to those prepared by conventional 

thermochemical solid state methods as a result of the shorter hydrogen diffusion paths in 

the smaller particles.14 

In principle, the technique seems relatively simple, but in reality it entails a number of 

simultaneously occurring complex processes (Figure 2-2).18, 19 
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Figure 2-2 Illustration of the increasingly complex processes that occur across scales during 

milling. (Adapted from Reference 19.) 

1. Milling reduces particle size (comminution) with the formation of new surfaces and 

thus an overall increase in surface area. The type of equipment used can greatly 

influence the degree to which this occurs owing to the way in which stress is applied to 

the materials. In modern milling instruments, there are a number of variables that can 

allow operators to define the relative stress applied to the material and these will be 

outlined later. 

2. The mechanical properties of the material being milled also influences the way in 

which the milling processes take place, where hard materials will be affected by 

mechanical force in a significantly different way to brittle materials processed under 

the same conditions. Each particle will have contact with other particles, the milling 

media and the walls of the milling container and so the frequency of impacts will 

influence the impact of the milling process on a particular material.  

3. Modification of the crystalline structure is an inherent effect of using this technique, 

where strain, structure defects and dislocations may be induced depending on the 

applied stress. Furthermore, crystalline polymorph transitions and chemical reactions 

(such as metathesis reactions, alloying, decomposition, redox reactions, etc.) are also 

possible.20  

Understanding the mechanisms of mechanochemical processes is difficult, since many 

factors can affect the results obtained. However, emerging in-situ methods are allowing 

valuable information to be acquired regarding the reaction pathways followed in the mill.21 

Therefore there is much still to learn about the mechanisms taking place in mechanically 

driven reactions. Mechanochemistry will no doubt play a pivotal role in the development 

of solvent free, environmentally sustainable materials synthesis in a variety of research 

fields. With the growing interest in this technique, however, a wide variety of milling 

instrumentation and variables are now used by researchers, which can make interpretation 

and reproduction of results a complicated task.22 Therefore, as much information as 
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possible should be provided about the experimental set-up and conditions used to produce 

the properties of the as-milled materials. 

2.2.1.2. Milling Procedures 

A planetary ball mill (Retsch PM100) was used to prepare samples in this work (Figure 2-

3). Ball milling in planetary devices involves the rotation of a milling jar containing 

milling balls and reagents. The jar is fixed on a rotating plate known as a sun wheel which 

hosts a counterweight to minimise instrument vibration. Rotation of the sun wheel at a user 

defined rotation speed causes the milling jar platform to be rotated in the opposite direction 

to the sun wheel, where the jar and sun wheel rotate in a 2:1 ratio. This causes the milling 

balls to rotate and generate mechanical action on the materials in the jar. The forces 

involved in this milling process are known as Coriolis forces, where both impact and 

friction forces are at play. It is the combination of these forces that generate the high 

energy required to conduct milling operations in this method.23 

 

Figure 2-3 Configuration of the milling jar in the Retsch PM100 planetary ball mill. 

The milling jar was loaded with the material(s) to be milled plus milling balls within an 

inert gas filled glovebox. The jar was then clamped shut under the inert gas using a safety 

closure device supplied by Retsch to completely avoid contact with air. The entire jar 

assembly was then clamped on to the rotating stage inside the milling chamber, and milling 

conditions programmed. The frequency of impacts and friction induced in milling is 

directly related to the milling variables defined by the user. Controllable variables for this 

set-up include: 
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• Milling speed (range: 100-600 rpm) 

• Rotation direction (clockwise/anti-clockwise) 

• Milling time (range: 1 s - 99 h), including break periods between rotation direction 

reversal 

• Milling tools; stainless steel jar (50 ml) and stainless steel milling balls (10 mm 

diameter, 4 g/ball) 

• Ball:powder mass ratio, e.g., 40:1 ball:powder ratio achieved when 0.8 g material 

milled with 8x steel milling balls (32 g). 

By changing these variables, the degree of energetic milling could be varied such that a 

more/less energetic milling scenario could be devised depending on the materials under 

consideration. In order to ensure milling was conducted as safely as possible, careful 

consideration was given to the counterbalance, which was set to the correct weight for each 

milling experiment to account for the total mass of the milling jar, milling balls, closure 

device, etc. 

Milling operations covered in this study include comminution of hydrides, chemical 

reactions, polymorph transformation and alloying to form new crystalline ternary halide 

and ternary hydride phases. Further details regarding the specific synthesis conditions will 

be provided in the relevant results chapters. 

2.2.2. Glassblowing & Furnaces 

Glassblowing equipment was used to prepare bespoke glass tubes for experiments 

conducted in furnaces. The glassblowing torch is fed by two inlet gas lines; natural gas and 

O2(g). A low flow of natural gas must be applied before igniting the torch by a naked flame. 

The ratio of gas:oxygen was then varied to acquire the correct flame for use in silica tube 

splitting/vacuum sealing operations. Reactions to be conducted under vacuum were 

prepared in vacuum sealed tubes on the glassblowing line. Since the samples in this work 

were air sensitive, the sample tubes were prepared in a glovebox and sealed with a Suba-

seal® septum and parafilm.  

A bespoke bench-top furnace was employed in this research to conduct thermal desorption 

and conventional thermal preparatory work. Using programmable temperature controllers 

(Eurotherm), the heating ramp rate, dwell period and cooling rates could be specified 

allowing adequate control over the heating conditions employed. The typical set-up of the 

bespoke bench furnace used in this work is shown in Figure 2-4, which was used to 

synthesise materials under a flow of Ar(g), to heat samples for isolation of intermediate 
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species, and also to replicate STA (Simultaneous Thermal Analysis) conditions prior to 

STA experiments (see section 2.3.5). For gas flow conditions, the tube was sealed using a 

rubber septum (Suba-seal®) with an inlet flow and outlet vent created using syringes and 

tubing. The outlet gas flow was passed through a reversed empty Dreschel bottle then a 

suitable bubbler fluid, i.e., water or paraffin oil, in a second Dreschel bottle (the empty 

Dreshel bottle prevents suck-back of the bubbler fluid in to the sample). After all furnace 

procedures, the sample vessels were removed once cooled to room temperature and the 

samples retrieved on the open bench or in a glovebox if the products were air sensitive. 

 

Figure 2-4 Bespoke bench-top furnace. 

2.3. Characterisation Techniques 
Before entering into any discussion about analytical techniques and tools used by chemists 

it is important to briefly introduce some aspects of atomic quantum theory, from which 

their capabilities are derived.24 Physicists and chemists have developed a number of tools 

which rely on knowledge of the principles behind the nature of light. From elementary 

chemistry concepts, it is clear that light can be described as both a particle and as a wave, 

i.e., the wave-particle duality, described elegantly by Einstein’s solution to the 

photoelectric effect: 

Equation 2-1 𝐸 = ℎ𝜈  

E is the energy of the light particle (or photon), h is Planck’s constant (6.63 × 10−34𝐽 𝑠) 

and ν is the frequency of the light wave. The electromagnetic spectrum (Figure 2-5) 

describes the entire range of electromagnetic radiation, defined by the frequency (ν) and 

wavelength (λ) of the oscillating light waves (𝑐 = 3.00 × 108 m/s): 

Equation 2-2 𝑐 = 𝜈𝜆  
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Figure 2-5 Simplified representation of the electromagnetic spectrum. 

By understanding the duality of light concept, electromagnetic radiation can be used to 

conduct experiments that enable determination of the nature of matter. Using defined 

regions of the electromagnetic spectrum, scientists and engineers have designed 

instruments as analytical tools that can probe materials down to the sub-atomic level. A 

range of instruments and analytical techniques that exploit a wide range of the 

electromagnetic spectrum have been used herein in order to gather as much information as 

possible about the properties of the materials synthesised. These will now be described 

with some relevant theoretical discussion. 

2.3.1. Crystallography and Diffraction 

Crystallography is “the study of crystal form and structure”.25 Crystalline solids are 

comprised of planes of atoms arranged in a specific order and may be represented by the 

simplest repeating unit of the crystal structure, i.e., the 3D unit cell. Figure 2-6 shows a 

simple unit cell, which can be described by three vectors; a, b, and c, and the angles 

between their axes; α, β and γ. 

 

Figure 2-6 Basic cubic unit cell showing cell lengths and angles. 
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The unit cell of a crystal is defined by the minimum symmetry requirements of a particular 

crystalline structure. There are seven different crystal systems based on fundamental 

symmetry operations (Table 2-1), where more detailed information about the symmetry 

functions can be described using one of 32 point groups.26 Moreover, a number of selection 

rules are used to describe the crystalline nature of solids and these will be highlighted in 

this section. First, basic diffraction theory with respect to crystallography will be 

introduced since this is fundamental to practical research in the field of solid state 

chemistry. 

Diffraction occurs when a wave, i.e., electromagnetic radiation, encounters matter (Figure 

2-7). The waves may be aligned in phase or out of phase, which results in constructive or 

destructive interference, respectively. The vital information that may be used in 

crystallography studies is found from constructive interference. Diffraction can be 

mathematically explained using the Bragg law (Equation 2-3):  

Equation 2-3 𝑛𝜆 = 2𝑑 sin𝜃  

Where λ is the wavelength of the incident radiation, d is the spacing between crystal lattice 

planes, and θ is the Bragg angle at which the diffracted pattern for a particular plane is 

observed if the Bragg law is obeyed.27 Usually, only first order diffraction is considered, 

and so the Bragg equation may be simplified further using n = 1, where n represents the 

order of the reflection, although n may be any positive integer. 

 

Figure 2-7 Representation of diffraction in a crystal where black solid lines indicate lattice planes, 

ko and kh are the incident and reflected wave vectors, d is the lattice spacing and θ is the angle between 

the lattice plane and ko, where the incident and reflected angles are equivalent. 

Crystal structure information is determined by collecting data over a range of θ, where the 

resultant diffraction of an incident beam of radiation, e.g., X-rays or neutrons, is 
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represented in a diffraction pattern. The pattern shows diffraction maxima (peaks), which 

correspond to diffraction taking place at a particular Bragg angle, θ. The form, i.e., shape, 

size and intensity, of each peak is important and will be discussed in more detail later. The 

crystal system of a crystalline solid is derived from the d-spacing information collected in 

the diffraction experiment and Miller indices, h, k and l, are used to describe the parallel 

planes of atoms that intersect the axes of the unit cell (a, b and c respectively). This yields 

the overall size of the unit cell. Further information may be provided about the unit cell by 

using Bravais lattice notation, which describes the 14 possible crystal configurations. This 

notation combines the seven crystal systems described in Table 2-1 and the possible types 

(or centerings) of the 3D lattice; primitive (P), body centred (I), face centred (F), base 

centred (centred on the (001) face) (C), or primitive rhombohedral (R). 

Combining the above definitions, assignment of one of 230 space groups to a particular 

crystal can be made and these will be used throughout this work to indicate the 

crystallographic nature of the materials formed. Detailed information about the space 

groups may be found in the International Tables for X-Ray Crystallography.28 
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Table 2-1 Summary of crystallography notation and symmetry information for the seven crystal 

systems. 29 

Crystal 
System 

Unit Cell 
Parameters 

Minm Symmetry 
Requirements 

Bravais 
Lattices 

Point Groups 

Triclinic α≠ β ≠ γ ≠ 90° 
a ≠ b ≠ c 

None P 1, 1� 
(C1, Ci) 

Monoclinic α = γ = 90° 
β ≠ 90° 

a ≠ b ≠ c 

One twofold axis or 
one symmetry plane 

P, C 2, m, 2/m 
(C2, CS, C2h) 

Orthorhombic α = β = γ = 90° 
a ≠ b ≠ c 

Any combination of 
three mutually 
perpendicular 

twofold axes or 
planes of symmetry 

P, C, I, 
F 

222, mm2, mmm 
(D2, C2v, D2h) 

Trigonal/ 
Rhombohedral 

α = β = γ ≠ 90° 
a = b = c 

One threefold axis R 3, 3�, 32, 3m, 3�m 
(C3, C3i, D3, C3v, 

D3d) 
Tetragonal α = β = γ = 90° 

a = b ≠ c 
One fourfold axis or 
one improper axis 

P, I 4, 4�, 4/m,422, 
4mm, 4�2m, 4/mmm 

(C4, S4, C4h, D4, 
C4v, D2d, D4h) 

Hexagonal α = β = 90° 
γ = 120° 
a = b ≠ c 

One sixfold axis or 
one sixfold improper 

axis 

P 6, 6�, 6/m, 622, 
6mm, 6�m2, 6/mmm 
(C6, C3h, C6h, D6, 

C6v, D3h, D6h) 
Cubic α = β = γ = 90° 

a = b = c 
Four threefold axes at 

109° 28’ to each 
other 

P, I, F 23, m3, 432, 4�3m, 
m3m 

(T, Th, O,Td, Oh) 
 

2.3.1.1. Powder X-Ray Diffraction 

X-rays lie at a lower wavelength than visible light in the electromagnetic spectrum, and 

their use in diffraction experiments originated from the work of Friedrich, Knipping and 

Laue in the early 20th century for single crystals.30 W. H. Bragg and his son, L. Bragg, 

demonstrated the power of X-rays for chemical analysis by diffraction of X-rays by 

crystals.31, 32, 33 This pioneering work promoted X-ray diffraction as an excellent analytical 

tool for crystal structure analysis.34, 35 X-ray diffractometers are now commonplace in 

modern materials chemistry research facilities, and are considered one of the most 

powerful tools for analysis of crystalline materials across a range of research fields. 

Powder X-ray diffraction (PXD) is used to establish structural information about bulk 

powdered materials by indicating the electron density and hence atomic configuration 
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within a crystalline substance containing many crystallites (as opposed to single crystal X-

ray diffraction, which is beyond the scope of this study).36, 37 X-rays produced by 

synchrotron light sources present an attractive alternative to lab X-rays, where the 

brightness and vertical collimation of the X-rays produced are significantly improved 

relative to the lab based sources, and this will be discussed.38 

Three different lab-based diffractometers were employed to obtain diffraction data 

contributing to this work; a Bruker D8 Advance diffractometer, a Panalytical X’Pert Pro 

and a Siemens D500 diffractometer for hot stage experiments. Samples were analysed 

using Cu Kα1 radiation over the 5° ≤ 2θ ≤ 85° (1 h, phase analysis) and 10° ≤ 2θ ≤ 110° 

(10 h, structure refinement) ranges. The step size and scan speed used for phase analysis 

was 0.0167° at 1.57°/min, and for higher quality diffraction data for structure refinement 

the step size and scan speed were reduced to 0.008° and 0.165°/min respectively. 

In addition, synchrotron X-ray diffraction (SXD) was conducted on some of the powdered 

samples. The NSRRC synchrotron facility in Taiwan was used for SXD experiments on the 

BL01C2 SWLS (Superconducting Wave Length Shifter) X-ray powder diffraction 

beamline.39 

A diffractometer can be considered to comprise three separate sections; the radiation 

source, the sample stage and the detector. 

The Radiation Source 

The source of radiation used for diffraction experiments can greatly influence the quality 

of the data obtained and therefore the accuracy by which a structure may be known. In a 

conventional lab diffractometer, the fixed source produces X-rays by striking a metal (Cu 

for Bruker, Panalytical and D5000 instruments) with electrons such that high energy 

electrons in the metal fall to a lower energy orbital with the consequential release of a 

specific amount of energy (known as a photon). Lab X-ray diffractometers use a 

monochromator (i.e., germanium crystal) designed specifically to select photons in the X-

ray region of the electromagnetic spectrum, where the most intense Kα1 radiation (λ = 1.54 

nm) for Cu was used in this work. 

Synchrotron X-rays are produced in a remarkably distinct manner to lab X-rays, which 

results in their superior brilliance and diffraction capabilities. In a synchrotron particle 

accelerator, electrons are produced by applying an electrical and thermal current to an 

“electron gun”. The electrons are then accelerated using a linear accelerator (linac) and a 

booster ring before entering the electron storage ring (Figure 2-8). Using a series of 
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magnets and insertion devices, i.e., wigglers and undulators, it is possible to control the 

movement of the electrons around the electron storage ring, such that they follow a circular 

path. Synchrotron radiation is produced continuously in the electron storage ring using 

magnets that tangentially deflect the synchrotron radiation from the electron flux. The 

synchrotron radiation can then be directed on to a sample along a beamline. Beamlines 

comprise monochromators and mirrors to ensure the correct wavelength of radiation in the 

X-ray region of the electromagnetic spectrum is acquired for the desired analysis, i.e., λ = 

0.774908 nm for BL01C2.39  

 

Figure 2-8 Configuration of the synchrotron source at NSRRC. 39 

More detailed information about radiation sources for materials science research may be 

found in Reference 40. 

The Sample Stage and Geometry  

The sample stages employed in this work, e.g., capillary, bracket and hot stage were 

dependent on the nature and quantity of the sample. For air sensitive samples and limited 

sample quantities, glass capillaries (0.5 mm or 0.7 mm internal diameter) containing the 

powdered sample were used on both the D8 and X’Pert instruments. If necessary, samples 

were ground in an agate mortar and pestle prior to analysis in order to ensure a 

homogeneous powdered sample was used. The capillaries were aligned on the aluminium 

capillary holder by eye assisted by a microscope. The capillary mount was then fixed to the 

instrument goniometer, which was continuously rotated 360° throughout the analysis. A 

series of apertures (slits) and monochromators are used in series to influence the X-ray 

beam before and after interaction with the sample, and help to minimise beam divergence 

and background scattering. A pre-/post-sample slit size of 2.0 mm was used for capillary 

sample measurements in Debye-Scherrer transmission geometry (Figure 2-9). In this 
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configuration, the detector scans around a fixed sample, where the cross-section of the 

incident X-ray beam is sufficient to irradiate the whole sample. 

 

 

Figure 2-9 a) Configuration of capillary PXD analysis in Debye-Scherrer transmission geometry, 

and b) magnification of capillary orientation for both D8 and X’Pert diffractometer instruments. 

Capillaries were also used for the SXD experiments. The samples were loaded and sealed 

in capillaries inside an inert gas filled glovebox, and then fitted to a bespoke sample stage 

for analysis. A Huber single-axis 410 goniometer was used for SXD capillary 

measurements, where a low temperature furnace was attached for non-ambient 

measurements (Figure 2-10). 

 

Figure 2-10 Low temperature furnace configuration on BL01C2. 

a) 

b) 
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For non-air sensitive samples, a 10 mm pre-sample slit was fitted in the X’Pert Pro 

instrument and the Bragg-Brantano reflection geometry employed. This configuration 

involves tilting the sample about an axis by an angle, θ, and the reflected radiation is 

collected by a detector which is rotated by 2θ. Samples were prepared on a quartz sample 

holder (bracket) that has a recess on the surface such that the maximum quantity of sample 

is used for analysis. Time-resolved PXD experiments were also conducted in this 

configuration, where a series of measurements (1 h) were conducted over a user-defined 

experiment duration (1-15 h). This was used to indicate changes in the diffraction 

characteristics of a sample with respect to the time exposed to air. Using the D5000 

instrument, samples were prepared on an alumina sample holder which was then fitted 

inside the heating jacket fixed to the instrument. The D5000 was also operated in Bragg-

Brentano geometry (Figure 2-11), where an Ar(g) flow was passed over the sample to avoid 

oxidation during heating (at a rate of 5 °C/min). 

 

Figure 2-11 Bragg-Brentano reflection geometry used in X’Pert and D5000 measurements. 

Detector 

After the X-rays have interacted with the electrons of the atoms in the sample, the 

diffracted signals are collected by a detector. In PXD and SXD, diffraction signals are 

collected as a function of 2θ, as shown in the previous section. A NaI(Tl) scintillation 

detector was employed on BL01C2 to collect the diffracted radiation. The diffraction 

pattern of polycrystalline powder samples results from the cone diffraction of the 

crystallites through a user defined 2θ range, e.g., 5° ≤ 2θ ≤ 85°. The cone diffraction may 

be reported as diffraction rings, where each ring represents a complete data set for 

diffracted radiation collected at a specific 2θ position. The resultant diffraction pattern in 
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graphical form shows what may be considered as a slice through the diffraction rings, with 

intensity on the y-axis and 2θ along the x-axis.  

The peaks shown on the 1D patterns obtained by diffraction experiments may be compared 

with databases of known diffraction patterns or those calculated from known crystal 

structures. This helps to establish a correlation between diffraction data collected 

experimentally for a specific sample with known diffraction data for specific crystalline 

materials. This allows primary crystal structure identification and then allows the user to 

develop the structure analysis to obtain more detailed crystallographic information. Two 

different crystallographic databases were used in this study; the HiScore database collated 

by Panalytical and the ICSD (Inorganic Crystal Structure Database) now hosted by the 

Royal Society of Chemistry.41, 42 

2.3.1.2. Impact of preparation method on diffraction characteristics 

Typical diffraction patterns for mechanochemically produced and milled materials show 

broadening of the reflections, where small reflections may be obscured by a high 

background and those at high values of 2θ may be indistinguishable from the background. 

This introduces more complicated aspects to data interpretation for samples produced by 

this method. This cannot be avoided and is primarily the result of significant particle size 

reduction, although some contribution from amorphous components in the sample is also 

likely. For samples prepared in capillaries other factors can affect the quality of diffraction 

data, including diffraction from the glass capillary, misalignment of the capillary, and 

contribution from the wax capillary mount if the sample is incorrectly mounted.  

2.3.2. The Scherrer Method 

Beyond the crystallographic information derived from diffraction experiments, it is also 

possible to investigate and estimate the average size of the crystallites in a powder sample. 

To do this, both information obtained from the peak profiles and knowledge of the particle 

morpohology from, e.g., SEM (Scanning Electron Microscope) or TEM, are required. In 

this work, the crystallite size, D, could be determined from PXD patterns across well-

defined reflections over a typical 2θ range of 30-50º (Equation 2-4).43 A Scherrer constant 

(also known as the shape factor), K, was selected based on the morphology determined 

from SEM analysis conducted in this work.44 To account for instrumental broadening a 

LaB6 powder standard was used to correct the FWHM (Full Width Half Maximum; 

Equation 2-5), where B is the experimentally observed FWHM and b is the FWHM of the 

standard. All 2θ and FWHM values were converted from degrees to radians. 
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Equation 2-4 
θβ

λ
cos
KD =   

Equation 2-5 where, β  = B-b   

From this analysis, it was possible to estimate the average crystallite size in a sample from 

powder diffraction data collected in this work. 

2.3.3. Structure Refinement & The Rietveld Method 

Beyond basic pattern matching and peak assignment, structure refinement methods allow 

detailed structure information to be derived from diffraction data. Structure refinement 

uses a crystal structure model to which observed diffraction data may be fitted. Preliminary 

cell parameter indexing was conducted in the first instance, and was obtained using 

CELREF (CELREF: Graphical Unit Cell Refinement).45, 46 CELREF is simple profile 

fitting software, which allows the user to match and compare an experimentally 

determined pattern with known crystallographic information. This enables identification of 

the crystal system and space group for the crystalline phase, and calculates the unit cell 

parameters. This gives a good primary indication of the fit of observed data to the selected 

structure model. 

The Rietveld method is a full profile structure refinement method, where the GSAS-

EXPGUI (General Structural Analysis System – EXP Graphical User Interface) software 

was employed in this work.47, 48, 49 The principle of the Rietveld method is to obtain crystal 

structure information, rather than simple profile fitting.50 This method requires selection of 

an adequate initial structure model, where model data files were acquired from the ICSD.42 

The operator may then begin refining parameters based on a number of different profile 

characteristics that are relevant to the nature of the crystalline material under investigation. 

The parameters used and the systematic method employed allows elucidation of the key 

structural information. The method involves best least-squares fitting of all observed 

diffraction data points (or steps, i) of specific intensity simultaneously, where the function 

Sy is minimised as follows: 

Equation 2-6 𝑆𝑦 = �𝑤𝑖
𝑖

(𝑦𝑖 − 𝑦𝑐𝑖)2  

Where yi and yci are the observed and calculated intensities at the ith step respectively, and 

wi is equal to 1/yi. The structure factor for the Kth Bragg reflection, F, is related to the 

contributions from the scattering amplitudes, 𝑓, and phases, 𝛿, of each atom, j. 
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Equation 2-7 𝐹𝐾 = �𝑓𝑗

𝑁

𝑗=1

𝑒𝑥𝑝[𝑖𝛿]  

Thus, the structure factor for the Kth Bragg reflection, FK, may be given as: 

Equation 2-8 𝐹𝐾 = �𝑁𝑗𝑓𝑗𝑒𝑥𝑝�2𝜋�ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗��
𝑗

𝑒𝑥𝑝�−𝑀𝑗�  

and  

Equation 2-9 𝑀𝑗 = 8𝜋2𝑢𝑠2���𝑠𝑖𝑛2 𝜃 𝜆2⁄   

Where, h, k and l are the Miller indices, the position parameters for the jth atom are given 

by xj, yj, zj and Nj is derived by dividing the site occupancy by the site multiplicity. The 𝑢𝑠2��� 

term is related to the thermal displacement of the atom. |𝐹𝐾|2 is used to calculate yci which 

is derived from a summation of calculated contributions from relevant neighbouring Bragg 

reflections and background (ybi) contributions, i.e., 

Equation 2-10 𝑦𝑐𝑖 = 𝑠�𝐿𝐾|𝐹𝐾|2∅(2𝜃𝑖 − 2𝜃𝐾)𝑃𝐾𝐴 + 𝑦𝑏𝑖
𝐾

  

Where s is the scale factor, K represents a specific Bragg reflection using hkl Miller 

indices, LK combines Lorentz, polarization and multiplicity factors, ∅ is the reflection 

profile function, 𝑃𝐾 is the preferred orientation function, and A is the absorption factor. 

The iterative process by which Rietveld refinements are processed may be solved by an 

inverted normal matrix (Equation 2-11) involving adjustable parameters xj, xk: 

Equation 2-11 𝑀𝑗𝑘 = −�2
𝑖

𝑤𝑖 �(𝑦𝑖 − 𝑦𝑐𝑖)
𝜕2𝑦𝑐𝑖
𝜕𝑥𝑗𝜕𝑥𝑘

− �
𝜕𝑦𝑐𝑖
𝜕𝑥𝑗

� �
𝜕𝑦𝑐𝑖
𝜕𝑥𝑘

��  

The solution of this matrix is based on the normal equations generated by the least squares 

refinement. Each step (or shift, Δxk; Equation 2-12) in the iterative solution procedure is 

conducted using the user defined parameters that may be refined to improve the model. 

This process is repeated until the global minimum is reached. 

Equation 2-12 ∆𝑥𝑘 = �𝑀𝑗𝑘−1
𝜕𝑆𝑦
𝜕𝑥𝑘

  

Choosing an adequate starting model is therefore very important, since divergence from 

the global minimum or a false minimum will arise owing to the non-linear relationship 
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between the refinement parameters and the intensities used in the iterative process 

described.  

Thus far, the mathematical principles and general concepts of the Rietveld method have 

been introduced. The refinable parameters and diffraction characteristics that allow such a 

method to be employed will now be discussed. Parameters to be simultaneously refined for 

any diffraction result may be placed into two categories; global parameters and phase 

parameters (Table 2-2).  

Table 2-2 Primary Rietveld refinement parameters. 

Global Parameters Phase Parameters 
2θ-Zero 

Instrument profile 
Profile Asymmetry 

Background 
Wavelength 

Specimen displacement/transparency 
Absorption 

xj   yj   zj   Bj   Nj 
Scale factor 

Specimen profile breadth 
Lattice parameters 

Preferred crystallite orientation 
Extinction 

Note: j represents the jth atom in the unit cell, where xj, yj and zj, are the position 

coordinates. Bj is an isotropic thermal parameter and Nj is the site-occupancy multiplier.  

The peak shape describes important characteristics of crystal structures and the pseudo-

Voigt (pV) profile function was determined to be the most appropriate peak shape 

refinement function for the data collected in this work. The pV function considers both 

Laurentzian (L) and Gaussian (G) contributions and may be expressed as: 

Equation 2-13 𝑝𝑉 = 𝜂𝐿 + (1 − 𝜂)𝐺  

The mixing factor, η, is given as a linear function of 2θ (Equation 2-14), where the NA and 

NB parameters may be refined. 

Equation 2-14 𝜂 = 𝑁𝐴 + 𝑁𝐵 ∗ (2𝜃)  

The FWHM (full-width-at-half-maximum) is used to measure breadth (H) of reflections, 

and dependence on H has been shown to vary with scattering angle, 2θ.51 Both Gaussian 

and Lorentzian functions use H to establish the peak shape contribution from each in the 

pV function: 
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Equation 2-15 𝐺 =
(4 ln 2)1 2⁄

𝐻𝑘√𝜋
𝑒𝑥𝑝 �

−4 ln 2 (2𝜃𝑖 − 2𝜃𝑘)2

𝐻𝑘2
�  

Equation 2-16 𝐿 =
2
𝜋𝐻𝑘

�1 + 4
(2𝜃𝑖 − 2𝜃𝑘)2

𝐻𝑘2
��   

H is derived using the following expression, where the U, W and V parameters may be 

refined: 

Equation 2-17 𝐻2 = 𝑈 tan2𝜃 + 𝑉 tan𝜃 + 𝑊  

An alternative expression may be given, which minimises the opportunity for negative H2 

values to arise by incorporation of an additional parameter, θo, derived from a point near 

the middle of the data set:  

Equation 2-18 𝐻2 = 𝑈′(tan𝜃 − tan𝜃𝑜) + 𝑉 ′(tan𝜃 − tan 𝜃𝑜) + 𝑊′  

R-values are the most commonly quoted refinement output values used to indicate the 

quality of fit for a Rietveld refinement and include: R-structure (RF), R-Bragg (RB), R-

expected (Re), R-profile (Rp) and R-weighted pattern (Rwp) factors. These help to indicate 

whether the starting model is adequate and that the end result is not in fact a false 

minimum.  

Equation 2-19 𝑅𝐹 =
∑ ��𝐼𝐾(′𝑜𝑏𝑠′)�1 2⁄ − �𝐼𝐾(𝑐𝑎𝑙𝑐)1 2⁄ ��

∑�𝐼𝐾(′𝑜𝑏𝑠′)�1 2⁄   

Equation 2-20 𝑅𝐵 =
∑|𝐼𝐾(′𝑜𝑏𝑠′)− 𝑦𝑖(𝑐𝑎𝑙𝑐)|

∑𝐼𝐾(′𝑜𝑏𝑠′)
  

Equation 2-21 𝑅𝑒 = �(𝑛 − 𝑝) �𝑤𝑖𝑦𝑖2
𝑛

𝑖=1

� �
2

  

Equation 2-22 𝑅𝑃 =
∑|𝑦𝑖(𝑜𝑏𝑠)− 𝑦𝑖(𝑐𝑎𝑙𝑐)|

∑𝑦𝑖(𝑜𝑏𝑠)   

Equation 2-23 𝑅𝑤𝑝 = ��
∑𝑤𝑖�𝑦𝑖(𝑜𝑏𝑠)− 𝑦𝑖(𝑐𝑎𝑙𝑐)�2

∑𝑤𝑖 �𝑦𝑖(𝑜𝑏𝑠)�2
��  

Rwp is considered the most mathematically important index to indicate the quality of the 

refinement since the numerator of Equation 2-23 is the expression being minimised. The 
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‘goodness-of-fit” is usually represented by the χ factor (normally given as χ2), which 

incorporates the weighted pattern (Rwp) and expected (Re) R-indices in the ratio:  

Equation 2-24 𝜒2 = �𝑅𝑤𝑝 𝑅𝑒⁄ �2  

Stating χ2 for a refinement gives an indication of whether the minimum reached is genuine: 

values significantly greater than 1.0 suggest the starting model is unsuitable and values less 

than 1.0 usually imply that the quality of the data may not be sufficient to be described by 

the parameters being used in the refinement. The χ2 factor is, however, only a suggestion of 

the quality of the refinement and in fact the operator must make sensible judgements about 

the output from refinements to ensure the structure parameters are reasonable for the 

material being studied based on complementary analytical data. 

2.3.4. Spectroscopy 

Measurement of energy transitions in molecules allows important information to be 

collected about the bonding modes present in a chemical species. The total energy (Etotal) 

associated with any molecule can be described in terms of the motion of its electrons (Eel), 

vibrations of the atoms (Evib) and the rotations occurring within the molecule (Erot), which 

may be represented as:52 

Equation 2-25 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑒𝑙 + 𝐸𝑣𝑖𝑏 + 𝐸𝑟𝑜𝑡  

When a molecule is subject to irradiation from a particular region of the electromagnetic 

spectrum, energy may be transferred to the molecule. The quantity of energy absorbed 

(ΔE) is defined as the difference in energy between two quantized states, and can be 

described in terms of the frequency (ν) of the incident light and Planck’s constant (h), 

Equation 2-26. An energy transition will only occur if Equation 2-27, i.e., Bohr’s 

frequency condition, is fulfilled. The wavenumber (ṽ) is more commonly used in this 

expression (Equation 2-28), and is derived from the wavelength (λ) of the incident light 

and the velocity of light (c) via the following equations. 

Equation 2-26 𝛥𝐸 =  ℎ𝜈  

Equation 2-27 𝛥𝐸 =  ℎ𝑐ṽ  

Equation 2-28 ṽ = 1/𝜆 = 𝜈/𝑐  
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A simple description may be given for energy transitions in molecules (Figure 2-12). When 

absorption of a specific quantity of energy (+ΔE) occurs then the molecule is promoted to 

an excited state. An absorption spectrum is obtained by measuring the remaining 

frequencies of light after interaction with the molecule. Thus, the frequencies of light 

which are missing, i.e., those having been absorbed, are those frequencies which are equal 

to the energetic transitions in the molecule. When the molecule returns to the ground state 

with the loss of a photon (-ΔE) the emission spectrum specific to that energetic transition 

may be determined. 

 

Figure 2-12 Simplified representation of an energy transition in a molecule. 

The incident energy need not correspond to ΔE and when this occurs the photons may be 

scattered as a result of interaction with a molecule. The scattered light is collected at 

specific angles relative to the incident light and a spectrum is obtained, providing 

information about the different types of energetic transitions in the molecule. 

The absorption, emission and scattering of electromagnetic radiation enable a 

spectroscopic fingerprint for molecules to be built. This fingerprint provides the 

information required to determine the bonding and symmetry within structures, which 

chemists describe using Group Theory.53 Character tables are used in Group Theory to 

condense the vast amount of information about the symmetry operations of molecules. The 

information is categorised into classes that can be used to assign molecular vibrations. 

Each character in the tables is derived from matrices which take into account the symmetry 

operations which can be applied to a particular molecule. 

Infrared and Raman spectroscopy are the two vibrational spectroscopy techniques used in 

this work and the theory and instrument information for these techniques will be outlined 

in the following sections. 
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2.3.4.1. Infrared Spectroscopy 

Infrared (IR) spectroscopy involves subjecting a sample to a range of frequencies in the 

infrared region of the electromagnetic spectrum. The sample then absorbs specific 

frequencies of the IR radiation, i.e., those which correspond to molecular vibrations of 

bonds or groups. The absorption of specific energy causes vibrational transitions from the 

ground state to vibrational excited states. A detector collects the radiation frequencies 

which have passed through the sample and an absorption spectrum is obtained. This 

spectrum allows identification of the various IR frequencies absorbed from a particular 

sample, and thus the fingerprint of the molecular vibrations in the molecule may be 

determined. Molecular vibrations may be termed IR active if a dipole in a bond or group 

arises from the absorption of energy.53 The typical configuration of a Fourier Transform 

Infrared (FTIR) spectroscopy instrument is given in Figure 2-13, which shows the 

Michelson interferometer configuration of the instrument used in this work (Shimazdu 

FTIR8400s).54 

 

Figure 2-13 Optical schematic of a Michelson interferometer Fourier Transformer InfraRed 

spectrometer (reproduced from Reference 54). 

Each measurement comprised 30 scans to obtain the best possible data, where a 

background was run before each new sample. Apodization is used in FTIR to improve the 

resolution and ripple size of a particular data set.55 The Happ-Genzel apodization function 

(Equation 2-29) was applied in this work: 

Equation 2-29 
𝐴(𝛿) = 0.54 + 0.46 cosπ

𝛿
∆

 

(where, 𝛿 = 𝑛𝜆) 
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The apodized ac signal is represented by A(δ), δ is the optical retardation (or path 

difference) of the incident electromagnetic waves of wavelength (λ) multiplied by n (an 

integer) and Δ represents the integration range. Other apodization functions may be used 

depending on the analysis required, but the Happ-Genzel normally provides sufficient 

resolution. IR Solution software was used to monitor data accumulation and export the data 

for further analysis. Using data from literature and knowledge of the main absorption 

frequencies for particular molecular vibrations, it was possible to assign the peaks 

observed in this work. 

2.3.4.2. Raman Spectroscopy 

Raman spectroscopy involves the use of a laser beam of one specific wavelength, i.e., 

monochromatic radiation, to cause electronic polarization within molecules. The 

interaction of the radiation with matter in this way results in the scattering of light of 

various wavelengths, from which a Raman spectrum may be derived.36, 56 Figure 2-14 

shows that radiation produced from a laser is focussed through a lens on to the sample. The 

scattered light is then focussed and deflected by a curved mirror and then directed towards 

the detector to produce a spectrum of the scattered light. 

 

Figure 2-14 Typical Raman spectroscopy instrument optical configuration. (Reproduced from 

reference 36).  

In Raman spectroscopy, three types of light scattering may be described (Figure 2-15): 

• Stokes radiation is a result of the incident photons from the laser losing energy to 

the sample,  

• Anti-Stokes radiation is a consequence of energy absorption by the incident 

photons from the sample, and 

• Raleigh scattering results when the energy of the incident photon is conserved, and 

is also described as elastic scattering.  
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Figure 2-15 Schematic of energy changes associated with Raman scattering. 

If an electric field, E, fluctuates at a frequency, ν, the incident light wave may be described 

as: 

Equation 2-30 𝐸 = 𝐸𝑜𝑐𝑜𝑠 2𝜋𝜈𝑡  

Where the amplitude is given as Eo and t is time. The dipole moment (P) of a diatomic 

molecule irradiated by this light wave can therefore be described by the expression given 

in Equation 2-31, where α is the polarizability (a proportionality constant). 

Equation 2-31 𝑃 =  𝛼𝐸 =  𝛼𝐸𝑜 𝑐𝑜𝑠 2𝜋𝜈𝑡  

The nuclear displacement, q, of a molecule vibrating at frequency, νi, and vibrational 

amplitude, qo, can be described as: 

Equation 2-32 𝑞 = 𝑞𝑜 𝑐𝑜𝑠 2𝜋𝜈𝐼𝑡  

Therefore, the polarizability of a bond in a molecule is crucial in the application of Raman 

spectroscopy, where a molecular vibration is only Raman active if the polarizability is 

modified as a result of interaction with the incident light. With respect to symmetry 

operations, those molecular vibrations belonging to xy, z2, x2-y2, etc., will be Raman active, 

and Group Theory may again allow assignment of bonding modes by interpretation of data 

from Raman spectra.53 Raman spectra show intense peaks at specific wavenumbers that 

correspond to the wavelength of light that has been scattered by the molecule. These are 

represented as shifts from the incident radiation giving the characteristic spectrum of a 

specific molecule. An Horiba Jobin Yvon LabRam instrument fitted with a confocal 

Stokes Anti-Stokes Raleigh 

Raman Active Raman Inactive 

Virtual Energy States 

Excited State 

Ground State 

Vibrational 

Energy States 
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microscope, 600/1200 grooves mm-1 grating, 100 µm aperture and a Synapse CCD 

(Charge-Coupled Device) detector was used for all analysis conducted in this work. Either 

a green (532 nm) or UV (Ultra Violet; 325 nm) laser was used. 

2.3.4.3. Scanning Electron Microscopy-Energy Dispersive X-ray 

Spectroscopy (SEM-EDX) 

Using advanced microscopy techniques, investigation of solid surfaces can provide 

significant insight in to the nature of the growth and structure of materials. Scanning 

electron microscopy (SEM) is a useful tool to evaluate the surface morphology of 

materials. Coupled to EDX (Energy Dispersive X-ray spectroscopy), the SEM-EDX 

technique can provide further information about the elemental composition of the sample 

relative to physical features observed. In SEM, primary electrons of a specific de Broglie 

wavelength are focussed directly on to a portion of the sample, where the wavelength used 

is controlled by modification of the voltage (V) applied. A range of different particles and 

waves are then scattered from the sample and collected by a detector (Figure 2-16).57 The 

primary beam and detector scan the sample, where an image of the solid surface is built 

from the backscattered and secondary electron signals. Secondary electrons are relatively 

weak and arise from the interaction of the incident beam with the electrons of the atoms in 

the sample. These weaker electrons are primarily used to form the image since they are 

close to the sample surface. By comparison, the backscattered electrons result from the 

interaction of the incident electrons with the nuclei of the atoms in the sample. These 

backscattered electrons are much higher in energy than the secondary electrons and can 

provide more information about the sample, particularly differentiation between regions of 

different density. The quality of the image is relative to the wavelength of the primary 

electrons used and the focussing capability of the instrument. The X-ray/Auger electron 

emission from the sample provides information about the chemical composition at a 

specific site. This is based on knowledge of the X-ray emission spectra of specific 

elements. When an inner shell electron is ejected by the primary electron beam, the sample 

is said to exist in an excited state. Relaxation of the sample from this excited state to the 

ground state occurs when an outer shell electron falls down to the lower energy shell, 

which results in X-ray/Auger emission. 
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Figure 2-16 Signal scattering from a sample in SEM, where the energies of the scattered species are 

given relative to the primary beam. (Reproduced from reference 57.) 

To obtain the SEM images reported herein, the material to be analysed was placed on a 

carbon tab that was fixed to a metal stub. A gold sputter coater was used to coat the 

samples prepared in this study, where the stubs holding the samples were sputter coated 

with a fine layer of a palladium-gold mixture in order to reduce the charging effects 

observed. The stub was then placed on the SEM sample stage inside the instrument 

chamber of either the Philips XL30 ESEM (Environmental Scanning Electron Microscope) 

or the Carl Zeiss Sigma Analytical SEM. The Philips XL30 ESEM was used to produce the 

majority of images in this work using a tungsten source (acceleration voltage = 25 kV) and 

a secondary electron detector. An Oxford Instruments X-act spectrometer comprising a 

silicon drift detector (SDD) was coupled to this microscope device for EDX analysis. By 

measuring the energy and quantity of the X-rays emitted from the sample, this technique 

allowed quantitative elemental analysis at specific points and over a user-defined region 

where elemental maps were generated to indicate element distribution throughout samples. 

The INCA® EDX analysis software was used to calibrate the instrument (Cu was used for 

all calibration measurements), designate analysis loci and define measurement conditions. 

For higher resolution images and backscattering analysis, the Carl Zeiss Sigma Analytical 

SEM was employed which uses a Schottky thermal field emitter source (acceleration 

voltage = 10 kV) and either the secondary or backscattered electron detectors. All SEM 

images were collected under a vacuum at a working distance of 8-10 mm. Owing to the 

procedure required for preparation of the samples, there was a small time window in which 

oxidation of air-sensitive materials may have occurred. Preparatory procedures were 

conducted as quickly as possible to keep air exposure to an absolute minimum. 
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2.3.5. Thermal Analysis 

Thermal analysis is a powerful technique which has been adapted and developed over 

many decades to provide important information about the thermal processes which occur 

as a sample is heated. This analytical tool is essential for materials science research and an 

historical overview of the approaches used has been summarised by Ozawa.58 Using 

Hess’s law of summation it is possible to ascertain the enthalpy changes involved in a 

particular reaction. Followed by application of the Gibbs equation, the thermodynamic 

feasibility of the transformation from reactants to products can be established. Equation 

2-33 shows the mathematical expression of Hess’s law to determine the enthalpy change in 

a reaction, where n and m are the coefficients given in the balanced chemical equation and 

ΔHf indicates that the enthalpy of formation for the components used in Equation 2-33. (By 

substituting H for S in this equation, it is also possible to establish the entropy change for a 

given reaction.) 

Equation 2-33 ∆𝐻° = �𝑛∆𝐻𝑓°(𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) −�𝑚∆𝐻𝑓°(𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠)  

If enthalpy and entropy changes for a reaction are known, as suggested earlier, the Gibbs 

equation, shown below, can be used to establish the thermodynamics for that reaction: 

Equation 2-34 ∆𝐺° = ∆𝐻° − 𝑇∆𝑆°  

If ΔG° is a large positive value then the reaction is denoted non-spontaneous under 

standard conditions approaching equilibrium. When ΔG° is a large negative value then the 

reaction will occur spontaneously under standard conditions and almost complete 

transformation to products is achieved at equilibrium. With ΔG° values close to zero, a 

mixture of products and reactants is obtained, i.e., an equilibrium mixture. The 

thermodynamic parameters of some of the systems studied in this work were also predicted 

using the FACTWeb software.59 

Preliminary experimental investigation of the thermal properties of samples was conducted 

using a bench furnace (see preparatory methods section) under a flow of Ar(g). This was 

required before using more sensitive analytical equipment in order to avoid the possibility 

of instrument damage. Particular vigilance in understanding the heating characteristics of 

the metathesis reaction systems was required as these are known to occur violently and 

spontaneously upon gentle mixing/heating.60 
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2.3.5.1. Simultaneous Thermal Analysis (STA) 

STA comprises two analyses; differential thermal analysis-thermogravimetry (DTA-TG). 

Mass spectrometry (MS) can be coupled to this set-up in order to conduct evolved gas 

analysis (EGA) simultaneously. STA involves heating a fixed mass of sample to establish 

the enthalpy quantitatively (DTA) whilst simultaneously monitoring mass changes (TG). 

The mass changes observed may be correlated to data collected by the coupled MS device, 

which detects chemical species evolved from the sample throughout the heating 

programme. This technique may determine whether a chemical reaction or a phase change 

takes place or if intermediate phases are present upon heating of samples, which is 

important for establishing decomposition and reaction mechanisms. A Netzsch STA 409 

coupled to a Hiden Analytical HPR20 mass spectrometer was employed in this work. 

Differential thermal analysis involves heating two crucibles under the same conditions, 

where one of the crucibles contains the sample to be analysed (the sample crucible) and the 

other is empty (the reference crucible) and these are represented in Figure 2-17.  

 

Figure 2-17 Diagram of Simultaneous Thermal Analysis crucible arrangement and principle 

behind the temperature difference being measured. (Modified from Netzsch STA 409 user 

information.61) 

The difference in temperature between the two crucibles is measured using sensitive 

thermocouples housed in an alumina capillary. The crucibles used in this work were also 

alumina, as these were suitable for the temperature ranges and materials being used. The 

alumina crucibles were re-used after cleaning; an initial Aqua Regia wash followed by 

calcination at 1200 °C for a minimum of 6 h ensured all residues from previous analyses 

had been removed. 
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Figure 2-18 Schematic of the STA instrument employed in this work, indicating the main 

components of the analyser. (Modified from Netzsch STA 409 user information.) 

The STA chamber configuration is given in Figure 2-18. All samples in this study were 

analysed under an anhydrous Ar(g) purge gas at a flow rate of 60 ml/min, however it should 

be noted that a real hydrogen fuel cell system operating environment will be H2(g). Many 

other hydrogen storage studies conduct thermal analyses under an anhydrous inert gas 

environment, e.g., Ar(g) or N2(g), since these are inexpensive and typically employed in 

instruments configured for general use. The use of H2(g) as the purge gas would introduce a 

significant cost to the analysis since high purity anhydrous H2(g) would be required and this 

is significantly more expensive than the anhydrous inert gases. Furthermore, for MS 

coupled instruments such as that used in this work, the MS signals resulting from H2(g) 

release from the sample will be distinct from the inert purge gas and small H2(g) releases 

will not be masked by the purge gas, which could occur if a H2(g) purge gas was employed. 

The mass of sample used was dependent upon the total quantity of synthesised sample 

available but was usually between 30-40 mg. The majority of materials were analysed at a 

heating rate of 5 °C/min to obtain a simple thermal profile prior to more developed thermal 

analysis, where necessary. Thermal analysis data quoted in this work were derived from 

plots of the STA data using the Netszch Proteus® software. Quantitative data were 

determined from the analysis of samples prepared in this work, primarily to determine the 

enthalpy of decomposition (Edec) for a particular thermal event. This required calibration of 

the STA instrument using recommended calibration standards which covered the total 
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temperature range over which the materials in this work were analysed; indium, bismuth, 

potassium perchlorate, zinc, potassium chromate and barium carbonate. Each standard (30 

mg) was heated to above its melting point three times (with appropriate cooling between 

melting point measurements), and the peak temperature and peak area determined from the 

DTA trace for each melting point measurement. The peak temperature (Tm) for a specific 

event, i.e., the absolute temperature at the maximum desorption rate for an 

endothermic/exothermic process was determined from the DTA plot using the peak 

evaluation function in the Proteus® software. Similarly, the onset temperatures (Tonset) and 

peak areas were determined using the onset and area functions in the software, 

respectively. The first derivative of the DTA trace was used to evaluate the rate of change 

for each event, and allowed accurate definition of the peak intervals, which was 

particularly important for evaluation of the peak areas. From this data, compilation of 

temperature and sensitivity calibration files was possible. A calcium oxalate standard was 

used to verify the calibration files, where the melting point, onset temperatures and mass 

losses associated with the three thermal events associated with its decomposition were 

verified with literature values. After verification, the calibration files were used in each 

measurement, and by measuring the peak area of a thermal event (given by the software in 

J/g) for a sample, the enthalpy associated with that event could be estimated quantitatively. 

Beyond basic onset, peak and enthalpy evaluations of the thermal events occurring in a 

sample, advanced analysis allowed determination of the activation enthalpy of specific 

events. Data were collected using a range of heating rates (β); 2, 5, 10 and 20 °C/min, in 

order to compile Kissinger and Ozawa plots. These allowed the activation energy (Ea) for 

hydrogen desorption processes in specific samples to be determined.62, 63 For Kissinger 

plots, the following mathematical expression was applied: 

Equation 2-35 ln(𝛽 𝑇𝑚2⁄ ) = −𝐸𝑎 𝑅𝑇⁄   

Where, 𝑅 = 8.314 𝐽 𝐾−1𝑚𝑜𝑙−1 and is commonly known as the gas constant. By plotting 

the left hand side of this equation on the y-axis against 1/Tm on the x-axis a straight line 

was obtained. The equation of the line (given by the line of best fit function in Excel, 

Equation 2-36) was used to derive a value for Ea from the gradient. In Equation 2-36, 𝑦� 

represents the modelled linear plot, m is the gradient and c is the intercept:  

Equation 2-36 𝑦� = 𝑚𝑥 + 𝑐  
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Equation 2-37 𝑚 = −𝐸𝑎 𝑅⁄   

For comparison and verification purposes, the Ozawa method was also employed, where 

plots of log(β) vs. 1/Tm were compiled and the equation of the straight line for the data 

determined using the line of best fit function in Excel.64, 65 The activation enthalpy, Ea, was 

determined from the gradient (m) and gas constant (R) using Equation 2-38. 

Equation 2-38 𝐸𝑎 =
𝑚𝑅

−0.4567
  

The TG plots revealed the change in mass observed over the duration of the heating 

program. The first derivative was employed to obtain the Tonset and comparisons were 

made with the MS data to verify the time-temperature relationship. 

MS allowed determination of the species evolved during an STA experiment. In the 

MASsoft Pro control software, either a Faraday cup or a secondary electron multiplier 

detector was selected for use in this work.66 These capture information for specific mass-

to-charge (m/z) ratios, or scan for a range of m/z (instrumental range: 0-200 amu), 

respectively. Inside the Faraday cup detector, the ion beam from the sample strikes the 

walls of the metal “cup” (Figure 2-19 a).67 The ions are neutralized by acquiring or 

donating electrons from the wall of the cup, which results in a current. The current is then 

amplified and detected to provide information regarding the abundance of specific ions.  

 

 

Figure 2-19 a) Faraday Cup detector and b) secondary electron multiplier (SEM) detector used in 

this work. (Reproduced from reference 67) 

a) 

b) 
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In the electron multiplier detector, a high voltage “conversion dynode” converts the 

incoming ion signal to secondary particles by application of a voltage to the accelerated ion 

beam (Figure 2-19 b). The secondary particles will be a mixture of electrons, 

positive/negative ions or neutral species. Another dynode then converts these secondary 

particles to electrons, which are amplified and a cascade of electrons are directed along the 

electron multiplier to form a current. This current is then detected and an appropriate m/z 

signal relative to the input ion beam can be produced. 

From the MASsoft Pro software, MS data could be viewed and extracted in an XY format 

(X= time, Y = Torr) for re-plotting in Microsoft Excel 2007. 

2.4. Errors & Statistical Analysis 
For data in which linear trends were determined the linear trendline function of Excel was 

applied. This gave a linear trendline that was modelled against the input data and plotted 

on the graph. This function provided the equation of the line of best fit in the form of 

Equation 2-36. 

The coefficient of determination for the linear model, R2, which describes how well the 

linear model fits the data, can also be displayed using the linear trendline function. Further 

statistical analysis for the linear fit was determined using the LINEST function of Excel.68 

This function carries out a least squares calculation based on the input data for the linear 

trend to establish a number of statistical parameters for the linear regression.  

The gradient (m) and its associated standard deviation (sm) are provided for the linear 

model via Equation 2-39 and Equation 2-40, respectively. The xi and 𝑥̅i values are the x 

data and average x data respectively, and yi represents the y data points. 

Equation 2-39 𝑚 =
𝑛∑ 𝑥𝑖𝑦𝑖 − (∑ 𝑥𝑖𝑛

𝑖=1 )(∑ 𝑦𝑖𝑛
𝑖=1 )𝑛

𝑖=1

𝑛 ∑ 𝑥𝑖2 − �∑ 𝑥𝑖𝑛
𝑖=1 �2𝑛

𝑖=1

  

Equation 2-40 𝑠𝑚2 =
𝑆𝑦2

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

  

The intercept (c) and its associated standard deviation (sc) are given by Equation 2-41 and 

Equation 2-42, respectively.  

Equation 2-41 𝑐 =
(∑ 𝑥𝑖𝑛

𝑖=1 )2(∑ 𝑦𝑖𝑛
𝑖=1 ) − (∑ 𝑥𝑖𝑛

𝑖=1 𝑦𝑖)(∑ 𝑥𝑖𝑛
𝑖=1 )

𝑛∑ 𝑥𝑖2 − �∑ 𝑥𝑖𝑛
𝑖=1 �2𝑛

𝑖=1
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Equation 2-42 𝑠𝑐2 =
𝑆𝑦2 ∑ 𝑥𝑖2𝑛

𝑖=1

𝑛∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

  

The 𝑆𝑦2 value is the square root of the error on the y values and is determined in the 

LINEST function by Equation 2-43. 

Equation 2-43 𝑆𝑦2 = �
1

𝑛 − 2
��(𝑦𝑖 − 𝑦�)2 =

𝑆𝑆𝐸
𝑛 − 2

𝑛

𝑖=1

  

The ŷi value represents the linear model for the y data points. The 𝑆𝑦2 value is used for the 

vertical error bars, assuming the x values are fixed. SSE is another value which can be used 

to describe the goodness of fit, where a good fit is described by an SSE value close to zero, 

and is determined from Equation 2-44. 

Equation 2-44 𝑆𝑆𝐸 = �(𝑦𝑖 − 𝑦�𝑖)2
𝑛

𝑖=1

  

The SSE value is incorporated in the determination of R2, which is the statistical parameter 

quoted in this work to indicate the goodness of fit and is given by Equation 2-45. The R2 

value should be close to 1 to indicate a good fit. 

Equation 2-45 𝑅2 =
𝑆𝑆𝑇 − 𝑆𝑆𝐸

𝑆𝑆𝑇
  

The SST value in Equation 2.43 is determined from Equation 2-46, where 𝑦� is the mean of 

the y data. 

Equation 2-46 𝑆𝑆𝑇 = �(𝑦𝑖 − 𝑦�)2
𝑛

𝑖=1

  

The error bar function of Excel was used to apply error bars to graphs given in this work. 

The error bars for a data set or for individual data points are given where appropriate. 

2.5. Summary 
This chapter has summarized the techniques and analytical methods employed throughout 

the research reported in this thesis. Relevant theoretical and technical information has been 

provided as appropriate, and reference to literature provided where further information 

may be found regarding the methods employed. Use of modern chemical apparatus has 
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enabled the progression of this work, and an in-depth practical understanding of the 

instruments used has been developed through this research. 
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3. Optimisation of MgH2 Dehydrogenation 

properties by Milling with/without Non-Oxide 

Additives  

3.1. Introduction 
One of the main objectives for solid state hydrogen storage research is to produce systems 

which are compatible with fuel cell operating specifications. Magnesium hydride has been 

highlighted as a practical hydrogen storage material and is currently one of the most 

studied metal hydrides for this application (refer to Chapter 1). In this chapter the effect of 

milling conditions on the dehydrogenation properties of the as-received hydride will be 

studied. Then, non-oxide additives will be investigated to establish their impact on the 

hydrogen storage properties of MgH2 in comparison to best performing composites in 

literature. First, the chemical and physical properties of the hydride will be described. 

3.1.1. Structures of MgH2 Polytypes 

As a result of the drive for more commercially viable hydrogen storage systems, a more 

detailed chemical profile of the MgH2 system has emerged beyond the practicalities of 

hydrogen storage. Many studies have been concerned with the structural modifications of 

MgH2. From ambient conditions to the effects of high pressure and high temperature, this 

work has enabled a better understanding of the potential phase transitions involved in the 

synthesis and decomposition of this important hydride. A summary of known MgH2 phases 

is given in Table 3-1. (It is important to note the discrepancies in the nomenclature of the 

MgH2 hydride phases, and Table 3-1 describes the phases according to the prefixes used in 

the majority of MgH2 literature. Furthermore, subtle variations are observed in the 

structural parameters between publications on MgH2, which will be discussed in the 

following sections on each phase.) Using density functional modelling (total energy 

calculations), the phase transitions have been determined to occur in the order: α  γ  β 

 δ  ε, at 0.39 GPa, 3.84 GPa, 6.73 GPa and 10.26 GPa respectively.1, 2 Later theoretical 

work using a variation of the density functional method (plane-wave pseudopotential 

method), determined the α  γ  β ε transitions to occur at higher pressures of 1.2 GPa, 

9.7 GPa, 17.1 GPa respectively, with δ-MgH2 being unstable at high pressure.3 

Experimental work using synchrotron XRD (X-ray Diffraction) showed that the following 

transformations took place: α  γ  δ ε, at 0.9 GPa, 9 GPa and 17 GPa, respectively, 

which corresponds relatively closely to the theoretical work of Cui et al. 4 
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Table 3-1 Experimentally determined polymorphs of MgH2; blue and red spheres represent Mg 

and H atoms, respectively. 

Phase Prefix Structure Type Space 
Group 

Unit Cell Synthesis 
Conditions 

Alpha (α) 
Tetragonal, 

Rutile-type TiO2 
P4/mnm 

5 

Mg under 
20 MPa 

H2(g) at 730 
K, 6 days.4 

Beta (β) 
Hexagonal 

(pseudocubic) 
modified CaF2 

Pa3� 
 

6 

 8 GPa, 800 
oC for 1 h.7 

Delta (δ) Orthorhombic Pbc21 

 4 

13.9 GPa, 
RT. 

Gamma (γ) 
(mixture with α) 

Orthorhombic 
α-PbO2 

Pbcn 

 4 

2.5 GPa, 
250 °C.7 

Epsilon (ε) Orthorhombic 
Cotunnite/AlAu2 

Pnma 

 4 

21.9 GPa, 
 RT. 

 

3.1.1.1. Alpha (α) Phase MgH2 

The rutile-type MgH2 structure was first described by Ellinger and colleagues in the mid-

1950s, and later confirmed by neutron diffraction (Table 3-2).5, 8 Some literature now 

describes this as the alpha (α) phase 1, 3, 9, although other publications use the nomenclature 

from the Mg-H phase diagram given by San-Martin and Manchester.10 For example, 
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publications describing the properties of β-MgH2 exist where the hydride phase being 

described is that of tetragonal rutile-type MgH2.11, 12, 13 For purposes of clarity in this work, 

alpha (α) MgH2 refers to the tetragonal rutile-type polymorph, which is stable at standard 

pressure and temperature conditions. 

Table 3-2 Comparison of lattice parameters quoted for α-MgH2. 

Publication Space Group a / Å c / Å 
Ellinger et al.5* 

P4/mnm 
4.516(8) 3.020(5) 

Bortz et al.14* 4.501(1) 3.0100(1) 
Vajeeston et al.1a 

P42/mnm 
 

4.4853 2.9993 
Vajeeston et al.2* 4.5176 3.0206 
Morikawa et al.4* 4.5147(1) 3.0193(2) 

Cui et al.3a 4.514 2.992 
Er et al.6a 4.494 3.005 

N.B. ESD (estimated standard deviation) values indicated in parenthesis where available.   
a Theoretical values. * Experimental values. 

3.1.1.2. Beta (β) Phase MgH2 

The distorted CaF2 structure of β-MgH2 was proposed in 1980 by Bastide et al. who 

described this as a hexagonal (pseudocubic) phase with Mg having an eight coordination 

environment.7 The β-MgH2 was first observed at 4 GPa at 650 oC as a mixture with α-

MgH2, although Bastide found it as an isolated phase by applying harsher conditions; 800 

°C, 8 GPa for 1 h. Later work by Vajeeston et al. indicated that the β-phase may be formed 

from the γ-phase at 3.84 GPa, and exists as a purely cubic phase.2 A similar structure 

solution was also suggested in the theoretical work of Er et al. (Table 3-3).6 Bastide et al. 

described the density of the fluorite-type β-phase to be 25 % greater than the α-phase. They 

also studied the thermal decomposition behaviour of the β-phase. This showed an 

endothermic decomposition profile comparable with the α-phase, although the 

decomposition onset temperature was 10-20 °C higher. An additional endothermic event 

occurring between 350 °C and 400 °C was observed, which suggests either the transition 

from βα or βγ according to Bastide and colleagues. They also recorded the thermal 

decomposition of the β-phase under vacuum (1 Pa), which again revealed a similar 

decomposition profile to α-MgH2, where decomposition occurred at ~330 °C. 
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Table 3-3 Comparison of lattice parameters quoted for β-MgH2. 

Publication Space Group a / Å c / Å 
Bastide et al.7* - 4.53 10.99 

Vajeeston et al.2* Pa3� 4.6655 - 
Er et al.6a Pa3� 4.796 - 

a Theoretical values. * Experimental values. 

3.1.1.3. Delta (δ) MgH2 

This is an unstable phase which has been experimentally determined by Moriwaki et al. 

and Vajeeston et al. by synchrotron XRD (Table 3-4).2, 4 Phase transitions to the 

orthorhombic δ polytype have also been studied readily by theoretical chemistry methods.1, 

3 The transition from βδ was proposed to occur at 6.73 GPa by Vajeeston et al., with a 

decrease in unit cell volume of 1.1 Å3/f.u relative to the β-phase. In both the works by 

Vajeeston et al. and Moriwaki et al., two possible crystal structure solutions were 

compared for the high pressure phase; Pbca and Pbc21. From the structure refinement 

work by Moriwaki, they concluded that the orthorhombic Pbc21 space group, with a 

smaller cell (Z = 4), was most appropriate and was supported by the absence of 

superstructure reflections. However, Vajeeston et al. suggest that two distinct Pbc21 and 

Pbca structures exist based on their experimental and theoretical work, which are denoted 

δ and δ’, respectively. The latter is a metastable AuSn2-type phase (Figure 3-1). The 

emergence of the δ’ phase appears to be influenced by the pressure sequence used in the 

experimental method and the calculations by Vajeeston et al. suggest that these two 

polymorphs are energetically very similar. 

Table 3-4 Comparison of lattice parameters quoted for δ-MgH2 and δ’-MgH2. 

Phase Publication Space Group a / Å b / Å c / Å 

δ 

Moriwaki et al.4* Pbc21 4.3966(11) 4.6965(7) 4.4118(13) 
Moriwaki et al.4* Pbca 8.7739(19) 4.6927(7) 4.4097(10) 
Vajeeston et al.1a Pbc21 4.8604 4.6354 4.7511 
Vajeeston et al.1a Pbca 9.3738 4.8259 4.7798 

δ’ 
Vajeeston et al.2* Pbca 8.8069 4.6838 4.3699 
Vajeeston et al.2a Pbca 8.9476 4.6065 4.5625 

a Theoretical values. * Experimental values. 
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Figure 3-1 Pbca structure of metastable δ’-MgH2 phase observed above 10 GPa; blue and red 

spheres represent Mg and H, respectively.2 

3.1.1.4. Gamma (γ) Phase MgH2 

γ-MgH2 is a high pressure MgH2 phase which is obtained by conversion of α-MgH2 at high 

pressure and temperature, although work has revealed that it may be obtained at high 

pressures alone. Once formed, it is stable at standard temperature and pressure conditions 

and has received significant interest after its initial identification by Bastide and colleagues 

(Table 3-5).7, 14, 15 The γ-phase is orthorhombic with an α-PbO2 structure (Pbcn) in which 

the Mg is in a six coordination environment. The lattice parameters have been determined 

in a number of different studies although no study has revealed a single phase sample for a 

more accurate determination of its structural parameters. More recent work has shown its 

synthesis by mechanochemical methods and by solution chemistry, but never as a solitary 

phase (Figure 3-2).16, 17 Huot showed that after 20 h of milling, the resultant product 

comprised 18 % γ-MgH2. 

 

Figure 3-2 α- and γ-MgH2 synthesised by reactive milling of Mg under 2 bar H2. (Note: β-MgH2 in 

the figure refers to rutile-type MgH2, denoted α-MgH2 in this work.)16  

A study has also shown the γ-phase to arise from hydrogenation of Pd-capped Mg thin 

films at a relatively low temperature of 250 oC under 2 bar H2 pressure for 12 h.18 
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Furthermore, Gutam et al. observed γ-MgH2 by annealing α-MgH2 at 250oC for 1 h under a 

mild vacuum. The γ-phase, however, has not yet been isolated from the α-phase.  

Table 3-5 Comparison of lattice parameters quoted for γ-MgH2. 

Publication Space Group a / Å b / Å c / Å 
Vajeeston et al.1a 

Pbcn 

4.5246 5.4442 4.9285 
M. Bortz et al.14* 4.5213(3) 5.4382(3) 4.9337(3) 
Moriwaki et al.4* 4.5139(5) 5.4391(6) 4.9406(5) 

Shao et al.17* 4.5226(24) 5.4328(30) 4.9403(26) 
a Theoretical values. * Experimental values. 

3.1.1.5. Epsilon (ε) MgH2 

The Cotunnite-type ε-MgH2 polymorph has been little studied by comparison to the other 

modifications (Table 3-6).1, 3 Calculations be Vajeeston et al. suggest that it forms in a 

AlAu2-type structure from the δ phase, stabilising at 10.26 GPa, with an equilibrium 

volume 19.5% smaller than that of the α-polymorph which is important for the volumetric 

considerations for use of MgH2 in a hydrogen storage system. The transition pressure 

calculated in the work of Cui et al., however, suggests a βε transition which occurs at a 

significantly greater pressure of 17.1 GPa, and the disparity between these results is likely 

to be a consequence of the different mathematical models chosen by the respective authors. 

Moriwaki et al. determined a Cotunnite CaH2-type structure for ε-MgH2 from SXD data 

collected at 21.9 GPa.4 

Table 3-6 Comparison of lattice parameters quoted for ε-MgH2. 

Publication Space Group a / Å b / Å c / Å 
Moriwaki et al.4* 

Pnma 
4.9536(11) 2.9453(5) 5.6677(11) 

Vajeeston et al.1a 5.2804 3.0928 5.9903 
a Theoretical values. * Experimental values. 

3.1.2. Spectroscopic Properties of Commercial MgH2 

The bonding modes of rutile structures have been studied and provide a platform from 

which data for α-MgH2 are derived.19 Furthermore, modern theoretical modelling methods 

and experimental spectroscopic studies have provided bonding and vibrational information 

for MgH2 polytypes to complement diffraction data.20, 21, 22, 23 Recent Raman data given by 

Kuzovnikov et al. for the α- and γ-MgH2 phases match well to the previously published 

data, and an additional mode for the α-phase (B2g phonon mode) has been assigned.15, 24, 25, 
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26 Raman spectra of the high pressure MgH2 phases are also described by Moriwaki et al. 
using an in-situ diamond anvil cell for Raman analysis at high pressure, but the vibrational 

bonding modes were not assigned for these samples.4 Their work did, however, corroborate 

the structure assignment of the ε-MgH2 phase, by comparing the Raman spectra of CaH2 

and the high pressure ε-MgH2 phase since these were predicted as having the same 

Cotunnite-type structure. Two bands associated with hydrogen vibrations in ε-MgH2 at 

1130 cm-1 and 1450 cm-1 were shifted to higher wavenumbers relative to the CaH2 bands 

(740 cm-1
, 1000 cm-1). This was attributed to the smaller volume (57 % smaller) of ε-MgH2 

with respect to CaH2. 

Vibrational spectra collected using inelastic neutron scattering spectroscopy have provided 

information to suggest that the enhanced sorption properties of milled MgH2 are primarily 

due to reduction in crystallite size through the milling treatment.27 Comparing 

experimentally measured vibrational spectra and those obtained from density functional 

modelling, Schimmel et al. showed that the vibrational spectra of bulk un-milled MgH2 

and desorbed-rehydrided ball milled MgH2 were nearly identical. The loss of the defects 

and stresses induced in the milling process, which are evident from significantly distorted 

vibrational spectra observed for ball milled MgH2, were attributed to annealing of the 

samples during cycling. Since the same kinetic and thermodynamic behaviour of the milled 

samples was observed upon cycling, the lack of complementary milling effects 

(stresses/defects) on the rehydrided sample studied by Schimmel et al. indicated that the 

reduction in particle size (relative to the bulk powder) was the reason for the enhanced 

properties of the hydride rather than the complementary effects from milling. A more 

recent microstructure study by Paik et al. showed similar results for the reduction in stress 

upon milling using SEM and TEM. 28 

3.1.3. Thermal Behaviour of Commercial MgH2 

The thermal desorption properties and mechanisms of commercial MgH2 have been 

studied extensively, using a variety of different models and analytical methods. The 

thermal stability of MgH2, as mentioned earlier, is one of the main characteristics that 

researchers are striving to understand and modify.29 Significantly reducing the enthalpy of 

decomposition of MgH2 would improve the applicability of this hydride for 

implementation in mobile hydrogen storage systems. Thus, understanding the 

thermodynamic properties of MgH2 is critical in establishing how the enthalpy of 

decomposition may be reduced. The hydride typically decomposes > 400 °C via a single 

endothermic event associated with the release of hydrogen. (Decomposition of the 



89 

commercial MgH2 used in this work has been conducted using STA and will be described 

later in this chapter.) A summary of de-stabilisation methods used for improving the 

thermal behaviour of MgH2 will now be described, including the effects of milling, 

nanoscaling and additives. 

The decomposition of milled MgH2 has been studied extensively, where the reduction in 

particle size and hence larger surface area of the particles has the effect of reducing 

hydrogen diffusion pathways. Huot et al. showed the development of two endothermic 

events in milled MgH2 using DSC under 2 bar H2. The emergence of two peaks in the DSC 

trace was attributed to the formation of the high pressure γ-phase during milling, and Huot 

et al. considered this to be a two-step decomposition process.16, 30 The first desorption peak 

was proposed as the decomposition of the mixture of the high pressure (γ) and rutile (α) 

phases, while the second peak was attributed solely to the decomposition of the rutile 

phase:  

Equation 3-1 γ-MgH2 + α-MgH2  α-MgH2  Mg  

The two-step decomposition was studied further using MgH2 prepared by the reactive 

milling of Mg metal under 0.5 MPa H2 to form a mixture of the γ- and α-phases as with 

milling under inert gas (Figure 3-3).31 This work revealed that the γ-MgH2 phase was no 

longer present after heating to 390 oC. It was then suggested that the γ-MgH2 phase 

enhanced the decomposition of the α-MgH2 phase by inducing stress on the latter as a 

result of volume contraction upon decomposition of the γ-phase. This concept was 

disputed after cycling experiments showed only rutile-type α-MgH2 after re-hydrogenation, 

with the thermal decomposition profile of the re-hydrogenated material being consistent 

with that expected for α-MgH2, i.e., a single endothermic event at 414 °C.32  



90 

 

Figure 3-3 DSC profile of MgH2 synthesised by reactive milling showing a two-step endothermic 

decomposition, and PXD of the decomposition products at 380 °C, 385 °C and 390 °C (γ-phase 

indicated by arrows). 31 

Another theory is evident from the literature which suggests that MgO may play a role in 

the decomposition pathway.33 Varin and colleagues proposed that partial oxidation of the 

sample hindered the release of hydrogen from some of the material, i.e., the smallest 

particles, and so hydrogen was released from non-oxidised product and then from the 

oxidised sample at a higher temperature. However, depending on the milling conditions 

applied, their work also supported the possibility of the two decomposition peaks being a 

result of the γ-MgH2α-MgH2Mg pathway. Further investigation by the same authors 

thwarted the hypothesis of MgO inhibition, where their DSC work was not consistent with 

the desorption behaviour expected if this were the case.34 If the oxide inhibition on the 

smallest particles was the cause of the high temperature (HT) peak and 

cracking/permeation of the oxide layer was required before hydrogen release from these 

particles, then the HT peak would be expected to be at a reasonably low temperature since 

the hydride particles would be smaller than the coarse, bulk particles of commercial α-

MgH2. This was inconsistent with their observations from DSC, where the HT peak was at 

a temperature consistent with bulk hydride irrespective of milling conditions. Therefore, 

Varin et al. concluded that the oxide inhibition hypothesis was implausible. The possibility 

of particle size effects alone as the root cause of the two-step decomposition observed by 

DSC was also ruled out. Varin et al. proposed that a synergistic hydride phase-particle size 

effect may be occurring, and thus suggested that the smaller particles could be 

predominantly γ–MgH2, which was previously proposed as having a lower decomposition 
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temperature than rutile α-MgH2 by Gennari et al.31 The DTA peaks were shown to be more 

disparate when samples were subject to cryomilling for 8 h then subsequent milling for 60 

h under ambient conditions (Table 3-7).35 

Table 3-7 Summary of milled Mg-MgH2 studies showing DSC/DTA doublet. 

Source Milling Conditions LT peak 
/ °C 

HT peak 
/ °C 

Huot30 Milled MgH2, ≥20 h, 10:1 b:p 365.9 383.2 
 

Gennari31 
 
MgH2 prepared by reactive milling 
of Mg under H2 ≥100 h, 44:1 b:p  

 
(Peak temperatures not provided) 

 
Huang32 

 
Milled MgH2; 48 h under H2  
(b:p omitted) 

 
364 

 
405 

 
Varin33 

 
MgH2 prepared by reactive milling 
of Mg under H2

36, 37, 38 

 
354 

 
382 

 
Zhuo39 

 
MgH2 prepared by reactive milling 
of 70:30 wt% Mg:Cgraphite (under 1 
MPa H2); 30:1 b:p 
a) 3 h  
b) 5 h  
c) 20 h 

 
 
 
 

344.2 
301.3 
286.2 

 
 
 
 
- 

340.3 
340.3 

 
Aguey-Zinsou  

 
a) Milled MgH2, 100 h, 10:1 b:p40 
b) Commercial MgH2 milled 200 h, 
10:1 b:p41 

 
336 

 
323 

 
352 

 
354 

 
Tian 

 
a) 8 h cryomilled MgH2, 10:1 b:p35 
b) 8 h cryomilled MgH2, 10:1 b:p 
followed by 60 h milling in Ar(g)

42 

 
365 

 
365 

 
~400 

 
~410-420 

 

Cabo et al. observed the α- and γ-MgH2 polymorphs after milling the hydride with Ni and 

Co oxide catalysts. A two-step decomposition process was determined from the DTA 

traces collected for the as-prepared oxide catalysed MgH2. They described the low 

temperature (LT) and HT decomposition events to be the result of the α- and γ-MgH2 

phases, respectively. Cabo et al. explained that the modification of the two-step 

decomposition of the hydride was the result of the α-MgH2 phase being influenced by the 

catalyst.43 Relative to the as-milled sample (Figure 3-4), the second, HT peak in the DTA 
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profiles of the doped samples becomes more prominent, and the difference in the Tpeak of 

the DTA curves becomes less disparate, with almost complete merging of the peaks for the 

NiO doped sample and the lowest Tpeak for desorption. 

 

Figure 3-4 DTA of a) milled MgH2, b) Co3O4-doped, c) NiCo2O4-doped and d) NiO-doped MgH2 

samples.43 

Non-saturated magnesium hydride, i.e., MgH2-δ, has been studied. The MgH2-δ phase 

(MgH1.2) was first proposed as a new phase by Schimmel and colleagues using in-situ 

neutron diffraction for Nb catalysed MgH2.44 They described the sub-stoichiometric phase 

as a facilitator for hydrogen sorption due to vacancies in the structure. Later, a study by 

Borgschulte et al. investigated the impact of catalytic quantities of Nb2O5 on the 

emergence of the destabilised, sub-stoichiometric hydride (Figure 3-5).45 Their work 

alluded to a special interaction of the sub-stoichiometric MgH2-δ phase with the oxide 

catalyst, leading to faster sorption kinetics. Figure 3-5, reproduced from reference 45, 

describes the effects observed upon cycling of the ball milled oxide catalysed MgH2; 

i) Ball milling of MgH2 and oxide catalyst where the initial particle size of the 

hydride and catalyst are large, with the catalyst being relative non-disperse. 

ii) Small particles of MgH2 are produced by milling, where the hydride has a 

higher surface area and a high dispersion of catalyst throughout the hydride 

iii) Cycling of the catalysed hydride causes annealing of the particles which results 

in increased particle sizes. During cycling, the destabilised MgH1.2 phase may 
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be described as a “shell” layer surrounding the bulk hydride, and forms as a 

result of interactions at the bulk hydride-catalyst interface. 

 

Figure 3-5 Suggested non-stoichiometric phases of MgH2 and interactions with MgO as one 

possible solution to the two-step decomposition phenomenon.45 

The scope of additives being investigated to enhance the Mg-H system has been rapidly 

expanding over decades, as highlighted in Chapter 1. This next section introduces some of 

the most prominent research in non-oxide additives for MgH2 that are relevant to this 

work. 

3.1.3.1. Carbon & Carbides  

Carbon based additives have been studied extensively with MgH2. The carbon structure 

and carbon pre-treatment methods used have a significant impact on the resultant hydrogen 

storage properties of the hydride.46, 47 From activated carbon48 to carbon nanotubes 

(CNTs)49, 50 many novel concepts for enhancing the hydrogen storage properties of MgH2 

by incorporation of carbon materials have been described.51 The work of Imamura et al. on 

MgH2-graphite composites in the 1990s and into the 21st century led the way for the 

inclusion of catalytic amounts of graphite in the Mg-H system.52, 53, 54, 55, 56, 57, 58 Most of 

these early studies involved milling magnesium metal and graphite with/without organic 

solvents, e.g., THF, benzene, cyclohexane. Thereafter, graphitic carbon has received 

significant attention in this area of research, and is reflected in the breadth of literature 

available on the properties of MgH2-graphite systems prepared by mechanical grinding 

and/or inclusion in pellet composites. 59, 60, 61, 62 The results of Sheng and Guo suggested 

that the dispersion of graphite influenced the dissociation of hydrogen at the Mg-MgH2 

surfaces. Additionally, they suggested that graphite on the surface of the material may 

inhibit the growth of MgO at the Mg/MgH2 surfaces, which was reaffirmed in more recent 
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work using high pressure DSC.63 Huang et al. studied MgH2-5 wt% graphite composites 

prepared by milling and suggested that the presence of the γ-MgH2 phase did not enhance 

the hydrogen desorption properties of the α-MgH2 phase, based on their cycling studies.64 

Graphite is already used in stationary solid state hydrogen storage composites, including 

that of the solid state hydrogen storage commercial forerunner, McPhy Energy. 65, 66 

Multi component systems comprising carbon and one or more other additives have been 

used to tackle the thermodynamic and kinetic issues of MgH2, where the benefits of 

incorporation of graphite and other carbons was studied by Bouaricha et al. 67, 68 A more 

recent example shows that milling a mixture of Nb2O5-graphite with Mg was shown to 

promote excellent thermodynamic properties for hydrogen cycling relative to un-doped and 

un-milled MgH2.69 Furthermore, relative to earlier work using mixtures prepared by 20 h 

milling of 0.5 mol% Nb2O5-MgH2, only 1 h of milling enabled the best cycling properties 

of the composites incorporating graphite, which is a significant improvement with respect 

to processing costs.70  

Mg-Co-MWCNT (multi-walled carbon nanotubes) composites were shown to impact the 

position of the DTA peaks, where tuning the milling times was vital to achieve improved 

hydrogen desorption properties.71 Milling 5 wt% of MWCNTs in MgH2 (400 rpm, 4:1 b:p 

ratio) caused the peak temperature of the hydrogen desorption to drop with the emergence 

of two DTA peaks after only 10 h milling (i.e., TLT: 350 °C, THT: 358 °C). Cobalt metal 

performed significantly better at reducing the Tpeak after only 5 h of milling but only one 

peak was evident from the DTA profile (Tpeak: 331 °C). After 50 h of milling with 5 wt% 

Co, the two-step decomposition in the DTA trace becomes evident, and the LT peak is 

more prominent than the high temperature peak (TLT: 325 °C, THT: 345 °C). When 

MWCNTs were combined with 50 h milled MgH2+Co, a single desorption step was 

observed where the Tpeak was relatively low at short milling times (i.e., 332 °C and 323 °C 

for 1 h and 5 h milling respectively), but at longer milling times (10 h) the Tpeak of the 

DTA profile increased to 337 °C. Recent theoretical and experimental studies on hydride-

graphite composites for hydrogen storage systems indicate that the high thermal 

conductivity of such composites improves sorption kinetics. 65, 72, 73 From this work, tuning 

of the H2 sorption times was possible by modification of the graphite loading, where higher 

loadings of graphite translated to higher thermal conductivity and thus faster sorption 

kinetics.  

One of the mechanisms by which carbon materials are proposed to assist in hydrogen 

storage systems is by hydrogen spillover.74 On the basis of carbon support materials 
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containing metal catalyst particles, this involves initial absorption of hydrogen on to the 

metal catalyst then spillover of hydrogen on to the support material. This is commonly 

discussed in relation to nanoconfinement of hydrogen storage materials.75 Recent work 

suggests that hydrogen spillover may also be relevant when carbon is used as the additive 

in metal hydride storage systems.76 Zhou et al. suggest that hydrogen spillover may 

contribute towards the enhanced hydrogen sorption characteristics observed in their milled 

magnesium-coal composites, where the MgH2-carbon interface facilitates desorption of 

hydrogen from the system as a result of C-H bond formation. Furthermore, inclusion of the 

coal prevents particle aggregation during cycling. 

Refractory carbide additives have received surprisingly little interest in MgH2 research, by 

comparison to oxides. Their hardness makes them appealing for use as a milling aid for 

MgH2 in order to decrease particle size and thus increase surface area (Table 3-8). 

Furthermore, their high thermal conductivity would be advantageous for improving the 

hydrogen sorption kinetics based on previous work.65, 72 Crucially, they do not contain 

oxygen and so Mg-containing oxide formation resulting from the additive upon milling and 

cycling is eliminated as may be the case when using some oxide additives. 

Table 3-8 Important properties of carbon and refractory carbide materials used as additives for 

the Mg-H system. 77 

Carbon/Carbide Thermal Conductivity 
@ 293 K / W/m.K 

Vickers Hardness  
/ GPa 

Graphite 130 7-11 kg/mm2 

SiC 120 24.5 
TiC 21 28-35 

Mo2C 21.5 15.5-24.5 
WC 63 22 

 

The most studied carbide additive is SiC, which is relatively inexpensive, stable and may 

be easily and rapidly prepared from abundant materials.78 Use of SiC as a hydrogen release 

promoter in the Mg-H system has been reported under various conditions, including by use 

of microwave irradiation.79 Milling of MgH2 and SiC has been conducted in cyclohexane 

under inert conditions, which was shown to decrease the hydrogen desorption temperature 

of MgH2 by more than 24 oC.80 The proportion of SiC used had a significant impact on the 

resultant hydrogen release properties, where a greater mol% SiC improved H2 desorption 

onset temperatures. However, at these high loadings it was found that a significant amount 



96 

of the hydrogen was lost in the mill and lower milling times proved to be more useful for 

retaining the hydrogen within the hydride prior to thermal desorption. Reversibility studies 

by Ranjbar using MgH2-SiC composites milled in an H2 environment showed that high SiC 

loading has a negative effect on the diffusion of hydrogen from the samples, leading to 

high hysteresis in cycling and slow H2 sorption.81  

Titanium carbide, TiC, has been the most studied of the TMCs (transition metal carbides) 

and the size of the additive has been shown to have a pronounced effect on the desorption 

properties of the hydride.82 Particles in the 50 nm range were shown to allow 90 % 

absorption in 5 min and desorption of > 6 wt% H2 within 20 min, a capacity that was 

maintained even after 5 cycles.83 Recent work showed that 2 mol% Mo2C has the effect of 

increasing the proportion of the second, high temperature peak after 8 h cryomilling.35 

It is clear from the above brief review of MgH2 literature that a dearth of research has been 

conducted towards the reduction of the temperature at which MgH2 releases hydrogen. 

Based on the need for simple and industrial scale synthesis of MgH2 for the target 

application, ball milling was deemed the best way forward for this research. This is based 

on the current success of this technique for preparation of MgH2 for stationary hydrogen 

storage, and the ease with which it may be easily scaled-up for synthesis at an industrial 

level. Owing to recent success in the use of carbide materials as effective additives for 

MgH2, this work comprises a comparative study using graphite and SiC with commercial 

MgH2, both as individual additives and as a 1:1 molar SiC:graphite additive composite. 

SiC was chosen based on its high thermal conductivity; comparable with graphite and 

much higher than other transition metal carbides, and the high hardness of SiC. The aim of 

which is to provide both enhanced milling effects, such as particle size reduction and high 

thermal conductivity to aid hydrogen desorption kinetics, which will be studied in this 

work. 

3.2. Aims of the work described in this Chapter 
1. To evaluate the effect of milling parameters on the thermal decomposition of 

commercial MgH2 using STA. 

a. Indicate which milling conditions provide a route to the greatest drop in desorption 

temperature, without significant loss of hydrogen, and thus create a “baseline” to 

which MgH2-additive composites may be compared. 

b. Show the impact of milling conditions on the two-step decomposition observed by 

DTA for MgH2, indicating what parameter(s) influence this phenomenon.  
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2. To determine suitable additives for commercial MgH2 to reduce hydrogen desorption 

temperature without overly compromising the hydrogen capacity. 

a. Evaluate the influence of silicon carbide on the thermal decomposition of MgH2; in 

relation to both reducing the desorption temperature and on the two-step 

decomposition process. 

b. Determine whether partial substitution of graphite for the transition metal carbide 

has a significant impact on hydrogen desorption from doped MgH2. 

3.3. Results & Discussion 

3.3.1. Commercial MgH2 

The morphology and diffraction pattern of commercial MgH2 used in this work are 

provided in Figure 3-6, which reveals that the powder contains trace amounts of Mg as 

well as α-MgH2, which is likely to be the result of incomplete hydrogenation in the 

manufacturing process. Using CELREF and the parameters given by Ellinger et al. as a 

model, the unit cell parameters of the commercial material were determined; a = 4.5180(9) 

Å, c = 3.0220(2) Å.5 
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Figure 3-6 a) SEM image of commercial MgH2 as-purchased, and b) PXD of commercial MgH2 

as-received (hkl values given for each α-MgH2 reflection, and  indicates Mg reflections). 

Rietveld refinement of the as-received hydride allowed quantification of the Mg present 

(Figure 3-7, Table 3-9). It also confirmed the close approximation of the cell parameters of 

the hydride previously described using CELREF (ICSD-26624). 
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Figure 3-7 Rietveld plot for commercial MgH2; observed and calculated data are shown by red 

crosses and the green continuous plot, respectively. Black and red tick marks indicate MgH2 and Mg 

phases, respectively. The lower continuous pink line is the difference plot.  

Table 3-9 Refinement data for commercial MgH2. 

Chemical Formula MgH2 Mg 

Crystal System Tetragonal Hexagonal 

Space Group P4/mnm P63/mmc 

Z 2 2 

a / Å 
c / Å 

4.51489(9) 
3.01963(6) 

3.2099(3) 
5.2107(9) 

V / Å3 61.551(3) 46.497(8) 

Formula Weight / g 52.642 48.610 

Calculated Density, ρx / g cm-3 1.420 1.736 

Phase Fraction / % 96.48(1) 3.52(9) 

Refinement Parameters 24 

Data Points 4847 

Rwp 9.26 % 

Rp 7.37 % 

χ2 1.741 
 

The FTIR spectrum shown in Figure 3-8, is characteristic of MgH2, with a broad band in 

the 900-1600 cm-1 region due to Mg-H stretching.84, 85 The absence of an -OH stretch 

expected at ~3800 cm-1
 characteristic of Mg(OH)2 indicates that the hydride used in this 
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study does not contain any of the hydroxide phase (or water), even on exposure to air over 

the time period of a spectroscopy measurement.86 

 

Figure 3-8 FTIR spectrum of commercial MgH2. 

The Raman spectrum collected for the commercial α-MgH2 used in this work is shown in 

Figure 3-9, with a comparison of the known bonding mode assignments in Table 3-10. The 

profile of the spectrum and values assigned for the B1g, Eg and A1g optical phonon modes 

are in good agreement with literature data.25 The B2g mode described by Kuzovnikov et al. 

was also observed in the expected range quoted in their recent work (1470-1790 cm-1). The 

assignment of B2g in this work, 1497.8 cm-1, is reasonably close to the values calculated by 

Lasave et al. Their work involved using both a shell model and the linear augmented-plane 

wave (LAPW) calculation method, where comparison of the results from these methods 

showed consistent values for the optical Brillouin zone centre modes.15, 23 Furthermore, the 

phonon dispersion curves obtained by Lasave et al. are consistent with those obtained in 

the first-principles study by Ohba et al., indicating good agreement across a variety of 

theoretical models using the high symmetry lines in the Brillouin zone of MgH2.22 

 

Figure 3-9 Experimental Raman spectrum for commercial MgH2. 
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Table 3-10 Comparison of Raman shift information for MgH2. 

 Phonon Mode 

Source B1g Eg A1g B2g 

This Work 313.7 952.0 1282.8 1497.8 

Lasave23 (LAPW) 289 963 1277 1461 

Lasave23 (Shell model) 312 940 1274 1463 

Santisteban24 300 950 1276 - 

Reed & Book26 315.3 947.9 1276.6 - 
 

The decomposition properties of the commercial, unmodified magnesium hydride used in 

this work are shown in Figure 3-10. The total enthalpy of decomposition for the hydrogen 

desorption event Edec was estimated from the DTA measurement collected at 5 oC/min 

(72.43 kJ/mol) using the integral of the endothermic decomposition event (see Section 

2.3.5.1) and is consistent with values given previously in literature. The DTA profile 

shows a single peak using 5, 10, and 20 oC/min heating rates (Figure 3-10a, Appendix A, 

A.1). A two-step DTA trace is revealed using a 2 oC/min heating rate; the primary lower 

temperature peak occurs at 403.2 oC and the secondary step emerges at 412.0 oC. The 

heating rate has a significant effect on the kinetic profiles for any material, and the Ea 

deduced from the Kissinger plot (Figure 3-10b) for decomposition of the MgH2 used in this 

project is 144±5 kJ/mol, which is lower than the value quoted by Campostrini et al. (175±9 

kJ/mol) in their recent work on the decomposition of commercial MgH2 using the 

Kissinger method.29 A number of variables may result in the observed differences, e.g., the 

different heating rates (2, 5, 10, 20 °C/min vs. 10, 13, 16, 19, 22 °C/min) and number of 

data points (4 vs. 5) used in this work relative to that used by Campostrini et al. 

Differences in the instrumental set-up including calibration, flow rate, sample pan, etc., 

will also result in variation between studies. The Ozawa method was employed to verify 

the Ea result obtained using the Kissinger method (Appendix A, A.2). This gave an Ea of 

148±4 kJ/mol, which is slightly higher than the value determined by the Kissinger method. 

The higher Ea determine using the Ozawa method relative to the Kissinger method is in 

agreement with the results obtain by Campostrini et al.29 
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Figure 3-10 a) DTA traces and b) Kissinger plot of commercial MgH2 used in this work, where 

each point is the Tpeak for decomposition taken from the DTA plots. 

Simultaneous accumulation of TG and MS data allowed the hydrogen desorption profiles 

for the commercial product to be derived (Figure 3-11). MS confirmed that hydrogen was 

the only species detected during these experiments, and therefore the mass loss could be 

attributed to hydrogen only. The mass loss was ~7 wt% H, which is slightly less than the 

theoretical capacity of 7.6 wt% H. The MS traces show asymmetric peaks where hydrogen 

is released, indicating that hydrogen is given off at different rates from the sample as it is 

heated. The peak shape of the sample heated at 2 oC/min differs from the 5, 10 and 20 
oC/min samples and agrees with observations in the DTA data. 

 

Figure 3-11 a) TG and b) MS (m/z = 2) data collected for commercial MgH2 at the four heating 

rates employed. 

3.3.2. Milling MgH2 

It is well known that milling of commercial MgH2 causes significant changes to the 

thermal behaviour of the hydride, which may be tuned to a degree by controlling the 

milling conditions. It is also possible for high pressure γ-MgH2 to form by mechanical 

action alone. To begin this investigation, it was important to evaluate the effect of the 

milling conditions applied to the hydride itself before including any additive materials, 

a) b) 

a) b) 
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thus creating a baseline of milled-MgH2 properties against which the additive samples 

could be compared. Samples of commercial MgH2 (without additives) were prepared by 

ball milling under the conditions given in Table 3-11. In order for consistent results to be 

obtained, separate milling procedures were used to obtain each product rather than taking 

samples intermittently throughout a single milling experiment. The reason for doing so is 

that opening the jar mid-experiment causes a change in the milling environment, and 

therefore the milling conditions are not consistent throughout the remainder of the milling 

procedure. 

Table 3-11 Samples of milled commercial MgH2 investigated in this work, all milling conducted at 

450 rpm. 

Sample ID B:P ratio Milling 
Duration 

/ h 

No. Milling 
Balls 

1 40:1 0.5 2 

2 40:1 2 2 

3 40:1 5 2 

4 40:1 10 2 

5 40:1 20 2 

6 40:1 40 2 

7 40:1 0.5 8 

8 40:1 2 8 

9 40:1 5 8 

10 80:1 0.5 8 

11 80:1 2 8 

12 80:1 5 8 
 

Using relatively mild conditions (Samples 1-6, 40:1 b:p, 2 milling balls), the effect of 

milling time was studied using a variety of techniques. Compared with the smooth, 

rounded particles of the commercial product, the samples milled under mild conditions 

comprise flattened particles which can be >100 μm in diameter across and ~10 μm in 

width. These larger particles are shown to have smaller particles on the surface, which 

decrease in size as milling time is increased (Figure 3-12). 
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Figure 3-12 Low (a) and high (b) magnification images showing flattened particles of Sample 3 

milled for 5 h. Low (c) and high (d) magnification images showing plate-type large particles remain 

after 20 h milling (Sample 5). 

SEM images of Sample 11 and 12 reveal roughly spherical particles that are polydisperse; 

from micron sized aggregates to nano-scale particles (Figure 3-13). Milling for 5 h 

(Sample 12) at the higher b:p ratio shows significantly smaller particles relative to the 2 h 

milled sample (Sample 11). From PXD, the Scherrer equation was used to estimate the 

average particle size of Sample 11 and 12 using the highest intensity (110) reflection for α-

MgH2: 1.4 μm, and 678 nm, respectively. This confirms that the particle size has decreased 

as a result of milling the sample longer and is consistent with the observations made by 

SEM.  
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Figure 3-13 SEM images of milled-MgH2; Sample 11 at a) 20 μm and b) 5 μm scale, and Sample 12 

at c) 20 μm and d) 5 μm scale. 

The phase fraction of Mg relative to MgH2 is observed to increase from Rietveld 

refinement of the XRD pattern for Sample 1 milled under the mildest conditions (Figure 3-

14). This suggests that even mild milling causes partial decomposition of the hydride with 

subsequent loss of the hydrogen in the mill. The cell parameters for Sample 1 as 

determined from CELREF were a = 4.5187(5) Å, c = 3.0217(1) Å, which are in close 

approximation to those of the un-milled, commercial MgH2 (Table 3-12). No evidence was 

found to suggest that a sub-stoichiometric, MgH2-δ-type phase had formed. 
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Figure 3-14 Rietveld plot for Sample 1; measured and calculated data given by red crosses and the 

green continuous plot, respectively. Red and black tick marks indicate reflections from Mg and α-

MgH2, respectively. The difference plot is given by the continuous pink plot. 

Table 3-12 Rietveld refinement data for Sample 1. 

Chemical Formula MgH2 Mg 

Crystal System Tetragonal Hexagonal 

Space Group P4/mnm P63/mmc 

Z 2 2 

a / Å 
c / Å 

4.51553(4) 
3.01999(3) 

3.2096(2) 
5.2107(5) 

V / Å3 61.551(3) 46.497(8) 

Formula Weight / g 52.642 48.610 

Calculated Density, ρx / g cm-3 1.420 1.736 

Phase Fraction / % 96.04(1) 3.96(8) 

Refinement Parameters 26 

Data Points 4846 

Rwp 6.68 % 

Rp 5.10 %  

χ2 1.657 
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After 2 h of milling (Sample 2), the emergence of the gamma phase is evident from the 

presence of the weak, broad reflection at ~26o (Figure 3-15). 

 

Figure 3-15 PXD showing the emergence of γ-MgH2 after only 2 h of milling (red pattern) 

compared with 0.5 h milled sample (blue). 

The frequency of collisions was also studied by increasing the number of milling balls used 

from 2 to 8, where the b:p ratio, 40:1, was kept constant by adjusting the mass of MgH2 

used. Samples were prepared at 0.5 h, 2 h and 5 h in order to form a comparison between 

both the milling time and frequency of collisions. From PXD data alone, it is evident that 

the particle size of the hydride is significantly affected by the number of collisions, since 

the diffraction peaks are broadened and the reflections from γ-MgH2 phase are more 

prominent in the samples prepared using 8 balls (Figure 3-16). Further, as milling time 

increases, the samples become less crystalline as indicated by the amorphous band in the 

samples milled for 5 h. Using the Scherrer method (assuming roughly spherical particles; K 

= 0.9), the particle size was shown to drop significantly even after only 0.5 h milling, e.g., 

the average particle size for Samples 1 and 7 were 1.9 μm and 1.6 μm, respectively. For 

Sample 9, the average particle size dropped to 978 nm, which is a marked improvement 

relative to Sample 3 (1.96 μm). Therefore, increasing the relative number of impacts has a 

significant influence on the particle size of the resultant milled sample. Using CELREF, 

the cell parameters for each sample were determined and no significant trend could be 

ascertained with respect to the milling conditions used, where the cell parameters of the 

samples studied remained in close proximity to the un-milled MgH2, even in the presence 

of the γ-phase.  
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Figure 3-16 PXD of commercial MgH2 milled for a) 0.5 h (Samples 1 and 7), b) 2 h (Samples 2 and 

8) and c) 5 h (Samples 3 and 9). 

Under the harshest conditions applied the particle size was only slightly reduced by 

increasing the milling time, where the average particle size for Sample 10 and Sample 12 

were very similar, i.e., 699 nm and 678 nm, respectively. 

The dehydrogenation behaviour was shown to be influenced significantly by the milling 

conditions applied (Table 3-13). The first derivative of the measured data was used to 

determine the rate of change in the gradient of the relevant signals. This allowed the Tonset 

and Tpeak values to be determined. The total enthalpy of decomposition was estimated from 

DTA data for samples heated at 5 °C/min by measuring the total area under the 

decomposition endotherm, including both decomposition steps where applicable. 

  

a) b) 

c) 
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Table 3-13 DTA-TG data collected for un-doped, milled MgH2 (Samples 1-12). 

 DTA TG  

Sample Tonset 
/°C 

Tpeak 

/°C 

Mass Loss 
Tonset 

/°C 

Mass 
Change 

/ % 

†Edec (kJ/mol) 

1 LT: 346.2 
HT: 380.9 

LT: 355.3 
HT: 400.7 
ΔT = 44.7 

382.2 6.92 66.12 

2 LT: 337.6 
*368.2 

LT: 362.7 
HT: 391.9 
ΔT=29.2 

LT: 352.9 
HT: 387.3 

LT: 4.33 
HT: 2.42 

60.01 

3 LT: 334.0 
HT: 384.1 

 

LT: 357.4 
HT: 391.7 
ΔT = 34.3 

LT: 339.2 
HT: 366.4 

LT: 4.10 
HT: 2.91 

58.61 

4 319.8 347.8 324.1 6.79 55.30 

5 334.7 357.6 
*386.3 

ΔT = 28.7 

340.1 LT: 5.70 
HT: 1.08 

54.75 

6 329.0 354.8 335.8 7.02 57.93 

7 338.9 367.7 348.4 6.84 61.19 

8 325.0 349.4 331.5 6.95 60.14 

9 320.7 345.8 326.6 6.90 58.35 

10 328.2 353.2 334.5 6.87 57.11 

11 318.3 343.3 325.4 6.96 59.33 

12 329.0 350.6 335.1 6.69 61.43 
(* indicates an inflection in the gradient of the curve at a given temperature, and the ΔT= 

THT-TLT is given for the endothermic maxima where a two-step decomposition is observed. 
†Edec determined from data collected at 5 °C/min.) 

The DTA trace after only a short period of milling under the mild conditions is shown to 

be significantly different in comparison to the un-milled material. After only 0.5 h, a 

shoulder is evident on the DTA trace at a lower temperature to the primary decomposition 

peak (Figure 3-17a). As milling time is increased, this shoulder becomes more resolved 

and a LT and HT peak may be distinguished (Figure 3-17b). 
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Figure 3-17 DTA-MS data collected at 5oC/min for MgH2 for a) Samples 1 and 2 and b) Samples 3 

and 4. 

The sample milled for 5 h, shows the low temperature peak has become enhanced relative 

to the high temperature peak, and this is of significant importance for understanding how 

the enthalpy of decomposition may be lowered. Milling for longer times, 20 h and 40 h 

(Samples 5 and 6), caused an increase in the Tpeak for MgH2 relative to Sample 4. The 

estimated total enthalpy of decomposition was found to decrease significantly upon 

increased milling time up to 20 h (Figure 3-18), where it was reduced by 24.4% with 

respect to un-milled MgH2. The estimated total enthalpy of decomposition was observed to 

increase after milling for a total of 40 h. This effect is likely to be the result of 

agglomeration of the particles at longer milling times. 

a) 

b) 
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Figure 3-18 Trend in estimated total enthalpy of decomposition data collected for commercial, un-

milled MgH2 and MgH2 milled for different durations (Samples 1-6). 

Sample 3 is the first in this series to show the intensity of the LT peak to be dominant and 

so further thermal analysis was conducted (Figure 3-19). The activation energy for the two-

steps was determined using the Kissinger and Ozawa methods. The linear plots show a 

good fit to both models based on R2 values (also known as the coefficient of determination) 

for the simple linear regression trendlines applied to the dataset. Activation energy values 

for the LT (Kissinger: Ea = 113±7 kJ/mol, Ozawa: Ea= 118±7 kJ/mol) and HT (Kissinger: 

Ea = 140±6 kJ/mol, Ozawa: Ea = 144±6 kJ/mol) peaks indicate that the two events are 

distinct, and both are lower in energy with respect to the unmilled hydride (Ea = 144±5 

kJ/mol). The Ea of the LT peak in Sample 3 is lower in energy with respect to that 

determined for Sample 2 (Kissinger: Ea = 127±12 kJ/mol, Ozawa: Ea = 131±11 kJ/mol), 

while the HT peak is actually higher than that of Sample 2 (Ea = 138±7 kJ/mol, Ozawa: Ea 

= 142±6 kJ/mol). (Kissinger plots for Sample 2 are given in Appendix A; A.3 & A.4, 

respectively.) The distinct nature of the two decomposition steps suggests that two modes 

of hydrogen transport through the material takes place as the temperature increases and 

that milling conditions have a significant effect on the proportion of the material which 

releases at low and high temperature. This may be explained by consideration of previous 

kinetics investigations, where it has been suggested that the decomposition of MgH2 may 

actually be segregated in to three distinct processes.87, 88 The formation of α-Mg metal at 

the particle surfaces is described as the initiation step in the decomposition process of 

MgH2, and then nuclei of Mg are formed. Finally, Mg particles arise upon complete 

desorption of the hydrogen with contraction of the particles facilitating complete hydrogen 

loss. From the results given here, only two distinct peaks are obvious from DTA traces. It 

may be reasoned, however, that the 1st LT peak corresponds to the formation of Mg nuclei 
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with initial loss of hydrogen, and the second HT step is from the contraction of the 

particles allowing complete diffusion of hydrogen from the material and thus 

decomposition of the material is complete. Therefore, the two-step decomposition 

observed for samples prepared under mild milling conditions is indicative of enhanced Mg 

nuclei formation upon an increase in milling time, where the growth of the Mg phase 

occurs thereafter.89 This is likely to be the result of the decrease in particle size 

(corresponding to an increase in the particle surface area).  

 

 

Figure 3-19 a) DTA profiles, b) MS data (m/z = 2) and c) Kissinger plots for Sample 3 collected by 

STA at 2, 5, 10 and 20 oC/min. (Ozawa plots given in Appendix A; A.5.) 

XRD analyses of the post STA samples collected for Sample 3 show that hydrogen 

desorption is complete since Mg is the main decomposition product with a small 

contribution from MgO. (Figure 3-20) 

a) b) 

c) 
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Figure 3-20 X-ray diffraction patterns of post STA products collected for Sample 3 after heating at 

each ramp rate used.  

The two-step decomposition is no longer evident when the number of collisions is 

increased (Figure 3-21). This suggests that only one type of hydrogen diffusion from these 

samples takes place. Based on the previous hypothesis regarding the two-step 

decompositon, this could imply that the hydrogen desorption appears to occur in one step 

as a result of a greater potential for Mg nuclei formation in the samples milled with a 

greater number of impacts and thus the total desorption occurs at a lower temperature. 
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Figure 3-21 Comparison of DTA and TG traces for samples milled using 2 balls (solid line) or 8 

balls (dashed line) as indicated for a) & b) Samples 1 and 7, c) & d) Samples 2 and 8, and e) & f) 

Samples 3 and 9. 

In order to obtain a significant reduction in the hydrogen desorption temperature harsher 

milling conditions were necessary; b:p ratio increased, from 40:1 to 80:1. Time-resolved 

PXD was conducted on the Panalytical X’Pert Pro diffractometer in Bragg Brentano 

geometry under ambient conditions to determine the air sensitivity of Sample 11 (Figure 3-

a) b) 

c) d) 

e) f) 
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22). A series of 1 h measurements were taken over a 15 h period and these demonstrate 

that the hydride does not react with air based on the absence of any emerging MgO, or 

Mg(OH)2 reflections. 

 

Figure 3-22 Time resolved PXD for sample milled Sample 11. 

Previous work by Friedrichs et al. showed that a 3-4 nm MgO layer forms on milled 

MgH2, even if handled under inert gas.90 This nano-oxide layer was found to prevent 

further oxidation of the hydride. Furthermore, an amorphous hydroxide-type layer was also 

found to form on the outermost surface of milled hydride particles. In fact, MgO has also 

been evaluated as a milling aid in the Mg-H system.40 Neither MgO or Mg(OH)2 

reflections were evident from the XRD analysis of hydrides synthesised in this work. EDX 

analysis of Sample 11 did not show any indication of contamination from the milling tools 

since no Fe or Cr are indicated in this analysis; these are typical components that would be 

expected upon contamination from the stainless steel milling jar. The Kα1 lines for 

magnesium (86.83 wt%) and oxygen (13.17 wt%) are evident (Figure 3-23). The sample 

exposure to air for preparation and loading into the SEM chamber may have caused the 

oxidation of the sample, but from the work by Friedrichs it is expected that the oxygen in 

the sample will have been present before air exposure. No distinct oxide peaks from the 

time resolved XRD analysis can be seen, therefore, it may be that the oxide layer is only on 

the surface as in the work of Friedrichs et al. (The carbon is from the adhesive carbon tabs 

used for sample mounting.) 
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Figure 3-23 a) EDX spectrum of Sample 11 and b) SEM image of area from which the spectrum 

was collected (50 μm scale). 

From FTIR spectra, the characteristic broad band of MgH2 between 900-1600 cm-1 is 

shown to be modified after milling. Spectra collected for Samples 11 and 12 reveals three 

pronounced peaks in the MgH2 band, which are more prominent in Sample 12 milled for 5 

h (Figure 3-24). This indicates that the Mg-H stretching modes, and thus the MgH2 lattice, 

may have been modified by milling where the sample milled at longer milling times was 

more significantly affected. This may be the result of the additional phase present in the 

hydride sample, where the Mg-H vibrational bonding modes in MgH2 are likely to be 

different in the α and γ phases. However, it may simply be a matter of better resolution of 

the bands in Sample 12 with respect to Sample 11. Again, despite analysis being prepared 

and conducted in air, there does not appear to be any sign of a significant –OH stretch from 

formation of a hydroxide layer.  

a) 

b) 



117 

 

 

Figure 3-24 Comparison of FTIR spectra collected for commercial, un-milled MgH2 and Samples 

a) 11 and b) 12. 

Kissinger plots for Samples 11 and 12 reveal that the Ea for hydrogen decomposition from 

these samples is very similar; Ea = 110±7 kJ/mol (Ea = 114±7 kJ/mol) and Ea = 110±13 

kJ/mol (Ea = 115±12 kJ/mol), respectively, where values in parentheses are derived from 

Ozawa plots (Figure 3-25; See Appendix A for Ozawa plots). Therefore, the milling 

duration under these conditions has a relatively small impact on the thermal decomposition 

for these samples. 

  

a) 

b) 
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Figure 3-25 DTA and MS (m/z = 2) traces obtained used to obtain Kissinger plots for Sample 11 

milled for 2 h (a & b) and Sample 12 milled for 5 h (c & d). e) Overlay of Kissinger plots for one step 

decomposition observed in Samples 11 and 12 compared with commercial, un-milled MgH2 (Ozawa 

plot overlay given in Appendix A). 

a) b) 

c) d) 

e) 
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3.3.2.1. Summary of Findings from Milling MgH2 

The XRD patterns of all milled-MgH2 show characteristic broadening of the reflections 

relative to the commercial material, where this becomes more pronounced as the milling 

time and number of milling balls (relative frequency of impacts) is increased. The cell 

parameters of the α-MgH2 are unchanged after milling, but the crystallite size is reduced 

based on a crude evaluation by the Scherrer method. In comparison to the thermal data for 

samples milled under mild conditions, the DTA trace shows only one decomposition event 

for MgH2 milled under harsher conditions, and that the Tpeak may be decreased 

significantly at relatively short milling times. (The two-step decomposition was not 

observed until >35 h milling under the conditions used by Gennari and colleagues.31) 

Therefore, the milling variables used are important for tailoring the hydrogen desorption 

behaviour, and milling time should not be studied in isolation to understand thermal 

desorption behaviour of the hydride. 

3.4. Additive Study 
Non-oxide additives have been investigated in this research project including graphite and 

SiC. SiC:graphite mixtures in a 1:1 molar ratio were also studied. Using the results from 

the preliminary work on milling MgH2 alone, comparisons could be made using a number 

of milling conditions. 

1. 1-20 wt% additive; 40:1, 2 balls, 5 h milling 

2. 5 wt% additive; 80:1, 8 balls, 5 h milling 

3. 5 wt% additive; 80:1, 8 balls, 2 h milling 

The first allows insight into the effect that the catalyst has on the temperature of the two 

decomposition events observed in the DTA curve, while the second employs significantly 

harsher conditions to establish improved thermal behaviour which is important for 

commercial applications. The third comparison indicates whether similar thermal 

decomposition profiles may be obtained for samples milled for less time by reducing the 

milling time from 5 h to 2 h. 

As shown above, milling of MgH2 under relatively mild conditions results in a two-step 

decomposition based on observations from DTA data. The effect of a number of specific 

catalysts has been covered in the literature, and this chapter will cover both the effect that 

the additives employed in this study have on the two-step DTA phenomenon and also the 
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most suitable conditions for improving commercial applicability by reducing 

dehydrogenation temperature. 

3.4.1. MgH2-x wt% Graphite (x = 1-20 wt%) 

MgH2-x wt% graphite composites were prepared by adding the appropriate wt% of 

graphite to un-milled MgH2 into the stainless steel grinding jar in an inert gas-filled 

glovebox. Milling was then conducted using the various conditions indicated in Table 3-

14, where the total experiment time is twice the milling duration due to the inclusion of 5 

min rest periods between 5 min mill periods. The rotation direction was reversed after each 

milling period. 

Table 3-14 MgH2-x wt% graphite samples (x = 1-20). 

Sample wt% 
additive 

B:P 
ratio 

No. Milling 
Balls 

Milling Duration / 
h 

13 1 40:1 2 5 

14 5 40:1 2 5 

15 10 40:1 2 5 

16 20 40:1 2 5 

17 5 80:1 8 2 

18 5 80:1 8 5 
 

SEM analysis shows that all the MgH2- x wt% graphite composites milled under mild 

conditions (Samples 13-16) have smaller particles on the surface of relatively un-changed 

MgH2 particles (Figure 3-26). It is evident that the smaller particles formed are in the 

micron scale. For Sample 17, milled under harsher conditions (80:1 b:p, 8 milling balls), 

the hydride forms large plate-type particles which are >10 μm in width. At higher 

magnification, the small particles on the surface of the “host” hydride particles show a 

polydisperse size distribution. After 5 h milling under the harsher conditions (Sample 18), 

the larger hydride particles have been significantly reduced in size, but again the particle 

size distribution in the sample is polydisperse, with roughly spherical samples being shown 

to range from sub-micron to >10 μm in diameter. 
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Figure 3-26 SEM image of a) as-received graphite (100 μm scale), b) Sample 15, c & d) Sample 17, 

and e & f) Sample 18. 

For Samples 13-16, the α-MgH2 reflections appear relatively unchanged after milling with 

no evidence to suggest magnesium carbide formation, and this is consistent with the 

negligible solubility of C in Mg.91 As expected, the (002) reflection for graphite at 2θ ≈ 

26.5o becomes more prominent as the additive loading is increased (Figure 3-27). From 

this, an estimate of the graphite crystallite size parallel to the c-direction was determined 

using the Scherrer method, applying a Scherrer constant of K = 0.91.92 This indicated that 

the particles sizes for graphite in the MgH2 samples with 1 and 5 wt% graphite were 

approximately 813 nm and 1.6 μm, respectively, while the graphite in both the 10 and 20 

wt% samples was 1.9 μm. 
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Figure 3-27 PXD of MgH2 Samples 13-16. 

Slight broadening of the hydride reflections is evident but no peak shifts are observed. 

There does not appear to be any contribution from Fe as a contaminant from the milling 

tools, nor is there any evidence for MgO reflections resulting from significant oxidation. 

Diffraction data for samples milled under harsh conditions for different durations are 

distinct where the diffraction pattern shown here for the 5 h milled sample is symptomatic 

of MgH2 milled for longer durations (Figure 3-28). The average particle size of α-MgH2 in 

the 2 h and 5 h samples was approximated using the Scherrer method and found to be 1.9 

μm and 1.4 μm, respectively. This suggests that the particles sizes are reasonably similar, 

but does not account for a highly polydisperse particle size distribution which is likely to 

be the case for samples milled for longer.  
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Figure 3-28 PXD of MgH2 samples 17 (red) and 18 (blue). 

Under the milder conditions employed (Samples 13-16), increased proportions of graphite 

had a negative effect on the thermal decomposition of the hydride in comparison to the 

milled hydride itself, where the hydrogen desorption temperature of the composites 

actually increased with increasing graphite proportions (Figure 3-29a & b). The study of 

MgH2-graphite composites by Shang and Guo also indicated that the hydrogen desorption 

properties of MgH2 were not enhanced at relatively mild milling conditions upon inclusion 

of higher graphite proportions.93 Mass loss associated with hydrogen release began earliest 

in the MgH2-5 wt% graphite sample (Sample 14), but in fact the 1 wt% sample (Sample 

13) performed best with respect to reducing the initial Tpeak. Furthermore, the markedly 

sharper gradient of the TG data indicates that the initial hydrogen desorption kinetics of the 

1 wt% sample is improved relative to the other samples. Evidence of a two-step process in 

the DSC curve was observed in the work of Zhou et al. who milled MgH2 with coal 

derived carbon.39 The effect of milling time was shown to have a significant impact on the 

position of the two DSC peaks of MgH2, where longer milling times enhanced the first 

DSC peak, while the second event stayed relatively constant and the authors implied that 

this was a result of a greater proportion of γ-MgH2 in the samples. The same conclusion 

regarding the increased proportions of the γ-MgH2 cannot be drawn here, as the presence 

of γ-MgH2 was not observed by PXD. Upon further inspection of the DTA profiles, the 

estimated total enthalpy of decomposition (Table 3-15) is seen to drop as the loading levels 

are increased, and all are well below that of the commercial, un-milled hydride but 

comparable to milled MgH2 without graphite (see section 3.3). Thermal decomposition 

begins at the lowest temperature with the 5 wt% doped sample milled under mild 
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conditions. Figure 3-29c & d give the DTA and TG data for Samples 17 and 18, where, the 

Tonset and Tpeak for Sample 18 are slightly higher than those recorded for Sample 17. 

  

 

Figure 3-29 a & b) DTA and TG data respectively for Samples 13-16. c & d) DTA and TG data 

respectively for Samples 17 (dashed line) and 18 (solid line). 

PXD analysis of the samples retrieved after STA once again allowed analysis of the 

graphite (002) reflection by the Scherrer method. This revealed that the particle size for the 

5 wt% (as-milled: 1.6 μm  post-STA: 1.4 μm) and 20 wt% (as-milled: 1.9 μm  post-

STA: 1.6 μm) samples milled at mild conditions were slightly smaller after thermal 

analysis than in the as-milled sample. 

  

c) d) 

a) b) 
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Table 3-15 Thermal analysis data for MgH2-x wt% graphite (Samples 13-18). 

 DTA TG  

Sample 
ID 

wt%  
additive 

Tonset 

/ oC 

Tpeak 

/ oC 

Tonset 
/ oC 

Mass 
Loss 
/ % 

†Edec / kJ/mol 

13 1 LT: 334.4 
HT: 375.5 

 

LT: 353.6 
HT: 391.5 
ΔT = 37.9 

LT: 336.8 
*364.2 

 

LT: 2.97 
HT: 3.90 
∑ = 6.87 

64.38 

14 5 LT: 300.9 
*341.8 

 
HT: 391.4 

LT: 262.5 
*341.6 

LT: 0.89 
HT: 5.75 
∑ = 6.64 

60.27 

15 10 LT:305.1 
*342.0 

 
HT: 399.6 

LT: 287.1 
*342.0 

LT: 0.34 
HT: 5.94 
∑ = 6.28 

57.00 

16 20 LT: 320.6 
*355.6 

 
HT:404.4 

LT: 306.2 
*355.6 

LT: 0.33 
HT: 5.81 
∑ = 6.14 

54.75 

17 5 312.1 340.4 321.6 6.50 57.27 

18 5 315.5 341.1 321.8 6.50 53.83 
(* indicates an inflection in the gradient of the curve at a given temperature, and the ΔT= 

THT-TLT is given for the endothermic maxima where a two-step decomposition is observed. 
† Edec determined from data collected at 5 °C/min.) 

Raman spectroscopy helped to indicate whether the graphite was affected in the milling 

process and also after hydrogen desorption (Figure 3-30). The relative intensity ratio for 

the two characteristic first order Raman stretches of graphite is a reasonable indicator for 

structure characteristics of carbon materials.94, 95 The first order D and G bands are found 

at ~1350 cm-1 and ~1580 cm-1, respectively, and the ID/IG relative intensity ratio has been 

determined for these samples by reading the maximum intensity value from the spectra for 

the observed bands. These Raman active modes are related to the D6h symmetry function 

of the of P63/mmc space group to which the layered graphitic carbon structure may be 

assigned. The D band has been described as indicative of smaller graphite crystallite sizes, 

while the G band provides information about C-C E2g stretching.96 Raman spectra for all of 

the graphite doped samples show that the ID/IG ratio increases after milling (Table 3-16). 

This is consistent with findings from literature, where the ID/IG
 ratio was observed to 

increase from 0.8 to 3.49 after milling MgH2 with 5 wt% graphite in the work of Huang et 

al., indicating a higher proportion of disordered graphite in the milled samples.97 After 

heating, the relative intensity ratio, ID/IG, was again found to increase, which indicates that 
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the carbon structure may be further modified upon heating to decompose the hydride. The 

presence of a weak band at ~2700 cm-1 confirms that the graphite particles are small but a 

degree of crystallinity remains. Huang et al. suggest that the ID/IG ratio was relatively 

unchanged upon rehydrogenation of the milled Mg-graphite composite.64 Raman spectra of 

the dehydrogenated products in their study were not shown and so it is not possible to say 

to what degree the structural modifications occur in the graphite upon rehydrogenation in 

their earlier work relative to the findings here. However, it may be postulated that the 

structure of the graphitic carbon may have an important role in the hydrogen release 

process from MgH2, where the particle size of polycrystalline graphite may be crucial for 

enhanced activity in this system. 

Table 3-16 Relative Raman intensity ratios, ID/IG, for Samples 13-16. 

 ID/IG 

Sample Post Mill Post STA 

13 1.04 1.26 

14 1.29 1.30 

15 1.10 1.28 

16 1.20 1.21 

(ID/IG = 0.35 for un-milled, commercial graphite used in this work). 
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Figure 3-30 Raman spectra of Sample 14 a) as-milled and b) post STA product. 

3.4.1.1. Summary of Graphite Additive Effects 

The effect of graphite on the Mg-H system has been explored under the mild and harsh 

milling conditions selected for this work. At mild milling conditions, the thermal analysis 

results show that the HT decomposition is stabilised by addition of the graphite, resulting 

in a poorer performance of the hydride relative to the material milled under the same 

conditions without additive. At harsher conditions, a similar effect from the graphite is not 

apparent, and in fact the total enthalpy of decomposition for the one step decomposition is 

decreased relative to the un-doped sample. The Tpeak, however, is not significantly 

decreased. Raman analysis has given significant insight into the properties of graphite after 

milling with MgH2 and after the 1st desorption, and indicates that a high dispersion of small 

crystalline particles of graphite may be involved in the improvements observed in the 

enthalpy of desorption. Based on XPS (X-ray Photoelectron Spectroscopy) data, Bouachira 

et al. suggest that improvements in Mg milled with graphite are due to the inhibition of 

oxide layer formation, where this was accredited to the adsorption of a graphene layer over 

the surfaces of the particles.67, 68 Furthermore, they proposed that highly reactive C species 

(derived from radicals formed by the rupture of C-C graphene bonds during milling of 

graphite) may react with oxide species or diffuse on to the Mg surfaces, and thus prevent 

a) 

b) 
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oxide re-formation. This has recently been corroborated in the work of Lototskyy et al. 

using a variety of carbon based additives.51 A study using XPS recently demonstrated that 

carbon nanorods decorated with Ni are shown to prevent particle agglomeration as a result 

of the dispersion of carbon over the hydride surfaces, resulting in improved cyclic 

stability.98 

Literature on use of graphene with MgH2 is emerging. In recent work by Liu et al., they 

demonstrate that the performance of graphene as an additive for MgH2 may be enhanced 

by inclusion of nanomaterials on the graphene layers.99 This was demonstrated by 

embedding amorpous TiB2 nanoparticles on graphene nanosheets (GNS), then milling of 5 

wt% of the TiB2-GNS composite with MgH2. A synergistic effect was observed for the 

TiB2-GNS in comparison to the 5 wt% TiB2-MgH2 and 5 wt% GNS-MgH2 samples. The 

novel composite revealed a decomposition temperature 44 °C lower than the as-milled, 

undoped MgH2 to give a decomposition Tpeak of 319 °C. Furthermore, a significant 

improvement in the desorption kinetics was observed, where they obtained >6 wt% H2 

from the 5 wt% TiB2-GNS doped MgH2 in <10 min using 5 kPa at 300 °C. Liu et al. 

suggest that the observed improvements for H2 release from MgH2 in the 5 wt% TiB2-GNS 

doped samples is the result of enhanced hydride-dopant interfaces, with a high number of 

catalytic sites and H “diffusion channels”. 

3.4.2. MgH2-x wt% Silicon Carbide (x = 1-20 wt%) 

Silicon carbide has already been shown to improve the properties of MgH2 and, for 

comparative purposes using the conditions employed previously for graphite in this study, 

MgH2-x wt% SiC composites were prepared and investigated further (Table 3-17). 

Confirmation by PXD analysis of the commercial as-received product showed that the 

carbide used was the most common 6H-SiC polymorph.100 

Table 3-17 MgH2-x wt% SiC samples (x = 1-20 wt%). 

Sample x wt% 
additive 

B:P 
ratio 

No. Milling 
Balls 

Milling Duration  
/ h 

19 1 40:1 2 5 

20 5 40:1 2 5 

21 10 40:1 2 5 

22 20 40:1 2 5 

23 5 80:1 8 2 

24 5 80:1 8 5 
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SEM images for Sample 21 show that the particle size has been modified, although the 

MgH2 particles exist in large flat plates which are ~16 μm in width (Figure 3-31a). At 

higher magnification, it is possible to see that the particles size is polydisperse, with the 

majority of particles at the micron scale although some sub-micron particles were observed 

(Figure 3-31b). Milling for 2 h (Sample 23, Figure 3-31c & d) and 5 h (Sample 24, Figure 

3-31e & f) at harsher conditions shows a significant difference in the particle size relative 

to the mild conditions used where images of these samples reveal sub-micron sized 

particles, although some larger particles, ~5 μm, remain.  

  

  

  

Figure 3-31 SEM micrographs of (a & b) Sample 21, (c and d) Sample 23 and (e & f) Sample 24 

using low and high magnification. 
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Samples milled under mild conditions show slight broadening of the reflections and the 

emergence of Fe upon 10 wt% SiC inclusion (Figure 3-32). 

 

Figure 3-32 Exemplar PXD patterns of MgH2 milled Samples 20 and 21. (Downward arrow 

indicates Fe reflection from stainless steel milling tools.) 

The diffraction patterns of the samples milled under harsh conditions (Samples 23 and 24) 

show significantly broadened reflections for α-MgH2 with respect to the samples milled 

under milder conditions, indicating a decrease in particle size (Figure 3-33). Contamination 

from the steel milling tools is evident in these samples, where an approximate threefold 

increase in the relative intensity of the (110) reflection for Fe (2θ = 44.60°) was determined 

for Sample 23 relative to Sample 24. From PXD, the same degree of contamination was 

not evident for the samples milled under mild conditions. A similar contamination effect, 

however, has been observed in literature when milling SiC only in stainless steel media for 

particle size reduction.101 In previous work on MgH2-x wt% SiC composites, also 

conducted in a steel milling vessel, a reflection in this region was assigned to MgO by 

Ranjbar.102 In the work of Kurko et al., an unassigned reflection which would match that of 

Fe is also apparent but unexplained.103 
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Figure 3-33 PXD of Sample 23 and Sample 24. 

The crystallite size was found to be markedly improved, i.e., reduced, by use of harsher 

milling conditions using 5 wt% SiC. The average crystallite size (approximated using the 

Scherrer method) for Sample 20 and was determined to be > 2 μm in size, while the 

average crystallite size of those milled under harsh conditions were significantly 

diminished. The 5 h milled sample (Sample 24) was actually found to be larger than that of 

the 2 h sample (Sample 23), 489 nm and 407 nm respectively, and this may be the result of 

agglomeration in the former. 

Raman analysis of the SiC samples did not show significantly resolved peaks at loadings 

beyond 1 wt% of SiC, where broadening of the noisy signals shown in Figure 3-34 worsen 

at higher carbide loading and using harsh milling conditions. There is evidence, however, 

to suggest weak bands at ~765 cm-1 and 930-940 cm-1 for SiC in the subsequent samples 

milled under mild conditions. For Samples 20 – 24 milled under harsh conditions, these 

bands lie at a slightly lower Raman shift than expected for SiC; ~780 cm-1 and ~960 cm-1 

for the TO (Transverse Optical phonon mode) and LO (Longitudinal Optical phonon 

mode) bands, respectively. This shift is likely to be the result of amorphization of the 

carbide.104 
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Figure 3-34 Raman spectrum collected for Sample 19. 

Comparison of thermal analysis data for the samples milled under mild conditions 

(Samples 19-22) indicates that the LT peak becomes enhanced upon an increase in additive 

loading up to 10 wt%, at which point the DTA trace indicates only one peak (Figure 3-35a 

& b, Table 3-18). Using 20 wt% (Sample 22), the thermal properties appear significantly 

different. A two-step decomposition re-emerges, and this is similar to that observed by 

Ranjbar et al., who suggest that elevated SiC doping levels affect the hydrogen desorption 

pathways, leading to diminished hydrogen storage properties, for instance, lower hydrogen 

capacity, high hysteresis upon cycling, poor sorption kinetics.81 These effects were 

attributed to the dopant blocking the hydrogen diffusion pathways at elevated loading 

levels. Their work suggested an optimised doping level of the SiC to be 5 wt%. At harsh 

milling conditions using 5 wt% SiC in this work (Samples 23 and 24, the Tpeak of the 

hydride is shown to be remarkably improved both in relation to the un-doped samples and 

also relative to the results of Ranjbar and colleagues (Figure 3-35c & d). The distinction 

between the desorption properties observed in this work and that seen previously is likely 

to be a direct result of the milling conditions employed, where reactive milling under H2 

was employed to produce the composites described by Ranjbar et al. 
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Figure 3-35 a & b) DTA and TG traces respectively for Samples 19-22, c & d) Comparison of 

DTA-TG traces for Sample 23 (dashed line) and Sample 24 (solid line). 

  

a) b) 

c) d) 
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Table 3-18 Thermal analysis data for Samples 19-24. 

 DTA TG  

Sample x wt%  
additive 

Tonset 

/ oC 

Tpeak 

/ oC 

Mass Loss  
Tonset / oC 

Mass Change 
/ % 

†Edec  

/ kJ/mol 

19 1 LT: 335.6 
HT: 377.6 

 

LT: 358.3 
HT: 392.3 
ΔT = 34.0 

LT: 341.1 
*372.5 

LT: 2.88 
HT: 3.84 
∑= 6.72 

63.06 

20 5 LT: 327.0 
HT: 378.6 

LT: 353.3 
HT: 386.4 
ΔT = 33.1 

LT: 337.1 
*365.7 

LT: 3.67 
HT: 2.80 
∑ = 6.47 

60.01 

21 10 ‡313.7 344.7 316.8 6.15 52.48 

22 20 LT:310.9 
 

LT: 344.3 
*369.2 

LT:317.6 
*357.6 

LT: 3.16 
HT: 2.36 
∑ = 5.52 

50.56 

23 5 322.0 349.2 325.5 6.35 54.09 

24 5 312.3 340.1 319.7 6.03 51.30 
 (* indicates an inflection in the gradient of the curve at a given temperature, and the ΔT = 

THT-TLT is given for the endothermic maxima where a two-step decomposition is observed. 
† Edec determined from data collected at 5 °C/min. ‡Asymmetric peak.) 

Destabilisation of the MgH2 system using Si has been studied previously, where the 

formation of magnesium silicide during the decomposition process was determined as the 

mechanism by which a reduction in the decomposition temperature of MgH2 was achieved 

(Equation 3-2).105 The drawback of this reaction is the irreversible nature of the Mg2Si 

formation. Mg does not readily form a hydride, and therefore if added as a relatively small 

wt% dopant reduces the total Mg available for reversible hydrogen storage in systems of 

this kind. 

Equation 3-2 MgH2 + Si  Mg2Si + H2  

The PXD results for the post-STA samples do not show the presence of magnesium silicide 

(or Si) in analogy to the work of Olsen and Vajo (Figure 3-36), which is expected based on 

the high thermal stability of SiC (~2700 °C).106 This suggests that the reversibility of the 

samples prepared here are not likely to suffer from diminished cyclability properties as a 

result of side reactions involving Si within the temperature range used for hydride 

decomposition and rehydrogenation. 
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Figure 3-36 Post STA PXD analysis of samples milled for 2 h (Sample 23, red) and 5 h (Sample 24, 

blue). 

Imamura reported significant improvement for MgH2-22 mol% SiC nanocomposites milled 

in cyclohexane, although they reported a loss of 5.3 wt% hydrogen during milling.- From 

the data provided in Table 3-18, the MgH2-x wt% SiC composites prepared in this work 

(with the exception of Sample 22) show hydrogen release exceeding 6 wt%, and therefore 

any apparent hydrogen loss in the mill is comparatively small. 

3.4.2.1. Summary of SiC Additive Effects 

It is clear from this work that SiC generates severe attrition conditions in which 

comminution of MgH2 particles occurs. The presence of Fe suggested from the diffraction 

patterns indicates contamination from the stainless steel milling media, which highlights 

the intensity of the milling procedure in the MgH2-xSiC samples relative to the milled, un-

doped MgH2 and MgH2-xGraphite samples, in which no evidence of Fe contamination was 

found. The thermal desorption properties of the SiC doped samples are not significantly 

improved relative to the Graphite doped samples, where the Tpeak values at the same 

milling conditions with the same dopant loadings were not dramatically reduced. In fact, 

the Tpeak values for samples milled for 2 h and 5 h at the harsher conditions were nominally 

the same as those for the analogous Graphite doped samples. The Edec values were only 

marginally reduced. It is expected that the harsh conditions which arise as a result of the 

inclusion of the hard carbide actually contribute to a degree of particle agglomeration that 
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hinders the hydride by increasing the path length of hydride diffusion. Therefore, it seemed 

prudent to combine the harsh milling properties of the SiC dopant with the potentially 

catalytic properties of graphite that may also act as a milling lubricant and in turn could 

reduce the severity of the milling action to prevent contamination from the milling tools. 

3.4.3. MgH2-x wt% Silicon Carbide:Graphite (x = 1-20 wt%) 

A 1:1 molar mixture of SiC and graphite was mixed thoroughly using an agate mortar and 

pestle on the open bench. The additive was then added in 1 - 20 wt% proportions to MgH2 

and milling conducted under a number of different conditions to establish optimum 

conditions and additive proportion for this system (Table 3-19). 

Table 3-19 Sample data for MgH2-x wt% SiC-graphite. 

Sample ID x wt% 
additive 

B:P ratio No. Milling Balls Milling Duration /h 

25 1 40:1 2 5 

26 5 40:1 2 5 

27 10 40:1 2 5 

28 20 40:1 2 5 

29 1 80:1 8 2 

30 5 80:1 8 2 

31 10 80:1 8 2 

32 20 80:1 8 2 
 

SEM images show that particle size is influenced by the additive even under mild milling 

conditions. Under mild conditions (Samples 25-28), smaller particles exist on the surface 

of larger “host” particles rather than an overall reduction in size of the material (Figure 3-

37a) & b)). At higher magnification, the smallest particles were found to be nano-sized 

(Figure 3-37c)). Backscattered electron imaging (Figure 3-37d)), shows that there is a 

degree of contamination from the stainless steel milling jar, where the brighter regions 

indicate heavier elements, i.e., Fe from the stainless steel. Samples 29-32 appear to be 

comprised of smaller particles overall, relative to the highly polydisperse samples prepared 

under milder conditions. The “host” particles appear to have been broken down, which will 

increase the overall surface area of the sample. 
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Figure 3-37 SEM images comparing commercial MgH2 milled under mild conditions a) without 

additive (20 μm) and b) Sample 28 (10 μm). Images of Sample 28 at higher magnification using c) 

secondary electron and d) back scattering electron imaging. SEM images for e) Sample 29 and f) 

Sample 32 (20 μm). 

PXD analysis of the as-milled samples revealed crystalline MgH2, Mg and the SiC 

additive, however, no reflections were evident for graphite or γ-MgH2 (Figure 3-38). 
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Figure 3-38 PXD data for Samples 25-28. 

EDX data for Sample 30 shows that the Si and C are well-dispersed in the MgH2 sample 

although some clustering of carbon is evident (Figure 3-39). The presence of Fe shows 

evidence of contamination from the milling tools used, and oxygen appears as with the 

commercial, milled MgH2. 
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Figure 3-39 a) Map of elemental Si (red) and C (green) dispersion (40 μm) and b) EDX spectrum 

for Sample 30. 

The effect of using both SiC and graphite shows a distinct change in the two-step 

decomposition observed in the DTA trace (Figure 3-40, Table 3-20). Comparing DTA 

traces for Samples 25-28, it is evident that the LT peak is enhanced upon increasing 

additive loading as observed with the SiC-only samples under the same conditions. The 

greatest difference in Tpeak between the LT and HT events was determined for Sample 27. 

  

a) 

b) 
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Figure 3-40 DTA & TG data collected using 5 o/min heating rate for Samples 25-28. 

Table 3-20 DTA-TG data for Samples 25-28. 

 DTA TG  

Sample wt%  
additive 

Tonset 

/ oC 

Tpeak 

/ oC 

Mass Loss Tonset 

/ oC 

Mass Change 
/ % 

†Edec  

/ kJ/mol 

25 1 LT:327.3 
*363.8 

 
HT: 393.2 

LT: 357.4 
*389.6 

LT: 4.71 
HT: 2.14 
∑ = 6.85 

65.62 

26 5 LT: 331.5 
HT: 378.6 

LT: 357.0 
HT: 391.4 
ΔT = 34.4 

LT: 337.0 
HT:373.9 

LT: 3.38 
HT: 3.25 
∑ = 6.63 

60.19 

27 10 LT:314.4 
HT:369.9 

LT:339.9 
HT: 388.8 
ΔT = 48.9 

LT:317.6 
*360.5 

LT: 3.51 
HT: 2.92 
∑ = 6.43 

55.46 

28 20 LT: 293.1 
HT: 367.7 

LT: 324.7 
HT: 388.3 
ΔT = 63.6 

LT: 306.1 
*347.5 

LT: 1.78 
HT: 3.74 
∑ = 5.52 

68.98 

 (* indicates an inflection in the gradient of the curve at a given temperature, and the ΔT= 

THT-TLT is given for the endothermic maxima where a two-step decomposition is observed. 
†Edec determined from data collected at 5 °C/min.) 

Both EDX and PXD analysis indicate the presence of Fe to indicate contamination from 

milling tools using harsh conditions, which indicates significantly harsh attrition conditions 

whereby erosion of the stainless steel occurred (Figure 3-39 and Figure 3-41). This effect 

was not observed in the samples milled at mild conditions where reflections for Fe(110) 

were not obvious from PXD analysis. Upon comparison of relative intensities for Fe(110) in 

the PXD patterns of Samples 23 and 30, a 1.4 fold increase is observed, and so the Fe 

“pick-up” is more pronounced in the SiC:graphite sample. (The intensity of Fe(110) 

b) a) 
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reflection was measured relative to the MgH2 phase in each case.) This suggests that the 

attrition procedure is intensified by inclusion of the SiC:graphite mixture relative to SiC 

alone. A 15 fold increase in relative intensity for the Fe(110) reflection was determined from 

the diffraction patterns of Samples 29 and 32, indicating that the Fe “pick-up” increases 

dramatically with increasing additive proportions in the sample. 

PXD does not indicate reflections which would indicate the presence of an Mg-Si phase, 

e.g., Mg2Si. As with the milled MgH2 sample presented earlier, PXD analysis of Samples 

29 and 30 under ambient conditions in Bragg-Brentano geometry indicates no signs of 

oxidation over a 15 h analysis period (Figure 3-41, Appendix A; A.7). This is a significant 

finding, since recent work indicates that magnesium hydroxide forms during milling of 

MgH2-TiB2-SiC composites milled under Ar, and thus has a significant impact on the 

thermal behaviour and cyclability of the composite.107 

 

Figure 3-41 Time resolved PXD of Sample 29. 

The average particle size approximated by the Scherrer method was shown to decrease 

upon increased additive proportion by almost a half; Sample 29 was found to be 945 nm 

and decreased to 489 nm in Sample 32. In addition, PXD analyses of the samples were 

collected 2 months apart and the diffraction patterns are unchanged. This indicates that the 
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hydride may be stored for relatively long durations without a change in the crystallinity or 

significant oxidation. 

FTIR shows a broad band in the 900-1600 cm-1 region characteristic of Mg-H stretching in 

all the composite samples (Appendix A, A.8), with the three more pronounced bands 

which were observed to emerge in the un-doped, milled MgH2 shown earlier (Figure 3-24). 

Zhou et al. suggest that the three bands emerging from the broad Mg-H stretch are 

characteristic of aromatic C-H bonds, which are observed in the FTIR spectra of their 

milled anthracite coal-doped MgH2 samples at 890, 1005 and 1143 cm-1.76 (They do not 

show the spectra of un-doped, milled MgH2 for comparison in their paper.) Their study 

uses these FTIR C-H assignments to justify C-H bond formation via chemisorption of 

hydrogen by unsaturated carbon bonds that are produced in the coal during milling of the 

coal-hydride composite. Zhou et al. state that the hydrogen desorbs faster from the 

hydrogen in the carbon (i.e., the C-H component) relative to the MgH2, to explain the 

faster kinetics of their product. This requires further clarification and more developed 

analysis to confirm whether the C-H phenomenon occurs during the milling procedure. 

Raman analysis of the as-milled and post STA samples revealed again that the effect on the 

ID/IG ratio of graphite was significant (Figure 3-42). The ratio also increased as the 

proportion of additive increased, e.g., ID/IG for Sample 29 was 1.193, and significantly 

higher (1.40) for Sample 32. This implies that the graphite in the sample is becoming more 

amorphous after milling, and the crystallinity of the graphite continues to degrade after 

decomposition of the composite to 500 oC.  

 

Figure 3-42 Exemplar Raman spectra for SiC-graphite doped MgH2 milled under harsh 

conditions; Sample 31 a) as-milled and b) post STA. 

The Tpeak of Samples 29-32 improved with increasing proportions of the additive 

composite, with the expected consequential decrease in the hydrogen capacity (Figure 3-

b) a) 
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43, Table 3-21). Comparing STA data collected at 5 oC/min, the corresponding MS traces 

show that the hydrogen release onset occurs much earlier in the doped samples with 

respect to un-doped MgH2, even at the lowest composite loading. 

 

 

Figure 3-43 Thermal analysis data for Samples 29-32. a) DTA, b) TG and c) MS (m/z = 2) plots 

(including comparison with milled un-doped MgH2) collected at 5 o/min. d) Kissinger plots obtained by 

heating at 2, 5, 10 and 20 °C including comparison with milled un-doped MgH2. (Error bars omitted 

for clarity; see Appendix A, A.9 for individual Kissinger plots of Samples 29-32 including error bars.) 

  

d) c) 

b) a) 
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Table 3-21 DTA-TG data for Samples 29-32. 

 DTA TG  

Sample wt% 
additive 

Tonset 

/ °C 

Tpeak 

/ °C 

Mass 
Loss  
Tonset 

/ °C 

Mass 
Change 
/ wt% 

Kissinger 
Ea  

/ kJ/mol 
 

Ozawa* 
Ea  

/ kJ/mol 
 

†Edec  
/ 

kJ/mol 

29 1 320.3 345.7 324.8 6.76 126±14 130±14 59.12 

30 5 300.3 331.4 307.2 6.18 103±19 108±18 56.32 

31 10 282.4 317.9 292.0 5.37 84±5 90±5 49.22 

32 20 261.4 299.0 268.1 4.17 82±3 87±3 40.64 
†Edec determined from data collected at 5 °C/min. *Ozawa plots in Appendix A, A.10. 

Increasing the additive loading beyond 10 wt% was not found to decrease the Ea 

significantly more, although the 20 wt% loading did release hydrogen at the lowest 

temperature in the series of MgH2 samples studied. Each of the MgH2-1, 5, 10 wt% 

SiC:graphite composites release >5 wt% H, which is desirable for practical solid state 

storage. 

Investigation of the post-STA PXD patterns revealed that graphite peak expected at 26.5o 

is absent in all of the samples after heating to 500 oC, suggesting complete degradation of 

the crystalline graphitic structure (Figure 3-44). This confirmed the observations derived 

from the ID/IG relative intensities in Raman spectra. Furthermore, no unexpected mass loss 

in the TG data or release of CO, CO2 species were observed in the MS to suggest other 

side reactions which would involve the release of C from the system. 



145 

 

Figure 3-44 X-ray diffraction patterns for MgH2-x wt% SiC:graphite (x = 1, 5, 10, 20) samples 

collected post STA. 

As seen in the post-milled samples, the intensity of the Fe(110) reflection is observed to 

intensify with increasing SiC:graphite content. The effect of adding Fe to the MgH2 system 

has been studied.108 After 24 h of milling under 12 atm. H2, desorption of hydrogen from 

MgH2-5 wt% Fe system occurs between 310-350 °C, which is an improvement relative to 

the milled MgH2 (370-390 °C). EDX of the as-milled, un-doped MgH2 sample prepared in 

the recent work of Shahi et al. does not suggest that Fe contamination has occurred. Upon 

inclusion of 5 wt% of Fe as a catalyst, Shahi et al. assign two peaks in their diffraction 

pattern at ~36.5° and ~62° to be the ternary hydride Mg2FeH6. This assignment seems 

dubious, since these reflections also appear to be present in the un-milled and as-milled 

(un-doped) samples. 

Another important criteria for the use of MgH2 in commercial systems, is the integrity of 

the material upon decomposition. Pressing ball milled powder into pellets can have 

significant benefits for commercialisation as a result of compaction of the storage matrix, 

i.e., volume reduction, in to a shape which is appropriate for a particular tank design. A 

preliminary study on the pelletisation of MgH2-x wt% SiC:graphite composites is 

presented here.65 The sample must be able to withstand desorption conditions without 

deforming significantly, i.e., becoming embrittled, within the system. Many studies use 

hydride composites in the form of a pellet, and the final part of this study looks at how the 

integrity of a MgH2-5 wt% SiC:graphite system is affected after the first dehydrogenation. 
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Using a pellet (5 mm in diameter, 0.0958 g powder) of Sample 30 formed in a hand press 

under N2 in a glovebox, the sample integrity after the first desorption was tested. The shiny 

pellet was inserted into a silica tube and sealed using a rubber Suba-seal® septum and 

parafilm (Figure 3-45 a), then heated using the same temperature programme as employed 

in the STA experiments run at 5 oC/min. The sample was then retrieved in a glovebox after 

cooling to room temperature (Figure 3-45 b). 

 

 

 

Figure 3-45 Images of Sample 30 prepared as a 5 mm (diameter) pellet shown a) before and b) 

after heating to 500 oC under Ar(g). 

The pellet remained intact, with only slight discoloration from shiny black to grey at the 

end of the pellet that was in contact with the silica tube. A metallic film was observed on 

the bottom of the silica tube. Once cooled, the pellet was re-weighed, then ground to a 

powder in an agate mortar and pestle under N2(g) then PXD analysis conducted. The sample 

was found to lose less weight than expected, ~3 wt%. Neither pattern obtained after 

heating (in the milled powder using STA or the pellet heated in the bench furnace) showed 

residual MgH2, indicating full decomposition of the hydride to Mg metal. The same 

preparation was employed for the 10 wt% sample, and similar results were obtained. 
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3.4.3.1. Summary SiC:graphite Additive Effects 

The lowest Tpeak in this series of samples was recorded for the MgH2-20 wt% SiC:graphite 

composite (Sample 31), which gives a significant improvement relative to the un-milled 

sample. One suggestion as to why the SiC:graphite composite performance is improved 

relative to the SiC and graphite doped samples alone is that a synergistic catalytic effect is 

introduced, which was also demonstrated by Milanese et al.69 The SiC aids in the 

comminution of the MgH2 (and graphite) particles, as suggested by Ranjbar previously. 

Meanwhile, the highly dispersed small particles of graphite act as a means by which the 

hydrogen may diffuse out of the system more easily. Early work by Immamura et al. 

suggested that the close contact between the aromatic graphite rings and Mg was 

responsible for improved performance in their Mg-Pd-graphite composites, where a charge 

transfer effect was observed by XPS.52, 53, 55, 57 Thus, the latent structure of graphite in the 

samples prepared in this work is likely to play a considerable role in the diffusion pathway 

of hydrogen in and out of the Mg-H system as observed in previous studies involving 

interaction of hydrogen with graphitic carbon, graphene sheets, and intercalation 

compounds comprising alkali metals.109, 110, 111, 112 Bouaricha et al. proposed that graphene 

layers form on the surface of Mg particles during milling, which was confirmed by 

XANES (X-ray Absortion Near Edge Structure) analysis.68 Their work suggested that a 

reduction in the surface tension of the powder is induced by formation of graphene layers 

on fresh surfaces formed during milling. Two hypotheses were described for the inhibition 

of oxide formation in the hydride;  

1. the protective graphene layer prevents further oxidation, and/or 

2. preferential reaction of highly reactive C-species with oxides on the particle surfaces. 

Therefore, for samples prepared using the milder milling conditions in this work, oxide 

inhibition could be the cause of the enhanced hydrogen desorption characteristics 

observed.  This was manifested as an increase in the ΔT between the LT and HT peaks of 

the DTA trace. Further, it may explain the increase in ΔT for the LT and HT peaks also 

observed by Zhou et al., who attributed the two-step process to the formation of smaller 

particles and defects in the MgH2, with the lowering of the LT being caused by an 

increased conversion from α-MgH2 to γ-MgH2, despite a lack of quantification for this 

hypothesis.39 A more likely cause of the two-step DTA events observed in this work and by 

Zhou and colleagues is the influence of cleaved graphite on the Mg samples, where the 

effect of milling for longer creates more Mg-graphite particle interfaces, resulting in the 

Tpeak for the LT DTA peak. Therefore the two-step DTA effect is influenced in part by a 
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particle size effect, and cannot simply be attributed to the presence of the γ-MgH2 phase. In 

this work, the increasing proportion of graphite in the composite has effectively given the 

same result. The impact of graphite has also ensured the oxide layer which may normally 

inhibit the diffusion of hydrogen from the particles is replaced by the graphite layer 

proposed by Bouaricha and colleagues. Therefore incorporation of both SiC and graphite 

can significantly reduce particle size and allow a high dispersion of cleaved graphite on the 

surface of the hydride, which may account for the LT event. However, the diffusion of 

hydrogen through the Mg metal is relatively unchanged, which is evidenced by the HT 

event. 

There are a number of advantages of the SiC:graphite system over transition metal based 

catalysts. Both SiC and graphite are non-toxic, inexpensive and may be synthesised from 

waste products, thus providing significant environmental justification for the use of such 

materials in the Mg-H system over expensive transition metals. 

3.4.4. Conclusions 

Ball milling of MgH2 is a facile method of tuning the hydrogen storage properties of this 

important hydride for optimising performance. The process of milling itself enables the 

reduction of decomposition enthalpy and activation energy relative to the commercial, un-

milled hydride as a result of particle size reduction. The use of SiC and graphite in the 

MgH2 has been explored further through the use of SEM, PXD, STA-MS and Raman 

spectroscopy to determine the influence of the graphitic structure on the desorption 

properties of the MgH2- x wt% graphite/-SiC/-SiC:graphite composites. The effect of SiC 

is pronounced, and evidence was provided in this work to show that the carbide 

significantly reduced the particle size of MgH2 upon milling using SEM imaging. Further 

evidence given by EDX and PXD indicates that the energy of the attrition procedure with 

SiC included is such that the erosion of Fe from the stainless steel milling tools is evident. 

This is significantly higher than that seen in un-doped milled MgH2 and that milled with 

graphite. The new MgH2-x wt% SiC-graphite composites have shown significant 

improvements in decomposition performance relative to either additive individually. 

Comparing Tpeak for milled (2 h, 80:1 b:p, 8 balls) MgH2
 without additive (343.4 °C) and 

with 5 wt% of the additives employed, it can be shown that Tpeak is improved slightly using 

graphite (340.4 °C), and SiC is observed to increase the Tpeak (349.2 °C) relative to the 

milled sample. The sample doped with 5 wt% SiC:graphite, however, shows a drop of >10 

°C (331.4 °C) relative to un-doped, milled MgH2 with only a minor decrease in the overall 

wt% H2 desorbed (6.96 wt% H2 vs. 6.18 wt% H2, respectively). In addition, this work has 
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shed light on the reasons for the two-step decomposition observed by DTA, and the 

synergistic effect that mechanically cleaved graphite has on the decomposition of the 

hydride at the surfaces of small particles, which are produced as a result of intense milling 

with SiC. Pellets of the composites showed that the doped hydride in pellet form remained 

intact after the first desorption, which is a promising sign that neither appreciable volume 

changes nor loss of structural integrity would occur in a storage tank after the first use, 

although this requires experimental verification. 
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4. Facile Synthesis of Ternary Metal Hydrides via 

Mechanochemistry 

Part of this work is based on the publication “Facile Synthesis of Nanosized Sodium 

Magnesium Hydride, NaMgH3”, which was an invited paper for a special edition of 

Progress in Natural Science.1 My thanks are extended to Miss Natalia Mazur, an excellent 

IAESTE project student from the Norwegian University of Science and Technology 

(NTNU) who contributed to this work. In addition, I would like to thank Prof. Ru-Shi Liu 

and Dr. Chun Che Lin for arranging and conducting the SXD experiments at NSRRC. 

4.1. Introduction 
Ternary hydrides are of significant importance in the development of candidate hydrogen 

storage systems. The hydrides of magnesium compounds are of particular interest given the 

potential for high capacity, low cost materials.2 Extensive reviews by Yvon et al. describe 

an array of ternary and quaternary hydride compounds containing combinations of alkali, 

alkaline earth and transition metals.3 Synthesis of such compounds typically requires the 

high pressure sintering of respective metals/metal hydrides or alloys.4, 5 Mechanical 

modification of metals and their hydrides has been shown to improve hydrogen sorption 

characteristics via enhanced surface characteristics (e.g., surface defects, increased surface 

area, increased surface: volume ratios). Significant reduction of particle size to the 

nanoscale can improve not only the kinetics but also the thermodynamics of hydrogen 

uptake and release, although this is the subject of much debate.6, 7, 8 

Among possible ternary hydrides, ABH3 perovskites (where A is usually an alkali or 

alkaline earth metal and B is a transition metal) are considered strong competitors to 

nanoscale binary hydrides, e.g., MgH2.9, 10 Replacement of transition metals (B) with early 

alkali/alkaline earth metals in ABH3 compounds maximises potential gravimetric capacity 

and computational studies have shown that such high capacity hydrides may exist (LiMgH3 

and Li2MgH4 contain 8.84 and 9.57 wt% H2, respectively).11, 12 These compounds, 

however, have yet to be realised experimentally. KMgH3 has been extensively studied, 

both experimentally and computationally.11, 13, 14, 15, 16, 17, 18, 19, 20
 Both conventional solid 

state and mechanochemistry techniques have been employed to prepare KMgH3 and 

desorption of hydrogen from the hydride occurs in one step. NaMgH3 may be synthesised 

via reactive mechanochemical means. Use of 1 MPa (10 bar) H2 during milling of a 1:1 

NaH:MgH2 mixture formed the hydride, which displayed an experimental capacity of 5.8 
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wt% H (cf. a theoretical capacity of 6.0 wt%).15, 21 Prior to this work, the synthesis of 

NaMgH3 involved reaction of the hydrides at 753 K under 10 bar of hydrogen.22, 23 Cryo-

milling of the binary hydrides with subsequent high pressure H2 sintering treatments has 

also been employed.24, 25, 26 Indeed, mechanochemical approaches provide not only less 

energy-intensive routes to the hydrides, but also ensure particles sizes are minimised, 

improving the dehydrogenation kinetics of the ternary hydrides compared to those 

prepared at high temperature.27, 28 There is a growing interest in NaMgH3 and related 

hydrides and a drive to understand the sorption mechanisms in these systems in more detail 

by both experimental and computational methods.29, 30, 31, 32, 33, 34, 35  

Synthesis and properties of ternary hydrides formed from AB5 and AB2 Laves-type 

transition metal alloys have been well studied for hydrogen storage applications.36 The 

overall gravimetric/volumetric capacity of these systems is problematic for hydrogen 

storage applications, however, and modification of their properties, e.g., by particle size 

adjustment, have been attempted.37 Incorporation or even complete substitution of 

transition metals by lighter metallic components to form ternary/quaternary hydrides are 

also of significant interest. Starting with the very lightest metals, formation of alloys 

comprising alkaline and alkaline earth metals is possible, typically via induction melting.38 

The equilibrium phase diagrams of the lightest metals, e.g., Li-Mg, Li-Ca, Na-Mg, Na-Ca 

and Ca-Mg indicate that intermetallic alloys may be produced and these have been studied 

extensively for hydrogen storage purposes.39, 40, 41, 42, 43  

Laves-type Mg and Ca alloys have been studied experimentally, where research on the 

Mg-TM (transition metal) phases is prevalent.44 Ternary Ca hydride systems comprising 

Group I hydrides, (e.g. KCaH3 LiCaH3 and NaCaH3) have been investigated.45, 46, 47 Recent 

work has shown that hydrogenation of the CaLi2 alloy results in the formation of the binary 

hydrides, CaH2 and LiH, with no evidence of a ternary Ca-Li hydride phase.48 Liu et al. 

suggest that the advantage of starting from the alloy is that the diffusion of Li in the system 

results in faster hydrogenation to form the binary hydrides. The first work on ternary Ca-

Mg hydrides dates back to the late 1970s when binary alloys were used to synthesise 

hydrides using high pressure sintering methods under H2.49 More recently, the structures of 

various alkali metal MCaHx-type hydrides have been predicted, where M = Li, Na, K, Rb, 

Cs.50, 51 

Synthesis of ternary hydrides, Ca4Mg3H(D)14 and Ca19Mg8H(D)54, has been studied by 

direct high pressure-high temperature synthesis from the CaMg2 alloy, or in the latter case 

from reaction of the binary hydrides at similarly harsh conditions in a sealed autoclave 
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(Figure 4-1, Table 4-1).52, 53 Gingl et al. described the first purely alkaline earth metal 

ternary structure, Ca4Mg3H(D)14, where synthesis of the ternary hydride phase took 6 days 

in a high temperature (683(10) K), high pressure (53(3) bar) autoclave. Harsher conditions 

were required for the deuteride; seven days at 738(5) K, 95(5) bar. The product was found 

in a mixture of CaH2, MgH2 and Mg impurity phases.52 Bertheville and Yvon later 

described the structure of another Ca-Mg hydride, Ca19Mg8H(D)54, which was found to be 

iso-structural to Yb19Mg8D54.53 The synthesis route involved preparation of pellets 

comprising a mixture of CaH2:MgH2 in a ratio of 2:1. The ternary phase was then formed 

in a multi-anvil pressure cell over a period of 3 h. This technique is typical for synthesis of 

ternary and quaternary hydride compounds.4, 5 This resulted in a multi-phase product 

comprising the cubic ternary phase, CaH2, the α– and γ–MgH2 phases and MgO. 

Ball milling was used by Sartori et al. in their study of mixed hydride systems, and the 

Ca4Mg3H14 and Ca19Mg8H54 ternary hydrides arose in their work on the Mg-Al-Ca-H 

system, although never as a single phase.54 Quaternary and multinary Ca-Mg hydrides 

containing transition metals, e.g., La, Ti, Fe, Co, and Ni, are commonly encountered in the 

literature, but transition metal compounds are beyond the scope of this work.4, 55, 56 
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Figure 4-1 a) Unit cell of CaH2 and the ternary phases b) Ca19Mg8D54 and c) Ca4Mg3D14. (Grey, 

blue and green spheres represent H, Mg and Ca, respectively.) 

  

b) a) 

c) 
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Table 4-1 Crystallographic properties of CaH2 and known ternary Ca-Mg hydrides at room 

temperature. 

 CaH2
57 Ca4Mg3D(H)14

52 Ca19Mg8D(H)54
53 

Crystal System Orthorhombic Hexagonal Cubic 
Space Group 𝑃𝑛𝑚𝑎 (62) 𝑃6�2𝑚 (189) 𝐼𝑚3� (204) 
Z 4 1 2 
a / Å 
 
b / Å 
c / Å 
 

5.948 
 

3.607 
6.852 

6.2902(2) 
(6.3056(2)) 

a 
6.8540(3) 

(6.8820(2)) 

12.0642(8) 
(12.1457(6)) 

a 
a 

V / Å3 147.01 234.86 1755.88 
Formula Weight / g 42.10 247.39 1010.54 
Calculated Density, ρx / g cm-3 Not given. Not given. 2.01 
Tdec / K ~873 ~ 750 ~ 650-700 
Gravimetric capacity / wt% H 4.80 5.72 5.40 

N.B. Unit cell parameters quoted in parentheses indicate values obtained for hydrides for 

comparison with the deuteride. 

Perhaps surprisingly, however, the dehydrogenation of these ternary Ca-Mg hydrides has 

only been suggested by Yvon et al. and no data have been fully reported in the literature to 

suggest detailed decomposition mechanisms of the ternary hydride in isolation. In addition, 

mechanochemical methods have not yet been explored for their synthesis, which offers a 

simple, scalable method by comparison with the high pressure-high temperature methods. 

Relative to the wealth of literature available for Mg hydrides, information about hydrogen 

storage in Ca hydrides is comparatively sparse, which is surprising based on the high 

abundance of this light weight alkaline earth metal. The thermodynamic stability of CaH2, 

and higher mass of Ca (vs. Mg) is probably the greatest barrier for developing it as a 

competitive solid state hydrogen storage component. Much of the recent work on CaH2 

focusses on theoretical speculation about the promise of this hydride.58, 59 Novel solid state 

routes to CaH2 for hydrogen storage have been demonstrated by experiment in the 

communication published by Ney and colleagues, where a 1:2 molar mixture of Ca metal 

and phenylphosphonic acid was used to generate CaH2 (and the corresponding Ca acid; 

Ca(O3PC6H5)) by mechanochemistry.60 
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Hydrolytic decomposition of CaH2 for hydrogen production has been studied as an 

alternative to direct thermal desorption, where its promise was highlighted by use of water 

vapour (rather than liquid water) in the work of Kong and colleagues.61 

Equation 4-1 𝐶𝑎𝐻2 + 2 𝐻2𝑂 → 𝐶𝑎(𝑂𝐻)2 + 2 𝐻2  

Furthermore, the hydrolytic properties of an MgH2-5 atomic % Ca composite prepared by 

milling were shown to be improved relative to MgH2 alone, where increasing Ca content 

up to 20 at% enabled faster reaction kinetics.62 Ball milling of MgH2-20.3 mol% Ca 

composites by Tessier et al. did not reveal an additional ternary phase, but indicated the 

transfer of hydrogen from the Mg to Ca to produce a composite comprising three phases 

Mg-MgH2-CaH2, from which >80 % H2 yields were realised.63 Recent use of CaH2 milled 

with a magnesium alloy, Mg17Al12, as a composite for hydrolytic hydrogen production 

showed high hydrogen yields (94.8 % conversion for the alloy doped with 10 wt% CaH2), 

but the exothermic nature of hydrolysis reactions remains a challenge for practical 

application.64 Zhu et al. confirmed that CaH2 was one of the most promising hydrides for 

application in micro-PEMFCs. First, using a simple millimetre scale lab set-up, the yields 

of H2 from CaH2 exceeded 99 %.65 Subsequent work by the same authors made use of a 

hybrid silicon fuel cell charged with CaH2, which showed that operation of the system was 

reasonably consistent over more than 6 h, whereupon the reaction ceased. It is clear from 

this brief catalogue of research that the product of the hydrolysis reaction plays a 

significant role in the success of hydrogen production from CaH2, where the permeability 

of the insoluble Ca(OH)2 product from CaH2 hydrolysis assists in the complete release of 

hydrogen from the system based on the above mentioned work. Beyond hydrolysis, 

thermal decomposition of composite systems including CaH2 and complex hydrides such 

as ammonia borane and borohydrides, have also been covered in the literature.66, 67, 68 As 

expected, the gravimetric hydrogen capacities are lower when these complex hydrides are 

combined with CaH2 relative to the respective MgH2 systems. 

Over two results chapters this work describes the facile mechanochemical synthesis of 

nanoscale ternary hydrides comprising alkali metal and alkaline earth metals without a 

requirement for hydrogen during milling. The influence of milling conditions is 

investigated using a combination of characterisation techniques, to indicate the impact on 

both on the progress of the mechanochemical reaction and on the identity and properties of 

the ternary hydride products. Furthermore, the effect of varying the initial reagent 

stoichiometry on the products is also studied. 
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4.2. Experimental 
All manipulations were performed in an Ar(g)-filled recirculating glovebox (Saffron 

Scientific, 1 ppm H2O, 1 ppm O2). Mixtures of anhydrous binary hydrides of NaH (Sigma 

Aldrich, 95 %) and MgH2 (Alfa Aesar, 98 %), and MgH2 and CaH2 (Sigma Aldrich, 95 %) 

were milled using stainless steel milling media (50 ml jar, 10x 10 mm milling balls) under 

a nitrogen atmosphere at ambient conditions using a Retsch PM100 planetary ball mill. For 

the NaMgH3 samples, various ball:powder (b:p) mass ratios were studied using a total mill 

time of 5 hours. Samples were milled at 450 rpm for 5 minute periods with 5 minute rest 

intervals between each mill. The synthesis of the ternary hydride was studied using 1 h, 2h 

and 5 h of milling to establish how the ternary phase developed over milling time (Table 4-

2).  

Table 4-2 List of samples prepared in the NaH-MgH2 study.  

Sample ID Milling Time b:p 

33 1 70:1 

34 2 70:1 

35 5 47:1 

36 5 70:1 

37 5 85:1 

38 5 100:1 
 

For the CaH2-MgH2 samples, milling was conducted under the same conditions for each 

hydride stoichiometry studied (Table 4-3), where the b:p of 76:1 and 450 rpm rotation 

speed was used for each 10 h milling experiment; 5 min rest periods between each 5 min 

milling interval using rotation direction reversal between each milling period. This gave a 

total milling time of 5 h. 

Table 4-3 List of samples used in the MgH2-CaH2 study.  

Sample ID CaH2:MgH2 ratio 

39 2.375:1 

40 2:1 

41 1:0.75 

42 1:1 

43 1:2 
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The ternary hydride samples used for SXD experiments were prepared from the 

appropriate stoichiometries of the binary hydrides in the same way as for the lab PXD 

analysis, applying identical milling conditions. PXD was conducted before sending the 

samples to the NSRRC in order to verify that the samples were consistent with those 

previously prepared. At NSRRC, the samples were prepared in glass capillaries for SXD 

analysis in a glovebox, and sealed using epoxy resin. SXD data were then collected for 

each sample over the 5 ≤ 2θ / o ≤ 45 range for 3 minutes using a high intensity X-ray beam 

(λ = 0.774908 nm) on the powder diffraction beamline at NSRRC (BL01C2) employing a 

2D detector. After room temperature analysis, two of the samples; 39 and 42, were 

analysed between 373-673 K, at 50 K intervals. A controllable heat gun was used to heat 

the sample, and a heating rate of 10 K/min used. The high temperature analysis was 

conducted using the sealed capillaries, with no gas vent or flow to remove any evolved 

gaseous products.  

TPD experiments were performed for all samples via thermogravimetric-differential 

thermal analysis-mass spectrometry (TGA-DTA-MS; Netzsch STA 409 coupled to a Hiden 

HPR20 mass spectrometer). All thermal analysis experiments were conducted within an 

Ar(g)-filled recirculating glovebox (MBraun UniLab; 0.1 ppm H2O, 0.1 ppm O2) using 

alumina sample pans under a constant flow of Ar at a 5 K min-1 heating rate. Kissinger 

plots for each sample were obtained by heating at 2, 5, 10 and 20 K min-1 to determine the 

activation enthalpy. 

Post-milled and post-thermal analysis samples were investigated by PXD using a Bruker 

D8 powder diffractometer in transmission geometry with spinning sealed capillaries. Data 

were collected between 5 ≤ 2θ / o ≤ 85 for 1 h for initial characterisation and over 10 ≤ 2θ / 
o ≤ 110 for between 10-14 h to obtain higher resolution, higher intensity data (for structure 

refinement). Samples were also exposed to air and analysed in-situ using a PANalytical 

XPERT Pro MPD (Multi Purpose Diffractometer) in Bragg-Brentano reflection geometry 

(Cu Kα1 radiation). Data were collected for 1 hour in the 5 ≤ 2θ / o ≤ 85 range for phase 

determination in the air exposed samples. For time resolved analysis under ambient 

conditions, a total analysis time of 15 h was used for collection of 15x 1 h samples in order 

to determine how quickly the sample degraded in air.  

All collected diffraction patterns were compared to reference data in the ICDD 

(International Centre for Diffraction Data) database using the PANalytical High Score Plus 

Software package. Rietveld refinement for the NaMgH3 Sample 36 was performed using 

GSAS/EXPGUI69, 70 with reference data obtained from the Inorganic Crystal Structure 
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Database (ICSD)71 and the previously published structure for NaMgH3 (ICSD-91795) as a 

starting model.22 For the NaMgH3 study, background was modelled using Function 1 

within GSAS; a shifted Chebyschev function. Peak shapes were modelled using the 

Thompson-Cox-Hastings pV function (Function 2) with asymmetry also being taken in to 

consideration. The unit cell parameters were varied, followed by the atomic and 

temperature parameters. Major peaks from Mg(OH)2 and MgO impurity phases in the 

NaMgH3 samples were broad and could not be adequately fitted and so these 2θ ranges 

were excluded from the refinement. Rietveld refinements were also conducted for the (Ca1-

xMgxH2)n samples (Samples 39-43) using the data obtained by both PXD and SXD 

analysis. The background was refined using the reciprocal interpolation function (Function 

8) to obtain a good fit to the data and zero corrections were also included. Again, peak 

shapes were modelled using the Thompson-Cox-Hastings pV function (Function 2) with 

asymmetry being considered. Phase fractions were obtained by refining the scale factors. 

The atomic positions and temperature factors were refined where possible, and constrained 

to the values given in literature where significant divergence occurred. 

SEM-EDX experiments were performed at 20 keV under a nitrogen atmosphere using a 

Philips XL30 ESEM instrument equipped with an Oxford Instruments X-act spectrometer 

to determine particle morphology and atomic proportions, respectively. Samples were 

prepared on carbon tabs under an inert environment. Initially, the samples were loaded in a 

sputter coater and coated with gold at 25 keV. However, this caused significant oxidation 

of the samples, and so most samples were loaded directly from a sealed vial to the SEM 

sample chamber. Although exposure of the samples to air was unavoidable during this 

analysis procedure, it was minimised as much as possible to obtain representative results of 

the as-prepared samples. 

Raman spectroscopy was conducted at room temperature (Horiba LabRam HR confocal 

microscope; 325 nm UV laser, 100 μm aperture, 600 grooves/mm grating, Synapse CCD). 

Spectroscopic data for ternary magnesium hydrides are limited and herein experimental 

spectra for NaMgH3 is compared to previously calculated vibrational data and tentatively 

assign vibrational bonding modes. Sealed glass capillaries were used to contain the sample 

and thereby prevent air/moisture exposure during spectroscopic analysis. 
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4.3. Results & Discussion  

4.3.1. Synthesis and Characterisation of Nanosized Sodium 

Magnesium Hydride, NaMgH3 

Using a stoichiometric initial hydride ratio (1:1, NaH:MgH2) the PXD of Sample 33 

showed that NaMgH3 forms after only 1 h of milling, and after 5 h (Sample 36) the 

reaction to the ternary hydride was complete. Increased PXD peak widths for the ternary 

phase after a 5 h milling time indicated a significantly reduced average particle size. For 

Sample 35, the particle sizes were inferred to be similar to those of Sample 36, but 

conversion was not complete and significant binary hydride phases were observed via 

PXD. When the b:p ratio reached 100:1, PXD patterns revealed that products were largely 

amorphous. The identity of the ternary hydride was confirmed from PXD data by reference 

to the known structure given in the ICSD (ICSD-91795).23 The as-synthesised NaMgH3 

sample was extremely air-sensitive, changing colour immediately from brown to 

grey/white. It was evident from PXD experiments that samples were indeed acutely 

sensitive to air. Despite best efforts to minimise air-exposure, poorly crystalline Mg(OH)2 

and MgO phases were frequently formed (Figure 4-2). No crystalline sodium-containing 

impurity phases were observed. Longer term exposure to moist air revealed that after a few 

minutes of air exposure, powder samples would ignite rapidly upon agitation. PXD 

analysis showed MgO, NaOH, Mg and Mg(OH)2 to be present in the air-exposed products. 

 

Figure 4-2 X-ray diffraction patterns of 1:1 molar mixtures of NaH and MgH2 milled for 1 h 

(Sample 33, blue) and 5 h (Sample 36, red). 
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The Scherrer method (Equation 2-4) was applied to determine the approximate crystallite 

size, D. A Scherrer constant of 0.9 was used for K since the particle morphology appeared 

approximately isotropic from SEM imaging (Figure 4-3).72 The average crystallite size 

(more precisely, the average size of the crystalline domain) was estimated to be 430 nm for 

Sample 36. Figure 4-3 shows SEM micrographs for this sample. Low magnification 

images (e.g. Figure 4-3a) show that the milled particles have a narrow size distribution but 

that agglomeration occurs during milling (as is often characteristic for the method). Higher 

magnification images (Figure 4-3b) demonstrated that samples ranged from ~100 nm 

across up to 1 μm in size (the latter for particle agglomerations). The directly imaged 

particles show dimensions comparable with that estimated by Scherrer analysis of PXD 

data. The results of elemental mapping by EDX are shown in Figure 4-3(c) and Figure 4-

3(d) and show good dispersion of Na and Mg throughout the sample. EDX point scans 

yielded approximate 1:1 elemental ratios of Na:Mg. Both findings are thus consistent with 

the formation of NaMgH3 and these results were obtained routinely for a number of 

samples prepared under the same conditions.  

  

Figure 4-3 SEM image of as-synthesised NaMgH3 (Sample 36) at (a) low magnification and (b) 

high magnification, and (c & d) morphology and elemental mapping of Na (red) and Mg (green) in 

Sample 37. 
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Rietveld refinement against PXD data was performed with an NaMgH3 structural model 

based on that of Bouamrane et al.22 The refinement converged swiftly and smoothly to the 

previously reported orthorhombic perovskite structure (Table 4-4 and Table 4-5). The 

Rietveld profile plot is shown in Figure 4-4(a) and shows a good fit to the experimental 

data; major peaks from Mg(OH)2 and MgO were excluded from the refinement. Given the 

inability of PXD to locate light atoms accurately, the hydride positions were fixed as those 

from the starting model.22 Considering the broad, undulating background in the PXD 

profile, it is quite possible that amorphous phases are also present in the milled material. 

From the data collected by Ikeda et al, it is also not possible to determine whether starting 

reagents or other impurities were contained in hydride products in their milling study, 

although the experimental weight loss they obtained on dehydrogenation (5.8 wt% vs. 6.0 

wt% theoretically) would suggest that any such phases were not substantial.21 The lattice 

parameters for the sample in this study are in reasonable agreement with those previously 

reported (a = 5.463 Å, b = 7.703 Å, c = 5.411 Å)22, although, notably, despite a cell 

volume within 3σ of the previous value, the a-parameter and c-parameter are smaller and 

larger respectively in this work. It is also worth noting that the cell volume is significantly 

larger than that of the corresponding deuteride.24 Figure 4-4(b) and Figure 4-4(c) show 

representations of the GdFeO3 Perovskite-type structure of the ternary hydride. The 

GdFeO3 structure is well-known and the details of the structure of NaMgH3 are discussed 

in detail in previous publications.22, 23, 24 As in previous literature models, the Na+ cations 

are surrounded by 12 H- anions and Mg2+ cations are coordinated octahedrally to 6 H- 

anions, where Figure 4-4(c) indicates the Mg centred octahedra in red. 
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Table 4-4 Diffraction data for Sample 36. 

Sample 36 

Chemical Formula NaMgH3 

Crystal System Orthorhombic 

Space Group Pnma (No. 62) 

Z 4 

a / Å 5.437(2) 

b/ Å 7.705(5) 

c / Å 5.477(2) 

V / Å3 229.49(9) 

Formula Weight / g 201.276 

Calculated Density, ρx / g cm-3 1.456 

Refinement Parameters 40 

Data Points 5086 

Rwp 2.21 %, 

Rp 1.68 % 

χ2 2.110 
 

Table 4-5 Atomic parameters for Sample 36. 

Atom Site x y z Uiso × 100 / Å2 
Mg 4b (0,0,½)  0 0 ½  5.9(4) 
Na 4c (x,¼,z) 0.004(1) ¼  0.013(1) 0.3(4) 
H1 4c (x,¼,z) 0.503a ¼  0.093a 2.5a 
H2 8d (x,y,z) 0.304a 0.065a 0.761a 2.5a 

a Parameters fixed in the refinement process. 
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Figure 4-4  (a) Rietveld refinement profile for Sample 36. (Observed data are shown by red 

crosses, the calculated plot is shown as a green continuous line, the tick marks indicate the reflection 

positions for orthorhombic NaMgH3 and the difference plot is shown below in pink); (b) Unit cell of 

NaMgH3, where gold, red and light grey spheres represent Na, Mg and H, respectively; (c) Extended 

structure of NaMgH3 as a polyhedral representation viewed along the [010] direction. 

The NaMgH3 sample was observed to be acutely sensitive to the 532 nm (visible) laser 

when collecting Raman spectroscopy data and fluorescence effects were evident in spectra. 

Raman analysis was therefore conducted using (UV) laser irradiation at 352 nm (Figure 4-

5). To the best of the author’s knowledge, there are no previous experimental Raman 

spectra for NaMgH3 in the literature. IR (Infra Red) and Raman bonding mode symmetries 

and frequencies have been calculated computationally in two separate studies previously.26, 

34 The experimental data is in broad agreement with these studies allowing the tentative 

assignment of the experimental spectrum (Table 4-6). Shifts at low wavenumber (380 cm-

1) indicate tilting/rotation of the MgH6 octahedra, whereas the bands at 581 cm-1, 791 cm-1 
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and 992 cm-1 suggest H-Mg-H angle distortions. In fact, the broad band at 992 cm-1 might 

represent a merging of two Ag bands calculated by Bouhadda et al. at 906.8 cm-1 and 

1071.4 cm-1.34 The band at 1101 cm-1 is in the Mg-H bond mode region and has been 

assigned to the symmetric Mg-H stretch. This assignment is again consistent with the 

bands calculated by Bouhadda et al. Data collected for samples milled for shorter durations 

(Samples 33 and 34) did not show developed bands at higher Raman shift values, i.e., 700-

1300 cm-1, although the broad overlapping band between 200-700 cm-1 is evident. Spectra 

for Samples 36 and 37 are very similar in most respects, although the bands between 700-

1300 cm-1 diminish again at the higher 100:1 ball:powder ratio (Sample 38), which may be 

the result of increased amorphisation and hence disorder within the sample milled at higher 

energy. 

 

 

Figure 4-5 a) Raman spectrum of Sample 36 collected using the UV laser (325.1 nm). b) 

Comparison of Raman spectra for Samples 34 and 36 given by black and blue lines respectively, and 

the red and green lines show the spectra of Samples 37 and 38. 

a) 

b) 
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Table 4-6 Assignment of the Raman spectrum for Sample 36. 

Raman shift / cm-1 Expected 
Symmetry 

Tentative assignment 

380 B1g MgH6 octahedral tilt 
581 B3g δ, H-Mg-H  
791 B3g δ, H-Mg-H 
992 Ag δ, H-Mg-H 
1101 B1g νs Mg-H symmetric stretch 

 

Comparison of the DTA-TG data for samples prepared using different b:p ratios are given 

in Appendix B, B.1 a) and b). This demonstrates that the lowest Tpeak value for the ternary 

phase is given for Sample 36 and the most distinctive two-step profile is evident for this 

sample. 

The TPD data determined for Sample 36 are given in Figure 4-6 and Table 4-7. Analysis of 

the DTA profile showed concurrent thermal events over the weight loss period 

corresponding to a two-step decomposition of the ternary hydride with concomitant 

hydrogen evolution as confirmed by MS. The onset temperatures of the two reaction steps 

(Equation 4-2 and Equation 4-3; Table 4-7) could be determined from both the DTA and 

d(TG)/dT profiles, where the latter are omitted for clarity. Very similar thermal profiles 

were found for NaMgH3 samples prepared at lower b:p ratios, although given some starting 

reagents were evident from the PXD data for these samples, the second endothermic 

decomposition step was observed as broader and more pronounced. The desorption 

mechanism described by Ikeda et al. is given in Equation 4-2 and Equation 4-3, where two 

losses of hydrogen are ascribed to the decomposition of NaMgH3 and NaH respectively 

(Table 4-7).21, 27, 28 

Equation 4-2 NaMgH3  NaH + Mg + H2  

Equation 4-3 NaH + Mg + H2  Na + Mg + 3/2 H2  
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Figure 4-6 a) DTA and b) TG data comparison for un-milled binary hydrides NaH and MgH2 and 

ternary hydride, Sample 36. Values shown on DTA profiles indicate onset and peak H2 desorption 

temperatures, Tonset and Tpeak (italics), respectively. c) MS data for Sample 36 where the corresponding 

Tpeak values are indicated on the plot. 

a) 

b) 

c) 
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Table 4-7 TGA-DTA-MS results for Sample 36 compared with literature data. 

Event Theoretical This Work Ikeda et al.21 Pottmaier et al. 26b 
 wt% H2 Tonset

a  
/ K 

wt% H2 Tonset  
/ K 

wt% H2 Tonset  

/ K 
wt% H2 

Step 1 4.0 513 2.67 - - 664 - 

Step 2 2.0 645 2.04 - - 709 - 

∑ 6.0 - (4.71) - (5.8) - - 
a Temperature of wt loss onset; b H2 desorption onset temperatures determined by HP-DSC 

(High Pressure – Differential Scanning Calorimetry) at 0.1 MPa H2. 

The mass loss in the first step of the process (and therefore the total mass loss) associated 

with hydrogen release is significantly diminished with respect to that determined by Ikeda 

et al. and that expected theoretically. The data indicate that hydrogen may be lost during 

the milling process, either pre-or post-reaction to form the ternary hydride (i.e., either via 

likely decomposition of the MgH2 starting material or via the first step of the 

dehydrogenation of the ternary hydride itself (Equation 4-2). Further evidence for this 

premise exists in the PXD patterns, where evidently Mg and/or MgH2 in the milled 

products reacts rapidly with air during handling to form the respective binary hydroxide 

(Mg(OH)2) and oxide (MgO). Milling under elevated hydrogen pressure, therefore, may be 

one way in which this initial hydrogen loss may be prevented (although in subsequent 

rehydrogenation-dehydrogenation cycles the initial loss is not likely to be important unless 

phases react with air). PXD analysis of post-TPD samples revealed Na and Mg metal 

accompanied by MgO and NaOH (likely to be a result of the acute air-sensitivity of the 

samples despite best efforts to minimise exposure during analysis). Crucially, no hydride 

phases were identified therefore suggesting complete dehydrogenation of NaMgH3 occurs 

by 723 K. 

From Figure 4-6 and Table 4-7, the onset temperature of the first dehydrogenation step is 

significantly lower than the equivalent temperatures for both the component binary 

hydrides. By comparison of the DTA profile of NaMgH3 with those of the respective 

component binary hydrides, it is evident that the second hydrogen loss is associated with 

NaH decomposition. The onset temperature for hydrogen loss as determined by dTG/dT 

and corresponding mass spectrometry data is lower than that previously recorded for 

NaMgH3 by Pottmaier et al. This depression in temperature can be regarded in terms of 

particle size reduction (as a result of milling) and as a function of hydrogen partial pressure 
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(Pottmaier et al. observed from DSC measurements that the onset temperatures decreased 

as the hydrogen pressure was reduced).26 

Comparing Kissinger plots for the 1st and 2nd decomposition steps it is apparent that the 

two decomposition events are distinct. (These plots were prepared from data collected by 

heating Sample 36 to 500 °C at 2, 5, 10 and 20 °C/min heating rates.) The activation 

enthalpies for both of the decomposition steps of NaMgH3 have thus been determined 

(Figure 4-7, Table 4-8). The Ea of the 1st step, associated with decomposition of the ternary 

phase to NaH and Mg with the release of hydrogen, is slightly higher than that of 

commercial MgH2 (144±5 kJ/mol, Chapter 3). The activation enthalpy of H diffusion in 

NaMgH3 is discussed by Shane et al. in their NMR (Nuclear Magnetic Resonance) study, 

where they determined the Ea for H diffusion as 95 kJ/mol for NaMgH3.73 Their work 

employed a sample which had been prepared from the binary hydrides also by the 

mechanochemical method and was annealed at 673 K. (It is prudent to note that at 673 K 

the sample would be expected to decompose, based on the STA conducted herein, although 

Shane et al. do not provide thermal analysis data for their as-prepared NaMgH3 material.) 

An alternative computational method (first principles plane wave density functional theory 

method) describes a higher Ea of 118 kJ/mol for H diffusion in NaMgH3.31 In the MgH2-

NaAlH4 composites prepared by Ismail et al., the decomposition enthalpy of NaMgH3 (an 

intermediate in the decomposition process of this system) was determined to be 142 kJ/mol 

using the Kissinger method.74 This is in close approximation to the Ea value determined for 

the first step of NaMgH3 decomposition found by the same Kissinger method applied in 

this work. The Ea determined by Ismail et al., however, was likely to be influenced by 

other decomposition processes and components in the system. Similarly, the Ea determined 

here may have been affected by the presence of impurities in the product. The Ea of the 2nd 

step, associated with NaH decomposition, is slightly higher than that determined for NaH 

decomposition in the work of Šburt and Tobola (115 kJ/mol).75 
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Figure 4-7 Comparison of the Kissinger plots for the two endothermic decomposition processes 

observed for Sample 36. 

Table 4-8 Kissinger plot linear trendline data and statistics for Sample 36. 

Sample Trendline Equation R2 Ea 
/ kJ/mol 

NaMgH3 - Step 1 𝑦 = −17.644𝑥 + 15.232 0.9984 147±4 
NaMgH3 - Step 2 𝑦 = −15.053𝑥 + 10.753 0.9954 125±6 

 

The decomposition enthalpies of the materials produced in this work could not be 

determined directly from the DTA traces, since the two decomposition events overlap. The 

dehydrogenation enthalpies and entropies of NaMgH3 have, however, been studied 

elsewhere in literature by both computational and experimental means (Table 4-9). 
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Table 4-9 Experimentally determined enthalpy and entropy for dehydrogenation of NaMgH3. 

(Modified from supplementary material in Reference 25.) 

Process ΔH  
/ kJ mol-1 H2 

ΔS  
/ J K-1 mol-1 H2 

Reference 

Step 1 
NaMgH3 → NaH + Mg + H2 

+88 - 21, 28 
+93.9 +116.2 27 
+94 +140 16 

+86.6 +132.2 25 
+92 +123 26 

Step 2 
NaH + Mg + H2 → Na + Mg + 3/2 H2 

+114.1 - 21 
+102.2 +125.9 27 
+116 +165 16 

 

4.3.1.1. Conclusions 

NaMgH3 has been synthesised via mechanochemical methods under an inert atmosphere. 

The milled materials are nanocrystalline and the crystal structure of the ternary hydride is 

consistent with previous crystallographic data. Avoiding the use of high pressure sintering 

techniques is of significant importance for the facile preparation of hydrogen storage 

materials. Furthermore, synthesis in this way minimises the particle sizes, which has been 

shown to improve not only hydrogen desorption kinetics but also thermodynamics (e.g. in 

MgH2). Relatively high ball:powder ratios are essential to ensure complete reaction to the 

ternary hydride (without milling under hydrogen). However, if this ratio is taken above a 

critical value, the ternary product loses crystallinity over similar milling times. The onset 

of weight loss and hydrogen evolution in mechanochemically synthesised NaMgH3 

occurred at lower temperatures than previously reported, although otherwise the two-step 

dehydrogenation proceeds as has been observed previously. The Kissinger plots for both 

decomposition steps of NaMgH3 have been determined and the activation energies for 

these processes were found to be 147±4 kJ/mol and 125±6 kJ/mol, respectively. The TPD 

data in this work confirms that desorption proceeds via two endothermic steps, even when 

the ternary hydride is prepared in an inert environment. The ability to simplify the 

synthesis and processing of NaMgH3 plus the prospect of tuning the kinetics and 

thermodynamics of hydrogen uptake and release, offers the potential both to develop 

NaMgH3 as a storage system in its own right and to implement the ternary hydride as part 

of a “composite” approach (as demonstrated with NH3BH3, for example).76 
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4.3.2. New Ternary Alkaline Earth Metal Hydrides (Ca1-xMgxH2)n; 

synthesis, structure and thermal properties 

This second section investigates whether a similar mechanochemical approach could be 

used to incorporate other small lightweight elements into the Mg-H system. As noted in the 

introduction of this Chapter CaH2 forms a ternary hydride when combined with MgH2 but 

synthesis to date has involved high temperature-high pressure methods. Thus for the first 

time (Ca1-xMgxH2)n type alloys will be investigated by mechanochemistry. 

SEM images of the as-synthesised hydrides revealed powder products which were 

comprised of small particles clumped together (Figure 4-8). The particles are polydisperse 

in size and range from the micron to the nano-scale, which is typical of milled samples. 

The samples exposed to air for a number of hours may be described as fluffy white 

powders, where the particles are more discrete than in the as-synthesised hydride. 

 

 

Figure 4-8 Typical morphologies of a) as-synthesised Ca-Mg-H Sample 39 (40 μm) and b) air 

exposed Ca-Mg-H Sample 39 (20 μm). EDX analysis shown in c) for as-prepared Ca-Mg-H Sample 42.  

EDX analysis revealed that a significant amount of oxygen (~63 wt%) was present in the 

samples analysed by SEM, which is expected as a result of the rapid hydrolysis of the 

sample in air. This was observed by a change in colour of the powder from brown to 

grey/brown-white and was unavoidable as a result of the method of sample preparation for 

c) 
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SEM. To minimise this extent to which the materials were affected samples were not gold 

coated, as this would increase the exposure time, and transferred as quickly as possible into 

the SEM chamber from vials sealed in under inert atmosphere. 

PXD patterns of the materials were collected in Bragg-Brentano geometry after a few 

hours of exposure to air, and the diffraction patterns revealed very broad reflections which 

could be assigned to Ca(OH)2. In addition, time resolved PXD analysis was conducted for 

Sample 39, where the as-prepared sample was loaded on to a dimpled glass bracket and 

transferred to the instrument goniometer as quickly as possible (Figure 4-9). The first 

measurement commenced immediately and a total of 15 measurements were collected 

using a 1 h measurement period. This analysis revealed that the sample hydrolyses rapidly 

since the 1st measurement indicates that none of the ternary phase remains and the broad 

reflections of Ca(OH)2 are evident. This phase persists throughout the remainder of the 

analysis. 

 

Figure 4-9 Time resolved PXD analysis of Sample 39 under ambient conditions (red stars indicate 

the broad reflections for Ca(OH)2). 

STA was conducted for Samples 39 and 43 exposed to air in order to determine the 

decomposition properties at the highest Ca and Mg loadings used after air exposure 

(Appendix B, B.3). A major endothermic event is evident between 350-480 °C in both 

cases, with the DTA and TG profiles being very similar for both samples. The Tpeak 

determined for the Sample 43 is slightly lower than that of the Sample 39: 717.0 K vs. 

723.7 K. From the MS data, the mass loss observed in the TG trace is associated with loss 



175 

of water from the samples. Water evolution begins at 373 K, although the most intense 

signal for water evolution is observed during the endothermic event. The same mass of 

sample was analysed in each case, and the mass loss associated with water evolution is 

slightly greater in Sample 43 (30.45 wt%) compared with Sample 39 (28.14 wt%). 

4.3.2.1. Structure determination of (Ca1-xMgxH2)n phases by room 

temperature PXD and SXD 

PXD analysis of the as-synthesised samples, which were kept under inert atmosphere and 

prepared in capillaries, was performed using the D8 diffractometer in Debye-Scherrer 

geometry. A cubic ternary phase was evident in each sample which could be closely 

related to the Ca19Mg8H54 phase described by Bertheville and Yvon.53 Using CELREF, the 

unit cell parameter, a, of the cubic phase in each sample could be determined (Table 4-10). 

Table 4-10 CELREF estimation of ternary phase unit cell parameters and volumes compared with 

known ternary hydride, Ca19Mg8H54. 

Sample / CaH2:MgH2 a / Å Volume / Å3 
Bertheville et al.53 12.1457(6) 1791.71 
39 / 2.375:1 12.220(7) 1824(1) 
40 / 2:1 12.223(7) 1826(1) 
41 / 1:0.75 12.16(1) 1799(2) 
42 / 1:1 12.109(7) 1776(1) 
43 / 1:2 12.103(5) 1773.0(7) 
 

From this preliminary interpretation, it is clear that the unit cell of the ternary phase of 

these samples is affected by the initial starting ratio of the binary hydrides. The a unit cell 

parameter of Sample 41 has the closest value to that of the original cell parameter for the 

ternary hydride described by Bertheville. The samples with a higher ratio of CaH2, i.e., 

Samples 39 and 40, have a larger unit cell and excess CaH2 is evident from the diffraction 

patterns. For samples with a higher proportion of MgH2, i.e., Samples 42 and 43, there is a 

smaller unit cell relative to Sample 41. Investigation of the pattern for Sample 42 reveals 

an additional phase that can be approximated to the second known ternary phase, 

Ca4Mg3H14. The diffraction pattern for Sample 43 indicates that an excess of MgH2 is 

present. The Rietveld method was used to determine the structure characteristics of the 

samples more adequately from data collected by the Bruker D8 diffractometer. Refinement 

data for the ternary phases obtained are given in Table 4-11, and the refined plots are given 

in Appendix B; B.4 to B.8. Using the Ca19Mg8H54 phase as a starting model, the 
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refinements quickly converged to give a satisfactory fit to the ternary phase. The ternary 

phase was refined first and then second phases (CaH2, α-MgH2 and Ca4Mg3H14) were 

introduced as appropriate (refinement data for the second phases are given in Appendix B, 

B.9). Hydrogen positions were fixed to literature values for all phases introduced. 

Temperature factors for the metal sites were refined where possible. 

Table 4-11 Rietveld refinement data for the cubic ternary phase in Samples 39-43. 

Sample  
/ CaH2:MgH2 

39  
/ 2.375:1 

40  
/ 2:1  

41  
/ 1:0.75 

42  
/ 1:1 

43  
/ 1:2 

Chemical Formula Ca19Mg8H54 
Crystal System  
/ Space Group  

Cubic  
/ 𝐼𝑚3� (204) 

Z 2 
a / Å 12.210(4) 12.214(1) 12.256(2) 12.103(1) 12.097(1) 
V / Å3 1820.4(7) 1822.2(7) 1796.1(7) 1772.7(5) 1770.4(5) 
Formula Weight / g 2020.784 
Calculated Density, ρx  
/ g cm-3 

1.843 1.841 1.868 1.893 1.895 

Phase Fraction / % 47.2(4) 59.3(8) 100 82.8(8) 69.7(6) 
Refinement Parameters 40 47 30 52 51 
Data Points 12117 5452 11829 5323 12117 
Rwp / % 4.88 3.46 5.43 3.12 3.61 
Rp / % 3.78 2.71 3.91 2.42 2.76 
χ2 1.638 1.400 1.256 1.579 1.597 

 

The unit cell parameters and cell volumes derived from CELREF and from the Rietveld 

method are in close approximation to one another, showing the same trend in the unit cell 

parameter and unit cell volume as the CaH2:MgH2 stoichiometry is varied. As the 

proportion of Ca increases, both the cell parameter and cell volume increase in near linear 

fashion (Figure 4-10). It was suggested, therefore, that changing the initial binary hydride 

ratio allowed formation of a range of non-stoichiometric ternary hydrides of the (Ca1-

xMgxH2)n general formula. 
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Figure 4-10 Ternary phase unit cell a) a parameter, and b) cell volume derived from Rietveld 

refinement of lab PXD data plotted relative to initial CaH2:MgH2 ratio employed (Samples 39-43). 

SXD was conducted to elucidate further structural information about the non-

stoichiometric ternary phases proposed for these samples. As before, Rietveld refinements 

were conducted and a reasonable fit was obtained with respect to the initial ternary phase 

model, Ca19Mg8H54.53 The profile parameters were then considered to obtain a good model 

of the peak shapes obtained. Then atomic parameters were included. Temperature factors 

for the H atoms were fixed to the values given by Bertheville as before, and those of the 

metal atoms were refined isotropically where possible or fixed if they caused significant 

instability of the refinement. Attempts were made to refine these anisotropically but the 

refinements rapidly became unstable. In order to evaluate the changes in the Ca:Mg 

stoichiometric ratio in the ternary phase, an additional Mg atom was added in the “Mg 

rich” samples in the Ca 24g position. For the “Ca rich” samples, an additional Ca atom was 

placed on the Mg 16f position. In each case, the Site Occupancy Factor (SOF) was allowed 

to vary using appropriate constraints for the metals on these positions and the refinement 

conducted until convergence was achieved. The resultant ternary phases and the 

crystallographic data obtained by Rietveld refinements for each sample analysed by SXD 

at room temperature are given in Table 4-12.  

a) 

b) 
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The refinement plot (Figure 4-11), interatomic distances (Table 4-13) and atomic 

parameters (Table 4-14) are given in for the 1:0.75 sample, where full data for the 

remaining samples are given in Appendix B, B.10 through to B.19, inclusive. 

Supplementary information regarding the additional phases is also given in Appendix B, 

B.20. The high quality SXD data confirmed the assignment of the second phases for each 

sample as appropriate (see Appendix B for refinement data of the additional phases), and 

verified the absence of any residual CaH2 or MgH2 in the 1:0.75 sample. 

 

Figure 4-11 Rietveld plot for Sample 41 analysed by SXD showing a highly resolved diffraction 

profile for the ternary phase only (black tick marks). Red crosses indicate observed data, the green line 

shows the calculated pattern and the magenta line indicates the difference plot. 
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Table 4-13 Interatomic distances for Ca15.6(3)Mg11.4(3)H54 (Sample 41). 

Interatomic Distance Literature Values53 /Å Length / Å 

Ca(1)/Mg*-H(1) ×2 2.21(2) 2.1740(18) 

Ca(1)/Mg*-H(1) ×2 2.47(1) 2.4949(7) 

Ca(1)/Mg*-H(2) ×2 2.23(2) 2.2640(23) 

Ca(1)/Mg*-H(2) ×1 2.20(1) 2.2126(22) 

Ca(1)/Mg*-H(4) ×1 2.27(2) 2.3452(22) 

Ca(2)-H(1) ×4 2.51(1) 2.51898(35) 

Ca(2)-H(2) ×2 2.36(2) 2.3737(11) 

Ca(2)-H(3) ×2 2.34(3) 2.3521(27) 

Ca(2)-H(4) ×2 2.46(3) 2.4882(27) 

 Ca(3)-H(3) ×12 2.48(2) 2.48923(7) 

Mg(1)-H(1) ×3 1.92(1) 1.9364(17) 

Mg(1)-H(3) ×3 2.032(9) 2.0380(28) 
N.B. Mg* represents the additional Mg on the Ca site. 

Table 4-14 Atomic parameters for Ca15.6(3)Mg11.4(3)H54 (Sample 41) 

Atom Site x y Z 100xUiso / Å2 SOF 
Ca1 24g 0 0.3107(2) 0.3437(2) 3.9(1) 0.72(1) 
Ca2 12d 0.3325(3) 0 0 3.4(1) 1 
Ca3 2a 0 0 0 4.0(5) 1 
Mg1 16f 0.1598(2) 0.1598(2) 0.1598(2) 1.6(2) 1 
Mg* 24g 0 0.3107(2) 0.3437(2) 3.9(1) 0.28(1) 
H1 48h 0.3109 0.1109 0.174 2.926 1 
H2 24g 0 0.3985 0.184 2.926 1 
H3 12g 0 0.173 0.11 2.926 1 
H4 24e 0.118 0.5 0 2.926 1 

N.B. Atomic parameters for H1-4 were fixed to literature positions. Mg* represents the 

additional Mg on the Ca site. 

Upon comparison of the a unit cell parameter for each sample given by the lab PXD and 

SXD, it is evident that the values obtained by SXD (Table 4-12, Figure 4-12) are all 

slightly smaller than the values obtained by lab PXD (Table 4-11, Appendix B; B.4 to 

B.8). It is clear, however, that the general trends in cell volume and a cell parameter with 

respect to the initial CaH2:MgH2 ratio determined by CELREF, lab PXD and SXD are 

comparable.  
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Figure 4-12 Ternary phase unit cell a) a parameter, and b) cell volume derived from Rietveld 

refinement of SXD data plotted relative to initial CaH2:MgH2 ratio employed. 

In each sample, the atomic parameters of the samples were shifted with respect to the 

values given by Bertheville, suggesting modifications to the crystal lattice as a result of the 

incorporation of excess Ca or Mg on specific sites. To determine the excess Ca/Mg in each 

phase, additional atoms were introduced on to specific sites and the site occupancy factors 

(SOFs) were varied. Excess Ca was introduced on to the 16f position of Mg for Samples 39 

and 40; this being the only site that Bertheville et al. had determined to be fully occupied 

by Mg. The unit cell representation and coordination of the 16f site for the excess Ca 

sample, Sample 39, with a chemical formula determined as Ca21.4(3)Mg5.6(3)H54, are given in 

Figure 4-13. The bipyramidal polyhedra highlighted in blue and indigo represent the 

octahedrally coordinated Ca/Mg-H configuration of the 16f site for Ca21.4(3)Mg5.6(3)H54 and 

Ca21.6(1)Mg5.1(1)H54, respectively. Surprisingly, the Sample 40 has a slightly larger unit cell 

than Sample 39, and this result is consistent across all analysis methods used herein. 

a) 

b) 
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Figure 4-13 a) Unit cell representation of Sample 39; Ca21.4(3)Mg5.6(3)H54, and b) coordination of its 

Ca/Mg-centred 16f site. c) Unit cell representation of Sample 40; Ca21.6(1)Mg5.1(1)H54, and d) 

coordination of its Ca/Mg-centred 16f site. (Ca = green, Mg = blue, Ca/Mg = red, H = grey.) 

Excess Mg was introduced on to the 24g (Ca1) position since this has the shortest Ca-H 

length (2.20(1) Å)53 and therefore was proposed as the most likely position on which Mg 

could be incorporated. The unit cell of the single phase sample (Sample 41) determined as 

Ca15.6(3)Mg11.4(3)3H54 is depicted in Figure 4-14(a). The metal-hydrogen coordination of the 

16f and 24g positions are represented by blue and pink polyhedra, respectively. The former 

being the Mg-only positions which exist in an octahedral, six coordinate configuration, and 

the latter indicating where excess Mg has been introduced on the eight coordinate 

icosahedral Ca1 24g site.  

a) c) 

b) d) 
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Figure 4-14 Unit cell representation of a) Sample 41; Ca15.6(3)Mg11.4(3)H54, and b-e) the coordination 

orientations of the 24g, 12d, 2a and 16f metal sites, respectively. (Ca = green, Mg = blue, Ca-Mg = red, 

H = grey.)  

For Samples 42 and 43, the unit cell is contracted further and these are represented in 

Figure 4-15 a) and Figure 4-15 b), respectively, with the fawn and grey polyhedra of the 

shared Ca/Mg 24g site highlighted and their coordination orientations revealed (Figure 4-

a) 

b) c) 

d) e) 



184 

15 c) and Figure 4-15d)). As before, the blue polyhedra indicate the six coordinate Mg-

only 16f site. 

   

     

Figure 4-15 a) Unit cell representation of Sample 42; Ca15.2(2)Mg11.8(2)H54, and b) coordination of its 

24g site. c) Unit cell representation of Sample 43; Ca13.3(8)Mg13.8(8)H54, and d) coordination of its 24g 

site. (Ca = green, Mg = blue, Ca-Mg = red, H = grey.) 

4.3.2.2. Thermal decomposition of the (Ca1-xMgxH2)n phases 

Thermal analysis of the samples was conducted to evaluate the hydrogen release properties 

of the hydrides. The thermal and mass loss profiles indicate a single endothermic peak for 

each sample associated with the loss of hydrogen occurring between 350-450 oC. 

Subsequent hydrogen loss occurs above 600 oC with the TG profiles indicating a melting 

process to be associated with this second hydrogen release (Figure 4-16). The MS data 

reveals that the onset temperature of the hydrogen release events in each sample was 

influenced by the initial CaH2:MgH2 ratio used, i.e., hydrogen is released earlier from 

those containing a higher proportion of Mg and vice versa. Interesting information at high 

temperatures may be extracted to show that the decomposition at this point may occur via a 

multi-step process.  

a) 

b) 

c) 

d) 
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Figure 4-16 a) DTA and b) TG collected at 5 oC/min for samples 39-43, where the CaH2:MgH2 

ratios are given in the legends. Corresponding MS data for the same samples showing c) full H2 

desorption profile and d) high temperature MS (m/z = 2) data. 

The peak decomposition temperature (Tpeak) increases with increasing Ca content (Table 4-

15). This may be expected since CaH2 is more stable than MgH2, and so the additional Ca 

may stabilise the ternary phase further. The wt% mass loss decreases with increasing Ca 

content, which corresponds with the relative increase in formula mass and hence decrease 

in gravimetric capacity of the composite with increasing proportions of Ca in the system. A 

a) 

d) 

b) 

c) 
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stark contrast in MS signals for H2 from the excess Ca (e.g., Sample 39) and excess Mg 

samples (e.g., Sample 43) is evident, despite using the same quantity of sample (30 mg) for 

each analysis, and thus reflects the respective increase in mass loss upon increasing Mg 

proportions in the ternary phase and vice versa. 

Table 4-15 Decomposition properties of Sample 39-43. 

 DTA TG 

Sample / CaH2:MgH2 Tonset 
/ K 

Tpeak 

/ K 
TGonset 

/ K 

ΔMass 
/ wt% 

39 / 2.375:1 651.2 675.2 657.9 1.13 

40 / 2:1 651.2 672.2 665.2 1.38 

41 / 1:0.75 644.2 668.9 650.8 1.94 

42 / 1:1 632.9 655.2 641.1 2.29 

43 / 1:2 623.9 650.4 631.4 3.49 
 

The Kissinger plots and relevant data obtained for Samples 39-43 are given in Figure 4-17 

and Table 4-16. These show that the activation enthalpy remains relatively similar for these 

samples. 

 

Figure 4-17 Comparison of Kissinger plots of Samples 39-43 where the CaH2:MgH2 stoichiometries 

for each sample are indicated. 
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Table 4-16 Kissinger plot data for Samples 39-43. 

Sample / CaH2:MgH2 Trendline Equation R2 Ea 
(kJ/mol) 

39 / 2.375:1 𝑦 = −17.672𝑥 + 14.708 0.992 146±9 

40 / 2:1 𝑦 = −17.683𝑥 + 14.848 0.9977 147±5 

41 / 1:0.75 𝑦 = −18.535𝑥 + 16.320 0.9998 154±1 

42 / 1:1 𝑦 = −17.45𝑥 + 15.169 0.9975 145±5 

43 / 1:2 𝑦 = −17.775𝑥 + 16.076 0.996 147±7 
 

Samples were heated to 523 K, 773 K and 973 K in order to determine the decomposition 

process in the system. The ternary phase has been previously described to decompose via 

the Ca4Mg3H14 phase. In each case, respective ternary “Ca19Mg8H54” phases were 

identified in post STA PXD analysis and therefore had not decomposed upon heating to 

523 K (Figure 4-18). At 773 K, very similar patterns were obtained for each sample, where 

reflections from the binary hydride CaH2 and Mg metal were identified by PXD and 

confirmed by Rietveld refinement. (All atomic parameters and temperature factors were 

fixed to the literature values for each phase, and areas at low 2θ were omitted since no 

reflections were expected in the region below 15 o.) 

 

Figure 4-18 Typical PXD pattern collected for samples retrieved after heating to 773 K (Sample 

39). (CaH2 indicated by black tick marks, and Mg indicated by red tick marks). Red crosses show 

experimental data, the green line is the calculated data and the magenta line is the difference plot. 
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Using the refinement data of the patterns obtained after heating, it was possible to deduce 

the relative proportion of CaH2:Mg after heating to 773 K (Table 4-17). These ratios do not 

correlate with the original starting ratio of Ca:Mg in each case since the proportion of Mg 

is lower than expected in each case. Although is it evident that the proportion of Mg 

increases in the heated sample as a function of the CaH2:MgH2 mixture, where Sample 43 

has significantly more Mg in the decomposition product than Sample 39. 

Table 4-17 Phase fractions of CaH2 and Mg from Rietveld refinement of Samples 39-43 collected 

after heating to 773 K.  

  Phase Fractions / % 

Sample CaH2 Mg 

39 80.9(4) 19.1(4) 

40 82.4(6) 17.6(6) 

41 69.1(7) 30.9(7) 

42 62(1) 38(1) 

43 46.3(4) 53.6(4) 
 

The samples collected after thermal analysis to 973 K indicate the presence of two main 

phases; CaH2 and a hexagonal C14-type Laves phase, CaMg2 (Figure 4-19).77 The 

presence of CaMg2 in the samples heated to 973 K is likely be the product of the melting 

feature observed in the DTA above 873 K. (Again, all atomic parameters and temperature 

factors were fixed to the literature values for each phase, and areas at low 2θ were omitted 

since no reflections were expected in the region below 15o.) The structure of CaMg2 phase 

was first described by Witte in 1937, with cell parameters of a = 6.22 Å, c = 10.10 Å.78 

The crystal structure of the Laves phase formed in this work is in excellent agreement with 

more recent literature values obtained by Gingl and Yvon (Table 4-18, a = 6.2709(5) Å, c 

= 10.1696(7) Å, volume = 346.3 Å3).77 (Advanced information about Laves phase 

formation may be found in reference 79 and in also the relatively more recent two part 

review by Stein et al.80, 81)  
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Figure 4-19 Typical PXD pattern collected for sample collected after STA after heating to 973 K 

(Sample 39). (CaH2 indicated by black tick marks and CaMg2 indicated by red tick marks). Red 

crosses show experimental data, the green line is the calculated data and the magenta line is the 

difference plot.  

Table 4-18 Exemplar Rietveld refinement data for samples collected after heating to 773 K and 

973 K (data is given for Sample 39). 

Temperature / K 773 973 

Chemical Formula CaH2 Mg CaH2 CaMg2 

Crystal System /  
Space Group  

Orthorh.  
/ Pnma (62) 

Hexagonal  
/ P63/mmc (194) 

Orthorh. 
/ Pnma (62) 

Hexagonal  
/ P63mmc (194) 

Z 4 2 4 4 

a / Å 
b / Å 
c / Å 

5.9581(5) 
3.6050(3) 
6.8019(5) 

3.2109(4) 
a 

5.2146(8) 

5.9594(4) 
3.6024(2) 
6.1823(5) 

6.2723(7) 
a 

10.170(1) 

V / Å3 146.10(3) 46.56(2) 146.25(3) 346.50(9) 

Formula Weight / g 168.384 48.610 168.384 354.760 

Calculated Density, ρx  
/ g cm-3 1.914 1.734 1.912 1.700 

Refinement Parameters 29 38 

Data Points 4240 4240 

Rwp 9.46 7.70 

Rp 7.37 6.09 

χ2 1.213 1.154 
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Using the phase fraction information obtained from Rietveld refinement of the PXD data 

collected for samples retrieved after heating to 973 K, the proportion of CaMg2 was shown 

to increase, with a relative decrease in the CaH2 phase fraction (Table 4-19). Therefore, the 

initial CaH2:Mg2 ratio has an effect on the conversion of CaH2 and Mg to CaMg2 at high 

temperatures, where higher proportions of Mg in the system allow a greater proportion of 

CaMg2 to be produced. For Sample 42, Mg was also evident. Attempts to introduce Mg to 

the refinements of the other samples were made, but the phase fraction of Mg was found to 

be negligible in all other instances. 

Table 4-19 Phase fractions of CaH2 and Mg from Rietveld refinement of samples collected after 

heating to 973 K.  

  Phase Fractions / % 

Sample CaH2 CaMg2 Mg 
39 64.9(8) 35.1(8) - 
40 54.9(4) 45.1(4) - 
41 44.3(4) 55.7(4) - 
42 42.3(4) 45.2(4) 12.5(8) 
43 39.8(3) 60.2(3) - 

 

4.3.2.3. Comparison of decomposition properties of selected ternary phases 

by in-situ SXD analysis 

To probe the decomposition mechanism further, in-situ variable temperature SXD was 

conducted on two of the samples between 298 - 673 K. Due to time limitations, only two 

of the five samples could be examined in this way; 2:1 (Sample 40) and 1:1 (Sample 42). 

For Sample 42 the cubic Ca19Mg8H54-type ternary phase remained between room 

temperature and 573 K, with lattice expansion effects observed due to heating (Figure 4-

20). It is clear, however, that a shoulder becomes prominent on the low angle side of the 

ternary phase peak at 573 K, which is the result of resolution of the Ca4Mg3H14 phase as 

the temperature increased. 
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Figure 4-20 SXD patterns collected in-situ between 298-673 K for Sample 42. 

Figure 4-21 shows the near linear trends obtained for the a cell parameter and cell volume 

of the ternary phase with respect to temperature (up to 573 K) for Sample 42. 

 

 

Figure 4-21 Plots of a) a cell parameter and b) cell volume for the ternary phase between 298-573 

K for Sample 42. 

a) 

b) 
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The relative phase fractions of the two ternary phases remain relatively constant until 523 

K, with the Ca19Mg8H54-type phase being dominant, ca. 80 %. Rietveld refinement of the 

sample collected at 573 K, however, reveals that the proportion of the Ca4Mg3H14-type 

phase is increased relative to the Ca19Mg8H54-type phase (Rietveld refinement data for the 

diffraction data collected at 573 K are provided in Appendix B, B.21 and B.22). This 

suggests that the Ca19Mg8H54-type phase has decomposed to the Ca4Mg3H14-type phase. 

This is in agreement with the decomposition process suggested previously for Ca19Mg8H54-

type phase by Bertheville and Yvon.53 The observation of this process at 573 K in this 

work is lower than the temperature quoted previously for the Ca19Mg8H54 phase 

decomposition (650-700 K). 

The Ca4Mg3H14 phase was revealed as the only crystalline phase present at 623 K. Rietveld 

refinement showed that the Ca4Mg3H14-type phase contained slightly more Mg than 

previously described (Figure 4-22, Table 4-20 and Table 4-21). This was determined by 

including an additional atom on the Ca 2e site since this has the shortest Ca-H length 

(2.287(4) Å), and allowing the site occupancy to vary. The formula for the hydride found 

at 623 K could thus be described as “Ca3.93(2)Mg3.07(3)H14” (Table 4-20). The lattice 

parameters are larger than those given by Gingl et al. (a = 6.3065(2) Å, c = 6.8820(2) Å), 

but some contribution towards this is likely from the elevated temperature at which the 

pattern was collected in this work.52 (Inclusion of MgH2 was attempted, but the refinement 

diverged instantly.) 

 

Figure 4-22 SXD pattern of Sample 42 collected after heating in-situ 623 K, where the black tick 

marks represent the “Ca3.93(2)Mg3.07(3)H14” phase. Red crosses show experimental data, the green line is 

the calculated data and the magenta line is the difference plot. 
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Table 4-20 Rietveld refinement data collected using in-situ Synchrotron X-ray Diffraction (623 K) 

for Sample 42. 

Chemical Formula “Ca3.93(2)Mg3.07(3)H14” 

Crystal System /  
Space Group  

Hexagonal / 
𝑃6�2𝑚 (189) 

Z 1 

a / Å 
b / Å 
c / Å 

6.3470(1) 
a 

6.8787(1) 

V / Å3 239.98(1) 

Formula Weight / g 246.264 

Calculated Density, ρx / g cm-3 1.704 

Refinement Parameters 37 

Data Points 3999 

Rwp 5.57 

Rp 3.95 

χ2 1.844  
 

Table 4-21 Atomic parameters for Ca3.93(2)Mg3.07(3)H14. 

Atom Site x y Z 100xUiso / Å2 SOF 

Ca1 2e 0 0 0.2657(2) 2.57(6) 0.966(7) 

Ca2 2d 1
3 

2
3 

1
2 

2.52(6) 1 

Mg1 3f 0.5476(3) 0 0 3.47(8) 1 

Mg* 2e 0 0 0.2657(2) 2.57(6) 0.034(7) 

H1 6i 0.61282 0 0.2748(2) 2.5 1 

H2 3g 0.230205 0 1
2 

2.5 1 

H3 3f 0.224220 0 0 2.5 1 

H4 2c 1
3 

2
3 

0 2.5 1 

N.B. Atomic parameters for H1-4 were fixed to literature positions. 

The unit cell structure of the “Ca3.93(2)Mg3.07(3)H14” phase identified in the sample heated to 

623 K is given in Figure 4-23. The green, pink and blue polyhedra represent the 

coordination orientations of the Ca-centred 2d site, the Mg-centred 3f site and the shared 

Ca/Mg-centred 2e site. 
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Figure 4-23 Polyhedral representation of the unit cell structure of “Ca3.93(2)Mg3.07(3)H14”. The green, 

blue and small light grey spheres represent Ca, Mg, and H atoms respectively. The red spheres 

represent the shared Ca/Mg 2e site. 

At 673 K the sample had decomposed further with four phases evident in the sample; a 

ternary Ca4Mg3H14-type phase, CaH2, MgH2 and Mg, where Rietveld refinement was 

conducted to determine the phase fractions of the sample (Figure 4-24, Table 4-22). The 

atomic and temperature parameters of the four phases were fixed to literature values, and 

the metal site occupancies of the ternary phase were also fixed.  

 

Figure 4-24 SXD pattern of Sample 42 collected after heating in-situ 673 K, where the black, red 

blue and green tick marks represent the Ca4Mg3H14, CaH2, MgH2 and Mg phases, respectively. Red 

crosses show experimental data, the green line is the calculated data and the magenta line is the 

difference plot. 

  



195 

Table 4-22 Rietveld refinement data collected using in-situ Synchrotron X-ray Diffraction (673 K) 

for Sample 42. 

Chemical Formula Ca4Mg3H14 CaH2 MgH2 Mg 

Crystal System /  
Space Group  

Hexagonal  
/ 𝑃6�2𝑚 (189) 

Orthorh.  
/ Pnma (62) 

Tetragonal  
/ P4/mnm 

Hexagonal  
/ P63/mmc 

Z 1 4 2 2 

a / Å 
b / Å 
c / Å 

6.3553(4) 
a 

6.8809(4) 

5.9976(8) 
3.6324(5) 
6.8324(10) 

4.489(3) 
a 

3.082(9) 

3.2340(6) 
a 

5.253(1) 

V / Å3 240.68(4) 148.85(5) 62.1(2) 47.58(2) 

Formula Weight / g 233.235 160.320 52.64 48.610 

Calculated Density, ρx  
/ g cm-3 1.609 1.788 1.414 1.697 

Phase Fraction / % 71.4(2) 14.5(2) 3.5(4) 10.6(3) 

Refinement Parameters 36 

Data Points 3999 

Rwp 9.77 

Rp 7.47 

χ2 5.622 
 

The evidence presented here suggests that the Ca19Mg8H54-type phase decomposes to the 

Ca4Mg3H14-type phase within a narrower range that previously quoted. The conversion to 

the Ca4Mg3H14-type phase occurs between ~573-623 K, and decomposition of the 

Ca4Mg3H14-type phase begins at ~673 K. Combination of the SXD information with the 

PXD data collected at 773 K, the decomposition of the Ca4Mg3H14-type phase to CaH2 and 

Mg may be proposed to occur between ~673-773 K. 

Sample 40 was not shown to decompose in the temperature range examined (Figure 4-

25a). The diffraction patterns collected up to 400 oC were studied by the Rietveld method, 

and were found to comprise the ternary phase and CaH2, as was the case at room 

temperature (Figure 4-25b). The refinements of samples collected between 373-673 K, 

inclusive, were conducted by fixing the atomic and temperature parameters to the known 

literature values. The site occupancy factors of the metal atoms in the ternary phase were 

also fixed.  



196 

 

 

Figure 4-25 a) SXD patterns of Sample 40 collected after heating in-situ from 298-673 K. b) 

Rietveld refinement plot of SXD pattern collected at 623 K. The cubic ternary phase is indicated by 

black tick marks and CaH2 is indicated by red tick marks; χ2 = 1.343 Rp = 3.61 %, Rwp = 4.85 %. Red 

crosses show experimental data, the green line is the calculated data and the magenta line is the 

difference plot. 

As the sample was heated, the ternary phase exhibited significant lattice expansion where 

the trends in a cell parameter and unit cell volume are given in Figure 4-26. These plots 

show a similar trend is found in both a cell parameter and cell volume, where these both 

increased linearly as the temperature was increased. It is likely that the sample need to be 

heated to a slightly higher temperature in order to reveal the decomposition process for the 

b) 

a) 
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2:1 sample (Sample 40). This confirms that the reagent stoichiometry employed has a 

direct effect on the decomposition of the milled sample, where the ternary phase is 

significantly more stable when more Ca is introduced (Sample 40) in comparison to 

samples where excess Mg in incorporated (Sample 42). 

 

 

Figure 4-26 Plots of a) a cell parameter vs. temperature and b) volume vs. temperature for Sample 

40 obtained from Rietveld refinement of diffraction data collected by in-situ SXD between 298-673 K.  

4.3.2.4. Summary 

Mechanosynthesis offers considerable opportunities for the preparation of new (and 

existing) ternary hydrides, as has been demonstrated in this work. It has been shown that 

under inert environments and by careful selection of the initial binary hydride 

stoichiometry, the metallic Ca:Mg proportions in the resultant ternary alkaline earth metal 

hydrides may be tuned effectively. Initially, CaH2:MgH2 stoichiometries defined for 

existing ternary Ca-Mg-H phases (2.375:1 and 1:0.75) were explored. The Ca19Mg8H54-

type phase was prevalent and other stoichiometries were then examined. The Ca19Mg8H54-

type phase was found in all CaH2:MgH2 stoichiometries investigated. The structures of the 

resultant ternary phases were examined by PXD and SXD and new non-stoichiometric 

a) 

b) 
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phases were determined, demonstrating that additional Ca or Mg may be included in the 

ternary phase by modification of the initial hydride ratio. For the first time, a Group II Ca-

Mg-H ternary phase was synthesised as a single phase and was found to be isostructrual to 

the Ca19Mg8H54 phase previously described, although with a higher Mg content; 

Ca15.6(3)Mg11.4(3)H54. It is unclear why the 1:1 system is a special case in which both the 

Ca19Mg8H54-type and Ca4Mg3H14-type phases form, whereas all other samples comprised 

only the Ca19Mg8H54-type ternary phase.  

The decomposition of the as-synthesised ternary hydrides differs as a function of the initial 

hydride stoichiometry, where incorporation of additional Mg in the ternary phases 

translates to a ternary phase that gives the lowest decomposition temperature relative to the 

other phases which contain higher Ca proportions. The gravimetric capacity of all of the 

ternary hydrides is relatively low, with <5 wt% desorbed in the lowest temperature 

decomposition event. However, as noted by Bertheville, the high volumetric hydrogen 

capacity of the ternary (Ca1-xMgxH2)n type hydrides (~100 g/L) offers a convenient 

hydrogen storage matrix, despite the gravimetric capacity being less adequate in relation to 

the binary hydrides.  

Hydrogenation of Laves type phases has been covered widely in the literature.36 Based on 

the Laves phase CaMg2 alloy obtained here, there is the potential for these materials to 

store hydrogen reversibly. However, the hydrogenation conditions for CaMg2 would 

require exposure of the samples to high pressures and temperatures for prolonged periods 

based on previous evidence in the literature.36, 52 Further work is required to examine the 

re-hydrogenation properties of the samples prepared in this work for comparison with 

existing hydrogenation studies of the CaMg2 Laves phase. 

4.4. Conclusions 
These ternary hydrides are not only important for understanding how ternary alkaline earth 

metal hydrides may be synthesised, but they present a convenient building block from 

which quaternary hydrides may be studied. The work here shows that additional smaller 

atoms, such as Mg, can be inserted in to the ternary Ca-Mg-H system. Therefore, it would 

seem prudent to investigate whether other small metallic elements, such as Li or Na, could 

be included to form a quaternary hydride. By incorporation of Li or Na atoms in to the 

ternary Ca-Mg-H phase it may be suggested that this would have a destabilising effect, as 

observed for the inclusion of Na in MgH2 to form the less stable NaMgH3 ternary phase. 

Alloys comprising Li-Mg-Cax (x=0-15 wt%) have been studied within the past decade, but 



199 

hydrogenation of the as-formed pseudo-binary eutectic system was not evaluated.82 More 

recent work explored hydrogenation of the Laves type CaLi2-xMgx (0≤x≤2) alloys, although 

no ternary or quaternary hydride phases were determined.83 Other lightweight Laves type 

alloys, e.g., CaLixAl2-x and (Ca1-xMgx)Al2, and ternary Ca-Mg-TM alloys have been 

studied, but hydrogenation of the alloys did not reveal quaternary hydride phases.84, 85, 86 It 

would be interesting to determine whether any quaternary phases incorporating Li or Na 

could be synthesised from the ternary hydrides produced herein. 

Beyond the standalone hydride phases for hydrogen desorption, utilisation of these samples 

in hydrolysis systems may be a lucrative route to pursue. As described in the introduction 

of this chapter, inclusion of Ca in the MgH2 system enhanced the kinetics of the hydrolysis 

reaction between MgH2 and water.62, 63 The close contact of Ca and Mg in these samples 

may translate to even faster kinetics, and further work in this direction would add to the 

developing field of hydrolytic hydrogen release systems. This is a rapidly developing field 

of energy materials research in which CaH2, MgH2 and mechanochemistry already play a 

pivotal role.64, 87 

From a structure chemistry perspective, further diffraction analysis is required to 

characterise the hydrogen positions within the ternary phases, and neutron diffraction 

experiments are expected to be carried out at the UK neutron source facility (ISIS) in the 

near future. Unfortunately the time constraints of this PhD did not allow this work to be 

carried out in time for inclusion in this thesis (Appendix E). 
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5. Synthesis and Structure of Halide Precursors for 

Tailored Hydride Synthesis via Solid State 

Metathesis Reactions 

5.1. Introduction 
Metathesis reactions (also known as double decomposition reactions) are defined as “a 

bimolecular process involving the exchange of a bond (or bonds) between similar 

interacting chemical species so that the bonding affiliations in the products are identical 

(or closely similar) to those in the reactants”.1 These may be given by the general form: 

Equation 5-1 𝐴𝐵(𝑠) + 𝐶𝐷(𝑠) → 𝐴𝐷(𝑠) + 𝐶𝐵(𝑠)  

Examples of this type of reaction range from organic synthesis to pure inorganic chemistry, 

and their exploitation by chemists has resulted in significant developments in both solution 

and solid state chemistry.2 Focusing on the solid state method, self-propagating reactions 

may yield novel products in the form of nanoscale crystallites.3, 4 The success of these 

reactions relies on the formation of a thermodynamically stable product, typically an alkali 

halide salt, and are usually initiated by application of heat. This type of reaction has been 

termed “self-propagating high-temperature synthesis”, or SHS.5, 6 These exothermic 

reactions are known to have the potential to occur violently and so controlling the 

reactivity of the solids can be difficult by this method. Treece et al. highlighted that solid-

solid reactions involving tailored precursors allows for better control of the reaction, and 

developments in solid state metathesis, SSM, are wide-ranging.7 Work in the field of rapid, 

solvent-free SSM reactions has allowed a plethora of new materials to be discovered by 

this method, including pnictides, nitrides, carbides, etc.8, 9, 10, 11 Thermal activation is 

commonly used to assist SSM although in extreme cases they may occur violently at room 

temperature, even with gentle grinding. 

Metathesis reactions present an interesting route towards hydrogen storage materials and 

have been studied for synthesis of binary hydrides for many decades. Wet-chemistry 

reactions between magnesium halides and alkali metal hydrides were first reported in the 

1950’s by Wiberg et al.12 Later, these reactions were developed by Ashby and Schwartz 

for synthesis of reactive MgH2 as a catalyst for organic chemistry reactions.13 Using the 

wet-chemistry preparatory method, metathesis reactions were shown to take up to four 

days to proceed under reflux conditions. Synthesis of a wide variety of materials, including 
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borohydrides and alanates for energy storage, has also been possible using the wet-

chemistry metathesis method.14, 15, 16 

Ball milling is an effective technique that can enable metathesis reactions via mechanical 

activation alone, where hand grinding or thermal means are not sufficient or applicable.17 

Milling results in particle size reduction and significant surface defects without the need 

for additional thermal initiation or any requirement for solvents.18 In 2010, solid state 

metathesis was conducted to generate nanoparticles of magnesium hydride via the 

metathesis mechanism given by Wiberg:19  

Equation 5-2 𝑀𝑔𝐶𝑙2 + 𝐿𝑖𝐻 → 𝑀𝑔𝐻2 + 𝐿𝑖𝐶𝑙 ΔfG298 K = -72.8 kJ/mol 

Sheppard also issued a thermodynamic study establishing the decomposition properties of 

the hydride as a mixture with the byproduct, i.e., the alkali metal salt, LiCl.20 They showed 

that the decomposition enthalpy and entropy of the MgH2 nano particles synthesized in the 

solid state were lower than that of the bulk hydride, resulting in a ~6oC drop in the 

equilibrium temperature at 1 bar. SSM by ball milling has been used to produce a wide 

range of hydride materials, including lightweight borohydrides21, 22, 23 and alanates24,25, 26. 

With a focus on metathesis reaction design, the work described in this chapter investigates 

the mechanochemical synthesis of appropriate inorganic precursors towards the synthesis 

of hydride materials for hydrogen storage. The chapter is divided in to three sub-sections, 

in which a halide precursor has been synthesized, followed by investigation of metathesis 

reactions between the precursor and light metal binary hydrides. 

1. Mechanochemical synthesis of LiAlCl4 and subsequent solid state metathesis with NaH 

towards LiAlH4 synthesis. 

2. Conventional and mechanochemical synthesis of NaMgCl3 and subsequent solid state 

metathesis with LiH/NaH towards NaMgH3 synthesis. 

3. Mechanochemical synthesis of NaAlCl4 and subsequent solid state metathesis with LiH 

towards NaAlH4 synthesis. 

Each system will be described, with relevant introductory material followed by results and 

discussion and conclusions. 
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5.2. Experimental 
Samples were prepared according to the conditions given in Table 5-1. 

Table 5-1 Sample ID and reaction conditions for ternary halide synthesis and halide-hydride 

metathesis reactions. 

Sample ID Reagents Heating  
Conditions 

Milling  
Time (h) 

b:p 

44 LiCl + AlCl3 - Hand Mixed - 

45 LiCl + AlCl3 - 1 80:1 

46 LiCl + AlCl3 - 3 80:1 

47 LiCl + AlCl3 - 5 80:1 

48 LiAlCl4 (46) + 4 NaH - 5 100:1 

49 NaCl + MgCl2 - Hand Mixed - 

50 NaCl + MgCl2 450 oC, 12 h - - 

51 NaCl + MgCl2 - 1-5 80:1 

52 NaMgCl3 (50) + 3 NaH - 5 100:1 

53 NaMgCl3 (51) + 3 NaH - 5 100:1 

54 NaMgCl3 (50) + 3 LiH - 5 100:1 

55 NaCl + AlCl3 - Hand Mixed - 

56 NaCl + AlCl3 - 5 80:1 

57 NaAlCl4 (56) + 4 LiH - 5 100:1 
N.B. Starting materials; Anhyd. LiH (95 %), Anhyd. NaH (95 %), Anhyd. LiCl (≥99 %), 

Anhyd. NaCl (≥99 %), Anhyd. MgCl2 (≥98 %) and Anhyd. AlCl3 (99.99 %), were all 

purchased from Sigma Aldrich, without further purification. 

All milling operations were conducted using stainless steel milling media using 

stoichiometric quantities of reagents. A 50 ml stainless steel milling jar was used in each 

case employing 10x 10 mm stainless steel milling balls. Milling was conducted in 5 min 

milling periods which were followed by 5 min rest periods, and the total experiment time 

adjusted to meet the milling time requirements. 

Samples synthesised by conventional heating were prepared in a glovebox, where the 

powders were first weighed stoichiometrically and ground with an agate mortar and pestle 

until thoroughly mixed. The well mixed powders were then transferred to a silica tube and 

sealed with a Subaseal® septum cap and parafilm. Heating was conducted at the designated 

temperatures in a bench-top furnace (Figure 2-4) under a constant flow of Ar(g) for the 

durations noted in Table 5-1 above.  



205 

Post-milled and post-thermal analysis samples were investigated by PXD using a Bruker 

D8 powder diffractometer in transmission geometry with spinning sealed capillaries, this 

minimized the risk of hydrolysis of the hygroscopic halide products or oxidation of the 

hydrides. Data were collected between 5 ≤ 2θ / o ≤ 85 for 1 h for initial characterisation and 

over 10 ≤ 2θ / o ≤ 110 for between 10-14 h to obtain higher resolution, higher intensity data 

(for structure refinement). 

All collected diffraction patterns were compared to reference data in the ICDD database 

using the PANalytical High Score Plus Software package. Rietveld refinement was 

performed using GSAS/EXPGUI27, 28 with reference data obtained from the Inorganic 

Crystal Structure Database (ICSD).29 Diffraction background was modelled using Function 

8 within GSAS; a reciprocal interpolation function. Peak shapes were modelled using the 

Thompson-Cox-Hastings pV function (Function 2) with asymmetry also being taken into 

consideration. The unit cell parameters were varied, followed by the atomic and 

temperature parameters. Where more than one phase was identified, the phase fractions 

were obtained by refining the scale factors. The atomic positions and temperature factors 

were refined where possible, and constrained to the values given in literature where 

significant divergence occurred. 

TPD experiments were performed for all samples via thermogravimetric-differential 

thermal analysis-mass spectrometry (TGA-DTA-MS; Netzsch STA 409 coupled to a Hiden 

HPR20 mass spectrometer). All thermal analysis experiments were conducted within an 

Ar-filled recirculating glovebox (MBraun UniLab; 0.1 ppm H2O, 0.1 ppm O2) using 

alumina sample pans under a constant flow of Ar(g) at a 5 K min-1 heating rate.  

SEM-EDX experiments were performed at 20 keV under a nitrogen atmosphere using a 

Philips XL30 ESEM instrument equipped with an Oxford Instruments X-act spectrometer 

to determine particle morphology and atomic proportions, respectively. Samples were 

prepared on carbon tabs under an inert environment. The samples were loaded in a sputter 

coater and coated with gold at 25 keV. Although exposure of the samples to air was 

unavoidable during this analysis procedure, it was minimised as much as possible to obtain 

representative results of the as-prepared samples. 



206 

5.3. Mechanochemical Synthesis of LiAlX4 (X = Cl, H). 

5.3.1. Introduction 

LiAlCl4 has been a key material in the development of fuel cell and battery electrolytes 

owing to its high ionic conductivity in the molten and solid state.30, 31, 32, 33, 34Weppner and 

Huggins determined the room temperature conductivity to be 1 × 10−6Ω−1 𝑐𝑚−1, which 

increased upon heating to 140 ºC to 4× 10−4Ω−1 𝑐𝑚−1. 35 The work of Behl et al. 

described the enhanced performance of Li-inorganic electrolyte cells comprising the 

LiAlCl4-SOCl2 electrolyte solution (1.5 M) with carbon black electrodes in comparison to 

other Li-inorganic cells they studied, giving an energy density of 244 W-hr/lb at a 57 hr 

discharge rate.36 LiAlCl4-based electrolytes are now one of the most studied systems for 

inorganic lithium batteries.37, 38, 39, 40 The Raman work of Bedfer et al. in the 1980s 

demonstrated that a knowledge of the transformations in chemical structure of the solvated 

LiAlCl4 electrolyte component throughout the discharge process was critical in 

understanding the behaviour of Li-inorganic electrolyte batteries.41, 42 The synthesis of 

LiAlCl4 is typically via heat treatment of a stoichiometric mixture of the corresponding 

anhydrous salts, LiCl and AlCl3, requiring further purification by addition of lithium metal 

(ΔfGºsolid = -1.16+3.95×10-4 T[K] MJ/mol above room temperature).35, 31 However, more 

complex and time-consuming methods, such as that described by Behl et al., require 

HCl(g)/Cl2(g) treatment.43, 44  

Beyond electrolyte studies, LiAlCl4 could also be exploited as a halide precursor for 

synthesis of LiAlH4. Early work by Finholt and colleagues45 showed that the high 

hydrogen capacity alanate, LiAlH4 (ΔfHºsolid = -117.15 kJ/mol46, 10.64 wt%H), may be 

formed by the following reaction, where LiCl is the thermodynamically stable by-product 

(ΔfHºsolid = -408.27 kJ/mol46; Tm.p = 614 ºC47): 

Equation 5-3 4 𝐿𝑖𝐻 + 𝐴𝑙𝐶𝑙3
𝑒𝑡ℎ𝑒𝑟
�⎯⎯� 𝐿𝑖𝐴𝑙𝐻4 + 3 𝐿𝑖𝐶𝑙  

The following metathesis reaction was proposed in the early 1990s, but no experimental 

evidence to show that this has been attempted can be found elsewhere in the literature.48 

The thermodynamically stable by-product being NaCl in this instance (ΔfHºsolid = -411.12 

kJ/mol46; Tm.p. = 800.4 ºC47). 

Equation 5-4 𝐿𝑖𝐴𝑙𝐶𝑙4 + 4 𝑁𝑎𝐻 → 𝐿𝑖𝐴𝑙𝐻4 + 4 𝑁𝑎𝐶𝑙  
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Solid state approaches towards the synthesis of LiAlH4 are also evident in the literature, 

and the work of Kojima and colleagues showed that the direct synthesis of LiAlH4 by 

milling LiH and Al under H2(g) was not adequate to form a significant yield of single phase 

LiAlH4.49 More recently, synthesis of Ti-doped LiAlH4 by milling LiH and Al in the 

presence of TiCl3 was studied.50 By contrast, other additives such as Ti metal, Nb2O5 and 

NbCl5 did not allow formation of the alanate. The investigation of a compatible solvent for 

rehydrogenation of the dehydrogenated TiCl3 catalysed LiAlH4 composites revealed a 

hydrogen storage system capable of hydrogen cycling.51 

The first section in this results chapter looks at mechanochemical synthesis of the ternary 

halide LiAlCl4 and the subsequent mechanochemical metathesis reaction between the as-

prepared halide and a hydride source (NaH). This will not only test the hypothesis that 

ternary halides may be used for the synthesis of complex hydrides via solid state routes, 

but will also corroborate the metathesis reaction proposed earlier by Chelyukanova and 

colleagues. The FACTweb software was used to predict the thermodynamics of this 

system; ΔH = -40.88 kJ, ΔG = -41.28 kJ and ΔS = 13.62 J/K, based on the stoichiometric 

reaction between the inorganic precursor, LiAlCl4, and NaH in the solid state at 298 K.52  

5.3.2. Results & Discussion 

5.3.2.1. Synthesis and Characterisation of the Halide Precursor, LiAlCl4 

After milling, a very pale yellow powder product was collected from the milling jar and 

stored in a sealed vial under an inert atmosphere. After milling for 1 h only, there was 

evidence for the complex halide, LiAlCl4, but reflections from the reagents were also 

evident in the diffraction pattern collected. This suggested that the reaction between LiCl 

and AlCl3 was incomplete, and the milling time was thus increased to 5 h. The diffraction 

pattern for the 5 h milled sample revealed significantly broad peaks of LiAlCl4, with a 

broad background suggesting some amorphization of the product and was likely to be due 

to the use of over-zealous milling conditions. An intermediate milling time of 3 h was then 

attempted, and revealed a crystalline product with no additional binary halide phases. The 

crystalline phase was assigned to LiAlCl4 according to the existing data available from the 

single crystal work of Mairesse et el. (ICSD-1040).53 The values are also in good 

agreement with the room temperature data collected in the variable temperature study 

conducted by Perenthaler and colleagues on single crystals of the halide (a = 7.004(8) Å, b 

= 6.503(6) Å, c = 12.996(9) Å).54  
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High quality data collected in this work was analysed by the Rietveld method and further 

structural information for the LiAlCl4 phase synthesised by mechanochemistry was 

determined (Figure 5-1, Table 5-2 and Appendix C; C.1 & C.2). A small amount of LiCl 

reagent was found to present from this analysis, but was <1 % and indicates the high purity 

of the LiAlCl4 product obtained here by the mechanochemical method. This is an 

interesting development, since the synthesis was not conducted under vacuum, no HCl(g) or 

Cl2(g) was required, nor further purification by addition of molten Li metal.35 

 

Figure 5-1 Rietveld refinement plot of PXD data for Sample 46. Black tick marks represent the 

LiAlCl4 phase and the red tick marks indicate the LiCl phase. Red crosses indicate observed data, the 

green line shows the calculated pattern and the magenta line indicates the difference plot. 
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Table 5-2 Crystallographic data from Rietveld refinement. 

Sample Literature53 Sample 46 

Chemical Formula LiAlCl4 

Crystal System Monoclinic  

Space Group P 21/c 

Z 4 

a / Å 7.007(3) 7.0081(3) 

b / Å 6.504(4) 6.5136(2) 

c / Å 12.995(10) 13.0065(5) 

β/º 93.32(5) 93.322(2) 

V / Å3 591 592.71(6) 

Formula Weight / g - 702.940 

Calculated Density, ρx / g cm-3 1.98 1.969 

Phase Fraction  99.09(3) 

Refinement Parameters - 57 

Data Points - 12117 

Rwp 3.5 % 4.22 % 

Rp 2.9 % 3.27 % 

χ2 - 1.633 
 

The LiAlCl4 structure comprises AlCl4 tetrahedra and LiCl6 octahedra. Figure 5-2 a) shows 

the extended LiAlCl4 structure with Li and Al coordination orientations given in Figure 5-2 

b) and c) respectively. The layered structure results from the linkage of pairs of LiCl6 

octahedra, which are edge-sharing. The paired octahedra share one corner of a further four 

octahedron pairs to give a layer of octahedra which exists parallel to the ac plane. The 

layers of octahedra are linked by the AlCl4 tetrahedra, where one octahedra pair shares two 

edges with each AlCl4 tetrahedron and a further two octahedral units share two corners of 

the tetrahedron.  
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Figure 5-2 a) Expanded structure of mechanochemically synthesised LiAlCl4 (unit cell edges 

indicated) with tetrahedral representation of [AlCl4]-
 anions given by the blue polyhedra (Li = grey 

spheres, Al = purple spheres, Cl = green spheres), b) octahedral coordination sphere of Li atoms, and 

c) tetrahedral coordination sphere of Al atom. 

The DTA profiles for hand mixed (Sample 44) and the milled product (Sample 46) of LiCl 

and AlCl3 in stoichiometric proportions are given in Figure 5-3. Both samples exhibited a 

single endothermic event below 300 °C, where the Tpeak of the milled mixture occurred at a 

higher temperature than the hand mixed halide mixture. No other significant thermal 

features were identified to suggest significant proportions of unreacted binary halide, 

where the melting points of AlCl3 and LiCl are 194 °C and 614 °C, respectively.47 The 

enthalpy of the reaction between LiCl and AlCl3 from the hand-mixed samples, was 

determined as 11.58 kJ/mol, as determined from analysis of the area of the peak in the 

DTA trace for Sample 44. The endothermic event may described as the melting point 

a) 

c) b) 
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(Tm.p.) of the mechanochemically synthesised LiAlCl4 produced in this work, and was 

found to be 154.4 °C. In addition, it should be noted that the Tm.p. of the ternary halide 

produced by this method is 22 °C higher than that quoted by Morozov and colleagues, 10 

°C greater than that described by Kendall et al. and 8 °C higher than that quoted by 

Weppner and Huggins.43, 55, 31 This could be as a result of the small impurity phase. The 

sharp peak profile for the complex halide produced here indicates that the purity of the 

sample is reasonable and is consistent with the high purity suggested for this sample by the 

phase fraction information obtained by Rietveld refinement. The enthalpy associated with 

the melting of the LiAlCl4 produced in this work was found to be 19.23 kJ/mol as 

determined from analysis of the area of the peak in the DTA trace for Sample 46. There 

was no associated mass loss with the thermal event in neither the hand-mixed or milled 

samples, and no evolved gases were observed in the corresponding MS traces. 

 

Figure 5-3 Thermal analysis of Sample 44 (dashed line) vs. Sample 46 (solid line). 

5.3.2.2. Mechanochemical metathesis of halide precursor, LiAlCl4, and 

hydride donor, NaH. 

Stoichiometric proportions of the as-prepared halide (Sample 46) and NaH (1:4, 

respectively) were milled and the properties of the resultant mixture examined to establish 

whether the mechanochemical metathesis reaction was successful in producing LiAlH4 

(Sample 48). This is based on Equation 5-4, described earlier. The SEM image of the as 

prepared sample (Figure 5-4 a) revealed that the sample is likely to have hydrolysed in the 

time it was taken to transfer the sample from the sealed vial in to the SEM chamber. This is 

indicated by the smooth globule-type materials observed in the sample, and highlights the 
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highly hygroscopic nature of the as-prepared sample. Images of the sample were collected 

after heating (Figure 5-4 b), and showed an agglomerated material with smooth surfaces, 

suggesting a melt.  

      

Figure 5-4 SEM images of a) mechanochemical metathesis product (Sample 48, 100 μm) and b) 

product collected after heating Sample 48 to 300 ºC (20 μm).  

PXD revealed the expected thermodynamically stable halide by-product of the metathesis 

reaction, NaCl, but it also indicates reflections which correspond to Al (Figure 5-5). The 

presence of the Al phase could be the result of partial decomposition of the complex 

hydride, LiAlH4, in the mill. As in previous studies involving mechanochemical metathesis 

of halides and hydrides, the hydride phase was not observed using lab PXD.19 This could 

be a result of the small particle size of the hydride formed by this method. 

 

Figure 5-5 PXD pattern of Sample 48. 
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To confirm whether the thermal behaviour of the as prepared product matched that of 

LiAlH4, STA was conducted. The sample was analysed to both 300 °C and 500 °C, and 

these gave consistent thermal analysis results. The DTA and TG profiles between room 

temperature and 300 °C are given in Figure 5-6 a) and b), and the MS data collected over 

the whole temperature range (room temperature to 500 °C) is given in Figure 5-6 c).  

 

 

Figure 5-6 a) DTA, b) TG and c) MS data (m/z = 2) for Sample 48 heated to 500 ºC using a heating 

rate of 5 ºC/min. 

b) 

a) 

c) 
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There were a number of low temperature events identified in the DTA profiles, and these 

corresponded to a small mass loss (~1 wt%) which could be correlated to the loss of 

hydrogen from the corresponding MS data. The expected mass loss from the product of the 

metathesis product is 1.49 wt% based on Equation 5-4. The slightly lower value obtained 

here suggests that some loss of hydrogen from the sample has occurred as a result of the 

milling procedure. The low temperature hydrogen desorption is characteristic of the 

desired LiAlH4 product. The thermal behaviour of LiAlH4 is well documented, and the 

DTA profile of the sample prepared here matches the previously determined low 

temperature decomposition profiles given in the literature for LiAlH4 (Equation 5-5 and 

Equation 5-6).56 The exo- and endothermic peaks at 126.2 oC and 180.4 oC are 

characteristic of the complex hydride, and correspond to the following two decomposition 

mechanisms, respectively57: 

Equation 5-5 3 LiAlH4  Li3AlH6 + 2 Al + 3 H2  

Equation 5-6 Li3AlH6  3LiH + Al + 3
2
 H2  

The quoted ranges for these two processes are 150-175 ºC and 180-220 ºC.56 The results 

given here indicate that these processes occur at a lower temperature in the 

mechanochemically synthesised materials relative to the literature values for un-doped and 

doped LiAlH4 prepared by mechanochemistry. For example, the Tpeak for the first and 

second decomposition steps for 5 wt% nano-Fe doped LiAlH4 are 132.1 ºC and 200.2 ºC, 

respectively.58 The possibility of this hydrogen evolution being from the hydrogen donor, 

NaH, can be ruled out as NaH is expected to decompose at a significantly higher 

temperature from the STA conducted for the as-received NaH material (Appendix C, C.3), 

where Tpeak for hydrogen desorption (3.59 wt%) from NaH was determined to be 392.9 oC 

and the enthalpy of decomposition for NaH was 48.15 kJ/mol, as determined from analysis 

of the area of the peak in the DTA trace. 

Only reflections for two cubic phases were observed in the diffraction pattern of the 

sample collected after heating to 300 ºC (Figure 5-7a), these could be attributed to Al/LiH 

and NaCl, where the diffraction peaks expected for LiH and Al are coincident. The PXD 

profile of the sample heated to 500 ºC (Figure 5-7 b) indicated reflections attributable to 

NaCl, Al metal and the LiAl alloy, where the latter two phases are the expected products 

from the high temperature decomposition events associated with LiAlH4, given by: 
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Equation 5-7 LiH + Al LiAl + 1
2
 H2  

 

 

Figure 5-7 X-ray diffraction patterns of samples collected post STA of Sample 48 to a) 300 ºC and 

b) 500 ºC. 

5.3.2.3. Summary 

Synthesis of the complex halide, LiAlCl4, was conducted successfully by 

mechanochemistry, yielding a high purity (>99%) product. This was confirmed by PXD 

and subsequent treatment of the diffraction data using the Rietveld method. STA data 

revealed an endothermic event, which which was attributed to the Tm.p. of the complex 

halide, 154.4 ºC. Metathesis between the mechanochemically prepared complex halide and 

NaH was investigated by solid state mechanochemical reaction. The diffraction results of 

a) 

b) 
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the reaction product revealed reflections for the thermodynamically stable by-product, 

NaCl, and LiH/Al after heating to 300 ºC, and NaCl, LiAl and Al after heating to 500 ºC. 

The decomposition products are consistent with those expected from the decomposition of 

LiAlH4. The STA results gave a thermodynamic profile analogous to that of LiAlH4, based 

on literature data. It may be concluded from this work that the metathesis reaction has 

proceeded successfully using the ternary halide as the complex hydride precursor. 

Furthermore, the Tpeak values for the two low temperature thermal decomposition events 

for LiAlH4 in this work are at a lower temperature (126.2 oC and 180.4 oC) than 

unmodified and catalyzed LiAlH4, based on literature values. 

5.4. Mechanochemical Synthesis of NaMgX3 (X = Cl, H). 

5.4.1. Introduction 

“The Hydride-Fluoride Analogy” by Maeland and Lahar describes the similarities in 

structure of the ternary fluorides and hydrides that form the Perovskite structure.59 There 

are indeed other examples of structural comparisons between halide and hydride 

compounds for hydrogen storage, e.g., Mg2FeH(D)6 has been described with the K2PtCl6-

type structure.60, 61 In 2009, Pawelke et al. suggested the use of ternary halide precursors as 

an indirect route to advanced ternary hydrogen storage materials, although their work did 

not provide further details about how this would be achieved.62 They prepared Perovskite-

type KMIICl3 (MII=Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn) halides, by mechanochemistry using a 

high b:p ratio (120:1) and non-stop ball milling for 3 h at 800 rpm, although they state that 

the reactions are also possible under less energetic conditions using a b:p ratio of 40:1. 

Based on the knowledge of NaMgH3 from previous chapters, it seemed prudent to 

investigate whether the same hydride could be formed from a halide precursor, namely 

NaMgCl3. The NaCl-MgCl2 phase diagram has been studied over a range of binary halide 

stoichiometries. These demonstrated the eutectic and peritectic features of the NaCl-MgCl2 

system, in which two incongruently melting compounds were determined; NaMgCl3 and 

Na2MgCl4.63, 64, 65, 66 The standard enthalpy of formation for NaMgCl3, however, does not 

appear to be available in the literature. The diffraction pattern for NaMgCl3 was given by 

Reddy et al. but full crystallographic information for the orthorhombic phase determined in 

their work was not provided.67 In fact, they state that the NaMgCl3 structure determined in 

their work was analogous to that observed in another study by McMurdie et al. on ABCl3 

compounds, but no reference to the NaMgCl3 compound is given in this latter work.68 In 

the work by van Loon on NaMCl3 and Na2MCl4 systems (M = Mg, Mn, Fe, Cd), the lattice 

parameters for NaMgCl3 are given, but no further data is provided in the paper. 69 
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This sub-section looks at the synthesis of Perovskite-type halide NaMgCl3 from the binary 

halides and subsequent reaction with an appropriate hydride via the metathesis route. This 

is in analogy to the concept introduced in the previous section. The following metathesis 

reaction between NaMgCl3 and LiH or NaH are proposed in this work: 

Equation 5-8 NaMgCl3 + 3 LiH  NaMgH3 + 3 LiCl  

Equation 5-9 NaMgCl3 + 3 NaH  NaMgH3 + 3 NaCl  

Both reactions involve the formation of a themodynamically stable by-product, which both 

have a significantly higher decomposition temperature than the ternary hydride, NaMgH3 

(ΔfHºsolid = -231±4 kJ/mol70), product (see Chapter 4).47 

5.4.2. Results & Discussion 

5.4.2.1. Synthesis and Characterisation of the Halide Precursor, NaMgCl3 

The powder products formed by both the thermal method and mechanochemistry were in 

the form of a white powder. The former had to be scraped from the inside of the silica tube 

in which it was synthesised as it had formed a solid mass. The latter method formed a loose 

powder. The highly hygroscopic nature of halide salts make them difficult to handle and 

analyse and so all sample preparation and retrieval procedures were carried out in an Ar(g) 

filled glovebox. The SEM images indicate that some degradation may have occurred as a 

result of the brief exposure to air for the purposes of this analysis. This is evidenced by the 

melt-like morpohology shown in Figure 5-8 a). The images collected reveal agglomerated 

particles of the powder product, where higher magnification indicated a porous solid 

(Figure 5-8 b).  

 

Figure 5-8 SEM micrographs of as prepared NaMgCl3 (Sample 50) using a) low and b) high 

magnification. 

b) a) 
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The as synthesised NaMgCl3 (Sample 50) was determined by PXD to be isostructural to 

the Perovskite-type NaMnCl3 halide. Using CELREF, the lattice parameters and cell 

volume could be estimated and compared with values given in literature for NaMgCl3 

(Table 5-3).69 Rietveld refinement allowed determination of the crystal structure of the as-

prepared halide (Figure 5-9). The structure of NaMgCl3 has been determined previously, as 

mentioned, but no structure model was available from the ICSD, therefore the NaMnCl3 

structure model was employed (ICSD-2552). The atomic parameters and interatomic 

distances for NaMgCl3 derived from this work are given in Appendix C, C.4 & C.5. 

Table 5-3 Rietveld refinement data for NaMgCl3 and impurity phase (Sample 50). 

 NaMgCl3  

Formula Literature69 CELREF Sample 50 NaCl† 

Crystal System Trigonal Cubic 

Space Group R-3 (148) Fm-3m (225) 

a / Å 6.506(3) 6.49(2) 6.5117(4) 5.6014(5) 

c / Å 18.586(7) 18.676(3) 18.584(1) - 

Volume / Å3 - 681(1) 682.4(1) 175.75(4) 

Z  6  4 

Formula Weight / g - - 1105.722 233.722 

Calculated density, ρX  
/ g cm-3 

- - 2.690 2.209 

Phase Fraction - - 86.9(3) 13.1(3) 

No of data - - 11829 

No of parameters - 13 40 

Rwp - - 6.15 % 

Rp - - 4.09 % 

χ2 - - 1.208 
†Impurity phase of Sample 50. 
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Figure 5-9 Refinement plot of data collected for Sample 50, where black tick marks indicate 

NaMgCl3, and NaCl impurity are indicated by red tick marks. Red crosses indicate experimental data, 

and green line indicates the calculated pattern. The magenta line indicates difference plot. 

The structure of NaMgCl3 may be described, in analogy to NaMnCl3, as a trigonally 

distorted hexagonal close-packed lattice, in which alternating layers of Na and Mg cations 

exist between layers of Cl anions (Figure 5-10 a). The Na and Mg cations form a distorted 

octahedra with Cl anions on the corners of each octahedron (Figure 5-10 b and c).  
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Figure 5-10 a) Structure of NaMgCl3 (Sample 50) showing alternating layers of Na centred 

octahedra (green) and Mg centred octahedral (pink). Coordination orientation of the b) Na octahedral 

and c) Mg octahedral. (Mg = blue spheres, Na = grey spheres, Cl = green spheres.) 

Synthesis of NaMgCl3 was also investigated by the mechanochemical method (Sample 51), 

and the effect of milling time is shown in Figure 5-11. The ternary halide NaMgCl3 phase 

is evident after only 2 h of milling, although minor reflections of a second ternary halide 

phase are also evident, which is consistent with evidence given in phase diagram studies 

where the two phases exist. This result is surprising given that previous work on the 

mechanochemical synthesis of Na-Mg-Cl type phases by the mechanochemical method 

were unsuccessful.71 The work of Solinas and Lutz used milling times of up 100 h 

employing a 2:1 ratio for Na2MgCl4 synthesis, although no further milling conditions for 

the NaCl-MgCl2 systems studied in their work is provided. Based on the observations from 

this work, it may be possible that the milling conditions used in the study by Solinas and 

Lutz were too vigorous and the halides thus became amorphous. 

a) 

b) c) 
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Figure 5-11 Effect of milling time on the synthesis of NaMgCl3 from a stoichiometric 1:1 mixture of 

NaCl and MgCl2 (Sample 51). 

The thermal properties of mechanochemically synthesised NaMgCl3 were probed by STA 

and also by in-situ high temperature PXD between room temperature and 500 ºC. The STA 

of the 1:1 molar mixture of NaCl:MgCl2 prepared by hand-mixing, and mechanochemistry 

are compared in Figure 5-12. This shows similar DTA profiles, but the temperatures of the 

main features occur at a lower temperature in the milled sample in comparison to the hand-

mixed sample. The main endothermic feature at ~460 °C may be ascribed to the eutectic 

point of the 1:1 molar mixture, and is in close agreement to the values obtained in previous 

work (462 °C).65 For the milled sample (Sample 51), there is a small mass loss (~2.5 wt%) 

associated with the low temperature feature at 216 °C, and a further mass loss associated 

with the eutectic event. This occurs at 260 °C for the hand mixed sample (Sample 49), but 

the mass appears to increase again this event. It is not clear what this small mass loss is 

associated with in either of the samples, as no evolution of water or other species could be 

detected in the mass spectrometry data. 
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Figure 5-12 STA data comparison for Samples 49 and 51, showing a) DTA and b) TG data, 

respectively. 

PXD data was collected for Sample 51 (5 h milled) heated to 300 °C to establish the 

structure of the material obtained after the low temperature event at 216 °C. A ternary 

phase was identified, which was isostructural to Na2Mn3Cl8 (ICSD-1846, Figure 5-13).69, 72 

  

a) 

b) 
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Figure 5-13 X-ray diffraction pattern of product collected after heating Sample 51 to 300 °C (5 

°C/min in a flow of Ar(g)). 

Indexing was conducted using CELREF software to determine the lattice parameters of the 

ternary phase produced here relative to the known Na2Mg3Cl8 structure data given by van 

Loon et al. The structure data was found to be in good agreement with the literature values 

(Table 5-4). The Rietveld method was then used to determine further structure information 

about the Na2Mg3Cl8 observed at 300 ºC using Na2Mn3Cl8 (ICSD-1846) as a structure 

model (Figure 5-14 and Table 5-4). The atomic parameters for Na2Mg3Cl8 derived from 

this work are given in Appendix C, C.6. 

 

Figure 5-14 Rietveld plot for product of Sample 51 heated to 300 ºC. Black tick marks represent 

the Na2Mg3Cl8 phase and red tick marks represent NaCl. Red crosses indicate experimental data, and 

the green line indicates the calculated pattern. The magenta line indicates difference plot. 
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Table 5-4 Rietveld refinement data for product of Sample 51 heated to 300 ºC. 

Formula Na2Mg3Cl8 NaCl† 

Source Literature69 CELREF Sample 51  

Crystal System Trigonal Cubic 

Space Group R3�m (166) Fm3�m (225) 

a / Å 7.355(6) 7.351(2) 7.3444(5) 5.6038(4) 

c / Å 19.51(1) 19.5039(4) 19.499(2) - 

Volume / Å3 - 917.8(3) 910.9(2) 175.98(4) 

Z 3 4 

Formula Weight / g - - 1207.557 233.722 

Calculated density, ρX / g cm-3 - - 2.201 2.206 

Phase Fraction - - 86.9(3) 13.1(3) 

No of data - - 4846 

No of parameters - 30 44 

Rwp - - 9.32 % 

Rp - - 6.96 % 

χ2 - - 1.868 
†Impurity phase of Sample 51. 

The structure of Na2Mg3Cl8 is analogous to the Na2Mn3Cl8 structure, where the Mg atoms 

are octahedrally coordinated with Cl, and the Na atoms are coordinated in a trigonal prism 

configuration (Figure 5-15). This gives rise to a mixed lattice comprising both close-

packed and hexagonal stacking layers of equal quantity.  
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Figure 5-15 a) Structure of Na2Mg3Cl8 (Sample 51 heated to 300 °C) showing alternating layers of 

Na centred trigonal prisms (beige) and Mg centred octahedra (blue). Coordination orientation between 

Cl anions and the b) Na cation and c) Mg cation. (Mg = blue spheres, Na = grey spheres, Cl = green 

spheres.) 

The in-situ PXD revealed the phase transformations upon heating Sample 51 (Figure 5-16). 

Even after heating to only 100 °C, the reflections for NaCl and the Na2MgCl4 phase 

become evident. The patterns recorded at room temperature and 50 °C indicated reflections 

for the NaMgCl3 phase and are not shown here for brevity. At 100 °C, it is clear that the 

sample has begun to change based on the emergence of another reflection at a higher angle 

relative to the main reflection for the NaMgCl3 phase. The ternary Na2Mg3Cl8 phase begins 

to emerge at 150 ºC. Between 150-300 ºC, the sample is a biphasic system comprising 

Na2Mg3Cl8 and NaCl, which is consistent with the observations for the product collected 

after heating Sample 51 to 300 ºC described previously. The Na2Mg3Cl8 phase remains 

evident at 350 ºC, but decomposition occurs at 400 ºC with the formation of the binary 

halides, NaCl and MgCl2. This is consistent with the onset of the eutectic melting point 

observed by STA from phase diagram information.52 

a) 

b) c) 
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Figure 5-16 Comparison of diffraction patterns collected by in-situ PXD analysis between room 

temperature and 300 ºC (Sample 51).  

5.4.2.2. Metathesis Reaction between Perovskite Halide Precursor, NaMgCl3, 

and LiH/NaH 

With a knowledge of the structure and thermal properties of the halide prepared by both 

thermal and mechanochemical methods, the metathesis reactions were conducted using the 

thermally synthesised material in the first instance and then using the mechanochemically 

synthesised precursor for comparison. 

Sample 50 was reacted with stoichiometric proportions of NaH by milling for 5 h (Sample 

52). The resultant grey powder product contained only one crystalline phase, NaCl, as 

determined from PXD (Figure 5-17). The absence of reflections from MgCl2 or the original 

ternary halide suggests that the reaction was successful. Further, the absence of reflections 

from any hydride phase, such as the hydride source (NaH) or the expected hydride product 

(NaMgH3) should be noted. Based on previous work on hydride synthesis by this route, lab 

PXD is not sufficient to show the hydride has formed. This is likely to be the result of a 

combined effect from the small crystallite size of the hydride product and hence broad 
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Bragg reflections, also low scattering. The broad band between 13-30 º may also suggest 

some contribution from an amorphous material. 

 

Figure 5-17 PXD pattern of Sample 52. 

To establish whether the reaction had successfully formed NaMgH3, STA was conducted 

using the metathesis product (Figure 5-18). The sample was heated to 500 ºC (5 ºC/min), to 

cover the temperature range in which NaMgH3 decomposes. The DTA trace shows a two-

step decomposition process. The observed loss of hydrogen from the sample is <1 wt% H2, 

which is less than the expected loss of hydrogen from the as-prepared composite which 

should be 1.34 wt% when allowing for the mass of the other components in the metathesis 

product. 
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Figure 5-18 STA data for Sample 52 heated from room temperature to 500 oC at 5 o/min; a) DTA, 

b) TG and c) MS (m/z = 2). 

The asymmetry in the DTA trace suggests that the decomposition has occurred via a two-

step process as indicated by the DTA trace. The expected decomposition products of the 

ternary hydride would comprise Na, Mg (See Chapter 4) and the expected halide by-

product for this reaction, NaCl, would remain unchanged. The PXD pattern of the post 

STA product is shown in Figure 5-19, and indicates reflection from the two metallic phases 

and NaCl, as predicted. 

a) 

b) 

c) 
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Figure 5-19 PXD pattern of sample collected after STA.  

The absence of MgCl2 suggests that the ternary halide did not decompose to the respective 

binary halides during the metathesis reaction or during the thermal analysis. The presence 

of Na and Mg metal phases suggests that the decomposition was from a hydride containing 

both Na and Mg which is likely to be NaMgH3, however, decomposition from NaH and 

MgH2 cannot be categorically ruled out. 

For comparison, the metathesis reaction was conducted using stoichiometric proportions 

(1:3) of the halide precursor, Sample 51, and NaH as the hydrogen donor (Sample 53) to 

establish whether the halide synthesis method had an impact on the metathesis reaction. 

The post metathesis product revealed only the NaCl by-product from PXD (Figure 5-20), 

and is consistent with the previous results given for the metathesis reaction conducted 

using the halide produced via the conventional thermal method.  

 

Figure 5-20 PXD of post milled metathesis product (Sample 53). 
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Thermal analysis showed very similar results to that observed previously, where a two-step 

endothermic decomposition process was observed by DTA and the asymmetry in the 

hydrogen release profile recorded by MS reflects this (Figure 5-21). The TG once again 

shows a <1 wt% mass loss associated with the release of hydrogen, which is slightly less 

than the theoretically expected mass loss (1.34 wt%). 

 

 

Figure 5-21 STA data for the Sample 53 heated to 500 oC at 5 o/min; a) DTA, b) TG and c) MS (m/z 

= 2). 

The product collected after thermal analysis was analogous to that observed for the product 

collected previously, where reflections for Na, Mg and NaCl were observed. This suggests 

that the mechanochemically prepared halide precursor gives the same metathesis results as 

with the thermally prepared precursor.  

Since the precursor and hydride donor contained Na cations, the possibility of the NaCl by-

product coming from the precursor could not be ruled out. Therefore, attempts were made 

to investigate the use of LiH as a hydride source for this system, Sample 54, via: 

Equation 5-10 NaMgCl3 + 3 LiH  NaMgH3 + 3 LiCl  

c) 

a) b) 
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This was expected to show that the H- and Cl- ions were interchanged as a result of this 

process, and that the NaCl observed as the by-product was not simply NaCl from 

decomposition of the ternary halide precursor. (Sample 50 was used as the halide precursor 

to form Sample 52.) The SEM images of the post metathesis reaction product indicated 

that the sample may have been affected upon exposure to air but images collected at higher 

magnification reveal that the sample is comprised of smaller, agglomerated particles 

amongst the smooth portions of the sample (Figure 5-22). 

 

Figure 5-22 SEM images of Sample 54; a) low (20 μm) and b) high (10 μm) magnifications. 

However, the PXD results of the post metathesis product, a pale grey powder, showed 

reflections for the expected by-product, LiCl, and also NaCl (Figure 5-23). 

 

Figure 5-23 PXD pattern of post metathesis product; Sample 54. 

It may suggest that the ternary halide has decomposed to its respective binary halides, 

where the following reaction scheme driven by the mechanical action in the mill may be 

considered: 

a) b) 
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Equation 5-11 NaMgCl3 + 3LiH  NaCl + MgCl2 + 3LiH  MgH2 + LiH + NaCl + 2 LiCl 

However, no reflections from LiH or MgCl2 appear evident from the PXD data. An 

alternative suggestion for this would be that a competing contemporaneous reaction is 

taking place where there is the potential for two thermodynamically stable salt products; 

LiCl and NaCl. The STA results indicate a thermal event at 316.6 oC which is associated 

with hydrogen release (Figure 5-24). This is well below that expected for LiH (680 ºC), 

NaH (392.9 ºC), NaMgH3 (365 ºC) or MgH2 (424.5 ºC) (Tpeak values given from data 

collected using 5 ºC/min heating rate) suggesting that another material within the milled 

metathesis product is releasing hydrogen at this temperature. 

 

 

Figure 5-24 STA data collected Sample 54; a) DTA, b) TG and c) MS (m/z = 2). 

b) 

c) 

a) 
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The PXD data of the black powder sample collected after heating showed reflections from 

NaCl and LiCl as in the metathesis product, and a third phase identified as the “LiMg” 

alloy described by Levinson.73 CELREF was used to index the cubic lattice parameter of 

this phase which was found to be a = 3.518(2) Å, volume = 43.5(2) Å3. Rietveld 

refinement allowed structural information to be derived using the literature model for the 

three phases and the results are given in Figure 5-25 and Table 5-5. The cell parameter 

determined for the LiMg phase by Rietveld refinement is consistent with the indexing 

conducted by CELREF, however, the cell parameter is slightly larger than that given in 

literature for “LiMg”; a = 3.5137(3) Å vs. 3.484(1) Å. This suggests that the Li:Mg ratio in 

the alloy phase derived here may not be 1:1. Attempts to refine the SOF parameters for Li 

and Mg were attempted but were unsuccessful, causing the refinement to diverge 

significantly. 

 

Figure 5-25 Rietveld refined of the post STA product collected for Sample 54 showing the LiMg 

alloy phase indicated by blue tick marks (Phase 1), NaCl in red tick marks (Phase 2) and LiCl in black 

tick marks (Phase 3). Experimental and calculated data are indicated by red crosses and the green 

continuous line, respectively. The lower magenta line indicates the difference plot.  
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Table 5-5 Rietveld data for sample collected after heating Sample 54 to 500 ºC. 

Phase 1 2 3 

Chemical Formula “LiMg” NaCl LiCl 

Crystal System Cubic 

Space Group Im3�m (229) Fm3�m (225) Fm3�m (225) 

a / Å 3.5137(3) 5.5724(3) 5.1833(3) 

Phase Fraction / % 3.7(1) 55.8(1) 40.5(1) 

Volume / Å3 43.38(1) 173.3(3) 139.26(2) 

Z 1 4 4 

Formula Weight / g 62.492 233.722 169.576 

Calculated density, ρX / g cm-3 2.392 2.243 2.022 

No of data 11774 

No of parameters 46 

Rwp 5.62 

Rp 4.26 

χ2 1.200 
 

This result suggests that the hydrogen release from the metathesis product resulted from a 

hydride from which the LiMg alloy was derived. “LiMgH3”, however, has previously 

eluded researchers in the field of hydrogen storage. It is not possible, however, to say with 

certainty whether this phase was formed during the mechanochemical metathesis reaction 

or during heating in the STA. The absence of reflections from either elemental Mg or Na 

suggests that other competing metathesis reactions towards the synthesis of MgH2 or NaH 

do not occur. The theoretical hydrogen capacity for LiMgH3 is 8.84 wt%, although less 

than 1 wt% H2 is evolved from the sample prepared in this work and is likely to be the 

result of the additional halide by-product phases.  

The first synthesis of LiMgH3 was reported by Ashby and Goel using wet-chemistry 

involving reaction of LiMgPh3 with LiAlH4 in diethyl ether.74 Attempts to synthesis this 

lightweight hydride experimentally from Li-Mg alloys have been made but were 

unsuccessful.75 Theoretical chemistry methods have been employed to establish 

information about the thermodynamics of this hydride. 76, 77, 78  

The most thermodynamically feasible reaction for formation of the ternary hydride, 

LiMgH3, is given below, and this sheds light on the potential decomposition process 

involved during heating of the metathesis product. 
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Equation 5-12 𝐿𝑖𝑀𝑔 +
2
3
𝐻2 → 𝐿𝑖𝑀𝑔𝐻3  

Pfrommer et al. also determined the ternary hydride to be a thermodynamically stable 

material (ΔG0 = -1.07 eV/Mg atom, under standard temperature and pressure). Based on 

the known LiBeMg3 phase, Li et al. proposed the LiMgH3 phase to exist in a Perovskite-

type structure.79 More recent work has shown that the LiMgH3 phase may be more akin to 

the trigonal LiTaO3-type structures, which was estimated from the theoretical studies 

(Table 5-6). 

Table 5-6 Comparison of theoretical values for the LiMgH3 structure (R3c (167), Z = 6) and 

formation thermodynamics based on Equation 5-12. 

Reference a / Å c / Å Formation Enthalpy / kJ/mol 
Vajeeston et al. 77 4.958 13.337 ΔHa = -147.5 

Li et al.78 4.9226 13.2106 ΔG300 K = -129.7 
aTemperature effects not considered. 

The thermodynamic calculations conducted by Vajeeston et al. suggest that the reason why 

the LiMgH3 phase cannot be synthesised by the combination of the binary hydrides (LiH 

and MgH2) in analogy to the NaMgH3 phase is because the reaction between the two 

binary hydrides is exothermic.  

Therefore the possibility of this mechanochemical metathesis method being a novel route 

to LiMgH3 is exciting due to the facile nature of the method. The desorption temperature 

recorded for the metathesis product here is consistent with a trend in observations made for 

ternary hydrides formed in the work of this thesis. Inclusion of alkali metals in ternary 

hydride phases with Mg, such as NaMgH3, result in a lower desorption temperature 

relative to milled commercial MgH2. While heavier alkaline earth metals, such as Ca, 

increase the desorption temperature. The LiMgH3 desorption temperature may be expected 

to be lower than the NaMgH3 system, and the thermal decompositon results obtained for 

the suspected LiMgH3 phase here are consistent with this hypothesis since the Tpeak of the 

metathesis product compared with mechanochemically synthesised NaMgH3 is lower; 316 

ºC vs. 365 ºC.  

5.4.2.3. Summary 

The synthesis of the ternary halide, NaMgCl3, from stoichiometric quantities of the binary 

halides, NaCl and MgCl2, was studied by both thermal and mechanochemical methods. 

The ternary phase was successfully synthesised by both methods, and comparisons in 
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structural data were made with existing information in the literature. The thermal 

characteristics of the mechanochemically prepared sample was probed by both STA and by 

in-situ PXD, and the structure of the Na2Mg3Cl8 phase obtained at 300 ºC was described 

relative to literature data. The halide precursor obtained by the thermal method was used to 

conduct mechanochemical metathesis reactions with both LiH and NaH hydride donors. 

The results of the latter demonstrated that the expected product for a successful metathesis 

reaction towards NaMgH3 was possible, but it was not possible to verify the presence of 

such a phase in this work. Similar results were obtained when the NaMgCl3 precursors 

synthesised by the mechanochemical method were employed in the metathesis experiment. 

The experiment employing LiH as a hydride donor is very interesting, since the metathesis 

reaction revealed two salt by-products, inferring that a competing reaction was occurring. 

The thermal analysis revealed an endothermic event which was accompanied by hydrogen 

evolution. The PXD pattern of the product collected after heating revealed the presence of 

a LiMg phase, suggesting that a Li-Mg-H phase may be responsible for the hydrogen 

release event. 

5.5. Mechanochemical Synthesis of NaAlX4 (X = Cl, H). 

5.5.1. Introduction 

In order to probe the results given in the previous section further, another simple 

metathesis reaction was devised in which only alkali metal cations would participate. 

Considering the first section of this chapter involving the synthesis of LiAlH4 from 

LiAlCl4 and NaH, a similar reaction for the synthesis of NaAlH4 from its respective halide 

precursor, NaAlCl4 (ΔfHºsolid = -117±2 kJ/mol80), may be proposed (Equation 5-13). 

Equation 5-13 NaAlCl4 + 4 LiH  NaAlH4 + 4 LiCl  

However, the following metathesis reaction involving the products of the above reaction 

may also be described, which is known to proceed via wet chemistry in THF81, 82: 

Equation 5-14 NaAlH4 + LiCl  LiAlH4 + NaCl  

Therefore if these reactions are occurring simultaneously then one might expect both LiCl 

and NaCl phases in the post metathesis product since an excess of LiCl will be available 

from the first reaction (Equation 5-14). This hypothesis was tested experimentally. 
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5.5.2. Results & Discussion 

5.5.2.1. Synthesis and Characterisation of the Halide Precursor, NaAlCl4 

The halide, NaAlCl4 (ΔfHºsolid = -1139.45 ±1.20 kJ/mol83), was synthesized from a 

stoichiometric mixture of the corresponding binary halides, NaCl and AlCl3, via the 

mechanochemical method (Sample 56, Table 5-1). Rietveld refinement was conducted for 

the white powder product, where convergence between the experimental data and the 

model data (Baenziger et al.) was achieved swiftly.84 Attempts were made to include NaCl 

in the refinement to establish if the binary halide reagent remained, but this caused 

significant divergence. The refined plot and structure data of the as-prepared ternary halide 

are given in Figure 5-26 and Table 5-7, respectively. The atomic parameters and 

interatomic distances derived for NaAlCl4 in this work are given in Appendix C, C.7 & 

C.8. 

 

Figure 5-26 Rietveld plot of mechanochemically prepared NaAlCl4 (Sample 56); black tick marks 

indicate the NaAlCl4 phase. Red crosses indicate experimental data, and green line indicates the 

calculated pattern. The magenta line indicates the difference plot. 
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Table 5-7 Crystallographic data from Rietveld refinement for mechanochemically synthesised 

NaAlCl4, Sample 56, compared with literature data (ICSD-30611).  

Chemical Formula NaAlCl4 
Source Literature84 Sample 56 

Crystal System, Z Orthorh., 4 

Space Group P21 21 21 (19) 

a/Å 10.36 10.3358(8) 

b/ Å 9.92 9.8886(8) 

c/ Å 6.21 6.1709(5) 

Volume/Å3 638.21 630.7(1) 

Formula Weight/g 765.486 767.136 

Calculated density, ρX/g·cm−3 2.03 2.020 

No of data - 4846 

No of parameters - 52 

Rwp 3.9 % 3.79 

Rp 2.5 % 2.90 

χ2 - 1.148 
 

The extended structure of mechanochemically synthesised NaAlCl4 is given in Figure 5-

27, along with the Na and Al cation bonding orientations and metal-chloride bond lengths. 
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Figure 5-27 a) Extended structure of mechanochemically synthesized NaAlCl4 (Sample 56) and the 

coordination orientations of Cl anions to the b) seven coordinate Na cations (yellow polyhedra) and c) 

Al tetrahedra (purple polyhedra). (Al = purple spheres, Na = grey spheres, Cl = green spheres.) 

Thermal analysis was conducted for the hand mixed and mechanochemically prepared 

samples, 55 and 56 (Figure 5-28). A single, sharp endothermic event was recorded for the 

as-synthesised halide (Tpeak = 159.3 ºC), and is consistent with the incongruent melting 

point of NaAlCl4 given in previous studies.55,85 The endothermic event observed for 

Sample 55 is less defined and occurs at a temperature lower (121.5 ºC) than that of the 

melting feature observed for the complex halide product. From information collated by 

Levin et al., this may be described as the eutectic point for the 1:1 NaCl-AlCl3 system. No 

mass loss was detected for Samples 55 or 56 from the corresponding MS analysis. 

a) 

b) c) 
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Figure 5-28 DTA profiles of Sample 55 (dashed line) vs. Sample 56 (solid line). 

5.5.2.2. Mechanochemical Metathesis between Halide Precursor, NaAlCl4, 

and LiH. 

The metathesis reaction was carried out in the same way as previously, employing 

stoichiometric proportions of the hydrogen donor, LiH (Sample 57). PXD of the reaction 

products revealed that a reaction had proceeded since reflections to suggest the presence of 

the starting materials were not evident. As predicted in the event of a simultaneous 

metathesis reaction (Equation 5-13 and Equation 5-14), NaCl is present in the products. 

The PXD pattern also shows that the desired complex hydride, NaAlH4, has formed as a 

result of the milling procedure.86 (A small peak at ~48° may be assigned to LiH, but no 

other reflections for this phase were evident) 

 

Figure 5-29 PXD pattern or sample collected after metathesis reaction between NaAlCl4 and LiH 

(Sample 57). 
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The DTA and MS profiles obtained from STA, however, show a DTA trace and mass loss 

which closely resemble that of LiAlH4 (Equation 5-14). The early release of hydrogen and 

corresponding endo- and exothermic features present at 126 oC and 181.3 oC, respectively, 

correspond well with that observed previously in this work. This may be the result of the 

as-formed NaAlH4 reacting with the LiCl in the post-milled product during the heating 

experiment or it may be that it was present in the post metathesis product where no 

reflections were evident, as in the previous work towards LiAlH4 synthesis described 

earlier. A third event at 218 °C is also evident, and from the change in slope of the TG data 

and the distinct second peak shown in the MS data (Figure 5-30 c) it is associated with 

release of hydrogen, although very small (~0.2 wt%). This could be due to decomposition 

of residual unreacted NaAlH4, which is the product from Equation 5-13. 

 

 

Figure 5-30 STA data for Sample 57; a) DTA, b) TG and c) MS (m/z = 2).  

The sample retrieved after STA to 300 °C reveals reflections for the binary halides, NaCl 

and LiCl, and also the reflections expected for LiH/Al (Figure 5-31). Again, the evidence 

for LiH/Al is consistent with the expected products after the low temperature 

decomposition of LiAlH4, according to Equation 5-14. The sample retrieved after STA to 

500 °C shows the presence of a LiAl alloy, which is expected to be the high temperature 

b) 

c) 

a) 
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dehydrogenation product of LiAlH4, and would imply that reaction to lithium alanate has 

either occurred in the mill or during the heating experiment. The presence of LiCl is likely 

to be as a result of excess LiCl produced in the metathesis reaction (Equation 5-13).  

 

 

Figure 5-31 PXD patterns of the samples collected post STA for Sample 57 to a) 300 °C and b) 500 

°C. 

5.5.2.3. Summary 

Based on the evidence provided experiment above, it may be suggested that the reaction 

described above proceeds via a pair of metathesis reactions which involve: 

1. exchange of H- and Cl- anions, and 

2. exchange of Li+ and Na+ cations. 

a) 

b) 
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This work suggests that the mobility of all these species can be facilitated by mechanical 

action alone, but further work is required to establish the full thermodynamic profile of 

these systems. It may be proposed that both of the metathesis reactions described in 

Equation 5-13 and Equation 5-14 occur simultaneously within the mill under the 

conditions employed in this work. The marginally higher thermodynamic favourability 

(based on ΔfHºsolid) of NaCl vs. LiCl (-411.12 vs. -408.27 kJ/mol) suggests that Equation 

5-14 will occur rapidly once the products in Equation 5-13 start to form.  

On this premise, it may be also be suggested that pair of metathesis reactions for the 

NaMgCl3 metathesis scenario may proceed based on the similarities observed in the 

metathesis products and the LiMg alloy obtained after heating (Equation 5-15 and 

Equation 5-16). 

Equation 5-15 NaMgCl3 + 3 LiH  NaMgH3 + 3 LiCl  

Equation 5-16 NaMgH3 + LiCl  LiMgH3 + NaCl  

Once again, the thermodynamic stability of the NaCl product would appear to be the 

thermodynamic driver for these reactions to occur simultaneously, where the reaction in 

Equation 5-16 begins as soon as the reaction products in Equation 5-15 are formed. This 

process of determining the most thermodynamically stable product to yield a desired 

product is by no means a new concept, as stated at the start of this chapter, but the 

approach considered here suggests that there is more exploratory experimental work to be 

done in the field of mechanochemistry towards developing new materials.  

5.5.2.4. Conclusions 

This work demonstrates that metal halides are fundamental to developments in solid state 

hydrogen storage research. The synthesis and understanding of many hydride materials has 

only been made possible by metathesis reactions between halides and hydrides and this 

work contributes to the determination of facile routes to ternary halides and hydrides by 

mechanochemistry. Three halide precursors were synthesised by the mechanochemical 

method from their respective binary halides; LiAlCl4, NaMgH3 and NaAlCl4. Using the 

halide precursors, a number of mechanochemical metathesis reactions were studied to 

examine the possibility of new routes to hydride materials from bespoke halide precursors. 

Transformation of ternary halide precursors to the corresponding ternary hydride using 

mechanical action alone involved understanding the thermodynamic drivers for the 
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reactions involved. The formation of a thermodynamically stable halide by-product was 

fundamental to the success of these metathesis reactions.  

Using mechanochemically prepared LiAlCl4, formation of LiAlH4 via the metathesis 

reaction between NaH and LiAlCl4 was studied. The thermodynamically stable salt by-

product, NaCl, was obtained and suggested that the reaction was successful. Based on the 

thermal profiles obtained for the metathesis product and the diffraction patterns obtained 

for the samples retrieved after heating, the reaction appears to have formed LiAlH4.  

A study on the Perovskite halide, NaMgCl3 was then conducted, and the halide was 

synthesised by both the thermal and mechanochemical methods, the latter of which has not 

been successfully conducted prior to this work. Subsequent reactions involving a hydride 

donor, LiH/NaH, were then conducted, and revealed interesting results. The NaMgCl3-

NaH system revealed results to suggest the success of the metathesis reaction, indicating 

the thermodynamically expected by-product, NaCl, and thermal analysis results consistent 

with the formation (and decomposition) of NaMgH3. The NaMgCl3-LiH system was then 

developed, and proposed to proceed via two contemporaneous metathesis reactions in 

which both anion and cation exchange took place. This was the result of the 

thermodynamic driving forces associated with the halide by-products involved. A further 

example was then given to confirm that the interchange of anions and cations was possible 

within one system when two competing metathesis reactions were involved. The results 

from this work showed that this could potentially provide an alternative solid state route to 

LiMgH3; a hydride which has significant potential in the field of hydrogen storage owing 

to its reasonably high hydrogen capacity (8.84 wt%), but which has proven difficult to 

synthesise.  

The challenge that remains for this work is the separation of the desired hydride from the 

halide by-product. Due to time constraints, this could not be explored further but will be 

discussed in the Further Work section of this thesis (Chapter 7). 
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6. Conclusions 

In this work, mechanochemistry has been employed as a simple, solid-state, solvent free 

method to modify and synthesise metal hydrides for hydrogen storage. Magnesium may be 

seen as the building block for the materials synthesised herein and modification or 

synthesis of Mg based compounds provides the theme for this work.  

It is evident from Chapter 3 that mechanical milling of MgH2 is a simple way of reducing 

the hydrogen desorption temperature of MgH2 and that non-oxide catalysts provide a route 

to MgH2 which more closely meets the thermodynamic demands of a real system. 

However, further work is necessary to fully establish the interactions between the hydride 

and additives employed in this work under both mild and harsh milling conditions. 

Modification of MgH2 by the inclusion of other alkali or alkaline earth metal cations was 

explored in Chapter 4, where ternary hydrides were successfully synthesised by 

mechanical alloying of binary hydrides. The simplicity of this method was highlighted in 

the preliminary NaMgH3 work. Then, by using a number of different binary hydride 

stoichiometries, a series of (Ca1-xMgxH2)n-type hydrides were discovered and 

characterised, which demonstrated that the mechanochemical synthesis of ternary hydrides 

in this system was tuneable. 

The final chapter, Chapter 5, is exploratory in nature. It reveals that selection of suitable 

ternary or complex halide precursors can provide new routes to hydrides via 

thermodynamically feasible metathesis routes. Using mechanical activation, rather than 

direct heating to propagate the metathesis reaction, these routes enable formation of 

hydrides with low temperature hydrogen release properties, which is likely to be the result 

of the formation of nanocrystallites of the hydride by the SSM route, but further 

verification that this is indeed the case is required. This is likely to involve the careful 

separation of the hydride product from the halide by-product using an appropriate 

anhydrous solvent, such as THF. 
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7. Further Work 

To identify the kinetics and cyclability of the MgH2-x wt% SiC:graphite system, pressure-

composition isotherms are necessary. XPS may also assist in identifying the interactions at 

the interface between the SiC:graphite catalyst system and MgH2. To determine whether 

the two-step hydrogen release anomaly is indeed a combined polytype-particle size effect, 

the doped hydrides will be considered in an up-coming SANS (small angle neutron 

scattering) experiment, to be conducted on the NIMROD beamline at the ISIS research 

centre (STFC (Science and Technology Facilities Council) Rutherford Appleton 

Laboratory). (See accepted proposal attached in Appendix D.)  

The hypothesis that the high dispersion of graphite in smaller hydride particles is the 

reason for enhanced hydrogen desorption from MgH2 would require further corroboration. 

This is likely to require hydrogen cycling experiments, e.g., analysis by PCT (Pressure-

Composition-Temperature) or IGA (Intelligent Gravimetric Analyser). Results from this 

advanced thermal analyses would provide developed information on the kinetic behaviour 

of the SiC:graphite doped hydride, and establish the hysteresis effects observed upon 

cycling via compilation of Van’t Hoff plots. In addition, the effect on equilibrium pressure 

relative to dopant loading would also be obtained, and would provide a thorough 

knowledge of the sorption characteristics of these composites relative to other doped MgH2 

systems. This thermodynamic and kinetic data would ultimately determine whether the 

composite materials produced in this work would be a significant contender for 

commercial use. In addition, in-situ SANS investigations of the particles prepared at mild 

milling conditions may yield interesting results to indicate the structure and dispersion of 

the graphite involved at the Mg-graphite layer interface. The surface chemistry of the 

composites could be further probed using XPS, TEM and SAED (Selected Area Electron 

Diffraction) techniques. Furthermore, these would also help to establish whether the 

dispersion of the additive throughout the sample remains consistent upon cycling 

experiments, and thus establish whether agglomeration (and size increase) of Mg/MgH2 

particles after cycling was prevented by inclusion of this additive composite.  

The hydrogen positions of the (Ca1-xMgxH2)n-type hydride series could not be accurately 

determined from lab or synchrotron diffraction, therefore neutron beamtime on the 

POLARIS powder diffraction beamline at ISIS has been sought, including in-situ 

measurements to verify the decomposition process. The proposed neutron experiment has 
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been accepted and will be conducted in due course. (See accepted proposal attached in 

Appendix E.) 

Investigation of the potentially promising route to LiMgH3 via mechanochemical 

metathesis should be investigated further. Analysis will likely require the removal of the 

halide by-product matrix, which will require careful consideration of the moisture 

sensitivity of the hydride and solubility of the halide by-product. Neutron diffraction would 

be useful for determining the Li and H atomic positions and coordination of the metals in 

LiMgH3, where experiments could be conducted on the as-prepared metathesis product, 

and also with the isolated hydride alone if successfully separated without decomposition or 

modification.
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Appendix A.   

A.1.  Data derived from STA analysis for commercial MgH2. 

 

 

A.2. Ozawa plot of commercial MgH2. 

  

 DTA TG 

Heating Rate  
/ ºC/min 

Tonset  

/ ºC 
Tpeak  

/ ºC 
Mass Loss 

Tonset 

/ ºC 

Mass Loss  
/ wt% 

2 392.8 403.2 395.5 7.07 

5 410.7 424.5 414.3 7.05 

10 424.5 442.7 429.2 7.01 

20 439.5 464.3 449.4 6.79 
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A.3. Kissinger plots for Sample 2. 

 

A.4. Ozawa plots Sample 2. 
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A.5. Ozawa plots for Sample 3. 

A.6.  Ozawa plot overlay comparing commercial un-milled MgH2 with Samples 11 and 12. 
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A.7. Time resolved PXD of MgH2-20wt%SiC-graphite (Sample 30). 
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A.8. FTIR spectra of SiC-graphite doped MgH2; a-d) Samples 29-32, respectively. 

  

a) 

c) d) 

b) 
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A.9. Kissinger plots of a-d) Samples 29-32, respectively, showing error bars. 

 

b) 

a) 

d) 

c) 
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A.10. Ozawa plots of a-d) Samples 29-32, respectively, showing error bars. 

  

b) 

a) 

d) 

c) 
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Appendix B.  

 

 

 

B.1. The a) DTA and b) TGA profiles of NaMgH3 samples prepared by milling for 5h under 

a low b:p ratio (Sample 35), intermediate b:p (Sample 36) and high b:p (Sample 38). 

B.2. Table of DTA-TG data collected for NaMgH3 prepared under various b:p ratios. 

Sample 35 36 38 

Tpeak1 (K) 644.7 639.0 655.3 

Tpeak2 (K) 671.3 660.5 679.6 

Total Mass Loss (wt%) 5.36 4.71 5.20 
 

b) 

a) 
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B.3. DTA-TG data for Sample 39 and 43 after air exposure. 

 

b) 

a) 
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B.4. Rietveld plot for Sample 39 showing the ternary phase (black tick marks) and CaH2 

(red tick marks). Red crosses indicate observed data, the green line shows the 

calculated pattern and the magenta line indicates the difference plot. 

 

 

B.5. Rietveld plot for Sample 40 showing the ternary phase (black tick marks) and CaH2 

(red tick marks). Red crosses indicate observed data, the green line shows the 

calculated pattern and the magenta line indicates the difference plot. 
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B.6. Rietveld plot for Sample 41 showing the ternary phase only (black tick marks). Red 

crosses indicate observed data, the green line shows the calculated pattern and the 

magenta line indicates the difference plot. 

 

B.7. Rietveld plot for Sample 42 showing the ternary phase (black tick marks) and 

Ca4Mg3H14 (red tick marks). Red crosses indicate observed data, the green line shows 

the calculated pattern and the magenta line indicates the difference plot. 
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B.8. Rietveld plot for Sample 43 showing the ternary phase (black tick marks) and MgH2 

(red tick marks). Red crosses indicate observed data, the green line shows the 

calculated pattern and the magenta line indicates the difference plot. 

B.9. Table of lab PXD refinement data for additional phases. 

Sample / CaH2:MgH2 39 / 

2.375:1 

40 / 2:1  42 / 1:1 43 / 1:2 

Chemical Formula CaH2 CaH2 Ca4Mg3H14 MgH2 

Crystal System  
/ Space Group  

Orthorh.  
/ Pnma (62) 

Hexagonal  
/ 𝑃6�2𝑚 (189) 

Tetragonal  
/ P4/mnm (136) 

Z 4 1 2 

a / Å 
b / Å 
c / Å 

4.917(2) 
3.5912(8) 
6.750(2) 

5.904(7) 
3.582(2) 
6.751(8) 

6.307(2) 
- 

6.777(4) 

4.5185(8) 
- 

3.0289(7) 

V / Å3 143.42(6) 142.8(1) 233.4(1) 61.84(2) 

Formula Weight / g 168.384 168.384 247.347 52.64 

Calculated Density, ρx / g cm-3 1.950 1.958 1.760 1.414 

Phase Fractions 52.8(4) 
% 

40.7(8) % 17.2(8) % 30.1(6) % 
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B.10. Rietveld plot for Sample 39 showing the ternary phase (black tick marks) and CaH2 

(46.9(2) %, red tick marks). Red crosses indicate observed data, the green line shows 

the calculated pattern and the magenta line indicates the difference plot. 

B.11. Atomic parameters for Ca21.4(3)Mg5.6(3)H54 (Sample 39) 

Atom Site x Y Z 100xUiso / 
Å2 

SOF 

Ca1 24g 0 0.3151(2) 0.3438(2) 2.73(6) 1 
Ca2 12d 0.3364(4) 0 0 2.73(6) 1 
Ca3 2a 0 0 0 2.73(6) 1 
Ca* 16f 0.1588(4) 0.1588(4) 0.1588(4) 10.7(3) 0.30(2) 
Mg1 16 f 0.1588(4) 0.1588(4) 0.1588(4) 10.7(3) 0.70(2) 

N.B. H atoms were fixed to values given in literature for Ca19Mg8H54. 
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B.12. Rietveld plot for Sample 40 showing the ternary phase (black tick marks) and CaH2 

(21.0(1) %, red tick marks). Red crosses indicate observed data, the green line shows 

the calculated pattern and the magenta line indicates the difference plot. 

B.13. Atomic parameters for Ca21.6(1)Mg5.1(1)H54 (Sample 40) 

Atom Site x y Z 100xUiso / 
Å2 

SOF 

Ca1 24g 0 0.3161(1) 0.3429(1) 2.13(4) 1 
Ca2 12d 0.3380(2) 0 0 1.69(4) 1 
Ca3 2a 0 0 0 7.58(4) 1 
Ca* 16f 0.1609(2) x X 10.9(2) 0.320(9) 
Mg1 16 f 0.1609(2) x X 10.9(2) 0.680(1) 

N.B. H atoms were fixed to values given in literature for Ca19Mg8H54. 
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B.14. Rietveld plot for Sample 42 showing the cubic ternary phase Ca15.2(2)Mg11.8(2)H54, 

Ca4Mg3H14, and MgH2 (black, red and blue tick marks, respectively). Red crosses 

indicate observed data, the green line shows the calculated pattern and the magenta 

line indicates the difference plot. 

B.15. Atomic parameters for Ca15.2(2)Mg11.8(2)H54 (Sample 42) 

Atom Site x Y Z 100xUiso / 
Å2 

SOF 

Ca1 24g 0 0.3123(2) 0.3455(3) 3.17(3) 0.68(2) 
Ca2 12d 0.3353(4) 0 0 1.9(1) 1 
Ca3 2a 0 0 0 3.99(4) 1 
Mg1 16f 0.1624(4) x X 3.6(2) 1 
Mg* 24g 0 0.3123(2) 0.3455(3) 3.17(3) 0.32(2) 

N.B. H atoms fixed to values given in literature for Ca19Mg8H54. 
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B.16. Rietveld plot for Sample 43 showing the ternary phase (black tick marks) and MgH2 

(red tick marks). Red crosses indicate observed data, the green line shows the 

calculated pattern and the magenta line indicates the difference plot. 

B.17. Atomic parameters for Ca13.3(8)Mg13.8(8)H54 (Sample 43) 

Atom Site x y z 100xUiso / 
Å2 

SOF 

Ca1 24g 0 0.3140(3) 0.3413(4) 2.7(2) 0.53(3) 
Ca2 12d 0.3334(4) 0 0 3.1(2) 1 
Ca3 2a 0 0 0 6.4(7) 1 
Mg1 16f 0.1527(3) x x 2.8(2) 1 
Mg* 24g 0 0.3140(3) 0.3413(4) 2.7(2) 0.48(3) 

N.B. H atoms were fixed to values given in literature for Ca19Mg8H54. 
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B.18. Interatomic distances for ternary phases containing excess Ca (denoted Ca*) as 

determined from SXD analysis. 

 Length / Å 

Interatomic Distance Sample 39 / 2:375:1 Sample 40 / 2:1 

Ca(1)-H(1) ×2 2.2263(26) 2.2348(16) 

Ca(1)-H(1) ×2 2.4878(9) 2.4831(16) 

Ca(1)-H(2) ×2 2.2732(25) 2.2829(15) 

Ca(1)-H(2) ×1 2.2000(21) 2.1855(14) 

Ca(1)-H(4) ×1 2.3045(32) 2.2951(20) 

Ca(2)-H(1) ×4 2.5371(6) 2.5404(4) 

Ca(2)-H(2) ×2 2.3700(16) 2.3645(10) 

Ca(2)-H(3) ×2 2.403(4) 2.4207(25) 

Ca(2)-H(4) ×2 2.462(4) 2.4467(24) 

Ca(3)-H(3) ×12 2.50185(10) 2.50263(12) 

Mg(1)/Ca*-H(1) ×3 1.955(4) 1.9371(18) 

Mg(1)/Ca*-H(3) ×3 2.035(6) 2.0648(30) 
 

B.19. Interatomic distances for ternary phases containing excess Mg (denoted Mg*) as 

determined from SXD analysis. 

 Length / Å 

Interatomic Distance Sample 42 / 1:1 Sample 43 / 1:2 
Ca(1)/Mg*-H(1) x2 2.1843(26) 2.1883(30) 
Ca(1)/Mg*-H(1) x2 2.4792(10) 2.4652(13) 
Ca(1)/Mg*-H(2) x2 2.2362(31) 2.276(4) 
Ca(1)/Mg*-H(2) x1 2.2132(30) 2.157(4) 
Ca(1)/Mg*-H(4) x1 2.3120(33) 2.301(4) 

Ca(2)-H(1) x4 2.5125(6) 2.5076(5) 
Ca(2)-H(2) x2 2.3528(17) 2.3577(14) 
Ca(2)-H(3) x2 2.371(4) 2.350(4) 
Ca(2)-H(4) x2 2.450(4) 2.4658(35) 
Ca(3)-H(3) x12 2.47912(15) 2.47670(19) 
Mg(1)-H(1) x3 1.9070(31) 1.9932(30) 
Mg(1)-H(3) x3 2.065(5) 1.932(4) 
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B.21. Rietveld plot for SXD data of Sample 42 heated to 573 K showing the cubic Ca19Mg8H54 

ternary phase (black tick marks) and Ca4Mg3H14 (red tick marks). Red crosses indicate 

observed data, the green line shows the calculated pattern and the magenta line 

indicates the difference plot. 
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B.22. Rietveld refinement data for in-situ SXD analysis of Sample 42 heated to 573 K. 

Sample / CaH2:MgH2 42 / 1:1 

Chemical Formula Ca19Mg8H54 Ca4Mg3H14 

Crystal System /  
Space Group  

Cubic / 
 𝐼𝑚3� (204) 

Hexagonal / 
𝑃6�2𝑚 (189) 

Z 2 1 

a / Å 
b / Å 
c / Å 

12.1663(6) 
a 
a 

6.3346(3) 
a 

6.8538(4) 

V / Å3 1800.9(3) 238.17(3) 

Formula Weight / g 1911.920 233.235 

Calculated Density, ρx / g cm-3 1.763 1.626 

Phase Fractions 52.6(2) 47.4(2) 

Refinement Parameters 47 

Data Points 3999 

Rwp 6.33 

Rp 4.61 

χ2 2.544 
N.B. All atomic positions and site occupancies were fixed to literature values for 

Ca19Mg8H54. 
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Appendix C.  

C.1. Comparison of interatomic distances for LiAlCl4 (Sample 46). 

Interatomic 
Distance 

Literature Values 
/Å 

Length  
/ Å 

Li-Cl1 ×1 2.4536 2.669(31) 

Li-Cl2 ×1 2.7094 2.48(4) 

Li-Cl2 ×1 2.8228 3.045(31) 

Li-Cl3 ×1 2.6101 2.470(32) 

Li-Cl3 ×1 2.7787 2.540(31) 

Li-Cl4 ×1 2.5135 2.70(4) 

Al-Cl1 ×1 2.1269 2.140(6) 

Al-Cl2 ×1 2.1461 2.109(6) 

Al-Cl3 ×1 2.1454 2.125(5) 

Al-Cl4 ×1 2.1229 2.143(6) 
 

C.2. Atomic parameters for mechanochemically synthesised LiAlCl4 (Sample 46). 

Atom Site x y z 100x Uiso / Å2 
Li 4e 0.112(6) 0.984(5) 0.352(3) 8(1) 
Al 4e 0.7078(6) 0.3238(8) 0.8987(3) 4.6(2) 
Cl1 4e 0.6951(6) 0.1846(6) 0.0472(3) 2.2(2) 
Cl2 4e 0.8096(7) 0.6248(6) 0.9260(4) 2.6(2) 
Cl3 4e 0.9285(7) 0.1847(7) 0.8176(4) 4.4(2) 
Cl4 4e 0.4372(7) 0.3161(7) 0.8131(4) 4.0(2) 
N.B. Site occupancy factors for all atomic positions were fixed to 1. 
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C.3. a) STA data and b) corresponding MS data for NaH used in this work.  

C.4. Interatomic distances and bond angles for NaMgCl3 (Sample 50). 

Interatomic Distance Length / Å Bond Angles Angle / ° 

Mg-Cl ×3 2.833(7) Mg-Cl-Na 137.63(29) 

Mg-Cl ×3 2.692(9) Mg-Cl-Na 82.34(33) 

Na-Cl ×3 2.367(10) Na-Cl-Na 96.93(21) 

Na-Cl ×3 2.737(14) Cl-Mg-Cl 82.18(34) 

Mg-Na ×1 3.574(18) Cl-Na-Cl 100.2(5) 

Na-Na ×3 3.828(7) Cl-Na-Cl 83.07(21) 
  Cl-Na-Cl 95.05(24) 

 

  

b) 

a) 
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C.5. Atomic parameters for mechanochemically synthesised NaMgCl3 (Sample 50). 

Atom Site x y z 100x Uiso / Å2 
Na 6c 0 0 0.147(1) 6.7(8) 
Mg 6c 0 0 0.3400(6) 8.6(5) 
Cl 18f 0.339(1) 0.0362(8) 0.0881(3) 0.2(1) 
N.B. Site occupancy factors for all atomic positions were fixed to 1. 

C.6. Atomic parameters for product of Sample heated to 300 ºC; Na2Mg3Cl8. 

Atom Site x y z 100x Uiso / Å2 
Na 6c 0 0 0.1561(7) 2.4(4) 
Mg 9e 1

2
 

0 0 2.5a 

Cl1 6c 0 0 0.4047(5) 2.5 a 
Cl2 18h 0.4958(5) 0.5042(5) 0.4059(2) 2.5 a 

N.B. Site occupancy factors for all atomic positions were fixed to 1. aIsotropic temperature 

factors fixed. 

C.7. Interatomic distances for the [AlCl4]- tetrahedron in mechanochemically synthesised 

NaAlCl4 (Sample 56). 

Interatomic 
Distance 

Literature Length / Å 

Al-Cl1 ×1 2.16 2.147(5) 

Al-Cl2 ×1 2.11 2.155(6) 

Al-Cl3 ×1 2.13 2.084(9) 

Al-Cl4 ×1 2.12 2.152(8) 
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C.8. Atomic parameters for mechanochemically synthesised NaAlCl4 (Sample 56). 

Atom Site x y z 100x Uiso / Å2 
Na 4a 0.1232(8) 0.2153(8) 0.689(1) 7.3(4) 
Al 4a 0.0392(6) 0.4838(9) 0.2063(9) 4.0(3) 
Cl1 4a 0.0319(4) 0.4918(7) 0.5537(6) 3.7(2) 
Cl2 4a 0.1464(6) 0.3156(6) 0.1104(8) 3.7(2) 
Cl3 4a 0.3467(3) 0.0252(5) 0.9270(8) 3.1(2) 
Cl4 4a 0.3751(6) 0.3357(5) 0.5744(9) 4.6(2) 
N.B. Site occupancy factors for all atomic positions were fixed to 1.
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Appendix D.  

Understanding the Two-step Decomposition of Milled Magnesium Hydride by Neutron Scattering;         
Part II: In-situ SANS  

Hazel Reardon & Duncan H. Gregory; School of Chemistry, University of Glasgow, G12 8QQ. 

Summary: By contrast to untreated hydride, when processed under relatively mild milling 

conditions, MgH2 exhibits a two-step thermal decomposition process, where loss of 

hydrogen is associated with each endothermic event. To date, no causal link between the 

two thermal events and the material has been established and no absolute description of the 

mechanism involved in the two hydrogen desorption steps has been determined. To 

unravel the decomposition mechanism of the milled hydride, we propose two neutron 

experiments using small angle scattering and diffraction respectively to decouple the 

effects of microstructure and phase behaviour in the dehydrogenation of MgH2. In the 

experiment described here we will determine the particle surface properties of intermediate 

partially hydrogenated (MgH2-x) phases that evolve during the “low temperature” (LT) and 

“high temperature” (HT) endotherms via in-situ small angle neutron scattering (SANS) 

measurements. 
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Background & Aims: Magnesium hydride already finds application in commercial 

hydrogen storage units (such as those manufactured by McPhy, for example), where 

mechanical treatment of MgH2 is the most common method employed to optimise its 

hydrogen storage performance. The technique is known to reduce particle size and 

introduce surface defects and therefore can modify the kinetics (and in some cases, the 

thermodynamics) of dehydrogenation. Milling MgH2 is also capable of producing the high 

pressure gamma phase (γ-MgH2) under relatively mild conditions, but never as a single 

phase.1 In some instances, milling appears to induce a two-step decomposition process 

(e.g. seen as double maxima in the differential thermal analysis (DTA) profiles) and 

Fig. 1 – DTA & mass spectrometry (MS) data (inset) for MgH2 milled at a) low and b) high 

milling times to reveal the two-step decomposition and c) PXD data for 10 h milled MgH2. 

(a) 

(b) 

(c) 
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despite many efforts to identify the reasons for this additional step, ambiguity remains over 

its origin. The modification was originally proposed as a result of the sequential 

decomposition of γ-MgH2 particles prior to α-MgH2 particles.1 ,2 Many studies have since 

questioned this theory, attributing the split to particle size and stress effects3, oxide 

interfaces formed with/without oxide catalysts4,5 or to successive decomposition of smaller 

(γ-)MgH2 particles followed by larger (α-)MgH2 particles, implying a synergistic particle 

size-polytype effect.6 This study is therefore comprised of two investigations using 

neutrons; (1) determination of the phases involved in the two-step mechanism using 

powder neutron diffraction, and (2) SANS experiments to obtain information regarding 

surface structure and microstructure as a function of time and temperature. Hence by 

adopting this dual approach for the first time, we aim to establish whether these effects are 

both extant and intrinsically linked. 

Use of SANS for MgH2 studies have only emerged in the last decade, with a focus on 

particle dimensions and the power-law exponent.7 8 These investigations were driven by 

information required about the impact of specific catalysts (Cr2O3 & FeF3) for MgH2 

milling and sorption properties. Fractal geometries were identified in milled 5 mol% FeF3-

MgH2, where structural modifications and variance in scattering characteristics were 

observed upon heating, which were measured by changes in α relative to Porod’s Law.9 

This was attributed to sintering and volume shrinkage and Deladda et al. suggested that the 

catalyst employed may impact upon the power-law type scattering observed in MgH2. No 

detailed examination of surface scattering has been conducted to probe the synergistic 

particle size-polytype effects described for the two-step decomposition in MgH2. We seek 

to use SANS to identify information about the crystallite and particle structure (a) after 

milling and (b) during the two-step dehydrogenation of MgH2 by conducting both room 

temperature ex-situ and variable temperature in-situ SANS experiments respectively. This 

will allow us to examine the surface scattering characteristics which may be linked to the 

two distinct thermal processes. 

Thermal analysis, SEM-EDX, spectroscopic techniques (Raman & IR) and lab PXD have 

been crucial for our investigations of MgH2 milled for different times, with all other 

milling variables kept constant, i.e., rotation speed, ball:powder ratio, mill-rest periods 

(Fig. 1). Thermal analysis reveals that the LT peak emerges even after short milling 

periods (0.5 h) then becomes more prominent as the milling time is increased (2 h). At 

higher milling times (10 h), however, the split is no longer evident which suggests the 
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phase responsible for the LT peak is dominant. In our PXD studies of the as-milled 

hydride, we see the emergence of minor, broad reflections that correspond to γ-MgH2 with 

relatively mild peak broadening of the α-MgH2 after only 2 h of milling. At higher milling 

times, all diffraction peaks are significantly broadened, and reflections corresponding to γ-

MgH2 are more defined. We have examined the milled hydride sample which exhibits the 

highest separation (ΔTpeak) of the two events measured from DTA profiles, i.e., 5 h mill 

(ΔTpeak = 34.3 oC), to establish any intermediate phases but, as in previous work, only 

residual α-MgH2 and Mg metal are observed by PXD. The poor scattering capabilities of 

hydrogen using lab PXD limit the information we can obtain about the structures involved, 

and only using neutrons can we more accurately determine the transient H(D) particle 

characteristics and their effect on particle configuration of these samples. 

Beyond undoped, milled MgH2, we have also been able to enhance the ΔTpeak in the DTA, 

showing that it can be modified and controlled using different additives (Fig. 2a). Using 10 

wt% SiC:graphite-MgH2 composites, we have separated the thermal events to a greater 

degree (ΔTpeak = 48.9 oC), with respect to the 5 wt% composite (Fig 2b). We see 

significantly higher surface coarsening with higher additive loadings, but it is unclear how 

the surface characteristics are related to the impact on the two-step DTA profile. Here, the 

use of SANS will provide unique information about how the surface characteristics of 

MgH2 can be tailored to enhance the low temperature feature for commercial applicability 

and will be of significant interest in the field of hydrogen storage research. Inclusion of 

additives in archetypal hydride systems (such as Mg-H) remains essentially a “dark art” 

and minimal information exists as to the catalytic action or otherwise of such materials. 

Due to the distinct (discrete) nature of the two thermal features that we observe and the 

repeatable temperatures of the peak maxima that we record (combined also with consistent 

thermogravimetic (TG) and d(TG)/dt data), we believe that a reproducible synergic 

dehydrogenation mechanism linking structure, composition and microstructure is 

manifest.10 To date, no studies provide firm evidence for the origins of the two events in 

milled, undoped MgH2 or for the mechanism of the two-step decomposition. A combined 

diffraction-SANS approach provides a powerful opportunity to evidence the link between 

structure and microstructure in-situ for the first time. Further, this study will assist in the 

tailored design of catalysed MgH2 for commercial applications. 
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Beamtime Request: After discussion with relevant experts and beamline scientists at ISIS, 

the NIMROD beamline is ideal for these RT and in-situ SANS experiments. The wide Q-

range (0.01 < Q < 50 Å–1) of NIMROD will not only allow surface scattering information 

to be acquired, but we will also be able to conduct PDF-style measurements. (A 

complementary proposal has also been submitted for more developed powder diffraction 

data at wider angles to ensure a thorough investigation of the emerging MgH2-x phases.) 

We will synthesise deuterated samples due to the better signal-to-noise of D relative to H, 

and propose the following experiments: 

1. Analysis of two as-milled MgD2 samples (2 h and 5 h milling times) over temperatures 

spanning RT-500 °C (heating rates: 5 °C between RT-250 °C, 2 °C/min 250-400 °C, 

then 5 °C/min 400-500 °C) to establish the surface scattering profiles and local 

structure of undoped MgD2-x materials. 

Fig. 2 – a) Typical SEM images of SiC:graphite doped MgH2 at 10 μm (Inset: higher 

magnification image at 2 μm). b) DTA-MS data for 10wt% SiC:graphite doped MgH2 5 h milled. 

c) PXD data for the sample heated to 350 oC. 

(a) 

(b) 
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2. Investigation of doped MgD2 samples (5 & 10 wt% SiC:graphite loading in MgD2) 

over the same temperature range in order to examine the effect on the stability of the 

intermediate phases as a result of the additive inclusion. 

Samples will be loaded in the furnace assembly sample holder at ISIS from which evolved 

H2 will be vented, and sample air exposure will be minimised by use of a 

glovebox/glovebag. Measurements will be acquired at RT, 250, 300, 325, 350, 375, 400 & 

500 °C, and we anticipate 12 h per sample will be sufficient to perform static and ramped 

temperature measurements over the range of interest (48 h total). Taking into account time 

for background runs, sample loading/changes, and heating-cooling times, we request a total 

of 3 days on NIMROD. 
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Appendix E.  

Structure and decomposition of ternary alkaline earth hydrides; (Ca1-

xMgxH(D)2)n 

Hazel Reardon and Duncan H. Gregory; C3-13, School of Chemistry, University of 

Glasgow, G12 8QQ 

Summary: Ternary hydrides comprising alkaline earth metals, Mg and Ca, have been 

synthesised by a simple mechanochemical reaction between the corresponding binary 

hydrides without the use of high pressure H2. From analysis of both conventional lab 

powder X-ray diffraction (PXD) and synchrotron XRD (SXD) data, a cubic structure 

persists over a number of Ca:Mg ratios. The decomposition mechanisms for these hydrides 

have been explored by thermal analysis, but complete determination of the 

dehydrogenation pathway has not been possible using X-ray techniques. The purpose of 

this application for neutron beam time is two-fold: (1) to determine the room temperature 

structure of the hydrides prepared at various Ca:Mg ratios and (2) to perform in situ 

measurements to establish the dehydrogenation pathway of single phase Ca-Mg-H(D) 

hydride. 

Background & Aims: The Yb19Mg8D54 structure has been proposed previously for 

Ca19Mg8H54, (a = 12.1457(6) Å, Z=2, Im 3 , 100.9 g/l H2). The ternary hydride was 

prepared under high H2 pressure at high temperature starting from a 2:1 ratio of 

CaH2:MgH2, but was not synthesised as a single phase; the sample also contained CaH2, 

MgH2 and MgO.1 Nevertheless powder neutron diffraction (PND) data allowed a refined 

structure to be determined. The cubic Ca-Mg-H phase (or phases) has (have) subsequently 

been apparently observed within multiphase mixtures, although the structure and properties 

of these reported compounds have never been determined.2 Using relatively mild milling 

conditions (ball: powder ratio 76:1, 450 rpm, 5 h), we have synthesised hydrides of 

different nominal stoichiometries from commercial CaH2 and MgH2. Our results indicate 

that a cubic ternary hydride forms at all of the CaH2:MgH2 ratios examined. Figure 1a 

shows the lab PXD pattern of the nominal 1:1 sample. The data could be fit to a structure 

isotypic to Ca19Mg8H54. Milled samples have characteristically poor diffraction profiles 

owing to particle size reduction (and microcrystalline strain) which results in peak 

broadening and masking of weak reflections. Therefore, to obtain better quality diffraction 
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data for structure solution, we collected SXD data at NSRRC (Taiwan), using the 01C2 

powder SXD beamline. SXD patterns revealed the low angle and weak reflections 

characteristic of the Ca19Mg8H54 phase.  

 

 

 

 

Diffraction data shown in Figure 1b provides strong evidence for a structure seemingly 

identical to Ca19Mg8H54 prepared by the conventional high pressure-high temperature 

route. However the cubic unit cell volume varies as a function of metal content and 

therefore new non-stoichiometric (Ca1-xMgxH2)n structures are suggested from the 

diffraction data collected thus far. (e.g., refining site occupancies for the 1:0.75 Ca:Mg 

sample shown in Fig 1b, a stoichiometry for the hydride was deduced as 

Ca15.6(3)Mg11.4(3)H54, with partial substitution of Mg on the Ca 24g site). Although 

structures have been obtained from SXD Rietveld refinements conducted using fixed 

Ca19Mg8H54  
a = 12.103(1) Å 
Rwp = 3.12 % 
Rp = 2.42 % 

Figure 1 – a) Rietveld plot of lab PXD data for 1:1 Ca:Mg, and b) 
Rietveld plot of Synchrotron XRD data for 4:3 Ca:Mg; 
“Ca15.6(3)Mg11.4(3)H54”. 

Ca15.6(3)Mg11.4(3)H54  
a = 12.1420(5) Å 
Rwp = 4.14 % 
Rp = 3.01 % 

(a) 

(b) 
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hydrogen positions based on the model proposed by Bertheville & Yvon1, full 

characterisation of these non-stoichiometric phases requires accurate determination of the 

hydrogen atom positions and the identification of possible vacancies on the hydride 

sublattice. Therefore, we seek PND data to determine the positions and occupancies of the 

hydride anions accurately and to confirm the metal site positions and distributions from 

SXD models. We will prepare deuterated samples, to exploit the superior coherent 

scattering from D over H given scattering lengths of b = 6.671 vs. -3.7390 fm respectively 

and the lower inelastic cross section of 2D relative to 1H by several orders of magnitude 

(0.000519 vs. 0.3326 barn). 

Having prepared several Ca-Mg-H compositions, we have studied the dehydrogenation 

behaviour of these materials under flowing Ar(g) using thermogravimetric-differential 

thermal analysis coupled to mass spectrometry (TG-DTA-MS) followed by PXD of 

resultant products. Bertheville and Yvon had suggested the decomposition of the hydride 

(under 5 bar H2) to follow a two-step mechanism: first via decomposition to CaH2 and 

Ca4Mg3H12 at 650-700 K, followed by subsequent formation of Mg and CaH2 at 750 K. No 

evidence at that time or since has substantiated this result. Thermal analysis in our lab 

yields a 2-step process (Figure 2a) but, contrary to the mechanism proposed by Yvon, lab 

PXD data demonstrate decomposition via, CaH2 and Mg at 773 K with the loss of ~2 wt% 

H2. Upon further heating to 973 K, CaMg2, CaH2, and Mg remain, even after a subsequent 

hydrogen loss. No evidence of Ca is observed, therefore the second hydrogen loss may be 

attributed to the partial decomposition of CaH2 to form CaMg2 with Mg. We seek to 

conduct an in-situ neutron experiment to examine the ternary hydride decomposition via 

accurate measurement of the dehydrogenation products as they form. This should provide 

evidence to rationalise reversibility of hydrogen sorption in the single phase sample and 

the prospects of manipulating reversibility (cyclability) by control of Ca and Mg 

stoichiometry. 
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Experimental: After obtaining advice from relevant experts and beamline scientists at 

ISIS, the POLARIS beamline is the ideal choice for these experiments owing to its high 

count rate and wide Q ranges. Proposed experiments: 

- Determination of the D atom positions to understand structural variance in the Ca-Mg-D 

samples prepared at different Ca-Mg ratios. This requires analysis of 5 x Ca-Mg-D samples 

prepared at 1:0.75, 1:1, 1:2, 2:1 and 2.375:1 Ca: Mg ratios to determine definitive room 

temperature structures. 

- In-situ dehydrogenation of the single phase Ca-Mg-D hydride is required to draw 

conclusions about the dehydrogenation mechanism. One sample will be used for this in-

situ decomposition study, i.e., the 4:3 (Ca: Mg) sample, and measurements will be 

conducted under flowing Ar (or similar inert gas) and the sample holder vented to remove 

hydrogen as it evolves. The sample will be heated at 2 oC/min to 200 oC, where 

b) 

Figure 2 (a) STA profile showing decomposition thermodynamics (DTA) and mass loss (H2), and 

(b) Lab PXD data obtained after TPD analysis to 973 K (red stars = CaMg2, blue squares = 

CaH2 and open circles = Mg). 

 

a) 
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measurements will be recorded at RT, 200, 250, 300, and 350 oC. Thereafter, a slower 

heating rate will be used (~0.5 oC/min) and measurements taken at 375, 400, 425, 450, 

500, 525, 550, 600, 650, 700 oC to elucidate the phases evident upon hydrogen evolution. 

Hence 15 in situ datasets will be collected. (The incident and scattered beam will be 

collimated to 90o in order to omit scattering observed from the steel container.) 

Room temperature measurements will be made using quartz capillaries, and the sample for 

in-situ measurements will be loaded in a bespoke steel can (currently being commissioned 

at ISIS). Due to the air sensitive nature of these materials, all sample handling will be 

conducted under inert conditions using a glovebox. Based on a measurement time of 1 h (1 

h x 20 measurements), taking sample preparation and changeover into account and 

including the heating/cooling times required for the in-situ experiment, we request a total 

beamtime of 3 days for this study. 

                                                 
1 B. Bertheville and K. Yvon, J. Alloys Comp., 290, 1999, L8-L10. 
2 S. Sartori, A. Leon, O. Zabara, J. Muller, M. Fichtner and B. C. Hauback, J. Alloys Comp., 476, 2009, 639. 
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Appendix F.  

F.1. Table of Samples – Chapter 3 

Sample ID Components Milling 
 Duration 

b:p No. 
Milling 

Balls 

1 Commercial MgH2 0.5 40:1 2 

2 Commercial MgH2 2 40:1 2 

3 Commercial MgH2 5 40:1 2 

4 Commercial MgH2 10 40:1 2 

5 Commercial MgH2 20 40:1 2 

6 Commercial MgH2 40 40:1 2 

7 Commercial MgH2 0.5 40:1 8 

8 Commercial MgH2 2 40:1 8 

9 Commercial MgH2 5 40:1 8 

10 Commercial MgH2 0.5 80:1 8 

11 Commercial MgH2 2 80:1 8 

12 Commercial MgH2 5 80:1 8 

13 MgH2 - 1 wt% graphite 5 40:1 2 

14 MgH2 - 5 wt% graphite 5 40:1 2 

15 MgH2 - 10 wt% graphite 5 40:1 2 

16 MgH2 - 20 wt% graphite 5 40:1 2 

17 MgH2 - 5 wt% graphite 2 80:1 8 

18 MgH2 - 5 wt% graphite 5 80:1 8 

19 MgH2 - 1 wt% SiC 5 40:1 2 

20 MgH2 - 5 wt% SiC 5 40:1 2 

21 MgH2 - 10 wt% SiC 5 40:1 2 

22 MgH2 - 20 wt% SiC 5 40:1 2 

23 MgH2 - 5 wt% SiC 2 80:1 8 

24 MgH2 - 5 wt% SiC 5 80:1 8 

25 MgH2 - 1 wt% SiC:graphite 5 40:1 2 

26 MgH2 - 5 wt% SiC:graphite 5 40:1 2 

27 MgH2 - 10 wt% SiC:graphite 5 40:1 2 

28 MgH2 - 20 wt% SiC:graphite 5 40:1 2 
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Sample ID Components Milling 
 Duration 

b:p No. 
Milling 

Balls 

29 MgH2 - 1 wt% SiC:graphite 2 80:1 8 

30 MgH2 - 5 wt% SiC:graphite 2 80:1 8 

31 MgH2 - 10 wt% SiC:graphite 2 80:1 8 

32 MgH2 - 20 wt% SiC:graphite 2 80:1 8 
 

F.2. Table of Samples – Chapter 4 

Sample ID Components Milling 
 Duration 

b:p No. 
Milling 

Balls 

33 NaH:MgH2 
(1:1) 

1 70:1 10 

34 NaH:MgH2 
(1:1) 

2 70:1 10 

35 NaH:MgH2 
(1:1) 

5 47:1 10 

36 NaH:MgH2 
(1:1) 

5 70:1 10 

37 NaH:MgH2 
(1:1) 

5 85:1 10 

38 NaH:MgH2 
(1:1) 

5 100:1 10 

39 CaH2:MgH2 
(2.375:1) 

5 76:1 10 

40 CaH2:MgH2 
(2:1) 

5 76:1 10 

41 CaH2:MgH2 
(1:0.75) 

5 76:1 10 

42 CaH2:MgH2 
(1:1) 

5 76:1 10 

43 CaH2:MgH2 
(1:2) 

5 76:1 10 



 

287 

F.3. Table of Samples – Chapter 5 

Sample 
ID 

Components Heating 
Conditions 

Milling 
 Duration 

b:p No. 
Milling 

Balls 

44 LiCl + AlCl3 - Hand Mixed - - 

45 LiCl + AlCl3 - 1 80:1 10 

46 LiCl + AlCl3 - 3 80:1 10 

47 LiCl + AlCl3 - 5 80:1 10 

48 LiAlCl4 (46) + 4 NaH - 5 100:1 10 

49 NaCl +MgCl2 - Hand Mixed   

50 NaCl +MgCl2 450 oC, 12 h - - 10 

51 NaCl +MgCl2 - 1-5 80:1 10 

52 NaMgCl3 (50) + 3 NaH - 5 100:1 10 

53 NaMgCl3 (51) + 3 NaH - 5 100:1 10 

54 NaMgCl3 (50) + 3 LiH - 5 100:1 10 

55 NaCl + AlCl3 - Hand Mixed   

56 NaCl + AlCl3 - 5 80:1 10 

57 NaAlCl4 (51) + 4 LiH - 5 100:1 10 
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