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Thesis Summary  

 
Telomeres, the repetitive DNA sequences that cap eukaryotic chromosomes, are thought to 

play an important role in linking life conditions and senescence. In vertebrate somatic 

cells, telomeres shorten at each cell division, and the rate at which they do so has been 

linked to cellular and organismal senescence. Although telomeres generally shorten with 

age in vertebrates, in most species studied there is considerable variation between same age 

individuals. In this thesis, I examined the telomere dynamics of various avian species, 

investigating both the causes of variation in telomere length among individuals and what 

effect this variation has on attributes such as survival rates.  

 

 Previous studies have shown that most telomere loss occurs in young individuals 

and it thus makes sense that early life conditions are responsible for much of the inter-

individual variation in telomere length.  I investigated this idea by studying chick telomere 

dynamics in a wild population of lesser black-backed gulls Larus fuscus. There was 

considerable variation in hatching telomere length among individuals and much of this 

variation was related to circumstances during embryonic growth. Larger hatchlings had 

shorter telomere lengths, suggesting that embryonic growth rate could have affected 

telomere attrition. Independent of this trend, males had longer telomeres at hatching than 

females. Although telomere length did decrease with age post-hatching, these initial 

variations remained consistent during the initial post-hatching period. 

 

 The relationship between early life conditions and telomere length was investigated 

further with a longitudinal study of telomere length in chicks of the European shag 

Phalacrocorax aritotelis. A previous study on this population of birds had shown that 

telomere length declines with age within individuals over a period of several years. 

However no change in telomere length was detected over a period of 11-13 days during the 

chick period. Body size had no effect on telomere length, but males did have longer 

telomere than females. 

 

 These initial chapters investigate telomere length in chicks; however there are very 

few studies that investigate telomere length over the entire lifespan of long-lived species. I 

thus next examined the telomere dynamics of two species of long-lived seabird, the 
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northern and southern giant petrels (Macronectes spp.). In both giant petrel species, 

telomeres were shorter in adults than chicks, but there was no trend for adult telomere 

length to decrease with age. In southern giant petrels, there was a significant relationship 

(independent of age and sex) between an individuals telomere length and whether it was 

still alive 8 years after it was initially sampled. This relationship was not present in 

northern giant petrels, possibly due to a smaller sample size. The results thus support both 

the idea that most telomere loss occurs in young individuals and that telomere length may 

be an indicator of life expectancy. 

 

 Various methods exist to measure telomeres. As the number of taxa whose 

telomere dynamics are being studied increases, it becomes increasingly important to know 

which methods are the best to use and to what extent these methods are applicable across 

species. These questions were investigated in relation to work conducted on the telomere 

dynamics of the blue-footed booby Sula nebouxxi. Both the TRF and qPCR techniques 

were used to measure booby telomeres, but problems arose with both methods. It is 

possible that these problems occurred because blue-footed boobies have a particularly 

large amount of interstitial telomeric DNA, although a more detailed analysis of booby 

telomeres would be necessary to determine this. These findings suggest that standardised 

methods to measure telomeres cannot necessarily be applied to every new species whose 

telomere dynamics are studied. 

 

 The evidence presented here suggests that the study of telomere dynamics can be a 

very powerful tool for behavioural ecologists. It now seems possible that telomeres might 

provide both a way of measuring the long-term costs of early life-conditions and a way to 

measure the quality of an individual. However, further research is still needed to fill in the 

considerable gaps in our knowledge and fully exploit the potential telomeres have for 

behavioural ecology. 
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Chapter 1: General Introduction 

 

This chapter will review the literature on telomeres in reference to their structure and 

function at the cellular level, their connection to cellular and organismal ageing and the 

link they provide between ageing and organismal attributes. The various methods used to 

measure telomere lengths will also be briefly reviewed. 
 

 

1. Telomere structure and function 

 

1.1 What are telomeres?  

Telomeres are the ends of eukaryote chromosomes. The sequence and structure of 

telomeres is highly conserved (Henderson 1995); in vertebrates, telomeres comprise 

several kilobase pairs of double stranded DNA containing the repetitive sequence 

TTAGGG (Meyne et al. 1989), which ends in 100-200 bases of single-stranded TTAGGG 

at the 3’ end, known as the 3’ overhang (Makarov et al. 1997; Wright et al. 1997).  

 

 The exact structure of telomeres is unknown and varies between taxa, but the 3’ 

overhang seems to be crucial to telomere function (Blackburn 2005). It was at one time 

thought that the overhang was simply a by-product of the way DNA is replicated, but in 

fact there is a wide range of machinery in the cell dedicated to producing this overhang 

(Huffmann et al. 2000). The overhang is folded round to form a t-loop, which ‘tucks in’ to 

the double stranded part of the telomere (Griffiths et al. 1999; fig. 1.1). It is this ‘tucking 

in’ that is the key feature of the t-loop; the size of the loop does not seem to be important, 

merely reflecting the overall length of the telomere (Rahman et al. 2008).  

 

Various proteins, collectively known as shelterin, play a key role in shaping the 

structure of vertebrate telomeres (reviewed in de Lange 2005; fig. 1.2). Six shelterin 

proteins have been identified in vertebrates: TRF1, TRF2, POT1, TIN2, TPP1 and Rap1. 

Non-shelterin proteins also play important roles in telomere function, but shelterin proteins 

are distinguished from these as they are found nowhere but at chromosome ends and have 

no other known roles. 
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TRF1, TRF2 and POT1 can all directly recognize telomeric TTAGGG repeats with 

very high specificity (Bianchi et al. 1999; Loayza et al. 2004; Court et al. 2005). POT1 is 

involved in processing the 5’ end of the telomere in order to form the 3’ overhang 

(Hockemeyer et al. 2005; Sfeir et al. 2005), although exactly how it does this is not known. 

TRF1 and TRF2 then help form the overhang into a t-loop. In vitro, TRF1 has the ability to 

bend, loop and pair telomeric DNA, suggesting that it might be the protein that shapes the 

3’ overhang into a t-loop (Bianchi et al. 1997, 1999). TRF2 also mediates t-loop formation 

in vitro (Griffith et al. 1999; Stansel et al. 2001). 

 

TIN2, TPP1 and Rap1 do not directly interact with the telomeres, but instead help 

to connect the other shelterin proteins (fig. 1.2). TIN2 is the linchpin of the shelterin 

complex, tethering TPP1 to POT1 and TRF1 to TRF2 (Liu et al. 2004a; Ye et al. 2004). 

Rap1 is closely associated with the actions of TRF2 (Li et al. 2000). 

 

The structure of the shelterin complex is conserved in the vertebrate species that 

have been studied (de Lange 2005). In non-vertebrate species, the exact structure and 

function of the proteins associated with telomeres varies. However, proteins similar to 

those found in shelterin have been found in several non-vertebrate taxa (reviewed in de 

Lange 2005).  

 

1.2 Telomere function 

Telomeres have several important functions in eukaryotic cells. Telomeres were first 

discovered when Barbara McClintock, working on maize, and Herman Muller, working on 

Drosophilia melanogaster, both noticed that broken chromosome ends always fused with 

each other, but that natural chromosome ends never did (McClintock 1938, 1942; Muller 

1938). More recent work has shown that telomeres are protected from the machinery that 

repairs DNA breaks. Telomeres thus provide a way for cells to distinguish between the 

natural ends of chromosomes and breaks in the chromosome that require repairing (Chan 

& Blackburn 2004). Telomeres also play a role in the alignment and segregation of 

chromosomes during meiosis (Blackburn 2005).  

 

Perhaps the most interesting function of telomeres is the protection they provide 

against the erosion of the terminal parts of chromosomes that occurs at each cell division. 

Some erosion of the chromosome during cell replication is inevitable due to the incomplete 



Chapter 1: General Introduction 

 3 

replication of the terminal parts of the DNA strand, known as the end replication problem 

(Watson 1972; Olovnikov 1973; fig. 1.3). Without the telomere repeats as protection the 

coding parts of the chromosome would be lost. It is likely that telomeres initially evolved 

as a solution to this problem (Nosek et al. 2006). This gradual shortening of telomere 

repeats over time is related to the most interesting function of telomeres, their connection 

to cell senescence. 

 

1.3 Cell senescence 

A senescent cell is a previously proliferative cell that has ceased to divide. In cultured 

human fibroblasts, the number of senescent cells gradually increases as the number of 

divisions undergone increases; eventually all cells in the population will cease to divide, 

usually within 40-60 population doublings (Hayflick 1965, 2003). This limit on cell 

replication is known as the ‘Hayflick limit’, after the author of the first set of experiments 

that demonstrated this phenomenon. The exact number of replications cells can undergo 

varies according to the tissue and species they were taken from. The ‘Hayflick limit’ does 

not apply to all cell types; in humans only somatic cells show limited in vitro replication. 

Stem cells can replicate indefinitely, as can cancer cells (reviewed in Campisi & d’Agga di 

Fagagna 2007). 

 

1.4 Telomere shortening and cell senescence 

There are various pathways through which a cell can become senescent, but one of the 

main ways is through telomere-dependant cell senescence, sometimes termed mortality 1 

or M1 senescence (Harley et al. 1990). Telomeres will shorten at each cell division due to 

the end replication problem (section 1.2). When a telomere has shortened to a certain 

critical length a DNA damage response (DDR) is triggered similar to that caused by double 

strand DNA breaks. The DDR is mediated by various proteins, particularly ATM kinase, 

that activate the genes p53 and p21. Activation of these genes results in a permanent arrest 

of the cell-cycle and the cell becomes senescent (d’Adda di Fagagna et al. 2003; Takai et 

al. 2003; Herbig et al. 2004). Telomere shortening thus provides an explanation for the 

‘Hayflick limit’ on cell replication in vitro (section 1.3).  

 

The key factor in triggering senescence seems to be the shortening of the telomere 

to the extent where it can no longer form into a loop. The inhibition of the shelterin protein 

TRF2 (section 1.1), in cells grown in vitro, results in activation of a DDR and senescence 
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(Takai et al. 2003; Celli & de Lange 2005). Similarly, transfection of short G-rich 

telomeric oligonucleotides into a human cell (mimicking the effect of the t-loop being 

opened) triggers p53 dependant cell-cycle arrest (Saretzki et al. 1999).  

 

1.5 Causes of telomere shortening 

1.5a The end replication problem 

As discussed in section 1.2, some telomere loss is inevitable at each cell division due to the 

end replication problem. Initially it was thought that this was the cause of all telomere 

attrition and thus that telomere loss occurred at a constant rate at each cell division. This 

gave rise to the idea of telomeres as a ‘mitotic clock’ that kept track of the number of 

divisions a cell has undergone (von Zglinicki 2003). However, in cultured human 

fibroblasts, there is considerable heterogeneity in both the number of divisions cells can 

undergo (Smith & Hayflick 1973; Hayflick 2003) and in the rate of telomere shortening at 

each cell division (Martin-Ruiz et al. 2004). Clearly this is inconsistent with the idea of 

telomeres as a ‘mitotic clock’. Instead factors other than the end replication problem must 

also contribute to telomere attrition. 

 

1.5b Oxidative stress and telomere loss  

Reactive oxygen species (ROS) are produced by the mitochondria as an unavoidable by-

product of energy production. Their presence in the cell causes damage to DNA, which 

will build up over time (Packer & Fuehr 1977; Fraga et al. 1990). This damage plays a 

significant role in telomere shortening (von Zglincki & Schewe 1998; von Zglinicki 2000).  

 

Oxidative stress damages DNA bases or deletes them altogether. Some of these 

bases will be repaired or replaced, others will not. If a base in the telomere region is 

damaged and not repaired before the next cell division, DNA replication will be terminated 

at this point and any telomere repeats beyond will be lost (von Zglinicki 2003). Thus, 

oxidative stress results in the loss of more telomeric DNA than would be the case due to 

the end replication problem alone. The smallest amount of telomere loss seen in cultured 

human fibroblast cells is 10-20bp per cell division (von Zglinicki 2002), suggesting that 

this is the lower limit of telomere loss set by the end replication problem. The difference 

between this and the average loss in human fibroblasts of 50-100bp is primarily due to 

oxidative stress (von Zglinicki et al. 2000).  
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Cells can defend themselves against the effects of oxidative stress through 

antioxidants. Different types of cell have varying levels of antioxidant defences. Human 

fibroblast strains that have high antioxidant levels have a lower rate of telomere shortening 

than strains with low antioxidant levels (von Zglinicki et al. 2000). Increasing the levels of 

antioxidant enzymes in a cell increases its replicative lifespan and reduces its rate of 

telomere shortening (Furumoto et al. 1998; Serra et al. 2003). Conversely, increasing the 

stress cells are under or interfering with their antioxidant defences accelerates telomere 

shortening and decreases cell lifespan (Kurz et al. 2004; Richter & von Zglinicki 2007). At 

a given level of oxidative stress the damage caused to DNA varies considerably, purely 

due to chance. This stochastic element of oxidative damage could explain the variation in 

the rate of telomere shortening between populations of cloned cells in vitro and between 

individuals in vivo (von Zglinicki 2003).  

 

 Telomere loss due to oxidative stress may actually be an adaptive mechanism 

(Jennings et al. 2000; von Zglinicki 2003). The build up of damage to DNA caused by 

ROS can eventually lead to a cell becoming cancerous (Campisi et al. 2001; Campisi 

2003). The longer a cell has been actively dividing and incurring damage, the greater this 

risk becomes. By using telomeres to set a limit on a cells lifespan the chances of this 

occurring are much reduced. Crucially, telomeres are more sensitive to oxidative damage 

than the rest of the genome, due to the presence of many GGG triplets which are a major 

target of ROS (Kruk et al. 1995; Petersen et al. 1998). Telomeres also have a much lower 

rate of damage repair than other parts of the genome. Petersen et al. (1998) showed that 

when single base pair DNA damage was induced, it was almost completely repaired within 

twenty-four hours in all parts of the genome except the telomeres, where it was not 

repaired for the whole nineteen-day duration of their experiment. Thus, as damage 

accumulates in the important, coding areas of the chromosomes, it will be accumulating at 

a faster rate in the telomeres. By the time damage in the main body of the chromosomes 

has reached dangerous levels, the telomeres will already have become short enough to 

trigger senescence. Telomeres can thus be thought of as sentinels, detecting the level of 

oxidative damage in the genome and shutting down the cell if this level becomes 

dangerously high (von Zglinicki 2002). The end replication problem still sets an outer limit 

on a cells replicative lifespan but this will rarely be reached.  
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1.6 Telomerase and the restoration of telomeres 

Although telomere loss at cell division is unavoidable, the damage does not have to be 

permanent. The reverse transcriptase telomerase is capable of replicating telomere repeats. 

First discovered in the ciliate Tetrahymena (Greider & Blackburn 1985), telomerase is 

widespread among eukaryotes. Its expression slows or prevents telomere shortening and 

extends the lifespan of a cell (Bodnar et al. 1998). 

 

Telomerase consists of a catalytic protein component (TERT) and an RNA 

component (TER). TERT can fold around the 3’ overhang at the end of the telomere and 

TER is then used to create a template from which telomeric DNA repeats can be 

synthesised in the 5’ to 3’ direction, elongating the telomere (fig 1.4). Shorter telomeres 

are more likely to be elongated than longer telomeres, which seems to be due to the action 

of shelterin proteins (section 1.1) particularly POT1 (Liu et al. 2004b). Longer telomeres 

attract more shelterin, thus increasing the amount of POT1 loaded on to the 3’ overhang. 

This decreases the chance of TERT attaching itself to the chromosome, preventing 

telomere elongation. Shorter telomeres have less POT1 loaded onto the overhang, which 

increases the chance of TERT attaching to the chromosome and elongating the telomere 

(fig. 1.5). If shelterin is inhibited, then the rate of telomere elongation by telomerase 

increases (Loayza & de Lange 2003). 

 

Telomerase is expressed in stem and germ cells and telomere shortening is thus 

very limited in these cells (Mantell & Greider 1994; Blackburn 2005). Clearly this is 

crucial, as it prevents any telomere loss being passed on to offspring (Schaetzlein et al. 

2004). The level of telomerase expression in somatic cells varies among species. For 

example, telomerase is down-regulated in most somatic cells in humans (Kim et al. 1994) 

but not in mice (Prowse & Greider 1995). In species where telomerase is expressed in 

somatic cells, exact levels vary between tissue types. For example, in birds telomerase is 

expressed in both post-mitotic cells (such as liver and brain cells) and mitotic cells (like 

intestinal cells and stem cells), but is expressed at a higher level in the mitotic cells 

(Haussmann et al. 2007). 

 

The existence of an enzyme that can prevent telomere shortening begs the question: 

why do all cells not express telomerase and thus prevent telomere-driven cell senescence? 

The answer seems to be linked to the idea of telomeres as sentinels detecting the level of 
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oxidative stress (section 1.5b). If telomere shortening is prevented then this function of 

telomeres will be lost, leading to the risk of oxidative damage in the rest of the genome 

becoming dangerously high. This will increase the risk of cells becoming tumourous 

(Campisi et al. 2001; von Zglinicki 2003). Indeed telomerase is strongly linked to cancer, 

being expressed in more than 85% of human cancers (Kim et al. 1994; Shay & Bacchetti 

1997). It has been suggested that telomerase expression is down-regulated in long-lived 

species (like humans) but not in short lived species (like mice) as short lived species will 

not live long enough for high cancer rates to become an issue. However in the few avian 

species studied, telomerase levels in adult tissues were higher in long-lived species than 

short-lived ones (Haussmann et al. 2004, 2007). Alternatively, it has been suggested that 

species with a large body mass have a higher risk of cancer than species with a small body 

mass, and therefore down-regulate telomerase. Such a relationship seems to be present in 

rodents; species with a large body mass down-regulate telomerase more than those with a 

smaller body mass (Seluanov et al. 2007; Gorbunov & Seluanov 2008). 

 

Thus, telomere length maintenance is in a state of equilibrium between telomere 

loss and re-addition; there is a trade-off between increasing longevity by reducing the rate 

of cell senescence and increasing longevity by reducing the risk of tumours developing. 

The best way to manage this trade-off will vary between cell types and between species.  

 

Although telomerase is the main route through which telomeres are elongated, it is 

not the only one. Lengthening of telomeres in the absence of telomerase has been noted in 

several tumour cell lines and has been termed ALT, for alternative lengthening of 

telomeres (Murnane et al. 1994; Bryan et al. 1995). ALT is thought to occur by 

recombination of telomeres (Dunham 2000; Bechter et al. 2004), but little is known about 

its occurrence in normal cells. 

 

1.7 Telomere shortening at the cellular level 

When discussing telomere shortening, it is often convenient to refer to the length of 

telomeres in a cell as though they are all identical. In fact, every telomere in a cell varies in 

length. There is a relatively conserved pattern to the length of each individual telomere 

within a cell (Graakjaer et al. 2003; Britt-Compton et al. 2006). Within this pattern there is 

a considerable amount of individual variation, resulting in a unique ‘telomere profile’ for 

every individual. Some of this variation seems to have a genetic basis: of the two alleles of 
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each chromosome a human parent has, there is more correlation between parent and child 

in the allele the parent passes on than in the allele they do not (Graakjaer et al. 2006). As 

well as the initial telomere length, the rate of telomere loss also varies between different 

telomeres in a cell. Not all of the variation in telomere profiles can be due to genetics; the 

correlation between the telomere profiles of two elderly adults, even monozygotic twins, 

never exceeds 0.8 (Graakjaer et al. 2003).  

 

The differences in telomere length between chromosomes may have a functional 

purpose. In C.elegans and cultured yeast and human cells the distance between the end of 

the telomere and distal genes effects the expression of these genes (Gottschling et al. 1990; 

Baur et al. 2001; Joeng et al. 2004). 

  

 The difference between telomere lengths within a cell raises the question of which 

telomere it is that triggers cell senescence; is it the first telomere to shorten below a critical 

length or are there certain telomeres which determine when senescence is triggered? 

Although there have been several conflicting answers to this question (e.g. Martens et al. 

2000; Hemann et al. 2001), the consensus now seems to be that a subset of short telomeres 

in the cell is enough to cause cell senescence (Zou et al. 2004; Capper et al. 2007). 

 

 As well as variation within a cell, telomere lengths and the rate of telomere 

shortening also differs between cell types. Post-mitotic tissues, such as adult human and 

mouse brain cells, suffer little or no telomere shortening (Cherif et al. 2003; Nakamura et 

al. 2007). In mitotic cells, the degree of telomere loss will depend on the levels of 

oxidative stress, anitoxidant defences and telomerase expression (Richter & von Zglinicki 

2007).  

 

1.8 Telomere shortening and senescence at the organismal level 

A key assumption in linking telomere dynamics with lifespan is that cell senescence 

contributes to organismal ageing. In vitro studies cannot provide this evidence, as they 

cannot show the effect of senescent cells on tissue function (Rubin 2002). However, 

detecting senescent cells in vivo is notoriously difficult (Baird 2006), so there are a limited 

number of studies linking senescent cells with organismal ageing. What studies there are 

seem to support the link between cell senescence and ageing. Crucially, senescent cells 

seem to be rare in young individuals and increase in number with age (Dimri et al. 1995; 
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Herbig et al. 2006). Senescent cells are also found at sites of chronic age related pathology, 

as would be expected if they are involved in ageing (Chang & Harley 1995; Vasile et al. 

2001; Price et al. 2002). The changed phenotype of senescent cells also links them with 

ageing. For example, senescent cells upregulate the genes for extracellular-matrix 

degrading enzymes and inflammatory cytokines (Shelton et al. 1999; Chang et al. 2000; 

Campisi & d’Adda di Fagagna 2007). An increasing proportion of cells with this 

expression profile will be likely to have a negative effect on tissue function (Funk et al. 

2000; Parrinello et al. 2005; Baird 2006). Given this fairly strong connection between 

cellular and organismal senescence, it seems reasonable to link telomere shortening with 

organismal ageing (Monaghan & Haussmann 2006).  

 

 It should be empathised that telomere shortening is not the only mechanism through 

which cells can become senescent. It has been suggested that ROS may activate specific 

signalling pathways that cause cell senescence in a telomere-independent way (Finkel & 

Holbrook 2000). Other, non-genome related, stresses can also result in cell senescence 

(reviewed in Campisi & d’Adda di Fagagna 2007).  
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2. Measuring telomeres 

 

Several methods have been developed to measure telomere lengths. This section will 

briefly outline how each technique works and their advantages and disadvantages. The 

main division is between those techniques that measure the average telomere length in a 

cell population (TRF, Q-PCR, T-OLA) and those that measure individual telomeres in a 

particular cell or chromosome (Q-FISH, Flow-FISH, STELA). The TRF and Q-PCR 

methods are the best methods to use when comparing overall telomere length between 

individuals of the same species (Nakagawa et al. 2004). For this reason, these two 

techniques were used to make all telomere measurements discussed in this thesis (a more 

detailed description of the TRF and qPCR protocols can be found in chapters 2 and 6 

respectively). 

 

2.1 Telomere restriction fragment (TRF) analysis 

TRF analysis (Harley et al. 1990) measures the average telomere length in a cell 

population. Restriction enzymes are used to cut the telomeres away from the rest of the 

chromosome and these telomere fragments are then separated out by size on an 

electrophoresis gel. TRF’s are then transferred to a nylon membrane and hybridised with a 

digoxigenin labelled probe. A chemiluminescent detection system is used to visualize the 

TRF and autoradiographs of it are taken. An example of an autoradiograph is shown in fig. 

1.6. There are variations on this basic technique, which can have significant effects on TRF 

values. TRF fragments can be separated either by constant field gel electrophoresis 

(CFGE) or by pulse-field gel electrophoresis (PFGE). CFGE cannot separate fragments 

bigger than 30kb. Thus, if a species has a significant number of telomeres longer than this, 

PFGE should be used to separate the fragments as TRF values will otherwise be artificially 

low. Another variation on the technique is to carry out extraction, digestion and 

electrophoresis of the samples in agarose plugs; this has the benefit of reducing DNA 

degradation, which can artificially increase the number of short telomere fragments 

(Haussmann & Mauck 2008a).  

  

TRF analysis is the most widely used method of measuring telomere lengths. It 

requires no specialist equipment and results are thus fairly easy to generate. However, 

relatively large amounts of time (3-5 days) and DNA (0.5-10µg) are required. Analysis of 
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the autoradiograph smears can also be somewhat subjective, even with the help of 

computer software (Haussmann & Mauck 2008). More seriously, there can be significant 

variation (up to 5%) between TRFs from the same individual depending on the choice of 

restriction enzymes used (suggesting the presence of subtelomeric restriction site 

polymorphisms and/or subtelomeric length polymorphisms) (Cawthon 2002). 

 

2.2 Quantitative polymerase chain reaction (Q-PCR) assay 

The Q-PCR assay (Cawthon 2002) measures the relative amount of telomere repeats in a 

cell population. For each sample the ratio of telomere repeat copy number to single gene 

(i.e. a gene that does not vary in size between individuals) copy number is calculated. This 

ratio is then compared to that of an arbitrary reference sample – the amount it differs by 

(the T/S ratio) is proportional to the average telomere length of the sample. 

 

 The main advantage of the Q-PCR method over TRF analysis is that it is much 

quicker to carry out and requires less DNA. Additional primers do need to be developed to 

amplify the single copy gene. Any gene that does not vary in copy number among 

individuals can be used, so the method should be suitable even for species where the 

genetic information available is limited.  

 

 There are two main problems with the Q-PCR method. Firstly, while the TRF 

method supplies the size of the average telomere length in base pairs, Q-PCR assays only 

provide a ratio that is meaningless except in relation to the reference DNA sample. This is 

not a problem when comparing between individuals within the same study, but it does 

make it difficult to compare between studies and especially between species. One solution 

is to analyse several samples with both the TRF and Q-PCR techniques and from this 

calculate how T/S ratio relates to telomere length. The second problem with Q-PCR assays 

is that in species that have interstitial telomeric repeats (e.g. avian chromosomes contain 

telomeric repeats near the centromeres – Venkatesan & Price 1998), these will be 

measured in addition to terminal telomeric repeats (Nakagawa et al. 2004). This is not a 

problem when measuring the rate of telomere change within an individual, as the amount 

of interstitial telomeric repeats will not vary over time, but it could be a problem in cross-

sectional analyses. 
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2.3 Telomeric-oligonucleotide ligation assays (T-OLA) 

T-OLA can be used to measure the length of the 3’ overhang by ligating telomeric repeat 

oligonucleotides that have hybridised to the overhang (Cimino-Reale et al. 2001). In 

humans, the size of the 3’ overhang is proportional to both the size of the telomere as a 

whole (Rahman et al. 2008) and the rate of telomere shortening (Huffmann et al. 2000). If 

this is true of non-human species, then T-OLA could become a useful way to measure 

telomeres. 

 

2.4 Fluorescence in situ hybridisation (FISH) methods 

As their name suggests, FISH methods utilise fluorescent dyes to visualize telomeres, 

which are then quantified by measuring light intensity. FISH methods can be used to 

measure telomere lengths in single cells. Flow cytometry FISH methods (Flow-FISH, 

Rufer et al. 1998), can be used to measure the average telomere length in a single cell. 

Quantitative FISH (Q-FISH, Zijlmans et al. 1997) is able to measure the lengths of 

individual telomeres within a cell. 

 

 The FISH methods, especially Q-FISH, require specialised equipment and are thus 

not a realistic option for most research groups (Sedivy et al. 2003). Q-FISH can also only 

visualise telomeres in metaphase chromosomes which limits its use to proliferating cells. 

Even then, it is difficult to generate adequate numbers of metaphase chromosomes from 

tissues such as blood. For these reasons, the FISH methods are of limited use for ecologists 

interested in comparing telomere lengths of many different individuals. 

 

2.5 Single telomere length analysis (STELA) 

STELA is a PCR based method for measuring individual telomere lengths (Baird et al. 

2003). It works by attaching a linker or ‘telorette’ to the end of the 3’ overhang – in 

addition to a telomere specific sequence, the telorette ends in a 20bp non-complementary 

‘tail’. The telorette is then ligated to the complementary, C-rich, 5’ end of the 

chromosome, effectively tagging the telomere with the non-complementary tail. PCR is 

then performed using two primers; one that is identical to the tail and another that specifies 

to a sequence in the subtelomeric region. 

 

 Because of this need for a primer designed specifically for the subtelomeric region, 

new primers need to be designed not only for different species, but for different 
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chromosomes within a species. This limits the use of STELA to species whose genetic 

sequences are well characterised (Nakagawa et al. 2004). However, unlike Q-FISH its use 

is not limited to metaphase chromosomes and it requires less specialist equipment, so in 

the long-term it may be the best way to measure individual chromosomes.  
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3. Telomere length and organismal attributes 

 

3.1 Variation in telomere dynamics between species 

Cross species comparison of telomere dynamics is difficult, primarily because so few 

species have been studied. Among those species that have been examined, there is 

considerable variation in both absolute telomere lengths and the rate of telomere loss. 

 

3.1a Variation in absolute telomere lengths 

There is considerable variation in telomere length between species, ranging from as low as 

20bp in some cilliates up to as high as 150,000bp in some mouse strains (Louis & 

Vershinin 2005). However, there seems to be little correlation between absolute telomere 

length and the lifespan of a species. Among the primates, humans have the shortest 

telomeres but the longest lifespan (Kakuo et al. 1999), while in various strains of mice 

studied, there was no link between lifespan and telomere length (Hemann & Greider 2000). 

This lack of relationship has been found in a wide variety of other vertebrate species 

(Vleck et al. 2003). The exceptions to this trend are pine trees, where the longest living 

species have the longest telomere lengths (Flanary & Kletetschka 2005). 

 

3.1b Variation in the rate of telomere loss 

A link does seem to exist between the lifespan of a species and its rate of telomere loss. 

The proliferative lifespan of cells in culture is positively linked to the lifespan of the 

species they are taken from (Rhome 1981). The lifespan of individual cells may also be 

greater in long-lived species, which will result in a lower rate of cell division and less 

telomere loss (Rhome 1981). 

 

At the organismal level, there does seem to be a general trend for longer-lived 

species to have a lower rate of telomere loss. In a variety of avian species studied, telomere 

loss was generally greater in short-lived than long-lived species (fig. 1.7). In the pine tree 

Pinus longaeva, one of the longest living species on the planet, no telomere shortening was 

seen with age (Flanary & Kletetschka 2005). There are exceptions to this trend. No 

telomere loss with age was seen in either of two species of sea urchins with very different 

lifespans (Francis et al. 2006), suggesting that telomere dynamics are not an important 

determinant of longevity in these species.  
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3.2 Reasons for species variation 

3.2a Telomerase expression 

In the few avian species studied, telomerase expression positively correlated with lifespan 

(Haussmann et al. 2004, 2007). This may account for the lower rate of telomere loss seen 

in the long-lived species compared to the short-lived species (Haussmann et al. 2003). 

Telomerase levels also correlate with lifespan in pine trees (Flanary & Kletetschka 2005).  

 

 However, telomerase levels cannot explain differences in telomere dynamics 

among mammalian species. Humans express no telomerase in adult somatic cells (Kim et 

al. 1994), while mice express high levels (Prowse & Greider 1995). Clearly telomerase 

levels do not correlate with the rate of telomere loss or lifespan in these species. 

 

3.2b Oxidative stress levels 

It is well established that birds tend to have a longer lifespan than mammals of a similar 

size, despite birds having relatively higher metabolic rates and levels of energy 

expenditure, both of which are generally thought to reduce lifespan (Holmes & Austad 

1995). This seems to be because birds both produce fewer molecules of ROS per molecule 

of oxygen consumed, and that they are less susceptible to the ROS that are produced 

(Ogburn et al. 1998; Holmes et al. 2001). Two labs independently found significantly 

lower production of H2O2 (a common ROS) in pigeons compared with similar sized 

Norway rats (Barja et al. 1994; Ku & Sohal 1993). The increased resistance to ROS seen in 

birds could be due to increased levels of antioxidant enzymes (Holmes et al. 2001). The 

structure of avian cells may also make them more resistant to oxidative stress than 

mammalian cells. Mitochondrial membranes in pigeon liver cells have greater resistance to 

lipid peroxidation than do rat liver cells (Pamplona et al. 1996). This relationship between 

lifespan and vulnerability to oxidative stress may be quite widespread (Sohal et al. 1990; 

Ku & Sohal 1993; Barja & Herrero 2000). Given the established link between oxidative 

stress and telomere loss (section 1.5b), this provides further evidence for a link between 

lifespan and telomere dynamics.  

 

3.3 Problems with cross-species studies 

There are various problems associated with cross-species studies of telomere dynamics. 

The rate of telomere loss varies between different tissue types, so care must be taken when 

comparing species whose telomere dynamics have been examined in different tissues. 
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Comparisons of telomere lengths across species will also be inaccurate if the individuals 

are not age-matched. Most studies use the average rate of change in telomere length per 

year as a measure of the relative rate of telomere loss (e.g. Haussmann et al. 2003; Hall et 

al. 2004). However, the rate of telomere loss varies with age in most species studied (e.g. 

Zeichner et al. 1999; Hall et al. 2004; Pauliny et al. 2006), so using the rate of telomere 

loss per year to compare between them is fairly arbitrary. Telomere loss also varies 

considerably within individuals of the same species, further clouding cross-species 

comparisons. However, this variation between individuals could represent the most 

interesting aspect of telomere dynamics. 

 

3.4 Variation between individuals of the same species 

3.4a Variation with age 

If telomeres are linked to organismal senescence, then one might expect to see them 

shorten with age. In mammals, the proliferative potential of cells in culture is sometimes 

negatively correlated with the age of the donor (Rohme 1981). This relationship is not 

always present (Cristofalo et al. 2004), although this is perhaps inevitable given the large 

amount of variability in the rate of telomere shortening seen in vitro. Telomere length itself 

is a much better predictor of the replicative potential of cultured cells (Allsopp et al. 1992). 

 

 A trend for telomeres to shorten with age in vivo has been found in many species 

(table 1.1). However, as the table shows, this trend is far from universal. No change in 

telomere length with age is seen in Drosophilia melanogaster (Walter et al. 2007) or the 

two species of sea urchin that have been studied (Francis et al. 2006), while no change 

with age is seen in adult European shags and wandering albatross (Hall et al. 2004). In the 

case of Leach’s storm petrels (Haussmann et al. 2003) and the bristlecone pine Pinus 

longaeva (Flanary & Kletetschka 2005), telomere length seems to increase with age. The 

lack of the expected negative relationship between age and telomere length in these species 

could be due to high levels of telomerase expression; both Leach’s storm petrels and 

bristlecone pines are known to express telomerase in adult somatic tissues (Flanary & 

Kletetschka 2005; Haussmann et al. 2007). Alternatively the lack of relationship may be 

due to the differential survival of individuals with very long telomeres; indeed, Haussmann 

and Mauck (2008b) recently suggested this is true of the Leach’s storm petrel.  
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A more powerful way of looking at the change in telomere length with age is 

through longitudinal studies. However, very few longitudinal studies of telomere length 

have been conducted, primarily because of the difficulty of gathering several tissue 

samples from the same individual. Longitudinal studies also limit the range of tissues that 

can be studied; for obvious reasons, longitudinal studies on telomeres in the liver or brain 

are hard to come by. Longitudinal studies therefore tend to examine telomere dynamics in 

blood cells. Such studies that have been carried out have generally shown a reduction in 

telomere length with age. In humans (Zeichner et al. 1999), mice (Kotrshchal et al. 2007), 

domestic cats (Brümmendorf et al. 2002), the European shag (Hall et al. 2004) and dunlins 

(Pauliny et al. 2006) there was a general trend for telomeres to shorten within individuals 

as they grew older.  

 

3.4b Telomere length and individual lifespan 

If telomere length is linked to ageing within individuals, we would expect to see a 

correlation between telomere length and lifespan within species. In humans, peripheral 

blood leukocyte (PBL) telomere length predicted mortality in individuals over the age of 

60 (Cawthon et al. 2003). Other studies have failed to replicate this finding (Martin-Ruiz et 

al. 2005; Bischoff et al. 2006). However, these studies used an older cohort of individuals, 

so it could be that there is no correlation between telomere length and mortality in the very 

old (Baird 2006).  Nakamura et al. (2007) found that in patients over 90 years old at their 

time of death, telomere lengths of white and grey brain cells had longer telomeres than in 

those individuals dying at younger ages. This suggests that individuals with longer 

telomeres have a greater chance of surviving to this age.  

 

This apparent increase in mortality in individuals with shorter telomeres may be 

related to an increased chance of contracting age-related diseases. In a study of 190 same 

age individuals, those who reported heart disease had shorter PBL telomeres than those 

who did not (Starr et al. 2007). Similarly, Benetos et al. (2001) found that men with shorter 

PBL telomere lengths showed increased symptoms of heart disease. There has even been 

the suggestion of a connection between telomere length and mood disorders (Simon et al. 

2006), although another study found no correlation between cognitive decline and telomere 

length in the very old (Harris et al. 2006).  
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Significantly, all of these studies on humans are cross-sectional and so cannot make 

a link between lifespan and the rate of telomere shortening, which is probably more 

important than absolute telomere length. There are few longitudinal studies on humans, 

primarily because of the difficulty of obtaining repeat blood samples from the same 

individual. This suggests that work on non-human species could be fruitful. However, little 

work has been done to link telomere length and mortality in non-human species. A link 

between the rate of telomere loss and lifespan has been shown in rats (Jennings et al. 

1999), while in a cross sectional study, lifespan was linked to telomere length in dunlins, 

but not in sand martins (Pauliny et al. 2006).  

 

3.4c Variation between same age individuals 

In all the species listed in table 1.1, there is considerable variation in telomere length 

between individuals of the same age (e.g. fig. 1.8). Longitudinal studies have also shown a 

significant variation in the rate of telomere loss between individuals followed over the 

same time period (Zeichner et al. 1999; Hall et al. 2004; Pauliny et al. 2006). Some of this 

variation is to be expected due to the stochastic nature of telomere shortening, but not all of 

it. This variation between same-age individuals suggests that telomeres can probably not 

be used for estimating an individual’s chronological age, as was once hoped (e.g. Juola et 

al. 2006). More interestingly, it suggests that rather than being a measure of chronological 

age, telomeres may provide an estimate of the biological age of an individual (Nakagawa 

et al. 2004); if two individuals of the same age have very different telomere lengths, then it 

suggests that the individual with shorter telomeres is biologically older. Thus, by 

examining the causes of the variation in telomere length between individuals, we may be 

able to examine the long term effects of differing life history strategies (Monaghan & 

Haussmann 2006).  

 

3.5 Causes of variation between same age individuals 

A considerable number of factors have been linked to inter-individual variation in telomere 

dynamics. These range from ‘inbuilt’ factors, such as sex and heritability, to environmental 

factors such as growth rates and stress levels. 

 

3.5a Paternally inherited  

In humans, initial telomere length is partly inherited (Nawrot et al. 2004; Nordfjäll et al. 

2005; Andrew et al. 2006; Njajou et al. 2007). Heritability has been estimated to be as 
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much as 44% in populations with shared environmental influences (Njajou et al. 2007). 

The exact mechanism of heritability is somewhat unclear. Nawrot et al. (2004) found a 

correlation in telomere length between fathers and their daughters and between mothers 

and their offspring of both sexes. They did not see such a correlation between fathers and 

sons, which led them to suggest that telomere length is an x-chromosome linked trait. 

However, other studies have found a correlation between telomere lengths of fathers and 

their offspring, but not between telomere lengths of mothers and their offspring, which 

would suggest telomere length is paternally inherited (Nordfjäll et al. 2005; Njajou et al. 

2007). Baird et al. (2006) showed that telomere lengths in male germline cells range in size 

from 8.8kb to over 16kb, despite expressing telomerase at high levels (and so presumably 

avoiding telomere attrition). This suggests that a large amount of the variation in telomere 

length in humans could be due to inbuilt differences in paternal zygotic telomere length. 

Paternal age has also been linked with offspring telomere length (Unryn et al. 2005; Njajou 

et al. 2007); surprisingly, the older the father is, the longer the telomeres of his offspring 

are likely to be.  

 

The degree of inheritance in species other than humans has not been extensively studied. 

However, the assumption is that some degree of heritability is found in most species. 

 

3.5b Sex  

Differences in average telomere length between the sexes have been found in several 

species, with the general trend being for males to have shorter telomeres than females. This 

might be expected, given that males generally have shorter lifespans than females (at least 

in vertebrates). Males have shorter telomeres than females in humans (Benetos et al. 2001), 

rats (Cherif et al. 2003) and the ant Lasius niger (Jemielity et al. 2007). Sex differences in 

some species may be inbuilt. In humans however, there is no difference between the sexes 

at birth; telomere length diverges between the sexes with age (Nawrot et al. 2004). Thus, it 

is likely that the different life histories of males and females play a role in their differing 

telomere lengths (Kotrschal et al. 2007). For example, it has been suggested that the higher 

rate of telomere shortening and shorter lifespan in male rats compared to female rats is due 

to their higher levels of oxidative stress (Tarry-Adkins et al. 2006). 
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3.5c Early life conditions 

There are considerable theoretical reasons to expect telomere loss to be at its greatest 

during early growth. Cell turnover will be very high at this point and oxidative stress levels 

are also likely to be higher. Both cross-sectional and longitudinal studies seem to support 

this idea. In humans, telomere loss is fastest in infants and slows considerably in adults 

(Frenck et al. 1998; Zeichner et al. 1999). The same relationship has been found in 

longitudinal studies of the domestic cat (Brümmendorf et al. 2002). In both the European 

shag and the wandering albatross there is no trend for telomeres to shorten in adults but 

there is a trend for telomeres to be longer in chicks than in adults (Hall et al. 2004). In 

dunlins, the average rate of telomere loss within individuals was over twice as high in 

young birds as in older birds (Pauliny et al. 2006). Clearly, these studies suggest that the 

conditions experienced by individuals early in life are particularly important in terms of 

telomere dynamics; however, as yet, little work has been done to test this idea. In the 

European shag, chicks hatching late in the breeding season were shown to have a greater 

rate of telomere loss between chick and adult life stages than those individuals born earlier 

in the season (Hall et al. 2004). Most other studies looking at the effects of early life 

condition have concentrated on variation in growth rates. 

 

3.5d Growth rate 

Given that most telomere loss occurs early in life, it follows that the rate at which an 

individual grows will be a key determinant of its rate of telomere loss. Growth rates have 

been linked to lifespan for some time, both between species (Rollo 2002) and within 

species (Metcalfe & Monaghan 2001, 2003). A link between growth rate and telomere loss 

has so far only been shown in rats and the European shag. Rats that underwent growth 

retardation had longer telomeres in the liver and kidney as adults and had a longer lifespan. 

Conversely, rats that underwent a period of accelerated catch-up growth following a period 

of poor foetal nutrition had shorter adult kidney and liver telomeres and a shorter lifespan 

(Jennings et al. 1999). In European shags measured as chicks and again as adults, 

individuals laying down a large tissue mass for their body size showed the greatest rate of 

telomere loss (Hall et al. 2004). 

 

3.5e Stress 

Although conditions during early life seem to be particularly crucial in determining rates of 

telomere loss, this does not mean that conditions experienced by adults are not important. 
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A key factor in the variation of telomere loss between adult individuals is the amount of 

stress they experience. Stress in this context can refer to anything from reproductive stress 

to psychological stress. In female house mice (Mus musculus) sampled as infants and at 6 

months old, those individuals exposed to reproductive stress showed a higher rate of 

telomere loss than non-stressed controls. In male house mice, individuals exposed to 

crowding stress had a higher rate of telomere loss than controls (Kotrschal et al. 2007). In 

humans, psychological stress has been linked to telomere shortening. PBL telomere lengths 

were analysed in mothers caring for a chronically ill child (and therefore presumably 

highly stressed). The duration of care (and thus the chronicity of the stress) correlated with 

higher levels of oxidative stress, lower levels of telomerase and lower telomere lengths. 

Interestingly, the level of stress the women perceived themselves to be under also 

correlated with their telomere lengths (Epel et al. 2004). Telomere length and telomerase 

levels have also been linked to other measures of stress in humans, such as smoking, high 

blood pressure and obesity (e.g. Valdes et al. 2005; Epel et al. 2006), although not all 

studies have found such links (e.g. Bischoff et al. 2006) 

 

3.6 Telomere length as a measure of individual quality  

Given the link between telomere length and cell senescence, we would expect to see the 

established connection between telomere length and mortality and disease (see section 

3.4b). Interestingly, several studies suggest that telomere length may also be linked to other 

measures of individual quality. In a cross-sectional study, sand martins with longer 

telomeres had greater lifetime reproductive success than those with shorter telomeres 

(Pauliny et al. 2006). In tree swallows, telomere length at one year old predicts an 

individual’s chance of surviving to the next breeding season. This relationship continues 

for at least three breeding seasons (Haussmann et al. 2005). Any mortality at such a young 

age (tree swallows can live up to 8 years) is presumably not due to senescence, suggesting 

that telomere length is linked to other factors affecting mortality. In the nematode worm 

C.elegans, longer telomere lengths have been linked to both increased longevity and a 

greater resistance to heat stress (Joeng et al. 2004, although see Raices et al. 2005). Adult 

C.elegans consist entirely of post-mitotic cells and thus experience no telomere derived 

cell senescence (Raices et al. 2005); any effect of telomere length must therefore be acting 

through a different mechanism. It has been suggested that the length of telomeres may 

affect levels of gene expression in C.elegans (Joeng et al. 2004). In general though, the 

exact way telomeres can affect factors other than cell senescence is not known. It is 
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possible that telomere length merely correlates with these measures of individual quality, 

rather than having a direct effect on them (Haussmann et al. 2005). Even if this is the case, 

studies of inter-individual differences in telomere dynamics would be even more 

interesting. More research on what other factors telomere length is linked to, in a variety of 

species, is clearly needed (Monaghan & Haussmann 2006).  
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4. Thesis content 

 

There is substantial evidence linking telomere dynamics with the long term effects of 

different life history strategies. One thing that has been mostly missing from previous 

research, however, is work on species in their natural environments. The majority of 

studies on telomeres have been carried out on humans or captive species, such as rats. 

Examining species such as these, whose current lifestyles may be substantially different to 

their ‘natural’ lifestyles, could give misleading results. The substantially longer telomeres 

of inbred captive mice compared to wild mice (Hemann & Greider 2000), is just one 

demonstration of the potential problems of working with captive species. The work 

presented in this thesis examines the telomere dynamics of several wild avian populations. 

Broadening the range of organisms whose telomere dynamics have been studied will in 

itself help expand our understanding of telomere dynamics (Monaghan & Haussmann 

2006). Of the species studied in this thesis, only the European shag has previously been 

studied in relation to its telomere dynamics (Hall et al. 2004).  

 

The next chapter (chapter 2) provides more detail on the TRF protocol that was 

used to measure telomeres in the work described in the remaining chapters. The following 

two chapters both detail work investigating telomere length in relation to early 

development. Previous research has suggested that telomere loss is likely to be highest 

during early growth (section 3.5c). However, little work has been done to investigate the 

relationship between early life conditions and telomere dynamics. In chapter 3, inter-

individual variation in telomere length in relation to early development is investigated in 

chicks of the lesser black-backed gull Larus fuscus. Chapter 4 also investigates variation 

in telomere length among young individuals, with a longitudinal study of telomere loss in 

chicks of the European shag Phalacrocorax aristotelis. Very few studies have been able to 

investigate telomere dynamics in long-lived species across a wide age-range, primarily due 

to the difficulty of obtaining such information. Chapter 5 presents the results of such a 

study; the telomere dynamics of a population of giant petrels (Macronectes spp.) 

containing a wide range of known age individuals are examined. Analysis of such data 

allows the exploration of the relationship between telomere length and age (section 3.4a). 

In addition the relationship between telomere length and survival is examined; it has 

previously been suggested in other avian species that individuals with longer telomeres 
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have better survival rates than individuals with shorter telomeres (section 3.6). Finally, 

chapter 6 discusses the potential problems that may be encountered when measuring 

telomere lengths in relation to work done on the blue-footed booby Sula nebouxii.  

 

Blood samples and other field data used to produce the work described in chapters 

4 - 6 was kindly provided by other researchers; European shag data was provided by 

Maggie Hall, blue-footed booby data by Roxana Torres and giant petrel data by Francis 

Daunt and Richard Phillips. Telomere assays and PCR sexing were conducted in 

association with Lubna Nasir, Elizabeth Gault, Kate Griffiths, Winnie Boner and Pierre 

Bize. Data analysis and interpretation was carried out in association with Pat Monaghan. 
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Fig. 1.1: Demonstration of the basic telomere structure. The top diagram shows the 3’ 

overhang formed at the end of the telomere. The telomere is then folded over (middle 

diagram) and the overhang is ‘tucked in’ to the main strand (the area where this tucking in 

occurs is known as a D-loop - bottom diagram), allowing the end of the telomere to form a 

t-loop. Figure adapted from de Lange (2005). 
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Fig. 1.2: Schematic rendering of the shelterin complex attached to the end of a telomere. 

TRF1, TRF2 and POT1 all directly attach to the telomere, while TIN2, TPP1 and Rap1 

bind the complex together. Figure adapted from de Lange (2005). 
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Fig. 1.3: Demonstration of the end replication problem. The leading DNA strand 

(5’ to 3’ direction) is easily synthesised by DNA polymerase. However, DNA polymerase 

cannot synthesise in the 3’ to 5’ direction. This means that when the lagging DNA strand 

(3’ to 5’ direction) is replicated, the DNA polymerase has to attach itself to an RNA primer 

in order to function. The DNA is then synthesised in short segments known as Okazaki 

fragments. At the end of the chromosome there is no DNA left for the RNA primer to 

attach to, so the terminal part of the DNA strand cannot be replicated.  
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Fig. 1.4: Schematic representation of telomere elongation by telomerase. Blue rectangles 

represent the telomeres, the orange shape telomerase. The last few nucleotides in the 3’ 

overhang pair with the complementary sequence in the RNA component of telomerase. 

This chromosomal end is elongated by polymerization of dGTP, dTTP and dATP, using 

the RNA as a template. The extended telomere un-pairs from telomerase and the 3’-5’ 

lagging strand is synthesised by primase-polymerase. The telomere is now eligible for 

another round of elongation.   
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Fig 1.5: Schematic representation of the effect of shelterin on telomere elongation. Long 

telomeres (top diagram) attract lots of shelterin (purple blocks), meaning that telomerase 

(orange blocks) is blocked from attaching to the 3’ overhang. Shorter telomeres (bottom 

diagram) have less shelterin attached, increasing the chance of telomerase being able to 

attach to the 3’ overhang. Figure adapted from de Lange (2005). 
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Fig. 1.6: Example of an autoradiograph produced by TRF analysis (with constant field gel 

electrophoresis). Lanes 1 and 20 contain a molecular size marker, lanes 2 – 19 each 

represent a different sample (lane 19 is blank). Increased intensity of the smear at a given 

molecular weight means there are more telomere fragments of this size in the cell 

population. 
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Fig. 1.7: The relationship between maximum lifespan and the mean rate of telomere 

change (base pairs lost or gained per year) in various avian species. Species key: ZF = 

zebra finch (Taeniopygia guttata), TS = tree swallow (Tachycineta bicolor), AP = Adélie 

penguin (Pygoscelis adeliae), CT = common tern (Sterna hirundo), ES = European shag 

(Phalacrocorax aristotelis), LSP = Leach’s storm-petrel (Oceanodroma leucorhoai), WA 

= wandering albatross (Diomedea exulans). Data taken from Vleck et al. 2003 and Hall et 

al. 2004. 
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Table 1.1: Examples of vertebrate species whose telomere dynamics have been studied in 

relation to age. 

 

Species 
Cell types 

examined 

Telomere loss with 

age? 
Reference 

Humans 

Peripheral blood 

leukocytes (PBLs), 

fibroblasts, 

pancreas, white and 

grey matter 

Yes 

(extent of loss 

varies between 

tissue types) 

Ishii et al. (2006) 

Nakamura et al. 

(2007) 

Okuda et al. 

(2002) 

Baird (2006 – 

review of studies 

on PBLs) 

Rat 

(Mus musculus) 

Liver, kidney, 

brain, liver, 

pancreas 

Yes (except brain) 
Cherif et al. 

(2003) 

Domestic cat 

(Felix domesticus) 
PBLs Yes 

Brummendorf et 

al. (2002) 

Domestic chicken 

(Gallus  domesticus) 
Red blood cells Yes 

Delaney et al. 

(2000) 

Domestic dog 

(various breeds) 
Various Yes 

Nasir et al. 

(2001) 

Donkey 

(Equus asinus) 
PBLs Yes 

Argyle et al. 

(2003) 

Horse 

(Equus equus) 
Fibroblasts Yes 

Argyle et al. 

(2003) 

European shag 

(Phalacrocorax 

aristotelis) 

Red blood cells 
Yes (but not within 

adults) 
Hall et al. (2004) 

Wandering albatross 

(Diomedea exulans) 
Red blood cells 

Yes (but not within 

adults) 
Hall et al. (2004) 

Frigate bird 

(Fegata minor) 
Red blood cells Yes 

Juola et al. 

(2006) 
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Zebra finch 

(Taeniopygia 

guttata) 

Red blood cells Yes 
Haussmann et al. 

(2003) 

Adélie penguin 

(Pygoscelis adeliae) 
Red blood cells Yes 

Haussmann et al. 

(2003) 

Tree swallow 

(Tachycineta 

bicolor) 

Red blood cells Yes 
Haussmann et al. 

(2003) 

Common tern 

(Sterna hirundo) 
Red blood cells Yes 

Haussmann et al. 

(2003) 

Leach’s storm petrel 

(Oceanodroma 

leucorhoai) 

Red blood cells 
No (telomere length 

increases with age) 

Haussmann et al. 

(2003) 

Sandmartin 

(Riparia riparia) 
Red blood cells Yes 

Pauliny et al. 

(2006) 

Dunlin 

(Calidris alpina) 
Red blood cells Yes 

Pauliny et al. 

(2006) 

 
 
 
 



Chapter 1: General Introduction 

 34 

 
 

Fig. 1.8: The relationship between white blood cell telomere length and age in a random 

sample of humans. Although there is a trend for telomere length to shorten with age, there 

is considerable variation between same-age individuals. Figure taken from Unryn et al. 

(2005) 

 
 
 

 
 

 
 

 
 

 



Chapter 2: Materials and Methods 

 35 

Chapter 2: Materials and Methods 

 
Materials used 

 

1. General Chemicals 

Brilliant®SYBR®Green QPCR Master Mix – Stratagene 

Blocking reagent – Roche 

Bromophenol Blue – Institute of Comparative Medicine 

Chloroform - Sigma 

CPSD chemiluminescence substrate – Roche 

DIG Easy Hyb – Roche  

Ethidium bromide – Sigma 

Hydrochloric acid – BDH 

Maleic acid (M0375) – Sigma 

Phenol: chloroform: isoamyl alcohol (25:24:1) – Sigma 

Sodium acetate buffer solution – Sigma 

Sodium chloride – Sigma 

Sodium dodecyl sulphate (SDS) - Sigma 

Sodium hydroxide pellets – BDH lab supplies 

TE buffer – Qiagen 

Tris base – Sigma 

Tri-sodium citrate – BDH lab supplies 

Tween®-20 (polyoxyethylene sorbitan nonolaurate) – Sigma  

100% pure ethanol – Fisher Scientific 

 

2. Complete kits 

DNeasy Blood and Tissue Kit – Qiagen 

 

3. Restriction Enzymes 

Hind III – New England Biolabs 

Hinf I – Invitrogen 

Msp I – New England Biolabs 
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Proteinase K, recombinant PCR grade - Roche 

Rsa I - Invitrogen  

 

4. Molecular Size Standards 

CHEF DNA size standard (48.0 – 8.0 kb) – BIO-RAD 

DIG labelled DNA molecular weight marker (23.1 – 2.0 kb) – Roche 

1 kb DNA ladder (12,126 – 75 bp) – GIBCOBRL Life Technologies  

 

5. Primers and Probes 

Anti-digoxigenin-AP fab fragments – Roche 

Digoxigenin (DIG) labelled telomere probe (TTAGGG)7 – Roche 
32P γ-ATP labelled telomere probe (C2TA2)4 – Roche 

GAPDH-F (5’-AACCAGCCAAGTACGATGACAT–3’) – VH Bio Ltd 

GAPDH-R (5’-CCATCAGCAGCAGCCTTCA -3’) – VH Bio Ltd 

Tel1b (5’-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3’) 

Tel2b (5’-GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3’)    

– VH Bio Ltd 

 

6. Equipment 

6.1 Major Equipment 

Constant-field gel tank – BIO-RAD 

Centrifuge - Eppendorf 5417R 

Mechanical shaker – Stuart Scientific 

Optimal cross-linker – Spectrolinker™ XL-1000, Spectronics Corporation 

Oven – Hybridiser HB-1D, Techne  

Pulse field gel tank – CHEF-DR®II Pulsed Field Electrophoresis Systems 

QPCR machine - MX3000P®, Strategene 

Spectrophotometer – ND-1000, Nanodrop® 

UV transluminator - Universal Hood, BIO-RAD 

Video graphic printer – UP-890CE, Sony Corporation 

X-ray film processor – Compact X4 Automatic, Xograph Imaging Systems 

37°C Water bath – Grant Instruments  
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6.2 Consumables  

ABgene® PCR plates – Thermo Scientific 

Agarose - Seakem 

Amersham Hybond-N+ membrane for nucleic acid transfer - GE Healthcare 

Amersham Hyperfilm ECL (chemiluminescence film) – GE Healthcare 

Chromatography paper – Whatman International 

‘Clear Seal Diamond’ optically clear heat sealing film – Thermo Scientific  

Paper towels 

  

7. Buffers and Solutions 

 

BLB buffer: 1% SDS, 50mM Tris, 50mM EDTA, dH2O. This was stored at room 

temperature. 

  

10X Blocking buffer: 10g blocking reagent, 100ml 1X maleic acid (maleic acid heated to 

65°C in order to dissolve blocking reagent). This was autoclaved and stored at 4°C. 

 

1X Denaturation buffer: 0.5M NaOH, 1.5M NaCl, dH2O. This was stored at room 

temperature. 

 

10X Detection buffer: 100mM Tris-HCL (12.1g Tris base, adjusted to pH 9.5 with conc. 

HCL), 100mM NaCl, sterile H2O. This was autoclaved and stored at room temperature.  

 

0.5M EDTA pH8: 17.9g EDTA, 100ml dH2O. Adjusted to pH 8.0 with NaOH pellets and 

made up to 100ml. This was autoclaved and stored at 4°C. 

 

0.25M HCL:  21.55 ml conc. HCL, 978.45 ml dH20. This was stored at room temperature. 

 

10X Maleic Acid: 116.1g maleic acid, 87.6g NaCl, sterile H2O. Adjusted to pH 7.5 with 

NaOH pellets and made up to 1L. This was autoclaved and stored at room temperature. 

 

2.5M NaCl: 14.6g NaCl, 100ml dH2O. This was autoclaved and stored at room 

temperature. 



Chapter 2: Materials & Methods 

 38 

1X Neutralization buffer : 0.5M TRIS-HCL (60.5g Tris base, pH adjusted to 7.5 with 

conc. HCL), 3M NaCl, dH2O. This was stored at room temperature. 

 

Nuclei lysis buffer: 2mM EDTA pH 8.0, 0.4M NaCl, 10mM Tris, dH2O. This was stored 

at room temperature.  

 

10% SDS: 10g solid SDS, 100ml dH2O. This was stored at room temperature. 

 

20X SSC: 3M NaCl, 0.3M Tri-sodium citrate, dH2O. This was stored at room temperature. 

 

Stringency wash I: 2X SSC, 0.1% SDS, dH2O. This was stored at room temperature. 

 

Stringency wash II: 0.2X SSC, 0.1% SDS, dH2O. This was stored at room temperature. 

 

50 X TAE buffer: 2M Tris base, 50mM EDTA, 1M glacial acetic acid, dH2O. Adjusted to 

pH 8.15 using glacial acetic acid. This was stored at room temperature. 

 

10X TBE buffer: 0.09M Tris Borate, 0.002M EDTA, dH2O. This was stored at room 

temperature. 

 

TE buffer:  10mM Tris-HCL, 1mM EDTA, dH2O. This was stored at room temperature. 

 

1M Tris-HCL pH8 : 12.1g Tris base, 1 litre dH2O. Adjusted to pH 8.0 with conc. HCL. 

This was stored at room temperature. 

 

1X Wash buffer: 1X maleic acid, 0.3% Tween®20, sterile H2O. This was stored at room 
temperature. 
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Methods 

To prevent unnecessary repetition, this section includes a detailed description of the 

protocols that are referenced throughout this thesis. Protocols that were only used in one 

chapter are described in detail within that chapter. 

 

1. Manual DNA extraction 

10-20 µl of blood/buffer mix (buffer used varied depending on species) was added to a 

1.5ml sterile eppendorf. To this, 250µl of nuclei lysis buffer, 100µl of 10% SDS and 10µl 

of proteinase K (10µg/ml) was added and the mixture was incubated overnight at 37°C. 

During incubation samples were continuously agitated. Samples were then deproteinised 

by the addition of an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1). 

Samples were centrifuged at 14,000rpm for 10 minutes at room temperature to separate 

them into organic and aqueous phases. The upper, aqueous phase was transferred to a 

sterile 1.5ml eppendorf. DNA was then precipitated out by the addition of 1/10 volume of 

3M sodium acetate and 3 volumes of molecular biology grade 100% ethanol. The mixture 

was incubated for an hour at -20°C to help precipitation. The samples were then 

centrifuged at 14,000rpm for 10 minutes at 4°C, resulting in pelleted DNA. The 

supernatant was removed and the pellet was washed in 70% ethanol. The pellet was 

allowed to air dry for 5 minutes and was then re-suspended in 40µl of TE buffer and stored 

at -20°C. 

 

2. Determination of DNA concentration and quality 

2.1 Determination by spectrophotometry 

DNA samples were diluted 1:20 by adding 95µl of dH2O to 5µl of the sample. Optical 

density readings were taken at 260nm and 280nm, using 100µl of dH2O as a control. This 

gives a measure of the quantity of DNA in the sample. The purity of the DNA can also be 

estimated from the ratio of the optical density readings taken at 260nm and 280nm 

(260/280 ratio). The 260/280 ratio of a pure preparation of DNA is generally accepted to 

be around 1.8. Substantially lower values than this suggest the presence of proteins or other 

contaminants such as phenol, but for our purposes a ratio of 1.5 or higher was adequate. 
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2.2 Determination by gel electrophoresis 

This method was used in addition to spectrophotometry, in order to ensure that the DNA 

had not suffered significant amounts of degradation. A 1% gel was made by adding 0.5g of 

agarose to 50ml of 1X TBE buffer and heating in a microwave for around 2 minutes. After 

being allowed to cool slightly, 2.5µl of 100mg/ml ethidium bromide was added. The gel 

was then poured into a casting tray containing a comb with the requisite number of wells 

and was left to set for around 20 minutes. DNA samples were diluted to a concentration of 

100ng/µl with TE buffer. 2.5µl of this dilution (25ng of DNA) was mixed with 1µl of 

bromophenol blue loading buffer and added to the wells of the gel using a micropipette. 

Gels were run at 150V for approximately 10 minutes. The gel was then removed from the 

electrophoresis unit and the DNA was visualized using a UV transluminator (BIO-RAD) 

and photographed using a photographic unit (Sony). Figure 2.1 shows a representative 

photo of such a gel.   

 

3. Telomere restriction fragment (TRF) analysis 

3.1 Digestion of DNA with Hinf1/Rsa1 

The restriction endonucleases Hinf I and Rsa I were selected because they do not contain 

recognition sequences that will cut within the telomeric repeat sequences. The use of these 

enzymes allows for complete digestion of non-telomeric DNA, leaving only telomeric 

DNA intact. This remaining telomeric DNA is referred to as a Telomere Restriction 

Fragment (TRF). By calculating the mean TRF length in the digested DNA sample we can 

make an estimate of the average telomere length in the initial cell population.  

 

For each sample a mixture was made up containing 10µl of DNA diluted to 

100ng/µl (1µg DNA), 7µl of dH20, 2.5µl of Hinf1 buffer, 2.5µl of Rsa1 buffer, 0.25µl of 

Hinf1 and 0.25µl of Rsa1. The mixture was incubated for 12-18 hours in a 37°C waterbath.  

 

The success of the digest was confirmed by running part of each digest out on an 

electrophoresis gel. The gel was prepared and visualised in the same way as described in 

section 2.2. The gel was run at 150V for approximately 20 minutes. Figure 2.2 shows an 

example of such a gel. 

 

If digests were not immediately used, they were stored at -20°C for up to one 

month. 
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3.2 Constant field agarose gel electrophoresis and Southern blot 

Digested DNA was separated out on a 0.8% agarose gel made by dissolving 2g of agarose 

in 250ml of 1X TAE buffer. 3µl of bromophenol blue loading dye was added to each 

digested DNA sample and 20µl of this mixture was added to each lane. Two marker lanes 

containing a DIG labelled DNA molecular weight marker (23.1 kb – 2.0 kb, Roche) were 

also run on each gel. Each marker lane contained 10µl of a mixture containing the marker, 

dH2O and bromophenol blue loading dye in a 5:5:1 ratio. The gel was run at 150V for 

approximately 3.5 hours. 

 

The digested DNA was transferred to a positively charged nylon membrane 

(Amersham) by use of the Southern blot technique (Southern 1975) following a standard 

protocol (Current protocols in molecular biology). The gel was first immersed in 0.25M 

HCL for 5-10 minutes. Completion of this step was indicated by the colour of the 

bromophenol blue loading dye changing from blue to yellow. The gel was then twice 

washed in 1X denaturation buffer for 15 minutes. During this step, the bromophenol blue 

loading dye regained its original colour. Finally the gel was twice washed in 1X 

neutralisation buffer for 15 minutes. Between each wash stage, the gel was briefly rinsed in 

H2O. All of these pre-treatment steps were carried out at room temperature and with gentle 

agitation using a mechanical shaker (Stuart Scientific).  

 

The Southern transfer itself was set up as follows: the treated gel was placed on a 

‘wick’ of chromatography paper, both ends of which were immersed in a reservoir of 20X 

SSC. On top of the gel was placed the nylon membrane, which had been washed in 2X 

SSC. Two more layers of chromatography paper, also washed in 2X SSC, were placed on 

top of the membrane. Finally paper towels were placed on top to a depth of approximately 

10cm. The DNA was transferred from gel to membrane by capillary action, with the 20X 

SSC acting as a transfer buffer. Gels were flipped before Southern transfer to reduce the 

chance of irregularities in the upper surface of the gel causing an uneven transfer of DNA. 

Transfer was carried out overnight and the DNA was then UV cross-linked to the 

membrane using a trans-illuminator (Spectrolinker™ XL-1000, Spectronics Corporation). 

After being washed with 2X SSC, the membrane was then stored at 4°C ready for the 

probe hybridisation and chemiluminescent detection stage. 
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3.3 Hybridisation and chemiluminescent detection 

All hybridisation steps were carried out using a Techne Hybridiser HB-1D hybridisation 

oven (Techne) and standard hybridisation flasks on a rotary mount. Membranes were pre-

hybridised for 1 hour at 42°C in 15ml of DIG Easy Hyb (Roche). This solution was 

replaced with 10ml of DIG Easy Hyb containing 2.5µl of digoxigenin (DIG) labelled 

telomere probe (TTAGGG)7. Hybridisation was then carried out at 42°C for 3 hours. 

 

Following hybridisation, the membrane underwent various wash stages to prepare it 

for chemiluminescent detection. All wash stages were carried out at room temperature 

unless otherwise stated, and with gentle agitation of the membrane.   

 

Firstly the membrane was washed in stringency wash I for 2 x 5 minutes at room 

temperature and then in stringency wash II for 2 x 15 minutes at 50°C (using the same 

apparatus as in the hybridisation stage). Blots were then washed for 5 minutes in 1X wash 

buffer and then for 30 minutes in freshly prepared 1X blocking buffer. The membrane was 

then incubated with a DIG specific antibody (750 units/ml Anti-Digoxigenin, Fab 

fragments) covalently coupled with alkaline phosphatase (Anti-DIG-AP) (Roche). An 

Anti-DIG-AP working solution was prepared at a concentration of 75mU/ml (1:10,000) in 

1X blocking buffer. Before preparation of the working solution the Anti-DIG-AP was 

centrifuged for 5 minutes at 13,000 rpm to avoid background signal being generated by 

aggregated antibody. The blot was washed in the Anti-DIG-AP working solution for 30 

minutes.   

 

The membrane was then washed for 2 x 15 minutes in 1X wash buffer and finally 

for 5 minutes in 1X detection buffer. The detection itself was carried out using the 

chemiluminescent alkaline phosphate substrate CPSD (Roche). Excess detection buffer 

was removed from the blot by briefly placing it on a piece of chromatography paper, DNA 

side up. The blot was then placed on an acetate sheet and 3ml of substrate solution (CPSD 

diluted 1:100 with 1X detection buffer) was pipetted onto the DNA side of the damp 

membrane. Another acetate sheet was then placed over the blot, and any air bubbles were 

carefully removed. The blot was then incubated for 5 minutes at room temperature. Excess 

liquid was removed and the two acetate sheets sealed with tape. The sealed membrane was 

then incubated for 10 minutes at 37°C to increase the chemiluninescent signal. The 

membranes were then used to generate autoradiographs. The exposure times varied from 1 
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to 30 minutes according to what generated the optimum image quality for analysis. Figure 

2.3 shows a representative TRF gel and how the mean TRF length is calculated from it. 
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Figure 2.1: Representative electrophoresis gel of intact genomic DNA (in this case, DNA 

from giant petrels). DNA in lanes 4 – 16 consists of a single tight band, showing that the 

DNA is in good condition. Conversely, the DNA in lanes 1 – 3 has much more of a diffuse 

band, suggesting that the DNA has significantly degraded during extraction or storage. 

Such samples would be discarded and the DNA re-extracted. In some cases, the quality of 

the re-extracted DNA would be good enough to use; in other cases DNA continued to be 

degraded in every re-extraction attempted. In these cases, the blood sample itself was 

clearly degraded and the sample was omitted from the study. See individual chapters for 

details on how many such samples there were. 
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Figure 2.2: Representative electrophoresis gel of digested genomic DNA (in this case 

DNA from giant petrels). Fully digested DNA will produce a clean smear, as in lanes 1-5 

and 7-16. Conversely, in lane 6 DNA is banded towards the top of the smear, indicating 

that digestion was not successful. If digestion was unsuccessful, the sample was re-

digested; in none of the studies described in this thesis did a sample have to be 

permanently omitted because of an unsuccessful digestion (i.e. all such samples were 

successfully re-digested). 
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Figure 2.3: Example of a TRF gel and how mean TRF is calculated from it (gel contains 

lesser black-backed gull DNA). First and last lanes contain a Dig-labelled marker (23.1kb-

2.0kb), the rest of the lanes contain gull samples. The white boxes in lanes 7, 9 and 18 

demonstrate the ‘analysis window’ used to calculate mean TRF. The analysis window 

always began at the largest marker and continued until the intensity in the window was the 

same as the background intensity. The size of the analysis window thus varied for each 

lane. Carrying out the analysis in this way ensured that we took into account changes in the 

proportion of short telomere fragments between samples; this can have a significant effect 

on mean TRF (Haussmann & Mauck 2008a). The analysis window was split into several 

equal size boxes (as shown in lane 9) to give the intensity at different fragment sizes. Mean 

TRF length per lane was then calculated using the formula: mean TRF length = ∑(ODi) / 

∑(ODi / Li) where ODi is signal intensity and Li is DNA size (Kb) at position i.  The 

background intensity was calculated from an area at the bottom of each lane (white box 

marked ‘B’); this was subtracted from signal intensity before each calculation. 
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Chapter 3: Telomere dynamics in relation to early g rowth 

conditions in the wild in the lesser black-backed g ull Larus 

fuscus 

 

Abstract 

There has recently been much interest in the long-term effects of early growth conditions. 

Telomeres, the repetitive DNA sequences that cap eukaryotic chromosomes, are potentially 

an excellent tool for studying such effects. Telomeres shorten at each cell division and 

considerable evidence links the rate at which they do so with cellular and organismal 

senescence. Previous research has shown that telomere loss is greatest during early life, so 

conditions during this time will significantly affect telomere attrition and senescence rates. 

However, relatively little is known about the pattern of telomere loss under natural 

conditions. I examined telomere dynamics during growth under natural conditions in the 

lesser black-backed gull Larus fuscus. Although telomere length significantly decreased 

with age during the chick period, there was a considerable amount of inter-individual 

variation in telomere length. Much of this variation was related to circumstances during 

embryonic growth. Larger hatchlings had shorter telomere lengths, suggesting that 

embryonic growth rate could have affected telomere attrition. Independent of this trend, 

males had longer telomeres at hatching than females. The variation in hatching telomere 

length caused by embryonic growth conditions remained consistent during the initial post-

hatching period.  
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Introduction 

Conditions during growth and development have profound implications for an organism’s 

phenotypic development and subsequent life history (Bateson 2003; Gluckman & Hanson 

2006; Monaghan 2008). There has been much recent interest in the mechanisms that 

mediate such effects, and in particular how the pattern and pace of organismal growth is 

linked to the rate of degeneration later in life (Arendt 1997, 2003; Jennings et al. 2000; 

Metcalfe & Monaghan 2001, 2003; Barker et al. 2005; Barker 2006). Telomeres, the repeat 

nucleic acid sequences that cap eukaryotic chromosomes, are thought to play an important 

role in linking the patterns of growth and degeneration (Campisi et al. 2001; Chan & 

Blackburn 2004; Monaghan & Haussmann 2006). In somatic cells, telomeres shorten at 

each cell division, eventually reaching a critical length that triggers cell senescence 

(Campisi et al. 2001). Initial telomere length is partly determined by genetic factors 

(Nordfjäll et al. 2005) but environmental factors, particularly oxidative stress, also affect 

the rate of telomere loss, at least in vitro (von Zglinicki 2002; Richter & von Zglinicki 

2007).  

 

Previous studies on both mammalian and avian species have shown that most 

telomere loss occurs early in life (Frenck et al. 1998; Zeichner et al. 1999; Hall et al. 2004; 

Pauliny et al. 2006). This suggests that factors affecting individuals during early growth 

will significantly affect telomere loss and, potentially, the pattern of ageing (Monaghan & 

Haussmann 2006). In mammals, post natal growth has been linked to telomere attrition.  In 

male rats, accelerated post-natal growth, induced as a catch-up response to an episode of 

poor foetal nutrition, resulted in a shortening of both kidney telomeres and lifespan 

(Jennings et al. 1999). However, we know relatively little about the pattern of telomere 

loss during growth under natural conditions.  

 

Birds are a particularly interesting group to examine, as there is considerable inter-

individual variation in growth patterns in many wild populations (Starck & Ricklefs 1998). 

Variation in telomere length among same age chicks has been shown in several wild avian 

populations (Haussmann et al. 2003; Hall et al. 2004; Haussmann et al. 2005; Juola et al. 

2006; Pauliny et al. 2006), but the proximate cause and functional significance, if any, of 

this variation is unknown. In the European shag, Phalacrocorax aristotelis, chicks laying 

down higher tissue mass for their body size and chicks born late in the season both showed 
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a higher rate of red blood cell telomere attrition when measured as chicks and again as 

adults (Hall et al. 2004). This suggests that the growth conditions experienced by chicks 

could be responsible for some of the variation seen in telomere length. To date, no studies 

have examined the relationship between avian pre-hatching growth conditions and 

telomere length; given that a substantial amount of growth occurs before hatching it is 

possible that conditions during the pre-hatching phase may also be an important 

determinant of telomere loss.     

 

In this paper we examine the effect of early growth conditions on telomere 

dynamics under natural conditions in the lesser black-backed gull, Larus fuscus. The lesser 

black-backed gull is an interesting species for this type of study, as there is considerable 

inter-individual variation in early growth conditions in relation to position in the clutch 

(lesser black-back gulls lay three eggs which differ in size and contents and hatch 

asynchronously – Royle 2000; Royle et al. 2001), sex (males grow faster than females – 

Griffiths 1992; Nager et al. 1999; Nager et al. 2000b), parental and egg quality, laying date 

and local environmental conditions (Bolton 1991; Nager et al. 2000a; Blount et al. 2002; 

Verboven et al. 2003).  

 

Materials and methods 

Study site and sampling 

Field work was carried out at a breeding colony in Sandgerdi, Iceland (64°2' N, 22°41' W) 

during the 2005 breeding season. Nests for use in the study were selected at random 

throughout the breeding season (range of laying dates: 143 – 166 days in julian calendar, 

mean laying date 153.6 days). All nests came from the same area of the colony and 

contained three egg clutches. Nests were checked regularly and eggs were marked to 

determine both laying and hatching order. First, second and third laid eggs are referred to 

as A, B and C eggs respectively. The length and width of each egg was measured and egg 

volume was calculated according to the formula: egg volume (cm3) = 0.000476 x length 

(mm) x width2 (mm) (Bolton et al. 1992). Chicks were measured (body mass, wing length 

and head-bill length) within 24 hours of hatching and a small blood sample taken by 

superficial venipuncture of the brachial vein; chicks were marked and, where possible, re-

measured and a second blood sample taken at 10 days of age. Initially, 85 chicks from at 

least 57 different broods (1 complete brood of three chicks, 18 pairs of siblings, 39 chicks 
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with no siblings sampled and 7 chicks of unknown parentage) were sampled; 34 of these 

chicks were re-sampled (from at least 27 broods: 1 complete brood, 2 pairs of siblings, 24 

chicks with no siblings sampled and 3 chicks of unknown parentage). Chick sex was 

established using a PCR based method (Griffiths et al. 1998).  The blood was separated 

into plasma and red cells by centrifugation within 4 hours of collection, as it was felt this 

would better aid storage of the samples. The red cells had BLB buffer (1% SDS, 50mM 

Tris, 50mM EDTA) added to them in a 1:1 ratio within 4 hours of collection and were 

stored at room temperature until DNA extraction. 

 

Measurement of telomere restriction fragments (TRFs) 

DNA was extracted from red blood cells, which are nucleated in avian species. Samples 

were digested with proteinase K before DNA extraction by a standard phenol-chloroform-

ethanol-precipitation method. DNA was checked for degradation by 1% agarose gel 

electrophoresis. DNA was successfully extracted in this way from the 119 samples 

discussed in this chapter. However, non-degraded DNA could not be extracted from an 

additional 24 samples collected in the field; these samples were discarded from the study. 

Laying dates of these samples were spread across a wide range (144 – 157 days) and there 

was no other reason to believe that the omission of these blood samples would introduce a 

sampling bias to our study.  

 

Approximately 1µg of DNA from each sample was digested with the restriction 

enzymes HinfI and RsaI for 16h at 37°C. Digested DNA samples were separated on a non-

denaturating 0.8% agarose gel at 150V for 3hrs. Two marker lanes (23.1 – 2.0Kb) were run 

on each gel. DNA was transferred from the gel to a nitro-cellulose Hybond N+ membrane 

(Amersham, UK) by Southern blot. The membrane was hybridised with a digoxigenin 

(DIG) labelled telomere probe (TTAGGG)7 (Roche) for 3 hours at 42°C. A 

chemiluminescent detection system (Roche) followed by exposure to autoradiography film 

was used to visualize the TRFs. Having scanned the images, the intensity of TRF smears at 

different molecular sizes was calculated using TotalLab software (Photoretix). Mean TRF 

length was calculated using the formula: mean TRF length = ∑ (ODi) / ∑ (ODi / Li) where 

ODi is signal intensity and Li is DNA size (Kb) at position i. The background intensity was 

subtracted from signal intensity before each calculation. Mean TRF length is referred to as 

telomere length for the rest of this chapter. Analysis was carried out blind with respect to 
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age, sex and structural size. See chapter 2 for a more detailed description of the TRF 

protocol. 

 

Figure 3.1 shows a representative TRF gel. For the majority of samples, a clean 

DNA smear was observed indicating that, if interstitial banding was occurring, it did not 

hinder our analysis of mean TRF length. The black bands at the top of each lane in figure 

3.1 are due to the larger telomere fragments not being separated out during gel 

electrophoresis (sometimes termed the limit of mobility – Haussmann & Mauck 2008a). 

Ideally, we would have used pulse-field gel electrophoresis to separate these bands, but we 

were limited in our capacity to do so when these experiments were carried out. However 

we feel that, given the small size of the bands and the low mean TRF length of the gulls, 

the use of standard gel electrophoresis will have had a limited effect on mean TRF length. 

 

To control for inter-gel variability, we ran a control sample (a randomly chosen gull 

sample) on every gel. Due to lack of DNA, one such control sample was run on 6 of our 

gels (mean TRF length values for this sample ranged from 10.97 – 11.62kb, coefficient of 

variation (CV) = 2.01%) and a different control sample was run on the remaining 6 gels 

(mean TRF length values ranged from 7.74 – 8.48kb, CV = 3.13%). If our samples are 

separated according to which control sample they were run alongside, then there is no 

difference between the two groups in terms of hatching telomere length (t = 0.994, df = 83, 

P = 0.323) or day 10 telomere length (t = 0.460, df = 32, P = 0.648). Samples from the 

same individual taken at hatching and 10 days old were always run on the same gel, so 

inter-gel variability was not an issue for longitudinal samples. Siblings were not run on the 

same gel, but the use of the control samples should have ensured that this was not 

important.    

 

Statistical analysis 

Analysis of factors linked to hatching telomere length was done using generalised linear 

mixed models, in which nest identity was included as a random factor to take account of 

the non-independence of chicks from the same brood (Crawley 2002). Chicks of unknown 

parentage were excluded from the GLMM analysis to avoid the presence of unknown 

siblings confounding our results (there were 7 such chicks). In addition 10 chicks were 

excluded as their sex was unknown (as there was not enough DNA left after TRF analysis 

to carry out the PCR sexing technique). In order to examine the maternal and 
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environmental factors influencing hatching telomere length, a candidate set of models was 

created and the ‘best’ model selected using the AIC criterion (Burnham & Anderson 2002; 

Johnson & Olmland 2004). The following factors were potentially available for inclusion 

in our model set – sex, hatching head-bill length, egg volume, egg position and laying date. 

Duration of embryonic growth (i.e. time between the onset of incubation – which in first 

laid eggs does not occur until the second egg in the clutch is laid - and hatching) was not 

included as a potential explanatory variable, as there was little inter-individual variation in 

this (CV = 4.32%) and there was no indication that this was linked to telomere length (fig. 

3.2).  

 

Potentially, we could have created a candidate set of models containing all 

combinations of the other five variables; however, this would be theoretically unsound 

given that the number of models required (31) would be very high relative to our sample 

size (Burnham & Anderson 2002). There was no a priori way to reduce the number of 

variables included in our models as, based on past work, it was legitimate to expect any or 

all of the variables to be linked to telomere length. Equally, initial exploratory data analysis 

provided no obvious way to eliminate variables from our model set (with the exception of 

duration of embryonic growth). Given this, we felt the best way to create a candidate 

model set was to begin with a global model containing all five variables and to then 

backward drop variables, beginning with the least-significant. Table 3.1 shows the five 

models created using this method. Based on their Akaike weights, none of these models 

could be determined to be the ‘best’ model (as weight < 0.9), so model averaging (from all 

five models in table 3.1) was used to produce an estimate of effect size for each variable 

(Burnham & Anderson 2002; Johnson & Olmland 2004).   

 

Analysis of the factors influencing telomere loss at ten days old was done in the 

same way. Due to relatively high chick mortality in the study (only 14% of our chicks 

survived until 20 days old, which is considerably lower than previous years in this colony - 

pers. comm. G. Hallgrímsson), the sample size at ten days old was lower than at hatching 

(85 chicks at hatching, 34 at ten days old). There was no significant difference in hatching 

telomere length between chicks that survived till 10 days old and chicks that did not (t = 

1.629, df = 83, P = 0.107, mean difference = 0.54 ± 0.33 kb). The initial variables included 

in the global model were hatching telomere length, sex, hatching head-bill length, 

instantaneous increase in head-bill length and egg volume. Egg position was not included 
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as there was no difference between A, B and C eggs in terms of day 10 telomere length (F2, 

31 = 0.835, P = 0.443) or in the magnitude of telomere loss (absolute loss: F2, 20 = 0.311, P 

= 0.736; percentage loss: F2, 20 = 0.338, P = 0.717). Twelve of our 34 chicks were excluded 

from the subsequent GLMM analysis as we did not have data on hatching telomere length 

(11 chicks) or egg volume (1 chick) for them. Parental identity was not included as a 

random factor in this analysis, as only 2 pairs of siblings were present in our reduced 

sample (if parental identity was included in the global model as a random factor, estimates 

of the covariance parameters were not significant - P > 0.10). Table 3.2 shows the six 

candidate models created by backward dropping the least significant variable in each 

successive model. Based on their Akaike weights, none of the candidate models could be 

considered to be the ‘best’; as before an average estimate of effect size was calculated for 

each variable. 

 

We used head-bill length as a measure of body size in all analyses, as body mass is 

affected by the residual yolk mass and so is not a good measure of size in recently hatched 

chicks. Instantaneous growth ((ln(2nd measurement) – ln(1st measurement)) / time) was 

used, rather than absolute or proportional growth, as it provides a better way of capturing 

the exponential increase in growth that is occurring at this point in the chick period. Means 

are quoted ± 1 standard error of the mean. 

 

Results  

Hatching telomere length 

There was considerable variation in hatching telomere length (mean = 8.34 ± 0.17 kb, CV 

= 18.40%, n = 85). Hatching telomere length showed relatively low repeatability within 

broods (repeatability analysis – as in Lessells & Boag 1987: r = 0.383, F18, 20 = 2.346, P = 

0.034), suggesting that siblings were not more likely to have similar telomere lengths than 

non-siblings. Based on GLMM model averaging (see table 3.1), larger sized hatchlings (as 

indicated by their longer hatching head-bill length) tended to have shorter telomeres 

(average effect size = -0.18 ± 0.11, 95% CI: -0.40, 0.05). This average effect size is the 

equivalent of a 1.7 kb (20.38 % of mean telomere length) difference between the smallest 

and largest chicks in our sample. Independent of this effect (i.e. when controlling for 

hatchling size – see table 3.1), female chicks had shorter hatching telomere lengths than 

males (average difference = 0.77 ± 0.40 kb, 95% CI: 1.55, -0.02). Egg volume had no clear 
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effect on telomere length (average effect size = 0.025 ± 0.020, 95% CI: 0.064, -0.014). Egg 

position had no effect on hatching telomere length (average difference between A and C 

chicks = 0.10 ± 0.17 kb, average difference between B and C chicks = 0.03 ± 0.16 kb) and 

neither did laying date (average effect size = 0.001). None of these latter three variables 

were significant in a model with no other variables included (egg position: P = 0.376; 

laying date: P = 0.144; egg volume: P = 0.203).  

 

Change in telomere length 

At 10 days of age, there was still substantial variation in telomere length (mean = 7.12 ± 

0.21 kb, CV = 17.00%, n = 34). Within individuals, telomere length declined significantly 

between hatching and 10 days old (paired t test: t = 3.360, df = 22, P = 0.001, n = 23, mean 

loss = 0.95 ± 0.26 kb). It was not possible to determine if telomere loss was more similar 

within than between broods, as in only three of the broods included in this analysis did we 

have telomere loss data for more than one chick.  

 

In order to see whether telomere length at 10 days was predicted by the conditions 

experienced by chicks before this point, a GLM analysis was conducted with telomere 

length at 10 days as the dependent variable, and hatching telomere length, laying date, sex, 

hatching head-bill size, egg volume and instantaneous increase in head-bill length as 

independent variables. Chicks with longer telomeres at hatching had longer telomeres at 10 

days old (average effect size = 0.52 ± 0.22, 95% CI: 0.94, 0.09). As at hatching, males had 

longer telomeres than females at 10 days old (model with sex and no other variables: F1, 20 

= 6.518, P = 0.019). However, sex is not an important variable in our model set (table 3.2; 

difference between the sexes based on model averaging = 0.02 ± 0.20 kb). This suggests 

that rather than being an effect of sex, the higher telomere length of males at day 10 is a 

reflection of their larger hatching telomere length. There was also no difference in telomere 

loss between the sexes (absolute difference: t = 1.027, df = 22, P = 0.316, mean difference 

= 0.53 ± 0.52 kb; proportional difference: t = 0.882, df = 22, P = 0.388, mean difference = 

5.31 ± 6.02 %). Growth rate during the first 10 days after hatching (as indicated by the 

instantaneous increase in head-bill length) had no effect on telomere length at 10 days 

(average effect size = 42.16 ± 59.16). The same was true if body mass was used as a 

measure of growth instead of head-bill length. Hatching head-bill length (average effect 

size = 0.05 ± 0.11), egg volume (average effect size = 0.025 ± 0.032) and laying date 

(average effect size = 0.02 ± 0.04) all had no relationship with telomere length at 10 days. 
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None of these variables had a significant relationship with telomere length at 10 days in a 

model with no other variables included (head-bill growth rate: P = 0.626; hatching head-

bill length: P = 0.219; egg volume: P = 0.298; laying date: P = 0.599). 

 

Discussion 

Considerable variation was seen in both the telomere length of chicks of the same age and 

in the rate of telomere loss within individuals during the first ten days of life. Substantial 

variation between same age individuals has also been found in the other birds in which this 

has been studied (Haussmann et al. 2003; Hall et al. 2004; Haussmann et al. 2005; Juola et 

al. 2006; Pauliny et al. 2006). In lesser black-backed gulls studied here, this variation 

seems to be linked to pre-hatching growth conditions. Larger hatchlings (based on head-

bill length) had shorter telomere lengths. Previous work has shown a negative correlation 

between telomere loss and post-natal growth (Hall et al. 2004; Jennings et al. 1999); our 

study suggests that there might be a similar relationship between telomere loss and 

embryonic growth. This could perhaps be due to a higher rate of cell division and/or higher 

levels of oxidative stress. However, hatchling size provides only an indirect measure of 

embryonic growth; further, experimental, work will be necessary to determine if the rate of 

embryonic growth is directly responsible for this relationship. In addition, parental quality 

is likely to affect chick size. It is not known how adult telomere length correlates with 

adult quality, but, given that telomere length is likely to be at least partly heritable, parental 

quality may represent a confounding factor to our results. 

  

Independent of this trend, males had longer telomeres than females at hatching. 

This sex difference was maintained at 10 days old, with telomere length in males and 

females differing by the same degree as at hatching, although this was due to males having 

a longer hatching telomere length rather than any specific effect of sex (there was no 

significant interaction between sex and hatching telomere length). This is, to our 

knowledge, the first time a sex difference in telomere length has been shown in birds, 

although males have been shown to have shorter telomeres than females in humans 

(Benetos et al. 2001; Nawrot et al. 2004) and rats (Cherif et al. 2003). 

 

In previous longitudinal studies of telomere length (Zeichner et al. 1999; Hall et al. 

2004; Pauliny et al. 2006; Kotrschal et al. 2007), a significant decrease was seen within 
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individuals over time. These studies measured telomere loss over a period of months or 

years; our study demonstrates that, in young birds, a significant difference can be seen over 

a much smaller period of time, in this case just ten days. Indeed the average telomere loss 

(11.39% of mean hatching telomere length) seen in this ten day period is much larger than 

that seen over a period of years in other bird species; in dunlins (Calidris alpina) measured 

as chicks and again at three years of age, an average decrease of 3.24% of initial telomere 

length was found (although this was based on only four individuals; Pauliny et al. 2006). 

Such a large decrease in gull chick telomeres in such a short period of time supports the 

idea that most telomere loss occurs in young animals (Zeichner et al. 1999; Hall et al. 

2004; Baerlocher et al. 2007). 

 

 Inter-individual differences in telomere length were consistent over the first 10 

days of life; individuals with longer telomeres at hatching had longer telomeres at 10 days. 

However, there was no relationship between pre-hatching growth conditions (hatchling 

size, egg volume, laying date and egg position) and the change in telomere length that 

occurred during the 10 days after hatching. Similarly growth rate (in terms of increase in 

structural size) had no effect on the change in telomere length post-hatching. However, 

these findings could be a result of our low sample size of 10 day old individuals. 

 

Although many studies have shown that there is significant variation in telomere 

length between same-age individuals, very few have looked at the causes of this variation. 

There are considerable theoretical reasons to believe that growth conditions will be one of 

the biggest factors affecting telomere loss (Metcalfe & Monaghan 2003; Monaghan & 

Haussmann 2006). Previous studies have shown a link between post-natal growth and 

telomere loss (Hall et al. 2004; Jennings et al. 1999), but embryonic growth, which is 

usually the period of highest cell turnover, may be even more important in determining the 

rate of telomere loss. Our study is the first, to our knowledge, to suggest such a 

relationship between embryonic growth and telomere loss (although it should be stressed 

that other factors, such as parental quality, could be responsible for our results). We have 

also shown that the inter-individual differences in telomere length caused by embryonic 

growth conditions are consistent, at least in the short term. What is now needed is further 

work to ascertain if these inter-individual differences remain consistent into adulthood, and 

if so, what significance these differences have in terms of an individual’s life-history. 
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Figure 3.1: Representative gull TRF gel. Lanes 1 and 20 contain markers, lanes 2 - 18 

contain gull samples (lane 19 is blank). 
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Figure 3.2: Relationship between the duration of embryonic growth (i.e. time between the 

onset of incubation and hatching) and hatching telomere length (r2 = 0.041, n = 85).
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Table 3.1: Akaike’s second order information criteria (AICc) of the GLMM’s of hatching 

telomere length in relation to 5 other variables (n = 68). Parental identity was included as a 

random factor in all models. See methods for details of how the model set was constructed. 

The lower the AICc score of a model the ‘better’ it is; the ‘delta AICc’ column shows the 

difference in AIC between the best model and every other model. The Akaike weight gives 

a measure of how likely a given model is to be the best model in the set. AICc was used 

rather than AIC due to the relatively small sample size (Burnham & Anderson 2002). Any 

models containing interaction terms had considerably larger AICc values and so were not 

included in the candidate model set. Effect sizes (see results) were calculated based on 

model averaging of all the models shown in the table (Burnham & Anderson 2002; 

Johnson & Olmland 2004). 

 

 
 
 
 

Variables included in 
model AICc Delta AICc (∆i) 

Akaike weight 
(W i) 

Sex and head-bill length 259.91 0 0.30 

Sex 260.00 0.09 0.29 

Sex, head-bill length, egg 

volume and egg position 
260.19 0.28 0.26 

Sex, head-bill length and 

egg volume 
261.86 1.95 0.11 

Sex, head-bill length, egg 

volume, egg position and 

laying date 

264.10 4.19 0.04 
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Table 3.2: Akaike’s second order information criteria (AICc) of the GLMM’s of day 10 

telomere length in relation to 6 other variables (n = 22). See methods for details of how the 

model set was constructed. The lower the AICc score of a model the ‘better’ it is; the ‘delta 

AICc’ column shows the difference in AIC between the best model and every other model. 

The Akaike weight gives a measure of how likely it is that a given model is the best model 

in the set. AICc was used rather than AIC due to the relatively small sample size (Burnham 

& Anderson 2002). Any models containing interaction terms had considerably larger AICc 

values and so were not included in the candidate model set. 

 

 

Variables included in model AICc Delta AICc (∆i) 
Akaike 

weight (Wi) 

Hatching TRF, egg volume 

and instantaneous growth 
60.96 0 0.46 

Hatching TRF, egg volume, 

instantaneous growth and 

hatching head-bill length 

62.32 1.36 0.23 

Hatching TRF, egg volume, 

instantaneous growth, 

hatching head-bill length, 

laying date and sex 

62.64 1.68 0.20 

Hatching TRF, egg volume, 

instantaneous growth, 

hatching head-bill length and 

laying date 

64.47 3.51 0.08 

Hatching TRF 66.61 5.64 0.03 

Hatching TRF and egg 

volume 
70.82 9.86 0 
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Chapter 4: A longitudinal study of telomere loss in  chicks of the 

European shag Phalacrocorax aristotelis 

 

Abstract 

Telomere length varies considerably among same-age individuals. Given this, longitudinal 

studies represent the best way to follow the change in telomere length over time. However, 

very few such studies have been conducted, particularly on wild populations. We 

conducted a longitudinal study of telomere length in chicks from a wild population of 

European shags Phalacrocorax aristotelis. Individuals were sampled twice during the 

chick period, with an interval of 11 or 13 days between samplings. We also examined how 

body size and sex affected telomere length. Within individuals, telomere length did not 

decrease with age. There was also no trend for telomeres to shorten with age cross-

sectionally. Body size had no effect on telomere length, but males had longer telomeres 

than females. Previous longitudinal studies have demonstrated a decline in telomere length 

within individuals over a period of months or years. Our results show that such a decline 

cannot necessarily be detected over a much shorter time period. This suggests that the time 

between sampling is crucial to the success of longitudinal studies of telomere length. 
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Introduction 

Previous studies on telomere dynamics have shown that there is a considerable amount of 

inter-individual variation in telomere length among individuals of the same age (e.g. 

Frenck et al. 1998; Cherif et al. 2003; Haussmann et al. 2003; Hall et al. 2004; Unryn et 

al. 2005; Juola et al. 2006; Pauliny et al. 2006). This presents a problem with cross-

sectional studies of telomere length; it is difficult to examine the change in telomere length 

over time when there is so much variation among individuals of the same age. 

Longitudinal studies can avoid these problems by following the change in telomere length 

over time within an individual. However, very few longitudinal studies of telomere 

dynamics have been conducted and even fewer have examined wild populations (Hall et al. 

2004; Pauliny et al. 2006), rather than humans or laboratory animals (Zeichner et al. 1999; 

Brümmendorf et al. 2002; Kotrschal et al. 2007). 

 

 One of the few longitudinal studies conducted on a wild avian population was on 

the long-lived seabird the European shag Phalacrocorax aristotelis (Hall et al. 2004). 

Telomere length decreased in individuals sampled as chicks and again as adults. In this 

chapter we present additional longitudinal data from the same population of shags. We 

sampled individuals twice during the chick period, in order to determine whether a 

decrease in telomere length is evident over this much shorter time period. Cross-sectional 

data on telomere dynamics (including data from this population of shags) have suggested 

that most telomere loss occurs in young individuals (Frenck et al. 1998; Hall et al. 2004; 

Pauliny et al. 2006). However, the exact point this telomere loss occurs is not known; is it 

during the chick stage (and if so, when during the chick phase is telomere loss at its 

greatest?) or does the loss occur in newly fledged adults, before they return to breed? 

Determining this would be very difficult with cross-sectional data, but by looking at chicks 

longitudinally we might be able to determine the amount of telomere loss (if any) 

occurring during the chick stage. 

 

 In addition to a lack of longitudinal studies of telomere length, there are also very 

few studies that have attempted to explain why telomere length varies so much among 

individuals. Some of this variation seems to be genetically inherited (Nordfjäll et al. 2005; 

Njajou et al. 2007). However, in vitro studies on human cells have suggested 

environmental factors, such as oxidative stress, also affect telomere shortening rates (von 
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Zglinicki 2002; Richter & von Zglinicki 2007). Thus, one would expect that factors that 

affect oxidative stress levels, such as growth rates and stress levels, will also affect 

telomere length; there are studies which support this idea (Jennings et al. 1999; Epel et al. 

2004; Kotrschal et al. 2007). In shags, the rate of telomere loss within individuals 

correlates with initial telomere length, laying date and the relative amount of body mass 

laid down as a chick (Hall et al. 2004). It is thus interesting to see if the rate of telomere 

loss within chicks (if there is any) correlates with the same variables. It is also interesting 

to examine which variables, if any, correlate with telomere length cross-sectionally, across 

a substantial sample of similar age individuals. 

 

Materials and methods 

Study site and sampling 

Field work was carried out at a breeding colony on the Isle of May (Firth of Forth, 

Scotland 56°11’N, 02°33’W) during the 2003 breeding season. All blood samples and 

body size data were collected by Margaret E. Hall. Chicks were marked after hatching; as 

shag chicks are altrical we were still able to determine parental identity and number of 

siblings for each chick (brood size was 2 or 3 chicks). 31 chicks were sampled, from 19 

different broods (2 broods of 3 chicks, 8 pairs of siblings and 9 chicks with no siblings 

sampled). 26 of these chicks had two blood samples taken from them, the remaining 5 

were only sampled once. Samples were taken either 11 or 13 days apart. The exact age of 

the chicks was unknown but we were able to make an estimation of age from their wing 

length (using a regression equation based on known age chicks from 1997 and 1998: 

23.1703 - 14.4043 x (ln (-ln (wing length -13.9063) + ln (263.9751))). We were able to test 

the accuracy of these estimates for each chick sampled twice by comparing the interval 

between the two estimated ages and the actual interval between blood samplings. The 

predicted measurement interval was correct for 9 chicks (35%), incorrect by 1 day for 11 

chicks (42%) and incorrect by 2 days for 6 chicks (23%). Estimated ages of the chicks 

ranged from 12 – 26 days old when the first sample was taken and 23 – 39 days old when 

the second sample was taken. Blood from the 5 chicks sampled once was taken during the 

second time period. At the same time as the second blood sample was taken, measurements 

were also made of body mass, wing length, head-bill length and tarsus length. Wing length 

was also measured at the time of the first blood sample. Blood was stored in 90% ethanol 
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at -20°C until DNA extraction. Chick sex was established using a PCR based method 

(Griffiths et al. 1998). 

 

Measurement of telomere restriction fragment (TRFs) 

DNA was extracted from red blood cells, which are nucleated in avian species. Samples 

were digested with proteinase K before DNA extraction by a standard phenol-chloroform-

ethanol-precipitation method. DNA was checked for degradation by 1% agarose gel 

electrophoresis. DNA was successfully extracted in this way from the 57 samples 

discussed in this chapter. However, non-degraded DNA could not be extracted from an 

additional 3 samples collected in the field (all of these were the first blood sample taken 

from chicks whose second blood sample is included in this study). These samples were 

discarded from the study. There was no reason to believe that the omission of these blood 

samples would introduce a sampling bias to our study. 

 

Approximately 1µg of DNA from each sample was digested with the restriction 

enzymes HinfI and RsaI for 16h at 37°C. Digested DNA samples were separated on a non-

denaturating 0.8% agarose gel at 150V for 3hrs. Two marker lanes (23.1 – 2.0Kb) were run 

on each gel. DNA was transferred from the gel to a nitro-cellulose Hybond N+ membrane 

(Amersham, UK) by Southern blot. The membrane was hybridised with a digoxigenin 

(DIG) labelled telomere probe (TTAGGG)7 (Roche) for 3 hours at 42°C. A 

chemiluminescent detection system (Roche) followed by exposure to autoradiography film 

was used to visualize the TRFs. Having scanned the images, the intensity of TRF smears at 

different molecular sizes was calculated using TotalLab software (Photoretix). Mean TRF 

length was calculated using the formula: mean TRF length = ∑ (ODi) / ∑(ODi / Li) where 

ODi is signal intensity and Li is DNA size (Kb) at position i. The background intensity was 

subtracted from signal intensity before each calculation. Mean TRF length is referred to as 

telomere length for the rest of this chapter. Analysis was carried out blind with respect to 

age, sex and structural size. See chapter 2 for a more detailed description of how TRF 

measurements were carried out. 

 

Figure 4.1 shows a representative TRF gel. A clean DNA smear was observed in 

the majority of samples (>95%), suggesting that, if present, interstitial bands did not 

significantly affect our analysis. To control for inter-gel variation, 46 of the 57 samples 

were run twice on different gels (we did not have enough DNA to take two measurements 
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from the remaining samples). The average of the two calculated telomere lengths was used 

in our analysis. There was a very high repeatability between the two values calculated for 

each sample (mean difference between repeats = 0.378 ± 0.041 kb – equivalent to 3.3% of 

the overall mean TRF of 11.34 kb; repeatability analysis: r = 0.849, F46, 45 = 12.206, P < 

0.001; paired t test between repeats: t = 0.263, df = 45, P = 0.794). Samples from the same 

individual taken at different time periods were run together on the same gels (i.e. the two 

samples were run alongside each other on two different gels). This will further decrease the 

effects of inter-gel variability on our longitudinal analysis. Siblings were not run on the 

same gels. It is possible this might affect our analysis of the similarity of telomere lengths 

among siblings (see results); however the high repeatability of samples run on different 

gels makes this unlikely.   

 

Statistical analysis 

We produced a measurement of body size using the first factor of a principal component 

analysis (PCA) containing wing length, body mass and head-bill length. We excluded 

tarsus length from the PCA as it had a low variability compared to the other measurements 

(coefficient of variations (CV): tarsus length = 2.7%, body mass = 13.9%, wing length = 

13%, head-bill length = 5.5%) and so would be less useful in determining how body size 

varies between individuals. Analysis of factors linked to telomere length at the second 

sampling was done using generalised linear mixed models, in which nest identity was 

included as a random factor to take account of the non-independence of chicks from the 

same brood (Crawley 2002). We analysed the second telomere sample in this way, rather 

than the first telomere sample, as we had both a larger sample size and more variables at 

this time point. Sex, age, body size score (from PCA) and all possible interactions were 

included in the models. Initially sex, age and body size were included in the model. Non-

significant terms, beginning with the least significant, were then sequentially removed 

from the model. All means are quoted ± 1 standard error. 

 

Results 

Change in telomere length 

There was no difference in proportional telomere loss between chicks with a brood size of 

2 or 3 (t = 0.805, df = 14, P = 0.434, n = 16) or between chicks sampled 11 or 13 days 

apart (t = 0.476, df = 14, P = 0.641, n = 16) – to avoid pseudo-replication one chick from 
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each brood was chosen at random for use in these analyses, hence the reduced sample size.  

We therefore did not separate chicks according to brood size or time between sampling in 

our analysis of telomere loss. There was no significant decrease in telomere length between 

the two time periods our chicks were sampled (paired t test: t = 0.352, df = 25, P = 0.728, n 

= 26; correlation between first and second TRFs: r2 = 0.917; mean change in telomere 

length = 0.025 ± 0.073 kb).  

 

Factors affecting telomere length 

Mean TRF at the second sampling was 11.35 ± 0.13 kb, CV = 6.41%. Siblings do not have 

more similar telomere lengths than non-siblings (within brood repeatability analysis: r = 

0.018, F9, 12 = 1.039, P = 0.464). There was no difference in telomere length between 

chicks with a brood size of 2 or 3 (t = 0.859, df = 29, P = 0.560), so we did not include 

brood size in our analysis. 

 

 In a stepwise regression analysis of GLMM models containing sex, body size and 

age (tables 4.1a, b and c), sex has a significant effect on telomere length (males have 

longer telomeres than females: average difference = 0.72 ± 0.23 kb; fig. 4.2) but body size 

and age do not. If the increase in wing length between the first and second sample (the only 

measurement of structural size for which we have two measurements) was included in the 

model (containing age and sex) instead of body size it was also not significant (absolute 

increase per day: F1, 22 = 0.228, P = 0.638; proportional increase per day: F1, 22 = 1.045, P = 

0.318). Body size was not significant if included in a model on its own (P = 0.122) and 

neither was age (P = 0.324). To increase the age range over which we were examining 

telomere length, we included both values of telomere length we had for each individual 

(increasing the age range from 16 to 27 days). We then a) included all telomere length 

values in a GLMM with chick ID as a random factor (in addition to nest identity) and b) 

randomly included one of the two telomere length values we had from each individual, 

such that half of our values came from the 1st sampling period and half from the 2nd period. 

There was still no relationship between age and telomere length in either analysis (a – F1, 53 

= 0.851, P = 0.360; b – F1, 24 = 0.001, P = 0.974; fig.4.3 – in both cases random factor(s) P 

<0.001).  
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Discussion 

We found no detectable change in telomere length within individuals sampled at two 

different times during the chick period. There was also no relationship between age and 

telomere length in a cross-sectional multivariate analysis, further suggesting that there is 

no obvious change in telomere length during the short period of time we studied the chicks. 

This contrasts with the data presented by Hall et al. (2004). Over a much longer time 

period, they found that telomere length did decrease with age and, furthermore, that most 

of this telomere loss seemed to occur during the chick period. Thus, rather than suggesting 

that no telomere loss is occurring at all in shag chicks, our results suggest that no change is 

occurring during the short period of time we followed them over. Note that this does not 

necessarily mean that no telomere loss occurred during this time period; it could be that 

there was just not enough to detect with the methods we were using. A method that tracks 

changes in the length of individual telomeres (such as Q-FISH) might show telomere loss 

which methods examining telomere loss in a population of cells (such as the TRF method) 

cannot. 

 

 In chapter 3, we carried out a longitudinal analysis of telomere length in chicks of 

the lesser-black backed gull (Larus fuscus) over a similar time period to the shags in this 

chapter (10 days in the gulls, 11-13 days in the shags). Interestingly, in the gulls we did 

detect a significant amount of telomere loss over this short time period. What is the cause 

of this apparent difference in the rate of telomere loss between shag and gull chicks? Shags 

have a longer chick period than gulls (7 weeks compared to 5) so one would expect growth 

rates to be generally slower. The gulls were also sampled at an earlier stage in their 

development than the shags when we would expect a higher rate of growth (gulls sampled 

during first third of their developmental period, shags around the second third of theirs). 

Comparison of the increase in wing length supports the idea that the gull chicks were 

growing faster than the shag chicks during the time between samplings (average 

proportional increase in wing length per day: gulls = 19.4%, shags = 9.3%). However, this 

argument assumes a connection between growth rate and telomere loss. We could find no 

such connection in either our gull or shag chicks, but Hall et al. (2004) did find a weak 

relationship between the relative amount of tissue mass laid down by shag chicks and the 

length of their telomeres as adults. It is possible that there are other reasons behind the 

difference in the rate of telomere shortening between the two species. 
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 In our cross-sectional analysis, male shags had shorter telomeres than females. It is 

notable that no such sex difference was seen in the study carried out by Hall et al. (2004). 

They looked at a considerably larger age range of individuals than we did, but conversely 

had fewer individuals of the same age. Thus, it is possible that a sex difference can only be 

seen if a substantial sample size of (approximately) same age individuals is studied. 

Alternatively, it could be that the difference in the sexes is temporary and is seen only in 

chicks, not in adults. Whether this sex difference is ‘inbuilt’ or is due to a difference in 

conditions experienced by males and females is unknown. The direction of the sex 

difference might seem surprising given that male shag chicks grow at a faster rate than 

females (Daunt et al. 2001). However, this finding is consistent with the results from our 

study on lesser black-backed gull chicks, where males also had longer telomeres than 

females. Conversely, in the few other species where a sex difference in telomere length has 

been shown, such as humans (Benetos et al. 2001; Nawrot et al. 2004) and rats (Cherif et 

al. 2003), females have longer telomeres than males. This suggests the possibility that sex 

differences in telomere dynamics differ between birds and mammals. 

 

 There was no direct effect of body size on telomere length (although males are 

larger than females and have longer telomeres). This is perhaps surprising given that Hall 

et al. (2004) found a weak connection between telomere length and growth rate (in terms 

of relative tissue mass laid down). However, this was a longitudinal study carried out over 

a long time period (individuals sampled as chicks and then as adults). It is thus possible 

that such an effect cannot be seen in a cross-sectional study carried out over a much shorter 

time period. 

 

Given the considerable amount of inter-individual variation in telomere length seen 

in most species studied, longitudinal analysis is clearly the best way to examine the factors 

affecting telomere loss. Previous longitudinal studies of telomere length (Zeichner et al. 

1999; Hall et al. 2004; Pauliny et al. 2006; Kotrschal et al. 2007) have measured the 

decline in telomere length over a period of months or years. Our study on lesser black-back 

gulls showed that a significant difference in telomere length can be seen over a much 

shorter period, in that case just 10 days. However, our results here show that this might not 

always be the case, as we could detect no telomere loss over a similar time period, even 

though it is likely that such a loss is occurring. Clearly the time between samplings is a 

crucial part of any longitudinal study. Too much time between samples and it is difficult to 
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ascertain exactly when any telomere loss took place. Too little time and one risks the 

amount of telomere loss being too small to measure.  
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Table 4.1: General linear mixed models with telomere length as the dependent variable 

and age, body size and sex as explanatory variables. Nest identity was included in the 

models as a random effect (P < 0.001 in all models). The least significant variable was 

removed from each model, until only one variable was remaining. 

 

 

Variable Numerator df Denominator df F P 

Age 1 27 0.842 0.367 

Body Size 1 27 1.063 0.312 

Sex 1 27 4.547 0.042 

 
Dependent Variable: mean TRF length at 2nd sample (n = 31) 

 
 
 

Variable Numerator df Denominator df F P 

Body Size 1 28 0.266 0.610 

Sex 1 28 6.320 0.018 

 
Dependent Variable: mean TRF length at 2nd sample (n = 31) 

 
 
 

Variable Numerator df Denominator df F P 

Sex 1 29 9.412 0.005 

 

Dependent Variable: mean TRF length at 2nd sample (n = 31) 
 

 

 

 

a) 

b) 

c) 
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Figure 4.1: Example of a shag TRF gel. Lanes 1 and 20 contain markers, lanes 2 - 18 

contain shag samples (lane 19 is blank). 
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Figure 4.2: Histogram of telomere length (at second sampling) separated by sex. Males 

(top panel) have longer telomeres than females (bottom panel). 

 

n = 18 

n = 13 

 



Chapter 4: Telomere loss in the European shag 

 73 

Age (days)
40353025201510

Te
lo

m
er

e 
le

ng
th

 (k
b)

14.00

13.00

12.00

11.00

10.00

9.00

2
1

Timeper

Figure 4.3: Telomere length in relation to age (n = 31). The data set shown was created by 

randomly including one of the two telomere length values we had from each individual, 

such that half of our values came from the 1st sampling period (open circles) and half from 

the 2nd period (closed circles). In a GLMM analysis, age had no relationship with telomere 

length. 
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Chapter 5: Telomere dynamics in relation to age and  survival in 

the southern giant petrel Macronectes giganteus and the northern 

giant petrel Macronectes halli 

 

Abstract 

There are very few studies that examine telomere dynamics across the lifespan of a long-

lived species. The few studies that have been carried out have shown that telomere length 

decreases with age, although not at a constant rate. In this study we examine the telomere 

dynamics of two species of long-lived seabird, the northern and southern giant petrels 

(Macronectes spp.). The petrel population we used has been studied for many decades by 

the British Antarctic Survey (BAS) and so the age of even very old individuals was known. 

In addition, BAS provided data on the survival of our study individuals in the 8 years after 

they were initially sampled. This allowed us to determine if there was a relationship 

between telomere length and survival, as has recently been found in other species. In both 

giant petrel species, telomeres were shorter in adults than chicks, but there was no trend for 

adult telomere length to decrease with age. Males had shorter telomeres than females in 

both species. In southern giant petrels, there was a significant relationship (independent of 

age and sex) between an individuals telomere length and whether it was still alive 8 years 

after it was initially sampled. This relationship was not present in northern giant petrels, 

possibly due to a smaller sample size. Our results thus support both the idea that most 

telomere loss occurs in young individuals and that telomere length may be an indicator of 

life expectancy. 
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Introduction 

Very few studies have examined the change in telomere length across the lifespan of long-

lived species. This is primarily because there are very few wild populations where the age 

of very old individuals is known. However, there are avian populations that have been 

studied for sufficient time that their age structure is well characterised. The few (cross-

sectional) studies that have examined the telomere dynamics of such populations have 

found a general trend for telomeres to shorten with age (Haussmann et al. 2003; Hall et al. 

2004; Juola et al. 2006). There is some variation within this trend. In the wandering 

albatross Diomedea exulans and European shag Phalacrocorax aristotelis, there is no trend 

for telomeres to shorten with age among adult individuals (Hall et al. 2004). This is not the 

case in adélie penguins Pygoscelis adeliae, common terns Sterna hirundo, tree swallows 

Tachycineta bicolor (Haussmann et al. 2003) or frigate birds Fregata minor (Juola et al. 

2006). More exceptionally, in Leach’s storm petrel Oceanodroma leucorhoai telomere 

length apparently increases with age (Haussmann et al. 2003), although this may be a 

consequence of differential survival in relation to telomere length (Haussmann & Mauck 

2008b). It is also interesting to note that none of these studies have found a difference in 

telomere dynamics between the sexes; sex differences have been found in several mammal 

species (Benetos et al. 2001; Cherif et al. 2003; Nawrot et al. 2004). 

 

 Although age clearly explains some of the variation in telomere length among 

individuals, it does not explain all of it; in all of the species mentioned above, considerable 

variation in telomere length is seen among same-age individuals. Recent evidence has 

suggested that, rather than just being a function of age, telomere length is a measure of 

individual state. For example, in sand martins (Riparia riparia), individuals with longer 

telomeres have greater life-time reproductive success (Pauliny et al. 2006). Telomere 

length also seems to be a predictor of survival, even in young individuals who would not 

be undergoing senescence. Tree swallows with longer telomeres at one year old are more 

likely to survive until the next breeding season (Haussmann et al. 2005). It is not known if 

telomere length directly affects survival or if it correlates with other measures of individual 

state. Clearly though, the idea of telomere length as an indicator of individual state is an 

interesting one and deserving of study in other species. 
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 In this chapter, we look at the relationship between telomere length, age and 

survival in two species of long-lived sea bird, the northern giant petrel Macronectes halli 

and the southern giant petrel Macronectes giganteus. The giant petrel population we have 

data from has been studied since the 1960’s, so we have data from a wide range of known-

age individuals. Information on the telomere dynamics of two more long-lived species is 

valuable in itself, given the rarity of such data. It is interesting to see how telomere length 

varies with age in this population and how telomere dynamics vary between the sexes, if at 

all. We were also provided with information on the survival of individuals for 8 years after 

sampling, allowing us to investigate the relationship between telomere length and survival 

in this population. This data set also provides an opportunity to examine what differences, 

if any, exist in the telomere dynamics of two very closely related species. Northern and 

southern giant petrels share very similar lifestyles and are phylogenetically very close. 

Indeed they were thought to be one species until very recently (Bourne & Warham 1966). 

If telomere length is primarily affected by genetics and/or lifestyle we would predict that 

northern and southern giant petrels would have very similar telomere dynamics. 

 

Materials and methods 

Study site and sampling 

All individuals were sampled in 2000 at a breeding colony on Bird Island, South Georgia 

(54°00’ N, 38°03’ S). All blood samples and other field data were collected by Francis 

Daunt. Long term data on these birds was provided by Richard Phillips (BAS). Thirty-

seven adult northern giant petrels and 47 adult southern giant petrels were sampled. Apart 

from one northern giant petrel, the age of these individuals was known as the result of a 

long term banding programme. Ages of these individuals ranged from 12 – 29 years in the 

northern giant petrels and 12 – 40 years old in the southern giant petrels. Age ranges were 

the same for both sexes. We also sampled 10 northern giant petrel chicks and 16 southern 

giant petrel chicks. Giant petrel’s lay one egg each breeding season, so all chicks came 

from different nests. Blood was taken by superficial venipuncture of the brachial vein and 

stored in 90% ethanol at -20°C until DNA extraction. Sex of adult individuals was 

determined in the field based on body size (a method which has > 90% accuracy – Copello 

et al. 2006), while chick sex was determined using a PCR based method (Griffiths et al. 

1998).  
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 Survival data for adult individuals was collected in the 8 breeding seasons after 

initial sampling, based on the assumption that if an individual was not seen at the breeding 

ground it had not survived the winter. Giant petrels have a very high level of breeding site 

fidelity (Hunter 1984), so this seems to be a reasonable assumption; 51 of the 83 adults 

sampled (61.4%) died during this 8 year period (survival after 8 years: northern males: 10 

dead, 11 alive; northern females: 6 dead, 9 alive; southern males: 18 dead, 9 alive; southern 

females: 17 dead, 3 alive). We did not possess any post-fledging data on the chicks 

sampled, so we were unable to include these individuals in the survival analysis. 

 

Measurement of telomere restriction fragments (TRFs) 

DNA was extracted from red blood cells, which are nucleated in avian species. Samples 

were digested with proteinase K before DNA extraction by a standard phenol-chloroform-

ethanol-precipitation method. DNA was checked for degradation by 1% agarose gel 

electrophoresis. DNA was successfully extracted from all of the blood samples collected in 

the field. 

 

Approximately 1µg of DNA from each sample was digested with the restriction 

enzymes Hinf I and Rsa I for 16h at 37°C. Digested DNA samples were separated on a 

non-denaturating 0.8% agarose gel at 150V for 3hrs. Two marker lanes (23.1 – 2.0Kb) 

were run on each gel. DNA was transferred from the gel to a nitro-cellulose Hybond N+ 

membrane (Amersham, UK) by Southern blot. The membrane was hybridised with a 

digoxigenin (DIG) labelled telomere probe (TTAGGG)7 (Roche) for 3 hours at 42°C. A 

chemiluminescent detection system (Roche) followed by exposure to autoradiography film 

was used to visualize the TRFs. See chapter 2 for a more detailed description of the TRF 

protocol. Figure 5.1 shows a representative TRF gel. A clean DNA smear was observed in 

the majority of samples, suggesting that interstitial banding was not a significant problem. 

 

Throughout this thesis telomere length has been estimated from TRF gels by 

calculating the mean TRF length. This is the ‘standard’ way of analysing TRF gels, but 

recently it has been suggested that other methods may be superior (Haussmann & Mauck 

2008a). In particular, it has been suggested that the most important thing to consider when 

analysing TRF gels are the shortest telomere fragments in the smear. Although the mean 

TRF method does take into account the shortest telomeres (see chapter 2), we decided in 

this chapter to try another method of analysis in addition to the mean TRF, concentrating 
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just on the proportion of short telomeres in each TRF smear. For both methods, having 

scanned the images, the intensity of TRF smears at different molecular sizes was calculated 

using TotalLab software (Photoretix). The mean TRF length was calculated using the 

formula: mean TRF length = ∑ (ODi) / ∑(ODi / Li) where ODi is signal intensity and Li is 

DNA size (Kb) at position i. The background intensity was subtracted from signal intensity 

before each calculation. For the sake of clarity, the mean TRF length will be referred to as 

‘telomere length’ for the rest of this chapter. We examined how the proportion of short 

telomere fragments varied between individuals by defining fragments between 5.0 - 2.3 kb 

in size to be ‘short’. Inevitably, any attempt to separate ‘short’ telomeres from ‘long’ or 

‘medium’ size telomeres will involve an arbitrary division; however, from examination of 

our gels we felt that making this division at 5 kb meant that only the shortest telomeres in 

the smear were being included in the analysis, while still ensuring that there was 

substantial variation between individuals (i.e. there were not many individuals with 0% 

‘short’ telomeres). We calculated the signal intensity of these short fragments as a 

proportion of the total signal intensity between 23.1 – 2.3 kb. The background intensity 

was subtracted from signal intensity before each calculation. The lower size limit was set 

to 2.3 kb as no sample produced a smear containing telomere fragments shorter than this. 

The upper size limit was set at 23.1 kb because a constant field electrophoresis gel cannot 

resolve fragments larger than this. For the rest of this chapter, the proportion of telomere 

fragments between 5.0 – 2.3 kb in size will be referred to as ‘the proportion of short 

telomeres’. All analysis was carried out blind with respect to species, age and sex. 

 

To control for inter-gel variability, 90 of the 110 samples were run on two different 

gels. The average of these two values was used in our analysis. Measurements of the mean 

TRF length were highly repeatable (mean difference = 0.35 ± 0.03 kb, equivalent of 3.91% 

of the overall mean TRF of 8.70 kb; repeatability analysis: r = 0.921, F89, 90 = 24.297, P < 

0.001). Measurements of the proportion of short telomeres were less repeatable (suggesting 

that this method of analysing TRF gels might be less reliable than the mean TRF method), 

but still consistent (mean difference = 3.82 ± 0.36 %, equivalent to 29.6% of the overall 

mean of 12.89%; repeatability analysis: r = 0.739, F89, 90 = 6.674, P < 0.001). 

 

Statistical analysis 

The relationship of telomere length with age and sex was examined using general linear 

models (GLM) containing age as a covariate, sex as a fixed factor and either mean TRF 
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length or the proportion of short telomeres as the dependent variable. The exact age of 

chicks was not known so they were all classified as being 0 years old. For this reason, 

when chicks were analysed separately from adults age was not included in the GLM. The 

relationship between telomere length and survival was examined using a GLM containing 

age, sex and survival (i.e. if an individual was alive or dead in the 2008 breeding season), 

with mean TRF length or the proportion of short telomeres as the dependent variable. Data 

on the proportion of short telomeres was not arc-sin transformed as it was already normally 

distributed (as no individual had a proportion of short telomeres below 2%). All means are 

quoted ± 1 standard error. 

 

Results 

Northern giant petrels 

Northern giant petrels showed considerable inter-individual variation in telomere length 

(mean TRF = 8.78 ± 0.14 kb, coefficient of variation (CV) = 10.7%, n = 47). In a GLM 

model, age had a significant negative relationship with telomere length (F1, 43 = 42.313, P < 

0.001, slope = -0.073 ± 0.011, n = 46; fig. 5.2a). Sex had a marginally significant effect on 

telomere length (F1, 43 = 3.842, P = 0.056, n = 46), with males tending to have shorter 

telomeres than females (mean difference = 0.413 ± 0.211 kb, 95% CI: 0.838, -0.012).  

 

When only adult individuals were included in the GLM, age no longer had any 

effect on telomere length (F1, 33 = 0.684, P = 0.414, slope = -0.014 ± 0.018, n = 36). In 

contrast, sex did have a significant effect on telomere length when only adults were 

included in the analysis, with males having shorter telomeres than females (F1, 33 = 9.375, P 

= 0.004, n = 36, mean difference = 0.604 ± 0.197 kb; fig.5.3a). Telomere length still did 

not have a significant relationship with age if the sexes were considered separately (males 

only: F1, 19 = 0.103, P = 0.752, n = 21; females only: F1, 13 = 0.668, P = 0.428, n = 15). It 

was not possible to examine sex differences in the chicks, as our sample contained only 2 

female northern giant petrel chicks. 

 

Results were very similar when the difference in the proportion of short telomeres 

was examined (mean proportion of short telomeres = 12.12 ± 0.85 %, CV = 47.86%, n = 

47). Older individuals had more short telomeres than young individuals (F1, 43 = 28.602, P 

< 0.001, slope = 0.406 ± 0.076, n = 46; fig. 5.2b), although conversely there was no 
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significant difference between the sexes (F1, 43 = 2.567, P = 0.116, n = 46). If only adults 

were included in the analysis, age was not related to the proportion of short telomeres (F1, 

33 = 0.312, P = 0.580, slope = 0.078 ± 0.139). This was still the case if males and females 

were analysed separately (males only: F1, 19 = 0.168, P = 0.686; females only: F1, 13 = 

2.030, P = 0.178). Males were found to have a significantly larger proportion of short 

telomeres than females (F1, 33 = 4.869, P = 0.034; mean difference = 3.46 ± 1.57 %). 

 

In a GLM containing age, sex and survival (i.e. was an individual still alive in 

2008), telomere length varied significantly between the sexes, but age and survival did not 

(table 5.1a). This was still true if age (as it was not significant) was removed from the 

model (table 5.1b) or if survival was included in a model on its own (t = 0.232, df = 34, P = 

0.803). If the sexes were separated, survival was still not a significant factor, with or 

without age included in the model (P > 0.20 in all cases). If the proportion of short 

telomeres was used as the dependent variable, the results were the same (table 5.2a, b; 

survival in a model on its own: t = 0.168, df = 34, P = 0.867). Table 5.3 shows the average 

mean TRF length and the average proportion of short telomeres for individuals that were 

alive or dead in 2008, separated by sex. If the sexes were separated, survival was still not a 

significant factor, with or without age included in the model (P > 0.15 in all cases). 

 

Southern giant petrels 

Similar to the northern giant petrels, southern giant petrels showed a substantial amount of 

inter-individual variation in telomere length (mean TRF = 8.65 ± 0.15 kb, CV = 13.54%, n 

= 63). Older individuals had shorter telomere lengths than younger individuals (F1, 60 = 

54.550, P < 0.001, slope = -0.062 ± 0.008, n = 63; fig. 5.4a). Sex had no significant effect 

on telomere length (F1, 60 = 3.119, P = 0.082, n = 63), but there was a trend for males to 

have shorter telomeres than females (mean difference = 0.378 ± 0.214 kb, 95% CI: 0.805, -

0.050).   

  

 If only adult individuals were included in a GLM containing age and sex, age had 

no effect on telomere length (males and females: F1, 44 = 2.029, P = 0.161, slope = 0.017 ± 

0.012, n = 47; males only: F1, 25 = 0.629, P = 0.435, n = 27; females only: F1, 18 = 1.655, P 

= 0.215, n = 20). No significant difference between the sexes was seen in this model (F1, 44 

= 2.430, P = 0.126, n = 47); however if sex was included in a GLM on its own there was a 

significant difference between males and females (F1, 45 = 4.971, P = 0.031, mean 
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difference = 0.428 ± 0.192 kb; fig. 5.3b). In southern giant petrel chicks, males had 

significantly shorter telomeres than females (t = 2.649, df = 14, P = 0.019, mean difference 

= 1.01 ± 0.380 kb, n = 16). 

 

 There was considerable inter-individual variation in the proportion of short 

telomeres in southern giant petrels (mean proportion of short telomeres = 13.47 ± 0.80 %, 

CV = 46.97%, n = 63). Older individuals had significantly more short telomeres than 

young individuals (F1, 60 = 37.442, P < 0.001, slope = 0.298 ± 0.049; fig. 5.4b), although 

this was not true if only adults were examined (males and females: F1, 44 = 0.140, P = 

0.710, slope = 0.031 ± 0.082; males only: F1, 25 = 0.003, P = 0.957; females only: F1, 18 = 

0.257, P = 0.618). Males had a higher proportion of short telomeres than females, both 

when adults and chicks were examined together and when adults and chicks were 

examined separately (chicks and adults: F1, 60 = 4.486, P = 0.038, mean difference = 2.63 ± 

1.24 %; adults: F1, 44 = 6.774, P = 0.013, mean difference = 3.60 ± 1.38 %; chicks: t = 

1.381, df = 14, P = 0.189, mean difference = 1.75 ± 1.27 %).  

 

 In a GLM containing age, sex and survival (i.e. was an individual still alive in 

2008), sex had a significant effect on telomere length, while survival was very close to 

significant (table 5.4a). As age was not significant we removed it from the model; both sex 

and survival then had a significant relationship with telomere length (table 5.4b); 

individuals that survived had longer telomeres than those that did not (average difference = 

0.47 ± 0.21 kb). There was no significant interaction between sex and survival (table 5.4c). 

If the proportion of short telomeres is used as the dependent variable in the GLMs then the 

results are similar; sex and survival have a significant relationship with the proportion of 

short telomeres, while age does not (table 5.5). Individuals that survived until 2008 had 

more short telomeres than individuals that did not survive (average difference = 3.36 ± 

1.48 %). There was no interaction between sex and survival (P = 0.838). Table 5.6 shows 

the average mean TRF length and the average proportion of short telomeres for individuals 

that were alive or dead in 2008, separated by sex. 

 

Difference between the species 

When the TRF values for both species were compared (including species, sex and age), 

there was no significant difference in telomere length between northern and southern giant 

petrels (F1, 105 = 0.113, P = 0.738, n = 109). This is still true if chicks and adults are 
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analysed separately (adults: F1, 79 = 2.416, P = 0.124, n = 83; chicks: F1, 23 = 0.513, P = 

0.481, n = 26). There was also no difference between the species in terms of the proportion 

of short telomeres (adults and chicks: F1, 105 = 0.343, P = 0.560; adults: F1, 79 = 3.182, P = 

0.078; chicks: F1, 23 = 1.678, P = 0.208). 

 

Discussion 

In both northern and southern giant petrels, adults had shorter telomeres than chicks (in 

terms of both the mean TRF length and the proportion of short telomeres). Conversely, 

there was no detectable decline in telomere length with age among adults. In this, giant 

petrels are similar to other long-lived avian species, such as the wandering albatross and 

the European shag (Hall et al. 2004), although this is not a universal pattern (Haussmann et 

al. 2003; Juola et al. 2006). Our results thus support the idea that most telomere loss occurs 

in young individuals, although we cannot say how much of this telomere loss occurs 

during the chick period and how much during the years after fledging before an individual 

returns to the breeding ground. Note also that in a cross-sectional study such as this one, a 

lack of detectable telomere loss with age does not mean no such telomere loss is occurring. 

A small trend for telomeres to shorten with age in adults could easily be obscured by the 

substantial amount of variation in telomere length between same age individuals. This is 

particularly true if individuals with longer telomeres have a better chance of surviving to 

older ages, as has been suggested in Leach’s storm petrel (Haussmann & Mauck 2008b). 

Ideally, data on telomere loss would be collected longitudinally, following individuals 

throughout their lives. However, in very long-lived species like the giant petrels, such data 

are very difficult to collect (although such data has been gathered on the Alpine swift 

Alpus melba – P. Bize Pers. Comm.). 

 

The effect of sex on telomere length varied depending on the species, the method used 

to analyse telomere length (mean TRF length or proportion of short telomeres) and if 

adults or chicks were analysed separately or together. However, when there was a sex 

difference, it was always the case that males had shorter telomeres than females. To our 

knowledge, this is the first time any sort of sex difference has been seen in a study 

examining a wide age range of individuals in an avian species, although males do have 

shorter telomeres than females in adult humans (Benetos et al. 2001; Nawrot et al. 2004) 

and rats (Cherif et al. 2003). 
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In previous chapters, we have shown that in chicks of the lesser black-backed gull and 

European shag, males have longer telomeres than females. Why is there a sex difference in 

the opposite direction in giant petrels? Possibly it could be due to the inclusion of adults in 

the analysis (only chicks were examined in the shags and gulls); in rats and humans, a sex 

difference is seen only in adults, not in infants (Cherif et al. 2003; Nawrot et al. 2004), 

suggesting that sex differences might change with age. Indeed in southern petrels, when 

the telomere length of chicks and adults were examined separately, there was a sex 

difference in chicks but not in adults (although this was not the case for the proportion of 

short telomeres). However, it is possible that there is some fundamental difference in the 

way sex effects telomere length in the gulls and shags and how it affects telomere length in 

the giant petrels. This difference could possibly be due to the degree of sexual dimorphism 

(or the degree of difference in the pattern of growth between the sexes). Unlike most other 

seabird species (such as lesser black-backed gulls or wandering albatrosses), giant petrels 

show considerable size differences between the sexes; indeed they have been described as 

the ‘most sexually dimorphic of seabirds’ (Croxall 1982). Female body mass is only 80% 

that of males (Hunter 1987) and there are differences in structural size beyond this; for 

example, head-bill length can be used to sex fledglings and adults (Gonzalez-Solis 2004; 

Copello et al. 2006). It is possible that this larger body size and the faster growth rates 

necessary to achieve it result in male giant petrels having shorter telomeres than females. 

This would be consistent with humans, where the larger sex has the shorter telomeres. 

However, the European shag shows a considerable amount of sexual dimorphism (Daunt et 

al. 2001) and yet males have longer telomeres than females (at least in chicks). There are 

also sex differences in diet in both giant petrel species, with females tending to have a 

more marine-based diet while males feed more on scavenged carrion (Hunter 1987; 

Gonzalez-Solis et al. 2000); however it is difficult to see what effect this could have on 

telomere dynamics. 

 

There was no difference in telomere length between northern and southern giant 

petrels, nor was there any difference in the way age affected telomere length. There was 

some difference between the species in the way sex affected telomere length (e.g. there 

was no sex difference in mean TRF in adult southern petrels, there was in adult northern 

petrels), but the overall trend in both species was for males to have shorter telomeres 

(although we could not examine sex differences in northern petrel chicks). This lack of 

difference is perhaps not surprising given how closely related the species are in terms of 
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phylogeny, habitat, size and general lifestyle (Bourne & Warham 1966; Hunter 1987). 

What differences there are, such as differences in size, feeding habits and breeding periods, 

tend to be small. Indeed, differences in diet and body size are stronger between the sexes 

than between the species (Hunter 1987). It is possible that this could be a general trend 

across taxa; closely related species that possess very similar life-histories, will have similar 

telomere dynamics. 

 

Previous studies have found a relationship between telomere length and survival in 

several avian species (Haussmann et al. 2005; Pauliny et al. 2006), humans (Cawthon et al. 

2003) and C.elegans (Joeng et al. 2004). Our data provides some evidence to support the 

idea of a similar relationship in southern giant petrels. In southern giant petrels, individuals 

with shorter telomeres (in terms of mean TRF length or proportion of short telomeres) 

were less likely to survive over the 8 years after we sampled them (independent of age and 

sex). There was no relationship between telomere length and survival in the northern giant 

petrels. This could be due to the incomplete nature of the data as many of the individuals 

we sampled were still alive. Indeed, more southern petrels from our sample had died 

during this 8 year period than northern petrels (74.5 % of southern petrels had died, 44.4 % 

of northern petrels had died) and we had a larger initial sample of southern petrels. Thus, it 

is possible that we did not see a relationship between telomere length and survival in 

northern petrels because of this smaller sample size; perhaps when we know the lifespan of 

all the individuals in our study such a relationship will become apparent. Given that 

telomere length did not shorten with age in adult southern petrels, the relationship between 

telomere length and survival is not just a case of older individuals with shorter telomeres 

dying, as has been seen in humans (Cawthon et al. 2003). Instead, the link between 

telomere length and survival must be due to a mechanism other than telomere dependent 

senescence, as it was in tree swallows (Haussmann et al. 2005). Whether telomere length is 

causally linked to survival in southern petrels, or merely correlates with it we cannot say, 

but certainly our results support the idea that telomere length could be an indicator of 

individual quality.  
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Figure 5.1: Example of a petrel TRF gel. Lanes 1 and 20 contain a size marker, lanes 2 

- 18 contain a mixture of northern and southern giant petrel adults and chicks (lane 19 

is blank).
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Figure 5.2: Age in relation to a) mean TRF length and b) proportion of telomere fragments 

shorter than 5 kb, in northern giant petrels (n = 46). 

  

a) 

b) 
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Fig. 5.3: Distribution of adult mean TRF lengths for a) northern giant petrels (n = 36), and 

b) southern giant petrels (n = 47), separated by sex. In both species, females tended to have 

significantly longer telomeres than males.  

a) 

b) 
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Fig. 5.4: Age in relation to a) mean TRF length and b) proportion of telomere fragments 

shorter than 5 kb, in southern giant petrels (n = 63). 
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Table 5.1: GLM’s of telomere length in relation to a) survival (i.e. was an individual still 

alive in 2008), sex and age and b) survival and sex, in adult northern giant petrels (n = 36).  

 

  
 

Dependent Variable: Mean TRF length  

Variable 
Type III 
Sum of 
Squares 

df 
Mean 

Square F Sig. 

Survival .052 1 .052 .148 .703 

Sex 3.227 1 3.227 9.243 .005 

Age .283 1 .283 .812 .374 

Error 11.171 32 .349   

 
  
 

Dependent Variable: Mean TRF length  

Variable 
Type III 
Sum of 
Squares 

df 
Mean 

Square F Sig. 

Survival .001 1 .001 .002 .961 

Sex 3.242 1 3.242 9.341 .004 

Error 11.454 33 .347   

 

 

 

a) 

b) 
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Table 5.2: GLM’s of the proportion of short telomeres in relation to a) survival (i.e. did an 

individual survive until 2008), age and sex and b) sex and survival, in adult northern giant 

petrels (n = 36). 

 

  
 
Dependent Variable: % of telomere fragments below 5kb  

Variable 
Type III 
Sum of 
Squares 

df 
Mean 

Square F Sig. 

Survival 1.809 1 1.809 .082 .776 

Age 8.498 1 8.498 .386 .539 

Sex 105.614 1 105.614 4.793 .036 

Error 705.112 32 22.035   

 

 

 

Dependent Variable: % of telomere fragments below 5kb 

Variable 
Type III 
Sum of 
Squares 

df 
Mean 

Square F Sig. 

Survival .002 1 .002 .000 .992 

Sex 106.107 1 106.107 4.907 .034 

Error 713.610 33 21.625   

 

 
Table 5.3: Average telomere length and mean proportion of short telomeres for adult 

northern giant petrels, separated first by sex and then by whether an individual was dead or 

alive in the 2008 breeding season. Means are quoted ± 1 s.e. 

 
Male Female 

 
Dead (n = 10) Alive (n = 11) Dead (n = 6) Alive (n = 9) 

Telomere 
length 

8.31 ± 0.16 kb 8.02 ± 0.13 kb 8.50 ± 0.30kb 8.95 ± 0.21 kb 

% of short 
telomeres 

14.28 ± 1.26 % 16.76 ± 1.35 % 14.28 ± 1.63 % 10.62 ± 1.61 % 

a) 

b) 
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Table 5.4: GLM’s of telomere length in relation to survival (i.e. was an individual still 

alive in 2008), sex and age in adult southern giant petrels (n = 47). Age was not close to 

significant in model A and so was removed from model B. Model C shows that there is no 

interaction between sex and survival. 

 

 

Dependent Variable: Mean TRF length  

Variable 
Type III 
Sum of 
Squares 

df 
Mean 

Square F Sig. 

Survival 1.332 1 1.332 3.399 .072 

Sex 1.700 1 1.700 4.338 .043 

Age .301 1 .301 .769 .386 

Error 16.853 43 .392   

 
  
 
Dependent Variable: Mean TRF length  

Variable 
Type III 
Sum of 
Squares 

df 
Mean 

Square F Sig. 

Survival 1.870 1 1.870 4.795 .034 

Sex 2.898 1 2.898 7.432 .009 

Error 17.154 44 .390   

 

  
 
Dependent Variable: Mean TRF length  

Variable 
Type III 
Sum of 
Squares 

df 
Mean 

Square F Sig. 

Survival 1.317 1 1.317 3.314 .076 

Sex 1.494 1 1.494 3.759 .059 

Survival – Sex 

Interaction 
.066 1 .066 .165 .687 

Error 17.089 43 .397   

 

 

a) 

b) 

c) 
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Table 5.5: GLM of the proportion of short telomeres in relation to survival (i.e. did an 

individual survive until 2008), age and sex in adult southern giant petrels (n = 47).  

 

Dependent Variable: % of telomere fragments below 5kb  

Variable 
Type III 
Sum of 
Squares 

df 
Mean 

Square F Sig. 

Survival 88.418 1 88.418 5.112 .029 

Sex 185.774 1 185.774 10.741 .002 

Age 1.257 1 1.257 .073 .789 

Error 743.698 43 17.295   

 

 

 

Table 5.6: Average telomere length and mean proportion of short telomeres for adult 

southern giant petrels, separated first by sex and then by whether an individual was dead or 

alive in the 2008 breeding season. Means are quoted ± 1 s.e. 

 

Male Female 
 

Dead (n = 18) Alive (n = 9) Dead (n = 17) Alive (n = 3) 

Telomere 
length 

7.75 ± 0.14 kb 8.27 ± 0.25 kb 8.30 ± 0.15 kb 8.64 ± 0.39 kb 

% of short 
telomeres 

18.85 ± 0.91 % 15.80 ± 1.62 % 14.60 ± 1.00 % 10.91 ± 2.20 % 

 

 

 
 
 
 



Chapter 6: Measuring telomeres in the blue-footed booby 

 93 

Chapter 6: Measurement of telomeres in the blue-foo ted booby 

Sula nebouxii 

 

Abstract 

Recently there has been much debate about the best way to measure telomere lengths; 

using the ‘traditional’ telomere restriction fragment (TRF) length analysis or using a qPCR 

based method. More generally, as an increasing number of species are utilised in studies of 

telomere dynamics, the question arises of how well such standardised methods for 

measuring telomeres can be applied across taxa. These issues were examined in relation to 

work done on the telomere dynamics of the blue-footed booby Sula nebouxii. TRF analysis 

could not be successfully applied to blue-footed boobies because of the presence of 

substantial banding in the TRF smear. Using a qPCR based protocol did produce usable 

measurements of relative telomere length. However, there was a suggestion that the PCR 

was not amplifying one clear product, as it should, casting doubt on the reliability of the 

results produced. It is possible that these problems occurred because blue-footed boobies 

have a particularly large amount of interstitial telomeric DNA, although a more detailed 

analysis of boobie telomeres would be necessary to determine this. These findings 

demonstrate that the standard protocols for measuring telomeres can not necessarily be 

applied to every new species whose telomere dynamics are studied. 
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Introduction 

Several different protocols have been developed for the measurement of telomeres. The 

‘traditional’ method is telomere restriction fragment (TRF) analysis (Harley et al. 1990). 

This is the method that has been used throughout this thesis. However, a method of 

measuring telomeres using quantitative PCR (qPCR) has been suggested as superior to the 

TRF method, as it requires both less DNA and less time than the TRF method (Cawthon 

2002; see chapter 1 for a more detailed description of the costs and benefits of the two 

methods). Criscuolo et al. (2008 – see appendix) have recently shown that the qPCR 

method, initially developed for the measurement of human telomeres, can also be applied 

to avian species and that the results obtained correlate with those produced by the TRF 

method. Researchers planning to carry out research on telomere lengths thus have to decide 

on which method is the best to use. 

 

 Related to the debate on how best to measure telomeres, is the question of whether 

these standardised protocols will necessarily work with every new species whose telomere 

dynamics are studied. The general assumption has been that the methods that have been 

developed to measure telomeres will be applicable across taxa. However this assumption 

might just reflect that these are methods originally developed by researchers working on a 

limited set of species (humans and a few laboratory species). Alternatively, given that 

telomere structure is so conserved across taxa, we might expect telomere measurement 

protocols to be easily transferable across species; this has been the case in the species that 

have been studied so far. However, as ecologists utilise telomere measurements in an 

increasing variety of species, it is important to outline the potential problems that might 

occur when measuring telomeres in a new species. This chapter explores some of these 

issues in relation to work we did on the telomere dynamics of the blue-footed booby Sula 

nebouxii. We encountered various problems in adapting standard protocols for measuring 

telomeres (both TRF and qPCR) to this species. We outline these problems and suggest 

what they might mean in relation to the study of telomere dynamics in novel species.  

 

Materials and methods 

Study site and sampling 

Field work was carried out at a breeding colony on Isla Isabel, off the Pacific coast of 

Mexico (21°52’N, 105°54’W). All blood samples and field data were collected by Roxana 
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Torres. Sixty-seven adult blue-footed boobies were sampled, ranging in age from 4 – 19 

years old (49 males, 22 female). Four chicks were also sampled. Blood was taken from all 

individuals by superficial venipuncture of the brachial vein and stored in 2% EDTA, 

initially at 4°C at the field site but at -20°C upon arrival at the University of Glasgow 

(which was within two weeks). Adult sex was determined from physical characteristics 

(body size, foot colour and eye colour are all consistently different between males and 

females, allowing reliable sexing – Nelson 1978) while chick sex was determined using a 

PCR based method (Griffiths et al. 1998). Body mass was also measured in 25 of the adult 

individuals. 

 

Measurement of TRFs 

DNA was extracted from red blood cells, which are nucleated in avian species, using a 

method adapted from Kanai et al. (1994). Samples were digested with proteinase K before 

extraction by a chloroform-ethanol-precipitation method. DNA was checked for 

degradation by 1% gel electrophoresis (fig. 6.1). 

 

Approximately 1µg of DNA from each sample was digested with the restriction 

enzymes HinfI and RsaI for 16h at 37°C. Digested DNA samples were separated on a non-

denaturating 0.8% agarose gel at 150V for 3hrs. Two marker lanes (23.1 – 2.0Kb) were run 

on each gel. DNA was transferred from the gel to a nitro-cellulose Hybond N+ membrane 

(Amersham, UK) by Southern blot. The membrane was hybridised with a digoxigenin 

(DIG) labelled telomere probe (TTAGGG)7 (Roche) for 3 hours at 42°C. A 

chemiluminescent detection system (Roche) followed by exposure to autoradiography film 

was used to visualize the TRFs. See chapter 2 for a more detailed description of the TRF 

protocol. 

 

Figure 6.2 shows a representative TRF gel produced using this method. The lack of 

a clear smear indicated that blue-footed boobie TRFs could not be successfully analysed 

using this method; the banding would make it impossible to accurately estimate mean TRF 

size. The same problem had been encountered when measuring TRFs from the zebra finch 

Taeniopygia guttata (pers. comm. E.A. Gault). In that case, the problem was solved by 

extracting the DNA using the DNeasy Blood and Tissue Kit (Qiagen). Although the DNA 

we had extracted by chloroform-ethanol-precipitation did not appear to be degraded (fig. 

6.1), the DNA was re-extracted using the DNeasy kit, following the manufacturer’s 
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protocol. TRFs were then re-measured as previously. However, the TRF smears still 

exhibited substantial banding (fig. 6.3) 

 

Standard constant-field gel electrophoresis is unable to resolve telomere fragments 

larger than 23 kb; bigger fragments than this will move through the gel in a size 

independent manner. Utilising pulse-field gel electrophoresis (PFGE) removes this 

limitation. PFGE differs to standard gel electrophoresis in that, rather than a constant 

voltage running in only one direction, the voltage is periodically switched between three 

different directions (one running through the gels central axis and two running at 120° 

either side of the gel). The pulses of voltage in each direction are of equal time which 

results in a net forward migration of the DNA fragments. Larger fragments of DNA are 

slower to react to a change in voltage direction and so will migrate down the gel at a 

slower pace. PFGE thus allows even very large DNA fragments to be separated by size. 

We felt that modifying our TRF technique to use PFGE might solve the problem of the 

banding. DNA was digested overnight at 37°C using three restriction enzymes: Hinf I, 

Hind III and Msp I. Digested samples were run on a 0.8% agarose gel at 3.5 V/cm for 24 

hours (initial switch time: 0.5 seconds, final switch time: 7 seconds). Two different 

markers were run on each gel (48.0 – 8.0 kb and 23.1 – 2.0 kb). Following electrophoresis, 

gels were hybridised overnight at 37°C with a 32P γ-ATP labelled telomeric probe 

(C2TA2)4. Visualization of the TRFs was carried out in the same way as before. Figure 6.4 

shows a representative blue-footed boobie pulse-field TRF gel. The banding was still 

present, suggesting that the problem was not being caused by the use of constant-field gel 

electrophoresis.  

 

Measurement of telomeres using qPCR 

Given the failure of the TRF assay to provide usable data in the case of blue-footed 

boobies, we decided to use an alternative, qPCR based, method of measuring telomeres. A 

protocol to measure telomeres using qPCR was first described by Cawthon (2002) for use 

on human telomeres, and was recently applied to the measurement of avian telomeres 

(Criscuolo et al. 2008). The qPCR assay works by calculating the number of PCR cycles it 

takes for the TTAGGG sequence in a given DNA sample to accumulate enough products 

to pass a set threshold; this is known as its Ct value. Samples with small Ct values have 

more of the TTAGGG sequence than samples with larger Ct values, and so must have 

longer telomeres. To control for variations in initial DNA quantity, the Ct value of a single 
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copy gene is also calculated and the ratio of these two values is used to calculate relative 

telomere lengths.  

 

 PCRs were performed in a MX3000P® QPCR system (Strategene). Telomere 

primers used in the blue-footed boobie assay were: Tel1b (5’-

CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3’) and Tel2b (5’-

GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3’). The single copy 

control gene used was glyceraldehyde-3-phosphatase dehydrogenase (GAPDH). This gene 

was amplified using the following primers: GAPDH-F (5’-

AACCAGCCAAGTACGATGACAT–3’) and GAPDH-R (5’-

CCATCAGCAGCAGCCTTCA -3’). These primers are specific to the GAPDH gene in the 

zebra finch, but also amplify the blue-footed boobie GAPDH gene. All primers were 

supplied by VH Bio Ltd. qPCR for both telomeres and GAPDH was done using an initial 

DNA quantity of 20ng per reaction. The tel1b and tel2b primers were used at a 

concentration of 100 nM, while the GAPDH primers were used at a concentration of 300 

nM. In both cases the final volume in each reaction was 25µl, containing 12.5µl of 

Brilliant®SYBR®Green QPCR Master Mix (Stratagene). Telomere PCR conditions were 

10 min at 95°C followed by 30 cycles of 1 min at 56°C and 1 min at 95°C. Conditions for 

GAPDH PCR were 10 min at 95°C, followed by 45 cycles of 1 min at 60°C and 1 min at 

95°C. Amplification of telomeres and GAPDH were performed on different plates, due to 

the differing conditions of the two reactions (comparison between them was still possible 

as the same standards were run on both plates – see below).  

 

Each 96-well plate contained a serial dilution (40ng, 20ng, 10ng, 5ng, 2.5ng of 

DNA per well), run in triplicate, of DNA from the same reference boobie sample. This was 

used to generate a reference curve to control for the amplifying efficiency of the qPCR 

(accepted range 100 ± 15 %, Stratagene). In addition, a ‘golden sample’ (DNA from one 

boobie sample) was run in triplicate on every plate. This sample served two purposes. 

Firstly it was used to determine the threshold Ct value; this was set at the point where 

amplification of the product in this sample was occurring at an exponential rate. Secondly, 

the golden sample was used as a reference to calculate the relative telomere values of the 

other samples: relative telomere length of a sample (T/S ratio) = 2 (∆Ct of control sample - ∆Ct of 

reference sample), where ∆ Ct = Ct telomere – Ct control gene. The T/S ratio of the control 
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sample was always 1.0; the T/S ratio of an individual with longer telomeres than the 

reference individual was < 1.0, while the T/S ratio of an individual with telomeres shorter 

than the reference individual was > 1.0. The two Ct values of the golden sample always 

varied slightly from plate to plate due to variations in the PCR reaction; values for the 

telomere Ct varied from 14.38 – 15.25 (mean = 14.66) and for the GAPDH Ct from 30.07 – 

30.92 (mean = 30.46). We felt that this represented an acceptable level of intra-plate 

variation (within 1 Ct). Two sets of plates were rejected from the analysis as either the 

telomere or GAPDH Ct value of the golden sample were too far outside of this range (one 

with a telomere Ct value of 15.72, another with a GAPDH Ct value of 31.61). The samples 

on these plates were re-run. 

 

On both telomere and GAPDH plates, all samples were run in triplicate. Ct values 

were highly repeatable (Ct 
GAPDH: repeatability analysis - r = 0.802, F128, 242 = 12.435, P < 

0.001, mean (± 1 s.e.) coefficient of variation (CV) = 0.84 ± 0.05 %; Ct 
telomere: 

repeatability analysis - r = 0.874, F128, 241 = 20.787, P < 0.001, mean CV = 1.72 ± 0.09 %). 

This level of intra-plate repeatability in the blue-footed boobie assay compares well with 

intra-plate repeatability in other avian species (Criscuolo et al. 2008). In addition, the T/S 

ratio of 44 of the samples was recalculated on a second plate (again, each sample on a plate 

was run in triplicate) while a further 7 samples had their T/S ratios recalculated on two 

more plates. The T/S ratios had a fairly high repeatability between plates (repeatability 

analysis: r = 0.670, F50, 58 = 5.371, P < 0.001; mean difference in T/S ratio between plates 

run twice = 0.40 ± 0.06).  

 

Although Ct values were repeatable, and the amplifying efficiency of the qPCR was 

within an acceptable range, other diagnostics of how well the assay was working were not 

so favourable.  This assay utilises Brilliant®SYBR®Green to detect the PCR product being 

amplified. Brilliant®SYBR®Green will detect any double stranded DNA product amplified 

by the PCR reaction, so an important assumption made with this assay is that no product 

other than GAPDH/telomere DNA is being amplified; if an additional product was being 

amplified Ct values would be artificially lowered. To control for this possibility, a 

dissociation curve was produced at the end of each PCR run by measuring the temperature 

at which the PCR product melted. If only one product was amplified by the reaction (as 

should be the case) then only one peak would be present in the resultant dissociation curve. 
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This was the case for our GAPDH assays (fig. 6.5a). However, the dissociation curve 

produced for our telomere assays suggested the possibility that another product was being 

amplified in addition to TTAGGG repeats (fig. 6.5b). To further investigate this problem 

we ran out a small amount of the PCR product from some of our telomere assays on an 

electrophoresis gel, along with the product produced by the same assay carried out on 

DNA from Alpine swifts Apus melba (which have already been shown to work correctly 

with the qPCR assay – Criscuolo et al. 2008). The gel (fig. 6.6) showed that there was no 

specific additional product, but that the product that was being amplified was more diffuse 

than the amplified product from the Alpine swift assay. The dissociation curve was the 

same for every boobie sample we ran through the assay. This means that any change in 

telomere Ct values caused by the lack of one clear amplification product will be the same 

for each individual; relative telomere lengths (which are what this assay provides) will not 

be affected. Therefore it is potentially reasonable to suggest that the data gathered is 

usable, albeit while taking into account the possible flaws in the qPCR assay when applied 

to blue-footed boobies.  

 

Results 

There was significant variation in T/S ratio among individuals in our sample (mean T/S 

ratio = 1.29 ± 0.058, CV = 37.98%).  In a GLM containing age and sex, there was no trend 

for telomere length to decrease with age (F1, 68 = 0.108, P = 0.744, n = 71; fig. 6.7). 

Similarly, T/S ratio did not significantly differ between the sexes (F1, 68 = 2.823, P = 0.097, 

n = 71). When body mass (which we only had a measure of for 25 of our individuals, all of 

whom were males) was added to the GLM, age was still not significant (F1, 22 = 2.418, P = 

0.134) and body mass also showed no correlation with T/S ratio (F1, 22 = 0.055, P = 0.817, 

n = 25). 

 

Discussion 

In the three other avian species whose telomere dynamics have been studied in this thesis, 

measurement of telomere lengths was very straightforward, with the standard protocol for 

measuring TRF lengths (Harley et al. 1990) producing good results. In the case of blue-

footed boobies, measurement of TRFs proved impossible due to the presence of substantial 

banding in the TRF smears. Similarly, although we were able to produce measurements of 

relative telomere lengths using the qPCR assay, the dissociation curves for the 
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amplification of telomeric DNA suggests the results may be unreliable. This contrasts with 

the relative ease with which the basic telomere qPCR protocol (Cawthon 2002) has been 

adapted to other avian species (Criscuolo et al. 2008). Why do blue-footed boobies appear 

to differ so much from other avian species?  

 

It is theoretically possible that the sequence of telomeric DNA in blue-footed 

boobies differs to that in other avian species and that this is the cause of the problems 

encountered when measuring their telomeres. However, given the very high conservation 

of the TTAGGG repeat among those vertebrates whose telomeric regions have been 

sequenced (Meyne et al. 1989; Henderson 1995), this is highly unlikely to be the case. A 

more likely explanation is that blue-footed boobies may have substantially more interstitial 

telomeric DNA than most avian species. Interstitial telomeric sequences seem to occur in 

all avian species (Venkatesan & Price 1998) and the qPCR assay will amplify DNA from 

these regions in addition to DNA from the telomeres themselves (Nakagawa et al. 2004). If 

blue-footed boobies have a particularly high proportion of telomeric DNA in interstitial 

regions than this could cause the lack of one clearly defined product being amplified 

during the qPCR (fig. 6.6). The presence of interstitial telomeric DNA is not normally a 

problem when using the TRF method (Nakagawa et al. 2004), as the amount of such DNA 

is too small to be detected. However, if boobies have a particularly large amount of 

interstitial DNA, then this could be detected in the TRFs; the bands seen in the boobie TRF 

smears might thus be caused by interstitial telomeric DNA. Obviously, this is just 

speculation; there is no evidence that boobies have more interstitial telomeric DNA then 

other avian species. To determine if this was the case we would need to analyse individual 

boobie telomeres, using a technique such as Q-FISH (Zijlmans et al. 1997; see chapter 1). 

Such work is outside the scope of this study. 

 

It is possible that our qPCR data, despite its flaws, still provides an accurate 

measurement of relative telomere lengths, but there is inconclusive support for this idea. 

For example, we found no relationship between age and telomere length. Had we found a 

negative relationship between telomere length and age (the relationship generally seen in 

most species) one might have said that this gives us greater confidence in our results. 

However, given that all but 4 of the individuals in our sample were adults, it might be 

suggested that a lack of relationship between age and telomere length is unsurprising, as 

this has been seen in other species (e.g. Hall et al. 2004). More generally, it is notable that, 
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even with all the problems we had applying the qPCR protocol to blue-footed boobies, we 

still produced potentially usable results, which was not the case with the TRF method. It is 

also notable that the same problems seem to have affected both of the two main methods 

used to measure telomeres (TRF and qPCR). This suggests that if a problem is encountered 

using one method, then switching to the other method will not necessarily solve the 

problem. Paradoxically however, this might provide further evidence that the two methods 

are measuring essentially the same thing (as suggested by Criscuolo et al. 2008) and so 

results gathered using one method can be compared to results obtained using the other 

method with confidence. 

 

More generally, our experience with the blue-footed booby demonstrates that 

standard protocols for measuring telomeres will not necessarily work smoothly with every 

new species they are applied to. However, the fact that, to our knowledge, blue-footed 

boobies are the first species in which such problems have been encountered suggests that 

such instances will be rare. Despite this, it might still be wise for researchers planning to 

carry out telomere length measurements in a new species to carry out pilot studies to 

ensure that telomeres are easily measurable, before investing a large amount of time and 

effort in collecting many blood or tissue samples.  
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Figure 6.1: Genomic DNA from blue-footed boobies run on an electrophoresis gel. Lanes 

1-8 contain boobie DNA, lane 9 contains a size marker lane. The boobie DNA consists of a 

single tight band, showing that the DNA is mostly intact, with little degradation.  
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Figure 6.2: Representative blue-footed boobie TRF gel produced by constant-field gel 

electrophoresis, with DNA extracted by a chloroform-ethanol-precipitation method. Lanes 

8-15 contain blue-footed boobie samples, with substantial banding present in the TRF 

smear. For comparison, lanes 2-7 and 16-18 contain TRF smears from European shag 

DNA; these smears are clear with no obvious banding. Lanes 1 and 20 contain markers, 

lane 19 is blank. 
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Figure 6.3: Representative blue-footed boobie TRF gel produced by constant-field gel 

electrophoresis, with DNA extracted using a DNeasy Blood and Tissue Kit. Lanes 7-11 

contain blue-footed boobie samples, with substantial banding present in the TRF smear. 

For comparison, lanes 2-6 contain TRF smears from European shag DNA; these smears are 

clear with no obvious banding. Lanes 1 and 13 contain markers, lane 12 is blank. 
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Figure 6.4: Representative blue-footed boobie TRF gel, produced by pulse-field gel 

electrophoresis. Lanes 1, 2, 9 and 10 contain markers. Lanes 3-8 contain boobie samples; 

substantial banding is present within the TRF smear. 
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Figure 6.5: Representative dissociation curves for a) the GAPDH assay and b) the 

telomere assay. The curves show the amount of PCR product (measured in terms of 

fluorescence, y-axis) detected at different melting temperatures. If only one product is 

being amplified by the PCR assay, then fluorescence should peak at one temperature point, 

as in the GAPDH assay. In the telomere assay, although the curve has only one main peak, 

there is a long ‘tail’ to the left of the peak that suggests another product may have been 

amplified during the PCR reaction.

a) 

b) 
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Figure 6.6: Gel electrophoresis of the product amplified during qPCR using telomere 

specific primers. Lanes 3 – 10 contain the amplification product from blue-footed boobie 

DNA. For comparison, lanes 1 - 2 show the amplification product from Alpine swift DNA 

(the same primers and reaction conditions were used for both species). Lane 11 contains a 

size marker. The product produced from swift DNA consists of one single tight band, as 

would be expected if only one product (i.e. telomeric DNA) was being amplified during 

the PCR. In contrast, the amplification product from boobie DNA, although consisting of 

one band, is much more diffuse. This suggests that, although only one product is being 

amplified during the boobie PCR, the size of that product is much less consistent than in 

the swift assay. 
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Figure 6.7:  Age in relation to T/S ratio in the blue-footed boobie (n = 71). T/S ratio is a 

measure of relative telomere length; individuals with a low T/S ratio have relatively longer 

telomeres than individuals with a high T/S ratio.  
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Chapter 7: General discussion 

 

Increasingly, telomeres are seen as more complicated than a ‘mitotic clock’, counting 

down at a constant rate towards cell senescence. Instead, the rate of telomere loss seems to 

be responsive to environmental conditions. Although telomeres do shorten with age in 

many species, the rate of loss is often not constant; in particular most telomere loss seems 

to occur in young individuals (e.g. Zeichner et al. 1999; Haussmann et al. 2003; Pauliny et 

al. 2006). The same pattern was demonstrated in the work on giant petrels Macronectes 

spp. in this thesis (chapter 5) with most telomere loss seen in young individuals. The 

significant amount of telomere loss seen in a very short period of time in the study of 

chicks of the lesser black-backed gull Larus fuscus (chapter 3) also supports the idea that 

most telomere loss is occurring in young individuals. This suggests that, if telomeres are a 

mitotic clock, the speed at which the clock ticks is not constant.  

 

There are exceptions to this trend. For example some species show no telomere loss 

with age (sea urchins – Francis et al. 2006; Drosophilia – Walter et al. 2007). There are 

also species where telomere length apparently increases with age (e.g. Leach’s storm petrel 

Oceanodroma leucorhoai – Haussmann et al. 2003; pine trees – Flanary & Kletetschka 

2005). It would clearly be interesting to know what causes the difference in telomere 

dynamics between these species and those that do show telomere shortening with age. It 

should however be noted that the studies on these species were cross-sectional; it is 

possible that the pattern of telomere loss with age would be different if studied 

longitudinally. Indeed, Haussmann & Mauck (2008b) suggested that the apparent increase 

in telomere length with age in Leach’s storm petrel was due to the differential survival of 

older individuals.  

 

There are also species where no telomere shortening with age in adults is visible 

cross-sectionally (e.g. the European shag Phalacrocorax aristotelis and the wandering 

albatross Diomedea exulans – Hall et al. 2004; giant petrels – chapter 5). The difference 

between species such as these and species that do show telomere loss in adults might be 

related to lifespan. European shags, wandering albatross and giant petrels are long-lived 

species; perhaps these species invest more into maintaining telomere length as adults than 

shorter lived species which do show telomere loss in adults (e.g. zebra finches – 
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Haussmann et al. 2005). However this issue requires more investigation; in particular into 

whether no telomere loss in adults can be detected longitudinally in these species.  

 

Telomere length is clearly not just a function of age; variation among same-age 

individuals has been seen in the vast majority of species studied. The avian species studied 

in this thesis were no exception; significant amounts of variation in telomere length among 

same-age individuals were seen in lesser black-backed gulls (chapter 3), northern and 

southern giant petrels (chapter 5) and blue-footed boobies Sula nebouxii (chapter 6). Given 

the almost universal nature of this pattern the question arises of what is causing this 

variation. It has been suggested that some of these differences are due to inbuilt differences 

between individuals. For example in humans some of the variation in telomere length 

seems to be due to parental inheritance (Nordfjäll et al. 2005; Njajou et al. 2007). However 

the extent to which telomere length is inherited has not been examined to any substantial 

extent in other species. There is no evidence for telomere length being paternally inherited 

in the species studied in this thesis, but none of the studies were specifically designed to 

examine this.  

 

In this thesis, sex differences in telomere length were found in chicks of both the 

lesser black-backed gull (chapter 3) and the European shag (chapter 4). These sex 

differences were consistent for at least a few weeks during the chick period. A consistent 

sex difference was found across all ages in giant petrels (albeit with variation depending on 

the method used to analyse the TRF gels - chapter 5). It was notable that the direction of 

the sex difference differed between the gulls and shags (where males had longer telomeres 

than females) and the giant petrels (where females had longer telomeres than males). These 

sex differences are the first, to my knowledge, found in avian species. Sex differences have 

previously been found in humans (Benetos et al. 2001; Nawrot et al. 2004), rats (Cherif et 

al. 2003) and ants (Jemielity et al. 2007); in all these cases females had longer telomeres 

than males. What is needed now is an investigation of sex differences across a wider range 

of species to determine if there are general trends across taxa. It is possible that differences 

in telomere length between the sexes are linked to differences in life-histories between the 

sexes. For example, one might predict that in species where females are substantially larger 

than males (e.g. insects) they will have shorter telomeres than males, whereas in species 

where females are the smaller sex (e.g. humans) they will have longer telomeres than 

males. To a certain extent, the results obtained in this thesis fit this pattern. Giant petrels 
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are very sexually dimorphic by the standard of seabirds (Croxall 1982), with females 

smaller in size than males, while lesser black-back gulls show less (approx. 10%) 

difference in size between the sexes. Thus it makes sense that in the petrels females have 

longer telomeres than males, while this is not the case in gulls (although this hypothesis 

does not explain why males have longer telomeres than females in gulls). Conversely 

however, in the European shag females are substantially smaller than males, and yet they 

have shorter telomeres (at least in chicks). 

 

Some of the variation in telomere length is probably inbuilt and due to factors such 

as sex and parental inheritance. However, given that most telomere loss seems to be 

occurring in young individuals it is logical to suggest that a lot of the variation in telomere 

length is linked to early life conditions. Very few studies have examined this however (e.g. 

Jennings et al. 1999; Hall et al. 2004). Work in this thesis on lesser black-back gull chicks 

(chapter 3) found some support for the idea of a relationship between early life conditions 

and telomere length. The pre-embryonic growth rate (as measured by hatchling size) was 

related to some of the variation in hatching telomere length. There was however no 

evidence of post-hatching growth rate affecting telomere length. There was a low sample 

size in this part of the study, but this finding might reflect a more general problem when 

trying to link growth and telomere length. A relationship between growth rate and telomere 

loss would probably only be expected if an increase in growth rate meant an increase in the 

rate of cell division; however, an increase in body size could be caused by an increase in 

cell size, which would confound attempts to link growth rate and telomere loss. More 

generally, there is a clear need for an experimental approach to studies of the cause of 

variation in telomere length. Given the number of factors that could potentially affect 

telomere length, identifying how important one factor is will always be difficult using a 

correlational approach. There is also the question of how important early variations in 

telomere length are. Are these early differences in telomere length maintained into 

adulthood? Can shorter telomeres in a young individual affect cell loss or the build up of 

senescent cells? If neither of these things were true then any early differences in telomere 

length would be unimportant, no matter the cause. There is a need for long-term 

longitudinal studies to investigate these questions, although there are obvious difficulties in 

conducting such studies. 
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Given that there is significant variation in telomere length among individuals, the 

next obvious question is what effect this variation has. One would expect telomere length 

to be linked to senescence, but there is little actual evidence for this in vivo; telomere 

length has been linked to life expectancy in humans (e.g. Cawthon et al. 2003) and Alpine 

swifts (Bize et al. in prep.). However, there is increasing evidence that telomere length is 

linked (directly or indirectly) to other measures of individual quality. For example, 

telomere length has been linked to short term survival in tree swallows (Haussmann et al. 

2005) and C.elegans (Joeng et al. 2004). The work in this thesis on southern giant petrels 

Macronectes giganteus (chapter 5) seems to provide further support for this idea; telomere 

length was linked to the survival of adult individuals in the 8 years after they were initially 

sampled. This relationship was independent of age and so was obviously not linked to cell 

senescence (the same is true in tree swallows and C.elegans). Whether telomeres are 

directly linked to survival, through a mechanism other than cell-senescence, or if telomere 

length just correlates with individual quality is unknown. However, the idea that telomere 

length might provide a measure of an individuals quality is clearly an exciting one. More 

study is required to identify both how widespread this effect is and if telomere length is 

linked to other measures of individual quality such as reproductive success.  

 

In recent years, the range of taxa whose telomere dynamics have been studied has 

gradually expanded, from initial work on human cells in vitro, to work in vivo, first on 

humans and lab animals, and now on a variety of wild taxa. Although the questions they 

seek to answer might be different, work done on cell culture by molecular biologists is 

highly applicable to the work being done by behavioural ecologists working on wild 

animals (and vice versa). This is equally true of work conducted by behavioural ecologists 

working on different taxa; work done on avian telomere dynamics should not just be of 

interest to other avian researchers. Indeed these points are more relevant to research on 

telomeres than they are to other areas of biology, because of how conserved the basic 

structure and function of telomeres is across taxa.   

 

This conservation of the structure and function of telomeres should theoretically make 

the application of methods to measure telomeres easily applicable across taxa. Problems 

could still arise however. For example, there is the question of how best to measure 

telomeres in a new species; several different methods are available to measure telomeres, 

but as the work on blue-footed boobies in this thesis (chapter 6) showed, these methods 
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might not necessarily work with every new species they are applied to. There is also the 

question of the extent to which study design needs to be adapted to different species. One 

such example was presented in this thesis; 10 days was enough time to see a significant 

longitudinal telomere loss in lesser black-back gull chicks (chapter 3), but 13 days was not 

enough to see a similar loss in chicks of the European shag (chapter 4).  

 

Other factors, not considered in this thesis, will also be important considerations in 

future studies. For example, telomerase was generally not considered in ‘traditional’ 

studies of human telomere dynamics, as it is not expressed in human somatic cells. 

However, this is not the case in many non-human species. In the few avian species studied, 

telomerase is expressed in many somatic tissues and, furthermore, the levels of expression 

vary with age (Haussmann et al. 2004, 2007). Thus, there are important questions to 

answer in relation to telomerase in avian species; could an increase in telomerase levels in 

adults be partly responsible for the slower rate of telomere loss in adults seen in some 

species? Similarly, do levels of telomerase expression vary between same age individuals? 

If so, this could be responsible for some of the variation in telomere length we see. The 

ideal future approach would be to measure telomerase levels at the same time as telomere 

lengths are measured. However this would present problems; for example it is not known if 

telomerase levels are constant within an individual at all times of the year, or even at all 

times of the day. 

 

There is also the question of the type of cell used in telomere studies. Throughout this 

thesis, red blood cells (rbcs) have been the cell type examined, as is the case in the vast 

majority of studies done on wild taxa (or white blood cells in taxa that do not have 

nucleated rbcs). The obvious benefit of using blood cells is that they can be easily collected 

with the minimum of interference to the study individuals. However, in terms of 

senescence, rbcs are unlikely to be important; when we use rbcs in telomere studies we 

assume that what is happening in rbc telomeres is representative of what is happening to 

the telomeres of more important tissues. However telomere lengths vary among different 

tissues in humans (e.g. Ishii et al. 2006; Nakamura et al. 2007) and rats (Jennings et al. 

1999; Cherif et al. 2003) and both telomere lengths and telomerase levels vary in birds 

(Haussmann et al. 2004, 2007).  Ideally we would always take samples from a variety of 

tissues, but this is not always possible in studies on wild populations, especially in 

longitudinal studies. Even in studies of humans, non-blood cell tissue samples tend to 
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come from deceased individuals, giving the risk of a biased sample. The considerable 

amount of cell culture work done on different human cell types at least allows some 

estimate to be made of how their telomere dynamics differ. Similar cell culture work on 

non-human species could give us an equal insight into how telomere dynamics in blood 

cells relate to telomere dynamics in other tissues. 

 

An increase in our knowledge of the mechanisms affecting telomere loss would also 

benefit studies of telomere dynamics. For example, it is generally assumed that higher 

levels of oxidative stress result in higher rates of telomere loss, but this is primarily based 

on work done in vitro (von Zglinicki 2002; Richter & von Zglinicki 2007). If we could 

experimentally show that individuals with a higher rate of telomere loss also have higher 

levels of oxidative stress in vivo, then this would further increase the evidence for this 

hypothesis. Again though, whether this is practical or not will depend on the species 

studied and the conditions in which samples are being collected. 

 

Clearly there is huge potential in the study of telomeres. Behavioural ecologists were 

initially attracted to telomeres as a potential way of measuring the age structure of wild 

populations (e.g. Juola et al. 2006). The realisation that telomeres do not decrease at a 

constant rate over time removed this hope, but opened up many more avenues of research. 

It now seems possible that telomeres might provide both a way of measuring the long-term 

costs of early life-conditions and a way to measure the quality of an individual. More work 

is needed to investigate to what extent this is true across taxa. In particular an experimental 

approach needs to be applied to these questions, especially experiments involving 

longitudinal analysis of telomere length. As discussed above, the effects of telomerase and 

cell type needs to be considered more in studies of telomere dynamics, as do the proximate 

mechanisms affecting telomere loss. In addition, there still needs to be an increase in the 

variety of taxa whose telomere dynamics are studied, to include taxa with more varied life-

histories. A huge amount of what we know about how telomeres still comes from studies 

on humans; we know very little about the pattern of telomere loss, the expression of 

telomerase and the variation among tissue types and individuals in non-human species. 

Filling in these gaps in our knowledge can only be beneficial to our understanding of life-

history strategies. 
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Appendix: Real-time quantitative PCR assay for meas urement of 

avian telomeres 

 

This appendix contains a copy of work recently accepted for publication in the 

Journal of Avian Biology. Although I was not one of the lead authors on this study, I 

contributed to the work it reports on; it is thus included as additional support for this 

thesis. 

 

 

FRANÇOIS CRISCUOLO *‡, PIERRE BIZE *, LUBNA NASIR †, NEIL B. 

METCALFE, CHRIS G. FOOTE*, KATE GRIFFITHS *, ELIZABETH A. 

GAULT † AND PAT MONAGHAN*  

 

* Ornithology Group, Division of Environmental and Evolutionary Biology, Institute 

of Biomedical and Life Sciences, Graham Kerr Building, University of Glasgow, 

Glasgow G12 8QQ, UK; and †Institute of Comparative Medicine, University of 

Glasgow, Faculty of Veterinary Medicine, Bearsden Road, Glasgow G61 1QH, UK 

 

 



Appendix: qPCR assay for the measurement of avian telomeres 

 116 

Abstract 

We present the application of a real-time quantitative PCR assay, previously developed to 

measure relative telomere length in humans and mice, to two bird species, the zebra finch 

(Taeniopygia guttata) and the Alpine swift (Apus melba). This technique is based on the 

PCR amplification of telomeric (TTAGGG)n sequences using specific oligonucleotide 

primers. Relative telomere length is expressed as the ratio (T/S) of telomere repeat copy 

number (T) to control single gene copy number (S). This method is particularly useful for 

comparisons of individuals within species, or where the same individuals are followed 

longitudinally. We used glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a single 

control gene. In both species, we validated our PCR measurements of relative telomere 

length against absolute measurements of telomere length determined by the conventional 

method of quantifying Telomere terminal Restriction Fragment (TRF) lengths using both 

the traditional Southern blot analysis (alpine swifts) and in gel hybridization (zebra 

finches). As found in humans and mice, telomere lengths in the same sample measured by 

TRF and PCR were well correlated in both the Alpine swift (r = 0.76, P = 0.001) and the 

zebra finch (r = 0.82, P < 0.001). Hence, this PCR assay for measurement of bird 

telomeres, which is fast and requires only small amounts of genomic DNA, should open 

new avenues in the study of environmental factors influencing variation in telomere length, 

and how this variation translates into variation in cellular and whole organism senescence. 
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Introduction 

Telomeres are specialized nucleotide repeat sequences at the end of eukaryotic 

chromosomes that play a crucial role in preventing chromosome degradation and fusion 

(Blackburn 2001). In vertebrates, telomeres are composed of numerous tandem repeats of 

(TTAGGG)n sequences bound by shelterin-telosome proteins (Blasco 2007). Telomeres 

shorten at each division of most somatic cell types because of the inability of normal DNA 

polymerase to produce a complete new lagging strand (5’-end-replication problem; Watson 

1972; Blackburn 2001).  The rate of telomere shortening can be further accelerated by the 

increase in single-strand breaks due to oxidative stress (von Zglinicki 2002). In vitro 

studies have demonstrated that telomere shortening puts a finite limit on cell replication, 

and evidence is accumulating from in vivo studies that relatively short telomere length is 

associated with reduced whole organism lifespan (Monaghan and Haussmann 2006). 

 

Telomere lengths are most commonly measured using the Telomere (terminal) 

Restriction Fragment method (TRF), where average lengths of TRFs are measured by 

Southern blot or in-gel hybridization with a specific phosphorescent or radioactive 

oligonucleotide probe, after digestion of the DNA by a cocktail of restriction enzymes 

(Nakagawa et al. 2004, Haussmann and Mauck 2008). This relatively easy method has the 

advantage of providing highly repeatable absolute measures of telomere lengths (intra- and 

inter-gel co-efficients of variation in birds usually less than 2%, e.g. see Haussmann et al. 

2003), thus allowing straightforward inter- and intra-specific comparisons of telomere 

lengths (e.g. Haussmann et al. 2003, Hall et al. 2004). However, the TRF method suffers 

from several major drawbacks (see also Baird 2005, Aviv et al. 2006): (i) it relies on 

autoradiographic smears that are difficult to interpret (but see Haussmann and Mauck 2008 

for recent methodological advances); (ii) depending on which restriction enzyme is used, 

TRF measures may include noise from the sub-telomeric fragments close to the nearest 

restriction site (Nakagawa et al. 2004); (iii) it requires a large amount of DNA (around 5-

10 µg); and (iv) it is a very time consuming method, c. 4 days being required to process 26 

samples, and much longer when pulse field electrophoresis and in gel hybridisation are 

required (Haussmann and Mauck 2008). These last two restrictions severely limit the 

applicability of the TRF method in ecological and evolutionary studies where telomere 

lengths must be obtained from small amounts of DNA (e.g. from blood samples of small 
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passerines, a volume often less than 100 µl) and where sample sizes should ideally be 

large. 

 

Both of these problems can be avoided by the specific amplification of the telomere 

sequence by the polymerase chain reaction (PCR)-based method (Cawthon 2002). One of 

the major methodological problems of the PCR method was the auto-dimerisation of 

primers designed to hybridize to the TTAGGG and CCCTAA DNA repeats, a major 

methodological hurdle recently overcome for human telomeres (Cawthon 2002). The use 

of the real-time quantitative PCR method (hereafter referred to as qPCR), which is 

relatively rapid (2 days for 96 samples, so almost over seven times as many samples being 

done per unit time compared to the standard TRF approach), has recently enabled 

researchers to process large sample sizes, bringing to the fore evidence on the heritability 

of telomere length (Nordfjäll et al. 2005) and the impact of stress on telomere dynamics 

(Epel et al. 2004). However, as with the TRF method, qPCR measurement of telomere 

sequences also carries methodological difficulties. Firstly, telomere length is expressed as 

the ratio (T/S) of telomere repeat copy number (T) to a control single gene copy number 

(S). Hence, the qPCR method measures relative telomere lengths and not absolute telomere 

lengths (Cawthon 2002), (though absolute telomere lengths can be generated when 

interstitial repeats are not included/not high, see Callaghan et al. 2008). The choice of the 

control gene (S) is therefore important: it should not vary in copy number between 

individuals, nor within individuals over time, to ensure that variation in T/S ratios is only 

due to variation in telomere size (T). Secondly, qPCR primers amplify all (TTAGGG)n 

sequences in the genome, including interstitial sequences that are not part of the telomeres; 

this needs to be taken into account in those animals that have abundant interstitial 

(TTAGGG)n sequences (including many birds: Venkatesan and Price 1998, Nanda et al. 

2002). However, since the interstitial repeat levels do not change with age, and vary little 

among individuals of the same species (Delany et al. 2003), the qPCR method is very 

useful for studies where known individuals are sampled repeatedly, and where 

comparisons are made amongst individuals of the same species. To validate the qPCR 

assay for measurement of telomeres, it is important to check that T/S ratios are correlated 

with TRF measurements. This could potentially allow calibration of the T/S ratios for the 

species in question, and enable estimation of absolute measures of telomere length (for a 

given interstitial telomeric length) that could be compared with previous studies. 
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Here we show that the qPCR method can be used to measure telomere lengths in 

birds, and validate our qPCR measurements of telomere lengths against conventional TRF 

measurements. We performed the analyses in two bird species from different Orders, the 

zebra finch (Taeniopygia guttata, from the Passeriformes) and the Alpine swift (Apus 

melba, from the Apodiformes). Because of the possibility of relatively high levels of 

interstitial repeats in some birds, including zebra finches, it has been suggested that it is 

best to use the in gel hybridization method for measuring TRFs (Haussmann and Mauck 

2008); this avoids de-naturing the DNA, and this the telomeric probe binds only to the 

telomere, and not to the interstitial repeats. We therefore examined the correlation between 

the qPCR method using both in-gel hybridization (zebra finches) and the standard southern 

blot method (alpine swifts).   

 

Methods 

Study species and blood collection 

The zebra finch is a 18 g passerine bird that can live up to 5 years in the wild (Zann 1996) 

and slightly longer in captivity, while the Alpine swift is a 100g bird that can live up to 26 

years (Bize et al. 2006). Samples were collected in 2006 from a captive zebra finch colony 

at the University of Glasgow, UK, and from a wild Alpine swift colony in Bienne, 

Switzerland. 

 

In the zebra finch, 100µl of blood was collected from the brachial vein into heparin 

capillaries and centrifuged for 5 min at 6000 RPM to separate red blood cells (RBC) from 

the plasma. RBC were stored in Eppendorf tubes at -80°C prior to analysis. We used a 

similar procedure for the Alpine swift with the only difference being that RBC were stored 

at -20°C. We maximized the range of telomere lengths in both datasets by blood sampling 

both young and older individuals. This also allowed us to check that the reference gene 

copy number used for the qPCR did not change with age, which, for the method to be 

effective, it should not. In the zebra finch, we sampled 13 young (< 60 days) and 13 older 

birds (5-6 years), and in the Alpine swift we sampled 6 young (< 50 days) and 9 older birds 

(8-19 years).  We also checked whether the relationship between telomere length measured 

by the qPCR and TRF held within the age classes. 
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TRF assay 

TRF assay was conducted following the method previously described in several papers 

(Haussmann and Vleck 2002, Haussmann et al. 2003, Haussmann and Mauck. 2008). In 

the zebra finch, we extracted genomic DNA from fresh blood in an agarose plug as 

follows. Immediately after blood sampling, ice cold 2% EDTA pH7.7 was added into the 

Eppendorf tubes to give equal volumes of whole blood to buffer. Samples were spun at 

3500 rpm at 4°C for 4 min after which the plasma/EDTA supernatant was removed, and 

the red blood cells (RBC) were stored on ice. 5µl of RBC were used in a 100µl volume of 

cell suspension buffer/agarose solution to form an agar plug, giving a final agarose 

concentration of 0.8%. Plug formation and DNA extraction were carried out according to 

the manufacturer’s protocol (CHEF Genomic DNA Plug Kits BIO-RAD 170-3591). In the 

Alpine swift, genomic DNA was extracted from previously frozen RBC using DNeasy 

Blood and Tissue Kit (Qiagen) and following the manufacturer’s protocol. 

 

For both species, genomic DNA was digested overnight at 37°C using three 

restriction endonucleases: Hinf I (15U), HindIII and MspI (30 U of each, New England 

Biolabs). The restricted DNA and Kb DNA size standards (CHEF DNA size standard 8-48 

kb, BIO-RAD cat. 170-3707, DNA Molecular weight marker II, Digoxigenin labelled 

0.12-23.1 kbp Roche cat. 11 218 590 910) were electrophoresed through non-denaturing 

agarose (0.8%) using pulsed field gel electrophoresis (CHEF-DRII Pulsed Field 

Electrophoresis Systems) for 24 hours, using the following conditions: voltage: 3.5v/cm, 

initial switch time: 0.5 seconds, final switch time: 7 seconds. On completion of pulsed field 

gel electrophoresis of Alpine swift DNA the gel was dried using a gel drier for 25 minutes 

at 80°C and subsequently hybridized overnight at 37°C with the 32P γ-ATP labelled 

telomeric probe (C3TA2)4 for the zebra finches. Signals were visualized by phosphor 

imaging. The alpine swift DNA was transferred to a nylon membrane by the downward 

capillary transfer method of Southern blotting, during which process the DNA is denatured 

by soaking the gel in 0.4 N NaOH for 15 min (Southern blotting by alkaline transfer, 

Koetsier et al. 1993). After DNA transfer, the membrane was hybridized overnight with the 

same oligonucleotide probe as used for the zebra finch. After scanning the image, TRF 

smears of different sizes were measured using Totallab software. Using each band of the 

CHEF DNA ladder, a mean TRF length per lane was then calculated as mean TRF length = 

∑ (ODi)/ ∑ (ODi/Li) where ODi is total radioactivity above background in interval i and Li 
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is the average length of i ladder base pairs. The window for telomere length analysis (lower 

limit: 10 kb; upper limit: 48 kb; fig. A.1) was defined to avoid extrapolation of data points 

at high molecular weights (over the range given by the ladder, see fig. A.1b) that may 

greatly influence telomere measurements (Pauliny et al. 2006, Haussmann and Mauck 

2008). TRF measurements were carried out blindly with respect to qPCR values. Due to 

practical and time constraints, and because TRF measurements are highly repeatable in our 

own and other studies (e.g. Jeanclos et al. 2000, Hall 2004, Haussmann and Mauck 2008), 

we ran each sample singly in the TRF analyses. 

 

Quantitative PCR assay 

Telomere qPCR was performed as described by Cawthon (2002) with the following 

modifications. In both species, genomic DNA was extracted from previously frozen RBC 

using DNeasy Blood and Tissue Kit (Qiagen) and following the manufacturer’s protocol. 

The control single copy gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was 

amplified using the primers GAPDH-F (5’-AACCAGCCAAGTACGATGACAT-3’) and 

GAPDH-R (5’-CCATCAGCAGCAGCCTTCA-3’). These primers are specific to the zebra 

finch GAPDH (Genbank Accession No: AF255390) but also amplify the Alpine swift 

GAPDH gene. Telomere primers were: Tel1b (5’-

CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3’) and tel2b (5’-

GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3’). qPCR for both 

GAPDH and telomeres was performed using 20 ng of DNA per reaction. The telomere 

primers tel1b / tel2b were used at a concentration of 100 nM and 200 nM for zebra finch 

and Alpine swift respectively, and primers GAPDH-F / GAPDH-R at 200 nM in both 

cases, for a final volume of 25 µl containing 12.5 µl of Brilliant®SYBR®Green QPCR 

Master Mix (Stratagene). Telomere and GAPDH real time amplification were performed 

on two different plates. Telomere PCR conditions were 10 min at 95°C followed by 30 

cycles of 1 min at 56°C and 1 min at 95°C. GAPDH PCR started with 10 min at 95°C 

followed by 40 cycles of 1 min at 60°C and 1 min at 95°C. PCRs were performed in a 

Mx3000P® QPCR System (Stratagene). Each 96-well (finch and swift) plates included 

serial dilutions (40ng, 20ng, 10ng, 5 ng of DNA per well), run in triplicate, of DNA from 

the same reference bird for each species, which was used to generate a reference curve to 

control for the amplifying efficiency of the qPCR (amplification efficiencies for GAPDH 

and telomere amplification were 100-105% in zebra finches and 100-110% in alpine 
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swifts; accepted range 100 ± 15%, Stratagene) and to set up the threshold Ct value. The Ct 

of a DNA sample is the fractional number of PCR cycles to which the sample must be 

subjected in order to accumulate enough products to cross a set threshold of magnitude of 

fluorescent signal. All samples other than the reference were run in duplicate. Amplicon 

size for the GAPDH was measured after migration of PCR products on agarose gel, and 

was around 50 bp, which was the size expected by the primers’ design (fig. A.2). Telomere 

length is expressed relative to the internal single gene control (GAPDH) measured on the 

same sample of DNA. Using the standard curves of Tel and GAPDH, dilution factors of 

standards corresponding to the telomere (T) and the single gene control (S) amounts in 

each sample were calculated to obtain a relative T/S ratio, which reflects the length 

differences in telomeric DNA relative to the constant GAPDH amplicon and is calculated 

following the formula: telomere length = 2(-∆Ct) where ∆Ct = Ct
telomere

 – Ct
Gapdh. 

Standardisation of T/S measurements to an internal control, often termed ‘the golden 

sample’ is the usual method of accounting for intra and inter qPCR assay variability 

(Cawthon 2002), and this procedure has been followed in the presentation of results here. 

All qPCR measurements were carried out blindly with respect to TRF values for the same 

bird.  

 

Statistical analyses 

We used Pearson correlation analysis to establish the relationship between telomere 

measurements obtained by TRF and qPCR methods. In order to check that these 

relationships held within young and older birds, and still retain a reasonable sample size 

for each age class, we transformed the data for each species age class to standard normal 

distributions using the relevant age specific mean for adults and older birds. We then 

examined the relationship between the TRF telomere measurement and the qPCR 

measurement for the both the combined young and the combined old birds for each 

species.    

 

Results  

Mean telomere length measured by TRF method ranged from 20 to 30.4 kb in captive 

zebra finches and from 13.7 to 21.5 kb in wild Alpine swifts (fig. A.1).  
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 In both species, Ct
Gapdh and Ct

telomere values obtained by qPCR varied little for the 

same sample, the average co-efficient of variation being around 1-2% (see table A.1), and 

hence we used mean Ct values to calculate the T/S ratio. We found a strong correlation 

between the relative measures of telomere length obtained by qPCR (i.e. the T/S ratio) and 

absolute measurements of telomere length obtained by the TRF method in both the zebra 

finch (r = 0.82, P < 0.001, n = 26) and the Alpine swift (r = 0.76, P = 0.001, n = 15) (fig. 

A.3). When the normalised data for the young birds and the old birds of both species were 

combined, there was a significant relationship between the two measures in both cases 

(young birds: r = 0.66, P = 0.002, n = 19; old birds: r = 0.65, P = 0.001, n = 22). There was 

no relationship between Ct values of our single copy gene (Ct
Gapdh) and age in either the 

zebra finch (r = 0.12, P = 0.56, n = 26) or the Alpine swift (r = 0.10, P = 0.71, n = 15), 

indicating that gene copy number does not change with age in either species. 

 

Discussion 

It is important to remember that qPCR amplification is not restricted to the end-telomeric 

sequence, but is extended to non-telomereic, i.e. interstitial and centromeric, (TTAGGG)n 

sequences (Venkatesan and Price 1998). The avian genome shows a high density of non-

telomeric sequences linked to the important proportion of microchromosomes (Nanda et al. 

2002). When in-gel hybridization is used, as was the case here for the zebra finch, the TRF 

estimates do not include the non-telomeric sequences. Where the Southern blot method is 

used, as was the case here for the Alpine swifts, the TRF measurements will include the 

non-telomeric repeats. Many of these interstitial repeats are likely to be small sequences, 

and may often be below the detection limit of the hybridization method on which the TRF 

is based, or below the lower measurement window on the TRF smear (usually 10 kb). Very 

short sequences are included in the qPCR measurement, since the lower detection limit is 

around 78 base pairs (fig. A.2; see Cawthon 2002). However, for most bird species, we 

simply do not know the pattern of occurrence of interstitial repeats of the telomeric 

sequence. Furthermore, ultra-long telomeres have also been found in some birds (Delany et 

al. 2003), and these are also likely to be included in the qPCR measurement but not in the 

TRF measurement; the magnitude of the effect of these ultra-long telomeres on the TRF 

telomere measurement is unclear and likely to vary amongst species, and amongst age 

classes, but again we generally do not know the pattern in most bird species. This would 

require an in situ hybridization approach, at present likely to be beyond the scope of most 
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ecological studies (Nakagawa et al. 2004). These considerations make it very important to 

examine the correlation between the qPCR method of telomere estimation and the TRF 

measurement. Our study shows that the correlation is good, whatever method in used for 

the TRF measurement, and that the correlation is significant even when only young birds 

are considered. This demonstrates that telomere size evaluation by qPCR is a reliable 

method for estimating telomere length in birds, as has been found in mammals (Cawthon 

2002, Callicot and Womack 2006). The strength of the correlations obtained for both the 

zebra finch and the alpine swift in this study are similar whether the more traditional 

Southern blot approach for TRF measurement is used, (alpine swifts) or the in gel 

hybridization (zebra finches) (fig. 2). The latter suggests that the amount of interstitial 

sequences varies little between individuals, and that most of the variation between 

individuals is a consequence of variation in the end telomere length. A similar result was 

obtained by Callicot and Womack (2006) using Southern Blotting and qPCR in their study 

of mice, which also have extensive interstitial (TTAGGG)n sequences. The correlation 

coefficients between the two methods in the present study (R2 = 0.58 and 0.67) are similar 

to those previously reported in humans (R2 = 0.68, Cawthon 2002) and mice (R2 = 0.66, 

Callicott and Womack 2006). Our results also suggest that variable detection of the ultra-

long telomeres does not cause a problem, perhaps because they are not present in sufficient 

quantities.  However, inclusion of these longer telomeres in the TRF analysis might 

improve the correlations between the two methods further. In future, the sequencing of the 

whole genome of species like the zebra finch will, concomitantly with the development of 

a detailed method of analysis of telomere length (like single telomere length analysis, 

STELA, Baird et al. 2003), enable us to increase the sensitivity of the qPCR approach for 

telomere length measurement in birds. 

 

The qPCR method necessitates the use of a reference gene that does not change 

with age, thereby avoiding the possibility of misleading results (Aviv et al. 2006). 

Although GAPDH may not be a suitable internal control for RNA analyses in ageing 

studies (Lowe et al. 2000), we found no change in GAPDH gene amplification with age in 

either of our study species, thereby confirming that GAPDH can be used as a reference for 

qPCR determination of telomere length in these species. However, while the qPCR method 

appears to be highly suitable for intra- or inter-individual comparisons in telomere sizes 

within a species, it will need more methodological development for inter-specific studies. 

The necessity for each species to share the same single copy gene sequence (Nakagawa et 
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al. 2004), and the need to optimize the primer concentrations for telomeres and the control 

gene, which are likely to be different for each species (see Methods), makes it unlikely that 

inter-specific comparisons of telomere size by qPCR can be done on the same plate using 

the same PCR conditions. In addition, while it is possible to convert the relative measure of 

telomere length obtained by qPCR to an absolute telomere length (Thomas et al. 2008, 

Callaghan et al. 2008), in birds this needs to be adjusted to take account of the level of 

interstitial repeats of the telomeric sequence. While this can be done by in situ 

hybridization, this would need to be done for each species since there is interspecific 

variation amongst birds (Nanda et al. 2002). The qPCR technique is however very well 

suited to analyses of intra-specific variation and intra-individual changes in telomere 

length (since interstitial sequences will remain constant over time, so that any changes in 

the Ct measurement are due to telomere attrition). The speed and relative simplicity of the 

assay will thus make it far easier to process the number of samples that are needed for full 

investigation of the environmental factors that cause changes in telomere dynamics and the 

rate of cellular senescence. 

 

References 
 

Aviv, A., Valdes, A.M. and Spector, T.D. 2006. Human telomere biology: pitfalls of 

moving from the laboratory to epidemiology. - Int. J. Epidemiol. 35: 1424-1429. 

Baird, D.M. 2005. New developments in telomere length analysis. - Exp. Gerontol. 40: 

363-368. 

Baird, D.M., Rowson, J., Wynford-Thomas, D. and Kipling, D. 2003. Extensive allelic 

variation and ultrashort telomeres in senescent human cells. – Nat. Genet. 33: 203-207. 

Bize, P., Gasparini, J., Klopfenstein, A., Altwegg, R. and Roulin, A. 2006. Melanin-based 

coloration is a nondirectional selected sex-specific signal of offspring development in the 

alpine swift. - Evolution 60: 2370-2380. 

Blackburn, E.H. 2001. Switching and signaling at the telomere. - Cell 106: 661-673. 

Blasco, M. 2007. Telomere length, stem cells and aging. – Nat. Chem. Biol. 3: 640-649. 

Callaghan, N.J., Dhillon, V.S., Thomas, P. and Fenech, M. 2008. A quantitative real-time 

PCR method for absolute telomere length. – BioTechniques 44: 807-809. 

Callicott, R.J. and Womack, J.E. 2006. Real-time PCR assay for measurement of mouse 

telomeres. - Comparative Med. 56: 17-22. 



Appendix: qPCR assay for the measurement of avian telomeres 

 126 

Cawthon R.M. 2002. Telomere measurement by quantitative PCR. - Nucleic Acids Res. 

30: E47. 

Delany, M.E., Daniels, L.M., Swanberg, S.E. and Taylor, H.A. 2003. Telomeres in the 

chicken: genome stability and chromosome ends. - Poultry Sci. 82: 917-926. 

Epel E.S., Blackburn, E.H., Lin, J., Dhabhar, F.S., Adler, N.E., Morrow, J.D. and 

Cawthon, R.M. 2004. Accelerated telomere shortening in response to life stress. – Proc. 

Natl. Acad. Sci. USA 101: 17312-17315. 

Hall, M.E. 2004. Senescence and reproductive performance in the European shag 

(Phalacrocorax aristotelis). PhD Thesis, University of Glasgow, UK. 

Hall, M.E., Nasir, L., Daunt, F., Gault, E.A., Croxall, J.P., Wanless, S. and Monaghan, P. 

2004. Telomere loss in relation to age and early environment in long-lived birds. - Proc. 

R. Soc. B271: 1571-1576. 

Haussmann, M.F. and Mauck, R.A. 2008. New strategies for telomere-based age 

estimation. -  Mol. Ecol. Res. 8: 264-274. 

Haussmann, M.F., Winkler, D.W., O’Reilly, K.M., Huntington, C.E., Nisbet, I.C.T. and 

Vleck, C.M. 2003. Telomeres shorten more slowly in long-lived birds and mammals than 

in short-lived ones. – Proc. R. Soc. B270: 1387-1392. 

Haussmann, M.F. and Vleck, C.M. 2002. Telomere length provides a new technique for 

aging animals. - Oecologia 130: 325-328. 

Jeanclos, E., Schork, N.J., Kyvik, K.O., Kimura, M., Skurnick, J.H. and Aviv, A. 2000. 

Telomere length inversely correlates with pulse pressure and is highly familial. 

Hypertension 36: 195-200. 

Koetsier, P.A., Schorr, J. and Doerfler, W. 1993. A rapid optimized protocol for downward 

alkaline Southern blotting of DNA. - BioTechniques 15: 260-262. 

Lessells, C.M. and Boag, P.T. 1987. Unrepeatable repeatabilities: a common mistake. - 

Auk. 104: 116-121. 

Lowe, D.A., Degens, H., Chen, K.D. and Always, S.E. 2000. Glyceraldehyde-3-phosphate 

dehydrogenase varies with age in glycolytic muscles of rats. – J. Gerontol.: Biol. Sci. 

55A: B160-164. 

Monaghan, P. and Haussmann, M.F. 2006. Do telomere dynamics link lifestyle and 

lifespan? - Trends Ecol. Evol. 21: 47-53. 

Nakagawa, S., Gemmell, N.J. and Burke, T. 2004. Measuring vertebrate telomeres: 

applications and limitations. – Mol. Ecol. 13: 2523-2533. 



Appendix: qPCR assay for the measurement of avian telomeres 

 127 

Nanda, I., Schrama, D., Feichtinger, W., Haaf, T., Schartl, M. and Schmid, M. 2002. 

Distribution of telomeric (TTAGGG)n sequences in avian chromosomes. - Chromosoma 

111: 215-227. 

Nordfjäll, K., Larefalk, A., Lindgren, P., Holmberg, D. and Roos, G. 2005. Telomere 

length and heredity: indications of paternal inheritance. - Proc. Natl. Acad. Sci. USA 

102: 16374-16378. 

Pauliny, A., Wagner, R.H., Augustin, J., Szep, T. and Blomqvist D. 2006. Age-

independent telomere length predicts fitness in two bird species. Mol. Ecol. 15: 1681-

1687. 

Thomas, P., Callaghan, N.J.O. and Fenech, M. 2008. Telomere length in white blood cells, 

buccal cells and brain tissue in and its variation with ageing and Alzheimer's disease. 

Mech. Ageing Dev. 129: 183-190.  
Venkatesan, R.N. and Price, C. 1998. Telomerase expression in chickens: constitutive 

activity in somatic tissues and down-regulation in culture. - Proc. Natl. Acad. Sci. USA 

95: 14763-14768. 

Von Zglinicki, T. 2002. Oxidative stress shortens telomeres. - Trends Ecol. Evol.  27: 339-

344. 

Watson, J.D. 1972. Origin of concatameric T4 DNA. - Nature New Biology 239: 197-201. 

Zann, R.A. 1996. The zebra finch: a synthesis of field and laboratory studies. Oxford 

University Press, Oxford. 

 

Acknowledgments 

We are grateful to John Laurie, Graham Law, Christine Gould, Alister Kirk, San Kim and 

Dorothy Armstrong for help with bird husbandry and the Natural Environment Research 

Council for funding (NE/C004353/1 to PM, LN and NBM). The authors would also like to 

thank Dr. Monika Mihm for help with qPCR. PB was funded by a fellowship from the 

Swiss National Research Foundation (PPOOA-109009). 

 



Appendix: qPCR assay for the measurement of avian telomeres 

 128 

Figure legends 
 

Figure A.1: 

Southern blot hybridized with 32P γ-ATP labelled telomeric probe (C3TA2)4 in zebra 

finches (A) and Alpine swifts (B). The size standard is a 48kb ladder ranging from 8 to 48 

kb (second standard on the other end of the gel not shown). Pulse field electrophoresis was 

used to resolve the length of telomere fragments larger than the usual upper limit of 23 kb. 

The mean TRF length was calculated within the outlined window, with reference to the 

size of the standard (shown in kilobases), using TotalLab TL100 software. Lane 5 in the 

zebra finch autoradiographic smear failed. 

 

Figure A.2: 

Agarose gel electrophoresis of qPCR products obtained on 6 different zebra finch samples, 

both for GAPDH and telomere gene amplification. qPCR amplicons were separated in 3% 

agarose gel run in standard TBE buffer (100 V), and visualized by ethidium bromide 

staining. Amplification of GAPDH sequence (lanes 1-6, right handside) led to a product 

size of around 50 pb, which was expected by the alignment of primers on zebra finch 

GAPDH gene sequence (not shown). For telomere qPCR products, a smear with greatest 

intensity around the lowest predicted size (78 pb) was observed (lanes 7-12 on the left 

hand side). The qPCR amplification of this shortest product is expected to be proportional 

to the total telomere length in each sample. 

 

Figure A.3: 

Relationship between relative telomere length obtained by quantitative PCR and mean 

TRF lengths determined by Southern blot analysis in zebra finches (A) and Alpine swifts 

(B). T/S ratios have a value 0 > x > 2.5 because they are relative to the mean ratio (15.08 in 

zebra finches and 14.43 in Alpine swifts) observed among the samples The linear 

regression line best fitting the data are shown for each species. The equations were y = 

4.33x + 20.13, R² = 0.67, p<0.0001 and y = 7.19x + 9.63, R² = 0.55, p<0.0016 for the 

zebra finch and Alpine swift, respectively. 
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Table A.1 Intra-plate correlation (Pearson correlation co-efficients) for the duplicate 

measurements of the telomere assay and for the duplicate GAPDH assay from red blood 

cell DNA samples for 26 zebra finches and 15 Alpine swifts using qPCR. The mean intra-

plate coefficient of variation, calculated for each sample as (100*SD/mean value), is also 

given (± SE) for each species. 

 

     

   
Coefficient of  
correlation (r) 

Coefficient of 
variation 

     

Zebra finch  Ct
GAPDH 0.78 0.95 ± 0.18% 

  Ct
telomere 0.83 2.00 ± 0.34% 

     

Alpine swift  Ct
GAPDH 0.84 1.17 ± 0.21% 

  Ct
telomere 0.92 2.37 ± 0.47% 
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