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Abstract  

Although the central nervous system (CNS) was once considered an 

immunologically privileged site, in recent years it has become increasingly 

evident that cross talk between the immune system and the CNS does occur. As 

a result, patients with chronic inflammatory diseases such as rheumatoid 

arthritis, inflammatory bowel disease or psoriasis are often further burdened 

with neuropsychiatric symptoms such as depression, anxiety and fatigue. Despite 

the recent advances in our understanding of neuroimmune communication 

pathways, the precise effect peripheral immune activation has on neural 

circuitry remains unclear. Therefore, the primary aim of this thesis was to 

develop a better understanding of the bidirectional relationship, and 

communication pathways, that exist between the immune system and the 

nervous system.  

By utilising transcriptomics in a well-characterised murine model of systemic 

inflammation, I have investigated the molecular mechanisms by which 

inflammation originating in the periphery can induce transcriptional modulation 

in the brain. Systemic inflammation was induced in male C57BL/6 mice via 

intraperitoneal injection of lipopolysaccharide (LPS).  After 48 hours, whole 

brain transcriptional profiles were assessed, and compared to that of a vehicle-

treated control group, using Affymetrix GeneChip microarrays. Target gene 

induction, identified by microarray analysis was validated independently using 

QPCR. Expression of the same panel of target genes was then investigated, in 

the brains of mice, following the induction of different sterile, and TLR-

dependent, models of peripheral inflammation.  

Microarray analysis of whole brains collected 48hr after LPS challenge revealed 

increased transcription of a range of interferon-stimulated genes (ISGs) in the 

brain, including a significant upregulation of the classic interferon-induced 

chemokine CXCL10. This transcriptional profile could not be reproduced by the 

systemic administration of TNFα, or following lipoteichoic acid-induced systemic 

inflammation. However, target genes remained induced in the brain following 

daily LPS injections, in the absence of a detectable inflammatory cytokine 

response in the periphery. 
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The central induction of CXCL10 suggests that acute exposure to LPS in the 

periphery may prime the brain for T cell infiltration. This prompted an 

investigation into whether leukocytes infiltrated the brain following daily 

systemic LPS injections. First, the inflammatory chemokine repertoire in the 

brains of LPS treated mice was systematically characterised. In addition to 

Cxcl10, repeated injection of LPS in the periphery triggered a transient increase 

in the transcription of a number of other inflammatory chemokines in the brain. 

Chemokine induction was associated with an influx of leukocytes from the 

periphery, and an increase in mRNA encoding the relevant chemokine receptors. 

Therefore, chemokine induction in the brain following daily systemic LPS 

injections may mediate the recruitment of leukocytes from the periphery.  

The transcriptional response in the brain following systemic LPS challenge is 

indicative of a peripherally triggered inflammatory response in the brain. The 

data described in this thesis highlight a potential mechanism of gene modulation 

in the brain which may be dependent on a TLR-induced type I interferon 

response. Considerable evidence links type I interferons to psychiatric disorders, 

and consequently, interferon production in the brain could represent an 

important mechanism linking peripheral TLR-induced inflammation with 

behavioural changes. In addition, the data described in this thesis demonstrate 

that chronic exposure to LPS in the periphery may remotely modulate the 

recruitment of leukocytes to the brain. This highlights a potential protective 

mechanism that could prevent a chronic bacterial infection from spreading from 

the periphery to the brain. 
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1 Introduction 
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1.1 The Immune Response 

Our bodies are constantly under threat from a multitude of opportunistic 

microorganisms which occupy every square inch of our environment, our skin and 

our mucosal surfaces. Fortunately, we are shielded from this potentially 

pathogenic environment by physical epithelial barriers. However, these barriers 

can be breached and consequently our bodies must be armed with effective 

counter-defence strategies in order to rapidly deter invading pathogens and heal 

damage so that we don’t succumb to infection. To this end, the immune system 

acts as our internal armed forces. Fortified with an arsenal of inflammatory 

mediators and anti-microbial agents, it is well equipped to combat the vast 

majority of threats it encounters in a lifetime. It is constantly vigilant. Some 

leukocyte populations act as sentinels, continuously surveying the extracellular 

environment for any signals alluding to danger. Others act as scouts, circulating 

between lymphoid organs in their search for foreign antigen. Upon detection of 

damage or pathogenic invasion, waves of leukocytes are rapidly recruited to the 

site of injury whilst reinforcements are deployed from the bone marrow. The 

first battalion of leukocytes that arrive at an inflamed site are those affiliated 

with the innate immune system. The innate immune system constitutes the 

immediate and non-specific arm of the immune response. During an infectious 

insult, whilst it battles to control the spread of pathogens, an antigen-specific 

adaptive response is primed in nearby lymph nodes (LNs). Not only do leukocytes 

of the adaptive immune system act as reinforcements in the attack against 

pathogens but they generate immunological memory which protects the host 

from subsequent infections of the same nature. The immune system is intricate, 

dynamic and extremely well coordinated. A complex interplay exists between 

the innate and adaptive arms of the immune response, and the antigen-specific 

host-defence mechanisms, utilized by the adaptive immune system, very much 

complement the highly specialised effector functions of the innate immune 

response. Innate and adaptive immunity will now be discussed in more detail, 

with particular emphasis on some of the key effector mechanisms adopted by 

both systems to provide host protection.  
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1.1.1 Innate Immunity 

Activation of the innate immune system is promptly triggered with the generic 

release of a multitude of inflammatory signalling molecules following any 

physical or pathogenic insult to the body. However, in order to execute an 

appropriate counter-offensive, the innate immune system must first recognise 

when it is injured or under attack. To this end, the innate immune system has 

evolved a myriad of cellular receptors which enable it to recognise different 

pathogenic components, termed pathogen-associated molecular patterns 

(PAMPs), or endogenous molecules that are associated with cell death or injury, 

termed damage-associated molecular patterns (DAMPs). These receptors, 

referred to as pattern-recognition receptors (PRRs), are highly specific for 

different molecular patterns from different sources. They therefore allow 

immune cells to tailor their effector responses according to different types of 

infection or injury. The best characterised of the PRRs are the members of the 

Toll-like receptor (TLR) family which reside within cellular membranes. TLRs can 

therefore recognise PAMPs or DAMPs that are present in either the extracellular 

environment or within membrane-bound vesicles. Humans and mice have 10 and 

13 functioning TLRs respectively1. Although TLRs 1-9 each have a distinct 

specificity, the ligands for human TLR10 and murine TLRs 11-13 have yet to be 

defined. TLR ligation triggers an intracellular signalling cascade which 

culminates in the transcription of numerous genes encoding relevant 

inflammatory mediators such as cytokines and chemokines1. Complementing the 

action of TLRs, Nod-like receptors (NLRs) reside within the cytoplasm where they 

are strategically positioned to recognise intracellular PAMPs and DAMPs and, 

depending on the receptor, generate an appropriate transcriptional response or 

activate the inflammasome1,2. Activation of the inflammasome contributes to 

the inflammatory response by cleaving certain cytokines, including IL-1β; 

transforming them to an active state. Like NLRs, Rig-like receptors (RLRs) also 

reside in the cytoplasm. This family of PRRs predominantly recognise virally-

derived PAMPS and therefore their ligation is typically associated with the 

induction of anti-viral mediators such as interferons (IFNs)1,2. The broad-

spectrum release of inflammatory mediators that occurs as a result of PRR 

ligation is one of the initiating steps in a cascade of events which shapes innate 

and adaptive immune responses and triggers the four cardinal features of acute 

inflammation; heat, redness, swelling and pain. 
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Amongst their various actions, inflammatory mediators induce activation and 

vasodilation of nearby blood vessels3. Not only does this increase blood flow to 

the site of injury, but activated endothelial cells upregulate cellular adhesion 

molecules which facilitate interactions between circulating leukocytes and the 

endothelium. Activation of the vasculature also stimulates the release of clotting 

factors and platelet aggregation which, depending on the nature of the injury, 

can either minimise blood loss or prevent the spread of pathogens to the blood 

stream3. The induction of an acute inflammatory insult promptly triggers a wave 

of innate leukocyte populations to infiltrate and accumulate within the inflamed 

site3. Leukocyte infiltration is initiated, coordinated and maintained by 

inflammatory mediators such as cytokines (Section 1.1.4) and chemokines 

(Section 1.1.6). Inflammatory mediators also play a role in blood vessel dilation3. 

Within dilated blood vessels, although blood flow increases, its velocity 

decreases. This leads to an increased number of leukocytes passing slowly 

through the inflamed vasculature and is therefore the cause of two of the 

classical features of acute inflammation; redness and heat3. Interactions 

between chemokines and their receptors enable leukocytes to adhere to 

activated endothelial cells and extravasate from the blood to the inflamed tissue 

(Section 1.1.6). During acute inflammatory responses, the permeability of the 

vasculature increases resulting in swelling, or oedema3. In addition to permitting 

the ingress of protective plasma proteins from the circulation, this expedites the 

infiltration of leukocytes. Neutrophils, a short-lived population of innate 

granulocytes, are the first leukocytes to arrive on the scene3. Due to their 

multifaceted approach to host defence, neutrophils play a pivotal role in acute 

inflammatory responses. They have numerous strategies for clearing pathogens 

from an infected site. Not only are they skilled at phagocytosis, but they are 

armed with a battery of cytokines, chemokines and highly-reactive anti-

microbial peptides contained within intracellular granules4. These granules are 

rapidly deployed to the plasma membrane and their contents released following 

neutrophil activation. Within the cell, phagosomes containing engulfed 

microorganisms fuse with granules to form phagolysosomes5. This triggers the 

formation of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 

enzyme complex, subsequently generating reactive oxygen species (ROS) within 

phagolysosomes5. Pathogens are therefore exposed to anti-microbial agents 

within a highly-oxidative environment which culminates in their inactivation and 
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their subsequent death. When activated, neutrophils can also rapidly release 

ROS into the extracellular environment6. Although this can contribute to 

pathogen clearance, it may also lead to bystander tissue damage and therefore 

amplify local inflammation. Moreover, neutrophils release structures known as 

neutrophil extracellular traps (NETs)5. Composed of a web-like complex of 

nuclear components and anti-microbial granular proteins, these NETs trap, 

neutralise and destroy extracellular microorganisms. Neutrophils can also be 

activated to produce a number of inflammatory cytokines and chemokines which 

amplify local inflammatory responses and promote further leukocyte infiltration, 

particularly the infiltration of ‘inflammatory’ monocytes7 (Section 1.1.6.2). Once 

in the tissue, monocytes rapidly differentiate into macrophages and monocyte-

derived dendritic cells (DCs). Therefore, not only are neutrophil effector 

functions important for pathogen clearance, but they drive the immune response 

forward by attracting macrophages and monocyte-derived DCs to the site. 

Like neutrophils, macrophages are proficient phagocytes. During steady state 

conditions, their basal duty is to clear cell debris, erythrocytes and apoptotic 

cells8. This they do efficiently. However, macrophages are equipped with a 

whole spectrum of PRRs2 which makes them one of the primary sensors of 

pathogenic insults or mechanical injuries to the host. Macrophages are a highly 

plastic population of leukocytes. Upon recognition of danger signals, they rapidly 

change morphology and differentiate into classically-activated (M1) 

macrophages8. By secreting an abundance of cytokines, chemokines and 

inflammatory agents, these can both contribute to innate host defence and 

shape adaptive immune responses. One of the main characteristics of M1 

macrophages is their ability to activate NADPH oxidase and to produce the 

inducible form of nitric oxide synthase (iNOS)9. These result in the synthesis of 

ROS and nitric oxide (NO), which both play an integral role in host defence, 

allowing M1 macrophages to mount an effective antimicrobial defence. ROS and 

NO can function within the cell, to combat intracellular pathogens, or may be 

released into the extracellular environment along with other microbicidal agents 

that contribute to host defence10. During the resolution of inflammatory 

responses, macrophages differentiate into alternatively activated macrophages 

and contribute to would healing and suppression of the inflammatory milieu8. 
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As DCs can also phagocytose microbes and produce inflammatory cytokines, they 

too contribute to innate immune responses. However DCs are best known for 

their key role in transporting antigen to the lymph nodes (LNs) where they can 

present it to naïve lymphocytes in order to prime and shape adaptive immune 

responses (Section 1.1.2). Another cell population that plays a role in innate 

immune responses are natural killer (NK) cells. NK cells are rapidly recruited to 

sites of inflammation where they become activated by inflammatory cytokines 

and other danger signals11. During infection they live up to their name by 

targeting and killing infected cells. Furthermore they produce inflammatory 

cytokines that enhance the microbicidal actions of macrophages8. Therefore, a 

number of innate effector cells are sequentially recruited to sites of infection or 

injury. Via a complex interplay, these cell populations cooperate in the 

induction, maintenance and resolution of inflammatory responses and in the 

clearance of invading pathogens. In addition, a number of these innate 

leukocytes contribute to inducing and shaping the appropriate adaptive immune 

response (Section 1.1.2). 

Amongst the repertoire of inflammatory agents that are produced during acute 

inflammatory responses are complement components and lipid mediators such as 

prostaglandins. The complement system is integrally involved in host defence. 

Complement components bind to pathogenic or apoptotic cell surfaces to trigger 

a cascade of proteolytic events which ultimately lead to opsonisation of their 

targets12. Opsonised cells or pathogens can be readily cleared from the 

environment by phagocytosis. Prostaglandins are immune modulators which are 

involved both in the induction phase and in the resolution phase of immune 

responses13. They can be rapidly synthesised from membrane-released 

arachidonic acid by a number of cell types following a pathogenic insult or 

trauma. This requires the sequential induction of cyclooxygenase (COX) enzymes 

followed by prostaglandin synthases13. Prostaglandins have a diverse range of 

functions. They contribute to the inflammatory response by promoting 

vasodilation, vascular permeability and subsequent oedema14. In addition, 

prostaglandins play a role in inducing fever (Section 1.4.2.2) and pain15, one of 

the cardinal features of inflammation. During the course of an inflammatory 

response, prostaglandins gradually induce the expression of anti-inflammatory 

lipid mediators which promote the resolution of inflammation16. 
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Inflammation also leads to systemic effects that contribute to host defence. 

Inflammatory chemokines can recruit mature leukocytes from the bone marrow 

thus increasing their numbers in the circulation17,18. In addition, an acute phase 

response is stimulated in the liver. A vast number of acute phase proteins can be 

secreted from the liver into the circulation19. These have an assortment of 

functions which collectively promote host defence. Acute phase proteins 

include: opsonins, such as C-reactive protein, serum amyloid A and various 

complement components; coagulation factors, such as fibrinogen and von 

Willebrand factor; and factors such as ferritin and transferrin, which sequester 

free iron19. In summary, following a pathogenic insult or mechanical trauma, the 

concerted action of a host of inflammatory mediators, innate leukocytes and 

antimicrobial peptides function both locally and systemically to aid host 

defence. 

1.1.2 Adaptive Immunity 

Adaptive immunity is a lymphocyte-dependent antigen-specific response to 

invading pathogens. Antigen uptake in the presence of danger signals causes 

tissue-resident DCs to alter their surface marker expression and migrate through 

lymphatic vessels to the draining LNs3. Free antigen can also travel to draining 

LNs through the lymphatics20. It then filters through the subcapsular sinus and, 

depending on its size, into the LN conduit system. In the T cell zones of LNs, 

small antigen is continuously sampled from conduits by LN-resident DCs20. To 

initiate adaptive immune responses, mature antigen-loaded DCs must first 

present their antigen to T cells and provide the relevant signals required for T 

cell priming3,21. Once they encounter DCs bearing their cognate antigen, T cells 

undergo clonal expansion and differentiate into an assortment of effector T 

cells, memory T cells and follicular helper cells. Effector T cells promptly 

migrate to the site of infection to carry out their appropriate host-defence 

functions, whereas follicular helper cells remain in the LN and travel to the 

follicle/T cell zone boundary to prime antigen-specific B cell responses22. 

Simultaneously, within the follicles of the LN, B cells can acquire certain kinds 

of antigen from a specialised population of subcapsular sinus macrophages which 

scavenge particulate antigen from the lymph23,24. Following specific antigen 

uptake, B cells migrate towards the T cell zones and present antigen to follicular 

helper cells25. Only when an antigen-experienced T cell encounters its cognate 
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antigen on the B cell surface will full B cell priming occur. Primed B cells then 

clonally expand, differentiating into memory B cells or antibody-secreting 

plasma cells, which migrate to the spleen and bone marrow and secrete large 

amounts of antibodies into the circulation. 

The effector T cell population that is generated during an adaptive immune 

response is diverse. Depending on the cytokine repertoire present during T cell 

priming, effector CD4+ T cells can adopt one of a variety of possible phenotypes. 

For example, Th1 cells, primed in response to interleukin (IL)-12, produce vast 

amounts of IFNγ and contribute to the immune response against intracellular 

bacterial infection26, whereas Th2 cells, primed in response to IL-4, produce IL-

4, IL-5 and IL-13 and contribute to the host-response against helminths26. In 

addition to these well characterised CD4+ T cell populations are Th9 cells, Th17 

cells and Th22 cells27. Whilst Th17 cells have been associated with the immune 

response against extracellular pathogens, such as bacteria and fungi, both Th9 

cells and Th22 cells are newly described and any roles these cell populations 

might have, outside a general contribution to tissue inflammation, have yet to 

be established27. In contrast, the phenotypic outcome for a primed CD8+ T cell is 

less ambiguous. Once activated, CD8+ T cells transform into cytotoxic killing 

machines which target infected, cancerous or damaged cells for programmed 

cell death3,28. 

In addition to producing an antigen-specific effector response, the priming of 

adaptive immunity generates immunological memory. Following a primary 

exposure to antigen, the frequency of lymphocytes that are specific for this 

antigen increases dramatically. Although the majority of these lymphocytes are 

short-lived effector cells, a proportion of them, known as clonally expanded 

memory lymphocytes, can persist in the body for a lifetime29. Different 

populations of memory lymphocytes include CD8+ memory T cells, CD4+ effector 

memory T cells (TEM), CD4+ central memory T cells (TCM) and memory B cells. 

Aside from TEM cells, all of these memory cells express lymphoid tissue homing 

molecules, such as CCR729,30 (Section 1.1.6.2). Like naïve lymphocytes, these cell 

populations circulate between secondary lymphoid organs scouting for antigen. 

However, during recall responses, they expand much more rapidly than naïve 

lymphocytes following an initial pathogen encounter31. In contrast, TEM cells do 

not retain a lymphoid tissue homing phenotype. Instead they express 
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inflammatory chemokine receptors and integrins which enable them to rapidly 

infiltrate inflamed tissues29. In addition to a faster response, memory 

lymphocytes respond to antigen with greater potency than naïve or effector 

lymphocytes31. Therefore due to their long lifespan, their enrichment in the 

circulation and their heightened ability to respond to pathogens, memory 

lymphocytes protect the host against subsequent infections with the same 

pathogen following an initial exposure.  

1.1.3 Cytokines: an intercellular communication system 

The cytokine superfamily encompasses a large number of small protein moieties 

which collectively provide a network of communication between virtually every 

cell type of the body. These cellular communication molecules have a highly 

diverse range of physiological functions. Amongst their multitude of roles in 

immune system communication, cytokines are critically involved in the 

organogenesis of secondary lymphoid organs, the induction and resolution of 

inflammation, the modulation of host defence mechanisms and the coordination 

of leukocyte migration (Section 1.1.6). As this thesis is exclusively focused on 

immune and nervous system responses during experimental inflammatory 

models, only the cytokines that are relevant to this work are discussed in more 

detail below. These include cytokines which have a role in modulating 

inflammation and host defence, such as IFNs and inflammatory cytokines, and 

chemokines, which coordinate leukocyte migration. 

1.1.4 Inflammatory cytokines 

‘Inflammatory cytokines’ is an umbrella term covering a range of inducible 

cytokines which are known to amplify inflammatory responses. Three 

prototypical inflammatory cytokines released early after infection or tissue 

damage are tumour necrosis factor-α (TNFα) and two members of the interleukin 

(IL) family, IL-1β and IL-6. The release of these proteins is triggered following a 

physical or pathogenic insult to the body. By acting in an autocrine and 

paracrine manner, inflammatory cytokines stimulate a cascade of events leading 

to local inflammation. IL-1β, IL-6 and TNFα share the capacity to induce 

activation, vasodilation and permeablisation of nearby blood vessels3. This 

increases blood flow to the site of injury, contributes to the influx of plasma 



27 

proteins to the tissue and enhances the release of clotting factors from the 

endothelium3. In addition, inflammatory cytokines, particularly TNFα, are potent 

activators of tissue macrophages2. By inducing further cytokine and NO 

production, this amplifies the local inflammatory response. Thus inflammatory 

cytokines are rapidly induced in response to tissue damage or pathogen 

detection. As part of a protective host response, these cytokines act locally to 

contribute to the four characteristic hallmarks of inflammation: heat, redness, 

swelling and pain. 

IL-1β, IL-6 and TNFα also function in an endocrine manner. Acting at sites distal 

to their production, these inflammatory cytokines trigger a number of systemic 

effects that augment the host response to infection. For example, they can 

stimulate the production of acute phase proteins from hepatocytes in the liver, 

thus contributing to the acute phase response3. Furthermore, inflammatory 

cytokines induce fever and a number of behavioural symptoms that are 

associated with sickness (Section 1.4.1). There are several ways in which fever 

can aid host defence. As some pathogens are thermosensitive, an increase in 

body temperature may help curtail their replication32. Furthermore, 

hyperthermia can enhance many metabolic processes involved in the effector 

mechanisms of both the innate and the adaptive immune response32-34. 

Inflammatory cytokine-induced behavioural changes, such as fatigue and social 

withdrawal, are also beneficial to the host as they promote energy conservation 

and reduce the risk of exposure to further dangerous stimuli35. Therefore 

inflammatory cytokines, such as IL-1β, IL-6 and TNFα, have a combination of 

local and systemic effects which ultimately promote leukocyte migration to the 

site of injury, aid pathogen clearance and prevent the spread of infection. 

1.1.5 Interferons 

First named for their ability to interfere with viral replication, IFNs comprise a 

panel of cytokines that are integrally involved in host defence. IFNs can bind to 

one of three types of IFN receptor and are therefore classified accordingly. 

Those that bind to the ubiquitously expressed IFN-α/β receptor (IFNAR) are 

termed type I IFNs. In mammals there are approximately 20 members of this IFN 

subfamily. These include, but are not limited to, various types of IFNα (13 in 

humans and 14 in mice) and usually a single IFNβ. The recently discovered type 
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III IFNs engage the IFNλ receptor (IFNLR)36. To date, there are 3 known members 

of this subfamily; IFNλ1 (IL-29), IFNλ2 (IL-28A) and IFNλ3 (IL-28B)37. Unlike the 

type I IFNAR, the type III IFN receptor is expressed predominantly by epithelial 

cells in certain tissues, such as the kidney and the brain38. The only known type 

II IFN, IFNγ, binds to the widely distributed IFNγ receptor (IFNGR). Through 

similar signal transduction pathways, the ligation of these IFN receptors can 

induce the expression of thousands of IFN-stimulated genes (ISGs)39 (Figure 1.1).  

Up until relatively recently, the general dogma regarding type I and II IFN 

responses stated that ISGs induced by type I IFNs had a prominent role in 

combating viral infections, whereas those induced by type II IFNs were part of 

the host response against intracellular microbes. This view is supported by a 

battery of evidence to suggest that antiviral and antimicrobial responses are 

profoundly impaired in IFNAR- and IFNγ-deficient rodents respectively40-48. 

Furthermore, ISGs associated with type I IFNs often encode proteins with 

antiviral properties. For example, their induced protein repertoire includes a 

number of 2’,5’ oligoadenylate synthases (OAS), which block the spread of 

infections by degrading viral RNAs49. They also induce members of the Mx family 

of GTPases, which suppress replication by inhibiting the intracellular transport 

of viral proteins (Reviewed in Ref 50). In contrast, type II ISGs often encode 

proteins with microbicidal properties, such as iNOS51, a crucial enzyme involved 

in the synthesis of NO. These reports confirm a pivotal role for type I and type II 

IFNs in mediating antiviral and antimicrobial responses respectively. Like type I 

IFNs, the type III IFN subfamily are also inducible following viral infections52. 

Although less is known about this particular IFN category, they have been shown 

to activate similar signalling pathways to type I IFNs36,52,53 (Figure 1.1), and thus 

induce a similar ISG expression profile. Furthermore, type III IFNs can modulate 

host responses to certain viral infections in vivo52,54.  

Taken together, the data above have led to the general view that type I and 

type III IFNs induce an antiviral immune response whereas type II IFNs mediate 

responses to intracellular bacteria. However, whilst this may be true, to 

distinguish IFN subfamilies purely based on these physiological functions is too 

simplistic. In fact, there is a considerable degree of overlap between the ISG 

repertoires that are induced by these different classes of IFNs39. It is likely this is 

at least partially due to the ability of type I and type III IFNs to stimulate 
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transcription of type II ISGs55 (Figure 1.1). The similar transcriptional profile 

shared by the three IFN subtypes, suggests that type I and/or type III IFNs may 

share some of the same physiological functions as the type II IFN subfamily. In 

support of this, type II IFNs are produced during certain viral infections. Studies 

using IFNγ-deficient mice have demonstrated the involvement of type II IFNs in 

modulating a proportion of antiviral responses43,56-58. Furthermore, the induction 

of type I and type III IFNs has been described during a number of intracellular 

bacterial infections59-63. By suppressing bacterial growth or replication, type I 

IFNs appear to have a supportive role in host defence during a variety of 

intracellular microbial infections60,62-65. However, the role of type I IFNs in 

antimicrobial immunity is not clear-cut. By suppressing the innate immune 

system and sensitising infected cells to bacterial-induced apoptosis, the 

production of type I IFNs can have a deleterious effect during certain other 

bacterial infections, such as Listeria monocytogenes and Francisella tularensis66-

69. Due to the similarities in the signalling pathways utilized by both type I and 

type III IFNs, it could be predicted that type III IFNs also have similar complex 

roles in modulating specific antimicrobial responses. However, as this cytokine 

subfamily has only recently been described, their role in bacterial infection is 

yet to be established in vivo. In summary, these findings imply that it may be 

inaccurate to pigeonhole IFN subfamilies as being either antiviral or 

antimicrobial. IFNs of all categories are produced in response to a wide array of 

pathogenic stimuli and depending on the cell populations involved, or the nature 

of these stimuli, specific IFN subtypes might function cooperatively or 

individually to induce the relevant host defence mechanisms. 
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Figure 1.1 IFN receptor signalling pathways. 
Interferons (IFNs) bind to one of three heterodimeric IFN receptors. The only known type II IFN, 
IFNγ, binds to the IFNγ receptor. This receptor is composed of an IFNGR1- and an IFNGR2-chain 
which associate intracellularly with the Janus activated kinases (JAKs), JAK1 and JAK2. Receptor 
ligation leads to the downstream phophorylation and homodimerisation of signal transducer and 
activator of transcription (STAT) 1 molecules. Activated STAT1 homodimers form a transcription 
factor known as the IFNγ-activated factor (GAF). GAF subsequently translocates to the nucleus 
and stimulates the transcription of IFN-stimulated genes (ISGs) that contain an IFNγ-activated site 
(GAS) in their promoter region. The type I IFN receptor, which consists of the two subunits; 
IFNAR1 and IFNAR2, and the type III IFN receptor, which is comprised of IFNLR1 and IL-10R2, 
both associate with JAK1 and tyrosine kinase (TKY) 2. Ligation of either receptor triggers the 
phophorylation of STAT1 and STAT2. This results in the formation of the IFN-stimulated gene 
factor 3 (ISGF3), a transcription factor complex which comprises a STAT1:STAT2 heterodimer and 
an associated IFN regulatory factor, IRF9. ISGF3 stimulates the transcription of ISGs by binding to 
the IFN-stimulated response element (ISRE). In addition to activating ISGF3, ligation of either the 
type I or the type III IFN receptor can lead to the formation of GAF and the subsequent transcription 
of GAS-associated ISGs. 

 

1.1.6 Chemokines 

Chemokines, or chemotactic cytokines, are small, diverse proteins with a key 

role in inducing the directed migration of target leukocytes. They can be 

categorised into four subfamilies: CXC/α chemokines, CC/β chemokines, XC/γ 
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chemokines and CX3C/δ chemokines70. Intramolecular di-sulphide bonds between 

conserved cysteine residues dictate both the tertiary structure of chemokines 

and their subsequent nomenclature70,71 (Figure 1.2). With 28 and 16 members 

respectively, CC- and CXC-chemokines represent the largest of the chemokine 

families. Both XC- and CX3C-chemokine sub-groups contain only a single member 

known to-date71. Although chemokines have a multitude of functions in vivo, 

their best characterised role is to orchestrate leukocyte migration, both during 

homeostasis and inflammation.  

 

A B

C D

 

Figure 1.2 Conserved Structures of the Four Chemokine Families. 
Chemokines are classified according to the assembly of cysteine residues located near the amino-
terminus (-NH2). (A) The sole member of the XC chemokines, XCL1, has one cysteine residue near 
the amino terminus. (B) CC chemokines have two adjacent cysteine residues near the amino 
terminal. (C) CXC chemokines have two cysteine residues at the amino-terminus which are 
separated by a non-conserved amino acid residue. (D) The only known member of the CX3C 
family, CX3CL1 (fractalkine), has two cysteine residues at the amino-terminus which are separated 
by three non-conserved amino acid residues. CX3CL1 and CXC family member CXCL16, have an 
adhesive mucin-like domain, a membrane-spanning hydrophobic α-helix and a short cytoplasmic 
tail. CX3CL1 and CXCL16 are the only transmembrane chemokines that have been discovered.   

 

Chemokines exert their functions by binding to 7 transmembrane-spanning G 

protein-coupled receptors (GPCRs), activating a cascade of downstream 

signalling pathways. These chemokine receptors are classified according to the 

chemokine ligands to which they bind. There are 10 known CC receptors and 6 

known CXC receptors72. CX3C and XC receptor families both consist of one known 

member72. Leukocytes express specific chemokine receptor profiles which will 
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depend on each cell’s lineage and activation state73. This receptor profile will 

dictate where each cell has the capacity to migrate to in vivo. The majority of 

CC chemokine receptors and 3 out of the 6 known CXC receptors have more than 

one chemokine ligand (Table 1.1). Likewise, many of the CC and CXC chemokines 

can bind to more than one receptor71,72. Not only does this promiscuity allow 

many of the chemokine systems to adopt an element of redundancy74, but it 

enable chemokines to finely tune immune responses. 

Receptors Ligands 

  

CC Receptors  

CCR1 CCL3, CCL3L1, CCL5, CCL7, CCL8, CCL13, CCL14, CCL15, CCL16, CCL23 

CCR2 CCL2, CCL7, CCL8, CCL13, CCL16 

CCR3 CCL5, CCL7, CCL8, CCL11, CCL13, CCL15, CCL24, CCL26, CCL28 

CCR4 CCL17, CCL22 

CCR5 CCL3, CCL3L1, CCL4, CCL4L1, CCL5, CCL8 

CCR6 CCL20 

CCR7 CCL19, CCL21 

CCR8 CCL1 

CCR9 CCL25 

CCR10 CCL27, CCL28 

  

CXC Receptors  

CXCR1 CXCL6, CXCL8 

CXCR2 CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, CXCL8 

CXCR3 CXCL9, CXCL10, CXCL11 

CXCR4 CXCL12 

CXCR5 CXCL13 

CXCR6 CXCL16 

  

CX3C Receptor  

CX3CR1 CX3CL1 

  

XC Receptor  

XCR1 XCL1 

Table 1.1 Chemokine receptors and their specific ligands. 
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1.1.6.1 Coordinating leukocyte migration 

Chemokines are best known for their role in inducing chemotaxis, the process 

whereby the directed migration of cells is dictated by a chemical gradient. By 

ligating chemokine receptors and thus activating G protein-mediated signalling 

pathways, these chemotactic cues trigger a series of conformational and 

molecular changes within leukocytes to promote their directed mobility75. 

Despite the fact that leukocytes migrate towards soluble chemokine gradients in 

vitro, the evidence to suggest that this phenomenon occurs in vivo is sparse. 

A prototypical example of chemokine function in vivo is their role in facilitating 

leukocyte recruitment to tissues. Rather than involving a chemokine gradient, 

this particular function is dependent on immobilised chemokines, presented on 

the surface of the endothelium76. All leukocytes express a specific combination 

of cellular adhesion molecules and chemokine receptors. This combination of 

surface molecules forms a site-specific molecular “postcode” which governs 

leukocyte entry to tissues both in homeostasis and inflammation. To enter a 

tissue from the circulation, leukocytes must first cross the vascular wall. 

Leukocyte recruitment is a complex and tightly controlled process which, for the 

sake of simplicity, can be broken down into a series of generalised stages 

(depicted in Figure 1.3). Leukocytes begin by rolling along the endothelium. 

Initial contact is generally mediated by transient interactions between selectins 

on the endothelial surface and glycosylated ligands on the leukocyte 

membrane77. If they express the appropriate chemokine receptor, leukocytes 

will receive signals from immobilised chemokines that are presented on the 

surface of the vascular endothelial cells. Via G protein mediated signalling 

pathways, chemokine receptor ligation triggers conformational changes within a 

leukocyte to induce integrin clustering and activation77. Activated integrins bind 

to cellular adhesion molecules from the Ig superfamily with high affinity, thus 

triggering the firm arrest of leukocytes to vascular endothelial cells. This is 

followed by their diapedesis across endothelial cell junctions and into tissues77. 

Therefore, the recruitment of circulating leukocytes to tissues follows a specific 

sequence of tightly controlled events that is dependent on the expression of 

adhesion molecules, by both leukocytes and endothelial cells, and the 

presentation of chemokines on the surface of the endothelium. 
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Much less is known about how chemokines control the migration of leukocytes 

once they have entered a tissue. Studies using chemokine receptor deficient 

rodents have highlighted the fundamental role of specific chemokine systems in 

the positioning and retention of leukocytes within tissues. An example of this is 

the role of the CCR7 ligands, CCL19 and CCL21, and the CXCR5 ligand, CXCL13, 

in the positioning of lymphocytes within specific LN microenvironments 

(discussed in Section 1.1.6.2). In 2005, Okada et al. demonstrated a CCL21 

gradient in the LN, extending from the T cell zone towards the follicles25. This 

was the first time a chemokine gradient had been visualised in vivo. Using 

intravital microscopy, Okada et al. also showed that B cells migrated in a 

random manner within LN follicles. Following antigen encounter, B cells 

upregulated the CCL21 receptor, CCR7, which promoted their directed migration 

towards the follicle/T cell zone boundary25. This indicates that a functional 

CCL21 gradient may exist within the LNs. Due to the constitutive movement of 

fluids within tissues, a soluble chemokine gradient would be difficult to maintain 

in vivo. Chemokines are often bound and “presented” by sulphated residues on 

cell surfaces or within the extracellular matrix76. It therefore remains to be 

established whether chemokine receptor ligation induces the random motility of 

leukocytes (chemokinesis), or whether the directed migration of leukocytes is 

triggered by immobilised chemokine gradients (haptotaxis). In support of the 

latter, Weber et al. demonstrated that interstitial gradients of immobilised 

CCL21 extend from the lymphatic endothelium into the skin78. This gradient was 

shown to be functional as it was essential for the directed migration of DCs into 

lymphatic vessels, as demonstrated using intravital microscopy. Thus, leukocytes 

respond to chemokines in vivo, but it is unclear whether their movement is 

dictated by a process of chemotaxis, chemokinesis or haptotaxis. What is clear is 

that chemokines and their receptors are crucially involved in inducing leukocyte 

motility and in the strategic positioning of leukocytes within tissues. 
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Figure 1.3 Leukocyte recruitment to tissues. 
Migration of leukocytes to tissues occurs in a series of stages. (1) Transient interactions between 
selectins and glycosylated ligands facilitate the rolling of leukocytes along the activated 
endothelium. (2) Chemokines (ChKs), displayed on the surface of the endothelium, bind to 
leukocyte chemokine receptors (ChK Rs) to activate integrins. (3) Activated integrins bind to 
cellular adhesion molecules (CAM) to induce firm adhesion of leukocytes to the endothelial surface. 
This is followed by diapedesis (4) across inter-endothelial junctions. Once in the tissues, 
chemokines govern the directed migration of leukocytes to their target location. This may be 
facilitated by chemokine gradients. 

1.1.6.2 Chemokines during homeostasis and inflammation 

Chemokines coordinate leukocyte migration during doth homeostatic and 

inflammatory conditions. Thus, depending on their role in vivo, chemokines can 

be classified as being ‘homeostatic’ or ‘inflammatory’. However, it is important 

to note that this rule is not absolute. A degree of overlap exists between these 

sub-categories. For example, the production of a number of ‘homeostatic’ 

chemokines can be enhanced during inflammatory conditions and many of the 

chemokines considered ‘inflammatory’ have a key role during homeostasis71. 
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Under steady state conditions, ‘homeostatic’ chemokine production is 

constitutive and strictly regulated. These chemokines are expressed in discrete 

regions within specific tissues to facilitate the targeted migration of patrolling 

leukocytes throughout the body. An ideal example of this cell- and tissue-

specific phenomenon is the highly synchronised action of the homeostatic 

chemokines, CCL19, CCL21 and CXCL13. CCL19 and CCL21 function through the 

chemokine receptor CCR779,80. CCR7 ligation is involved in the recruitment of 

naïve T cells to the LNs and in the targeting of T cells to specific LN 

microenvironments81. Furthermore, CCR7 and its ligands play a role in the 

homing of DCs through the lymphatics to T zones of the LNs, where they will 

encounter patrolling T cells21,81. B cells also utilise CCR7 to enter the LN. 

However, upon entering the LN, B cells migrate to specific B cell follicles. This is 

dependent on interactions between CXCR5, expressed on the surface of B cells, 

and its ligand CXCL13 which is produced within follicles82. Thus, in the steady 

state, CCL19, CCL21 and CXCL13 collectively coordinate a finely tuned series of 

events leading to the specific positioning of leukocytes within specialised LN 

microenvironments.  

One of the most important homeostatic chemokines, particularly in terms of 

development, is CXCL12 which functions primarily by binding to CXCR4. CXCL12 

was the first chemokine to evolve. It is highly conserved across many species, 

including lower vertebrates83,84 and is hence considered the ‘primordial 

chemokine’. Moreover, both CXCL12- and CXCR4- deficiencies have proven to be 

perinatally lethal in mice due to abnormalities, particularly in haematopoiesis 

and cerebellar formation85-87. Thus CXCL12 is crucial for both immune system 

and brain development. The CXCL12/CXCR4 axis also plays a number of 

prominent roles during adult life. For example CXCL12 is intrinsically involved in 

the homing to and retention of haematopoietic stem cells in the bone marrow88. 

In addition, CXCL12 may have a number of roles in the central nervous system 

(CNS) during steady-state conditions. These are described in detail in Section 

1.3.2.1. 

As the name suggests, ‘inflammatory’ chemokines are highly inducible following 

virtually any pathogenic insult. Their primary function is to recruit the 

appropriate leukocyte populations to sites of inflammation. Many inflammatory 

chemokines exist. As they are of particular relevance to this thesis, the actions 
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of CCL2, CCL3, CCL5, CXCL1, CXCL2, CXCL9 and CXCL10 will now be discussed. 

Both CXCL1 and CXCL2 are rapidly induced during acute inflammatory responses. 

These molecules exert their chemotactic functions by ligating CXCR2, a receptor 

predominantly expressed by neutrophils89-91. In addition to promoting 

chemotaxis, CXCR2 ligation is thought to contribute to other aspects of 

neutrophil activation, including degranulation and cytokine production92. By 

activating endothelial cells in nearby blood vessels, proteins released during 

degranulation can induce the secretion of CCL2 from the endothelium90. CCL2 is 

a potent chemoattractant for circulating ‘inflammatory’ monocytes which 

express CCR293,94. Thus, neutrophil recruitment to inflamed tissues generally 

precedes the infiltration of ‘inflammatory’ monocytes.  

In addition to CCR2, ‘inflammatory’ monocytes have been reported to express 

CCR193. Like CCR5 (discussed below), CCR1 responds to the chemokines CCL3 and 

CCL5. However, the ability of CCL3 to attract ‘inflammatory’ monocytes in vitro 

has been shown to be considerably weaker than that of CCL2, suggesting that 

CCR2 may be the predominant chemokine receptor involved in the recruitment 

of this monocyte subpopulation95. Circulating monocytes can rapidly 

differentiate into macrophages once they reach an inflamed tissue. This is 

associated with an upregulation of chemokine receptors CCR1 and CCR5 and a 

downregulation of CCR295,96. As both CCR1 and CCR5 respond to the shared 

ligands, CCL3 and CCL5, this paradigm shift means that differentiated 

macrophages are more susceptible to the chemoattracting actions of both of 

these chemokines, and less susceptible to CCL295. CCL3 and CCL5 also have the 

capacity to attract ‘resident’ monocytes, which are known to express CCR594.  

CXCLs9-11 are IFN-inducible chemokines which are commonly induced during Th1 

cell-mediated immune responses97-99. Whilst their shared receptor, CXCR3, is 

expressed mainly by activated T cells, it can also be found on a number of other 

leukocyte populations, including NK cells99-101. In addition to CXCR3, activated T 

cells, particularly Th1 cells and TEM cells, also generally express CCR1 and CCR5, 

enabling them to migrate towards both CCL3 and CCL5. Thus, relevant leukocyte 

populations can be rapidly recruited to inflamed tissues following the elevated 

secretion of specific combinations of inflammatory chemokines. 
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1.2 Immune Components of the CNS 

The brain and the spinal cord collectively make up the CNS. Under normal 

homeostatic conditions, these organs are largely isolated from the peripheral 

immune system. The CNS lacks conventional lymphatic drainage102, contains very 

few ‘professional’ antigen presenting cells (APCs)103 and is separated from the 

periphery by seemingly impenetrable cellular barriers fortified by complex tight 

junctions104. The blood-cerebrospinal fluid barrier (BCSFB) separates the 

circulation from the cerebrospinal fluid (CSF) while the blood-brain barrier (BBB) 

and blood-spinal cord barrier (BSCB) demarcate the vasculature feeding the 

brain and spinal cord parenchyma respectively. These barriers serve to protect 

the CNS parenchyma from plasma components and inflammatory leukocytes. As 

a result of this apparent isolation from the peripheral immune system, until very 

recently the CNS was considered to be an ‘immune-privileged’ site.  

Within the CNS a number of different, highly specialised cell populations 

harmoniously coexist. Ensheathed in myelin, neurons relay sensory information 

to discrete brain regions which subsequently command the appropriate motor 

response. Oligodendrocytes provide the myelin-rich membrane which insulates 

neuronal axons. This sheath speeds up action potential propagation along each 

axon. Further protection and support is provided by astrocytes and microglia 

(discussed below). Collectively these cell types constitute a crucial and vastly 

complicated cellular network. Neurons are postmitotic and are therefore not 

capable of self-renewal105. Thus, a degree of separation between the immune 

system and the CNS is an evolutionarily advantageous strategy as it protects 

these critical and non-renewable neuronal circuits from the collateral damage 

that could arise as a result of peripheral inflammation. However, the notion that 

the CNS is completely isolated from the immune system is too simplistic. The 

brain and spinal cord are important organs, and in fact many immunological 

mechanisms, both innate and adaptive, act in parallel to enable the CNS to 

mount an appropriate response to infection. Thus the term ‘immune-specialised’ 

is arguably a more apt description of the immune-components that protect the 

CNS. The mechanisms that mediate innate and adaptive immunity in the CNS will 

now be discussed. As it is of particular relevance to this thesis, this discussion 

will predominantly focus on immune responses in the brain. 
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1.2.1 Innate components 

Microglia and astrocytes constitute the principal innate responders of the CNS. 

Both cell types are endowed with a number of PRRs and so can respond to 

pathogenic insults with the induction of numerous inflammatory mediators106-115. 

However, whereas microglial exposure to pathogenic stimuli culminates in the 

production of many inflammatory cytokines, chemokines and reactive oxygen 

species, astrocyte stimulation results in a more finely tuned chemokine response 

which may lead to the selective recruitment of appropriate leukocyte 

populations to sites of CNS injury.  

1.2.1.1 Microglia   

Microglial cells are generally considered the tissue macrophages of the CNS 

parenchyma. Their haematopoietic origin differentiates them from other CNS-

derived cells. Microglia are generated from yolk sac-derived myeloid precursors 

early in development116 and constitute between 5 and 20% of the glial cell 

population in the CNS117. Rather than being continually replenished from bone 

marrow-derived myeloid progenitor cells, as was once proposed, their 

population is sustained by the self-renewal of the CNS-resident progenitor cells 

that enter the brain during embryogenesis116.  

Microglia have a number of functions and differ in morphology depending on 

their activation state. Under physiological conditions, ‘resting’ microglia 

perpetually extend, retract and remodel highly motile cellular processes118. 

These dynamic processes continuously sample the extracellular space scouting 

for pathogens. Microglial processes are also known to interact with neuronal 

synapses but the functional significance of this remains unclear119. Microglia are 

the principle innate effector cells of the CNS. During steady state, their 

morphology closely resembles that of immature myeloid cells120. However, 

microglia have the capacity to respond to a large array of pathogens and 

inflammatory agents. Consequently, microglial activation is a classic hallmark of 

virtually all CNS pathologies. Microglia express numerous cytokine receptors and 

PRRs. In addition to the TLRs discussed below, they have been reported to 

express the mannose receptor and mRNA encoding the cytoplasmic NLRs, NOD1 

and NOD2121-123. These receptors are involved in the phagocytosis of pathogens 
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and the intracellular recognition of bacterial components respectively. This 

receptor profile allows microglia to sense and respond to cytokines, PAMPs and 

DAMPS. Following pathological stimuli, microglia rapidly transform into activated 

effector cells. Now capable of enhanced phagocytosis124,125, antigen presentation 

(Section 1.2.2.3) and inflammatory mediator production108,109,126,127, ‘activated’ 

microglia are more akin in morphology to mature myeloid cells such as activated 

macrophages.    

Several studies have been carried out to characterise the full repertoire of PRRs 

that are expressed by microglial cells and their functional significance. Of the 13 

known TLRs, TLRs 1-9 are expressed by primary microglial cells, isolated from 

humans, primates and rodents106-109. A number of these receptors have been 

shown to be functional in vitro. For example, treating primary cultured 

microglia with ligands specific for TLR2, TLR3, TLR4 and TLR9 induce the 

expression of a host of inflammatory mediators108,109,126,127. TLR3 recognises viral 

double-stranded RNA and TLR9 recognises CpG motifs from both viral and 

bacterial DNA, whereas TLR2 and TLR4 respond to gram-positive and gram-

negative bacterial components respectively1. Therefore, microglia have the 

capacity to respond to viral and bacterial pathogens. Stimulating microglia using 

PAMPS induces a similar inflammatory response regardless of the nature of the 

pathogenic insult. For example, following ligation of either antiviral or 

antimicrobial TLRs, microglia have been shown to upregulate the expression of a 

wide variety of inflammatory cytokines, including IFNβ, IL-1β, IL-6, IL-12 and 

TNFα108,109,126,127. Furthermore, they produce reactive oxygen species, such as NO 

via the upregulated expression of iNOS109,126. TLR2-, TLR3- or TLR4-ligation of 

microglia also upregulates the expression of inflammatory chemokines, including 

CCL2, CCL3, CCL5 and CXCL10108,109,127 enabling the potential recruitment of 

activated CD4+ Th1 cells, TEM cells, CD8+ cytotoxic T cells and NK cells, as well 

as monocytes and macrophages. Collectively, the above leukocyte populations 

are well equipped to respond to either a viral or a bacterial infection. 

Therefore, microglial cells, stimulated by TLR ligands in vitro, produce a large 

number of inflammatory cytokines in addition to various chemokines. Although 

potent, this inflammatory response is more generalised when compared to that 

of astrocytes (Section 1.2.1.2), as microglia produce inflammatory mediators 

that are comparable regardless of the immune stimuli.  
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Although microglia are therefore capable of initiating a wide range of 

inflammatory responses in vitro, they are maintained in a quiescent state in the 

normal CNS in vivo through neuronal interactions. Neurons express both the 

glycoprotein CD200, and the chemokine CX3CL1 which interact with their 

corresponding receptors, CD200R and CX3CR1, found on the surface of 

microglia128-130. These interactions exert a potent restraining influence and their 

disruption leads to elevated microglial activation and neurotoxicity128-130. 

Therefore, the absence of these in situ interactions needs to be considered 

when interpreting the effects of activating isolated microglia with TLR ligands in 

vitro. There have however been some investigations into microglial TLR 

responses in vivo. Intraperitoneal injection of lipopolysaccharide (LPS), a TLR4 

agonist, leads to an upregulation of TLR2 and CD14 mRNA by microglial cells in a 

TLR4-dependent manner131. Furthermore, microglial TLR4 expression is 

necessary for leukocyte recruitment to the cerebral vasculature following 

intracerebral LPS injection132. These results suggest that microglial cells do 

express functional TLR4 in vivo. TLR2 and TLR3 may also be functional on 

microglial cells in vivo as a number of groups have demonstrated that microglial 

responses are impaired in TLR2- and TLR3-deficient rodents133-135. Therefore, 

TLR-expression by microglia may play important roles in vivo.  

1.2.1.2 Astrocytes 

Astrocytes are the most abundant cell type in the CNS. Their primary functions 

include maintenance of the BBB, uptake and metabolism of excess glutamate 

and γ-aminobutyric acid (GABA), regulation of extracellular potassium levels and 

the production of several trophic and survival factors (reviewed in Ref 136). 

However, they also play a part in innate immune responses of the CNS.  

Like microglia, primary cultured astrocytes have been reported to express a 

number of PRRs and can respond to a variety of PAMPs by producing 

inflammatory mediators. However they may not possess as wide a repertoire of 

TLRs as microglia and there are conflicting data on the precise TLR profile they 

may express. This may be due to species-specific differences in TLR expression. 

Indeed, a report by McKimmie et al. demonstrated a differential TLR repertoire 

in the CNS of three different mouse strains137. As most reports show that 

astrocytes express TLR3110-113, astrocytes have been implicated in antiviral 
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responses110,113. However, as will be discussed below, astrocytes also appear to 

express a number of functional antimicrobial PRRs and therefore express the 

appropriate receptors to recognise either viral or bacterial pathogens.  

Stimulation of astrocytes with the TLR3 ligand, polyinosinic:polycytidylic acid 

(poly(I:C)), results in the upregulation of TNFα and a number of chemokines, 

particularly CXCL10, CCL5, and to a lesser extent, CCL2110,112,113. One report also 

noted the upregulation of IFNα and IFNβ113. A similar response is seen following 

TLR9 activation of astrocytes using CpG, which leads to the production of 

inflammatory cytokines and the chemokines CCL2, CCL3, CCL4 and CXCL10114,115. 

CCL5 and CXCL10 attract activated T cell populations and NK cells which are 

integral in the host response against viral infection. Monocyte recruitment is also 

a common feature in the virus-infected brain, and accordingly, the chemokine 

profile expressed by astrocytes following poly(I:C) or CpG stimulation includes 

the expression of a number of monocyte chemoattractants, namely CCL2, CCL3, 

CCL4 and CCL5. Therefore, by expressing inflammatory and antiviral cytokines 

and by producing the chemokines necessary to attract the relevant antiviral 

leukocyte populations to the site of injury, astrocytes may play a pivotal role in 

modulating antiviral responses in the CNS. 

There is increasing evidence to suggest that astrocytes may also be able to 

respond to bacterial PAMPs in vitro as they have been reported to express TLR2, 

TLR4 and the cytosolic NLR, NOD2. Although the expression of TLR4 is not 

detected consistently110,138, many reports show that astrocytes are capable of 

responding to LPS in vitro111,113,139,140. The astrocytic response to either TLR2 or 

TLR4 ligation is remarkably similar, involving a production of the monocyte 

chemoattractants, CCL3, CCL5 and in particular, CCL2112,113,141,142. Both TLR2 and 

TLR4 ligands also induce a potent upregulation of TNFα. In addition, LPS has also 

been reported to induce iNOS expression and the production of neutrophil 

chemoattractants, such as CXCL1 and CXCL2112,113,141. Thus, the chemokine 

profile that is induced in astrocytes in response to TLR2 and TLR4 ligation is 

ideally suited to attract an influx of neutrophils and monocytes into the CNS. As 

these cell types play a pivotal role in antimicrobial responses, this would 

undoubtedly contribute to the host response against bacterial infection in the 

CNS. Furthermore, the upregulation of iNOS may lead to enhanced NO synthesis. 

NO is crucial in the host response against a number of bacterial infections 
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(reviewed in Ref 143). Although NOD2 expression has also been shown to 

contribute to inflammatory cytokine induction in astrocytes144; its role in 

chemokine induction has yet to be established. Consequently, by attracting 

antimicrobial effector cells from the periphery and by inducing the expression of 

antimicrobial agents, astrocytes may also play a role in the central immune 

response against bacterial pathogens. 

The ability of astrocytes to modulate innate immune responses in the CNS, may 

depend on the extracellular milieu. In inflammatory conditions or following TLR 

ligation, astrocytes can upregulate the expression of a number of TLRs, making 

them more efficient in their ability to recognise and respond to 

pathogens111,113,139. In addition, inflammatory cytokines have been shown to 

trigger the induction of intracellular adhesion molecule-1 (ICAM-1) and vascular-

associated adhesion molecule-1 (VCAM-1) on astrocytes113. As astrocytic 

processes ensheath the cerebral vasculature to form the glia limitans, which 

constitutes a barrier to restrict the exchange of cells and molecules between the 

CNS and the periphery145, enhanced adhesion molecule expression at this 

location may facilitate the ingress of infiltrating inflammatory leukocytes to the 

CNS parenchyma from the perivascular spaces.  

Although the role of astrocytes in pathogen recognition has been relatively 

unexplored in vivo, it is apparent that astrocytes have the potential to 

contribute to innate immune responses in the CNS by recognising a combination 

of viral and microbial pathogens and inducing an appropriate inflammatory 

response. Furthermore, by upregulating adhesion molecule expression and 

tailoring their chemokine induction, astrocytes may attract the relevant 

leukocyte populations into the brain to suit the pathological stimuli. 

1.2.2 Adaptive components in the CNS 

Recent evidence suggests that the CNS can mount successful adaptive responses 

against local antigens. As will be discussed below, antigen can be transported 

from the brain to the cervical LNs where it can be presented by APCs to naïve T 

cells. A proportion of the T cells which are primed in the cervical LNs home to 

the brain146, possibly by adopting a specific brain-homing phenotype. These may 

enter the CNS across one of the cellular barriers that protect it from the 
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periphery. Once in the CNS, T cells encounter strategically positioned APCs 

which may propagate a CNS-targeted immune response.  

1.2.2.1 Antigen drainage 

Although the CNS is devoid of conventional lymphatic vessels, there is evidence 

to suggest that CNS-derived antigen in the CSF and interstitial fluid of the 

parenchyma can drain from the brain to the cervical LNs. These pathways have 

been determined using radiolabelled and fluorescently labelled antigen. CSF 

passes through the subarachnoid space where it drains to the cervical LNs via the 

nasal lymphatics147. Interstitial fluid appears to drain from the brain along 

perivascular pathways, flowing along the basement membranes of capillaries and 

arteries sequentially until reaching the cervical LNs102. Although antigen can 

travel to the cervical LNs, whether or not brain-derived APCs can travel to LNs 

to present antigen remains controversial. The evidence for this will be discussed 

in Section 1.2.2.3. 

Once antigen reaches the LNs, it is presented by LN-resident APCs to elicit an 

adaptive immune response. A well established animal model of CNS 

autoimmunity is the immunisation of rodents with myelin-derived antigens 

emulsified in adjuvant to induce experimental autoimmune encephalomyelitis 

(EAE)148. This is generally associated with an infiltration of leukocytes across the 

BSCB and the subsequent development of inflammatory, demeylinating lesions in 

the spinal cord. Focally damaging the cerebral hemisphere seven days post-

inoculation has been shown to cause a 6-fold increase in cerebral 

inflammation149. The importance of this pathway for the initiation of immune 

responses in the brain is shown by the fact that the cerebral lesions occurring 

during EAE are markedly reduced by the removal of the cervical LNs150. 

The cervical LNs have also been implicated in driving brain-specific B cell 

responses. Injecting human albumin into the brain or CSF of rats has been shown 

to induce an antibody response in the cervical LNs; an effect that was abolished 

by cervical LN obstruction147. Together these observations suggest that antigen is 

drained from the brain to cervical LNs where it can induce antibody responses 

and activate brain-homing lymphocytes. 
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1.2.2.2 Immune Surveillance 

In the steady state, a limited number of leukocytes constitutively patrol the 

CNS; a phenomenon known as immune surveillance. Leukocytes entering the CNS 

to sample brain-derived antigen must first combat either the BCSFB, the BBB or 

BSCB. The best characterised route of leukocyte entry to the healthy brain is via 

the choroid plexus, a richly vascularised site on the ventricles of the brain where 

CSF is secreted and where endothelial fenestrations and intercellular gaps 

facilitate an easy migration of molecules and cells into the perivascular space151. 

The CSF of healthy individuals contains approximately 150 000 T cells152, the 

majority of which are TCM cells that have presumably been recruited from the 

bloodstream152,153. P-selectin recruits circulating T cells to the choroid plexus 

stroma whilst epithelial cells constitutively express leukocyte extravasation-

associated adhesion molecules P- and E-selectin, ICAM-1 and VCAM-1 on their 

apical surface153,154. Not only is T cell entry to the CNS impaired in P-selectin 

null mice155 but P-selectin glycoprotein ligand-1 (PSGL-1), a ligand for both P- 

and E-selectin, is expressed by all CD4+ TCM cells in the CSF of patients with non-

inflammatory neurological conditions156. Once across the BCSFB, TCM cells 

circulate in the CSF for several hours, scanning the surface of central APCs for 

antigen before returning to the bloodstream152,153. However, upon encounter 

with their cognate antigen in the CNS, TCM cells initiate a massive inflammatory 

response that often culminates in the invasion of inflammatory leukocytes.  

TCM cells may also cross the BBB to patrol the perivascular regions of the brain 

parenchyma where they will potentially encounter antigen displayed by 

perivascular macrophages (PVMs). Due to a network of tight junctions, trans-

endothelial migration across the BBB is severely restricted and occurs only at 

post-capillary venules152. The adhesion molecules involved in facilitating this 

migration in the steady state have not been clearly defined. It is known 

however, that non-inflamed BBB endothelium expresses CD34, ICAM-2 and to a 

lesser extent ICAM-1, but not P-selectin, E-selectin or VCAM-1157. As a result, the 

initial adherence of leukocytes to the vasculature may involve interactions 

between CD34 on the endothelium and L-selectin on the surface of TCM cells. 

Thus by a series of interactions with the highly specialised barriers that separate 

the CNS from the periphery, peripherally activated T cells with varying 
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specificities continuously enter central compartments to sample CNS-derived 

antigen. 

1.2.2.3 Professional and ‘amateur’ APCs of the CNS 

The non-inflamed brain contains relatively few professional APCs, although 

monocyte-derived DCs have been reported in the choroid plexus and the 

meninges103,158. The presence of BBB-associated DCs has also been reported in 

the healthy mouse brain159. These APCs may act as sentinels, strategically 

localised to interact with and present antigen to surveying T cells as they enter 

the CNS. Observations made by Greter et al. support this hypothesis. When T 

cells enter the CNS during EAE, they require reactivation signals from MHC class 

II-expressing APCs to induce pathology159. By crossing MHC class II-deficient mice 

with mice that express MHC class II under the control of the CD11c promoter 

(CD11c-H2-Ab1/H2-Ab1-/-), Greter et al. demonstrated that MHC class II-

expressing CD11c+ DCs were sufficient to restore pathology to mice that lacked 

all other MHC class II-expressing cell types159. As only activated T cells can enter 

the brain160, CNS-derived DCs may be intrinsically involved in restimulating T 

cells as they enter from the periphery. Following this response, a wave of 

leukocytes can rapidly infiltrate the CNS from the periphery. This leukocyte 

infiltrate has been reported to include blood-derived DCs which, once in the 

CNS, can potentiate the presentation of brain-derived antigen to infiltrating T 

cells161.  

An additional role for CNS-resident DCs may be the transportation of antigen 

from the CNS to the draining LNs. DCs in the cervical LNs have been shown to 

present myelin-derived antigen during EAE and the demyelinating autoimmune 

disease, multiple sclerosis (MS)162. It is not clear whether these DCs migrated to 

the LNs from the brain, or whether free antigen was taken up by LN-resident DCs 

after draining through the lymphatic system. However, following microinjection 

of the protein antigen ovalbumin (OVA) into the brain, labelled DCs rapidly 

accumulate at the injection site before migrating to the cervical LNs to induce a 

robust T cell response146. The resulting fully primed, OVA-specific T cells then 

adopted a CNS-homing phenotype and subsequently travelled to the brain. These 

studies suggest that DC trafficking from the brain to the cervical LNs should not 
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be ruled out as a possible mechanism of priming adaptive CNS-specific cellular 

responses. 

In addition to the classical APCs of the CNS, microglia, PVMs and astrocytes all 

share the capacity to upregulate MHC class II molecules in an inflamed 

environment. Thus, these cell types may also have a role in activating T cell 

responses in vivo. Encapsulated by the basement membrane on the abluminal 

side of the BBB, PVMs constitutively express MHC class II molecules and the 

costimulatory molecules required for antigen presentation and T cell 

activation163. Due to their strategic location these macrophages may be able to 

restimulate activated T cells as they cross the BBB. Selective depletion of PVMs 

after an intraventricular injection of chlodronate liposomes resulted in a delayed 

onset of EAE accompanied by a reduction of disease severity, suggesting a role 

for PVMs in antigen presentation in vivo164. 

The role of microglia in antigen presentation in vivo has long been debated. In 

addition to upregulating MHC class II molecules109,165, activated microglia 

upregulate costimulatory molecules, such as CD40, CD80 and CD86109,165. As 

described in Section 1.2.1.1, they also produce a number of cytokines and 

chemokines, which could shape T cell effector functions. Many studies have 

described the ability of activated microglia to prime naïve T cells and to 

reactivate effector T cells165-168. However, these studies focus on microglial 

functions in vitro. Activated microglia have also been shown to be able to cross-

present exogenous antigen in vivo after naïve CD8+ T cells were injected into 

the brain167. There is evidence to suggest that naïve T cell priming by microglia 

may be atypical. For example, although microglial-activated T cells upregulate 

the activation marker CD25 and target cells in an antigen-specific manner, they 

do not proliferate169,170. In fact, antigen presentation by microglia may act as a 

method of limiting T cell responses in the CNS by inducing the apoptosis of 

antigen-specific T cells169. The in vitro studies are limited as removing microglia 

from the constraints of their microenvironment can have a profound impact on 

their behaviour (see Section 1.2.1.1). In addition, naïve T cells are not known to 

enter the CNS. As a consequence, it is unclear whether these reports are 

biologically relevant. Nevertheless, microglia expressing MHC class II and 

costimulatory molecules have been detected in inflammatory lesions during MS 
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and EAE171-173 and therefore these cells may have a role in the secondary 

activation of effector T cells during pathology.  

Unlike microglia and PVMs, astrocytes are generally considered to be poor 

activators of T cell responses. Although they typically express very low levels of 

MHC class I, MHC class II and costimulatory molecules, several reports 

demonstrate that these surface molecules are inducible following IFNγ-

stimulation in vitro174-176. These reports, however, are not always consistent as 

some studies note a lack of costimulatory molecule (CD80 or CD86) induction 

following IFNγ treatment165,177. Furthermore in mice that overexpressed IFNγ, 

the induction of MHC class I or class II molecules could be detected in microglia 

but not astrocytes178. It has been demonstrated in vitro, that the induction of 

MHC molecules can be inhibited by the presence of other cytokines, such as 

TNFα or IL-1α179,180. Therefore, the induction of these molecules in vivo may 

depend on the exogenous cytokine milieu. Many studies have attempted to 

investigate whether IFNγ-treated astrocytes are capable of priming T cell 

responses. These studies have yielded highly variable results and almost 

exclusively focus on cultured astrocytes. For example, Constantinescu et al. 

demonstrated the capacity of cultured, IFNγ-stimulated astrocytes to induce the 

proliferation of myelin-specific T cells181. In contrast, in a similar set of 

experiments, Weber et al. showed an induction of cytotoxic T cell activity but 

an absence of proliferation181. Taken together, these studies show that whilst 

IFNγ may endow astrocytes with the ability to prime T cell responses in vitro, 

their ability to do so in vivo requires further clarification. It is unlikely that 

antigen presentation by astrocytes plays a major role in driving CNS-specific T 

cell responses.  

 

1.3 Chemokines in the CNS 

It is becoming increasingly clear that chemokines play a role in CNS responses. 

Not only are they induced in the CNS following injury or pathogenic insult, but a 

limited repertoire of chemokines and their receptors are constitutively 

expressed in discrete regions of the CNS and thus may be involved in neuronal 
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and/or glial cell communication. The involvement of relevant chemokine 

systems in homeostasis and inflammation will now be discussed below. 

1.3.1 Chemokines in CNS disorders 

Chemokines are induced in the brain following several CNS disorders. Often this 

is accompanied by the infiltration of leukocytes from the periphery. Although 

leukocyte infiltration can be beneficial to the host, for example in the clearance 

of pathogens from the CNS, it can also be detrimental. Infiltrating leukocytes 

produce a variety of inflammatory mediators which can lead to tissue damage 

and enhanced morbidity. Also, during autoimmune diseases such as MS, 

autoreactive lymphocytes can directly target CNS-derived self antigen resulting 

in demyelinating lesions and neuronal damage. Understanding the functional 

relevance of the chemokine systems that are induced in the brain during 

different CNS disorders is highly important in order to delineate those that are 

pivotal to host defence and those which contribute to pathogenesis. 

1.3.1.1 Chemokines in viral encephalitis 

Viral encephalitis is typically associated with a substantial induction of 

chemokines within the CNS. These chemokines recruit leukocytes from the 

periphery which mount an antiviral immune response. Although this is often 

required for viral clearance, as mentioned above, the effects can also be 

deleterious. Two examples of viruses that can cause encephalitis in rodents are 

West-Nile virus (WNV) and mouse hepatitis virus (MHV). The key chemokine 

systems that are involved in host defence and neuropathology following CNS 

infection with either of the aforementioned viruses have been well characterised 

and as a result, the involvement of the relevant chemokine systems has been 

described below. 

WNV is a mosquito-borne arbovirus. Due to its global distribution, it is now 

considered an endemic pathogen. Fortunately, patients who contract WNV are 

often asymptomatic and the vast majority of patients who do experience 

symptoms are merely burdened with flu-like symptoms. However, a small 

proportion of patients experience severe neurological symptoms, such as 

meningitis or encephalitis, as a result of CNS infection182. This can be lethal and 
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the majority of survivors of neuroinvasive WNV experience persistent 

neurological deficits for months to years after the infection resolves. Several 

studies using mouse models of WNV indicate that survival of WNV-induced CNS 

disease is largely dependent on the chemokine-mediated recruitment of 

leukocytes to the CNS. This is at least partially translatable to human pathology. 

For example, it has been well established that CCR5 plays a key role in 

modulating anti-viral responses in both humans and mice infected with WNV. 

Leukocyte recruitment to the CNS is fundamental for viral clearance and 

survival183-185. Genetic depletion of CCR5 is associated with a significant 

reduction of CD4+ and CD8+ T cells, NK cells and macrophages and increased 

viral load in the CNS following WNV infection183. Moreover, all CCR5-deficient 

mice succumbed to infection, compared with only 35% of wild-type mice, 

suggesting that CCR5-dependent leukocyte infiltration of the CNS is fundamental 

for successful anti-viral defence in this model. This can be reversed by the 

adoptive transfer of CCR5+ splenocytes183. Interestingly, the fraction of 

leukocytes expressing CCR5 in the CNS of wild-type mice was not large enough to 

account for the substantial reduction of leukocytes observed in the CNS of CCR5-

deficient mice. Therefore, the accumulation of CCR5-bearing leukocytes in the 

CNS may trigger further leukocyte recruitment in a CCR5-independent manner. 

This is likely to be at least partially dependent on interactions between CXCR3 

and one of its ligands CXCL10, which is highly upregulated in the CNS of WNV-

infected mice186-188. Blocking the effects of CXCL10, either using neutralising 

antibodies, CXCL10- or CXCR3-deficient mice, led to impaired CD8+ T cell 

trafficking to the CNS, failure to control viral replication and subsequently 

reduced survival rates187,188. The CCL2/CCR2 axis also appears to play a role in 

anti-viral CNS responses to WNV as a reduction in infiltrating monocytes was 

noted in the CNS of virally-infected CCR2-deficient mice186. However, this 

observation was shown to be a result of monocytopenia in the blood rather than 

a defect in monocyte recruitment to the CNS. Impaired monocyte accumulation 

in the CNS was associated with increased viral burden and mortality. Therefore, 

chemokines, produced in the brain and in the periphery, are pivotal in 

coordinating leukocyte levels in the blood and their subsequent recruitment to 

the CNS. Chemokine-mediated accumulation in the CNS is required for the host 

to mount a successful anti-viral response following WNV infection. 
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Complimenting the data derived from the murine models of WNV, a role for 

CCR5 has also been established in human pathology. This was determined by 

genotyping cohorts of Caucasian patients with symptomatic WNV to compare the 

frequency of the CCR5 loss-of-function allele, CCR5Δ32, with that of the general 

population. Unsurprisingly, the frequency of individuals homozygous for the 

CCR5Δ32 allele was markedly higher in symptomatic WNV patients than in the 

general population189. In one cohort, homozygosity for this allele was 

significantly linked to fatality. Therefore, consistent with the data from murine 

models, CCR5 deficiency is a major risk factor for symptom presentation 

following WNV infection. 

Chemokines are also required for mice to successfully clear MHV infection in the 

CNS. However, in some cases, chemokine production in the CNS can lead to 

excessive tissue damage. MHV is a corona virus. When injected intracranially, 

neurotropic strains of MHV trigger an acute encephalomyelitis followed by 

chronic demyelinating disease that is phenotypically similar to the human 

autoimmune disease, MS190. One of the chemokine axes shown to be pivotal in 

coordinating the host response against MHV is the CCL2/CCR2 axis. CCL2 is 

rapidly induced in the brain following MHV infection191. In the absence of its 

receptor, CCR2, mice were unable to clear the virus from the CNS and therefore 

all succumbed to infection191. This was associated with a significant decrease in 

CD4+ T cell and macrophage infiltration and a reduction in IFNγ production in 

the CNS. Therefore, CCL2 induction in the CNS, and the subsequent recruitment 

of CCR2-expressing macrophages, is required for the successful clearance of MHV 

from the CNS. 

Within a day of viral administration, CXCL10 can be detected in the brain 

colocalised with viral infection192. As the infection disseminates throughout the 

CNS parenchyma, so does the expression of CXCL10, produced predominantly by 

astrocytes. CXCL10 plays a major role throughout the course of the disease. In 

the acute stages of MHV infection, this role is beneficial. CXCL10 is involved in 

recruiting CD4+ and CD8+ T cells to the CNS, both of which are required for anti-

viral defence. In the absence of CXCL10, this process is markedly reduced, 

resulting in impaired viral clearance and increased mortality193,194. CXCL10 

expression is also required for the induction of CXCL9 and CCL5 in the CNS190,193. 

The majority of T cells infiltrating the brain during MHV infection express the 
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chemokine receptor CXCR3, and unsurprisingly, CXCL9 has also been shown to 

contribute to T cell recruitment to the CNS195. Although they are crucial for 

survival, infiltrating T cells contribute to a progressive accumulation of 

macrophages in the CNS. Macrophages are the end-stage effector cells in 

demyelinating diseases. By producing inflammatory mediators which generate 

bystander tissue damage, macrophages amplify demyelination. One of the key 

chemokine axes responsible for their recruitment is the CCL5/CCR5 axis. CCL5 

expression is triggered by the CXCL10-induced infiltration of CD4+ T cells190. This 

has no benefit to the host as blocking the effects of this axis using CCR5-

deficient mice had no effect on viral clearance196. In fact, blocking the 

CCL5/CCR5 axis, either using CCL5-specific neutralising antibodies or CCR5-

deficient mice, led to a clear reduction of macrophage infiltration, 

demyelination and subsequent disease severity197,198. Therefore, by recruiting 

virus-specific CD4+ and CD8+ T cells to the brain during MHV infection, the acute 

induction of CXCL10, followed by CXCL9 plays a crucial role in anti-viral 

defence. However, one caveat to the induction of CXCL10 in the brain is that 

recruited CD4+ T cells trigger CCL5 production, inevitably leading to the 

destructive infiltration of CCR5-expressing macrophages. 

Thus, a number of chemokines are induced in the CNS following viral infection. 

The data described above suggest that the induction of chemokines targeting the 

receptors CXCR3, CCR2 and CCR5 play an important role in the recruitment of T 

cells, NK cells and macrophages from the circulation. Depending on the nature 

of the insult, the infiltration of these cell populations can be beneficial to the 

host, promoting viral clearance from the CNS, or deleterious, leading to 

bystander tissue damage. 

1.3.1.2 Chemokines in MS and EAE 

MS is a chronic, inflammatory autoimmune disease of the CNS. It is characterised 

by accumulation of autoreactive and inflammatory leukocytes which form 

demyelinating lesions within the CNS parenchyma. Many studies have attempted 

to analyse and interpret the involvement of specific chemokine systems in MS 

pathology and much of our current understanding of these systems is derived 

from observations made using rodent models of demyelinating diseases, like EAE. 

In terms of immune cell components, MS is primarily a T cell- and macrophage-
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mediated pathology. Three chemokine receptors that are considered highly 

important in mediating the recruitment of these leukocyte populations to the 

CNS during multiple other pathologies are CCR2, CCR5 and CXCR3183,186-

188,191,193,194,197,198. Interestingly, CCR5 expression has been described on 

monocytes and lymphocytes in the CSF and lesions of MS patients156,199-201, and 

elevated levels of CCL3 and CCL5 have been observed both in lesions and in the 

CSF of MS patients during relapse202-204. In addition, increased expression of CCL3 

and CCL5 has been reported in the CSF of animals with EAE205-207. However, 

neither CCL3- or CCR5-deficient mice are resistant to EAE208, nor is there an 

association with CCR5Δ32 allele homozygosity and protection against MS209. This 

suggests that CCR5 is not essential for MS or EAE pathogenesis, possibly as a 

result of the high level of redundancy in chemokine systems. In the absence of 

CCR5, the chemokines CCL3 and CCL5 may recruit CCR1-expressing leukocytes to 

the CNS. In support of this, CCR1-deficient mice exhibit a reduction in both 

severity and incidence of EAE210. Furthermore, CCR1 antagonism ameliorated 

disease phenotype in a rat model of EAE211. As a result, CCR1 blockade was 

considered a potential treatment target in MS patients. Disappointingly, the 

CCR1 antagonist did not prove beneficial in clinical trials212. 

The majority of CD4+ T cells that patrol the CSF of patients with MS and non-

inflammatory neurological diseases express CXCR3156,213. However, the same is 

true for T cells in the CSF of patients with no neurological diseases214. 

Therefore, although CXCR3 may mediate T cell entry to the CSF, this does not 

appear to require neuroinflammation. Interestingly, during MS relapses, an 

increased proportion of CD4+ T cells have been reported to express CXCR3 in 

both peripheral blood and CSF compared to that of patients in remission202,213. In 

both studies, this was associated with increased disease activity. In addition, 

proximal to demyelinating lesions, the majority of T cells in perivascular cuffs 

were reported to express CXCR3214.  Moreover, CXCL10 expression was shown to 

be elevated both in demyelinating lesions214 and in the CSF of MS patients during 

attacks200. Although these observations suggest that CXCR3 ligands may be 

involved in recruiting T cells to the brain during MS, the involvement of this 

chemokine axis has been difficult to confirm in EAE models. Blocking the actions 

of either CXCL10 or its receptor CXCR3 using neutralising antibodies has had 

variable effects on the incidence and severity of EAE215-218. However, studies 
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using CXCL10- or CXCR3-deficient rodents consistently suggest that this 

chemokine axis is not essential for the recruitment of mononuclear cells to the 

CNS216,218-220. In fact, most studies agree that EAE is exaggerated in animals 

lacking either molecule216,218,220. It has been reported that glial cells produce 

CXCR3 ligands in response to IFNγ221. Therefore, during MS and EAE, the 

expression of CXCR3 on infiltrating T cells and the induction of CXCR3 ligands in 

the CNS may represent an epiphenomenon that occurs as a result of IFNγ-

producing encephalitogenic T cells accumulating in the CNS in response to other 

mediators. 

The CCL2/CCR2 axis has a fundamental role in the induction of EAE and is 

therefore likely to contribute to MS pathology. In MS patients, CCL2 is highly 

expressed by reactive astrocytes within demyelinating lesions and in the 

surrounding parenchyma204,222. Surprisingly, the concentration of CCL2 is 

consistently depleted in the CSF of MS patients compared to patients with other 

inflammatory diseases200,223. This has been hypothesised to occur as a result of 

increased CCL2 uptake by infiltrating CCR2+ monocytes224. Although central CCL2 

production is assumed to facilitate the specific recruitment of CCR2-expressing 

mononuclear cells from the periphery, an explicit role for this chemokine and its 

receptor in contributing to MS pathology has not yet been verified. In addition to 

being expressed in MS lesions, CCL2 is also expressed by astrocytes nearby 

inflammatory foci in the CNS of animals with EAE225,226. Confirming a major 

involvement of this chemokine system in EAE pathogenesis, it has been reported 

that EAE is either markedly attenuated or completely absent in mice lacking 

either CCL2 or CCR2227-229. Although this provoked the development of CCR2 

antagonists for the treatment of MS, these inhibitors failed to show any 

improvements in clinical trials230.  

These studies highlight a number of chemokines and chemokine receptors that 

play a role in the recruitment of mononuclear cells to the CNS during MS and 

EAE. However, these represent only a few of the many chemokine systems that 

are potentially involved. For example, CCR7 is expressed on the majority of TCM 

cells in the CSF of MS patients and on infiltrating DCs in MS lesions. Its ligands, 

CCL19 and CCL21 have also been characterised on the luminal surface of the BBB 

during EAE231,232. In addition, there may be a role for the CCL20/CCR6 axis in the 

trafficking of T cells to the CNS across the choroid plexus epithelium during the 
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initial stages of EAE233. A number of other chemokine systems have also been 

implicated in MS and EAE pathogenesis. These have been reviewed extensively in 

Ref 234. Despite the characterisation of the chemokine profile present in lesions 

and CSF of MS patients and the identification of the chemokine systems that are 

crucial for the induction of EAE, the key chemokines responsible for MS 

pathogenesis remain poorly defined. This is at least partially because the 

knowledge gained from EAE models does not always accurately translate across 

species. Another major issue in deciphering the involvement of specific 

chemokine axes in MS is that the therapeutic use of chemokine receptor 

antagonists has so far failed to show any benefits in clinical trials. It is unclear 

whether the observed lack of improvement in these trials is due to chemokine 

redundancy or a failure in the efficacy of the receptor antagonists. As a result, 

there have been very few advances in this field in the past decade. 

1.3.1.3 Central chemokine induction in response to systemic inflammation 

Very little has been published relating to chemokine induction in the brain 

following systemic inflammation. The majority of the research in this area 

focuses on central chemokine responses following the systemic administration of 

TLR ligands in experimental rodent models of inflammation. In these models, 

systemic LPS-induced inflammation is commonly associated with a central 

upregulation of the neutrophil chemoattractants, CXCL1 and CXCL2, and a 

number of CC and other CXC chemokines235-238. These include CCL2, CCL5 and 

CXCL10, which are known for their role in the infiltration of leukocytes to the 

CNS during viral encephalitis (Section 1.3.1.1). A similar chemokine repertoire 

has also been reported following peripheral administration of poly(I:C)239,240. 

However these studies are primarily focused on transcriptional data. Thus, 

systemically stimulating mice with certain TLR ligands can lead to an induction 

of chemokines in the brain. 

Although many different chemokines are induced in the brain following systemic 

TLR3- or TLR4-induced inflammation, the function of these chemokines remains 

largely unexplored. The upregulation of CXCL1 and CXCL2 in the brain following 

high systemic doses of LPS has been associated with an influx of neutrophils to 

the CNS236,237. Although it is not required for neutrophil rolling and adhesion to 

the cerebral vasculature, CXCR2 expression was shown to be necessary for 
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neutrophils to invade the brain parenchyma237. The remainder of the 

chemokines, induced in the brain in response to LPS, are known to recruit T 

cells, NK cells and monocytes/macrophages to sites of inflammation (Section 

1.1.6). However, to my knowledge, there have been no reports of any of these 

cell populations infiltrating the brain following systemic LPS challenge. Although 

a similar phenomenon has yet to be described during systemic LPS-induced 

inflammation, the central upregulation of CCL2 has been shown to recruit 

monocytes to the brain in an experimental murine model of hepatic 

inflammation241. Therefore, depending on the context, central chemokine 

expression triggered in response to systemic inflammation can result in the 

recruitment of inflammatory leukocytes to the brain. 

The chemokines CCL3 and CCL5 have been described as endogenous pyrogens. 

Both are induced in the brain in response to systemic LPS challenge238, thus their 

production in the brain may play a contributing role in the development of 

fever. In rats, microinjection of CCL5 into the hypothalamus induced a febrile 

response242,243. This was ameliorated by pretreating rats with either a 

microinjection of CCR5-specific monoclonal antibodies into the same site or an 

intravenous injection of the CCR1/CCR5 antagonist, Met-CCL5. Met-CCL5 also 

suppressed the febrile response in rats following intravenous LPS injection243, 

suggesting that CCR1 and/or CCR5 ligands contribute to LPS-induced fever in 

rats. In addition to the de novo expression of inflammatory chemokines in the 

brain, it has been recently demonstrated that systemic LPS-induced 

inflammation results in the reduced expression of CX3CR1244; a chemokine 

receptor which plays a prominent role in maintaining CNS homeostasis (1.3.2.2). 

This effect, which is particularly pronounced in aged mice, results in microglial 

hyperactivation. In a study using CX3CR1-deficient mice, overt microglial 

activation following systemic LPS challenge lead to prolonged social 

withdrawal245. This was associated with elevated microglial expression of IL-1β 

and indoleamine 2,3 dioxygenase (IDO), both of which are implicated in the 

development of inflammation-induced behavioural changes (Section 1.4.3). 

These data suggest that, in response to systemic inflammation, the central 

modulation of chemokines and their receptors may have downstream 

implications on neuroinflammation and the subsequent development of sickness 

behaviours. 
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1.3.2 Chemokines in CNS homeostasis 

In addition to their role in CNS disorders, it has been suggested that chemokines 

may be intrinsically involved in CNS homeostasis. Both neurons and glial cells 

constitutively express a number of chemokines and their receptors in spatially 

specific regions of the adult brain. However, the functional significance of this 

expression remains largely unclear. Often, the neuroanatomical distribution of 

chemokines and their specific receptors overlap giving rise to the hypothesis 

that these chemokines may have a role in basal communication between neurons 

and glia.  

1.3.2.1 Chemokines as neuromodulators 

It has been suggested that chemokines may function as a class of 

neuromodulator; being released at nerve endings and having pre- and post-

synaptic effects, both directly and indirectly by modulating the activity of 

‘classical’ neurotransmitters. The chemokines that have been most widely 

studied in this field are CXCL12 and CCL2. The involvement of these chemokines 

and their receptors in CNS homeostasis will be summarised below, including any 

evidence supporting the potential involvement of chemokines in modulating 

synaptic transmission. 

CXCL12 and its receptor, CXCR4, are highly expressed throughout the brain 

during emryogenesis and the CXCL12/CXCR4 axis is a critical component in 

orchestrating brain development. However, high levels of constitutive 

expression, of both ligand and receptor, persevere into adulthood in highly 

regionalised areas of the brain246,247. As well as being expressed by microglia and 

astrocytes, both ligand and receptor are expressed by neurons. Anatomically 

mapping CXCL12 and CXCR4 expression in the adult rat brain revealed that 

serotonergic neurons in the dorsal raphe nucleus, cholinergic neurons in the 

substantia innominata and dopaminergic neurons in the substantia nigra 

expressed both receptor and ligand246-248. CXCL12 and CXCR4 are also both 

expressed in hypothalamus and the prosterior pituitary247,249. Interestingly, in 

the latter sites, both CXCL12 and CXCR4 were colocalised with vasopressin in 

presynaptic nerve terminals indicating the possibility that CXCL12 may be 

released at neuronal synapses249.  
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Although it is generally considered to be an inflammatory chemokine, animal 

studies have shown that CCL2 is also constitutively expressed in the brain, along 

with its receptor, CCR2250,250-252. As with CXCL12 and CXCR4, neuroanatomical 

mapping of CCL2 and CCR2 has demonstrated the presence of both receptor and 

ligand on cholinergic, dopaminergic and vasopressin-expressing neurons250,252. As 

a result, several studies have attempted to investigate the potential involvement 

of CXCL12/CXCR4 axis and the CCL2/CCR2 axis in modulating neuronal 

transmission. 

Electrophysiological recordings, using whole cell patch clamp, have 

demonstrated that exposing neuronal subtypes from the relevant brain regions 

to CXCL12 can modulate neuronal membrane potential, often triggering action 

potentials. For example, CXCL12 has been shown to have depolarising effects on 

serotonergic neurons from the dorsal raphe nucleus248. This was attributed to the 

presynaptic release of both glutamate and GABA. CXCL12 also enhanced GABA-

induced inhibitory currents in dopaminergic neurons from the substantia nigra253. 

In contrast, CXCL12 was shown to have an inhibitory effect on the firing of 

vasopressin neurons249. Electrophysiological experiments have also demonstrated 

that CCL2 can affect neuronal membrane potential. CCL2 was shown to enhance 

the excitability of hippocampal neurons and dopaminergic neurons in the 

substantia nigra254,255. The subsequently increased neuronal firing that was 

observed in the hippocampus was attributed to elevated glutamatergic 

transmission. CCL2 can also induce calcium (Ca2+) transients in primary cultured 

neurons isolated from a number of other different brain regions250. Chemokine-

induced changes in membrane potential may have downstream consequences on 

the release of neurotransmitters or neurohormones. Indeed following-up the 

electrophysiological experiments with in vivo studies have shown that injecting 

CXCL12 into the third ventricle inhibits the release of vasopressin into the 

blood249. Moreover, injecting either CXCL12 or CCL2 into the substantia nigra 

stimulated a rapid release of dopamine into the striata255,256. In either case this 

was accompanied by enhanced locomotor function. Collectively, these data 

suggest that chemokines may have the capacity to modulate neuronal 

transmission. This appears to occur indirectly through the modulation of 

neurotransmitter release, specifically glutamate and/or GABA. 
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Although intriguing, these studies are limited as they invariably involve exposing 

the brain, or brain slices, to high concentrations of the relevant chemokines. 

There is no literature to suggest that this is representative of what occurs under 

physiological conditions in vivo. From the described experiments, it is unclear 

whether CXCL12 or CCL2 act directly on neurons to modulate the release of 

neurotransmitters or whether they function primarily on glial cells to govern 

neurotransmitter uptake. Moreover, it is worth noting that chemokines, 

particularly inflammatory chemokines such as CCL2, induce the expression of a 

number of other mediators. Thus, when interpreting observations derived from 

injecting a chemokine into the brain, it is difficult to delineate between the 

direct effect of the chemokine and the potential indirect effects of inducible 

agents. Taken together, these observations demonstrate that, under 

experimental conditions, chemokines have the capacity to indirectly impact 

neuronal membrane potential resulting in altered neuronal transmission. By 

doing so, chemokines may be able to modulate neuroendocrine functions and 

neurotransmitter release in steady state conditions. However, this remains to be 

clarified in vivo. 

1.3.2.2 Maintaining microglial quiescence 

CX3CL1 is the exclusive member of the CX3C chemokine family. It is 

constitutively expressed by neurons in spatially specific regions of the 

brain257,258. Although the exact function of CX3CL1-expressing neurons remains to 

be established, the CX3CL1 receptor, CX3CR1, is constitutively expressed 

throughout the brain by microglial cells257,258. As a result, much research has 

gone into elucidating the role of the CX3CL1/CX3CR1 axis in the brain. A 

fundamental tool that has been widely beneficial in accelerating these studies 

has been the replacement of Cx3cr1 with a green fluorescent protein (GFP) 

reporter gene. Creating a CX3CR1 null locus, the generation of CX3CR1gfp mice 

has enabled phenotypic comparisons between CX3CR1+/+, CX3CR1gfp/+ and 

CX3CR1gfp/gfp mice259. Analyses of these mice have identified a number of 

phenotypes resulting from the lack of CX3CR1 signalling. For example, CX3CL1 

has been shown to exert a potent restraining influence on microglia in vivo. 

Using CX3CR1 deficient mice, several groups have described elevated microglial 

activation, often accompanied with increased cytokine production following the 

induction of CNS diseases or systemic LPS challenge128,245,260-262 (Section 1.3.1.3) 
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Although these observations relate to microglial responses during 

neuroinflammatory and neurodegenerative disorders, microglia are 

constitutively exposed to CX3CL1. Therefore, CX3CR1 ligation may have a 

physiological role in maintaining microglial quiescence in steady state 

conditions. 

Supporting the concept described above, impaired signalling through CX3CR1 has 

been shown to enhance microglial activation in the hippocampus of healthy 

rodents130,263. In the adult brain, microglia have been shown to shape 

hippocampal neurogenesis through the phagocytosis of apoptotic neuroblasts264. 

Two separate studies have demonstrated that disrupting CX3CL1-mediated 

signalling in rodents, by either administering CX3CR1-specific monoclonal 

antibodies or using CX3CR1-deficient animals, resulted in impaired hippocampal 

neurogenesis130,263. In both studies, reduced neurogenesis was accompanied by 

enhanced hippocampal microglial activation and elevated levels of hippocampal 

IL-1β. Rodgers et al. also noted impaired synaptic plasticity and cognitive 

function in CX3CR1 deficient rodents130. Interestingly, the described deficits 

could be reversed in either study by infusion of the IL-1 receptor antagonist (IL-

1ra)130,263. Not only do these studies highlight a potential role for IL-1β in 

modulating adult neurogenesis, but they implicate the CX3CL1/CX3CR1 axis in 

suppressing microglial activation and inflammatory cytokine production during 

physiological conditions. 

 

1.4 Peripheral inflammation and behaviour 

Although the immune system was once considered autonomous, there is now 

considerable evidence to suggest that immune responses are in part conducted 

by the sympathetic nervous system and the hypothalamic-pituitary-adrenal 

(HPA) axis (reviewed in Ref 265). The immune system responds in kind. Through 

the release of inflammatory mediators, the immune system rapidly alerts the 

brain to peripheral inflammation, ultimately invoking an appropriate behavioural 

response. Thus the immune system and the nervous system are intimately 

interlinked. This bi-directional interplay is essential in mounting a successful 

response to pathogens. 
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1.4.1 Evidence of inflammation-induced behavioural changes 

It is well established that systemic infection or inflammation can have marked 

effects on mood and behaviour. These behavioural changes, termed sickness 

behaviours, include fever, somnolence, loss of appetite, social withdrawal, 

anhedonia, malaise and impaired motor and cognitive function266,267. Sickness 

behaviours are highly conserved, occurring in many mammalian species as a 

result of numerous types of infection268. By promoting energy conservation and 

minimising heat loss, they represent a sound strategy designed help an organism 

overcome infection. As will be described below, sickness behaviours also occur 

during chronic inflammatory diseases. In these instances, what should be a 

beneficial, self-limiting system can become dysregulated. This can lead to a 

maladaptive behavioural response characterised by prolonged depression and 

anxiety. In the remainder of this section, the evidence backing the immune 

system as a key contributor to the behavioural symptoms of sickness will be 

discussed, as will the routes of immune-to-brain communication and the 

potential mechanisms of inflammation induced sickness behaviours. 

1.4.1.1 Cytokine-induced behavioural changes 

Acute or chronic exposure to cytokines or potent inflammatory agents, such as 

LPS, induces a variety of behavioural symptoms in both humans and rodents. 

Thought to be mediated by the actions of inflammatory cytokines TNFα, IL-1β 

and IL-6, these behavioural phenotypes often markedly resemble symptoms of 

major depression.  

In the last 15 years, a number of human studies have been aimed at investigating 

the impact of peripheral endotoxin-induced inflammation on mood and 

cognition. In a study using healthy volunteers, the administration of LPS elicited 

an acute behavioural response characterised by significantly elevated depression 

and anxiety within the first few hours following treatment269. These behavioural 

phenotypes were significantly correlated with elevated plasma levels of TNFα 

and IL-6. Furthermore, inducing low-grade inflammation by injecting healthy 

volunteers with a Salmonella typhi vaccination has been shown to negatively 

affect mood and cognitive function270-272. These symptoms correlated with 

elevated levels of circulating IL-6. Thus, in humans, elevated levels of 
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circulating cytokines may guide the behavioural response by transmitting 

peripheral inflammatory signals to the brain. 

Although intriguing, the findings described above are limited as they focus on a 

highly acute inflammatory insult. Under physiological conditions, most 

inflammatory pathologies will be more chronic in nature. In addition the 

correlation between depression and elevated peripheral cytokines may represent 

an epiphenomenon. There are however several lines of evidence linking chronic 

inflammatory stimulus and specific cytokines to profound changes in mood and 

behaviour. The manifestation of major depressive disorders is a common 

comorbidity associated with chronic inflammatory diseases. Strikingly, 

approximately 50% of patients with multiple sclerosis will present with a 

psychiatric illness during their lifetime, with major depression being the most 

common273. This association is not limited to inflammatory diseases of the CNS. 

Patients with peripheral chronic inflammatory disorders, such as rheumatoid 

arthritis, psoriasis and inflammatory bowel disease, are also at a greater risk of 

developing major depression than the general population274-276.  

Although once considered of psychosocial aetiology, the manifestation of major 

depressive disorders in patients with chronic inflammatory diseases may occur 

through the direct effects of peripheral inflammatory cytokines. Supporting this 

hypothesis are the results of a phase III clinical trial in which patients with 

moderate to severe psoriasis were treated with soluble TNFα receptor 

Etanercept. Neutralisation of TNFα caused a reduction in depression which 

preceded a reduction in disease severity276. Further supporting the notion of 

cytokine-induced depression; patients receiving chronic IFNα or IL-2 therapy face 

a significant risk of experiencing neuropsychiatric side effects during 

treatment277,278. Both recombinant cytokines are used therapeutically to treat 

chronic hepatitis C and various malignancies. Occurring in approximately one 

third of patients279, IFNα-induced depressive symptoms markedly resemble 

symptoms of idiopathic major depression. Moreover, these symptoms can be 

prevented by pre-treatment with anti-depressant medication277,278. Less 

predictable are the neuropsychiatric side effects induced by IL-2 which have 

been reported to include belligerence, gross disorientation and possible 

psychosis280. 
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Supporting these clinical data, it is well established that injecting rodents with 

inflammatory cytokines or cytokine-inducing agents induces a myriad of sickness 

behaviours. Using animal models to investigate sickness behaviours and 

depression-like behaviours has been widely beneficial in developing our 

understanding of the underlying mechanism behind inflammation-induced 

behavioural changes. Specifically it has confirmed the importance of specific 

inflammatory cytokines in transmitting information to the brain. For example, 

injecting rodents systemically with LPS, a potent inducer of IL-1β, IL-6 and 

TNFα, triggers the full spectrum of sickness behaviours, including fever, 

anorexia, decreased motor activity and activation of the HPA axis281-285. 

Inflammatory cytokines are thought to be the principle mediators of LPS-induced 

sickness behaviours as similar behavioural symptoms occur in response to 

centrally or systemically administered recombinant IL-1β or TNFα286-291. Indeed 

blocking IL-1β signalling, either using IL-1 receptor deficient mice or by 

administering IL-1ra, can ameliorate many of the behavioural phenotypes 

induced by LPS292-295.  

It is worth noting that a number of LPS- or cytokine-induced sickness behaviours 

strikingly resemble the clinical symptoms of depression, such as anhedonia and 

social withdrawal266. In addition, a number of LPS-induced sickness behaviours 

can be treated with conventional antidepressants296-298. These observations have 

led to attempts to form a distinction between sickness behaviours and so-called 

depression-like behaviours. This is no easy task. The idea that rodents 

experience “depression” is controversial. Moreover considerable overlap exists 

between sickness and depression-like behaviours. Despite these complexities, a 

study by Frenois et al. demonstrated that 24 hours following systemic LPS 

injection, long after mice had recovered from the potentially confounding 

influence of reduced motor activity and loss of appetite, mice presented with 

behaviours resembling depressive symptoms299. These were characterised by a 

prolonged duration of immobility during the forced-swim test, understood to 

represent behavioural despair, and a decreased preference for sucrose which is 

thought to be a sign of anhedonia. Thus, although symptoms of sickness and 

depression may be difficult to distinguish in rodents it is possible that, in the 

hours following LPS injection, a distinct fraction of depressive-like behaviours 

persevere after other sickness behaviours resolve. 
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Overall, the evidence to suggest that cytokines can have a negative impact on 

mental wellbeing is compelling. The mechanisms by which cytokines, and 

cytokine inducing agents such as LPS, transmit signals to the brain and the 

downstream effect this is thought to have on neural circuitry will be discussed in 

detail in Sections 1.4.2 and 1.4.3. 

1.4.1.2 Depression and inflammatory cytokines 

Not only have inflammatory cytokines been shown to contribute directly to 

symptoms of depression but medically healthy patients with major depression 

often present with elevated levels of inflammatory mediators in their 

circulation. These include inflammatory cytokines, such as IL-1β, IL-2, IL-6, IFNγ 

and TNFα, the soluble IL-6 receptor, sIL-6R and the IL-1 receptor antagonist300. 

Although the specific association of individual cytokines, and soluble cytokine 

receptors/receptor antagonists, with major depression has been variable 

between reports, the underlying theme of enhanced immune activation has been 

constant. To combat the variability between individual reports, a meta-analysis, 

performed by Dowlati et al. confirmed the significant elevation of both IL-6 and 

TNFα in patients with major depression300. Thus major depression is consistently 

associated with enhanced immune activation and the inflammatory cytokines IL-

6 and TNFα may be reliable biomarkers in pathology. 

The immune dysfunction that accompanies major depression is likely to be of 

clinical importance as inflammatory mediators may contribute to pathology 

(Section 1.4.3). As described above, anti-inflammatory agents have proven 

beneficial in ameliorating depressive symptoms in patients with chronic 

inflammatory diseases. Furthermore, several studies have shown that treating 

medically healthy depressed patients with immune-targeted therapy, specifically 

COX inhibitors, in combination with antidepressants showed greater efficacy in 

combating depression than antidepressants alone301-303. In a study by Mendlewich 

et al. patients treated with COX inhibitors in combination with antidepressants 

showed remission despite being initially unresponsive to antidepressant therapy 

alone303. Cyclooxygenases are the rate-limiting enzymes in the synthesis of 

prostaglandins. Prostaglandins have a role in modulating inflammatory responses 

in the periphery (Reviewed in Ref13) and are implicated in the transmission of 

immune signals across the BBB (see Section 1.4.2.2). As a result, the beneficial 
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effects of COX inhibition are likely due to the subsequent impairment of these 

processes. Thus, prostaglandin-induced responses are likely to contribute to the 

pathogenesis of major depression. 

1.4.2 Routes of immune-to-brain communication 

Under normal homeostatic conditions, the CNS is protected from the changeable 

and potentially pathogenic milieu of the periphery by the BCSFB and the BBB. 

Due to the delicacy of the CNS and the danger of intrathecal swelling, the entry 

of immune cells and inflammatory mediators is tightly regulated. However, the 

brain must be able to respond to changes in the peripheral inflammatory 

environment otherwise the behavioural phenotypes that accompany infection, 

chronic peripheral inflammation and cytokine therapy would not be seen. The 

precise mechanisms by which these peripheral immune challenges are 

communicated to the brain to induce sickness behaviours remain to be fully 

clarified. Several pathways, which will be discussed below, have been 

implicated in this immune-to-brain interplay. These are assumed to primarily 

involve the intermediary action of inflammatory cytokines and cytokine-induced 

secondary messengers, such as prostaglandins. Using animal models, it has been 

demonstrated that most sickness behaviours can be induced by peripheral or 

central administration of either IL-1β or TNFα286-291. Furthermore, a number of 

the central responses to peripheral inflammation, and the resulting behavioural 

phenotypes, can be attenuated by blocking the effects of IL-1β (discussed in 

Section 1.4.3). Although not a requisite for any of the psychiatric symptoms, IL-6 

is required for the induction of a fever response281. Thus, from these studies it is 

abundantly clear that cytokines may play a crucial role in immune-to-brain 

communication and sickness behaviour induction. 

1.4.2.1 Active cytokine transport 

The BBB is an endothelial lining of the cerebral vasculature. Its specialised 

transport systems severely restrict the transcellular exchange of molecules 

between the periphery and the CNS. Inflammatory cytokines, such as IL-1α, IL-

1β, IL-6 and TNFα, are amongst the repertoire of proteins and peptides that can 

be actively transported across the BBB304-307. Several studies have demonstrated 

that peripherally administered radiolabelled cytokines have the capacity to 
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enter the CNS304-307, even when the BBB remains intact. This unidirectional influx 

can be inhibited by the administration of excess unlabelled cytokines, indicating 

the presence of cytokine-specific, saturable active transport systems. The 

function of these receptors may be modulated in pathological settings. For 

example, activity of the TNFα transporter is increased following spinal cord 

injury or stroke307,308. Interestingly, LPS has been shown to modulate the active 

transport of insulin and amyloid-β across the BBB309,310. However, the effect of 

LPS on the transport of inflammatory cytokines remains to be established. 

Cytokine transporters function at a low capacity and are quickly saturated. 

Whilst a role for active cytokine transport in the induction of sickness 

behaviours, particularly in memory processing, has been inferred311, the 

evidence supporting active transport as a key route of immune-to-brain 

communication is minimal.  

1.4.2.2 Humoral routes of communication 

Peripheral inflammatory mediators and cytokine inducers, such as LPS, can 

signal to the brain via several humoral routes of communication. Both cytokines 

and LPS can activate the brain endothelium, thus relaying signals across the BBB. 

In addition, blood-borne inflammatory agents may activate certain brain regions 

directly.  

In general, the BBB protects the brain from the periphery. However, there are 

small specialised brain regions surrounding the margins of the cerebral 

ventricles, termed the circumventricular organs (CVOs), which lack a 

conventional BBB. In these regions, which possess a fenestrated endothelium, 

neurons and microglia may be exposed to circulating inflammatory mediators. 

Supporting this, the expression of the immediate-early gene c-Fos, a classic 

indicator of neuronal activation, is induced in sensory CVOs of the rat brain 

following the intraperitoneal administration of LPS or the intravenous injection 

of IL-1β, IL-6 or TNFα312-314. Furthermore, IL-1β, IL-6 and TNFα mRNA is rapidly 

induced in these regions in response to systemic LPS, but not in response to the 

intravenous injection of inflammatory cytokines312,313,315. This suggests that LPS 

may have a direct role activating cells in the CVOs, as well as an indirect role via 

the induction of inflammatory cytokines. Indeed, TLR4 is widely expressed 
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throughout the CVOs316. In addition to neuronal activation, characterised by c-

Fos induction, systemic administration of LPS triggers a wave of microglial 

activation that is dependent on the paracrine effects of TNFα317-319. Beginning 

mainly in the CVOs, but also in the choroid plexus and the leptomeninges, this 

response extends to adjacent brain structures and after high doses of LPS, 

spreads throughout the parenchyma. Thus, circulating cytokines and LPS have 

the capacity to induce neuronal activity in the CVOs. In addition, systemic LPS 

challenge can induce local inflammation and microglial activation in the CVOs. 

Via the paracrine effects of TNFα, this culminates in the activation of microglia 

throughout the parenchyma.  

A more defined route of immune-to-brain communication is the activation of the 

BBB by blood-borne inflammatory agents. Via a complex interplay between 

endothelial cells and perivascular macrophages (PVMs), this leads to the 

synthesis of prostaglandins. In turn, prostaglandins can freely diffuse into the 

parenchyma and activate discrete brain regions. In fact, a number of brain 

responses to peripheral inflammation, such as fever and HPA axis activity, are at 

least partially dependent on prostaglandins, particularly prostaglandin E2 (PGE2) 
320,321. This demonstrates the pivotal role of BBB activation in transmitting 

peripheral immune signals to the brain.  

Cytokines stimulate cells associated with the BBB endothelium by signalling 

through cytokine receptors to activate the inflammatory transcription factor 

NFκB. In support of this, intravenous IL-1β or TNFα administration triggers a 

rapid and transient induction of IκB-α throughout both large and small vessels of 

the brain vasculature and in scattered parenchymal microglia312,320. Not only is 

NFκB a potent inducer of IκB-α but it is also a positive regulator of COX-2 

transcription322. Indeed, COX-2 is highly induced throughout the vasculature in 

response to either cytokine312,323. Co-staining for COX-2 protein and specific cell 

markers revealed that, in response to IL-1β, COX-2 was produced predominantly 

by PVMs324. As it is the rate-limiting enzyme in prostaglandin synthesis, enhanced 

COX-2 production could potentially result in the elevated release of these 

soluble mediators from cells associated with the endothelium. The terminal 

enzyme in the synthesis of PGE2, microsomal prostaglandin E synthase (mPGES), 

is also induced in the cerebral vasculature following intravenous IL-1β 

challenge324,325. COX-2 and mPGES are typically expressed in a concomitant 
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manner326 and unsurprisingly, virtually all COX-2 positive vascular cells co-

expressed mPGES325. Thus, cytokine-mediated activation of the cerebral 

vasculature and associated PVMs leads to the rapid induction of the necessary 

enzymatic components required for PGE2 synthesis. Subsequently, PGE2 was 

shown to be synthesised in PVMs following IL-1β challenge324. 

In a similar manner to inflammatory cytokines, intraperitoneal LPS injection 

induces the transcription of IκB-α, COX-2 and mPGES mRNA in the BBB 

endothelium. In addition, IκB-α expression extended to microglial cells of the 

parenchyma327. Again, COX-2 and mPGES were co-localised328. The induction of 

these genes occurs rapidly. However, in contrast to the transient response that 

is induced by circulating cytokines, induction of IκB-α, COX-2 and mPGES 

following LPS injection is comparatively prolonged320,323. As expected, the 

enhanced expression of COX-2 protein and mPGES mRNA was accompanied by 

increased PGE2 production; this time by both endothelial cells of the cerebral 

vasculature and associated PVMs324. Using brain endothelial monolayers, Moore 

et al. demonstrated that four times more PGE2 was released from the abluminal 

side of a cultured endothelial cell layer than the luminal side329. Therefore, PGE2 

would appear to be released into the parenchyma in a polarised fashion. In 

addition to inducing inflammatory cytokine production in the periphery, which in 

itself contributes to endothelial cell activation, LPS can activate the BBB 

vasculature directly. In support of this, inducing tissue specific, sterile 

inflammation using intramuscular turpentine injection, induced a similar pattern 

of BBB activation as injecting inflammatory cytokines327. This was completely 

blocked in IL-1β-deficient mice; however, BBB activation in response to systemic 

LPS injection remained intact327. Consequently, although IL-1β is capable of 

activating cells associated with the cerebral endothelium, it is not essential for 

BBB activation in response to LPS. 

The distinct action of IL-1β and LPS on the cerebral vasculature is highlighted in 

an elegant study by Serrats et al. This group demonstrated that ablation of 

PVMs, using chlodronated liposomes, completely abolished COX-2 and mPGES 

expression by cells associated with the cerebral vasculature in response to 

intravenous IL-1β injection324. In contrast, PVM ablation markedly potentiated 

the expression of both molecules in response to intraperitoneal LPS injection, 

leading to heightened PGE2 production in the brain324. This implies a bi-
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directional interaction between endothelial cells and PVMs whereby, in response 

to IL-1β, activation of PVMs and subsequent PGE2 production occurs downstream 

of endothelial cell activation. However, PVMs would appear to exert a potent 

inhibitory effect on endothelial cell activity which is partially overcome by LPS 

leading to the production of PGE2 by endothelial cells. Whether produced in 

response to IL-1β or LPS, elevated PGE2 production was associated with 

enhanced activation of the HPA control circuitry, characterised by increased c-

Fos expression in the catecholaminic neurons that project onto the 

hypothalamus. HPA axis activation subsequently leads to the increased 

production of stress hormones324. This is likely to be mediated by PGE2 as intra-

cerebral PGE2 injection is sufficient to induce the same response330. The impact 

that enhanced HPA axis activity has on behaviour will be discussed in Section 

1.4.3.1. 

Activated endothelial cells may also perpetuate the immune response by 

secreting cytokines into the brain and into the periphery. In support of this, LPS 

has been shown to stimulate cytokine production, including IL-6 and TNFα, in 

brain endothelial monolayers331. Whilst cytokines were secreted from both the 

luminal and abluminal sides of the monolayers, IL-6 production was 2-fold 

greater on the abluminal side, suggesting that IL-6 might be released into the 

brain in a polarised manner. In addition to enhanced cytokine production, 

activated endothelial cells upregulate cytokine receptor expression in response 

to intravenous inflammatory cytokine administration or intraperitoneal LPS 

injection. This has been documented for both TNFα receptor subtypes, TNFR1 

(p55) and TNFR2 (p75), and both components of the IL-6 receptor, IL-6R and 

gp130312,313. Upregulation of cytokine receptor expression is likely to enhance 

the ability of endothelial cells to respond to circulating cytokines. This may 

result in increased activation of the cerebral vasculature and thus enhanced 

transduction of immune signals into the brain.  

Taken together these reports suggest that, via different mechanisms, LPS and 

inflammatory cytokines, particularly IL-1β, can activate cells associated with the 

cerebral vasculature. By inducing COX-2 and mPGES expression, this leads to 

elevated PGE2 production. In turn, PGE2 activates the HPA axis, thus mediating 

the transduction of inflammatory signals across the BBB. In parallel, activated 

endothelial cells of the BBB produce cytokines whilst simultaneously increasing 



70 

cytokine receptor expression. This is likely to perpetuate endothelial cell 

activation and enhance immune signal transduction from the periphery to the 

brain. 

1.4.2.3 Leukocyte infiltration 

As described in Section 1.2.2.2, a steady flow of leukocytes migrate from the 

blood to patrol the brain. To do this they must cross one of the two cellular 

barriers that protect the brain from the periphery; the BBB or the BCSFB. During 

homeostatic conditions, this process is highly exclusive (briefly described in 

Section 1.2.2.2). However, following inflammatory insult, either peripheral or 

central, the restrictions that govern leukocyte entry to the brain become more 

relaxed. The consequences, which range from enhanced adhesion of leukocytes 

to the cerebral vasculature to mass immune cell invasion of the CNS, depend on 

the nature of the inflammatory insult. 

Following an inflammatory insult to the CNS, the expression of adhesion 

molecules is upregulated by cerebral vasculature endothelial cells. This 

phenomenon is best characterised in neuroinflammatory disorders in which 

leukocyte infiltration of the CNS plays a prominent role, such as ischemic stroke 

and MS. Ischemic stroke triggers an inflammatory response in the brain. The 

central production of cytokines and chemokines results in the activation of the 

cerebral vasculature and the subsequent recruitment of neutrophils and 

monocytes from the peripheral blood. Amongst the adhesion molecules that are 

upregulated by the cerebral vasculature in response to ischemic stroke are P- 

and E- selectin and Ig superfamily member, ICAM-1332. These adhesion molecules 

play a crucial role in pathology as their neutralisation leads to a reduction in 

infarct volume, and mortality rate, whilst improving neurological outcome332. 

ICAM-1 induction is thought to be mediated by IL-1β. In support of this, ICAM-1 

expression following cerebral ischemia is reduced in mice which overexpress IL-

1ra333. The firm adhesion of ICAM-1 to integrins, present on the surface of 

leukocytes, requires chemokine-mediated Gαi signalling pathway activation. The 

presence of a number of chemokines on the BBB endothelium has been well 

documented in response to ischemic stroke. Of note is the presence of CXCL8, 

CCL2 and CCL3 which have all been implicated in the recruitment of monocytes 

and neutrophils to the brain during pathology332. Thus, stroke-induced 
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inflammation leads to elevated adhesion molecule expression and chemokine 

presentation by the cerebral vasculature.  

Leukocyte infiltration of the brain is also a cardinal feature of both MS and EAE. 

Current dogma suggests that MS is initiated by autoreactive T cells which enter 

the immune-specialized CNS under the pretext of 

immunosurveillance153,156,232,332. As described in Section 1.2.2.3, these T cells 

most likely encounter their cognate antigen displayed by APCs in the CSF. This 

leads to a robust inflammatory response which subsequently facilitates T cell 

infiltration across the BCSFB and the BBB. PSGL-1 is expressed by most 

encephalitogenic T cells in the CNS of mice with EAE. It has the capacity to bind 

to P-, E- or L-selectin334 thus may be involved in lymphocyte tethering to the BBB 

during MS. In support of this, immunohistochemical analysis has identified the 

expression of E selectin in the cerebral vasculature associated with MS lesions332. 

In addition, CD4+ T cells from MS patients express elevated levels of PSGL-1 and 

have an enhanced ability to cross an in vitro model of the inflamed BBB332. ICAM-

1 and VCAM-1 are also associated with MS lesions335. Moreover, the ligands for 

these adhesion molecules, integrins lymphocyte function-associated antigen 1 

(LFA-1) and very late antigen 4 (VLA-4) respectively, are expressed by 

infiltrating inflammatory leukocytes335. Activation of these integrins undoubtedly 

involves interactions between chemokine receptors on the leukocyte cell surface 

and one of the many chemokines that are upregulated in the brain during 

pathology. A brief outline of some of the chemokine systems that have been 

implicated in MS pathology has been given in Section 1.3.1.2. During MS, 

inflammatory leukocytes also infiltrate the CSF across the BCSFB. The precise 

mechanisms governing this recruitment remain to be defined. However, within 

the choroid plexus, inflammatory conditions have been shown to upregulate 

epithelial expression of both ICAM-1 and VCAM-1 and also to induce de novo 

mucosal addressin cellular adhesion molecule (MadCAM-1) expression151. 

Therefore central inflammation, induced by autoreactive T cells, leads to 

elevated adhesion molecule expression on both the BCSFB and the BBB. This, 

coupled with a massive central induction of inflammatory chemokines leads to 

immune cell invasion of the CSF and the brain parenchyma. 

Elevated adhesion molecule expression and enhanced recruitment of leukocytes 

to the BBB endothelium can often be a feature of CNS disorders. However, the 
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same has been reported following peripheral inflammatory insults. Systemic 

administration of LPS can activate the BBB endothelium leading to an 

upregulation of ICAM-1 and P- and E-selectin336-338. This enhances the rolling and 

tethering of activated lymphocytes to the vasculature339,340. Activation of the 

BBB endothelium, characterised by enhanced expression of VCAM-1, has also 

been documented in a mouse model of hepatic inflammation241. BBB activation 

was associated with enhanced rolling and adhesion of monocytes to the cerebral 

vasculature and subsequent parenchymal invasion. Thus, activation of the BBB 

endothelium and recruitment of leukocytes to the brain is not a phenomenon 

that is limited to CNS disorders. 

Inflammatory cytokines are implicated at various stages of leukocyte 

recruitment to the brain. As described above, IL-1β induces ICAM-1 expression 

during cerebral ischemia. In addition, intraventricular IL-1β injection has been 

shown to induce ICAM-1 protein, and CCL2 mRNA expression, in the cerebral 

vasculature which lead to the central recruitment of monocytes and 

neutrophils341. Adhesion molecules such as ICAM-1 and VCAM-1, and 

inflammatory chemokines, can also be induced by TNFα. As described in Section 

1.3.1.3, following the induction of hepatic inflammation, TNFα was shown to 

play a role in central CCL2 production and subsequent monocyte recruitment241. 

Furthermore, inflammatory cytokines, such as TNFα, IL-1β and IL-6, have been 

shown to disrupt BBB integrity241. Thus, cytokines have an intrinsic role in 

enhancing adhesion molecule expression, increasing chemokine production and 

increasing BBB permeability. These effects relax the conditions required for 

leukocyte recruitment to the brain.  

By enhancing the production of inflammatory mediators, infiltration of 

leukocytes into the CNS will likely potentiate the central inflammatory response. 

This may have downstream implications on behaviour. In support of this, Pollack 

et al. demonstrated that the transient sickness behaviours that are associated 

with EAE preceded neurological deficits but coincided with the leukocyte 

infiltration of the brain, the central induction of inflammatory cytokines and the 

hypothalamic production of PGE2
342. Furthermore, blocking leukocyte 

recruitment to the brain prevented the induction of sickness behaviours that are 

associated with hepatic inflammation241. The mechanisms by which inflammatory 

cytokines impact behaviour are described in Section 1.4.3. Taken together, 
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these reports demonstrate that during inflammatory CNS diseases, and some 

peripheral inflammatory diseases, adhesion molecules are upregulated by 

endothelial cells of the cerebral vasculature. This, in association with the 

enhanced production of chemokines in the CNS, culminates in leukocyte 

recruitment across the BBB. Furthermore, the elevated production of cytokines 

in the brain that accompanies inflammatory cell invasion may have a potent 

impact on behaviour. 

1.4.2.4 Neuronal transmission 

The vagus nerve extends from the brain and innervates the viscera. Not only 

does it play an integral role in modulating responses in the periphery, but 

afferent projections carry information from the viscera to the nucleus of the 

solitary tract266. Secondary projections in turn relay this information to a number 

of different brain regions. Secondary projection sites include regions of the brain 

that are relevant to behaviour, including the paraventricular nucleus of the 

hypothalamus, which has a role in the activation of the HPA axis (see Section 

1.4.3.1), and the central amygdala which has a role in fear conditioning and 

social behaviour266,343. The role of the vagus nerve in transmitting immune 

signals to the brain became apparent when it was demonstrated that 

intraperitoneal administration of LPS led to neuronal activation, characterised 

by activation of the transcription factor Fos (protein product of c-Fos), in both 

primary and secondary projection areas of the vagus nerve266. Since then a 

number of studies have been aimed at identifying the functional significance of 

this peripherally-induced neuronal activation, with particular relevance to its 

effect on sickness behaviours. 

Vagotomy experiments have been repeatedly used to determine the role of the 

vagus nerve in LPS or IL-1β-induced sickness behaviours. Several groups have 

reported that the fever response to IL-1β or LPS is attenuated in vagotomised 

rodents287,344,345. However, the results of these studies have been highly variable 

with a number of other groups reporting that the LPS- or IL-1β-induced fever 

response is unaffected in vagotomised rodents289,346,347. General dogma suggests 

that the effect of vagotomy on IL-1β- or LPS-induced fever may be dose-

dependent. In IL-1β- or LPS-challenged mice, vagotomy has been shown to 

attenuate the monophasic fever induced by low doses of either stimulus, 
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whereas the biphasic fever induced by high doses was unaffected345,346. 

However, this rule has not been consistent as a separate study demonstrated 

that vagotomy had no effect on fever regardless of the administered dose of IL-

1β289. Several other consequences of vagotomy have been described, such as an 

attenuation of hyperalgesia348 and activation of the HPA axis349 following 

peripheral LPS or cytokine challenge, despite having no effect on central IL-1β 

production350. Moreover, the reduction of social exploration that occurs 

following peripheral IL-1β administration was attenuated in vagotomised rats289. 

To summarise, by relaying immune signals to the brain, the vagus nerve plays a 

role in mediating LPS- or cytokine-induced CNS responses. However, this role 

appears to be partial and most likely occurs in parallel to other routes of 

immune-to-brain communication. 

1.4.3 Mechanisms of cytokine-induced behavioural changes 

Once peripheral immune signals are transmitted to the brain, they can have a 

profound effect on neural circuitry, leading to activation of the neuroendocrine 

system and altered neural transmission and plasticity. Individually, each of these 

actions has the capacity to impact mood and behaviour, as will be discussed 

below. However, in reality, these actions are likely to occur in parallel. In 

addition, to a certain extent, each of the effects described below will have an 

impact on each other. The relative induction of each will probably depend on 

the nature and duration of the inflammatory insult. Thus, a number of 

mechanisms exist whereby peripheral inflammation can alter brain function to 

promote sickness behaviours or in extreme cases, depression or anxiety.  

1.4.3.1 HPA axis activation 

The complex network of interactions between the hypothalamus, the pituitary 

gland and the adrenal glands collectively constitute the HPA axis. By modulating 

a major part of the neuroendocrine system, the HPA axis coordinates the body’s 

response to stress. Both physical and ‘psychological’ stress trigger the 

production of corticotrophin releasing factor (CRF) from the paraventricular 

nucleus (PVN) of the hypothalamus351. CRF subsequently stimulates the release 

of adrenocorticotrophic hormone (ACTH) from the anterior pituitary gland into 

the circulation. In turn, circulating ACTH induces the secretion of glucocorticoids 
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(cortisol in humans or corticosterone in rodents) from the adrenal glands351. By 

binding to glucocorticoid receptors (GRs), situated in various tissues throughout 

the body, these hormones exert a multitude of effects on the periphery and the 

brain. Not only do glucocorticoids control metabolism, modulate the growth of 

bone and muscle and suppress the immune system but they also act as 

neuromodulators, impacting neuronal survival, proliferation, excitability and 

signalling351. GRs are widely expressed throughout the brain, particularly in 

regions which are known to govern mood, behaviour and cognition, such as the 

dorsal raphe nucleus, the hippocampus and other regions of the limbic system351. 

It is therefore unsurprising that aberrant activation of the HPA axis is associated 

with neuropsychiatric disorders like depression and anxiety.  

Under steady state conditions, the HPA response is rapid and short-lived. Various 

feedback mechanisms exist which dampen HPA axis activity. Not only do 

glucocorticoids exert potent anti-inflammatory effects on the immune system 

but they reduce further CRF release from the PVN and subdue ACTH secretion 

from the pituitary352. When these negative feedback mechanisms are impaired, 

it can lead to an exaggerated HPA axis response. This is assumed to occur in a 

proportion of patients with major depression who consistently present with 

elevated levels of cortisol in their plasma, urine and CSF352. Interestingly, a 

significant literature indicates that GR expression and function is impaired in 

depressed patients353,354. Furthermore, cortisol production could not be 

suppressed by the administration of a GR agonist, dexamethasone354. These data 

suggest that this group of depressed patients develop glucocorticoid resistance 

as a consequence of altered GR function and expression. By leading to impaired 

negative feedback of the HPA axis, this is at least partially responsible for the 

exaggerated HPA axis responses that are associated of major depression. 

In a proportion of depressed individuals, antidepressant therapy has been shown 

to restore GR expression and function353,354. In doing so, antidepressants restore 

the intrinsic negative feedback mechanisms of the HPA axis, thus normalising its 

activity. This has led to the hypothesis that hyperactivation of the HPA axis may 

in fact contribute to pathology. Ridder et al. have subsequently corroborated 

this using genetically manipulated mice which underexpress the glucocorticoid 

receptor. Mimicking the impaired receptor function observed in depressed 

individuals, these mice are significantly more prone to depressive-like symptoms 
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than their wild type littermates when exposed to environmental stressors355. 

Therefore, as well as being associated with depression, hyperactivation of the 

HPA axis might also play a role in pathology. 

Inflammatory cytokines are strongly implicated in influencing various stages of 

HPA axis activation in response to either physical or psychological stress. There 

is evidence demonstrating that immune challenge, whether as a result of 

bacterial or viral infection or exposure to recombinant cytokines or LPS, triggers 

the activation of the HPA axis in both patients and rodents356. Ultimately, this 

leads to elevated levels of ACTH and glucocorticoids in the circulation. Although 

many cytokines have been implicated in inducing HPA activity, IL-1β is generally 

considered to be the most potent. Unlike other inflammatory cytokines, IL-1β 

activates the HPA axis consistently across models and species356. In fact, in many 

cases, immune-induced activation of HPA axis can be abrogated in IL-1 receptor 

(IL-1R)-deficient mice, or by administration of IL-1ra357. However, blocking IL-1β 

activity has variable effects on HPA axis activation in rodents following systemic 

LPS injection. For example, numerous reports suggest that IL-1β has a pivotal 

role in triggering the HPA response to endotoxin284,356-358. However, Dunn et al. 

and Ebusui et al. demonstrated that blocking the effects of IL-1β, using IL-1ra, 

had no significant effect on HPA axis activation following the systemic 

administration of LPS359,360. Furthermore, Kozak et al. showed a normal rise in 

circulating corticosterone in IL-1β-deficient mice in response to LPS282. Thus, IL-

1β may not be the sole, or indeed the principle mediator of HPA responses 

following LPS injection. These conflicting findings are likely dependent on a 

number of variables, such as; the species or strain of rodent used in the 

experimental model, the dose and strain of LPS that was administered, the route 

of LPS administration or the time elapsed following injection. For example, 

Perlstein et al. demonstrated that, following LPS challenge, IL-1β, IL-6 and TNFα 

acted synergistically to activate the HPA axis361. However, the predominance of 

each cytokine in triggering an ACTH response depended on the dose of LPS 

administered and the time point at which ACTH concentrations were assessed 

following LPS injection. Taken together, these reports suggest that, although 

cytokines have a fundamental role in activating the HPA axis following 

inflammatory insult, the precise involvement of individual cytokines may depend 

on the nature of the immune challenge.  
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Cytokines, particularly IL-1β, also play a role in modulating HPA axis activation 

in response to psychological stress. Numerous rodent stress models have been 

shown to induce IL-1β expression and subsequent protein production in a variety 

of brain regions (Reviewed in Ref 357). Included in these brain regions are the 

hypothalamus and the pituitary where IL-1β secretion has been shown to occur 

rapidly following inescapable footshock362. IL-1β is also implicated in the stress 

response in humans. Many studies utilising various forms of stressful stimuli have 

demonstrated that IL-1β production in the periphery is enhanced in response to 

stress357. The importance of this cytokine in modulating the body’s stress 

circuitry has been defined by blocking its action in rodent stress models. For 

example, Shintani et al. established that central administration of IL-1ra prior to 

the induction of immobilisation stress led to a dampening of the HPA 

response363. Moreover, Goshen et al. demonstrated that activation of the HPA 

axis was impaired in IL-1RI-deficient mice following exposure to mild stress364. In 

contrast, following the induction of severe stress, HPA axis activation in IL-1RI-

deficient mice was comparable to that in wild-type mice364. Consequently, 

although signalling through the type I IL-1R plays a key role in modulating the 

HPA axis in response to certain stressors, it is not the sole mediator of HPA axis 

activation following severe stress. 

The main mechanism of inflammatory cytokine-induced HPA axis activation is 

arguably the hypothalamic induction of CRF. Intraperitoneal IL-1β-injection has 

been shown to enhance the secretion of both CRF from the hypothalamus and 

ACTH from the pituitary. However, IL-1β-induced ACTH production has been 

shown to be dependent on hypothalamic CRF as it can be ameliorated by 

administering CRF-specific antibodies365,366. HPA activation may also be partially 

mediated by the direct effect of cytokines on the pituitary gland. Although there 

have been conflicting reports regarding the ability of pituitary cells to secrete 

ACTH in response to cytokines in vitro365-367, an in vivo study by Kariagina et al. 

demonstrated that systemic LPS injection could induce ACTH and corticosterone 

production in CRF deficient mice368. This response was coupled with increased 

IL-1β, IL-6 and TNFα expression in the pituitary and thus may have been initiated 

by the action of these cytokines on ACTH-secreting pituitary cells. A direct 

effect of inflammatory cytokines on the adrenal glands has also been 
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proposed356. Although this has been substantiated by in vitro studies, it is not 

clear to what extent this occurs in vivo.  

Finally, cytokines have been shown to affect the negative feedback mechanisms 

of the HPA axis. Via a number of different inflammatory signalling pathways, 

various cytokines have been shown to interfere with the function of the 

glucocorticoid receptor and its translocation to the nucleus369. In doing so, these 

cytokines can contribute to glucocorticoid resistance which, as described above, 

may have an impact on behaviour and depressive symptoms. Thus, not only do 

cytokines induce activation of the HPA axis but they can also impair the negative 

feedback mechanisms that are employed by glucocorticoids. By leading to an 

exaggerated HPA axis response, prolonged exposure to cytokines could 

potentially contribute to depressive symptoms. 

1.4.3.2 Neurotransmitter modulation 

Monoamine neurotransmitters, such as serotonin and dopamine, play a pivotal 

role in modulating emotion, behaviour and cognition. Consequently, 

dysregulated monoamine transmission is proposed as a component of the 

pathophysiology of neuropsychiatric disorders. Both serotonin and dopamine 

have been linked to major depression. As a result, selective serotonin reuptake 

inhibitors (SSRIs), which modulate serotonin transmission, are the most common 

and effective drugs used to combat depression. In addition to major depression, 

altered serotonin transmission is also associated with anxiety and obsessive 

compulsive disorder (Reviewed in Ref 370), whereas altered dopamine 

transmission is commonly associated with attention-deficit hyperactivity 

disorder, schizophrenia and psychosis371-373. Indeed the majority of anti-

psychotic drugs target dopamine receptors372. Intriguingly, monoamine 

transmission can be modulated on a number of levels by inflammation. As a 

result, through its impact on both the serotonergic and dopaminergic systems, 

the central upregulation of inflammatory cytokines, which occurs as a result of 

peripheral inflammation, may have a profound impact on mood and behaviour.  

A number of mechanisms control monoamine transmission, one of which involves 

high affinity monoamine reuptake at neuronal synapses. With regards to 

serotonin and dopamine, this is mediated by the serotonin transporter (SERT) 
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and the dopamine transporter (DAT) respectively. Inflammation is one of many 

factors which can regulate the activity and expression of these transporters. 

Treatment of both neurons and astrocytes with inflammatory cytokines, such as 

IL-1β and TNFα, results in elevated SERT expression and significantly enhanced 

reuptake activity374,375. This is thought to occur through cellular activation of the 

p38 mitogen-activated protein kinase (MAPK) signalling pathway. In a proof of 

concept study, directly linking peripheral immune activation to elevated SERT 

activity, Cavanagh et al. used single positron emission computed tomography to 

demonstrate that blocking TNFα in patients with rheumatoid arthritis led to a 

20% reduction in SERT activity376. Furthermore, injecting mice systemically with 

LPS has been shown to increase both DAT and SERT activity377,378. The latter 

effect led to enhanced symptoms of behavioural despair in an IL-1RI-dependent 

manner378. Increased DAT expression has also been reported in patients with 

major depression373. Thus, peripheral inflammation has been shown to modulate 

the activity of monoamine transporters; an effect that may have a direct impact 

on behaviour. 

In parallel to their effect on SERT and DAT activity, inflammatory cytokines can 

also impact the biosynthesis of monoamines. This occurs indirectly. Dopamine 

biosynthesis is impaired as a result of IFNα-induced NO production in the 

brain379. The effects of inflammatory cytokines on serotonin biosynthesis occur 

via activation of IDO, the rate-limiting enzyme in the degradation of tryptophan 

(Figure 1.4). Not only is tryptophan an essential amino acid, but it is a precursor 

for the biosynthesis of serotonin. Both LPS and IFNγ have been shown to activate 

IDO. LPS-induced IDO activation is dependent on the p38 MAPK signalling 

pathway and involves the intermediary and synergistic effects of inflammatory 

cytokines IL-1β, IL-6 and TNFα380. However, IFNγ enhances IDO expression and 

activity in a manner dependent on the transcription factors, signal transducer 

and activation of transcription (STAT)-1 and IFN regulatory factor (IRF)-1381. By 

converting the available tryptophan into kynurenine, IDO activation is thought to 

have a negative impact on the levels of serotonin biosynthesis and may thus 

impact mood. Indeed blocking IDO has been shown to attenuate LPS-induced 

depression-like behaviours in mice381.  

In addition to reducing tryptophan availability, cytokine-induced IDO activation 

leads to the generation of a number of neuroactive metabolites which may also 
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contribute to depressive symptoms. In support of this, peripheral administration 

of kynurenine, the breakdown product of IDO-induced tryptophan catabolism, 

was sufficient to induce depression-like behaviours in mice381. In the CNS, 

kynurenine will either be converted to quinolinic acid (QUIN) by microglia or 

kynurenic acid (KA), by astrocytes (Figure 1.4). QUIN and KA agonise and 

antagonise N-methyl-D-aspartate (NMDA) receptors respectively and thus have 

opposing effects on glutamate release (for review see Ref 382). QUIN is 

excitotoxic, stimulating glutamatergic activity whilst simultaneously inducing 

oxidative stress. Cytokine-induced excitotoxicity may have an impact on neural 

plasticity. This will be discussed in more detail in Section 1.4.3.3. In contrast, by 

inhibiting glutamate release, KA is neuroprotective382. However, as dopamine 

release is partially regulated by glutamate383, elevated KA may lead to a 

dampening of dopamine transmission.  

Although QUIN-mediated excitotoxicy can be neurotoxic, a defined link between 

neurotoxicity and depressive symptoms has yet to be established. However, 

recent clinical evidence suggests that glutamate may have a role to play in the 

pathophysiology of depression. Elevated levels of glutamate have been observed 

in the serum of depressed patients, and in regions of the brain associated with 

the limbic system384,385. This may be due to enhanced glutamate release386, 

decreased metabolism387 or reduced uptake388. Importantly, targeting 

glutamatergic transmission, either using the NMDA antagonist ketamine389,390, or 

riluzole which inhibits glutamate release391, can have potent and rapid 

antidepressive effects. Therefore QUIN-mediated glutamate production, as a 

result of increased IDO activity, may play a role in inflammation-induced 

behavioural deficits. However, the putative behavioural effects of enhanced IDO 

activation may be dependent on the relative induction of neuroprotective KA 

versus the neurotoxic QUIN. 
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Figure 1.4 The kynurenine pathway. 
Tryptophan (TRP), the essential amino acid precursor for serotonin (5-HT), is oxidised through the 
enzymatic action of indoleamine 2,3 dioxygenase (IDO). This process can be modulated by 
inflammatory cytokines, which induce the activity of IDO. By enhancing TRP oxidation, cytokine-
induced IDO activity may limit 5HT biosynthesis. Furthermore, enhanced IDO activity will increase 
levels of kynurenine (KYN), the major metabolite of TRP degradation. KYN can be further 
metabolised in glial cells to generate one of two neuroactive metabolites; kynurenic acid (KA) in 
astrocytes or quinolinic acid (QUIN) in microglia. KA is an N-methyl-D-aspartate (NMDA) receptor 
antagonist and is thus neuroprotective. However, as an NMDA receptor agonist, QUIN can induce 
glutamatergic activity. In addition, the breakdown of KYN to QUIN is associated with reactive 
oxygen species. Glutamatergic activity and oxidative stress can collectively lead to CNS 
excitotoxicity making QUIN neurotoxic.  

 

Taken together, these reports suggest that inflammatory cytokines, produced in 

the brain in response to systemic inflammation, can affect both the biosynthesis 

of monoamines and their reuptake at the synapse. By leading to impaired 

monoamine transmission, these collective effects are likely to adversely affect 

mood and behaviour.  
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1.4.3.3 Cytokines modulate neural plasticity 

Like chemokines, inflammatory cytokines, such as IL-1β, IL-6 and TNFα, and 

their receptors are constitutively expressed at low levels in the brain. However, 

following a pathogenic insult, the levels of cytokines in the brain increase 

dramatically. Under homeostatic conditions, these cytokines are thought to play 

a role in modulating synaptic plasticity by regulating neurotrophic support, 

regulating neurogenesis and controlling the balance of excitatory glutamatergic 

activation and inhibitory GABAergic activation. Through these actions, 

alterations to central cytokine concentrations as a result of inflammation, may 

impact neuronal firing patterns causing behavioural anomalies.  

The hippocampus is part of the limbic system and plays a major role in memory 

formation392. It is one of two regions of the brain where neurogenesis persists 

into adulthood. A proportion of patients with major depression have reduced 

hippocampal volume393. Moreover, antidepressants have been shown to enhance 

neurogenesis both in humans and in animal models394-396. This has led to the 

hypothesis that impaired hippocampal neurogenesis may contribute to the 

pathophysiology of depression. In agreement with this, hippocampal 

neurogenesis was required for the behavioural effect of antidepressants in 

mice397. Many factors are thought to influence the rate of neurogenesis, 

including stress and inflammation. For example, reports have demonstrated that 

systemic administration of IFNα or LPS markedly reduced hippocampal 

neurogenesis in rodents, as did exposure to chronic stressors398-401. These effects 

can be ameliorated by blocking the effects of inflammatory cytokines. 

Decreased neurogenesis induced by IFNα or chronic stress was attenuated by 

blocking the effects of IL-1β398,400. Following systemic LPS injection, 

neurogenesis was restored via the administration of a non-steroidal anti-

inflammatory agent, indomethacin399. These reports suggest a causative role of 

inflammatory cytokines in reducing hippocampal neurogenesis. 

A number of mechanisms have been proposed to account for the observed 

cytokine-induced reduction in neurogenesis. Not only is the IL-1RI expressed by 

hippocampal neurons in vivo, but hippocampal neural progenitor cells proliferate 

in vitro in response to IL-1β398. This suggests a potential direct effect of IL-1β on 

hippocampal neurons. IL-1β can also dampen neurogenesis indirectly via 
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activation of the HPA axis (Section 1.4.3.1). There is considerable evidence 

linking HPA axis activation and impaired neurogenesis. For example, Goshen et 

al. demonstrated that the elevated HPA axis activation and simultaneous 

reduction in neurogenesis that typically occurs in response to stress, does not 

occur in IL-1RI-deficient mice401. Moreover, the administration of corticosterone 

was sufficient to cause a reduction in neurogenesis in both wild type and IL-1R 

deficient mice. This implies that IL-1 at least partially mediates its effects on 

neurogenesis via activation of the HPA axis. Contrary to the inhibitory effects 

that HPA axis activation has on neurogenesis, suppressing neurogenesis in animal 

models has been shown to result in increased activation of the HPA axis402. Thus, 

a negative feedback mechanism may occur, which perpetuates the simultaneous 

enhancement of HPA axis activation and reduction of neurogenesis. Increased 

activation of the HPA axis could account for the proposed impact that reduced 

neurogenesis may have on behaviour (Section 1.4.3.1). 

Another mechanism that may contribute to a cytokine-induced reduction in 

neurogenesis is reduced levels of hippocampal brain-derived neurotrophic factor 

(BDNF). BDNF is a neurotrophic regulatory factor which is downregulated in the 

hippocampus of rodents in response to IL-1β or LPS administration403 and in the 

circulation of patients treated with IFNα404. BDNF has a multitude of functions. 

In addition to controlling neuronal survival, differentiation, transmission and 

plasticity, BDNF has a role in promoting neurogenesis405. Therefore, 

inflammatory cytokines or LPS may adversely affect neurogenesis by causing a 

decrease in hippocampal BDNF production.  

Due to its pleiotropic nature, a sustained decrease in BDNF levels might 

negatively affect neuronal function in a number of ways other than 

neurogenesis. As BDNF promotes survival, neuronal viability may be impaired. 

Supporting this, the loss of dopaminergic neurons in response to peripheral LPS 

injection was prevented by BDNF infusion into the striatum406. It is unclear what 

impact, if any, these effects have on behaviour. Patients treated with IFNα 

presented with reduced circulating BDNF levels regardless of whether they 

developed depression404. However, an allelic variant of the BDNF gene, that 

causes reduced BDNF production, is associated with depression levels following 

IFNα-therapy404. Consequently, a cytokine-induced reduction in BDNF levels can 
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affect neural plasticity via a number of different mechanisms and this, in turn, 

may have a downstream impact on behaviour.  

Inflammatory cytokines have been shown to elevate the expression of glutamate 

receptors whilst at the same time reduce the expression of GABA receptors at 

the synapse407. In addition, cytokines can further enhance glutamatergic activity 

by increasing glutamate release and decreasing glutamate reuptake via the 

downregulation of glutamate transporter expression in a manner that would 

appear to be dependent on NO production408-410. Thus, prolonged or excessive 

inflammation could tip the excitatory/inhibitory balance in favour of excitatory 

glutamatergic transmission. In combination with an IDO-induced breakdown of 

kynurenine to QUIN (Section 1.4.3.2), these effects could potentially induce CNS 

excitotoxicity. Damage to highly sensitive neurons and oligodentrocytes in 

regions of the brain associated with emotions, behaviour and cognitive function 

may contribute to some of the effects of cytokine-induced psychiatric disorders. 

To summarise, inflammatory cytokines, induced in the brain in response to 

systemic inflammation, can impact neural plasticity through a number of 

mechanisms. These effects which lead to dampened neurogenesis, diminished 

neurotrophic support and elevated glutamatergic transmission, may collectively 

increase activation of the HPA axis, reduce neurogenesis, adversely effect 

neuronal viability and trigger CNS excitotoxicity. However, the downstream 

impact that altered neural plasticity has on mood and behaviour following 

peripheral inflammation remains to be fully established. 

1.5 Thesis aims 

The immune system and the nervous system are not as distinct as was once 

thought. Both systems utilise cytokines and chemokines as a method of 

communication and they appear to interact in a bidirectional manner. 

Inflammation in the periphery has been shown to have an impact on mood and 

behaviour. Furthermore, there is evidence to suggest that depressive disorders 

could influence the levels of inflammatory mediators in the periphery.  

As described above, the brain can become sensitised to the occurrence of a 

peripheral inflammatory response by a number of mechanisms which act in 
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parallel. However, the biological pathways that culminate in the onset of 

neuropsychiatric symptoms remain to to fully defined. The overall aim of this 

thesis was to establish a more indepth understanding of the bidirectional 

relationship, and communication pathways, that exist between the immune 

system and the nervous system. In doing so, I sought to identify potential 

mechanisms that could account for inflammation-induced behavioural changes. 

1. The aim of Chapter 3 was to determine what impact an acute exposure to 

systemic LPS had on neurological transcriptional modulation. 

2. The aim of Chapter 4 was to use different sterile, and TLR-dependent, 

models of peripheral inflammation to investigate the molecular 

mechanisms involved in modulating of gene expression in the brain 

following peripheral LPS injection.  

3. Employed by both the immune system and the nervous system, 

chemokines are prime candidates for orchestrating inter-system 

communication. Thus the aim of Chapter 5 was to establish whether 

chemokine transcription was induced in the brain following a series of 

systemic LPS injections. Due to their well characterised role in 

coordinating leukocyte migration, an additional aim of this chapter was to 

determine whether chemokine induction triggered an influx of leukocytes 

to the brain following systemic LPS exposure. 

4. Having highlighted a number of chemokines that could potentially 

mediate leukocyte recruitment to the brain following systemic LPS 

challenge, the aim of Chapter 6 was to optimise a protocol that would 

enable these chemokine systems to be compared to those involved in MS. 
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2 Materials & Methods 
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2.1 General Reagents & Buffers 

2.1.1 Materials & Reagents 

Unless otherwise specified, all chemicals, kits and reagents were purchased from 

Life Technologies. 

All plastics were purchased from BD Biosciences unless stated otherwise. 

2.1.2 Buffers 

0.5M EDTA (pH8): 186.1g ethylenediaminetetraacetic acid (EDTA) (Sigma 

Aldrich) and 20g NaOH (Sigma Aldrich) was dissolved in 900ml distilled H20 

(dH20), adjusted to pH8 using HCl (Sigma Aldrich) and then made up to 1L using 

dH20. 

MACS Buffer: 500ml phosphate-buffered saline (PBS), 2ml 0.5M filter sterilised 

EDTA and 10ml foetal calf serum. 

PEA Buffer: 500ml PBS, 1ml 0.5M filter sterilised EDTA and 2.5ml 4.5% human 

albumin (Bio Products Laboratory). 

Tris-acetate EDTA (TAE) Buffer: A 50x stock solution of TAE buffer was made by 

dissolving 242g Tris base (Sigma Aldrich) in 750ml dH20. 57.1ml glacial acetic 

acid (Sigma Aldrich) and 100ml 0.5M EDTA was then added and the buffer was 

made up to 1L with dH20. Before use, stock buffer was diluted 1:50 in dH20. 

10mM Tris-EDTA (TE) Buffer: 1M Tris-EDTA buffer (Sigma Aldrich) was diluted 

1:100 with nuclease-free H20 before use. 

2.2 In Vivo Procedures 

2.2.1 Animal welfare 

All animals were housed within the Biological Services Central Research Facility 

and Joint Research Facility at the University of Glasgow. Animals were 

maintained in specific pathogen-free conditions and given access to food and 
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water ad libitum. All experiments received ethical approval and were performed 

under the auspices of a UK Home Office Licence. 

2.2.2 Mice 

6-7 week old, male C56BL/6 mice were purchased from Harlan laboratories. 

Before experimental procedures were carried out, mice were given a week to 

acclimatise. After procedures, mice were culled using a recognised schedule 1 

technique.  

2.2.3 Induction of systemic inflammation using LPS 

2.2.3.1 Acute model 

Systemic inflammation was induced in 8 week old C57BL/6 mice by 

intraperitoneal (I.P.) injection of LPS (Escherichia Coli, serotype 055:B5; Sigma 

Aldrich). 100µl of 1mg/ml LPS, or an equivalent volume of vehicle (sterile PBS), 

was injected into the peritoneal cavity. Mice were culled 6 hours, 12 hours or 48 

hours after LPS, or vehicle, challenge. 

2.2.3.2 ‘Chronic’ endotoxin tolerance model 

To induce endotoxin tolerance, C57BL/6 mice were injected (I.P.) with a single 

100µl dose of 0.5mg/ml LPS, or an equivalent volume of vehicle (sterile PBS), 

daily for 2, 5 or 7 consecutive days. Mice were culled 24 hours after final 

injection.  

2.2.4 Induction of systemic inflammation using TNFα 

Systemic inflammation was induced in 8 week old C57BL/6 mice by intravenous 

(I.V.) injection of recombinant murine TNFα (Peprotech). 100µl of 10µg/ml 

TNFα, or the equivalent volume of vehicle (sterile dH2O), was injected into the 

tail vein at 0 and 24 hours. Mice were culled 6 hours or 24 hours after final 

injection. 
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2.2.5 Induction of systemic inflammation using LTA 

Systemic inflammation was induced in 8 week old C57BL/6 mice by I.V. injection 

of lipoteichoic acid (LTA) derived from Staphylococcus aureus (Sigma-Aldrch). 

100µl of 5mg/ml LTA, or the equivalent volume of vehicle (sterile dH2O) was 

injected into the tail vein at 0 and 24 hours. Mice were culled 6 hours or 24 

hours after final injection. 

2.3 Ex Vivo Procedures 

2.3.1 Perfusion 

Mice were perfused using a syringe and 23G needle to inject 20ml of PBS 

(warmed to 37°C) through the left ventricle. Blood and PBS were drained 

through an incision in the right atrium. 

2.3.2 Brain dissection 

Perfused mice were decapitated. Surgical scissors were used to cut through the 

skin to reveal the scull. By sliding scissors carefully along the interhemispheric 

fissure, the scull was cut open and then pulled aside with forceps, allowing the 

brain to be dissected from scull. Brainstems and olfactory bulbs were removed 

from the brains with a scalpel. The meninges were also removed from brains 

that were to be used for gene expression analysis. 

2.3.3 Preparation of brain samples for histological analysis 

2.3.3.1 Tissue Processing 

Whole brains were immersed in approximately 4ml of 10% buffered formalin 

(CellPath) and incubated for 48 hours at room temperature. After fixation, brain 

tissue was dehydrated in an automatic tissue processor (Citadel 1000, Thermo 

Scientific). Using the following program, brains were sequentially immersed in 

increasing concentrations of ethanol (EtOH) (VWR) followed by Xylene (Leica 

Biosystems) and then paraffin wax (Leica Biosystems): 

1. 70% EtOH   1 hour 
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2. 90% EtOH   1 hour 

3. 95% EtOH   1 hour 

4. 100% EtOH   3 x 2 hours 

5. Xylene    3 x 2 hours 

6. Paraffin wax   2 x 4 hours 

2.3.3.2 Tissue embedding 

Processed brain tissue was divided into 3 coronal sections using a brain slicer. 

Coronal sections were orientated appropriately and embedded into wax blocks 

using the Histocentre 3 (Thermo Scienific, Massachusetts, US). Blocks were 

stored at room temperature until required for further sectioning. 

2.3.3.3 Tissue sectioning 

Embedded tissue blocks were cut into 5µm sections using a microtome. Sections 

were mounted onto charged frosted microscope slides (Superfrost Plus, VWR) 

and stored at room temperature until required for histological analysis. 

2.3.4 Preparation of brain samples for gene expression analysis 

Brains were dissected from mice as described above and cut in half (sagittally) 

through the interhemispheric fissure using a scalpel. Right hemispheres were 

placed in cryovials (Alpha Laboratories) and snap frozen in liquid nitrogen. 

Frozen tissue was stored at -80°C to maintain RNA integrity until required for 

RNA purification. 

2.3.5 Isolation of plasma from peripheral blood 

Mice were culled by a recognised schedule 1 technique. Blood was collected 

from the right atrium, in 20µl EDTA, with a 1ml syringe. Blood was transferred to 

1.5ml eppendorf tubes (Greiner) and plasma was separated from blood cells by 

centrifugation for 10 minutes at 300g. The plasma was then transferred to 1.5ml 

eppendorf tubes and centrifuged at 3000g for 5 minutes to pellet remaining 
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platelets. Platelet-free plasma was collected as the supernatant and stored at -

80°C until required for protein expression analysis. 

2.3.6 Isolation of leukocytes from peripheral blood 

Mice were culled by a recognised schedule 1 technique. Blood was collected 

from the right atrium in 20µl EDTA with a 1ml syringe. Blood was transferred to 

1.5ml eppendorf tubes and blood cells were pelleted by centrifugation for 10 

minutes at 300g. After removing the plasma, pelleted blood cells were added to 

a 15ml falcon tube with 5ml 1x red blood cell lysis buffer (Miltenyi) and 

incubated for 7 minutes at room temperature. 10ml of PBS was added to each 

sample and the cells were pelleted by centrifugation for 7 minutes at 300g. The 

supernatant was decanted and pelleted cells were washed with 15ml PBS. Cells 

were centrifuged as before, resuspended in 1ml PBS and transferred to 1.5ml 

eppendorf tubes. Cells were pelleted by centrifugation for 5 minutes at 600g. 

The supernatant was aspirated and the cell pellets were lysed in 700µl RLT 

buffer (Qiagen). Lysed samples were homogenised by centrifugation through a 

Qiashredder column (Qiagen) for 2 minutes at 13 000g and stored at -80°C to 

maintain RNA integrity until required for RNA purification. 

2.3.7 Isolation of bone marrow 

Mice were culled by a recognised schedule 1 technique and perfused. Skin, 

tendons and muscle tissue were stripped from the hind legs and the tibia and 

femur were dissected from mice by cutting through the connective tissue above 

the tibia and below the femur at the ankle joint. The bones were cleaned of 

excess muscle tissue then cut at the top and the bottom using surgical scissors. 

Using a 23G needle and a syringe, Bone marrow was flushed from the bones with 

PBS and then pushed through a 70µm cell strainer, using the plunger from a 5ml 

syringe, to create a single cell suspension. Cell number and viability was 

determined by staining cells with Trypan blue and counting them using a 

haemocytometer. Cells were pelleted by centrifugation for 7 minutes at 300g. 

The cell pellet was washed in PBS and then centrifuged as before. Cells were 

resuspended to a concentration of 5x106 cells/ml. 1ml of each cell sample was 

transferred to 1.5ml eppendorf tubes. Cells were pelleted by centrifugation for 5 

minutes at 600g. Cell pellets were lysed in 700µl RLT buffer. Lysed samples were 
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homogenised by centrifugation through a Qiashredder column for 2 minutes at 13 

000g and stored at -80°C to maintain RNA integrity until required for RNA 

purification. 

2.3.8 Generation of single-cell suspension from brain digests 

Mice were culled by a recognised schedule 1 technique and perfused. Brains 

were dissected from the mice as described above and then kept on ice in HBSS 

prior to digestion. Brain tissue was finely diced using a scalpel and then each 

brain was digested in 10ml of digestion cocktail, pre-warmed to 37°C. The 

cocktail consisted of; 6µg/ml Liberase TM (Roche), 5U/ml DNaseI and 25mM 

Hepes buffer diluted in HBSS. Samples were shaken at 750rpm for 45 minutes at 

37°C. Following digestion, cell suspensions were passed through a 70µm cell 

strainer. Cells were washed twice with 2mM EDTA in HBSS and centrifuged after 

each wash at 300g for 10 minutes at 4°C. Cell pellets were then washed in MACS 

buffer and resuspended in 1.8ml MACS buffer. 200µl of Myelin removal beads 

(Miltenyi) was added to each sample and samples were incubated at 4°C for 15 

minutes. Cells were then washed in MACS buffer, centrifuged as before and 

resuspended in 2ml MACS buffer. Myelin was removed using the AutoMACS 

(Miltenyi) programme, DepleteS. Meylin-depleted cells were eluted from the 

AutoMACS columns in 4ml MACS buffer. Cells were pelleted as before and 

resuspended in 1ml MACS buffer. Cell number and viability was determined by 

staining cells with Trypan blue and counting them using a haemocytometer.   

2.4 Human Primary Cell Procedures 

2.4.1 Patients & clinical samples 

Buffy coats were obtained from the NHS as surplus from Scottish National Blood 

Transfusion Service. All donors gave informed consent and ethics were obtained 

from the relevant local ethics committee.  

2.4.2 Isolation of mononuclear cells from peripheral blood 

PBMCs were separated from buffy coats using a density gradient. Blood taken 

from buffy coats was diluted 1:1 with PEA buffer. 10ml of the diluted mixture 

was layered on top of 4ml histopaque 1077 (Sigma Aldrich) in a 15ml falcon tube. 
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Tubes were spun for 20 minutes at 500g with no brake, separating the blood into 

4 distinct phases. Peripheral blood mononuclear cells (PBMCs) which collect at 

the interphase between the plasma and the histopaque were transferred into a 

15ml falcon tube using a sterile pasteur pipette. Cells were washed twice with 

ice-cold PEA, centrifuging for 5 minutes at 350g and decanting the supernatant 

after each wash. Washed cells were resuspended in PBS to a concentration of 

1x106 cells/ml. 

PBMCs were serially diluted 10-fold to get concentrations of 1x105 and 1x104 

cells/ml. These were transferred to 1.5ml eppendorf tubes into aliquots of 500, 

1x103, 5x103, 1x104, 5x104 and 5x105 cells. PBMCs were pelleted by 

centrifugation at 600g for 5 minutes. The supernatant was removed and the 

PBMCs were lysed in RLT buffer. Cells were vortexed in RLT to aid lysis and then 

stored at -80°C to maintain RNA integrity until required for RNA purification. 

2.5 Gene Expression Analysis 

2.5.1 RNA purification 

2.5.1.1 RNA extraction from cells using silica-membrane technology 

RNA was extracted following the RNeasy Mini Kit protocol (Qiagen) and the 

RNeasy Micro Kit protocol (Qiagen) as described by the manufacturers.  

As described previously, cells were lysed in RLT buffer, homogenised using a 

Qiashredder and stored at -80ºC until required for RNA purification. The volume 

of RLT buffer used depended on cell number: 

<1x105 cells    70µl RLT 

1x105 to 5x106 cells   350µl RLT 

>5x106 cells    600µl RLT 

Where specified, 200ng E. coli transfer RNA (Sigma Aldrich) was added to the 

RLT prior to cell lysis.  

RNA was precipitated by adding 1 volume of 70% EtOH in nuclease-free H2O. RNA 

from each sample was collected by centrifugation through an RNeasy spin 
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column (Mini Kit) or an RNeasy MinElute spin column (Micro Kit). Spin columns 

were washed several times to remove any protein impurities and then air dried. 

Unless specified otherwise, genomic DNA was digested on-column between 

washes as described in the protocol. RNA was eluted from the RNeasy spin 

columns into 1.5ml nuclease-free eppendorf tubes (Life Technologies) in 30-

100µl nuclease-free H2O and in approximately 12µl from the RNeasy MinElute 

spin columns. This was quantified using a nanodrop (Nanodrop 1000, Thermo 

Scientific) and stored at -80°C to maintain RNA integrity until required for cDNA 

synthesis. 

2.5.1.2 RNA extraction from cells using Trizol 

Cells were lysed by vortexing with 800µl of Trizol reagent and the lysate 

incubated for 5 minutes at room temperature. Where specified, 200ng E. coli 

total RNA was added to the lysate. 160µl of chloroform:Isoamyl alcohol (1:24) 

(Sigma-Aldrich) was added to each sample, vortexted and incubated for 3 

minutes at room temperature. Samples were then spun at 13 000g for 15 

minutes at 4°C to separate the mix into 3 distinct phases. The upper aqueous 

phase of each sample was transferred into 1.5ml nuclease-free eppendorf tubes 

and the RNA precipitated with 400µl 100% isopropanol (VWR). Samples were 

incubated for 2 hours at -20°C before being centrifuged at 13 000g for 10 

minutes at 4°C. The RNA pellet was then washed with 75% EtOH in nuclease-free 

H2O. This was centrifuged at 13 000g for 5 minutes at 4°C and the supernatant 

discarded. RNA pellets were air-dried and then dissolved in 12µl nuclease-free 

H2O. 

2.5.1.3 RNA extraction from tissues using Trizol 

‘Snap-frozen’ brain tissue was disrupted using a Qiagen TissueLyser. Brain tissue 

was shaken in 2ml nuclease-free eppendorf tubes, containing 1ml Trizol and a 

5mM stainless steel bead (Qiagen), for 10 minutes at 50 oscillations per second. 

The disrupted tissue and Trizol mixture was then divided between 2x 2ml 

nuclease-free eppendorf tubes. 500µl Trizol was added to each eppendorf tube. 

Samples were vortexed and incubated for 5 minutes at room temperature. 200µl 

of chloroform:Isoamyl alcohol was added to each eppendorf tube, vortexted and 

incubated at room temperature for 3 minutes. Samples were then spun at 13 
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000g for 15 minutes at 4°C to separate the mix into 3 distinct phases. The upper 

aqueous phase of each sample was transferred into 1.5ml nuclease-free 

eppendorf tubes and the RNA precipitated with 500µl 100% isopropanol. Samples 

were incubated for 10 minutes at room temperature before being centrifuged at 

13 000g for 10 minutes at 4°C. The RNA pellet was then washed with 75% EtOH 

in nuclease-free H2O. This was centrifuged at 13 000g for 5 minutes at 4°C and 

the supernatant aspirated. RNA pellets were air-dried and then dissolved in 50µl 

nuclease-free H2O. RNA from each sample was re-combined to give a final 

volume of 100 µl. 

2.5.1.4 Genomic DNA digest using DNA-freeTM 

Where specified, contaminating genomic DNA was removed from RNA samples 

using a DNA-freeTM kit, as described by the manufacturers. Briefly, 1µl of 10x 

DNase I buffer and 1µl recombinant DNase I was added to 10µl of RNA sample. 

Reactions were incubated for 20 minutes at 37°C. 1.2µl of DNase Inactivation 

Agent was added to stop the reactions. Samples were centrifuged and the RNA 

was then aspirated from pelleted genomic DNA and stored at -80°C until 

required for cDNA synthesis.  

2.5.1.5 RNA clean-up 

RNA extracted from tissue was purified using a Qiagen RNeasy Mini kit as 

described by the manufacturers. 350µl RLT buffer was added to each 100µl 

sample and mixed by inverting. RNA was precipitated by adding 250µl of 100% 

EtOH. RNA from each sample was collected by centrifugation through an RNeasy 

spin column. Spin columns were washed several times to remove impurities and 

then air dried. Genomic DNA was digested on-column between washes as 

described in the protocol. RNA was eluted from the RNeasy spin columns in 

approximately 100µl nuclease-free H2O. This was quantified using a nanodrop 

(Nanodrop 1000, Thermo Scientific) and stored at -80°C to maintain RNA 

integrity until required for cDNA synthesis. 

2.5.2 Assessment of RNA integrity 

The quality of RNA was assessed by the University of Glasgow Polyomics Facility. 

Assessment was performed using a 2100 Bioanalyzer (Agilent) on a Nano chip or 
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Pico chip in accordance with manufacturer’s instructions. All chips and reagents 

used were supplied in the RNA 6000 Nano kit (Agilent) or the RNA 6000 Pico kit 

(Agilent). 

RNA was diluted in nuclease-free H2O to the required concentration.  

Pico chip 

Total RNA    50-5000 pg/ml 

mRNA     250-5000 pg/ml 

Nano chip 

Total RNA    5-500 ng/ml 

mRNA     25-250 ng/ml   

65µl of gel matrix was mixed with 1µl of a nucleotide-specific dye. To prime the 

chips, 9µl of the gel-dye mix was applied to the appropriate wells. Pressure was 

applied using a priming syringe (supplied) to disperse the gel-dye mix throughout 

the microfluidics of the chip. 9µl was also applied to an additional 2 wells as 

described in the protocol. 

After priming, 5µl of RNA 6000 marker was applied to each of the sample wells 

and also the ladder well of each chip. 1µl of ladder was then pipetted into the 

ladder well and 1µl of each diluted RNA sample was added to each of the sample 

wells. Chips were vortexed briefly to mix contents and then RNA was separated 

in a microchannel according to size using the 2100 Bioanalyzer. 

2.5.3 Microarrays 

Microarrays were run at the University of Glasgow Polyomics Facility. Prior to 

array, the quality of purified RNA was verified as described above. Purified RNA 

was sent to the Glasgow Polyomics Facility where it was amplified by in vitro 

transcription (IVT) and converted to sense-strand cDNA using an Ambion WT 

Expression kit (Life technologies).  cDNA was then fragmented and labelled using 

a GeneChip WT Terminal Labelling kit (Affymetrix). Fragmented cDNA was then 

loaded and run on GeneChip mouse gene 1.0 ST arrays (Affymetrix). All 

procedures were carried out as described by the manufacturers. 



97 

2.5.4 Microarray analysis 

Raw data from the microarray study were provided by the University of Glasgow 

Polyomics Facility and analysed using Parkek Genomics Suite v6.5 and 

Genespring GX software v10. Details of the analyses are described in detail in 

the text (Chapter 3). 

2.5.4.1 DAVID Bioinformatics 

Gene ontology terms were assigned to differentially expressed genes using the 

Database for Annotation, Visualization and Integrated Discovery (DAVID) 

Bioinformatics Resources v6.7 (http://david.abcc.ncifcrf.gov/). Analysis was 

performed in accordance with two protocols outlined by Huang et al.411,412.  

Significance of enrichment was determined using a modified Fisher’s Exact test 

and a Benjamini-Hochberg multiple testing correction was used to correct for 

the rate of type I errors. Co-expression of a gene cluster was considered 

significant if it satisfied a p-value cut-off of 0.05. 

2.5.4.2 Ingenuity pathway analysis 

Genes were grouped into canonical pathways using Ingenuity Pathway Analysis 

software (Ingenuity® Systems, www.ingenuity.com). Significance of 

differentially altered pathways was determined using a Fisher’s Exact test and a 

Benjamini-Hochberg multiple testing correction was used to correct for the rate 

of type I errors. Enrichment of a pathway was considered significant if it 

satisfied a p-value cut-off of 0.05. 

2.5.4.3 Interferon signature analysis 

The potential of different IFN subtypes to regulate differentially expressed ISGs 

was determined using the Interferome database v1.0 

(http://interferome.its.monash.edu.au/interferome/home.jspx). Interferome is 

a database of ISGs, established from a compilation of data from microarray and 

proteomic experiments in which cells or tissues have been treated with different 

types of IFNs413. 
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2.5.5 cDNA Synthesis 

Unless otherwise stated, cDNA was synthesised using Quantitect Reverse 

Transcription kit (Qiagen). cDNA required for applications involving TaqMan gene 

expression assays was synthesised using the High Capacity RNA-to-cDNA kit. 

When stated, the SuperScript III Reverse Transcription kit was used as a 

potential alternative to the High Capacity kit.  

Regardless of the method used, for each experimental group, cDNA synthesis 

reactions were accompanied by 2 control reactions: 

1. –RT control: Reverse transcriptase (RT) was substituted for nuclease-free 

H2O to control for genomic DNA contamination. 

2. No template control: Template RNA was substituted for nuclease-free H2O 

to control for contamination of reagents. 

2.5.5.1 Quantitect 

To first eliminate contaminating genomic DNA (gDNA) from the RNA template, 

the following DNase-digests were set up in 0.2ml nuclease-free PCR tubes: 

Template RNA (≤1µg)  ≤12µl 

7x gDNA Wipeout Buffer  2µl 

Nuclease-free H2O* 

Total volume    14µl 

*Reaction made up to 14µl in H20. 

The contents were mixed by pulse centrifugation. To eliminate gDNA, reactions 

were incubated at 42°C for 2 minutes before being placed on ice to stop the 

reaction. 

To perform the reverse transcription reaction, the following master mix was 

assembled and then added to the contents of each tube to give a final reaction 

volume of 20µl: 
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Quantiscript RT*   1µl 

5x Quantiscript RT Buffer  4µl 

RT Primer Mix   1µl 

Total volume    6µl 

*Substituted with 1µl nuclease-free H2O in –RT control reactions. 

Tubes were pulse centrifuged to mix. The RT reaction was carried out in a 

thermocycler set for the following programme: 

1. 42°C  15 minutes 

2. 95°C  3 minutes 

3. 4°C  Forever 

cDNA was diluted 1:5 in nuclease-free H2O and stored at -20°C until required for 

gene expression studies. 

2.5.5.2 High Capacity RNA-to-cDNA 

To perform reverse transcription using the High Capacity RNA-to-cDNA kit, the 

following components were assembled in 0.2ml nuclease-free PCR tubes: 

Template RNA (≤2µg)   ≤9µl 

2x RT Buffer    10µl 

20x RT Enzyme Mix*   1µl 

Nuclease-free H2O† 

Total Volume    20µl 

*Substituted with 1µl nuclease-free H2O in –RT control reactions. 

†Reaction made up to 20µl in H20. 

Contents were mixed by pulse centrifugation. Reverse transcription was carried 

out in a thermocycler set for the following programme: 
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1. 37°C  60 minutes 

2. 95°C  5 minutes 

3. 4°C  Forever 

cDNA was stored neat at -20°C until required for gene expression studies. 

2.5.5.3 SuperScript III 

Prior to reverse transcription, the following reactions were set up in 0.2ml 

nuclease-free PCR tubes: 

Template RNA (<500ng)  ≤8µl 

Random Hexamers (50 ng/µl) 1µl 

dNTP Mix (10mM)   1µl 

Nuclease-free H2O* 

Total volume    10µl 

*Reaction made up to 10µl in H20. 

After mixing contents by pulse-centrifugation, tubes were incubated at 65°C for 

5 minutes in a thermocycler, to denature RNA, and then placed on ice for at 

least 1 minute.  

A master mix was prepared, containing the following reagents: 

10x First Strand Buffer  2µl 

MgCl2 (25mM)   4µl 

DTT (0.1M)    2µl 

RNaseOUT (40 U/µl)   1µl 

SuperScript III RT (200 U/µ l) 1µl 

Total Volume    10µl 

*Substituted with 1µl nuclease-free H2O in –RT control reactions. 
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10µl of master mix was added to each reaction to create a total reaction volume 

of 20µl. Contents were mixed by pulse centrifugation. Reverse transcription 

occurred in a thermocycler set for the following programme: 

1. 25°C  10 minutes 

2. 50°C  50 minutes 

3. 85°C  5 minutes 

4. 4°C   Forever 

cDNA samples were collected by pulse centrifugation. After the addition of 1µl 

RNaseH (2 U/µl), samples were incubated for 20 minutes at 37°C in a 

thermocycler. 

 cDNA was stored neat at -20°C until required for gene expression studies. 

2.5.6 Polymerase chain reactions 

Polymerase chain reactions (PCRs) were performed using pre-made red PCR 

master mix (Rovalab) as described below: 

Red PCR mastermix   45µl 

Forward primer   0.5µl 

Reverse primer   0.5µl 

Template cDNA   1-2µl 

Nuclease-free H2O* 

Total Volume    50µl 

*Reaction made up to 10µl in H20. 

 

PCR reactions were run in a thermocycler set for the following programme: 

1. 95°C  3 minutes 
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2. 95°C  15 seconds 

3. 60°C  15 seconds  35-40x cycles 

4. 72°C  45 seconds 

5. 72°C  5 minutes 

6. 4°C   Forever 

2.5.6.1 Electrophoresis of PCR products 

Electrophoresis was used to separate the PCR products according to size through 

a 2% agarose gel containing ethidium bromide. To form a 2% agarose gel, the 

appropriate weight of agarose (Sigma-Aldrich) was added to TAE buffer and 

heated in the microwave until dissolved. Ethidium bromide was then added and 

the melted agarose was poured into a gel cassette. Combs were inserted into the 

cassette and the agarose gel was left to cool and set. Gels containing PCR 

products were run in TAE buffer for 45-60 minutes at 100 volts. To verify that 

the products were the correct size, they were compared to a DNA ladder. 

Hyperladder IV (Bioline) was used for products <1000 bp whereas Hyperladder I 

(Bioline) was used for products <10kb. The visualisation of PCR products was 

performed under UV light using an Alpha 2200 Digital UV-Visphoto Imager (Alpha 

Innotech). 

2.5.7 Quantitative real-time PCR 

2.5.7.1 Primer design 

To perform quantitative real-time PCR (QPCR), a set of specific primers had to 

be designed to amplify each target gene. The design of these primers had to 

adhere to a stringent set of conditions to ensure the accuracy and efficiency of 

the reaction. In addition to designing primers for use in the QPCR reaction, an 

additional set of primers had to be designed in order to create PCR products to 

act as standard templates. 

All primers were designed using Primer3 Input software version 0.4.0 

(http://frodo.wi.mit.edu/).  
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Specification for QPCR primers: 

Primer size    18 to 24 base pairs (bp) (20 bp optimal) 

Melting temperature (Tm)  59.5°C to 61°C (60°C optimal) 

GC content    40% to 65% (50% optimal) 

Max self complementarity  3 (≤2 optimal)   

Max 3’ complementarity  1 

Amplicon size   ≤150bp 

To create standard templates for each target gene, standard primers were 

designed that would amplify the region in which the QPCR primers would bind. 

These primers were designed using similar parameters as outlined above; 

however, the size of the amplicon could vary between 100bp and 2000bp and if 

the software did not return any suitable results, the maximum self 

complementarity could be increased to 5. Standard primers were designed to 

flank the amplicon targeted by the relevant QPCR primers and the adjacent 20bp 

on either side. 

All primers were synthesised by Integrated DNA Technologies. The specificity of 

the primer sequences (Table 2.1 & Table 2.2) was first assessed using the free 

online bioinformatics resource, Basic Local Alignment Search Tool 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Following acquisition of the primers, 

their specificity was confirmed by running a PCR reaction using any cDNA 

containing the transcript of interest. Primers were considered specific if they 

amplified a single product of the appropriate size. 
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Gene Name Forward Primer (5’ – 3’) Reverse Primer (5’ – 3’) 

Apobec3 TTC ACC CGT CTC CCT TCA AGC GTG GAT GTT GTC CTT GT 

C4 TGA CTG CCT TCG TGC TGA TGC TCT GTG GAT GAC TGG AC 

Ccl2 CTC ACC TGC TGC TAC TCA TTC A CCA TTC CTT CTT GGG GTC A 

Ccl3 CAG CCA GGT GTC ATT TTC CT CAG GCA TTC AGT TCC AGG TC 

Ccl5 CTA CTG CTT TGC CTA CCT CT ACA CAC TTG GCG GTT CCT T 

Ccr1 GCC CTC ATT TCC CCT TCA A CGG CTT TGA CCT TCT TCT CA 

Ccr3 GAT TGC CTA CAC CCA CTG CT CGG AAC CTC TCA CCA ACA A 

Ccr5 TTT GTC CTG CCT TCA GAC C TTG GTG CTC TTT CCT CAT CTC 

Ctsc AGG CCA CAC AGC TAT CAG TT TTG CCA ACA AAG CAA GCC CA 

Cxcl1 GCT TGC CTT GAC CCT GAA TGT CTT CTT TCT CCG TTA CTT GG 

Cxcl2 AAG TTT GCC TTG ACC CTG AA TCT CTT TGG TTC TTC CGT TG 

Cxcl10 GCT CAA GTG GCT GGG ATG GAG GAC AAG GAG GGT GTG G 

Cxcr2 TGT CTG CTC CCT TCC ATC TT CCA TTT CCT CTC CTC CAC CT 

Cxcr3 AGT GCT TGT CCT CCT TGT AGT TG GGT GTT GTC CTT GTT GCT GA 

Fcgr4 CGT GGC ATC AAA TCA CAT TC CCG CAC AGA GAA ATA CAG CA 

Gbp2 CCA AGC GAG ATG CCT TTA TC TTC TTC TTC CAG GGG TCC A 

Gbp3 AGT TCC AGA AGA AGC TGG TGG TCA AGT TCA GCC TGG CAG TGA CGA ATA 

Gbp4 CCT CCT TCC TCT TTC TTC TTC CTT T GTG TTT CTA TGG GGG TGT GG 

Gbp6 AAA CAC ACT CCC TCT CCC AGT TGA AGC CAG TCA ACA TCC AG 

Ifit1 GAC AAG GCA ATC ACC CTC TAC T TCT TTC AGC CAC TTT CTC CAA 

Ifitm3 CGC TCC ATC CTT TGC CCT TCA GTG GCC CCC ATC TCA GCC ACC TCA T 

Igrm1 AGT TCA GCA GGT AGC CCA GA TCA GCC TCA GTT TCC ACT CC 

Il1b CGC TCA GGG TCA CAA GAA AC GAG GCA AGG AGG AAA ACA CA 

Il2rg CGG AAG CCT GAA CAT CAA TC CCA AGG TGA GTA GGG GAG GT 

Il6 TTC CAT CCA GTT GCC TTC TT ATT TCC ACG ATT TCC CAG AG 

Irf7 GAA GAG GCT GGA AGA CCA ACT AGA TAA AAC GCC CTG TGC TG 

Lcn2 TGA ATG GGT GGT GAG TGT GGC TGA TCC TTG GTA TGG TGG CTG GTG GG 

Lgals3bp ATT CCT GTG TCC CCT CCT TC GTG AGT GCT GGC TGA AAC CT 

Ly6a ACC TCC ACC CTT GTC CTT TT GAG CAC CTA CCT ACC CAG CA 

Oasl2 AGC GAG CGA GGG ATG TTC AGG T TGG GGC TGT AGG GGT TTG TCC AG 

Pglyrp TCT GGA ATG TGG GGG TGT CTC TTT GGA TGA CCT GAT AGA GTT GG 

Rtp4 GCA TCT TTG GGT GAG AAG AT ATG GGG AGG AAC TCT TTG GT 

Saa3 TCT TCC TGT TGT TCC CAG TCA CCC AGT AGT TGC TCC TCT TCT C 

Serpina3n ACA GCC TGG AGG ATG TCC TTT CAA TGG TTC CTG TGA TTG CAG ACA GGT 

Sp100 CAT CAT TTT CCT TGG CTG GT CAT TTT GGT TGG TCC TTG CT 

Stat1 GAA AAA CGC TGG GAA CAG AA CGA CAG GAA GAG AGG TGG TC 

Tbp TGC TGT TGG TGA TTG TTG GT AAC TGG CTT GTG TGG GAA AG 

Tnfa CAC CAC CAT CAA GGA CTC AA GAG GCA ACC TGA CCA CTC TC 

Table 2.1 QPCR primer sequences 
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Gene Name Forward Primer (5’ – 3’) Reverse Primer (5’ – 3’) 

Apobec3 GGA CCA TTC TGT CTG GGA TG GGA GGG TGA GGG GAG ATA AA 

C4 GAG CCC TTC TTG TCC TGT TG AGT TTG CCT TGG TGA TGG AG 

Ccl2 CAC CAG CAC CAG CCA ACT GCA TCA CAG TCC GAG TCA CA 

Ccl3 CCA CGC CAA TTC ATC GTT TAT GCA GGT GGC AGG AAT GT 

Ccl5 CCC TCA CCA TCA TCC TCA CT TCA GAA TCA AGA GGC CCT CTA TCC 

Ccr1 ACT TTG GCA TCA TCA CCA G CTC AGA TTG TAG GGG GTC CA 

Ccr3 GCC ATC CGT CTT ATT TTT GTT G ATT TCT TGC TCC CCA GTT GA 

Ccr5 ACC CAT TGA GGA AAC AGC AA CTT CTG AGG GGC ACA ACA AC 

Ctsc GCT TTC TCT GCC ATC TGC TC CTT CCA CCA CCC CAA AAT C 

Cxcl1 CTG GGA TTC ACC TCA AGA ACA CTT TTC GCA CAA CAC CCT TC 

Cxcl2 CGC CCA GAC AGA AGT CAT AG ACT CAC CCT CTC CCC AGA AA 

Cxcl10 CGA TGG ATG GAC AGC AGA GAG CCT GAC AAG GAG GGT GTG GGG AGC A 

Cxcr2 CGG GGT TCC TTC TTG TCT TT TGC TAT GTT CCT GTG TGA GG 

Cxcr3 TGG GGT CTC TGT CTG CTC TT TTT GCC TCT CCC TCT TCT CA 

Fcgr4 AAC GGC AAA GGC AAG AAG T TGG GGC AGA GAA AGT GTA AAA 

Gbp2 TTT GTG GGC TTC TTT CCA AC CTT TGC TGC CTC TGT GAG TG 

Gbp3 CCC CAG AGA GGA CAA AGT GA ACC CCC CAG GAA CAG AGA AAG 

Gbp4 TTG GTT TTG TGA GGG CAT TT ATC CAG TAA GGG GAG GCA GT 

Gbp6 GTC TTC TCT TCC CCC ACC TC GGC TCC CAA TAA AAC CGC AC 

Ifit1 GCA AGA GAG CAG AGA GTC AAG GCA  GCA GGG TTC ATT TCC CCA GTG AGC 

Ifitm3 TCT GAG AAA CCG AAA CTG CCG CA TGT AGG GAG GGG CAA GGA GGG A 

Igrm1 CTG CTC CAC TAC TCC CAA C CTC TCC AGC CCA AAA ACA AA 

Il1b CAC TCA TTG TTG CTG TGG AG ATG TGC TGG TGC TCA TTC A 

Il2rg CCA GAG AAA GAA GAG CAA GCA GAA AGA GGG CAA GGG ACA C 

Il6 TCC AGA AAC CGC TAT GAA GT CTC CAG AAG ACC AGA GGA AA 

Irf7 CTG TGA CCC TCA ACA CCC TAA GAG CCC AGC ATT TTC TCT TG 

Lcn2 TTC CGG GGC AGG TGG TAC GTT AAG ACA GGT GGA TGG GGA GTG CTG 

Lgals3bp TGG TCA TAC GCC CCT TCT AC CAC AGG AAA TCC CAC AGG AC 

Ly6a GGA GGC AGC AGT TAT TGT GG ACT CAA CAG GGG GAC ATT CA 

Oasl2 AGA AAG GGA TGG GAA CAG GTG GCT GGG TCG GGG ACT AAG CAG GGT T 

Pglyrp TGT TGT TTG CCT GTG CTC TC CTG AGT CTT TGT TGG GGG TCA A 

Rtp4 AGA CAG TGC TTG GCA GGT TC CTA TGG GGA AGG GCA TTT TT 

Saa3 ACC ACT TCC GAC CTG CTG GCA CAT TGG GAT GTT TAG GG 

Serpina3n TGA CAA TGG GAC ACA ACT GG AGG GGT AGG GGA CAA GAC AA 

Sp100 CCG AAT GGG TCA TCC TTA GA TCT TTT TCT GCG TCG TTG TG 

Stat1 CCT ATG AGC CCG ACC CTA TT GGA AGC AGG TTG TCT GTG GT 

Tbp GAG TTG CTT GCT CTG TGT GCT G ATA CTG GGA AGG CGG AAT GT 

Tnfa TCT GTG AAG GGA ATG GGT GT GGC TGG CTC TGT GAG GAA 

Table 2.2 Standard primer sequences 
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2.5.7.2 Generation of standard templates 

In order to quantify expression levels of target genes, a standard curve 

consisting of PCR signal versus known DNA copy numbers was generated. This 

was done by performing a PCR reaction using the standard primers to amplify a 

region of cDNA containing the amplicon of interest. PCR products were 

separated by gel electrophoresis. The appropriately sized products were cut 

from the gel and purified using a QIAquick Gel Extraction kit (Qiagen) in 

accordance with the manufacturer’s instructions. The quantity of DNA present in 

the purified standards was assessed using the nanodrop 1000.  

The absolute number of amplicon copies present in each standard was 

determined using the following calculation: 

Copies perµl    =  (Concentration (g/µl) X Avogadro’s Constant) 
 Molecular weight of amplicon 

Molecular weight = Size of amplicon (bp) X 660* (Daltons) 

*Average molecular weight for 1 base paired nucleotide. 

Purified standards were diluted 1 x 10-2 in TE buffer and stored at -20°C until 

required for QPCR. 

2.5.7.3 QPCR 

cDNA was synthesised as described previously. QPCR amplifications were 

performed on each cDNA sample in triplicate within wells of either a 96-well PCR 

plate (Star Lab) or a 384-well PCR plate (Star Lab). A standard curve was 

generated by serially diluting the purified standards 10-fold in nuclease-free H2O 

to obtain dilutions of between 1 x 10-5 and 1 x 10-9. Each dilution was included 

on QPCR plates in triplicate. 

A master mix containing the following reagents was prepared for each primer 

pair: 

96-Well PCR Plate 

SYBR® Green FastMix*  7.5µl 
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Nuclease-free H2O   5.7µl 

Forward Primer   0.15µl 

Reverse Primer   0.15µl 

Total volume    13.5µl 

384-Well PCR Plate 

SYBR® Green FastMix*  5µl 

Nuclease-free H2O   3.8µl 

Forward Primer   0.1µl 

Reverse Primer   0.1µl 

Total volume    9µl 

*Purchased from Quanta Bioscience. 

Master mix was applied to PCR plates using a multi-channel pipette. 1.5µl of 

cDNA was added to each well of 96 well PCR plates to create a final reaction 

volume of 15µl. Alternatively, 1µl of cDNA was added to each well of 384 well 

PCR plates to create a final reaction volume of 10µl.  

QPCR was performed using a Prism® 7900HT Sequence Detection System (Life 

Technologies) set for the following programme: 

1. 95°C  20 seconds 

Then 40 cycles of: 

2. 95°C  3 seconds 

3. 60°C  30 seconds  

To confirm the specificity of the QPCR primers a dissociation curve was 

generated using the following programme: 

4. 95°C  15 seconds 

5. 60°C  1 minute  
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6. 95°C  15 seconds 

7. 60°C  15 seconds 

2.5.7.4 Determining relative gene expression 

Following QPCR, the absolute copy number of QPCR amplicons present in each 

reaction was calculated from the standard curve. To control for variations in the 

concentration of RNA used in reverse transcription reactions, data were 

normalised to the reference gene, TATA binding protein (TBP), as follows: 

Normalised copy number = copy number of target gene / copy number of TBP  

Fold change values were calculated by comparing the normalised copy number 

of individual samples to the mean of the control samples. 

2.5.7.5 Determining relative transcript expression 

When RNA was too low to quantify, relative RNA abundance was assessed by 

comparing the cycle threshold (CT) values from QPCR amplifications of the 

reference gene Glyceraldehyde 3-phosphate dehydrogenase (GAPHD). The 

relative transcript expression (RTE) of GAPDH in each sample was calculated by 

the following equations:  

RTE = 2χ; χ= CTBaseline – CTGAPDH  

As even slight variations in GAPDH expression levels would skew the results, this 

method of comparison could only be used when RNA was extracted from the 

same population of cells. 

2.5.8 TaqMan low density array 

TaqMan low density arrays (TLDA) were performed using a Prism® 7900HT 

Sequence Detection System in accordance with manufacturer’s guidelines. Array 

cards were custom-made by Life Technologies to each contain 4 identical panels 

of 32 different TaqMan assays. 
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cDNA was synthesised using the High Capacity RNA-to-cDNA kit as described 

previously. A master mix containing the following reagents was assembled for 

each sample: 

TaqMan Universal Master Mix 100µl 

H2O      90µl 

cDNA*     10µl 

Total volume    200µl 

*cDNA reversed transcribed from 1µg RNA. 

Using a micropipette, 100µl of sample-specific master mix was loaded into each 

reservoir of the TLDA cards. Array cards were centrifuged twice at 300g for 1 

minute before being sealed using a TLDA sealer provided with the assays. ‘Fill 

reservoirs’ were cut from the cards using scissors. The QPCR reactions were then 

carried out using the following programme: 

1. 95°C  10 minutes 

Then 40x cycles of: 

2. 97°C  30 seconds 

3. 59.7°C 1 minute 

2.5.8.1 Determining relative gene expression 

The relative gene expression of each target gene was then quantified relative to 

the reference gene TBP using Prism® SDS2.2 software. 

The relative gene expression analysis was performed using Prism® SDS2.2 

software. The expression of each target gene was first normalised to the 

reference gene TBP as follows:  

ΔCT = CTTarget gene – CTTBP  
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Then the normalised gene expression in each sample was compared to that of a 

randomly picked control sample, or calibrator: 

ΔΔCT = ΔCTSample – ΔCTCalibrator  

Finally the fold change in gene expression, or relative quantification (RQ) value, 

for each sample, compared to the calibrator, was calculated as follows: 

RQ = 2-ΔΔCT 

2.5.9 RNA amplification 

RNA was isolated from cells, as described above, and amplified following the 

SuperScriptTM RNA Amplification System protocol, as described by the 

manufacturers. 

First-strand cDNA synthesis 

Reactions were set up in 200µl PCR tubes as follows: 

Total RNA    <9µl 

T7-Oligo(dT) Primers  1µl 

DEPC-treated H2O    

Total Reaction Volume  10µl 

 

Contents were mixed by pulse centrifugation. RNA was then denatured by 

incubating in a thermocycler for 10 minutes at 70ºC and then cooled on ice. The 

following components were then added to each reaction at room temperature: 

5X First-Strand Buffer  4µl 

0.1M DTT    2µl 

10mM dNTP    1µl 

RNaseOUTTM    1µl 

SuperScriptTM III RT (200 U/µl) 2µl 

Total Reaction Volume  20µl 
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The tubes were incubated in the thermocycler at 46ºC for 2 hours, 70ºC for 10 

minutes and then placed on ice. 

 

Second-strand cDNA synthesis 

The contents from the first strand reaction tubes were added to a 1.5ml 

microcentrifuge tube along with the following components: 

 

DEPC-treated H2O   91µl 

5X Second-Strand Buffer  30µl 

10mM dNTP Mix   3µl 

DNA Polymerase I (10 U/µl) 4µl 

DNA Ligase (10 U/µl)  1µl 

Rnase H (2 U/µl)   1µl 

Total Reaction Volume  150µl 

 

Tubes were incubated in a refridgerated water bath at 16ºC for 2 hours, cooled 

on ice, then stored at -20ºC until required for cDNA purification. 

cDNA purification 

cDNA was precipitated by adding 500µl of cDNA Loading Buffer and then 

collected on a silicone membrane by centrifugation through provided spin 

cartridges. cDNA was then washed with cDNA Wash Buffer, air-dried and then 

eluted in 100µl DEPC-treated H2O. The volume of eluate was then reduced to 

less than 20µl by evaporation using a speed-vacuum centrifuge. 

In vitro transcription 

DEPC-treated H2O was added to the purified cDNA to bring the total volume to 

23µl. The following components were then added at room temperature: 

100mM ATP    1.5µl 

100mM CTP    1.5µl 

100mM GTP    1.5µl 

100mM UTP    1.5µl 
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10X T7 Reaction Buffer  4µl 

T7 Enzyme Mix   7µl 

Total Reaction Volume  40µl 

 

After a 16 hour incubation at 37ºC, 2µl DNase I was added to each tube. The 

tubes were then incubated for a further 30 minutes to digest template cDNA. 

aRNA purification 

Amplified RNA (aRNA) was precipitated by adding 160µl of RNA Binding Buffer 

followed by 100µl of 100% EtOH. It was then collected on a spin cartridge silicon 

membrane by centrifugation. RNA was then washed twice with 500µl RNA Wash 

Buffer, air-dried and eluted in 100µl DEPC-treated H2O. Purified aRNA was stored 

at -80ºC. 

2.6 Protein Analysis 

2.6.1 ELISA 

Murine plasma cytokines were analysed using DuoSet enzyme-linked 

immunosorbent assay (ELISA) Development System kits (R&D Systems). As ELISA 

reactions were performed in half-area 96 well ELISA plates, all the volumes of 

samples and reagents used were half of the recommended volumes. Otherwise, 

ELISAs were performed as described in the manufacturer’s instructions. All 

reactions were performed in duplicate. 

2.6.2 Flow Cytometry 

The relative proportion of cell populations was determined by staining cells for 

relevant surface antigen. The expression of surface antigen was assessed using a 

MACSQuant Analyzer (Miltenyi). 

A single cell suspension was generated from mouse brains as described in Section 

2.3.8. PBL were isolated from whole blood (Section 2.3.6), and strained through 

nitex mesh. Cells were counted using a haemocytometer. 1x106 cells from each 

sample were transferred to FACS tubes and washed in 2ml MACS buffer. These 

were then resuspended in 100µl MACS buffer and labelled with fluorochrome-
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conjugated antibodies. To prevent non-specific binding, Fc receptors were first 

blocked by adding 1µl FcR block (Miltenyi) per 1x106 sample. Cells were 

incubated for 10 minutes on ice. To label surface antigen, fluorochrome-

conjugated antibodies, as described in Table 2.3, were added to each sample. 

Antigen Fluorochrome Clone Dilution Company 

CD3 PE 145-2C11 1/25 eBioscience 

CD8 FITC 53-6.7 1/100 BioLegend 

CD11b APC M1/70 1/100 eBioscience 

F4/80 PerCP BM8 1/100 BioLegend 

CD45* VB 30/F11 1/100 BioLegend 

CD45** AF450 30/F11 1/100 eBioscience 

Table 2.3 Fluorescently-conjugated antibodies used for flow cytometry 
*Used to identify CD45-expressing cells on days 2 and 5 of LPS time course.       
**Used to identify CD45-expressing cells on days 2 and 5 of LPS time course. 

5µl of each antibody was added to the cells and cell samples were incubated on 

ice for 20 minutes in the dark. Labelled cells were washed in 3ml MACS buffer 

and pelleted by centrifugation at 300g for 10 minutes. Supernatant was 

decanted and the cells resuspended in 200µl MACS buffer. To discern live from 

dead cell populations, 1µl of Draq7 (Abcam) was added to each sample. 

The surface antigen expression of individual cells from each sample was 

immediately assessed using a MACSQuant analyzer (Miltenyi) as described by the 

manufacturers. 

2.6.3 Histology 

Histology was performed on brain tissue sections by the Veterinary Diagnostic 

Services Laboratory, a core facility within the University of Glasgow. The 

primary antibodies used are listed in Table 2.4. These were used with 

horseraddish peroxidase-conjugated anti-rabbit and anti-mouse secondary 

antibodies from Envision+ System-HRP labeled polymer kits (DAKO). 
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Antigen Host Species Clone Dilution Company 

CD3 Rabbit  SP7 1/30 Vector 

MPO* Rabbit GA511 1/1000 Dako 

Calprotectin Mouse MAC387 1/500 Dako 

Table 2.4 Primary antibodies used for immunohistochemistry. 
*MPO: Myeloperoxidase 
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3 Transcriptional profiling of CNS following 
systemic inflammation 
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3.1 Introduction and aims 

As previously described, systemic infection or inflammation can have a profound 

effect on the CNS, manifesting in a number of autonomic and behavioural 

adaptations and increased neuroendocrine activation. These behavioural 

phenotypes, termed sickness behaviours, occur during acute bacterial or viral 

infections, but also during chronic inflammatory diseases274-276. In the latter 

case, what would be a beneficial, self-limiting system can become dysregulated. 

The prolonged depression and anxiety that ensues represents a major burden to 

patients, not least because these detrimental co-morbidities lead to a poorer 

clinical outcome. 

It is becoming increasingly evident that inflammatory cytokines play a pivotal 

role in triggering a number of sickness behaviours. This has been discussed in 

detail in Section 1.4.1. Moreover patients with major depressive disorders, that 

are otherwise medically healthy, often present with elevated levels of 

inflammatory cytokines both in their circulation and their CSF276. Thus it would 

appear that a bi-directional interplay exists between the immune system and the 

nervous system. The extent to which this inter-system communication impacts 

the normal functioning of the brain is currently under much scrutiny and a great 

deal of progress has been made into deciphering neuroimmune communication 

pathways. However, the precise effect immune activation has on neural circuitry 

remains unclear. One well characterised model of systemic inflammation which 

has been used repeatedly to explore routes of neuroimmune communication, 

involves injecting mice, intraperitoneally, with LPS. Renowned for inducing a 

multitude of sickness behaviours, LPS-induced inflammation has become a key 

model in establishing how the brain responds to changes in the peripheral 

inflammatory milieu.  

In the immediate hours following a single injection of LPS, the response in the 

brain is well characterised. Therefore, the main aim of this chapter was to 

establish what prolonged impact LPS-induced systemic inflammation had on 

transcriptional modulation in the brain. To this end, C57BL/6 mice were injected 

intraperitoneally with a high dose of LPS. Whole brain RNA profiles, 48 hours 

after injection, were compared to a vehicle injected control group using 

Affymetrix microarrays. This is a novel approach as most studies focus on the 
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events in the brain that occur within the initial 12 hours following LPS injection. 

Microarray analysis generated a list of genes that were differentially modulated 

in the brain in response to systemic LPS. To determine the biological relevance 

of this, these genes were subsequently grouped into functional categories and 

pathways. Therefore, in this chapter, transcriptomics were used to investigate 

the molecular mechanisms by which inflammation originating in the periphery 

can induce transcriptional modulation in the brain. 

3.2 Acute model of systemic LPS-induced inflammation 

To induce inflammation systemically, 8 week old male C57BL/6 mice were 

injected I.P. with 100 µg of LPS or 100µl of vehicle (sterile distilled H20). Mice 

were terminally anesthetised, and then perfused, either 6 hours, 12 hours or 48 

hours after injection.  

3.2.1 Model validation 

To confirm peripheral inflammation following systemic LPS challenge, the 

concentration of inflammatory cytokines in the circulation was measured using 

ELISAs. ELISAs were performed on plasma samples isolated from LPS- and 

vehicle-injected mice; 6 hours, 12 hours and 48 hours post-injection. Plasma 

from all mice injected with LPS displayed significantly elevated levels of IL-1β 

and IL-6, 6 hours following injection (Figure 3.1). Levels IL-1β returned to 

baseline between 6 and 12 hours following injection and IL-6 levels remained 

elevated until 48 hours. Although TNFα could not be detected in the circulation 

at any of the timepoints assayed, it has previously been shown that TNFα levels 

peak in the circulation of C57BL/6 mice 2 hours following LPS injection (100 µg 

i.p.) and then rapidly decline414. Therefore, injecting LPS systemically initiates 

an inflammatory response in the periphery, with elevated levels of inflammatory 

cytokines in the plasma for up to 48 hours. 
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Figure 3.1 Plasma concentration of inflammatory cytokines following systemic LPS injection 
Plasma was isolated from the whole blood of mice; 6 hours, 12 hours and 48 hours following 
injection with either 100 µg LPS (I.P.) or an equivalent volume of vehicle. Concentrations of (A) IL-
1β, (B) IL-6 and (C) TNFα in the plasma were determined using ELISA. Data represent the mean 
+/- SEM. Significance was determined using two-way ANOVA. n = 4/group. 
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3.2.2 Processing of RNA samples 

RNA was extracted from the right brain hemispheres of mice, 48 hours after 

systemic LPS or vehicle injection. Prior to the microarray analysis, the integrity 

of extracted RNA samples was assessed using an Agilent 2100 Bioanalyzer. This is 

a microfluidics-based platform in which nucleotide fragments are separated 

according to size and evaluated qualitatively using an electropherogram. Using 

the electropherogram, RNA integrity can be both visually and mathematically 

assessed using the RNA integrity number (RIN) algorithm. The RIN algorithm 

screens the electrophoretic trace of each RNA sample and assigns it a RIN score 

between 1 and 10. This scale, where 10 is perfectly intact and 1 is entirely 

degraded, is based on the presence or absence of degraded RNA products and 

the ratio of 28S:18S ribosomal subunit RNA.  

Figure 3.2 is an example of an electropherogram exhibiting completely intact 

RNA. The characteristics of high quality RNA include three distinct peaks; the 

RNA marker, ribosomal RNA subunit 18S and ribosomal RNA subunit 28S. These 

are denoted in the electropherogram (Figure 3.2A) by numbers 1, 2 and 3 

respectively. Otherwise, there should be very little background noise on the 

graphs. RNA samples extracted for the microarray study were qualitatively 

assessed and representative electropherograms from the vehicle-injected and 

the LPS-injected groups are displayed in Figure 3.2B and Figure 3.2C 

respectively. The RIN of each sample is listed in Table 3.1. It is recommended 

that for a sample to be deemed of suitable quality, it should have a RIN of 8 or 

above. All RNA analysed was of sufficient quality to be used for the microarray 

study, as exemplified by the high RIN, the clear peaks and the low molecular 

weight noise visible in the electropherograms. 
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Figure 3.2 Quality of RNA samples and efficiency of DNA fragmentation 
RNA was isolated from whole brains, 48 hours after injection with 100µg LPS or an equivalent 
volume of vehicle. Samples were processed for microarray analysis, converted to sense-strand 
cDNA and then fragmented. Both the quality of the RNA samples and the efficiency of DNA 
fragmentation were determined using an Agilent 2100 Bioanalyzer. Data are displayed as 
fluorescence units [FU] over time. (A) Example of high quality total RNA with an RNA integrity 
value of 10. (B-C) Integrity of whole brain total RNA extracted from; (B) vehicle-injected and (C) 
LPS-injected mice. (D-E) Fragmented DNA samples from; (D) vehicle-injected and (E) LPS-
injected mice. (B-E) Data shown are one representative sample from each group. n = 3/group. 
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Sample Ribosomal 28S:18S Ratio RIN Score 

Vehicle 1 1.5 8.9 

Vehicle 2 1.4 8.8 

Vehicle 3 1.6 9.3 

LPS 1 1.7 9.5 

LPS 2 1.9 9.5 

LPS 3 2.1 9.7 

Table 3.1 Integrity of RNA samples 
RNA was isolated from whole brains, 48 hours after injection with 100µg LPS or vehicle. The 
ribosomal 28S:18S ratio of each sample was calculated using an Agilent 2100 Bioanalyzer and 
used to calculate the RNA integrity number (RIN). 

Having verified the RNA quality, samples were amplified by in vitro transcription 

(IVT) and reverse transcribed. The resulting sense-strand cDNA was fragmented 

and labelled prior to hybridisation. In addition to RNA sample integrity, the 

efficiency of fragmentation was also checked on the Agilent 2100 Bioanalyzer; 

this time using a DNA chip. As with the RNA chip, the fragmented DNA was 

fluorescently labelled and then separated in a microchannel according to size. 

Fluorescence intensity was measured over time and representative 

electropherograms from the vehicle-injected and the LPS-injected groups are 

displayed in Figure 3.2D&E. Each graph exhibits one peak, just adjacent to the 

DNA marker, suggesting that all DNA fragments, contained in the samples, were 

of a relatively similar size. It was also apparent that both samples consisted of 

small DNA fragments, as demonstrated by the short speed at which the 

fragments moved through the microchannel. Altogether, these data indicate that 

the RNA samples were of high quality and the fragmentation of the 

corresponding sense-strand cDNA was successful. 

3.3 Determining how systemic LPS injection affects the 
transcriptional profile of the brain 

In order to establish how systemic LPS challenge affects neurological 

transcriptional modulation, the transcriptional profiles of the brains of three 

LPS-injected mice were compared to those of three vehicle-injected mice using 

Affymetrix GeneChip Mouse Gene 1.0 ST arrays. Comprising 764 885 distinct 

probes, which equates to 28 869 well-annotated gene transcripts, these 

GeneChips have complete genome coverage. The transcriptome of each sample 

is interrogated using 25-mer oligonucleotide probes which are specifically 
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distributed across the entire length of each transcript. Probes are designed for 

each exon, with a median of 26 probes being specific to each gene transcript. As 

this system uses probes that anneal to various regions along the length of each 

gene, these whole-transcript GeneChips are more accurate that the traditional 

system in which probes localize to the far 3’ end of each transcript. As a result, 

they were an ideal choice of array to use for this study.  

3.3.1 Pre-processing of Affymetrix chip data using Partek 

Microarrays were performed by the Glasgow Polyomics facility 

(http://www.polyomics.gla.ac.uk/). Data, provided by this core facility, were 

analysed using Partek Genomics Suite 6.5 software. Prior to analysis, the raw 

data must be assessed qualitatively and then pre-processed. This occurs in a 

series of stages, each of which will be described below.  

1. Background correction: This corrects for the level of background noise that 

occurs as a result of non-specific hybridisation. 

2. Normalisation: Performed in order to unify the distribution of signal 

intensities of each chip, thus enabling the comparison and coordinated 

analysis of data from multiple chips. 

3. Summarisation: This first summarises the signal intensities of individual probe 

sets to exons and then to the corresponding genes; giving each entity a 

normalised intensity value. 

Pre-processing is carried out using an appropriate summarisation algorithm. 

Although many different summarisation algorithms have been developed, Partek 

offers only two options; Robust Multi-array Average (RMA) or GCRMA (RMA 

adjusted for GC content). RMA is considered the most sensitive and specific of 

the summarisation algorithms and GCRMA is a modified form of RMA. The 

difference between these two algorithms, which will now be discussed, lies in 

the background correction step.  
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3.3.1.1 Background correction of the Affymetrix chips 

Background signal intensity is corrected on a chip-by-chip basis. For every set of 

probes, the observed signal intensity consists of the true intensity, caused by 

specific hybridisation, and a certain level of background noise, caused by non-

specific hybridisation. In order to determine the true intensity, the level of 

background noise must be established.  

The Affymetrix Gene 1.0 ST system uses an innovative design where the 

background can be determined using 17 000 generic background probes; a 

comparatively smaller number than previous Affymetrix designs which contain 

one background probe set to each perfect match (PM) probe set. Instead, these 

anti-genomic background probes are designed to cover the entire range of GC 

content. The GCRMA algorithm uses the signal intensities of these probes to 

determine background. For every transcriptome-interrogating probe set, the GC 

content is calculated. The background signal, defined as the median signal 

intensity of all background probes with an equal GC content, is subsequently 

subtracted from the observed signal of the probe set. The signal that remains is 

the “true” intensity. In contrast, the RMA summarisation uses a PM only system. 

Ignoring the background probe intensities, RMA instead takes into account the 

distribution of the data and applies it to a complex algorithm which models the 

background signal intensity. This noise level, calculated using RMA, is 

subsequently subtracted from the observed intensity to obtain the “true” 

intensity.  

The exclusion of background intensities by RMA is thought to reduce noise, 

however, RMA has the disadvantage that it loses the information that the 

background probe intensities provide. For that reason, GCRMA was selected to 

pre-process the dataset. 

3.3.1.2 Signal histogram of normalised data 

Monitoring of sample hybridisation is an essential step in ensuring the quality of 

the array data. Whether as a result of user error, or differences in chip 

manufacturing, variations can occur that affect the reproducibility of the 

results. Differences in the efficiency of hybridisation can be detected using a set 

of control transcripts. Prior to hybridisation, fragmented cDNA is added to a 
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hybridisation cocktail that contains the controls. These consist of standard 

concentrations of 4 transcripts, bioB, bioC, bioD and cre. BioB is present at a 

1.5pM concentration; the detection limit of most arrays. BioC, bioD and cre are 

present at 5pM, 25pM and 100pM respectively. In order to ensure there are no 

differences in the efficiency of hybridisation from one chip to the next, the 

signal intensities of the control transcripts on each chip are plotted on a 

histogram. Figure 3.3A shows the signal intensities of the 4 hybridisation controls 

on each of the 6 GeneChips used in the array study. The intensity similarities of 

each of the controls would suggest that little variation exists between the 

hybridisation efficiency of each chip. 

In addition, the frequency of the signal intensities detected on each microarray 

chip was also plotted on a signal histogram (Figure 3.3B). After labelled cDNA is 

hybridised to the chip, signal intensities are calculated for each probe set. The 

histogram plots the occurring frequency (Y-axis) of a range of signal intensities 

(X-axis) for all the probe sets on each chip. In addition to controlling for 

hybridisation quality, this signal histogram controls for other sources of non-

biological variation that could affect the results, such as the efficiency of cDNA 

labelling or starting RNA quantity or quality. Each line on the graph represents a 

different array chip and these are coloured according to sample grouping. It is 

clear from the graph that all chips have a similar pattern of signal intensity 

distribution, therefore ruling out non-biological variables.  
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Figure 3.3 Signal histogram of normalised intensity values 
A microarray study was performed to compare gene expression in the brains of mice injected with 
LPS, to a vehicle-injected control group. Labelled sense-strand cDNA was generated from 
amplified RNA samples and hybridised to each chip along with 4 control transcripts at standard 
concentrations. Signal intensities of control and sample hybridization were compared between 
chips using signal histograms. (A) Normalised signal intensities of hybridization controls; bioB, 
bioC, bioD and cre. Each line on the histogram represents an individual GeneChip. (B) The 
occurring frequency of signal intensities for all probe sets on each chip. Each line represents an 
individual GeneChip and thus an individual sample. Lines are coloured according to experimental 
grouping. Blue represents vehicle-injected control samples and red represents samples taken from 
LPS-injected mice. n = 3/group. 
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3.3.1.3 Principle component analysis 

Prior to gene expression analysis, principle component analysis (PCA) was 

performed to check the quality of the data. PCA is a mathematical method of 

reducing the dimensionality of a dataset so that trends in the data can be easily 

visualised. Useful for datasets with large numbers of variables, PCA functions by 

applying a new set of variables to the data. These variables, less in number than 

those of the original dataset, are termed the principle components (PC) and are 

designed to retain as much of the variance of the original variables as possible. 

PC1 represents the variable with the greatest variance and subsequent 

components are numbered in ascending order with decreasing significance. The 

Affymetrix dataset was subject to PCA and each sample was plotted according to 

the top 3 most significant PC components. 

A plot displaying the PCA scores of all of the GeneChip data is shown in Figure 

3.4. When grouped in this manner, samples with a similar transcription profile 

should cluster together. This allows the distinction between different groups of 

data to be visualised and also highlights any outliers in a particular group. The 

points on the graph represent the samples from each group, clustered around an 

additional centroid circle. These are coloured according to their experimental 

grouping. The vehicle-injected mice were more tightly clustered than the LPS-

injected group, suggesting that more transcriptional variation exists between the 

brains of the LPS-injected mice. In spite of this variation, there is a clear 

distinction between the group of LPS-injected mice and the group of control 

mice. 
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Figure 3.4 Principle component analysis of microarray samples 
A microarray study was performed to compare gene expression in the brains of mice injected with 
LPS to a vehicle-injected control group. The 3 largest principle components of the array study were 
compared using a principle component analysis (PCA) plot. Each circle on the graph represents 
data from individual GeneChips, and therefore individual samples, clustered around a centroid 
circle. The more tightly clustered a group of circles are, the more they are transcriptionally similar. 
Samples are coloured according to experimental grouping. Blue represents vehicle-injected control 
samples and red represents samples taken from LPS-injected mice. n = 3/group. 

 

3.3.2 Gene expression analysis of Affymetrix chips using Partek 

The quality control measures, outlined above, have systematically ruled out 

sources of variation, such as differences in RNA quality, the labelling of samples 

or the quality of sample hybridisation. As a result, it can now be assumed that 

any differences observed between the two groups of samples are a result of 

genuine shifts in their transcriptional profiles. In order to determine which of 

the observed transcriptional changes are likely to be biologically meaningful, 

normalised intensity values, established using the GCRMA algorithm, were 

subject to statistical analysis. 
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3.3.2.1 Genes identified by Partek as being differentially expressed in the 
brains of LPS challenged mice 

In order to assess which genes were differentially expressed in the brains of LPS-

injected mice compared to the vehicle-injected controls, a one-way ANOVA was 

performed on the data, along with a Benjamini-Hochberg multiple testing 

correction (MTC) with a false discovery rate (FDR) of 0.1. 

MTCs are a statistical method of reducing the rate of type I errors, i.e. the rate 

of wrongfully rejecting the null hypothesis. The rate of type I errors rises in 

magnitude when multiple hypotheses are simultaneously tested from a single 

dataset. For that reason, accurately testing the hypotheses derived from a 

microarray study, with tens of thousands of variables, can prove problematic. 

Based on a set of observations, the p-value is the probability that the null-

hypothesis is true. The more often a p-value is calculated from a single dataset, 

the greater the probability is of generating a false positive, or type I error. For 

example, in a microarray study, for every 1000 genes that have a p-value of 

0.05, probability suggests that 50 of these (1000 x 0.05) will, by chance, be false 

positives. MTCs increase the stringency of statistical analysis tests, thereby 

reducing the rate of type I errors. Subsequently, MTCs should always be applied 

to datasets containing large numbers of variables, such as those generated from 

microarray studies. 

One of the drawbacks of MTCs is that whilst reducing the occurrence of false 

positives, they increase the chance of false negatives. Benjamini-Hochberg is the 

least stringent of the MTCs utilized by Partek, making it the ideal MTC to use for 

such a small study. The Benjamini-Hochberg method ranks all entities according 

to their p-value; from most to least significant. A corrected p-value is calculated 

from the equation below where N = total numbers of entities and r = rank: 

Corrected p-value = p-value*(N/N-r) 

The stringency of the MTC can be controlled by setting the FDR value. This is the 

expected proportion of incorrect rejections. By setting the FDR to 0.1, every 

entity with a corrected p-value of less than 0.1 was considered significant. This 

set the unadjusted p-value cut-off to 0.00036562. 131 entities satisfied this 

significance threshold. Of these significant entities, those that were 
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differentially expressed by at least 1.5-fold are displayed in Table 3.2. The table 

has been sub-divided into the 55 entities that were upregulated 2-fold or more 

and the additional 30 entities that were differentially expressed by at least 1.5-

fold. Although significant, the remaining 46 entities that were not differentially 

expressed as much as 1.5-fold were not included in further analyses as they are 

unlikely to be biologically relevant.  
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Genbank 

Accession 

Gene 

Symbol 

Gene Name Fold 

Change  

P-value 

 
Fold Change ≥ 2 
NM_008491 Lcn2 Lipocalin 2 29.29  2.61E-05 

NM_011315 Saa3 Serum amyloid A3 11.60 2.56E-04 

NM_016850 Irf7 Interferon regulatory factor 7 6.08 1.1E-04 

NM_011854 Oasl2 2'-5' Oligoadenylate synthetase-like 2 5.44 1.01E-04 

BC150711 AI607873 Interferon activated gene 204 

homologue 

4.93 3.74E-05 

NM_023386 Rtp4 Receptor transporter protein 4 4.75 1.21E-04 

NM_025378 Ifitm3 Interferon induced transmembrane 

protein 

4.22 1.30E-05 

NM_011579 Tgtp1 T-cell specific GTPase 1 3.79 3.64E-04 

NM_008620 Gbp4 Guanylate binding protein 4 3.76 1.39E-04 
 

NM_013563 Il2rg Interleukin 2 receptor, gamma chain 3.71 9.29E-05 

NM_023065 Ifi30 Interferon gamma inducible protein 30 3.64 9.95E-05 

NM_144559 Fcgr4 Fc receptor, IgG, low affinity IV 3.57 4.23E-06 

NM_194336 Gbp6 Guanylate binding protein 6 3.54 5.68E-06 

NM_009252 
 

Serpina3n Serine (or cysteine) peptidase 

inhibitor, clade A 

3.52 3.12E-04 
 

NM_001082960 Itgam Integrin alpha M 3.41 2.45E-04 
 

NM_001033767 Gm4951 Predicted gene 4951 3.36 4.14E-05 

--- N/A* --- 3.35 2.71E-05 

NM_011150 Lgals3bp Lectin, galactoside-binding, soluble, 3 

binding protein 

3.31 7.93E-05 

NM_001001892 H2-K1 Histocompatibility 2, K1, K region 3.24 3.11E-04 
 

NM_008331 
 

Ifit1 Interferon-induced protein with 

tetratricopeptide repeats 

3.23 3.50E-05 

NM_009780 C4b Complement component 4B (Childo 

blood group) 

3.13 2.78E-04 
 

NM_011905 Tlr2 Toll-like receptor 2 3.09 1.74E-05 

--- Rnf213** Ring finger protein 213  3.09 1.22E-04 

AK173199 Rnf213 Ring finger protein 213 3.07 5.21E-06 

NM_010260 Gbp2 Guanylate binding protein 2 3.02 8.62E-05 

NM_013673 Sp100 Nuclear antigen Sp100 3.02 1.8E-04 

NM_145545 Gbp7 Guanylate binding protein 7 2.86 3.04E-05 

--- Rnf213** Ring finger protein 213  2.74 1.15E-04 

NM_010130 Emr1 EGF-like module containing, mucin-

like, hormone receptor-li 

2.72 1.74E-04 

--- Rnf213 Ring finger protein 213  2.69 1E-04 
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--- N/A* --- 2.69 2E-04 

NM_011693 Vcam1 Vascular cell adhesion molecule 1 2.68 1.11E-04 

NM_018734 Gbp3 Guanylate binding protein 3 2.66 6.62E-05 

NM_009402 Pglyrp1 Peptidoglycan recognition protein 1 2.56 1.89E-05 

NM_010738 Ly6a Lymphocyte antigen 6 complex, locus 

A 

2.55 3.80E-05 

NM_009283 Stat1 Signal transducer and activator of 

transcription 1 

2.51 2.41E-04 

NM_009982 Ctsc Cathepsin C 2.47 3.09E-06 

NM_153197 Clec4a3 C-type lectin domain family 4, 

member a3 

2.46 2.91E-04 

AK173199 Rnf213 Ring finger protein 213 2.39 2.53E-04 

NM_008879 Lcp1 Lymphocyte cytosolic protein 1 2.36 1.27E-04 

NM_008326 Irgm immunity-related GTPase family M 

member 1 

2.33 3.25E-04 

--- N/A* --- 2.32 1.42E-04 

NM_001160415 Apobec3 apolipoprotein B mRNA editing 

enzyme 

2.32 1.86E-04 

NM_031195 Msr1 Macrophage scavenger receptor 1 2.29 4.58E-05 

--- Rnf213** Ring finger protein 213  2.26 1.29E-05 

NM_011708 Vwf Von Willebrand factor homolog 2.26 3.89E-05 

NM_031376 Pik3ap1 phosphoinositide-3-kinase adaptor 

protein 1 

2.21 1.41E-04 

NM_021384 Rsad2 Radical S-adenosyl methionine 

domain containing 2 

2.18 2.37E-04 

--- N/A* --- 2.13 1.4E-04 

NM_001163522 Emcn Endomucin 2.12 1.34E-04 

NM_001037713 Xaf1 XIAP associated factor 1 2.09 1.74E-04 

NM_001113356 C1rb Complement component 1, r 

subcomponent B 

2.09 1.99E-04 

NM_013690 Tek Endothelial-specific receptor tyrosine 

kinase 

2.06 1.37E-04 

NM_012054 Aoah Acyloxyacyl hydrolase 2.04 3.06E-04 

NM_001039530 Parp14 Poly (ADP-ribose) polymerase family, 

member 14 

2.02 7.28E-05 

     

Fold Change ≥ 1.5 and <2 
NM_013805 Cldn5 claudin 5 1.97597 8.43E-05 

--- Rnf213** Ring finger protein 213  1.91996 1.46E-04 

NM_172479 Slc38a5 Solute carrier family 38, member 5 1.86936 8.83E-05 

NM_001081215 Ddx60 DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 60 

1.8692 1.33E-05 
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NM_010833 Msn Moesin 1.85669 1.59E-04 

NM_010741 Ly6c1 lymphocyte antigen 6 complex, locus 

C1 

1.84075 1.33E-04 

NR_030719 Gm8979 very large inducible GTPase 1 

pseudogene 

1.83413 8.11E-05 

BC023105 BC023105 cDNA sequence BC023105 1.81633 5.22E-05 

NM_025992 Herc5 hect domain and RLD 5 1.80396 2.4E-04 

NM_009868 Cdh5 cadherin 5 1.80082 1.62E-05 

NM_010493 Icam1 intercellular adhesion molecule 1 1.79505 1.36E-04 

--- N/A* --- 1.76818 1.63E-04 

--- Rnf213** Ring finger protein 213  1.763 3E-04 

NR_003507 Oas1b 2'-5' oligoadenylate synthetase 1B 1.75542 1.55E-04 

NM_010104 Edn1 endothelin 1 1.74503 1.66E-04 

NM_028261 Tmem173 transmembrane protein 173 1.73832 2.27E-05 

NM_010225 Foxf2 forkhead box F2 1.71563 7.39E-05 

NM_007609 Casp4 caspase 4, apoptosis-related cysteine 

peptidase 

1.70807 1.29E-04 

NM_031181 Siglece sialic acid binding Ig-like lectin E 1.69006 1.7E-04 

NM_009888 Cfh complement component factor h 1.64032 2.28E-04 

NM_001037298 Fam38a family with sequence similarity 38, 

member A 

1.62396 9.95E-05 

NM_019963 Stat2 signal transducer and activator of 

transcription 2 

1.60841 1.01E-04 

NM_030253 Parp9 poly (ADP-ribose) polymerase family, 

member 9 

1.59804 1.17E-04 

NM_001111059 Cd34 CD34 antigen 1.59774 8.42E-05 

--- N/A* --- 1.58439 1.27E-04 

NM_025659 Abi3 ABI gene family, member 3 1.54831 1.42E-04 

--- N/A* --- 1.52005 3.61E-04 

NM_028195 Cyth4 cytohesin 4 1.5195 1.00E-04 

NM_183168 P2ry6 pyrimidinergic receptor P2Y, G-

protein coupled, 6 

1.51848 3.49E-04 

NM_007705 Cirbp cold inducible RNA binding protein -1.5643 3.09E-04 

Table 3.2 Differentially expressed entities identified using Partek  
Microarrays were analysed using Partek Genomics Suite. These data show the fold change and 
significance of the entities that were upregulated ≥ 2-fold, and additional entities that were 
differentially expressed ≥ 1.5-fold but < 2-fold, in the brains of mice injected with 100µg LPS 
compared to vehicle. Significance was calculated using one-way ANOVA. 
*Probe sets do not map to annotated genes 
**Annotations manually determined using Affymetrix online database, NetAffx 
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3.3.3 Gene ontology clustering 

After a list of differentially expressed genes was generated using Partek 

Genomics Suite, it was then subject Gene ontology clustering. All genes with a 

fold change value of 1.5 or greater were analysed using the database for 

annotation, visualisation and integrated discovery (DAVID) Bioinformatics 

Resources 6.7 (http://david.abcc.ncifcrf.gov/). DAVID is a free online software 

system that systematically maps lists of relevant genes according to their 

biological function. This applies biological relevance to a dataset, by 

determining which groups of functionally related genes are significantly 

enriched. Significance of enrichment is determined using a modified Fisher’s 

Exact test and a Benjamini-Hochberg MTC was used to correct for the rate of 

type I errors involved in performing multiple comparisons. Co-expression of a 

gene cluster was considered significant if it satisfied a p-value cut-off of 0.05. 

The top 10 most significantly enriched processes are shown in Figure 3.5. 

Amongst the most significantly altered biological groups are the Immune 

response, Immunity & defence and Macrophage-mediated immunity. This 

strongly implies the presence of an immune response in the brain following 

systemic LPS. As macrophages and microglia share many similar characteristics, 

it is possible that this immune response is linked to microglial activation. Also 

ranking high in the list of altered processes is Interferon-mediated immunity 

(Figure 3.5). Therefore, injecting mice systemically with LPS induces an immune 

response in the brain that may involve microglial activation and the induction of 

an IFN response. 
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Figure 3.5 Top 10 enriched biological annotations. 
Using DAVID bioinformatics software, gene ontology clustering was performed on the list of genes 
that were identified as being differentially regulated by ≥ 1.5-fold, in the brains of LPS-challenged 
mice, compared to a control group. The co-expression of functionally-related gene clusters was 
rated in order of significance. Significance was calculated using a modified Fisher’s Exact test.  
*External side of plasma membrane. 

 

3.3.4 Ingenuity Pathway Analysis 

To complement and validate the data generated using DAVID, the list of genes 

were grouped into biological pathways. Pathway analysis, such as that carried 

out using Ingenuity Pathway Analysis (IPA) software, focuses on the proteins that 

a list of genes encodes. By investigating the functional relationships and 

annotated physical interactions between these proteins, as described in the 

relevant literature, IPA clusters them into molecular networks associated with 

cellular responses. Rather than providing an accurate representation of which 

pathways are activated in a given cell type or tissue, this form of data-mining 

facilitates hypothesis generation only. IPA pathway analysis was performed on 

significant genes with a fold change of greater-than or equal-to 1.5. Of the 85 

entities that satisfied this cut-off, 70 were defined as being well-annotated and 

“analysis-ready” by the IPA software package. These 70 genes were subsequently 

grouped into pathways. Significance of differentially altered pathways was 

determined using a Fisher’s Exact test and a Benjamini-Hochberg MTC was used 
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to correct for the rate of type I errors. The 10 most significantly altered 

pathways are displayed in Figure 3.6. 
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Figure 3.6 Top 10 significantly altered biological pathways. 
Using Ingenuity Pathway Analysis software, the list of genes that were identified as being 
differentially regulated ≥ 1.5-fold, in the brains of LPS-challenged mice compared to a control 
group, were grouped into biological pathways. Significance was calculated using a Fisher’s Exact 
test and pathways were ranked accordingly.  
*Activation of interferon regulatory factors by cytosolic pattern recognition receptors.  
**Hepatic fibrosis/Hepatic stellate cell activation.  
†Jak1, Jak2 and Tyk2 in interferon signalling. 

 

The most altered biological pathway was Dendritic cell (DC) maturation. 

Expression of this pathway appears enhanced due to the upregulation of; Tlr2, 

H2-K1, Icam1, Fcgr4, Stat1 and Stat2 (Table 3.2), although the enhancement of 

most of these genes could be explained by microglial activation. Many of the 

genes involved in leukocyte extravasation were upregulated in response to 

peripheral LPS injection. This pathway, illustrated in Figure 3.7, involves the 

upregulation of a number of genes implicated in both leukocyte rolling and 

adhesion to the vasculature and subsequent leukocyte transmigration. This may 

explain the entry of leukocytes to the brain; either across the BBB or across the 

BCSFB. 

Also amongst the top most significant pathways are; Activation of IRF by 

cytosolic pattern recognition receptors, Jak1, Jak2 and Tyk2 in IFN signalling and 

IFN signalling. Activation of IRFs by cytosolic pattern recognition receptors, 
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illustrated in Figure 3.8, involves an upregulation of IRF7, a classic feature of an 

IFNβ response, and upregulation of Stat1 and Stat2; genes that are also involved 

in IFN signalling (Figure 3.9). The pathway Jak1, Jak2 and Tyk2 in IFN signalling 

was not shown as it displayed a very similar network of genes as the IFN 

signalling pathway. Although molecules in IFN-related signalling pathways are 

transcriptionally enhanced, this does not necessarily equate to post-translational 

phosphorylation. In addition, it does not appear from the pathway analysis as if 

there is any of the elevated ISG transcription that would be a characteristic 

hallmark of signal transduction. In actual fact, the ISGs included in this pathway 

diagram are only a small fraction of the possible genes that can be modulated by 

IFNs. IFNs induce the expression of thousands of genes by activating 

transcription factor complexes that bind to one of two elements in gene 

promoter regions; the IFNγ-activated site (GAS) or the IFN-stimulated response 

element (ISRE)415. As mentioned in more detail below, a high proportion of the 

genes that are upregulated in the brain in response to LPS are known ISGs. 

Therefore, not only is the IFN signalling pathway transcriptionally enhanced, but 

it is also likely to be activated in the brain in response to systemic LPS. These 

observations provide further evidence of an IFN-response in the brain in response 

to systemic LPS. 
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Figure 3.7 The Leukocyte extravasation signalling pathway 
Following a microarray study, comparing gene expression in the brains of LPS- and vehicle-injected mice, the leukocyte extravasation signalling pathway was identified 
using Ingenuity Pathway Analysis (IPA) software as being significantly enriched. This diagram outlines the genes involved in this pathway. Genes that are highlighted 
red are significantly upregulated by ≥ 1.5-fold in the brain in response to LPS. Figure was taken from IPA.
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Figure 3.8 The Activation of IRF by cytosolic pattern recognition receptors signalling 
pathway 
This diagram outlines the genes involved in the Activation of interferon regulatory factors (IRFs) by 
cytosolic pattern recognition receptors signalling pathway: a pathway that was identified using 
Ingenuity Pathway Analysis (IPA) software as being differentially regulated in response to LPS. 
Genes that are highlighted red are significantly upregulated by ≥ 1.5-fold in the brain in response to 
LPS. Figure was taken from IPA. 
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Figure 3.9 The Interferon signalling pathway 
Using Ingenuity Pathway Analysis (IPA) software, differential regulation of the interferon signalling 
pathway was identified as being a downstream effect of peripheral LPS injection. This diagram 
outlines the genes involved in this pathway, including some of the key interferon stimulated genes 
that are activated in response. Genes that are highlighted red are significantly upregulated by ≥ 
1.5-fold in the brain in response to LPS. IFIT1 has been outlined in red as although it was 
significantly upregulated in the brain, it was not deemed “analysis-ready” by IPA and thus excluded 
from pathway analysis. Figure was taken from IPA. 

 

3.3.5 Re-analysing the Affymetrix data using GeneSpring 

Analysing the Affymetrix dataset using Partek Genomics Suite returned a list of 

55 differentially expressed entities that satisfied a fold change cut-off of 2. To 

further validate the microarray, the upregulation of a selection of genes had 

first to be confirmed using QPCR. With the aim of focusing only on the genes 

that are most likely to be biologically relevant, the Affymetrix dataset was 

reanalysed using GeneSpring GX analysis software so that the resulting list of 

significantly relevant genes could be compared to that generated using Partek.  

The Mouse Gene 1.0 ST array data were analysed in GeneSpring using a modified 

version of RMA, RMA16. This summarisation algorithm conforms to the same 3 

steps as RMA; background correction, normalisation and probe summarisation. 
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However, RMA16 differs from its predecessor in that a value of 16 is added to 

the normalised intensities calculated using the RMA algorithm. This extra step is 

for variance stabilisation.  

As before, a signal histogram was used to visually assess the efficiency of 

hybridisation and the separation between the two groups of samples was viewed 

on a PCA plot. As potential sources of non-biological variability have already 

been ruled out (Figure 3.3) and the transcriptional variation between groups 

already been demonstrated (Figure 3.4), the corresponding graphs, generated 

using GeneSpring, are not shown.  

3.3.6 Analysis of Affymetrix data using GeneSpring 

To establish a list of significantly relevant genes using GeneSpring GX software, 

the normalised intensity values created by the pre-processing of the Affymetrix 

chips were filtered by expression and subject to statistical analysis.  

3.3.6.1 Filtering entities on expression 

Pre-processing the array chips using RMA16 assigns the 28 869 entities on each 

chip with a normalised intensity value. In order to eliminate low level 

background gene expression, each entity had to possess a normalised intensity 

value that fell within the upper 80% of all the normalised intensity values on that 

chip. In addition, to be included, each entity had to satisfy this parameter in all 

three samples of one group. Filtering on expression narrowed the dataset down 

to 22 927 entities (Figure 3.10A). 

3.3.6.2 Genes identified in GeneSpring as being differentially expressed in 
the brains of LPS challenged mice 

To identify differentially expressed genes using GeneSpring, an unpaired t-test 

was performed on the data, along with a Benjamini-Hochberg multiple testing 

correction. A profile plot of the normalised intensity values of entities deemed 

statistically significant is shown in Figure 3.10B. Of the 96 entities that were 

classified as being significantly different, 89 were upregulated in the brain in 

response to LPS and 7 were downregulated. 
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As the aim of reanalysing the array data was to focus only on the genes that 

were most robustly differentially expressed, a fold change cut-off of 2 was 

applied to the dataset. 39 entities satisfied this parameter, all of which were 

upregulated in the brain in response to LPS. The normalised intensity values of 

these entities are displayed in Figure 3.10C and the relative signal intensities 

have been displayed in a heatmap (Figure 3.11). The heatmap allows a visual 

comparison of relative expression to be made; between individual entities, 

individual samples or groups of samples. The fold change, p-value and gene 

name (where applicable) of each entity is listed in Table 3.3. Although 

containing many of the key players that were identified using Partek, this gene 

list differs to that generated using Partek, both in size and content. In spite of 

this, genes encoding acute phase proteins lipocalin 2 and serum amyloid A3 were 

identified in both lists as being the most upregulated (Table 3.2 & Table 3.3). In 

addition, genes common to both lists were shown to be upregulated by a similar 

magnitude using either Partek or GeneSpring. A comparison of the two lists will 

be made below (Section 3.3.7). 
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Figure 3.10 Normalised intensity values of individual entities. 
Affymetrix gene chips, used to compare gene expression in the brains of LPS- and vehicle-injected 
mice, were analysed using GeneSpring GX analysis software. These profile plots display the 
normalised intensity values of (A) all entities after being filtered on expression, (B) all significantly 
regulated entities (C) All differentially expressed entities satisfying a fold change cut-off of 2. 
Normalised intensity values were established using the RMA16 summarisation algorithm. Each 
entity is coloured according to the median normalised intensity value of the LPS-treatment group. n 
= 3/group. 
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Figure 3.11 Heatmap of the signal intensity of individual entities relative to baseline 
This heatmap displays the relative signal intensities of the 39 entities that were classified, by 
GeneSpring GX software, as being differentially expressed in the brains of LPS-challenged mice 
compared to vehicle-injected controls. Only entities with a fold change of 2 or greater have been 
included. Individual entities in each sample are coloured according to their expression level relative 
to baseline. For ease of visualisation, relative expression values were calculated by mathematically 
scaling down the normalised intensity values to fit within the range -1 to 1. 
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Genbank 

Accession 

Gene 

Symbol 

Gene Name Fold 

Change  

P-value 

NM_008491 Lcn2 Lipocalin 2 16.58  8.27E-06 

NM_011315 Saa3 Serum amyloid A3 8.69 1.91E-04 

BC150711 AI607873 Interferon activated gene 204 

homologue 

3.93 7.84E-05 

NM_011854 Oasl2 2'-5' Oligoadenylate synthetase-like 2 3.91 1.25E-04 

NM_025378 Ifitm3 Interferon induced transmembrane 

protein 

3.69 3.91E-05 

NM_009252 
 

Serpina3n Serine (or cysteine) peptidase 

inhibitor, clade A 

3.32 

 

1.65E-04 

NM_009099 Trim30 Tripartite motif-containing 30 3.28 9.56E-05 

NM_008331 
 

Ifit1 Interferon-induced protein with 

tetratricopeptide repeats 

3.12 1.05E-04 

NM_008329 Ifi204 Interferon activated gene 204 3.05 6.68E-05 

NM_133871 Ifi44 Interferon activated gene 44 2.94 1.44E-04 

NM_023386 Rtp4 Receptor transporter protein 4 2.93 4.51E-05 

NM_021274 Cxcl10 chemokine (C-X-C motif) ligand 10 2.91 8.88E-05 

NM_144559 Fcgr4 Fc receptor, IgG, low affinity IV 2.90 2.18E-05 

NM_011150 Lgals3bp Lectin, galactoside-binding, soluble, 3 

binding protein 

2.89 5.40E-05 

NM_194336 Gbp6 Guanylate binding protein 6 2.70 4.41E-06 

NM_013563 Il2rg Interleukin 2 receptor, gamma chain 2.64 4.41E-06 

--- N/A*  2.60 4.42E-05 

NM_00100189
2 

H2-K1 Histocompatibility 2, K1, K region 

 

2.49 4.42E-05 

NM_010260 Gbp2 Guanylate binding protein 2 2.42 1.13E-04 

NM_028595 Ms4a6c Membrane-spanning 4-domains, 

subfamily A, member 6C 

2.40 1.91E-04 

AK173199 Rnf213|LOC6
72511 

Ring finger protein 213 2.34 5.92E-07 

NM_009402 Pglyrp1 Peptidoglycan recognition protein 1 2.36 8.03E-05 

--- Rnf213** Ring finger protein 213 2.33 1.36E-05 

NM_009982 Ctsc Cathepsin C 2.31 5.42E-05 

NM_010738 Ly6a Lymphocyte antigen 6 complex, locus 

A 

2.29 1.60E-05 

NM_018734 Gbp3 Guanylate binding protein 3 2.28 1.60E-04 

NM_172689 Ddx58 DEAD box polypeptide 58 2.27 1.26E-04 

NM_145545 Gbp7 Guanylate binding protein 7 2.27 3.80E-06 

NM_009780 
 

C4b |C4a complement component 4B (Childo 

blood group) | complement 4A 

(Rodgers blood group) 

2.24 

 

1.40E-04 
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NM_013673 Sp100 Nuclear antigen Sp100 2.22 4.61E-05 

NM_026835 Ms4a6d Membrane-spanning 4-domains, 

subfamily A, member 6D 

2.21 4.36E-05 

NM_008326 
 

Irgm Immunity-related GTPase family M 

member 1 

2.21 2.56E-05 

NM_013805 Cldn5 Claudin 5 2.10 1.42E-04 

--- Rnf213** Ring finger protein 213 2.08 2.78E-05 

NM_199146 AI451617 Expressed sequence AI451617 2.06 8.85E-05 

NM_009283 Stat1 Signal transducer and activator of 

transcription 1 

2.04 5.75E-06 

--- Rnf213** Ring finger protein 213 2.02 2.69E-06 

NM_153564 GBP5 Guanylate binding protein 5 2.02 5.17E-05 

NM_00116041
5 

Apobec3 Apolipoprotein B mRNA editing 

enzyme 

2.02 2.07E-05 

Table 3.3 Differentially expressed entities identified using GeneSpring  
Microarrays were analysed using GeneSpring GX software. These data show the fold change and 
significance of the 39 entities that were upregulated ≥ 2-fold in the brains of mice injected with LPS 
compared to vehicle. Significance was calculated using an unpaired t-test. 
*Probe sets don’t map to annotated genes 
**Annotations manually determined using Affymetrix online database, NetAffx 
 

3.3.7 Defining the genes commonly identified by both Partek and 
GeneSpring 

As mentioned above, the aim of reanalysing the array data was to focus 

attention on genes that were highlighted by both software packages as being 

differentially expressed, thus maximizing scrutiny. The two lists of differentially 

expressed entities, that satisfied a fold change cut-off of 2, were compared 

(Figure 3.12). Of the 29 entities that were common to both lists, 24 are known 

genes. These are grouped according to biological function in Table 3.4. 

Strikingly, over half of the genes in this list are known ISGs. This supports the 

hypothesis generated from the Ingenuity pathway analysis; that IFN signalling is 

induced in the brain following peripheral LPS injection. In addition, a number of 

genes encoding acute phase reactants are upregulated, as are a variety of genes 

involved in immunity and defence. Due to their consistency in both datasets, the 

sub-list of genes, listed in Table 3.4, has subsequently been focused on for the 

remainder of the study. 
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Figure 3.12 Differentially expressed entities identified using Partek and GeneSpring 
Affymetrix gene chips were analysed using two software packages: Partek Genomics Suite and 
GeneSpring GX analysis software. This Venn diagram compares the 55 entities that were identified 
as being differentially expressed ≥ 2-fold by Partek, to the 39 entities that were identified by 
Genespring using the same parameters.  

 

10 29 27 10 29 26 

Partek (55) GeneSpring (39) 
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Gene Symbol Gene Name 

Interferon Stimulated  Genes 

Ctsc Cathepsin C 

Gbp2 Guanylate binding protein 2 

Gbp3 Guanylate binding protein 3 

Gbp6 Guanylate binding protein 6 

Gbp7 Guanylate binding protein 7 

Ifit1 Interferon-induced protein with tetratricopeptide repeats 

Ifitm3 Interferon induced transmembrane protein 

Igrm1 Immunity-related GTPase family M, member 1 

Lgals3bp Lectin, galactoside-binding, soluble, 3 binding protein 

Oasl2 2'-5' Oligoadenylate synthetase-like 2 

Rnf213 Ring finger protein 213 

Rtp4 Receptor transporter protein 4 

Sp100 Nuclear antigen Sp100 

Stat1 Signal transducer and activator of transcription 1 

 

Acute Phase Reactants 

Lcn2 Lipocalin 2 

Saa3 Serum amyloid A3 

Serpina3n Serine (or cysteine) peptidase inhibitor, clade A 

 

Immunity System Components 

C4b |C4a Complement component 4B (Childo blood group) | complement 4A (Rodgers 

blood group) 

Fcgr4 Fc receptor, IgG, low affinity IV 

H2-K1 Histocompatibility 2, K1, K region 

Pglyrp1 Peptidoglycan recognition protein 1 

 

Cell Surface Molecules 

Il2rg Interleukin 2 receptor, gamma chain 

Ly6a Lymphocyte antigen 6 complex, locus A 

 

mRNA Editing 

Apobec3 Apolipoprotein B mRNA editing enzyme 

Table 3.4 Functional properties of differentially expressed genes, common to both Table 3.2 
and Table 3.3. 
Affymetrix gene chips were analysed using two software packages: Partek Genomics Suite and 
GeneSpring GX analysis software. These data show the biological functions of the 24 known genes 
that were common to both gene lists and upregulated ≥ 2-fold in the brains of mice injected with 
LPS compared to vehicle. Genes were clustered according to biological function using the 
Database for Annotation, Visualization and Integrated Discovery v6.7 
(http://david.abcc.ncifcrf.gov/). 
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TLR4 ligation is known to result in the increased production of type I and/or type 

II IFNs55,416. To determine whether the ISGs were regulated by type I IFNs, type II 

IFNs or both, the list of ISG was analysed using the Interferome® database. This 

data mining analysis revealed that all 14 of the ISGs that were common to both 

array datasets had the potential to be regulated by type I IFNs (Figure 3.13). 8 of 

these could also be regulated by type II IFNs and 6 of the ISGs could also be 

regulated by type III IFNs. 
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Figure 3.13 Interferon subtype analysis of ISGs induced in the brain 
Interferon subtype analysis of the ISGs from Table 3.4 was performed using the Interferome 
database v1 (http://vera093.its.monash.edu.au/interferome/)  

 
In summary, comparing the transcriptional profile of the brains of mice injected 

with LPS to those injected with vehicle, yielded a list of 85 differentially 

expressed entities with a fold change of at least 1.5. The known genes in this list 

were subject to GO clustering and pathway analysis; both of which highlighted 

the possibility of microglial activation and an IFN response in the brain. In order 

to focus on the genes that were most robustly differentially expressed, the fold 

change cut-off was increased. The list of genes satisfying a fold change cut-off 

of 2 was compared to one generated using a different software package, and 

thus a different summarisation algorithm. Common to both lists, the resulting 

sub-list of differentially expressed genes was assumed to be the most 

meaningful. Determining the biological function of these genes revealed that 

over half are known ISGs. In short, it would appear that LPS-injection in the 

periphery may trigger IFN signalling in the brain and a subsequent induction of 

ISGs. 
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3.4 QPCR analysis of target genes in the brain, blood 
and BM of LPS challenged mice 

The Affymetrix array dataset has provided a list of genes that were differentially 

expressed in the brain following intraperitoneal LPS-injection. These were 

clustered according to biological function and grouped into relevant pathways. 

Using RNA isolated from an independent experiment, transcriptional changes 

were then validated by QPCR. To control for the possibility of a contaminating 

signal coming from the peripheral blood, and to see how the transcriptional 

response in the brain differed from that of the periphery, the expression of 

target genes was compared in the brain, PBL and bone marrow of mice, 48 hours 

after injection with either LPS or vehicle. In addition, QPCR was used investigate 

gene expression at earlier time points, in order to gain a better understanding of 

the kinetics of ISG expression. 

3.4.1 Validation of differential gene expression using QPCR 

In addition to validating the sub-list of genes described in Section 3.3.7, 

upregulated expression of gene encoding the classic interferon-inducible 

chemokine, CXCL10 and interferon regulatory factor (IRF) 7 was also validated 

using SYBR green QPCR, as was the gene encoding the negative regulator of IRF7, 

guanylate-binding protein (GBP) 4. Designing primers specific to H2-K1 proved 

impractical due to the common occurrence of sequence homologies in the MHC 

gene cluster. Consequently, H2-K1 was excluded from validation. In addition, 

due to the relatively high proportion of GBPs in the dataset, Gbp7 and Gbp6 

were arbitrarily excluded. 

With the exception of Sp100 and Stat1, all ISGs assayed were confirmed as being 

significantly upregulated in the brains of mice challenged with systemic LPS 

compared to vehicle controls (Figure 3.14), as were the acute phase reactants 

(Figure 3.15) and all remaining genes aside from Apobec3 and C4 (Figure 3.16). 

Although a few genes, Lcn2, Saa3, Il2rg and Fcgr4, showed a markedly greater 

upregulation when gene expression was measured by QPCR compared to 

microarray, the induction of the majority of target genes correlated well with 

the microarray expression data. Therefore, the confirmation of target gene 

induction using QPCR validates the Affymetrix dataset. 
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3.4.2 Comparison of central response to peripheral response 

With the aim of determining whether the inflammatory response in the brain 

differs from that of the periphery, and to control for the possibility of a 

contaminating signal coming from the peripheral blood, gene expression in the 

brain was compared to that of PBL, 48 hours following systemic LPS challenge. 

As an additional control, gene expression in the brain was also compared to that 

of the bone marrow; a highly vascularised peripheral tissue. The fold change of 

each target gene in both the PBL and the bone marrow was determined using 

SYBR Green QPCR. QPCR analysis showed a distinct pattern of gene expression in 

each of the three tissues analysed. Most of the target genes could be separated 

into three main groups: those that were significantly upregulated in all three 

tissues, those that were upregulated both in the brain and the PBL or those 

upregulated only in the brain.  

A high proportion of genes were upregulated to a similar extent in both the brain 

and the PBL. As a result, the enhanced signal observed in the brain following LPS 

injection, has the potential to be derived from a minute level of blood 

contamination; despite extensive perfusion. However, by examining gene 

modulation in multiple tissues, i.e. the brain, blood and bone marrow, it is 

possible to exclude this possibility. Only two ISGs, Cxcl10 and Ifitm3, were 

significantly upregulated in the brain, PBL and bone marrow (Figure 3.14). Other 

genes falling into this category were acute phase reactants; Lcn2 and Saa3 

(Figure 3.15), and the anti-microbial gene, Pglyrp1 (Figure 3.16). Significantly 

upregulated in both the brain and the PBL were ISGs; Ifit1, Igrm1, Lgals3bp, 

Oasl2 and Rtp4 (Figure 3.14) along with an immune response gene; Fcgr4 (Figure 

3.16). Critically, both Cxcl10 and Fcgr4 were upregulated to a significantly 

greater extent in the brain than either of the extra-neural tissues, implying a 

level of independent modulation in the brain. In contrast, Pglyrp and Saa3 were 

induced in the brain to a lesser extent than in the PBL, suggesting a greater level 

of gene regulation in the blood. The bone marrow is highly vascular. As a result, 

a partial perfusion would likely result in a contaminating signal in all three 

tissues. Although induced to a similar extent in the brain and the blood, Ifit1, 

Ifitm3, Igrm1, Lcn2, Lgals3bp, Oasl2 and Rtp4 were upregulated significantly 

more in the brain than the bone marrow. Taken together, these differences in 

the fold change of target genes in each tissue are indicative of different levels 
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of gene regulation. This implies that the observed fold changes in the brain are 

not a secondary effect of blood contamination.  

In further evidence of independent gene regulation in the brain; Type I IFN-

regulated ISGs; Gbp3, Gbp4 and Irf7 were all significantly upregulated in the 

brain alone (Figure 3.14, Table 3.5), as was cytokine receptor component, Il2rg 

(Figure 3.16). However, Gbp3 showed a slight trend towards an upregulation in 

the bone marrow and as a result, the induction observed in the brain was 

significantly greater than in peripheral blood leukocytes, but not greater than in 

the bone marrow. Similarly, although IFNγ-regulated gene, Gbp2, acute phase 

reactant, Serpina3n and cell surface marker Ly6a were significantly upregulated 

only in the brain (Figure 3.14, Figure 3.15, Figure 3.16 and Table 3.5), these 

genes also showed a trend towards an upregulation in the PBL. Taken together, 

these data demonstrate a differential pattern of gene expression in the brain 

from that of the two peripheral tissues. This is extremely important as it 

provides evidence of a brain-specific inflammatory response as a result of 

systemic LPS injection, thus validating the microarray experiment.  

Gene symbol Mean fold change +/- SEM P-value 

Gbp2 2.41 0.405 0.0160 

Gbp3 1.87 0.231 0.0197 

Gbp4 3.69 0.545 0.0030 

Il2rg 8.95 0.730 < 0.0001 

Irf7 4.93 0.561 0.0004 

Ly6a 2.61 0.215 0.0003 

Serpina3n 2.62 0.439 0.0154 

Table 3.5 List of target genes upregulated specifically in the brain 
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Figure 3.14 Differential ISG expression in the brain, PBL and BM of LPS-treated mice 
compared to vehicle control group.  
RNA was isolated from the brain, peripheral blood leukocytes (PBL) and bone marrow (BM) of 
mice, 48 hours after injection with 100µg LPS or an equivalent volume of vehicle. Gene expression 
analysis of (A) Ctsc, (B) Cxcl10, (C) Gbp2, (D) Gbp3, (E) Gbp4, (F) Ifit1, (G) Ifitm3, (H) Igrm1, (I) 
Irf7, (J) Lgals3bp, (K) Oasl2, (L) Rtp4, (M) Sp100 and (N) Stat1 was performed using QPCR and 
normalised to TBP. Data are expressed as fold change in gene expression in the brain, PBL and 
BM of LPS-injected mice (■) relative to that of vehicle-injected controls (□). Data represent the 
mean +/- SEM. Significance of each fold change was calculated for individual tissues using an 
unpaired t-test: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. A statistical comparison was made between the 
fold induction in the brain and the fold induction in both the PBL and the BM using two-way 
ANOVA: #P ≤ 0.05, ##P ≤ 0.01, ###P ≤ 0.001. n = 4/group. 
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Figure 3.15 Differential expression of acute phase response genes in the brain, PBL and BM 
of LPS-treated mice compared to vehicle control group. 
RNA was isolated from the brain, peripheral blood leukocytes (PBL) and bone marrow (BM) of 
mice, 48 hours after injection with 100µg LPS or an equivalent volume of vehicle. Gene expression 
analysis of (A) Lcn2, (B) Saa3 and (C) Serpina3n was performed using QPCR and normalised to 
TBP. Data are expressed as fold change in gene expression in the brain, PBL and BM of LPS-
injected mice (■) relative to that of vehicle-injected controls (□). Data represent the mean +/- SEM. 
Significance of each fold change was calculated for individual tissues using an unpaired t-test: *P ≤ 
0.05, **P ≤ 0.01, ***P ≤ 0.001. A statistical comparison was made between the fold induction in the 
brain and the fold induction in both the PBL and the BM using two-way ANOVA: #P ≤ 0.05, ##P ≤ 
0.01, ###P ≤ 0.001. n = 4/group. 
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Figure 3.16 Differential expression of remaining target genes in the brain, PBL and BM of 
LPS-treated mice compared to vehicle control group. 
RNA was isolated from the brain, peripheral blood leukocytes (PBL) and bone marrow (BM) of 
mice, 48 hours after injection with 100µg LPS or an equivalent volume of vehicle. Gene expression 
analysis of (A) Apobec3, (B) C4, (C) Fcgr4, (D) Il2rg, (E) Ly6a and (F) Pglyrp was performed using 
QPCR and normalised to TBP. Data are expressed as fold change in gene expression in the brain, 
PBL and BM of LPS-injected mice (■) relative to that of vehicle-injected controls (□). Data 
represent the mean +/- SEM. Significance of each fold change was calculated for individual tissues 
using an unpaired t-test: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. A statistical comparison was made 
between the fold induction in the brain and the fold induction in both the PBL and the BM using 
two-way ANOVA: #P ≤ 0.05, ##P ≤ 0.01, ###P ≤ 0.001. n = 4/group. 
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3.4.3 Determining kinetics of ISGs expression in the brain 

In the immediate hours following a single injection of LPS, the response in the 

brain is well characterised. Largely encompassing an acute phase response, the 

majority of reported effects in the brain are known to peak within 12 hours 

following injection315,324,417. To determine whether the upregulation of ISGs, 

observed 48 hours after LPS injection, is merely a remnant of an earlier 

response, we looked at expression levels of a selection of ISGs in the brain 6 

hours and 12 hours following injection and compared them to the expression 

levels at 48 hours. With the exception of Cxcl10, the expression levels of which 

are significantly reduced at 48 hours, no significant differences were observed 

(Figure 3.17). However, in the case of Gbp4 and Irf7, there is a noticeable trend 

towards a reduction in expression between 12 hours and 48 hours. These data 

suggest that an IFN response has been initiated in the brain by 6 hours following 

LPS injection. This response persists until 48 hours after injection, retaining it’s 

potency until at least the 12 hour time point. 
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Figure 3.17 Temporal expression of ISGs in the brains of LPS-injected mice 
RNA was isolated from the brain, 6, 12 and 48 hours after injection with 100µg LPS or an 
equivalent volume of vehicle. Relative ISG expression was determined using QPCR and 
normalised to TBP. Data are expressed as fold change in gene expression in the brain of mice, 6 
hours (□), 12 hours (■) and 48 hours (■) following LPS-injection relative to vehicle-injected controls 
mouse brains. Data represent the mean +/- SEM. A statistical comparison was made between the 
fold induction at different time points using two-way ANOVA: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n 
= 4/group. 



157 

3.5 Discussion and conclusions 

In order to assess what influence LPS-induced systemic inflammation has on gene 

expression in the brain, microarrays were utilised to compare the transcriptional 

profile of the brain 48 hours after injection with either LPS or vehicle. The data 

were subjected to several levels of analysis. A number of transcripts were 

significantly elevated in the brain 48 hours following LPS injection. These were 

clustered according to biological function and then grouped into pathways. QPCR 

analysis was then used to validate the dataset and to compare gene expression 

in the brain, the PBL and the bone marrow. These further analyses identified a 

number of key points, the most important being that an innate inflammatory 

response occurs in the brain in response to LPS. Although this has been 

characterised previously in the immediate hours following LPS-injection, it is 

generally assumed that the response resolves within 24 hours
324,417,418

. From this 

dataset however, it is apparent that injecting mice with high doses of LPS 

induces an immune response that lasts in the brain for at least 48 hours. 

Differing in kinetics and magnitude, this response is distinct from that of the PBL 

and the bone marrow. This crucial observation supports the validity of the 

dataset; ruling out the possibility of a contaminating signal coming from the 

peripheral blood.  

The occurrence of an LPS-dependent immune response in the brain was 

demonstrated when genes were clustered according to their biological function. 

This method of categorisation revealed that many of the upregulated genes are 

associated with the “Immune response” and “Immunity and defence”. 

“Interferon-mediated immunity” and “Macrophage-mediated immunity” also 

ranked highly in the list of significantly enriched biological processes. Microglia 

have long been considered the macrophage-like cells of the CNS. They have 

motile processes which survey the extracellular environment for pathogens or 

signs of cell damage. Responding accordingly, they play a pivotal role in the 

innate immune system of the CNS
419

. This response is akin to that of tissue 

macrophages. As microglia also share many structural similarities with their 

peripheral myeloid-derived counterparts, it can be very hard to distinguish one 

from the other: so much so that, until recently, it was thought that microglia 

were derived from the same myeloid precursors as macrophages
419

. As a result, 
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the enrichment of “Macrophage-mediated immunity” could well be an indication 

of microglial cell-mediated immunity. 

Enhanced transcription of genes involved in “Interferon-mediated immunity” is 

indicative of an IFN-response in the brain. This is certainly backed up by the 

pathway analysis which shows significant upregulation of the “Activation of IRFs 

by cytosolic pattern recognition receptors”, “Jak1, Jak2 and Tyk2 in IFN 

signalling” and the “IFN Signalling” pathways. IFN signalling leads to the 

downstream activation of an abundance of ISGs. In further support of an IFN 

response in the brain, the differential transcriptional profile following LPS 

injection is largely monopolised by the induction of this gene family; with ISGs 

encompassing over half of the genes believed to be most biologically 

meaningful.  

Crucially, the expression profile in the brain differed from that of peripheral 

blood leukocytes and from the bone marrow. Target genes were modulated to a 

different extent in the three tissues analysed. Importantly, ISGs encoding GBP-3, 

GBP-4 and IRF7 were upregulated independently in the brain, as was the gene 

encoding the cytokine receptor component, IL-2Rγ. In addition, although the 

genes encoding the interferon-inducible chemokine, CXCL10, and the 

immunoglobulin receptor, FCγRIV, were also induced in the periphery, they were 

upregulated to a significantly greater extent in the brain. Altogether, these data 

identify a brain-specific response to systemic LPS-induced inflammation. This is 

extremely important. By ruling out contaminating blood as being a source of the 

gene expression signal, these observations confirm the brain specificity of the 

Affymetrix dataset. 

Although the mechanism by which ISGs are induced in the brain remains to be 

examined, the temporal expression patterns of a selection of these genes were 

demonstrated using QPCR. All ISGs assayed were induced by 6 hours following 

LPS injection and remained elevated until 48 hours, after the bulk of the acute 

phase response is known to have resolved
420

. This implies that early events 

following peripheral LPS challenge may be responsible for the initiation of ISG 

expression. 
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The list of ISGs that are upregulated in response to LPS consists of an assortment 

of type I, type II and type III IFN-response genes. As IFNγ, the only type II IFN, is 

known to induce an anti-microbial response55, enhanced expression of IFNγ-

regulated genes would certainly be expected in the periphery following LPS 

injection. However, there is no evidence, as yet, to suggest that LPS can enter 

the brain. Although TLR4 is expressed in the brain, a study with radiolabelled 

LPS suggested that negligible levels cross the BBB421, therefore, it is unclear 

what has induced the expression of these IFNγ-response genes. IFNγ is known to 

simulate anti-microbial immunity in a cell-autonomous manner so, although no 

elevated transcripts encoding IFNγ were detected by the array study, it is 

possible that IFNγ was produced in the brain at an earlier time point. Certainly 

in the periphery, IFNγ is thought to be produced approximately 6 hours following 

intraperitoneal LPS injection316,422. Likewise, the array study detected no 

elevation of type I IFNs suggesting that any enhanced production of this cytokine 

family must have also occurred prior to the array if it occurred in the brain at 

all. Another possibility might be that peripherally produced IFNs have a direct 

effect on the brain. This will be discussed in more detail below. 

The enrichment of type I and type III IFN-regulated genes was a surprising finding 

as these responses are more readily associated with viral clearance55. In spite of 

this dogma, LPS, and other gram negative bacterial components, can induce 

IFNβ expression downstream of the non-canonical TRIF-dependent signalling 

pathway55. However, for this to be the mechanism accounting for the observed 

ISG induction either LPS, or LPS-induced IFNβ, would have to gain access to the 

brain. In summary, although both type I and type II ISGs were upregulated in the 

brain following LPS-injection, the mechanism of their induction remains to be 

clarified. Further work will be required in order to decipher whether IFN 

production in the brain occurs following LPS injection and if so, whether 

systemic LPS can have a direct role in central IFN induction.  

If Banks et al. are correct in their hypothesis that LPS does not access the 

brain421 one possible explanation, accounting for the central induction of ISGs, is 

the direct effect of systemic IFNs. A study by Wang et al. showed that the brain 

was highly sensitive to systemic IFNα, delivered by intraperitoneal injection423. 

The brain rapidly responded to the recombinant cytokine by increasing ISG 

transcription. In spite of this, no induction of IFNα1 or IFNβ was detectable in 
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the brain. Wang et al. argue that the direct action of systemic IFNα must 

therefore be responsible for the central elevation of ISG transcription. Amongst 

the genes induced in the brain were Stat1, and Gbp3, both of which appear in 

the list of target genes that were upregulated in response to systemic LPS. 

Cxcl10 transcripts, however, were undetectable following systemic IFNα 

injection. This conflicts with a previous report by the same group which revealed 

Cxcl10 as being one of the main genes to be over-expressed when neurons, 

either in vitro or in vivo, were exposed to IFNα424. Therefore, if systemic IFNα 

has the capacity to directly access the brain, Cxcl10 should be detectable 

following a systemic injection. However, if correct, the hypothesis proposed by 

Wang et al. could account for the induction of ISGs following systemic LPS 

injection; but only if IFNβ and IFNγ also shared the capacity to directly access 

the brain. Although attractive, this hypothesis requires further evidence to 

demonstrate that IFNα crossed one of the brain’s barriers, or that another IFNα-

subtype was not produced in the brain to account for the ISG induction observed 

by Wang et al. An alternative mode of action could be indirect action of 

peripherally produced IFNs on the CNS, via stimulation of the BBB or afferent 

nerves.  

Of the ISGs upregulated in the brain in response to LPS, CXCL10 had the highest 

fold change. It was also one of the few genes to be upregulated to a greater 

extent in the brain than the PBL. CXCL10 has been shown to be induced in the 

brain following stroke425, West Nile Virus187,188 or HIV-associated CNS disease426. 

It has also been shown to be upregulated by neurons in response to IFNα; both in 

vitro and in vivo
424. CXCL10 is an interferon-inducible chemokine which binds 

CXCR3 to promote leukocyte chemotaxis427. Induction of CXCL10 in the brain 

following systemic LPS challenge may result in the chemoattraction and 

subsequent infiltration of CXCR3+ leukocytes. Although there have been previous 

reports of increased CXCL10 expression in the brain following systemic LPS 

injection428, CXCR3-mediated leukocyte infiltration to the brain is not a 

phenomenon that has been reported after peripheral LPS injection. However, 48 

hours following LPS injection, CXCL10 is upregulated almost 10-fold, as are a 

number of genes involved in the leukocyte extravasation pathway. Therefore, 

leukocyte infiltration is worth investigating as a potential downstream effect of 
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injecting high doses of LPS peripherally. Chapter 5 will address whether 

leukocytes infiltrate the brain in response to systemic LPS challenge.   

ISGs were not the only genes to remain induced 48 hours after LPS injection. 

Genes encoding acute phase reactants lipocalin (LCN) 2, serum amyloid A3 

(SAA3) and serine-protease inhibitor 3N (Serpin A3N) were all amongst the most 

altered. As a result, “Acute phase response signalling” was highlighted as one of 

the most significantly enhanced biological pathways. Responsible for activation 

of the HPA axis and fever, the acute phase response is one of the key features of 

LPS challenge. Although the liver is considered the principle production site of 

acute phase proteins, LPS has previously been shown to induce the expression of 

acute phase reactants in choroid plexus epithelial cells. Utilizing 

transcriptomics, a study by Marques et al. reported a significant induction of a 

number of genes in the choroid plexus following intraperitoneal LPS injection420. 

In particular, between 3 and 24 hours, Lcn2, Saa3 and Serpina3n were amongst 

the most upregulated. Therefore, induction of these genes in the choroid plexus 

is likely to be a contributing factor to the enhanced expression that was 

detected in the brain 48 hours after systemic LPS injection. Strategically 

positioned within the cerebral ventricles, the choroid plexus is responsible for 

cerebrospinal fluid (CSF) production. In addition, it manages molecular and 

cellular trafficking across the blood-CSF-barrier; acting as an interface between 

the blood and the CSF. The extra-hepatic release of acute phase proteins into 

the CSF, in response to the peripheral inflammatory milieu, may represent a 

defence mechanism employed by the choroid plexus to protect the brain.  

In summary, systemic LPS-induced inflammation triggers an immune response in 

the brain. Observed 48 hours after challenge, the brain has a specific 

transcriptional signature; characterised by increased ISG expression. ISGs are 

induced in the brain by 6 hours post-injection and retain their potency for at 

least 48 hours. However, it has yet to be established whether this induction is a 

direct effect of central IFN production, or whether peripherally produced IFNs 

can travel to, or interact with, the brain. Of the ISGs induced in the brain in 

response to LPS, Cxcl10 was upregulated most. It was also upregulated to a 

greater extent in the brain than in the blood. This transcriptional response is 

indicative of peripherally triggered, interferon-mediated brain inflammation and 
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the induction of CXCL10 suggests that the brain may be being primed for T cell 

infiltration.  
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4 Defining mechanisms of target gene induction in 
the CNS following systemic LPS challenge 
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4.1 Introduction and aims 

In Chapter 3, it was demonstrated that systemic administration of LPS alters the 

gene expression profile in the brains of C57BL/6 mice; triggering the induction of 

a number of inflammatory genes. However, the precise mechanisms accounting 

for target gene induction in the brain remains to be clarified.  

Current dogma suggests that the brain can become sensitised to systemic LPS 

challenge by a number of mechanisms which act in concert. Described in detail 

in Section 1.4.2, these comprise neural transmission along with various humoral 

routes. Circulating inflammatory cytokines, induced in response to LPS, can 

activate blood vessel endothelial cells to enhance prostaglandin release and thus 

transmit inflammatory signals across the BBB323-325,327. Supplementing this 

humoral pathway, afferent neurons innervating regions of inflammation respond 

to the inflammatory cytokine milieu and relay this information to the brain 

(Section 1.4.2). Thus, by propagating inflammatory signals from the periphery to 

the brain, inflammatory cytokines may play a major role in immune-to-brain 

communication following systemic LPS injection. As a consequence, the initial 

aim for this chapter was to establish whether elevated circulating inflammatory 

cytokines were sufficient or indeed necessary to induce a similar transcriptional 

response as that induced by a single, systemic injection of LPS. To this end, 

target gene expression was assessed in the brain and matched PBL samples 

following systemic TNFα-induced inflammation or during LPS-induced endotoxin 

tolerance, when inflammatory cytokine production is known to be ameliorated in 

the periphery429,430. Following TNFα-induced inflammation, or LPS-induced 

endotoxin tolerance, the respective induction or amelioration of circulating 

cytokines was confirmed by ELISA. Target gene expression in the brain and PBL 

was then compared to a vehicle injected control group using SYBR Green QPCR. 

LPS binds to TLR4 and exerts its effects via one of two downstream signalling 

pathways (Figure 4.1): activation of the classical MyD88-dependent pathway 

resulting in inflammatory cytokine induction, or IRF3 activation through the 

TRIF-dependent pathway triggering IFNβ production. The literature surrounding 

immune-to-brain communication pathways following LPS-induced inflammation 

almost exclusively focuses on the downstream effects of NFκB activation as a 

result of the classical MyD88-dependent pathway. For example, NFκB activation 
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is responsible for the induction of inflammatory cytokines which, as described 

above, can activate the vagus nerve and the BBB endothelium. Furthermore, 

circulating LPS can activate the brain vasculature directly by ligating TLR4 

expressed on the surface of the endothelium (Section 1.4.2.2). By activating 

NFκB, this induces COX2 production and enhances prostaglandin 

synthesis324,327,328. Thus, by activating the MyD88-dependent signalling pathway, 

LPS can either directly or indirectly propagate inflammatory signals across the 

BBB.  

As these are the most characterised routes of immune-to-brain communication 

following systemic LPS challenge, it is possible that MyD88-dependent signalling 

pathway activation is responsible for the central induction of inflammatory 

target genes. However, as the majority of ISGs upregulated in response to LPS 

can be regulated by type I IFNs (Section 1.4.2.2), it was hypothesised that they 

are being expressed downstream of LPS-induced IFNβ production via the TRIF-

dependent pathway. The secondary aim of this chapter was to explore this 

hypothesis further by establishing whether target gene induction in the brain 

occurred following MyD88-dependent pathway activation in the absence of TRIF-

dependent signalling. C57BL/6 mice were injected intravenously with the TLR2 

ligand, lipoteichoic acid (LTA). TLR2 ligation can only activate NFκB through the 

classical MyD88-dependent signalling pathway (Figure 4.1), thereby eliminating 

the possibility of TRIF-dependent signalling. The expression of target genes in 

the brain was again compared to a vehicle-injected control group using QPCR. In 

summary, the expression levels of microarray target genes were investigated in 

different sterile, and TLR-dependent, models of peripheral inflammation, with 

the aim of investigating the molecular mechanisms governing the modulation of 

these genes in the brain following peripheral LPS injection.  
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Figure 4.1 TLR-induced signalling pathways. 
When activated, toll-like receptors (TLRs) either heterodimerise, such as TLR2 with either TLR1 or 
TLR6, or homodimerise to induce signalling pathway activation. Signalling is regulated by adaptor 
molecules. MyD88 is an adaptor used by all TLRs aside from TLR3. TLR7 recruits MyD88 directly, 
whereas TLR4 and TLR2 recruit MyD88 through bridging adapter TIRAP. MyD88 recruitment 
ultimately leads to the activation of nuclear transcription factor NFκB by releasing the p50 and p65 
subunits from the NFκB inhibitor IκB. Activated NFκB then translocates to the nucleus to induce the 
expression of inflammatory cytokines. An alternative signalling pathway downstream of TLR4 
involves the recruitment of adaptor molecule TRIF through bridging protein TRAM. This ultimately 
leads to activation of IRF3 and subsequent IFNβ induction (Reviewed in Ref 431). 
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4.2 Target gene expression following systemic cytokine-
induced inflammation 

Communication pathways between the immune system and the nervous system 

are often assumed to involve the intermediary action of inflammatory cytokines. 

Therefore, to determine whether elevated inflammatory cytokines were 

sufficient to induce a similar transcriptional profile to systemic LPS, target gene 

induction was assessed following a sterile, cytokine-induced model of systemic 

inflammation. 8 week old, male C57BL/6 mice were challenged intravenously 

with two doses of recombinant murine TNFα (1µg at 0 and 24 hours) or an 

equivalent volume of vehicle (sterile PBS). Mice were terminally anaesthetised, 

and then perfused, 48 hours after initial injection.  

4.2.1 Model validation 

To quantify peripheral inflammation following systemic TNFα challenge, the 

concentration of inflammatory cytokines in the circulation was measured using 

ELISAs. ELISAs were performed on plasma samples isolated from TNFα- and 

vehicle-injected mice; 6 hours, 30 hours and 48 hours following initial injection. 

TNFα and IL-6 were significantly elevated in the circulation 6 hours following a 

single dose of TNFα (Figure 4.2B&C). 6 hours following the second dose of TNFα 

(30 hours), TNFα remained slightly but significantly elevated in the plasma, 

whereas IL-6 had returned to baseline. Surprisingly, no IL-1β was detected in any 

of the samples (Figure 4.2A). Therefore, mice challenged systemically with TNFα 

presented with elevated levels of TNFα and IL-6 in the circulation compared to 

vehicle-injected controls. 
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Figure 4.2 Plasma concentration of inflammatory cytokines following systemic TNFα 
injection 
Mice were injected with 1 µg TNFα (TNF) or an equivalent volume of vehicle at 0 and 24 hours. 
Plasma was isolated from the whole blood of mice; 6 hours, 30 hours and 48 hours following initial 
injection. Concentrations of (A) IL-1β, (B) IL-6 and (C) TNFα (TNF) in the plasma were determined 
using ELISA. Data represent the mean plus or minus SEM. Significance was determined using two-
way ANOVA. n = 4/group. 
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4.2.2 Target gene modulation in the brain, PBL and BM following 
systemic TNFα injection 

In Chapter 3, using both microarrays and QPCR, a number of genes were 

identified as being upregulated in the brain in response to a systemic LPS 

challenge. To establish how these genes were modulated in the brain and 

periphery following TNFα-induced inflammation, SYBR Green QPCR was used to 

compare gene expression in the brains, PBL and bone marrow of TNFα- and 

vehicle-injected mice. Few of the microarray target genes were significantly 

elevated in the brains of the TNFα-challenged mice. Of the ISGs that were 

upregulated in the brain in response to LPS, only Gbp4 was upregulated in the 

brain in response to systemic TNFα (Figure 4.3). Stat1 was also upregulated in 

the brain following intravenous TNFα-injection. Although Stat1 was included in 

the list of target ISGs that, following microarray analysis, were identified as 

being upregulated in the brain in response to systemic LPS (Section 3.3.7), this 

induction was not confirmed using QPCR. None of the genes encoding acute 

phase proteins were significantly elevated in the brain following TNFα-injection 

(Figure 4.4), although there was a trend towards an upregulation of Saa3 (7.9-

fold). Aside from the slight but significant induction of Gbp4 and Stat1 (1.59- 

and 1.26-fold respectively), the only other significantly upregulated genes in the 

brain were immune response genes, Il2rg, Ly6a and Pglyrp1 (Figure 4.5). None of 

these genes were upregulated more than 2-fold. As a result, it was unclear 

whether this mild enhancement of gene expression was biologically meaningful.  



170 

Cxcl10

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

**

Fo
ld

 C
ha

ng
e

Gbp2

Brain PBMC BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

*

Fo
ld

 C
ha

ng
e

Gbp3

Brain PBL BM
0.0

0.5

1.0

1.5

2.0
Vehicle
TNF

*

Fo
ld

 C
ha

ng
e

Gbp4

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

*

*

Fo
ld

 C
ha

ng
e

Ifit1

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Ifitm3

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Igrm1

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Ctsc

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

A B

C D

E F

G H

Cxcl10

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

**

Fo
ld

 C
ha

ng
e

Gbp2

Brain PBMC BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

*

Fo
ld

 C
ha

ng
e

Gbp3

Brain PBL BM
0.0

0.5

1.0

1.5

2.0
Vehicle
TNF

*

Fo
ld

 C
ha

ng
e

Gbp4

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

*

*

Fo
ld

 C
ha

ng
e

Ifit1

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Ifitm3

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Igrm1

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Ctsc

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

A B

C D

E F

G H

 



171 

I J

K L

M N

Irf7

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Lgals3bp

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Oasl2

Brain PBL BM
0.0

0.5

1.0

1.5

2.0
Vehicle
TNF

Fo
ld

 C
ha

ng
e

Rtp4

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Sp100

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

**

Fo
ld

 C
ha

ng
e

Stat1

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

*
*

Fo
ld

 C
ha

ng
e

I J

K L

M N

Irf7

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Lgals3bp

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Oasl2

Brain PBL BM
0.0

0.5

1.0

1.5

2.0
Vehicle
TNF

Fo
ld

 C
ha

ng
e

Rtp4

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

Fo
ld

 C
ha

ng
e

Sp100

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

**

Fo
ld

 C
ha

ng
e

Stat1

Brain PBL BM
0.0

0.5

1.0

1.5

2.0 Vehicle
TNF

*
*

Fo
ld

 C
ha

ng
e

 
Figure 4.3 Differential expression of ISGs in the brain, PBL and BM of TNF-treated mice 
compared to vehicle control group. 
Mice were injected with 1 µg TNFα (TNF) or an equivalent volume of vehicle at 0 and 24 hours. 
RNA was then isolated from the brain, peripheral blood leukocytes (PBL) and bone marrow (BM), 
48 hours after initial injection. Gene expression analysis of (A) Ctsc, (B) Cxcl10, (C) Gbp2, (D) 
Gbp3, (E) Gbp4, (F) Ifit1, (G) Ifitm3, (H) Igrm1, (I) Irf7, (J) Lgals3bp, (K) Oasl2, (L) Rtp4, (M) Sp100 
and (N) Stat1 was performed using QPCR and normalised to TBP. Data are expressed as fold 
change in gene expression in the brain, PBL and BM of TNF-injected mice (■) relative to that of 
vehicle-injected controls (□).  Data represent the mean +/- SEM. Significance of each fold change 
was calculated for individual tissues using an unpaired t-test: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n 
= 4/group. 

 

Only two genes were significantly upregulated in PBL; those encoding the acute 

phase protein SAA3 and the host defence component, PGLYRP1 (Figure 4.4 & 

Figure 4.5). There was also a trend towards an upregulation of immune response 

gene, Fcgr4. All three of these genes were also significantly upregulated in the 
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bone marrow. Not only were no ISGs induced in the blood, but several ISGs, 

Cxcl10, Gbp2, Gbp3, Gbp4, Sp100 and Stat1 were significantly downregulated 

(Figure 4.3), along with immune components, Apobec3 and C4 (Figure 4.5). 

Overall, elevated levels of circulating TNFα were not sufficient to induce the 

expression of the majority of ISGs, or other target genes, in the brain, PBL or 

bone marrow. Thus, the central induction of target genes following peripheral 

LPS challenge is likely to be more than a mere by-product of elevated TNFα or 

IL-6 in the circulation.  
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Figure 4.4 Differential expression of acute phase response genes in the brain, PBL and BM 
of TNFα-injected mice compared to vehicle control group. 
Mice were injected with 1 µg TNFα (TNF) or an equivalent volume of vehicle at 0 and 24 hours. 
RNA was then isolated from the brain, peripheral blood leukocytes (PBL) and bone marrow (BM), 
48 hours after initial injection. Gene expression analysis of (A) Lcn2, (B) Saa3 and (C) Serpina3n 
was performed using QPCR and normalised to TBP. Data are expressed as fold change in gene 
expression in the brain, PBL and BM of TNF-injected mice (■) relative to that of vehicle-injected 
controls (□). Data represent the mean +/- SEM. Significance of each fold change was calculated for 
individual tissues using an unpaired t-test: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n = 4/group. 
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Figure 4.5 Differential expression of remaining target genes in the brain, PBL and BM of 
TNFα-injected mice compared to vehicle control group. 
Mice were injected with 1 µg TNFα (TNF) or an equivalent volume of vehicle at 0 and 24 hours. 
RNA was then isolated from the brain, peripheral blood leukocytes (PBL) and bone marrow (BM), 
48 hours after initial injection. Gene expression analysis of (A) Apobec3, (B) C4, (C) Fcgr4, (D) 
Il2rg, (E) Ly6a and (F) Pglyrp was performed using QPCR and normalised to TBP. Data are 
expressed as fold change in gene expression in the brain, PBL and BM of TNF-injected mice (■) 
relative to that of vehicle-injected controls (□). Data represent the mean +/- SEM. Significance of 
each fold change was calculated for individual tissues using an unpaired t-test: *P ≤ 0.05, **P ≤ 
0.01, ***P ≤ 0.001. n = 4/group. 
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4.3 Temporal target gene expression in PBL and brain 
following repeated LPS challenge  

Although the majority of target genes were not induced in the brain in response 

to systemic TNFα-induced inflammation, the above experiments do not rule out 

the contribution of other inflammatory cytokines which may induce target gene 

expression in the brain. With the aim of establishing the temporal pattern of 

target gene expression in the brain and PBL in the context of endotoxin 

tolerance, when inflammatory cytokine production is known to be ameliorated 

specifically in the periphery but not in the brain
429,430,432,433

, mice were exposed 

to LPS over a prolonged period of time. Endotoxin tolerance is an important 

defence mechanism designed to protect the host against endotoxic shock. In 

addition to eliciting expression of a number of proinflammatory genes, initial 

cellular exposure to LPS triggers the simultaneous downregulation of TLR 

expression and induction of several inhibitory molecules which negatively 

regulate TLR signalling
434

. This culminates in a transient inactivation of various 

proinflammatory genes by leukocytes in the periphery, including genes encoding 

the inflammatory cytokines TNFα, IL-1β and IL-6. At the same time, less 

potentially pathogenic genes are primed, such as anti-microbial effectors
429

. As a 

consequence, repeated exposure to TLR ligands leads to a dampening of the 

proinflammatory milieu without compromising host defence. Conversely, 

cytokine expression has been shown to continue in the brain during endotoxin 

tolerance
432,433

.To induce endotoxin tolerance, 8 week old, male C57BL/6 mice 

were injected with a single dose of LPS (50 µg i.p.) daily for 2, 5 or 7 

consecutive days. SYBR Green QPCR was then used to determine the expression 

of a selection of target genes in the brains and PBL of LPS challenged mice 

compared to a vehicle injected control group. 

4.3.1 Model validation 

To verify that the concentrations of inflammatory cytokines are ameliorated in 

the circulation following prolonged exposure to systemic LPS, plasma levels of 

IL-1β, IL-6 and TNFα were measured following a single, systemic, injection of 50 

µg LPS and compared to daily administration of the same dose. 6 hours following 

a single, intraperitoneal injection, both IL-1β and IL-6 were significantly 

elevated in the circulation (Figure 4.6A&B). No TNFα was detected at this time 
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point (Figure 4.6C). Concentrations of these cytokines are similar, and only 

slightly lower in magnitude, than what was previously demonstrated following an 

intraperitoneal injection of 100 µg LPS (Section 3.2.1). On day 2, after two doses 

of LPS (on day 0 and day 1) there was still a significant elevation of IL-6 in the 

circulation of LPS challenged mice, although the concentration was reduced by 

more than 6-fold from that observed following a single injection. The 

concentration of IL-6 returned to baseline between days 2 and 5. There was no 

detectable elevation of TNFα or IL-1β following multiple LPS challenges at any of 

the time points analysed. Thus, IL-1β and TNFα are undetectable in the 

circulation following multiple LPS challenges. Whilst IL-6 remained significantly 

elevated after two doses of LPS, it was undetectable for the remainder of the 

model. In keeping with the literature, this suggests that multiple systemic LPS 

challenges induce a state of tolerance that is characterised by reduced 

production of inflammatory cytokines in the periphery. 
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Figure 4.6 Plasma concentration of inflammatory cytokines following acute LPS challenge 
and during endotoxin tolerance. 
(A-C) Concentrations of (A) IL-1β, (B) IL-6 and (C) TNFα (TNF) in the plasma 6 hours after a single 
dose of 50µg LPS. Significance was determined using an unpaired t-test. n = 6/group (Vehicle), n = 
8/group (LPS). (D-E) Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. 
Concentrations of (A) IL-1β, (B) IL-6 and (C) TNFα (TNF) were measured in the plasma 2 days 
(d2), 5 days (d5) and 7 days (d7) following initial injection. Significance was determined using two-
way ANOVA. n = 3/group (Vehicle), n = 5/group (LPS). All concentrations were determined using 
ELISA. Data represent the mean plus or minus SEM. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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4.3.2 Comparing cytokine induction in the brain and PBL during 
endotoxin tolerance 

To establish how inflammatory cytokine induction is effected in the brain during 

endotoxin tolerance, SYBR Green QPCR was performed to compare the 

transcriptional induction of Il1b, Il6 and Tnfa in the brain and matched PBL of 

LPS injected mice compared to vehicle injected controls. Consistent with 

previous reports
432,433

, Il1b and Tnfa were independently upregulated in the 

brain following multiple LPS challenges (Figure 4.7). Although Il1b expression 

was reduced in the brain between days 2 and 5, Levels of Tnfa transcripts 

remained significantly elevated throughout the model. As anticipated, under 

these conditions, inflammatory cytokine transcripts were not induced in PBL 

(Figure 4.7). Therefore, the brain exhibits a specific cytokine induction in 

response to multiple LPS challenges. This suggests that the brain may not be 

subject to the same regulatory mechanisms that dampen cytokine production in 

the periphery during endotoxin tolerance. 
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Figure 4.7 Cytokine expression in the brain and in the PBL during endotoxin tolerance. 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. RNA was extracted 
from brains and peripheral blood leukocytes (PBL), 2, 5 and 7 days following initial injection. Gene 
expression analysis of (A) Il1b, (B) Il6 and (C) Tnfa was performed using QPCR and normalised to 
TBP. Data are expressed as fold change in gene expression in the brain (■) and PBL (□) of LPS-
injected mice relative to vehicle-injected controls. Data represent the mean +/- SEM. A statistical 
comparison was made, between the fold induction in the brains and PBL of LPS-injected mice and 
that of vehicle-injected controls, using two-way ANOVA: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n = 
4/group. 

 

4.3.3 Comparing target gene induction in the brain 

To determine how target ISG induction is affected during endotoxin tolerance, 

expression levels of a selection of ISGs in the brain and PBL of LPS-injected mice 

was compared to those of vehicle-injected mice using SYBR green QPCR. The 

temporal expression of the ISGs was arbitrarily compared to that of Il2rg, a 
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microarray target gene not regulated by IFNs. At day 2, all ISG were significantly 

upregulated in the brains of the LPS-challenged mice (Figure 4.8). At the same 

time point, most ISGs were similarly upregulated in PBL as in brain, with the 

exception of GBP4 which was downregulated. On day 5, ISGs remained induced 

in the brain. All but Cxcl10 were significantly upregulated at this time point. In 

contrast, the same genes were significantly downregulated by PBL. By day 7, ISG 

transcript levels began to return to baseline, with the exception of Irf7 which 

remained significantly induced in the brain. In contrast to the temporal 

expression of ISGs, Il2rg displayed a different pattern of expression. Il2rg was 

significantly upregulated in the brain at all time points. The expression levels of 

this gene did not deviate from baseline in the PBL. These data suggest that 

whilst ISG expression following repeated LPS challenge is dampened in the 

periphery, expression continues in the brain, gradually decreasing in potency 

between days 2 and 7. Subsequently, it would appear that the brain exhibits a 

specific and prolonged response to repeated LPS challenge. Encompassing ISG 

induction, this response is distinct from that of the periphery. Not only does this 

highlight a differential mechanism of gene regulation in the brain from the PBL, 

but it further verifies that ISG and Il2rg expression in the brain is unlikely to be a 

downstream consequence of elevated peripheral inflammatory cytokines. 
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Figure 4.8 Temporal gene expression in the brain and PBL of mice following repeated LPS 
injections 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. RNA was extracted 
from brains and peripheral blood leukocytes (PBL), 2, 5 and 7 days following initial injection. Gene 
expression analysis of (A) Cxcl10, (B) Gbp4, (C) Ifit1, (D) Il2rg, (E) Irf7 and (F) Oasl2 was 
performed using QPCR and normalised to TBP. Data are expressed as fold change in gene 
expression in the brain (■) and PBL (□) of LPS-injected mice relative to vehicle-injected controls.  
Data represent the mean +/- SEM. A statistical comparison was made, between the fold induction 
in the brains and PBL of LPS-injected mice and that of vehicle-injected controls, using two-way 
ANOVA: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n = 4/group. 
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4.3.4 Type I IFN induction in the brain 

As shown above, ISGs remained induced specifically in the brain and not in PBL 

following multiple LPS injections. To determine whether this could be a 

downstream effect of IFN production in the brain, TaqMan low density arrays 

(TLDA) were used to assess the transcriptional induction of a selection of type I 

IFNs in the brains of LPS-challenged mice compared to those of vehicle-injected 

controls. On day 2, only Ifnh1 was significantly upregulated (Figure 4.9). 

Transcript levels of the other type I IFN genes remained close to baseline at this 

time point. All IFN transcripts showed a trend towards an upregulation on day 5. 

However, Ifnk was the only gene to be significantly induced. By day 7, Ifnk 

remained induced in the brain, although this was no longer significant. All other 

IFN transcripts had returned to levels statistically comparable to baseline. These 

observations suggest that a mild induction of type I IFNs may occur in the brain 

following repeated LPS challenges. 
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Figure 4.9 Temporal expression of type I IFNs in the brains of mice following repeated LPS 
injections 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. RNA was extracted 
from brains, 2, 5 and 7 days following initial injection. Gene expression analysis of Ifna4, Ifnb1, 
Ifne, Ifnk and Ifnh1 was performed using TaqMan low density arrays and normalised to TBP. Data 
are expressed as fold change in gene expression relative to vehicle-injected control mouse brains. 
Data represent the mean +/- SEM. n = 4-5/group. 
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4.4 Target gene expression following TLR2-induced 
MyD88 activation 

Elevated ISG expression following systemic LPS injection did not appear to be a 

downstream by-product of peripheral inflammatory cytokine production as a 

similar model of sterile inflammation failed to induce the same response. 

Although this lack of response may have been a result of lower levels of 

inflammatory cytokines in the circulation, as demonstrated in Section 4.3, 

expression levels of a selection of target genes remained elevated in the brain 

following daily LPS injections, long after the cytokine response was dampened in 

the periphery. Consequently, it is likely that an alternative mechanism is 

responsible for inducing target gene expression in the brain. 

As described previously, LPS can activate two distinct signalling pathways; the 

MyD88-dependent pathway, or the TRIF-dependent pathway. TLR2 ligand, LTA, 

however, can only activate the MyD88-dependent pathway (Figure 4.1). As a 

result, to determine whether the induction of target genes in the brain occurs 

downstream of TRIF- or MyD88-dependent signalling pathway activation, mice 

were challenged systemically with LTA. 8 week old, male C57BL/6 mice were 

injected intravenously with 2 doses (500µg at 0 and 24 hours) or an equivalent 

volume of vehicle (sterile PBS). Mice were terminally anesthetised, and then 

perfused, 48 hours after initial injection.  

4.4.1 Determining how systemic LTA challenge affects target 
gene expression in the brain, PBL and BM 

To determine whether activation of the MyD88-dependent pathway in the 

periphery was sufficient to induce a similar transcriptional profile in the brain as 

induced by systemic LPS, SYBR Green QPCR was used to compare target gene 

expression in the brains, PBL and bone marrow of mice injected with LTA 

compared to vehicle-injected controls. 

QPCR analysis revealed no significant increase in brain expression of any of the 

genes shown to be upregulated in response to LPS (Figure 4.10, Figure 4.11 & 

Figure 4.12). C4 was the only gene to be significantly upregulated in the brains 

of mice injected with LTA. Again, although C4 was one of the target genes that 

were identified by microarray analysis to be upregulated in the brain in response 
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to LPS (Section 3.3.7), this upregulation could not be verified by QPCR. Thus, 

MyD88-dependent activation of NFκB in the periphery was not sufficient to 

induce the brain inflammation that occurred downstream of LPS-induced TLR4 

activation. 

Similar to both the LPS- and the TNFα-challenged mice, Saa3 was significantly 

induced in PBL. ISGs, Ifitm3 and Lgals3bp and immune response gene Fcgr4 were 

also upregulated by PBL in response to LTA. None of these genes were induced 

to the same extent as they were by PBL following systemic LPS challenge. A 

number of target genes; Cxcl10, Sp100, Lcn2, Saa3 and Pglyrp1 were 

significantly induced in the bone marrow of LTA-challenged mice. Of these 

genes, all but Sp100 were significantly induced in the bone marrow following 

systemic LPS challenge. Taken together, these data suggest that although 

systemic LTA- and LPS-challenge induces the expression of a number of common 

genes in the periphery, only LPS had the capacity to induce target gene 

expression in the brain. 
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Figure 4.10 Differential expression of ISGs in the brain, PBL and BM of LTA-challenged mice 
compared to vehicle control group. 
Mice were injected with 500 µg lipoteichoic acid (LTA) or an equivalent volume of vehicle at 0 and 
24 hours. RNA was then isolated from the brain, peripheral blood leukocytes (PBL) and bone 
marrow (BM), 48 hours after initial injection. Gene expression analysis of (A) Ctsc, (B) Cxcl10, (C) 
Gbp2, (D) Gbp3, (E) Gbp4, (F) Ifit1, (G) Ifitm3, (H) Igrm1, (I) Irf7, (J) Lgals3bp, (K) Oasl2, (L) Rtp4, 
(M) Sp100 and (N) Stat1 was performed using QPCR and normalised to TBP. Data are expressed 
as fold change in gene expression in the brain, PBL and BM of LTA-injected mice (■) relative to 
that of vehicle-injected controls (□).  Data represent the mean +/- SEM. Significance of each fold 
change was calculated for individual tissues using an unpaired t-test: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 
0.001. n = 4/group. 
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Figure 4.11 Differential expression of acute phase response genes in the brain, PBL and BM 
of LTA-challenged mice compared to vehicle control group. 
Mice were injected with 500 µg lipoteichoic acid (LTA) or an equivalent volume of vehicle at 0 and 
24 hours. RNA was then isolated from the brain, peripheral blood leukocytes (PBL) and bone 
marrow (BM), 48 hours after initial injection. Gene expression analysis of (A) Lcn2, (B) Saa3 and 
(C) Serpina3n was performed using QPCR and normalised to TBP. Data are expressed as fold 
change in gene expression in the brain, PBL and BM of LTA-injected mice (■) relative to that of 
vehicle-injected controls (□). Data represent the mean +/- SEM. Significance of each fold change 
was calculated for individual tissues using an unpaired t-test: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n 
= 4/group. 
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Figure 4.12 Differential expression of remaining target genes in the brain, PBL and BM of 
LTA-challenged mice compared to vehicle control group. 
Mice were injected with 500 µg lipoteichoic acid (LTA) or an equivalent volume of vehicle at 0 and 
24 hours. RNA was then isolated from the brain, peripheral blood leukocytes (PBL) and bone 
marrow (BM), 48 hours after initial injection. Gene expression analysis of (A) Apobec3, (B) C4, (C) 
Fcgr4, (D) Il2rg, (E) Ly6a and (F) Pglyrp was performed using QPCR and normalised to TBP. Data 
are expressed as fold change in gene expression in the brain, PBL and BM of LTA-injected mice 
(■) relative to that of vehicle-injected controls (□). Data represent the mean +/- SEM. Significance 
of each fold change was calculated for individual tissues using an unpaired t-test: *P ≤ 0.05, **P ≤ 
0.01, ***P ≤ 0.001. n = 4/group. 
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4.4.2 Detecting peripheral inflammation following LTA injection 

To assess the extent of peripheral inflammation following systemic LTA 

challenge, inflammatory cytokines were measured in the circulation and 

compared to that of a vehicle-injected control group. ELISAs were performed on 

plasma samples isolated from LTA- and vehicle-injected mice; 6 hours, 30 hours 

and 48 hours following initial injection. Unexpectedly, very little inflammation 

was detected in the circulation of mice following systemic LTA challenge. Similar 

to both the LPS and TNFα models, none of the cytokines assayed were 

detectable 48 hours after the initial LTA injection (Figure 4.13). 6 hours 

following initial LTA injection, IL-1β was significantly elevated in the circulation 

(Figure 4.13A), however, levels of TNFα and IL-6 were comparable to baseline 

(Figure 4.13B&C). 30 hours into the model (6 hours after the second injection), 

elevated IL-6 was detectable in the circulation of two of the four LTA-challenged 

mice but this was not significant when compared to the vehicle-treated group. 

These data demonstrate that LTA induces a significant elevation of circulating 

IL-1β which returned to baseline between 6 hours and 30 hours. However, at the 

time points tested, no significant elevation of IL-6 or TNFα could be detected in 

the circulation of mice that were systemically challenged with LTA compared to 

vehicle-injected controls. 
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Figure 4.13 Plasma concentration of inflammatory cytokines following systemic LTA 
injection 
Mice were injected with 500 µg lipoteichoic acid (LTA) or an equivalent volume of vehicle at 0 and 
24 hours. Plasma was isolated from the whole blood of mice; 6hours, 30 hours and 48 hours 
following initial injection. Concentrations of (A) IL-1β, (B) IL-6 and (C) TNFα (TNF) in the plasma 
were determined using ELISA. Data represent the mean plus or minus SEM. Significance was 
determined using two-way ANOVA. n = 4/group. 

 
 

 



190 

4.5 Discussion and conclusions 

Transcriptional profiling, utilized in Chapter 3, identified an induction of ISGs 

and other immune/inflammatory genes in the brains of mice that had been 

challenged with LPS compared to vehicle-injected controls. To better 

understand the mechanism behind this induction, the ability of different 

inflammatory models to modulate target gene expression in the brain was 

assessed using QPCR.  

One of the characterised mechanisms of immune signal transduction across the 

BBB involves activation of cerebral vascular endothelial cells by circulating 

cytokines, particularly IL-1β and TNFα (Section 1.4.2.2). In order to determine 

whether elevated levels of circulating TNFα were sufficient to induce target 

gene expression in the brain; mice were challenged intravenously with 

recombinant murine TNFα. TNFα is the first inflammatory cytokine to be 

detected in the circulation following systemic LPS challenge and it is thought to 

play a pivotal role in activating the peripheral cytokine cascade414,435,436. Not 

only has TNFα been implicated in the development of depression in patients with 

chronic inflammatory diseases276, but systemic TNFα challenge is known to have 

an impact on the brain of rodents, subsequently triggering a host of sickness 

behaviours266,286,436. Gene expression analysis, 48 hours after initial TNFα 

injection, revealed that, of the genes found to be significantly upregulated 48 

hours after LPS challenge, only one was altered in the brain in response to TNFα. 

These data suggest that target gene induction in the brains of mice injected with 

LPS may be TLR-specific and not a downstream consequence of sterile 

inflammation.  

Another explanation for the lack of target gene modulation in the brain 

following systemic TNFα-injection could be that it failed to induce as high a 

level of systemic inflammation as 100 µg of LPS. Although TNFα is known to 

induce an inflammatory cytokine cascade in the periphery and propagate signals 

across the BBB to induce sickness behaviours, no significant elevation of IL-1β 

was detected in the circulation. This may have been an issue with the dose of 

TNFα used or the time points that were assayed. However, intravenous TNFα 

challenge significantly enhanced levels of circulating TNFα and IL-6, yet target 

gene induction in the brain was negligible. Therefore, the central induction of 
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target genes following LPS challenge is likely to be more than a mere by-product 

of elevated TNFα or IL-6 in the circulation. Furthermore, injecting mice with the 

TLR2 ligand, LTA, induced increased levels of circulating IL-1β. As none of the 

genes that were induced in the brain in response to LPS were also upregulated in 

the brain following LTA challenge, central target gene induction does not appear 

to occur downstream of elevated IL-1β in the circulation. These observations 

suggest that circulating inflammatory cytokines do not appear to play a 

prominent role in inducing ISG transcription, or the expression of other target 

genes, in the brain. Therefore, the neuroinflammation that is induced in 

response to LPS is more likely to be a TLR-specific phenomenon and not a 

generic effect of inflammation. To investigate the role of inflammatory 

cytokines further, the central induction of target genes could be assessed over 

time following several different doses of systemic TNFα or following systemic IL-

1β administration. As cytokines often function in synergy, gene expression in the 

brain could also be measured following the systemic injection of both TNFα and 

IL-1β. Alternatively, target gene expression in the brain following systemic LPS 

injection could be assessed following the neutralisation of TNFα and/or IL-1β in 

the periphery using cytokine-specific monoclonal antibodies or soluble cytokine 

receptors.  

To complement the dataset derived from the systemic TNFα-induced model of 

inflammation, the induction of a selection of target genes, predominantly ISGs, 

was compared in brain and matched PBL samples, in the context of endotoxin 

tolerance. It has been well established that endotoxin tolerance leads to a state 

of hyporesponsiveness in the periphery, characterised by suppression of the 

inflammatory cytokine milieu429,430. This is certainly supported by the ELISA data 

which show an absence of any detectable inflammation in the circulation at day 

5 or day 7. Only IL-6 was elevated in the circulation at day 2. As mentioned 

previously, a number of routes exist to sensitise the brain to inflammation in the 

periphery. As these communication pathways between the immune system and 

the nervous system often involve the intermediary action of inflammatory 

cytokines, such as stimulation of the vagus nerve by IL-1β or endothelium 

activation by IL-1β and TNFα (Section 1.4.2), it seems likely that these routes 

would be impaired in conditions involving endotoxin tolerance. Despite the 

perceived absence of both TNFα and IL-1β, ISGs remain induced in the brain 
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after several peripheral LPS injections. In contrast, the same genes, still induced 

in the periphery by day 2, are downregulated by day 5, with the exception of 

Gbp4 which was downregulated in peripheral blood leukocytes at all time points 

assayed. As GBP expression has been shown to be directly affected by endotoxin 

tolerance437, it is possible that Gbp4 expression would have been silenced after a 

single injection. Analysing Gbp4 expression levels at day 1 after a single 

injection would be required to confirm this. In the periphery, the remaining 

genes, not directly targeted during endotoxin tolerance, must be negatively 

regulated between days 2 and 5 by another, as yet unknown mechanism.  

What is clear from these observations is that a distinct difference in the 

expression kinetics of these genes differentiates the brain from the PBL. As 

mentioned above, previous studies have suggested that the brain continues to 

secrete cytokines in response to repeated challenge with LPS, even though 

cytokine production is negatively regulated in the periphery432,433. In keeping 

with this, QPCR analysis demonstrated a brain-specific induction of Tnfa and Il1b 

following multiple LPS injections. Although Il1b levels were only significantly 

induced after 2 LPS injections, Tnfa remained significantly induced in the brain 

throughout the model. In contrast, the same genes were not induced in matched 

PBL. In addition to Il1b and Tnfa, the QPCR data demonstrated maintained 

induction of other immune response genes in the brain that were negatively 

regulated in the periphery. The mechanism inducing the central induction of 

these genes in the absence of peripheral cytokines remains to be clarified. 

However, it is possible that repeated LPS injection causes a breakdown of the 

BBB allowing LPS to gain access to the brain. Alternatively, phagocytic cells in 

the CVOs may not have the same regulatory mechanisms as their peripheral 

counterparts and may therefore continue to respond to repeated LPS challenge. 

Collectively, these data further imply that circulating inflammatory cytokines 

are not likely to be responsible for the induction of ISGs or Il2rg in the brain 

following LPS injection.  

LPS binds to TLR4 to activate two distinct signalling pathways. IFNβ production is 

a classic hallmark of TLR4-induced IRF3 activation, via the TRIF-dependent 

signalling pathway (Figure 4.1). As the panel of target genes, which were 

induced in the brain in response to systemic LPS administration, was highly 

enriched with type I ISGs (Section 3.3.7), it was hypothesised that a TRIF-
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induced IFNβ response was accountable for their induction in the brain. To 

investigate the involvement of TRIF activation in the neuroinflammation induced 

by systemic LPS injection, mice were challenged with LTA. LTA can only signal 

through the MyD88-dependent signalling pathway (Figure 4.1). Consistent with 

previous reports
318

, no response was detectable in the brains of mice following 

peripheral LTA injection. This lack of response may be due to the inability of 

TLR2 ligands to stimulate TRIF-dependent signalling and subsequent type I IFN 

production. Conversely, peripheral stimulation with TLR3 ligands is known to 

trigger brain inflammation
239,438

. Similar to the MyD88-independent pathway 

downstream of TLR4, TLR3 signals through the adaptor molecule TRIF to activate 

IRF3, ultimately triggering IFNβ production
431

. Subsequently, it would appear 

that IRF activation, whether it occurs in the periphery or the brain, may be a 

requirement of target gene induction in the brain following systemic 

administration of TLR ligands. 

In further support of this hypothesis, a similar study showed that all target genes 

were induced in the brain following topical, cutaneous administration of TLR7/8 

agonist, Imiquimod (Alison McColl, unpublished data). In this study, Imiquimod 

was used to create a psoriasis-like skin pathology. This peripheral inflammatory 

model induced tissue-specific, but not systemic, inflammation and target genes 

were induced specifically in the brain in the absence of detectable inflammatory 

cytokines in the circulation. TLR7- and TLR8-ligation both activate IRF7 which 

then results in the production of IFNα. These findings support the notion that 

TLR-induced type I IFN production, rather than elevated circulating cytokines, is 

responsible for target gene modulation in the brain. 

To conclusively verify the role of TRIF-dependent signalling in inducing the 

expression of ISGs and other target genes in the brain following systemic LPS 

injection, the acute and chronic models of LPS-induced systemic inflammation 

could be repeated using TRIF- or IRF3-deficient mice. Both TRIF and IRF3 are 

required for TLR4-induced IFNβ expression
439,440

. Therefore, an absence of target 

gene expression in the brains of these mice following LPS injection would 

highlight the importance of MyD88-independent signalling in their induction.  

Although these data imply that a TLR-induced type I IFN response is accountable 

for target gene induction in the brain following systemic LPS challenge, it is still 
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unclear whether type I IFNs are produced in the brain or whether peripherally 

produced IFNs act on the brain in an endocrine manner to trigger ISG induction. 

The TLDA data indicated that transcripts encoding type I IFNs are mildly 

upregulated following multiple LPS challenges. These data are by no means 

conclusive and require further investigation. To establish whether any of the 

observed inductions of type I IFN genes were significant, the TLDA data would 

first have to be validated by QPCR. Even if the data were validated, it is not 

clear whether such a slight induction of IFN transcripts would translate to 

increased protein production. Measuring IFN proteins in brain tissue is 

technically challenging as IFNs are usually produced in low quantities. 

Therefore, rather than quantifying IFN levels in the brain, a useful experiment 

would be to establish whether endotoxin tolerance leads to a dampening of type 

I IFNs in the periphery. One of the genes that are transiently silenced during 

endotoxin tolerance is Ifng430, however, to my knowledge, it is yet to be 

determined how type I IFNs respond to repeated LPS challenges. If it were 

indeed the case that both type I and type II IFNs were silenced in the periphery 

during this model of endotoxin tolerance, by default this would imply that 

centrally produced IFNs are more likely to be responsible for ISG induction in the 

brain than those produced in the periphery. The QPCR data indicate that 

peripheral type I IFN production may well be dampened during endotoxin 

tolerance as, following several LPS injections, ISG expression is silenced in PBL 

but not in the brain. This suggests that type I IFNs may be produced in the brain 

rather than the periphery during endotoxin tolerance. QPCR analysis of IFN 

transcript levels in the brain and PBL at different time points, complemented by 

ELISA assays to quantify protein levels in the brain and blood, would be required 

in order to confirm this. 

In summary, systemic LPS administration induced the transcription of a panel of 

immune/inflammatory genes in the brain. This transcriptional profile was not 

induced by the systemic administration of TNFα, nor did it appear to depend on 

elevated levels of inflammatory cytokines in the circulation. Consequently, the 

observed induction of target genes in the brain may be dependent on TLR-

ligation. In contrast, the same target genes were not induced in the brain 

following systemic administration of the TLR2 ligand, LTA. TLR2 has a signalling 

profile that is distinct from that of TLR4 in that it does not activate IRF3 
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resulting in type I IFN induction. This highlights a potential mechanism of target 

gene induction in the brain which may be dependent on a TLR-induced type I IFN 

response. 
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5 Characterising the chemokine repertoire and 
leukocyte infiltrate present in the brains of LPS-
challenged mice 
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5.1 Introduction and aims 

In Chapter 3 it was established that Cxcl10 expression was significantly 

upregulated in the brain following an acute systemic LPS challenge, as was the 

expression of a number of genes involved in leukocyte extravasation. Cxcl10 can 

coordinate the migration of several leukocyte populations, predominantly NK 

cells, Th1 cells, CD8+ cytotoxic T cells and memory T cells99-101,441. It was 

therefore hypothesised that systemic LPS exposure may result in the infiltration 

of these leukocytes to the brain. Current literature suggests that systemic LPS 

injection can result in the recruitment of neutrophils to the cerebral 

vasculature236,237. Although no other chemokine transcripts, including any 

encoding neutrophil chemoattractants, were significantly induced in the brain 

following systemic LPS challenge, transcription was only assessed 48 hours after 

injection. These data provide a mere snapshot of events occurring in the brain 

following an I.P. injection of LPS. Therefore, it remains to be determined how 

systemic LPS exposure modulates the chemokine profile in the brain over time 

and whether the putative chemokine induction results in leukocyte accumulation 

within the brain. 

The primary aim of this chapter was to establish whether systemic exposure to 

LPS culminated in the specific recruitment of inflammatory leukocytes to the 

brain. As there was no way to hypothesise how long leukocytes may take to 

accumulate within the brain, if indeed they do so at all, it was decided that 

leukocyte infiltration would be better investigated over a seven day window 

following daily systemic LPS injections. Although this model leads to LPS 

tolerance in the periphery, it has the advantage that it may better reflect 

physiological conditions, such as bacterial infection or septicaemia, than a single 

dose of LPS. Furthermore, as proof of principle, it was shown in Chapter 4 that 

Cxcl10 remained induced in the brain following daily systemic LPS injections. 

It has been demonstrated in a variety of settings that different leukocyte 

populations infiltrate the brain at different time points. For example, following 

MHV or Semliki Forest virus infection, T cell accumulation in the brain is 

followed by the infiltration of monocytes190,442. This appears to be dependent on 

the temporal induction of chemokines within the brain. Therefore, with the aim 

of assessing which leukocyte populations (if any) were likely to infiltrate the 
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brain following daily systemic LPS injections, TLDA plates were used to 

systematically assess the chemokine repertoire in the brain at different time 

points throughout the LPS model. The induction of chemokine transcripts was 

compared in LPS- and vehicle-injected mice. The accumulation of target 

populations of leukocytes within the brains of LPS-challenged mice was then 

assessed using a combination of immunohistochemistry and flow cytometry. 

5.2 Regulation of chemokine and chemokine receptor 
transcripts following daily systemic LPS injections 

Prior to establishing whether leukocytes infiltrated the brains of mice following 

a series of systemic LPS challenges, gene expression assays were used to assess 

the repertoire of inflammatory chemokine transcripts that were induced in the 

brains of the LPS-treated mice. 8 week old C57BL6 mice were exposed to daily 

injections of LPS (50 µg I.P.) as described in Section 4.3. Mice were culled, and 

perfused, 2 days, 5 days and 7 days after initial LPS challenge.   

5.2.1 Chemokine transcripts are induced in the brain following 
multiple systemic LPS challenges 

To establish how chronic LPS exposure in the periphery regulated chemokine 

transcripts in the brain, TLDA plates were used to systematically screen for the 

transcriptional induction of a panel of 17 inflammatory, or brain-related, 

chemokines in the brains of LPS-injected mice compared to the vehicle-injected 

control group. On day 2, 48 hours after initial LPS injection, CC chemokine 

transcripts Ccl2, Ccl5, Ccl7, Ccl8 and Ccl11 were significantly upregulated, as 

were CXC chemokine transcripts, Cxcl1, Cxcl2, Cxcl3, Cxcl5, Cxcl9, Cxcl10 and 

Cxcl16 (Figure 5.1). Of these, Ccl2, Ccl5, Cxcl1, Cxcl2, Cxcl9 and Cxcl10 were all 

upregulated by at least 10-fold. By day 5, the majority of chemokine transcripts 

did not significantly deviate from baseline, with the exception of Ccl8, Ccl11 and 

Cxcl16. Both Ccl11 and Cxcl16 remained significantly elevated in the brain 

throughout the model. Cx3cl1 was also significantly upregulated by day 7. 

Therefore, several genes encoding inflammatory chemokines are significantly 

induced in the brain following multiple systemic LPS challenges. 
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Figure 5.1 Temporal expression of inflammatory chemokines in the brains of mice following 
repeated LPS injections 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. RNA was extracted 
from brains, 2, 5 and 7 days following initial injection. Gene expression analysis of (A) CC 
chemokines and (B) CXC and CX3C chemokines was performed using TaqMan low density arrays 
and normalised to TBP. Data are expressed as fold change in gene expression relative to vehicle-
injected control mouse brains. Data represent the mean +/- SEM. A statistical comparison was 
made, between the fold induction in the brains of LPS-injected mice and that of vehicle-injected 
controls, using two-way ANOVA: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n = 4-5/group. 
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To validate the TLDA data, the induction of the majority of the chemokine 

transcripts that were identified as being upregulated 10-fold or more on day 2 

was additionally assessed using SYBR Green QPCR. Consistent with the TLDA 

data, Ccl5 was significantly upregulated in the brains of LPS-challenged mice on 

day 2 (Figure 5.2A). However, the QPCR data also demonstrated that Ccl5 

remained significantly upregulated until at least day 5. Of all the chemokine 

transcripts assayed, Ccl5 showed the greatest induction in the brains of the LPS-

challenged mice. As a result, attempts were made to confirm this upregulation 

at a protein level using histology. Unfortunately, due to technical difficulties, 

this aim was not achieved (data not shown).  

CCL3 and CCL5 share similar receptors and are often produced concomitantly, 

therefore, the transcriptional regulation of Ccl3 in the brain was also 

determined by QPCR. Although Ccl3 expression was statistically comparable to 

baseline at days 2 and 7, the QPCR data demonstrated that, on day 5, Ccl3 was 

significantly upregulated by approximately 23-fold (Figure 5.2A). 

The induction of genes encoding neutrophil chemoattractants CXCL1 and CXCL2 

was also confirmed for day 2 using QPCR (Figure 5.3A). In addition, Cxcl2 was 

shown to be significantly upregulated in the brain until at least day 5. Although 

the TLDA data demonstrated a significant, approximately 57-fold, induction of 

the gene encoding IFN-inducible CXCL9, this appeared to be below the detection 

limit of the QPCR assay and thus could not be validated (data not shown). The 

significant induction of Cxcl10 at day 2 of the LPS model was previously 

confirmed by QPCR in Figure 4.8A. Attempts were also made to establish 

whether CXCL10 protein was upregulated in the brains of LPS-challenged mice. 

Unfortunately, due to antibody cross-reactivity, this did not prove possible (data 

not shown).  
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Figure 5.2 Temporal expression of CC chemokine and chemokine receptor in the brain and 
PBL of mice following repeated LPS injections 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. RNA was extracted 
from brains and peripheral blood leukocytes (PBL), 2, 5 and 7 days following initial injection. Gene 
expression analysis of (A) CC chemokines, (i) Ccl3 and (ii) CCL5 and (B) CC chemokine receptors, 
(i) Ccr1, (ii) Ccr5 and (iii) Ccr3 was performed using QPCR and normalised to TBP. Data are 
expressed as fold change in gene expression in the brain (■) and PBL (□) of LPS-injected mice 
relative to vehicle-injected controls. Data represent the mean +/- SEM. A statistical comparison 
was made, between the fold induction in the brains and PBL of LPS-injected mice and that of 
vehicle-injected controls, using two-way ANOVA: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n = 4/group. 
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Figure 5.3 Temporal expression of CXC chemokine and chemokine receptor in the brain and 
PBL of mice following repeated LPS injections 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. RNA was extracted 
from brains and peripheral blood leukocytes (PBL), 2, 5 and 7 days following initial injection. Gene 
expression analysis of (A) CXC chemokines, (i) Cxcl1 and (ii) Cxcl2 and CXC chemokine 
receptors, (B) Cxcr2 and (C) Cxcr3 was performed using QPCR and normalised to TBP. Data are 
expressed as fold change in gene expression in the brain (■) and PBL (□) of LPS-injected mice 
relative to vehicle-injected controls. Data represent the mean +/- SEM. A statistical comparison 
was made, between the fold induction in the brains and PBL of LPS-injected mice and that of 
vehicle-injected controls, using two-way ANOVA: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n = 4/group. 

 

5.2.2 Chemokines are differentially regulated in the brain and PBL 

Despite the fact that all chemokine transcripts assayed using QPCR were 

upregulated in the brain on at least one of the three time points, none were 

differentially regulated in the PBL of LPS-treated mice (Figure 5.2A & Figure 

5.3A). Thus, chronic exposure to LPS in the periphery triggers a brain-specific 

induction of genes encoding inflammatory chemokines. 
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5.2.3 Chemokine receptor transcripts are differentially induced in 
the brain and PBL 

Having established that chemokine transcripts were induced specifically in the 

brain, QPCR was then performed to determine what impact this series of 

systemic LPS challenges had on the transcriptional modulation of genes encoding 

their cognate chemokine receptors. The relative induction of chemokine 

receptor transcripts was compared in the brain and PBL. In LPS-treated mice at 

day 2, the gene encoding CCR1, one of the two shared receptors for CCL3 and 

CCL5, was significantly upregulated in the brain and PBL by a similar fold change 

(Figure 5.2B). At days 5 and 7, whilst there was a trend towards an upregulation 

in the brain, Ccr1 expression was comparable to baseline in the PBL of LPS-

challenged mice. CCR5, the other shared receptor for CCL3 and CCL5, showed a 

different pattern of transcriptional regulation (Figure 5.2B). Ccr5 was 

significantly upregulated by the PBL of LPS challenged mice on day 2. At days 5 

and 7, whilst there was a trend towards an upregulation in the PBL of the LPS-

treated group, Ccr5 expression did not significantly differ from that of vehicle-

treated controls in either the brain or the PBL. In addition to CCR1 and CCR5, 

CCL5 can bind to CCR3. Unlike Ccr1 and Ccr5, transcript levels of CCR3 were not 

significantly regulated in either the brain or PBL following multiple systemic LPS 

injections (Figure 5.2B). 

Neither of the CXC chemokine receptor transcripts assayed, Cxcr2 or Cxcr3 were 

differentially modulated by the PBL of LPS challenged mice (Figure 5.3B&C). In 

contrast, both genes were significantly upregulated in the brains of the LPS 

treatment group at day 2. In addition, both genes showed a trend towards an 

upregulation in the brain on day 5. By day 7, Cxcr3 was again significantly 

upregulated in the brains of the LPS challenged group.  

These different methods of gene expression analysis collectively demonstrate 

that a panel of inflammatory chemokine transcripts are elevated in the brain 

following several systemic LPS injections. Not only was the induction of these 

chemokine transcripts brain-specific, but it was coupled with an increase in 

mRNA encoding a number of their cognate receptors.  
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5.3 Leukocytes infiltrate the brain in response to chronic 
systemic LPS exposure 

The induction of chemokine receptor transcripts within the brain may be due to 

brain-resident cell populations upregulating their chemokine receptor expression 

in response to peripheral or central TLR ligation. However, as the most 

characterised function of inflammatory chemokines is to recruit leukocytes to 

sites of inflammation, an alternative possibility is that an accumulation of 

leukocytes within the brain is responsible for the elevation in transcript levels. 

To explore this possibility further, mice were again challenged with a single dose 

of LPS (50 µg I.P.) or vehicle daily for 2, 5 or 7 consecutive days. Mice were 

culled and perfused 24 hours after their final injection. Brains were then 

harvested from the mice and analysed by flow cytometry. To control for the 

possibility of blood contamination, whole blood was also harvested from the 

mice and analysed by flow cytometry.   

Prior to surface staining analysis, cells were first gated based on their forward 

scatter (FSC) and side scatter (SSC) (P1 gate). This was followed by the exclusion 

of Draq7+ dead cells (P2 gate). Doublets were then excluded so that only single 

cells (P3 gate) were considered for analysis (Figure 5.4). 
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Figure 5.4 Gating on live, single cells in the brain and PBL 
Representative dot plots showing the gating strategy used to define single live cells amongst total 
events recorded from (A) the brain and (B) whole blood. Cell populations were gated from total 
events based on their FSC and SSC (P1 gate). Dead cells and doublets were excluded (P2 and P3 
gates respectively).  

 

5.3.1 CD45hi cells are increased in the brain following multiple 
systemic LPS challenges 

To determine whether leukocytes infiltrated the brain following chronic systemic 

LPS exposure, the proportions of CD45-expressing cells in the treatment and the 

control groups was first compared using flow cytometry. As microglia 

characteristically express intermediate levels of CD45 on their surface (CD45int), 

it was first necessary to distinguish between CD45int microglia (P4 gate) and 

CD45hi leukocytes (P5 gate) (Figure 5.5A). Having delineated these two 

populations of cells, the proportions of live, single CD45hi leukocytes present in 

LPS-treated mouse brains was compared to that of the vehicle-treated control 

group. At day 2, after 2 doses of LPS, there was a highly significant increase in 

the proportion of CD45hi cells in the brain (6.3-fold) (Figure 5.5B&C). Although 

on day 7 the proportion of CD45hi cells was increased by approximately 2.7-fold, 

this was not statistically significant.  
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Using RNA from an independent experiment, QPCR was performed to determine 

whether there was a similar increase in CD45 transcript levels in the brains of 

LPS-challenged mice. At all time points assayed, there was a significant increase 

in Cd45 mRNA (Figure 5.5D). The fold increase in Cd45 expression in the brain 

was similar to the increase in proportions of CD45
hi
 leukocytes. Collectively, 

these observations suggest that CD45
hi
 cells may accumulate in the brain 

following 2 doses of systemic LPS. 
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Figure 5.5 Proportions of CD45hi cells in the brains of LPS and vehicle-challenged mice 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. Single cell suspensions 
were generated from whole brain tissue at days 2, 5 and 7 following initial LPS- or vehicle-injection. 
(A) Representative dots plots of single live cells (P3 gate, Figure 5.4) from each group. Cells were 
gated based on CD45-expression. P4 gate (■) represents CD45int cells and will therefore contain 
microglial cells. P5 gate (■) represents CD45hi leukocytes. (B) Histograms showing CD45-
expression in LPS-injected (■) and vehicle-injected (shaded) groups over time. (C) Percentages of 
CD45hi leukocytes (P5 gate) in the brain at each time point following injection. (D) Gene expression 
analysis of Cd45 was performed using QPCR and normalised to TBP. mRNA was extracted from 
mouse brains from an independent experiment. Data are expressed as fold change in gene 
expression in the brain of LPS-injected micerelative to that of vehicle-injected controls. Data 
represent the mean +/- SEM. Significance of was calculated for using a two way ANOVA: *P ≤ 
0.05, **P ≤ 0.01, ***P ≤ 0.001. n = 3-4/group. 
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5.3.2 Proportions of microglial cells varied following two doses of 
LPS 

Unexpectedly, at day 2 of the LPS model, there appeared to be a reduction in 

the percentage of live microglial cells following systemic LPS treatment (Figure 

5.5 & Figure 5.6). However, not only were the percentages of microglial cells at 

days 5 and 7 statistically comparable in LPS- and vehicle-injected mice, but they 

were similar to the percentage of microglia observed in LPS-injected mouse 

brains on day 2 (Figure 5.6B). Microglia appeared as one uniform population 

based on their CD11b- and F4/80-expression (Figure 5.6A) and were therefore 

readily identifiable from other cell populations in the brain. The variation in 

their percentages at this early time point could not be explained by an increase 

or decrease in CD45-expression as cells of a similar phenotype could not be 

detected in the CD45hi fraction or the CD45- fraction (data not shown). This 

suggests that there was an increase in the numbers of viable microglial cells 

isolated from the brains of vehicle-injected control mice at day 2. 
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Figure 5.6 Variations in microglial cell numbers 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. Single cell suspensions 
were generated from whole brain tissue at days 2, 5 and 7 following initial LPS- or vehicle-injection. 
(A) Representative dots plots of single live CD45int cells (P4 gate, Figure 5.5) from each group. 
Microglial cells were gated from other CD45int cells based on CD11b- and F4/80-expression. (B) 
Percentages of microglial cells in the brain at each time point following injection. Data represent the 
mean +/- SEM. Significance of was calculated for using a two-way ANOVA: *P ≤ 0.05, **P ≤ 0.01, 
***P ≤ 0.001. n = 3/group. 
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5.3.3 CD11b+ leukocytes infiltrate the brain following multiple 
systemic LPS challenges 

As described above, the proportion of infiltrating CD45hi leukocytes was 

increased in the brains of LPS challenged mice at day 2 of the time course. With 

the aim of identifying which cell populations infiltrated the brain, flow 

cytometry was used to characterise the leukocyte populations present in the 

CD45hi fraction. In the vehicle-treated mouse brains, there was a small 

population of CD45hi leukocytes (Figure 5.5). Further characterisation of these 

cells revealed them to be CD11bhi, F4/80+ cells (Figure 5.7A). As they expressed 

only marginally more of each surface antigen than microglia, these are likely to 

represent brain-resident macrophages, such as PVM. Interestingly, this 

population appeared to be reduced in the brain at day 2 of the LPS time course 

(Figure 5.7A) but had reappeared by day 5 (data not shown). On day 2, 

infiltrating leukocytes in the brains of LPS-challenged mice could be divided into 

two populations based on their level of CD45-expression (P6 and P7 gates, Figure 

5.7A). Not only did these two populations differ in their level of CD11b-

expression, but they also differed from each other, and from CD45int microglial 

cells, in terms of their size and granularity. Both populations of cells were 

CD11b+, F4/80-. However, based on their size, granularity and level of CD11b, 

leukocytes within the P6 gate have been classed as CD11bhi granulocyte-like cells 

whereas those within the P7 gate have been classed as CD11b+ monocyte-like 

cells.  

At day 2 of the LPS model, the proportion of CD11bhi granulocyte-like cells in the 

brains of LPS-challenged mice was significantly increased compared to the 

vehicle-treated control group (Figure 5.7B&D). Although this cell population 

could also be detected in the brains of the LPS-injected group on day 5, there 

was no significant difference at this time point. The percentage of CD11b+ 

monocyte-like cells was also elevated in the brains of LPS challenged mice at 

day 2 (Figure 5.7C&E). Unfortunately, this population was difficult to distinguish 

from other cell populations at day 5 and day 7 and thus could not be quantified 

(data not shown). Taken together, these data suggest that, on day 2, CD11bhi 

granulocyte-like cells and CD11b+ monocyte-like cells may accumulate in the 

brains of LPS challenged mice. 
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Figure 5.7 Characterisation and quantification of CD11b+ leukocyte populations in the 
brains of LPS-challenged mice 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. Single cell suspensions 
were generated from whole brain tissue at days 2, 5 and 7 following initial LPS- or vehicle-injection. 
(A) Representative dot plots from day 2 of the time course. Cells were gated based on level of 
CD45-expression. P4 gate (■) represents CD45int cells. P5 gate (■) represents all CD45hi 
leukocytes. In LPS-injected mice (bottom) there were two distinct populations of CD45hi leukocytes: 
gates P6 (■) and P7 (■). The different populations of CD45-expressing cells from each group were 
overlaid to compare their CD11b- and F4/80-expression and their FSC and SSC. (B & C) 
Representative dots plots of CD45hi leukocytes, P5 gate (■), from (B) each group and (C) day 2 of 
the model. Cells were gated based on CD11b-and F4/80-expression. (D) Percentages of CD11b+ 
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granulocyte-like cells in the brain at each time point following injection. (E) Percentages of CD11b+ 
monocyte-like cells in the brain at day 2 of the model.  Data represent the mean +/- SEM. 
Significance of was calculated for using a two-way ANOVA: *P ≤ 0.05, ***P ≤ 0.001. n = 3/group. 

To establish whether the increased proportions of CD11b+ cell populations in the 

brain were reflected by a similar increase in the peripheral blood, the 

percentage of CD11b+ cells present in matched blood samples was also assessed 

by flow cytometry. The percentage of CD11b+ cells was significantly increased in 

the blood at all time points analysed (Figure 5.8A&B). This did not follow the 

pattern observed in the brain. Although in steady state conditions CD11b+ cells 

could be separated into two different cell populations based on their FSC and 

SSC, using the same parameters these two cell populations were 

indistinguishable from one another following LPS-treatment (Figure 5.8A). 

Furthermore, following LPS-treatment, CD11b+ cells could be separated into two 

different cell populations based on their level of CD45-expression. However, in 

steady-state conditions CD11b-expressing cell populations expressed similar 

levels of CD45. As a result, the specific proportions of granulocyte-like cells and 

monocyte-like cells present in the peripheral blood could not be established 

from this experiment. 
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Figure 5.8 Characterisation and quantification of CD11b+ leukocyte populations in the 
peripheral blood of LPS-challenged mice 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. Single cell suspensions 
were generated from whole brain tissue at days 2, 5 and 7 following initial LPS- or vehicle-injection. 
(A) Representative dot plots from day 2 of the time course. Single live cells were gated based on 
level of CD11b-expression (left). CD11b+ leukocytes were then gated based on their FSC and 
SSC. Different populations of CD11b-expressing cells from each group were overlaid to compare 
their CD45-expression. (B) Percentages of CD11b+ leukocytes in the peripheral blood at each time 
point following injection.  Data represent the mean +/- SEM. Significance of was calculated for 
using a two-way ANOVA: ***P ≤ 0.001. n = 3/group. 
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5.3.4 CD3+ cell populations infiltrate the brain following multiple 
systemic LPS challenges 

As Ccl5 and Cxcl10 were significantly upregulated in the brain, it is possible that 

T cells are recruited to the brain following multiple LPS challenges. This is 

supported by the observation that the chemokine receptor transcripts, Ccr1 and 

Cxcr3, were also upregulated in the brain. To test this hypothesis, flow 

cytometry was used to compare the proportions of CD3+ cell populations in the 

brains of LPS- and vehicle-challenged mice. CD11b+ cells were first excluded 

from CD45hi leukocytes (Figure 5.9A). Within the CD11b-/int faction were two 

distinct populations of CD3+ leukocytes, CD8+ T cells and CD8- T cells. 

Quantification of these two populations revealed no differences in the 

percentage of either population in the brains of LPS-treated mice compared to 

vehicle-treated controls on day 2 or on day 5. However, by day 7, the 

proportions of both CD8+ and CD8- T cell populations were significantly enriched 

in the brains of the LPS-treated animals (Figure 5.9B-D). 
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Figure 5.9 Characterisation and quantification of CD3+ leukocyte populations in the brains 
of LPS-challenged mice 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. Single cell suspensions 
were generated from whole brain tissue at days 2, 5 and 7 following initial LPS- or vehicle-injection. 
(A) Gating strategy. CD45hi leukocytes were gated as described previously. CD11b+ cells were 
then excluded by gating on CD11b-/int cells. (B) Representative contour plots of CD11b-/int cells from 
each group. (C&D) Percentages of (C) CD3+ CD8+ leukocytes and (D) CD3+ CD8- leukocytes in the 
brain at each time point following injection. Data represent the mean +/- SEM. Significance of was 
calculated for using a two way ANOVA: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n = 3/group. 
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The percentages of CD3
+
 T cell populations were also assessed in matched blood 

samples. CD11b
+
 cells were excluded from CD45

+
 leukocytes. Again there were 

two distinct populations of CD3
+
 T cells within the CD11b

-/int
 faction. At all time 

points analysed, there was a highly significant reduction in the percentages of 

both CD8
+
 and CD8

-
 T cells present in the blood of LPS-treated mice (Figure 

5.10). 

Taken together, these data suggest that chronic exposure to LPS in the periphery 

triggers a substantial increase in the percentage of CD11b
+
 leukocytes in the 

peripheral blood and a concurrent decrease in the percentage of CD3
+
 T cells. At 

day 2, following 2 systemic LPS injections, this was coupled with an increase in 

the percentage of both CD11b
hi
 granulocyte-like cells and CD11b

+
 monocyte-like 

cells in the brain. Unlike the sustained increase in CD11b
+
 leukocytes that was 

observed in the blood, the elevated proportion of CD11b
hi
 granulocyte-like cells 

in the brain was transient, returning to baseline by day 5. The apparent 

infiltration of CD11b
+
 leukocytes to the brain was followed by an accumulation 

of both CD8
+
 and CD8

-
 T cells. 
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Figure 5.10 Characterisation and quantification of CD3+ leukocyte populations in the 
peripheral blood of LPS-challenged mice 
Mice were injected daily with 50µg LPS or an equivalent volume of vehicle. Leukocytes were 
isolated from whole blood at days 2, 5 and 7 following initial LPS- or vehicle-injection. (A) Gating 
strategy. CD45hi leukocytes were gated as described previously. CD11b+ cells were then excluded 
by gating on CD11b-/int cells. (B) Representative contour plots of CD11b-/int cells from each group. 
(C&D) Percentages of (C) CD3+ CD8+ leukocytes and (D) CD3+ CD8- leukocytes in the blood at 
each time point following injection. Data represent the mean +/- SEM. Significance of was 
calculated using a two way ANOVA: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n = 3/group. 
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5.4 Identification of infiltrating leukocyte populations in 
the brain using histology 

Although the flow cytometry dataset suggests that CD11b+ and CD3+ leukocyte 

populations may accumulate in the brain when mice are repeatedly challenged 

with LPS in the periphery, it does not indicate where in the brain these 

leukocytes are located. Furthermore, the experiment is limited as the absolute 

numbers of cells in the brain, and the blood, were not quantified due to 

technical constraints. Also, it is possible that the data may be skewed by 

peripheral blood contamination or by the marginalisation of leukocytes to the 

inflamed vasculature. To explore this further, mice were injected with a single 

dose of LPS daily for 2, 5 or 7 consecutive days. Brains were removed from the 

mice 24 hours after their final injection. With the aim of expanding on the data 

derived using flow cytometry, brain tissue was sectioned and stained for markers 

associated with relevant cell populations by immunohistochemistry. Stained 

tissue from the brains of LPS-challenged mice was compared to that of an 

untreated control group (day 0). 

5.4.1 Neutrophil accumulation in the brain 

Based on their size, granularity and high surface expression of CD11b, the 

CD11bhi granulocyte-like cells that were detected in the brains of LPS-treated 

mice at day 2 of the time course are likely to neutrophils. To confirm this 

hypothesis, brain tissue from LPS-challenged mice was stained for the presence 

of the neutrophil granular enzyme myeloperoxidase (MPO). In all LPS challenged 

mice, neutrophils were distributed throughout the brain parenchyma and were 

detectable in the meninges (Figure 5.11A&B). However, the dissemination of 

these cells throughout the brain was sparse by days 5 and 7. On days 2 and 5, 

neutrophils could occasionally be associated with blood vessels (Figure 5.11C). 

This was no longer observed by day 7.  

The absolute cell counts present in whole sections from equivalent brain regions 

were used to quantify the infiltrating neutrophils. Consistent with the flow 

cytometry data, on day 2 there was a significant increase in neutrophil numbers 

within the brains of LPS-challenged mice (Figure 5.12). This was predominantly 

due to the increased numbers of neutrophils infiltrating the parenchyma. 
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Although neutrophils were detected in the brain at the other time points 

following LPS treatment, their increase in numbers was not significant.  
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Figure 5.11 Accumulation of neutrophils in the brain over time 
Mice were injected daily with 50µg LPS. Brain tissue was taken from mice at day 0 (naïve), 2, 5 or 
7 following injection. Tissue was formalin-fixed, embedded in paraffin and cut into 5µm sections 
before being analysed by immunohistochemistry. (A-C) Examples of anti-myeloperoxidase staining 
within (A) the meninges, (B) the parenchyma and (C) blood vessels at each time point. n=3/group. 
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Figure 5.12 Relative neutrophil numbers in the brains of LPS-treated mice compared to 
naïve control mice 
Mice were injected daily with 50µg LPS. Brain tissue, taken from mice at day 0, 2, 5 or 7 following 
injection, was formalin-fixed, embedded in paraffin and cut into 5µm sections before being 
analysed by immunohistochemistry. MPO+ cells (Figure 5.11) in the meninges, the parenchyma 
and adhered to blood vessels were quantified. Cells were quantified by counting every MPO+ 
neutrophil in 3 coronal sections from equivalent brain regions of each sample. Cell counts 
represent the mean number of cells per section in each sample. Data are displayed as the mean 
cell count +/- SEM. Significance of was calculated using a two way ANOVA: **P ≤ 0.01, ***P ≤ 
0.001. n = 3/group. 
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5.4.2 CD3+ leukocyte accumulation in the brain 

To confirm that T cells did indeed accumulate in the brain and to establish 

where these cells were localised, brain sections from LPS-treated and control 

mice were stained for T cell surface antigen, CD3. In all LPS-challenged and 

naïve mice, CD3+ cells could be detected in the meninges and in the parenchyma 

(Figure 5.13A&B and Figure 5.14). However, these cells were infrequent in naïve 

mice and in LPS-challenged mice at day 2. By days 5 and 7, there was a 

significant increase in the number of CD3+ cells in the parenchyma of LPS-

challenged mice (Figure 5.13B and Figure 5.14). These cells were distributed 

throughout the parenchyma and were not specifically associated with distinct 

brain regions (data not shown). Despite their accumulation in the parenchyma, 

the numbers of CD3+ cells associated with either the blood vessels or the 

meninges remained statistically comparable to naïve mice throughout the model 

(Figure 5.13 and Figure 5.14).  
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Figure 5.13 Accumulation of T cells in the brain over time 
Mice were injected daily with 50µg LPS. Brain tissue, taken from mice at day 0, 2, 5 or 7 following 
injection, was formalin-fixed, embedded in paraffin and cut into 5µm sections before being 
analysed by immunohistochemistry. (A-C) Examples of anti-CD3 staining within (A) the meninges, 
(B) the parenchyma and (C) blood vessels at each time point. n=3/group. 
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Figure 5.14 Relative T cell numbers in the brains of LPS-treated mice compared to naïve 
control mice 
Mice were injected daily with 50µg LPS. Brain tissue, taken from mice at day 0, 2, 5 or 7 following 
injection, was formalin-fixed, embedded in paraffin and cut into 5µm sections before being 
analysed by immunohistochemistry. CD3+ cells (Figure 5.13) in the meninges, the parenchyma and 
adhered to blood vessels were quantified. Cells were quantified by counting every CD3+ cell in 3 
coronal sections from equivalent brain regions of each sample. Cell counts represent the mean 
number of cells per section in each sample. Data are displayed as the mean cell count +/- SEM. 
Significance of was calculated using a two way ANOVA: **P ≤ 0.01, ***P ≤ 0.001. n = 3/group. 

 

5.4.3 Monocyte accumulation in the brain 

As there was a significant increase in the percentage of CD11b+ monocyte-like 

cells in the brains, brain sections were stained with a MAC387 antibody, specific 

to the macrophage marker calprotectin. No positive staining was detectable in 

the control mice or the LPS-treated mice at either day 2 or day 5. By day 7, 

MAC387+ monocytes were occasionally detected within the cerebral vasculature 

of LPS-treated mice (Figure 5.15A). However, the majority of the positive 

staining was located throughout the parenchyma, particularly in the piriform 

cortex and the thalamus (Figure 5.15C&D). With obvious cytoplasmic 

projections, the MAC387+ cells in the parenchyma morphologically resembled 

macrophages. However, MAC387 can also bind to microglial cells. Due to the lack 

of evidence of monocyte/macrophage infiltration, i.e. perivascular cuffs or 
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clusters of positive cells situated in close proximity to the meninges, it was 

impossible to determine whether monocytes had indeed infiltrated the brain and 

differentiated into macrophages or whether microglial cells had upregulated 

calprotectin in response to systemic LPS. As a result, the MAC387+ cells were not 

quantified. 

In summary, histological characterisation of the leukocyte infiltrate in the brains 

of LPS-challenged mice revealed that by day 2, following two systemic LPS 

injections, neutrophils had accumulated within the brain. This infiltration was 

transient and had returned to a level statistically comparable to that of naïve 

mice by day 5. Consistent with the flow cytometry data, the accumulation of 

neutrophils was followed by the recruitment of CD3+ T cells. However, in this 

experiment T cells entered the brain between days 2 and 5 rather than between 

days 5 and 7. These cells invaded the parenchyma of LPS-challenged mice where 

they remained until at least day 7. Importantly, these data confirm that the 

increased proportions of T cells, and CD11b+ granulocyte-like cells, which were 

detected in the brains of LPS treated mice using flow cytometry, represent a 

genuine increase in absolute cell numbers in the brain. Although there was some 

evidence to suggest that monocytes may also infiltrate the brain and 

differentiate into MAC387+ macrophages between days 5 and 7, this could not 

fully be verified by histology. 
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Figure 5.15 Detection of monocytes/macrophages in the brain over time 
Mice were injected daily with 50µg LPS. Brain tissue was taken from mice at day 0, 2, 5 or 7 
following injection. Tissue was formalin-fixed, embedded in paraffin and cut into 5µm sections 
before being analysed by immunohistochemistry. (A) Examples of anti-calprotectin (MAC387) 
staining on monocytes within blood vessels at day 7 of the LPS model. (B) Examples of isotype 
staining in the piriform cortex (Pir) and the thalamus at day 7 of the LPS model. (C&D) Examples of 
MAC387 staining within (C) the Pir and (D) the thalamus at each time point. n=3/group. 
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5.5 Discussion and conclusions 

In this chapter, a combination of gene expression assays was used to determine 

whether chemokine and/or chemokine receptor transcripts were elevated in the 

brain following chronic exposure to LPS in the periphery. Mice received a single 

I.P. injection of a high dose of LPS, or an equivalent volume of vehicle, daily for 

2, 5 or 7 consecutive days. Many of the chemokine transcripts assayed were 

significantly upregulated in the brains of the LPS challenged mice at day 2, 

following 2 doses of systemic LPS. Although a number remained upregulated 

until at least day 5 of the model, the majority of the chemokine transcripts had 

returned to baseline by this time point. It was previously demonstrated in 

Section 4.3.2 that, as a result of endotoxin tolerance, daily I.P. injections of LPS 

suppressed inflammatory cytokine production in the periphery but not in the 

brain. Interestingly, inflammatory chemokine induction was also brain-specific, 

i.e. was not mirrored by a similar increase by PBL. This is in keeping with a 

previous report by Erickson et al. which demonstrated that protein levels of 

CCL2, CCL3, CCL5 and CXCL1 were significantly increased in the brain, but not 

the serum, of mice following repeated I.P. injections of LPS238. However, the LPS 

model used by Erickson et al. differed somewhat from the model used to 

conduct these studies as, instead of daily LPS challenges, mice received several 

LPS injections within a 24 hour period.  

Amongst the panel of chemokine genes that were highly upregulated in the brain 

following multiple LPS challenges were those encoding the neutrophil 

chemoattractants, CXCL1 and CXCL2. It has previously been demonstrated that, 

following a single I.P injection of LPS, the main source of these chemokines are 

activated endothelial cells443. However, as both chemokines can be expressed by 

reactive astrocytes in models of CNS injury or demyelination444-446, this cell 

population may also express CXCL1 and CXCL2 in response to the prolonged CNS 

inflammation that occurs following multiple injections of LPS. Interestingly, at 

day 2 of the LPS model, the gene encoding CXCR2, the sole receptor for these 

two chemokine ligands, also appeared to be upregulated in the brain. As the 

most characterised function of these chemokines is to recruit CXCR2-expressing 

leukocytes to sites of inflammation, it was hypothesised that the increase in 

Cxcr2 mRNA may have occurred as a result of leukocyte accumulation in the 

brain.  
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In mice, CXCR2 is most prominantly expressed by neutrophils. As a result it has 

previously been used as a surrogate marker to indicate their presence in the 

brain447. However, as it is also expressed in the CNS of both humans and rodents, 

an increase in Cxcr2 mRNA is insufficient to fully determine whether neutrophils 

infiltrate the brains of LPS challenged mice. Flow cytometric analysis of brain 

tissue revealed that the percentage of CD11bhi granulocyte-like cells was 

increased in the brains of LPS-challenged mice at day 2 of the model. Although 

this cell population phenotypically resembled neutrophils, due to the lack of 

surface markers stained, these cells were impossible to fully characterise from 

this experiment alone. However, it was subsequently demonstrated using 

histology that by day 2 of the LPS model, MPO+ neutrophils had invaded the brain 

parenchyma. Surprisingly, the neutrophils did not appear to be localised within 

perivascular cuffs, nor were they significantly enriched in the meninges. It is 

therefore unclear whether they had entered the brain via the BBB or the BCSFB.  

There was occasionally evidence of neutrophils both within and surrounding the 

same blood vessel. Therefore, it seems likely that at least some of the 

neutrophils crossed the BBB and the glia limitans. Histological analysis of brain 

sections at earlier time points would be required in order to establish the 

precise time point these cells entered the brain and their route of entry. Thus by 

day 2 of the LPS model, not only was the induction of Cxcl1 and Cxcl2 in the 

brain accompanied by a transient elevation in Cxcr2 mRNA, but it coincided with 

a transient increase in neutrophil numbers within the brain.  

Although it was difficult to distinguish between CD11+ granulocyte-like cells and 

CD11b+ macrophage-like cells in the blood, the proportion of CD11b+ leukocytes 

present in the circulation of LPS-treated mice was increased throughout the 

model. This is unsurprising as granulocytes and monocytes are rapidly deployed 

from the bone marrow in response to bacterial infection or endotoxin 

administration448-450. Despite an impaired inflammatory cytokine response in the 

periphery, there is one report to suggest that endotoxin-induced granulocyte 

mobilisation from the bone marrow occurs to a similar extent in naïve and 

endotoxin-tolerant mice451. To my knowledge there are no published data 

regarding monocyte mobilisation under these circumstances. Interestingly, the 

transcriptional chemokine receptor transcript data would suggest that, in this 

model, neutrophil numbers are unlikely to be increased to a great extent in the 
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peripheral blood, as the levels of Cxcr2 mRNA extracted from PBL remains 

comparable to baseline throughout the time course. It is possible that the 

increased proportion of CD11b
+
 cells in the blood is predominantly due to an 

elevation in circulating monocyte numbers. A more comprehensive flow 

cytometry staining panel would be required in order to confirm this. In addition, 

as CCR2 signalling is pivotal in triggering monocyte egress from the bone 

marrow, the levels of Ccr2 mRNA could be compared in PBL from LPS- and 

vehicle-treated mice. Thus, the elevated proportions of CD11b
+
 leukocyte 

populations detectable in the circulation are likely to be due to an increase in 

monocyte and/or granulocyte recruitment from the bone marrow. 
 

The chemokines CCL3 and CCL5 share the capacity to attract a number of 

different leukocyte populations to the brain. Both chemokines can activate the 

chemokine receptors CCR1 and CCR5. In addition, CCL5 can activate CCR3. The 

leukocyte populations that respond to these chemokines are diverse and include, 

monocytes/macrophages, T cells and NK cells
93,95,452,453

. As the genes encoding a 

number of other monocyte-associated chemoattractants, namely Ccl2, Ccl7 and 

Ccl8, were significantly upregulated in the brain on day 2 of the LPS model, it 

was hypothesised that this might result in monocyte infiltration. At the same 

time point, there was a significant increase in both Ccr1 mRNA and CD11b
+
 

monocyte-like cells in the brain. Although this could be indicative of an influx of 

monocytes, there was no MAC387 staining visible in the brain until day 7.  

An alternative explanation that would also account for the increase in CD11b
+
 

leukocytes and Ccr1 mRNA in the brain is a potential infiltration of NK cells at 

day 2 of the LPS model. This would also explain why there was an increase in 

Cxcr3 mRNA in the absence of T cell infiltration at this time point. Attempts 

were made to stain brain sections for NK cells using antibodies specific to NK cell 

marker CD49b (data not shown). Unfortunately, the antibodies reacted non-

specifically to a population of non-haematopoietic cells in the brain and 

therefore could not be used to identify NK cells. Thus, although it is possible 

that NK cells enter the brains of mice following prolonged exposure to LPS in the 

periphery, more work would be required in order to investigate this hypothesis. 

This could be done using either flow cytometry or histology. 
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By day 5 of the LPS model, neutrophils were no longer detectable in the brain. 

However, there was a significant increase in the number of CD3+ T cells in the 

brain parenchyma that was detectable only by histology. As there was no 

evidence of T cells within perivascular cuffs or specifically surrounding the 

meninges, their route of entry could not be established. Like neutrophils, T cells 

could be observed within and surrounding the same blood vessels which suggests 

that the BBB was one likely route of entry. It is possible that the T cells entered 

the brain after day 2, giving them time to become fully dispersed throughout the 

parenchyma by day 5. Again, histological examination of brain sections taken at 

different time points between days 2 and 5 would be required to confirm this. By 

day 7, both flow cytometric and histological analysis of brain tissue collectively 

revealed a significant increase in the frequency and absolute numbers of T cells 

in the brain. The majority of infiltrating T cells at this time point expressed CD8. 

However, CD8- T cells, most likely CD4+, were also significantly enriched in the 

brains of LPS-challenged mice on day 7.  

Both CD8+ T cells and CD4+ Th1 cells characteristically express the chemokine 

receptors CCR5 and CXCR3. Therefore, their entry to the brain may be mediated 

by the ligands for one or both of these receptors. In keeping with this 

hypothesis, the genes encoding CXCL9 and CXCL10, the ligands for CXCR3, were 

significantly upregulated in the brain at day 2. Furthermore, transcripts for the 

CCR5 ligands, CCL3 and CCL5, were upregulated until day 5. However, on days 5 

and 7, when T cells were detectable in the brain, there was only a small, but 

significant, increase in Cxcr3 mRNA and slight trend towards an increase in Ccr5 

mRNA. Neither increase was as high as would be expected if the infiltrating T 

cells expressed mRNA for these chemokine receptors. Having said this, CCR5 and 

CXCR3 are both expressed by neurons and glial cells454-457. As the transcriptional 

data have been derived from whole brain homogenate, any differential gene 

expression of Cxcr3 and/or Ccr5 by brain-resident cell populations would bias 

these results. Therefore, although T cells accumulate in the brain following 

multiple systemic LPS injections, it is difficult to define what chemokine 

systems, if any, are responsible for their entry. 

Unlike CD11b+ leukocyte populations, proportions of both CD8+ and CD8- T cells 

were decreased in the blood throughout the LPS model. Rather than a genuine 

decrease in circulating T cell numbers, this is most likely to be a knock-on effect 
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of the increased proportion of CD11b+ leukocytes. Unfortunately the absolute 

cell numbers in the blood were not established. Therefore, if the increased 

proportion of T cells detected in the brain at day 7 was mirrored by a similar 

increase in the peripheral blood, this effect was masked by changes in the 

proportions of other populations of leukocytes. 

At day 7, in addition to CD3+ T cells, MAC387+ cells were detectable in the brain 

parenchyma, particularly in the thalamus and the piriform cortex. As this marker 

can also bind microglia, it was not possible to fully establish whether the 

positive staining represented an influx of monocytes/macrophages to the brain, 

or the induced or upregulated expression of calprotectin by microglial cells in 

response to chronic LPS administration in the periphery. MAC387+ cells could be 

detected within blood vessels; therefore it is likely that at least some of the 

positive staining is attributable to monocyte/macrophage accumulation in the 

brain. Furthermore, although the upregulation of calprotectin by microglia has 

been reported previously in Schizophrenic patients458, to my knowledge it has 

never been reported in response to LPS. These observations indicate that 

monocytes may infiltrate the brain from the periphery in response to prolonged 

exposure to systemic LPS. However, a more detailed histological examination of 

the tissue, with additional macrophage markers, would be required to confirm 

this. 

Taken together, the observations made from this chapter suggest that chronic 

exposure to LPS in the periphery results in the chemokine-mediated recruitment 

of leukocytes to the brain parenchyma. Infiltrating leukocytes include 

neutrophils, T cells and possibly monocytes/macrophages. As described in 

Section 1.3.1.3, neutrophil recruitment to the brain following systemic LPS 

challenge has been previously described236,237. However, to my knowledge, this is 

the first time they have been shown to infiltrate the brain in the context of 

endotoxin tolerance. Furthermore, to my knowledge, this is the first time that 

an accumulation of T cells has been shown in the brains of mice challenged 

systemically with LPS.  

Although intriguing, the data described in this chapter are limited and require 

follow-up studies or repetition. The transcriptional data could be strengthened 

by analysing chemokine and chemokine receptor protein levels. 
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Immunofluorescence staining could be used to determine where in the brain 

these chemokines were expressed and by what cell types. This method could 

also be used to establish whether the relevant chemokine receptors were 

predominantly expressed by infiltrating leukocytes or brain resident cell 

populations. However, as antibodies to chemokines and chemokine receptors are 

often poor, this can prove challenging. In addition, although there was increased 

transcription of numerous chemokine genes in the brain coupled with, or 

followed by, an influx of leukocyte populations, the involvement of chemokines 

in coordinating leukocyte recruitment to the brain under these circumstances 

remains unconfirmed. Follow up studies investigating leukocyte recruitment to 

the brain following treatment with specific chemokine receptor antagonists 

could be used to confirm this.  

At day 5 of the time course, T cells could be detected in the brain by 

immunohistochemical CD3 staining but not by flow cytometry. The reason for 

this discrepancy is unclear. It is possible that T cells begin to infiltrate the brain 

on or around day 5. Although carried out in the same manner, the LPS models 

used for the flow cytometry experiment and the histology staining were 

independent experiments; set up at different times using different litters of 

C57BL6 mice. Therefore a slight variation in the exact time point that T cells 

entered the brain could explain the different results. The flow cytometry data 

described in this chapter have all been derived from a single experiment. To 

gain a better understanding of why T cells were not observed in the brain at day 

5 using flow cytometry, this experiment would have to be repeated.  

Another observation that will require further investigation was the increased 

frequency of microglial cells within the brains of vehicle-treated control mice on 

day 2 of the LPS time course. It is highly unlikely that this reflects a genuine 

decrease in microglial numbers in response to systemic LPS at this time point. 

Not only has nothing similar ever been reported in the literature, but at both of 

the later time points the percentages of microglial cells were similar in LPS- and 

vehicle-treated mice. This suggests that the numbers of microglial cells in the 

brain do not vary. Furthermore, microglial percentages at days 5 and 7, in both 

LPS-treated and control animals were comparable to that of LPS-injected mice 

on day 2. This implies that the increased frequency of microglial cells observed 

in the brains of vehicle-injected control mice at day 2 of the LPS model was 
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most likely to be an anomaly. It is possible that during the preparation of the 

brain tissue for flow cytometry there was reduction in microglial cell death in 

the control brains but there is no obvious reason why this would have happened. 

To fully establish whether the observed differences in microglial cell 

percentages reflected a true phenotype or just an anomaly, the flow cytometry 

experiment would again have to be repeated. 

In summary, repeated injections of LPS in the periphery triggers a transient 

increase in chemokine transcription in the brain. Chemokine induction was 

brain-specific and not mirrored by a similar increase in the peripheral blood. In 

addition, the increased chemokine expression was accompanied with an 

infiltration of neutrophils, followed by the recruitment of T cells and possibly 

monocytes to the brain. Not only did these leukocytes cross either the BBB or 

the BSCB, but they surpassed the glia limitans to become fully dispersed 

throughout the brain parenchyma. Leukocyte infiltration was coupled with an 

increase in mRNA encoding the relative chemokine receptors. Although this 

cannot be fully verified from these data alone, the results outlined in this 

chapter strongly suggest that chronic exposure to LPS in the periphery triggers a 

chemokine-mediated recruitment of inflammatory leukocytes to the brain 

parenchyma. 
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6 Defining the chemokine receptor profile of CNS-
derived pathogenic leukocytes 
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6.1 Introduction and aims 

Having highlighted some of the potential chemokine systems involved in 

facilitating leukocyte entry into the brain following repeated LPS injections, I 

then sought to compare these data to a clinically relevant inflammatory disease. 

MS is a chronic, inflammatory autoimmune disease of the CNS. It is characterised 

by an accumulation of autoreactive and inflammatory leukocytes which form 

demyelinating lesions within the CNS parenchyma. The axonal degeneration that 

ensues can lead to neurological defects such as ataxia, paralysis, loss of vision 

and loss of cognitive function459. Although MS is not a peripheral inflammatory 

disorder, it is a chronic inflammatory disease in which the peripheral immune 

system and the CNS are both intrinsically involved. In addition, routine diagnosis 

of MS involves sampling a patient’s CSF, enabling relatively easy access to a 

population of leukocytes that have crossed the BCSFB.  

Chemokines play a pivotal role in MS. Not only are they associated with the 

trafficking of inflammatory leukocytes to and within the CNS, but they also play 

a role in the migration of regulatory lymphocytes to the CNS and in glial cell 

communication and activation210,228,460-462. Due to their intimate involvement in 

MS pathogenesis, chemokines have been implicated as potential targets for 

therapeutic intervention. As a result, many studies have attempted to analyse 

and interpret the involvement of chemokine systems, i.e. specific 

chemokine/chemokine receptor interactions, in MS pathology. This research has 

been described in more detail in Section 1.3.1.2. Much of our current 

understanding regarding the potentially pathogenic role that specific chemokine 

systems play in MS is derived from studies using genetically manipulated animal 

models. However, knowledge gained from these models does not always 

translate across species. For that reason, more research is required to fully 

characterise the role of chemokine receptors and their respective ligands in 

driving MS pathology. 

In order to establish the specific chemokine systems involved in facilitating 

leukocyte entry to human CNS, CSF and blood samples were to be collected from 

MS patients and a group of patients who were subjected to a lumbar puncture 

but ultimately deemed medically healthy. Patients with MS typically experience 

a massive leukocyte infiltrate across the BCSFB153,156,460. As a result, 1ml of CSF 
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could contain tens of thousands of leukocytes. In contrast, CSF from apparently 

healthy patients, such as those to be used as a control group for this study, 

contains on average 1x10
3
 leukocytes per ml. The aim of this study was 2-fold:  

(1) Due to the limited number of cells that are present in control patient CSF, it 

was necessary to develop a protocol that would generate a sufficient quantity of 

RNA for the relevant downstream gene analyses. 

(2) To use a combination of multiplex gene expression analysis and protein 

assays to systematically characterise the chemokine systems involved in 

governing leukocyte entry to the CNS during MS.  

RNA was to be extracted from CSF-derived leukocytes. By amplifying this RNA 

using IVT, it would be possible to use multiplex gene expression assays such as 

TLDA plates to determine the differential chemokine receptor profile of CSF-

derived leukocytes from MS patients, when compared to that of leukocytes from 

apparently healthy CSF. Additionally, this would allow the expression levels of 

chemokine receptors by CSF- and peripheral blood-derived leukocytes from 

matched patient samples to be examined comparatively. Chemokine levels in 

the residual sera and CSF could then be measured using Luminex® technology, 

identifying any aberrant expression of chemokines in the CSF that may trigger 

the infiltration of inflammatory leukocytes. Thus, providing that a protocol for 

amplifying RNA from low cell numbers could be established, multiplex gene 

expression analysis and protein assays could be employed to characterise the 

specific chemokine systems involved in allowing leukocytes to cross the BCSFB 

during MS. 
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6.2 Optimising RNA extraction and cDNA synthesis 
protocols 

Prior to collection of precious samples, it was necessary to determine whether 

sufficient levels of RNA could be extracted from 1x10
3
 leukocytes; the average 

number expected in control CSF samples. As RNA extraction from such small 

numbers of cells can prove challenging, different RNA extraction methods were 

compared to determine which would generate the greatest yield. In anticipation 

of a low yield of RNA from 10
3
 leukocytes, even after amplification, the 

efficiency of two highly sensitive RT kits was also compared.  

6.2.1 RNA extraction optimisation 

To determine the most effective RNA extraction protocol, RNA was extracted 

from 1x10
3
, 1x10

4
, 1x10

5
 and 5x10

5
 peripheral blood mononuclear cells (PBMCs) 

using different methods. The efficiency of Qiagen columns and Trizol reagent 

were compared, both with, and without, carrier RNA (cRNA). cRNA, derived from 

E. coli transfer RNA was used in an attempt to improve yield by physically 

buffering extracted RNA. A disadvantage of this method is that the extracted 

RNA yield can not be accurately measured using either the nanodrop or the 

Agilent 2100 Bioanalyzer. Additionally, carrier RNA can sometimes interfere with 

downstream reactions. As it is compatible with both protocols, DNase I digestion 

was performed using a DNA-free
TM

 kit. To test the efficiency of the two 

extraction methods, all of the extracted RNA was converted to cDNA and the 

relative transcript levels of housekeeping gene Gapdh were used as a method of 

comparison following either PCR (Figure 6.1A) or QPCR (Figure 6.1B). As all 

PBMCs originated from the same source, any differences in housekeeping gene 

expression would be due to differences in cDNA level; thus relatively quantifying 

RNA yield. Regardless of the extraction method, enough RNA was extracted from 

10
3
 PBMCs to generate a Gapdh signal when amplified by either PCR or QPCR. 

Both the PCR and QPCR results indicate that Qiagen RNeasy Micro kits are more 

effective than Trizol reagent at extracting RNA from low cell numbers. 

Therefore, subsequent RNA extractions directly from cells were all carried out 

using Qiagen RNeasy columns. cRNA significantly enhanced the yield of RNA 

extracted from 1x10
4
 and 5x10

5
 PBMCs (Figure 6.1B), however, the beneficial 

effect of cRNA seemed variable as it did not improve RNA yield when extracting 
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from either 1x10
3
 or 1x10

5
 PBMCs. In fact, although not deemed significant, its 

use appeared to have a detrimental effect when RNA was extracted from 1x10
3
 

PBMCs. As this was the expected average cell number of control CSF samples, 

the use of E. coli total RNA as a carrier was discontinued. 
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Figure 6.1 Comparison of different methods of RNA extraction 
Relative Gapdh expression. (A) PCR of Gapdh visualized on a 2% agarose gel. cDNA was 
synthesized from RNA extracted from 1x103, 1x104, 1x105 and 5x105 PBMCs using (i) Qiagen kits 
or (ii) Trizol reagent in the presence (+) or absence (-) of E. coli cRNA. (B) Relative Gapdh 
expression was determined using QPCR. cDNA was synthesized from RNA extracted from (i) 
1x103, (ii) 1x104, (iii) 1x105 and (iv) 5x105 PBMCs. Relative transcript expression (RTE) was 
calculated by the equations: RTE = 2χ, where X = CTbaseline - CTmedian. Data represent data +/- SEM. 
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Significance was determined using two-way ANOVA: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n = 
3/group. 

6.2.1.1 Determining the integrity of RNA extracted from low cell numbers 

The Agilent 2100 Bioanalyzer was used to assess the quality of the RNA from 

1x10
3
, 1x10

4
 and 1x10

5
 PBMCs that was extracted using the Qiagen columns in 

the absence of cRNA. Due to the low yield, RNA was assessed qualitatively using 

the RNA 6000 Pico chip. Each electropherogram below represents one of three 

biological replicates from each group. With 3 distinct peaks and low background, 

RNA extracted from 1x10
5
 cells (Figure 6.2C) closely resembles the example of 

high quality RNA, previously shown in Figure 3.2A. RNA extracted from 1x10
4
 

PBMCs, however, is of inferior quality (Figure 6.2B). Although the 2 peaks 

corresponding to ribosomal subunits 18S and 28S are clearly visible, there is a 

high level of background, indicating a moderate level of degradation. RNA 

extracted from 1x10
3
 cells was undetectable by the Pico chip (Figure 6.2A). As 

the RNA 6000 Pico chip has a range of 50-5000pg/µl, it can be concluded that 

the level of RNA was present in the sample at a concentration of less than 

50pg/µl. These observations imply that, although RNA can be extracted from low 

cell numbers, a threshold may exist, below which RNA begins to lose its 

integrity. In this experiment, RNA began to lose integrity between 1x10
5
 and 

1x10
4
 PBMCs and despite it being of sufficient yield to generate a Gapdh signal 

using PCR, RNA extracted from 1x10
3
 PBMCs was too low to be detected by the 

Bioanalyzer. 
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Figure 6.2 Integrity of RNA samples extracted from 1x103, 1x104 and 1x105 PBMCs 
RNA quality was determined using an Agilent 2100 Bioanalyzer on an RNA 6000 Pico chip. RNA 
was extracted from (A) 1x103, (B) 1x104 and (C) 1x105 PBMCs using Qiagen columns without 
cRNA. Data represent fluorescence intensity (fluorescence units [FU]) measured over time in 
seconds [s]. One representative sample has been shown from each group. n = 3/group. 

6.2.2 cDNA synthesis optimization 

It has been shown above, that extracting RNA from as little at 1x103 leukocytes, 

generates a very low (immeasurable) yield of RNA; detectable only after RT 

followed by PCR amplification. Even after IVT, the level of amplified RNA in 

each sample has the potential to be low. In anticipation of amplifying sufficient 

RNA for multiplex gene expression analysis, a suitably sensitive cDNA synthesis 

kit had to be found that would maximise the cDNA yield. The efficiency of two 

different RT kits was compared. Although the High Capacity RNA-to-cDNA kit is 

recommended for downstream QPCR-based applications, the SuperscriptTM III 

reverse transcription kit is advertised as being more sensitive, and specific, than 

the other RT kits on the market. To test this claim, RNA was extracted from 

1x103, 5x103 and 1x104 PBMCs and converted to cDNA using the two different 

kits. As in Section 6.2.1, the relative transcript levels of Gapdh were used as a 
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method of comparison following QPCR (Figure 6.3). Again, all PBMCs originated 

from the same source. The only variable was the cDNA synthesis kit used and 

therefore, any differences in Gapdh signal could only be due to differences in 

cDNA yield. It is clear from Figure 6.3 that the High Capacity kit is significantly 

more effective than the SuperScriptTM III kit (p<0.0001). cDNA, synthesised using 

this kit, was of a significantly greater yield than that synthesised using the 

SuperScriptTM III kit when using RNA extracted from 5x103 or 1x104 leukocytes as 

a template (Figure 6.3). In addition, there was a trend towards a higher yield 

when RNA from 1x103 leukocytes was converted to cDNA using the High Capacity 

kit. Conclusively, the High Capacity RNA-to-cDNA kit was more effective than 

the SuperScriptTM III RT kit at synthesising cDNA from low levels of RNA.  
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Figure 6.3 Comparison of High Capacity and SuperScriptTM III reverse transcription kits 
Relative Gapdh expression was determined using QPCR. RNA was extracted from 1x103, 5x103 
and 1x104 PBMCs and converted to cDNA using either the High Capacity RNA-to-cDNA kit (HC) or 
the SuperScriptTM III RT kit (SS III). Relative transcript expression (RTE) was calculated by the 
equations: RTE = 2χ where X = CTbaseline - CTmedian . Significance was determined using two-way 
ANOVA: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. n=3/group 
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6.3 Developing a protocol to amplify RNA from low cell 
numbers 

As mentioned, CSF samples, particularly those from control subjects, may 

contain as few as 1x103 leukocytes. To guarantee sufficient levels of cDNA for 

TLDA gene expression analysis, RNA isolated from each sample would first have 

to be subjected to linear amplification using the SuperScriptTM RNA amplification 

kit (Section 2.5.9) before being converted to cDNA. This method, which allows 

for a 1000-fold amplification of available RNA, is optimised to amplify RNA from 

a minimum starting quantity of 100ng. On the basis that each cell expresses 

approximately 50pg of RNA, even if the RNA extraction was 100% efficient, each 

control sample would only contain 50ng of RNA. As this is well below the 

minimum starting quantity defined by the manufacturers, the limitations of the 

RNA amplification kit were tested in order to determine whether RNA could 

successfully be amplified from as little as 1x103 leukocytes. In addition, the 

integrity of the amplified message RNA product (aRNA) was also determined. As 

an additional quality control, SYBR Green QPCR was then used to determine 

whether the transcriptional profile of aRNA accurately represented that of its 

template.  

6.3.1 Testing the efficiency of the RNA amplification kit using 
control HeLa cell RNA 

The SuperScriptTM RNA amplification kit is designed to consistently amplify mRNA 

by at least 1000-fold. As a preliminary quality control mechanism, RNA from 

HeLa cells (provided with the kit) was amplified and the resulting yield 

quantified using a nanodrop. Control amplifications were performed in 

triplicate. The aRNA yield from these IVT reactions is listed in Table 6.1. As 

described by the manufacturers, amplification of 500ng HeLa total RNA should 

generate a minimum of 35µg aRNA. However, in these IVT reactions, a mean of 

only 4.66µg aRNA was transcribed from the control RNA. Therefore, although the 

control HeLa RNA was successfully amplified, the kit appeared to be functioning 

at only a fraction of its suggested capacity.  



244 

 

Total RNA Expected 

Yield 

Observed Yield (individual replicates) Mean Yield SEM 

  Control 1 Control 2 Control 3   

500ng ≥35µg 3.03µg 4.61µg 6.34µg 4.66µg 0.96 

Table 6.1 Yield of control amplifications from HeLa RNA 
RNA was amplified from 500ng HeLa RNA as a control reaction in three independent experiments; 
control 1, control 2 and control 3. aRNA quantity was determined using a nanodrop. 

 

6.3.2 Testing the limitations of the IVT kit using different starting 
quantities of template RNA 

The SuperScript
TM

 RNA amplification kit is designed to amplify RNA from a 

starting quantity of no less than 100 ng. As determined in Section 6.2.1.1, RNA 

extracted from 1x10
3
 leukocytes may contain less than 50 pg/µl. Eluted in 

approximately 12µl, the total yield of RNA extracted from 1x10
3
 leukocytes is 

considerably lower than the starting quantity recommended by the kit. As a 

consequence, before attempting to amplify RNA from precious CSF samples, it 

first had to be determined whether the amplification kit could cope with such 

low levels of starting RNA. To test the limitations of the kit, RNA was extracted 

from PBMCs and serially diluted 2-fold to acquire triplicates of 100 ng, 50 ng, 25 

ng and 12.5 ng of total RNA. RNA amplification from these starting quantities 

yielded a mean of 4.22 µg, 2.34 µg, 1.22 µg and 0.48 µg aRNA respectively 

(Figure 6.4A). As TLDA plates require only 30 ng message RNA, 12.5 ng total RNA 

is an ample starting quantity to provide a sufficient aRNA yield post-

amplification. 
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Figure 6.4 Yield of aRNA from different starting quantities 
RNA was amplified from different starting quantities of template or from RNA extracted from 
different numbers of PBMCs. (A) Yield of aRNA genterated from different starting quantities of 
template RNA. (B) The quantity of RNA extracted from 1x103, 1x104 and 1x105 PBMCs prior to 
amplification. RNA extracted from 1x103 PBMCs was not detectable (ND). (C) Yield of aRNA 
generated from 1x103, 1x104 and 1x105 PBMCs. aRNA yield was quantified using a nanodrop 
whereas unamplified template RNA was quantified using the 2100 Bioanalyzer. Data represent 
mean plus or minus SEM. n = 3/group. 

6.3.3 Testing the limitations of the IVT kit using PBMCs 

Having established that the SuperScriptTM RNA amplification kit could 

successfully amplify RNA from almost one tenth of the minimum starting 

quantity defined by the manufacturers, the kit was then tested using RNA 

extracted from 1x103, 1x104 and 1x105 PBMCs. Extracting RNA from 1x104 and 

1x105 PBMCs yielded a mean of 1.7 ng and 21.7 ng of RNA respectively; as 

determined using an RNA Pico chip (Figure 6.4B). Again, RNA extracted from 

1x103 cells was below the detection limit of the Bioanalyzer. The concentration 
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of the amplified product was measured using a nanodrop. Amplification of RNA 

extracted from 1x103, 1x104 and 1x105 PBMCs generated a mean of 34 ng, 367 ng 

and 719 ng of aRNA respectively (Figure 6.4C). Therefore, although the template 

RNA derived from the cells was undetectable, it appears that sufficient RNA for 

TLDA analysis can be amplified from as few as 1x103 leukocytes. 

6.3.4 Determining the transcriptional fidelity of aRNA 

When using amplified RNA to study gene expression, it must accurately represent 

the RNA profile retrieved from the sample. If, for instance, the amplification 

process favours smaller transcripts, then the number of small transcripts, such 

as chemokines, may be disproportionately greater than that of larger 

transcripts, such as chemokine receptors. To determine whether there was any 

bias in the amplification process towards particular transcript lengths, aRNA was 

converted to cDNA using reverse transcriptase. Using cDNA from both amplified 

and unamplified RNA, QPCR was performed to amplify genes with a range of 

different transcript lengths. The CT value, i.e. the number of PCR cycles 

required for the copy number of each transcript to reach an automatically set 

threshold, was used to compare the transcriptional ratios of three genes: Ccl2 

(732bp), Gapdh (1875bp) and Tlr2 (3224bp). The CT value of housekeeping gene 

TBP was used to normalise the results. 

All gene transcripts amplified equally: the ratio between the CT values remaining 

the same regardless of the starting quantity of RNA (Figure 6.5B) or the starting 

number of cells (Figure 6.5D). Only marginal discrepancies were observed when 

comparing aRNA to its template. Tlr2 and Gapdh expression were increased 

slightly in comparison to TBP after amplification (Figure 6.5A&C). As these two 

transcripts are the longest of the target genes amplified, it can be assumed that 

the IVT kit does not favour the amplification of smaller transcripts. The order of 

expression of each transcript was unchanged after amplification indicating that 

amplified RNA exhibits an adequate representation of the gene profile expressed 

by a target cell population. Although amplification from 1x103 cells appeared to 

generate enough aRNA to perform TLDA gene expression analysis (Figure 6.4B), 

transcript levels of the target genes amplified by QPCR were weak to 

undetectable. For that reason the ratios between the target genes were not 
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included in Figure 6.5D. With the exception of RNA amplified from 1x10
3
 cells, 

aRNA reasonably reflects the transcriptional profile of its template. 
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Figure 6.5 Comparison of the transcriptional profile of template RNA and aRNA 
RNA was amplified from different starting quantities and from different numbers of PBMCs. QPCR 
was performed to determine the expression ratio of three genes of different transcript lengths: Ccl2 
(732bp) (●), Gapdh (1875bp) (■) and Tlr2 (3224bp) (▲). The difference between the CT value of 
the target genes and the CT value of housekeeping gene, Tbp, was used as a method of 
comparison (-Δ CT). Comparisons were made between: (A) unamplified template RNA and the 
amplified product (aRNA) generated from 100 ng template, (B) aRNA amplified from 100 ng, 50 ng, 
25 ng and 12.5 ng of template RNA, (C) aRNA from 1x105 PBMCs and unamplified RNA from the 
same PBMC sample, and (D) aRNA amplified from 1x104 and 1x105 PBMCs. Data represents 
mean plus or minus SEM. n = 3 samples/group.  
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6.3.5 Determining the integrity of aRNA generated from different 
starting quantities of template RNA 

Having established that amplifying RNA, from as little as 12.5 ng starting RNA, 

produces enough aRNA output to be used for TLDA analysis; it had then to be 

determined whether the amplified product was of sufficient quality. RNA 

integrity was assessed, before and after amplification, using an Agilent 2100 

Bioanalyzer. The quality of the total RNA that was used as template is shown in 

Figure 6.6A. Although two distinct peaks mark ribosomal subunits 18S and 28S, 

there is a considerable level of background noise indicating partially degraded 

RNA. In spite of this, as will be discussed below, mRNA was amplified 

successfully from different starting quantities of template RNA. Figure 6.6B 

shows an example of high quality aRNA. The electrophoretic trace exhibits a 

broad arch, indicative of a range of sizes of RNA fragments. As only mRNA is 

amplified by IVT, no ribosomal peaks are visible. The most commonly occurring 

fragment length in the sample was 1007 nucleotides long; as determined by 

comparing the speed at which these fragments moved through the microchannel 

(37.26 s) to the standard curve generated from the RNA ladder.  

A representative electropherogram for each of the four groups of amplified RNA 

samples is shown in Figure 6.6. RNA amplified from 50 ng and 100 ng template 

RNA was of a sufficient concentration to be assessed using an RNA Nano chip. 

These were compared on the electropherograms to the RNA ladder (Figure 6.6). 

Considerably reduced in quantity than that of the high quality aRNA, the 

electrophoretic trace of these samples signifies a relatively lower quantity of 

aRNA; which is unsurprising given the low starting quantity. It is the lateral 

position of the peaks that signifies quality. Although the curves on the graphs 

are small, they are also broad, indicating a range of transcript lengths. This 

implies that the amplification was successful; generating aRNA of moderate 

quality. However, amplified RNA contained very few transcripts greater than 

2000bp. Peaking between 200 and 500 nucleotides, the average fragment length 

in RNA, amplified from 100ng, is below half that of the high quality aRNA; 

implying partial degradation. Likewise, aRNA from 50ng of template peaks at 

approximately 500 nucleotides. However, as there is no sharp peak to the left of 

these graphs, a characteristic of high level degradation, the aRNA can be 

considered of satisfactory quality. Too low in concentration to be detected by 



249 

the Nano chip, RNA amplified from 12.5 ng and 25 ng of template RNA was 

assessed using the RNA Pico chip and evaluated over time. RNA amplified from 

25 ng and 12.5 ng of starting template RNA, again generated a broad curve; 

similar in shape to that of the high quality aRNA (Figure 6.6C&D). However, the 

curves peaked at an earlier time point than the high quality aRNA (Figure 6.6B), 

again indicating a slight shift towards a smaller average transcript length. 

Whether assessed using the Nano chip or the Pico chip, aRNA samples contained 

noticeably less large transcripts than that of the high quality aRNA sample. This 

is a likely indication of partial RNA degradation. Imperfections in the quality of 

the amplified RNA may have arisen due to the poor quality of the starting RNA 

(Figure 6.6A). Taken together, these results show that RNA of a reasonable 

quality can be amplified from as little as 12.5 ng starting RNA, even when 

partially degraded RNA is used as template. 
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Figure 6.6 Integrity of RNA before and after amplification from different RNA starting 
quantities  
Using a SuperScriptTM RNA amplification kit, RNA was amplified from starting concentrations 100 
ng, 50 ng, 25 ng and 12.5 ng of total RNA. The integrity of template RNA and the amplified 
message (aRNA) was determined using an Agilent 2100 Bioanalyzer. Electropherograms display: 
(A) Template RNA, (B) High quality aRNA, peaking at 37.26 seconds [s] and 1007 nucleotides [nt], 
and RNA amplified from (C) 12.5 ng, (D) 25 ng, (E) 50 ng and (F) 100 ng of template RNA. Data 
represent fluorescence intensity (fluorescence units [FU]) measured over time in seconds [s]. (A-D) 
have been compared over time to an RNA marker containing transcripts of known sizes [nt]. (C-F) 
Data shown are one representative sample from each group. n = 3/group. 
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6.3.6 Determining the integrity of aRNA generated from  PBMCs 

Amplifying RNA from 1x103 PBMCs had apparently yielded enough aRNA to 

perform TLDA analysis. To determine why the amplified product did not 

generate sufficient aRNA for QPCR, the integrity of amplified and unamplified 

RNA was assessed; again using the Bioanalyzer. Similar to previous results (Figure 

6.2), RNA extracted from 1x103 leukocytes, was of too low a concentration to be 

detected using the RNA Pico chip (Figure 6.7A).  RNA extracted from 1x104 and 

1x105 PBMCs however, was of high quality (Figure 6.7B&C) suggesting that the 

extraction process itself was successful.  

In contrast to aRNA quantification using the nanodrop, which showed that 

amplifying RNA from 103 PBMCs yielded an average of 34 ng (Figure 6.4), it is 

clear from Figure 6.7A that this amplified product is barely detectable by the 

RNA Pico chip. Only a minute peak is visible on the electropherogram. This 

discrepancy may have arisen because the RNA in these samples is present at too 

low a concentration to be accurately quantified by nanodrop. In addition, the 

little RNA that was detectable in the amplified sample was of poor quality. The 

location of the only peak on the graph, directly adjacent to the RNA marker, is a 

clear indication of sample degradation. As no RNA was detectable in the 

template, it was unclear whether the degradation had occurred prior to, or 

during the amplification process. RNA degradation, in addition to a low starting 

yield preceding IVT, would explain why amplification from 1x103 PBMCs did not 

generate sufficient RNA for QPCR. 

Although clearly containing detectable levels, aRNA samples from 1x104 and 

1x105 PBMCs also appeared to be degraded (Figure 6.7B&C). Electropherograms 

are dominated by a sharp spike at around 27 seconds; implying an enrichment of 

small fragments in the aRNA samples. As there is no indication of the IVT process 

favouring smaller transcripts (Figure 6.5), this is most probably degraded RNA. 

Thus, although it would appear from the nanodrop data that amplifying RNA 

generates a sufficient yield to use for multiplex gene arrays, this RNA is 

degraded. 
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Figure 6.7 Integrity of RNA before and after amplification from different numbers of cells 
RNA was extracted from 1x103, 1x104 and 1x105 PBMCs and amplified using a SuperScriptTM RNA 
amplification kit. The integrity of RNA before and after amplification was determined using an 
Agilent 2100 Bioanalyzer. Electropherograms display: (A) RNA from 1x103 PBMCs (i) before and 
(ii) after amplification. (B) RNA from 1x104 PBMCs (i) before and (ii) after amplification.  (C) RNA 
from 1x105 PBMCs (i) before and (ii) after amplification.  Data represent fluorescence intensity 
(fluorescence units [FU]) measured over time in seconds [s]. Data shown are one representative 
sample from each group. n = 3/group. 
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6.4 Discussion and conclusions 

The initial aim of this study was to develop the most effective protocol for 

extracting RNA from low numbers of cells, amplifying it using IVT and converting 

the amplified product to cDNA. Entirely dependent on the development of this 

protocol, the second aim was to systematically define the chemokine systems 

involved in governing leukocyte infiltration of the CNS during MS. 

Preliminary experiments were set up to compare the efficiency of different 

methods of RNA extraction and different RT kits. Using relative Gapdh transcript 

level as a method of comparison, these experiments highlighted the optimum 

methods of extracting RNA from low cell numbers and of synthesizing cDNA from 

low amounts of template RNA. In addition, it was demonstrated that RNA could 

be extracted from as little as 1x103 leukocytes; the average number expected in 

control CSF samples. Although the yield of RNA was sufficient to generate a 

Gapdh signal using PCR, it was below the detection limit of the RNA Pico chip 

and thus unable to be quantified. As a result, it could not be determined 

whether RNA extraction from 1x103 leukocytes generated a great enough yield of 

template RNA for amplification by IVT. 

To validate the efficiency of the SuperScriptTM RNA Amplification System in the 

proposed study, experiments were set up to test the limitations of the kit. Prior 

to sample collection, the capacity of the kit to amplify RNA from 1x103 

leukocytes had to be demonstrated. RNA was amplified from different starting 

quantities of template RNA and from different starting quantities of leukocytes. 

Encouragingly, the results demonstrate that an adequate amount of aRNA can be 

generated from as little as 12.5 ng of template RNA. Not only was the quantity 

sufficient, but the transcriptional profile of the amplified product, assessed 

using QPCR, was shown to reasonably reflect that of the unamplified template 

RNA from which it was derived. However, a paucity of long transcripts in the 

amplified product suggests that the RNA may have been partially degraded 

during amplification. Another possibility is that the RNA polymerase failed to 

extend the full length of the longer transcripts during amplification. This could 

prove problematic if any of the probe sets used on the TLDA plates are located 

at the 5’ end of a long transcript. As there was no problem amplifying Gapdh, a 

housekeeping gene of comparable transcript length to a chemokine receptor, 
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using primers located in the 5’ region, there is no reason to suggest that 

transcripts of this length might be inaccurately represented. The most likely 

explanation for the lack of long transcripts is the use of partially degraded 

starting RNA. Thus, in this instance it appears that RNA amplification starting 

from only 12.5ng total RNA generates a great enough yield of reasonable quality 

RNA for TLDA gene expression assays. 

Although amplifying from different starting quantities of RNA generated aRNA of 

an adequate quality and quantity, RNA amplification from 1x103 leukocytes was 

not a success. Only a minute level of aRNA generated from 1x103 leukocytes was 

detectable using the Bioanalyzer. This RNA appeared to be degraded and no 

Gapdh, Tlr2 or Ccl2 signal was detectable following QPCR. In Section 6.2.1, it 

was shown that, without any requirement of IVT, QPCR could be successfully 

used to amplify Gapdh when RNA from 103 PBMCs was converted to cDNA. As a 

result, it would appear as if the amplification process deteriorates the quality of 

the RNA; rendering it useless when amplifying from such a low cell number. 

From these data, it is apparent that RNA extracted from 1x103 leukocytes, is 

below the threshold of what is required for amplification.  

A previous report by Baugh et al. demonstrated that RNA could be successfully 

amplified from as little as 2 ng of total RNA463. These aRNA products, however, 

did not perform as well in downstream applications as aRNA generated from over 

10ng of template. Similarly, it has been demonstrated above that RNA can 

successfully be amplified from as little as 1.7ng of template RNA; extracted from 

1x104 PBMCs. Not only was the amplification successful, but it yielded sufficient 

levels of aRNA for subsequent gene expression analysis. In addition, the 

transcription profile of the aRNA product was comparable to the template RNA 

from which it was derived. However, much of the amplified product appeared to 

be degraded and the use of partially degraded RNA for multiplex gene expression 

analysis is ill-advised. Consequently, either new technology or further 

optimisation of the IVT protocol would be required in order to accurately 

determine aberrant chemokine receptor expression in CSF-derived pathogenic 

leukocytes. 

As they have a profoundly higher leukocyte presence in their CSF, an alternative 

approach might be to derive as much information as possible using only MS 
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patient samples. The chemokine receptor profile of leukocytes from diseased 

CSF could simply be compared with that of peripheral blood leukocytes from 

matched patient samples. Although this would not precisely define the particular 

chemokine receptors that are involved in MS pathogenesis, it would highlight any 

receptors that are enriched in the CSF compared to the peripheral blood. As it 

would include the chemokine receptors that are associated with pathogenesis, 

this transcriptional comparison would be beneficial as it would provide a list of 

target receptors to which subsequent gene expression analyses could be 

tailored. However, it was decided that the degree of difficulty involved in 

acquiring the MS patient samples, combined with the expenditure of the 

proposed experiments, outweighed the potential benefits of obtaining this 

information. Thus this work was discontinued. 

A superior method of determining chemokine receptor expression in CSF-derived 

leukocytes might be to use Fluidigm® BioMarkTM dynamic array chips. This 

cutting edge technology uses a series of integrated microchannels to link up 48 

samples with 48 TaqMan® assays. This would allow the relative quantification of 

the expression of 48 genes from each sample. Results are reproducible from 

<100 cells. In addition, the chips negate the need to both extract RNA and 

amplify it using an IVT kit: both processes that could result in RNA degradation. 

Consequently, the relative expression of chemokine receptors by CSF- and 

peripheral blood-derived leukocytes could be examined comparatively using 

BioMarkTM dynamic array chips. Unfortunately, this technology was not available 

at the time of this study. 

The initial aim of this work was to optimise and validate the protocols required 

to extract and amplify RNA: ultimately generating sufficient levels of high-

quality cDNA for TLDA plates. Despite the limitations described by the 

manufacturers of the amplification kit, there have been some preliminary 

successes in amplifying RNA from low starting quantities. However, the amplified 

product often shows signs of degradation, particularly when RNA was amplified 

from low starting numbers of cells. This rendered the aRNA unfit for downstream 

TLDA assays and thus rendered the RNA amplification kit unsuitable for the 

proposed study. As a suitable protocol for amplifying RNA from 1x103 leukocytes 

was not established, the complete chemokine receptor profile of CSF- and 

peripheral blood-derived leukocytes could not be determined. Therefore, the 
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specific chemokine systems involved in governing leukocyte entry to the CSF 

remain to be defined. 
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7 General Discussion 
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7.1 Introduction 

There is now a growing body of evidence to suggest that inflammatory mediators 

can modulate mood and behaviour. Furthermore, prolonged exposure to these 

mediators may be involved in the manifestation of neuropsychiatric symptoms, 

such as depression, anxiety and fatigue. Despite the recent advances in our 

understanding of neuroimmune communication pathways, the molecular 

mechanisms behind these co-morbidities remain unclear. Thus the primary aim 

of this thesis was to establish a better understanding of the bidirectional 

relationship, and communication pathways, that exist between the immune 

system and the brain. 

In Chapter 3, the transmission of inflammatory signals from the periphery to the 

brain was initially investigated using a model of systemic LPS-induced 

inflammation, which is well known for its impact on behaviour. 48 hours after 

intraperitoneal injection, the transcriptional profile in the brains of LPS 

challenged mice was comprehensively interrogated using whole transcriptome 

microarrays. Expression of a number of genes was induced in the brain 48 hours 

following systemic LPS-challenge. A novel comparative approach was then taken 

to explore a potential molecular mechanism behind this induction. Specifically, 

in Chapter 4 of this thesis, the transcriptional modulation of the genes of 

interest was compared in the brain following different sterile, and TLR-

dependent, models of peripheral inflammation. To establish whether target 

genes were induced in the brain in response to elevated circulating 

inflammatory cytokines, gene induction was assessed following systemic TNFα-

induced inflammation. Supplementing the data derived from this study, a model 

of endotoxin tolerance was used to assess the ability of systemic LPS to 

modulate target gene expression in the brain, without the synergistic effects of 

circulating IL-1β, IL-6 or TNFα. Finally, a model of LTA-induced peripheral 

inflammation was used to determine whether activation of the MyD88-dependent 

signalling pathway was sufficient to modulate target gene expression in the 

brain. Therefore, by characterising, and comparing, the gene expression profiles 

in the brains of mice following a number of well-characterised models of 

peripheral inflammation, I have started to investigate the molecular mechanisms 

by which inflammation originating in the periphery can induce neurological 

transcriptional modulation. 
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Chemokine induction, and leukocyte recruitment, to the brain was also assessed 

following systemic LPS challenge. As it may better reflect physiological 

conditions, such as bacterial infection or septicaemia, these studies were 

exclusively performed using a model of endotoxin tolerance, in which mice were 

systemically injected with LPS daily. In Chapter 5 of this thesis, I have 

systematically characterised, for the first time, the transcriptional inflammatory 

chemokine profile in the brain following prolonged exposure to LPS in the 

periphery. In addition, the work in this chapter demonstrates that, in this model 

of endotoxin tolerance, systemic LPS challenge may remotely modulate the 

recruitment of leukocytes to the brain. 

7.2 Characterisation of the transcriptional profile in the 
brains of systemic LPS-challenged mice 

Current literature suggests that systemic LPS itself, and LPS-induced 

inflammatory cytokines, can activate the cerebral vasculature and TLR4-

expressing phagocytic cells resident in CVOs (Section 1.4.2.2). Beginning in the 

CVOs and regions surrounding the blood vessels, the choroid plexus and 

meninges, this triggers a wave of microglial activation that can spread 

throughout the parenchyma via the autocrine and paracrine effects of TNFα and 

IL-1β315,317,318. Not only might these cytokines activate IDO in the brain, which 

can modulate behaviour (Section 1.4.2.2), but IL-1β and inflammation-induced 

secondary messengers, such as PGE2, can stimulate the control circuitry of the 

HPA axis to activate the neuroendocrine system and induce a febrile response 

(Section 1.4.3.1). These central responses to systemic LPS-induced inflammation 

have been well characterised. Activation of the HPA axis is rapid and transient, 

peaking within 1-3 hours of systemic LPS injection464-466. Microglial activation, 

characterised by a robust increase in Cd14, Tlr2 and Il1b mRNA, is similarly 

rapid315,317,318 and evidence of activation in CVOs has been shown as early as 30 

minutes following I.P. injection315,318. Microglial activation in the parenchyma 

then peaks within 8-12 hours of injection and clusters of cells remain activated 

until 24 hours. In contrast, IDO activity in the brain occurs much later, with no 

significant differences in activity detected until 24 hours following systemic LPS 

challenge467. This delay may be due to the time it takes for cytokines to be 

transcribed and translated in the brain. To my knowledge there is currently no 

literature to suggest that any of these characterised central responses last 
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longer than 24 hours following injection. However it was demonstrated in 

Chapter 3 of this thesis, that 48 hours following an acute systemic LPS challenge, 

a number of immune/inflammatory genes were upregulated in the brain. The 

differential transcriptional profile in the brains of LPS-challenged mice was 

markedly enriched with ISGs. This induction appeared to be triggered rapidly 

following systemic LPS administration as a number of ISGs were upregulated in 

the brain by 6 hours post-injection. However, aside from the characterised 

effects described above, there is a paucity of literature describing the impact 

that systemic LPS-induced inflammation has on the brain. This makes it difficult 

to hypothesise what pathways may have been involved in triggering the 

induction of ISGs, and other target genes, in the brain following an acute 

systemic LPS challenge.  

Interestingly, it was demonstrated in Chapter 4 that the majority of microarray 

target genes were not upregulated in the brain following systemic TNFα-induced 

inflammation. Furthermore a selection of target genes, predominantly ISGs, 

remained induced in the brain during endotoxin tolerance, in the absence of a 

detectable inflammatory cytokine response in the periphery. This suggests that, 

rather than being a downstream effect of heightened peripheral inflammation, 

target gene induction in the brain following LPS injection may be a direct 

consequence of LPS-triggered TLR4 signalling either in the periphery, in one of 

the brain’s barriers, or in the brain itself. Importantly, there are few natural 

scenarios that would result in an acute systemic exposure to endotoxin. 

Therefore, prolonged ISG expression in the brain following repeated LPS 

challenge may more accurately reflect what occurs during chronic bacterial 

infection, or sepsis, than a single dose of LPS.  

Despite the hypothesis that LPS-induced ISG modulation was a TLR-specific 

phenomenon, these effects of LPS on the brain were not reproduced by systemic 

administration of the TLR2 ligand, LTA. TLR2 has a signalling profile that is 

distinct from that of TLR4 in that it does not activate IRF3-mediated type I IFN 

induction. Therefore, my results from the LPS experiments could reflect a TLR4-

induced type I IFN response via the non-canonical signalling pathway. This could 

be further investigated by repeating both the acute LPS model, and the 

endotoxin tolerance model, in TRIF-deficient mice or using small molecule 

inhibitors such as Reservatrol, which specifically targets the TRIF-dependent 
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signalling pathway468. As described in Chapter 4, the most characterised routes 

of immune-to-brain communication following systemic LPS challenge involves 

MyD88-dependent signalling pathway activation, or the intermediary actions of 

inflammatory cytokines. Therefore, if ISG induction is triggered in the brain in 

response to a TLR4-mediated IFN response, the data described in this thesis may 

help to broaden perceptions of how inflammatory signals are received by the 

brain. 

Although a TLR-dependent IFN response has been suggested to play a role, it has 

yet to be established how inflammatory signals are transmitted from the 

periphery to the brain in these models to induce ISG expression. This is 

particularly unclear following repeated LPS injections, when the synergistic 

effects of circulating IL-1β, IL-6 or TNFα were lost as a result of endotoxin 

tolerance. Several possible scenarios to account for the observed ISG induction 

in the brain have been described below:  

(1) In addition to being expressed in the periphery, the IFNAR is widely 

expressed in the brain (Figure 7.1). It is possible that circulating type I IFNs 

themselves may have directly accessed the brain to stimulate one of the many 

IFNAR-expressing cell types. As described in Chapter 3, this mechanism of action 

has previously been proposed to account for ISG induction in the brains of mice 

following an I.P. injection of IFNα423. However, it was demonstrated in Chapter 4 

that ISGs remained induced in the brain during endotoxin tolerance, which has 

been shown to inhibit both the classical MyD88-dependent, and the non-

canonical TRIF-dependent, signalling pathways downstream of TLR4469. As a 

consequence, endotoxin tolerance results in impaired type I IFN production. 

Therefore, in these studies, leukocytes in the periphery were unlikely to have 

been the source of the putative type I IFNs that stimulated the brain following 

daily LPS injections. 
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Figure 7.1 Ifnar1 expression in the mouse brain. 
A high-resolution map of Ifnar1 expression in a coronal section of the mouse brain. Expression 
levels were established using in situ hybridisation. Image was downloaded from the Allen Brain 
Atlas (http://www.brain-map.org/). 

(2) In the models described in this thesis, LPS may itself gain access to the brain. 

Although Banks et al. could not detect radio-labelled LPS crossing the BBB of 

mice
421

, there are reports that LPS can increase BBB permeability
310

. The 

capacity of LPS to alter BBB integrity may depend on the dose and strain of LPS 

administered and the species and strain of mouse used experimentally. 

Therefore, in the acute model of LPS-mediated systemic inflammation that I 

used in these studies, 100 µg of LPS may have been sufficient to disrupt the 

integrity of the BBB and allow LPS to enter the brain. Due to the potency of LPS, 

only a minute amount would have been required to cross the BBB to elicit a 

detectable response. Breakdown of the BBB is even more likely to have occurred 

during the endotoxin tolerance model, when mice were treated with a high dose 

of LPS daily. To explore this possibility, BBB permeability could be assessed after 

LPS treatment by injecting mice intravenously with visible tracers and screening 

for their presence in the brain. This is commonly done using fluorescently-

labelled dextran amines
470

, although a more relevant method would be to inject 

mice systemically with fluorescently-labelled LPS and then use confocal imaging 

to establish whether it crossed the BBB. Breaching of the BBB by LPS is certainly 
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worth investigating as a potential mechanism that could account for the 

prolonged ISG induction following repeated LPS challenge. However, to my 

knowledge the occurrence of endotoxin tolerance in the brain has not been 

defined. Therefore, rather than type I IFN production and ISG regulation, chronic 

exposure to LPS in the brain might result in endotoxin tolerance.  

(3) Phagocytic cells resident in the CVOs, and/or cerebral vascular endothelial 

cells, may have responded to circulating LPS by producing type I IFNs. This could 

either have lead to the autocrine induction of ISGs, or the induction of ISG 

expression in adjacent cell populations in a paracrine manner. Due to their 

similarity to peripheral myeloid cells, it might be expected that macrophages 

and microglia in the CVOs would become tolerised in response to repeated LPS 

challenge. However, endotoxin tolerance in cerebral vasculature endothelial 

cells has not been described. Therefore, even if CVO-resident phagocytes do 

become tolerised, it remains possible that cerebral endothelial cells may have 

continued to produce IFNβ during this model. 

Thus, a number of possible mechanisms exist that could account for the 

induction of ISGs in response to systemic LPS, none of which are mutually 

exclusive. Further investigation is required in order to pinpoint the precise mode 

of action behind systemic LPS-induced ISG modulation in the brain.  

Although I did not investigate what impact an LPS-induced IFN response might 

have on brain function and behaviour, there is considerable evidence that 

therapeutic use of type I IFNs in humans can lead to significant neuropsychiatric 

disorders, especially major depression471-473. It has been shown that injecting 

rodents with LPS initiates a number of behavioural adaptations, including 

depression-like behaviours that persevere after other sickness behaviours have 

resolved266. My results suggest that the induction of type I ISGs in the brain in 

response to systemic LPS was likely to be mediated by the action of type I IFNs. 

This indicates that type I IFN production, either in the brain or the periphery, 

may represent a crucial mechanism linking systemic LPS-induced inflammation 

with behavioural changes. 
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7.3 Characterising the chemokine profile and leukocyte 
infiltrate in the brains of LPS-treated mice 

Of the ISGs that were upregulated in the brain in response to acute LPS 

exposure, CXCL10 showed the biggest induction. Moreover, in this LPS model 

there was a significant enrichment of transcripts involved in leukocyte 

extravasation. This prompted me to investigate directly whether systemic LPS 

challenge resulted in leukocyte recruitment to the brain. To better represent 

physiological conditions, and to maximise the chance of detecting infiltrating 

leukocytes, this was investigated over a 7 day window following daily injections 

of LPS. 

First, the inflammatory chemokine repertoire in the brains of LPS treated mice 

was systematically characterised. In addition to Cxcl10, the chemokine 

transcripts that were upregulated in the brains of LPS-challenged mice included 

a number of neutrophil, monocyte and T cell chemoattractants, including Cxcl1, 

Cxcl2, Ccl3, Ccl5, Cxcl9 and Cxcl10. As IFNs are known to increase the expression 

of CXCL9 and CXCL10 in a number of cell types and tissues474-478, there is a strong 

likelihood that these chemokines were upregulated in the brain downstream of 

the systemic LPS-induced IFN response discussed above. The remainder of the 

upregulated chemokine transcripts could have been upregulated in the brain in 

response to TNFα or IL-1β, or were possibly induced directly in response to TLR4 

signalling pathway activation479-484.  

On day 2 of the LPS model, the induction of Cxcl1 and Cxcl2 was associated with 

an early infiltration of neutrophils to the brain and a simultaneous increase in 

Cxcr2 mRNA. Neutrophils are pivotal in mounting a successful response against a 

number of pathogens, but they are also associated with tissue damage485 and 

thus their recruitment to the uninfected brain is likely to be harmful. There are 

many ways in which neutrophils could be damaging to the CNS. Following an 

acute injection of LPS, neutrophil recruitment has been shown to amplify central 

inflammatory processes leading to elevated IL-1β, TNFα and ICAM1 mRNA levels 

in the brain and increased transcription of the genes encoding CXCL1 and 

CXCL2236. This may account for the prolonged expression of IL-1β and TNFα that I 

observed in the brain following daily LPS injections. Neutrophils are also known 

to release toxic agents, such as MPO-derived oxidants, which can have a 
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debilitating effect on BBB integrity486. Therefore, their accumulation in the brain 

may facilitate the entry of circulating LPS, cytokines and/or other leukocytes 

into the brain. Blocking neutrophil entry to the brain using a CXCR2 antagonist 

and performing a BBB permeability assay, would be required in order to confirm 

this. The model that I used to assess neutrophil entry to the brain in this thesis 

differed from those used previously, as mice received daily systemic LPS 

injections. As a result, the neutrophils that were recruited to the brain in this 

model may have been tolerised to LPS in the periphery. However, neutrophils 

may not be as susceptible to endotoxin tolerance as monocytes and 

macrophages487 and it is not known whether they are likely to retain their 

tolerant phenotype after being exposed to the inflamed CNS. Therefore, it is 

unclear to what extent they would contribute to local inflammatory responses in 

the brain following multiple systemic LPS challenges. 

Neutrophil accumulation in the brain was followed by the recruitment of CD8+ 

and CD8- T cells. This may have occurred in response to the enhanced production 

of T cell chemoattractants, such as CCL5, CXCL9 and CXCL10, in the brain. The 

current literature suggests that only activated T cells can enter the brain. As T 

cells do not recognise LPS, those infiltrating the brain were likely to be memory 

cells of various specificities. Although LPS is not presented to T cells, chronic 

inflammatory conditions can result in epitope spreading which could lead to T 

cell activation in the brain488. When stimulated, memory T cells have the 

potential to secrete large amounts of cytokines, such as IFNγ489, which could 

amplify inflammatory responses in the brain and activate IDO, thus resulting in 

depressive behaviours. However, the influx of T cells to the brain could also be 

protective. Chronic exposure to LPS in the periphery may mimic a systemic 

bacterial infection, thus resulting in enhanced T cell immunosurveillance. 

Although not described previously following LPS challenge, increased 

surveillance of the brain by both CD4+ and CD8+ T cells has been reported 

following systemic Listeria monocytogenes infection490,491. However, in these 

reports, the T cells were predominantly situated in the leptomeninges, the 

choroid plexus and in the CSF with few, or none, invading the parenchyma. It 

has been hypothesised that, following systemic L. monocytogenes infection, T 

cell recruitment to the brain is protective against cerebral listeriosis491. T cell 

accumulation in the brain following systemic LPS challenge is a novel observation 
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and it is therefore unclear whether this response contributes to pathogenesis or 

whether T cells are recruited in order to protect the brain from a potential 

infection.  

From the data presented in this thesis, it appeared as if monocytes might have 

infiltrated the brains of LPS-challenged mice and differentiated into 

macrophages or microglia. Further studies would be required in order to confirm 

this. T cell entry to the brain is known to contribute to monocyte recruitment 

during viral infections of the CNS190,442. Furthermore, monocytes are known to 

infiltrate the brain during systemic L. monocytogenes infection492 and during a 

model of hepatic inflammation241. By increasing the production of inflammatory 

cytokines and the brain241 and causing bystander tissue damage493, the 

recruitment of inflammatory monocytes to the brain has the potential to be 

detrimental. As described in Section 1.3.1.1, MHV infection is associated with 

monocyte-mediated inflammation and demyelination. Monocyte-mediated 

damage can also influence behaviour. Following picoronavirus infection, 

monocyte recruitment to the hippocampus resulted in neuronal loss and 

impaired cognitive function493. However, in some settings, the recruitment of 

monocytes to the brain can be beneficial. Following bacterial meningitis, or 

during transgenic models of Alzheimer’s disease, peripheral monocytes 

accumulate in the brain and differentiate into microglia494-496. This has been 

shown to play an important role in the resolution of tissue damage, and in the 

clearance of amyloid deposits, respectively. Thus, whilst it is unclear what role 

they might play in protection or pathology, monocyte recruitment to the brain 

following daily systemic LPS challenges is worth further investigation. 

Although these studies have generated some interesting and novel observations, 

the physiological and pathological implications of leukocytes accumulation in the 

brains of LPS-treated mice have yet to be established. It is possible that 

leukocyte recruitment to the brain is a characteristic response to chronic 

bacterial infection and serves to provide protection against cerebral infection. 

However, by amplifying central inflammatory responses, these responses could 

also cause damage to the brain and perhaps have downstream effects on 

behaviour. 
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7.3.1 Potential brain-specific effects of chemokine induction in 
the inflamed brain 

As well as recruiting inflammatory cells from the bloodstream into the brain, the 

central upregulation of chemokines could have a direct impact on the brain 

itself. As has been described in Section 1.3.2.1, chemokines have been 

postulated to play a neuromodulatory role in the CNS and indeed, all of the 

chemokine receptors that were upregulated in the brain in response to LPS 

treatment are also expressed by neurons and/or glia. Whilst very little is known 

about the role of these receptors or their respective ligands in the brain, a 

variety of theories have been postulated. As will be discussed below, there are 

reports that chemokines can act as neuronal survival factors and 

neuromodulators. Furthermore, they may act on glial cells to modulate the 

extracellular inflammatory milieu. As a result, the upregulation of chemokines 

and their cognate receptors in the brain may modulate brain function and so 

impact on behaviour.  

Interestingly, a number of the chemokines that were induced in the brain in 

response to multiple systemic LPS challenges can directly stimulate a Ca2+ influx 

in cultured neurons via pertussis toxin-sensitive GPCRs497-502. It has been 

suggested that this may allow chemokines to act pre-synaptically to modulate 

the post-synaptic release of neurotransmitters503. However, the evidence for this 

is sparse and at times contradictory (Section 1.3.2.1). There are reports to 

suggest that CCL5 may have the capacity to modulate glutamatergic transmission 

in cultured neurons455,504. Musante et al. demonstrated that CCL5 treatment 

triggered the spontaneous release, but inhibited the potassium-evoked release, 

of glutamate from neurons in the human neocortex455. In contrast to these 

findings, Prisco et al. described a dose-dependent increase in potassium-evoked 

glutamate release when cultured spinal cord neurons were treated with CCL5, 

whilst basal release was unaffected504. This discrepancy may be due to the 

different populations of cultured neurons being used in the two studies and thus 

require further investigation.  

Although CXCR2 expression has also been reported on neurons in the CNS of both 

humans and rodents497,498,505, there has been little published regarding its role in 

neuromodulation. However one report suggests that CXCL1-induced Ca2+ 
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mobilisation resulted in increased neurotransmitter release from cerebellar 

Purkinje neurons498. Exposing cultured hippocampal neurons to CXCL10 has been 

shown to induce intracellular Ca2+ mobilisation and so increase both 

spontaneous, and evoked, synaptic transmission506. In addition, 

electrophysiological recordings taken from hippocampal slices have shown that 

acute exposure to exogenous CXCL10 alters synaptic plasticity in wild-type mice 

by inhibiting long term potentiation507. However, in transgenic mice which 

chronically produced CXCL10 under the astrocytic GFAP promotor, there was no 

effect on synaptic plasticity507. This study highlights the confounding data that 

can be derived from acutely exposing neurons to high concentrations of 

inflammatory chemokines and underlies the caution needed in making 

conclusions about the potential impact that LPS-mediated chemokine production 

may have on synaptic plasticity and behavioural responses. 

It has been discussed at various points in this thesis that injecting mice 

systemically with LPS results in the central production of numerous inflammatory 

mediators. This can have a multitude of detrimental effects on the brain and 

may create an environment that is toxic to neurons. There have been reports 

that CXCL1 can inhibit the induced apoptosis of cultured cerebellar granule cells 

by promoting the phosphorylation of extracellular signal-regulated kinase 

(ERK)505,508. Although no mechanism has been proposed, there are several studies 

demonstrating that CCL5 can also act as a survival factor in cultured 

neurons499,502,509. However, in contrast to these reports, CXCL10 has been 

reported to contribute to the apoptosis of primary neurons via caspase 9 

activation456. Consequently, following LPS treatment, the induction of 

chemokines in the brain may either positively, or negatively, influence neuronal 

survival. 

Injecting LPS directly into the CNS results in oligodendrocyte death and the 

subsequent formation of demyelinating lesions510,511. Therefore, in the event 

that LPS does have the capacity to breach the BBB following multiple systemic 

challenges, it could cause demyelination. CXCR2 ligands are thought to play a 

protective role in demyelinating CNS disorders, either by blocking 

oligodendrocyte apoptosis or by attracting oligodendrocyte precursor cells to 

damages sites in the brain to promote tissue repair446,512. As a result, the 
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induction of CXCL1 and CXCL2 may serve to protect the brain from direct LPS-

induced toxicity.  

In addition to potentially modulating neuronal transmission and survival, 

chemokines are known to act as communication molecules between glial cells 

and therefore may influence how these cells respond to systemic LPS challenge. 

Indeed, it has been reported that treating microglia with CCL5 in vitro results in 

a CCR5-dependent dampening of LPS-induced inflammatory cytokine and iNOS 

production513. This suggests that CCR5 signalling may protect the brain from 

microglial neurotoxicity. Conversely, stimulating cultured astrocytes with CCL5 

leads to an increase in the induction of inflammatory cytokine and chemokine 

transcripts, including Ccl3, Ccl5, Cxcl1 and Cxcl2
514. Although this effect was 

dependent on pertussis toxin-sensitive GPCRs, it was not attenuated by 

individually knocking out CCL1, CCL3 or CCL5, indicating redundancy of CCR 

usage in this setting. Little has been described regarding the role of CXCL1 or 

CXCL2 in glial cell communication and activation. However, it has been 

suggested that both chemokines can trigger the induction of inflammatory 

cytokines and chemokines, including CCL5 and CXCL10 from primary murine 

astrocytes515. Thus, signalling through glial chemokine receptors may modulate 

the extracellular cytokine and chemokine milieu of the brain during 

inflammation. 

These studies highlight a number of brain-specific responses that may arise 

following chemokine induction in the brain. The chemokines that are most 

upregulated in the brain in response to repeated LPS challenges potentially 

share the capacity to modulate neuronal transmission and survival. By mediating 

communication between, and activation of, glial cells in the brain, they may 

also modulate the extracellular inflammatory environment. There is therefore a 

number of ways in which the chemokines induced in this model might impact on 

behaviour. CCL5 has been shown to modulate glutamate release from nerve 

endings. As described in Chapter 1, aberrant glutamate production has been 

linked to the pathophysiology of depression. In support of a role for CCL5 in 

modulating behaviour, there are some preliminary data, from Kalkonde et al., to 

suggest that CCR5 ligands may impair social recognition in mice516. In addition, a 

report by Lee et al. demonstrated that long-term and spatial memory was 

impaired in CCR5-deficient mice454. However, this was not consistent with the 
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study by Kalkonde et al. who showed that spatial memory was comparable in 

wild-type and CCR5-deficient mice516. In addition to glutamate modulation, 

chemokine induction in the brain may also contribute to behavioural deficits by 

stimulating the production of inflammatory cytokines by glial cells. The impact 

that cytokines can have on behaviour has been described in Chapter 1. In 

summary, based on the current literature regarding their brain-specific effects, 

a role for chemokines in mediating LPS-induced behavioural changes could be 

hypothesised. However, the data available on this subject sparse and often 

contradictory, making this hypothesis highly speculative. 

7.4 Overview and hypotheses 

In order to recognise, and respond to, a viral or bacterial infection, the innate 

immune system utilises a number of different PRRs which specifically recognise 

PAMPs from various sources. LPS is a carbohydrate-rich derivative of bacterial 

cell walls. By interacting with TLR4, LPS alerts the immune system to the 

presence of a bacterial infection, resulting in a potent inflammatory response in 

the periphery. In addition to mobilising the effector arms of the innate immune 

system, LPS-induced inflammation is transmitted to the brain to evoke an 

appropriate behavioural response. The experiments outlined in this thesis 

suggest that systemic LPS may trigger the production of type I IFNs in the brain, 

or that peripherally produced type I IFNs can directly access the brain (Figure 

7.2). The impact that type I IFNs have on behaviour has been well characterised 

and I have therefore hypothesised that systemic LPS-mediated type I IFN 

production, either in the periphery or the brain, may contribute to LPS-induced 

behavioural changes. 
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Figure 7.2 Response in the brain to a single systemic LPS injection: Observations and 
hypotheses 
Systemic LPS is known to interact with TLR4 to activate innate immune cells in the periphery, such 
as neutrophils, macrophages and dendritic cells (DCs). This triggers the enhanced release of 
inflammatory cytokines into the circulation. LPS-induced inflammatory cytokines, and LPS itself, 
can activate the cerebral endothelium, or perivascular macrophages (PVM) in the circumventricular 
organs, which then relay inflammatory signals to the brain via the release of secondary 
messengers. In this thesis, one of the observed effects in the brain following systemic LPS injection 
was the enhanced expression of interferon (IFN) stimulated genes (ISGs). As these ISGs were 
known to be mediated predominantly by type I IFNs, this response may be indicative of enhanced 
type I IFN production. Type I IFNs could be produced by, and/or stimulate ISG expression in, any 
one of the brain-resident immune cells or cerebral vascular endothelial cells. Alternatively, 
peripherally produced IFNs may have a direct effect on the brain. There is a long-established link 
between type I IFNs and depression. Therefore central IFN production is a possible novel link 
between systemic LPS injection and behavioural changes. Of the ISGs induced in the brain in 
response to systemic LPS challenge, Cxcl10 showed the greatest upregulation. In addition, there 
was elevated transcription of Icam1 and Vcam1. This transcriptional response may suggest that the 
brain is being primed for T cell infiltration. 
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Following an acute systemic LPS challenge, transcripts encoding the T cell 

chemoattractant CXCL10, and the cellular adhesion molecules ICAM-1 and VCAM-

1, were elevated in the brain (Figure 7.2). Due to the adversity of a cerebral 

bacterial infection, this transcriptional response may represent a protective 

strategy whereby the brain is being primed for the infiltration of memory T 

cells. Following daily injections of systemic LPS, a number of inflammatory 

chemokine transcripts were induced in the brain. Due to their proposed effects 

on neuronal transmission and survival, these chemokines may directly modulate 

behaviour. However, in this model, chemokine induction was associated with the 

recruitment of neutrophils, and then T cells, to the brain from the periphery 

(Figure 7.3). Both of these cell types have the capacity to amplify local 

inflammatory responses in the brain, which could result in neuronal damage 

and/or have an impact on behaviour. Although this appears counterproductive, 

the effects of repeated LPS injection might mimic the effects of a chronic 

bacterial infection in the periphery, and these leukocytes may confer protection 

against the threat of cerebral infection. Therefore, following a single LPS 

challenge, the brain may become sensitised to LPS-induced inflammation and 

prime itself for leukocyte recruitment. If LPS exposure continues, neutrophils 

and T cells are recruited to the brain, possibly with a principle goal of providing 

protection. 
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Figure 7.3 Response in the brain to daily systemic LPS injections: Observations and 
hypotheses 
Chronic exposure to LPS in the periphery results in endotoxin tolerance, which is associated with a 
downregulation of TLR4 on leukocytes517 and attenuated inflammatory cytokine production in the 
periphery. However, the brain continues to respond to circulating LPS by upregulating inflammatory 
chemokine transcripts. This could be due to the continued response of cerebral endothelial cells to 
circulating LPS, or chronic LPS exposure may increase the permeability of the blood brain barrier 
(BBB) and thus enable LPS to enter the brain. Chemokine induction in the brain was associated 
with the infiltration of leukocytes from the periphery to the brain parenchyma. Neutrophils were 
recruited first, presumably in response to increased CXCL1 and CXCL2. This was followed by an 
accumulation of T cells in the brain. As neutrophils can enhance inflammatory chemokine 
production, and release toxic agents which can disrupt BBB integrity, their recruitment to the brain 
may pave the way for these infiltrating T cells. Leukocyte recruitment may serve to protect the brain 
from the threat of a possible bacterial infection. However, both T cells and monocytes can produce 
inflammatory cytokines which would contribute to the inflammatory milieu of the brain. In addition, 
these cytokines, and LPS-induced inflammatory chemokines, may play a role in modulating brain 
function and behaviour.  
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7.5 Conclusions 

The findings described in this thesis provide novel concepts that demonstrate a 

molecular link between peripheral inflammation and interferon responses in the 

brain. Systemic LPS has the capacity to remotely trigger an immune response in 

the brain. Following acute exposure to LPS in the periphery, the expression of 

ISGs, and other microarray target genes, in the brain was distally modulated in a 

manner that may be dependent on TLR-induced type I IFN production. Whether 

type I IFNs were produced in the brain, or whether peripherally induced IFNs 

directly access the brain to modulate ISG expression, remains open to further 

investigation; as does the downstream effects of central ISG induction. Due to 

the well established link between type I IFNs and depression, TLR-induced IFN 

production is worth investigating as a potential key mechanism linking peripheral 

inflammation with sickness behaviour.  

Repeated injection of LPS in the periphery triggered a transient increase in 

chemokine transcription in the brain. As there are reports to suggest that 

chemokines can modulate neurotransmitter release and the extracellular 

cytokine environment, this chemokine induction could indirectly impact 

behaviour. However, the most characterised function of chemokines is to recruit 

leukocytes to sites of inflammation. Accordingly, chemokine induction in the 

brain during this model was associated with an influx of leukocytes from the 

periphery, and an increase in mRNA encoding the relevant chemokine receptors. 

Thus, whilst their role in modulating brain activity and behaviour cannot be 

excluded, it seems likely that chemokine induction in the brain following daily 

systemic LPS injections mediates the recruitment of leukocytes from the 

periphery. These data highlight a potential protective mechanism that could 

prevent a chronic bacterial infection from spreading from the periphery to the 

brain. 



275 

7.6 Future directions 

Although the studies described in this thesis have generated some interesting 

and novel data, these data are largely descriptive and would benefit from more 

rigorous testing of the involved mechanisms. There are a number of possible 

experiments that could be done to further explore the potential mechanisms of 

ISG induction in the brain which have been described above. 

As well as being mainly descriptive, the data described in this thesis are limited 

as, instead of focusing on specific brain regions and neuronal cell populations, 

they concentrate on global gene expression occurring throughout the entire 

brain. As described, gene expression was assessed in these studies 48 hours 

following systemic LPS injection. With nothing published, to my knowledge, 

regarding the response in the brain at this time point, taking an unbiased 

approach in terms of which brain regions to focus on was an obvious decision. 

However, it would now be interesting to narrow down on the specific brain 

regions or cell types that respond to peripheral inflammation by upregulating 

ISGs and chemokine transcripts. 

Regional induction of ISGs and chemokine transcripts could be assessed by 

performing gene expression assays on micro-dissected regions of the mouse brain 

following LPS-challenge. However, a more in-depth approach to explore the 

region-specific effects of systemic LPS challenge would be to use fluorescent in 

situ hybridisation (FISH). FISH involves the use of fluorescently-labelled probes, 

specifically designed to bind to transcripts of interest on tissue sections. It can 

be combined with fluorescent immunohistochemistry so that the expression of a 

number of target genes and proteins can be visualised on one section 

simultaneously. Not only would this technique answer the question of which cell 

types respond to peripheral inflammation, but it would facilitate the temporal 

and spatial mapping of target gene expression in the brains of LPS-challenged 

mice. This method could also be used to establish whether IFN transcripts were 

induced in the brain and whether there was any colocalisation between IFN and 

chemokine transcripts that could highlight a potential mechanism of chemokine 

regulation. Moreover, by identifying the expression sites of IFNs, chemokines and 

their respective cognate receptors, hypotheses could be developed as to what 
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potential neurological effects these molecules might have that could impact 

behaviour. 

Although a number of observations have been made from this work, the extent 

to which these are biologically linked remains unclear. Although FISH would help 

to gain a better understanding of the temporal and spatial pattern of events in 

the brain following systemic LPS challenge, it is not sufficient to directly link any 

of the observed responses. As described previously, the involvement of TLR4-

induced non-canonical signalling in inducing ISG expression in the brain could be 

established using TRIF- or IRF3-deficient mice. Similarly, the effect of type I IFNs 

on the induction of chemokines in the brain could be easily investigated using 

IFNAR-deficient mice. In addition, as was described in Chapter 5, the role of 

specific chemokines in recruiting leukocytes to the brain could be verified using 

chemokine receptor antagonists. Therefore, genetically manipulated mice and 

chemokine receptor antagonists could be used to generate a better 

understanding of the pathways linking peripheral inflammation to IFN responses 

and chemokine induction in the brain. 

Finally, whilst it was beyond the scope of this project, the data described in this 

thesis would greatly benefit from an in depth investigation into the possible 

impacts that LPS-induced IFN responses may have on the brain and on behaviour. 

Although behavioural deficits have been reported in mice following peripheral 

LPS or IFNα administration281,282,284,518, there is nothing in the literature to 

suggest that type I IFNs play a role in LPS-induced sickness behaviour. An 

important experiment that could link type I IFNs to LPS-induced behavioural 

changes would be to compare sickness behaviours, and depression-like 

behaviours, in wild-type and IFNAR-deficient mice following systemic LPS 

injection. As LPS-induced ISG induction appears to be a TLR-driven response, this 

may underpin behavioural changes in infectious pathologies. 
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