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ABSTRACT 

Hodgkin lymphoma (HL) is a malignant lymphoma that largely affects young adults 

and is the second most common malignancy in this age group. Overall, around 

one third of cases are associated with the Epstein-Barr virus (EBV) and this 

association is believed to be causal. In young adults less than 20% of cases are 

EBV-associated and there are few clues to the aetiology of the EBV-negative form 

of the disease. Studies on the molecular genetics of HL have been hindered by 

the scarcity of the tumour cells, the Hodgkin and Reed-Sternberg (HRS) cells, 

within turnours and the lack of an animal model. Recently developed techniques 

for the enrichment and micromanipulation of HRS cells from cell suspensions and 

frozen sections have, however, opened up new avenues for the investigation of 

this enigmatic disease. 

Diagnosis of HL is often straightforward but in some cases differentiation from non- 

Hodgkin lymphoma (NHL) can be problematic. In a recent epidemiological study 

of 575 consecutive cases of HL in Scotland and the Northern Region of England, 

expert histopathological review suggested that -5% of cases had been wrongly 

classified as HL (Jarrett et al. 2003). Although there has been enormous progress 

in the treatment of HL around 25% of cases do not respond to conventional 

treatment, and there is a need for better prognostic markers to identify such 

patients at the time of diagnosis in order to institute more aggressive therapy. 

xxý 



Cytogenetic analysis has been extremely productive in the investigation of NHLs 

where the identification of non-random chromosomal abnormalities has led to the 

discovery of numerous oncogenes. In follicle centre cell lymphoma (FCL), tumour 

cells carry the t(14: 18) translocation which juxtaposes the immunoglobulin (1g) 

heavy chain gene on chromosome 14 with the bcl-2 gene on chromosome 18, 

resulting in deregulation of BCL-2. Investigation of this translocation has led to an 

improved understanding of the biology of both FCL and apoptosis, and the 

demonstration of t(14; 18) has proven useful both diagnostically and in clinical 

follow-up. Similarly, the identification of the t(2: 5) translocation in anaplastic large 

cell lymphoma (ALCL) allowed production of antibodies to the fusion protein NPM- 

ALK and the recognition of a discrete subgroup of patients with ALK-positive 

lymphoma or'ALKoma'. 

In contrast to the situation with NHL, conventional cytogenetic studies in HL have 

been less numerous and have been hindered by the scarcity and low mitotic rate 

of HIRS cells. Normal karyotypes have been found in almost half the cases studied 

but it is questionable whether such karyotypes actually correspond to the HIRS 

cells. In addition, chromosomal abnormalities have been detected in the reactive 

component of lesions further complicating interpretation. 

An alternative approach to studying genetic abnormalities in HL is to use 

comparative genomic hybridisation (CGH). This technique provides a global 

approach for screening clinical specimens for genetic imbalances and can be 

performed when only very small amounts of tumour deoxyribonucleic acid (DNA) 



are available. CGH involves labelling tumour DNA and DNA from a normal source 

with two different fluorescent dyes. The labelled DNA samples are mixed at an 

equal ratio and used as a probe for in situ hybridisation on normal metaphase 

spreads. The hybridisation profile of test and control DNA along the length of each 

chromosome is then analysed, the fluorescent ratio of the two fluorochromes is 

calculated and regions of chromosomal loss or gain determined. Two groups have 

recently applied CGH to the study of HL. Using slightly different methodologies, 

both found consistent chromosomal losses and gains, however, the results from 

the two studies differed, emphasising the need for additional studies. 

To determine whether recurrent genomic imbalances are a feature of HL, CD30- 

positive HIRS cells were laser microdissected from 20 cHL cases and 4 HL-derived 

cells lines and subjected to analyses by CGH. In primary turnours, the most 

frequently involved chromosomal gains were 17q (70%), 2p (40%), 12q (40%), 17p 

(40%), 22q (35%), 9p (30%), 14q (30%), 16p (30%), with minimal overlapping 

regions at 17q2l, 2p23-13,12q24,17p13,22q13,9p24-23,14q32,16p13.3 and 

16pl 1.2. The most frequent losses involved 13q (35%), 6q (30%), 11 q (25%) and 

4q (25%), with corresponding minimal overlapping regions at 13q2l, 6q22,11 q22 

and 4q32. Statistical analysis revealed significantly more gains of 2p and 14q in 

the older adult cases; loss of 13q was associated with a poor outcome. The 

results suggest that there is a set of recurrent chromosomal abnormalities 

associated with cHL and provide further evidence that cHL is genetically distinct 

from nodular lymphocyte predominance Hodgkin lymphoma (NLPHL). 

Abnormalities of 17q are infrequent in other lymphoma or NLPHL; this finding, 

xxiv 



coupled with current knowledge of gene expression in cHL, suggests that genes 

present on 17q may play an important role in the pathogenesis of cHL. Combined 

immunophenotype and interphase cytogenetic (FICTION) studies were used as 

techniques for follow-up studies. 

High expression of both STAT3 and STAT5a has been described in cHL (Chen et 

al. 2001; Hinz et al. 2002) and their genes are located in 17q21.2. Constitutive 

activation of NF-KB has been found to be a feature of the HIRS cells in cHL and 

has been shown to facilitate escape from apoptosis (Bargou et al. 1996). The c-rel 

gene encodes for a subunit of NF-KB and is located on chromosome 2p16. REL 

amplification has been shown in some cHL cases (Joos et al. 2002) and therefore 

REL was selected as another candidate gene for further study. Non-functional 

inhibitor proteins of NF-KB, such as lKBa, has been described as an alternative 

mechanism for the aberrant activation of NF-KB (Wu et al. 1996). As part of the 

follow-up studies, IkBa gene mutation status and loss of heterozygosity (LOH) in 

the HIRS cells were determined by sequence analysis and SNP assays. 

FICTION confirmed that gains of 2p involved the REL gene but gains on 17q were 

not due to amplification of STAT3/5a. Other candidate genes present on 17q 

could be important in the pathogenesis of cHL. Frequent IkBa mutations were 

detected but many are not considered to be of functional importance. REL gain, 

EBV status, IkBa mutation or LOH were not mutually exclusive mechanisms in the 

pathogenesis of cHL. 
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Cha pte rI 

GENERAL INTRODUCTION 



1.1 Introduction 

Hodgkin lymphoma (HL) is the commonest form of malignant lymphoma in young 

adults (Cartwright et al. 1997) and accounts for approximately 30% of all 

lymphoma. Although in recent years, cumulative evidence has pointed towards a 

causal relationship between the Epstein-Barr virus (EBV) and HL, this only applies 

to a proportion of cases (Gledhill et al. 1991; Jarrett et al. 2003). In young adults 

where the majority of cases are negative for EBV, the aetiology remains unknown. 

It is suspected that other infectious agents may be involved but so far they remain 

elusive (Jarrett and MacKenzie 1999). 

In contrast to non-Hodgkin lymphoma (NHLs), which frequently arise at extranodal 

sites and spread in an unpredictable fashion, HL typically arises from cervical 

lymph nodes and spreads to anatomically contiguous nodes. HL is characterised 

morphologically by the presence of the distinctive neoplastic giant cells, Hodgkin 

and Reed-Sternberg (HRS) cells, which are always surrounded by a mixture of 

non-neoplastic inflammatory and accessory cells. 

Studies on the molecular genetics and cytogenetics of HL have been hampered by 

the scarcity of HIRS cells within lesions, which often make up only 0.1-1% of the 

cells within affected lymph nodes (Kapp et al. 1995), and the lack of model 

systems. There are currently 15 HL-derived cell lines but only one of these 

(1-1236) is proven to be derived from the original tumour cells. Attempts at 

producing useful animal models have also been unsuccessful (Krajewski et al. 

2 



1995). Severe combined immunodeficient (SCID) mice injected with cell 

suspensions from HL nodes develop turnours that have a similar phenotype but 

not genotype to the original HIRS cells, indicating that they are not derived from the 

tumour cells. 

1.2 Clinical features of Hodgkin lymphoma 

HL commonly presents with enlargement of the cervical lymph nodes, but nodes 

elsewhere may also be the primary site. Enlarged nodes are classically painless 

and 'rubbery. Other clinical features of HL are fever, drenching night sweats, loss 

of weight, pruritus and alcohol-induced pain at the site of the enlarged node. 

Fever, night sweats and weight loss constitute the B symptoms, and are usually 

seen in more advanced stages of the disease. The classical Pel-Ebstein fever, 

which consists of a few days of high pyrexia followed by apyrexia for a few days, is 

uncommon. Symptoms due to involvement of other organs, for example, bone, 

lung and skin, may rarely be seen. Examination reveals lymphadenopathy, 

sometimes with hepatomegaly and splenornegaly depending on the stage of 

disease. A chest X-ray and/or chest CT may show mediastinal lymphadenopathy 

or pulmonary infiltration. The diagnosis of HL rests on the biopsy of a suitable 

node (Malpas 1990). 

Following the diagnosis of HL, staging is carried out to determine the extent of the 

disease. The Ann Arbor staging classification for HL was formulated in 1971 to 

provide a rational basis upon which treatment decisions could be made for patients 

at initial presentation (Rosenberg et al. 1971). With the advent of better diagnostic 
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imaging and the recognition of important prognostic criteria, the classification was 

revised at a meeting in the Cotswolds, UK in 1988 (Lister and Crowther 1990). 

Abdominal CT scanning has replaced the use of staging laparotomy and is used to 

detect infiltration of iliac, para-aortic and coeliac nodes. PET scanning has 

recently been introduced and it has been used in clinical trial situations (Naumann 

et al. 2004). 

In the early stages the haematological findings are usually normal. Later, a 

normochromic, normocytic anaemia with a raised erythrocyte sedimentary rate 

(ESR) is commonly seen. Marrow involvement is uncommon but may be 

associated with leucoerythroblastic anaernia. Biochemical findings include 

hyperuricaemia and abnormal liver biochemistry due to liver involvement. Raised 

lactate dehydrogenase (LDH) has been found by some groups to be associated 

with a poor prognosis but this association is not apparent in the large international 

datasets (Straus et al. 1990; Ferme et al. 1997). 

Over the past 50 years, the outcome for patients with HL has changed from being 

almost invariably fatal to being curable in the majority of cases. The two effective 

treatments for HL are radiotherapy and combination chemotherapy. Despite the 

success of such therapies, the morbidity associated with the effects of treatment 

including cardiopulmonary fibrosis, infertility and secondary malignancy cannot be 

underestimated. Failure to achieve a complete response and early relapse are 

often associated with a bad prognosis, and there are few long-term survivors in 

this group. At present, there are no specific markers that can distinguish this 
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subgroup but prognostic indexes are sometimes useful (Proctor et al. 1991; 

Hasenclever 2002). 

1.3 Histopathology of Hodgkin lymphoma 

The diagnosis of cHL is established with the identification of Reed-Sternberg (RS) 

cells in the appropriate cellular milieu. RS cells are large cells that either have a 

large bi-lobed or multi-lobated nucleus (Figure 1.1). Each lobe or nucleus contains 

one large inclusion-like eosinophilic nucleolus, up to about 10 Pm in size, the 

diameter of a small lymphocyte nucleus. The cytoplasm is usually relatively 

abundant, so that an overall diameter of 20 to 50 pm can be reached. 

Mononuclear Hodgkin cell variants are also present and with RS cells are 

collectively called HRS cells. Lacunar cells are mononuclear HRS cells with 

abundant amphophilic cytoplasm and retracted nuclei seen in formalin-fixed 

paraffin-embedded sections. Occasionally, apoptotic Hodgkin cells, sometimes 

termed mummified or zombie cells, are present (Chan 2000). Cells closely 

resembling HIRS cells can be found in a wide variety of reactive and neoplastic 

diseases and therefore these cells must be present in the appropriate background 

before a diagnosis can be reached. The reactive infiltrate in the background 

surrounding the HIRS cells is composed of a variable mixture of lymphocytes, 

eosinophils, neutrophils, plasma cells and histiocytes. The definitive diagnosis of 

HL can be made by morphological assessment alone although 

immunocytochernistry (ICC) is usually used to assist diagnosis and differentiate 

subtypes (Weiss et al. 1999; Stein et al. 2001; Zochowski et al. 2001). The HIRS 
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cells typically express cluster of differentiation (CID) 15 and CD30 but lack B or T 

cell lineage markers (see section 1.5). 

Figure 1.1 Image of Hodgkin and Reed-Sternberg cells from section of paraffin embedded material 

(x400, H&E staining, courtesy of Dr. J. K. C. Chan). 
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Figure 1.2 Image of Hodgkin and Reed-Sternberg cell from cytological preparation (x400, DiffQuik 

staining). 

Cytology of HL (Figure 1.2) shows a dispersed population of lymphoid and other 

cells in which scattered large cells are evident (Das and Gupta 1990; Olson et al. 

2000). As expected, the lymphocytes are small with a mature chromatin pattern. 

The HIRS cells are recognisable as large cells with bilobed or multilobated nuclei 

and prominent nucleoli (Weiss et al. 1999). Such features were helpful for 

recognition of HIRS cells in cytospin preparations used in this research project. 
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1.4 Classification of Hodgkin lymphorna 

Nodular lymphocyte predominant 
Hodgkin lymphoma 

Classical Hodgkin lymphorna 

Nodular sclerosis (grade 1 and 2) 

Mixed cellularity 
Lymphocyte-rich 

Lymphocyte-depleted 

Table 1.1. World Health Organisation Classification of HL (2001) 

Since the origin of the HIRS cell is known to be a lymphoid cell (see section 1.5), 

the term Hodgkin lymphoma (HL) is now preferred over Hodgkin disease (HID). 

Biological and clinical studies in the last 20 years have shown that HL is comprised 

of two disease entities: nodular lymphocyte predominant Hodgkin lymphoma 

(NLPHL) and classical Hodgkin lymphoma (cHL) (Harris et al. 1994; Harris 1999; 

Stein et al. 2001) (Table 1.1). These two entities differ in their clinical features and 

behaviour, their histopathology and the origin of the tumour cells (see section 1.5). 

Four subtypes are described within classical Hodgkin lymphoma (cHL): nodular 

sclerosis (NS), mixed cellularity (MC), lymphocyte rich classical (LRC) and 

lymphocyte-depleted (LD). These subtypes differ somewhat in their clinical 

features, the composition of the cellular background, histopathological appearance 

and the frequency of EBV involvement, but not in the immunophenotype of the 

HIRS cells, which is the same in all four variants. 
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1.4.1 Nodular lymphocyte predominant Hodgkin lymphoma 

Figure 1.3 Image of L&H cells from section of paraffin embedded material (x400, H&E staining, 

courtesy of Dr. J-K. C. Chan). 

At low magnification, the lymph node shows complete or subtotal effacement of 

the architecture. The capsule is usually intact without pericapsular infiltration and 

there may be a rim of uneffaced lymphoid tissue, which may be normal, 

hyperplastic or show progressive transformation of germinal centres. Fibrosis is 

uncommon but may be present and may be band-like, mimicking NSHL. A 

nodular or a nodular and partly diffuse infiltration is found in the effaced areas. 

The presence of a nodular component is mandatory for the diagnosis of NLPHL. 

Nodules are large and relatively numerous, sometimes resembling progressively 
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transformed germinal centres. In some cases the nodules are poorly demarcated 

and difficult to discern, and a diffuse architecture may be focally present. If a large 

number of well-prepared sections show no evidence of nodularity, the possibility of 

either LRCHL or T-cell-rich large B cell lymphoma should be considered. 

The neoplastic cells of NLPHL are the lymphocytic and histiocytic (L&H) cells 

(popcorn cells) and are usually found in and around the nodules (Figure 1.3). In 

diffuse areas, the L&H cells resemble centroblasts but are larger and have 

lobulated nuclei and small to moderate-sized basophilic nucleoli. The cytoplasm is 

abundant and only slightly basophilic. Ultrastructural studies demonstrate that 

L&H cells have the appearance of centroblasts of germinal centres (Poppema et 

al. 1979). In addition, follicular dendritic cells characteristic of the B-cell follicle can 

be found in the vicinity of the L&H cells (Poppema et al. 1979). Typical HIRS cells 

are few in number or completely lacking. If typical HIRS cells are easily detected, a 

diagnosis of LRCHL should be suspected. In some cases, L&H cells might 

resemble lacunar cells because both cell types show irregularly shaped or 

lobulated nuclei, small nucleoli, and broad pale to slightly basophilic cytoplasm. 
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1.4.2 Nodular sclerosis Hodgkin lymphoma 

---. 

o 

ll, ýý kw 

Figure 1.4 Image of NSHL from section of paraffin embedded material (x1O, H&E staining, courtesy 

of Dr. J. K. C. Chan). 

The NS subtype of cHL is characterized by collagenous bands and lacunar cells 

(Figure 1.4). The presence of one or more sclerotic bands is the defining feature. 

These bands usually radiate from a thickened lymph node capsule, often following 

the course of a penetrating artery. The bands are composed of mature, laminated, 

relatively acellular collagen and are birefringent in polarized light. In most cases, 

several broad collagenous bands can be identified, but a single band may be 

present, or fibrosis may be so extensive that only isolated nodules of lymphoid 

tissue remain. 
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The collagenous bands of NSHL enclose nodules of lymphoid tissue containing 

variable numbers of HIRS cells. Lacunar cells are the most common type of HIRS 

cell present and may be found in large numbers or in sheets. They tend to 

aggregate at the centre of nodules, sometimes forming a rim around central areas 

of necrosis. Classical IRS cells are difficult to find and may not be found in small 

biopsy specimens. Eosinophils and neutrophils are often numerous, but 

histiocytes and plasma cells are usually less conspicuous in the NS subtype. 

Fibrohistiocytic foci are sometimes found in the centres of nodules or extensively 

replacing the tissue. 

In most Western centres, NS is the most common type of HL, accounting for 

around two-thirds of all cases (Colby et al. 1981; Jarrett et al. 2003). Various 

investigators have therefore attempted to subclassify nodular sclerosis into 

prognostic groups. The British National Lymphoma Investigation (BNLI) has 

established a grading system for NSHL (MacLennan et al. 1992). In Grade 1,75% 

or more of the nodules contain scattered HIRS cells in a lymphocyte rich, mixed 

cellular, or fibrohistiocytic background. In Grade 2, at least 25% of the nodules 

contain increased numbers of HIRS cells (defined as a sheet of cells filling a x400 

high power field). Although this system has been criticised on the basis of 

reproducibility, (Ferry et al. 1993) have demonstrated that cases classified as 

Grade 2 have a significantly worse prognosis than those classified as Grade 1; 

(Hess et al. 1994) have failed to demonstrate a difference between these grades 

of NSHL. A more recent study has suggested a simpler grading system based on 
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number of eosinophils, lymphocyte depletion and cellular atypia (von Wasielewski 

et al. 2003). 

1.4.3 Mixed cellularity Hodgkin lymphorna 
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Figure 1.5 Image of MCHL from section of paraffin embedded material (x200, H&E staining, 

courtesy of Dr. J-K. C. Chan). 

The MC subtype makes up approximately 21% of Gases of HL in Western 

populations, but it may constitute 50% or more of the cases in developing 

countries (Correa and O'Conor 1971; Jarrett et al. 2003). The capsule is usually 

intact and of normal thickness. A vague nodularity may be present at low 

magnification, but the presence of any definite fibrous bands would warrant 
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classification as NS rather than MC. At high magnification, a heterogeneous 

mixture of HIRS cells, small lymphocytes, eosinophils, neutrophils, epithelioid and 

non-epithelioid histiocytes, plasma cells, and fibroblasts is present (Figure 1.5). 

Classical IRS cells are usually easy to find. 

1.4.4 Lymphocyte-depleted Hodgkin lymphoma 

Figure 1.6 Image of LDHL from section of paraffin embedded material (x200, H&E staining, 

courtesy of Dr. J. K. C. Chan). 

The LID subtype has almost disappeared with the use of modern classification 

systems. The most characteristic features are a marked degree of reticulin fibrosis 

surrounding single cells and lymphocyte depletion (Figure 1.6). In the reticular 
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variant, sheets of HIRS cells, often showing pleomorphic features, are found. In 

contrast to NS, this subtype is not characterized by the presence of thick fibrous 

bands, and the fibrosis envelops individual cells, not nodules of cells. Distinction 

from diffuse large B-cell lymphoma (DLBCL) can be difficult, and ICC studies are 

essential to confirm the diagnosis of the reticular subtype. In some cases of LD, 

features of both diffuse fibrosis and the reticular subtype may be present in 

different areas of the biopsy specimen. 

1.4.5 Lymphocyte-rich classical Hodgkin lymphoma 

Cases of LRCHL may resemble mixed cellularity, nodular sclerosis, or nodular 

lymphocyte predominance HL and may be either nodular or diffuse. Many cases 

of LRCHL have a close resemblance to MCHL, with a diffuse or vaguely nodular 

low-magnification appearance. IRS cells and variants are relatively rare but, when 

encountered, have identical features to the IRS cells of MCHL. The background is 

dominated by small mature lymphocytes. Eosinophils and neutrophils are usually 

restricted to blood vessels. Some cases of LRCHL may show a distinctly nodular 

appearance that may closely mimic NLPHL. The nodules of LRCHL often contain 

small reactive germinal centres with HIRS cells present in and near the mantle 

zones, a pattern that has been called follicular HL (Ashton-Key et al. 1995). 
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1.5 Biology of the Hodgkin and Reed-Sternberg cells of classical Hodgkin 

lymphoma 

The rarity of HIRS cells and L&H cells in tissues affected by HL has hampered HL 

research for decades. Based on morphological and immunological studies, nearly 

all haemopoietic cells have been postulated as the normal counterpart of HIRS 

cells (Drexler et al. 1989). This list includes lymphocytes, histiocytes, 

interdigitating dendritic cells, and even granulocytes. With the advent of single cell 

manipulation and PCR, it is now clear that in more than 98% of cHL cases the 

neoplastic cells are derived from mature B cells at the germinal centre stage of 

differentiation (Kanzler et al. 1996; Marafloti et al. 2000). In rare cases, they are 

derived from peripheral (post-thymic) T cells (Muschen et al. 2000; Seitz et al. 

2000). 

1.5.1 1 mmu no phenotypic studies of HIRS cells 

One of the first applications of enzyme labelled [CC was the analysis of HIRS cells 

in formalin-fixed and paraffi n-em bedded tissue sections for the expression of Ig G 

(Garvin et al. 1974; Taylor 1974). The HIRS cells in all cases studied showed a 

strong cytoplasmic positivity, pointing to a relationship between HIRS cells and IgG- 

producing B cells. Further studies revealed that the HIRS cells not only bound 

antibodies to IgG but also antibodies to IgK and k light chains (Kadin et al. 1978). 

Because normal B cells produce either IgK or Ig X light chains, but never both, it 

was concluded that the ICC of HIRS cells for Igic and X represented a technical 

artefact caused by uptake of Igs from the serum during the fixation process. This 

observation made it evident that ICC detection of a molecule in a given cell does 
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not necessarily indicate that it is synthesized by the labelled cell, especially if the 

molecule under investigation is present in the serum at a significant concentration. 

Therefore, attempts were made to produce antibodies against cell type-specific 

molecules that are absent from serum. These attempts succeeded when (a) 

permanent cell lines derived from HIRS cells became available for us as a source 

of HL-associated antigen and (b) monoclonal antibody technology was 

established. 

1.5.1.1 CD15 

The first antigen found to be commonly associated with HIRS cells was CID15. 

This association was first recognized by use of the antibodies TO (Stein et al. 

1982) and 3C4 (Schienle et al. 1982), and later Leu-Ml (Pinkus et al. 1985) and 

C3D1 (Stein et al. 1986). The detection of the CD15 moiety has achieved 

diagnostic significance because it is present in HIRS cells in most cases of cHL but 

is constantly absent from L&H cells of NLPHL (Pinkus et al. 1985). However, 

CD15 has no value as a marker of cell lineage because in normal subjects it is 

expressed on a variety of cells including late cells of granulopoiesis, epithelioid- 

type macrophages, various epithelial cells, and a subset of B and T cells following 

activation and/or transformation by EBV (Knapp et al. 1989). It may also be found 

on HIRS-like cells in infectious mononucleosis, and on the neoplastic cells of some 

NHLs (Wieczorek et al. 1985; Sheibani et al. 1986). 
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1.5.1.2 CD30 
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Figure 1.7 Image of CD30-positive HIRS cells from a section of paraffin embedded material (x200, 

DAB counterstained with touludine blue). 

In search of viral antigens in HIRS cells, in 1981 the research team of Stein 

generated polyclonal antibodies (Stein et al. 1981), and one year later monoclonal 

antibodies (Schwab et al. 1982), against the HL-derived cell line L428. These 

studies led to the discovery of the KA and Ki-24 molecules (Schwab et al. 1982; 

Stein et al. 1983), which were subsequently clustered as CD30 (Schwarting et al. 

1987) and CD70, respectively (Stein et al. 1989). 

By molecular cloning, the CD30 antigen was identified as a cytokine receptor of 

the tumour necrosis factor receptor (TNFR) family (Durkop et al. 1992). Gene 
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disruption and functional studies revealed that CD30 is involved in the negative 

selection of thymocytes and in the regulation of apoptosis and proliferation of 

activated lymphoid cells (Smith et al. 1993; Shanebeck et al. 1995; Amakawa et al. 

1996). The CD30 antigen proved to be a useful marker for HIRS cells because it 

selectively labels HIRS cells in tissues affected by cHL (Figure 1.7). It is not 

entirely specific as CD30 is detected on some large perifollicular and interfollicular 

blasts in normal lymphoid tissue. Expression can be induced on normal peripheral 

blood B and T cells by mitogens and viruses (Stein et al. 1985), indicating that the 

CD30 antigen does not represent a viral antigen but rather a differentiation antigen 

whose expression is associated with activation of lymphoid cells. CD30 has also 

been reported to be expressed by a proportion of embryonal carcinomas, non- 

embryonal carcinomas, malignant melanoma, mesenchymal tumours and some 

myeloid cell lines (Gruss and Dower 1995). Despite the lack of specificity, CD30 

remains the most useful antigen for the identification of HIRS cells at the present 

time. 

The overall restriction of the occurrence of the CD30 antigen in normal subjects to 

occasional activated lymphoid cells strongly favoured a lymphocytic origin for HIRS 

cells (Stein et al. 1985). 

1.5.1.3 B- and T-cell markers 

In the majority of cases, consistency in the expression of lineage markers in HIRS 

cells is lacking. Supporting the derivation of HIRS cells from lymphoid cells was the 

occasional detection of B-cell antigens (e. g., CD1 9, CD20, CD22, CD79a) or T-cell 
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antigens (e. g., CD3, CD4, CD8, TCR 0 chain) on variable proportions of HIRS cells 

in cHL (Agnarsson and Kadin 1989; Dallenbach and Stein 1989; Schmid et al. 

1991 a; Zukerberg et al. 1991; Korkolopoulou et al. 1994). Although these findings 

were generally consistent with the cell lineage characteristics of HL-derived cell 

lines, they provoked much scepticism. This was because these markers were only 

demonstrable in a minority of cases, and when present were only present on a 

proportion of HIRS cells. It was therefore widely believed that the detectability of 13- 

and T-cell antigens on HIRS cells represented aberrant antigen expression and did 

not permit any conclusions to be drawn concerning the cellular origin of HIRS cells. 

In contrast, L&H cells were shown to consistently express the B-cell associated 

molecules J chain (Stein et al. 1986; Schmid et al. 1991 b), CD20 (Said 1992), and 

CD79a (Korkolopoulou et al. 1994), and to lack CID30, CD15 and T-cell antigens 

(Anagnostopoulos et al. 2000), indicating their distinctness from HIRS cells and 

their derivation from B cells. 

More recently, the B cell nature of HIRS cells has been further demonstrated by 

ICC for the B cell specific activator protein (BSAP) in approximately 90% of cases. 

BSAP is aB cell specific transcription factor and a product of the PAX5 gene (Foss 

et al. 1999). A further characteristic finding is the absence of the transcription 

factor Oct2 and / or its co-activator 13013.1. The latter is critical for the induction of 

Ig transcription in normal B cells (Marafioti et al. 2000). 
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1.5.1.4 Conclusions from immunophenotypic studies 

In summary, these studies agree that the L&H cells of NLPHL consistently express 

B-cell antigens and so their derivation from B cells is generally accepted. In cHL, 

the HIRS cells in most instances lack lineage-specific antigens and express some 

unusual molecules, including those characteristic of dendritic cells. However, the 

antigen profile of HIRS cells points towards a derivation from activated lymphoid 

cells mostly of B-cell type and occasionally of T-cell type. 

1.5.2 Cytokines and chemokines 

Overexpression and an abnormal pattern of cytokine and chemokine expression is 

observed in the HIRS cells of cHL. They express interleukin (IL) -2 (IL-2), IL-5, IL- 

6, IL-7, IL-9, IL-10, IL-13 and IL-13 receptor, g ran ulocyte-m acrophage colony 

stimulating factor, lymphotoxin-a, transforming growth factor-P (TGF-P), RANTES, 

MCP-4,1-309 and eotaxin (Herbst et al. 1996; Kadin and Leibowitz 1999; Teruya- 

Feldstein et al. 1999; Skinnider et al. 2001). Other interesting but not yet fully 

understood findings are the expression of restin (Bilbe et al. 1992; Delabie et al. 

1992), fascin (Pinkus et al. 1997), and more recently, thymus and activation 

regulated chemokine (TARC) by HIRS cells (Poppema et al. 1999). All three 

molecules are expressed in normal tissues on dendritic cells. Expression of 

eotaxin correlates with the extent of eosinophilia within the infiltrate (Teruya- 

Feldstein et al. 1999). Expression of TGF-P may account for the fibrosis seen in 

HL. The expression of TARC could contribute to recruitment of T-cells into lesions 

as well as rosetting of CD4+ T cells by HIRS cells. 
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1.5.3 Ig genes as markers for B-cells and clonality 

The clarification of the structure of the Ig gene locus led to the discovery that in B 

cells - in contrast to all other somatic cells - the Ig genes are rearranged 

(Rajewsky 1996). This process involves rearrangement of Variable - Diversity - 

Junction (V-D-J) segments and takes place during the maturation of B cells. The 

recombination of the Ig gene segments is random and associated with the 

incorporation of nucleotides (known as N segments) between the rearranged Ig 

gene segments in the immunoglobulin heavy chain (IgH) gene. A similar process 

takes place within the immunoglobulin light chain (IgQ genes at a later stage of 

development. The result is that each single, mature, non-malignant B cell contains 

distinct IgH and IgL rearrangements that are specific for an individual B cell. In 

contrast to reactive B cells, neoplastic cells from B-cell lymphoma have identically 

rearranged Ig genes and thus identical VDJ sequences. Early studies analysing 

the Ig locus confirmed that each B-cell lymphoma is derived from a single 

transformed B-cell and so represents - in contrast to the polyclonal proliferation of 

reactive B cells -a monoclonal B-cell population (Rajewsky et al. 1997). 

Analysis of the Ig gene locus in HIRS cells and L&H cells therefore presented a 

method that would unequivocally clarify whether they are B cell-derived and if so, 

whether they are polyclonal or monoclonal. Many research groups proceeded to 

analyse DNA extracted from HL biopsy specimens for the presence of clonal Ig 

rearrangements. Clonal rearrangements were detected in 25% of cases analysed 

by Gledhill et al in 1991 using Southern blot analysis (Gledhill et al. 1991). The 

results from other investigators were heterogeneous, with the majority being 
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negative (Knowles et al. 1986; Roth et al. 1988; Angel et al. 1993). With hindsight 

this result is not surprising, given that a clonal B-cell population must represent >2- 

5% of the total cell population before it will be detected by Southern blot analysis of 

the IgH locus. As previously described, HRS cells or L&H cells rarely exceed 1% 

of the cell population present in tissue samples affected by HL. 

1.5.4 Polymerase chain reaction studies of whole-tissue DNA 

The development of the PCR in 1985 (Saiki et al. 1985) and its subsequent 

simplification (through the use of a thermally stable polymerase) in 1988 (Saiki et 

al. 1988) opened up a new dimension in the analysis of genes. By means of this 

method it became possible to amplify specific nucleic acid sequences more than 

1012 times. Although PCR is exquisitely sensitive and can be used to analyse 

small samples, this technique does not improve the sensitivity of detection of Ig 

rearrangements when they are present in a polyclonal B cell background. 

Therefore PCR did not clarify the cellular origin and the clonality of HIRS cells 

(Tamaru et al. 1994; Manzanal et al. 1995). Where clonal rearrangements were 

detected, it could not be determined whether they were present in HIRS cells or 

L&H cells or in other cells (e. g. B-cell clones present in a germinal centre). 

1.5.5 Polymerase Chain Reaction Studies of Single Cells 

The high sensitivity of PCR made it possible to amplify and detect single gene 

copies for the first time. The emphasis therefore shifted to the isolation of pure 

populations of HRS cells and L&H cells for molecular biological investigations. In 

the first study of this kind, single cell cIDNA libraries were prepared from putative 
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HIRS cells. They were selected on the basis of their large size, their negativity for 

CD3, CD14, CD20 and their morphology and were isolated from single cell 

suspensions by means of a micropipette (Trumper et al. 1993). No consistent 

pattern of gene expression was detected, casting doubt on the reliability of the 

HRS cell identification. The research team led by Trumper (Roth et al. 1994) tried 

to improve cell identification by preparing cytospins from cell suspensions and 

subsequently ICC for CD30 or CD20 antigens. A second method of HRS cell 

isolation used thick paraffin sections from which cells were suspended by means 

of enzymatic digestion and mechanical force (Delabie et al. 1994). The 

suspended cells were immunostained in solution and then isolated by means of a 

pipette. A third method, established in the laboratory of Kuppers, isolated CD30+ 

HRS cells or CD20+ L&H cells from immunostained frozen sections using two 

hydraulically-driven micromanipulators and micropipettes (Kuppers et al. 1993). 

The advantage of this method was that the cells to be isolated could be reliably 

identified on the basis of morphology, antigen expression, and tissue localisation. 

This technique also avoided the loss of certain cell types, which regularly occurs 

when tissue is disrupted. However, a high level of manual dexterity was required 

and the procedure was time-consuming. Furthermore, the use of frozen sections 

results in nuclear truncation. 

1.5.5.1 Preliminary Results and Initial Problems 

The first single-cell studies of HRS and L&H cells provided heterogeneous results. 

Trumper's group failed to demonstrate Ig gene rearrangements in single HRS cells 

and L&H cells (Roth et al. 1994). In contrast, the research teams of Kuppers 
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(Kuppers et al. 1994), Chan (Delabie et al. 1994; Delabie et al. 1996; Foss et al. 

1999), and Stein (Hummel et al. 1995) found rearranged Ig genes in both HIRS 

cells and L&H cells. Despite this agreement, the results of these groups differed in 

their rearrangement patterns. Single L&H and HIRS cell-derived Ig 

rearrangements from individual cases reported by Chan's group were unrelated 

(i. e. polyclonal), whereas those found by Kuppers' group were identical (i. e. 

monoclonal) (Kuppers et al. 1994). Hummel et al. (1995) observed both 

rearrangement patterns in HIRS cells (i. e., cases with unrelated and cases with 

identical Ig gene rearrangements). To clarify which one of the observations was 

valid, Stein's team undertook the following investigations. First, the monoclonal 

and polyclonal HL cases were reanalysed by using additional primer sets (Stein et 

al. 1997). This study confirmed the presence of monoclonal Ig rearrangements in 

the HIRS cells of all the cases of cHL already determined to be monoclonal. 

However, in two of the four cases with polyclonal rearrangements, the 

reinvestigation led to the detection of identical (monoclonal) rearrangements, 

showing that the monoclonal rearrangements had escaped detection with the 

consensus primers used in the first analysis. Secondly, to understand why 

polyclonal Ig rearrangements were originally detected in some cases, 

rearrangement patterns were correlated with the cellular composition of the 

sections used for the isolation procedure. This analysis revealed that all of the 

sections that gave rise to polyclonal rearrangements in the single-cell assay 

contained a significant number of reactive B cells, whereas reactive B cells were 

rare or missing in the cases without polyclonal rearrangements. This strongly 
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suggested that the polyclonal rearrangements stemmed from the contaminating 

DNA of reactive small B cells rather than from HIRS cells. The subsequent 

examination of the cell isolation procedure revealed that this was indeed the case. 

It was shown that the DNA of reactive B cells tends to float off into the buffer 

covering the frozen sections during cell isolation; there was therefore a great risk 

of including contaminating B cell-derived DNA in the PCR assay when the selected 

HIRS cell or L&H cell was transferred to the PCR tube with a large volume of 

covering buffer (Marafioti et al. 1997). 

1.5.5.2 Final Results 

With optimisation of the cell isolation procedure, and the use of new sets of IgH 

gene and IgL gene primers, Stein's group investigated 1078 single Hodgkin and 

Reed-Sternberg (HRS) cells and 615 single L&H cells from 25 cHL cases 

(Marafioti et al. 2000) and 11 NLPHL cases (Marafloti et al. 1997). All analysable 

cells of all NLPHL cases and 24 of the 25 cHL cases showed identical Ig gene 

rearrangements in a given case. An unrelated rearrangement was found in only 

one out of 1639 cells. These findings confirmed that the HIRS cells and the L&H 

cells of most cHL cases and all NLPHL cases contain monoclonal Ig gene 

rearrangements. These results also vindicated the results of Kuppers et al. (1994), 

who had arrived at the correct result in their initial analysis. 

In follow-up studies, 15 additional cases of cHL and 5 additional cases of NLPHL 

were analysed (Kanzier et al. 1996; Braeuninger et al. 1997). In all but one of the 

cases clonal Ig gene rearrangements were detected. In two of the cases CD30+ 

26 



cells were enriched by magnetic activated cell sorting from the lymph node biopsy. 

It was demonstrated by Ig gene analysis that the enriched cells indeed 

represented the primary HIRS cells of the patient. This showed that viable HIRS 

cells represent clonal populations throughout the involved lymph nodes (Irsch et al. 

1998). In addition, the question of dissemination and persistence of the HIRS cells 

in the patient during the course of the disease was addressed. In each of 3 cases, 

it was shown that the same HIRS tumour clone could be found in different lymphoid 

organs and that relapses of the disease were caused by the original lymphoma 

clone. Dissemination of lymphoma cells was also observed in two cases of 

NLPHL (Jox et al. 1998). 

In conclusion, the demonstration of Ig gene rearrangements in the HIRS cells in 

approximately 98% of cases of cHL and in L&H cells in all cases of NLPHL proved 

the B-cell nature of these cells in most or all instances, respectively. The presence 

of monoclonal Ig gene rearrangements in HIRS cells and L&H cells indicates their 

origin from a single transformed B cell and a subsequent monoclonal expansion. 

The failure to detect rearranged Ig genes in HIRS cells and L&H cells was a false- 

negative finding. 
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1.5.6 Mapping of HIRS cells and L&H cells onto normal B-cell development 

Figure 1.8 Diagram of germinal centre B cell development. Nafve B cells, which have matured in 

the marrow, enter the germinal centre of lymph nodes following exposure to antigens and 

activation. Somatic hypermutation will take place here and only B cells with high affinity will be 

selected to become either a plasma cell or memory cell. Most of the B cells are eliminated by 

apoptosis. Hodgkin and Reed-Sternberg (HRS) cells are thought to derive from pre-apoptotic 

germinal centre B cells. 

Composite lymphoma may be defined as the simultaneous occurrence of HL and 

NHL in the same anatomic site or biopsy specimen (Kim et al. 1977). The most 

common form is B-cell NHL occurring in association with cHL, usually of the NS or 

MC subtype. The type of B-cell NHL involved reflects the incidence of B-cell 
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lymphoma subtypes in the population. Most composite lymphomas involve FL and 

DLBCL (Hansmann et al. 1989; Gonzalez et al. 1991). The association of chronic 

lymphocytic leukaemia (CLL) with HL has some distinctive features and is 

discussed below. 

Sequence analysis of the Ig rearrangements not only allows the unequivocal 

assignment of cells to the B-cell lineage and determination of their clonal 

relationship, but also specifies their stage of development. Mature but naive B 

cells harbour rearranged IgH genes, whereas activated B cells acquire somatic 

hypermutations within the IgH genes in the course of the germinal centre reaction 

(Figure 1.8) (Rajewsky 1996). The presence of somatic hypermutation in the Ig 

genes is a specific marker for germinal centre B cells and their descendents. 

Germinal centre B cells show evidence of ongoing somatic hypermutation and 

therefore tumours derived from these cells show clonal evolution of their Ig genes 

(Klein et al. 1998). Comparison of the sequences of HIRS cell-derived Ig gene 

rearrangements with corresponding germ-line segments demonstrated high loads 

of somatic mutations in all instances. In some cases these were associated with 

the presence of stop codons and deletions (termed 'crippled' mutations) (Kanzier 

et al. 1996; Marafloti et al. 2000). Although these findings indicated that HIRS cells 

of cHL display some molecular features of germinal centre B cells, they did not 

determine the precise relationship between HIRS cells and germinal centre B cells. 

This gap was closed in an investigation of Ig gene rearrangements and their 

mutation patterns in three cases of composite lymphoma (Brauninger et al. 1999; 

Marafloti et al. 1999). 
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In the 3 cases studied, the HIRS cells and the NHL B-cells of the composite 

lymphoma contained identical Ig gene rearrangements, indicating their derivation 

from the same B-cell precursor. All rearrangements carried somatic mutations; 

some of these were shared by the HIRS cells and the NHL cells, whereas others 

were exclusive to each cell type. The rearrangements in the 3 NHLs, but not those 

in the HIRS cells, showed signs of ongoing mutation, i. e. individual clonally-derived 

cells had different mutations. The shared sequences unequivocally mapped the 

differentiation stage of the identified common B-cell precursor as that of a germinal 

centre B cell and ruled out the progression of HIRS cells to NHL cells. These 

findings allowed the following conclusions to be made. First, HIRS cells are 

derived from germinal centre B cells and not from post-germinal centre B cells. 

Secondly, the descendants of the common B-cell precursor can undergo two 

separate transforming events, one leading to HIRS cells and the other to NHL. 

Thirdly, the transforming event producing HL totally changes the morphology and 

immunophenotype of the common precursor cell, while the NHL transforming 

event more or less maintains the features of the precursor B cell. 

The development of cHL in a patient with CLL has been recognised for some time 

and has been considered a form of Richter's transformation (Choi and Keller 

1981). Ohno et al. (1998) attempted to examine the clonal relationship between 

CLL and HL using microdissection techniques and PCR amplification of IgH 

genes. The IgH gene sequences from the HRS cells were identical to those from 

the CLL cells in two cases. These studies provide further evidence that the HRS 

cells in both CLL and cHL may share the same mature B-cell precursor. However, 
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in this study the differentiation stage of the common precursor cell could not be 

assessed because the analysis was restricted to the CDR3 of the rearranged Ig 

gene only. A case report on a composite mantle cell lymphoma (MCL) and cHL 

demonstrated separate clonal origins from the tumour cells (Caleo et al. 2003). 

NLPHL is also derived from aB cell, as indicated by clonal IgH rearrangements of 

the L&H cells (Braeuninger et al. 1997; Marafioti et al. 1997; Ohno et al. 1997). 

The V-D-J regions of L&H cells show intraclonal diversity indicating continuation of 

somatic hypermutation after the initial transforming event. Most of the analysable 

sequences from L&H cells are functional suggesting that these cells have been 

positively selected by antigen (Kanzler et al. 1996). L&H cells express B cell 

lymphoma / leukaemia (BCLY6, a transcriptional repressor protein 

characteristically expressed in germinal centre B cells (Staudt et al. 1999). This is 

in marked contrast to the HIRS cells in cHL which do not show evidence of 

continuing somatic hypermutation, have 'crippling mutations' (Kuppers; and 

Rajewsky 1998) and usually lack BCL-6 expression (Carbone et al. 1998). In 

contrast, the HIRS cells in cHL appear to undergo a transformation event early in 

their evolution that makes cell survival independent of antigen receptor signaling. 

L&H cells appear to behave like centroblasts, with continued somatic 

hypermutations in a germinal centre-like environment, and this may be important 

for persistence and expansion of the clonal population (Chan 1999). 
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1.5.7 T-cell type of classical Hodgkin lymphoma 

Repeated reports of the detection of T-cell antigens in HRS cells, in conjunction 

with the establishment of HL-derived cell lines having immunophenotypic and 

genotypic features of T cells, pointed towards the existence of T cell-derived HRS 

cells (Cibull et al. 1989; Dallenbach and Stein 1989). Early studies investigating 

whole tissue DNA failed to detect TCR rearrangements in HL (Gledhill et al. 1990). 

To investigate this possibility further, immunophenotypical studies were extended 

to include the cytotoxic molecules perforin and granzyme B, because these were 

found to be specific markers for cytotoxic T cells and natural killer cells (Oudejans 

et al. 1996). These studies showed that HRS cells of 10% to 20% of cases of cHL 

express one or both cytotoxic molecules, and that the presence of these molecules 

is often associated with expression of the T-cell markers CD3, CD4, CD8 and/or 

the TCR P chain. Although these findings suggested the existence of T-cell- 

derived HIRS cells, they were not regarded as conclusive. Later genotyping 

studies showed that only a minority of cases expressing T-cell markers had TCR 

rearrangements, indicating that the T-cell antigens expressed by HIRS cells are not 

lineage specific (Muschen et al. 2000; Seitz et al. 2000). 

32 



1.6 Epidemiology of Hodgkin lymphoma 
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Figure 1.9 Incidence of cHL in Scotland (Jarrett et al. 2003) showing bimodality with a young adult 

peak and a smaller peak in older adults. Red line is overall incidence. Green line is incidence for 

non-EBV associated cases. Black line is EBV associated cases. Overall, 32% of all cHIL in 

Scotland are associated with EBV. 

The epidemiology of HL is characterised by features that are unusual for a 

malignancy and suggest both aetiological heterogeneity and involvement of 

infectious agents (Glaser and Jarrett 1996). The international variation in 

incidence is relatively small compared to some cancers but incidence patterns 

manifest substantial variation with respect to age, sex, ethnicity and histological 

subtype. In developed countries, HL is characterised by a bimodal distribution with 
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a first age-specific peak in young adults between the ages of 15 and 34 years and 

a second peak in older adults, ý: 50 years (Figure 1.9). Classically, the pattern in 

developing countries is also described as bimodal with the first peak occurring in 

childhood and the second in older adults. In practice there are many variations on 

these patterns, and this most probably reflects complex host environment 

interactions (Macfarlane et al. 1995; Glaser and Hsu 2002). Overall, HL is more 

common in males than females but the sexes are almost equally represented in 

the young adult peak (Jarrett et al. 2003). There is a notable deficit of HL cases in 

Asian populations, and this persists following migration to areas of higher 

incidence (Glaser and Hsu 2002). Histological subtypes of HL also show distinct 

age-specific incidence curves with NSHL accounting for most cases in the young 

adult peak and showing significant variation in incidence by race (Glaser and 

Jarrett 1996; Glaser and Hsu 2002). 

1.6.1 Hypotheses of aetiology 

Consideration of many of the above features led MacMahon, almost 50 years ago, 

to suggest that HL was not a single disease entity (MacMahon 1966). He 

suggested that HL occurring in children, young adults and older adults was likely to 

have a different aetiology - the multiple aetiology hypothesis. Furthermore, he put 

forward the idea that HL in young adults was caused by an infectious agent. Many 

subsequent studies have shown that risk factors for disease development are 

different in these age groups. In particular, young adult HL is associated with risk 

factors suggesting a high standard of living and social isolation in childhood 
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(Gutensohn and Cole 1981). It has been inferred from these data that young adult 

HL is caused by delayed exposure to a common infectious agent - the delayed 

exposure hypothesis or late host response model. Consistent with this, young 

adult HL cases report fewer childhood infections than age-matched controls 

(Alexander et al. 2000). A seminal paper by Correa and O'Conor (1971) reported 

that rates of childhood and young adult HL were inversely proportional (Correa and 

O'Conor 1971). This study influenced much thinking about HL aetiology over the 

next two decades; in particular it led to comparisons between HL and paralytic 

polio in the pre-vaccine era - the polio model. This suggested that HL in children 

and young adults was caused by the same infectious agent but that age of 

infection influenced the likelihood of disease. A later study by MacFarlane and 

colleagues extended and reanalysed these data but concluded that this inverse 

relationship was no longer apparent and perhaps never existed (Macfarlane et al. 

1995). The latter data are more in keeping with the multiple aetiology hypothesis. 
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1.6.2 Epstein-Barr virus in classical Hodgkin lymphoma 
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Figure 1.10 Image of EBER in situ hybridisation in a case of EBV-positive cHL. Positive staining is 

localised within the nuclei of HIRS cells (x400). 

The family herpesviridae comprises over 100 viruses with similar biochemical and 

morphological characteristics. Herpesviruses are highly disseminated in nature 

and have been isolated from many animal species. A property of herpesviruses is 

their ability to remain in a latent state within the host following primary infection. 

The site of latency varies between herpesviruses, but includes lymphocytes, 

monocytes and neuronal tissue. The Epstein-Barr virus (EBV), first isolated from a 

Burkitt's lymphoma (BL) specimen, can be classified as a gamma-one herpesvirus 

because of its B cell lymphotropism or as a group C herpesvirus because of its 
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genome sequence arrangement (Roizman and Pellett 2001). EBV has been 

actively investigated as a causative agent in HL. Generations of investigators 

have believed that HL is caused by an infectious agent, primarily because the 

epidemiology of HL points towards an infectious aetiology. 

Over the past 15 years, new molecular methods have shown the frequent 

presence of EBV in tumour specimens from patients with HL (Weiss et al. 1987). 

Previous studies showed that patients with HL more frequently had elevated anti- 

EBV antibody titres years in advance of the onset of the disease (Evans and 

Comstock 1981; Poppema et al. 1985; Mueller et al. 1989). It was also shown that 

persons with documented infectious mononucleosis had about a threefold 

increased risk of HL (Munoz et al. 1978; Grufferman and Delzell 1984) and this 

has been confirmed in recent population-based studies (Hjalgrim et al. 2000; 

Alexander et al. 2003). The presence of EBV genomic DNA in HL was first 

reported by dot blot and Southern blot hybridisation studies in 1987 (Weiss et al. 

1987) and was soon confirmed in many other studies (Anagnostopoulos et al. 

1989; Staal et al. 1989; Bignon et al. 1990; Gledhill et al. 1991). By means of 

these techniques, about 20% to 30% of cases of HL were shown to contain 

substantial levels of EBV genomes. Using a probe directed against DNA 

sequences adjacent to the EBV terminal repeats, the EBV genome was shown to 

be clonal in most cases, indicating clonal expansion of a single EBV-infected cell 

(Weiss et al. 1987; Gledhill et al. 1991). 
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Although the above studies indicated that EBV genomes were present in HL, it 

was essential to demonstrate the cellular localisation of the EBV. Pallesen et al. 

(1991) and Herbst et al. (1991) used monoclonal antibody frozen section ICC to 

identify abundant expression of EBV latent membrane protein (LIVIP) 1 in HRS 

cells in approximately 50% of cases of HL. Subsequent studies, particular those 

using modern ICC techniques, have confirmed their findings (Brousset et al. 1994). 

In situ hybridisation studies, most often utilizing probes to Epstein-Barr viral 

polymerase III transcript (EBER) RNA, also localised the virus to HRS cells (Wu et 

al. 1990; Pallesen et al. 1991; Khan et al. 1992). Studies have shown that LMP1 

paraffin-based ICC studies and EBER in situ hybridisation yield nearly identical 

results in HRS cells (Hamilton-Dutoit et al. 1991; Jarrett 1992). In any given EBV- 

positive case, approximately 50% to 90% of the HRS cells are usually LMP1 

positive whereas all, or almost all are EBER positive. In contrast to EBER probes, 

LMP1 antibodies do not stain small lymphocytes. EBER is a more robust 

technique but LMP1 is more specific. These techniques conclusively showed that 

EBV genomes are present in the HRS cells. In addition, all HRS cells within a 

lesion, or within a case, of EBV-associated HL were shown to contain EBV. 

ICC studies further showed that the LMP1 protein was expressed by HIRS cells. 

Epstein-Barr viral nuclear antigen (EBNA) 1 (Grasser et al. 1994) and LMP2 

(Niedobitek et al. 1997) are also expressed but EBNA2 is consistently lacking, a 

type of EBV latent infection that is referred to as latency 11 (Deacon et al. 1993). 

LMP1 and possibly LMP2 are likely to play some role in HIRS cell survival 

(Babcock and Thorley-Lawson 2000). On the basis of the above data, the 
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International Agency of Research on Cancer (IARC) consensus is that EBV does 

play a role in the pathogenesis in EBV associated cHL (see section 1.6). 

1.6.3 EBV and the epidemiology of HL 

EBV positivity appears to correlate with geographical, cultural, genetic, and/or 

socio-economic influences, all of which are difficult to separate. Among persons 

from the United States, most parts of Europe, and Israel, approximately 40% to 

50% of cases of HL have been shown to contain EBV-positive HIRS cells (Glaser 

et al. 1997). In Scotland, 33% of cHL are EBV-associated (Jarrett et al. 2003). In 

contrast, among populations from less developed regions, particularly those with a 

large number of paediatric cases of HL, a very high frequency of EBV has been 

found. One study found an EBV frequency of 94% in the HIRS cells of childhood 

cases of HL among an indigenous Indian population from an underdeveloped area 

of Peru (Chang et al. 1993). Ethnicity influences EBV-positivity rates, with higher 

proportions of EBV-positive cases among Hispanics (Glaser et al. 1997). 

Cases of MCHL are more likely to be EBV-associated than NSHL cases but 

overall more NSHL than MCHL cases are EBV-associated. Males outnumber 

females (approximately 2: 1) among EBV-associated cases but in the non-EBV- 

associated cases the males and females are almost equally represented (Jarrett et 

al. 2003). EBV-associated cases are also relatively more common in children and 

older adults compared to young adults (Jarrett 2002). 
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Two population-based epidemiological studies aimed at investigating risk factors 

for development of HL with cases stratified by EBV status were performed by our 

group -a study of HL in young adults and the Scotland and Newcastle 

Epidemiological study of Hodgkin Disease (SNEHD) (Alexander et al. 2000; 

Alexander et al. 2003; Jarrett et al. 2003). The age-specific incidence of EBV- 

associated and non-associated cases analysed separately were determined using 

the SNEHD data (Jarrett et al. 2003). These two 'entities' show distinct incidence 

curves with non-EBV-associated cases accounting for the young adult peak and 

showing a unimodal age-specific incidence curve. EBV associated cases appear 

to have a bimodal incidence curve with a small peak in the 15-24 year age range 

and a larger peak in the older adult age group. 

The association between previous history of infectious mononucleosis (IM) was 

analysed in both studies. In the young adult study, the increased risk associated 

with IM was found to be specific for EBV-associated HL (Alexander et al. 2000). In 

SNEHID, cases were more likely than controls to have had previous IM and case- 

control differences were significant for both EBV-associated and non-associated 

cases (Alexander et al. 2003). However, risk was greatest for young adult EBV- 

associated cases and the time from IM to the diagnosis of HL was also shorter. 

Hjalgrim et al. (2003) examined incidence of HL in cohorts of subjects who had 

been serologically tested for acute EBV infection; positive results were associated 

with an increased risk of developing EBV-associated but not non-EBV-associated 

HL. Taken together, these studies provide robust evidence for a causal link 

between IM and EBV-associated HL in young adults. Cases occurring following 
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IM, and therefore associated with delayed exposure to EBV, most probably 

account for the first peak in the age-specific incidence of EBV-associated HL. 

1.6.4 EBV-negative cHL 

Although the precise function of EBV in cHL is not known, there is now substantial 

data supporting the notion that EBV is playing a causal role in cHL. Of those HL 

cases that are EBV negative, their aetiology remains obscure. Jarrett et al. (1996) 

have proposed that infection with another oncogenic virus may be responsible for 

EBV-negative HL. Extensive searches have been performed looking for other 

known viruses, including human herpes virus (HHV) 6, HHV7, HHV8, herpes 

simplex virus, varicella zoster virus, cytorneglovirus, measles, rubella, adenovirus, 

papovavirus, adenovirus, lymphotrophic papovavirus, SV40, and human T-cell 

leukaemia virus (Jarrett and Armstrong 1995); to date, all of these studies have 

given rise to inconsistent or negative results. It is therefore suspected that another 

novel infectious agent may be involved (Gallagher et al. 2002). An alternative 

hypothesis is that the EBV is involved in the aetiology of essentially all of HL 

cases, but the viral genome itself is somehow lost from the HIRS cells (hit and run) 

in patients with a stronger host response (Ambinder et al. 1993). There is currently 

no evidence to support hit-and-run mechanism in cases classified as non-EBV- 

associated (Mueller 1997; Gallagher et al. 2003). 

1.6.5 Four disease model 

The above data led to the proposal of a four disease model in HL (Jarrett 2002). 

This suggests that there are three EBV-associated diseases: a childhood disease 
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accounting for most cases of HL below the age of 10 years; a young adult disease 

associated with delayed exposure to EBV; and an older adult disease, most 

probably related to reactivation of EBV. Superimposed on these is a non-EBV- 

associated disease, which accounts for most cases in young adults in developed 

countries. Epidemiological evidence suggests that these cases are also linked to 

an infectious agent but no specific agent has been identified to date. The absolute 

incidence of each of these diseases will be determined by both environmental and 

host factors and the relative magnitude of each of the diseases will determine the 

overall shape of the age-specific incidence curve in any particular setting. The 

model provides a framework to study the heterogeneity of HL in future 

epidemiological and laboratory studies. 

1.7 Genetic, environmental and non-viral factors 

There are many early reports describing the occurrence of multiple cases of HL in 

families (Barretto et al. 1984). In a population-based study, Grufferman et al. 

(1977) found an increased HL risk in siblings of young adult patients (sevenfold) 

but no increased risk in siblings of older adults with the disease. Siblings of the 

same sex had twice the risk of developing HL compared to siblings of the opposite 

sex. This was thought to be due to sex-concordant sibling pairs having more 

shared environmental exposures, which was confirmed in a later study 

(Grufferman et al. 1987). More recently, Mack et al (1995) reported a remarkably 

increased risk in monozygotic twins of HL cases. They reported that 10 twins of 

179 identical twins with HL also had the disease, compared to none of 187 

dizygotic twins with HL. The relative risk was 99 times. This observation provided 
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a strong argument in favour of genetic susceptibility although shared intrauterine 

exposure is another explanation for these findings. 

A case-control study of childhood HL suggested that first-degree relatives of 

patients younger than 15 years of age at diagnosis had a 2.7-fold increased risk of 

all cancers (Grufferman et al. 1998). In a series of 464 HL cases and 699 

matched controls, 29 cases and 17 controls had a first-degree relative with a 

diagnosis of cancer. Four cases but no controls had parents with HL (Grufferman 

et al. 1998). Treated cHL patients have an increased risk of developing second 

cancers (Strom et al. 1997; Strom et al. 1998). High levels of pre-treatment sister 

chromatid exchanges (SCE) and age are predictors of second cancer risk. 

Histology, stage and treatment are not associated with elevated risk (Strom et al. 

1998). 

An analysis of 41 multiplex families provided strong evidence of linkage between a 

susceptibility gene tightly linked to the HLA locus and HL (Chakravarti et aL 1986). 

This putative locus could potentially account for 60% of familial cases. The 

remaining 40% of cases are more likely to be due to other familial/polygenic or 

environmental factors. The role played by HLA genes in the control of immune 

responses to viruses suggests that HLA genes might be important in the aetiology 

of cHL (Alexander et aL 2001). 

1.8 Permanent Hodgkin lymphoma-derived cell lines 

Attempts were made to grow permanent cell lines from HL samples in order to 

circumvent some of the problems associated with analysis of primary tumour 
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material. The first two permanent cell lines (designated L428 and L540) that were 

likely to be derived from HIRS cells were established in Diehl's laboratory in 1979 

(Schaadt et al. 1979). A total of fifteen HL-derived cell lines have now been 

established. Most of the cell lines have been grown from body fluids (bone 

marrow (13M), pleural effusion, peripheral blood) of patients with advanced-stage 

disease. Despite the close resemblance to HIRS cells in immunophenotype, it is 

not generally accepted that all of these HL-derived cell lines are truly derived from 

HIRS cells. This is because the HL-derived cell lines are not homogeneous in that 

two-thirds of them exhibit the immunophenotypic and genotypic features of B cells, 

and the other third the characteristics of T cells. In addition the karyotypes of the 

cell lines are grossly disordered without having consistent cytogenetic aberrations 

and among the 15 HL-derived cell lines only one (1-591) is EBV-positive, whereas 

in vivo the HIRS cells of cHL are EBER positive in 30-50% of cases (Herbst et al. 

1992; Hummel et al. 1992; Jarrett et al. 2003). There are 2 explanations for this 

bias; first, the EBV might have been lost during establishment of the cell line and 

secondly, many true EBV-positive HL-derived cell lines might have been discarded 

because they were thought to be EBV immortalised lymphoblastoid cell lines 

(LCLs), which also express the CD30 antigen. 

only one of the above-mentioned HL-derived cell lines has a proven derivation 

from HIRS cells. For the L1236 cell line, established in 1996, it was shown that the 

cells harbour the same Ig gene rearrangements as the in situ HIRS cells from the 

patient from whom the cell line was established (Wolf et al. 1996). 
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HL-derived cell lines provide an important reagent for research into HL. The cell 

lines were used successfully for: the discovery of HIRS cell-associated antigens 

including CD30 (Schwab et al. 1982), CD70 and Ki-27 (Stein et al. 1983); for 

cloning the CD30 gene; and for studying the CD30 signal transduction pathway. 

Moreover, they have enabled the in vitro testing of new immunotherapeutic 

modalities such as CD30-linked agents (Engert et al. 1990; Falini et al. 1992; 

Hombach et al. 1993; Pohl et al. 1993). However, it is quite clear that these lines 

are probably not representative of HIRS cells in early stage disease. 

1.9 Animal models for Hodgkin lymphoma 

There is no good natural or experimental animal model for HL. Nude mice are a 

mutant strain of bald mice that congenitally contain very little thymus tissue and so 

are incapable of mounting the strong T cell response involved in rejecting tumour 

cells. Injecting tumour cells into nude mice has not allowed successful 

propagation of HL (von Kalle et al. 1992). Severe combined immunodeficient 

(SCID) mice lacking functional B and T lymphocytes were described in 1983 

(Bosma et al. 1983) and seemed to be a better alternative to nude mice, allowing 

the successful propagation of human lymphoma cells and even human 

untransformed B cells. SCID mice were tested as a potential animal model for HL. 

In the first instance, HL-derived cell lines were xenotransplanted subcutaneously. 

In contrast to the situation in nude mice, all cell lines tested (1-428, L540, L591, 

HID-LM2, KM-H2) did grow progressively and reproducibly after subcutaneous 

inoculation into SCID mice without prior treatment of the animals (von Kalle et al. 

1992). Based on these observations, HL-derived cell lines were also inoculated 
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intravenously into the tail veins of SCID mice to achieve disseminated growth 

resembling the growth pattern of HL in humans. When this approach was used, of 

three cell lines tested (1-540, L428, and KM-H2) only the L540 cell line gave rise to 

tumours (Kapp et al. 1994). After intravenous inoculation, L540 cells showed 

progressive disseminated growth and preferentially localized in lymph nodes, 

particularly the cervical, iliac, and inguinal nodes. The spleen was rarely involved. 

This disseminated SCID mouse model for the growth of HL cells was successfully 

used in the preclinical in vivo testing of new immunotherapeutic modalities (Winkler 

et al. 1994). In the meantime, further HL-derived cell lines showed disseminated 

growth in SCID mice. These observations encouraged the transplantation of 

primary HIRS cells into this mouse strain (Kapp et al. 1993). Lymph node or 

spleen tissue affected by HL was transplanted into the subrenal capsule of SCID 

mice. Only the material of three patients, from a total of 13 tumours of human 

origin, developed and spread predominantly into the lymph nodes. However, the 

tumours were not derived from HIRS cells; an outgrowth of EBV-positive B 

lymphocytes similar to lymphoblastoid cell lines (LCL) was observed. They were 

found to be clonally distinct from HIRS cells by IgH rearrangement. These LCL-like 

B cells displayed a high number of numeric and structural chromosomal 

aberrations when compared with EBV-positive B cells growing out from SCID mice 

after transplantation of B cells from healthy donors. This observation suggests an 

inherent cytogenetic instability of the B lymphocytes surrounding HIRS cells. A 

similar conclusion was reached in a study from our laboratories and at present this 
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model is of limited usefulness for studying the biology of HL (Krajewski et al. 

1995). 

In conclusion, HL transplanted into SCID mice has not yet been proven to be a 

satisfactory model for the study of HL as there is currently no evidence that HL- 

derived SCID tumours are related to the neoplastic cells in the original tumour 

(Krajewski et al. 1995). 

1.10 Oncogenes and tumour suppressor genes in classical Hodgkin lymphoma 

The scarcity of HIRS cells in tissue affected by HL has hampered not only the 

elucidation of their lineage and origin but also the detection of dysregulated 

expression of specific oncogenes and inactivation of tumour suppressor genes. 

Analysis of HL-derived cell lines has not revealed consistent patterns of oncogene 

expression (Durkop et al. 1992). Since nearly all of these cell lines were 

established from end-stage HL, genetic alterations present in these cell cultures 

might be related to the use of mutagenic agents in the course of therapy. When 

tissue sections of cHL were analysed for genomic alterations or deregulated 

expression of oncogenes such as myc, jun, raf, and ras, no characteristic 

abnormal pattern could be detected (Steenvoorden et al. 1988). The same holds 

true for the investigation of tumour suppressor genes (Piris et al. 1995). 

The retinoblastoma (Rb) tumour suppressor gene, which is involved in cell cycle 

regulation, is mutated and/or deleted on both alleles in many malignancies, 

resulting in the absence of RNA and protein. In most of the HL cases analysed, 

expression of the Rb protein was detected (Weiss 1995; Sanchez-Beato et al. 
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1996a). The p53 tumour suppressor gene is also found to be expressed in most 

cases of cHL (Piris et al. 1995). The unmutated p53 gene codes for a protein 

involved in control of the cell cycle and induction of apoptosis after DNA damage. 

Nuclear accumulation of p53 is frequently observed in HIRS cells. Mutations in the 

p53 gene have been detected in only a subset of cases of HL including one cell 

line (Gupta et al. 1993; Maggio et al. 2001). Thus, the significance of detection of 

p53 protein in HIRS cells remains unclear at present. Overexpression of p53 is 

usually associated with mutation but it might also be caused by inactivation of p53- 

binding proteins. The protein encoded by the mouse double minute (MDM) 2 

oncogene can bind p53. Overexpression of the MDM2 gene product 

simultaneously with overexpression of p53 has been described in FIRS cells 

(Chilosi et al. 1994). Similarly, other gene products interacting with p53 and 

involved in the regulation of the cell cycle are expressed in a proportion of HIRS 

cells and L&H cells of most HL cases suggesting a preservation of p53 

functionality (Sanchez-Beato et al. 1996b). 

In the search for recurrent chromosomal alteration in HIRS cells, many PCR 

studies have looked for t(14: 18) chromosome translocations. This translocation 

results in dysregulated expression of BCL-2, which can prevent apoptotic death of 

tumour cells. Whereas some studies have not found any evidence of t(14: 18) in 

HL (Weiss 1995), others have detected this translocation in a variable proportion 

(6-39%) of cases (Bhagat et al. 1993; Weiss 1995). In positive cases, it remained 

unproven whether the translocation was localized in the HIRS cells, particularly 

because detection of the BCL-2 protein by ICC in situ was not congruent with 
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detection of the translocation itself (Bhagat et al. 1993). In a more recent study 

investigating isolated single HIRS cells for the presence of t(14: 18), it was shown 

that this translocation was localized in non-malignant bystander B cells and not in 

HIRS cells (Gravel et al. 1998). Similarly, no pathogenetic role in HL could be 

established for the chromosomal translocation t(2: 5), which results in the 

oncogenic nucleophosmin (NPM) / anaplastic lymphoma kinase (ALK) fusion 

transcript and is a characteristic of ALK positive anaplastic large cell lymphoma 

(ALCL) (Trumper et al. 1997). 

1.11 Mechanisms preventing apoptosis 

The lymphoid immune system exists in a state of homeostasis, with extensive and 

rapid clonal expansion matched by massive cell death in almost all phases of 

development. Death by apoptosis occurs in the vast majority of lymphocytes and 

lymphoid progenitors. The apoptotic pathway is critical in the attenuation of 

immune responses and in the elimination of autoreactive cells. Deregulation of 

apoptosis has been associated with immunodeficiency states, lymphoma and 

autoimmune disease (Rudin and Thompson 1998). Germinal centre B cells with 

crippled antigen receptors regularly arise in the germinal centre; such cells are 

usually eliminated efficiently by apoptosis and are not allowed to leave the 

germinal centre microenvironment (Weiss et al. 1992; Rajewsky et al. 1997). 
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1.11.1 NFKB family 
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Figure 1.11 Activation of NF-kB by canonical and alternative pathways. 

Aberrant NF-KB activity, leading to perturbation of cell cycle and apoptosis control 

mechanisms, is a feature of numerous human cancers including HL (Figure 1.11). 

The observation that HRS cells lack Ig expression suggests that they are derived 

from germinal centre B cells that should have been negatively selected (Kuppers 

and Rajewsky 1998), but were rescued from apoptosis by aberrant NF-KB 

activation or other mechanisms. NF-KB exists in virtually all cell types in the form 

of dimeric complexes consisting of different members of the Rel family of proteins 

(Ghosh et al. 1998). In mammals, there are five Rel proteins, p5O, p52, p65, c-Rel, 

and Rel B, all of which share an amino-terminal 300 amino acid conserved region 
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known as the Rel Homology Region (RHR). This region is responsible for DNA 

binding, dimerisation, and nuclear localisation. Unlike most transcriptional 

activators, NF-KB resides in the cytoplasm and must therefore translocate to the 

nucleus to function. Central to the control of NF-icB activity is a family of inhibitory 

proteins, which are called IKBs (inhibitors of nuclear factor kappa B) (Ballard et al. 

1990; Urban and Baeuerle 1990; Wood et aL 1998). IKBs perform several key 

regulatory functions. In resting cells IKB binds to NF-KB dimers, thus masking the 

nuclear localisation signal (NLS) and preventing NF-KB entering the nucleus. 

Secondly, in response to various activating signals, IxB is phosphorylated and then 

polyubiquinated at key residues in the N-terminal signal response domain (SRD) 

and finally targeted for proteosomal degradation. Once released, NF-YB enters 

the nucleus, binds specific DNA sequences and regulates transcription of a variety 

of genes, including 1kB genes. 

The IKB family consists of several members, IKBa, IKBP, IKBE: and Bcl-3. The 

carboxy-terminal regions of the precursors for p50 and p52, p105 and plOO, 

respectively, can also function as licBs. Depending on the cell type and on the 

stimulus, IKBs respond differently to NF-YB-inducing signals. In general, IKBa is 

rapidly degraded, whereas IKBP and IKBE: are degraded with slower kinetics. In 

addition, IKBs inhibit NF-KB with different efficiencies. For instance, IKBa is a 

stronger inhibitor of NF-icB than is IKBP or lKBF- (Hoffmann et al. 2002). 
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IKB proteins are not only responsible for cytoplasmic sequestration of NF-KB in 

resting cells, but they also associate with NF-jcB in the nucleus, where they inhibit 

NF-i<B DNA binding and promote transport of NF-KB to the cytoplasm, thus 

terminating transcription and restoring the cell to its original state (Simeonidis et aL 

1999). 

NF-xB is constitutively active in HIRS cells (Bargou et al. 1996). Studies on 

transfected HL-derived cell lines suggest that the inactivation of NF-KB restores 

the sensitivity of HIRS cells to apoptosis, pointing to the possibility that NF--KB plays 

an important role in obstruction of the apoptotic pathway (Wu et al. 1996). The 

mechanisms underlying this phenomenon could include constitutive activity of 

kinases upstream of lKBs, mutation or loss of IkBs, or modification of NF-YB 

rendering it insensitive to inhibition by hcBs. Amplification of NF-KBs has also been 

observed in many turnours, including HL (Bargou et aL 1997). Several reports 

now confirm that mutation of the IkBa gene and loss of protein is a culprit in a 

subset of HL cases (Cabannes et al. 1999; Emmerich et al. 1999; Jungnickel et al. 

2000). Our group previously identified a large genomic deletion in a HIRS cell- 

enriched population from a patient with relapsed HL. This deletion would result in 

mutant IKB that would be incapable of binding NF-YB and inhibiting NF-KB- 

dependent transcription. In HL-derived cell lines and patients that have wild-type 

IkBa alleles and express IKBa proteins, constitutive activity of IKB kinases (IKK), 

leading to rapid degradation of IKB(x, may account for the presence of NF-KB in the 

nucleus. Although the cytokines secreted by the HL-derived cell lines can induce 
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nuclear NF-icB, the possibility of molecular defects in the components of the IKK 

cascade cannot be neglected (Krappmann et al. 1999). It has also been shown 

that the EBV-encoded protein latent membrane protein 1 (LMP1) can activate NF- 

KB by mimicking an activated CD40 molecule and thereby promoting IKBCC 

turnover (Sylla et al. 1998). 

Doerre and Corley (1999) have demonstrated that different B-cell lines use distinct 

strategies for the nuclear translocation of NF-KB, and that these differences may 

be associated with different isotypes of the B cell receptor. They observed stability 

Of lKBa, IKBP and lKBE in the B cell lines which contained constitutive nuclear NF- 

, cB, including complexes containing ReIA and c-Rel that are normally susceptible 

to cytoplasmic retention by IKBa. The presence of these complexes is in striking 

contrast to other cells, such as pre-Bs and T cells, that have stable IKB proteins 

but do not contain activated NF-KB. The authors therefore concluded that an 

alternative mechanism for the nuclear translocation of NF-KB which is independent 

of the degradation Of IKBa, IKBP and IKBe must exist (Doerre and Corley 1999). 

1.11.2 Tumour Necrosis Factor Receptor and Tumour Necrosis Factor Ligand 

Superfamily Expression in HL 

CD30, a member of the TNFR superfamily, was initially identified as a HL- 

associated antigen (Schwab et al. 1982). Subsequently, it was shown that CD30 

expression is not specific for HRS cells, rather, it is a late activation marker for 

jymphoid cells, with normal CD30 expression being restricted to antigen-stimulated 

and memory T cells (Ellis et al. 1993). Nearly all HL-derived cell lines and HRS 
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cells in 85% to 90% of cases of cHL express CD30 (Drexler and Minowada 1992). 

An exception is the NLPHL subtype, in which the tumour cells do not express 

CD30 (Drexler 1992; Harris 1999). 

The HIRS cells also express several other members of the TNFR superfamily, 

including CD40, FAS, TNFR-1, TNFR-2, and 4-11313. Additionally, primary HIRS 

cells express members of the TNFR ligand superfamily, including TNF, 

lymphotoxin (LT) -(x, CD27L, and CD30L (Gruss et al. 1996). The expression of 

multiple TNFR and TNF ligand superfamily members in HIRS cells with their 

potential shared signal transduction pathways is further complicated by the fact 

that EBV LMP1 is a signaling homologue of the TNFR superfamily (Izumi et al. 

1997). 

1.11.3 Tumour Necrosis Factor Receptor Superfamily Signaling Pathways 

There are multiple signal-transducing molecules that have been identified that 

interact with domains of TNFRs as well as with domains of other proteins that are 

directly involved in signal transduction. These so-called adaptor molecules, in 

general, have more than one family member, each of which functions in a slightly 

different manner and ultimately leads to transduction of different signals. The 

TNFR superfamily signaling pathways are shared with CD30, CD40, TNFR-1, 

TNFR-2 as well as EBV LMP1. The family of adaptor molecules called TNFR- 

associated factors (TRAFs) has at least six members, TRAF1 through to TRAF6 

(Baker and Reddy 1996). The 230-bp TRAF domain mediates a number of 

specific protein-protein interactions (Takeuchi et al. 1996). TRAH has been 
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implicated as an important molecule in modulating NF-KB activation and it is 

overexpressed in the HIRS cells and L&H cells of all HL cases studied (Durkop et 

al. 1999). In view of the findings that TRAN overexpression in transgenic mice 

inhibits antigen-induced apoptosis in CD8 positive T lymphocytes, it can be 

speculated that a deregulation of the TRAN gene may contribute to the blockage 

of apoptosis in HIRS cells and L&H cells (Lee et al. 1996). 

TRAF2 mediates both NF-icB activation and activation of the c-jun N-terminal 

kinase (JNK) pathway. TRAF2 is itself activated by TNFR1, TNFR2, CD40, CD30 

and EBV LMP1 (Hsu et al. 1996). TRAF5 has been demonstrated to similarly 

activate NF-icB by members of the TNFR superfamily (Nakano et al. 1996). The 

mechanism of activation of NK-KB signaling is through the recruitment and 

activation of a series of protein kinases, which leads to the translocation of 

activated NF-KB into the nucleus of the cell. Although TRAF molecules have no 

intrinsic catalytic capability, their interaction with certain kinases appears to 

stimulate the activity of those molecules. The NF-icB-inducing kinase (NIK) is a 

mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) (Malinin et aL 

1997). A substrate of NIK is the IKK, which consists of two subunits IKK(x and 

IKKP. As mentioned previously, the IKK complex is essential for the 

phosphorylation and inactivation of lKBs (Regnier et al. 1997). This can then 

prevent HIRS cells from undergoing stress-induced apoptosis. 

In addition to NIK, TRAF2 has been shown to activate mitogen-activated protein 

kinase/ERK kinase kinase-1 (MEKKII). MEKKII is a central kinase in the c-jun 
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activation pathway. There is an overlap of the two TRAF2-mediated pathways at 

MEKK1; MEKK1 has been shown to be able to phosphorylate lKB, leading to the 

activation of NF-KB (Lee et al. 1997). Thus, TRAF2 serves as an important branch 

point for the NF-KB and JNK pathways. Furthermore, the participation by MEKK1 

in each of these signaling pathways provides the opportunity for these pathways to 

interact directly. The role of each of these pathways in mediating the downstream 

effects of TNFR family signaling is largely understood through experiments 

performed with dominant negative mutations of multiple members of the signaling 

molecules as well as knock-out transgenic mice. The results of these types of 

study suggest that the activation of NF-KB can protect the cell against TNF 

induced apoptosis. Also JNK activation is not directly linked to the induction of 

TNFR1-mediated apoptosis. The expression of a TRAF1-dominant negative in 

transgenic mice in vivo suggests that TRAF2 is required for the activation of JNK, 

but not NF-icB, through TNFR or CD40. These experiments also showed that 

TRAF2 has an anti-apoptotic affect that is independent of its ability to activate NF- 

KB (Lee et al. 1997; Yeh et al. 1997). 

TRAF3 is unique among the TRAF family members in that this protein is capable 

of blocking TNFR family member-mediated activation of NF-KB. Furthermore, 

TRAF3 can block the ability of TRAF2 to activate this pathway. TRAF3 knock-out 

mice do not show significant defects in CD40 signaling. These mice, however, do 

show postnatal lethality and have defective T-cell-mediated immune responses 

(Xu et al. 1996). This suggests that TRAF3 is important in regulating certain 

cellular events during development. Although the effects of TRAF3 have not been 
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directly studied regarding JNK activation, the above suggests that TRAF3 may 

play a role in determining the ability of TRAF2 to activate the NF-KB or JNK 

pathway. 

The ability of multiple members of the TNF receptor superfamily such as CD30, 

CD40, or TNFR1 to interact with various members of the TRAF family of signal 

transduction molecules and their coexpression in HIRS cells may result in a 

complex cascade of signaling events in HL. The ability of the EBV LMP1 protein 

to interact with TRAF family members and activate these pathways also adds a 

level of complexity to the potential signaling processes in EBV-positive cases of 

HL. The notion that LIVIP1 may exert effects on HIRS cell growth in vivo through 

TNF receptor signaling pathway is strengthened by the demonstration of TRAF- 

mediated LMP1 signaling in vivo in EBV-positive AIDS-related NHLs and post- 

transplant lymphoproliferative disease (Liebowitz 1998). The coexpression of 

multiple members of the TNF receptor superfamily, which all share components of 

the same signaling pathways, suggests that receptor cross-talk may be an 

important element in determining the phenotype of the HIRS cells and the 

microenvironment of HL. 

1.11.4 CD40 and CD40 ligand 

CD40 is a 50-kd phosphoprotein expressed mainly on cells of B lineage, including 

most B-cell leukaemias and lymphomas (Law et al. 1990). CD40 acts as a 

receptor for a specific ligand (CD40L), which is a type 2 integral membrane 

glycoprotein that has homology to ligands for other receptors of the neuronal 
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growth factor (NGF)ITNF receptor superfamily (Smith et al. 1994). CD40L is 

expressed on activated CD4 helper T cells, including the cells that form rosettes 

around HIRS cells. It is also expressed on some mast cells and basophils. 

Engagement of CD40 antigen by CD40L, or some CD40 monoclonal antibodies, 

results in the prevention of apoptosis of germinal centre B cells (Holder et al. 

1993). CD40L is directly mitogenic for human B cells. Human B cell precursors 

require IL-3 as a co-stimulatory cytokine, whereas IL-4 enhances proliferation of 

mature B cells. It has been shown that LMP1 can mimic a constitutively active 

CD40 receptor, a signaling pathway leading to the activation of NF-KB in antigen- 

activated B cells (Gires et al. 1997). 

CD40 is expressed at high levels on primary and cultured HIRS cells. Therefore, 

engagement of CD40 might be expected to modulate the growth of HIRS cells. 

Exposure of L428 and KM-H2 cells to different concentrations of soluble human 

CD40L resulted in a dose-dependent enhancement of their clonogenic growth and 

a striking increase in their colony size. These effects were enhanced by addition 

of IL-9. CD40L also enhanced expression of co-stimulatory and intercellular 

adhesion molecules ICAM-1/CD54 and B7-1/CD80 in HL-derived cell lines and 

induced release of the cytokines IL-8, IL-6, TNF, and LT-(x (Gruss et al. 1994). 

Further studies of CD40L and agonistic anti-CD40 antibodies in animal models are 

needed to determine the in vivo consequences of engagement of CD40 on HIRS 

cells. 
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1.12 Cytogenetic studies in non-Hodgkin lymphoma and Hodgkin lymphoma 

Cytogenetic analysis has been extremely productive in the investigation of NHL, 

where the identification of non-random chromosomal abnormalities has led to the 

discovery of numerous oncogenes. In FCIL, the investigation of tumour cells 

carrying the t(14: 18) translocation led to the discovery of BcI-2 (Tsujimoto et al. 

1984). This translocation juxtaposes the IgH gene on chromosome 14 with the 

bcl-2 gene on chromosome 18, resulting in dysregulation of BcI-2. Investigation of 

this translocation has led to an improved understanding of the biology of both FCIL 

and apoptosis, and detection of t(14; 18) has proven useful both diagnostically and 

in clinical follow-up. Similarly, the identification of the t(2: 5) translocation in ALCL 

allowed production of antibodies to the fusion protein NPM/ALK and the 

recognition of a discrete subgroup of patients with ALK-positive lymphoma or 

'ALKoma' (Le Beau et al. 1989). In contrast to NHL, primary karyotypical analysis 

of HL has been frustrating, and some of the abnormalities observed may not be 

truly derived from the tumour cells. Reasons for the failure of these analyses 

include the paucity of the HRS cells or their variants in tissue samples, the lack of 

knowledge about their growth requirements in vitro, and the practical limitation of 

obtaining and analysing only a limited number of metaphases with routine classical 

banding cytogenetic techniques. Fluorescence immunophenotyping and 

interphase cytogenetics as a too[ for investigation of neoplasms (FICTION) and 

other molecular techniques may be useful at the investigational level, but they are 

limited to analysis of specific abnormalities (Weber-Mafthiesen et al. 1992). 

Prognostically significant chromosomal abnormalities and genes that may be 
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responsible for malignant transformation cannot be identified without global 

karyotyping. 

The reported abnormal karyotypes in HL are extremely complex, and polyploidy is 

very common. Most abnormal karyotypes are characterized by multiple 

chromosomal gains or losses, translocations, inversions, and deletions. Material 

from 391 patients with HL was reviewed and included 294 analysable metaphases 

(Sarris et aL 1999). Overall, normal diploid karyotypes were seen in 142 patients 

(48%) with analysable metaphases (Koduru et al. 1989; Banks et al. 1991; 

Schlegelberger et al. 1994). This observation has fuelled the controversy about 

whether these normal karyotypes arise from the reactive mononuclear infiltrate, or 

whether HIRS cells may have normal karyotypes in some patients. Abnormal 

metaphases, defined as those with either numerical or structural chromosomal 

abnormalities, were seen in 152 patients (52%) with analysable metaphases. 

However, in individual series the frequency of abnormal metaphases ranged from 

13% to 92%. This extreme variability probably reflects methodological difficulties, 

including the analysis of samples that have variable cellularity or contain different 

numbers of malignant cells. In addition, differences in elapsed time from biopsy to 

placing the cells in culture, the exact culture conditions used to generate 

metaphases, and the exact banding techniques can all affect the number of 

abnormal metaphases observed. 

Most of the abnormal karyotypes were hypercliploid with several extra 

chromosomes. There was a broad distribution of chromosome numbers; the 
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highest reported chromosome number was 119, which corresponds to a 

hyperpentaploid cell. When gains or losses of individual chromosomes were 

analysed, the gains exceeded losses for most chromosomes. The exceptions 

were chromosomes 13,15,22, and Y, which are lost more often than they are 

gained (Falzetti et al. 1999; Pedersen et al. 1999). The reported structural 

abnormalities included translocations, inversions, deletions, or duplications. When 

the relative size of the p and q arms of each chromosome was taken into 

consideration, the data suggested that 2p, 3q, 6q, 7q, 9p, 13p, 14p, and 17q are 

altered much more than expected from their sizes, relative to the contralateral arm 

of the same chromosome (Sarris et al. 1999). This is particularly striking when 

chromosomes 9p and 13p are considered, because the p arms are much smaller 

than the q arms in these two chromosomes. These data are consistent with the 

presence of tumour suppressor genes that are inactivated, and/or tumour promoter 

genes that are activated by these complex chromosomal alterations. Numerous 

unidentifiable marker chromosomes resulting from complex rearrangements 

involving several chromosomes were commonly seen, and these may mask 

significant genomic abnormalities (Banks et al. 1991). These observations do not 

prove that expression of genes contained in these chromosomal loci has been 

altered. They may, however, form the basis for future research to investigate 

whether these genes are altered in HIRS cells, and to identify candidate genes that 

may rescue HIRS cells from apoptosis. 

The t(14; 18)(q32; q2l) was characterized initially in FCL, where it was shown to 

result in the dysregulation of Bcl-2 production by juxtaposing the IgH locus on 
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14q32 with the bc1-2 locus on 18q2l. The bcl-2 locus encodes a mitochondrial 

protein whose overexpression protects lymphold and non-lymphoid cells from 

apoptosis (Miyashita and Reed 1993). Extensive studies have documented the 

presence of t(14; 18) in most FCL (Tsuijimoto and Croce 1986). Since HRS cells 

are derived from B cells with rearranged Ig genes, it was reasonable to probe for 

the presence of t(14; 18) in HL. Several lines of evidence including classical 

cytogenetics, PCR including single HRS cell analysis, and fluorescence in situ 

hybridization (FISH) suggest that t(14; 18)(q32; q21) is not a primary event in the 

molecular pathogenesis of HL (Sarris et al. 1999) (see section 1.12). 

Since its initial description, ALCL (Stein et al. 1985) has been recognized as a 

distinct clinicopathological entity. ICC investigations reveal that both ALCL and HL 

express CD30 (Schwab et al. 1982). Among malignant lymphomas, only ALCL 

and HL express c-kit, the cellular receptor for stem cell growth factor (Pinto et al. 

1994). The presence of CD30, c-kit, and sclerosis in both ALCL and HL has made 

the distinction between those disorders difficult. 

By classical cytogenetics the t(2; 5)(p23; q35) was frequently detected in ALCL (Le 

Beau et al. 1989), but neither 2p23 or 5q35 alterations have been reported in HL 

karyotypes with any frequency. The t(2; 5) fuses sequences from the NPM gene, 

which is located on chromosome 5q35, to a novel gene, designated ALK, on 

chromosome 2p23. The NPM locus is highly conserved and codes for a nuclear 

phosphoprotein that is involved in late stages of ribosomal assembly (Chan et al. 

1989). The ALK locus codes for a novel transmembrane protein kinase that has 
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sequence homology to the (missing) chain of the insulin receptor, the (missing) 

chain of the insulin-like growth factor-1 receptor, the leukocyte tyrosine kinase, and 

the Drosophilia homologue Sevenless. The fusion protein generated by the 

t(2; 5)(p23; q35) consists of NPM amino-terminal sequences fused to ALK carboxyl- 

terminal cytoplasmic sequences, which include the consensus tyrosine kinase 

residues. Gene transduction experiments have demonstrated that this fusion 

protein is sufficient for malignant transformation (Kuefer et al. 1997). 

In a meta-analysis the overall frequency of t(2; 5) among 592 cases of HL was 4% 

which is much lower than the 37% frequency reported for 537 patients with ALCL 

(Sarris et al. 1999). 

The generation of t(2; 5) only in T-cell or null-cell ALCL but not B-cell lymphoma, 

the derivation of HIRS cells from germinal centre B-cells, the negative results by 

classical cytogenetics, the predominantly negative results with molecular genetics, 

and the negative results with ICC methods suggest that t(2; 5) is not a primary 

event in HL. There are many other translocations frequently found amongst other 

NHLs, such as t(8: 14)(q24; q32) involving MYC-IgH, (3q27) involving Bcl-6, t(l 1: 14) 

involving Bcl-1 or CCND1, t(9: 14)(pI3; q32) involving PAX5, t(14: 15)(q32; q11-13) 

involving IgH-Bcl-8, Bcl-9, MUC1, t(11; 18)(q2l; q2l) involving AP12-MLT1, and 

t(1-, 14)(p22; q32) involving Bcl-10 but none of these has been studied in HL 

(Macintyre et al. 2000). 
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1.12.1 FICTION analysis in HL 

FICTION is a technique that was developed to focus on the cytogenetic analysis of 

the malignant cells within tumours. This technique takes advantage of the frequent 

expression of various antigens, such as CD30, on HIRS cells. Specific staining 

coupled with the size and number of nuclei allows the identification of HIRS cells, 

since CD30 is rarely expressed by the reactive mononuclear cell infiltrate. The 

cytogenetic composition of these cells can then be determined with FISH using 

DNA probes specific for either a chromosomal centromere (numerical 

abnormalities) or for a specific DNA region. (structural abnormalities). FICTION is 

limited to those cases where the HIRS cells can be identified by CD30, and cannot 

be used to determine a global karyotype since it can only probe for aberrations in a 

specific chromosome, or for deletions or translocations for which there are 

available fluorescent probes. To date, results from FICTION studies have largely 

confirmed previous observations of hyperploidy in the HIRS cells but specific 

recurrent chromosomal abnormalities were not identified until the advent of CGH 

(Weber-Matthiesen et al. 1995a; Weber-Matthiesen et al. 1995b). 

1.12.2 Comparative genomic hybridisation 

Comparative genomic hybridisation (CGH) is a molecular cytogenetic technique 

that screens for whole genomic imbalances in tumour samples. It identifies 

chromosomal gains and losses (e. g. duplications, amplifications or deletions) by 

using differentially labelled tumour DNA and normal DNA (Kallioniemi and al. 

1992). CGH is based on quantitative two-colour FISH (Kallioniemi and al. 1993). 

It has become an invaluable technique for studying chromosomal aberrations that 
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occur in solid tumours and other malignancies (Zitzelsberger et al. 1997). Such 

studies have not only provided a basis for the identification of genes relevant for 

the pathogenesis of tumours, but have also contributed to recently developed 

tumour classifications (Heselmeyer and al. 1996; Joos et al. 1996; Kovacs et al. 

1997; Nigro et al. 2001; Verdorfer et al. 2001; Tarkkanen and Knuutila 2002). 

There are numerous examples to date: Forozan et al. (2000) studied 38 

established breast cancer cell lines by CGH to identify recurrent genetic 

alterations and determine the extent to which these cell lines resembled 

uncultured tumours. A comparison of DNA copy number changes found in the 

cell lines with those reported in 17 published studies (698 tumours) of uncultured 

tumours revealed a substantial degree of overlap. CGH copy number profiles 

may facilitate identification of important new genes located at the hotspots of 

such chromosomal alterations. This was illustrated by analysing expression 

levels of 1236 genes using cDNA microarrays in four of the cell lines. Several 

highly overexpressed genes (such as RCHI at 17q23, TOPO Hat 17q21 -q22, as 

well as CAS and MYBL2 at 20q13) were involved in these recurrent DNA 

amplifications. Zitzelsberger et al. (2001) studied 16 prostate carcinomas, 12 

prostatic intraepithelial neoplasias (PIN; 4 low-grade and 8 high-grade) adjacent 

to the invasive tumour areas, and 5 regional lymph node metastases. The 

pooled CGH data from the prostatic carcinomas revealed a novel region of 

chromosomal loss on 4q, a region which is also frequently affected in other 

tumour entities such as oesophageal adenocarcinomas. This region may 

therefore harbour a novel tumour suppressor gene. Gains on chromosomes 9q 
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and 16 and loss on chromosome 13q were observed as common aberrations in 

metastases and primary turnours. These CGH results indicate an accumulation 

of chromosomal imbalances during the PIN to invasive carcinoma to metastasis 

sequence and an early origin of tumour-specific aberrations in PIN areas. 

Heselmeyer et al. (1996) studied tissue from the cervical epithelium at various 

stages of dysplasia. Their results showed that gain of chromosome 3q defines 

the transition from severe dysplasia to invasive carcinoma. 

1.12.2.1 Advantages of CGH 

A major advantage of the CGH technique is that only DNA from tumour samples is 

needed for analysis; this avoids the often-difficult preparation of tumour metaphase 

chromosomes, which can have poor morphology and resolution. Instead, 

karyotypically normal metaphase chromosomes are used to detect tumour- 

associated chromosomal gains and losses. Another advantage of CGH is that 

formalin-fixed tissue sections can be used; thus, comparisons can be made 

between a phenotype and genotype, and genetic changes can be correlated with 

the clinical course of a disease. 

1.12.2.2 Limitations of CGH 

The CGH technique will not be able to detect balanced chromosomal 

rearrangements, such as reciprocal translocations or inversions. CGH is further 

limited by the resolution of altered chromosomal regions. Resolutions for 

amplifications and deletions of 5-10 Mb might reasonably be expected when 

analysing tumour material in practical experiments due to varying condensation of 
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metaphase chromosomes, intratumour heterogeneity and contamination with 

normal cells (du Manoir et al. 1995). The reliability and sensitivity of CGH analysis 

is dependent on the homogeneity of the isolated tumour DNA sample. If the 

tumour sample contains >50% non-tumourous cells, a significant number of 

imbalances may not be detected. Due to the high variability of CGH technique and 

limitations of methodology, it is important to validate chromosomal changes 

detected by CGH by other methods, such as FISH, loss of heterozygosity analysis 

or conventional cytogenetics. 

12.2.3 Outl ine of CG H 

For CGH, whole-genomic DNA is isolated from a tumour by standard extraction 

protocols. For single-cell work, whole genome amplification techniques such as 

degenerate oligonucleotide primed PCR (DOP-PCR) can be used to provide 

sufficient quantities of DNA. Control or reference DNA is isolated from an 

individual who has either a normal 46, XX karyotype or a normal 46, XY karyotype. 

The DNA that has been extracted from the two genomes is differentially labelled 

(for example, using biotin conjugated to dUTP for the tumour genome and 

digoxigenin conjugated to dUTP for the normal genome). The tumour and normal 

DNA samples are combined, and an excess of unlabelled human CoT-1 DNA is 

added into the hybridisation mixture, to suppress the repetitive sequences that are 

present in both genomes. The CoT-1 DNA is essential because hybridisation of 

the repetitive DNA would impair the evaluation of the unique sequences that are 

either overrepresented or underrepresented in the tumour genome. This probe 

mixture is hybridised to normal human reference metaphase chromosomes. With 
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indirect labelling, avidin coupled with fluorescein isothiocyanate (FITC), which 

fluoresces green, is used for the detection of bound biotin-labelled tumour DNA, 

whereas antidigoxin coupled to rhodamine, which fluoresces red, is used for the 

digoxigenin-labelled control DNA. It is also possible to use direct labelling with 

SpectrumGreen and SpectrumRed, respectively. The relative colour intensities of 

the two fluorochromes reflect DNA copy-number alterations in the tumour genome 

(McNeil and Ried 2000). 

To determine copy-number imbalances within a tumour, images must be acquired 

from several metaphase spreads using a charged-coupled device (CCD) camera. 

Variations in the fluorochrome intensity along the chromosomes in a metaphase 

spread reflect copy-number changes (i. e. gains and losses of DNA along a 

chromosome) in the tumour sample. For example, using the fluorochromes 

mentioned above, a loss of DNA within the tumour genome shifts the colour of that 

region to red. A gain of a chromosomal region is shown by an increased intensity 

of green fluorescence in the reference metaphase preparation. If chromosomes or 

subchromosomal regions are balanced with respect to DNA content in both tumour 

and control samples, the intensity of the red and green fluorescence is similar. 

Digital image analyses must be used to quantify fluorochrome intensity, especially 

in cases where changes involve low copy numbers or where many gains and 

losses have occurred. Specialised software selects metaphases that have 

adequate signal intensity, aligns them along the chromosomal axis, and correctly 

identifies and orientates each chromosome. For each chromosome, a ratio value 

of fluorochrome intensity is generated from a minimum of 5 to 10 metaphase 
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spreads. Finally, an average ratio profile for each chromosome is produced, 

indicating the calculated gains and losses (Piper et aL 1995). 

1.12.2.4 CGH and HL 

Two research groups have carried out CGH analysis on single or small numbers of 

HIRS cells, using slightly different approaches. Ohshima et al. (1999) performed 

CGH on 9 cases of HL with HIRS cells isolated by flow cytometry based on cell 

size and CD30 staining. They identified the most common genetic aberrations as 

gains on 1 pl 3 and 7q35/36 and loss of 16ql 1/21. Subsequent analysis of loss of 

heterozygosity (LOH) on 16q revealed a discrete region, 16q21-23, that was 

frequently deleted. It was suggested that loss of E-cadherin might be involved in 

the formation of HIRS cells (Ohshima et al. 2001). Joos et al. (2000) performed 

CGH on 12 cases of HL with the HIRS cells isolated by micromanipulation using 

micropipettes made from glass capillaries. The selection was based on 

morphology alone on frozen sections. A number of recurrent chromosomal 

imbalances were identified with the suggestion of amplification of MDM2 and JAK 

Both groups identified recurrent gains and losses and areas of high amplification 

but there was little agreement between the two studies. Thus, the main aim of this 

project was to carry out further CGH studies in HL to elucidate the genetic changes 

in the HIRS cells of HL. 
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Chapter 2 

MATERIALS AND METHODS 
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2.1 Chemicals 

All chemical reagents used were of Analar or molecular grade and were purchased 

from Sigma Aldrich (Poole, UK) or BDH (Poole, UK) except where specifically 

stated. Delonised water obtained from a reverse osmosis system (Millipore, 

Livingston, UK) was used for making up buffers and solutions. Deionised, filtered 

water (MillIQ water filtration system, Millipore) was used in enzyme-catalysed 

reactions and also for the dissolution of DNA and proteins. 

2.2 Tissue samples 

Freshly removed lymph node biopsies were delivered to the laboratory on the 

same day or next day by courier service. The specimen was placed in travelling 

medium (see Appendix) in a plastic container and delivered in a specially designed 

box, approved by the Post Office. A data sheet with relevant clinical information, 

filled in by the submitting pathologist, was also included. 

2.2.1 Processing of tumour biopsies 

In order to preserve viability of specimens, the specimens were processed as 

quickly as possible. The entire process was carried out in a Containment level 11 

facility within a Class 11 microbiological safety cabinet and according to the local 

Code of Practice. Clinical information was entered into the LRF computer 

database and a unique patient number assigned. Lymph node processing was 

carried out by several members of the group, including myself. 
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2.2.2 Preparation of viable cell suspensions 

The biopsy sample was cut in half and imprints were made on Superfrosted 

microscope slides (BDH). Two slides were air-dried and two were fixed in acetone 

for 10 minutes. The tissue was then cut into smaller pieces with a pair of scissors, 

placed into a Medicon cassette (Dako, Ely, UK) and mechanically disrupted using 

a MediMachine (Dako). The cells were resuspended in a small amount of travel 

medium (see Appendix) and removed from the cassette using a5 ml syringe. The 

Medicon was washed twice to ensure complete removal of all cells. 

2.2.3 Cell counting 

Twenty microlitres of cell suspension was mixed with 20 gl of Trypan blue dye 

(Sigma) in a microfuge tube (Scotlab Ltd., Strathclyde, UK). Approximately 20 PI 

of the mixture was placed on a haemocytometer (VWR International Ltd., Poole, 

UK), beneath a coverslip. The total number of viable cells in 16 large grid squares 

was counted. This number was multiplied by the dilution factor, giving the 

concentration x 104 per ml. 

2.2.4 Enrichment of mononuclear cells from lymph nodes 

The cell suspension was slowly layered onto Lymphoprep (Nycomed, Oxford, UK) 

in a 15 ml Falcon tube (see Appendix) for gradient density centrifugation. The 

suspension was centrifuged in a bench top centrifuge (Allegra GR, Beckman 

Coulter, High Wycombe, UK) at 1000 xg for 30 minutes with no brake applied. 

The middle layer, containing the mononuclear cell fraction, was then removed 

carefully with a pipette and resuspended in 10 ml Hanks buffered salt solution 
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(HBSS) (Invitrogen, Paisley, UK) + 2% fetal bovine serum (FBS) (Invitrogen) or 

MiniMacs buffer (see Appendix) + 2% FBS. A cell count was performed and then 

the cells were washed once more followed by centrifugation at 1000 xg for 5 

minutes with braking. 

2.2.5 Storage of viable mononuclear cell suspensions 

The cell pellet was resuspended in 1 ml of 92% FBS + 8% DMSO (see Appendix) 

(usually 107 cells/ml) and aliquoted into 1.5 ml Nunc tubes (Nalge, Hereford, UK). 

The tubes were labelled and stored overnight at -80"C in a Nalgene Cryol*C 

freezing container (Nalge) and then placed in long term storage in liquid nitrogen. 

Sample details and storage location were recorded in the LRF database. 

2.3 Cell lines 

Cell lines, including HL-derived cell lines, were used for optimisation of 

experimental protocols and as controls. The cell lines used during this research 

project were L428, L591, KM-1-12, Raji, Daudi and IM9 (see Appendix). They all 

have very similar growth requirements which allowed them to be cultured in the 

same way. 

2.3.1 Maintenance of turnour-derived cell lines 

Aliquots of viably-frozen cell lines were removed from liquid nitrogen storage and 

thawed at 37"C. As soon as the cells had thawed they were gently diluted into 10 

ml HBSS + 2% FBS. The cells were pelleted by spinning at 1000 xg for 5 minutes 

in a bench top centrifuge (Allegra GR, Beckman Coulter) and then resuspended in 
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10 ml PBS buffer to remove DMSO. A cell count was performed and, following a 

further washing step, the cells were resuspended in an appropriate volume of cell 

culture medium (see Appendix) in aerated culture flasks. The cell cultures were 

incubated at 37*C in 5% C02, and were passaged twice per week. See section 

2.5 for extraction of DNA from cells. 

Handling of cell lines was carried out in class 11 microbiological safety cabinets. It 

was routine practice to handle EBV-negative cell lines prior to EBV-positive ones. 

2.4 ICC and in situ hybridisation 

ICC was used to positively identify HIRS cells on plain or polyethylene naphthalate 

(PEN) foil (see section 2.7.1) cytospins of cell suspensions. Three different ICC 

techniques were tested in this research project. These included the Dako APAAP, 

Dako ABComplex and Dako CSA techniques. The Dako ABComplex was our 

favoured technique because of its relative ease of use, low background and high 

specificity. The primary antibodies that were used were HRS4 (Immunotech, 

Beckman) and Ber-1-12 (Dako), which are both mouse monoclonal antibodies 

reactive with CD30. 

2.4.1 ABComplex method for detection of CD30 

Cytospins or imprints were stored at -800C and had to be equilibrated to room 

temperature (RT) prior to use. All subsequent steps were performed at RT and 

slides were washed twice in 1x TBST (see Appendix) for 3-5 minutes between 

each step. An Immunopen (Dako) was used to circle the cytospin spots to 

minimise the amount of reagent used and avoid drying. The volume required to 
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cover the cytospin spots was 50 pl. Twenty percent rabbit serum (Vector 

Laboratories, Peterborough, UK) was applied to each cell spot to block non- 

specific staining and the slides were incubated for 20 minutes. CD30 primary 

antibody diluted to 1: 100 was then added and the slides were incubated for 30 

minutes. This was followed by a similar incubation period with a 1: 300 dilution of a 

biotin-conjugated rabbit anti-mouse secondary antibody. An aliquot of ABComplex 

was added to each cell spot and the slides were incubated for a further 30 

minutes. Freshly made FastRed substrate (Dako) was added to each spot and 

incubated for 10 to 15 minutes. The slides were washed twice in distilled water 

and then air-dried overnight In an aerated box. For preparation of plain glass 

slides, D. P. X. mountant (see Appendix) was used. 

2.4.2 Deparaffinisation and antigen retrieval 

Sections of paraffin-em bedded tissues were cut at 3 pm thickness per section and 

mounted onto 3-aminopropultriethoxysilane (APES) (Sigma) treated slides. 

Sections were dewaxed in Citroclear (National Diagnostics, Atlanta, USA) and 

rehydrated in graded ethanols. Antigen retrieval was achieved by pressure- 

cooking slides in EDTA buffer (pH 8.0) for 160 seconds. 

2.4.3 ABComplex method for detection of LMP1 

EBV status of HL biopsies was determined by using LMP1 ICC or EBER in situ 

hybridisation on sections of paraffin-embedded material. For LMP1 detection, 

paraffin sections that had been through antigen retrieval and deparaffinisation 

were immersed in 0.2% glycine solution for 2 minutes followed by 70% and 90% 
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ethanol for 2 minutes each. This procedure utilised a Vectastain ABComplex kit 

(Vector Laboratories), which is similar to the Dako ABComplex kit. The main 

difference between the two methodologies is that horseradish peroxidase, rather 

than alkaline phosphatase, is the enzyme used in the Vectastain kit. Slides were 

therefore incubated in 1.5% hydrogen peroxide/methanol solution (see Appendix) 

for 10 minutes prior to the application of the blocking serum, in this case 20% 

horse serum. A 1: 50 dilution of the CS1-4 cocktail of monoclonal antibodies 

(Dako), reactive with LMP1, was added to the section and the slides were 

incubated for 1 hour. The slides were washed and 50 pl of biotinylated anti-mouse 

secondary antibody was added and the slides incubated for 30 minutes. The 

ABComplex was then added followed by a 30-minute incubation. The cells were 

then Incubated In 3,3'-diaminobenzidine (DAB) (Sigma), the chromogenic 

substrate, for 10 to 15 minutes. Finally, the slides were washed twice in distilled 

water prior to being counterstained with haematoxylin using a standard procedure. 

Slides were mounted in D. P. X. (see Appendix) and left to dry on a heat block at 

70*C for 30 minutes. 

2.4.4 EBER In situ hybridisation 

Sections of paraffin-embedded material were immersed in 0.2% glycine solution 

for 2 minutes followed by 70% and 90% ethanol for 2 minutes each. The slides 

were air-dried and 15 lil of FITC conjugated EBV EBER probe (Novacastra, 

Newcastle, UK) and hybridisation buffer (Novacastra, Newcastle, UK) were added 

to each section. The sections were covered with a small coverslip and incubated 

in a dark, humid chamber at 37"C overnight. The coverslips were removed and 
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the slides were washed three times in TBS (see Appendix) for 3 minutes each. 

Fifty microlitres of 20% rabbit serum were added to each section and the slides 

were incubated for 10 minutes. The excess solution was blotted off and 50 PI of a 

1: 50 dilution of anti-FITC antibody conjugated to AP (Novacastra, Newcastle, UK) 

were added to each section and the slides were incubated for 30 minutes. After 

washing twice with TBS, the slides were immersed in substrate buffer (Novacastra, 

Newcastle, UK) for 3 minutes. Finally, 50 pl of NBT/Levamisole substrate solution 

(Novacastra, Newcastle, UK) were added and the slides were incubated for at 

least 40 minutes. Slides were washed with distilled water and mounted with 

aqueous mountant (Dako). The scoring was performed according to accepted 

criteria (Gulley et al. 2002). 

2.5 Purification of high molecular weight DNA from eukaryotic cells 

Cell pellets of cell lines or tumour samples were resuspended in 5 ml, or an 

appropriate volume, of TNE (see Appendix). Sodium dodecyl sulphate (SDS) and 

proteinase K (see Appendix) were added to final concentrations of 0.5% and 50 

pg/ml respectively and the suspension was incubated at 560C for 60 minutes. Two 

volumes of phenol (see Appendix) were added to the lysate and the phases mixed 

slowly for 10 minutes. Following centrifugation at 3000 g without braking for 10 

minutes at RT, the aqueous phase was removed to a sterile tube using a wide- 

tipped polypropylene pastette (see Appendix). An equal volume of phenol/ 

chloroform /isoamylalcohol (PC19) (see Appendix) was added, the phases mixed 

thoroughly and then separated as before. This step was repeated with chloroform 

containing 4% Isoamylalcohol. A wide-tipped pipette was used to transfer the 
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aqueous phase into at least two volumes of ice cold 100% ethanol. High 

molecular weight DNA was spooled onto a sealed Pasteur pipette and transferred 

to a microfuge tube (Scotlab Ltd. ) to be washed with 70% ethanol. The pellet was 

allowed to dry for 1-2 hours. The DNA pellet was resuspended in TE buffer (see 

Appendix) and Incubated at 370C overnight or until the DNA had completely 

dissolved. 

The concentration and purity of the DNA solution were determined by measuring 

the optical density (OD) of the solution at wavelengths of 260 nm and 280 nm 

using a GeneQuant 2 spectrophotometer (Amersham, Buckinghamshire, UK). 

The concentration of the DNA solution was calculated on the basis that an OD260nm 

of 1.0 corresponds to 50 jig/ml of double stranded DNA. The purity of the solution 

was determined by calculating the OD 26=80nm ratio. A value of 1.5 to 1.8 was 

considered Indicative of acceptable quality, free from contaminating proteins. 

2.5.1 Ethanol precipitation of DNA 

Ethanol precipitation was used to clean up and concentrate nucleic acids. One 

tenth volume of 3M sodium acetate and 2 volumes of ice-cold 100% ethanol were 

added to the DNA solution and mixed well. The mixture was chilled to -20"C 

overnight or -70*C for 30 minutes, to allow the DNA precipitate to form. This was 

followed by centrifugation at maximum speed (12000 g) in a microfuge (Scotlab 

Ltd., Strathclyde, UK) for 30 minutes at 4"C. The supernatant was discarded and 

250 pi of 70% ethanol was added, the mixture was vortexed briefly and centrifuged 

for 30 minutes at 40C. The supernatant was discarded and the microfuge tube 
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was left in an inverted position on a layer of absorbent paper to allow as much of 

the supernatant as possible to drain away. Traces of supernatant were removed 

using a sterile cotton bud or by a brief spin in a SpeedVac (ThermoSavant, 

Cheshire, UK). Over drying of the pellet was avoided as this resulted in difficulty in 

re-dissolving the pellet. Finally, the pellet was resuspended in the desired volume 

of TE buffer or water. 

2.6 Introduction to polymerase chain reaction 

PCR is now firmly established as an important technique in many aspects of 

biomolecular research. The technique allows unlimited amplification of DNA 

fragments using primers complementary to the DNA sequence. All that is required 

is a small amount of DNA template, primers, thermostable polymerase, 

magnesium, nucleotides and repeated cycles of denaturation, annealing and 

extension. Several different types of PCR were used in this project. Real-time 

quantitative PCR (RQ-PCR) and conventional PCR are covered in this section. 

DOP-PCR protocols are discussed in section 2.8. 

2.6.1 Real-time quantitative polymerase chain reaction 

Real-time quantitative PCR (RQ-PCR) is a method for the reliable detection and 

measurement of products generated during each cycle of the PCR. In the 

exponential phase of the reaction, the rate of amplification is directly proportional 

to the amount of template prior to the start of the PCR. The most commonly 

employed methodology uses TaqMan hydrolysis probes and the ABI Prism 7700 

Sequence Detection System (Applied Biosystems, Warrington, UK). The addition 
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of a hydrolysis probe to the reaction makes the RQ-PCR assay highly specific. An 

oligonucleotide probe is constructed with a fluorescent reporter dye bound to the 5' 

end and a quencher on the 3' end. While the probe is intact, the proximity of the 

quencher greatly reduces the fluorescence emitted by the reporter dye by 

fluorescence resonance energy transfer (FRET) through space. During PCR 

amplification, the 5' nuclease activity of the polymerase cleaves the 5' end of the 

target-specific fluorescent probe. This cleavage of the probe separates the 

reporter dye from the quencher, increasing the reporter dye signal. When excited 

by a light source, Le. laser, the cleaved probe emits a signal at a wavelength due 

to FRET, which transforms the energy into light. The system was used to measure 

DNA copy number of cellular and viral genes. Data are expressed as CT values; 

the CT corresponds to the cycle number at which the amplification plot for a given 

sample crossed the threshold, which was set at the point where the fluorescent 

signal equaled 10 times the standard deviation of background fluorescence. 

The TaqMan primer and probe sets used in this project were designed in-house. 

The software programme Primer Express (Applied Biosystems) was used to 

design the optimal combination of primers and TaqMan probes for each assay. 

The programme ensures the primers and probe have appropriate melting 

temperature, low GC content in the most 3' 5 base pairs (bp) and prevents 

selection of primers that will dimerize or form hairpins. Smaller amplicons (<80 bp) 

are preferable; these small amplicons enable the extension time of the reaction to 

be very short (around 15 seconds), and also enable the primers and probe to 

compete more effectively with the complementary target sequence. The optimal 
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concentration of primers was determined for each assay. Primers and probes 

used in this project are shown in Table 2.2 (see Section 2.8.1). 

RQ-PCRs contained 5 pl of DNA template, corresponding to 6.5 to 360 pg DNA. 

Reactions were performed using TaqMan Universal PCR Master Mix (Applied 

Biosystems) in a final volume of 25 pl with primers and probe at an optimised 

concentration. Following initial incubations at 50'C for 2 minutes and 950C for 10 

minutes, 40 cycles of thermal cycling at 950C for 15 minutes and 600C for 60 

seconds were performed. 

2.6.2 Conventional PCR using small cell numbers 

The IkBa gene was successfully amplified from small numbers of cells using a two- 

step procedure and a multiplex PCR kit (Qiagen, West Sussex, UK). Multiplex 

PCR was advantageous because it allows multiple assays to be performed on 

small samples, using identical conditions. A table of the primer combinations used 

is detailed below (Table 2.1). A list of the full sequence of individual primers is 

provided in the Appendix. 

Exon First Round Second Round Product size 

Forward Reverse orward Reverse bp 

1 699 720 746 719 290 

2 593 702 593 745 176 

3 721 694 684 694 446 

4 722 696 723 696 236 

5 724 726 725 726 417 

6 703 708 703 627 450 

Table 2.1 Identifier for IkBa exon 1-6 primer sequence sets (see Appendix for corresponding 

sequences). 

81 



The IkBa gene is made up of 6 exons. The first round was a multiplex PCR 

reaction and each exon was amplified individually in the second round. in these 

experiments, 10 to 20 HIRS cells were lysed in 10 pl of TaqMan lysis buffer (see 

Appendix) for 1 hour at 50"C. This was added to 25 pl of Qiagen Multiplex 

MasterMix, which contained an optimised amount of HotStarTaq polymerase, 

MgC12, and dNTPs. Aliquots of 10x primer mix, containing 2 pM of each primer, 

were made by combining 6 pairs of first round primers. The reaction contained 

2.5% DIVISO and the total reaction volume was 50 pl. Thermal cycling was 

performed on a GeneAmp PCR System 9600 (Applied Biosystems) using the 

following cycling conditions for the first round of PCR: 950C for 15 minutes followed 

by 35 cycles of 950C for 30 seconds, 55*C for 90 seconds, 720C for 90 seconds 

and a final extension at 72*C for 10 minutes. In the second round, 1 PI of first 

round product was added to 25 pl of Qiagen Multiplex MasterMix with 0.2 PM of 

second round primers in a reaction volume of 50 pl. For exon 1 only, the reaction 

contained 2.5% DMSO. Thermal cycling was performed in the same thermocycler 

using the following conditions: 950C for 15 minutes followed by 35 cycles of 95"C 

for 30 seconds, 65"C for 30 seconds, 720C for 90 seconds and a final extension at 

720C for 10 minutes. The products were visualised under ultraviolet (UV) following 

electrophoresis on 8% polyacrylamide gels (see section 2.6-3.2) and staining with 

ethidium bromide. Amplification products of the appropriate size were subjected to 

direct sequencing (see section 2.6.3.3). 
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2.6.3 Analysis of PCR products 

2.6.3.1 Agarose gel electrophoresis 

Agarose (see Appendix) was made up to 1% weight/volume or appropriate in 

1xTBE or TBA buffer (see Appendix) and dissolved by heating in a microwave. 

The solution was cooled to 55"C and 2 VI of 0.5 pg/ml ethidium bromide added 

before pouring onto a horizontal Perspex bed (see Appendix) with a well-forming 

comb in position. Following solidification, the gel was submerged in an 

electrophoresis tank, covered with 1xTBE buffer and the well-forming comb 

removed. 

Prior to electrophoresis, DNA samples were mixed with a one-tenth volume of 

loading buffer (see Appendix). Samples were loaded into wells and a constant 

potential difference of 4-8 V/cm applied across the gel for 30 minutes to 4 hours, 

depending on the application. The DNA was visualised on a UV transilluminator at 

300 nm and photographed using a Polaroid MP4 Land camera with Polaroid Type 

57 high speed film or captured digitally using UVIsave (Thistle Scientific, UK). 

The size of DNA fragments were estimated by comparison with the migration 

distances of DNA fragments of known sizes. For this purpose, 0.5 -1 pg of Hindill 

digested bacteriophage lambda DNA (Sigma Aldrich Ltd. ) or Haelli-digested 

PhiX174 RF DNA (Sigma Aldrich Ltd. ) were electrophoresed alongside each batch 

of DNA samples. 
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2.6.3.2 Polyacrylamide gel electrophoresis 

Polyacrylamide gel electrophoresis (PAGE) was used for the separation of DNA 

fragments less than 1 kilobase (kb) in length. Polyacrylamide solutions were made 

up to a final concentration of 8% (Liquideacrylamide 30% and Bisacrylamide 2%) 

in 1xTBE and polymerised by the addition of 0.06% (w/v) ammonium persulphate 

(APS) and 0.03% TEMED (N, N, N, N- tetra methyl ethyld iami ne). The gel (10 cm 

x8 cm x2 mm) was poured between glass plates (see Appendix) and allowed to 

polymerise for 30 minutes with the well forming comb in place. After 

polymerisation was completed, the well-forming comb was removed and the wells 

thoroughly flushed with 1xTBE. DNA samples in loading buffer were loaded onto 

the gel and electrophoresed at 12 V/cm for 60 minutes using 1xTBE as the running 

buffer. DNA fragments were visualised using UV light following staining of the gel 

in 0.5 Vg/ml ethidium bromide in 1xTBE for 30 seconds. 

DNA fragment sizes were estimated by comparison with the migration distances of 

DNA fragments of known size. For this purpose, 0.5 -1 pg of Haelli-digested 

PhiX1 74 RF DNA were electrophoresed alongside each batch of DNA samples. 

2.6.3.3 Sequence analysis 

Following purification using the Quickstep system (Edge BioSystems, MID, USA), 

PCIR products were sequenced directly without prior cloning. Sequence analysis 

was performed using the BigDye Terminators v3.1 Cycle Sequencing Kit and an 

ABI Prism 3100 Genetic Analyzer (Applied Biosystems). This part of the project 

was carried out by Ms. Annette Lake. Single nucleotide polymorphism (SNP) 
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assays to look for loss of heterozygosity were also performed by Ms. Annette 

Lake. 

2.7 Laser microdissection of single cells 

Advances in our knowledge of the biology of HL in recent years have been helped 

enormously by the ability to isolate HIRS cells from surrounding tissue. Modern 

techniques, such as fluorescence activated cell sorting (FACS) and affinity-labelled 

magnetic bead separations (Miltenyi Biotec, Surrey, UK), allow separation of 

subpopulations from heterogeneous pools of single cells in suspension. 

Unfortunately, they do not allow morphological assessment which is crucial to the 

selection of HIRS cells since there is no absolutely specific immunological marker 

for these cells. Microdissection techniques involving micromanipulation and 

suction of a cell through micron-sized glass pipettes, dissection using a piezo- 

activated metal knife followed by suction through a glass pipette, and dissection 

using lasers have therefore been developed for HIRS cell isolation. The pros and 

cons of using tissue sections, cell suspensions and cytospins for HIRS cell isolation 

are discussed in the following section. 

Prior to these experiments, both the FACS and the Mini-MACS techniques were 

used at the LRF Virus Centre to enrich HIRS cells. Microdissection using two 

hydraulic micromanipulators was used to obtain single HIRS cells from single cell 

suspensions. The major disadvantage of all three techniques was the necessity 

for a large amount of viable starting material, freshly prepared on the day. FACS 

and Mini-MACS allow enrichment of a large number of CD30 or CD15 positive 
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cells but it is difficult to ensure high purity as the antibodies used react with a 

variety of other non-tumour cells. Single cell micro-manipulation is an inefficient 

technique in comparison since it takes a long time to obtain a small number of cells 

and is highly skill dependent. Although this technique allows direct visual 

assessment of morphology, identification of HIRS cells in cell suspensions is not 

straightforward. The development of laser microdissection (LIVID) instruments 

therefore offered a better and more user-friendly technique. Because of the high 

energy concentrated into a small area, the easy control of the beam position, and 

the lack of direct contact with the material to be dissected, lasers provide the ideal 

tool for easy-to-use, large-scale microdissection. The potential of LIVID was also 

linked to the development of highly sensitive and specific molecular techniques, 

such as single cell PCR and whole genome amplification (WGA), which allow 

analysis of a relatively small number of cells. 

Three commercially available systems were designed specifically for LMD: PixCell 

by Arcturus (California, USA), PALM by P. A. L. M. Mikrolaser Technologie 

(Bernried, Germany), and the Leica AS LMD by Leica (Milton Keynes, UK). 

Following demonstrations and discussions with other scientists, the Leica AS LMD 

was selected for use in the LRF Virus Centre as it is a third generation laser 

microdissection system and appeared the most user-friendly of the three systems. 

It uses a UV laser, similar to the PALM system, and therefore avoids problems of 

heating associated with the infrared laser in the PixCell system. The laser beam is 

moved with a software-controlled mirror system to select cells to be ablated or to 

isolate the area to be dissected. The dissected material is allowed to fall by gravity 
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into the cap of a PCR tube and may thereafter be used for isolation of proteins or 

nucleic acid. The PALM system differs from the Leica system in having a static 

laser beam and having to catapult the dissected cells upwards into a collecting 

cap. 

2.7.1 PENfoil slides for LIVID 

Regular microscope slides may be used in all systems, albeit with suboptimal 

results. For the PALM and the Leica AS LIVID, it is recommended that a thin PEN 

(polyethylene naphthalate) foil (PALM) is mounted between the slide and the 

tissue specimen. The PENfoil is cut by the ablation laser around the area targeted 

for dissection and then catapulted in the PALM or let drop in the Leica system, 

thus preserving the integrity of the attached cells. Dissected pieces of tissue may 

be visualised after capture in the collecting cap only if the underlying membrane 

keeps the structure intact. If cells are catapulted directly from a slide, the material 

is pulverised and it is impossible to assess the efficiency of capture by 

visualisation. Lack of humidity may contribute to increased electrostatic forces that 

compete with gravity and affect collection in the Leica AS LIVID system. 

2.7.2 Optimised PENfoil slide preparation 

All aspects of LIVID were optimised as part of this project. A series of experiments 

was performed to determine: the optimal type of glass slide; the optimal sample 

fixation and staining; the optimal method for attaching PENfoil to slides (type of 

adhesive agent, number of edges to be sealed); and the optimal procedure to 

avoid static. 
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PENfoil membranes were cut to size (50 x 22 mm) and mounted on plain glass 

slides (BDH). Superfrost charged slides were found to be unsuitable as it was 

subsequently difficult to detach the PENfoil membrane from the slides. To ensure 

wrinkle-free application, the glass slide was first dipped in 70% alcohol after which 

the pre-cut membrane and backing paper were applied to the wet glass. The 

paper support was then removed and the membrane attached using Fixogum 

rubber cement (Marabu, Tamm, Germany) along two opposing edges. The slides 

were then left to dry for 2-3 days in a clean slide box. Cells from the Raji cell line 

were used to determine the optimal slide preparation method prior to using cHL 

samples. 

2.7.3 Optimised cytospin preparation for LIVID 

Cytospins of cHL were made either from freshly processed lymph node cell 

suspensions, cell line suspensions or from viable cells stored in liquid nitrogen. 

Cytospins were preferred over frozen or paraffin-ern bedded tissue sections. The 

advantage is the ability to obtain high quality DNA from the whole cell, selected on 

the basis of both morphology and immunophenotype, without nuclear truncation. 

Usually two vials of 107 cells were removed from liquid nitrogen, the cells were 

thawed (as described in Section 2.3.1) and a viable cell count performed. PENfoil 

coated slides and double chamber cytospin funnels were held together with a 

cytospin clip and loaded onto the cytospin holder. One hundred microlitres of cell 

suspension (2.5 x 105 cells) were loaded into each chamber. The cells were spun 

at 450 rpm for 10 minutes in a cytocentrifuge (Cytospin 2, ThermoShandon, 
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Cheshire, UK). The slides were removed quickly from the cytospin assemblies 

and air dried for 10 minutes. The cells were then fixed in ice-cold acetone for 10 

minutes and air dried for a further 10 minutes. An Immunopen (Dako) was used to 

mark a circle around the cell spots on the slides. Slides were wrapped in 

aluminium foil and stored at -80'C until use. 

If the diagnosis of cHL was suspected on receipt of a fresh sample, PENfoil slides 

were prepared from the fresh specimen following the above procedure. 

2.7.4 Optimised conditions for LMD 

Laser microdissection was carried out in a dedicated room where UV light was 

used to sterilise the area before and after each session. This also served to 

reduce static accumulation (see below). A recurring problem with the LMD setup 

was the effect of electrostatic build up from surrounding equipment and apparatus. 

The manufacturer recommended treating all plasticware, slides and equipment 

with UV light to reduce static. Treatment of PENfoil coated slides prior to cytospin 

preparation, ICC and storage was not efficacious. Treatment of our collection 

tubes with UV for at least 1 hour prior to LMD did help to reduce static. 

Calibration of the Leica AS LIVID system as recommended by the manufacturer 

was performed prior to each session. Cytospins of Raji cells were stained with the 

DiffQuik stain kit (ThermoShandon, Cheshire, UK) for use in a series of validation 

experiments. The kit is made up of fixative and eosin and methylene blue 

solutions. Raji cells were used because they contain approximately 50 EBV 

genomes per cell and therefore a single captured cell can be reliably detected 
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using RQ-PCR for EBV. Raji cells were laser microdissected and their DNA 

extracted by incubating at 500C for 1 hour in various lysis buffers (see Appendix) 

followed by heat inactivation at 950C for 10 minutes. Choice of lysis buffer was 

dependent on the downstream analysis. Lysates were assayed by RQ-PCR using 

a set of EBV BamHl-W primers and probe (see Table 2.2). Viral sequences from 

9 out of ten singly dissected Raji cells were amplified (see Figure 2.1), indicating 

the reliability of our LMD protocol. 
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Figure 2.1 RQ-PCR amplification plot of EBV BamH1-W detection following LIVID of 10 singly 

dissected Raji cells. Each amplification plot represents a single cell. Nine out of the ten 

amplification plots exceeded the threshold ARn value. 

2.8 Degenerate oligonucleotide primed PCR 

The amount of DNA from 50 to 100 HIRS cells obtained by LMD is too low for use 

in CGH. A single CGH experiment will need 1 to 1.5 pg of DNA. It is therefore 

necessary to use an amplification step to generate a sufficiently large quantity of 

genomic DNA, a procedure called whole genome amplification (WGA). Various 

90 



PCR-based and non-PCR based WGA techniques have been described in the 

literature. Early techniques (for example, linker adaptor PCR) involved ligation of 

specific sequences to each end of restriction enzyme digested DNA fragments 

followed by PCR using the adaptors as primers. Such approaches involved 

considerable manipulation of the sample before amplification including isolation of 

double-stranded DNA, restriction enzyme digestion and ligation. These 

techniques were unlikely to be useful when starting with a single cell or very small 

cell numbers since portions of the single genome would most probably be lost 

during the subsequent manipulations. More recently, DOP-PCR, primer extension 

pre-amplification (PEP) PCR and multiple displacement amplification (MDA) have 

been used to amplify DNA for CGH. At present DOP-PCR is the most widely used 

technique for WGA prior to CGH. 

DOP-PCR was developed by Telenius et al. (1992), to allow unselected 

amplification of virtually any source of DNA. It makes use of the UN1 primer, 

which is a 22-mer containing 6 degenerate nucleotides (5'-CCG ACT CGA GNN 

NNN NAT GTG G-3'), and a mixture of low and high stringency PCIR conditions. 

The primer was designed to give an optimal balance in terms of representation 

and yield when binding to genomic DNA. This technique has been specifically 

applied to chromosome painting, and results in a more uniform signal than ligation- 

based methods of WGA. In a PCIR tube several low temperature annealings 

followed by extensions are performed to allow the primer to bind to multiple sites in 

the human genome. After several cycles of amplification at low annealing 

temperature, the annealing temperature is increased to allow more specific priming 
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only of fragments now tagged with the UN1 primer sequence. As much as 23,000- 

fold effective amplification can be achieved from as little as 15-26 pg of genomic 

DNA (Telenius et al. 1992). It has been estimated, based on the amount and sizes 

of DOP-PCR products, that there should be about one million DOP-PCR 

fragments generated from the entire human genome (Telenius et al. 1992). Since 

the average size of product from a DOP-PCR is 500 bp and the haploid human 

genome is about 3x1O9 bp, it was estimated that an arbitrary stretch of DNA had 

only a one in six chance of being included in the DOP-PCR product. However, 

using a slightly modified DOP-PCR technique to amplify human DNA, Cheung et 

al. (1996) observed that all PCR-based markers tested were amplified and were 

accurately genotyped, suggesting the coverage is more comprehensive than the 

estimates (Cheung and Nelson 1996). 

DOP-PCR was further optimised by Kuukasjarvi et al. (1997) using a new 

thermostable sequenase (ThermoSequenase) (Amersham, Buckinghamshire, UK) 

and low stringency conditions in the first 4 rounds of pre-amplification followed by 

amplification using AmpliTaq polymerase LID (Applied Biosystems) under more 

stringent conditions (Kuukasjarvi et al. 1997). Later, Huang et al. (2000) 

developed the 'improved DOP-PCR' protocol because they found the above 

soptimised DOP-PCR' protocol could not generate reproducible and reliable results 

in their laboratory (Huang et al. 2000). They substituted the lox high salt buffer, 

lox low salt buffer, and AmpliTaq polymerase LID (Applied Biosystems) with 

ThermoSequenase buffer (Amersham, Buckinghamshire, UK), lox AmpliTaq 

buffer and AmpliTaq polymerase (Applied Biosystems), respectively. The number 
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of cycles in the second round of DOP-PCR was increased to 35. These 

modifications made efficient amplification possible even when the amount of DNA 

template was reduced to 12.5 pg, with the resultant products suitable for CGH. 

2.8.1 Optimisation experiments for DOP-PCR 

Optimisation experiments were performed to determine: the DOP protocol that 

worked best in our laboratory; the best method of purifying primers, since primer 

purity has been found to be critical when amplifying small amounts of template 

DNA; the best method of cell lysis; and the optimal strategy for cutting cells for 

DOP-PCR. 

Three DOP-PCR protocols were compared to determine sensitivity and efficiency. 

It was not possible to directly test the products by labelling and going through the 

whole process of CGH, as CGH had to be carried out in a distant laboratory. Gel 

electrophoresis and RQ-PCR were used to compare the amount of DNA 

generated and the representativeness of the products using the three protocols. 

Experiment to determine representativeness of the Huang's protocol is displayed 

in Figure 2.2. The primers and probe sets used in the RQ-PCR analysis are listed 

in Table 2.2. 
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Gene 3' primer sequence 5' primer sequence Probe sequence 

B-globin GGCAACCCTAAGGT GGTGAGCCAGGCC CATGGCAAGAAAGT 

GAAGGC ATCACTA GCTCGGTGCCT 

HSP90 TGGCTGGTGACAGG AAGGGCCGCAAGGT AAACAGGCAAAGGC 

AA CTTC GCAGTCGC 

AMPD CCCTTCCATTGCCT GGTAGCGGAAGTG CATGAACACCACCT 

CAGTTC GTTGCA CACTAGTCTTCTGC 

CA 

EBV Pol AGTCCTTCTTGGCT CTTTGGCGCGGATC CATCAAGAAGCTGC 

AGTCTGTTGAC CTC TGGCGGCC 

EBVLMP1 TCTAAGAAGCCACC TGAAGGAACGGCG CGTAGAATCCAGCC 

ATGCGA GAGAGTA AGTGGTCTACCCG 

EBV BamHl W CCCCTGGTATAAAG; CCCTCTTACATTTGT AGCTATTTCTGGTC 

TGGTCCTG GTGGACTCC GCATCAGAGCGC 

EBV EBER AGGACCTACGCTGC AACCACAGACACCG AGCCACACACGTCT 
CCTAGAG TCCTCAC CCTCCCTAGCAAA 

EBV ori P AGGCGCAAGTGTGT GGGCGGGCCAAGA CTCCAGATCGCAGC 

GTAATTTGT TAGG AATCGCGC 

Table 2.2 RQ-PCR probes and primers used in the optimisation of LMD and DOP-PCR. 
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Figure 2.2 Representativeness and reproducibility of DOP-PCR as assessed by RQ-PCR using 

eight primer probe sets. This experiment was performed with 36 pg of starting DNA using the 

Huang's protocol. Standard curves have been generated for each experiment (data not shown). 

Three methods of primer purification were compared: NAP, COP and HPLC 

purification. Slightly better amplification and consistency were achieved by using 

the NAP purified UNII-primer in comparison to HPLC or COP purified LIN11-primer. 

The 'improved DOP-PCR' protocol of Huang et al. (2000) was more reproducible 

than either the original or optimised DOP-PCR protocol. The improved DOP-PCR 

protocol generated a large quantity of whole genome DNA from just 36 pg of 

starting DNA as assessed following 1% polyacrylamide gel electrophoresis (data 

not shown). The kinetics of the improved DOP-PCR protocol were assessed by 

the use of RQ-PCR (Figure 2.3). Increasing the number of cycles from 4 to 5 to 6 
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in the first step of the PCR reaction did not make any significant difference to the 

yield of this improved DOP-PCR (data not shown). 
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Figure 2.3 Copy number changes in P-globin gene as quantified by RQ-PCR using differing 

amounts of starting KMH2 DNA. Samples were analysed following LIVID (DOP 0), following 4 

cycles of DOP amplification (DOP 4) and following 39 cycles of amplification. 

Varying the temperature (500C or 550C) or duration (1 hour or 2 hours) of 

incubation at the point of proteinase K digestion seemed to make little difference to 

the success of the improved DOP-PCR protocol, whereas the addition of a non- 

ionic detergent, such as polyoxyethylenesorbitan monolaurate (Tween 20) (Sigma) 

and NP40, to the lysis buffer resulted in better amplification. Using the above 

conditions, the efficiency of different laser microdissection strategies followed by 

DOP-PCR was compared with analysis using RQ-PCR and the EBV BamH1 W 
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assay. The best approach was to cut 5 aliquots of 10 Raji cells, amplify them with 

the improved DOP-PCR individually and then pool them together, rather than 

amplify 50 cells in a single tube. This strategy gave the most consistent yield 

(Figure 2.4). 
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Figure 2.4 RQ-PCR amplification plot of EBV BamH1 W detected from pooled DOP-PCR amplified 

products derived from 5 aliquots of 10 laser microdissected Raji cells. Two replicates showing good 

reproducibility with overlapping plots. 

2.8.2 Fidelity of'improved DOP-PCR' 

In order to assess the fidelity of the DOP-PCR, the presence of a mutation in the 

PCR (refer to IkBa PCR) was performed using either DOP-amplified products from 

L428 cell line was investigated. A single base mutation of C to T at position 2278 

in IkBa exon 5 was reliably detected from DOP-PCR amplified L428 DNA. 

Triplicates of IkBa PCR products were visualised by 1% polyacrylamide gel 

electrophoresis. All samples tested revealed a PCR product size band similar to 

positive controls and direct sequencing of the DOP-PCR products confirmed the 
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presence of the C to T change as previously described in genomic DNA from L428 

(Figure 2.5). This experiment confirmed the fidelity of this improved DOP-PCR 

protocol. 
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Figure 2.5 Polyacrylamide gel electrophoresis of IkBa exon 5 PCR product using templates derived 

from DOP-PCR amplified and non-DOP L428 DNA. Image shows identically sized product from 

DOP-PCR amplified L428 DNA and genomic L428 DNA. 

2.8.3 Final DOP-PCR protocol 

in the experiments described in this thesis, 5x 10 laser microdissected cells were 

lysed in 6 pl of ThermoSequenase buffer containing non-ionic detergent and 

proteinase K (see Appendix) by incubation at 550C for 1 hour. Proteinase K was 

subsequently inactivated by incubation at 95"C for 10 minutes. DOP-PCR was 

performed using a GeneAmp PCR System 2400 or 9700 (Applied Biosystems) in 

two steps according to the 'improved DOP-PCR' protocol (Huang et al. 2000). In 

step 1, DNA was amplified in a 10 pl reaction volume containing 200 pM of each 

dNTP, 1 pM UNI-primer (Telenius et al. 1992), 4 units of ThermoSequenase DNA 

polymerase (Amersham), and lx ThermoSequenase reaction buffer (26 mM Tris- 

HCI, pH 9.5; 6.5 mM MgC12). Thermal cyling conditions consisted of 3 minutes at 

951)C, followed by 4 cycles of 1 minute at 94'C, 1 minute at 25'C, 3 minutes 
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transition from 25-740C, 2 minutes extension at 74'C, and a final extension of 10 

minutes at 74'C. In step 11, the reaction volume was increased to 50 pl by the 

addition of 40 pl of a mastermix containing 160 pM of each dNTP, 1.2 pM UNI- 

primer, 5 units AmpliTaq DNA polymerase (Applied Biosystems), and 1x PCR 

buffer (10 mM Tris-HCI, pH 8.4; 50 mM KCI; 1-5 MM MgC12; and 0.001% gelatine; 

Applied Biosystems). Thermal cycling conditions were 3 minutes at 950C, followed 

by 35 cycles of 1 min at 94'C, 1 minute at 56'C, 2 minutes extension at 72'C, and 

a final extension of 10 minutes (Figure 2.6). 
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Figure 2.6 Agarose gel electrophoresis of identical replicates of DOP-PCR products using 60 pg 

DNA as starting material. 

2.9 Outline of CGH 

The following sections will describe the main steps involved in CGH once an 

adequate amount of DNA template is generated; namely labelling with 

fluorochromes, hybridisation on metaphase slides, image capturing and analysis. 

2.9.1 Labelling of PCR products by nick translation 

DNA probes for use in CGH can be labelled either directly or indirectly. Although 

directly labelled probes generate smooth fluorescence along the length of the 

chromosomes, indirect detection procedures also result in good quality CGH 
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results. Indirect labelling results in signal amplification but can lead to a greater 

background. Labelling of DNA can be achieved by random priming, nick 

translation or during DOP-PCR, utilising either biotinylated deoxynucleotides or 

deoxynucleotides conjugated with digoxigen or fluorochromes. For many 

applications using high molecular weight DNA, nick translation is the method of 

choice. Nick translation is more suitable for this application because probe length 

can be controlled by enzyme titration. Commonly used fluorochromes for test and 

control DNA are FITC and rhodamine. SpectrumRed-dUTP and SpectrumGreen- 

dUTP (Abbott Laboratories, Berkshire, UK) were used in labelling reactions in this 

project. 

The length of the probe molecules after labelling is a critical factor for good quality 

in situ hybridisation. The optimal fragment size range of labelled DNA to obtain a 

homogenous hybridisation pattern is 300 to 2000 bp. This is longer than the probe 

length used in other types of FISH applications. Longer fragments improve both 

the intensity and uniformity of the signals obtained. During nick translation, the 

exonuclease of DNA polymerase causes a single-strand break (or nick) in the 

DNA. Nucleotides (both labelled and non-labelled) are added to the 3' end of the 

nicked strand by DNA polymerase, using the DNA sequence of the non-nicked 

strand as template. During nick translation the length of the fragments may be 

modified by altering the ratio of DNase I to DNA polymerase I enzymes in the nick 

translation reaction mixture. In CGH it is important to adjust not only the length of 

the fragments, but also to achieve a similar length for test and control DNA (Larsen 

et al. 2001). 
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In a 1.5 ml microfuge tube, the reagents were added in the following order: 

approximately 1.5 pg of DNA, mixture of unlabelled nucleoticles at 100 mM, 

labelled nucleoticles at 1 mM, water to make up to 50 pl, optimal amount of DNA 

polymerase 1 (0.4 U/pl) and DNase 1 (40 pg/pl). Reagents were mixed thoroughly 

and were pulse-centrifuged in a microfuge. The reaction mixtures were incubated 

at 150C for 45 minutes in the case of DOP-PCR products and 1 hour 40 minutes in 

the case of genomic DNA samples. Reactions were terminated by incubating at 

700C for 10 minutes. 

1 kb 10 
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Figure 2.7 Agarose gel electrophoresis of identical replicates of SpectrurnGreen labelled DOP-PCR 

products from laser microdissected HIRS cells (5 x 10 cells). 

In order to increase fragment size the amount of DNA polymerase 1 was increased 

and/or the amount of DNA polymerase 1/DNase 1 mix or incubation time was 

decreased. The product size range was checked by running approximately one 

fifth of the reaction on a1% agarose gel (Figure 2.7). Labelled probes were stored 

in the dark at -20'C. 

2.9.2 Slide preparation for CGH 

One of the most critical parameters for successful CGH is the quality of metaphase 

spreads. Pretreatment of the specimen by proteolytic digestion can improve the 
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accessibility of probes to the specimen. However, such a treatment may also 

result in a higher granularity of the signal generated by the genomic DNA, thus 

hampering the CGH analysis. In these experiments, metaphase spreads were 

purchased from a commercial supplier (Abbott Laboratories), in order to 

circumvent problems associated with quality assurance. The method for making 

normal metaphase spreads is described in section 2.10.7.1. 

2.9.3 Preparation of probe mix 

The labelled DNA was light sensitive therefore manipulations were performed in 

the dark, where possible. Approximately 800 - 1000 ng of each labelled DNA 

were combined with 60 pg of human CoT-1 DNA (Invitrogen, Paisley, UK). One 

tenth volume of 3M sodium acetate and 2.5 times volume of 100% ethanol were 

added to precipitate the DNA. The mixture was vortexed briefly and placed in the 

dark at -80*C for 30 minutes. The mixture was centrifuged at maximum speed 

(13000 rpm) in a microfuge at 40C for 30 minutes. The supernatant was discarded 

and the pellet washed briefly with 100 pl of 70% ethanol and centrifuged at 

maximum speed (13000 rpm) in a microfuge at RT for 1 minute. All supernatant 

was removed and the pellet was dried in the dark without heating in a SpeedVac 

(ThermoSavant) for 10 minutes at RT. Once dried, the pellet was resuspended in 

3 pl dH20 and 7 pl CGH hybridisation buffer (Abbott Laboratories). The probe mix 

was kept on ice and then equilibrated to RT immediately prior to use. 
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2.9.4 Hybridisation of the probe to target metaphase spreads 

The denaturation solution (see Appendix) was warmed from cold to the desired 

temperature (usually 730C but 740C for older slides) in a waterbath. Target 

metaphase slides (Abbott Laboratories) were taken from storage at -20"C and the 

area containing the metaphase spreads was marked with a diamond scribe. The 

slides were immersed in denaturation solution for 5 minutes and, when 3 minutes 

were remaining, the probe mix was denatured by incubating at 73"C on a heat 

block for 5 minutes. The slides were dehydrated through an ethanol series (70%, 

85% and 100%) for 1 minute each and allowed to dry. Following denaturation, the 

probe mix was left at RT in the dark for 1 minute to self-anneal. The entire probe 

mix (10 pl) was then applied onto the target area which was then covered with an 

18 x 18 mm 'Thickness 1' coverslip (BDH) and sealed with rubber cement. The 

slides were sealed in a humidified box and incubated in the dark at 370C for 4 

days. 

2.9.5 Post-hybridisation washes 

Wash Buffer 1 (see Appendix) was warmed slowly from RT to 740C. The rubber 

cement and coverslips were gently removed from the slides, which were then 

immersed in Wash Buffer 1. The slides were agitated for a few seconds and then 

left for 2 minutes. It was not advisable to wash more than 4 slides at once 

because this caused a drop in the temperature of the buffer. The slides were then 

transferred to Wash Buffer 2 (see Appendix) at RT, agitated for a few seconds and 

left for 1 minute. Excess buffer solution was removed by blotting the end of the 
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slide on paper towels and standing upright for a few seconds in the dark. DAN 11 

(Abbott Laboratories) counterstain (12.5 pl) was added to each area of 

hybridisation, and a 22 x 55 mm 'Thickness 1' coverslip was applied. Excess liquid 

was removed from around the coverslip with a tissue and the slides were sealed 

with clear nail vanish. The slides were kept at 40C in the dark until image 

capturing. 

2.9.6 Haedware requirements for CGH 

Visualisation of fluorescent signals was performed with a Zeiss Axioskop 

fluorescence microscope (Carl Zeiss, UK) equipped with fluorescence filters for 

DAPI, FITC and TRITC and a double or triple band pass filter. The selection of 

appropriate filter sets was critical since crosstalk between different fluorochromes, 

which will bias CGH ratio measurements, can occur. A relative lateral 

displacement of images in different colours can also be caused by a mechanical 

imperfection of the filter sets. Optical shift becomes negligible if either a computer- 

controlled filter wheel or microscopes with an automatic filter change are used for 

image acquisition. 

2.9.7 Image capturing 

CGH images were captured by a CCID camera (Photometrics, Ottobrunn, 

Germany) with a high sensitivity, high spatial resolution, high dynamic range and 

low noise. Image capturing was carried out in the dark. Immersion oil was applied 

over the hybridisation area and metaphases were screened using the DAR filter at 

x 630 magnification. Metaphases were selected based on a number of criteria, 
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including smooth hybridisation signals across each chromosome, low non-specific 

background hybridisation, low binding of the labelled probes at the centromeres 

and heterochromatic regions, and adequate DAR banding patterns for later 

chromosome identification. Good quality metaphases, i. e., those with well- 

stretched but not over stretched chromosomes and with fewer than 2 crossover 

chromosomes, were selected. The IPLAB software (Abbott Laboratories) was 

used to capture at least 5 and up to 15 quality metaphases. It was important to 

make sure that the camera was in focus prior to capturing each metaphase. 

Images were all saved as PICT files. 

2.9.8 Image analysis 

Chromosomal gains and losses were assessed on the basis of differences in 

signal intensities generated by dye-labelled test and control DNA along the 

chromosomes. Although many differences can be detected by visual inspection, 

the quantitative assessment of the ratio of both fluorochromes by digital image 

analysis gives higher accuracy and greater resolution. The theoretical ratio of the 

signals from the test and control genomes is: 1 (following normalization of 

fluorescence intensities) in cases where the chromosomal region is balanced; 0.5 

where there is a deletion, monosomy, or hemizygosity; and 1.5 where there is 

partial or complete trisomy, etc. For higher degree amplifications, much higher 

ratios are anticipated. Generally accepted criteria for CGH evaluation by digital 

image analysis are a matter for discussion. Fixed thresholds do not take into 

account the variation of ratio values between different experiments, different 
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metaphases from the same slide and even between different chromosomal 

regions. 

Images were analysed with Quips CGH software (Abbott Laboratories). PICT files 

were first converted to ICS files, which were read by the Quips karyotyping 

software. Each metaphase image had its contrast adjusted, chromosomes 

trimmed and cut tightly and then the chromosomes were arranged into their correct 

order. Karyotypes were derived from DAR images and the chromosomes were 

automatically straightened. The axis was determined and profiles for all colours 

were computed by summing up the intensity values along lines orthogonal to the 

axis. The ratio values were automatically normalised in such a way that normal 

chromosomes have a mean ratio value of 1. For a single CGH analysis, 10-15 

homologues of each chromosome were measured after DAR karyotyping of 5-10 

metaphases. Average ratio profiles were then calculated after automatically 

scaling the profiles of individual homologous chromosomes of the same length. 

The average profiles were displayed side by side with ideograms of all 

chromosomes. 

Caution was exercised in evaluating the final data from a number of specific 

chromosomal regions. Pericentromeric and heterochromatic regions could not be 

reliably assessed as they were blocked by unlabelled CoT-1 DNA. Since these 

regions are polymorphic between individuals, the extent of blocking is highly 

variable and these regions were therefore excluded from the analysis. As the 

fluorescence intensity decreases towards the telomere the signal approaches 

106 



background. Fluorescence ratios from telomeric regions were therefore unreliable 

and these regions were generally excluded from analysis. 

To accurately assess chromosomal imbalances by variations in the fluorescence 

intensity ratios, suppression must be as complete as possible. An excess of 

unlabeled human CoT-1 DNA was therefore used and the pre-annealing time 

elongated. With a pre-annealing time of 15 minutes, 1 pg of test DNA and 1 pg of 

control DNA were combined with 40 to 70 pg of CoT-1 DNA, adjusted to 0.15 M 

sodium acetate, and co-precipitated by adding 2 volume of cold ethanol. The large 

amount of DNA also required an extensive agitation during resuspension of the 

precipitated probes in formamide. The quality of CGH experiments was also 

improved by extension of the in situ hybridisation time from overnight to 2 or 3 

days (Lichter et al. 1995). 

2.10 FISH and FICTION 

FISH and FICTION were used in the analysis of imprints, cytospins and sections of 

paraffi n-em bedded material. 

2.10.1 FISH probes 

FISH probes were made from labelled bacterial artificial chromosome (BAC) 

clones. BAC clones used in this project were obtained from the BAC library of the 

Roswell Park Cancer Institute (RPCI-11) (http: //bacpac. med. buffalo. edu). 

Additional clones were purchased from the German Resource Centre for Genome 

Research (http: //rzpd. de) or kindly provided by the Sanger Centre 

(http: //www. sanqer. ac. uk). 
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2.10.2 Design of FISH probes 

One of the goals of the Human Genome Project (HGP) was to construct detailed 

genetic and physical maps of the human genome (Lander et al. 2001). To 

accomplish such a purpose, DNA was fragmented and inserted into cloning 

vectors, commonly BACs or P11-derived artificial chromosomes (PAC). These 

clones are between 100 and 300 kb in size, which makes them suitable for FISH 

experiments. Sequence data are available online through several centres involved 

in the HGP. Suitable clones were identified by searching the genome sequence 

database using the basic local alignment search tool (BLAST) algorithm at the 

National Centre for Biotechnology Information (NCBI) server 

(http: //www. ncbi. nlm. nih. qov). To obtain further information about overlapping and 

contiguous clones, the mapping resources provided online by Project Ensembl 

(http: //www. ensembl. orq) were used. The Ensembi Genome Browser was a joint 

project, between EMBL-EBI and the Sanger Institute, to develop software which is 

freely available to all scientists. 

2.10.3 Isolation of BAC DNA 

DNA was extracted by using the Perfectprep Plasmid Maxi Kit (Eppendorf, 

Cologne, Germany) according to the instructions of the manufacturer. Bacteria 

containing BACs were grown overnight in 150 ml of LB medium (see Appendix) 

supplemented with the appropriate antibiotics. After DNA preparation, a final 

concentration of 50-200 ng/pl of high-purity BAC DNA in a volume of 200 PI sterile 

water was obtained. Quantification of DNA was performed as described in section 

2.5. 
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2.10.4 Labelling of BAC DNA 

Probe labeling was performed using the random priming method (Bioprime, 

Gibco/Life Technologies, Eggenstein, Germany) exchanging the dNTP-Bio with a 

dNTP mixture containing the appropriate fluorochrome. Two dUTP conjugated 

fluorophores, SpectrumOrange (SO) and SpectrumGreen (SG) (Abbott 

Laboratories), were used in combination with dTTP for the labeling reactions. A 

10x dNTP mixture was created by mixing dATP, dCTP, dGTP, dTTP and dUTP- 

fluorophores at a final concentration of 1 mM, IW1 mM, 0.5 mM and 0.5 mM 

respectively. 

One microgram of DNA was diluted with dH20 to a final volume of 24 Pl. Twenty 

microlitres of 2.5x random octamers were added to the DNA solution which was 

then denatured by heating in boiling water for 5 minutes. The mixture was 

immediately cooled on ice. Five microlitres of dNTP mixture containing SO/SG- 

dUTP and 1 pi of Klenow fragment were mixed gently but thoroughly with the DNA 

solution. The entire mixture was incubated at 370C overnight with 5 PI of Stop 

Buffer (Bioprime, Gibco/Life Technologies, Eggenstein, Germany) added the next 

day to terminate the reaction. 

2.10.5 Probe purification: Sephadex G50 

A small amount of sialinized glass wool was inserted up to the 0.2 ml mark of a1 

ml syringe and Sephadex G50 solution (see Appendix) added up to the 1 ml mark. 

The syringe was placed in a 15 ml centrifuge tube and subjected to centrifugation 

at 2000 g for 10 minutes at RT (Centrifuge J-6B Beckman, High Wycombe, UK). 
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The liquid that passed through the syringe was discarded and Sephadex G-50 

resin was added again to the 1 ml mark and centrifuged as above. This step was 

repeated until the resin was tightly packed up to the 1 ml mark. The column was 

then washed 3 times by adding 100 pl of column buffer (see Appendix) and 

spinning at 2000 g for 10 minutes. An uncapped 1.5 pl microfuge tube was placed 

inside the 15 ml centrifuge tube beneath the syringe. The labelled DNA probe 

solution was loaded onto the column and centrifuged as before. The purified DNA 

probe was collected and stored in the dark at 4*C for 2 months or at -20"C for 

longer time periods. 

2.10.6 Probe preparation for hybridisation 

Ten microlitres of each probe (approximately 200 ng) were added to 5 pl of CoT-1 

DNA (1 mg1ml) followed by 1/10 volume of 3M sodium acetate at pH 5.2. Two 

and a half volumes of 100% ethanol were added and the mixture was inverted 

several times. The probe was precipitated by centrifugation at full speed (17000 

rpm) for 30 minutes at RT (Biofuge 22R, Heraeus, Osterode, Germany). The 

supernatant was decanted and as much ethanol as possible was removed with a 

pipette. The pellet was dried in the dark for approximately 20 minutes. Ten 

microlitres of 50% hybridisation master mix (see Appendix) were then added to the 

dried probe pellet. If a commercial probe had to be added to a non-commercial 

probe, I pl of the commercial probe was added at this stage with thorough mixing. 

The probe was resuspended by constant shaking at RT for I hour. Quality of 

resuspension was checked by placing the end of the tube over an UV 

transilluminator. 
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2.10.7.1 Metaphase slide preparation 

Normal cell suspensions left over from conventional cytogenetic analysis were 

used. In a humidity chamber, normal metaphase slides were prepared by 

dropping two or three drops of cell suspension onto a clean glass slide held at an 

angle with a Pasteur pipette. The slides were then left to dry for 10 minutes. A 

diamond scribe was used to circle the areas with good metaphase spreads, which 

were selected under a phase contrast microscope. 

2.10.7.2 Slide preparation for FICTION 

Lymph node imprints and cytospins were used for FICTION studies. Acetone fixed 

slides were frozen at -800C until use. Cytospin slides were prepared from viable 

cell suspensions with a cell count of approximately 2.5xl 05 cells per spot. Cell 

suspensions (100 pl per chamber) were spun in a cytocentrifuge (Cytospin 2, 

ThermoShandon) for 10 minutes at 450 rpm to achieve a circular imprint of 0.5 cm 

diameter. It was important to get an even monolayer of cells. If the cells appeared 

clustered or overlapped, immunophenotyping and FISH at the single cell level 

were impossible. 

2.10.8 Fluorescence immunophenotyping for FICTION 

Coverplate TM technology from ThermoShandon (Frankfurt, Germany) was used to 

aid immunophenotyping of the HIRS cells for FICTION. This system uses plastic 

coverplates where the slide could be securely attached leaving just a tiny gap 

between the plate and the slide. The system can hold 100 pl of reagent vertical 

ill 



which is maintained in even contact with the cells. It has the advantage of keeping 

the slides in the dark throughout the staining procedure and minimising the use of 

reagents. Ten slides and coverplates were fixed in a special slide rack assembly. 

PN buffer (see Appendix) was pipetted into the space between the slide and 

plastic coverplate until just 100 pi was retained by capillary action. The addition of 

antibody will then displace the PN buffer from the coverplate. It was important not 

to use any detergent in the buffers as these reduce surface tension and the 

reagent will no longer be trapped by capillary action. The use of an ImmunoPen to 

circle cell spots will also prevent good contact between the reagents and cells. 

The cells were washed once in PN buffer and 100 pl of Berl-12 primary antibody 

diluted 1: 20 in PNM (see Appendix) was added. Slides were incubated at RT for 

30 minutes or overnight at 4'C. Overnight incubation was useful in obtaining 

stronger staining intensity without significantly increasing background staining. 

The cells were then washed once in PN buffer at RT. One hundred microlitres of 

Alexa594-conjugated rabbit anti-mouse antibody (1: 50 diluted in PNM buffer) were 

added and the preparations were incubated at RT for 30 minutes. The cells were 

then washed in PN buffer. The cytospins were detached from the Shandon 

holders and were placed in a Coplin jar containing PN buffer. The slides were 

mounted in PN buffer and the quality of ICC was checked briefly under a 

fluorescence microscope. The best areas were selected by drawing a circle with a 

diamond scribe in the region with optimal density of positive cells. 
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2.10.9 1 Pretreatment of normal metaphase slides 

Slides were incubated in freshly prepared pepsin digestion solution (see Appendix) 

for 5 minutes at 370C to remove cellular cytoplasm. The slides were washed in 

dH20 for 1 minute followed by fixation in 1% paraformaldehyde for 2 minutes. The 

slides were washed once again in dH20 for 1 minute and were dehydrated through 

an ethanol series of increasing percentage (70%, 85% and 100%) for 2 minutes 

each. The slides were air-dried at room temperature for 10 minutes. 

2.10.9.2 Pretreatment of slides for FICTION 

The coverslips were carefully removed and the cells were fixed in fresh Carnoy's 

fixative (Methanol: acetic acid 3: 1) for a minimum of 10 minutes. The cells were 

washed once in dH20 for I minute and then fixed in 1% paraformaldehyde for 1 

minute. Following further washing, preparations were dehydrated through an 

ethanol series of increasing percentage (70%, 85% and 100%) for 2 minutes each. 

The slides were allowed to dry in the dark for 20 minutes. It was important to 

minimise light exposure to prevent fading of immunofluorescence. 

2.10.10 Simultaneous denaturation and hybridisation 

The probe mixture (1.3 - 1.5 pl) was applied onto a small (10 mm) round coverslip 

and the cellular area was gently lowered onto the coverslip. The coverslip was 

sealed with rubber cement and the slides were placed inside a humid metal box 

which was placed in a waterbath previously heated to 70'C. Both probe and target 

DNA were denatured simultaneously for 7-12 minutes. Following denaturation, the 

humid metal box was placed in an incubator at 370C overnight. 
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2.10.11.1 Post-hybridisation washes and slide mounting for FISH 

Wash Buffer 1 (Abbott Laboratories) was pre-warmed in a water bath at 73'C for 

one hour. Both the rubber cement and coverslip were removed carefully and the 

slides were placed in Wash Buffer 1. The slides were shaken for a few seconds 

and were left in the wash buffer for 5 minutes. The slides were then transferred 

into Wash Buffer 2 at RT, shaken and washed for 5 minutes. A five minute 

incubation in DAN solution was performed to counterstain the DNA. Finally the 

slides were washed in 2x SSC for 1 minute prior to mounting with antifade solution 

(see Appendix) and 'Thickness 1' (22 x 60 mm) coverslips. 

2.10.11.2 Post-hybridisation washes and slide mounting for FICTION 

Three Coplin jars of 0.1x SSC were placed in a waterbath at 60"C for one hour. 

The rubber cement was removed gently from the slides and the coverslip shaken 

off in the first Coplin jar of 0.1x SSC. The slides were left to wash for 5 minutes. 

This was followed by 2 subsequent washes in 0.1x SSC for 5 minutes each. The 

slides were washed in PN buffer for 1 minute at RT in the dark. DAR solution was 

used to counterstain the cells by incubating for 5 minutes. The slides were finally 

washed in 2x SSC for 1 minute and were mounted with antifade solution (see 

Appendix) and 'Thickness 1' (22 x 60 mm) coverslips. Vectashield antifade 

(Vector Laboratories) was preferred when sections of paraffi n-em bedded material 

were used. 
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2.10.12 Digital image capturing 

Slides were analysed by use of a Zeiss Axioskop2 fluorescence microscope 

(G6ttingen, Germany) equipped with blue (DAPI), green (SpectrumGreen) and red 

(Texas Red) wide band-pass filters as well as double (green/red) and triple 

(blue/green/red) filters (AHF, TObingen, Germany). In addition, the microscope 

had extra narrow band-pass filters specific for SpectrumBlue and 

SpectrumOrange/Gold. Images were documented using the ISIS 3.0 imaging 

system (MetaSystems, Altlussheim, Germany). The software was capable of 

transforming 3-dimensional information, such as signals at 2-3 focal planes, into a 

single 2-dimensional image. 

2.10.13 Probe evaluation 

The quality of FISH was evaluated by hybridising the labelled probe onto normal 

metaphase spreads from healthy donors. The main parameters to take into 

account when a new FISH probe was designed were: signal to noise ratio, location 

of the probe, chimerism and cross-hybridisation (Martin-Subero et al. 2003). 

2.10.14 Evaluation of fluorescence immunophenotype 

A problem in FICTION is the frequent autofluorescence from some cell types, 

particularly eosinophils, as well as the intercellular matrix components and 

sclerotic areas of sections. This autofluorescence was visible through blue, green 

and red filters, but not through the infrared filter. The resultant image captured 

would give a white matrix surrounding the cells and also within cells in some 

cases. This had to be taken into account when evaluating the immunophenotype 
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obtained using Alexa 594 (Invitrogen, Paisley, UK). Specific immunofluorescence 

signals had to be more intense than the non-specific antibody binding and clearly 

differentiated from autofluorescence. Different patterns of immunofluorescence 

were distinguished: nuclear, cytoplasmatic and membrane, although these could 

be hard to differentiate since the cells were intact, not sectioned. Thus, the 

nucleus might be overlaid with cytoplasm leading to'pseudo-nuclear' staining. 

2.10.15 Evaluation of cell morphology and quality of DNA 

Both hybridisation signals and immunophenotyping had to be correlated with cell 

size and shape. Usually, positive ICC and aberrant hybridisation patterns were 

correlated to a given cell morphology within the tumour biopsy. In cases where the 

immunophenotyping appeared to be satisfactory but yet no FISH signals were 

found, the DAR staining was invaluable. The DAR staining of the nuclei was a 

good indicator of the quality of DNA and this correlated strongly with the success 

of FISH. 
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Chapter 3 

RECURRENT GENOMIC IMBALANCES IN HODGKIN AND REED- 

STERNBERG CELLS 
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3.1 Introduction 

Cytogenetic analysis has been extremely productive in the investigation of non- 

Hodgkin lymphoma (NHL) and leukaemia, where the identification of non-random 

chromosomal abnormalities has led to the discovery of numerous oncogenes 

(Rowley 1973; Pelicci et al. 1986; Rosenberg et al. 1991; Raimondi 1993; Tilly et 

al. 1994; Pulford et al. 1997). A conventional cytogenetic approach to the 

investigation of Hodgkin lymphoma (HL) has been hindered because of the small 

number and low mitotic index of Hodgkin and Reed Sternberg (HRS) cells. 

Comparative genomic hybridisation (CGH) is an alternative approach to studying 

molecular cytogenetic abnormalities in combination with laser microdissection 

(LIVID) and DOP-PCR (see chapter 2). This chapter will describe our analysis of 

20 cases of classical Hodgkin lymphoma (cHL) using CGH. In this study HIRS 

cells were isolated from cytospins on the basis of both CD30 ICC and 

morphological criteria, thus ensuring that pure populations of bona fide HIRS cells 

were selected for further analysis. 

3.2 Materials and methods 

3.2.1 Clinical cases, cell lines and experimental design 

Twenty cases of cHL from which viable material was available were selected. 

Cases included 9 male and 11 female patients, aged 14-84 years at the time of 

diagnosis (Table 3.11). All patients gave informed consent for their tissue to be 

used and this study was approved by a multicentre research ethics committee. 

Sections from all cases were reviewed by an expert lymphoma pathologist and 
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classified according to the WHO guidelines (Stein et al. 2001). EBV status was 

determined by EBER in situ hybridisation as previously described (Armstrong et al. 

1998). Cases in which the HIRS cells stained positively are referred to as EBV- 

positive cHL. 

Case Sex Age (years)a Subtype b EBV statusr Outcome" 

A M 39 LR +ve A 

B F 46 Mc +ve NA 

C F 46 NS -ve A 

D M 67 NS -ve A 

E M 27 NS -ve A 

F F 37 NS -ve NA 

G F 50 LR +ve D 

H M 33 NS -ve A 

M 19 NS -ve R 

F 16 NS -ve A 

K F 14 NS -ve A 

L M 21 NS -ve NA 

M M 19 mc +ve A 

N F 27 NS -ve NA 

0 F 41 Mc -ve A 

p M 55 NS -ve R 

0 F 37 NS +ve A 

R F 58 LD +ve R 

S M 31 NS -ve NA 

T F 84 mc -ve R 

Table 3.1 Patient Details including age, sex, histological subtype, EBV status and clinical outcome. 

('Age at diagnosis; bMC, mixed cellularity, NS, nodular sclerosis, LR, lymphocyte rich, LID, 

lymphocyte depleted; 'Presence (+) or absence (-) of EBER staining in the HIRS cells; dA, alive, R, 

relapsed, D, dead, NA, not available). 
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Validity testing of the DOP-PCR-CGH was performed using: the IM9 cell line, a 

jymphoblastoid cell line with a female, diploid, stable karyotype (ATCC, Manassas, 

VA, USA); Daudi, a BL cell line with a male, diploid, stable karyotype (ATCC); and 

MPE600 (Abbott Laboratories, UK), a breast cancer cell line with known CGH 

profile. DNA extracted from 4 HL-derived cell lines, namely L428, L1236, KM-H2 

and L591, was also investigated using CGH. 

3.3 Isolation of HIRS cells by LMD 

LIVID DOP-PCR was performed on cytospins prepared from single cell 

suspensions of fresh or viably-frozen lymph node biopsies as described in the 

previous chapter. Identification of HRS cells was based on positive staining for 

CD30 antigen coupled with morphological criteria (Figure 1). Fifty single cells were 

laser microdissected from each case into the caps of five PCR tubes (10 cells per 

cap) by use of the Leica Laser Microdissection system (Leica Microsystem, Milton 

Keyes, UK). DOP-PCR reactions including 60 pg of normal male and female DNA 

(Promega, Southampton, UK) were used to generate reference control DNA for 

CGH. Replicates of 10 IM9 cells and 10 Daudi cells obtained by LIVID and aliquots 

of 60 pg of MPE600 DNA were subjected to DOP-PCR for use in CGH validity 

testing experiments. 
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Figure 3.1 CD30-positive HIRS cell on PENfoil, cytospin preparation (x 630, touludine blue 

counterstain). 

Reaction products from the 5 DOP-PCRs from each cHL case were pooled and 

ethanol precipitated before labeling. The quantity of DOP-PCR products was 

estimated using a GeneQuant 11 spectro photometer (Pharmacia Biotech) and by 

running one tenth of the DOP-PCR products on a1% agarose gel (Figure 3.2). 
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Figure 3.2 Agarose gel electrophoresis of DOP-PCR products from laser microdissected HIRS cells 

and DOP-PCR products from reference genomic DNA. Lanes 0 are negative controls, lanes 1 are 

HIRS cells and lanes 2 are control DNA. 

Approximately 1.5 pg of DOP-PCR product from test and reference samples were 

labeled with SpectrumGreen-dUTP or SpectrumRed-dUTP respectively (Abbott 

Laboratories). Nick translation was carried out using an established protocol 

incorporating DNA Polymerase I and DNase I (Invitrogen), as described in Section 

2.9.1. 

3.4 Comparative genomic hybridisation 

3.4.1 Hybridisation 

Approximately 800 - 1000 ng of each labeled DNA were combined with 60 Pg of 

human CoT-1 DNA (Invitrogen) and hybridised to normal male metaphase target 

slides (Abbott Laboratories) for 4 days at 370C. After hybridisation, the slides were 

washed in commercially available wash buffers (Abbott Laboratories) and the 

chromosomes were counterstained with 4,6-diamidino-2-phenylindole (DAPI) 

(Abbott Laboratories). Digital images were captured using a cooled charge- 

coupled device camera (Photometrics, Ottobrunn, Germany) connected to a Zeiss 
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Axioskop fluorescence microscope (Carl Zeiss, UK). Images were analyzed with 

Quips CGH software (Abbott Laboratories). 

3.4.2 Image analysis 

Results from 5 to 10 optimal target metaphases were combined to produce the 

final CGH result in each case. Chromosome 19, centromere and telomeric regions 

were excluded from the analysis because of possible non-uniform or incomplete 

blocking of repeated sequences in these regions (Kallioniemi et al. 1994). Since 

the tumour specimens and reference DNA were not sex-matched, the X and Y 

chromosomes were also excluded. 

3.4.3 Analysis of results 

Results were analysed by visual inspection of an ideogram containing results from 

all cases, and by recording amplifications and deletions of both chromosome arms. 

Recurrent imbalances of chromosomal arms were identified as gains affecting 

ý30% of cases or losses affecting ý: 25% of cases. A lower threshold was applied 

to losses because CGH is less sensitive in the detection of deletions. The total 

number and presence or absence of recurrent imbalances were analysed with 

respect to age group, sex, histological subtype, outcome and EBV status of 

tumours. Age groups were defined as those <35 years old, 35-55 years old and 

>55 years old. Poor outcome was defined as relapse or death. Statistical testing 

used the two sample West, Fishers exact test (two-tailed) and Kruskal-Wallis test. 

Analyses were implemented using SPSS (SPSS, Woking, UK). 
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3.5 Results 

In validity testing experiments, all the expected abnormalities were identified using 

DOP-PCR products from the MPE600 cell line whereas normal profiles were 

obtained using laser microdissected IM9 and Daudi cells. Optimisation 

experiments using material obtained by LIVID revealed that amplification of 5 

replicates of 10 HRS cells gave a better yield and size range of DOP-PCR 

products than amplification of 50 HRS cells in a single tube (see chapter 2). 

Satisfactory CGH results were obtained for the 20 cHL cases analysed using this 

strategy and results are presented in Figure 3.3 and Table 3.2. 
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Figure 3.3 CGH results from 20 cHL. Bars to the left of the ideograms indicate regions of copy 

number loss and bars to the right of the ideograms indicate regions of copy number gain. 

Chromosome 19 was excluded because of false positives in negative controls, and the X and Y 

chromosomes were excluded because of non-sex-matched reference and tumour DNA. 
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Case CGH karyotype 

A rev ish enh (1p33-p34.2,4q35,6p2l. 3,6q22-q24,17q2l, 22ql2-ql3), dim (2p24,11q22- 

q24) 
B rev ish enh (7q22,9p13-q34,12q24.1,14q11.1-q32,17q12-q21,17q25), dim (4q32, 

18pl 1.2-pl 1.3) 
C rev ish enh (2p24,2p16,2pl 2-q14.1,10q26,17q2l), dim (1 p22,11 p14,11 q14) 
D rev ish enh (1p33-p35,1q41-q44,2p11.1-p25,5q34-q35,7q36,9q12,1Op13-p15, I1q12- 

q13,12q23-q24.1,14q22-q32,15ql2-ql4,15q22-q26,17p12-p13,17q11.1-q22,17q24- 
q25,22q 13), dim (6q 1 6-q22,6q27,9pl 3-p24,11 q21 -q22) 

E rev ish enh (2p13-p23,3q13.2,5q14,6q21,8p12-p21,8q21.2-q21.3,9p24-q12,11q13, 
12p13,12q23,16p13.1-q12.1,16q23-q24,17p13-q11.1,17q2l-q22,17q25,20p11.2-p13, 
20ql 3.1,20q 13.3), dim (1 p3l, 9q31 -q32,13q3l) 

F rev ish enh (1p33-p36.1,2p13-p25,4p16,11p15,11q11-q13,12p11.2-p13,12q23-q24.3, 
14q32,15q22,16p13.1-p13.3,17p13-q21,17q24-q25,22), dim (2q22-q24,3q26.1,4q13, 
4q22-q23,4q25-q28,4q32,5pl 3,5q21,8q23,11 pl 3,11 q1 4-q22,13q21 -q31,18q22) 

G rev ish enh (2q13,2q24-q3l, 4p16,8q21.2-q21.3,12ql2-ql3,12q21,13q21,14q2l, 17q2l, 
17q23-q24,20p'13), dim (9p22-p24) 

H rev ish enh (1 p33-p36.1,11 pl 5,17q24-q25,22q 13) 

rev ish enh (1q21-q22,2p25-q11.2,2q37,15q22-q23,16p13.3-q11.2), dim (4q23-q27, 
4q31.1-q33,6q13-q22,8p2l-p23,18pl 1.2) 

rev ish enh (17p12-pI3,17p11.1-q21,17q23-q25), dim (3pI2,7q3l-q32) 
K rev ish enh (7p2l-p22), dim (6q16,6q22-q25) 

L rev ish enh (5p15.3-q11.1,5q34-q35,7q22,9p23-p24,15q22-q23,16p13.2-p13.3,16q24, 
17p11.2-q25,22q11.1-q13), dim (1Oq21,13q2l-q3l) 

M rev ish enh (1 7q25) 

N rev ish enh (1p32-p36.1,2q37,8q24.2-q24.3,12q23-q24.3,16p13.3-q11.2,17,20q13.2- 

q13.3,22), dim (6q22-q23,6q25,11q23-q24,13q2l-q3l, 18q2l) 
0 rev ish enh (1q23,2q23,5ql2-ql3,9p2l-p24,14q13,16p11.2), dim (7q36,12q24.1,16q23) 
p rev ish enh (1q21-q23,2p23-q12,2q14.1-q14.3,3p13-p21,3q13.1-q21,5p13-q11.2,9p24- 

q11,12q15-q2I, 17q11.2-q23,17q25,21p11.1-q21), dim (7q31,10q26,13q21,16p13.3, 
16q11.2-q12.1,16q23-q24) 

Q revish enh (1q31-q32,5p11-p15.3,9p23-p24) dim (4q32-q34,6q16-q27,13q2l) 
R rev ish enh (2p16,2p11.1-pI1.2,11q14-q21,12q13,13q32,14q21,14q23-q24,15p11.1- 

q14,15q2l-q24,17p13,17p11.1-q23,17q25,20q11.2-q13.1,21q21-q22,22q13), dim 
(3p25-p26,6ql2-ql5,6q24-q25,8p2l-p23,13q2l) 

S nil 
T rev ish enh (2pl 4-ql 1.2), dim (3p26,4q35) 
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Table 3.2 CGH karyotype of 20 cHL. 

Gains affecting ý: 30% and losses affecting ý! 25% of the cases were identified. 

Twelve chromosomal arms were involved; only one case did not have any 

abnormality affecting these arms. The most frequent gains were on chromosome 

17, with gains on 17q and 17p detected in 14/20 and 8/20 cases, respectively. 

The most commonly over-represented regions were 17q2l and 17p13. Other 

frequent gains involved 2p (40%), 12q (40%), 22q (35%), 9p (30%), 14q (30%), 

16p (30%), with minimal overlapping regions at 2p23-13,12q24,22q13' 9p24-23, 

14q32,16pl 3.3 and 16pl 1.2. The most frequent losses involved 13q (35%), 6q 

(30%), 11 q (25%) and 4q (25%), with corresponding minimal overlapping regions 

at 13q2l, 6q22,11q22 and 4q32. Analysis of individual chromosome arms 

revealed significantly more gains of 2p and 14q in the older adult cases (p-value = 

0.038 and 0.022, respectively); losses of 13q were associated with a poorer 

outcome (p-value = 0.049). The number of chromosomal imbalances ranged from 

0-21, with a mean of 10. Amplifications were more frequent than deletions with a 

mean value of 7 gains and 3 losses. 

Results from CGH analysis of the EBV-negative, HL-derived cell lines L428, L1236 

and KMH2 showed a resemblance to results from analysis of primary HRS cells 

(Table 3.3). Shared abnormalities included gains of 2p, 12% 17p, 16p, 14q and 

losses of 13% 6q, 4q and 11q. In contrast the EBV-positive HL-cell line, 1-591, 

showed a different CGH pattern with fewer abnormalities; these included gains in 

7q and 9p and losses of 8p, 9q and 22q. 
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Cell line CGH karyotype 

L428 rev ish enh (2p13-p16,2q37,6p12-q24,7q22-q32,8q22-q24.3,9p23-p24,11q23-q25, 
12p11.1-p11.2,16q22-q24,17p13,17p11.1-q12, X), dim (4pI6,4p12-p13,11q22, 
13p13-q34,14q32,15p11.1-p11.2,18p11.2-pI1.3,18ql2-q23,21p11.2-p13,22pI1.1- 

pI 3) 

Ll 236 rev ish enh (Iq22-q44,2p13-p25,3p25-p26,3q21,3q24,5q23-q3l, 7p2l, 7q11.2-q22, 
8q23-q24.3,9p11-p24,11q23-q25,12p13-q11,12q13,15q22-q23), dim (4p14-p15.3, 
4pII-p12,4q33-q35,6q16-q22,8p23,9q3l-q34,1Oq21-q26,11p14,12q21-23,13p1I. 1- 

p13,13ql2-q2l, 13q3l-q33,14p13,14q1I. 2,15p11.1-p13,16p13.1,17q25,21p`11.1- 

p13,22p11.1-p13,22ql2-ql3) 
KMH2 rev ish enh (1 p35-p36.3,1 q21 -q44,2pl 1.2-pl 6,2q22-q3l, 3q25-q29,5pl 1 -pl 3,6p2l. 3- 

p25,7q33-q36,8p23,9p23-p24,9p12-pI3,10q25,11p14-p15,12q2l-q24.3,14q2l-q32, 
15q2l-q24,16p11.1-p13.2,16q2l-q24), dim (3p25-p26,3p12-q21,4q34-q35,5p15.2- 
15.3,6pI 2-q24,7pl 5-p22,7q3l, 8pl 1.1 -q21.3,9ql 2,1 Oq21,11 q1 3-q25,13,14pl 2-pl 3, 
14pI1. I-qI3,15p12-p13,15p11.1,16qI1.2-q12.1,18p11.3,18qI1.1-q23,20p13, 
20p11.2-q11.2,21p13,22pI3,22q13) 

L591 rev ish enh (7p2l-p22,7q11.2-q22,9p12-p24, IIq23-q25, X), dim (7q3l-q36,8p12-p23, 
14q3l-q32) 

Table 3.3 CGH karyotype of Hodgkin lymphorna-derived cell lines. 

3.6 Discussion 

Analysis of 20 cases of cHL using CGH revealed recurrent chromosomal 

imbalances. Imbalances on 12 chromosomal arms were considered recurrent as 

these arms were affected in ý! 30% of cases for gains and ý! 25% of cases for losses 

(Figure 3.3). The most frequent abnormality was gain on 17q (70%). Other 

frequent gains involved 2p (40%), 12q (40%), 17p (40%), 22q (35%), 9p (30%), 

14q (30%) and 16p (30%). The most frequent losses involved 13q (35%), 6q 

(30%), 11 q (25%) and 4q (25%). 

Two other laboratories have investigated chromosomal imbalances in cHL using 

CGH (Ohshima et al. 1999; Joos et al. 2000; Joos et al. 2002). Due to the difficulty 
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of working with cHL, different techniques were used to obtain HIRS cells and the 

results of the studies were not consistent. In the present study HIRS cells were 

obtained by LIVID from cytospin preparations that had been immunostained using 

CD30 monoclonal antibodies. This method of collection of HIRS cells offers 

advantages over previous methods used in CGH experiments in that single HIRS 

cells were individually selected using stringent criteria, and the use of cytospins 

prepared from viable material ensured that complete cells were captured, hence 

the robust nature of this study. 

Ohshima et al. (1999) sorted CD30-positive giant cells by flow cytometry using an 

automatic cell-deposition unit. Most of the abnormalities reported in this study 

were not detected in the present study or that of Joos et al. (2000). In contrast, the 

data presented here are largely similar to those of Joos et al. (2000,2002). These 

workers initially isolated CD30-positive HIRS cells by micromanipulation from 

cytospins and later used laser microdissection with identification of HIRS cells by 

morphology alone. Similar abnormalities, including gains of 2p, 12q, 17p, 17q, 9p, 

16p and 22q and loss of 13q are seen in the two data sets but the frequency of 

these abnormalities is somewhat different (Figure 3.4). The similarities add weight 

to the idea that cHL is associated with a consistent set of chromosomal 

imbalances. Variations in the proportion of older adult cases, EBV associated 

cases and histological subtypes might all contribute to the differences in frequency 

of recurrent imbalances observed between ours and Joos et al. 's data. Although 

not of statistical significance, higher number of chromosomal imbalances is 

observed in non-EBV associated cases. 
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It is not possible to include Oshima et al. (1999)'s data into our comparison 

analysis. They have included in their analysis many chromosomal regions where it 

is known to create false signals, such as most telomeric and centromeric regions. 

In particular they have included chromosome 19 and 1p in their analysis which are 

excluded in both ours' and Joos' study. Their CGH ideogram demonstrated in 

many instances both gains and losses in the same chromosomal regions. This 

would cast serious doubt into the homogeneity of the tumour samples obtained for 

CGH. The three most frequent imbalances described were losses on 16ql 1/21, 

gain on 1 pl 3 and a gain on 7q35/36. Chromosome 1 pl 3 is located right across 

the centromeric region and 7q35/36 is at the telomeric region. Losses on 

16ql 1/21 would be the only abnormality considered to be recurrent by our method 

of analysis as it spanned a substantial length of the long arm of chromosome 16 

away from telomeric and centromeric regions and there are no contradictory gains 

in the same region. 
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Figure 3.4. Comparison of recurrent gains and losses of CGH data from Joos et al. 2002 and Chui 

et al. 2003. Yellow lines (2p, 9p, 12q, i9p, 170,1 Tq, ZQqj ? 29ý are recurrent gains (>20%) by Joos 

et al. 2002. Blue lines (2p, 9p, 12q, 14q, 16p, 17p, 17q, and 22q) are recurrent gains (>300/0) by 

Chui et al. 2003. Green line (13q) is recurrent losses (>20%) by Joos et al. 2002. Red lines (4q, 

6q, 11 q, and 1 3q) are recurrent losses (>25%) by Chui et al. 2003. 
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Results were also analysed with respect to clinicopathological parameters. 

Although the number of cases analysed was small and statistical power limited, 

these analyses provide hypotheses for further testing. There were significantly 

more gains on 2p and 14q in the older adult cases (p-value = 0.038 and 0.022 

respectively); and losses of 13q were associated with a poor clinical outcome (p 

0.049). 

This study not only provides evidence that there is a consistent set of 

chromosomal abnormalities associated with cHL, but provides further evidence 

that cHL is genetically distinct from NLPHL. Apart from the gain of 12q and loss of 

l1q, there are no shared abnormalities among the 20 chromosomal imbalances 

described in NLPHL by Franke et al. (2001). One observation that is common 

amongst all the CGH studies in HL is the unusually high number of chromosomal 

abnormalities observed. This may indicate an underlying mechanism for genomic 

instability with a recurring pattern in HL, as discussed previously (Mark et al. 1998; 

Re et al. 2002). 

The chromosomal imbalances detected in cHL are different from most other 

lymphoma (Avet-Loiseau et al. 1997; Barth et al. 1998; Aalto et al. 1999; Siu et al. 

1999; Barth et al. 2001; Tsukasaki et al. 2001; Allen et al. 2002), with the 

exception of primary mediastinal B-cell lymphoma (PMBCL). PMBCL is the only 

NHL which shares frequent gains of 2p and 9p and losses of 13q, 6q and 4q 

(Bentz et al. 2001; Palanisamy et al. 2002). This is of particular interest since both 
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turnours have a tendency to occur in young females, have a predilection for the 

mediastinum, and lack expression of surface Ig. 

Gain of chromosome 17q was the most frequent abnormality found in this CGH 

study of cHL. Alteration of 17q was also one of the more frequently found 

abnormalities in previous cytogenetic studies of cHL (Sarris et al. 1999). 

Chromosomal gains in cHL, including gains of 2p, 9p and 12q, have been further 

investigated by FICTION (Fluorescence-immunophenotyping and Interphase 

Cytogenetics as a Tool for Investigation Of Neoplasm) (Weber-Matthiesen et al. 

1992) and gene amplification of REL (2pl 5-pl 6), JAK2 (9p24) and M DM2 (12q24) 

in cHL have been confirmed (Joos et al. 2000; Kupper et al. 2001; Joos et al. 

2002). Involvement of possible oncogenes on chromosome 17q has not been 

studied (Stokke et al. 2001). However, many genes that have been previously 

implicated in cHL, including genes involved in, or regulated by, NF-r'B activation, 

and genes encoding chemokines and STATs reside in 17q. 

Several possible mechanisms of NF-rB activation have been described in cHL 

including expression of the EBV LMP1 protein and mutation of IkBa (Cabannes et 

al. 1999; Lee et al. 2001). Overexpression of the serine / theronine protein kinase 

NIK (17q2l) has also been shown to cause NF-xB activation in human embryonic 

kidney cells, and it is therefore possible that this mechanism also plays some role 

in cHL (Malinin et al. 1997). NF-icB activation leads to up-regulation of a number 

of genes thought to contribute to the pathogenesis of cHL, including those 

encoding chemokines and STATs. Aberrant activation of JAK-STAT signaling has 
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been described in human cancers and many tumours contain increased levels of 

activated nuclear STATs, frequently STAT3 or STAT5 (Watson and Miller 1995; 

Weber-Nordt et al. 1996; Bowman et al. 2000). Activated STAT3 (17q2l) was 

shown to be highly expressed in the HIRS cells of cHL by ICC (Chen et al. 2001; 

Garcia et al. 2002) and STAT5a (17q11.2), a transcription factor linked to cell 

growth control, was found to be constitutively active in the HIRS cells in all 24 

cases of cHL studied, although only weakly expressed in NLPHL (Hinz et al. 

2002). 

Eosinophils are conspicuous in some cases of cHL and eotaxin, encoded by a 

chemokine gene on 17q2l, is a potent inducer of eosinophil chernotaxis and 

angiogenesis (Ponath et al. 1996; Salcedo et al. 2001). In 1999, (Teruya-Feldstein 

et al. 1999)described a high level of eotaxin expression in HIRS cell, however 

(Jundt et al. 1999) have suggested that the eotaxin is produced by surrounding 

fibroblasts following induction by TNF-a released by HIRS cells. Many other 

chemokines including 1309 (17q11.2), MCP-4 (17q11.2) and RANTES (17q12) are 

highly expressed in HL and thought to play a role in recruitment of reactive cells to 

these turnours (Maggio et al. 2002). 

Survivin (17q25) is overexpressed in most cancers of the lung, colon, pancreas, 

prostate and breast (Ambrosini et al. 1997). Survivin has previously been found to 

be highly expressed in HL by RT-PCR (Shinozawa et al. 2000) and expression of 

survivin protein has recently been confirmed by Garcia et al. (2002). In the latter 

study, survivin was detected in the HIRS cells of over 89% of cHL cases. 
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Overexpression of survivin can delay apoptosis by directly inhibiting effector 

caspases or by protecting the microtubules of the mitotic-spindles and related 

structures from caspase cleavage (Reed and Bischoff 2000). 

Gain of 17p was found in 40% of patients in this study. Overexpression of TP53 

(17p13.1) has been found in a high percentage of cases of HL but there is no 

correlation between overexpression of TP53 and the presence of gene mutation in 

cHL (Chen et al. 1996; Elenitoba-Johnson et al. 1996; Sanchez-Beato et al. 

1996b; Montesinos-Rongen et al. 1999). 

Loss of 13q and 6q is commonly seen in other haernatological malignancies, and 

thus could relate to a common haemopoietic origin (Avet-Loiseau et al. 1997; 

Barth et al. 1998; Slu et al. 1999; Bentz et al. 2000; Nagy et al. 2000; Barth et al. 

2001; Stokke et al. 2001; Tsukasaki et al. 2001; Allen et al. 2002; Palanisamy et al. 

2002). Although the retinoblastoma (RB1) gene is located on 13q14, this tumour 

suppressor gene does not appear to be the target of deletions in cHL (Weiss 1995; 

Guenova et al. 1999; Kanavaros et al. 2000) and other lymphoma (Liu et al. 1995; 

Stilgenbauer et al. 1998). Expression of the RB protein has been found in most 

cases, suggesting the presence of another tumour suppressor gene on 13q13- 

q21. Loss of 6q has been associated with a poor prognosis in DLBCL (Harada et 

al. 2001), follicular lymphoma (Tilly et al. 1994) and acute lymphoblastic leukaernia 

(ALL) (Merup et al. 1998) but as yet no tumour suppressor gene has been 

identified in the 6q2l-q27 region (Offit et al. 1993; Hauptschein et al. 1998). 

135 



With the exception of L1236, HL-derived cell lines have an uncertain relationship to 

the tumours from which they were derived (Wolf et al. 1996). Results of CGH 

analysis of the EBV-negative HL-derived cell lines showed a marked resemblance 

to the results from primary HRS cells, including gains of 2p, 12q, 15q, 17p, 16p, 

14q and losses of 13% 6q, 4q and 11 q. In contrast, the EBV-positive derived cell 

line L591 showed a very different CGH pattern with few abnormalities. This 

observation in L591 may relate to the EBV status of the cells or suggest a non- 

HRS cell origin (Drexler 1993). 

In summary, this CGH study has identified a set of recurrent chromosomal 

abnormalities associated with cHL with gain of 17q being the most frequent 

abnormality in this series of cHL. Abnormalities of 17q are infrequent in NHL or 

NLPHL; this finding, coupled with current knowledge of gene expression in cHL, 

suggests that genes present on 17q may play an important role in the 

pathogenesis of cHL. 
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Chapter 4 

STUDY OF REL AND STAT3/5A GAIN IN HODGKIN AND REED- 

STERNBERG CELLS AND CORRELATION WITH I KAPPA B ALPHA 

MUTATION STATUS 
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4.1 Introduction 

in Hodgkin lymphoma (HL), chromosomally aberrant clones are only detected in 

20-30% of cases. Karyotypes typically are hyperploid, often in the triploid or 

tetraploid range, and show very complex chromosome aberrations (Deerberg- 

Wittrarn et al. 1996). In the majority of analysed cases, only normal metaphases 

are found. With the application of comparative genomic hybridisation (CGH), this 

problem has been circumvented and a set of recurrent imbalances has now been 

identified in classical Hodgkin lymphoma (cHL) (Ohshima et al. 1999; Joos et al. 

2000; Chu! et al. 2003). Due to the limitation of resolution of conventional CGH, it 

is not possible to pinpoint the target genes that are either amplified or deleted. 

The traditional method to look for gene amplification is by FISH on metaphase 

spreads from the tumour cells using a specific gene probe, but this is not possible 

for HL as the percentage of Hodgkin and Reed-Sternberg (HRS) cells with 

metaphases is far below the detection limit of conventional FISH (Poddighe et al. 

1991). 

Previously, combining fluorescence immunophenotyping and in situ hybridisation 

was limited to studying numerical aberrations using centromeric probes (CEP) or 

genetic aberrations with a very limited number of gene specific probes. With the 

advent of the Human Genome Project (HGP), a full draft sequence of the human 

genome has been published (Lander et al. 2001). This has greatly facilitated the 

discovery and understanding of many new genes. FISH mapped clones covering 

the entire chromosomes and encoding many known and unknown genes are now 

in the public domain. By extracting the DNA from bacterial artificial chromosome 
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(BAC) clones and labelling them with fluorochromes, it is possible to prepare a 

large number of gene specific FISH probes (McPherson et al. 2001). When 

combined with ICC this technique is termed fluorescence immunophenotyping and 

interphase cytogenetics as a tool for investigation of neoplasms (FICTION) 

(Weber-Matthiesen et al. 1992). With this method, cells can be characterised by 

their immunophenotype and analysed with regard to gene amplification. In this 

way, cells with tumour-associated immunophenotype can be evaluated selectively. 

In cHL, the tumour cells strongly express the CD30 antigen and have a 

characteristic morphology, while the surrounding lymphocytes are mostly CD30 

negative. This advantage of the FICTION method allows accurate interphase 

cytogenetic studies in cHL, even if the extremely low number of tumour cells limits 

the application of FISH. This chapter will demonstrate how FICTION has been 

used to confirm previous CGH findings and to provide further information on the 

genes without the need for tumour metaphase spreads. 

4.1.1 1 kappa B alpha 

The inhibitor of kappa B (IKB) family consists of several members including lr'Ba, 

IKBP, IKBE, and BCL3 (see Section 1.11.1). They are characterised by their 6-7 

ankyrin repeats, which allow them to interact with members of the REL family of 

transcription factors. The human IkBa gene has six exons that span approximately 

3.5 kb (Ito et al. 1995). IKB proteins are not only responsible for cytoplasmic 

sequestration of NF-KB in resting cells, but they also associate with NF-icB in the 

nucleus, where they inhibit NF-KB DNA binding and promote transport of NF-KB to 
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the cytoplasm, thus terminating transcription and resetting the switch (Simeonidis 

et al. 1999). 

4.1.2 REL 

The c-rel gene encodes for a member of the NF-KB family of transcription factors, 

and is located on chromosome 2p15. The high frequency of chromosomal gains 

on 2p in a region including the c-rel locus suggests an alternative mechanism 

leading to NF-K13 activation in cHL, namely a gene dose effect resulting in an 

increased expression of REL (Joos et al. 2002). Detailed analysis using FICTION 

on individual HIRS cells previously demonstrated that REL gains correlated with 

the presence of nuclear c-Rel by ICC (Barth et al. 2003). 

4.1.3 STAT3 and STAT5a 

Aberrant activation of the JAK-STAT signaling pathway has been described in 

human cancers and many turnours contain increased levels of activated nuclear 

STATs, frequently STAT3 or STAT5 (Watson and Miller 1995; Weber-Nordt et al. 

1996; Bowman et al. 2000). Activated STAT3 (17q2l) was shown to be highly 

expressed in the HIRS cells in cHL by ICC (Chen et al. 2001; Garcia et al. 2002) 

and STAT5a (17q11.2), a transcription factor linked to cell growth control, was 

found to be constitutively active in the HIRS cells in all 24 cases of cHL studied, 

although only weakly expressed in NLPHL (Hinz et al. 2002). 

The work described in this chapter aimed to determine whether c-rel amplification 

and IkBa mutation are mutually exclusive events in the pathogenesis of cHL. In 
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addition, analysis of STAT3/5a genes by FICTION was performed in an attempt to 

identify the critical genes involved in 17q gains. 

4.2 Materials and methods 

4.2.1 Clinical cases and experimental design 

4.2.1.1 FICTION cases 

Ten cHL cases with sufficient tumour material were selected from our database. 

Six of the ten were used in the CGH study described in the last chapter. Cytospins 

were prepared as described in Chapter 2. Imprints and paraffin sections of the 10 

cHL cases were also obtained. Slides were taken to the Institute of Human 

Genetics, Kiel, Germany in a slide box at room temperature. The REL and 

STAT3/5a probes used were previously developed and validated by Dr. J. 1. 

Martin-Subero and Jennifer Reimke (see Table 4.1) (institute of Human Genetics, 

Kiel, Germany). The newly precipitated FISH probes were tested on normal 

metaphase slides prior to being used on clinical samples. The experiments were 

carried out twice and data collected blindly by 2 independent observers without 

prior knowledge of CGH results. Detailed description of methodology can be 

found in Section 2.10. 

4.2.1.2 IkBa mutation in HIRS cells 

Twenty HIRS cells from each of the 10 cases were laser microdissected and lysed 

as described in Section 2.6.2. The resultant DNA samples were subjected to a 

serni-nested PCR amplifying exons 1 to 6 of the IkBa gene section. The PCR 

products were then purified, and directly sequenced using BigDye Terminator v3.1 
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Cycle Sequencing Kits and an ABI Prism 3100 Genetic Analyzer (Applied 

Biosystems) as described in Chapter 2. The sequencing part of this project was 

performed by Ms. Annette Lake. The data obtained from mutational analysis were 

correlated with FICTION results and EBV status from these 10 cases. 

4.2.2 FISH probes 

4.2.2.1 Self-designed probes 

The BAC clones (see Table 4.1) used in development of FISH probes applied in 

this chapter were derived from the BAC library of the Roswell Park Cancer Institute 

(RPCI-11) (http: //bacpac. med. buffalo. edu). Clones were purchased from the 

German Resource Centre for Genome Research (hftp: //rzpd. de) or kindly provided 

by the Sanger Centre (http: //www. sanger. ac. uk). 

Clone reference Description Fluorescence label 

449805 PAPLOG (2p16.1) SpectrumGreen 

3731-24 REL (2p16.1) SpectrumGreen 

156E6 Upstream of STAT3/5a at 40.1 MB SpectrumOrange 
(1 7q21.2) 

40OF19 Downstream of STAT3/5a at 40.6 MB SpectrumGreen 
(1 7q21.2) 

Table 4.1 List of all BAC clones used as self-designed FISH probes in this study 
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4.2.2.2 Commercial probes 

In addition to self-designed probes, commercial CEPs were used in this study 

(Table 4.2). 

Probe Description Source 

CEP2 Specific for the centromere of chromosome 2 (locus D2Z1) Abbott 

Laboratories 

CEP1 7 Specific for the centromere of chromosome 17 (locus D1 721) Abbott 

Laboratories 

Table 4.2 List of centromeric probes used for FICTION in this study. 

4.2.3 Antibodies 

A cascade of monoclonal antibodies were used to detect the CD30 antigen 

present in the HIRS cells of cHL (Table 4.3). 

MoAb Description Company 

CD30 (BerH2) Mouse monoclonal antibody against human DAKO (Hamburg, Germany) 
CD30 antigen 

Ajexa 594 Texas red-conjugated rabbit anti-mouse Molecular Probes (Invitrogen, 

antibody Karlsruhe, Germany) 

Table 4.3 List of all antibodies used for FICTION in this study. 

4.2.4 Signal evaluation 

In this study, the hybridisation signals in the HIRS cells for the gene studied and its 

corresponding centromere were counted in a minimum of 10 CD30-positive cells 

and 20 negative bystander cells. This was done by 2 independent observers for 

each sample, without prior knowledge of CGH results. A ratio was expressed by 

dividing the number of gene signals by the number of centromeric signals. Gain 

was defined by a ratio of ý1.5 or a median of >4 signals when centromeric signals 
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could not be evaluated. This criterion was applied as many HIRS cells are likely to 

be triploid or tetraploid (Weber-Matthiesen et al. 1995a). 

4.3 Results 

4.3.1 Validation of REL and STAT3/5a probes on normal metaphase slides 

Pooled REUPAPLOG probe and STAT3/5a probe were hybridised onto normal 

metaphase slides prior to use on clinical samples. The probes were strong in 

signal intensity with a low background and they co-localised at the correct position 

on the corresponding chromosome (Figure 4.1 and 4.2). 
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Figure 4.1 REUPAPLOG probe hybridised to chromosome 2p16 on a normal metaphase spread 

slide. The REUPAPLOG probe is labelled with SpectrumGreen and the chromosomes are 

counterstained vAth DAPI. 
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Figure 4.2 STAT3/5a probe hybridised to chromosome 17q21 on a normal metaphase spread slide, 

The STAT3/5a probe is labelled with SpectrurnRed and SpectrurnGreen; the centromeric probe for 

chromosome 17 is labelled with SpectrumBlue but is depicted in pink pseudo-colour). 

4.3.2 Evaluation of FICTION signals for REL in HIRS cells from cHL cytospins 

By FICTION with application of REL and PAPLOG probes, the median numbers of 

REUPAPLOG copies in the CD30-positive HIRS cells ranged from 2-6.5 and 2-6 

in the 10 cases of cHL evaluated by the first and second observer, respectively. 

Inter-observer variability was minimal (Tables 4.4a, 4.4b, 4.5a and 4.5b) and 

discrepancies were resolved by a third inspection with image capturing. Overall, 4 
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out of 10 cHL cases had a gain of REUPAPLOG, which is in line with our CGH 

analyses detecting 2p gains in 8 of 20 cHL cases (see Figure 4.3). In order to 

relate the number of REL to the number of centromere 2 copies, FICTION was 

performed combining D2Z1 with the REL-BAC pool probe (see Table 4.4a and 

4.4b). In 6 of the 10 cases (60%) that could be analysed, the median centromere 

2 copy number exceeded the diploid range in 3 cases. In 6 of 10 cHL cases where 

CGH analyses were available, with the exception of 6689, good concordance was 

observed between 2p status by CGH and REL status by FICTION. Based on the 

fact that fixed thresholds in CGH do not take into account of the variation of ratio 

values between different experiments, different metaphases of the same slide and 

even within different chromosomal region, a re-examination of the red/green ratio 

profile was done on 6689. This revealed two distinct peaks in the 2p14 and 2p16 

regions which were just below the threshold due to slightly more noise. The 2p 

status by CGH in 6689 was therefore interpreted as a near gain. Overall, the 

observations provided good supportive evidence that REL is involved in the 2p 

gains observed in cHL by CGH analyses. As the number of cases in this study 

was small, correlation with patient demographic details was not performed. 
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Figure 4.3 REL gain in a HIRS cell. There are 10 REL signals and 4 chromosome 2 centromere 

signals. REL is labelled with SpectrumGreen, chromosome 2 centromere is labelled with 

SpectrumBlue but is pink in pseudo-colour and the cells are counterstained with DAPI. 

E3y looking at the range of the median numbers of REL and chromosome 2 

centromeres, the HIRS cells in at least 7 of 10 cases appeared to have some 

numerical chromosomal aberrations. This is in line with previous observations by 

other workers (Weber-Matthiesen et al. 1995b). 
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Case 

No. 

Age Sex HIRS cells 

evaluated 

Copies 

of D2Z1 

median 
(range) 

Copies 

of REL 

median 
(range) 

REUD2Z1 REL 

status 

2p 

status 
by 

CGH 

6689(L) 21 M 10 4(2-5) 6.5(5-9) 1.8 (1.3-4.5) G NG 

5708(C) 46 F 16 NE 5(4-7) NE G G 

5706(J) 16 F 19 2(2-3) 2(2-4) 1.3 (0.7-1.5) B B 

6838 52 F 19 3(2-3) 3(3-4) 1.2(1-1.5) B NE 

6258(A) 39 M 19 2 2(2-3) 1(1-1.5) B B 

5780(H) 33 M 20 NE 2(2-5) NE B B 

6763 36 F 16 2(1-2) 2(2-3) 1(1-2) B NE 

6214(D) 67 M 20 NE 4(3-8) NE B G 

6861 46 F 16 3.5(2-4) 4(2-7) 1.4(1-2.3) B NE 

6766 51 M 19 NE 2(2-7) NE B NE 

Table 4.4a REL and chromosome 2 centromere (D2Z1) signals in the HIRS cells from 10 cases of 

cHL observed by the author (B indicates balanced, G, gain, NG, near gain and NE, not evaluable). 

Aphabets next to case numbers denote their corresponding CGH case identity in Chapter 3. 
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Case Age Sex HIRS cells Copies Copies REL/D2Z1 REL status 2p 
No. evaluated of D2Z1 of REL status 

median median by 
(range) (range) CGH 

6689(L) 21 M 13 4(2-4) 5(3-7) 1.7(l. 3-2) G NG 

5708(C) 46 F 8 NE 5(5-8) NE G G 

5706(J) 16 F 5 NE 3 NE B B 

6838 52 F 9 NE 3(2-3) NE B NE 

6258(A) 39 M 9 NE 2 NE B B 

5780(H) 33 M 7 NE 2 NE B B 

6763 36 F 7 2(2-4) 2(2-4) 1 B NE 
6214(D) 67 M 11 NE 6(2-11) NE G G 

(reconfirmed) 

6861 46 F 6 NE 5(4-6) NE G NE 

(reconfirmed) 

6766 51 M NA NE NE NE NE NE 

Table 4.4b REL and chromosome 2 centromere (D2Z1) signals in the HIRS cells from 10 cases of 

cHL observed by Dr. J. 1. Martin-Subero (B indicates balanced, G, gain, NG, near gain and NE, not 

evaluable). Alphabets next to case numbers denote their corresponding CGH case identity in 

Chapter 3. 

4.3.3 Evaluation of FICTION signals for STAT3/5a in HIRS cells from cHIL 

cytospins 

The median number of STAT3/5a copies in the CD30-positive HIRS cells ranged 

from 2-5 for both observers (see Table 4.5a and 4.5b). Only one case had a 

median STAT3/5a copy number of 5 signals but it also had a median centromere 

17 copy number of 4, thus the ratio did not exceed 1.5. None of the 10 cHL cases 

appeared to have a gain of STAT3/5a despite 4 of 10 cases having a median 

centromere 17 copy number which exceeded the diploid range (see Figure 4.4). 

Thus, the frequent gain in 17q in cHL by CGH analyses is not associated with 
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genetic gain in STAT3/5a. By applying a dual colour probe flanking the STAT3/5a 

gene, it was possible to evaluate more than simply signal amplification. The 

separation of the two colour signals would indicate a break or translocation. This 

was indeed uncommon in all the HIRS cells observed for STAT3/5a. 

Figure 4.4 Absence of STAT15a gain in a HIRS cell. There are 5 pairs of STAT3/5a signals and 5 

chromosome 17 centromere signals (STAT3/5a is labelled with SpectrumGreen and SpectrumRed, 

chromosome 17 centromere is labelled with SpectrumBlue but is pink in pseudo-colour and the 

cells are counterstained with DAPI). 

151 



Case Age Sex HIRS cells Copies Copies of STAT3/5a STAT3/5a 17q 

No. evaluated of STAT3/5a /D1 721 status status 
Dl 721 by 

median CGH 

(range) 

6689(L) 21 m 29 4(4-6) 5(4-7) 1.2 (1-1.7) B G 

5708(C) 46 F 20 3(2-4) 4(2-6) l(1-2) B G 

5706(J) 16 F 20 3(2-8) 3(2-10) l(0.7-1.8) B G 

6838 52 F 14 2(2-3) 2(2-4) l(1-1.3) B NA 

6258(A) 39 m 16 2(1-3) 2(2-3) l(0.7-1.5) B G 

5780(H) 33 m 20 2(1-2) 2 l(1-2) B G 

6763 36 F 17 2(2-4) 2(2-4) l(1-1.5) B NA 

6214(D) 67 m 20 2(1-2) 2 l(1-2) B G 

6861 46 F 18 4(2-7) 4(3-7) 1.3(1-1.7) B NA 

6766 51 m 16 2 2 1 B NA 

Table 4.5a STAT3/5a and chromosome 17 centromere (D1721) signals in the HIRS cells from 10 

c-ases of cHL observed by the author (B indicates balanced, G, gain and NA, not available). 

AJphabets next to case numbers denote their corresponding CGH case identity in Chapter 3. 
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Case Age Sex HIRS cells Copies Copies of STAT3/5a STAT3/5a 17q 

No. evaluated of STAT3/5a /D1 721 status status 
D1721 by 

median CGH 

(range) 

6689(L) 21 M 12 5(4-5) 5(4-5) l(I-1.3) B G 

5708(C) 46 F 7 3(2-7) 4(2-8) 1(1-1.7) B G 

5706(J) 16 F 10 3(3-6) 3(3-6) 1 B G 

6838 52 F 8 2 2 1 B NA 

6258(A) 39 M 9 2 2 1 B G 

5780(H) 33 M 10 NA 2 NA B G 

6763 36 F 15 2(2-6) 2(2-8) l(O. 7-1.8) B NA 

6214(D) 67 M 11 NA 3(2-4) NA B G 

6861 46 F 10 4(3-4) 4(3-5) 1(1-1.3) B NA 

6766 51 M 5 NA 2 NA B NA 

Table 4.5b STAT3/5a and chromosome 17 centromere (D1721) signals in the HIRS cells from 10 

cases of cHL observed by Dr. J. 1. Martin-Subero (B indicates balanced, G, gain and NA, not 

available). Alphabets next to case numbers denote their corresponding CGH case identity in 

Chapter 3. 

Mutation of the IkBa gene in HIRS cells occurred in 6 out of 10 cases; mutations in 

3 cases were considered functionally significant. Two out of 10 cases had a partial 

LOH; one of these cases also had a significant IkBa gene mutation and the other a 

REL amplification (see Table 4.6). Among the 4 cHL cases with REL amplification, 

3 had IkBa mutation although mutations in only one of these cases were 

considered significant. Four out of nine cases were EBV-positive but a correlation 

with IkBa gene mutations was not apparent. Overall these data show that 

significant mutation or LOH of IkBa, REL amplification and the presence of EBV in 

HIRS cells are not mutually exclusive of each other. 
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Case Gene status LOH Significance REL EBV 

No. gain status 

6689 Exon 3 (1509 C>T) No Bi-allelic inactivating Yes Negative 
Stop codon mutations 
Exon 5 (2188 Ins 7 bp) 

5708 Wild type Partial Yes Negative 
LOH 

5706 Exon 3 (1634 G>A) N/A Not functionally important No Negative 
Splice donor 

6838 Intron 2 (1402 C>A) 

Intron 5 (2694 T>A) 

Partial Potential dysregulation No Not known 
LOH 

TUTR (3022 T>C) 

6258 Exon 5 (2253 G>A) N/A Contact residue to NF-KB No Positive 

disrupted 

5780 Wildtype N/A No Negative 

6763 Wildtype N/A No Positive 

6214 Exon 1 (201 C>A) N/A Yes Negative 

6861 Exon 1 (213 T>A) N/A Non-conservative Yes Positive 

substitution 
-T7-66 Wildtype N/A No Positive 

Table 4.6 IkBa gene mutation and loss of heterozygosity (LOH) in 10 cases of cHL (N/A, not 

available). 

Many of the cases (3 of 10 for REL and 8 of 10 for STAT3/5a) did not have 

centromere copy number data analysed by both observers. The DAR staining of 

the nuclei often appeared fragmented and dim particularly in the HIRS cells (see 

Figure 4.5). In cases where the DAR staining was weak, there was weak or no 

FISH signals despite the presence of good surface immunostaining. To increase 

the sensitivity of the analysis in these cases the incubation with the primary 

antibody was extended to overnight instead of RT for 30 minutes, the time of the 

simultaneous denaturation of probes and DNA was extended from 7 to 12 minutes 
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and hybridisation time was lengthened by an extra 24 hours. Although satisfactory 

FISH signals were obtained in most cases, it was expected that not all signals 

were revealed given the fragility of the HIRS cells. Imprint preparations were not 

superior in quality compared to cytospins. There were often more eosinophils on 

imprints leading to autofluorescence and difficulty in analyses. 

Figure 4.5 DAR staining of HIRS cells and surrounding infiltrate. The quality of DAR staining was 

often less good in the HIRS cells in comparison to adjacent lymphocytes, indicating their fragility. 

This image shows adequate DAR staining in the HIRS cell. 
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4.4 Discussion 

In the present study, the frequency of REL and STAT3/5a gains in the CD30- 

positive HRS cells from 10 cHL cases was investigated using the FICTION 

technique. This allowed us to bypass the difficulty in obtaining tumour metaphases 

from cHL. Probes for the corresponding centromere were used (CEP 2: D2Z1 and 

CEP 17: D1721) to demonstrate chromosome copy number change in relation to 

the gene copy number. Results were collected by 2 independent observers and 

correlated to CGH data where available. There was only minor inter-observer 

variability and this was addressed by a third confirmatory evaluation. Although 

both observers evaluated the same slides, they might not have seen and recorded 

the same cells. This can have a profound effect especially when the HRS cells 

appear to have such a high level of genomic instability. 

Martin-Subero et al. (2002) have observed a gain of REL in 35% to 55% of cHL 

cases analysed by FICTION with or without the adjustment for centromere 2 copy 

number respectively. In this study a gain of REL in 4 of 10 cHL cases was 

observed, which was in complete agreement with our CGH analyses where 

available. This provides further evidence that the gain of 2p in cHL detected by 

CGH is consistently associated with a gain in the REL gene. 

The presence of LOH or mutation of the IkBa gene in these 10 cases of cHL was 

also investigated. Mutations occurred frequently with 6 out of 10 cases having one 

to three mutations, although only 3 cases harboured potentially functionally 

important mutations. LOH was also detected in 2 cases. No distinct pattern of 
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correlation between gains of REL by FICTION, EBV status, LOH and IkBa gene 

mutation status were observed among these cases. In one EBV-negative case 

(6689) where the clinical course of the disease was particularly aggressive, the 

HIRS cells harboured both REL amplification and bi-allelic inactivating IKBa gene 

mutations. A dosage effect is possible but this would suggest that these two 

mechanisms are not mutually exclusive of each other. As REL amplifications are 

found in both EBV-positive and negative cases of cHL, this would indicate that c- 

rel and EBV are not mutually exclusive of each other. IkBa mutations are not 

present in all EBV-negative cases of cHL which suggests IkBa mutations are not 

substituting for EBV. In one EBV-negative case (5780) there was wild type IkBa 

and no REL amplification; this suggests the possibility of another mechanism 

leading to the activation of NF-KB in the HIRS cells. 

Our CGH data indicated frequent gain of 17q in cHL. From our FICTION data, 7 of 

10 cases appeared to have numerical aberrations of chromosome 17 in at least 

some of the HIRS cells. No bystander cells with such aberration were found by 

either observer. Although 5 of 10 cases appeared to have STAT3/5a copy 

numbers above the diploid range, this became insignificant when related to the 

centromere 17 copy number changes. Indeed, none of the 10 cases can be 

classified as having a gain of STAT3/5a nor is there any indication that 

translocation is a common event. There could be two reasons for such an 

observation. Firstly, additional signals of STAT3/5a were not detected due to the 

sub-optimal quality of DNA in the samples. Secondly, STAT3/5a is not involved in 

the gains observed on 17q by CGH analyses. This might indeed be the case as 
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many of the gains appeared to be near 17q12 or 17q24 by CGH analyses and 

STAT3/5a is not the only gene located on 17q2l. The high level of STAT5a 

protein and RNA expression observed in the HL-derived cell line L428 may result 

from up-regulation of STAT5a by NF-KB rather than from STAT5a gene itself. 

Thus, activation of NF-KB can lead to both increased expression and activation of 

STAT5a (Hinz et al. 2002). 

Our FICTION data have provided confirmation that the gain of 2p detected by 

CGH in cHL consistently involves REL but the gain in 17q is not associated with a 

gain in STAT3/5a. This suggests that other genes may be involved in 17q gains. 

Our data also show that activation of NF-icB by REL amplification, EBV, IkBa 

mutation or LOH are not mutually exclusive mechanisms. 
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Chapter 5 

GENERAL DISCUSSION 
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It has taken well over 150 years, from the first description of HID / HL, to elucidate 

the origin of the tumour cells, the so called Hodgkin and Reed-Sternberg (HRS) 

cells. It is now recognised that the HRS cells, in most instances, are derived from 

germinal centre B cells. In addition, in approximately 30% of cases, the HRS cells 

are known to harbour EBV. They do not display surface Ig and have non- 

functional B cell receptor (BCR) transcription mechanisms. Our current 

understanding of B cell development suggests that such non-functional B cells 

should be eliminated by apoptosis. Yet these HRS cells can persist. Mechanisms 

used by HRS cells to survive may include the constitutive activation of NF-KB, 

disruption of the TRAF pathways, mimicry of survival signals by EBV LMP2 and 

LMP1 and suppression of immune surveillance by the recruitment of 

immunosuppressive T cells. 

The scarcity of the HIRS cells within turnours has hampered research significantly 

despite the expansion of scientific knowledge in molecular biology. As mentioned 

previously, cytogenetic studies have made enormous advances in many other 

turnours and lymphoma where consistent chromosomal abnormalities have led to 

the discovery of oncogenes and tumour suppressor genes. This has not been 

possible in CHL as most of the karyotypes are either normal, probably due to 

outgrowth of bystander cells, or so complex that no meaningful interpretation could 

be made. In this project, the problems have been overcome with the combination 

of several recent advances in molecular techniques, namely: isolation of single 

HIRS cells by CD30 ICC and LIVID; universal amplification of the small amount of 

DNA to usable quantity by DOP-PCR; and the identification of genomic 
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imbalances without the need for tumour metaphase spreads by CGH. The 

availability of the entire human genome sequence and FISH-mapped probes has 

also enabled further elucidation of candidate genes involved in the pathogenesis of 

cHL. Many of the techniques involved in this project were new to this laboratory. 

Much time and resources were therefore invested in trouble-shooting and 

establishing these as robust techniques in our hands. 

Overall, we have been successful in establishing LIVID of single HIRS cells for all 

our downstream analyses including various PCRs and CGH. Analysis of 20 cases 

of cHL using CGH revealed recurrent chromosomal imbalances. The most 

frequent abnormality was gain on 17q (70%). Other frequent gains involved 2p 

(40%), 12q (40%), 17p (40%), 22q (35%), 9p (30%), 14q (30%) and 16p (30%). 

The most frequent losses involved 13q (35%), 6q (30%), 11 q (25%) and 4q (25%). 

The data strongly resembles those generated from the Heidelberg group despite 

using different protocols and patient samples (Ohshima et al. 1999; Joos et al. 

2000; Joos et al. 2002). In the present study, HIRS cells were obtained by LIVID 

from cytospin preparations that had been immunostained using CD30 monoclonal 

antibodies. This method of collection of HIRS cells offers advantages over 

previous methods used in CGH experiments in that single HIRS cells were 

individually selected using stringent criteria, and the use of cytospins prepared 

from viable material ensured that complete cells were captured, hence the robust 

nature of this study. Results were also analysed with respect to clinicopathological 

parameters. Although the number of cases analysed was small and statistical 

power limited, these analyses provide hypotheses for further testing. There were 
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significantly more gains on 2p and 14q in the older adult cases (p-value = 0.038 

and 0.022 respectively); and losses of 13q were associated with a poor clinical 

outcome (p = 0.049). This study also provided further evidence that cHL is 

genetically distinct from NLPHL. Apart from the gain of 12q and loss of 11 q, there 

are no shared abnormalities with the 20 chromosomal imbalances described in 

NLPHL by Franke et al. (2001). One observation that is common amongst all the 

CGH studies in HL is the unusually high number of chromosomal abnormalities 

observed. This may indicate an underlying mechanism for genomic instability with 

a recurring pattern in HL, as discussed previously and recently (Mark et al. 1998; 

Re et al. 2002; Joos et al. 2003). 

The chromosomal imbalances detected in cHL are different from those detected in 

most other lymphomas with the exception of primary mediastinal B-cell lymphoma 

(PMBCL). PMBCL is the only NHL which shares frequent gains of 2p and 9p and 

losses of 13q, 6q and 4q (Bentz et al. 2001; Palanisamy et al. 2002). This is of 

particular interest since both tumours have a tendency to occur in young females, 

have a predilection for the mediastinum, and lack expression of surface Ig. 

Gain of chromosome 17q was the most frequent abnormality found in this CGH 

study of cHL. Alteration of 17q was also one of the more frequently found 

abnormalities in previous cytogenetic studies of cHL (Sarris et al. 1999). Many 

genes that have been previously implicated in cHL, including genes involved in, or 

regulated by, NF-KB activation, and genes encoding chemokines and STATs 

reside in 17q. As part of my follow-up study, I investigated the frequency of REL 
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and STAT3/5a gains in the CID30-positive HIRS cells from 10 cHL cases using the 

FICTION technique. In this study a gain of REL in 4 of 10 cHL cases was 

observed, which is in complete agreement with my CGH analyses where available. 

This provides further evidence that the gain of 2p in cHL detected by CGH is 

consistently associated with a gain in the REL gene. Our data also show that 

activation of NF-KB by REL amplification, EBV, IkBa mutation or LOH are not 

mutually exclusive mechanisms. 

From our FICTION data, 7 of 10 cases appeared to have numerical aberrations of 

chromosome 17 in at least some of the HIRS cells. None of the 10 cases would be 

classified as having a gain of STAT3/5a nor was there any indication that 

translocations, involving these genes are a common event. Trisomy 17 leading to 

the frequent gains observed by CGH cannot be ruled out but the findings could 

also be suggesting the importance of other candidate genes present in 17q. In 

addition to those already mentioned in Chapter 3, a recent paper highlighted a 

novel chromosomal derrangement mechanism in cHL associated with proteins 

involved in cell division, namely pericentrin and dynein which are both located in 

17q (Martin-Subero et al. 2003). 

There are several ways in which this current project could be further developed 

exploring different aspects of the biology of cHL. FICTION could be used to look 

for other candidate genes in 17q or other areas of frequent amplification detected 

by CGH. SNP assays could be used to look for LOH in deleted regions which may 

harbour unknown tumour suppressor genes. FICTION could also be used simply 
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to delineate numerical chromosomal abnormalities with particular reference to 

chromosome 17. Another major area that would merit further study would be the 

mechanism leading to such profound chromosomal instability in the HIRS cells, 

whether at a genetic or epigenetic level. 

A high throughput, high resolution microarray-based comparative genomic 

hybridisation (M-CGH) has recently been introduced. This technique provides a 

superior spatial resolution, allowing a fully automated evaluation of experiments 

and a simultaneous analysis of hundreds of genomic loci. In contrast to 

chromosomal CGH, the array-based genome screening has a 20-100 fold higher 

resolution (Wessendorf et a[. 2002). The major limitation of this method is that it 

requires genomic DNA and experiments using DOP-PCR amplified DNA have 

been inconsistent. This problem might be overcome with a different method of 

WGA. Rolling circle amplification using (p29 DNA polymerase and random 

exonuclease-resistant primers was developed for amplifying large circular DNA 

templates such as plasmid and bacteriophage DNA. Rather unexpectedly, these 

reagents also readily amplify linear, human genomic DNA in a cascading, strand 

displacement reaction termed multiple displacement amplification (MDA). 

Amplification of genomic DNA by IVIDA leads to a large amount of product with an 

average product length exceeding 10 kb. The yield of MDA was also found to 

provide more complete coverage of the genome with less amplification bias when 

compared with PEP-PCR and DOP-PCR (Dean et al. 2002). MDA also compared 

favourably with DOP-PCR for CGH, and suppression hybridisation may be 

unnecessary for detection of single copy sequences. This makes it particularly 
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attractive for chip-based genetic analysis from limited patient DNA (Dean et al. 

2002; Lovmar et al. 2003). At the present time, MDA is not optimised for small 

starting amounts of DNA template (our unpublished data) but this technique holds 

promise for the future. The use of M-CGH should further refine the recurrent 

genetic imbalances, which are a feature of cHL, and help to identify key genes in 

cHL pathogenesis. 
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Materials 

Material Source 

0.2 ml PCR tubes Applied Biosystems, UK 

Agarose powder Invitrogen Ltd., Paisley, UK 

Apparatus for agarose gel electrophoresis BRL, Paisley, UK 

Apparatus for polyacrylamide gel 

electrophoresis 

Bio-Rad Laboratories, Hertfordshire, UK 

P-mercaptoethanol Sigma-Aldrich Company Ltd., Poole, UK 

Bovine serum albumin (nuclease free) Sigma-Aldrich Company Ltd., Poole, UK 

CGH hybridisation buffer Abbott Laboratories, Berkshire, UK 

CoT-1 DNA, human Invitrogen Ltd., Paisley, UK 

DRX BDH, Poole, UK 

DAR 11 Abbott Laboratories, Berkshire, UK 

dATP, dCTP, dGTP and dTTP (100 mM) Amersharn Bioscience, Buckinghamshire, UK 

Dimethylsulphoxide DMSO Sigma-AJdrich Company Ltd., Poole, UK 

DNA polymerase 1 Invitrogen Ltd., Paisley, UK 

dUTP-SG (1 mM) Abbott Laboratories, Berkshire, UK 

dUTP-SR (I mM) Abbott Laboratories, Berkshire, UK 

Falcon tubes (15 ml, 50 ml) Becton Dickinson, Cowley, UK 

Fliptop microcentrifuge tubes (1.5 ml) Scotlab, Strathclyde, UK 

FBS Invitrogen Ltd., Paisley, UK 

Petri dish Scotlab, Strathclyde, UK 

Phenol/ chloroform/ isoamylalcohol (PC19) Sigma-AJdrich Company Ltd., Poole, UK 

Pipette tips (Rainin) Scotlab, Strathclyde, UK 

Proteinase K Sigma-Aldrich Company Ltd., Poole, UK 

Tryptone peptone Sigma-Aldrich Company Ltd., Poole, UK 

Tween 20 Sigma-Aldrich Company Ltd., Poole, UK 

Wide-bore polypropylene pastette Alpha Laboratories, Hampshire, UK 

Yeast extract Sigma-Aldrich Company Ltd., Poole, UK 
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Buffers and solutions 
Recipe 

lox loading buffer for non-denaturing gel Bromophenol blue 0.42% 

electrophoresis Xylene cyanol 0.42% 

Glycerol 50% 

20x sodium chloride and sodium citrate (SSC) 66 g 20xSSC mix (Abbott Laboratories) in 200 

(Store at room temperature discard after 6 

months) 

mls of dH20 

Adjust to pH 5.3 using concentrated HCI 

Adjust volume to 250 ml using dH20 

Filter through a 0.45 um filter 

A4 mixture 0.2 mM dATP 

0.2 mM dCTP 

0.2 mM dGTP 

500 mM Tris-HCI (pH 7.8) 

50 MM MgC12 

100 mM P-mercaptoethanol 

100 pg/ml BSA (nuclease free). 

Antifacle solution 230 mg of DABCO 

10 ml of PN buffer (see below) 

90 ml of glycerol 

Cell culturing medium (10% FBS) 500 ml RPMI 1640 with L-Glutamine (Invitrogen) 

50 ml Fetal Bovine Serum (FBS) (Invitrogen) 

20 ml Penicillin / Streptomycin (Invitrogen) 

5 ml L-Glutamine (Invitrogen) 

Column buffer (Sephadex G-50) 2.5 ml 1M Tris-HCI, pH 8 

0.5 ml 0.5 M EDTA 

2.5 ml SDS 10% 

Fill up to 250 ml with dH20 

DAM solution 6 pI of DAR stock solution 
60 ml of 2xSSC 

DAPI stock solution 0.2 mg/ml of DAR in dH20 

Denaturation solution 35 ml formamide 

(Prepare in a fume hood on the day of use) 5 ml 20x SSC 

10 ml dH20 

Adjust pH to 7.0 - 7.5 
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Freezing medium 92% fetal calf serum (Invitrogen) 
8% DIVISO (Sigma) 

Hydrogen peroxide/ methanol solution (1.5%) 3 ml hydrogen peroxide 
(Discard within 1 month) 57 ml methanol 

Luria-Bertani (LB) medium for growing BACs 10 g of tryptone-peptone 
(Solid LB medium was prepared in the same 

way with the addition of 15 g/L agar and 

sterilised by autoclaving). 
(Media were supplemented with 

chloramphenicol (20 jig/ml) as the BACs used 

were chloramphenicol resistant). 

5g of yeast extract 
5g of NaCl 

Make up to 900 ml with dH20 

Adjusted pH to 7.4 

Fill up to 1000 ml with H20 

Ahquoted and sterilised in autoclave 

Master mix for single copy probes 5 ml cleionized formamide 

2 ml dextran sulphate 50% 

1 ml 20xSSC 

Mini-Macs buffer 50 ml lOx PBS 

10 ml FBS 

2 ml EDTA 

2.5 g BSA 

Fill to 500 ml with dH20 

Filter and aliquot 

Ni6-k--translation enzyme mix 0.4 U/pl Poll 

40 pg/pl DNase I 

Paraformalclehyde (1%) Paraformalclehyde 1g in 60 ml of dH20 

Add 5 drops of 10 M NaOH 

Heat the solution until transparent 

Allow to cool 
Add 10 MI Of 100 MM MgC12 

Adjust pH to 7.0 - 7.5 

Fill up to 100 ml with dH20 

Filter the solution 

p6s-- 137 mM NaCl 

2.7 mM KCI 
10 mM Na2HP04- 

2 mM KH2PO4- 
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Pepsin digestion solution 0.5 ml of 2M HCI 

99.5 ml of dH20 

Add 5 mg of pepsin 
PN buffer 0.1 M 13.8 g NaH2PO4.2H20 

0.1 M 17.8 g Na2HP04.2H20 

Add dH20 to 900 ML 
Adjust pH to 8.0 and add dH20 to 1 L. 

PNM buffer Add 5g of milk powder to 100 ml of PN buffer 

Heat to 50*C and leave stirring overnight 
Add 0.03 g of NaN3 

Centrifuge and use supernatant only 
Keep at 40C for 6 months 

Sephadex G-50 suspension 10 g Sephadex G-50 + 160 ml of dH20 

Leave to stand for 30 minutes at RT 
Centrifuge at 400 g for 4 minutes at RT 

Remove supernatant 
Wash Sephadex twice with dH20 at 400 g 
Leave at 3: 1 solid to aqueous phase 

SpectrumRedorSpectrumGreen(SR/SG)ImM 1: 1 dTTP: fluorescent labelled dUTP 

mix 
TAE 40mM Tris 

20mM Sodium acetate 
20mM Sodium chloride 
2 mM EDTA 

Adjusted to pH 8 

TaqMan lysis buffer 25 mM Tris, pH 8.8 

0.01 mM EDTA 

0.45% Tween 20 

0.45% NP40 

TBE 90 mM Tds 

90 mM Boric acid 
2.25 mM EDTA 

Adjusted to pH 8 
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TBS 50 mM Tris HCI 

0.05 M Tils base 

20 mM NaCt 

Adjusted to pH 7.6 

TBST 100 ml 20xTBS with 0.1 % Tween 20 

1900 ml of dH20 

TE 10 mM Tris pH 8 

1 mM EDTA pH 8 

ThermoSequenase lysis buffer lxTSB (260mM Tris-HCI pH 9.5,65mM MgC12) 

0.25 mg/ml Proteinase K 

0.45% Tween 20 

0.45% NP40 

TNE O. 1mM Sodium chloride 
lOmM Tds 

ImM EDTA 

Adjusted to pH 8 

Travel medium 500 ml RPM11640 with L-glutamine 

100 ml Fetal calf serum 
20 ml Penicillin/Streptomycin 

5 ml L-glutamine 

5 ml Fungizone 

7.5 ml Gentamicin 

12.5 ml Hepes buffer 

Wash Buffer 1 (0.4x SSC) 10 ml 20xSSC 

(Store at room temperature and discard after 6 1.5 ml NP40 

months) 475 ml dH20 

Adjust pH to 7.0 - 7.5 with NaOH 

Fill up to 500 ml 
Filter through a 0.45 pm filter 

Wash Buffer 2 (2x SSC) 50 ml of 20xSSC, 

(Store at room temperature and discard after 6 0.5 ml NP40 

months) 425 ml dH20 

Adjust pH to 7.0 - 7.5 with NaOH 

Fill up to 500 ml 
Filter through a 0.45 pm filter. 
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Cell lines 
Cell lines information EBV status 

Raii ATCC CCL-86 Positive 
Burkitt's lymphorna, human 

Male 
Chromosome: 2n = 46 

Daudi ATCC CCL-213 Positive 

Burkitt's lymphoma, human 

Male 

Chromosome: 2n = 46 

IM-9 ATCC CCL-159 Positive 

Lymphoblastoid cell line, human 

Female 

Chromosome: 2n = 46 

KM-H2 DSMZACC8 Negative 

Hodgkin lymphoma, human 

MCHL > LDHL, stage IV 

Male 
Chromosome: hypotriploid karyotype with polyploicly 

L428 DSMZ ACC 197 Negative 
Hodgkin lymphorna, human 

NSHL, stage IV B 

Female 

Chromosome: hypertetraploicly karyotype with polyploicly 

L591 Kindly provided by Dr. David Jones, University of Southampton Positive 

Hodgkin lymphorna, human 

NSHL, stage IV 

Female 

Chromosome: not available 

Ll 236 DSMZ ACC 530 Negative 

Hodgkin lymphorna, human 

MCHL, stage IV 

Male 

Chromosome: hypotriploid karyotype with polyploidy 
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IkBa primers 
ID Primer Name Primer Sequence 

699 Exon 1, forward outer TGGTCTGACTGGCTTGGAAATTC 

720 Exon 1, reverse outer GCGTCCCGCCCTCCCGACGA 

593 Exon 2, forward outer CCTCTCTTCCCCACAGGTTCCT 

702 Exon 2, reverse outer AAAGGATCTGGGGTGACTCT 

721 Exon 3, forward outer CCTGTCTAGGAGGAGCAGCAC 

694 Exon 3, reverse outer AAAGGCATCCAATAGGCAC 

722 Exon 4. forward outrer GAACCCAGACTGTGGGTTCT 

696 Exon 4, reverse outer TGAGATGCTTATGGCTGCA 

724 Exon 5, forward outer ATGCTCAGGTTGGTGCTTCC 

726 Exon 5, reverse outer CTGGGAGGGTGAAGGGAAT 

703 Exon 6, forward outer CCCATCCCGGTAGCTTGGCAG 

708 Exon 6, reverse outer TTCAGTGATGTGGGGTGAAA 

746 Exon 1, forward inner AGCGCCCCAGCGAGGAAGCA 

719 Exon 1, reverse inner TCGGTGAGCTGCTGCTTCCA 

745 Exon 2, reverse inner ATCAGCTACGTCCCAGGGTC 

684 Exon 3, forward. inner AGGAGACACGGGTTGAGG 

723 Exon 4, forward inner AGGTGAAAGGAGTGAGGGTTG 

725 Exon 5, forward inner GCACTGAGTCAGGCTCCTCG 

627 Exon 6, reverse. inner GGATACCACTGGGGTCAGTCACTC 

Primers 593,694,696,726 and 703 were used in both first and second round 
PCRs. 
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