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ABSTRACT

Braided Cascade has been developed from Cascade (Braun and Sambridge,
1997), a long-term (dt = 100 years) numerical model that simulates long-term
landscape evolution. Herein it has been modified and applied to relatively short
term process modelling of the evolution of complex river topography, discharge
and sediment load of braided rivers. Braided Cascade is synthesist in spirit, there
is no detailed hydrodynamic component to the model, a realistic simplification at
the time scales considered. The major advantage of the model is the incorporation
of an irregular time-varying grid using a triangulated irregular network (TIN) to
represent a terrain surface. Advantages of using TINs include the ability to solve
problems with non-rectangular geometeries and/or boundary conditions and the
ability of river segments to form in all directions. The model routes water from
node to node based on the local topographic slope. Sediment transport depends on
the local stream power. Nodal elevation changes after each iteration according to
the difference between the amount of sediment entering and leaving the node.
Model output includes spatial and temporal (at one point) water discharge,
bedload sediment transport, as well as maps of channel networks, erosion and
deposition throughout the reach.

Sensitivity analysis indicated that the most significant parameters for braiding are
erosion length scale, splitting ratios and the allowance of the model to deposit
sediment. Therefore an imbalance in the amount of sediment the river is carrying
and the carrying capacity AND a reworking of the deposits is needed for a braided
network to form.

Model results were compared to field and flume data using dynamical systems
methods. Quantitative analysis was undertaken using an automated box counting-
transfer distance method. Flume data indicates that, as the number of channels in
the flume increases, probability density functions of the transport rates become
positively skewed and the transport rates become more variable but the frequency
of fluctuations decreases. Using dynamical systems methods it was found that for
a given discharge, planforms with a similar number of channels are more
statistically similar than networks with a greater difference in channel number.
Field data from a single anabranch of a braided channel network indicate that the
distribution of transport rates is qualitatively similar to those produced by flume
experiments with braided channel networks. However quantitative analysis using
the modified box counting technique revealed that the field data sets are dissimilar
to each other and also to the flume runs. Time series data sampled from one point
in a single anabranch therefore have a different internal structure than spatially
integrated data obtained by trapping sediment across the entire braidplain width.

Sediment output from model runs indicate that the similarities between model
data and other data sets are weak and all runs tended to reach static equilibrium.
Braided Cascade therefore failed to adequately reproduce realistic data sets. It
was found that the differences between model results and the flume data indicate
that the model does not always match the physical systems as closely as physical
systems match each other.
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Chapter 1. Introduction.

CHAPTERl.

INTRODUCTION.

Research into the dynamics of water, sediment transport and channel network

evolution in braided rivers has increased greatly during the past twenty years.

Field measurements, physical models and numerical modelling have all been

adopted to try to gain greater insight into processes controlling the dynamics of

braided rivers, the development of braiding through sediment erosion, entrainment

and deposition, and the geometry of braided river deposits. However, it may be

argued that this research has not yet led to a comparable advance in understanding

of the spatial aspects of sediment transport in dynamic gravel-bed rivers at the

reach scale, a scale lying in between that of point measurements and large scale

measurements.

Knowledge of the processes of channel change and sediment transport in modem

braided rivers is vital for geomorphologists, engineers and geologists, and is

important for the interpretation of ancient braidplains and sedimentary deposits, as

well as the prediction of subsurface geometry and facies (Ashmore, 1993, 2001;

Bristow and Best, 1993). Ancient braidplains form sedimentary sequences that

constitute valuable aquifers, hydrocarbon reservoirs and sites for heavy mineral

accumulation. These diverse applications make knowledge of the mechanics and

deposits of braided rivers most important and yet, compared to meandering river

systems, braided rivers are comparatively understudied. Braided systems are

highly dynamic making direct study difficult thus many aspects of their

functioning are poorly understood.

Hydraulic and sedimentological models provide a framework in which to

conceptualise and investigate the relationship between flow hydraulics and

sediment transport. In the study of braided rivers, hydraulic models have been

applied at many spatial scales, from the small-scale evaluation of turbulent

structures in flow in short river reaches, typically in one bar-chute complex (e.g.

1



Chapter 1. Introduction.

Lane and Richards, 1998), to the large-scale evolution of braiding (e.g. Murray

and Paola, 1994, 1997). However, with the exception of Webb (1994, 1995) and

Murray and Paola (1994, 1997), references to reach scale modelling in the

literature have tended to have been drawn from studies that have not specifically

set out to quantify the geomorphic processes responsible for braided network

generation (e.g. Howard et al., 1970; Krumbein and Orme, 1981). Of those

numerical modelling studies that address reach scale processes (Webb, 1994,

1995; Murray and Paola, 1994, 1997), the models developed have been generic in

nature and physically simplistic. Whilst the models simplicity does not necessarily

invalidate them, their usefulness still has to be proven.

Very few larger scale numerical models have been developed that have

incorporated field data collected from braided rivers, an exception is the model of

Thomas and Nicholas (2002) but to date this model routes water only (no

sediment transport rules are included). Within most numerical models braiding

develops upon a flat plain according to rules specified in the model. Indeed, with

the exception of Brasington et al. (2000) and Lane (2001) there are very few high

density field data sets of morphological change collected from braided networks at

spatial scales of over one bar-chute complex and temporal scales of over one flow

event. Such models and data sets would provide a useful tool in developing

understanding of braiding processes.

The overall aim of this study is to bridge the divide between small and large-scale

approaches (but using an essentially large-scale generic approach) by developing

a robust sediment transfer model with realistic data inputs and a greater degree of

physical realism (hydraulic and sedimentological conditions) than those

previously developed. Specifically the aims of this study are:

• To develop a numerical model that can simulate the evolution of braided

channel networks;

• To incorporate physically realistic transport rules for water and sediment;

• To test the sensitivity of model parameters;
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Chapter 1. Introduction.

• To use the model to answer specific questions about the formation and

evolution of braided channel networks in order to gain insight into the

mechanics of braided rivers, for example to attempt to understand the

relationship between unsteady sediment transport and morphology.

• To investigate the relationship between spatial and temporal structure in

bedload transport using the model results and results from a physical

modelling study.

Chapter 2 will review relevant literature and formalise the specifications of the

study. Chapter 3 describes the development of the modelling approach; the data

used to validate the model is introduced in Chapter 4. The model will be tested by

sensitivity analysis to establish optimal parameter values for braiding, (Chapter 5),

and in Chapter 6 specific experiments will be conducted with the model using the

initial and boundary conditions established in Chapter 5. Conclusions and ideas

for future work are discussed in Chapter 7.
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CHAPTER2.

APPROACHES TO MODELLING BRAIDED RIVERS.

2.1. Introduction

Braided river reaches and braided alluvial systems are abundant in many

environments and are characterised by their multiple alluvial channels. Paola

(1996) notes that braided rivers exhibit structural stability while the detailed

configurations of an active stream are constantly changing. The division and

joining of channels and the associated divergence and convergence of flow

contributes to high rates of erosion, sediment transport and deposition, and

frequent channel switching and migration. The highly active nature of braided

rivers poses interesting problems to many disciplines. Knowledge of the processes

of channel change and sediment transport in modem braided rivers are vital before

any engineering work is carried out and are important for the interpretation of

ancient braidplains and sedimentary deposits (Bridge 1993; Bristow and Best

1993). Ancient braidplains form sedimentary sequences that constitute valuable

aquifers, hydrocarbon reservoirs and sites for heavy mineral accumulation. An

understanding of modem processes in braided rivers is therefore important for

geomorphologists, engineers and geologists. Numerical modelling of braided

rivers offers the potential to determine which processes are essential to describe

river braiding, and should be useful to estimate the relative importance of the

contributing processes (MeArdell and Faeh, 2001).

2.2. Definition of braiding.

The form of a natural channel when viewed in plan falls within a continuum of

channel patterns that have been classified into straight, meandering braided and

anastomosed. The term 'braided' has been given several definitions in the

literature. Leopold and Wolman (1957) described the braided river as 'one which

flows in two or more anastomosing channels around alluvial islands', while Lane

(1957) reported that a braided stream is characterised by having a number of
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alluvial channels with bars and islands between meeting and dividing again, and

presenting from the air the intertwining effect of a braid.'

This chapter will review past investigations on braided rivers, focusing on larger

scale modelling techniques. A brief review of field and small-scale modelling

investigations will precede the larger scale modelling review. Firstly though a

short description of braiding mechanisms and sediment transport through braided

reaches will be given.

Research into the processes initiating and controlling braiding has increased

greatly during the past 25 years. Field measurements, physical models and

numerical modelling have been adopted to in order to gain greater insight into

processes controlling the dynamics of braided rivers, the development of braiding

through sediment erosion, entrainment and deposition, and the geometry of their

deposits. Early work on braided rivers focused on channel pattern. Leopold and

Wolman (1957) demonstrated by laboratory simulation that braids could form

without fluctuations in discharge, and put forward a discriminant function that

separated braids from meanders based on channel slope and bankfull discharge.

The work has since been refined by numerous other workers, for example

Schumm (1977) distinguished between braided rivers that at low stage have

islands of sediment or semi-permanent vegetation and anastomosing rivers that

have branches with individual channel patterns. Henderson (1961) took grain size

into account and Kirkby (1972) considered the effects of bed roughness. In

parallel, geologists have constructed models of braided sedimentary sequences.

The models of braided alluvium reviewed by Miall (1977) were based on the

deposits of modem braided rivers but were used to explain the origins of ancient

deposits. Sedimentary factors also influence channel pattern. Anastomising rivers

are generally agreed to have stable banks with individual channels showing little

tendency to migrate (Knighton and Nanson, 1993). Van den Berg (1995)

discriminated between sinuous single thread and braided channels in a plot of

specific stream power against median grain size..As boundary resistance increases
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through either more cohesive banks or coarser bed material, a greater stream

power is required for the onset of braiding.

However, Sapozhnikov and Foufoula-Georgiou (1996) note that there is a

significant lack of quantitative studies of pattern in braided rivers; the existing

models and frameworks are mostly qualitative. With the exception of the early

work by Howard et al. (1970) it is only recently that some more quantitative

studies have been carried out. Therefore there is scope to improve the

understanding of the formation and evolution of braided patterns.

2.2.1 Mechanisms of braid development.

Braiding may develop in more than one way and different modes of braiding

occur in distinctive hydraulic conditions and sediment supply. Most theories of

braiding development are based on qualitative observation and description, either

in flume experiments or in the field. Ashmore (1991a) identified four mechanisms

by which braiding may be initiated, to which Ferguson (1993) added a fifth (see

Table 2.1).

From Table 2.1 it can be seen that channel geometry and flow and bedform

symmetry seem to be the controlling factors distinguishing which mechanism

initiates braiding. Instability of flow and sediment transport appears to be at the

root of all of the mechanisms, except central bar braiding, which is often an

isolated occurrence of purely depositional origin (Ashmore, 199Ia). All other

processes, except avulsion, involve an element of reworking of the initial deposits

by secondary flows that are sufficiently competent to propagate braiding

downstream as well as to modify the form of the initial deposit. The loss of flow

competence and the migration of bedload sheets appear to be the key to explaining

when braiding occurs. The susceptibility of bars to dissection by flow is another

important factor in the initiation and maintenance of braiding.
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2.3. Bedload transport through braided reaches.

Sediment transfer through braided reaches is important if medium and long-term

understanding of the process of braiding is to be achieved. However braided

streams are characterised by complex and transient morphology and associated

spatial and temporal changes in bedload transport rate (Goff and Ashmore, 1994).

The range of literature is such that it is not possible to review it all; (for a review

of the main studies see Gomez (1991», the main aims of this section are:

1. definition of temporal and spatial scales of bedload unsteadiness and

probability distribution functions for bedload;

2. identification of the range of mechanisms that may produce bedload

variability in braided reaches.

2.3.1. Spatial and temporal scales of bedload variability.

There is strong empirical evidence that bedload is frequently transported in waves

generated within the braided system or introduced from without in both natural

rivers (Griffiths, 1979; Church and Jones, 1982, Meade, 1985; Ashworth and

Ferguson, 1986; Hoey, 1992; Lane et al., 1996), and laboratory flumes (Ashmore,

1988, 1991a, b, Hoey and Sutherland 1991; Young and Davies, 1991). A bed

wave has been defined as an increase in sediment storage in a reach relative to

either that reach at proceeding and succeeding times or relative to adjacent

upstream and downstream reaches at the same time (Hoey and Sutherland 1991).

In addition, a bedload pulse is defined as a temporal variation in the rate of

bedload transport at a particular site (part of whole of channel cross-section), from

a minimum to a maximum and back to a minimum. This has no spatial

implications and is only used with reference to the process of bedload transport

(Hoeyand Sutherland 1991).

Bedload pulses and bed waves can be considered to be bedforms and may occur at

different scales: mega-, macro-, meso- or micro-scale (Hoey, 1992; Nicholas et

al., 1995). Table 2.2 presents a hierarchical bedform classification for bedload
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pulses and bed waves. The mega-scale features are controlled by the

geomorphological regime of the channel (Hoey, 1992), encompass several reaches

(103m) and operate over timescales of several years; typical bed features include

groups of bars or complex bar assemblages (Griffiths, 1979; Church and Jones,

1982). The macro-scale is spatially of the order of channel width (l01 to 103 m)

and temporally of days (flood duration) and features bars: meso-scale features are

predominantly influenced by local hydraulics (Hoey, 1992) have the smallest

bedforms and a time scale of hours (Church and Jones, 1982; Gomez et al., 1989;

Hoeyand Sutherland, 1991).

Pulse class System scale Wavelength (m) Timescale Typical features
Instantaneous Grain size - «4 -
(microform)
Mesoform Flow depth 10-1 _ 10l ~4 particle clusters

Macroform Channel width 10 - 103 ~4 gravel sheets,
unit bars,
complex bars

Megaform Several channel > 10" »4 bar assemblages
widths

Table 2.2 HIerarchical bedform classification for bedload pulses and bed waves (After Jackson,
1975; Church and Jones, 1982; Hoey, 1992; Griffiths, 1993).
Note: 4 is the event time (the time taken for a flood to pass through a reach).

Bedload pulses and waves can be generated in one of two ways. Exogenous/

allopulses are produced by sources of sediment from outside the channel that

induce wavelike behaviour (e.g. Gilbert, 1917, Pickup et al., 1983, James, 1989,

1991a, 1991b; Madej and Ozaki 1996; Wathen and Hoey, 1998). Base level

changes, tectonic behaviour and volcanic behaviour can also generate exogenous

pulses. Endogenous/autopulses are produced by processes occurring within the

channel and are formed of alluvial material (e.g. Griffiths, 1979, 1993; Meade,

1985; Kuhnle and Southard, 1988; Ashmore 1991b; Benda and Dunne, 1997a, b).

2.3.2. Bedload probability density functions.

Knowledge of the range of bedload transport rates is important to aid in the

understanding of channel morphometric processes in contemporary and

palaeochannels, to maintain acceptable channel conditions, and in the informed
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planning of river use. With the realisation that the transport of bedload is highly

variable, a generalised probability distribution function (pdf) that describes the

variability of the transport process would be useful. Many well-defined

probability distributions have been used to describe hydrologic processes, for

example the normal and log-normal distributions have been commonly used,

however neither have any basis in the theory of bedload transport and both are

based on samples from a homogeneous population, Pdfs have been developed for

bedload transport and two will be described below.

The Hamamori (1962) pdf was derived to explain transport fluctuations in flume

experiments with sand and is a theoretical treatment of bedload transport under

constant flow conditions. The pdf is based on the presumption that bedload

transport is associated with the passage of dunes, which are assumed to move

downstream at a constant speed without changing shape. Propagation of the

primary dune is assumed to occur in response to movement of smaller secondary

dunes, which climb the upstream slope of the primary dune and cascade over its

crest. The spatial distribution of bedload transport rates is reflected in the

movement of these secondary dunes, conceptualised in Hamamori's analysis as a

series of similar triangles. Hamamori also assumed that the mean bedload

transport rate for each triangular element is equal to half the maximum rate for

that element, and the overall mean transport rate for the primary dune is equal to

half the mean rate for the element at the dune crest (Figure 2.1). Therefore,

relative bedload transport rates may be observed to vary from 0 to 4. Carey and

Hubbell (1986) extended Hamamori's analysis to the case of bedforms whose

shape changes over time, by assuming that the amplitudes of the oscillations in

bedload transport rates form a continuous, non-uniformly increasing function

from the trough to the crest of the primary dune. The function is written as:

y' = Y(x/ L)m ,m ~ 0 (2.1)

Where y' equals the amplitudes of the oscillations in bedload transport rates from

dune trough to dune crest, x is the distance along the base of the dune and L is the
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surface length of the primary dune. y' = 0 at x = 0 and y' = Y at x = L. The

function is raised to a power m: when m = 1, the distribution is Hamamori's

distribution, when m < 1 the dune height is increasing, there are fewer lower

relative bedload transport rates more higher rates and when m > 1 the dune height

is decreasing, there are fewer higher transport rate values and more lower rates.

An example of generalised Hamamori pdfs for selected values of m may be seen

in Figure 2.2.
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Figure 2.l. Relative bedload transport rates vs. distance along a (primary) dune with secondary
bedforms according to Hamamori's assumptions. The maximum relative transport rate is 4.
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Figure 2.2. Generalised Hamamori pdfs for selected values ofm.

In contrast to Hamamori' s approach that is based on bedform migration, Einstein

(1937) developed a pdf, derived from flume experiments using a gravel and sand

mixture that is based on the consideration of individual particles. The movement

of a single grain was described in terms of a series of relatively short random-

length steps, each of which is followed by a rest period of random duration. Steps

and rest periods are each assumed to follow an exponential distribution. Einstein

applied these observations to the distance a particle moves within a given time and

also to how much sediment will be caught in a trap within a given time. The

distribution of the sampled bedload transport rates is related to both the length of

the sampling time and to the average amount of time that particles spend at rest

(or conversely the rate at which be load is being transported). Thus for any given

bedload transport rate a relatively short sampling interval will tend to give a

widely spread distribution of relative transport rates with higher numbers of zero

values, because the behaviour of a small number of particles is being observed. A

relatively long sampling interval will lead to a narrower distribution with fewer

zero values as lots of particles are being observed. In other words, sampling over

progressively longer time intervals tends to average out the higher frequency

temporal variations in bedload transport rates.
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Einstein's distribution function might be expected to best serve the case where the

duration of sampling time is short enough to distinguish the higher frequency

components in a time series, or conversely where bedload transport rates are low

and incoherent grain motions dominated the sampling sequence. Hamamori' s

probability distribution function best fits averaged data where bedform

propagation controls bedload transport rate.

Recently Hoey et al. (2001), recognising that existing pdfs for bedload transport

are essentially of descriptive utility for cross-section averaged transport in braided

rivers due to the inappropriateness of the assumptions on which they are based,

developed a theoretical pdf for bedload transport based on the relationship

between observed spatial distributions of shear stress and channel morphology.

The theory suggests that the statistical structure of bedload time series may be

explicable in terms of spatial distributions of controlling variables, for example

shear stress and channel width. The theory has not been tested in the field;

however, results using spatially and temporally integrated flume data, (from Hoey

1989 and Hoey and Sutherland, 1991), show that stochastic sampling from

channel width and shear stress pdfs improves the prediction of relative transport

rates relative to using cross-section averaged shear stress. However there are some

departures from observations when transport rates are high and the results suggest

that it is possible to begin to formally relate temporal and spatial sediment

transport patterns in braided streams in a way that has some generality.
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2.3.3. Mechanisms of bedload pulsing.

Observations of variations in bedload transport rates in both natural streams and in

the laboratory have been made since at least the early 1900s (e.g. Gilbert, 1917).

In single channel flume experiments and field investigations bedload variability

has been found to be associated with the passage of bedforms, be they large single

grains (Kuhnle and Southard, 1988), dunes (Einstein 1937; Meade, 1985; Gomez

et al., 1989; Kuhnle et al., 1989), alternate bars (Gomez et al., 1989), or low relief

bedload sheets (lseya and Ikeda, 1987; Kuhnle and Southard, 1988; Whiting et al.,

1988).

In braided nvers the creation, migration and destruction of complex bar

assemblages have been related to the production of sediment pulses, even when

the reach remains in equilibrium. In flume experiments with braided channels

bedload pulses have been observed under constant discharge conditions and

constant sediment feed rate (e.g. Hoey and Sutherland, 1991; Young and Davies,

1991; Warburton and Davies, 1994), or recirculation (Ashmore, 1988, 1991b).

Higher frequency pulses have been observed at higher transport rates and were

associated with the passage of bedforms (Young and Davies, 1991). Observations

have linked upstream channel geometry and the variability of bedload transport
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rates (Ashmore, 1991b; Hoey and Sutherland, 1991; Warburton and Davies,

1994). Hoey and Sutherland (1991) identified a cycle of bedload variability based

on degradation of the channel followed by bar growth producing major pulses,

and migrating bedforms producing minor pulses. Braiding intensity has been

observed to vary for a given constant discharge and flume gradient in response to

bedload pulses generated within the channel (Ashmore, 1991b). Channel pattern

and bedload transfer are thus closely connected.

There are few field observations of the development of channel configurations in

braided rivers and no standard quantitative models for predicting flow patterns

and rates of channel change (Ferguson and Ashworth, 1992). The nature of

braided rivers can render the measurement of spatially distributed variables (e.g.

channel and bed morphology, flow measurements) difficult. Data on the

movement of bedload in braided rivers is difficult to obtain and therefore scarce.

Methods used to obtain data on bedload movement, include indirect measurement

techniques such as tracer studies (Laronne and Duncan, 1989), morphological

methods using aerial photographs (Carson and Griffiths, 1989) or repeated

surveying techniques (Goff and Ashmore, 1994).

From aerial photograph work on the Waimakariri River, New Zealand, Carson

and Griffiths (1989) found that considerable quantities of bed material were

moved by lateral bank scour in braid bends and subsequent downstream

deposition on bar heads. However, using daily topographic surveys of the

Sunwapta River, Alberta, Canada, Goff and Ashmore (1994) indicated that

patterns of erosion and deposition are more complicated that those suggested by

Carson and Griffiths (1989). Both lateral bank scour and bed scour were observed

to occur and deposition was primarily by unit bar migration along the main

anabranches. Laronne and Duncan (1989) used cross section surveys, aerial

photographs, scour chains and magnetic tracer particles to study bed material

mobilisation in two areas of a wide gravel river in New Zealand. The lower reach,

an aggrading narrow channel with fme textured alternate bars and two braids at

most, was found to be completely mobilised as the magnitude of flow events
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increased. However the upper stable reach, often braided at low flow with well-

developed longitudinal bars of fine gravel and an armoured channel, had stable

bar remnants at higher flows. The width reduction from the upper to lower reach

was forced by flood banks and lead to different results from the findings of

Church (1983) for a wandering gravel-bed river (the Bella Coola) in Canada. Here

the bulk of the mobile sediment was contained in discrete laterally unstable

"sedimentation zones" which were separated by stable reaches. The sedimentation

zones were located upstream of, or opposite tributary alluvial fans, in braided

reaches. In contrast the stable reaches were confined to a well-armoured single

channel, with only minor accumulations of sediment in bars.

2.3.4. Summary.

Sediment transport in gravel-bed rivers, both single channel and braided, has been

observed to vary considerably in both field and flume experiments. Pulses may be

exo- or endo-genetic and may occur on a variety of scales. In single channels, the

passage of bedforms has been associated with bedload pulses and bed waves in

both field and flume experiments. Probability distribution functions to describe

variability of bedload transport rates have been developed. Inbraided reaches the

local variability in channel pattern and stream morphology is closely linked to the

bedload input from upstream and therefore the bedload transport rate. However

this general description of the transfer pattern probably belies the complicated

nature of the process in reality and in particular cases.

2.4. Spatial scaling, self-affinity and self-organisation in braided rivers.

In a linear stability model of braiding Parker (1976) modelled the response of an

initially straight channel to perturbations in sediment and water transport and

found that the width-depth ratio is the main control on instability. The

perturbations are modelled as sine waves and an initially dominant wavelength

can be identified. However, Paola (2001) points out that although Parker's theory

works well for the initiation of braiding, by the time braiding is fully developed
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the system is no longer linear and the dominant wavelength may become replaced

by different ones, or none may dominate.

The presence of scaling in a phenomenon means that statistical properties of the

phenomenon at one scale relate to its statistical properties at another scale via a

transformation that involves only the ratio of the two scales. This implies a certain

invariance of the phenomenon under magnification or contraction (scale

invariance). Objects showing the same spatial scaling in all directions are termed

self-similar fractals and can be characterised by their fractal dimension, D.

However, it is more usual for scaling to be different in different directions

(ansiotropic scaling). Such objects are called self-affine fractals and are

characterised by two fractal dimensions: the local fractal dimension, DL and the

global fractal dimension, DG, (Mandelbrot, 1982, 1986).

Sapozhnikov and Foufoula-Georgiou (1996) analysed three braided rivers of

different scales and sedimentological characteristics (the Aichilik and Hulahula in

Alaska and the Brahmaputra in Bangladesh) using the logarithmic correlation

integral (LC!). It was found that, despite their different scales, (the braidplain

widths vary from 0.5 - 15 km) and bed materials (gravel to sand) the three rivers

exhibited ansiotropic scaling or self-affinity in the downstream and cross-stream

directions. They concluded that this result may indicate the presence of universal

features in the underlying mechanisms responsible for the formation of braided

rivers, however more rivers need to be studied.

Dynamic (space-time) scaling can be considered as the evolution of a fractal

object of fractal dimension D, in time, if the evolution is such that the object

preserves its fractal dimension. The object is thus statistically invariant. However

larger objects will evolve more slowly than smaller objects, even if they are larger

areas of the same object. If a dynamic exponent exists such that the time

dimension can be re-scaled depending on the ratio of the spatial scales of the

objects in question, so that the rate of evolution is the same in both (or all) cases,

the system can be considered to have dynamic scaling (Sapozhnikov and
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Foufoula-Georgiou, 1997, Paola and Foufoula-Georgiou, 2001). In the case of

braided rivers, this would imply that a smaller part of a braided river evolves

identically (in the statistical sense) to a larger one provided that the time is

renormalised by a factor depending on the spatial scale of those parts.

Sapozhnikov and Foufoula-Georgiou (1997) analysed the evolution of an

experimental braided river produced in a flume for dynamical scaling. It was

found that the river exhibited dynamic scaling with the dynamic exponent taking a

low value. In terms of the physical processes governing braided river dynamics,

the low dynamic exponent was interpreted thus:

• if the spatial scale were increased, the evolution of the system would slow

down by a factor defined by the spatial scale raised to the power of the

dynamic exponent. In other words, it implies that the lifetime of the channels

in a braided river system scales with channel size;

• the low value of the dynamic exponent indicates a relatively weak dependence

of the rate of evolution on the spatial scale; and

• the low value of the dynamic scaling indicates a strong correlation between

the evolution of large and small channels within a braided river system. This

leads to the conjecture that the evolution of small channel patterns is to a great

extent forced by the evolution of larger channels.

The presence of dynamic scaling may be used as a tool to shed light upon the

space-time dynamics of braided river evolution by examining statistical

similarities between patterns at smaller space-time scales and those at larger

space-time scales. The dynamic scaling relationship can also be used to predict

long-term changes of the systems at larger spatial scales on the basis of monitored

short-term changes at a smaller spatial scale. In addition, Sapozhnikov and

Foufoula-Georgiou (1997) argue that dynamic scaling may also indicate that

braided rivers may be in a critical state and behave as self-organised critical

systems.

The self-organised criticality (SOC) concept introduced by Bak et al. (1987) states
that many non-linear systems with extended degrees of freedom self-organise into
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a critical state in a natural way i.e. without any tuning parameter (e.g.

temperature) needed to bring traditional equilibrium systems to a critical state.

Sapozhnikov and Foufoula-Georgiou (1997) argue that braided rivers may be self-

organised critical systems because braided rivers are non-linear systems; have a

large number of degrees of freedom (the number of degrees of freedom can be

thought of as the number of variables needed to uniquely define the state of the

system mathematically); show collective behaviour, which is a crucial feature of

systems in a critical state; exhibit spatial scaling and undergo significant changes

over a wide range of scales even when they are in statistical equilibrium.

Therefore, a self-organised critical system will reach a statistically stationary state

where rearrangements in the system (for example changes in sediment transport)

take place on any length scales and time scales, limited only by the size of the

system. So a self organised critical state is an attractor for the dynamics of the

system (Tang and Bak, 1988).

2.4.1. Summary.

Although the initial development of a braided pattern from a straight channel does

appear to involve a single dominant wavelength, as described in stability theories

(e.g. Parker, 1976), the picture for fully developed braiding is quite different. The

original regular pattern of bars breaks up into a complex network of bars and

channels on many length scales. The spatial pattern of braided rivers is self-affine

and their temporal dynamics are consistent with self-organised critical behaviour.

Self-affine systems have no characteristic length scaling (up to the scale of the

whole system). These results suggest that braided rivers do not possess

characteristic length scales, either when viewed as static spatial patterns, or in

terms of their temporal evolution (Sapozhnikov et al., 1998). The apparent scale-

invariance of the braided pattern would seem to have implications for the

mechanisms involved in determining evolution of the braided morphology.

Sapozhnikov et al. (1998) note that such scale invariance across a range of scales

has several fundamental implications:
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1. they may indicate the presence of universal features in the underlying

mechanisms responsible for the spatial structure of braided rivers and suggest

that this structure is due to the self-organising nature of the flow and sediment

flux rather than to specific local external influences;

2. knowledge of which geometric attributes are scale invariant or scale

dependant is useful when applying models of braided alluvial architecture

deduced from one system to another of a completely different size; and

3. since these scale invariances are properties of real braided rivers, any model of

a braided river that tries to simulate braided river patterns should also

reproduce them.

2.5. Approaches to investigating braided rivers.

2.5.1. Field investigations.

Undertaking any field research in a braided river is difficult due to the complex

interaction between process and braid morphology. Field studies have frequently

been used in a reductionist framework to study particular aspects of the physics of

braided rivers as they operate at a point scale, or in the context of idealised

uniform flow (Ferguson and Ashworth, 1992). Small-scale field investigations

into spatial patterns of bedload transport rate, sorting, channel morphology,

velocity, and shear stress have commonly been undertaken around chute-bar

complexes within one anabranch of a braided river (e.g. Ferguson, et al., 1989;

Ashworth et al., 1992a, 1992b; Bridge and Gable, 1992; Ashworth and Ferguson,

1986; Lane et al., 1994, 1995 see Table 2.3). As the detail in field measurement

increases, the temporal scale of the measurement tends to decrease.

Larger scale field investigations of braided rivers have focused on downstream

and lateral changes in channel planform and sediment transport using aerial

photographs and/or repeated surveying of cross sections to try to identify areas of

erosion and deposition, and so calculate the sediment budget of the reach in

question (e.g. Griffiths, 1979; Church, 1983; Carson and Griffiths, 1989; Laronne

and Duncan, 1989; and Goff and Ashmore, 1994). Survey locations may be
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kilometres apart and repeated over time scales ranging from daily to several years.

Sediment budget studies have identified areas of erosion and deposition within the

catchment and the importance of storage in the history of sediment movement

through a reach, however mapping areas of scour and aggradation from aerial

photographs cannot reveal scour or fill within the channel.

Recently remote sensing techniques have been successfully applied to the study of

gravel-bed rivers. Digital photogrammetry and digital image analysis have been

used to provide information on bed morphology over a wide range of scales (Lane

2001). Two-dimensional image analysis has been applied to the analysis of

channel planfonn, water depth mapping and particle size estimation. Three-

dimensional analyses have been used to create digital elevation models from

photogrammetry, which have been used to measure bedforms in both flume (see

Lane 2001) and field (Westawayet al., 2000) situations.

The field strategies outlined above have yielded greater understanding of the

erosion, entrainment and deposition of sediment in braided rivers. Remote sensing

techniques allow measurement of channel planfonn and three-dimensional

morphology. However, it may be argued that they have not yet led to a

comparable advance in understanding of the spatial aspects of sediment transport

in dynamic gravel-bed rivers at the reach scale, a scale lying in between that of

point measurements and large scale measurements.

2.5.2. Modelling of braided rivers.

Hydraulic and sedimentological models provide a framework in which to

conceptualise and investigate the relationship between flow hydraulics and

sediment transport. The scientific literature of the past 25 years contains a large

number of reports dealing with the application of physical and numerical models

to the assessment of the evolution of braided river networks and the transfer of

sediment therein. However, modelling relationships between processes and
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channel morphology in braided channels is difficult due to the complexity of both

sediment dynamics and flow hydraulics.

2.5.2.1. Physical modelling.

A physical model is a scaled representation of a hydraulic flow situation. In the

past, physical modelling of braided rivers received less attention than that for

single and meandering channels, despite the fact that the hydraulic and

sedimentological inter-relationships in braided rivers are very complicated with

substantial feedback mechanisms (Ashworth and Ferguson, 1986), making

numerical modelling problematic (especially in three-dimensions). However, non-

uniform flow (convergence and divergence around bars), mixed size bed material

(ranging over several orders of magnitude in size), and spatial and temporal

variability in channel response to flood events lead to difficulties in making

detailed and representative quantitative measurements even under simplified

laboratory conditions. Despite this, scale modelling has lead to some major

advances in understanding braided river processes.

Physical models have been used to study bar growth and the mechanisms of

braiding, flow dynamics and morphology of channel confluences and diffluences,

the importance of chute and lobe unit in controlling local sediment budgets,

sediment sorting and deposition in alternate or single bar braid reaches and the

relationship between bedload pulses and cycles of aggradation and degradation

(e.g. Leopold and Wolman, 1957; Mosley, 1976; Ashmore, 1982, 1988, 1991a-b;

Ashmore and Parker, 1983; Southard et al, 1984; Best, 1986, 1988; Hoey and

Sutherland, 1991; Ferguson and Ashworth, 1992; Ashworth et al., 1994;

Ashworth, 1996; and Lisle et a!., 1997). Physical laboratory models have been

very useful at giving insight into whole river sediment transport and changes in

channel planfonn but are too shallow and rapidly changing to easily make

distributed spatial measurements (Ferguson and Ashworth, 1992).
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2.5.2.2. Numerical modelling.

As computing capacity has improved, the use of numerical models in fluvial

geomorphology has increased considerably. The benefits of numerical modelling

include an improved understanding and simulation of key processes in one- two-

or three-dimensions, and insight into the distribution of processes within the

landscape (Bates and Lane, 1998). Paola (2001) identifies two approaches to

numerical modelling, reductionist and synthesist.

A reductionist approach to modelling starts with the governing equations and

makes approximations until one arrives at a system that is solvable with whatever

means are available. An unstated assumption of this standard approach is that the

fewer the fundamental equations that need to be simplified the better (paola,

2001). The reductionist view states that it is only through specifying in detail the

many processes active in nature and the parameters of their mathematical

formalisation that landscape evolution can be understood.

The synthesist approach is rooted in the idea of 'emergent' phenomena (Paola,

2001). Emergent phenomena are aspects of complex-systems dynamics that arise

from the interactions of the parts but that could not readily be deduced from

studying the dynamics of the parts separately. Synthesist models often make

assumptions about the underlying processes such as water flow and erosion in

order to gain simplicity at the expense of realism. While they were popular at a

time when computer power was more limited, they were to some extent eclipsed

as more detailed simulation became more possible. There has however been a

recent revival of interest in such models due to the comparative ease with which

many features of their behaviour can be understood and also to suggestions that

some aspects of system behaviour may be comparatively independent of the

details of the model, i.e. display self organised criticality. (Barzini and Ball,

1993). Sythesist approaches to modelling include cellular automata models that

are developed to predict the overall style of river behaviour, however they are

generic and are not readily applicable to specific sites.
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2.5.3 Reductionist and small-scale investigations.

Computational fluid dynamics (CFD) models have been available since the early

1970s. However, continual improvements in process representation within the

models have progressively improved their appeal (Bates and Lane, 1998). The

models solve the Navier-Stokes equations, and may allow some modification by

the user so enabling the study of sediment transport and possibly channel change

(for a recent, detailed description of the basic principles of CFD modelling, see

Lane, 1998). A number of CFD models are commercially available (e.g.

FLUENT, STREMR) and previous studies have applied these models to single

channel reaches (e.g. Hodskinson, 1996; Hodskinson and Ferguson, 1998).

Recently CFD models have been applied to braided channel reaches, typically

around bar-chute complexes (e.g. Lane and Richards, 1998; Nicholas and

Sambrook Smith, 1999), and the small-scale application of many CFD models has

successfully predicted short-term river behaviour in short, narrow channels at

scales of 1-10 m (e.g., Lane and Richards, 1998). While these models are useful in

identifying small-scale processes, extending this approach in space and time is

computationally very difficult, and requires a high level of field data for

verification. While remote sensing techniques are able to capture large amounts of

data (see Westaway et al., 2000), there is an issue with data quality that must be

addressed (see Lane 2000).

Recent advances in two-dimensional (Lane and Richards, 1998) and three-

dimensional (Nicholas and Sambrook Smith, 1999) modelling of flow hydraulics

in multi-channel systems may in future allow a physically based treatment of

these processes (Nicholas, 2001). However while such schemes may be

appropriate for use in modelling process-form interactions at the scale of the bar-

pool unit, they are both computationally expensive and demanding in terms of

their data requirements. Consequently one-dimensional models may remain more

effective tools for use in the derivation of bedload flux estimates at the reach

scale, provided that such models are modified to incorporate the effects of the
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spatial variability in flow and sediment transport processes that characterise

braided streams (c.f. Paola, 1996).

McArdell and Faeh (2001) have developed a reductionist numerical model of

braiding in which the flow is represented via the depth-averaged shallow-water

equations. Model results were compared to published laboratory experiments on

braiding (Fujita, 1989 in McArdell and Faeh, 2001) and it was found that, whilst

the model initially underpredicted the distance between bar tops and scour pool

bottoms, over time in a simulation the agreement improved.

2.5.4. Synthesist and larger scale numerical modelling.

The use of physically based numerical models of braided systems at the larger

scale has been attempted. These models make assumptions about the underlying

processes such as water flow and erosion on order to gain simplicity at the

expense of realism. A "random walk" approach has been used to produce two-

dimensional braided patterns (e.g. Howard et al., 1970), and simple numerical

models (e.g. Barzini and Ball, 1993; Murray and Paola, 1994, 1997) have

demonstrated that the apparently stochastic behaviour of braided river processes

may reflect a simple non-linear relationship between stream power and bedload

transport. Approaches to modelling braided rivers are examined in more detail

below.

2.5.4.1. Random Walk Models.

Random walk models are geometric or topological models in which channel

networks are formed by a series of steps of random orientation. The models do not

incorporate the altitude dimension. Networks are developed sequentially and

proceed downstream; the models usually contain rules to constrain channel

orientation. Random walk models allow streams to move in two lateral directions

and also to bifurcate. As these options are available at each grid node, channels

will also coalesce, leading to a braided channel pattern. Random walk models
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have been developed by Howard, et al. (1970), Krumbein and Onne (1972),

Rachoki (1981), and Webb (1994, 1995).

Howard et al. (1970) developed four random walk models on rectangular grids

with no lateral boundaries. Instead, a weighting factor was used to constrain the

overall width of the system. The lateral movement of channels and the occurrence

of branching were randomly determined by a probability function. Channels

joined or bifurcated according to a series of rules with the restriction that no more

than three channels intersected at a given step. Comparing output with

dimensionless parameters validated the model. Howard et al. (1970) found that

the model with the most restrictive rules for channel bifurcation and the largest

step lengths produced the best match with their observed data for 26 braided rivers

in the USA.

Krumbein and Orme (1972) developed two random walk models on a diamond

shaped grid, similar to those developed by Howard et al. (1970). The models

incorporated parallel reflecting boundaries and channels joined wherever they

intersected. The probability of channels bifurcating was scaled by discharge (in

the first model), or by the reciprocal of the number of channels (in the second

model). Models were tested using the theoretical proportions of link types

(defined by Smart and Moruzzi, 1971) to judge the topological adequacy of the

simulated systems. Within a braided channel network four types of links have

been defined. Links may start at either a joint (1), where two channels merge into

one, or a fork (F), where a channel bifurcates. Links may terminate at either a

joint or fork, leading to four link types: FF, FI, IF and JJ (e.g. JF means that the

link begins where two channels join together and ends where the channel

bifurcates). Smart and Moruzzi (1971) show that when the number of bifurcations

equals the number of junctions, the proportions of each type of link are FF= 0.22,

FJ = 0.44, IF = 0.11, JJ = 0.22. The second model was found to agree well with

field data from the Santa Clara River, California. However, after short runs of the

first model and longer runs of both models (referred to but not published) both

models tended to converge onto one link type (JF links); the exact ratios were not
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published. Krumbein and Onne (1972) therefore concluded that both of the

modelling approaches were unacceptable.

Rachoki (1981) proposed a random walk model on a diamond shaped grid to

represent the channels spreading out from the apex of an alluvial fan. Each

channel had the same probability of flowing in one of three ways (to the left, right

or bifurcating). No boundaries are defined; the overall width of the system can

continue to increase. The model was used to investigate the coverage of fan

surface with braided channels, the probability of reoccupation of preserved

channels during subsequent flow events, the degree of system development and

the distribution of flow, however no formal validation was performed.

Webb (1995) applied the link type measurement approach of Krumbein and Onne

(1972) to the models of Howard et al. (1970) and Rachoki (1981). Both were

found to contain approximately the correct percentage of IF type links but a

higher proportion of El links. Webb (1995) concluded that all three models fail to

reproduce accurately the theoretical link-type ratios.

The results of the above models are interesting as the spatial pattems produced by

the models match those of real rivers when compared using a variety of averaged

statistics even though, as the authors point out, the models are purely geometric

and do not simulate any of the physical processes of a real river. The results imply

that standard, topologically based statistics are not very sensitive test of model

dynamics (Paola, 2001). According to Webb (1995), the models of Howard et al.

(1970), Krumbein and Onne (1972) and Rachoki (1981) share three limitations:

1. the lateral motion of a channel in each time step is constrained to a fixed grid

spacing, thus limiting the scale of the resolution and the variability of motion

in the lateral direction;

2. none of the models can accommodate the effects of channel width on the

location or frequency of intersections; and

3. none of the models include estimates of channel depth necessary to describe

the associated topographical (geomorphological) surface adequately.
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Webb (1995) claims to have overcome the above limitations via a random walk

model, BCS (Braided Channel Simulator). The model has been used to produce

two-dimensional and three-dimensional braided networks, hereafter referred to as

BCS-2D and BCS-3D respectively.

BCS-2D is a random walk approach to modelling a two-dimensional braided

pattern. However, unlike the models of Howard et al. (1970), Krumbein and Orme

(1972) and Rachoki (1981) BCS-2D incorporates both hydraulic geometry of

stream channels and an adaptive grid allowing flexible lateral movement, width

and depth of each section of the channel system. This accounts for the limitations

of the previous models. BCS-2D allows a user-specified number of channels

upstream, each of which is randomly assigned a portion of total stream discharge.

The braided network is developed within a rectangular space having lateral no-

flow boundaries. At each iteration, channels are extended a fixed distance in the

longitudinal direction and a variable distance in the transverse direction. The

transverse shift is randomly chosen from a uniform distribution with a range

determined from a specified channel sinuosity. All channels have a finite width,

depth and velocity based on the individual channel discharge and user-specified

hydraulic channel geometrical relationships. At each step, channels that intersect

(no more than two at a time) are joined to form a single channel with the

combined discharge of the two joining channels, and consequently a different

width, depth and velocity. After all intersecting channels are joined a certain

number of the remaining channels are chosen to bifurcate or split based on a user-

specified bifurcation probability. A random percentage of the discharge in the

original channel is assigned to each of the two new channels and their shape is

determined using the hydraulic geometry relations. Thus discharge is conserved

throughout the network.

A three-dimensional topographic surface is developed from channel location

along with total width and depth. Absolute elevations are assigned to nodes within
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a square topographical grid equal to the depth of the channel link (if any) at the

node. All nodes outside a channel are assigned an elevation equal to the elevation

of the original surface. All channels are assumed to have a parabolic shape.

The calibration criteria for BCS are either generic (applicable to all braided rivers)

or site specific. Site-specific indices were derived from Mosley'S (1982) study of

the Ohau River, New Zealand, and include topological measures derived from

aerial photographs of the river. Model calibration was undertaken by taking the

arithmetic average of 30 runs and comparing the result with calibration targets. A

, formal sensitivity analysis found that the most significant input parameters are the

bifurcation probability and the step size.

Although BCS-2D greatly improves upon previous random walk models, the

model contains some problems. Shortcomings of BCS-2D include:

• the model is constrained to a rectangular study area with parallel lateral

confining boundaries;

• although the initial number of channels can be specified, their locations are

randomly chosen by the model; and

• the model assumes no control on channel location by pre-existing topography

(Le. the random walk has no topographical weighting).

In his 1994 paper, Webb extended BCS-2D to allow the generation of multiple

topographic surfaces. The new model, BCS-3D, is a geometrically based model

that produces three-dimensional facies distributions of braided river systems. A

random walk algorithm produces two-dimensional braided surfaces with each

channel segment assigned characteristics including channel width, depth, velocity

and sediment type. Sediment type is linked to Froude number. Each topographic

surface is generated separately then the surfaces are stacked to form a three-

dimensional framework of sediment packages.

BCS-3D differs from BCS-2D by the following additions:

30



Chapter2. Approaches to modelling braided rivers.

1. a weighting function constrains the location of simulated channels based on

the topography of the previous surface. A measure of topographic control is

thus placed on a channel via the elevation of previous surfaces. The first

surface to be simulated has a weighting factor of zero, allowing it to be

randomly simulated. The weighting factor of subsequent surfaces is

determined by comparison of the current and previous discharge;

2. the model includes variables to constrain the variability of discharge and the

variability of mean surface offset (aggradation). The average vertical offset for

the stacking of surfaces is user-specified. The final offset is a percentage of

the average vertical offset equal to the ratio of the current discharge to the

average discharge;

3. parameters to allow variability in the hydraulic geometry relationships used to

define channel shape. The variables that define the relationship of width, depth

and velocity to discharge are derived empirically from field data; and

4. a definition of sediment units based on a Froude-number scale. Assignment of

sediment units is based on a measure of flow energy at each point on the

surface. The sediment units of interest are defined by the user along with a

scaling factor for discharge that determines the total discharge (the channel

forming flow rate). The discharge at deposition is some fraction of the

channel-forming discharge.

A composite set of field data was developed from data collected by others

(Mosley, 1982; Brierley, 1989), and was used to derive input parameters and to

calibrate the model. Mosley's data contains geomorphological information on the

channel network of the Ohau River, New Zealand; calibration targets used were

the same as for BCS-2D. Brierley's data consists of quantitative information on

abundance and vertical transition of sediment units in the Squamish River, British

Colombia. Both rivers are of the Donjek type (Miall, 1978), consisting of fine

gravel and sand deposits in well-developed channels. The model was formally

sensitivity tested.

31



Chapter2. Approaches to modelling braided rivers.

The calibrated model has been used to examine the effect of spatial patterns in

hydrofacies on contaminant transport (Anderson et al., 1999), to simulate

groundwater flow through each sequence of sediments and to trace the movement

of imaginary particles through the representations of the two deposits.

2.5.4.2. Limitations of random walk models.

Random walk models are two-dimensional topological models, which are

statistical in nature, and may produce fractal structures closely resembling many

planar features of real river networks (Rodriguez-Iturbe and Rinaldo, 1997). Even

though random walk models may reproduce topologically based statistics, their

purely statistical nature does not provide insight into the geomorphic processes

responsible for network generation. In a random walk model network evolution is

viewed as a growth process, with channels proceeding a fixed distance

downstream at every step. The frequency of channel bifurcations is usually

determined by user-defined statistical rules and channel confluences and

diffluences are usually set at a fixed angle, determined by the shape of the grid.

There is no topographic control over braidplain formation.

The models of Webb (1994, 1995) go some way to account for the problems

described above. These models use an adaptive flexible grid to create a more

realistic braidplain by linking dynamic processes with hydraulic geometry

relationships. However, even though Webb has extended his two-dimensional

model to simulate three-dimensional deposits, the process used to simulate the

first surface (the only surface in the two-dimensional model), which exerts a

topographic control over the surfaces above, is a purely random process.

2.5.5. Deterministic models.

A deterministic model is one that does not include random variables (Le. variables

that are represented by probability density functions). Deterministic models can

produce apparently stochastic behaviour if the system is sufficiently complex, a
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phenomenon known as "chaos" (Paola, 2000). These models have deterministic

driving mechanisms although they operate under variable conditions, either for the

variable or for the initial or boundary conditions (Howard 1994; Rodriguez-Iturbe

and Rinaldo, 1997). The models incorporate the altitude dimension, as a

fundamental part of their structure, and include models of erosion and the

evolution of river networks. The rivers produced are not braided, however the

approaches allow for growth and meaningful three-dimensional river basin

structures. The models reviewed in this section are large-scale landscape evolution

models, however they are relevant to the discussion as they include fluvial

transport equations.

2.5.5.1. SIBERIA (Willgoose et al., 1991a-d, 1994).

Willgoose et al. (1991a-d, 1994) have developed a large-scale two-dimensional

geomorphological model (SmERIA) of catchment evolution involving channel

network growth and elevation evolution. The model, based on a finite-element

rectangular grid, includes overland and channelised flows, a channel initiation

function (cif), and a fluvial transport formulation that depends non-linearly on

discharge and local slope, (i.e. stream power, Kooi and Beaumont, 1994)

Elevation within the catchment is simulated by a mass transport continuity

equation. Mass transport processes considered include fluvial sediment transport

(modelled by the Einstein-Brown equation) and mass movement mechanisms,

(soil creep, rainsplash, landsliding and tectonic uplift). The model makes an

explicit distinction between sediment transport processes operating in channels

and those on hillslopes. Within channels fluvial sediment transport processes

dominate; on hillslopes, diffusive mass transport is more important and may

dominate.

A channel is formed, or a channel head advances upstream, when the selected

flow and transport mechanisms which constitute the cif exceed a pre-determined

threshold value. Erosion within a channel is greater than on the hillslope, leading
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to preferential erosion in the channel and a convergence of flow on hillslopes

towards channels, triggering channel head advance. Channel heads can only

advance, and channels cannot shift their planar position, therefore once formed the

channel exists forever. These restrictions are not believed to be critical because

the elevation equation is a mean equation so for compatibility the mean channel

network should be used (fluctuations in channel head position over short

timescales are ignored), and although channels meander about their floodplain, the

general position of the valley floor is more or less fixed. The channelisation

equation has two stable attractors that correspond to a point in space being

channelised or not. When the cif exceeds the threshold for channelisation, the

equation becomes unstable and goes into transition i.e. it tends towards the other

stable solution. In other words, once a threshold has been exceeded, that point in

the catchment goes into transition from a hillslope to a channel. During this

transition sediment transport processes are intermediate between that for a

hillslope and that for a channel, however the model is insensitive to the exact form

of these processes (Willgoose et al., 1991a).

A drainage direction is assigned to each node according to the steepest slope to

the next node (a node can only drain to one other node), and the contributing area

to each node is calculated. From the contributing areas and flow and sediment,

continuity equations for flow and sediment are written. The areas and the steepest

slopes are used to evaluate the cif and therefore determine the areas of active

channel network growth. The model is transport limited, i.e. it assumes that there

are adequate supplies of erodible materials in the catchment, thus rivers always

transport at capacity. It is therefore applicable where stream channels are alluvial

in character (Ibbitt et al., 1999).

Model runs commence with random elevations assigned to an initially flat grid,

and erodibility, runoff, and channel initiation function, threshold all considered to

be spatially uniform. Rodriguez-Iturbe and Rinaldo (1997) note that no thorough

study of the effects of randomness on these properties has been performed, but the

results of Willgoose et al. (1991a-c) suggest that for equal coefficients of
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variation, and flat conditions, randomness in the initial elevations is the most

important variable.

SIBERIA was tested by comparing it's ability to simulate the channel network

properties of a drainage basin in New Zealand (the Ashley River basin) with that

of an optimal channel network model (OCN), an energy model that minimises the

overall energy expenditure of the network within a given catchment boundary. It

was found that in general and using spatially uniform inputs, neither model

successfully replicated the prototype river basin. The best results from SffiERIA-

generated networks were obtained using a non-additive area-slope relationship

and a realistic tectonic history of the basin. SffiERIA results are thus sensitive to

the form of the network used to initialise simulations (lbbitt et al., 1999).

2.5.5.2. Howard's (1994,1997) model.

Howard (1994) proposed a high-resolution, process-based simulation model of

slope and channel development at the basin scale incorporating creep and

threshold erosion as well as detachment- and transport-limited fluvial processes.

The model of Howard (1994) contrasts with that of Willgoose et al. (1991a-d,

1994) in several major respects. The Willgoose model assumes flow (overland

and in channels) is transport limited, whereas the model of Howard (1994)

assumes that erosion in many locations, particularly in headwaters, is supply

limited. The constraint on landscape evolution is the rate at which material can be

detached. The model is therefore most appropriate to areas of hard geology where

the streams flow over exposed bedrock (lbbitt et al., 1999).

Simulations take place on a finite-difference square matrix cell within each both

channel and slope processes occur. This is in contrast to the Willgoose model in

which individual simulation cells are either channels or slopes, and leads to a

simpler set of governing equations.
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Channel operations are simplified to a sub-grid cell process; whatever the

embedded width of the active channel possibly existing in the cell, it is specified

to be less than the width of the cell (Howard, 1994). Both mass wasting and

fluvial transport/erosion, whatever their relative importance, occur in each cell. It

is assumed that all runoff becomes concentrated into a single permanent or

ephemeral channel running the length of the cell with a gradient equal to the

overall slope gradient and that all fluvial erosion within the cell occurs in the

channel. Values for width and depth are calculated using empirical relationships.

The use of the activation function in the model of Willgoose et al. (1991a-d,

1994) automatically defines the channel network and drainage density; in the

model of Howard (1994) the location of channel heads is defined by a

morphometric criterion.

Most runs start with a planar surface with a random elevation perturbation

superimposed. Lateral boundaries are periodic for water and sediment; the upper

boundary is assumed impenetrable by water, sediment and regolith and the lower

boundary is assumed level with a specified elevation. The lower boundary can be

lowered at a constant rate for steady state drainage basin development. Therefore

it is like a constant lowering of base level. Internal cells may donate to only one of

their eight neighbours. Sediment and water leave cells via the steepest slope,

taking into account the difference in distance between diagonal cells.

Fluvial erosion IS advective and incorporates two processes: erOSIOn IS

detachment-limited in steep channels flowing on bedrock or regolith in which the

bedload sediment flux is less than capacity load; in lower gradient alluvial

channels, fluvial erosion is transport-limited. In this respect, the model differs

from Willgoose's model.

The model can be run with alluvial or non-alluvial channels. For alluvial channels

the potential rate of fluvial erosion is equal to the spatial divergence of the

volumetric unit bed sediment transport rate (Howard et al., 1994, 1997). Non-
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alluvial channels are defined as those in which the bedload sediment flux is less

than a capacity load. Such channels may be flowing on bedrock or regolith.

Results of model runs were compared with fieldwork from badlands developed in

Macos Shale near Cainville, Utah (Howard, 1997). The modelling results support

the field interpretation (Howard, 1986 in Howard, 1997) of erosional history and

controls on slope morphology. However the model parameters have not been

directly validated and calibrated by field observations.

2.5.5.3. Cascade (Braun and Samhridge 1997).

Cascade is an ANSI-standard Fortran surface process model which uses an

irregular, adaptive finite-difference triangulated grid (Delaunay triangulation) to

represent the land surface. Large-scale, long-term landform evolution is assumed

to be controlled by short-range hillslope and long-range fluvial transport. Two

types of hillslope processes are included: continuous slow processes such as soil

creep are modelled using a linear diffusion parameter and mass wasting is

modelled by imposing a slope threshold when this is exceeded the slope is brought

back to the threshold by moving material down the slope (Braun and Sambridge

1999). Long-range fluvial transport is controlled by the carrying capacity of the

rivers; Cascade differs from most other long-term landscape evolution models in

its treatment of river erosion as being linearly dependent on discharge and local

slope, and includes a length scale for bedrock incision. Surface runoff at a point

on the mesh is routed downslope towards one neighbouring node via the edge

with the steepest slope. If a node lies at a point of minimum elevation the water

may either evaporate away or a lake may form, depending on the algorithm

invoked (Braun and Sambridge 1997). If the carrying capacity of the river is

greater than the material available for transport, erosion will occur and vice versa.

For long-term landscape evolution on large spatial scales, orographic rainfall

effects and tectonic processes (flexural isostasy) is included. In this study Cascade

has been altered to produce Braided Cascade, and will be further discussed in

Chapter 3.
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2.5.5.4. Channel HiIIslope Integrated Landscape Development model

(CHILD) (Tucker et al; 1999).

The CHILD model is designed to simulate the evolution of fluvially dominated

landscapes formed chiefly by physical erosion and may be thought of as an

extension to the Cascade model (Braun and Sambridge 1997). It simulates the

development of two general types of process: "fluvial" processes, which

encompass erosion or deposition by runoff (including slope wash, and channel

and rill erosion), and "hillslope" processes, which includes weathering, creep and

other slope transport processes. Like Cascade, the model is based on an irregular

finite-difference mesh; this is based on the method of Braun and Sambridge

(1997). The model allows for stochastic rainfall forcing, stream meandering and

dynamic remeshing, overbank deposition, multiple sediment sizes and the ability

to track the deposition of sediment layers at each point in the landscape. CHILD

therefore differs from the models of Willgoose et al. (1991) and Howard (1994,

1997) as these models only allow for uniform rainfall, no stream meandering, one

sediment size, no overbank deposition and no sediment tracking facility.

Following Braun and Sambridge (1997) (the Cascade model), rivers are defined

via the route with steepest descent; lakes may form or the runoff may evaporate.

One of four alternative runoff-generation models may be used to compute surface

runoff from drainage area, allowing the user to choose a method appropriate to the

environment of interest.

No explicit distinction is made between erosion by overland flow and that by fully

channelised flow. Sediment transport by hillslope processes is modelled using a

diffusion equation. Like Howard (1994) the model distinguishes between

detachment of material from a streambed and transport of the detached material.

The maximum detachment rate depends on local slope and discharge. If the

sediment transport capacity exceeds the sediment influx, the rate of water erosion

is equal to the maximum detachment rate (the detachment-limited case). However

if sufficient sediment is available for transport, streams are assumed to be at

carrying capacity (the transport-limited case).
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2.5.5.5. Deterministic models. A summary.

The deterministic models of Willgoose et al. (199Ia-d, 1994), Howard (1994)

Braun and Sambridge (1997) and Tucker et al. (1999) are useful tools in the

investigation of landscape evolution. The models use accurate in the descriptions

of different processes affecting fluvial erosion, and the complexity of the possible

scenarios for landscape evolution is clear and likely to be realistic (Rodriguez-

Iturbe and Rinaldo, 1997). However, they do not clarify the linkages between

fundamental aspects of the dynamics and the existence of general types of scaling

relationships in the elements of the network and the landscape itself. The

indefinite persistence of initial conditions, common to all deterministic models

and the need to tune the large numbers of parameters required to describe the

many natural processes introduce important elements of arbitrariness.

Willgoose's and Howard's approaches agree with the reductionist, process

orientated tenet to which most geomorphology is committed (Rodriguez-Iturbe

and Rinaldo, 1997; Paola, 2000). As such it is only through specifying in detail

the many processes active in nature and the parameters of their mathematical

formalisation that landscape evolution can be understood.

2.5.6. Cellular automata models.

Cellular automata are mathematical idealisations of physical systems in which

space and time are discrete and physical quantities take on a finite set of discrete

values (Wolfram, 1983, 1984). An automaton can be generalised to any system

that has a finite number of internal states and moves between those states by

following specified rules (Lucas, 2000). A cellular automaton consists of a regular

uniform lattice with a discrete variable at each site (or cell). The state of a cellular

automaton is completely specified by the values of the variables at each site. A

cellular automaton evolves in discrete time steps, with the value of a particular

site being determined by the previous values of a neighbourhood of sites around

it. The neighbourhood of a site is typically taken to be the site itself and all

immediately adjacent sites, however it can be extended to "close" (including
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neighbour's neighbours) or "global" (anywhere in the system). The values of the

sites evolve synchronously in discrete time steps according to a definite set of

local rules (Smith, 1991).

Physical systems containing many discrete elements with local interactions are

often conveniently modelled as cellular automata. Any physical system satisfying

differential equations may be approximated as a cellular automaton by introducing

finite differences and discrete variables (Wolfram, 1983, 1984). The trajectories of

the system can be plotted in the 'state (or phase) space' Le. a space that has an

axis or dimension for each important variable except time. Each point represents a

state of the system at one instant and, as the system changes with time, it will

trace out a path in the state space. In almost all cases, cellular automaton evolution

is irreversible so that the trajectories merge with time, and after many time steps,

trajectories starting from almost all initial states become concentrated onto

"attractors" (Wolfram 1983, 1984), although if the systems are non-linear,

deterministic, they may diverge from very similar initial states. These attractors

typically contain only a very small fraction of possible states. Evolution to

attractors from arbitrary initial states allows for "self-organising" behaviour, in

which structure may evolve at longer time scales from structureless initial states.

The nature of attractors determines the form and extent of such structures.

Wolfram (1983, 1984) suggests that many cellular automata (perhaps all) can be

grouped into four classes based on their qualitative patterns:

• Class 1. Point attractors. The system freezes into a fixed state after a short

time (the transient behaviour).

• Class 2. Limit cycles. The system cycles between several states in a regular

fashion (Le. it develops periodic behaviours, which then repeat continuously).

A loop will be traced out in state space.

• Class 3. Chaotic. The system becomes aperiodic, continuously changing in

unpredictable and random ways. A random pattern appears and so-called

'strange attractors' are formed (a strange attractor characterises a system that

never returns to the same place, e.g. the Lorenz (1963) attractor).
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• Class 4. Structured. The system can develop highly patterned but unstable

ways. Computationally rich, this type of system denotes an automaton

between states 2 and 3 - at the edge of chaos. (The edge of chaos can be

simply defined as a system midway between stable and chaotic domains. It is

characterised by a potential to develop structure over many different scales

and is an often-found feature of those complex systems whose parts have

some freedom to behave independently).

Therefore, there is order in state space even if normal space appears chaotic.

Many different realisations of the same dynamical system, while exhibiting

different sequences of values, will sketch out the same attractor when plotted in

state space.

Cellular automata models have been widely applied to many biological systems

and ecological and population modelling (e.g. the "Game of Life" where site

values represent states of living cells or groups of cells). In a geomorphological

context, cellular automata models have been applied to the erosion of landforms

(Smith 1991), landscape evolution (Chase, 1992), the evolution of an upland

drainage basin (Coulthard et al., 1998, 1999) and the evolution of generic braided

river networks (Murray and Paola 1994, 1997). The last example will be explored

in more detail.

2.5.6.1. Cellular automata models of braided river evolution.

Murray and Paola (1994, 1997) developed a cellular model that simulates the

evolution of a braided network. The model uses a square lattice and the real

variables defined on the lattice are bed elevation, water discharge and sediment

discharge. These variables and all other model parameters are specified in

arbitrary units. Most runs start with uniform slope and white-noise elevation

perturbations are placed on the grid to give a random initial topography.
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Each iteration begins with the introduction of units of water in some or all of the

cells at the upstream end of the lattice. The water moves downstream row by row

and can be distributed from one cell to one or more of the three downstream

neighbouring cells. River patterns are not predicted spontaneously. In this respect

the model resembles a random walk model, however the movement of water is

determined by local gradient, not a purely statistical rule, and fluxes of water and

sediment are determined by the previous values of the adjacent neighbourhood of

eight cells. The model does not allow the formation of lakes and all water entering

a cell leaves it during that iteration. The iteration ends when water reaches the

downstream end of the lattice when the elevation of each cell is adjusted. It should

be noted that as discharge is conserved, depth is not predicted explicitly.

Water and sediment are conserved: Le. there is no net gain or loss in the model.

Water transports sediment from cell to cell according to one of six different rules

used (Table 2.4.), which involve local discharge or the local stream power index

(local discharge multiplied by local slope). Two rules incorporate a sediment-

transport threshold Th, which is defmed as being approximately half of the local

stream power. Elevation changes are dependent on the difference between the

total amount of sediment entering and leaving a cell. Lateral erosion or channel

bank erosion, may occur and sediment can be transported from lateral neighbour

cells with higher elevation. This occurs regardless of whether the neighbour cells

contain water so that any channel bank can erode.
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Qsi = K[Qir Q s rule I

QSi = K[QiS; I" Q s rule 2

QSj =K[Qj(Sj +Cs))"' Q s rule 3

Q" ~ K[ Q,S,+E :tQ'jS'j r Q s rule 4

J=1

o; =K[Qi(Si +Cs)-ThJ"' Q srule 5

Q" ~K[ Q,S,+E:tQ"S,j -Th J Qs rule 6

J=1

Table 2.4. Sedunent routmg rules m the cellular automata braided nver model of Murray and Paola
(1994, 1997).
Qsi = the amount of sediment transferred to downstream neighbour i from the cell in question.
K = a constant adjusted so that the elevation changes by at most a few percent of the mean
elevation difference between rows in each time step; Qi = discharge; Si = slope; C, = the order of
the average slope; m= a constant> 1, usually 2.5; e ::::J 0.3; Th = sediment transport threshold,
around half the typical stream power.

Figure 2.4. Water and sediment routing in the Murray and Paola (1994, 1997) cellular automata
braided river model. Water fluxes are shown as white arrows, direct sediment flux as grey arrows
and lateral sediment transport as black arrows. Rules for water transport (Qi), (Qo is the discharge
coming from the target cell); direct sediment transport (Qsi - rule 5) and lateral sediment transport
(Qs') are given in boxes. K, is a constant, S, is the lateral slope and Qso is the direct sediment
transport in the target cell. From Paola (2001).
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In a standard run, the model boundaries are high sidewalls containing the flow. In

most runs the elevation of the first and last rows of cells are fixed, simulating the

rigid side and end walls of laboratory flume experiments.

The simple, deterministic interactions of the model produce spatial patterns and

temporal dynamics that are qualitatively realistic. The system reaches a dynamic

equilibrium in which all sediment supplied is passed through to the downstream

end. The pattern never repeats itself but is statistically steady (paola, 2001).

The Murray and Paola (1994, 1997) model suggests that, for braiding to occur, it

is crucial to have a topographically driven flow expansion and contraction and

non-linear sediment transport law that couples these to changes in bed elevation.

Experiments with the model show that if the sediment flux is linear, braiding does

not develop. Lateral bedload flux is essential to maintain braiding, as model runs

without this ability tend to drift into a 'canyon' state with one very deep channel

from which the river can not escape (paola, 2001). Lateral transport prevents this

by forcing bank erosion and filling in narrow high-velocity zones. Changing the

transport law from flux-limited (for non-cohesive materials) to detachment limited

(for cohesive materials including bedrock) causes the channel pattern to switch

from braided to dendritic. The braided topology, which balances confluences and

diffluences (tributaries and distributaries), requires equal measures of erosion and

deposition: reversible entrainment. The dendritic topology, which has confluences

(tributaries) only, is the product of one-way erosion: irreversible entrainment

(Paola, 2001).

Neither the patterns produced by the model nor those in real braided rivers have

an obvious characteristic length (Sapozhnikov and Foufoula-Georgiou, 1996). The

model remains statistically stable over time and the spatial patterns produced

match those of real rivers when compared using a variety of averaged geometric

statistics (after Howard et al., 1970) although it was noted that such comparisons

do not necessarily discriminate well between patterns generated by different

model runs.
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Spatial patterns produced by the model were analysed using dynamical systems

methods (delay co-ordinate embedding) by plotting the position of the system in

state space (Murray and Paola, 1996). Reconstructed three-dimensional state-

space plots were produced showing the total width of all active channels at each

cross-section versus the total width of the previous two cross sections for different

sediment transport rules. The shapes of the plots were analysed qualitatively by

comparing the plots to those derived from a real river (the Aichilik River, Alaska).

A two-dimensional state-space plot was then constructed by plotting each width

versus the last. Quantitative analysis was undertaken using a box counting method

to provide a measure of the difference between two plots. Using both qualitative

and quantitative analyses it was found that model runs with sediment transport

rule 4 gave the best comparison with the prototype river, however runs with

sediment transport rules 5 and 6 were not tested.

However, using the state-space method has limitations. The distance (or delay for

a time series) between measurements could affect the outcome of a comparison if

it is not the same for both series, because using larger distances expands the plot

away from the diagonal. If this distance or time delay becomes large, succeeding

measurements may become uncorrelated (Murray and Paola, 1996).

Sapozhnikov et al. (1998) present a method for braided stream model validation

based on the sequential organisation and the hierarchical organisation of their plan

patterns. The method is an extension of that used by Murray and Paola (1996) and

uses results from their model using sediment rules 3 and 4, and data from other

prototype rivers (the Aichilik and Hulahula Rivers in Alaska and the Brahmaputra

River, Bangladesh). State-space plots of total widths were constructed in two

dimensions (i.e. by plotting total width versus the previous value). It was found

that areas of dense data are similar indicating similar sequences of widths

suggesting that fundamentally similar mechanisms operate in all of these braided

streams (Sapozhnikov et al., 1998).
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Differences between plots and real rivers indicate that the model does not always

match the real rivers as closely as real rivers match each other (Sapozhnikov et

al., 1998). Fractal analysis carried out on traced discharge patterns of the model

found that the model rivers exhibit fractal behaviour up to the scale of their width.

A logarithmic correlation integral (LeI) was applied to determine the type of

fractal scaling and it was found that, at long runs when braiding is fully

developed, the model rivers are self-affine objects showing a high degree of

ansiotropic scaling. Islands in the modelled rivers were analysed using the LeI

method for fractal scaling and it was found that the scaling anisotropy of the

islands was lower then the modelled rivers. This agrees with previous results

obtained for natural rivers (Sapozhnikov and Foufoula-Georgiou, 1996).

Thomas and Nicolas (2002) have applied cellular automata modelling to a specific

site. The model is similar to that of Murray and Paola (1994, 1997); a square

lattice is used, however flow is split between five downstream neighbour cells

allowing for lateral transfer of water at angles of up to 60°. Water is routed

according to energy slope so water heights are calculated, and sediment routing is

not included. The model has been used to route water through a DEM of a section

of the braided Avoca River, New Zealand. Resulting simulated flow patterns show

that the model is capable of replicating the patterns observed in the field and the

predictions of a more sophisticated two-dimensional hydraulic model at higher

flows.

2.5.6.2. Summary.

The Murray and Paola (1994, 1997) model is synthesist in spirit (paola, 2000); the

braid pattern emerges from a highly simplified model of the dynamics. In this

model braiding is an emergent behaviour (Le. it is a property contained by the

whole, which does not exist in terms of the parts or the vocabulary appropriate to

them; Lucas, 2000) of the system of shallow water dynamics and sediment-flux

equations. There is still vigorous debate about whether the pattern formation
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requires an approach explicitly based on emergence, or can be better modelled

with conventional "reductionist" techniques (Paola, 2001).

Dynamical systems methods have been applied to the model results. State-space

plots indicate that, qualitatively, the total width of modelled rivers compares well

to prototype rivers with similar sequences of widths suggesting that fundamentally

similar mechanisms operate in all of these braided streams. Quantitative analysis

found that the differences between plots and real rivers indicate that the model

does not always match the real rivers as closely as real rivers match each other.

Fractal analyses indicate that the model rivers show self-affine scaling for both the

river as a whole and the island size.

Numerical models by Murray and Paola (1994) and Barzini and Ball (1993)

produce braiding which is qualitatively comparable to prototype rivers, however,

these models are generic and work at long time scales. The application of the

model of Thomas and Nicholas (2002) to field data goes some way to addressing

the problem of generic models, however this model routes water only. Therefore,

there remain no standard quantitative models for predicting the methods of, and

the spatial distribution of, channel change, sediment transport or flow patterns in

braided rivers (Ferguson and Ashworth, 1992).

2.6. Conclusions.

Braided rivers are highly dynamic systems characterised by high rates of erosion,

sediment transport and deposition. Despite the importance of braided rivers to the

work of geomorphologists, engineers, sedimentologists, and geologists, braided

rivers have been less extensively studied than single channel rivers due to the

difficulties in undertaking fieldwork in a rapidly changing environment. The

studies of braided river evolution to date have been mostly qualitative in nature.

Fieldwork in braided river systems has generally been carried out in a reductionist

framework with the scale of investigation typically one bar-chute complex.
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Froude-scale models have provided useful qualitative data on braided river

evolution and whole reach scale sediment transport, however there is a difficulty

in making distributed spatial measurements in a shallow, rapidly changing flume

environment.

The adoption of numerical modelling approaches to dynamic gravel-bed rivers is a

fairly recent phenomenon, with the aim of improving understanding over a range

of scales. Paola (2001) notes that braided networks fall in a 'grey area,' i.e. they

are systems of moderate complexity the best approach is not obvious. Approaches

to modelling braided rivers have fallen within either a reductionist or synthesist

tenet, both having advantages and disadvantages. Reductionist models contain

very detailed equations of the system under study, however they are data intensive

and, to date have only been applied in very small spatial and temporal scales due

to the difficulty of solving complex equations on a constantly deforming domain.

Within synthesist models the governing equations of the system are simplified,

with interactions between parts of the system producing emergent phenomena.

However, synthesist models tend to work in arbitrary units and it may be argued

that the act of simplifying the system reduces understanding of the systems

component parts. In the context of this work the styles of numerical models

reviewed may be either adopted or rejected depending on their application to and

results from braided river modelling:

1. CFD models.

CFD follow the reductionist tenet of model development. They are grounded in

classical mechanics and solve the Navier-Stokes equations in three dimensions.

They have been proved capable of simulating the dynamics of fluid flow over a

wide variety of situations. However, there are problems in coupling these models

with sediment transport to simulate evolving channel patterns. This is partly

because sediment transport can lead to the redefining of the mesh of the model,

which is highly time consuming and computationally difficult. Modelling fully

developed braiding using CFD techniques is therefore hindered by the difficulty

of solving the non-linear systems equations on a complex, constantly deforming
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domain. At present, CFD models are therefore computationally restricted to

modelling fluid flow in a confined area. For this reason CFD-type modelling has

been rejected as a method of modelling braided rivers at large spatial and temporal

scales.

2. Topological (random walk) models.

Random walk models produce the planar features of braided systems, and may

reproduce topologically based statistics, however they give no insight into the

geomorphic processes responsible for network evolution. However, they do not

contain any physical flow routing rules and sediment is not routed. To understand

more fully about the braiding process more physically realistic flow routing

should be included and sediment routing should be included. This approach to

modelling braided rivers has therefore been rejected.

3. Deterministic models of landscape evolution.

These models allow for growth and meaningful three-dimensional river basin

structures. However, the models need detailed specification of the dominant

dynamics and the calibration of the relative importance of many processes and it

is not practical for large basin-scale models to simulate three-dimensional flow

around clasts. However the introduction of irregular triangulated grids which

would allow rivers to form in all directions would be beneficial to a braided river

model.

4. Cellular automata models.

Cellular automata models have been applied to the evolution of braided river

networks (Murray and Paola, 1994, 1997; Thomas and Nicholas 2002). These

models are synthesist in spirit, the braid pattern emerging from a highly simplified

model of the dynamics. This approach to modelling braided rivers has advantages

in that it replaces the computationally hard problem of solving the shallow water

equations on complex, changing topographical domain with simple, algebraic

flow (and sediment) routing rules -that capture the main effect of topography in

spreading and concentrating the flow. Simple rule-based water (and sediment)
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routing schemes make it possible to attempt to simulate geomorphic processes

over greater temporal and spatial scales than is possible when using approaches

involving the solution of the Navier-Stokes equations. However the accuracy of

such simple rule-based schemes is limited by the square grids used in the models:

when water is routed downstream from one cell to the next the magnitude of the

lateral flows may be restricted. In spite of this, simplified cellular models can

reproduce many features of braiding, but the parameters may be difficult to

constrain. (Paola, 2001). However the advantages of this modelling approach

outweigh the disadvantages when modelling geomorphic process over large

temporal and spatial scales and on deforming grids. Therefore a similar approach

to modelling braided river networks has been adopted in this thesis.

The main interest of this study is to develop an approach to modelling the

evolution of a braided network that lies between the two modelling ideologies of

reductionist and synthesist outlined above. The model will be an adaptation of the

long-term landscape evolution model Cascade (Braun and Sambridge 1997) and

will be based on an irregular triangulated grid. However only the gridding routines

will be preserved, the flow routing and sediment transport routines will be re-

written to take account of flow bifurcations and the shorter temporal and spatial

application of braided river models. A simplified flow and sediment routing

scheme will be developed based on the rule-based rules of the cellular automata

models but incorporating physically realistic hydraulic conditions and the option

for the incorporation of field data. The triangulated grid will allow lateral flows in

all directions solving the problem of the square grids of the cellular automata

models. This work will extend present modelling capability beyond the present

generation of very detailed small-scale models to larger scale robust models with

realistic data inputs and applicability beyond the field site. The development of

the model is outlined in Chapter 3.
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CHAPTER3.

NUMERICAL MODELLING AND THE DEVELOPMENT OF BRAIDED

CASCADE.

3.1 Introduction to Braided Cascade.

Cascade (Braun and Sambridge, 1997) is a physically based finite difference

model developed to simulate long-term (106 - 107 years) landscape evolution. The

model simulates long-term changes in land surface elevation and the consequent

effects on channel network growth. The model tracks a number of basic state

variables that determine the depth of erosion or deposition at each point during a

given iteration, including elevation and slope. Changes in elevation are modelled

by continuity equations for water and sediment transport; elevation changes result

from local imbalances in sediment transport as well as tectonic elevation changes.

This version of the model Braided Cascade, builds on the irregularly discretised

version of the landscape evolution model Cascade (Braun and Sambridge, 1997).

The incorporation of an irregularly discretised grid differentiates Cascade from

other landscape evolution models e.g. those of Willgoose et al. (1991a-d, 1994)

and Howard (1994, 1997). Cascade assumes that landscape evolution on tectonic

timescales and large spatial scales occurs via two types of processes: short-range

(diffusive) hillslope processes and long-range (advective) channelised water flow

(Braun and Sambridge, 1997). Braided Cascade works at much shorter length and

timescales and allows simulation of long braided river reaches (Figure 3.1). The

modelling approach is simplified and takes no account of detailed flow hydraulics

or of sediment grain sizes. The intention is to model the overall spatial patterns of

sediment transport, deposition and erosion and to analyse these in terms of their

net statistical properties, rather than to produce accurate predictions of processes

at particular localities. Model output includes maps of sediment erosion,
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deposition, shear stress and stream power achieved throughout the modelled

reach.

BRAIDED CASCADE

Initialises debugging routine

Reads in initial parameters

Initialises erosional properties of sediment

Finds Delaunay triangulation and Voronoi cell surfaces
for initial nodal geometry

Writes initial conditions

Calculates fluvial erosion

Calculates diffusion erosion (if option selected)

END OF TIMESTEPPING

no

Figure 3.1. Flow chart showing the sequence of computation in the model.
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Braided Cascade is similar in approach to the cellular automata model of Murray

and Paola (1994, 1997) designed to predict the overall evolution and development

of braided channel networks. However Braided Cascade is more sophisticated in

terms of topography and fluid dynamics than the Murray and Paola (1994, 1997)

model.

3.2. Philosophies of numerical modelling.

Paola (2001) identified two alternative approaches to modelling stream braiding,

termed reductionist and synthesist. A reductionist approach to modelling starts

with the governing equations and makes approximations until one arrives at a

system that is solvable with whatever means are available. An unstated

assumption of the standard approach is that the less the fundamental equations

need to be simplified the better (paola, 2001). The long-term landscape evolution

models of Will goose et al. (1991a-d, 1994) and Howard (1994, 1997) agree with

the reductionist, process orientated tenet to which most geomorphology is

committed (Rodrfguez-Iturbe and Rinaldo, 1997; Paola, 2000). The reductionist

view states that it is only through specifying in detail the many processes active in

nature and the parameters of their mathematical formalisation that landscape

evolution can be understood. An example of a reductionist approach to modelling

braided rivers is the model of McArdell and Faeh (2001) where the flow

computations are based on the two-dimensional shallow water equations, solved

using a finite volume technique.

However Paola (2001) notes that the traditional reductionist approach to

modelling is being challenged. The synthesist approach is rooted in the idea of

'emergent' phenomena (Paola, 2001). Emergent phenomena are aspects of

complex-systems dynamics that arise from the interactions of the parts but that

could not readily be deduced from studying the dynamics of the parts separately.

The heart of the synthesist approach to modelling multi-scale systems lies in the

fact that behaviour at a given level in the hierarchy of scales may be dominated by
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only a few crucial aspects of the dynamics at the next level below (paola 2001).

Therefore when modelling using the synthesist approach it is sensible to focus

only on the few key aspects of the lower-level behaviour that matter, and any

lower-level dynamics would be represented in a higher level model by a relatively

simple set of equations or rules that summarise the crucial dynamics. Synthesist

approaches to modelling include cellular automata models that are developed to

predict the overall style of river behaviour, however they are generic and are

unable to be applied to specific sites. An example of a synthesist approach to

modelling braided rivers is the model of Murray and Paola (1994, 1997) where the

braid pattern emerges from a simplified model of the dynamics.

In Braided Cascade there is no detailed hydrodynamic component to the model,

which is a realistic simplification at the timescales considered (1 year). In this

respect Braided Cascade may be classed as a synthesist model in spirit; the braid

pattern emerges from a simplified model of the dynamics. Braiding is therefore an

emergent behaviour (Lucas, 2000).

3.3. Finite element and finite difference models.

Finite element methods can be used to study the evaluation of the cause and effect

of forcing functions on a system (Desai, 1979). The basic concept underlying

finite element analysis is the principle of discretisation, the division of the

working area into smaller, more manageable particles. The aim of the process is to

combine the understanding of individual components and obtain an understanding

of the whole or continuous system. The system is approximated by differential

equations. Finite difference methods differ from finite element approaches in that

the derivatives in the differential equations are approximated by expressions using

differences between the values of the dependent variable at selected points of a

grid. The differential is thus replaced by a number of algebraic equations.
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Many current finite element and finite difference models successfully predict

short-term river behaviour at scales of 1-10m, but require high-density survey and

hydraulic information to run successfully. Many models efficiently route water

over fixed beds and cover large areas. However the level of complexity reached

when sediment is routed and the bed starts to evolve requires a high degree of

sophistication to model successfully and some models may be unsuitable.

Therefore such models may be unsuitable for studying medium and large rivers

over longer timescales. These larger scales have been modelled generically,

enabling investigation of the overall style of river behaviour. The computational

structure of such models requires major modification if they are to be applied to

specific sites. Braided Cascade employs a finite difference method to evaluate

channel network evolution at scales greater than those of a few reaches and

therefore extends the modelling capability beyond the present generation of very

detailed small-scale models.

3.4. The model grid.

The model domain implemented in Cascade consists of a set of points N that are

connected to form a mesh of triangles. Grid points (nodes) are connected using the

Delaunay triangulation (Voronoi 1908, Delaunay 1934). A triangulation satisfies

the Delaunay criterion when the circumcircles of the triangles formed do not

enclose any other data points. A Delaunay triangulation minimises the maximum

internal angle of the elements and produces the most "equable" triangulation of a

given set of points.

Each node, N, is associated with a surrounding Voronoi polygon. The Voronoi

polygon for a node is the area within which the arbitrary point q would be closer

to node i than to any other node on the grid. The boundaries between Voronoi

polygons are lines of equal distance between adjacent nodes (Figure 3.2). Each

Voronoi polygon has surface area Ai and the vertices of the Voronoi polygons

coincide with the circumcenters of the triangles and have degree three: i.e. they are

the common intersection of exactly three edges of the Voronoi diagram (Lee and
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Preparata 1984). In general each triangle is associated with one and only one

Voronoi vertex. The dual of the Voronoi diagram is the Delaunay triangulation.

(Dual means to draw a line segment between two Voronoi vertices if their

Voronoi polygons have a common edge). For details of the Delaunay triangulation

method used in Cascade see Braun and Sambridge (1997).

Node i

Voronoi Polygon
A,

Figure 3.2. Schematic illustration of model grid components.

The original version of Cascade created a new mesh for every run. Within

Braided Cascade, the mesh handling routines now have the capability to either

read in an existing mesh in the form of x, y and z co-ordinates (e.g. from aDEM)

or to create a new surface with white noise random topography. A new mesh

creating routine has also been added to Braided Cascade to enable easy

specification and alteration of grid parameters (length, width, slope, and amplitude

of white noise). When creating a new surface within Braided Cascade the user can

specify grid dimensions, slope and amplitude of the white noise random

topography. The mesh handling routines are also designed to allow for dynamic

point addition while preserving the Delaunay triangulation (see Braun and

Sambridge, 1997). This is significant as Braided Cascade may be run with an

adapting grid; as the bed topography evolves the computational grid develops to
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reflect areas of greatest erosion and deposition, thus nodal density may vary across

the grid.

A triangulated irregular network (TIN) therefore represents the terrain surface.

Current algorithms usually model terrain using either a regular grid structure or a

TIN. One advantage of using a TIN is the fact that the organisation of hierarchies

of multiple TINs, with respect to their resolution, can provide generalisations or

details as required by different applications. Advantages of using an adapting

irregular grid for modelling the evolution of channel networks include:

• the ability to approximate any surface at any desired tolerance with a minimal

number of polygons;

• the ability to solve problems with complex non-rectangular geometries and/or

boundary conditions;

• the ability of river segments to form in all directions. A regular grid strongly

controls the direction of formation of river segments (e.g. N-S, E-W, NE-SW

and SW-NE), and the resulting channel network (this is true of the braided

cellular automata model of Murray and Paola 1994, 1997). However using a

TIN results in all directions being equally used if the slope is equal in all

directions (Braun and Sambridge, 1997); and

• the use of a dynamically adapting mesh makes it possible to vary the spatial

resolution across the landscape. For example, spatial resolution may be

increased around channels and kept low in areas experiencing only diffusive

mass transport.

Elevation and other state variables are computed at the nodes rather than within

the triangles (a finite-difference rather than a finite-element approach).

3.5. Routing of flows OD the grid.

Cascade employs a Voronoi based approach to drainage networks and flow

routing (water and sediment fluxes). Any flow originating within a node's
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Voronoi polygon is routed downstream along the steepest edges that are connected

to that node. Therefore, the contributing area at node i is equal to the sum of the

Voronoi areas of all nodes upstream of i (including i itself). An advantage of this

approach is that it lends itself to finite-difference modelling, because each node

has a unique watershed and drainage direction applied to it. The primary

disadvantages are that drainage boundaries are defined by Voronoi polygons rather

than by triangles and that flow pathways and gradients are forced to follow

triangle edges (Figure 3.3).

3.6. Flow directions.

In the original version of Cascade one receiving node was found for each donor

node; the receiving node was the node with the steepest downhill slope from the

donor. However to allow for braiding, channels need to be able to bifurcate. It

was therefore necessary make alterations to the code to allow two potential

receiving nodes to be found.

To identify flow directions the two steepest channel bed slopes from a node i to its

neighbours} and k are identified and the nodes} and k are stored as receiver nodes

of node i (Figure 3.3 and Table 3.1). If both receiving nodes are downslope from

the donor node (i.e. both of the channel bed slopes to the receiving nodes are

positive) the receivers are stored in the order of steepest positive slope.
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node i
hi

Lik

Figure 3.3. TOP: 2D schematic illustration of flow routing along the TIN node network. Blue lines
are flow pathways. BOTTOM: Schematic diagram offlow splitting between two receiver nodes. i,
j and k are nodes, hi, hj and htc are the elevations of nodes i, j and k respectively. Lij is the distance
between nodes i and j, Lik.is the distance between nodes i and k. Sij is the slope between nodes i and
j and Sik is the slope between nodes i and k.

In the case of the donor node being a point of local minimum elevation the least

steep negative channel bed slopes to two neighbouring nodes are identified and

these nodes are stored as receiving nodes. This scenario is included because in

prototype braided rivers ponding does not often occur; flow momentum or a

positive water surface slope usually drives water up a negative bed slope. Uphill

receiving nodes are stored in the order of least steep negative slope. In the case of

a channel bed slope having a gradient of exactly zero, the value of the slope is set
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to 0.000001 to avoid the problem of numerical instabilities in the water and

sediment routing routines.

Receiving nodes Receiving nodes Ordering of Schematic diagram
identified. stored. receiving nodes by of water routing.

slope.
Both receivers downhill j, k s, Sk> 0
(slope to both receivers -:are positive).

Sk> 0

One receiver downhill, j J
one uphill or with a zero ::<slope.

Sk~ 0

Two uphill receivers j, k Sj < s,« 0
(slopes to both receivers -:are negative).

s,« 0

One receiving node with j Sj = 0.000001
zero slope, one with an

~

uphill slope (negative
slope).

Sk< 0

..Table 3.1. Sununary of receiving nodes and flow directions. Sj,k = slope from donor node to
receiving node j or k. Black arrows indicate that water is routed to the receiving node; grey arrows
indicate that water is not routed to the receiving node even though the receiving node has been
identified.

Every link is given a characteristic channel length, Lij or L;k, defined as the

distance between the provider node (node i) and receiver node (j or k), and slope,

Si, defined as the height difference between the donor and receiver nodes divided

by the length (Figure 3.3), Every node also has a surface area, which is the area of

the Voronoi polygon, Ai.
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3.7. Node ordering - the Cascade algorithm.

At every time step, discharge and sediment load at each node are updated. The

original version of Cascade ordered nodes using the Cascade algorithm (Braun

and Sambridge, 1997). This was deemed computationally more efficient than a

complete re-ordering of all nodes at every timestep. The Cascade algorithm

operates by proceeding through the nodes so that when the height of node t is
updated, the heights of nodes upstream of node i have already been updated, and

their contributions to the sediment load and water flux have already been

computed (Braun and Sambridge, 1997). This was achieved by giving each node a

parcel of water and determining which nodes are able to donate the water to

downstream nodes (a bucket passing algorithm). Any nodes that did not receive

any water were ordered first (these are nodes of local maximum elevation). Nodes

that received water were then ordered (channel nodes) by listing all nodes in each

channel separately according to the position in the channel in which they were

located (i.e. from channel head to channel output) and finally, and nodes that are

"self-donors", i.e. nodes of local minimum elevation and have no downhill

receivers and nodes on boundaries were ordered (if the boundaries are not

periodic). Nodes were therefore organised in the order:

• local maximum nodes (nodes that do not receive water from any other nodes

but can donate water to other nodes);

• nodes in channels (nodes that receive water from upstream nodes and can

donate water);

• self-donors (these nodes receive water from upstream nodes but cannot donate

to other nodes as they have local minimum elevation), and boundary nodes.

The bucket-passing algorithm is computationally efficient and gave the correct

results when implemented in the original version of Cascade where only one

receiving node was identified. However, when dealing with channel bifurcations

and two downhill receiving nodes the problems were encountered. The bucket

passing algorithm was unable to deal with two receiving nodes and classified the
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second downstream receiving node identified as a channel head (i.e. a node of

local maximum elevation) as it deemed that the donor node would pass all of it's

water to the first receiver identified (i.e. water is passed along the steepest slope

between donor and receiver nodes). Nodes are listed in order from channel head to

channel output for each channel; therefore the second receiving node was placed

near the start of the ordering with all of the other nodes classified as channel

heads. No water would therefore be passed to the second receiving node as the

node had been identified as a node of local maximum elevation and previously

listed in the ordering. Therefore channels downstream from any second receiving

nodes would remain dry (see Figure 3.4).

Uphill receiving nodes also caused problems as the bucket passing algorithm can

only pass water along positive slopes (i.e. to downhill receiving nodes). Therefore

in scenarios in which a donor node has two uphill receiving nodes the donor node

would not pass water but would store water and create a "lake" and the node

would be classified as a self-donor. As Braided Cascade can identify uphill

receiving nodes and therefore contains no ponding of water this was producing

incorrect results.

Therefore for runs on flume-like slopes, with a slope gradient in the x direction, a

new node ordering routine was implemented. Node ordering is now achieved by

ordering all the nodes in ascending order by their x co-ordinate. Nodes at the top

of the slope will be the ones with the smallest x co-ordinate value. Therefore

nodes are ordered uphill to downhill according to the average grid slope. This

ordering routine requires a complete ordering of all the nodes at each time step.

This is slightly less computationally efficient than the Cascade algorithm and

causes each timestep to be processed at a slightly slower speed than if using this

algorithm (see Braun and Sambridge (1997) for typical processor time required to

perform timesteps). However the new node ordering routine solves the problem of

channel bifurcations (see Figure 3.4) and negative slopes to receiving nodes.
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3.S. Water routing and runoff.

In the original version of Cascade water was added to the grid in the form of

precipitation, orographically controlled by topography and assuming a prevailing

wind direction. In Braided Cascade water is input to the grid in the form of a

discharge at one or more specified input points along the upstream boundary. At

every timestep the program can read in a discharge of water (see Figure 3.4).

Discharge may be constant at each timestep or may vary from timestep to timestep

(but not within a timestep); therefore hydrographs can be run.

Water routing is based on the water surface slopes between a donor node i and

nodes} and k that receive from i. Water collected at a point on the grid, node i, is

routed downslope to the two receiver(s) of the node, following the edges that have

the steepest downhill water surface slope. If a node is a point of local minimum

elevation (i.e. a pit) with no downhill route away from the node, water may be

routed to the neighbour(s) with the least steep uphill water surface slope; thus the

model does not include ponding.
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8.

2.

8.

8.00 10.00 12.00 14.00 16.00 18.00 20.00

Figure 3.4. An example of a OEM input into Braided Cascade to illustrate problems with node
ordering encountered by the bucket passing algorithm (BPA). TOP: 3D view of OEM on a square
grid using Surfer 6 (Golden Software 1994). MIDDLE: Channels delineated using the BPA, note
that after the bifurcation all water is routed to the first receiver node, the second receiver node is
classified as a channel head and does not receiver water from upstream, thus the second channel (in
red) remains dry. BOTTOM: Using the new node ordering gives the correct outcome; water is
split between the two channels downstream of the bifurcation. Flow is from left to right for middle
and bottom diagrams.
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3.S.1. Donor nodes with two downhill receiving nodes.

If a node i donates to two other nodesj and k, andj and k are both downslope, (Le.

both the channel bed slopes to the receiving nodes are positive), the proportion of

the total discharge distributed to each receiving node is calculated using:

(Q rule 1)

where rsi is the ratio of the channel bed slope from node i to one of its receiver

nodes j, Si is the channel bed slope from node i to the receiver node, and n is a

constant taken as 0.5 after Murray and Paola (1994, 1997). The water distribution

rules represent an approximation to momentum conservation. Following Murray

and Paola (1994,1997) Q rule 1 (and Q rule 2 below) can be derived from the

equation of motion for uniform flow in a wide channel:

T=pghS (3.1)

where T is the mean shear stress the flow exerts on the bed (pa), p is the density of

water (kg m"), g is acceleration due to gravity (m S"2), h is water depth (m) and S

is the water surface slope. Combining this with the relationship between T and a

representative flow velocity (V, m S"I) (Vemard and Street, 1961):

(3.2)

(where f is the (Darcy) friction factor that depends on roughness and Reynolds

number) to get:

(3.3)

where C=8g/fis the Chezy roughness coefficient, which can be expressed as:
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(3.4)

where roughness is given by Manning's n, assuming a wide flow h is substituted

for R, the hydraulic radius (m) (Vernard and Street, 1961). Using equations 3.3

and 3.4 and the expression:

q=hV (3.5)

for the discharge per unit width q (m2 S·I) leads to:

(3.6)

Using the channel bed slope ratios to both receiving nodes, a discharge ratio, Qr

(qratio) is computed to determine whether or not the water discharge will be split

between the receiving nodes:

where n=l, 2 (3.7)

Where Qr is the proportion of water at node i distributed to the first donor (when n

= 1 only)and rn and ra are channel bed slope ratios for the first and second
..

receiving nodes respectively. Discharge is not split if Qr is greater than Qr = 0.8

(i.e. more than 80 % of the water from the donor node goes the first receiving

node - this is the node with the steepest downhill slope from the donor node); in

this case all water from the donor node is routed to that one receiver node

(different values of o: have been tested and these are discussed in Chapter 5).

Water at the receiving nodes} and k is then calculated by multiplying the water at

the donor node i by the discharge ratios for receiving nodesj and k (Qr and (1 -

Qr) respectively).
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If discharge from node i is distributed between the two receiving nodes j and k,

(Le. Qr is less than 0.8), the program uses the initial distribution ratios based on

bed slope and iterates to calculate the proportion that would be routed to each

receiving node using the water surface slope (Figure 3.5). Water surface slope is

used here in preference to bed surface slope as positive water surface slopes may

drive flow across areas of negative channel bed slopes. This is a departure from

and improvement on the model of Murray and Paola (1994, 1997) that did not take

into account water depth or water surface slopes. Water depth and thus water

surface slope is calculated by applying the hydraulic geometry equation of

Ergenzinger (1987) to the amount of water at both donating and receiving nodes.

The equation was derived for single braids in the Butramo River, Italy, using the

standard hydraulic geometry form:

(3.8)

where h = flow depth (m), Q = discharge (m3 s-\ and a and b are empirical

constants determined by Ergenzinger (1987) (for their values see Table 3.4).

Water surface slope is calculated using the water depth at each node. The water

surface slopes between the donor and receiving nodes are used to compute a slope

ratio for each node, which is then used to calculate the proportion of discharge to

be distributed to each receiving node. This discharge ratio is compared to the ratio

calculated using bed slopes and if it is within a given tolerance specified by the

user, the amount of water routed to the receiver nodes is calculated using the ratio

of water surface slopes. If the difference between the two ratios is greater than the

tolerance, the program iterates until the difference between the ratios are within

the given tolerance (Figure 3.5).
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Water distributed to receivers using channel bed slope (iteration 1) ~I------,
or previous version of qrest (iterations> 1)

Calculate error between discharge ratio using
qrest and ratio using updated water surface slopes

Calculate water surface elevation

Calculate water surface slope to receiver nodes

Calculate discharge ratio using water surface slopes

Continue to sediment routing

Figure 3.5 Flow chart showing computations involved in iterations to calculate distribution of
water between receiver nodes according to water surface slope.

3.8.2. Donor nodes with two uphill receiving nodes.

If both channel bed slopes from the donor node to the receivers are negative the

proportion of water distributed to each receiver node is calculated according to the

equation

[-Srn
r. = -==---....;._--
SI L([-Sj ])-n

}=1,2

(Q rule 2)

Where n is the constant described above for Q rule 1.
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The discharge ratio, "upratio," is computed using the channel bed slope ratios for

both receiver nodes. Once again if upratio, (Qru), is greater than a: (= 0.8

initally), all water is routed to the first receiver node (the node with the least steep

negative slope). The value used for upratio has also been SUbjectedto sensitivity

analysis and this is discussed in Chapter 5.

Water surface heights at the donor and receiving nodes are then calculated by

applying the hydraulic geometry equation (3.8) of Ergenzinger (1987) and the

water surface slope between the donor and receiving nodes is calculated. If the

water surface slopes to both receiving nodes are positive (downhill) then water at

node i is split using (Q rule 1) and substituting water surface slopes for channel

bed slopes. If the water surface slopes to both receiving nodes are negative (uphill)

then water at node i is split using (Q rule 2) and substituting water surface slopes

for channel bed slopes. If the water surface slope to one receiving node is positive

and the water surface slope to the other receiving node is negative all water from

node i is routed to the receiving node with the positive water surface slope.

3.8.3. Donor nodes with one downhill and one uphill receiving node, or donor

nodes with only one receiving node.

If a node i has one downhill donor 1 and one uphill donor m (based on channel bed

slopes) the nodes are stored in order of steepest positive slope so the downhill

donor will be stored first. In this case all water is routed to the first receiving node,

I. If the program finds only one donor for node i (this may occur for nodes near

fixed boundaries - nodes on boundaries cannot receive water and sediment), all

water is routed from node i to the receiving node found.

3.9. Sediment routing.

Cascade (Braun and Sambridge 1997) was originally developed to simulate long-

term landscape evolution, and so modification of some of its algorithms for
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sediment transfer is required for application to modelling the development of river

bed topography over periods of up to 1 year.

Channel bed slope to 1st Channel bed slope to 20d Water distribution rule.
receiving node (with sketch of receiving node (with sketch).
slope).
Positive Positive Q rule 1. Split water if qratio <

~ ~
0.8.
Then iterate to get water surface
slopes.

Negative Negative Q rule 2.
Split water ifupratio < 0.8.
Then iterate to get water surface.> »> slopes:
Both wss positive - split water
using Q rule 1.
Both wss negative - split water
using Q rule 2.
One wss positive, one negative -
all water routed to node with
positive wss.

POSitiVe~ Negative ~ All water routed to first
receiving node.

Negative Positive

~

Does not occur as nodes are

~
ranked by positive slope so
downhill receivers will be
ranked first.

Approximately O. Negative ~ All water routed to first receiver.
• •

NegatiVe~ No second receiving node All water routed to first
receiving node.

Positive ~ No second receiving node All water routed to first
receiving node.

Table 3.2. Classification of receiver nodes and water distribution in Braided Cascade. Wss = water
surface slope. By default Q,..= Q",• = 0.8

Sediment transport by continuous diffusive hillslope processes such as soil creep

and raindrop impact is not included in Braided Cascade. All sediment is

transported within the channel network and is a purely advective process; i.e.

diffusion erosion has been turned off from the original version of Cascade.

Water transports sediment from node to node according to the local stream power.

Stream power is used in preference to shear stress to calculate sediment transport
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as water routing is discharge based and channel widths are not known. All

sediment is treated as bedload, whereas in the original version of Cascade

sediment is effectively total load. The bedload sediment transport rate is measured

by mass (in units of m3 s''); thus, the transport rate implicitly includes channel

width. Therefore, there is no correction for width to bedload transport built into

Braided Cascade. Total stream power is therefore the most reliable basis for

calculating sediment transport. The sediment transport equation takes the form:

(3.9)

Qb is the amount of sediment transported from the node in question (node i) to one

of the two receiver nodes, n is stream power ([}=QiSiP, where Si is the local bed

slope, Qi is the local discharge, p is the density of water (1000 kg m·3»and dt is

the time interval. Locally the water surface slope should be used to determine

stream power but the model is limited to using channel bed slopes. Transport can

occur on negative bed slopes in prototype rivers because momentum can drive the

flow across such areas. However, water velocity is not known in the model and

bed slopes are used in preference to water surface slopes, (also the occurrence of a

negative water surface slope caused numerical instabilities in the sediment

transport equations). Values for the constant K and for the exponent m are given in

Tables 3.3 and 3.4. These values are derived from the bedload sediment from

regression analysis of bedload sediment transport (kg S·l) versus stream power (kg

S·l) shown in Figure 3.6 for four braided rivers (Belova et al., 1975; Jaoshvili et

al., 1976; Jaoshvili and Zenginidze 1981; Davoren and Mosley, 1986;

Shvidchenko, 1997; Shvidchenko and Kopaliani, 1998; Hoey et al., 2001). The

values of the coefficient and exponent used in the control run were that of the raw

data and did not include a threshold sediment transport rate.

Murray and Paola (1994, 1997) note that incorporating a sediment transport

threshold into their sediment transport equations did not affect the qualitative

results, regardless of the magnitude of the threshold, as long as it was not large
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enough to prevent transport altogether in the first iteration. In most model runs

they used a threshold of around half the typical stream power. In the data given

below two thresholds are shown, however the inclusion of the thresholds did not

lead to significantly different results for the regression analyses, therefore the

values of the constant and exponent for sediment transport equation were taken

from the raw data with no threshold included.

Coefficient Exponent R2

Raw data 2.43 x 10.10 3.61 0.876
Best fit with a threshold (ilT = 22.8 kg S·I) 6.44 X 10.10 3.48 0.88
Using a threshold ofilT = 100 kg S-1 3.10 X 10-8 2.98 0.869
Table 3.3. Values of the constant and exponent to 3 significant figures (m Hoey et al., 2001). The
forms of the equation are: Qs = k!)m for the raw data and Qb = k(n-nt)" for equations with a
threshold. Where k is the coefficient, Qb is bedload transport, nt is the threshold sediment
transport, and n is the exponent.
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Figure 3.6. Bedload discharge as a function of stream power in the braided rivers used to generate
the constant and exponent for the sediment transport equation. Data provided by A. Shvidchenko
(pers. comm.) are from Belova et al., 1975; Jaoshvili et al., 1976; Jaoshvili and Zenginidze 1981;
Davoren and Mosley, 1986; Shvidchenko, 1997; Shvidchenko and Kopaliani, 1998.

For receiving nodes with a positive channel bed slope the maximum slope for

input to the sediment transport equations was fixed at twice the average slope of

the grid. This is to avoid out-of control positive feedback creating large scour

holes (pits) in the mesh (see also section 3.11 - deposition). Braided Cascade

contains no temporal lag (see section 3.10.2) so areas of higher erosion will only

propagate upstream very ·slowlyover time and tend to create stable areas of very
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low elevation with steep slopes surrounding these areas. These steep slopes feed

back into the sediment transport equation leading to very high sediment transport

rates and thus the low area will get lower. Compare this with the rule for

deposition (section 3.11). There is no sediment transport on flat or uphill

(negative) channel bed slopes.

In the cellular automata model of Murray and Paola (1994,1997) a value of 2.5 is

used for m which is derived from log-log plots of sediment discharge versus

stream power index for several laboratory braided streams measured by Ashmore

(1985 in Murray and Paola 1997). Murray and Paola (1994, 1997) also used a

value of 5/3 derived from expressing sediment transport formulae using bed shear

stress expressed in a form involving stream power.

Sediment transport by mass, (Qsi) (kg s"), is converted to bulk sediment transport

(by volume) (Q~i) (m3 S-l) by applying the conversion:

(3.10)

where Qsi is sediment transport in kg S-l, Q'sl is sediment transport in m3 S-l, Ps is

sediment density (set at 2650 kg m", the density of quartz), and A. is bed porosity

(taken as 0.3, e.g. Hoey and Ferguson, 1994).

3.10. Erosion length scales.

3.10.1. Spatial lag effects in bed load sediment transport.

Spatial lag effects are defined as the inability of an alluvial system to immediately

overcome the presence of constrained sediment boundary conditions (Phillips and

Sutherland 1989). Constraints can arise from the presence of a rigid bed upstream

of a mobile bed, or sediment inflow rates at the upstream boundary which are

lesser or greater than the capacity of the flow to transport sediment. A certain
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distance is required before the alluvial system reaches equilibrium, this is termed

"spatial lag" (Phillips and Sutherland, 1989).

Local erosion or deposition rate is assumed proportional to the difference between

the sediment transport rate and the sediment carrying capacity. The amount of

sediment calculated by equation (3.10) is equivalent to a channel carrying capacity

(Beaumont et al., 1992; Kooi and Beaumont, 1994). The carrying capacity is

compared to the sediment available for transport at each node to determine

whether erosion or deposition will take place. It is assumed that the channel

network is not forced to carry sediment at the carrying capacity. Therefore, a

potential disequilibrium may exist between carrying capacity (Qe) and actual

sediment flux (Qj). Following Beaumont et al. (1992) and Kooi and Beaumont

(1994) if it is assumed that the system evolves towards equilibrium at a rate

proportional to the disequilibrium, sediment load along a channel changes

according to:

(3.11)

where If is a characteristic reaction time (Beaumont et al. 1992; Kooi and

Beaumont 1994). If it is assumed that the sediment transport is in steady state, i.e.

that there is no local change in sediment flux over time interval M,

dQ =0
dt

(3.12)

then:

dQ dQ dQ dQ
-=-+U -=u-
dt dt I dl I dl

(3.13)
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where:

Uf = advection velocity of the sediment flux and I = distance downstream

(Beaumont et al., 1992; Kooi and Beaumont, 1994). Under these circumstances

the time dependence of erosion or deposition takes the form of a spatial

dependence. Therefore for constant advection velocity, I is a material property

equal to the erosion-deposition length scale required for the disequilibrium to be

reduced to a factor of (lIe) when the sediment flux is constant. This leads to the

following expression of change in local topography:

(3.14)

where

Le•d (= UIt I) is a length scale for erosion and deposition.

On the local scale this leads to two situations:

1. If the sediment flux at a node is greater than the carrying capacity (Le. Qsi >

Qe), deposition occurs and the local change of height is calculated by:

(3.15)

where Ld is the length scale for deposition. There is also a maximum amount of

material that can be deposited at one location during a timestep (dhmax). This

maximum based on the notional grain size that Braided Cascade is working with

and is set to equal one median grain size per timestep to try to avoid

computational instability.
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2. If the sediment flux at a node is less than the carrying capacity (i.e. Qsi < Qe),

erosion occurs and sediment is eroded. The local change in height is calculated

by:

(3.16)

where Le is the length scale for erosion.

Many mathematical models have assumed that the sediment transport capacity of

the flow is reached instantaneously at every point in time and space and spatial lag

effects are thereby neglected. However when constrained sediment boundary

conditions are present, Bell (1980; in Phillips and Sutherland, 1989) has

demonstrated that a certain distance is required before the transport capacity is

reached, especially under conditions of strong bed degradation (Phillips and

Sutherland, 1989). The erosion length scale for alluvial sediment takes account of

the spatial lag term in Braided Cascade.

The specification of the length scales by the user allows spatial lag to be included

in the model. The length scales determine the distance downstream from a point of

erosion or deposition that it would take for the sediment transport rate to equal the

carrying capacity. The erosion length scale for alluvial material was set at 10 times

the mean nodal spacing at the start of each run (peter Van der Beek, pers. comm.).

This is further discussed in chapter 5 when the model parameters are tested for

sensitivity.

3.10.2. Temporal lag.

Under non-steady flow conditions an alluvial system has been found to be unable

to immediately respond to the changing flows. A certain time is required before

the bedform geometry, sediment transport rate and flow depth adjust to the new

flow regime. This phenomenon is termed "temporal lag" (Phillips and Sutherland,

1990). However Cascade and Braided Cascade do not take account of temporal
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lags and all water entering the grid leaves it during the same timestep. This is

equivalent to a steady flow assumption and is common, in long-term sediment

routing modelling (e.g. Willgoose et al., 1991a-d, 1994).

3.11. Deposition.

Braided Cascade does not explicitly include grain size. However there is a

maximum amount of material that can be deposited at one location during a

timestep (dhmax) and this value has been based on the notional grain size that the

model has been set to work with (the median grain size from the field site - the

proglacial stream of the Haut Glacier d'Arolla- see Section 3.16 for a description

of the field site). The inclusion of this rule avoids out-of-control positive feedback

occurring as a run progresses, without this rule the topography would eventually

consist of an unrealistic collection of deep holes and very high ridges or spires.

3.12. Numerical method used to solve the channel transport equation.

The continuity equation for bed material is conventionally written in differential

form:

oQ I = _ (1 _ A) oh
ox ot (3.17)

Where x is the longitudinal co-ordinate in the flow direction Qs is sediment

transport rate, h is bed elevation, t is time and A is bed porosity.

If the sediment flux at a node (e.g. node i), Qi is greater than the carrying capacity,

Qe (i.e. Q;>Qe) deposition occurs, the node height is updated and sediment is set to

the carrying capacity. In finite difference form equation (3.17) can be written:
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(3.18)

Where H, is the height of node i at times 2 and 1 respectively, and Aj is the surface

area associated with the node. Streams never carry more than their carrying

capacity.

If Qj <Qe erosion occurs and the node height is updated:

H - H (Qi - Qe)( i, J( 1 )
cz - i.1 + Ai L

e
•
a

p,(l-A.)

Where H,Dis the bedrock-sediment interface and Le-a is an erosion length scale for

alluvial material.

The user can fix the thickness of the alluvial material, the position of the interface

between alluvium and bedrock. By fixing the bedrock-alluvium interface at a great

distance below the surface it is possible to force the model to only erode within

the alluvial material. In each run of Braided Cascade the bedrock-alluvial

interface was positioned at 50 m below the original surface elevation (Figure 3.6).

Therefore no erosion occurred in bedrock. However the alluvium-bedrock

interface could be used as an analogue for an active layer of different erodibility to

the substrate.

Sediment load is adjusted:

(3.20)
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and the discharge and sediment load are passed to the receiver of node i. This is

computed for all nodes in each timestep and works from the upstream boundary

down through the network.

Figure 3.7. Schematic diagram of water surface, node elevation and bedrock-alluvial interface. See
text for definition of symbols.

3.13. Boundary conditions.

The model underwent sensitivity testing (see Chapter 5) on a rectangular grid with

a known slope, white noise random elevation perturbations of known amplitude,

and a known nodal density (Figure 3.7). A new subroutine was written to enable

the user to easily change any parameters relating to the grid. The upstream

boundary condition concerns the water and sediment supply to the upstream end

of the grid. Water and sediment may be introduced to any nodes in the first row of

the grid. An influx of sediment mayor may not be input to the upstream end of the

grid. In the case that the sediment influx specified is not equal to the carrying

capacity of the flow (i.e. the sediment influx is either greater smaller than the

amount of sediment that can be transported in one timestep) this would represent a

constrained boundary at the upstream end of the grid.
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Upstream boundary

Water and sediment input to grid

\

Known slope and
hite noise amplitud

Reflective side
__ boundaries

k---

Known nodal
density

Downstream boundary
water and sediment output.

Figure 3.8. Schematic illustration of a typical model grid used for generic runs of the model.

The elevation of first and last rows of the grid may be fixed to simulate the rigid

end walls of laboratory experiments or may be allowed to experience erosion and

deposition. In the transverse direction, the boundaries are not periodic but are

reflective (zero flux boundary condition) and are constrained by high sidewalls to

contain the flow, mimicking the sidewalls of a flume, so that the braid plain is

constrained within a certain width.

3.14. Scales used in Braided Cascade.

Table 3.4lists default model parameters and their units. Distances in the X-, y- and

z- dimensions of the grid are in meters. The model computes the mean nodal

spacing (delta) in meters and the Voronoi polygon associated with each node

(surfscale), which has dimensions in square meters (nr'). Erosion length scales for

alluvium and bedrock are defined by the user and were initially set to take the
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value of 10 times delta and 100 times delta respectively (P. van der Beek personal

communication), although these have been sensitivity tested (see Chapter 4). The

interface between alluvial material and bedrock, HjO,can be specified by the user

and, was set for all runs at 50 m below the surface to ensure that all erosion

occurred within alluvial material. The sediment transport equation computes

sediment transport in kg S-1 and discharge is taken as being in m3 S-I. Therefore,

each timestep is taken as being one second.

Model Dimensions Values Units
parameters

SURFACE PROCESS MODEL
Size of grid (x and y dimensions) nx,ny LxL Specified mxm

by user
Mean nodal spacing, LI Delta L Determined m

by program
Size ofVoronoi polygon of node, Ai Surfscale LxL Determined m"

bypr~am
OVERALL DEM I GRID
Slope, Si Gradient - Specified -

l>Y user
Amplitude of white noise random Ampnoise L Specified m
topography by user
Timestep dt T I seconds
WATER TRANSPORT*
(h=aQ ")
Water depth coefficient a - 0.16 -
Water depth exponent b - OJ7 -
SEDIMENT TRANSPORT
(Qs=1ffi ~
Sediment transport coefficients> K - 2.428xlO-'U -
Sediment transport exponents" m - 3.606 -
Maximum amount of material that dhmax L 0.007751 m
may be deposited in one timestep
(based on grain size at Arolla).
Erosion length scales

Alluvial material Le .• L 10 X delta m
Bedrock .Le.b L 100 x delta m

Table 3.4. Model parameters, dimensions, values and uruts. All model parameters have uniform
values in space and time.
• Values for coefficient and exponent taken from Ergenzinger (1987) .
•• From Hoey et al. (200 I).

3.15. Summary of model development.

Cascade (Braun and Sambridge, 1997) was developed to simulate long-term

landscape evolution. Braided Cascade has been developed from the original
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model and has been modified so that it can be applied to short term process

modelling. Delaunay triangulation is used to generate a computational grid, which

minimises the maximum internal angle of the elements. Water is routed through

the model from one or more specified input points and flow may divide around

bars based on the relative water surface slopes to different possible receiving

nodes. Sediment transport is based on local stream power, which is calculated

using channel bed slopes. The model incorporates a length scale for erosion but no

temporal lags are included, which is equivalent to a steady flow assumption. The

model does not explicitly include a sediment size; however there is a maximum

amount of material that can be deposited during one timestep and this is

equivalent to a notional grain size.

The modelling approach is simplified and takes no account of detailed flow

hydraulics. The intention is to model the overall spatial patterns of sediment

transport, deposition and erosion and to analyse these in terms of their net

statistical properties, rather than to produce accurate predictions of processes at

particular localities. In this respect, the modelling approach is synthesist and

braiding is an emergent phenomenon.
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CHAPTER4.

DATA USED IN MODEL VALIDATION.

To meet the research aims set out in Chapter 1 and to gather data for input to

Braided Cascade requires the identification of dynamic braided river systems. It

was decided to collect field data from a braided river in a proglacial setting. Such

a setting has been chosen as proglacial rivers are often braided and competent

flows (those able to move sediment) are achieved daily at predictable times.

The proglacial river chosen for this study was that of the Haut Glacier d' Arolla,

located above the village of Arolla at the head of the Val d'Herens, Valais,

Switzerland. The Haut Glacier d' Arolla is a typical high Alpine glacier, 4 km long

with an area of approximately 6.33 km2 and an altitudinal range of 1000m (Sharp

et al., 1993; Nienow et al., 1998). The glacier terminates approximately 2560m

above sea level. The glacier is drained by a proglacial stream that enters an intake

for the power scheme 950 m from the glacier snout. Stream discharge and

meteorological data are provided by Grande Dixence S.A. A brief description of

the relevant field data collected and analysed is presented here, for an in depth

discussion of bedload sampling and grain size characteristics see Hoey and

Cudden (in press).

4.1. Fieldwork program and instrumentation.

Data were collected from a 160 m section of channel within the braided reach of

the proglacial river in July 1999. Data were obtained to enable specification of

model boundary conditions and to establish the accuracy of model output. The

study reach, which was situated approximately 500m from the glacier snout,

consists of a braided system with flow diverging and converging around numerous

bars. The reach was laterally constrained by a steep ice cliff on the west side of

the reach and a moraine ridge to the east (Figure 4.1). The flow then spread

through a braided network across an aggrading alluvial plain. In previous years
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the reach had been a proglacial lake, however in 1999 the lake had drained

creating a wide braid plain. The reach is concave and fines rapidly in the

downstream direction. Characteristics of the study reach are given in Table 4.1.

= Wolman sites

n I

870 950
I

1010
I

1050890 910 930

e
Figure 4.1. Position of survey transects (in red), bridge site (in blue) and Wolman count sites (in
green) shown on contour map of reach on 16/7/99. Each grid square is 20m x 20m.

Distance from glacier 512 m
snout
Reach length 150 m
Width of anabranch 4.47 m
Slope of thalweg (bridge 0.0281/0.029
reach) [18.7.99/20.7.991
Water surface slope - 10.0237
118.7.99/20.7.991

Table 4.1. Details of the study reach.
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4.2. Sediment characteristics.

The grain size distribution of the whole reach was characterised by surface pebble

counts and by both surface and subsurface bulk sampling and sieving. Grid-by-

number sampling (Wolman, 1954) is commonly used to characterise the size

distribution of exposed fluvial sediments. Individual clasts are classified using

square 0.50 openings on a template and the results are directly equivalent to

conventional bulk sieve analysis of subsurface sediments (Church et al., 1987;

Rice and Church, 1996).

It is important that the sample size generates a distribution that is statistically

significant. Wolman (1954) recommended a 100 clast sample for a statistically

significant estimate of the median grain size (Dso), however Rice and Church

(1996) recommended a sample size of 400 clasts to obtain statistically significant

estimates of percentiles of typical fluvial grain size distributions. Precision is not

improved greatly with sample sizes greater then 400 clasts (Rice and Church,

1996). Surface pebble count distributions for 5 locations in the braided reach were

carried out by randomly sampling at least 400 particles from exposed bars within

the braid plain (Table 4.2).

Location D50(mm) D95(mm)
1 33.93 85.9
2 36.82 85.0
3 35.24 76.4
4 29.21 55.8
5 17.59 35.4

Table 4.2. D50 and D95 percentiles for Wolman counts at five different locations on the
braidplain.

Separate bulk samples of surface and subsurface sediment were collected from

one exposed bar which was situated upstream of the bridge by combining

different subsamples from different points on the bar, using the method of Wolcott

and Church (1991). Surface bulk samples were removed to the base of the largest

visible clast present at the surface, subsurface samples were excavated from below

this level for at least the same depth again.
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According to the criteria of Church et al. (1987) the largest clast in a sample

should comprise ~ 0.1% of the sample mass to reliably estimate the parameters of

the size distribution. This value is raised to 1% for maximum particle sizes of 32

to 128 mm (Church et al., 1987). However to adhere to this criteria yields sample

sizes of over 4800 kg (Table 4.7, Figure 4.6). In order to speed up the field

procedure, whilst maintaining a statistically significant representation of the grain

size distribution, samples were truncated at 64 mm. All particles greater than 64

mm were measured and weighed in the field. A sub-sample was taken of particles

between 64 mm and 8 mm, which was sieved and weighed in the field. Particles

below 8 mm were sub-sampled and removed to the laboratory for detailed grain

size analysis. The sub-sample mass was determined based on Church et al. (1987)

by assuming a density of 2650kgm-3 (i.e. quartz) a 64mm clast weighs c.a. 0.36

kg. Thus a sub-sample mass of at least 36kg of all sediment less than 64mm was

sieved in the field. This was again truncated at 8mm and a sub-sample of c.a. 400g

was removed to the laboratory. These samples were dried, weighed and sieved

into half-phi fractions. Bias and precision of the percentiles of the distributions

were calculated following Ferguson and Paola (1997).

Surface and subsurface sample data are presented in Figures 4.2 and summarised

in Tables 4.3 to 4.5. The particle size distribution of surface and subsurface

material shows a mode spanning the 64 - 90 mm size class (surface) and the 90-

128 mm size class for the subsurface sample. However, the percentage of material

in each size class falls away rapidly for the subsurface sample indicating that the

large size class are dominated by one or two clasts only. The bed material size

distributions are therefore negatively skewed. Negative skewness is common in

gravelly bed material (Kondo If and Matthews 1993) and indicates a fine

component that is abundant enough to impose a fine tail on the overall distribution

but not enough to impose recognisable bimodality (Folk and Ward 1957; Lisle

1995). The ratio of the surface Dso to the subsurface Dso is 2.44 indicating that the

channel is armoured.
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Largest clast (g) Sampled weight (tonnes) Largest clast as % of sample
weight

Surface 4800 0.49 0.97
Subsurface 2058 0.21 0.98

Table 4.3. Maxunum clast SIZeand total mass sampled for surface and subsurface bulk samples.

45

40

35
til 30
til
ell 25-o
t: 20.....
';f( 15

10

5

0

Surface Subsurface
Total mass sampled (kg) 497.4 (wet weight) 209.2 (wet weight)
Critical sample size for 181 109
negligible bias for D84 (kg)
(Ferguson and Paola, 1997)
Critical size for onset of 2050 3475
improved precision for D84
(kg) (Ferguson and Paola,
1997)
Standard deviation of grain 0.445 0.606
size percentiles. ..

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10

Fine Grain size / psi Coarse

• Surface grain size distribution • Subsurface grain size distribution

Figure 4.2. Surface and subsurface bulk samples, Arolla 1999.

Percentile Surface (mm) Surface (psi) Subsurface (mm) Subsurface (psi)

D5 3.54 1.82 1.27 0.34

D16 23.8 4.57 5.51 2.46

D50 77.5 6.28 31.8 4.99

D84 124 6.96 87.8 6.46

D90 143 7.16 101 6.66

D95 161 7.33 114 6.83

Table 4.4. Percentiles of bulk grain size distribution data m mm and m pSI umts (to 3 s.f.).

Table 4.5. BIas and precisron of bulk samples calculated accordmg to the method of Ferguson and
Paola (1997).
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4.3. Point bedload sampling - Helley Smith sampling.

Point bedload sampling was carried out to investigate sediment transport into the

braided reach. Sampling was carried out from a single-span bridge that did not

influence the flow. Bedload was sampled throughout the rise and fall of the

hydrograph on the 18th and 20th of July. Characteristics of the sampling

programme are shown in Table 4.10. Bedload samples were collected using

double sized HeIley-Smith samplers (152 mm) fitted with sampler bags of 0.25

mm mesh. Laboratory calibration of Helley-Smith bedload samplers indicate that

the hydraulic efficiency of the samplers is approximately 1.54. This value has

been found to be constant for a range of flow conditions in experiments, the range

is applicable to many natural streams. The study indicates that the sample bag can

be filled to 40% capacity with sediment of diameter greater than that of the

sampler bag mesh size, without a decrease in hydraulic efficiency (Emmett,

1979).

One sampler was placed on the bed in the middle of the reach in the area of fastest

flowing water. The sampler was left on the bed for 2 minutes (1817/99) and 30

seconds (2017/99) before being removed, emptied and replaced. Samples were

bagged and labelled immediately. Bedload samples from 2017/99 were brought to

the laboratory where they were dried, weighed and sieved into half phi fractions,

samples from 1817/99 were not sieved. A time series of the bedload samples

collected is shown in Figures 4.7 and 4.8; summaries of sample weights, bedload

transport rates and grain size characteristics of bedload samples are given in Table

4.11. For a full discussion of the causes of the bedload pulses see Cudden and

Hoey (in press).

Helley-Smith bedload sampling 1817/99 1,017/99
Number of samples 55(54 bagged} 158 (115 baggedl
Sampling interval 120 seconds 30 seconds
Total sampling time 3 hr 13min 6 hr 2 min
Minimum transport rate (g/m/s) 21.1 13.5
Maximum transport rate (g/m/s) 1964 3735
Mean transport rate (g/m/s) 590 724. .Table 4.6. Characteristics of the bedload sampling progranune .
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Figure 4.3. Time series of unit bedload transport (g m" sol), 18/7/99.
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Figure 4.4. Time series of unit bedload transport (g m" sol), 20/7/99.
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1817/99 2017/99
Sample weights (g) Time Time
Minimum 263.4 18:03 61.5 15:50
Maximum 17909.4 15:46 17032 18: 15
Mean 5574 3304
Transport rates (21rn1s) Time Time
Minimum 21.1 15:00 13.5 15:50
Maximum 1964 15:46 3735 18:15
Mean 590 725
Percentile Minimum Maximum Minimum Maximum

(mm) (mm) (mm) (mm)
D50 Not sieved Not sieved 0.34 45.59

time: (15:56) time: (14:55)
D84 Not sieved Not sieved 0.50 91.87

time: (15:56) time: (14:471
D9s Not sieved Not sieved 0.71 115.4

time: (15:56) time: (14:47)..
Table 4.7. Bedload sample weights (g) collected, summary of gram size characteristics of bedload
and summary of bedload transport rate characteristics.

4.4. Summary of field data collection.

The field site and fieldwork programme has been introduced. Field site

characteristics will be used to set up initial and boundary conditions for model

sensitivity analysis that follows in Chapter 5. Bedload transport rates will be

discussed further in Chapter 6.

4.5. Flume data (Zarn 1997).

To investigate whether the structure of bedload time senes reflects channel

configuration (see Chapter 6) the data set of Zarn (1997) was used. Zarn (1997)

describes the laboratory channel in detail; only a brief summary of the apparatus is

described here. The laboratory channel is 26.5 m long, and 3 m wide with

adjustable width and slope. Sediment was fed into the upstream end of the channel

at a constant rate and was measured at the downstream end of the flume on

average just under every 6 minutes. The accuracy of a single bedload

measurement was ± 0.5 %, the accuracy of the medium bedload transport during

an experiment was ± 1% (Zarn, 1997). Laboratory models trap bedload across the

entire braid plain width, and provide spatial integration that is not present when

point sampling is used (Hoey et al., 2001).
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Four sets of runs were conducted using four different widths and four different

steady discharges. All runs used the same grain size distribution, with a median

grain size (050) of 1.16 mm and D90 of 1.97 mm. All experiments started on a

plane bed without any bars or bedforms. Runs are summarised in Table 4.8.

Run Discbarge Sediment Unit bedload transport rate Flume Average
name (I S-I) input rate (2m" 5-1) widtb number

(gsl) Mean Median St. dev. (cm) of
channels.

30 5 6.89 4 13.5 13.7 3.20 30 1
30 6 4 1.6 5.08 5.07 1.93 30 1
30 7 5 6.3 19.8 19.6 2.95 30 1
30 8 2.37 4 12.7 12.6 2.21 30 1

75 2 4.01 1.6 2.13 2.11 0.92 75 2.28
75 3 4.97 6.3 7.85 7.89 1.78 75 2.34
75 4 2.34 4 5.29 5.20 2.04 75 2.78
75 6 6.89 4 5.59 5.62 1.19 75 1.76

140 1 2.34 4 3.33 3.02 1.85· 140 4.6
140 2 4.98 6.3 4.41 4.29 1.75 140 3.86
140 3 3.95 1.6 1.40 1.32 0.77 140 3.88
140 4 6.9 4 3.11 2.88 1.41 140 3.38

250 2 4.02 1.6 1.05 0.89 0.84 250 4.89
250 3 5 6.3 2.80 2.57 1.52 250 5.48
250 4 2.29 4 2.07 1.79 1.40 250 5.98
250 6 6.91 4 2.50 2.26 1.48 250 3.97. .Table 4.8. Summary stanstics ofZarn's (1997) flume data.

From Table 4.8 it can be seen that channel morphology ranged from a single

channel to a braided network, depending on flume width. Zarn (1997) describes

the development of bedforms throughout each run, these are summarised in Table

4.9.
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Run name Bedforms
30 5 Dunes
30 6 Two longitudinal ribs
30 7 Transverse bars
30 8 Plane bed

75 2 Transition form of alternate bars and braided network
75 3 Transition form of alternate bars and braided network
75 4 Braided
75 6 Transition form of alternate bars and braided network

140 1 Braided
140 2 Braided
140 3 Braided
140 4 Braided

250 2 Braided
250 3 Braided
250 4 Braided
250 6 Braided

Table 4.9. Bedform development m the flume runs of Zam (1997).

Variation of transport rate will be described and discussed in Chapter 6.

4.6. Summary of Chapter 4.

This chapter has introduced primary field data and secondary data that will be

used in the sensitivity analysis and testing of Braided Cascade. Sensitivity

analysis follows in Chapter 5, further testing of the model will be undertaken in

Chapter 6.
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CHAPTERS.

SENSITIVITY ANALYSIS.

5.1. Introduction: what is sensitivity analysis and why is it necessary?

The form of sensitivity analysis used here assesses the effect on model output of a

fixed percentage change in each model parameter while holding all the other

parameters constant. Alternative methodologies are available (e.g. the Generalised

Likelihood Uncertainty Estimation (GLUE) framework, which is based on Monte

Carlo simulation for estimating the predictive uncertainty associated with models,

Freer et al. 1996). Sensitivity analysis is concerned with parameter reliability and

estimation and with reason for goodness of fit between model output and real

systems. Most sensitivity analysis is concerned with process parameters (Le.

parameters representing processes in the real world). However, a necessary stage in

model development is to conduct sensitivity analysis of model parameters (e.g.

temporal or spatial steps in the model) and of model boundary conditions, and also of

the model structure itself.

It is necessary to quantify parameters in order to specify the equations that make up

the model. Where process parameters bear a physical resemblance to the actual

attributes of the real system, calibration can be achieved by field measurements.

Where this is not the case, they may be evaluated by a procedure known as

optimisation (Kirkby et al., 1993). Optimised parameters have no "physical"

meaning, the parameter value is chosen to optimise the comparison of the model

output with real or expected results.

Sensitivity analysis should be carried out at an early stage in model development,

since this will indicate to which of the parameters the model is sensitive, which

process parameters may require particular attention in the field and may suggest
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possible changes to the model structure whilst this is still feasible (Kirkby et al.,

1993). However while a parameter may not be sensitive it may still be important to

the overall model performance (Anderson and Burt, 1985).

Braided Cascade contains several parameters whose values either have been

determined for particular field and I or laboratory conditions or have been determined

using a priori reasoning. The method adopted when testing the sensitivity of the

model is to vary a single parameter at a time from its initial value in a control run, in

order to identify which parameters exert the greatest influence over the development

of braiding. This chapter investigates the behaviour of Braided Cascade as a function

of the antecedent configuration, and suggests how the values of the model parameters

may be interpreted.

5.2. Experimental design and control run: simulation of the idealised Arolla

case.

The model was described in detail in Chapter 3. Simulations have been conducted

with a range of model parameter values, and a variety of initial and boundary

conditions. As well as addressing model sensitivity, these simulations have

implications with regard to several important issues in the evolution of braided

networks.

This chapter firstly describes an initial run of the model using reasonable first

estimates of parameter values and boundary conditions. This acts as a control run for

the sensitivity testing that follows. The aim of the control run is to determine whether

using this physically based model can simulate braiding.

The idealised conditions of the control run are based on those measured in the

proglacial stream of the Haut Glacier d'Arolla, Valais, Switzerland in July 1999 and

previously described in Chapter 4 and in Cudden and Hoey (in press). Table 5.1
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summarises the field conditions, Table 5.2 defines parameter values for the control

run and alternative values used in sensitivity analysis.

Table 5.1 Summary of conditions m the proglacial stream of the Haut Glacier d' Arolla, July 18th - 20th
1999.

Pl"02lacial stream, Haut Glacier d'AroUa 1999.
Reach length 150m
Braidplain width 75m
Slope of thalweg 0.0281 (18nl99), 0.029 (20nl99)
Water surface slope 0.0237 (20nl99)
Dso (surface bulk sample) 77.5mm..

Parameter Units Control run value Alternative values
Reach length m 250 -
Reach width m 10 -
Number of nodes in length - 250 -
Number of nodes in width - 10 -
Delta (average node m Calculated by program Calculated by program
spacing)
Channel bed slope - 0.02855· 0.01
Amplitude of white noise - 0.01 x slope x length -
perturbations
Erosion length scale for m 10 x delta·· 0.00001, delta, 100·delta,
alluvial material 1000·delta, length of grid
Dhmax m 0.07751··· o (no deposition)
Timestep, dt s 1 -
Discharge input (units per m3s·1 2 units at three nodes on the 1, 5 units at different nodes
timestep) upstream boundary. on the upstream boundary.
Sediment input at upstream m3s-1 0 Sediment equilibrium
boundary transport rate at each node

receiving water on the
upstream boundary.

Splitting parameters qratio - 0.8 0.5,0.95
and upratio
Diffusion erosion - Switched off Switched on·· .... .Table 5.2. Parameter values for the control run and alternative values used m sensitivity analysis .
• Average of thalweg slopes for 18n199 and 20nl99
•• Peter van der Beek (pers. comm. 2000)
••• Dso surface sediment determined by bulk sampling, Arolla 1999 .
•••• See section 5.4.4 for values of diffusion coefficient.

Braided Cascade was set up to perform the control run with the default grid setting as

illustrated in section 3.13. The grid is rectangular with the average grid slope based

on the field site. Within the rectangular grid, nodes are connected via Delaunay

triangulation. As can be seen from Table 5.1 the Arolla reach was 150 m long and 75
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Chapter 5. Sensitivity Analysis.

m wide. However, the grid for the control run and subsequent sensitivity analyses

was defmed as being 250 nodes long by 10 nodes wide (Table 5.2 and Figure 5.1).

Nodal density was set as being one node per metre (i.e. the length of the grid was

therefore set as 250 m with 250 nodes along the length and the width was set as being

10m with 10 nodes along the width). The nodal density was kept at one node per

metre for all runs in the sensitivity analyses. The grid size and nodal density used

were designed as a compromise for two reasons:

• to minimise computational time needed to process each timestep, (with a grid

of 1SO by 75 nodes each timestep was taking over five minutes to be

processed);

• to increase the ratio between reach length and braidplain width (with a grid of

150 by 75 nodes the length is only twice the width). This has implications for

spatial lag effects, morphological length scales and step lengths, and will be

discussed further in section 5.5.1.
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10

250

50 100 150 100 150

Figure 5.1 Diagram of the triangulated grid used in sensitivity analysis. TOP: oblique view of the grid
showing the sidewalls. MIDDLE: 2-dirnensional vertical view of the grid. BOTTOM: close up of the
grid showing the triangulated network. Water is input at x = O. Flow is from left to right.

5.2.1. Boundary and initial conditions.

Initial conditions for a run comprise grid dimensions (length, width, slope and

amplitude of white noise perturbations). In all cases, the initial and boundary

conditions were as follows: the initial condition was a uniform plane of sediment

sloped in the x-direction to which a low level of white noise was added. The

amplitude of the white noise was calculated as being 10% of the slope multiplied by

the length of the grid. The side boundaries were set as being 100 m higher than the

nodes on the braidplain, thus constraining the width of the braidplain (Figure 5.1).

Thus, the sidewalls were reflective and constituted a no-flow zone.
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For all runs the grid set up was identical, i.e. the same set of pseudo-random numbers

was used to generate the white noise for the elevation perturbations. Therefore, for all

runs the nodal positions and the random elevations were the same for the first

timestep. The grid was not set to adapt, therefore the x and Y: co-ordinates of the

nodes do not change throughout any run in this chapter. These constraints were

placed upon the grid so as to ensure that direct comparisons can be made between

runs; all runs have the same initial grid conditions, therefore any differences in final

conditions between runs are due only to changes in parameter values.

Boundary conditions for every node at each time step are water discharge and

sediment supply rate for upstream and whether or not the node is allowed to

experience erosion or deposition. For the control run the upstream boundary

condition was that of a fixed discharge Q, which was input at certain nodes, and no

sediment input at x = O.For the control run 2 units of discharge (Q = 2 m3 s") were

read into three upstream boundary nodes (nodes 2, 5 and 7) at each timestep and

discharge was held constant throughout the run. All other runs discussed here also

had a discharge of 2 m3 S·l input at nodes 2, 5 and 7 on the upstream boundary. The

effect of unsteady discharge was not considered.

The upstream boundary was allowed to erode, i.e. the elevation of the bed was not

fixed. However this chapter also reports simulations with sediment supplied to

upstream boundary nodes at a rate equal to the equilibrium sediment transport rate for

the first timestep at each node preventing aggradation or degradation at x = O.The

downstream boundary condition for the control run was that of no erosion or

deposition at x = nx (where nx is the number of nodes in the x direction along the

grid, in this case 250). This is analogous to the fixed end of a flume. In the first

instance each run was set to perform so 000 iterations (13.8 hours).

5.2.2. Spatial lag effects: the erosion length scale for alluvial material.
For the control run the erosional length scale (xlf_AL) was set to equal 10 times the

98



Chapter S. Sensitivity Analysis.

average nodal spacing (node spacing is determined by the program). The default

value for the erosional length scale was chosen after personal communication with

Peter van der Beek (2000) and was set to equal the default value of the length scale

used in the original version of Cascade when modelling long-term landscape

evolution (see Braun and Sambridge 1997). Simulations with differing values of the

length scale have been carried out and these are reported in section 5.4.1.

5.2.3. Notional grain size.

There is a maximum amount of sediment that can be deposited at one location during

one timestep, dhmax (see section 3.11). For the control run, this value was set to

equal the median grain size (Dso) of surface material at Arolla, determined by bulk

sampling. Braided Cascade operates with one grain size only, it was decided to set

the maximum amount of sediment that can be deposited during one timestep equal to

a physically realistic grain size, thus the surface Oso from Arolla was used. However

simulations were also carried out with no deposition allowed, Le. the system was

purely erosional. These results are discussed in section 5.4.2.

5.2.4. Discharge splitting ratios.

In the water routing algorithm discharge is not split if the ratio of the discharges

routed to the two receiving nodes (qratio Qr. or upratio Q114) is greater than 0.8 (see

Chapter 3 sections 3.8.1 and 3.8.2). The value of 0.8 was chosen as a first attempt at

forcing discharge to split between two receiver nodes; simulations with other values

have been carried out and these are reported in section 5.4.3.

5.2.5. The effect of lateral erosion.

Lateral sediment transport removes sediment from the banks of a channel, adding it to

the sediment load in the channels and widening the channels. Cascade incorporates

diffusion erosion to model short-range transport processes (for example soil creep,

landslides, rainsplash, surface and subsurface wash). Within Braided Cascade, the

diffusion erosion has been used as an analogue for lateral sediment transport and is

99



Chapter 5. Sensitivity Analysis.

discussed further in section 5.4.4.

5.2.6. Grid gradient.

In the control run the gradient of the grid was set to equal the average slope of the

thalweg in the proglacial stream of the Haut Glacier d'Arolla. Simulations with other

gradients were undertaken and these are reported in section 5.4.5.

5.3. Results from the control run.

Figure 5.2 shows water depth at each node for the control run after 25000 and 50 000

timesteps respectively. The initial sheetwash over the whole grid resolves itself into

channels and, as the run progresses one meandering channel is created which remains

stable at the lower end of the grid for over 25 000 timesteps. At the upper end of the

grid the discharge (input at three nodes along the upstream boundary) resolves itself

into one main channel with minor secondary channels then between about x = 30 - 60

m water covers the whole of the braidplain. This area remains stable for over 25 000

timesteps although it can be seen that within this stable area water depths at nodes

change over time.

The system experienced overall net erosion due to zero sediment input, although the

majority of nodes experienced no overall change in elevation (Figure 5.3, Table 5.3).

This can be attributed to the fact that once the dominant channel has formed at the

downstream end of the grid the flow erodes the bed and carves itself a stable channel

with steep banks that trap all the flow, so most of the bed remains dry.
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Figure 5.3. a) Histogram of overall erosion Ideposition experienced by each node for the control run
(with no sediment input at the upstream end of the grid). b). Cumulative frequency curve of erosion I
deposition in the control run for node with water (i.e.az ;to).
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The control run was repeated with sediment added to the upstream end of the grid at

every timestep. Sediment was added at the same nodes as water (i.e. nodes 2, 5 and

7). The amount of sediment added was set to equal the equilibrium sediment transport

at the node in question for the first timestep. Added sediment volumes did not change

at any node on the upstream boundary throughout the run. Figure 5.4 shows the
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Chapter 5. Sensitivity Analysis.

spatial distribution of channels on the grid after 25 000 and 50 000 timesteps, Figure

5.5 shows the time series of sediment outflux from the downstream boundary for the

control run with and without sediment. The addition of sediment did not significantly

alter the spatial distribution of channels (Figure 5.4); channels at the upstream end of

the grid (from x = 0 to x = 100) were more active than in the control run, however

below x = 100 one main channel developed and captured the entire flow.
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-;-
5.E-03IJ)

ME
><
::l 4.E-03'E
::l
0

'E 3.E-03
Cl)

E
:0 2.E-03Cl)
Cl)

1.E-03

O.E+OO
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Time(s)

I-No sediment - Sediment I
Figure 5.5. Time series of sediment outtlux for the control run with and without sediment input, after
every 1000 iterations.

The addition of sediment to the upstream end of the grid results in marginally more

sediment leaving the downstream boundary of the grid as the run progresses (1.54 x

10-1 m' S-1 for the control run with no sediment and 1.55 x 10.1 rrr' S·1 when sediment

is added at the upstream end of the grid). One main channel had formed on the

downstream boundary after 3000 iterations and by 4000 iterations this channel had

captured most of the flow (5.97 m3 S·1 out of a maximum of 6 m3 S·I), leading to a

peak outflux of sediment at 4000 timesteps.

Both runs were stopped after 50 000 iterations. If allowed to proceed, it is likely that
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in both cases the main channel would have eroded upstream and one channel would

be carved down the length of the model grid. Therefore further investigation should

be carried out to explore parameter values that lead to braiding.

5.4. Sensitivity analysis.

Changes in parameter values for runs with upstream boundary conditions of input

discharge but no sediment input will be discussed first. The upstream boundary was

allowed to erode; therefore, simulations with no sediment input are equivalent to a

degradational system.

5.4.1. Variation of spatial length scale - spatial lag.

As discussed in Chapter 3, section 3.10.1, spatial lag effects are defined as the

inability of an alluvial system to immediately overcome the presence of constrained

sediment boundary conditions (Phillips and Sutherland 1989). A certain distance,

termed "spatial lag," is required before the alluvial system reaches equilibrium

(Phillips and Sutherland, 1989). Spatial lag may also be thought of as a "step length."

The step length method identifies a typical distance of travel between sediment

source (erosion) and sediment sink (deposition) and has been applied to meandering

(e.g. Neill 1971) and braided channels (e.g. Carson and Griffiths 1989; Ferguson and

Ashworth 1992; Goff and Ashmore 1994 - see Chapter 2 section 2.5.1). The loci of

erosion and deposition in braided channels are spatially complex but have been

identified using frequent resurvey over short periods (Ferguson and Ashworth, 1992),

or by making cross-section spacing small enough to identify the downstream trend in

loci of erosion and deposition (Griffiths 1979; Ferguson and Ashworth, 1992; Goff

and Ashmore 1994).

For the control run the erosion length scale for alluvial material was set at 10 times

the nodal density (P. van der Beek, pers. comm. 2000), which was the default value

for the long-term landscape evolution version of Cascade. The length scale
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determines the rate at which the disequilibrium between transport capacity and actual

transport rate is reduced i.e. for the control run any disequilibrium that exists between

potential carrying capacity of the flow and sediment flux will be reduced to lie of the

initial volume within 10 node spacings downstream (Figure 5.6). Other numerical

models of braided network evolution have neglected spatial lag terms and have

assumed that the sediment transport capacity of the flow is reached instantaneously at

every point in space and time (e.g. Murray and Paola, 1994, 1997; McArdell and

Faeh, 2001). However, spatial lag may be important as changing the erosion length

scale should change the amount of material eroded from each node and the distance

downstream that the material is transported before being deposited. If the length scale

is small, deposition should occur very near the node from which material has been

eroded, and vice versa. To test the sensitivity of the model to spatial lag, the erosion

length scale was altered from 0.00001 to 250 (the length of the grid). Zero was not

used as this created numerical instabilities in the model, so 0.00001 was used to

approximate an instance in which the sediment transport capacity of flow is reached

instantaneously in time and no spatial lag effects occur.

/\

Potential transport rate (transport capacity)
- ...........,.....-

.............
/. __

...-_.,....;.-
///.. Actual transport rate as calculated by the

__.....;.-/ erosion length scale__ ,....
.......................

-!---_--', ..-

~ -. -,- ....~ Nodal spacing
I I ~
o 10

node in question 10 node spacings downstream

Figure 5.6. Disequilibrium between transport capacity and actual transport rate as defined by the
erosion length scale, for an erosion length scale of 10 x the nodal density (i.e. the spacing used in the
control run).
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Chapter S. Sensitivity Analysis.

Figures 5.7 to 5.11 show water depth at each node after 25000 and 50 000 timesteps

for five runs conducted with different erosion length scales (and with no sediment

input). Details of the runs are given in Table 5.3.

Run name Length 1 Length 2 Control Length3 Length 4 Length 5
run

Erosion length 0.00001* 1.00402** 10.0402 50 100.402 250***
scale (m)
Dischar2e 2 units of water at nodes 2,5 and 7
Slope 0.02855
Splitting ratios Both 0.8
(qratio and
upratio)
Sediment No/ Yes
input····
Deposition on
Diffusion off
Table 5.3 Details of runs WIth different length scales for erosion, ·O.OOOOlls used to approximate zero
to avoid numerical instabilities within the model. •• Erosion length scale equals average nodal density
(delta; as calculated by the program) .... Erosion length scale equals grid length. • ... One set of
experiments was carried out with no sediment input at the top of the grid and one set with sediment
input.

As can be seen from Figures 5.7 to 5.11 shorter erosion length scales lead to the

erosion of one main stable channel down the grid, longer length scales lead to more

channels. The spatial data plotted in Figures 5.7 to 5.11 may be summarised as

frequency distributions of water depth in each channel. In all runs, the total volume of

water added at each timestep was 6m3 S·I; if one main channel forms, all water should

be captured by this channel. Using the hydraulic geometry equation of Ergenzinger

(1987) for water depth, 6m3 s·1 equates to a water depth of 0.312 m. Runs with

numerous channels (i.e. braiding) will have a high frequency of shallow channels;

runs with one main channel will have a high frequency of deep channels. A histogram

of water depth versus frequency (as a proportion) for the five runs with different

erosion length scales is shown in Figure 5.12. In Figure 5.12 dry areas of the grid

have been omitted, however the percentage of dry area for each run is given in Table

5.4.
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Run Name (erosion length scale) 0/0 dry area after SO 000 tlmesteps. Runs
with NO sediment Input.

Length 1 (0.00001) 72.1
Length2 (1.00402) 71.9
Control run _(10.0402) 72.0
Length 3 (50) 46.8
Length4 (100.402) 42.8
Length 5 (250) 41.0

Table 5.4. Percentage dry area after SO 000 timesteps In runs with different erosion length scales and
NO sediment input.

Table 5.4 and Figure 5.12 indicate that as the erosion length scale increases, the

proportion of the grid covered by water decreases and more shallow channels are

formed. There seems to be an abrupt transition in the proportion of dry areas, this

transition takes place at length scales between 50 and 100*delta. A small erosion

length scale leads to one stable channel eroding on the grid, this channel captures all

of the flow leading to a greater frequency of nodes with a high water depth and an

increased proportion of dry areas on the grid.

Shorter length scales imply that the model reaches carrying capacity within a very

short distance of the node experiencing erosion or deposition, therefore fluvial

erosion will be transport limited. Transport of eroded material is capacity-limited and

may therefore be intermittent, thus the rate of bed material transport is almost entirely

a function of the transporting capacity of the flow (Knighton, 1984). This may be

compared with the landscape evolution models of Howard et al. (1994, 1997) and

Willgoose et al. (1991a-d, 1994), neither of which incorporates a spatial lag

component. In the model of Howard et al. (1994, 1997), fluvial erosion is advective

and in alluvial channels fluvial erosion is transport limited. Willgoose's model is

transport limited, Le. it assumes that there are adequate supplies of erodible materials

in the catchment.
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Run name Erosion Minimum Maximum Mean Standard Sum (net erosion /
length (erosion) (deposition) (m) deviation deposition)
scale (m) (m) (m)

Length 1 0.00001 -0.510 0.103 -0.0209 0.070 -52.1
Length 2 1.00420 -0.523 0.094 -0.0156 0.061 -39.0
Control 10.0402 -1.340 0.093 -0.0283 0.220 -132
run
Length 3 100.402 -0.640 0.101 -0.0082 0.088 -20.5
Length 4 250 -0.187 0.072 0.0004 0.012 l.03

. .
Table 5.5. Details of the total amount of eros ion/deposition for runs wrth different length seales (3 s.f.) .

Table 5.5 gives details of the runs in terms of total amounts of erosion and deposition.

The grids for all runs except the run with a spatial lag of 250 experience net erosion

(Table 5.5), as a result of the upstream boundary condition of an erodible boundary

and no sediment input. The greatest amount of erosion occurs during the control run,

in which the value of the spatial lag was set to the default value used for the original

version of Cascade. When the erosion length scale was set to equal the length of the

grid, (i.e. 250 m), the grid experienced net deposition, this was also the run with the

greatest number of channels at the downstream end of the grid after 50 000 time steps

(Figure 5.11); all other runs created one main channel which was relatively stable at

the downstream end.
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Figure 5.13. Time series of sediment outflux from runs with different erosion length seales.
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Figure 5.13 and Table 5.5 show that flux is not a simple result of braiding intensity.

Lag effects are not linear; therefore, the maximum erosion in the control run is due to

the interaction between spatial lag itself and the effect of the lag on channel pattern.

Thus, spatial lag leads to controls on braiding, which in turn control the net sediment

output. This suggests that the length scale affects the braiding process but not

(directly) the flux. Therefore braiding moderates total flux, however it is difficult at

this stage to eliminate spatial lag impacts on total flux.

When sediment outflux from each run is considered (Figure 5.13) it can be seen that

the greatest variation in sediment outflux occurs in the control run. When the erosion

length scale is very short (0.00001) or very long (250) the model settles into a stable

state and sediment outfluxes remain static for long periods. For short spatial lags,

(less than or equal to the nodal spacing) the model quickly evolves to a static state

with one main channel and a constant sediment output. With an erosion length scale

of 100 x delta (100.402) sediment outflux rises to a peak at around 40 000 iterations

then decreases towards the end of the run. With a long spatial lag, (e.g. equal to the

grid length) many shallow channels are formed but these are stable and the volume of

sediment output is small and constant. Therefore, from Figure 5.13 it is clear that

only three runs where the channels keep evolving are the control run and the run with

erosion length scales equal to SOand to 100 x delta; all other runs (i.e. runs with very

short or very long spatial lags ) tend to settle into static states.

The runs were repeated (excepting run with length scale = SO), with sediment added

to the upstream end of the grid at every timestep. The amount of sediment added was

constant throughout each run and the same for every run. The sediment added was set

to equal the equilibrium sediment transport of the nodes on the upstream boundary

for the first timestep in the control run. Therefore, for run under different conditions,

sediment input will not be at equilibrium. Figures 5.14 to 5.17 show the spatial

distribution of channels in each run after 25 000 and 50 000 timesteps. The results are

summarised in Figure 5.18, showing the frequency of water depths at each node
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Chapter 5. Sensitivity Analysis.

across the grid. Table 5.6 shows the percentage dry areas of each grid and Figure 5.19

shows the time series of sediment output from each grid for different erosion length

scales.

0.2

0.1

O+------,------~------._----_.------,_----_,,_----~
0.00 0.05 0.10 0.15 0.25 0.30 0.350.20

Water depth(m)

1--0.00001 --delta (1.00402)--10*delta --100*delta --250 I
Figure 5.18a. Cumulative frequency curves of water depth for runs of different length scales and
sediment input
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5.18b. Histograms of proportion of nodes with different water depth after 50 000 iterations for runs
with different erosion length scales and sediment input. Nodes with no water have been omitted.

Run Name % dry area after 50 000 tlmesteps. Runs
WITH sediment.

Length I with sediment 85.8
Length 2 with sediment 63.2
Control run with sediment 70.0
Length 4 with sediment 48.8
Length 4 with sediment 42.7

Table 5.6. Percentage dry area after 50 000 tirnesteps ID runs with different erosion length scales and
WITH sediment input.
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Figure 5.19. Time series of sediment outflux from runs with different erosion length scales and
sediment input.

Run name Erosion Minimum Maximum Mean (m) Standard Sum (net
length (erosion) (deposition) deviation erosion /
scale (m) (m) (m) deposition)

Length I 0.00001 -6.63 69.5* -0.250 1.83 -625
(sed)
Length 2 1.00402 -0.312 3.46* -0.00304 0.174 -7.6
(sed)
Control run 10.0402 -1.32 3.46* -0.0374 0.268 -93.5
(sed)
Length 4 100.402 -0.335 3.46* 0.0073 0.194 18.3
(sed)
Length 5 250 -0.232 69.5* 0.0497 1.43 124
(sed) ..Table 5.7. Details of the total amount of erosion / deposition for runs WIth different erosion length
scales and with sediment input (to 3 s.f.). *Maximum deposition occurred at the upstream end of the
grid where the sediment was being added.

The addition of sediment to the grid does not result in significantly different channel

patterns (for runs with the same initial conditions). Sediment input results in more

active channels at the upstream end of the grid (i .e. the model does not produce one

main channel at the upstream end of the grid and channels in this location continue to

evolve throughout the run), for longer a duration throughout each run. From Figure

123



Chapter S. Sensitivity Analysis.

5.19, the total volume of sediment outputted from the model runs is higher for runs

with sediment input than for runs without sediment input. However once again Figure

5.19 indicates that for very short and very long erosion length scales the model

reaches static states. Table 5.7 indicates that for all runs the maximum deposition

occurred at the upstream and of the grid. Very short and very large length scales

result in sediment amassing at the upstream end of the grid (Table 5.7); sediment

input is obviously not at equilibrium in these conditions. For the other runs a

maximum amount of deposition is reached but is moderated by the transport rate,

which is in turn affected by the length scale.

Therefore, it can be concluded that significantly different results do occur for runs

with different erosion length scales. Very short erosion length scales tend to produce

one main stable channel on the grid that captures all of the flow. Sediment output

from these runs fluctuates as the channel is evolving then becomes constant when the

channel has been eroded. These results indicate that for braiding to occur there must

be a large disequilibrium between the sediment available for transport and the

transporting capacity of the flow. In other words, in the presence of a constrained

upstream boundary, a braided system will evolve if the network is not immediately

able to overcome the constraint. However, if the spatial lag is very long, Braided

Cascade will tend to evolve to a static state with no channel evolution and constant

sediment output.

5.4.2. The effect of no deposition.
Brotherton (1979) differentiates between depositional braiding patterns (which

develop in response to depositional induced erosion) and erosional braids which are

initiated directly by a discharge with excess shear stress. Paola (2001) and Murray

and Paola (1994, 1997) demonstrate the importance of deposition in braiding.

Braided networks balance confluences and diffiuences (tributaries and distributaries),

and require equal measures of erosion and deposition: reversible entrainment.

Cohesionless sediments are eroded and redeposited in response to local gradients in
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flow strength (Paola 2001). Deposition is the main process for the development of

braiding via central bar deposition, however all other mechanisms require erosion and

subsequent reworking of deposits (see Chapter 2, Table 2.1). A dendritic topology is

the product of irreversible entrainment; once eroded material cannot readily be

redeposited (Paola, 2001) and, without redeposition, once the flow gathers it can

never split. Murray and Paola (1994, 1997) demonstrated the importance of

deposition in the evolution of braided networks in their cellular automata model. If

deposition was prevented the drainage system that evolved was dendritic rather than

braided; channels formed anywhere on the grid and a dendritic erosion pattern

resembling rills developed (Murray and Paola 1994, 1997; Paola, 2001). However, in

these experiments water was introduced over the whole grid surface, and not

introduced only at the upstream boundary.

A simulation in which there was no deposition was conducted to investigate the role

of deposition in producing a braided channel network; Figure S.20 shows water depth

after 25 000 and 50 000 iterations of this run. Water was introduced to the upstream

boundary of the grid only. As can be seen from Figure 5.20 one stable main channel

is quickly eroded and is stable for over 2S 000 iterations. This result is very similar to

the control run (Figure 5.20) however the channels in the run without deposition

established themselves more quickly due to the fact that all sediment, once entrained,

was removed from the system (Figure 5.21). The model results suggest that instead of

the ongoing change of the braided system, static dendritic patterns develop without

local redeposition. Dendritic channel patterns also formed using the original version

of Cascade as a long-term landscape evolution model with rainfall over the whole

grid (see Braun and Sambridge, 1997).
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Figure 5.21. Time series of sediment outtlux from the control run and a run with no deposition. More
sediment is removed from the run with no deposition as, in this run, all sediment entrained was
removed from the system.

5.4.3. Discharge splitting ratios (values of qratio and upratio).

In the water routing algorithm discharge is not split if the ratio of the discharges

routed to the two receiving nodes (Qr or Qm) is greater than 0.8, (see Chapter 3

sections 3.8.1 and 3.8.2). lfthe slopes to both receiving nodes are positive, all water

goes to the receiving node with the steepest downhill slope from the donor node; if

both slopes to the receiving nodes are negative, all water is routed to the node with

the least steep negative slope. The value of 0.8 was chosen as a reasonable first

approximation, however other values of Qr and Qm have been tested, these are

outlined in Table 5.8.

Run name Value of qratlo, o. Value of up ratio, Qru
Control run 0.80 0.80
DratioO.95 0.95 0.95
DratioO.5 0.50 0.50
QratioO.8 upratioO.95 0.80 0.95
QratioO.95 upratioO.8 0.95 0.80

Table 5.8. Summary of test runs usmg different values of the discharge ratios Q,and Q",.
Dratio = both qratio and upratio.
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Values of Qr and Qru were varied together and individually (Table 5.8) to test whether

water routing along positive or negative bed slopes is more important for braiding. In

theory the greater the value of the discharge ratios, the easier it should be for

discharge to split and be distributed to both receiving nodes and vice versa. This is

because it should be unusual to have high slope ratios (unless of course the model has

eroded a canyon with steep slopes).

The models of Murray and Paola (1994, 1997) and Thomas and Nicholas (2002) do

not have the ability to constrain flow divergence; all water in one cell is split between

the three (Murray and Paola, 1994, 1997) or five (Thomas and Nicholas, 2002)

downstream cells according to the local bed slope to each downstream cell. The

ability to constrain flow divergence is a purely model parameter and has no direct

equivalence in prototype rivers, however in practise it may be thought of as a

momentum related term. The parameter has been tested to determine it's sensitivity

for model output.

Figures 5.22 to 5.25 show results of runs with different values of Qr and Qru (and with

no sediment input), Figures 5.26 to 5.28 show results of the same runs but with

sediment input at the upstream end of the grid. The spatial results are summarised in

Figures 5.28a-b (runs without sediment) and 5.29a-b (runs with sediment), percentage

dry areas of each grid are given in Table 5.9.
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Figure 5.29a. Cumulative frequency curve of water depth for runs with different qratio and upratio
values and no sediment input.
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Figure 5.29b. Histograms of proportion of nodes with different water depth after 50 000 iterations for
runs with different qratio and upratio values and no sediment input. Dry nodes have been omitted. q=
qratio, u = upratio.
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Run Name % dry area after 50 000 % dry area after 50 000
timesteps. Runs with NO timesteps. Runs WITII
sediment. sediment.

Control run 72.0 70.4
Dratio 0.95 62.2 51.0
Dratio 0.5 89.9 -
Qratio 0.8, upratio 0.95 73.0 87.8
Qratio 0.95, upratio 0.8 72.4 75.9

Table 5.9. Percentage dry area after 50 000 timesteps m runs with different discharge ratios With and
without sediment input.

0.6

0.5+-------~------~------~------~------~------~---
0.00 0.20 0.25 0.300.05 0.10 0.15

Water depth

l-bothO.95 -qO.8, uO.95-qO.95, uO.8-bothO.8 (controlrun)I
Figure 5.30a. Cumulative frequency curve of water depth for runs with different qratio and upratio
values and sediment input.
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5.30b. Histograms of proportion of nodes with different water depth after 50 000 iterations for runs
with different qratio and upratio values and with sediment input. Nodes with no water (i.e. water depth
= 0) have been omitted. Bins are in steps ofO.OI m. q= qratio, u = upratio.

From the figures, it can be seen that lower values of Qr and QnI lead to greater flow

convergence and vice versa. When both Qr and QnI are set to equal 0.5 the flow

quickly resolves itself into one stable channel, which incises, captures all the flow and

runs the length of the grid (Figure 5.30, no run was carried out Qr and Qru = 0.5 and

with sediment input). When both Qr and QnI equal 0.95 (Figure 5.23) a greater

number of shallow channels are formed when compared to the control run, and when

sediment is introduced to the grid (Figure 5.26) the channels continue to evolve

throughout the course of the run. These results confirm the theory above.

When Qr and Qru are varied individually the results are more complex. When Q,. is

equal to 0.95 and Qnl is equal to 0.8 it should be easier for flow to diverge along

positive slopes than along negative slopes. From Figures 5.29, and 5.30 it can be seen

that compared to the control run, runs with Qr equal to 0.95 and QnI equal to 0.8

produced more shallow channels. When Qr is equal to 0.8 and Qru is equal to 0.95
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(Le. it is easier for flow to split along negative slopes than along positive slopes) there

are more channels with water depth of approximately 1 to 4 cm (sheet flow) but fewer

channels with water depth of approximately 7 to 21 cm when compared to the control

run. This is true for both cases (Le. with and without sediment) and implies that the

forcing of water along negative gradients is more important to produce shallow flows,

and is therefore more important for braiding, than the routing of water along positive

gradients.

5.4.4. Lateral sediment transport.

Lateral sediment transport removes sediment from the banks of a channel, adding it to

the sediment load in the channels and widening the channels. Murray and Paola

(1997) report simulations without lateral sediment transport that produce narrower

channels that migrate less than those in runs with lateral transport. Murray and Paola

(1997) note that in the long term the lateral sediment transport rule is essential for the

model to continue to indefinitely exhibit the complex dynamics involving channel

switching and channel shifting. Without this rule the model eventually digs itself a

canyon that confines the flow, thus reaching a static steady state. The cellular

automata model of Thomas and Nicholas (2002) does not include an explicit rule for

the transport of sediment on lateral slopes, however as flow is split between five

downstream neighbour cells, water may be transported at angles of up to 60 o.

The lateral sediment transport rule in the cellular automata model of Murray and

Paola (1994, 1997) applies an algorithm that transports a small amount of sediment

from lateral neighbour cells that have higher elevations. This occurs regardless of

whether these neighbour cells contain discharge so that any channel bank can erode.

The lateral sediment transport rule in the Murray and Paola (1994, 1997) model is

based on an expression given explicitly by Parker (1984) for the transverse

component of sediment flux qs/.
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(5.1)

Where: 1 denotes the transverse direction, r is the ratio of lift coefficient to drag

coefficient, J.i is the dynamic coefficient of Coulomb friction, Te is the critical value of

T, SI is the lateral slope and qs is the total local sediment flux. Murray and Paola

(1994, 1997) neglect the dependence on 't, producing:

(5.2)

where Qsl is the amount of sediment transported from a lateral neighbour cell into the

cell in question, Qso is the total sediment load out of the cell in question into the three

downstream immediate neighbours and KI is a constant adjusted so that Qsl is on the

order of a few percent (the percentage is not explicitly quoted) of Qso for typical

values of SI (Murray and Paola 1997).

An analogue for the above expression exists within some long-term landscape

evolution models in the mechanisms used to model short-range transport processes.

Short-range transport models represent the cumulative effect of processes (soil creep,

landslides, rainsplash, surface and subsurface wash) that remove material from hill

and mountain sides and transport it to the valleys. In the long-term landscape version

of Cascade the sum of the short-range hillslope processes are modelled as a linear

diffusion equation in which the rate of change of landscape topography is

proportional to the second derivative of topography:

(5.3)

Where KD is a diffusion constant (default value = 0.3 m2 a", Braun and Sambridge
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1997) and ?h is the second derivative of the elevation and the first derivative of

local slope. The diffusion equation is solved using a finite element method adapted

for a triangulated grid (see Braun and Sambridge 1997). Equation 4 follows the

model of Beaumont et af (1992) and Kooi and Beaumont (1994) in which the

horizontal flux Ss is related to the local slope, Vb by

s, =-u,h,Vh (5.4)

where Us is the transport speed (L.r') and represents the ease of material transport

once it has become fragmented, hs is the vertical height scale of the erodible surface

boundary layer (the steady state thickness of the boundary layer in which the

cohesion has been destroyed by weathering) and subscript s denotes short range slope

processes. Us and hs may be combined as s single transport coefficient K, = ushs. If it

is assumed that there is no tectonic transport of the surface material, that volume is

conserved and that the effects of solution are negligible, the transport equation can be

combined with the continuity equation,

dh-=-Vs
dt '

(5.5)

to give the linear diffusion equation for the rate of change of local height,

(denudation) in response to erosion by the short range processes,

(5.6)

These equations assume that during the interval ~t, the flux is in a dynamically steady

state; that is, it does not vary during ~t. If a neighbouring cell i is higher than} (the

receiving cell) a volume of material is transported between the two cells in time ~t

from cell i to cell}. There is no transport upslope to higher cells.
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There is currently a debate in the literature as to the value of the diffusion constant

used in landscape evolution models. Martin and Church (1997) quote values for the

diffusion coefficient implemented in landscape evolution models as ranging from 10-2

m2 a-I for slow mass movements such as creep (Anderson, 1994; Rosenbloom and

Anderson, 1994) to 5xl03 m2 a-I (Flemings and Jordan, 1989 - this value is based on

mean regional gradients in mountain belts and basin fill rates and may incorporate

both hillslope and fluvial processes). Kooi and Beaumont (1994, 1997) implement

diffusivities from 2xlO-2 m2 a" to 1 x 102 m2 a-I that are assumed to represent all

slope processes including landsliding; the values at the higher end of the ranges are

implemented in humid ranges. Willgoose et al. (1991), Tucker and Slingerland

(1994) and Rinaldo et al. (1995) do not quote diffusivity values adopted in their

landscape development models.

Braun and Sambridge (1997) have conducted experiments to test the effect of varying

the diffusional constant on the resultant landscape over long-term timescales. A

diffusion constant of 0 is equivalent to assuming a very thin regolith and/or sediment

cover, or that the landscape is directly carved into resistant bedrock. In long-term

landscape experiments, a value of zero for Ko resulted in very narrow valleys with

nearly vertical valley walls (experiment 3 Braun and Sambridge 1997). With a value

of 0.3 m2 yr" for Ko the resultant valleys were wide with convex walls (experiment

1). With a value of 3 m2 yr", for Ko valleys were wide with concave downwards

walls and the landscape had a low stream density (experiment 4).

Lateral sediment transport was approximated in Braided Cascade using the diffusion

erosion subroutine in the original version of Cascade. The diffusional sediment

transport may be thought of as an analogue for lateral sediment transport from

channel banks. However by default diffusion occurs everywhere in response to local

curvature of slope, even for those cells that have no water.
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When choosing a value for the diffusion constant in Braided Cascade the default

value (0.3 m2 a') was used as a first approximation. For a timestep of one second this

is equivalent to 9x 10-9 m2 s". Figures 5.31 and 5.32 show the spatial pattern of

channels after 25 000 and 50 000 iterations for runs with the diffusion constant set to

equal 9 x 10-9 m2 S-l and without / with sediment input respectively. Qualitatively

comparing the results from these runs with those from the control run (Figures 5.2

and 5.4) indicates that the presence of diffusion erosion does not produce

significantly different results. However this may be due to the fact that the diffusion

coefficient is small relative to those used in other long-term landscape evolution

models. Other values of the diffusion coefficient were tested (Table 5.8).

The values of the diffusion coefficient tested range from the first approximation to

1 x 10-6 m2 s", This latter value was arrived at by approximating the diffusive

sediment velocity was equal to 50 m2 yr-1 (which equates to 1.6 x 10-6 m2 s"). This is

a large value relative to other diffusivity coefficients used in landscape evolution

models and is used here to test the model under extreme conditions.

Run name Diffusionl I D1ffuslonl I Diffuslon3 I Diffuslon4 I Control run
Diffusion m" 5-1 9x10-!I I 1 X 10-1S I 1 X 10-' I 1 X 10-6 I off
Erosion length 10.0402
scale
Dischar2e 2 units of water at node 2, 5 and 7
Slope 0.02855
Splitting ratios Both 0.8
(qratio and
upratio)
Sediment Input· No/Yes
Deposition On

Table 5.10. Details of runs with different dIffuSion coefficients.
• One set of experiments was carried out with no sediment input at the top of the grid and one set was
carried out with sediment input at the upstream boundary.

Figures 5.33 to 5.38 show the spatial distribution of channels on the grid with and

without sediment after 25 000 and 50 000 iterations. From these Figures, it can be

seen that with a large diffusion coefficient (i.e. 1 x 10-6) all water entering the grid is

channelled along the sidewalls. The large diffusion coefficient leads to an increase in
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Chapter 5. Sensitivity Analysis.

elevation of nodes in the middle of the grid, and all water is routed around the higher

elevation nodes and along the sidewalls leading to the predominance of two channels

that capture most of the flow (Figure 5.33). Smaller diffusion coefficients produced

frequency histograms for water height very like that of the control run (Figure 5.38),

but different time series plots of sediment outflux for each run with diffusion when

compared to the control run (Figure 5.39).

1- diff 1.e-6 - diff 1.e-7 - diff 1.e-B - diff 9x10-9 - Control run (no diff) I

~ 0.9
c:
Q)
::::J
g 0.8
.::
~;;
~ 0.7
::::J
E
::::Jo 0.6

0.5+-----~------~------~----~------~------r_----~
0.00 0.05 0.10 0.300.15 0.20 0.25

Water depth (m)

Figure 5.39a. Cumulative frequency curve of water depth for runs with different diffusion constants
and no sediment input.
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Figure 5.39b. Histograms of proportion of nodes with different water depth after 50 000 iterations fOT
runs with different diffusion constants and no sediment. Nodes with no water (i.e. water depth = 0)
have been omitted. Bins are in steps ofO.Olm. Note the different vertical scales.
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Figure 5.40. Time series plots of sediment outflux from the grid for runs with diffusion erosion
switched on and the control Tun (NO diffusion). No sediment is input at the upstream boundary.

From Figure 5.40 it can be seen that the run with a diffusion coefficient equal to 1 x
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Chapter 5. Sensitivity Analysis.

10-8 m3 s" mirrors the control run (with no diffusion), until after 23 000 iterations

when more sediment leaves the grid. At this point, for both runs, there is one main

channel at the downstream boundary that contains the entire flow. A higher sediment

output for the run with diffusion switched on implies that more sediment is being

transported to the channel from the surrounding area. A smaller diffusion coefficient

(i.e. 1 x 10-9 m2 s") leads to less sediment being transported out of the grid, even

when compared to the control run (with no diffusion). It may therefore be concluded

that large diffusivity coefficients lead to a greater amount of sediment leaving the grid

than for runs with no diffusion, however very small diffusion coefficients may

hamper the supply of sediment, even when compared to runs without diffusion

erosion.

Therefore a diffusion constant of 1 x 10-8m2 S·l produces similar results to the control

run with slightly more braiding, a diffusion constant of 1 x 10-9m2 S·l produces more

braiding but less sediment output and a diffusion constant of greater than 1 x 10-8 m2

S-l causes excessive concentration of flow into major channels and therefore

suppresses braiding.

5.4.5. Gradient of the grid.

Two runs were performed with the overall grid gradient set to equal 0.01 (the default

value for the control run is 0.02855) and sediment input switched off Ion. Changing

the gradient is straightforward and is specified when the grid dimensions are set up.

However the gradient of the grid influences the amplitude of the white noise applied

to the grid (this is set to be equal to 0.01 x gradient x grid length); therefore for the

control run the white noise amplitude is equal to 0.0712, for a run with a gradient of

0.01 the white noise amplitude equals 0.025. Figures 5.41 and 5.42 show the spatial

distributions of channels for these runs without and with sediment input; both runs

have a large proportion of the grid covered with water and a large number of shallow

channels which seem to remain stable throughout the runs and between runs. From

Figures 5.41 to 5.42 it can be seen that a decrease in grid gradient leads to the channel
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Chapter 5. Sensitivity Analysis.

network becoming stable.

Figure 5.43 shows the time series of sediment output from the control runs (with and

without a sediment input and grid gradient equal to 0.02855) and the runs with grid

gradient equal to 0.01. From Figure 5.42 it can be seen that the run without sediment

input remains stable, however the run with sediment input experiences discrete

sediment pulses in the sediment outflux whilst remaining stable between pulses.

These pulses do not correspond to an increase in the number of channels at the

downstream boundary. However, Figure 5.43 reinforces the conclusion that a lower

slope leads to the channel network evolution becoming stable.
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Figure 5.43. Time series of sediment outflux for the control run and runs with slope equal to 0.0 I.
Note the different y axis scales for different slope values.

Two runs were undertaken with different slopes but the same discharge-slope (Q-S)

combination as the control run. Details of these .runs are given in Table 5.11 and

channel evolution throughout the runs my be seen in Figures 5.44 and 5.45.
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Chapter 5. Sensitivity Analysis.

Run name Slope Total Q (m3 s-l) Q*S Sediment input?
Control run 0.02855 6 0.1713 N
QSl 0.01 17.13 0.1713 N
QS2 0.02 8.565 0.1713 N
Table 5.11. Details of runs with different slope and discharges but equal discharge-slope products.

In both runs discharge was added at nodes 2, 5 and 7 on the upstream boundary (as in

the control run). A single channel evolved in run QS 1 (Figure 5.44) that was stable,

channels in run QS2 continued to evolve (Figure 5.45). This is also evident when

examining sediment outflux from each run (Figure 5.46); run QS 1 reaches a steady

state.
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Figure 5.46. Time series of sediment outflux from the grid for runs with slope and discharge but the
same discharge-slope product.

5.5. Discussion.

This chapter has investigated the sensitivity of the model resuJts for a range of values

of the model parameters: slope, erosion length scale, deposition, diffusion (lateral
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Chapter S. Sensitivity Analysis.

sediment transport), discharge splitting ratios and sediment input and has investigated

the parameter values needed to give styles and timescales for model evolution that are

comparable to the evolution of braided channel networks. The results show that most

combinations of model parameters produce basic braiding, however the model has a

tendency to reach a static state in certain circumstances.

In the absence of measurements of these transport parameters at the necessary

temporal and spatial scales in prototype rivers, the parameter values do not have any

significance beyond the model. Given the lack of knowledge concerning parameter

values in natural systems, the best that can be done is to make approximate estimates

of the scale dependence from existing data and to show that these are consistent with

the model behaviour.

5.5.1. Model parameter values.

5.5.1.1. Erosion length scale and fluvial transport.

It is not obvious how to make a useful comparison between the numerical values of

the erosion length scales and related empirical or physical parameter vales determined

by short-time scale and small spatial scale measurements. The erosion length scale

likely depends on the cohesive strength of the alluvial material (or detachability), or,

in the case of bed material it may depend on the bed packing and structure (these

influence the critical shear stress for the bed), this could be seen as a reflectance of

the sediment availability. The erosion length scale is a lumped parameter, like a

thermodynamic parameter, which reflects the combination of many processes that

scale with space and time. It has been shown that erosion length scales of equal to or

less than the model nodal density tend to produce one incised stable channel. Long

erosion length scales (of the order of the grid length) produce many shallow channels,

however the spatial distribution of these channels remains stable for long periods.

Therefore the spatial lag needed for braided networks to form and to evolve is of the

order of 10 to 100 times the nodal density, implying that there is a disequilibrium
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Chapter S. Sensitivity Analysis.

between the sediment available for transport and the transporting capacity of the flow

is needed for braided networks to form,

5.5.1.2. Deposition.

Most braiding mechanisms require the deposition of material (e.g. Ashmore, 1991a;

Ferguson, 1993) and, if deposition is prevented, the system is purely erosive. If the

model is prevented from depositing any eroded material, one stable main channel is

eroded which is the product of irreversible entrainment, once eroded material cannot

readily be redeposited (Paola, 2001) and without redeposition, once the flow gathers

it can never split (Murray and Paola, 1997). Deposition is therefore important in the

evolution and maintenance of braided networks.

5.5.1.3. Flow splitting ratios.

The incorporation of flow splitting ratios is unique to Braided Cascade. The ability to

constrain flow divergence is a purely model parameter and has no equivalence in

prototype rivers, however it could serve as a surrogate for momentum in the flow

equations. Smaller values of the flow splitting ratios qratio (Qr) and upratio (Qru)

forced the model to produce on incised channel. Higher values allowed greater

instances of flow splitting. Forcing flow along negative slopes seems to be the most

important mechanism to produce sheet flow in the model and may imply that braiding

is a flux divergence phenomenon and not a lateral erosion phenomenon. In other

words, if sediment flux is greater than carrying capacity aggradation occurs and will

lead to flow splitting and vice versa. Carson (1984) states that the prerequisite for

braiding is a local shoaled thalweg with high relative width, which in tum is

dependent primarily upon a threshold state of bedload transport. A high rate of

imposition of bedload may lead to local aggradation and flow splitting. Bedload may

be sourced from the reach itself through bank SCOuf, or from upstream. Carson (1984)

states that the balance between bedload supply rates and capacity allows the

possibility of coexistence of different channel patterns along the same reach of

constant slope, discharge and sediment type.
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Chapter S. Sensitivity Analysis.

5.5.1.4. Lateral transport (Diffusivity).

Model results are very sensitive to diffusion erosion (lateral sediment transport).

Lateral sediment transport has been approximated in Braided Cascade as diffusive

sediment transport, following the style of the implementation of lateral sediment

transport in the model of Murray and Paola (1994, 1997). The original version of

Cascade contained an allowance for diffusive sediment transport and this has been

incorporated into Braided Cascade as an analogy for lateral sediment transport. Once

again, in the absence of valid data from prototype rivers it is difficult to make a useful

comparison between the numerical values of the diffusivity constant implemented in

the model and lateral sediment transport from channel banks. However, if flow

splitting is easy diffusion is not essential to produce braiding as vertical changes in

the bed elevation produce channel dynamism. If this is the case then results from

Braided Cascade differ from the model of Murray and Paola (1994, 1997).

5.5.1.5. Grid gradient.

Higher grid gradients are needed to continue to allow channel evolution. Channels

formed on lower gradients tend to remain stable, even if the discharge-slope product

remains the same.

5.5.1.6. Sediment input.

Runs with sediment feed tended to produce less stable channel networks (Le. the

channel pattern evolved throughout the run) at the upstream end of the grid. Sediment

input to the model is therefore important for braiding, however braiding can occur

without sediment feed (Brotherton, 1979).

5.6. Conclusions.

Most combinations of model results will produce basic braiding. However, the model

will reach a static steady state if the length scales are sufficiently short for the
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carrying capacity of the flow to be reached almost instantaneously and also if the

splitting ratios (qratio and upratio) are set to disallow flow to split if the ratios

between channel slopes are very low (Table 5.12).

When erosion length scale is short (Le. carrying capacity is reached almost

instantaneously) the model produces very similar results to when the system is purely

erosional (Le. no deposition allowed). Therefore an imbalance in the amount of

sediment the river is carrying and the carrying capacity AND a reworking of the

deposits is needed for a braided network to form. Lateral erosion and gradient are

important for braiding; high slopes and sediment transport from channel banks are

needed for channel evolution to continue (Table 5.12).

Maximum braiding Minimum Braiding Conditions used in
chapter 6

Slope High Low 0.02855
Spatial lag c. model length" c. node spacing c. 100 x nodal spacing"
Splitting: Upslope 0.95 0.5 0.95
Splitting: downslope 0.95 0.5 0.95
Sediment feed On Off On
Diffusion c. 1 x )0"0 ~ 1 X 10-6 1 x 10'·
Deposition On Off On. .Table 5.12. The effect of model conditions on channel network patterns .
·a long spatial lag creates numerous braided channels, however these channels are stable and do not
change position, therefore a shorter lag that creates numerous channels which continually evolve has
been chosen for use in Chapter 6.

It is difficult to compare the parameter values used in the model with data from

prototype rivers due to a lack of field measurements. Therefore, the parameter values

to not have any significance beyond the model.
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Chapter 6. Testing Braided Cascade.

CHAPTER6.

TESTING BRAIDED CASCADE.

6.1. Introduction.

Chapter 5 has shown that Braided Cascade may produce channel morphologies

that are qualitatively similar to prototype braided rivers but that the details

depends upon the parameter settings. In this Chapter, further questions are asked

and the model is used to ascertain conditions influencing braiding and a new

quantitative analysis of model results is developed.

6.2. Linking spatial and temporal bedload transport variablilty.

Bedload transport in braided rivers has been shown to be highly variable, even

under steady flow conditions (see section 2.3.1 and Ashmore, 1998; Hoey and

Sutherland, 1991; Young and Davies, 1991; Goff and Ashmore, 1994; Warburton

1996). Fluctuations under steady flow conditions in flume experiments have been

attributed to processes within in the river such as the migration of individual

bedforms or bed waves, although there is considerable uncertainty in ascribing

particular types of fluctuation to particular types of event (e.g. Hoey 1992).

There is some evidence from formal time-series analysis that the structure of

bedload time series reflects channel configuration. Warburton (1996) reported a

relationship between the shape of the autocorrelation function and the standard

deviation of bedload transport rates in laboratory experiments, and Ashmore

(1988) found a similar, although weaker, pattern. Recently Ashmore (2001)

speculated on the relationship of channel morphology (especially pool-bar units

and bar-confluence features) to spatial and temporal variations in bedload

transport rate.

This section will attempt to develop a model of sediment transport by linking

spatial and temporal sediment transport together. Primary data (Arolla field data)
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and secondary data (flume data from Zarn, 1997) will be used in an attempt to

ascertain differences between bedload transport time series from single thread and

braided channel planforms, and new runs of Braided Cascade are undertaken to

determine whether or not the model has captured the essential features of the

dynamic braided systems.

6.2.1. Flume data: Zarn (1997)

The flumes experiments of Zarn (1997) have been described in Chapter 4.

Variation of bedload transport rate within each run is summarised in histograms in

Figure 6.1; these show relative frequency (standardised frequency due to unequal

sample sizes) and are grouped according to discharge. Inspection of Figure 6.1

shows that for a given discharge, the histograms are generally symmetrical for

narrower runs (30 and 75 cm) and gradually become more positively skewed

(biased towards lower transport rates) as the width of the flume increases.

Positively skewed data are partly due to the influence of natural phenomena

having a lower limit and being unconstrained, theoretically, in the upper range. In

this case the natural phenomena are probably scour holes (Zarn, 1997) creating

areas of no or very little sediment transport. The positive skew is also reflected in

the values for median transport rate, which are similar to the values for mean

transport rate for runs of width equal to 30 cm but become less than the mean as

flume width increases (Table 6.1).

Time series plots (Figure 6.2) indicate that bedload transport rates are highly

variable. Within-run transport rates are summarised in Table 6.1 and vary from

zero to just over seven times the mean rate (run 250_4). Wider runs with more

channels experience the greatest variability in bedload transport rates while for

runs with one to two channels (30 cm and 75 cm wide runs) the variability in

bedload transport rates ranges from just over the mean rate to nearly four times

the mean rate.
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Chapter 6. Testing Braided Cascade.

Run Discharge (I S·I) Unit bedload transport rate (g m~11'1)
name

Minimum Mean Maximum Max/mean
30 5 6.89 2.37 13.5 28.8 2.13
30 6 4 0 5.08 19.2 3.79
30 7 5 10.2 19.8 30.2 1.52
30 8 2.37 5.09 12.7 27.2 2.14

75 2 4.01 0 2.13 7.52 3.53
75 3 4.97 1.12 7.85 16.3 2.08
75 4 2.34 0 5.29 16.7 3.12
75 6 6.89 0 5.59 10.4 1.85

140 1 2.34 0 3.33 16 4.80
140 2 4.98 0.24 4.41 14 3.17
140 3 3.95 0 1.40 5.75 4.11
140 4 6.9 0 3.11 10.1 3.25

250 2 4.02 0 1.05 6.55 6.24
250 3 5 0 2.80 12 7.71
250 4 2.29 0 2.07 16 4.27
250 6 6.91 0 2.50 13.1 5.24. .Table 6.1. Variability of bedload transport rates across the flume runs of Zam (1997) .

The plots of cumulative sediment output from each run (Figure 6.3) show that, for

the same discharge there is a decrease in sediment output as flume width (and

therefore number of channels) increases. The sediment feed rate into the flume is

constant throughout all runs and across all runs with equal discharge. The initial

slope of the flume was chosen to be slightly lower than the expected equilibrium

slope and equilibrium slope was always achieved by aggradation (Zam, 1997). It

can therefore, be concluded from these plots that wider runs with more channels

experience more aggradation as sediment output from wider runs is less than that

for narrower runs with fewer channels and the same initial conditions.

Thus, as the average number of channels in the flume increases, the average

bedload transport rate decreases for the same discharge, but the relationship

between number of channels and transport rate is not linear (Figure 6.4). This may

reflect the greater aggradation and the increasing number of sediment storage

reservoirs (bars) as the channel geometry switches from single thread to braided.

171



Chapter 6. Testing Braided Cascade.

Figure 6.5 shows that neither is there a linear relationship between bedload

transport rate and discharge, all sediment transport curves show the same pattern:

transport decreases as discharge increases from 2 I S-1 to 4 1S-I, then rises to a peak

at a discharge of 5 1S-1 before decreasing when discharge is raised to 7 1s'.
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Chapter 6. Testing Braided Cascade.

Therefore, it may be concluded that variability in bedload transport rates is related

to channel geometry. If one or two channels dominate, sediment transport rates

are relatively high and relatively less variable. As the number of channels

increases, transport rates become lower and more variable; this is reflected in a

gradual skewing of the histograms of bedload transport rate towards lower values

as flume width increases, and can be explained by the increasing aggradation due

to the greater number of storage reservoirs in the flume as the planform geometry

becomes braided.

However, superimposed upon the pattern of decreasing transport rate for

increasing channel number is the fact that, for a given flume width, sediment

transport is not linearly related to discharge. This may reflect braid intensity but

may also reflect experimental conditions (e.g. sediment feed rate).

Further analysis of the time series was carried out using standard time series

analysis, specifically autocorrelation. Autocorrelation provides an indication of

any aperiodicty of the time series and is the first step in spectral analysis. The

theory of autocorrelation has been outlined by Chatfield (1996) amongst others

and is briefly reviewed here. Autocorrelation coefficients measure the correlation

between observations of the time series at different distances apart. Given N

observations, xi, ...,XN on a discrete time series it is possible to form N-J pairs of

observations, (Xl, Xl), ••• ,(XN-l, XN) of successive data points, and also to find the

correlation between observations at a distance k apart, where k is a lag at a

constant interval. The autocorrelation coefficient r, may be calculated in several

ways, the simplest and the one subject to the greatest variance is:

n-kL:(x, - ~)(Xt+k - x)
r
k
= -.:/_=1"'- _

t(Xt -~r (6.1)

1=1
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where n is the sample size, rk is termed the autocorrelation coefficient at lag k and

x is the mean of the time series (Chatfield, 1996); all of the autocorrelation

coefficients must lie in the range [-1 to 1]. r« can be plotted against the lag, k to

produce the autocorrelation function (acf), the plot of which is termed the

correlogram. The correlogram is used to identify lags at which the series

correlates with itself. Autocorrelation coefficients are not valid for k greater than

about nl4 (Bennett 1979; Chatfield 1996)

One assumption of autocorrelation is stationarity i.e. the statistical character of the

time series is unchanged throughout the time series. This means that the

probability density function (pdt) associated with any part of the series is identical

to that for any other part of the series. Usually for the purpose of analysis, a series

must obey second order stationarity, i.e. the mean and variance remain unchanged

throughout the series. Therefore if there exists an obvious trend in the mean or the

variance of a series, this must be removed prior to analysis (assuming that the

interest lies in the underlying series and not the trend).

The significance testing of autocorrelation functions is often accomplished by

assuming that mean rk = 0 and it can be shown that the 95% confidence limits are

at ± 2/ J; (Richards 1979; Chatfield, 1980), and that correlations outside this are

significantly different from zero. Even if the series is completely random it is

expected that ~ 1 of every 20 values to lie outside the 95% confidence limits.

Autoregressive models were also fitted to each of Zarn's (1997) data sets.

Suppose that {Z} is a purely random process with mean zero and variance a/.
Then a process {Kt} is said to be an autoregressive process of order p if

Kt = a/Kt.} + ... + apJ(,_p + Z, (6.2)

This is rather like a multiple regression model but X, is not regressed onto

independent variable but onto past values of x,. An autoregressive process of

orderp is termed an AR(P) process. For a first order process (p = 1)
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x, = oXt-l + Zt (6.3)

This is sometimes called the Markov process.

As a first attempt, autocorrelation analysis was undertaken on the raw data,

however, inspection of the correlogram indicated that the series were not

stationary. Autocorrelations and partial autocorrelations of the first differences of

each series were undertaken, however these also displayed non-stationarity so

further investigations were carried out using the residuals of a linear regression

fitted to the series (see Young and Davies 1991 for an example of using
"autocorrelation on residuals). Correlograms of the autocorrelation function (ACF)

and partial autocorrelations function (PACF) can be seen in Figure 6.6. Partial

autocorrelation coefficients measure the degree of association between x, and xi+k

when the effect of other time lags on x are held constant. Partial autocorrelation

coefficients are defined in terms of the last autoregressive term of an AR model of

m lags.

Inspection of the correlograms (Figure 6.6) indicates that none of the time series is

completely random (if this was so then for a large sample size, rk I::tI 0 for all non-

zero values of k). Stationary series often exhibit short-term correlation

characterised by a fairly large value of rl followed by a few further coefficients

which, while greater than zero, tend to get successively smaller (Chatfield 1996).

Most of the braided runs fall into this category; they show slow initial damping

which suggests that they have less frequent fluctuations in the bedload transport

rate. However for some runs (especially run 250_6) the values of 'k do not come

down to zero. This indicates non-stationarity, even though the autocorrelation has,
been performed on the linear residuals of the series to remove linear trends.

Examination of the PACF (Figure 6.7) indicates that most runs show significant

PACF values at lags k = 1 and k = 2. This indicates that there is greater
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Chapter 6. Testing Braided Cascade.

persistence in the series, and that bedload transport rate is statistically dependent

on the previous two transport rates.

AR(1) models (autoregression models with a lag of 1)were fitted to each raw data

set (Table 6.2). Fitting an AR(I) model entails undertaking a regression analysis

on a data set using the raw data at time = t for the dependent variable and the raw

data at time = t + 1 for the independent variable. From Table 6.2 it can be seen

that as the number of channels increases the correlation of the data set with the lag

of itself becomes better.

Run name Constant, (11 in AR (1) term, (a. P-value for RZ

equation 6.3) in equation 6.3) AR(l) term
30 5 10.8 0.20 2.98xl0·11 0.04
30 6 4.19 0.18 7.26xl0·14 0.03
30 7 9.46 0.52 1.76xl0·) 0.27
30 8 8.89 0.30 3.36x10·) 0.08

75 2 1.75 0.18 2.14x10·Z{) 0.03
75 3 2.58 0.67 6xlO,zClK 0.45
75 4 1.52 0.71 0 0.51
75 6 2.71 0.51 0 0.26

140 1 0.79 0.76 0 0.58
140 2 0.89 0.80 0 0.64
140 3 0.33 0.77 0 0.59
140 4 0.47 0.85 0 0.72

250 2 0.17 0.83 0 0.70
250 3 0.42 0.85 0 0.72
250 4 0.42 0.80 0 0.64
250 6 0.29 0.88 0 0.78
Table 6.2. Results of fitting AR( 1) models to residuals from hnear regression apphed to each data
set of Zam (1997).

All coefficients are significantly different from zero at p < 0.01. The overall

goodness of fit of each regression is indicated by the R2 value and it can be seen

that all as flume widths increase the R2 value of the data set regressed onto itself

improves. There is a gradual increase in the AR(I) coefficient from single thread

to braided channels but the constant decreases reflecting the smaller sediment

transport rats in braided flume runs.
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The correlogram is useful in identifying which type of ARIMA model gives the

best representation of an observed time series. However, the interpretation of

correlograms is one of the hardest aspects of time-series analysis and practical

experience is important (Chatfield, 1996). It is necessary to have a stationary

series to perform autocorrelation and removing trends from the data mat be

difficult to achieve as in some of the data here. Although inspection of the partial

difference autocorrelation function may help it is difficult to assess the order of an

AR process from the sample acf alone. This makes the comparison of different

data sets difficult.

Finally, a quantitative comparison of distances between different time series

distributions was undertaken using dynamical systems theory, specifically by

comparing the time series of different runs plotted in state space. As an example,

Figure 6.8 shows the time series of run 3o_7 (a run with one channel and

discharge equal to 5 I s"), plotted against itself in state space using delay

embedding with a delay of 1 (i.e. plotting sediment transport at time = t versus

sediment transport at time = t+1). When the delay is equal to 1 time period it can

be seen that the attractor presents a certain thickening on the first bisectrix (the 1:1

line, corresponding to periods during which the sediment transport rate has no

considerable variation). Other delay times may be chosen and the application of

delay embedding is not straightforward in practise because of the interaction of

noise and delay time (time interval between values used in plotting an attractor). If

the chosen delay time is too short, the actual change in the time series is small (a

phenomena termed redundancy), and low levels of noise may mask the local

structure of the attractor. If the delay time is too large (termed irrelevancy), then

exponential divergence of trajectories means that the future state of the system

may have little or on relation to the first values in a sequence of lagged values

used to represent the initial conditions (Rubin, 1999). However, the shape of the

attractor with a delay of 1 resembles that of other physical systems in which

evidence of chaotic dynamics has been recognised, e.g. the ROsslerattractor and a

lag of 1has been used by other workers (e.g. Porporato and Ridolfi, 1996).
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To quantitatively compare plots each delay embedded time series was plotted as z

scores and rotated by - 45 degrees to centre each time series on the origin of the

graph (Figure 6.9); the 1:1 line is now horizontal (following the x-axis). Rotation

of the plot does not affect the distribution of the data set but allows for easier

writing of automatic analysis routines. The formula for converting a given value

ofx into its corresponding z score is:

x-xz =--x (6.4)

where x is an observation taken from a sample with mean x and standard

deviation sx. Z-scores are especially informative when the distribution to which

they refer is normal. In every normal distribution, the distance between the mean

and a given z score cuts off a fixed proportion of the total area under the curve.

All normal density curves satisfy the following property (often referred to as the

Empirical Rule); 99.7% of the of the observations fall within three standard

deviations of the mean, that is, between f.J - 3a and jJ + 3a. To compare time

series from different runs, the raw data was converted to z-scores. As the data for

some runs is not normally distributed, some data will necessarily fall outside three

standard deviations of the mean. Summary statistics of z scores for all runs are

summarised in Table 6.3a to Table 6.3d and are grouped according to discharge, it

should be noted that a normal distribution has a skew of O.
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Run name Z-scores. Crossing period

min max skew

30 8 -3.43 6.55 0.33 1.46

75 4 -2.59 5.58 0.66 1.65

140 1 -1.80 6.84 1.10 1.71

250 4 -l.47 9.92 1.33 1.73
·1Table 6.3a Summary stansncs of z scores for runs With a discharge of approximately 2.3 1s .

Run name Z-scores. Crossing period

min max skew

30_6 -2.63 7.31 0.49 1.42

75 2 -2.32 5.85 0.52 1.40

140_3 -1.82 5.64 0.52 1.43

250 2 -1.24 6.52 1.89 1.50
-ITable 6.3b Summary stansncs of z scores for runs WIth a discharge of approximately 4 1s .

Run name Z-scores. Crossing period

min max skew

3o_7 -3.27 3.51 0.26 1.49

75_3 -3.79 4.77 0.19 1.53

140 2 -2.39 5.49 0.83 1.70

250_3 -1.83 6.04 1.19 1.79
-ITable 6.3c Summary stansncs of z scores for runs WIth a discharge of approximately Sis .

Run name Z-scores. Crossing period

min max skew

3o_5 -3.49 4.77 -0.07 1.42

75_6 -4.69 3.99 -0.01 1.47

140_4 -2.20 4.95 1.08 1.54

25o_6 -1.69 7.17 1.71 1.53
·1Table 6.3d Summary statisncs ofz scores for runs with a discharge of approximately 71 s .

The crossing period is defined as the average number of times the data series

crosses the 1:1 line, (the line on the state space plot along which there is no

change in transport rate between data points). If transport rate remained steady at

all times, all points in the state space plot would plot along the 1:1 line. Therefore,

when there is a marked change in the time series (Le. moving from a peak in the
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transport rate series to a trough), the time series plotted against itself will cross the

1:1 line. The crossing period is calculated as the total number of times the time

series crosses the 1:1 line divided by the total number of data points in the series.

The crossing period thus gives another indication of the variability in the time

series; a smaller crossing period indicates a higher frequency fluctuation in

transport rate (Le. a more frequent movement between peaks and troughs in the

time series).

From Tables 6.3a to 6.3d it can be seen that in general for the same discharge, the

crossing period becomes larger as flume width increases, indicating that the

periods of the fluctuations in transport rate decrease as the channel geometry

becomes braided. For runs with one channel (the 30 cm wide flume) the crossing

period is relatively similar for all discharges and is small, indicating a highly

fluctuating transport rate.

Results from the crossing period may be contrasted with the variability in

transport rate calculated as maximum transport rate divided by mean transport rate

(see Table 6.1). Here, it was shown that as planform geometry changes from

single thread to braided, variability in transport rate increases, with respect to the

overall mean of the time series. However, if the crossing period is taken into

account, it may be seen that, although transport rate variability increases

(maximum divided by mean transport rate) as the number of channel increases,

the time series structure includes fewer crossings of the 1:1 line (the crossing

period increases). This finding is reinforced if the probability of each type of

transition between data points is examined (Table 6.4), it may be seen that, the

proportion of movements across the 1:1 line in either direction (from above to

below or vice versa) decreases as the flume width (and therefore the number of

channels) increases.

Figure 6.10 is a schematic diagram of the appearance of a bedload pulse in state

space. It should be noted that sampling interval relative to fluctuation frequency)

has an effect by determining the number of points on each limb. However as a
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consistent approach is used to analyse all runs it is assumed that this is not a great

issue here.

falling limb

....

...........
....

Figure 6.10. Schematic diagram of the appearance of a bedload pulse in state space.

Run name Discharge Proportion of each type of movement around the 1:1 line
IS-1 between data_points in state ~ace

above~above above~below below~above below~below
30 8 2.3 0.171 0.343 0.343 0.143
75 4 2.3 0.195 0.303 0.303 0.200
140 1 2.3 0.206 0.292 0.293 0.209
250 4 2.3 0.211 0.290 0.288 0.211

30 6 4 0.179 0.352 0.352 0.117
75 2 4 0.165 0.357 0.357 0.122
140 3 4 0.169 0.350 0.350 0.131
250 2 4 0.175 0.334 0.334 0.157

30 7 5 0.207 0.336 0.335 0.122
75 3 5 0.187 0.326 0.326 0.161
140 2 5 0.217 0.294 0.294 0.195
250 3 5 0.215 0.280 0.280 0.225

30 5 7 0.169 0.354 0.353 O.I~
75 6 7 0.171 0.340 0.340 0.150
140 4 7 0.187 0.325 0.325 0.t_64
250 6 7 0.178 0.327 0.328 0·l§7
Table 6.4. Proportion of each type of movement between data POints In stale space.
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Therefore, there is a greater range of transport rate values for braided networks,

but within the time series for these planfonns, there are fewer transitions from

high to low or low to high rates (i.e. there are prolonged periods of high or low

transport rates, which are probably related to the channel geometry at the flume

outlet). For single thread planfonns, there is a smaller range of transport rate

values overall, however the internal structure of the time series indicates a greater

number of fluctuations from high to low (or low to high) transport rate.

If crossing period is examined with respect to discharge it may be seen that there

is no simple relationship. Rather the patterns of crossing period tend to follow

those of transport rate versus discharge (see Figures 6.5 and 6.11). For a given

flume width, as discharge increases crossing period falls to a minimum when

discharge is equal to 4 IS-I, then rises to a peak at 5 IS-I before falling again when

discharge reaches 7 IS-I. In other words, the time series of transport rate fluctuates

more at discharges of 4 and 7 IS-I than at discharges of 2.3 and 5 IS-I. Figure 6.11

also shows the variability in crossing periods for different flume widths for a

given discharge. There is a clear transition from single thread systems (30 em

wide flume) to braided systems (140 and 250 cm wide flume) reinforcing the

earlier statement that, as channel planform changes from a single channel to a

braided network, the time series of transport rate becomes less peaked.
,-----------------------------------------------------------
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Figure 6.11. Crossing period versus discharge for runs grouped by flume width.
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To quantitatively compute the difference between each data series in state space

the state-space plots were transformed into discrete probability distributions by

dividing the state space into square boxes of one z score in size (Figure 6.8) and

assigning a probability to each cell that is equal to the number of points in the cell

divided by the total number of points in the state space plot (cf Saphozhnikov et

al., 1998).

This was repeated for all boxes for two data sets at a time and the differences in

percentages between the data sets were summed. An ANSI standard

FORTRAN77 program RelaxN (Bertsekas and Tseng, 1994) was then employed

to calculate the distance between the two time series under investigation. This is

the minimum average distance that the nodes of one distribution must move to

duplicate the other distribution (Sapozhnikov et al., 1998). All rotated time series

plotted in state space may be seen in Figure 6.12. A visual comparison of the plots

in Figure 6.12 reveals that there are differences in time series structure between

runs of different width for the same input discharge. In general, for a given

discharge as flume width increases, the data plot in state space moves from being

centred on the origin to spreading along the positive x-axis. This reflects the

movement from a normal to a positively skewed distribution.

Flume data sets were compared according to discharge. There are four different

discharges and at each discharge, there are four runs with different flume widths.

Therefore, within each discharge class, there are six possible comparisons

between runs at different widths.
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Chapter 6. Testing Braided 'ascade.

RelaxIV computes the least minimum cost flow of a set of data. On the graph of a

vector data set comprising a set of nodes and directed arcs (linking the nodes),

each arc has a cost which may be defined as the distance along the arc (between

the nodes) and a capacity. In the utilisation of RelaxIV that follows, the capacity

of each arc is set at 100 %, this allows datasets with differing numbers of data

points to be compared directly. For two data sets projected onto the same number

of boxes, it is possible to find the minimum cost flow between each data set. In

other words, it is possible to find the minimum distance each node of one data set

would have to move to replicate the second data set. The movements between

nodes are weighted according to whether the flow is vertical, horizontal or

diagonal. Horizontal and vertical flows have the same weight (set at 100, for a

square box of side 1 multiplied by 100, as arc capacity is specified as a

percentage), diagonal flows are weighted as 141, which is the length of the

hypotenuse of a square of side 1 multiplied by 100 (Figure 6.13).

...100 ..

100

"

Figure 6.13. Schematic diagram of weighted node movement between cells on th tate pace plot.
Note diagonal moves are included. Sapozhnikov et al., (1998) do not include diagonal moves.

Delay embedding involves plotting a time senes against a lag of itself. This

replaces a scalar time series with a vector time series and gives an idea of the

underlying attractor of a dynamical system (Moeckel and Murray, 1997, Rubin

1999). Therefore, it is feasible to use RelaxIV to compare time s ries of differ I1t

runs when plotted in state space with a delay of 1.
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Chapter 6. Testing Braided Cascade.

Results from the implementation of RelaxN are given in matrices below (Tables

6.5a-d). The greater the output value from RelaxIV the greater the difference in

time series structure of the two data sets under examination. Each value is

therefore the distance that needs to be moved in z-score units.

Run name

25o_4 -
14o_1 - 2.92
75_4 - 3.20 2.25
3o_8 - 2.28 3.90 10.93

3o_8 75_4 140_1 25o_4 Run name
-ITable 6.5a. Matrix of RelaxIV results for runs WIth a discharge of approximately 2.3 Is.

Run name

25o_2 -
140_3 - 2.43
75_2 - 3.24 4.01
3o_6 - 1.08 3.62 4.40

3o_6 75_2 140_3 25o_2 Run name

Table 6.5b. Matrix ofRelaxIV results for runs with a discharge of appro Xlmat ely 41 s .

Run name

25o_3 -
140_2 - 1.25
75_3 - 1.40 2.55
3o_7 - 1.68 1.54 2.09

3o_7 75_3 140_2 25o_3 Run name
-ITable 6.5c. Matrix of Relax IV results for runs with a discharge of approximately Sis.

Run name

25o_6 -
140_4 - 69.51
75_6 - 303.59 300.33
3o_5 - 186.21 458.13 431.15

3o_5 75_6 140_4 25o_6 Run name
-ITable 6.Sd. Matrix of ReiaxIV results for runs With a discharge of appro Xlmat ely 71 s .
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Some general trends can be identified from the matrices above. Firstly when

comparing a single thread channel network to networks with more than one

channel, the differences in time series structure increase as the number of channels

increases. In other words, when comparing a single thread network (30 cm flume)

to a network with on average two channels (75 cm flume), there is a greater

similarity between these time series than if a single thread network was compared

to a braided network of five channels (250 cm flume). For example for a

discharge of 5 I S·l, the distance between run 30_7 (single thread channel) and

75_3 (where the average number of channels throughout the run 2.34) is 168.01 z

scores but is 208.90 between run 30_7 and run 250_3 (where the average number

of channels throughout the run is 5.48). The results also indicate that there is a

greater statistical similarity between networks with more channels (4, 140 cm

flume and 5, 250 cm flume). For example for a discharge of 7 I s-1 the distance

between run 250 3 and 140 2 is 69.51 z-scores but is 431.15 z scores between- -
runs 250_3 and 30_7 Therefore, networks with a similar number of channels are

more statistically similar than networks with a greater difference in channel

number.
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6.2.2. Field data: Arolla 1999.

Two time series of bedload transport rates were collected in the braided proglacial

stream of the Haut Glacier d'Arolla in 1999. Data were collected on the 18th and zo"
of July 1999, the methodology is outlined in Chapter 4 and time series of unit bedload

transport rates for each day are shown in Figures 6.14 and 6.15. Data were collected

from a single anabranch (the bridge reach) of a wide braidplain (see Figure 4.1).

These data are examined below and a summary of each data set is given in Table 6.6.
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Figure 6.14. Time series of unit bedload transport rate from Arolla, 18/7/99.
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Figure 6.15. Time series of unit bedload transport rate from Arolla 2017199.
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Chapter 6. Testing Braided Cascade.

1817199 2017199
Number of samples 54 157
Unit bedload transport rate
(g m-Is-I)
Minimum 21.08 13.5
Mean 590.3 724.5
Maximum 1964 3735
Median 378.7 387.6
St. dev 558.2 797.2
Max/mean 3.33 5.16
Average discharge" (m' S-I) 3925 3845
Table 6.6. Summary of unit bedload transport rates at Arolla, 1999. •Average discharge is calculated
as the average over the whole sampling period.

Variation of bedload transport rate is summarised in histograms in Figure 6.16. It is

clear that both data sets are positively skewed; this is also apparent from Table 6.6 if

the values of median transport rate are compared to the mean value in each data set.

The data set of the 20th July is more variable than the data of the 18th of July when

compared to the mean rate of each set (Table 6.6). Some of the bedload pulses during

the zo" July reflect changes in hydraulics although sediment availability (bedforms)

clearly playa role. However pulses at c. 1445 and after c. 1745 (20/7/99) are due to

advection of material eroded from an undercut moraine bank 10 - 40 m upstream of

the measuring station (Hoey et al., 2001) and may result in greater variability of the

data set.
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Figure 6.16. Histograms of unit bedload transport rate from Arolla TO.P 1817199.BOTTOM: 20/7/99.
Relative frequency is used due to unequal sample sizes between data sets. ample size 1817199: 11 = 54.
Sample size 20/7/99: n = 157.

Each raw data set was converted to z-scores and plotted in state space using delay

embedding with a delay of 1. Raw data was used instead of transformed data to k ep

the analysis consistent between different data sets (i.e. betw en th analysi flam'

data and the field data). Summary statistics of z-scores and the eros ing p no ar

summarised in Table 6.7; the proportion of each type of movement i summan sd in

Table 6.8.
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Date Z-scores Crossing period
Min Max Skew

1817199 -1.02 2.46 0.62 1.56
2017199 -0.89 3.78 1.54 1.64
Table 6.7 Summary statistics of z-scores for Arolla 1999 data sets.

Date Proportion of each type of movement around the 1:1 line between data
points in state space.

above+above above+below below+above below+below
18/7/99 0.154 0.308 0.327 0.212
20/7/99 0.168 0.310 0.303 0.219
Table 6.8. Proportion of each type of movement between data points m state space for field data from
Arolla 1999.

The crossing periods for both data sets are similar to each other and are also similar to

crossing periods for the braided flume runs of Zam (1997). The crossing period is

greater for 20/7/99 indicating that, although the time series of transport rates is more

variable for the 20th (when measured as maximum transport rate divided by mean

rate), the periods of the fluctuation increase (i.e. there are longer periods of high or

low transport rates and relatively few transitions from high to low or low to high

rates).

Autocorrelations were performed on the raw data (i.e. there was not a significant

trend to remove) and correlograms are shown in Figures 6.17. Inspection of the

correlograms indicates that both cases show slow initial dampening however values

of rk in both correlograms eventually come down to zero (cf Zam's 1997 braided

runs, Figure 6.6). Examination of the PACF (Figure 6.18) indicates that both data

series show significant lags at k = 1 and k = 2. This indicates that there is a greater

persistence in the series, and that the bedload transport rate is statistically dependent

on the previous two transport rates and is a similar results to that discovered for

Zarn's (1997) data for braided flume runs.
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AR(1) models were fitted to both Arolla datasets and the results are given in Table

6.9. Both coefficients are significantly different from zero at p < 0.01. The R2 value

and the ARCl) term are similar to those of Zarn's (1997) data for braided runs,

however the constant is much larger that and of the constants for Zarn' s (1997) data

reflecting the larger transport rates in the field.

Date Constant AR(l) term P-value for R'
AR(l) term

18/7/99 174.4 0.71 2.3 x 10" 0.50
20/7/99 163.0 0.77 4.67 x 10"· 0.59
Table 6.9. Summary statistics of first order autoregression models fitted to the data from Arolla 1999.

When drawn in state space, both raw data sets are spread along the x-axis and are

qualitatively more similar to the braided flume runs of Zam (1997) than to the single

thread runs (Figures 6.19 and 6.20).
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Figure 6.19 Rotated state space plot of t versus t + I for Arolla data, 18/7/99. Boxe are on tandard
deviation square.
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Figure 6.20 Rotated state space plot oft versus t + 1 for Arolla data, 2017/99.

RelaxIV was used to compare the two data sets from Arolla with each other; the

RelaxIV result was 443.89 indicating that the data sets are dissimilar. When

compared to the RelaxIV results obtained from Zarn's (1997) data result i similar to

those obtained when comparing single thread flume runs with braided flume runs.

Each data set was compared with flume data from Zarn (1997) for one discharge (5 I

S-I). This discharge was chosen to avoid the extreme low or high discharges used in

the flume runs; raw data was used (i.e. no transformations were undertaken on the

either the field or flume data). It is important to remember that this is not an exact

comparison as laboratory models trap bedload across the entire braidplain width, and

provide spatial integration that is not present when point sampling is used (Hoey t

al., 2001). Table 6.10 gives a matrix of results for these comparisons.

Date
18/7/99 474 491 470 465
20/7/99 348 409 infeasible 229
Run name 30 7 75 3 140 2 250 3

Table 6.10. Matrix of results of Arolla field data compared to Zarn's (1997) flum data USIngReI" IV.
An infeasible result indicates that the numerical program could not resolve the probl m.
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The matrix of results suggests that the structure of the field data is dissimilar to that

of the flume runs. An "infeasible" result is returned for the comparison of the field

data from zo" July 1999 and flume run 140_2 and indicates that ReiaxIV could not

resolve the problem. The majority of results returned are of a similar magnitude to the
,

comparisons of Zarn's (1997) flume runs with single thread and braided channel

networks. The one exception is the comparison of the field data from zo" July 1999

with the narrowest flume width (3o_7) and the widest flume run (250_3); smaller

output values from RelaxIV reveal that structure of the these data sets are more

similar than any of the other comparisons made. In other words, the structure of the

time series data from zo" July 1999 shows some similarity to the single thread flume

run but more similarity to the braided flume run, however the comparisons indicate

that the nature of both similarities are weak. Overall RelaxIV shows that the internal

structures of the time series of the field data differ from each other and are also are

unlike the time series structure of any of the flume data sets. This may be a

consequence of the different sampling methods used.

6.2.3. Braided Cascade runs.

Model runs were undertaken with different grid dimensions (length to width ratios) to

ascertain whether or not the numerical model results followed a similar pattern to the

data of Zarn (1997), obtained by physical modelling using flumes with different

braidplain widths, and field data from ArolIa. Three runs were undertaken and their

results examined in detail. As the grids used for two of these runs were large the time

taken to process each run was high (e.g. 9 days for Run 3) therefore, only three runs

have been undertaken for this chapter. Run conditions are given in Table 6.11.
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Parameter values Runt Run2 Run3
Grid dimensions
Length, L 500 500 500
Width, W 3 6 14
Mean nodal spacing 1.002 1.002 1.002
(delta)

Overall DEM/grid
Slope, Si 0.02855 0.02855 0.02855
Amplitude of white 0.071375 0.071375 0.071375
noise random
topography
Timestep, dt (secs) I 1 1

Upstream boundary
conditions
Discharge 5 5 5
Sediment input Sedeqb at time t = 1 Sedeob at time t = 1 Sedeqb at time t = 1

Initial conditions
Qratio 0.95 0.95 0.95
Upratio 0.95 0.95 0.95
Erosion length scale 100.02 100.02 100.02
Deposition ON ON ON
Diffusion ON ON ON
Diffusion constant 1 x 10'8 1 x 10'6 1 X 10'8

Run length (iterations) 250000 250000 250000. .Table 6.11. Run conditions for long Braided Cascade runs .

Run conditions were chosen to force the model to either braid or remain in a single

channel. The model grid for Run 1 was three nodes wide, however two nodes are

situated on either side boundary effectively confining the channel to one node wide,

this run was used to simulate a single thread channel. Runs 2 and 3 are wider,

allowing differing degrees of channel bifurcation and therefore braiding. Water was

introduced at all nodes along the upstream boundary that were not situated on side

boundaries. Hence, all water was introduced at node 2 in Run 1; in Runs 2 and 3 total

discharge was divided by available nodes (4 in Run 2 and 12 in Run 3) and an equal

amount of water was added at each node. Water was added at each timestep at a

constant rate. Sediment was also introduced at all available nodes on the upstream

boundary at a constant rate which was set to equal the equilibrium sediment transport

of each node at time t = 1. Sediment output was monitored at the downstream end of
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the grid. In this respect the method of obtaining model output is similar to that of

obtaining flume data, i.e. the output data are spatially integrated across the entire

braidplain.

6.2.3.1. Model results.

6.2.3.1.1. Run 1.

Run 1 was used to simulate the case of a single thread channel planform. Confining

the channel to one node throughout the run forced the production of a single thread

channel. It may be expected that the temporal sediment transport rates would settle

into a static state throughout the run, however a constant sediment input produced a

varying sediment outflux throughout the run (Figure 6.21). As the side boundaries

cannot erode and the channel in Run 1 is only one node wide, no sediment can be

supplied to the channel from the sides. Therefore, diffusion erosion is not relevant in

this run, and all erosion can be thought of as fluvial.

The time series of sediment outflux from the (Figure 6.21) shows that there was an

initial peak in sediment outflux before the model reached a "steady" state from 37

000 to 117 000 (however it should be notes that sediment outflux was increasing very

slowly during this time period). Sediment outflux oscillates between 119000 and 140

000 iterations before steadily climbing to reach another "steady" state at 140000 until

200000 iterations (again sediment outflux rates were slowly increasing). The run was

stopped after 250 000 iterations (approximately 69 hours or 2.89 days). It is possible

that, had the run been allowed to continue, the sediment outflux would have become

more variable (as the model had appeared to settle into a steady state between

approximately 100 000 to 200 000 iterations), however this is not certain. The

approach to steady state may reflect a gradual slope adjustment. What is apparent is

that model output is very dissimilar to output from single thread channels modelled in

the flume by Zam (1997) and may reflect a limitation of the model, i.e. that the small

scale processes that are not modelled are actually important.
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The sediment outflux rates are bimodal, due to long periods in which the model

reached a static state (Figure 6.22). The bimodality of the data leads to the values for

median transport rate being similar to those for mean transport rate (Table 6.12), a

result that would be expected if the data series were normally distributed. However,

the shape of the histogram indicates that the model result is dissimilar result as that of

Zarn's (1997) data for single thread channels, which produced normally distributed

histograms. Variability in sediment outflux rates is not great, within the model run the

sediment outflux rates varied from just under the mean rate to just over the mean rate

(Table 6.12) again reflecting long periods of constant outflux rate.

Run name Sediment outflux (m' 5-1)

Min I Mean I Maximum I Median I Max/mean
Run 1 0.0050 I 0.0057 10.0078 10.0056 I 1.37. .
Table 6.12. Variability ofsedtment outflux from Run 1.

Inspection of the time series plot indicates that the series is not stationary (Figure

6.19), therefore to carry out formal time series analysis the data was transformed and

autocorrelation was undertaken on the first differences of the series. Inspection of the

correlogram (Figure 6.23) shows that there are significant lags at k = 2 and k = 3. The

partial autocorrelation function (PACF, Figure 6.24) shows that there is a significant

lag at k = 1, i.e. the value of sediment outflux is statistically dependent on the

previous outflux rate.
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Figure 6.23. Correlogram for Braided Cascade Run 1, using first differencing.
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Figure 6.24. Partial autocorrelation function for Braided Cas ode Run I using fir t diff ren ing,

Using an AR(l) model on the sediment outflux indicates that the regre ion m d

explains nearly all of the variance in transport rate (R2 is 0.99 Table .1 ), and th

coefficient is significantly different from zero. The success of the AR(!) m d I . t

explaining variation in transport rate is due to the long periods of t ady tran p rt rat

causing most data points to plot along the 1:1 line in state space.
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Run name Constant AR(l) term P-value for RI
AR (1) term

RUN I 0.0001 0.98 4.2 x 10·l~u 0.99
Table 6.13. Summary statistrcs of AR(I) regression for Braided Cascade run I.

If the model results are plotted in state space (Figure 6.23) the majority of data points

plot along the 1:1 line (i.e. a line attractor) indicating long periods when outfl ux

changes only slightly. This is reinforced by the large crossing period (14.53).
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+
II
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0.002
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0.000 0.0100.002 0.006 0.0080.004
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Figure 6.25. Sediment outflux from Braided Cascade Run 1 plotted in state pac .

Overall Run 1 fails to produce realistic results for a single thread channel. The re ult

produced are qualitatively very different from single thread channel run produced in

the flume by Zam (1997). The sediment outflux from Run 1 is stepped in ap earanc

and may reflect slope changes that progress upstream along the grid.
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6.2.3.1.2. Run 2.

The grid used for Run 2 was composed of 500 nodes long and 6 nodes wide to

simulate a similar effect as the narrower runs of Zarn (1997) but to allow the model to

braid. Water and sediment were added at every node on the upstream boundary (i.e.

nodes 2 to 5) at a rate given in Table 6.10. Time series of sediment output from the

grid is shown in Figure 6.26. Figure 6.26 indicates that sediment output fluctuates for

the first third of the run until a peak is reached after 85 000 iterations and declines

steadily thereafter until a steady state is reached around 172 000 iterations. Figure

6.27 shows channel pattern at certain times throughout the run (20 000, 37 000, 85

000 and 210 000 iterations, see Figure 6.26 for an indication of where these points lie

in the time series). Itmay be seen that channel pattern does not change greatly as the

run progresses and areas of braiding and single thread channels remain relatively

constant.

Figure 6.26. Time series of sediment outtlux from the grid for Braid cl as ad Run 2. Pint
indicated by a square marker are those points in time wher channel putt rn ha bs n pi It d in Figur
6.27.
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Chapter 6. Testing Braided Cascade.

Sediment output rates are less than those recorded for Run 1, however they are more

variable as calculated by the maximum rate divided by the mean rate (Table 6.14).

The median outflux rate is less than the mean rate indicating a positively skewed

distribution.

Run name Sediment outflux (m' 5"')
Min I Mean I Maximum I Median I Max/mean

Run2 1.06 x 10'" I 9.57 X 10-4 I 2.10 X 10"3 I 8.38 x 10'" 12.20. .Table 6.14. Variability of sediment outflux from Run 2.

To further investigate the change in channel pattern throughout Run 2 histograms of

relative frequency of water depths on each grid were plotted (Figure 6.28), to aid

comparison dry nodes were omitted (the proportion of dry nodes in each grid are

given in Table 6.15).

Time Proportion of dry nodes on arid
20000 0.52
37000 0.52
85000 0.57
210000 0.57
Table 6.15. Proportion of dry nodes on the gnd at certam tunes throughout Braided Cascade Run 2.

Figure 6.28 indicates that there are subtle differences in channel pattern as indicated

by water depth at differing points throughout the run. As the run progresses the

proportion of dry nodes increases (Table 6.15) due to the gradual incision of one

dominant channel at the downstream end of the grid (Figure 6.27). Histograms of

water depth become progressively more negatively skewed as the run progresses due

to the incised channel capturing all of the water at the downstream end of the grid.

Therefore, there does not seem to be a direct link between channel pattern and

sediment output rate from the grid.
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Figure 6.29. Histogram of sediment outflux from Braided Cascade run 2 with a braided channel
pattern. Note that relative frequency is used on the y-axis.

The histogram of sediment transport outflux rates shows a slightly positively skewed

distribution (Figure 6.29), which is qualitatively similar to Zarn's (1997) braided

runs. There is one modal class at 7 x 10-4 m3 S-1 corresponding to the steady state

reached towards the end of the run.

Autocorrelation analysis on the raw data shows that the values of n slowly come

down to zero (Figure 6.30). Examination of the PACF (Figure 6.31) indicates that the

run shows a significant PACF value at lag k = I indicating that sediment outflux rate

is statistically dependent on the previous transport rate. An AR(1) model was fitted to

the raw data (Table 6.16). The R2 value is not as good as that obtained for Run 1

(probably due to a shorter period of constant sediment output) but is still high.

Run name Constant AR (1) term P-value for RT
AR (1) term

Run 2 1.91 x IO·~ 0.977 2.I8xI0-'l 0.94
Table 6.16. Summary statistics of AR(I) regression for Braided Cascade run 2.
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Figure 6.30. Correlogram for Braided Cascade Run 2.
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Figure 6.31. Partial autocorrelation function for Braided Cascade Run 2.
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When plotted in state space the sediment output rate shows a slight thickening on the

first bisectrix (Figure 6.32), however some points that plot along the 1:1 line due to

the near steady state of sediment outflux reached towards the end of the run. The

crossing period (7.11) is large compared to the flume runs of Zam (19 7) but is

shorter than that for Run 1 due to the more variable sediment output.
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Figure 6.32. Sediment outflux from Braided Cascade Run 2 plotted in state space.

6.2.3.1.3. Run 3.

The grid for Run 3 was 500 nodes long and 14 nodes wide and was designed to

simulate wider braided runs. Again, water and sediment were added at every node

along the upstream boundary (12 nodes) at a rate given in Table 6.11. Time series of

sediment output from the grid is shown in Figure 6.33. There is an initial peak in

sediment output from the grid, sediment output then drops before climbing and

reaching a steady state at a relatively early period in the run. It should be noted that in

this run a true steady state was reached, i.e. the sediment outflux rates from 27 000

iterations onwards does NOT change. The interpretation of steady state may be that

averaged processes in a deterministic model produce steady equilibrium, whereas

detailed representations of small-scale processes would produce more instability. The

histogram of sediment outflux (Figure 6.34) shows a strong a modal class which is

due to the steady state reached by the model. An inspection of the channel patt rn at

varying times throughout the run (Figure 6.35, these points in time are marked on
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Figure 6.33) indicates that channel pattern does not change significantly throughout

the run. Histograms of relative frequency of water depths at these points in time are

shown in Figure 6.36, to aid comparison dry nodes were omitted but the proportion of

each grid that contains dry nodes is given in Table 6.17. it can be seen from Table

6.17 and from Figures 6.35 and 6.36 that the channel pattern, proportion of dry nodes

and the histograms of water depth change very little throughout the course of the run.
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S
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Figure 6.33. Time series of sediment outflux from the grid for Braided Cascade Run 3. Points
indicated by a square marker are those points in time where channel pattern has been plotted in Figure
6.35.

Time Proportion of dry nodes on grid
1000 0.33
12000 0.34
26000 0.34
250000 0.34
Table 6.17. Proportion of dr nodes on the id at certain times throughout Braid d Cascad Run 3.y gr
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Figure 6.34. Histogram of sediment outtlux from Braided Cascade run 3 with a braided channel
pattern. Note that relative frequency is used on the y-axis.

Sediment transport rates recorded are the lowest for the three Braided Cascade runs

and the least variable (Table 6.18) The median and mean rates are approximately the

same reflecting the large modal class created by the model reaching a steady state.

Run name Sediment outflux (m) s")
Min I Mean I Maximum I Median I Max/mean

Run3 1.68 x 10'> I 2.55 x 10" I 3.4 x 10-' I 2.6 X 10'> I 1.33. .Table 6.18. Variability of sediment outflux from Run 3.

The data are clearly not stationary so autocorrelation analysis was performed on the

first differences of the data. Inspection of the correlogram (Figure .37) indicates that

there is a significant lag at k = 1 but that the acfs very quickly reach zero and then do

not change. This reflects the static state reached by the model. The partial

autocorrelation (Figure 6.38) shows a sign.ificant lag at k = 1 but both results indicate

that the sediment outflux rate is not strongly statistically dependent any previous

transport rates.
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Figure 6.37. Correlogram for Braided Cascade Run 3.

0.8
0.6
0.4
0.2

c 0
-0.2 70
-0.4
-0.6
-0.8
-1

Lag (k)

Figure 6.38. Partial autocorrelation function for Braided Cascad Run 3.

An ARCl) model fitted to the raw data gives a lower constant, AR(1) term an R2

value than that calculated for both Runs 1 and 2 (Table 6.19).
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Run name Constant AR(!) term P-value for R"
AR (1) term

RUN3 1.83 x 10'0 0.93 2.6 x IO'H 0.80
Table 6.19. Summary statistics of ARC 1) regression for Braided Cascade run 3.

In state space the model results show some variation around the 1:] line (Figure

6.39); the results qualitatively fall between the extreme results of Run 1 where the

majority of the points plotted on the 1:1 line and Run 2 which shows more variation

in sediment output than Run 3. There is not a pronounced trend to plot along the 1:1

line as in Runs 1 and 2. This is probably due to the long period in which the sediment

outflux results do not vary; these results will all plot at the same point (i.e. a point

attractor) in state space and will be hard to make out on the state space plot.
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Figure 6.39. Sediment outflux from Braided Cascade run 3 plotted in state space.

220



Chapter 6. Testing Braided Cascade.

6.2.3.1.4. Comparisons of all Braided Cascade runs.

Z-scores calculated on the raw data of each run indicate that none of the runs show a

normal distribution (Table 6.20). Run 1 has a skew of zero due to it the sediment

transport rate results being bimodal; both Runs 2 and 3 are skewed. The crossing

period for Run 3 is the largest for any of the Braided Cascade runs in this Chapter

(20.67) indicating that the model reaches a steady state for a period longer in than that

attained in either Runs 1 or 2. This is also confirmed by the proportion of each type of

movement around the 1:1 line (Table 6.21). Run 2 has a greater proportion of

movements across the 1:1 line than movements on one side of the line, however both

Runs 1 and 3 have a greater proportion of movements on one side of the line and not

across it.

Run name Z-scores Cresstna period
Min Max Skew

Run 1 -1.10 3.01 1.00 14.53
Run 2 -1.98 2.67 0.42 7.11
Run3 -4.48 4.36 -2.68 20.67. .Table 6.20. Summary stattstics of z-scores for Braided Cascade runs .

Run name Discharge Proportion of each type of movement around the 1: 1 line
m3s·1 between data points In state space

above+above above+below below+above below+below
Run 1 5 0.748 0.033 0.033 0.187
Run 2 5 0.427 0.069 0.069 0.435
Run 3 5 0.923 0.020 0.024 0.032
Table 6.21. Proportion of each type of movement between data points In state space for Braided
Cascade runs.

The plots of cumulative sediment output from each run (Figure 6.40) show that, for

the same discharge, there is a decrease in sediment output as the width of the model

grid (and number of channels on the grid) increases. Discharge and sediment input

rate are constant throughout all runs and across all runs with equal discharge.

Therefore, as in the flume data, wider runs with more channels experience more
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aggradation than narrower runs with fewer channels and the same initial conditions.

This may reflect the increasing number of sediment storage reservoirs (bars) as the

channel geometry switches from single thread to a braided network.
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Figure 6.40. Cumulative sediment output from Braided Cascade runs.

Runs were compared using RelaxIV and a matrix of results is shown in Table 6.22. It

can be seen that all data sets are dissimilar and that the magnitude of results i much

larger than those for either Zarn's (1997) flume data sets offor the Arolla field data.

Run name
Run3 .
Run 2 . 2104.82
Run 1 . 911.13 1837.39

Run 1 Run 2 Run 3 Run name
Table 6.22. Matnx of Relaxlv results for Braided Cascade runs.

Comparing the Braided Cascade runs to the braided data of Zarn (1997) and the

Arolla data sets produced the following results (Table 6.23). The Zarn (19 7) data for
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flume runs with a discharge of 5 I S-I was used for comparison. Run 1 was not

compared to the braided flume runs as it is obviously qualitatively different to any

other data set. Runs 2 and 3 were not compared to the single thread channel run as

they were meant to simulate braided channel networks.

Arolla field data
1817199 1026.60 871.68 infeasible
2017199 1042.03 657.37 infeasible

Flume data (Zarn
1997)
30 7 940.79 - -
75 3 - 655.75 infeasible
140 2 - 579.76 infeasible
250 3 - 569.28 infeasible

Run 1 Run2 Run3 Run name
Table 6.23. Matnx of RelaxIV results for Braided Cascade runs.

From Table 6.23 it is clear that the model results are very different to either the field

or flume data. Run 2 produces results that are the most similar to either data set,

however the similarities are weak with the RelaxIV output values higher than for any

previous comparison (except for flume runs 30_8 and 250_4). Comparisons using

Run 3 produce infeasible results. This is due to the materialisation of a point attractor

in state space after 27 000 iterations causing problems with the numerical program

RelaxIV.

6.3. Discussion and summary of Chapter 6.

This chapter has attempted to link spatial and temporal bedload transport together. It

has been shown that, using the flume data of Zam (1997), different flume widths

produce different time series structures of transport rate. As the number of channels

increases the histogram of the time series structure becomes positively skewed, due

the greater aggradation experienced in these runs and the increase in sediment storage

areas (bars) within the flume. As the planform geometry changes from single thread

to braided, variability in transport rate increases if measured as the maximum
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transport rate divided by the mean rate, however dynamical systems analysis shows

that the period of the fluctuations in transport rate increase indicating fewer

transitions from low to high transport rates (or vice versa). Formal time series

analysis (autocorrelation and partial autocorrelation analysis) indicates that braided

runs show short-term correlation, with significant lags at k = 1 and k = 2. A first

order autoregression model fitted to each data set indicates that as the flume width

increases the overall goodness of fit of the regression model improves. Finally, a

modified box counting technique employed to measure the differences between time

series indicates that, for a given discharge, planforms with a similar number of

channels are more statistically similar than networks with a greater difference in

channel number.

Field data from Arolla, Switzerland that was sampled from a single anabranch of a

braided reach show variability in transport rates reflecting bedforms and changes in

hydraulics. Histograms of both data sets are positively skewed and are qualitatively

similar to histograms from the braided flume runs. Autocorrelations performed on the

raw data show that, like the braided flume runs, both data sets have significant lags at

k = 1 and k = 2. The constant and AR(l) term from a first order regression are similar

to those obtained for Zam's (1997) braided flume runs. In state space, both data sets

are qualitatively similar to the braided flume runs of Zarn (1997) however when

compared using ReiaxIV it was shown that the field data sets are dissimilar to each

other and also to the flume runs. The magnitude of the RelaxIV output values is

similar to the output obtained when comparing single thread and braided flume runs.

Therefore it can be concluded that, although qualitatively similar, time series data

from a single anabranch has a different internal structure than spatially integrated data

obtained by trapping sediment across the entire braidplain width.

Finally Braided Cascade was tested to investigate if the numerical model could

produce results similar to those obtained by either field sampling or flume

investigations. Three long runs were undertaken on grids with different length:width

224



Chapter6. Testing Braided Cascade.

ratios to try and simulate a single thread channel and two braided channel networks.

Time series of sediment output produced by mode runs were analysed using formal

time series analysis and dynamical systems methods. It was found that the model has

a tendency to reach a steady state in all runs (i.e. in state space the trajectories of

model output are tend to move towards line or point attractors). Using both

qualitative and quantitative analyses it was found that an intermediate grid produced

model output that gave the best comparison with the field data or the flume data for

braided rivers, however overall Braided Cascade fails to adequately reproduce

realistic results. However it was found that the differences between model results and

the field and flume data indicate that the model does not always match the physical

systems as closely as the physical systems match each other.
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CHAPTER 7.

CONCLUSIONS AND RECOMMENDATIONS.

7.1. Introduction.

Braided rivers are highly dynamic systems characterised by high rates of erosion,

sediment transport and deposition (Paola, 2001, Ashmore, 2001). Despite the

importance of braided rivers to the work of geomorphologists, engineers,

sedimentologists, and geologists they have been less extensively studied than

single channel rivers, largely due to the difficulties in undertaking fieldwork in

such a rapidly changing environment. Consequently most studies of braided river

evolution to date have been qualitative or semi-qualitative in nature.

Within this context it is important to note that fieldwork in braided river systems

has also largely been carried out in a reductionist framework, with the scale of

investigation typically one bar-chute complex. The use of physical models by

some workers has provided useful qualitative data on braided river evolution and

whole reach scale sediment transport. Quantitative data may be collected but this

is usually on averaged properties. However it is clearly recognised that there is a

difficulty in making distributed spatial measurements in a shallow, rapidly

changing flume setting.

Numerical modelling of braided river systems is a fairly recent phenomenon and a

variety of approaches has been used:

1. CFD models.

These models have been successfully used to predict short-term fluid flow

behaviour in small, narrow channels at scales of 1-10m, (e.g. Lane and

Richards, 1998). These models generally require very detailed field

measurements for both input data and validation that may be difficult to

obtain. However it is computationally difficult to couple these models to

models of sediment transport.
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2. Random walk models.

Channel patterns grow sequentially as a consequence of user-defined

statistical rules. These models may reproduce the planar features of braided

systems, and may reproduce topologically based statistics. However they are

largely empirical and give no insight into the geomorphic processes

responsible for network evolution.

3. Deterministic models of sedimentation and landscape evolution.

These models allow for growth and meaningful three-dimensional river basin

structures. However, they are fundamentally reductionist in spirit, and require

detailed specification of the dominant dynamics and the calibration of the

relative importance of many key processes.

4. Cellular automata models.

These models have been applied to the evolution of braided river networks,

most notably by Murray and Paola (1994, 1997). These models are synthesist

in character, with the braided channel network emerging from a highly

simplified model of the dynamics. The representation of fluid flow may be

simple but this allows for fast calculation and a deformable mesh. Thomas and

Nicholas (2002) have developed a cellular automata model similar to Murray

and Paola's (1994, 1997) model but, at the time of writing this model does not

transport sediment.

Modelling braided river systems is a key theme of this research, and the main

findings here relate to the thesis aims and objectives presented in Chapter 1. The

main aim was to develop a numerical model of water and sediment transport that

incorporates physically realistic transport rules for water and sediment and can

simulate the evolution of braided channel networks. Subordinate to this were three

objectives:

1. to test the sensitivity of model parameters;

2. to use the model to answer specific questions about the formation and

evolution of braided channel networks in order to gain insight into the

mechanics of braided rivers, for example to attempt to understand the

relationship between unsteady sediment transport and morphology; and
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3. to investigate the relationship between spatial and temporal structure in

bedload transport using the model results, field data and results from a

physical modelling study.

To address these objectives a new hybrid model of water and sediment transport

encapsulating these rules that is capable of producing braided channel networks

was developed; this model is named Braided Cascade.

7.2. Model development: Braided Cascade.

Braided Cascade is a large scale numerical model that is capable of simulating the

evolution of braided channel networks and incorporates various physically

realistic processes of a real river. Braided Cascade is synthesist in spirit was

developed from Cascade (Braun and Sambridge, 1997), a finite-difference long-

term (timesteps on the order of 100 years) landscape evolution model. Braided

Cascade has been modified so that it can be applied to relatively short term

process modelling. New routines were written to initialise the grid, incorporate

physically realistic sediment transport and fluvial erosion rules and to allow the

flow to bifurcate around local topographic highs. Braided Cascade improves upon

previous models of braided networks in four main areas:

• the use of Delaunay triangulation to generate a computational grid allowing

flexible lateral movement. The inclusion of an irregular triangulated network

(TIN) for the model grid allows channels to form in all directions. In this

respect Braided Cascade is unique among other previously published large

scale models of braided rivers where square grids are used and channel

network growth is constrained by angles that exist between cells;

• the inclusion of water height and thus routing of water and sediment due to

water surface slopes is unique to Braided Cascade;

• the incorporation of spatial lag effects, (also termed step lengths, or length

scales for erosion), is again unique to Braided Cascade. Spatial lag effects are

defined as the inability of an alluvial system to immediately overcome the

presence of constrained sediment boundary conditions (Phillips and
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Sutherland 1989). A certain distance is required before the alluvial system

reaches equilibrium (phillips and Sutherland, 1989). The step length method

identifies a typical distance of travel between sediment source (erosion) and

sediment sink (deposition) and has been applied to meandering (e.g. Neill

1971) and braided channels (e.g. Carson and Griffiths 1989; Ferguson and

Ashworth 1992; Goff and Ashmore 1994). No temporal lags are included,

which is equivalent to a steady flow assumption; and

• the incorporation of flow splitting ratios. The ability to constrain flow

divergence is a purely model parameter and has no equivalence in prototype

rivers, however it can serve as a surrogate for momentum in the flow

equations. Channels can bifurcate or join (more than two channels may join

but one channel cannot be split into more than two anabranches). Discharge in

the original channel is assigned to each of the two new channels according to

channel bed slope, sediment is assigned according to water surface slope,

which is calculated using hydraulic geometry relations. Thus, discharge and

sediment are conserved throughout the network. The movement of water is

determined by local gradient, and fluxes of water and sediment are determined

by the water surface slopes between a donor and receiving node.

Although Braided Cascade improves upon previous cellular automata models of

braiding, the model contains some problems. Shortcomings of Braided Cascade
include:

• the model cannot accommodate the effects of channel width. Each node is

treated as being one channel even if the nodes are adjacent and should be

treated as part of the same channel.

• the model does not explicitly include a sediment size; however there is a

maximum amount of material that can be deposited during one timestep and

this is equivalent to a notional grain size.

Overall the modelling approach used here is simplified and takes no account of

detailed flow hydraulics. The intention was to model the overall spatial patterns of

sediment transport, deposition and erosion and to analyse these in terms of their
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net statistical properties, rather than to produce accurate predictions of processes

at particular localities. In this respect, the modelling approach is synthesist and

braiding is an emergent phenomenon.

7.3. Model sensitivity analysis and testing. What causes braiding?

A formal sensitivity analysis was undertaken to investigate the sensitivity of the

model results for a range of values of the model parameters: slope, erosion length

scale, deposition, diffusion (lateral sediment transport), discharge splitting ratios

and sediment input and has investigated the parameter values needed to give

styles and timescales for model evolution that are comparable to the evolution of

braided channel networks. It was found that most combinations of model

parameters produce basic braiding, however the model has a tendency to reach a

static state in certain circumstances.

The most significant parameters for braiding were found to be:

• the erosion length scale: The model will reach a static steady state if the

length scales are sufficiently short for the carrying capacity of the flow to

be reached almost instantaneously;

• the splitting ratios: The model will reach a static steady state if the

splitting ratios (qratio and upratio) are set to disallow flow to split if the

ratios between channel slopes are very low; and

• deposition: If deposition is suppressed and the system is purely erosive,

the model erodes a canyon down the grid and produces very similar results

to when the erosion length scale is short.

7.3.1. Parameter values.

It should be noted that the parameter values do not have any significance beyond

that model. A lack of field measurements and the presence of lumped parameters

(e.g. the erosion length scale) make it difficult to compare the parameter values

used in the model with data from prototype rivers, therefore the best that can be
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done is to make approximate estimates of the scale dependence from existing data

and to show that these are consistent with the model behaviour.

7.3.2. Comparison of model data with field and flume data.

To address the third objective above field and flume data were used as a

comparison of model output to input results. Sediment output from model runs

was monitored across the entire downstream boundary of the grid. Using both

qualitative and quantitative analyses it was found the similarities between model

date and other data sets are weak and all runs tended to reach static equilibrium.

Braided Cascade therefore failed to adequately reproduce realistic data sets. This

may reflect a limitation of the model, i.e. that the small scale processes that are

not included in Braided Cascade are actually important.

It was found that the differences between model results and the flume data

indicate that the model does not always match the physical systems as closely as

physical systems match each other.

7.3.3. Summary of conclusions.

Therefore main conclusions of this work are:

1. requirements for a braided network to form are an imbalance between the

amount of sediment the river is carrying and the carrying capacity as well

as a reworking of the deposits;

2. parameter values do not have any significance beyond the model;

3. the model tends to reach a static state implying that the small scale

processes that are not modelled are actually important; and

4. the model does not always match the physical systems as closely as

physical systems match each other.

7.4. Braided river modelling: recommendations for future work.

A numerical model for braided channel network growth has been developed here.

With hindsight a number of potential improvements can be identified, which may
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improve the ability of the model to produce more realistic results (Le. results the

resemble data from physical systems).

• In this study Braided Cascade has been used to simulate flume experiments by

allowing the braided network to be developed within a rectangular space

having lateral no-flow boundaries and a random white noise initial elevation.

This methodology was decided upon to constrain parameters for sensitivity

testing and to enable comparisons with flume data. Cascade however has the

ability to read in digital elevation models of topography. If a pre-existing

topography is read in this should control channel location and may allow the

model to produce more realistic results (i.e. not move towards a steady state).

It should therefore be possible to input riverbed topography into Braided

Cascade.

• The inclusion of more than one sediment size. Braided Cascade contains a

notional sediment size defined as the maximum amount of deposition allowed

during one time step. This notional sediment size was set to equal the median

sediment size (Dso) of the Arolla grain size (0.07751 m) to try to avoid

computational instability. The transport equation used in Braided Cascade

was developed for gravel braids, so a grain size is implicit here. The inclusion

of more than one sediment size would be useful for sedimentary sequence

modelling (this has been done for landscape evolution models) and would be

very useful in the context of modelling sequences as have been studied in the

flume.

• The input of hydrographs. All model development and testing was carried out

using constant input discharges. Longer model runs tended to reach a steady

state which may be a consequence of the ability of the model to aggrade and

absorb all sediment input. If discharge input rates were controlled by

hydrographs and sediment input rates were controlled by a sediment-discharge

relation this may effect sediment output rates and prevent a steady state being

reached.

• Further testing of Braided Cascade against other similar models using the

same input data. It would be interesting to carry out runs using Braided
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Cascade and other braided river models (e.g. the model of Murray and Paola,

(1994, 1997) random walk models) with the same initial parameter and input

data to see the differences in outcome.

Synthesist style models therefore have the potential to lead to a greatly improved

understanding of braided rivers, however it has been shown in this model that the

exclusion of small scale processes from the model may be important when trying

to produce braided networks. Modelling can gain from new technologies

providing better field data (e.g. Lane 2001) and synthesist modelling can

compliment reductionist modelling techniques (Paola 2001).
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Appendix. Cascade authorship and Fortran code.

APPENDIX.

CASCADE AUTHORSHIP AND FORTRAN CODE.

1. Authorship of Cascade and Braided Cascade.

This notice concerning the development and authorship of the original version of
Cascade is inserted at the start of the code for the main program. Please note that
the important note below (by Jean Braun) is still valid and anyone wishing to use
Cascade must gain permission from Jean Braun at the address below.

1.1. Cascade.

The program Cascade was developed by:

lean Braun
Research School of Earth Sciences
Australian National University
Canberra, ACT, 0200
Australia
Tel: +61-2-6249-5512
Fax: +61-2-6249-5443
email: Jean.Braun@anu.edu.au

(Canberra, June 1st, 1995)
(Present version September 27, 1999)

IMPORTANT NOTE:

Please, note that this software CANNOT be freely distributed. You must obtain
Jean Braun's permission to use it (or part of it) or to give to other potential users.
Please respect this condition of use. I am trying to protect parts of the
Delaunay/V oronoi algorithms that we are using in a commercial venture with
Malcolm Sambridge. This means that some of our "clients" had to pay to use this
software commercially.

1.2. Braided Cascade.

The program Braided Cascade was developed by:

Judith Cudden
Department of Geography and Topographic Science
University of Glasgow
Glasgow
GI28QQ.
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Appendix. Cascade authorship and Fortran code.

As I am no longer at the University of Glasgow, the code is currently being
administered by Dr. Trevor Hoey:

Dr. Trevor Hoey
Department of Geography and Topographic Science
University of Glasgow
Glasgow
G128QQ.

e-mail: thoey@geog.gla.ac.uk

Anyone wishing to use the code for Braided Cascade should contact both Jean
Braun AND Trevor Hoey (who will then contact myself).
Thanks.
Judith Cudden.
July 2002.
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Appendix. Cascade authorship and Fortran code.

2. FORTRAN code for altered subroutines.

The following routines are the altered routines only. The original version of
Cascade contains 31 other routines, 7 calculate tectonic movement and have been
switched off in Braided Cascade, 21 are unaltered.

2.1. FORTRAN code for the grid initialisation subroutine.

c This is a the FORTRAN CODE for the subroutine to generate
c a grid of specified dimensions, with known slope, and then to add
c white noise of specified amplitude.
c Lines beginning with c are comment lines and are inserted to explain
c the code. These lines are not read by the program.

subroutine makegrid (sidex,sidey,gradient,ampnoise,
& randnum,x,y,h,nnode,
& delta,surfscale,fix,h2)

common Ivoca1l ivocal

real x(nnode),y(nnode),h(nnode)
real fix(nnode ),sidex,sidey,ampnoise,gradient
real randnum(nnode),delta
real b2(nnode)

c Specify grid details. Units are m, and m/m for gradient.

nx=250
ny=lO
nnode=nx*ny
sidex=250
sidey=lO
gradient=O.02855
delta=sideX/float(nx-l)
surfscale=sidex*sidey/nnode
htop=lOO

c Define nodes, and calculate x, y, h without noise.

if(ivocal.eq.l) call debug('random$' ,0)
call random (x,nnode)
call random (y,nnode)
call random (randnum,nnode)
if(ivocal.eq.l) call debug('makegrid$', 1)

c Add white noise.

ampnoise=O.O l*gradient*sidex

do i=l,nx
doj=l,ny
ishake=l
if'(i.eq.l .or. i.eq.nx .or.j.eq.l .or.j.eq.ny) ishake=O
ij=(i-l)*ny+j

if (i.eq.l .or. i.eq.nx .or. j.eq.l .or. j.eq.ny) then
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x(ij)=(float(i-l )/float(nx-l »*sidex
y( ij)=(float(j-l )/float(ny-l) )*sidey

else
x(ij)=( (x(ij)-O.S)/float(nx-l)

& +float(i-l )/float(nx-l) )*sidex
y(ij)=«y(ij)-O.S)/float(ny-l)

& +float(j-l )/float(ny-l »*sidey
endif

c Define boundary nodes.

fix(ij)=l
if(i.eq.1) fix(ij)=2
if(j.eq.l .or. j.eq.ny) fix(ij)=O

dh=gradient*x( ij)
h(ij)=(htop-dh)+ampnoise*(randnum(ij)-O.S)
if(fix(ij).eq.O) h(ij)=h(ij)+lOO

enddo
enddo

close(S)

return
end
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2.2. FORTRAN code for the node ordering subroutine.

c This is the FORTRAN code for the subroutine to calculate the proper
c order in which the nodes must be stored to perform the river
c erosion calculations.
c Lines beginning with c are comment lines and are inserted to explain
c the code. These lines are not read by the program.

subroutine fmd_order (ibucket,ndon,iorder,
& nnode,norder,x,xtx,orderin,
& outorder,shorttime)

c INPUT:
c ndon
c fix
c nnode
c ibucket
c orderin
c outorder
c xtx

cOUTPUT:
c

= donor array
= boundary condition array
= total number of nodes
=working array
=working array
=working array
=working array

iorder
norder

= node ordering
= number of nodes in the ordering

c subroutines called:
cNONE

common /vocal/ ivocal

integer
integer
integer
real

ibucket( nnode,2)
ndon(nnode,2),iorder(nnode)
orderin(nnode ),outorder(nnode)
x(nnode ),xtx( nnode)

dimension orderin(nnode)

c Set the number of nodes ordered to 0 to start.

norder=O

c Loop over all the nodes and their receiving nodes. Set the ibucket
c values of all nodes to 1. If the receiving nodes of a donor nodes are
c either self donors (local minima) or if a node donates to only one
c receiver, set the ibucket values of the donor nodes to O.

do i=l,nnode
doj=I,2
ibucket(ij)= 1
enddo
if (ndon(i,1).eq.i) ibucket(i,l)=O
if (ndon(i,2).eq.O) ibucket(i,2)=O
enddo

c Loop over all the nodes. If the ibucket value of the node is not 0
c set it to -1. If

do i=l,nnode
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doj=1,2
if (ibucket(ij).ne.O) ibucket(ndon(ij),l)=-l
enddo
if (ibucket(i,2).ne.O) ibucket(i,2)=0
enddo

c Loop over all nodes and set the order of nodes equal to the order in
c which they were looped over.

do ii=l,nnode
orderin(ii)=ii
enddo

c If the node is not a self donor set the xtx value of the FIRST node
c to tOOO and loop over nodes 2 to nnode (nnode is the maximum
c number of nodes). Set xtx of the ALL OTHER nodes to O.

if(ndon(i, 1).ne.i) then
xtx( 1)= 1000

do 16 j=2,nnode
xtx(j)=O

16 continue

c Loop over all nodes. If the ibucket value of the first receiving node
cis 0 then jump out of the loop. Otherwise look at the x co-ordinates
c of each node.

do 20 jj=Lnnode
if(ibucket(jj, 1).eq.O) goto 20

xtest=x(jj)

c Loop over all nodes. In the first pass through the loop if the x
c co-ordinate of the node is less than the xtx value of the node
c (Le. toOO for the first node) then loop over the nodes (loop kk)
c backwards from the node in question to the first node.
c Set the xtx value of the node in question to the xtx value of the
c next node.

do 25 k= 1,nnode

if(xtest.lt.xtx(k» then

do 30 kk=nnode-Lk.-I
xtx(kk+ 1)=xtx(kk)

outorder(kk+ 1)=outorder(kk)

30 continue

xtx(k)=xtest

outorder(k)=jj

goto 20
endif
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25 continue

20 continue
endif

do k= 1,nnode
norder=norder+ 1
iorder(norder)=outorder(k)
enddo

return
end
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2.3. FORTRAN code for the fluvial erosion subroutine.

c This is the FORTRAN code for the subroutine to calculate
c the amount of fluvial erosion at each node.
c Lines beginning with c are comment lines and are inserted to explain
c the code. These lines are not read by the program.

subroutine fluvial_erosion (xkf,xlf_BR,xlf_AL,
&
&
&
&
&
&
&
&
&
&
&
&
&

x,y,h,hO,hi,ndon,nnode,
surface,slope,length,
water,sediment,
ibucket,dt,fix,
dhh,
nb,nn,nbmax,
iorder ,itype _node,
dhminfluv,dhmaxfluv,
nlake,
sea_level,outflux,ideposition,q,
ahw,a,b,prewater,hold,xtx,
orderin,outorder, wsslope,
shorttime)

cINPUT:
c xkf
c xlf_BR
c xIf_AL
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

= diffusivity
= bedrock erosion length scale
= alluvials erosion length scale
= x- and y-nodal positions
= present topography
= bedrock-alluvion interface
= initial topography (at time 0)
= donor array
= number of nodes
= surface associated with each node
= slope associated with each nodal link (stream)
= length associated with each nodal link (stream)
= working array used to find node ordering
= time step length
= boundary condition array
= amount of material eroded/deposited over the time step
= number of natural neighbours per node
= list of natural neighbours
=maximum of natural neighbours
=working array containing the proper sequence in node

number in which to perform the river erosion operations
itype_node = type associated to each node (see later in code)
dhminfluv =minimum amount removed by river erosion
dhmaxfluv = maximum amount removed by river erosion
nlake = determines whether a node is part of a lake or not
sea_1evel = sea level
ideposition = to prevent deposition by rivers (=0)
q = input reading of water at each node (in data file)
qn = n parameter from Murray and Paola water splitting
ahw = water depth
a = coefficient for water depth calculations

(from Ergenzinger 1987)
= exponent for water depth calculations

(from Ergenzinger 1987)
prewater = water at each node (before amount is updated)

x,y
h
hO
hi
ndon
nnode
surface
slope
length
ibucket
dt
fix
dhh
nb
nn
nbmax
iorder

b
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c hold = old topography
c xtx = working array used to find order of nodes
c orderin = working array used to fmd order of nodes
c outorder = used to find order of nodes
c wsslope = water surface slope
c shorttirne = used to check tirnestep

c OUTPUT: several arrays are updated:
c h = new current topography
c outflux = the contribution from river incision to outflux is calculated
c The following arrays are filled:
c water = water discharge at each point
c sediment = sediment load at each point

c subroutines called:
c - debug
c - find_order

common /vocal/ ivocal

real x(nnode ),y(nnode ),h( nnode ),hO(nnode ),hi( nnode)
real xkflnnode ),xlf_ BR(nnode)
real surface(nnode),dhh(nnode)
real slope(nnode,2),length(nnode,2),qn,a,b
real fix( nnode ),q,water( nnode ),rain
real ahw( nnode ),prewater( nnode ),hold( nnode)
real xtx( nnode ),wsslope( nnode,2)

integer ibucket( nnode,2 ),split
integer ndon(nnode,2)
integer nb(*),nn(nbmax, *)
integer iorder( nnode ),itype _node( nnode )
integer nlake(nnode)
integer orderin( nnode ),outorder( nnode )

double precision sediment(nnode),sedeqb,sedqbl,sedqb2

c Initialises parameter values.

qn=O.5
akm=2.428e-lO
exp=3.606
a=O.16
b=O.37
maxdh=O.l

c Definition of qn from Murray and Paola (1994,1997),
c called n in their papers).
c akm is the constant in the sediment transport equation and
c exp is the exponent (Hoey et al. 200 1).

c Initialises arrays. Sets water to 1 and sediment to 0 at every node.
c Sets the thickness of the alluvial layer to SO m.

do i=l,nnode
h(i)=h(i)
water(i)=O
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sediment(i)=O.
dhh(i)=O.
alluvialthickness=50
hO(i)=(h(i)-aUuvialthickness)

c Sets all ibucket to O.

doj=I,2
ibucket(ij)=O
enddo
enddo

c Opens file to read in water for each node.

iread=l

if(iread.eq.l .and. time.le.endtime) then
open(39,file='RUN11Inewwater',status='old')

do j=l,nnode
read(39, *,end=1999)j,rain,sed
water(j)=rain
sedimentG)=sed
enddo

1999 close(39)
endif

c Sets the minimum and maximum amount of erosion to O.

dhminfiuv=O.
dhmaxfluv=O.

c Orders nodes using the new node ordering subroutine.

if (ivocal.eq.l) call debug ('find_ order$',O)
call find order (ibucket,ndon,iorder,
& nnode,norder,x,xtx,orderin,
& outorder)
if (ivocal.eq.l) call debug ('fluvial_ erosionS', 1)

c itype_node determines the type of node:
c -2: local minima
c -1: node below sea level (sea level = 0)
c 0: diffusion only
cl: channel because one of its parents was a channel
c Sets all nodes to type 0 .

do i=l,nnode
itype _node(i)=O
enddo

c Loops over all nodes in order to determine if they donate to any
c receiving nodes (array of receiving nodes = ndon).

do jorder= 1,norder

i=iorder(jorder)
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c If the node donates to one node only the set the splitting function (split)
c toO.
c If the node donates to itself (i.e. is a local minima) set split to 4.

if(ndon(i,2).eq.i .or. ndon(i,2).eq.O) split=O
if(ndon(i,l).eq.i) split=4

c If the node has two receiving nodes and they are both downslope from
c the donor then calculate the slope ratios, the discharge ratios and set
c split to equal 1.

if«-slope(i,I».gt.O .and. (-slope(i,2».gt.O) then
slopesum=« -slope(i, 1»**qn)+( (-slope( i,2»**qn)
splitq=tf-slopej], 1»**qn)/(slopesum)
splitq2=( (-slope(i,2) )**qn)/(slopesum)

qratio=splitql(splitq+splitq2)
split=l

c If the discharge ratio is greater than the threshold then all water is
c routed to the first donor and split is set to O.

if (qratio.gt.0.8) then
ndon(i,2)=O
split=O
endif

c If the node has two upslope receiving nodes, calculate slope ratios,
c calculate upslope discharge ratio and set split to 2.

elseif( -slope(i, 1)).It.O .and. (-slope(i,2».lt.O) then
upslopesum=t (slope(i, 1»* *(-qnj) )+« (slope(i,2»**( -qn»)
upsplitl =«slope(i, I»**( -qn»/upslopesum
upsplit2=«slope(i,2»**(-qn»/upslopesum
upratio=upsplit l/(upsplit 1+upsplit2)
split=2

c If the upslope discharge ratio is greater than the threshold then
c all water is routed to the first receiving node and split is set to 3.

if (upratio.gt.O.8) then
ndon(i,2)=0
split=3
endif

c If the slope to the first receiver is positive and the slope to the
c second receiver is negative then all water is routed to the first
c receiving node. Split is set to O.

elseif( -slope(i, 1».gt.O .and, (-slope(i,2».lt.O) then
ndon(i,2)=O
split=O

c If the slope to the first receiver is negative and the slope to the
c second receiver is positive then all water is routed to the second
c receiver. THIS SHOULD NEVER HAPPEN but has been left as
c a check.
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elseif«-slope(i,l».lt.O .and. (-slope(i,2».gt.0) then
ndon(i, 1)=0
split=O

c If the slope to the first receiver is approximately 0 and the slope
c to the second receiver is negative, all water is routed to the first
c receiver, split is set to O.

elseif (abs( -slope(i, 1».gt.O.OOOOOl .and.
& (-slope(i,2».lt.O) then

split=O
ndon(i,2)=O

c Ifthe slope to the first receiver is positive and there is NO second donor,
c all water is routed to the first receiver. Split is set to 3.

elseif( (-slope(i, 1)).1t.0 .and.
& ndon(i,2).eq.0) then

split=3
ndon(i,2)=O

endif

c If all water is routed to the first receiver then calculate water and
c water depth at the receiver.

ahw(i)=h(i)+(a"'(water(i»Ub)

if(split.eq.O .or. split.eq.3) then
water( ndon( i, 1))=water( ndon( i, I ))+water( i)
ahw(ndon(i, 1»=h(ndon(i, 1»+(a"'(water(ndon(i, 1»)Ub)

c If there are two downslope receiving nodes then iterate to calculate
c water passed to each receiver. Prewater is the amount of water already
c at each receiving node (before they receive any more).

elseif(split.eq.l) then

qrest=qratio

prewater 1=water( ndon( i, 1»
prewaterz=waterfndonti.Z)

count=O

200 do 150, kk=I,2

count=count+ 1

water(ndon(i, 1»=(water(i)"'qrest)
water(ndon(i,2»=( water( i)"'( l-qrest)

ahw(i)=h(i)+(a"'(water(i»Ub)

ahw(ndon(i, 1»=h(ndon(i, 1»+(a"'(water(ndon(i, I »)"''''b)
ahw(ndon(i,2»=h(ndon(i,2»+(a"'(water(ndon(i,2»)"''''b)
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slopestl =(ahw(ndon( i, 1))-ahw( i))/length( i, 1)
slopest2=(ahw(ndon(i,2»-ahw(i»/length(i,2)
slopestsum=( (-slopestl )**qn)+« -slopest2)**qn)

splitq 1calc=f -slopestl )**qn)/( slopestsum)
splitq2calc=( (_slopest2)**qn )/( slopestsum)

qrcalc=splitq lcalc/(splitq Icalc+splitq2calc)

qrerror=( abs( qrcalc-qrestj)

c If the error between the calculated value of the discharge ratio (qrcalc)
c and the user specified value (qrest) isgreater than the user specified
c threshold, update the value of qrest and perform the iteration again,
c if it is below the threshold, exit the iterative loop and set qratio to
c equal the new value of qrest.
c If the program becomes stuck in the loop print an error message.

if(qrerror.gt.0.05) then
qrest=qrest+O.5 *(qrcalc-qrest)
goto 200
else
goto 300
endif

if (kk.eq.lOO) print*, "error in fluvial erosion"

150 continue
300 qratio=qrest

water( ndon( i,l ))=water( ndon( i,t ))+prewater 1
water( ndon( i,2) )=water( ndon( i,2) )+prewater2

c If there are two upslope receiving nodes then iterate to calculate
c water passed to each receiver. upprewater is the amount of water already
c at each receiving node (before they receive any more).

elseif(split.eq.2) then

upprewater 1=water( ndon( i, 1»
upprewater2=water( ndon( i,2»

ahw(i)=h(i)+(a*(water(i»**b)

ahw(ndon(i, 1»=h(ndon(i, 1»+(a*(water(ndon(i, 1»)**b)
ahw(ndon(i,2»=h(ndon(i,2»+(a*(water(ndon(i,2»)**b)

upslopestl =(ahw(ndon(i, 1»-ahw(i»/length(i, 1)
upslopest2=(ahw(ndon(i,2»-ahw(i»/length(i,2)

c For two upslope receiving nodes.

if( -(upslopestl ».gt.O .and.
& (-(upslopest2».gt.0) then

upslopesum=( (-(upslopest I»**qn)+« -(upslopest2) )**qn)
upsplithwl =« -(upslopestl »**qn)/upslopesum
upsplithw2=« -(upslopest2»**qn)/upslopesum
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upratiohw=upsplithwl/(upsplithw1 +upsplithw2)

water(ndon(i, 1»=water(i)*upratiohw
water(ndon(i,2»=water(i)*(1-upratiohw)

water(ndon(i, 1»=water(ndon(i, 1»+upprewaterl
water( ndon( i,2) )=water( ndon(i,2) )+upprewater2

c For the first receiving node with a positive slope from the donor node
c and the second with a negative slope.

elseifl -upslopestl ).gt.O .and.
& (-upslopest2).lt.0) then

upsplithw 1=0
upsplithw2=O
upratiohw=O
water( ndon(i, 1))=water( ndon( i, 1))+water( i)
water( ndon( i,2) )=0

water( ndon( i, 1))=water( ndon( i, 1))+upprewater I
water(ndon( i,2) )=water( ndon( i,2) )+upprewater2

c For the first receiving node with a negative slope and the
c second with a positive slope.

elseif( (-upslopestl ).1t.O .and.
& (-upslopest2).gt.0) then

upsplithw I=0
upsplithw2=0
upratiohw=O
water(ndon(i,2»=water(ndon(i,2»+water(i)
water( ndon( i, 1»=0

water( ndon( i, 1))=water( ndon( i, 1))+upprewater 1
water( ndon( i,2) )=water( ndon( i,2) )+upprewater2

c Both receiving nodes have negative slopes.

elseif( (-upslopestl ).1t.0 .and.
& (-upslopest2).lt.0) then

upslope sum 1=(upslopestl n(-qn))+( upslopest2 **( -qn)
upsplitq 1calc=( (upslopest 1).*(-qn»

& /(upslopesuml)
upsplitq2calc=( (upslopest2)**( -qn)

& I(upslopesuml)

upqrcalc=upsplitq 1calc/( upsplitq 1calc+upsplitq2calc)

water(ndon(i, 1)}=water(i)*upqrcalc
water(ndon(i,2»=water( i)*( l-upqrcalc)

water( ndon(i, 1))=water( ndon( i, 1»+upprewater 1
water( ndon( i,2) )=water( ndon( i,2) )+upprewater2

endif
endif

c Special treatment for self donors.

261



Appendix. Cascade authorship and Fortran code.

c Self donating nodes: type of node is set to -2.

if(ndon(i,l).eq.i) then
dh=O.
water(i)=water(i)
sediment( i)=sediment( i)
itype_node(i)=-2

c Special treatment for boundary nodes Upstream boundary nodes, fix = 2.
c Side boundary nodes, fix = O.

if (fix(i).eq.l .or. fix(i).eq.2) then
outflux=outflux+sediment( i)
if(fix(i).eq.2) dh=O

else if (fix(i).eq.O) then
outflux=outflux
endif

c Special treatment for nodes below sea level. Node type is set to -1.

elseif (h(i).It.sea _level) then
dh=sediment(i)/surface(i)
h(i)=h(i)+dh
itype_node(i)=-l
sediment(i)=O.

c If the node is not a self donor or below sea-level then
c node type is set to 1.

else
if (itype_node(i).ne.O) itype_node(i)=l

c Sediment transport calculation.
c sedeqb is how much sediment the river can carry (carrying capacity).
c 1000 is water density.
c First calculate carrying capacity for nodes that donate to one
c downslope node only.

if(split.eq.O) then
if(slope(i, 1) .It. -0.0457) slope(i,I )=-0.0457
sedeqb=(akm*«(-slope(i,I»)*water(i)*IOOO)**exp)*dt
sedqbl=O
sedqb2=O

c Now calculate carrying capacity for nodes with two downslope
c receiver nodes.

elseif(spIit.eq.1) then

if(slope(i,l) .It. -0.0457) slope(i, I )=-0.0457
if(slope(i,2) .It. -0.0457) slope(i,2)=-0.0457

sedqb 1=(akm*( -slope( i,I )*water( i)*qratio*1 OOO)**exp)*dt
sedqb2=(akm*( -slope(i,2)*water(i)*( I-qratlo )*1OOO)**exp)

& *dt
sedeqb=sedqbI +sedqb2

c Calculate carrying capacity for nodes with two upslope receiver nodes.
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elseif(split.eq.2) then
sedqbl=O
sedqb2=O
sedeqb=O

c Calculate carrying capacity for nodes with one upslope receiver node.

elseif(split.eq.3) then
sedqbl=O
sedqb2=O
sedeqb=O

endif

c If carrying capacity is very small set it equal to O.
c If the receiver node(s) is/are downslope from the donor node
c calculate amount of sediment donated to each receiver node.
c If the receiving node(s) is/are upslope from the donor node, NO
c sediment is moved to the receiver node(s).

if(sedeqb.lt.l.e-lOO) then
sedratio 1=0
sedratioz=O
elseif(split.eq.l .or. split.eq.2) then
sedratio 1=sedqb lIsedeqb
sedratio2=sedqb2/sedeqb
elseif(split.eq.O .or. split.eq.3) then
sedqbl=O
sedqb2=0
sedratio 1=0
sedratioz=O
endif

c Special treatment for lake nodes. No ponding is allowed in the model
c so the next section should not be used, it is included to trap errors.

if (nlake(i).eq.I) then
dh=sediment(i)/surface(i)
h(i)=h(i)+dh
sediment(i)=O.

c Deposition.
c If the amount of sediment at a node is greater than the carrying capacity
c AND deposition is allowed, then deposition occurs.

elseif (sediment(i).ge.sedeqb.and.ideposition.eq.l) then
dh=( sediment( i)-sedeqb )/surface(i)

c There is a maximum amount of sediment that can be dumped at one location.
c The maximum is given by the maximum height that the dumping may
c produce such that the slope it creates between this node and its donor is not
c greater than the erosional threshold. In other words, it is assumed that
c by deposition one cannot create a levee so big that at the next time step
c it is going to be eroded down. The maximum amount of erosion that is
c allowed to take place in one timestep it set to equal the D50 of surface
c sediment from Arolla, 1999 (see thesis chapter 3).

263



Appendix. Cascade authorship and Fortran code.

alluvialthickness=50
hO(i)=(h(i)-alluvialthickness)

if (water(i).ne.O.) then
dhmax=0.07751

else
dhmax=dh
endif
if (dh.le.dhmax) then
sediment(i)=sedeqb
h(i)=h(i)+dh

else
dh=dhmax
sediment( i)=sediment( i)-dhmax*surface( i)
h(i)=h(i)+dh

endif

c Erosion.
c There are three cases in which erosion may take place:
c erosion in bedrock only, erosion in alluvial material only and
c erosion in both alluvial material and bedrock.
c In Braided Cascade the alluvial layer is set to be 50 m thick so all
c erosion should take place within this layer (Le. the second
c scenario is true).

else

c Redefine length scales.

xlength_BR=aminl(length(i, 1)/xlf_BR(i), I.)
xlength _AL=amin1 (length(i, 1)/xlf_AL, 1.)

c First case: eroding bedrock only.

alluvialthickness=50
hO(i)=(h(i)-alluvialthickness)

if (h(i).le.hO(i» then
dsediment=( sedeqb-sediment( i) *xlength _BR
dh=-dsedimentlsurface(i)
h(i)=h(i)+dh
sediment( i)=sediment( i)+dsediment

c Second case: eroding alluvial material only.
else
if(fix(i).ne.2) then
dsediment=(sedeqb-sediment(i»*xlength_AL

dh=-dsedimentlsurface(i)
if (dh.ge.hO(i)-h(i» then
h(i)=h(i)+dh
sediment( i)=sediment( i)+dsediment

else
dh=O
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endif

else

c Third case: eroding alluvial material and bedrock.

if(fix(i).ne.2) then

dhl =h(i)-hO(i)
dsedimentl =dhl *surface(i)/xlength _AL
dsediment=( sedeqb-sediment( i)-dsediment 1)*

& xlength_BR
db=-dsedimentlsurface(i)
h(i)=hO(i)+db
sediment( i)=sediment( i)+dsediment 1+dsediment

else
db=O
endif

endif
endif

endif

dhminfluv=amin 1(dhminfluv .dh)
dhmaxfluv=amax 1(dhmaxfluv,db)

c From water, sediment and slope update height and sediment.

if(split.eq.4) sediment(i)=sediment(i)

if (split.eq.O) then
sediment( ndon( i, 1))=sediment( ndon( i, 1))+sediment( i)

goto 890

elseif (split.eq.1) then

sediment( ndon( i,1))=sediment( ndon( i, 1»
& +sediment(i)*sedratiol

sediment( ndon( i,2) )=sediment( ndon( i,2»
& +sediment(i)*sedratio2

elseif (split.eq.2) then

sediment( ndon( i, 1))=sediment( ndon( i, 1»
& +sediment(i)*sedratiol

sediment( ndon( i,2) )=sediment( ndon( i,2»
& +sediment(i)*sedratio2

endif
890 endif

if( -slope(i, 1».ne.O) itype _node(ndon(i, 1»=1
if(-slope(i,2».ne.0) itype_node(ndon(i,2»=1

c Compute elevation change, dhh.
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