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Summary

The choices provided by an operating system to the application developer for managing mem-
ory come in two forms: no choice at all, with the operating system making all decisions about
managing memory; or the choice to implement virtual memory management specific to the indi-
vidual application. The second of these choices is, for all intents and purposes, the same as the

first: no choice at all. For many application developers, the cost of implementing a customised
virtual memory management system is just too high. The result is that, regardless of the level of
flexibility available, the developer ends up using the system-provided default. Further exacerbat-
ing the problem is the tendency for operating system developers to be extremely unimaginative

when providing that same default.
Advancements in virtual memory techniques such as prefetching, remote paging, compressed
caching, and user-level page replacement coupled with the provision of user-level virtual memory
management should have heralded a new era of choice and an application-centric approach to
memory management. Unfortunately, this has failed to materialise.
This dissertation describes the design and implementation of the Heracles virtual memory man-
agement system. The Herac1es approach is one of inclusion rather than exclusion. The main goal
of Herac1es is to provide an extensible environment that is configurable to the extent of providing
application-centric memory management without the need for the application developer to imple-
ment their own. However, should the application developer wish to provide a more specialised

implementation for all or any part of Heracles, the system is constructed around well-defined

interfaces that allow new implementations to be "plugged in" where required.

The result is a virtual memory management hierarchy that is highly configurable, highly flexible,
and can be adapted at run-time to meet new phases in the application's behaviour. Furthermore,

different parts of an application's address space can have different hierarchies associated with

managing its memory.
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Chapter 1

Introduction

There is nothing more difficult to take in hand. more perilous to conduct or more
uncertain in its success than to take the lead in the introduction of a new order of
things

Niccolo Machiavelli, The Prince (1532).

A great deal of today's operating system (OS) literature focuses on extensibility. Be it user-level

policies outside of the kernel, as in the case of Jl-kernels or exokernels, or downloading code into

the kernel, as in so-called extensible operating systems, the trend appears to be moving towards
application-specific environments. An important aspect of this new application environment is
virtual memory management (VMM). The ability for application developers to provide their own

virtual memory management has been seen as a significant step towards an application-specific

environment. However, while application-specific virtual memory is a welcome sign, modern

operating system developers have assumed too much. The cost of implementing an application-

specific virtual memory system is simply too high for most application developers. Consequently,

the additional flexibility offered by operating systems supporting this new feature goes widely

unused. The result of which is that most developers end up using the system-provided default.

The tragedy of providing a powerful and flexible operating system, only to have application

developers use system-provided defaults, is further exacerbated by the fact that operating sys-

tem developers are extremely unimaginative when it comes to the provision of such defaults.

There are many techniques available to system developers for improving application perfor-

mance when virtual memory usage exceeds available physical memory. Techniques such as
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compressed caching [00u93, WKS99] can improve application performance considerably. Sim-

ilarly, work in the area of remote paging [S091, FMP+95, M096] has shown some promising

results. Although these techniques can greatly benefit applications, their performance relies on

a great many factors. Compressed caching is significantly affected by a program's locality and

can severely debilitate performance under some circumstances. Remote paging is affected by

network bandwidth and congestion and can, under some circumstances, be outperformed by a

local disk and a reasonably intelligent paging strategy.

This dissertation describes the Heracles virtual memory management system. Herac1es provides

a virtual memory framework that can be customised by the application developer to meet the

individual demands of their application without the need to implement their own strategy. The
system combines disk managers that support asynchronous writes, prefetching and contiguous
writes; a compressed cache manager that compresses pages in memory in order to "extend" the

amount of physical memory available; and a remote paging subsystem that provides reliable de-
livery of pages and supports fault tolerance. Heracles is further augmented by the support for

user-provided page replacement policies. The application developer can select which compo-

nents make up the virtual memory hierarchy for their application. They can further parameterise

the individual components that make up that hierarchy. The result is an extremely flexible and

highly configurable virtual memory management system that provides application-specific mem-

ory management without the need for application developers to implement their own strategy.

Although Heracles is extremely flexible and highly configurable, the need for more specific poli-
cies for individual components should not be ignored. Consequently, the interface to each com-
ponent in the HeracJes system is specified in an interface definition language. Should a more

specific implementation of a component be required, it can easily be "plugged in" to the existing

framework without the need to recompile any of the other components.

Heracles is implemented in the Nemesis single address space operating system. Nemesis forces

all applications to perform their own virtual memory management and supports quality of service

(QoS) for resources. Applications can acquire guarantees for resources such as the CPU, the

local disk and access to the network interface. These guarantees come in the form of a slice s
per period p with an additional flag informing the system if the application will accept additional

slack time.
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1.1 Thesis Statement

While it is generally regarded within the OS community that application-centric virtual memory

management offers great potential for improving application performance, the move towards it

has been hampered by the assumption that developers would implement their own VMM system.

While this may be acceptable for a small minority, it effectively places this opportunity out of

reach for the vast majority of developers; for these people the cost of implementing a customised

VMM system is simply too high.

I assert that the power and flexibility offered by application-centric VMM can be made avail-

able to developers without the need for the implementation of a customised VMM system. By

providing a highly flexible and customisable VMM system that can be tailored to the individual
application. or indeed to part of an application's virtual memory. it is possible to improve ap-

plication performance at very low cost. To take full advantage of this. the developer need not
understand the complexities of virtual memory management. although they may have to under-
stand the behaviour of their application. Furthermore. this flexibility can be extended. should it

be desirable. to the application user who is in a position to determine system resources when the

application is run.

1.2 Overview

The rest of this dissertation is structured as follows:

• Part I (chapters 2 to 5) provides the background to Heracles, looking at virtual memory

management in operating systems as well as the issues involved in local paging, remote
paging and compressed caching.

• Part II (chapters 6 and 7) sums up the conclusions drawn from part I and describes the

platform on which Heracles is implemented.

• Part III (chapters 8 to 13) describes and evaluates the Heracles system, as wel1 as drawing

some conclusions and suggesting future work.



Part I

Background



Chapter 2

Approaches to Virtual Memory
Management

Memory is like an orgasm. It's a lot better if you don't have to fake it.

Seymore Cray, on virtual memory.

The advent of virtual memory heralded a new era in computing: not only could applications be
larger than the physical memory of the machine, but there was also no need to recompile ap-

plications whenever the amount of physical memory changed. It also, to a large extent, freed
programmers from the constraints of managing their own memory and allowed them to concen-
trate on the functionality of their programs. However, with this new programmer freedom came

the added complexity of providing virtual memory management. Virtual memory brought new
challenges to the operating system (OS) developers and, over the years, there have been many

approaches to virtualising physical memory.

Discourse on the subject of virtual memory has been extensive and there have also been many

reviews of aspects of virtual memory in many different systems: how different operating sys-

tems provide different page replacement strategies [NeI86]; the effect of page table structure

[Elp93, Han99] on performance; the relative performance of paging to the local disk versus other

methods, such as compressed caching [Dou93, WKS99] and remote paging [FMP+95, MD96].

The purpose of this chapter is not to provide an exhaustive study of virtual memory manage-

ment (VMM). Instead, we focus on the choices afforded the application developer by different

operating systems when it comes to managing the application's memory.
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In this chapter, we concentrate on a collection of representative operating systems. More specif-

ically, we focus on how different operating systems manage memory: how they divide physical

memory between different processes, handle page faults, and select victim pages for replacement.

It is shown that although there are many different operating systems supporting many different

features, there are basically only two approaches to memory management: either the operating

system handles all aspects of memory management or it allows the developer to provide their

own implementation of particular aspects, e.g. page fault handling. It is argued that the choice

between system provided and infinite possible developer implementations is in fact no choice

at all. For most application developers, the cost of implementing a customised VMM system

is just too high. This results in applications resorting to the system-provided implementation,
regardless of what operating system the application is running on.

We begin our discussion of memory management in sections 2.1 and 2.2 with Multics and 4.3

BSO UNIX, representing the monolithic operating systems. The VMM in Mach, the embodiment

of first generation J,L-kemels, is described in section 2.3 and L4, representing second generation
J.l-kemels , is described in section 2.4. The library operating systems approach is represented in

section 2.5 by the exokemel model. SPIN represents the extensible OS approach in section 2.6.
Finally the single address space operating system approach, as represented by the Nemesis OS,

is presented in section 2.7, before drawing some conclusions in section 2.8.

2.1 Multics

The Multics [D068, Org72, BC072] operating system was designed with the aim of facilitating

the sharing of data in memory. Through segmentation, Multics provides direct hardware address-

ing by user and system programs of all information, regardless of its physical location. There is a

one-to-one correspondence between processes and address spaces in Multics. Each segment can

be mapped into a process' address space, providing that process possesses the appropriate access

rights. This method of sharing presented a move away from the traditional file-level sharing in

previous systems. A key factor of the Multics segmented approach is that segments are paged.

This means that not all of a segment need be resident in physical memory at once.

In Multics, memory is split into fixed-sized segments which, in tum, are split into fixed-sized

pages. Addresses consist of a pair [s,iJ (where s is the segment number and i is the index into s),

where each is in the range of 0.. (218 - 1). Each segment is referenced via a page table (PT). The
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PT for a segment is an array of physically contiguous words in core memory. Each element in

the PT is called a page table word (PTW). All segments are paged (page size = 1024 words) and

i refers to the wth word of the pth page, where: w = i mod 1024, and p = (~~2~)

2.1.1 The Segment Fault Handler

When a missing segment fault is generated. the segment fault handler (SFH) takes control and

stores the proper segment attributes in the segment descriptor word (SDW) and resets the missing

segment switch. These attributes consist of page table address, segment length, and access rights.

If the page table does not exist, one is created for it. All page tables are the same size and a portion
of core memory is set aside for them, the size of which. and subsequently the number of page
tables, is assigned at system initialisation time.

A portion of memory is permanently reserved for recording attributes needed by the page fault

handler. e.g .• the segment map and segment length. This is referred to as the active segment table

(AST) and contains one entry per page table. A page table is always associated with an ASTE

(active segment table entry), the address of one implying the address of the other - referred to as

the (PT, ASTE) of a segment. A segment with a (PT. ASTE) is said to be active.

When the active switch of a segment is ON, both the segment map and segment length are no

longer stored at the branch but are in the segment's (PT, ASTE). whose address is recorded in

the branch on activation.

Once a segment is made active, the corresponding SDW must be connected to the segment. This

involves storing the absolute page table address, the segment length. and the segment access

rights and then turning off the missing segment flag.

2.1.2 The Page Fault Handler

On a page fault, the page fault handler is given control with the PT address and the page number

of the faulting page. To bring the page in it requires the address of a free frame and the address

of the page in secondary storage. A free frame is found by a look-up of the core map.' The core

map is divided into 2 lists: a free list and a used list. If a free frame is available the address of

IAn array of core map entries (CME) where the nth entry contains information about the nth frame.
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the page in secondary storage is found via the ASTE. If the address is "null" a page is zeroed in

to the empty frame; otherwise a request is issued to the VO system for the page and the process

blocks awaiting completion of the request. The request is issued via a call to the traffic controller

which is responsible for processor multiplexing. Next, the core address is stored in the PTW, the

fault is removed and the core map entry is placed in the used list.

To ensure that in most cases there is always a free frame, on removing a free frame from the

core map the length of the free list is examined. If the length is below a certain threshold, pages

are expelled until the length is once again above the threshold. The selection algorithm for page
expulsion is a variant of global least recently used (LRU). Every time a page is referenced. the

hardware sets a used flag in the corresponding PTW. Each entry in the used list must also have a
pointer to the PTW.2

Once a victim page has been selected, its PTW is set to missing. If no secondary storage has

been allocated, space is assigned for it and the address is stored in the segment map. A call is

then made to the VO system and the page is transferred to backing store.

Although address translation consists of five levels of indirection. making translation more ex-

pensive than its contemporaries, the Multics system offers a higher degree of flexibility than

some more modem operating systems. It provides support for sharing virtual memory. as well

as segmented address spaces and paging. Multics is generally considered a milestone in virtual

memory management and some of its features have found themselves incorporated into operating
systems throughout the years. However, although Multics is perhaps more appreciated nowadays
than it was at the time, it offers little choice to the application developer in terms of managing

their own memory. The operating system takes all the decisions regarding the eviction of pages
and the handling of page faults.

2.2 4.3 BSD UNIX

The UNIX operating system represents the standard against which all other operating systems

are judged. Indeed, it seems nowadays that operating systems must not only outperform UNIX

but must also be able to support it and its applications. Although we concentrate on 4.3 BSD

2This is set by the page fault handler when a page is moved into the used list.



2.2 4.3 BSD UNIX 9

[LMKQ89] in this section, the general principles discussed are the same for most flavours of

UNIX.

The UNIX operating system provides a one-to-one mapping from process to virtual address space

(VAS) and this forms the basis of its protection model. Address translation is carried out within

the scope of a process' own address space and one process cannot access the address space of

another. Unlike the Multics system. UNIX was designed for isolation rather than sharing. A

consequence of this is that sharing in modem unices has a very "tacked-on" feel.

The core map is the central data structure used to manage physical memory. It consists of an array

of structures. one entry per cluster of memory frames. excluding those allocated to the kernel.
A cluster typically consists of a pair of frames. Because there is a one-to-one correspondence

between the core map array and the page clusters. it is simple to locate one given the other.

Unlike the Multics system, user page tables are located in virtual. rather than physical. memory.
The hardware locates these page tables in kernel virtual memory and not all of the page table
need be resident in physical memory. The virtual address translation is a 2-step translation using

a 2-level page table.

2.2.1 Page Faults

When the memory hardware encounters a valid bit that is 'off', the pending instruction is. typi-
cally. backed up to the beginning. the page is fetched from disk. or a new one is allocated. and
the system returns from the trap. The return to user mode allows the CPU to re-attempt execution
of the original instruction.

If there is no free frame to page into. then the servicing of a page fault is delayed until a page is

evicted to make room for the faulting page. To prevent this from happening. 4.3BSD uses a page

daemon in an attempt to ensure there is always a free frame. The page daemon uses a second-

chance FIFO algorithm. implemented using a two-handed clock. for selecting suitable 'victims'.

Each hand of the clock points to an entry in the core map a fixed distance apart. Every 250ms.

the system checks the availability of physical memory. If physical memory needs to be freed. the

page daemon iterates over the core map and frees enough clusters to maintain a system-specified

threshold.
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The key factor to note about the replacement algorithm is that it is global: a victim cluster is

selected purely on the basis of whether it was referenced between the front and the back hand

passing over it in the core map. This means that a process can find a cluster of its pages evicted

to make way for the pages of another process.

Although 4.3 BSD may not be considered the modern epitome of UNIX, the core ideas are still

the same. The UNIX-like model of memory management is extremely restrictive and offers the

developer little choice in how the memory for their application is managed.

2.3 Mach

The Mach kernel [RTY+88] significantly extends the UNIX notion of virtual memory manage-

ment. The aim of Mach was to move some of the decision making process out of the kernel and
into user space, providing a more flexible environment. Mach supports:

• large, sparse address spaces

• copy-an-write virtual copy operations

• copy-an-write and read-write memory sharing between tasks!

• memory mapped files and

• user-provided backing store objects and pagers

There are four basic memory management data structures used in Mach:

• the resident page table
tracks machine independent pages

• the address map
maintains mappings between ranges of addresses and memory objects

• the memory object
the unit of backing store managed by the kernel or a user task

3A task is equivalent to a UNIX process
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• the pmap
machine dependent memory mapping data structure (i.e. hardware defined physical ad-

dress map)

A key Mach abstraction is the memory object: a collection of data provided and managed by a

server which can be mapped into the address space of a task. A managing task (sometimes called

a pager) is associated with each memory object. The kernel manages pages in physical memory,
while those not in physical memory are stored and fetched by a pager via messages from the

kernel. The pager may be internal to the kernel or an external user-task; the default is internal

and pages to files.

The provision of support for external memory management is not without problems. many of

which were highlighted by the designers themselves. however the Mach VM system is extremely
flexible and forms an important break with the UNIX notion of memory management. For exam-

ple, the authors of [YTR+87] describe the implementation of distributed shared memory (DSM)

on Mach, using a memory object supporting this feature, without the need to alter the kernel in

any way.

2.3.1 Page Faults

The kernel maintains two internal queues: one holds information on active pages in LRU order;
the other holds information on pages waiting to be paged out. Like UNIX, the way in which
the physical memory is shared between tasks is managed by the operating system. In Mach, the

kernel 'caches' pages belonging to tasks; pages held in the cache are in physical memory. On a

page fault, the kernel sends a message to the appropriate memory object requesting the faulting

page. The memory object returns that page, and may also return others. If there is no room in

the cache, the kernel first selects a victim page and sends a message to the appropriate memory

object informing it to write the page and subsequently free the space. When the message is

sent, the page is added to the "awaiting paged-out" queue; the kernel does not wait on the pager

performing the write and freeing the space. The developers of Mach admitted that there was a

potential problem if the external pager did not free the page in the "awaiting paged-out" queue

- the kernel did not reclaim this space until it was freed.

Although the flagship of first generation Il-kernels, Mach fundamentally represents an attempt

to reduce UNIX to a Il-kernel. Consequently, there are several UNIX hangovers: the kernel
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manages the physical memory as a global cache on behalf of all tasks, and it is the kernel which

selects the page to be expelled from the cache to make way for another.

The main goal of Mach was to move away from the primitive virtual memory management

offered by traditional UNIX systems, showing that much of the memory management can be

moved out of the kernel without affecting performance. However, Chen and Bershad [CB93]

showed that Mach did not perform as well as a monolithic kernel (Ultrix) and highlighted the

ramifications for caching and TLB performance in providing external memory management.
Despite this, the VM system used in 4.4 BSD [MBKQ96] is largely based on the Mach VM
system.

Other J.t-kernel systems have aimed at improving some of the perceived problems with Mach.
The V++ Cache Kernel [CD94] represented an attempt to reduce the size of the J.t-kernel, pushing
more of the decision making into application space. Although the authors report comparable per-

formance with monolithic systems while offering application-level control of system resources,

V++ provides the application developer with the same memory management choices as Mach.

2.4 L4

A well known problem with J.t-kemels is their poor performance relative to monolithic kernels.

The reason for the relatively poorer performance has often been attributed to the J.t-kernel model.
In particular, the costs of inter-process communication (lPC) and context switching have been
highlighted as the main problems and are often seen as inherent inefficiencies with the J.t-kernel

model. Liedtke [Lie95] argues that the inefficiencies attributed to the J.t-kernel model are a result

of poor implementation of J.t-kernels and are not inherent in the model itself. Indeed, in the

construction of the L4 J.L-kernel, he shows that both IPC and address space switches can be
extremely fast.

The L4 J.t-kernel [Lie96a] in itself does not represent an operating system, but instead provides

a minimal framework for the construction of arbitrary operating systems on top of it. L4 defines

only three operating system concepts supported by the J.L-kernelitself: address spaces, threads

with IPC, and unique identifiers.

Address spaces are described as mappings. The initial address space is represented by 0'0 : V -t

R U {<I>}, where V is the set of virtual pages, R is the set of available physical pages (real) and
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¢ is the nilpage which cannot be accessed. Further address spaces are defined recursively as

mappings (7 : V -t (E x V) U {¢}. where E is the set of address spaces. The JL-kernel provides

three operations for building address spaces on top of (70:

• Grant: the owner of an address space can grant any of its pages to another space. The

granted page is removed from the granter's address space and included in the recipient's

address space.

• Map: the owner of an address space can map any of its pages into another address space.

Afterwards. the page is accessible in both address spaces.

• Flush : the owner of an address space can flush any of its pages. leaving the pages acces-
sible in the flusher but removing them from all other address spaces which received them.

directly or indirectly. from the flusher.

In the case of grant and map. the recipient must agree to the operation. There is no agreement

required for a flush as the recipient of a page has to accept that a flush may be invoked on any

pages it receives by mapping or granting.

A memory management server Mo manages the initial address space ao. It can map or grant

physical memory to (710 managed by Mlo (72. managed by M2• and so on. By integrating the

memory manager with a pager. it is possible for a server to closely control the memory manage-
ment of an application.

This address space model leaves memory management and paging outside of the kernel. Moving

memory management. and not just paging. into user-space is a key difference between L4 and

other JL-kernels and gives it a much greater degree of flexibility.

As mentioned previously. L4 is not a complete operating system in its own right. However. by

providing only a minimal framework. other operating systems. with vastly different models. can
be built on top of it. For instance. the Mungi single address space operating system [HEV+97]

was ported to run on top of L4. as was the Linux operating system [HHL +97]. supporting the

claim that second generation JL-kernels may be able to support a variety of operating systems

[Lie96b].

Although both efficient and flexible. the L4 JL-kernel shares some of the problems of other JL-

kernels. For an application to fully take advantage of the memory management features. the
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application developer must build a memory manager and a pager. Furthermore, the external

server approach means that a heavily faulting application can affect the performance of other

applications by over-utilising the kernel.

2.5 Exokernel

The exokernel [EK095, Eng98] is an architecture for the construction of library operating sys-

tems (libOS) on top of a minimal kernel. The motivation is to provide a minimal abstraction

over physical resources, allowing specialised library operating systems to take advantage of this
low-level exposure in order to improve performance. The authors argue that traditional operating

systems are too general and that J.L-kernelsmust place their trust in a shared server to execute

privileged code. Library operating systems can be simpler and more specialised and incur fewer

context switches as most of the OS is executed in user-mode. Furthermore, by employing object-

oriented techniques, they are easy to extend and parts can be easily re-used.

There are four key design principles behind the exokernel architecture:

• Securely expose hardware. The hardware should be accessed as directly as possible
including: physical memory, CPU, disk, and translation lookaside buffers (TLB). This

principle is also extended to interrupts, exceptions and cross-domain calls.

• Expose allocation. The JibOS should be able to request specific resources. For instance,
allowing a JibOS to select specific physical pages provides a means for reducing cache

conflicts among pages in its working set.

• Expose names. The exokemel should expose physical, rather than symbolic, names. In

addition, book-keeping information, such as cached TLB entries and disk arm position,

should be exposed.

• Expose revocation. The JibOS should be aware that resources are being revoked and be

allowed to participate in selecting suitable instances.

Due to the nature of the exokernel environment, there must be a means of arbitrating between

competing JibOSes. The exokemel must decide which resource requests to grant and which ones

to refuse. These policies are dependent on the particular implementation.
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A key feature of the exokernel architecture is protection via secure bindings. The kernel autho-

rises bindings to resources at bind time only, separating the protection from the management.

Secure bindings to physical memory are implemented using a combination of capabilities and

the address translation hardware. The implementation of the capabilities depends on the partic-

ular exokernel. For example, the Aegis exokernel [EK095] uses self-authenticating capabilities

and the Xok exokernel [KEG+97] uses hierarchically named capabilities. On access to a physi-

cal page, the JibOS must provide the appropriate capability. In keeping with the central tenet of
exposing as much as possible, the page table is accessible, read-only, by the IibOSes.

A consequence of the JibOS approach is that virtual memory management occurs at user-level

[EGK95]. Should an application developer desire application-specific virtual memory manage-
ment, he would have to provide his own implementation. The alternative is to use a system

provided default or an implementation aimed at another application which may be more suitable
than the default.

2.6 SPIN

Another method of providing application-specific virtual memory management is to allow appli-

cation extensions to the kernel. SPIN [Ber94] does this via events and event handlers. A kernel

extension installs a handler on an event via a central dispatcher that routes events to handlers.

SPIN relies on four techniques implemented at the language level or its run-time:

• Co-location: OS extensions are dynamically linked into the kernel virtual address space.

• Enforced Modularity: extensions are written in Modula-3 and the compiler enforces inter-
face boundaries between modules.

• Logical Protection Domains: extensions exist within logical protection domains, which are

kernel namespaces containing code and exported interfaces. An in-kernel dynamic linker

resolves code in separate logical protection domains at run-time, enabling cross-domain

communication to occur which has the same overhead as a procedure call.

• Dynamic Call Binding: extensions execute in response to system events, such as page-

faults or thread scheduling.
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Object files are deemed safe if they have been signed by the SPIN Modula-3 compiler or asserted

safe by the kernel. This latter method was a convenient way to use existing device driver imple-

mentations. All kernel resources are referenced by capabilities: an unforgeable reference to a

resource, which can be a system object, an interface or a collection of interfaces.

The SPIN memory services consist of three basic components: physical storage, naming and

translation. Application-specific services interact with the SPIN services to define higher level

abstractions such as address spaces. Clients can request physical memory and receive a ca-

pability for the memory they get. The virtual address service allocates capabilities for virtual
addresses and the translation service interprets virtual and physical references. and is responsible

for constructing mappings between the two.

The translation service raises a set of events corresponding to certain memory management unit
(MMU) conditions, such as a page fault. Implementors of higher level memory management

abstractions can install handlers to define services such as demand paging, distributed shared

memory (DSM) and concurrent garbage collection.

The developers of SPIN decided on kernel extensions as a way of providing improved perfor-

mance over {L-kernelapproaches. It was developed under the assumptions that context switching

and IPC are inherently expensive. However, section 2.4 would suggest that these assumptions

are incorrect. Downloading code into the kernel still has the advantage of not requiring cache

and TLB flushes, but limiting the extensions to the system's modula-3 compiler reduces the flex-

ibility somewhat. The developers were forced to relax this rule in order to utilise existing device

driver implementations.

Memory management choices in SPIN are essentially the same as those for Mach and exokernel:

use the default or implement your own. Although this provides the appearance of empowering

the application developer, it offers very little option in real terms.

The extensible approach is also advocated by the authors in [SSS95] and their approach features

in the Vino operating system [SS94]. The Vino system performs a great deal of information

gathering in an attempt to flag key areas affecting system performance [SS97]. Like SPIN, Vino

requires code from the application developer in order to take advantage of its extensibility.
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2.7 The Nemesis Single Address Space Operating System

With the advent of 64-bit processors such as Sun's UltraSparc-IIi [SUN98] and Digital's Alpha

architectures [Sit92], OS developers are being confronted with new challenges. "Unlike the

move from 16- to 32-bit addressing, a 64-bit address space could be revolutionary instead of

evolutionary with respect to the way operating systems and applications use virtual memory"

[CLBHL92]. This is highlighted by the rather amusing, though slightly misleading, claim that

a "full 64-bit address space, consumed at the rate of 100Mb per second, will last for nearly

5000 years" [KCE92]. This has led to a revival in the interest in single address space operating

systems (SASOS). Furthermore, it has led many developers to believe that we can extend the
address space to map everything on the system - not only data in physical memory, but also

data on long-term storage and across the network. Some systems, such as Opal [CLBHL93] and
Mungi [HERV93] have seen the SASOS as a catalyst for distributed shared memory where the

single address space is distributed over all the nodes in a local area network (LAN).

The Nemesis operating system [Ros95] is similar in concept to the exokernel model. It focuses

on providing mechanisms for a rich and highly specialised environment where the NTSC4 is
responsible for the secure multiplexing of resources and the application domains is responsible

for everything else. Most code traditionally executed by the operating system on the application's

behalf is executed directly by the application in the same protection domain. The result is what

is termed a vertically structured operating system [Bar96].

Nemesis splits the address space into sections called stretches [Han9?]. A stretch is an abstraction

over a contiguous region of the virtual address space where every page has the same access rights.

A stretch cannot shrink or grow once created and different stretches cannot overlap. A stretch is

only meaningful when bound to a stretch driver. Any attempts to address memory in an unbound

stretch will result in an unresolvable page fault.

The stretch driver handles page faults, implements the replacement strategies, and performs vir-

tual to physical mappings. The closest analog to a stretch driver would be a combined memory

manager and pager in L4.

On a page fault, the NTSC sends an event to the appropriate domain. When that domain is

reactivated it should resolve the fault. This may involve replacing a page currently in physical

4Nemesis Trusted Supervisor Code: equivalent to an extremely small kernel.
SA domain is analogous to a process in UNIX or a task in Mach.
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memory - the method used to do this is entirely the responsibility of the stretch driver for a

particular domain.

Due to the fact that Nemesis is a SASOS, it does not suffer from the need to flush the cache

and TLB (though it must flush protection information) on a context switch (providing the cache

is virtually addressed). Therefore, there is not the same penalty for performing the memory

management at the user level as there is for J-l-kernel operating systems. However, Nemesis does
rely on the application developer providing their own virtual memory management.

The Nemesis operating system is described in more detail in chapter 7.

2.8 Discussion

In this chapter, we have looked at seven different operating systems and examined the choices

available to the application developer with respect to managing their own virtual memory. Al-

though each operating system was fundamentally different, we have encountered only two ap-

proaches to virtual memory management: either the OS provides a generalised "best guess"

approach, or the application developer provides their own specialised implementation. While

this last approach is generally considered to offer more potential for better performance, it has

the considerable drawback of placing large demands on the application developer. Consequently,

the operating systems offering the "do-it-yourself" approach to VMM tend to provide a default
memory manager that most applications end up using whether they would benefit from a more
specialised solution or not. For many applications, the cost of constructing a customised imple-

mentation is too high. Thus, these systems often end up being simply slower versions of the
monolithic systems."

That user level virtual memory management can offer a much more flexible and specialised
environment is undoubted. However, the idea that application developers will readily provide

their own VMM implementations seems somewhat misplaced. For the most part, the application

developer is unaware of the mechanisms involved in managing their memory. They are aware of

higher level notions relating to their program: locality of reference, compressibility of data, what

61t is widely regarded that it is the flexibility aspect of user level virtual memory management that offers the

potential for performance gains; if this flexibility goes unused, i.e., applications use the default implementation,

then the result is equivalent to a monolithic kernel with more indirection and poorer cache and TLB performance.
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pieces of information it is important to have in memory. These are notions that can be derived

from the program itself. What cannot be immediately derived from the program is its paging

behaviour. where its data will be in memory and what pieces of data will be next to others.

Of course there are certain types of program where information that can be exploited by user

level decisions is well known. In particular. it is well known that an LRU page eviction scheme

performs extremely poorly for certain applications. such as multimedia and database programs.

Lee et.al. [LCC94] implemented user-level page replacement on the Mach 3.0 kernel to allow
such applications to provide their own page replacement implementation via the HiPEC com-

mand set. These commands are stored in user-space and the kernel accesses them via an object

known to it. Krueger et.a!. [KLVA93] also looked at allowing applications which perform poorly
with LRU to provide their own page replacement policy. Unfortunately. the number of context

switches incurred in their implementation is extremely high.

Moving page replacement decisions into the application domain is reasonable for instances where

it is known that a particular policy works best. Under these circumstances. the developer need not

know about the underlying VM mechanisms in order to improve their application's performance:

they only need to be able to implement a page replacement policy. Unfortunately. such techniques

are only suitable for a small subset of applications and do not provide any benefits to the vast

majority. However. their potential benefit to some should be borne in mind when considering the

design of a VMM sub-system.

There are other VM techniques available to the OS developer that can be of benefit to a wide
range of applications. Techniques such as compressed caching [Dou93. WKS99]. remote pag-

ing [FMP+95. MD96] and prefetching [CKV93. PGG+95] have been shown to greatly improve

application performance for various types of application. However. in some cases these methods

can severely penalise applications. For instance compressed caching relies on many factors in

order to offer any performance gain (see chapter 5). Ideally. all of these techniques would be

made available to the application developer and the choice of which to utilise would be left in

their hands.

The next few chapters will examine some of these VMM techniques. Chapter 3 looks at paging

to a local disk and how developers have attempted to optimise the use of the disk in light of the

performance penalty normally associated with it. Chapter 4 discusses the issues in paging across

the network to memory on a remote machine. We conclude the first part of this dissertation in

chapter 5 by looking at the possible benefits of compressed caching.
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Paging to Local Disk

Theforms of things unknown, the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.

William Shakespeare. A Midsummer Night's Dream.

Paging to local backing store has been around since the Atlas [Fot61] system was built and still
remains the most common means of virtualising physical memory. The most prevalent means

of providing that backing store today is via a hard disk. However, a disk is composed of several
moving parts that are operated mechanically. The time taken to move the read/write heads or spin
a disk until the correct sector is underneath the appropriate head is measured in milli-seconds.

In todays computing environment, a milli-second is an extremely long time: memory access is

measured in nano-seconds (one million times smaller); and a 500MHz CPU can, theoretically,

execute 500,000 instructions in a mill i-second, Thus, servicing a page fault from a local disk can

be an extremely costly operation. Despite this, every commercial operating system uses paging

to the local disk in order to support virtual memory. Although researchers have come up with a

range of techniques in an attempt to reduce the effect of having to fetch a page from disk, the

disk is still a system bottleneck.

This chapter outlines the important characteristics of a modem disk and looks at some of the

methods employed to attempt to improve its performance in a virtual memory setting.
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3.1 The Hard Disk

There are many factors that affect the performance of a hard disk. This chapter outlines some of

the most important performance factors, differentiating between those internal to the drive and

those external to it. Before this, it may be useful to outline some of the physical characteristics

of a disk.

A disk contains one or more platters consisting of a hard substrate coated in a magnetic material.

Each platter is split into tracks, which are tightly packed concentric circles, which are further

split into sectors. Sectors are usually the smallest individually addressable units. The platters are

mounted on a spindle connected to a motor that spins the platters as one unit. The more tightly
packed each platter, the more information that can be stored in the same space. This packing
is referred to as areal density and can be increased by more tightly packing the tracks and the

sectors within each track. All other things being equal, a higher areal density means more storage

and faster drives.

To maximise the space on a disk platter, modem disks employ a technique called zoned bit

recording (ZBR). Each track is located within a zone dependent on its physical location on the

disk. Each track in a zone has the same number of sectors which increases as you move from

the inner to the outer part of the disk. This allows more efficient use of the larger outer tracks.
A consequence of this is that raw data transfer rates are higher when reading from the outside

cylinder than from inner cylinders.' This is an important factor when considering the reported
internal transfer rates of a disk as the figure given often represents reading a relatively small

amount of data from the outer cylinder.

3.1.1 Internal Performance Factors

The internal performance factors of a modem disk refer to those operations handled solely within

the drive itself. This section considers the effect of some of the more important factors on disk

performance.

IThe Quantum Fireball TM hard disk has a total of 14 zones, each consisting of 454 tracks (with zone 0 being the

outermost). The data transfer rate of zone 0 is almost double that of zone 14 (92.9Mbits/s as opposed to 49.5Mbits/s).
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3.1.1.1 Seek Time

Seek time refers to the amount of time required for the read/write heads to move between tracks.

It is usually supplied as the average seek time and is generally in the range of 8 to l2ms. This

average represents the amount of time to travel half the radius of the disk. In addition to seek

time, figures for track-to-track time and full stroke time are sometimes supplied. The former

refers to the amount of time to seek between adjacent tracks and is usually 2-4ms, but it can be

as low as 1ms. The latter represents the amount of time to seek the entire width of the disk and
is usually around 20ms.

3.1.1.2 Latency

Sometimes referred to as rotational latency, this refers to the time it takes for the platter to spin,
placing the correct sector under the read/write head. As with seek time, this is usually given as

an average time, i.e. the time it takes for one half revolution of the platter. Because the spin

speed of the disk is not synchronised to the process of moving the heads, access time is usually

used to refer to the combination of seek time plus latency. Typical modem disks rotate at around

7200 rpm, giving an average latency of 4.2ms.

3.1.1.3 Track Switch Time

Also called cylinder switch time, this is the time taken to move the head from one track to

an adjacent track. This is an important metric as switching between adjacent tracks is a very

common operation. An average cylinder on a modem disk contains less than 1MB of data which

means multi-megabyte reads involve many cylinder switches.

3.1.1.4 Internal Data Transfer Rate

The internal data transfer rate refers to the rate at which the disk can read from the platter and

transfer it to the internal drive cache ready for sending. This is different from the speed at which

the data can be sent from the buffer over the interface to the system - the external data transfer

rate. Although the external rate is usually higher, it is limited by the size of the buffer which, in
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most modem disks, is less than 1MB. No disk can maintain its internal rate for long as this rate

refers to "ideal" conditions, i.e. reading a small number of consecutive sectors from the fastest

part of the disk.

• (SpindleS".ed xSectorsPerTrack XSector Size x8)
The internal transfer rate can be calculated as: 60 l024xl024 However,

as mentioned previously, there are less sectors in inner tracks than there are in outer ones. Thus,

the transfer rate varies greatly from one zone to the other. Furthermore, sectors are actually 540
bytes in size, with 512 of these reserved for data. Manufacturers sometimes use 540 instead

of 512 to calculate transfer rate, giving higher numbers - this does not refer to the transfer of
"useful" data.

The internal performance factors of a disk can have an important impact on the performance of
local paging. Disks rely on moving parts that must be placed in the correct position before any
data transfer can take place. Once the disk heads are in place, internal data transfer is reasonably

fast. Factors such as seek time and latency are more significant when transferring small amounts

of data. Indeed, the time taken to transfer a page of 4KB from the disk is entirely dominated by

access time. Such small transfers are not as affected by track switch time as this is less likely to

occur during small transfers.

3.1.2 External Performance Factors

External performance factors relate to how the hard drive interacts with the rest of the system.

A key factor when attempting to obtain the most from a hard disk is the external transfer rate.

The external rate is an electronic operation as opposed to a mechanical one and, as such, is

usually much faster than the internal rate. The external transfer rate is dictated primarily by

the interface used and the mode the interface operates in. Most modem disks used in pes are

typically enhanced integrated drive electronics (EIDE) or advanced technology attachment-2

(ATA-2) drives running with programmed input/output (PIO) mode 4 or multiword DMA mode

2, giving a theoretical maximum of 16.6MB/s. The newest drives support Ultra ATA, giving an

external transfer rate of up to 33.3MB/s.

The external data transfer rate can be a somewhat confusing figure. The external rate relies on

data being in the drive's buffer which means that it can only possibly apply for the time taken to

empty the buffer and does not give a real indication of overall performance.
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Disk caching allows limited separation of the slower internal transfer rate from the external

transfer rate. A larger cache will improve performance by reducing the number of physical seeks

and transfers from the platters themselves. Clever caching algorithms can also increase this

performance. As well as the drive's internal cache, some operating systems reserve an area of

physical memory to act as a first level cache before that of the drive itself.

Other system factors include the CPU, the motherboard, VO bus and chipset. Typically, a faster

CPU will run disk benchmarks quicker than a slower one, especially if using an interface that

relies on CPU intervention, such as PIO. Similarly, the faster the system bus, the faster data can
be transferred from the drive to memory.

The external performance factors do not have a significant impact on paging to/from the local

disk. Writing to the disk's cache is extremely fast for small amounts of data. Similarly, when
reading from the disk, the significant factor is not transferring the data over the VO bus or from

the disk's cache, but waiting for the disk head to get into the correct position to begin the transfer.

3.1.3 The Effect of Performance Factors on Paging

Regardless of how the operating system supports paging to a local disk, the key factor about pag-

ing is that the units sent to the disk are very small. A system page for the Intel ix86 architecture

is only 4KB in size - only eight disk sectors. This means that the data transfers are relatively

small, even on operating systems that perform writes of many (usually up to 16) pages at once,
and the access time is the dominating factor. If the disk is hardly used and the disk arm can

be kept within the swap range on the disk, the most significant costs are likely to be rotational

latency and, possibly, track switch time. These costs can in turn be affected by where the swap

range is positioned on the disk - there are more sectors per track on the outer cylinders.

3.2 Beating the Bottleneck

Improving disk performance tends to come in two forms: changes in disk architecture, such as

RAID [PGK88] and disk-caching disk (OCD) [HY96], and changes in how the disk is used,

such as the log structured file system (LFS) [R092] and data prefetching [HV84]. The effects

of the disk architecture are not considered here as the virtual memory system should be largely
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independent of this. Instead, this section focuses on techniques that attempt to use the disk in

such a way as to minimise the effect of the latency, in particular, memory "cleaning" and page

prefetching.

3.2.1 Paging Daemons

One way of reducing the time required to service a page fault is to always have a frame available
to map the faulting page. A paging daemon is a special OS process that is activated periodically,

or on the occurrence of a special condition, and cleans modified pages in memory by flushing

them to disk. This increases the likelihood that a faulting page can be mapped without the need

to write a page to disk. This process is sometimes referred to as cleaning. The aim is to try and
perform the disk writes during "quiet" time, thus reducing the chance of having to perform a
write when faulting in a page.

Although the paging daemon can increase the overall number of VO operations - pages can be

cleaned several times before being finally evicted from memory - it can still greatly improve

system performance.

The Linux operating system [BBO+98] has a thread kswapd which monitors the availability of

free pages in the Linux Kernel. If the number of free pages drops below a certain threshold, the

thread attempts to free up memory via calls to try .to.free.pagest).

Most modern operating systems seldom write single pages to the local disk. Instead, they tend

to buffer a group of pages and write them all at once. This reduces the impact of the access time.

3.2.2 Page Prefetching

Instead of performing page-in operations as they are required (known as demand paging) it would

benefit the system greatly if it could fetch pages that are likely to be required in the very near

future so that they are already resident in memory when they are accessed. The trick of this is

knowing which pages will be required when. Fetching pages that are expelled before being used

takes up VO bandwidth and memory that could be used more efficaciously.

There are many techniques available which attempt to guess which pages will be used again in

the near future. For instance, one can use lessons learned from data compression techniques
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which, in essence, attempt to do the same thing as prefetching: they attempt to predict the future.

Vitter and Krishnan [VK96] describe a prefetching algorithm based on a character-based version

C of the Ziv-Lempel algorithm for data compression. Pages are encoded in the same manner as

substrings and a parse tree is constructed. For example, for an alphabet {a,b}, a page request

sequence "aaaababaabbbabaa·· ." results in the substrings (a)(aa)(ab)(aba)(abb)(b)(abaa)· . '.

In the character-based version C of the Ziv-Lempel encoder, a probabilistic model (or parse tree)

is constructed for each substring when the previous substring ends. Figure 3.1 shows the parse

tree at the start of the seventh substring. There are five previous substrings beginning with an "a"
and one beginning with a "b". The page "a" is therefore assigned a probability 5/6 at the root

and the page "bOO116at the root. Of the five substrings beginning with an "a", one begins "aa"
and three begin with "ab", resulting in the respective probabilities 115 and 3/5, and so on.

_ Root

D Leaf

Figure 3.1: Parse Tree Constructed by the Character-Based Encoder C.

Before each page request, the prefetcher fJi' prefetches the pages with the top k estimated proba-

bilities as specified by the transitions out of its current node. On the fetching of the actual page

requested, fJi' resets its current node by walking down the transition labelled by that page and

gets ready to prefetch again. When &1 reaches a leaf, it fetches k pages at random.

Curewitz et. at. [CKV93] compared Vitter and Krishnan's prefetcher with two others, reasoning

that although ZL was theoretically optimal, convergence on optimality was slow. This led to

them adapting the prediction-by-partial-match (PPM) data compressors. They found that all

three prefetchers improved page fault rate and that the relative performance of each algorithm

parallelled their relative performance for data compression.
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Patterson et. at. [PGG+95, TPG97] show that allowing applications to provide hints to the system

about what data is likely to be accessed in the near future can speed up application performance

by up to 85%. Their system, TIP (and later TIPTOE), replaced the unified buffer cache (UBC)

of a Digital 3000/500 running OSFII with an array of ten disks and showed that hints always

increased throughput, regardless of how many applications were running.

The notion of allowing the application to provide prefetching information was extended by Cox

and Ellsworth [CE97] to allow applications to control segmentation and demand paging. This

work focused on applications that could not fit in main memory, and maybe not on the local
disk, in particular, the visualisation of computational fluid dynamics (CFD) where input data

sets can exceed 100 Gigabytes. The authors attempted to move as much of the decision making
process into the application space as possible and found significant improvements in system

performance, despite being limited by the platform. an RIOOOOrunning IRIX. They showed that

the operating system did not have enough information to make the correct management decisions

on the application's behalf.

3.3 Discussion

Paging to the local disk is still the preferred method of providing backing store for virtual mem-

ory. Although pure demand paging is extremely costly in terms of missed CPU cycles, re-
searchers have come up with many techniques to reduce the impact the disk has on application

performance. Unfortunately, the disk is being somewhat left behind in terms of latency and band-

width. Modem networks have very low latency and high bandwidth and these are improving at

a greater rate than their disk counterparts. Improvements in disk "speed" are also lagging far

behind improvements in memory and CPU speed. Couple this with the fact that disk bandwidth

is improving at a greater rate than disk latency and the impact of latency continues to grow.

The effect is that, as the disparity between latency and bandwidth continues, bigger and bigger

transfers are required in order to reduce the impact of latency on disk performance.

The effect of current trends in relative performance of CPU, memory, networks and disks should

not entirely rule out the use of a local disk. The local disk is still used for paging because it

has something to offer. There is no need to worry about fault tolerance when paging; an issue

which is important if paging across the network. Pages can be buffered to perform writes in

larger blocks and can be prefetched to reduce the likelihood of a page not being in memory when
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it is required. Although these techniques can greatly improve performance, their improvement

relative to other techniques is dependent on each application's memory access patterns and the

nature of their in-memory data.

We have described the internal structure of a hard disk and explained why it is not ideal for

handling the small reads and writes normally associated with paging. We have expanded on this

by showing some ways in which the disk is used in an attempt to reduce the effect of its inherent

inefficiencies. The next chapter provides an alternative to paging to the local disk. Remote

paging involves using the memory of a remote host as backing store and, like local paging, there
are many issues that can have an impact on its performance.



Chapter 4

Remote Paging

Be neither too remote nor too familiar.
Charles, Prince of Wales.

Remote paging involves using free memory on remote hosts to service page faults on behalf of

local clients. There are two main flavours: the first involves a central server, or servers, with

large (in the range of a few gigabytes) amounts of physical memory that all participants use to
hold swapped-out pages; the second involves the use of free memory on workstations within a

distributed system.

Table 4.1 (baseline and improvement rate taken from [Dah96]) shows the relative changes in the
performance of disk, network, memory and CPU, analysed over a fifteen year period from 1980

to 1995. Using these improvement rates, we have projected the figures to the years 2000 and

2005. The projections for the year 2000 are found to be in accordance with the actual technology

levels observed to be available, suggesting that the trend is continuing as expected.

A key factor with regard to paging across the network versus paging to the local disk is the

difference between network latency and disk latency. The time taken to fetch 8KB of data from

the disk is dominated by the latency, whereas the preponderant factor for fetching the same

amount of data across the network is the bandwidth. Also, because the disk bandwidth increases

faster than the disk latency, increasingly large transfers are required in order to maintain a certain

level of efficiency. If we fetch a page from memory on a remote machine, the fault can be

resolved long before a local disk head is in the proper position for reading.
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Yearly
Hardware 1995 Baseline Improvement Rate 2000 Projected 2005 Projected

Disk Latency 12ms 10% 7ms 4.2ms
Disk Bandwidth 6-9MB/s 20% 15-22MB/s 37-57MB/s
Network Latency Ims 20% 0.33ms O.lms
Network Bandwidth 20MB/s 45% I28MB/s 821MB/s
Processor Performance 100 SPECInt92 55% N/A N/A

Memory Bandwidth 30-70MB/s 40% 161-448MB/s 867-2024MB/s

Table 4.1: Performance trends in Disk, Memory and cpu. Note that the SPEClnt performance is

highly architecture-dependent and has since been superseded by SPEClnt95 and SPECInt2000.

Recent years have seen a large increase in the amount of physical memory available in desktop

computers. The fall in memory prices was drastic in the period 1989 to 1991, dropping by
over 50% per year. However, the decline in cost has flattened since around 1992. Thus, the

idea of simply continually expanding the amount of physical memory to cope with larger and

larger applications will eventually run into problems. Furthermore, memory prices are cheap

only in commodity sizes (32/64/128 MB). For instance a 512 MB DIMM costs over six times

as much as four 128 MB DIMMs [AS99]. Consequently, virtual memory is expected to be as

important a component of future operating systems as it is for today's. However, an important

aspect of increasing memory sizes that is extremely interesting from a virtual memory standpoint

is the availability of free memory on workstations within a local area network. Workstations
running large memory consuming applications could benefit significantly from unused memory

on workstations where the memory consumption is much more moderate. This availability of

memory is discussed in detail in section 4.2.2. Before that, some background on how other

researchers have attempted to utilise this free memory to speed up application performance is

presented.

4.1 Background

Researchers have taken different approaches to the use of memory on remote hosts. Some have

seen it as a way for improving local performance by extending the amount of physical memory

available to processes, i.e using it in the same way as local memory as opposed to backing
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store, while others have considered it the solution to the disk latency problem. Some of these

approaches are now discussed with a view to highlighting the positive aspects and the possible

limitations.

Remote Paging Protocol: Comer and Griffioen [CG90] describe a remote memory model that

uses dedicated memory servers on which clients can allocate memory. The remote memory

servers could extend their capacity by utilising a local disk. This would be transparent to clients

who would not know where their data was coming from. The remote memory model was de-

signed as a framework primarily for distributed shared virtual memory (DSVM). When client

machines exhaust their physical memory, they can move parts of their address space to the re-
mote server and retrieve pieces as needed. It was never intended to solve, or even reduce. the

effects of the disk latency problem. However, the authors did suggest a machine-independent
communication protocol that could be utilised by a remote paging system.

Dodo: The Dodo system [KAS98] provides a method of using remote memory as an interme-

diate cache between memory and the local disk. I The Dodo system is provided via application

level libraries and does not change any of the OS code. This makes the system more portable

but also limits the implementation options. The Dodo system requires applications to use it ex-

plicitly but does provide a region-management library to simplify this process. However, the

region-management library is only useful for applications with well-defined memory access pat-
terns, others still have to use the Dodo system explicitly. This means that they have to manage
the tracking of objects in remote caches themselves.

When applications wish to allocate a remote object, they contact a central memory manager with

the request. The manager finds a suitable host and contacts it with the request. If successful, the

host and a memory region identifier are returned to the client. A request for data from the remote

cache can fail under two circumstances: the remote server crashes; or the remote server decides

to return memory to the local machine (this occurs when the machine ceases to be idle").

There are several problems with the Dodo system. Firstly, the central memory server not only

represents a single point of failure, it also represents a system-wide bottleneck - all remote

INote this is not a remote paging system as such but a way of speeding up the performance of applications where

the memory access patterns are well understood.
2The authors define being idle as a combination of no keyboard or mouse events and a CPU load of less than 0.3

over the last five minutes.
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allocations go through a single server. Secondly, the system offers no deterministic level of

performance. When a remote host ceases to be idle, it evicts all memory held on behalf of remote

clients to the local OS without informing them. Thirdly, because the authors chose portability

over performance, their system does not have enough control over its environment to provide

real flexibility. If the designers were to alter the VMM system, they could provide a much

more flexible system where local and remote commitments could be more easily balanced. For

instance, it appears that the system relies on the fact that the remote machine is idle in order to
prevent the cache from being paged to that host's local disk. By altering the VM system, it would

be possible to balance memory for local processes with memory for remote caching.

Although Dodo is not a remote paging system, the idea of allowing regions to be cached in the
memory of remote hosts has some merit. Unfortunately, the system is not flexible enough to take
full advantage of its potential.

Sprite: Nelson ([NeI86]) proposed having a central server for paging in the Sprite operating
system. In Sprite, paging occurs over the network to files and there is no notion of a swap

partition. Although this system performed remote paging, it was not a remote paging system

per se. The main motivation behind this method was not to increase performance, indeed pages

could find themselves on the server's disk causing a swap to be more expensive than using a local

disk, but to eliminate the need for a dedicated local swap partition.

Remote Paging on Mobile Computers: Schilit and Duchamp [SD9I] looked at remote paging

for mobile computers and concluded, somewhat ironically, that "portable computers need neither

a hard disk nor an excessive amount of RAM, provided that they will operate in environments

in which remote storage is plentiful". This is somewhat contrary to the primary advantage of

mobile computers which is that they can operate for large periods of time independently of a

network.

Schilit and Duchamp implemented their adaptive paging scheme on the Mach J-l-kemel and they

define three software components: a paging server runs on each machine and is responsible for

the storage of pages on behalf of remote clients; one broker runs on the network and is used to

put clients in touch with suitable servers; and a service organiser runs on each host and is used

to liase with the broker and the server for remote resources. Although clients can use several
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servers at once, preference is given to utilising only one server to reduce the chance of a crashed

host holding a client's pages.

Schilit and Duchamp provide a framework for a flexible and efficient remote paging system.

Unfortunately, a combination of environmental factors and poor design decisions have managed

to rob it of much of its promise. Due to Mach 2.5 not allowing user-level control of physical

memory management, pages sent to a remote server can end up on that machine's local disk.

Also, the authors decision to use RPC as the protocol for requesting pages from remote servers

has incurred a large overhead, most of which can be attributed to the underlying use of the
transfer control protocol (TCP). Consequently, it takes 45ms to perform the reading of a random

page from the memory of a remote host. 3

By using RPC, and its dependence on TCP, Schilit and Duchamp do not need to worry about
reliable and out-of-order delivery. However, the problem of a server crashing is not addressed,

though a re-election scheme for the broker is described, and so applications do not have the
ability to make progress in light of their paging server crashing or becoming unreachable.

Markatos and Dramatinos [MD96] describe a remote paging system which utilises free mem-

ory on workstations within a distributed environment. The system is implemented as an OSF/l

device driver that replaces the local disk device driver. This allows the system to be implemented

without making changes to the operating system itself. While providing the remote pager in this
way means that it can be incorporated into OSF/l machines easily, it also limits the flexibility of

the system and deprives it of access to the virtual memory management (VMM) implementation
that could enhance its performance. A consequence of this is that when a page is transferred to

a remote host, it becomes a participant in the paging scheme employed by the operating system

on that host. This means that an evicted page could find itself on the disk of a remote machine,

thereby increasing the time it takes to service a page fault.

Markatos and Dramatinos also outline a scheme for providing fault-tolerance, known as parity

logging, in a remote paging environment but, as discussed in section 4.2.4.4, their solution has a

very high space overhead coupled with an inability to scale. Furthermore, the possibility of pages

being distributed across many disks on the network further degrades the potential performance

of their scheme. For a full discussion of this see section 4.2.4.

3Hosts are connected via a 10Mb Ethernet.
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GMS: Feeleyet.a!. [FMP+95] propose a much more flexible solution but for a much more spe-

cialised environment, described as the global memory system (OMS).4 OMS uses a global LRU

replacement algorithm within a tightly coupled cluster of homogeneous workstations, connected

to a MYRINET network, in an attempt to use as much physical memory within the cluster as

possible. It differentiates between local and global pages: those belonging to local processes and

those belonging to processes on remote hosts. GMS is implemented as part of the virtual mem-

ory management system within the OSF/I kernel. Unlike the system described by Markatos and

Dramatinos in [MD96]. pages never end up on the disk of a remote host. However. as discussed

below, the runtime overheads in GMS are high. While these overheads may not be as severe in a

small cluster of machines connected via a very fast low latency network, they would have a more

pronounced effect in a general LAN environment.

The idea behind GMS is to provide a global LRU replacement strategy that forces local pages on
idle machines to gradually drift onto the local disk and global pages to gradually fill the frames

left. To manage the global aging of pages. time is split into epochs of a maximum duration T.

where a maximum number of replacements M are allowed in that epoch (the current implemen-

tation has the epoch between 5 and 10 seconds). At the start of an epoch. every node sends a

summary of the ages of all its local and global pages to a designated initiator node. The initiator

then computes a weight Wi for each node i such that. for the M oldest pages in the network. Wi

reside in node i's memory. The initiator also determines the minimum age, MinAge. that will be

replaced from the cluster in the new epoch. It then sends all the weights and the value of MinAge
to all the nodes in the cluster and selects the node with the most idle pages to be the initiator for
the following epoch. Thus, when a node looks for another node to take a page, it selects node i

where the probability of selecting node i is dependent on the weight Wi.

This generates a large amount of traffic quite frequently: every node sends to the epoch server

and the epoch server sends to every node at the beginning of each new epoch. This is not a

problem on a very high speed, low latency network, where the only traffic is generated by the

GMS. but if porting the system to a general purpose LAN this may prove prohibitive. There

is also the problem of joining and leaving a cluster at anyone time. The scheme relies on a

master node coordinating the redistribution of data structures to all the nodes in the cluster every

time a node joins or leaves the cluster. The authors admit that this. along with the epoch server,

represents a problem if failure should occur and recommend a re-election scheme to solve it.

4Jt should be noted that this is not a DSVM system. as the name may suggest. but is in fact a remote paging

scheme.
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In its favour, OMS is adaptive to the load on the network. The values T, M and MinAge vary

according to the behaviour of the system during the last epoch. Thus, if the number of old

pages becomes too small, MinAge is set to zero and all nodes resort to using the local disk. This

scheme exploits the dynamic load and ensures that pages never end up on the disk of remote

hosts. However, while the average page-fault servicing time should out-perform paging to disk,

given a certain load, it is not known where a page will be fetched from on its request. The system

contacts the remote host it expects to have the page and, if the page is not there, resorts to reading
from the local disk. This also implies that the speed of transferring a page from a local disk does

not represent the upper-bound. Indeed, having to resort to the local disk is almost comparable to
fetching from the disk on a remote host.

There are some limiting factors to note about both the GMS scheme and the scheme presented

by Markatos and Dramatinos. Firstly, neither of them take account of out-of-order delivery or

dropped packets. Feeley et.a!. state that no dropped packets were ever observed during their

tests but do not mention out-of-order delivery: Markatos and Dramatinos presented a scheme for

"fault-tolerant" remote paging but do not mention reliable delivery. Secondly. neither scheme

supports remote paging in an architecturally heterogeneous environment. Also, neither scheme

offers deterministic performance. A page request to a remote host in OMS may fail due to that

page being evicted, forcing the request to be forwarded to the local disk; a page request in the

scheme proposed by Markatos and Dramatinos could be served by the remote disk.

Remote Paging in a Heterogeneous Environment: The work described by Markatos and
Dramatinos was extended by Flouris and Markatos [FM98] to include adaptive parity caching,

as the replacement to parity logging, to provide fault tolerance. The authors also claimed to

support remote paging in a heterogeneous environment. However. after stating that all machines

in the network of workstations (NOW) ran the Network RamDisk (NRD) server. the authors then

described the operating system running NRD clients and that running servers separately. This

suggested that, although it was possible to page from a Linux host to a Solaris host, it was not

possible to page from a Solaris to a Linux host. The authors further compound the confusion by

stating that NRD clients go through a "configuration phase" on start-up where they determine

what servers they will use. How a client decides which servers to use and where it gets the

necessary information was not described.
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Sub-Page Paging Jamrozik et.al. [JFV+96] utilised the GMS system to investigate the effect

of sub-page size on paging across the network.' They suggest that although large pages are well

suited to TLBs and disk reads/writes, they are ill-suited to reading/writing across a network. By

fetching a portion of the page, it is possible to restart the application and continue to fetch the

rest of the page asynchronously instead of waiting until the entire page arrives. This means that

sub-page accesses have to be trapped somehow in order to prevent accessing a sub-page yet to

be fetched. This is achieved by marking a page as invalid until all sub-pages are fetched; each
access to that page is trapped and the appropriate bits are checked to determine whether the sub-

page is currently in memory. If the sub-page is in memory then the read or write access is carried

out. Although this process is carried out in PAL code it still means that, until the entire page is

resident in memory, every access to a sub-page, even a resident sub-page, causes a page fault.
Despite this, the authors report that the optimal sub-page size is I or 2KB. These sub-page sizes

give enough computational overlap to allow the application to make progress while the rest of

the page is being fetched and results show a performance improvement of between 8 and 40%
for the applications tested.

PGMS: Voelker et.al. [VAK+98] describe an extension to the GMS scheme that incorporates

prefetching and caching (PGMS). While this was reported to improve on GMS, it still shares

the network overhead problems of GMS. Indeed. the network traffic costs incurred by GMS are

extended by PGMS to incorporate prefetch requests. While this is not a problem in the tightly

coupled environment in which the system runs, it does not represent a general purpose solution.

4.2 Issues in Remote Paging

In this section we discuss some of the issues in remote paging. We begin in sections 4.2.1 and

4.2.2 by considering the viability of remote paging. We continue in section 4.2.3 by looking

at the configuration method that decides which hosts may take part and the role which they

wish to fill, i.e. whether they act as a client or a server. We then discuss fault-tolerance and

the effect it can have on the remote paging system in section 4.2.4. The possibility of splitting

pages into sub-pages is considered in section 4.2.5 and the acquisition of physical memory in

5Their experiments were carried out on machines running OSF (where a page is 8KB) connected by a 155Mb/sec

ATM network.
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4.2.6. In section 4.2.7 we discuss the issue of revocation and conclude in section 4.2.8 with

quality of service considerations. Some sub-sections here refer to measurements obtained from

applications which are more fully described in appendix G. Note that, because these applications

were run with specific guarantees from the system, the results varied very little over many runs

(typically within 1%). See section 12.2 for a fuller discussion on the variation of results.

4.2.1 Network Bandwidth

For paging across the network to be a viable alternative to paging to a local disk, there must

be network bandwidth relatively comparable to the external transfer rate of the local disk. The
bandwidths need not be directly comparable, as the network latency is not as significant a factor

for remote paging as the disk latency is for local paging. Thus, combining lower bandwidth with

lower latency can give better performance than higher bandwidth with higher latency.

Another factor affecting the bandwidth is the relative location of the client and the server. If both

hosts are connected via the same switch, for example, then the actual bandwidth between the two

is very close to the wire speed. However, if the hosts are connected to different switches, the

actual attainable bandwidth may be significantly reduced.

A significant difference between how data is placed on the disk and how it is sent across the net-

work is that there is a maximum transfer unit (MTU) associated with the latter. This means that
data being sent across the network has to be broken into multiples of the MTU and reassembled at
the other end. In addition to this, there is no way of knowing if the data definitely arrived without

the recipient acknowledging the receipt of it. This can effectively reduce the data throughput.

One possible way of reducing the network transfer time is to compress the data before it is
sent. Figure 4.1 shows the relative times for writing to a local disk and writing across a 100Mb

Ethernet with and without compression." Writing across the network also includes the time taken

for the client to receive an acknowledgement for the arrival of the page. As can be seen, the disk

and 100Mb Ethernet are comparable in performance. However, compressing the pages before

transmitting them across the network improves performance significantly (approximately twice

as fast, depending on compression ratio). This is because the bandwidth is the limiting factor

for the network. The limiting factor for the disk, however, is the latency. Thus, as would be

60ne hundred pages were written consecutively and an average taken.
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expected, there is no performance benefit in compressing pages before writing them to the local

disk.

Compressing pages before transmitting them to the server has the additional advantage of saving

the memory required at the server. However, this must be traded against more complex memory

management. For instance, the first time a page is stored at the server it takes up a certain amount

of memory. However, the next time it is stored, it may be a different size. This means that the
old space must be freed and new space found.

TIme (micro-seconds)
Writing to Remote Host (100Mb/a)

Wrttlng Page to Disk

Writing to Remote Host with Compression (100Mb/a)

Writing to Disk with Compression

Figure 4.1: Remote versus Local Paging.

An effect associated with network bandwidth is CPU bandwidth at the server. Sending pages

across the network to a remote host requires that host to store the page and perform some book-

keeping. This requires CPU intervention.

The relative speeds of the processor and the interconnect can have a significant impact on per-

fonnance. Figure 4.2 shows the results of running the compress application with varying restric-

tions. The machines were connected via a 100Mb switched Ethernet network. Each machine

had a Pentium PIlI processor running at 450MHz. Each configuration was run with 10% of local

CPU bandwidth. Reducing the network access by a factor of 10 results in a fivefold increase in

the time taken for the application to complete. Reducing the CPU bandwidth by a similar factor

causes only a twofold increase. This is because the CPU can copy the data from the receive
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buffer to memory quicker than the network can transport the data. However, as these relative

speeds converge, the more delicate the balance between network and CPU bandwidth becomes.
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Figure 4.2: Effect of Limiting Server CPU Bandwidth and Network Access.

4.2.2 Availability of Physical Memory

For remote paging to be viable, there must be enough physical memory available on remote hosts

that can be utilised by processes running on machines with limited resources. Figure 4.3 shows

the availability of free memory on a total of 113 i386 machines running Linux (Redhat 5.2 and

Redhat 6.0), over a one month period.' The measurements were taken every 15 minutes between

the hours of 8.00 a.m and 6.00 p.m on Mondays to Fridays only. The vast majority of these

machines reside in labs used by Computing Science students at the University of Glasgow.

As can be seen, there were gigabytes of free memory in total at any given time over that one

month period. This is memory that can be utilised to improve the paging performance of appli-

cations running on heavily loaded hosts.! For instance, figure 4.4 shows free memory and swap

space usage over the period of one day, between the hours of 8.00 a.m and 6.00p.m, for one of

7Note that this does not include free memory that Linux reserves for buffers or caches. If this were to be taken

into account then the figures would be significantly higher.
8The vast majority of machines had 256MB of physical memory but some had 64MB or less.
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Figure 4.3: Free Memory on i386 Linux Machines

the Linux machines mentioned above. The machine is a PI33 with 64MB of RAM and had very
little free memory, relying on swap space to help meet the demands placed on it.

Acharya and Setia [AS99] looked at the availability of "idle" memory in workstation clusters

with a view to examining the viability of the Dodo system described earlier. They focused on

two clusters of machines: cluster A consisted of 29 Sun workstations running Solaris 2.5.1/2.6

and cluster B consisted of 23 Sun workstations running Solaris 2.6. Most machines in cluster

A had 128 MB or more of physical memory while most in cluster B had 64 MB or less. The

authors concluded that, for machines with 64 MB or more, half of the physical memory could

be expected to be free for a period of 12 minutes at a time and a quarter could be expected to be

free for up to 30 minutes at a time. This suggests that harvesting free memory on remote hosts

is a viable proposition. It also suggests that by harvesting smaller chunks of physical memory,
clients can use that memory for longer periods.

4.2.3 Dynamic Versus Static Configuration

There are two approaches to configuring a remote paging system. One approach is to allow hosts

to move from one state (i.e., client or server) to another as the availability of resources changes.

The other involves each node taking on a particular role and maintaining that role for the entire
time that it participates in the scheme.
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Figure 4.4: Memory Consumption on a PC running Linux

A static system where there are pre-designated servers is very restrictive: it does not take into
account the current load on a given host at any given time. For instance, a client may be sitting

idle with a large amount of physical memory not being used while the servers have their physical

memory fully committed. Under such conditions it would be more beneficial to have that client

register itself as a server and make its resources available to other hosts. In favour of the static

approach, it is much easier to implement than a dynamic system where hosts evolve over time

according to current commitments. For example, Markatos and Dramatinos hold the remote

paging servers in a file that clients can read.

The management of a dynamic system is more challenging as the current role of any host depends

on its present commitments. Thus, we must find a way of allowing those currently acting as

clients to find those currently acting as servers. However, a dynamic system does offer greater
flexibility and takes into account the nature of overall load on any given distributed system, i.e.,

that at any given time, there may be lightly loaded hosts and hosts which are heavily loaded. This

dynamism is something we wish to exploit with remote paging.

4.2.4 Fault Tolerance

When considering the use of remote hosts as backing store we introduce added complexity to

our system and we also extend our reliance on local resources to include non-local resources. In
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doing so, we introduce more potential for error: pages may be lost or corrupted during transit

to/from the memory server; servers may crash, causing loss of data held on a client's behalf;

and a client may crash and not free the resources held by servers on its behalf. A remote paging

system must define the level of tolerance to such faults.

Comer and Griffioen [CG90] describe a protocol for reliable delivery of pages between machines

in a heterogeneous environment. The Remote Paging Protocol consists of two layers: the Xinu

Paging Protocol (XPP) and the Negative Acknowledgement Fragmentation Protocol (NAFP).

The XPP layer is responsible for the reliable delivery of pages. On sending a page to a remote

host, the XPP layer expects a positive acknowledgement (ACK) of the reliable delivery of that

page. If a positive ACK is not received after a designated timeout period, the page is re-sent.
If the page happens to be sent twice. the server simply overwrites the first with the second.

Because pages may be larger than the maximum transfer unit (MTU) of the network. the NAFP

layer fragments the pages into units small enough for transfer and reassembles them at the other

end. The NAFP layer does not sends positive ACKs; it will send a negative ACK if a portion of

a page is not received. Thus, under normal circumstances, with no network errors. NAFP incurs

no additional overhead.

Coping with server crashes is a more difficult proposition than reliable delivery of messages.

First of all, there must be a way of detecting when a server may have crashed; secondly, invari-

ably, some form of redundancy must be employed to cope with the loss of data. Detecting the

possibility of a server crash, or of it becoming unreachable. can be solved by applying some

form of upper limit to the resending of data. If a client repeatedly times-out on the sending or

requesting of a page, it may decide that a server has become unreachable, or may have crashed.

Of course, another way of detecting a server crash is to have the servers send "I'm alive" mes-

sages to the clients on behalf of whom it is holding data. The remote paging client can then note

the period between such messages and use this data to determine a server becoming unreachable.

What the client does on such an occasion depends on the level of fault tolerance being employed

(it may be providing no fault tolerance. decide that it cannot make any progress and simply halt).

Some possible solutions to ensure fault tolerance in the case of a single server crashing are

discussed in the following sections. Note that although multiple server crashes are possible, the

likelihood of such an occurance is considered extremely small and if such an event must be dealt

with then mirroring pages to the local disk, if available, is recommended. Should multiple hosts

crash at the same time, the most likely reason would be widespread failure due to a power cut
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and the application would most likely fail anyway.

4.2.4.1 Local Mirroring

A simple solution to providing fault tolerance is to mirror dirty pages to the local disk as they

are paged out to a remote host. If we use a buffer for page writes, we can perform writes asyn-

chronously (see figure 4.5). This means, conceptually at least, that a disk write is free; reads are

from memory on a remote host and the cost consists of a network request plus a network transfer

and perhaps a memory copy at both ends. Only when a host is suspected of being unreachable

does the VM system have to resort to using the local disk. This of course requires extra physical
memory. However, the buffer need not be large. Consider, for simplicity, a single-threaded ap-

plication performing local mirroring. If, on a page out, the write to "disk" is performed first, the

page is copied to the buffer. Then the page is sent to a remote server and the application blocks.
This allows the disk thread to empty some of the buffer without seriously affecting the applica-

tion. Of course in a multi-threaded application the effects may be slightly more significant as the

disk thread would then be competing with other application threads .
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Figure 4.5: Mirroring Pages to Disk on Page Out

4.2.4.2 Remote Mirroring

Remote mirroring involves using two or more hosts and sending each page to both hosts. Thus,

if one host should crash, we could simply switch to using the other",

90f course we now have to mirror all pages on the new server to another host to ensure that we continue to have

fault tolerance. although we may be able to do this on the fly.
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This method incurs a potentially large runtime overhead: every page-out operation requires two

page transfers (plus 2 ACKs) and. perhaps most significantly. we require double the amount of

memory. The page transfer cost could be resolved by using a multicast scheme (for instance.

[KKT96] describe a group based multicast scheme that is both reliable and scalable and offers

almost comparable performance to a unicast scheme and [BE98] describe a scalable scheme for

on-to-many multicasting using polling). It may also be possible to reduce the memory overhead

by compressing the pages at the server. or before transfer. If the pages were compressed at the

server and the mirror. then the client would have to pay the decompression costs on each page-in.

However, if the pages are only compressed at the mirror. the space overhead could be reduced

without, in the normal case, paying any costs: the client does not need to wait until the page is

compressed before continuing and we never page-in from the mirror so there is no decompression
cost. Only if the server crashes would any decompression cost have to be paid.

4.2.4.3 Parity Scheme

Another method of providing fault tolerance in the event of a server crash is to employ a simple

parity scheme based on that used in RAID [PGK88j. Consider a scheme where there are S

servers, each having N pages. Page (i,j) refers to page j on server i. A parity set consists of

the jth page on each server. Parity page j is formed by taking the XOR of all the jth pages in

all servers. Thus, to recreate any page, on a server crash. we simply reconstruct it by XORing

all the other pages in its parity set. A page swap now consists of two stages: firstly. the client
sends the swapped page to the server. which computes the XOR of the old and the new page;

secondly, the server sends the resulting page to the parity server which XORs it with the old

parity, forming the new parity. Although we have reduced the space overhead to S * N. we still

now have two page transfers for every swapped out page. Also, we cannot afford to overwrite a

page in memory until we are sure that the parity page has made it to the parity server. In addition

to the page transfer overhead. the parity server is now a performance bottleneck with all remote

paging servers sending it a copy of each page they receive.

4.2.4.4 Parity Logging

Parity logging is a scheme devised by Markatos and Dramatinos [MD96] to improve the per-

formance of the simple parity scheme described above. This scheme. like the RAID method.
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requires 50 transfers for S servers. However, instead of the XORing being carried out by a server,

the client XORs each page with a page-size buffer (initially of all zeros) and sends the buffer to a

server on a round-robin basis. Because the XORing is carried out by the client, it does not have

to wait for the page to reach the server before replacing the page in memory. On a server crash,

the lost pages can be recreated from the appropriate pages of a parity group.

The main problem with this scheme occurs when a page is re-paged out. When this happens,

the page is marked in the old parity group containing it as inactive and the page becomes part

of a new parity group (as well as being required by the old one in case of failure). This entails

a memory overhead that is difficult to predict. Furthermore, if available physical memory runs

low, the authors suggest garbage collecting inactive pages, thus freeing parity sets by combining
the active pages with new ones. Distributed garbage collection is by no means a trivial problem

in itself and the overheads of such collections and the recalculation of parity groups would be
severe should it be required.

4.2.4.5 Adaptive Parity Caching

Adaptive parity caching [FM98] was proposed as a solution to the problem of wasted space due

to the retention of old parity groups in the parity logging scheme. The idea behind parity caching

is that adjacent disk blocks are usually part of the same file or data stream and are likely to

be read or written together. If the rewritten blocks were placed in the same parity group then

the space occupied by the old group could be reclaimed easily. To aid this process, the client

maintains a number of buffers and attempts to order the blocks before creating parity groups and
then sending to the appropriate servers.

4.2.5 Sub-Page Fetches

It may be possible to speed up application execution by splitting pages into sub-pages for trans-

ferring across the network. As reported in [JFY+96], a sub-page of 2KB (for 8KB pages) could

increase application performance by up to 40%. However, the results reported by the authors

depended a great deal on computational overlap, i.e., the ability for the application to progress

while the rest of a page is being transferred and then being able to interleave application and
page processing once it arrives. This may be a lot easier in a UNIX environment in which the
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application is the only one running and there is not a lot of competition for the CPU, but in a QoS

environment, where CPU guarantees are valid regardless of other running processes, the compu-

tational overlap may not be as significant. For instance, if an application has a Ims slice of the

CPU every IOms (i.e., 10% of CPU bandwidth) then it may not have the CPU for a significant

amount of time while the transfer is being carried out. Furthermore, once the data arrives, the

processing of it is the responsibility of the application and that time is deducted from its resource

guarantees - it is not billed to the device driver.

4.2.6 Acquiring Physical Memory

Acquiring physical memory under the GMS scheme, described in section 4.1, is based upon
usage. On any given page-out, the global LRU page is expelled and, if it belonged to a different

process, the faulting process' physical allocation is increased by one frame. In an operating
system supporting QoS, such as Nemesis [Ros95], each domain has a contract with the frames

allocator for a certain number of guaranteed physical frames [Han99]. In the case where the

memory is remote, it is the paging server that maintains the contract with the frames allocator on

behalf of clients. For a client to initiate this contract, it must first find a server with free physical

memory.

There are several ways of tracking which hosts are willing to act as paging servers. Markatos

and Dramatinos [MD96] maintained a list of servers in a file that could be accessed by clients.
GMS [FMP+95] use epoch servers to distribute global LRU information to participants. Neither

scheme deals with the possibility of the machine holding this information crashing. Feeley et.al.

mention the possibility of the epoch server crashing and suggest an election scheme could be

implemented to resolve it. However, the GMS scheme does not cope well with server crashes.

The nature of the scheme not only requires an election of a new epoch server but also the redis-

tribution of data-structures across the remaining hosts.

Another possible way of tracking hosts with free memory is to have them register how much free

memory they have with a trader. Clients could then contact the trader to acquire a server with

enough free memory. This means that the clients have to have a way of locating the trader. There

are some standard methods of advertising services in a distributed system using. for instance,

IP multicast [Edw99]. Depending on the involvement of the trader, some form of replication

could be used to minimise the effect of a trader crashing. For example, if the trader only held
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information about what hosts were advertising physical memory and was not involved in the

actual process of acquiring resources beyond that (as in [SD91]) then replicating the trader at,

say, two other locations should be ample to ensure that, in the vast majority of cases, a trader

would always be available.

4.2.7 Revocation

In a remote paging environment the aim is to utilise free memory on hosts within any given

distributed system. Thus, we would like to be careful about denying local domains physical re-

sources, such as memory and network bandwidth, due to the behaviour of domains on remote
hosts. Under the GMS system, pages are gradually freed by the global page replacement al-
gorithm, however, an operating system offering resource guarantees requires the explicit return

of committed resources. Subsequently, a revocation policy that specifies under which conditions
resources can be re-acquired by the system is required. Similarly, a mechanism must be provided

that allows domains to know when resources have been revoked in order that they can adjust their

behaviour accordingly.

Although acceptable under normal conditions, there are situations where revocation is slightly

more complicated. In the case where a server is acting on behalf of a diskless client, that client

does not have the facilities to handle its paged-out data. This could be handled in several ways.

One way would be to prioritise the memory a server holds for clients such that clients with no

local disk are offered the highest priority. Under this scheme, revocation of pages held on behalf

of diskless clients would be a last resort.

Another possible way to deal with diskless clients is to negotiate the guarantee for the lifetime

of the domain. This is a rather serious commitment and could incur a heavy penalty for local
domains. Of course, we could take the opposite standpoint and inform the client that it must

make way for the pages being returned or risk losing them. There are ramifications for the return

of pages that must also be taken into account, for example, the server must agree a rate of return

that allows the client to meet its local guarantees.

Below is a summary of some possible revocation policies.
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4.2.7.1 Transparent Revocation

Figure 4.6 shows a revocation scheme where Server 1 first offtoads the pages held on behalf of the

client before notifying the client that Server 2 will now act as the remote paging server. Note that,

on the Forwarded notification, the client may still be sending pages to Server 1. However, when

the client responds to the Forwarded notification, it must not send any further pages to Server
1 and must not request any pages from Server 2 until it has received the Flushed notification,

informing the client that Server 2 is completely up to date. This prevents the client from using

Server 2 before it is fully up to date and also prevents it from sending further pages to Server 1

after it has forwarded all of the client's pages to Server 2.

Under this scheme, pages expelled by the client will be sent to Server 1 in the first instance.

Server 1 will then forward them to Server 2. This may cause some pages to be sent across the
network twice, but this is unavoidable if the offtoading of pages is to be transparent to the client.

This transparency does not hide the location of pages from the client -- Server J holds all the

pages until Server 2 is fully up to date and the client has been notified of the new location.

However, during the transition between servers. the pages exist at more than one location.

The drawback of a transparent scheme is that the server has very little knowledge about the

client's running environment. The client may be using several servers for handling different

areas of memory and this would not be apparent to anyone server. The client is aware of all of

the resources it is utilising and is thus in the best position to determine a suitable replacement for

any revoked resource. Another consequence of the transparent scheme is that the client cannot

perform any paging between times t7 and t9.

4.2.7.2 Active Participation Revocation

Figure 4.7 shows a revocation scheme where the client is responsible for acquiring other re-

sources revoked by Server 1. In this case. Server 1 informs the client that it is revoking its

resources and awaits a reply. The client will first attempt to acquire a suitable server and, if

successful, responds by telling Server 1 to hold its pages for the time-being. If a server cannot

be attained. then the client can inform Server 1 that it will take the pages back. or. if the client

has the pages mirrored elsewhere. instruct Server I to simply discard the pages. On instructing

Server 1 to hold its pages. the client then contacts Server 2 and initialises the appropriate re-

sources. It then instructs Server I to populate Server 2 with the pages held on its behalf. Once



4.2 Issues in Remote Paging 49

"- Sond,
, Pages

\

OK
,'5

•• I

I

/

Figure 4.6: Transparent Revocation.

the pages have been offloaded, Server J contacts the client, informing it that Server 2 is up to

date. The client then switches over to using only Server 2.

While Server 1 is populating Server 2, all expelled pages at the client are only sent to Server 2.
If Server 1 sends a page to Server 2 that it already has, then Server 2 simply discards it. Because

this process is not transparent to the client, the client can keep track of which pages it has sent to

the new server. It does not, of course, know which pages have been sent to Server 2 by Server 1.

Consequently, faulting on a page that has not been sent by the client to Server 2, causes the page
to be faulted-in from Server J.

Like the transparent scheme described above, the client is always aware of the location of each

page. However, in contrast to the transparent scheme, the client has complete control over the
selection of a suitable replacement.

4.2.7.3 Unequivocal Revocation

Figure 4.8 shows a revocation scheme where the server simply informs the client that its re-

sources have been revoked and the client must take the pages back. Under this scheme, the

server must allow the client suitable time to receive the pages before the resources are fully
withdrawn.
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4.2.8 Quality of Service Guarantees

Quality of service requirements for remote paging incorporate system guarantees on many levels.

Some considerations to ensure predictable behaviour are:

• CPU bandwidth guarantees at server and client.

• Network guarantees between server and client.

• Physical memory guarantees at server/so

• Rate of return - following revocation.

An application must have enough processor bandwidth to make progress at both client and server.

The client is "billed" for all local resources and servicing page faults happens within the limits
of its local guarantees. The server. on the other hand. is not billed directly to the client: its

guarantees are met by the machine it is running on and so we must find a way of tying the client

to the server and ensuring that a client is not permitted to "hog" a paging server. This can be done

by providing QoS parameters for the amount of time the server spends dealing with requests from

a particular client.

To provide true determinism. an application must be able to acquire network bandwidth guar-

antees and coordinate those guarantees with CPU guarantees at both ends. This allows us to
determine the end-to-end performance for any given combination of client. network. and server

resources/guarantees.

For remote paging to be viable at all. an application must be able to acquire physical memory

guarantees from a remote host. To augment this. a rate of return must be agreed. should this

guarantee change and a client find its resources revoked. for pages held on a client's behalf. The

rate of return allows both the client and the server to meet their respective local guarantees.

An interesting difference between paging to a local disk and paging across a network to memory

on a remote host is the reliance on CPU bandwidth. When paging to a local disk. a request is

issued to the device driver and the requesting thread is blocked pending completion. Once the

request has been serviced. the thread is again runnable. In the interim. the thread has used no

CPU resources. Consider the case where an application is running with a guaranteed CPU slice

of I milli-second every 10 milli-second period. If the time taken to service a page fault from
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the local disk is 2 milli-seconds, the application can effectively absorb 4 page faults per 10 milli-

seconds (provided it has the necessary bandwidth and CPU utilisation is less than 100%) and still

receive I full milli-second on the CPU. However, a remote paging system will invariably have to

copy data, possibly from memory into a transmit buffer and, from a receive buffer to memory at

the remote host. This requires CPU intervention. The consequence of this is that even if sending

a page across the network is quicker than sending it to the local disk, the number of page faults
per given period could influence the overall performance.

The need for CPU bandwidth at the server has ramifications for the server's decision to advertise

free memory: even if the server has a great deal of free memory, there is no point advertising the

fact unless it also has enough free CPU bandwidth to service requests from clients in a reasonable
time. This is discussed further in 10.3.

4.3 Discussion

Although aspects of remote paging have been tackled by researchers, no-one has yet tackled the

general problem of remote paging in a distributed system of architecturally heterogeneous hosts.

GMS, and later PGMS, provided a solution for a tightly coupled cluster of homogeneous hosts,

both architecturally and with respect to the operating system, connected via an extremely fast

network, and Markatos and Dramatinos provided a solution for architecturally homogeneous

hosts all running OSF/I. However, the system described by Flouris and Markatos seemed to

offer a limited form of heterogeneity, with the servers running one operating system and the

clients another. While each solution may be suitable for its specific environment, neither could

be construed as a general purpose solution. Furthermore, neither scheme is sufficiently flexible

to allow hosts to dynamically alter their participation in the scheme. More specifically, individual

processes cannot choose whether to participate or not.

Another important oversight in the remote paging systems described in this chapter is the effect of

CPU usage. In order to satisfy requests for pages from remote clients, the servicing thread, be it

the operating system or a daemon of some description. must have CPU resources. Furthermore,

the CPU load will have an important effect on overall throughput. It is quite feasible for a

machine to have a lot of running domains and still have free memory. These domains, though

not affected by memory being given over to storing pages from other hosts, would be affected by

CPU resources being given over to the servicing of page faults. Similarly, the servicing of page
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faults is affected by the CPU usage of local domains. For a remote paging system to be viable,

the availability of CPU resources at the server must be taken into account.

Three key factors can be derived from the requirements of a remote paging system: performance,

knowledge of page locations, and flexibility. A remote paging system cannot offer itself as a

viable alternative to paging to the local disk if it does not result in an increase in performance for

the applications utilising it. Of course, where there is no local disk available, the performance

of paging across the network relative to paging to a local disk is not an issue. Linked to the

performance of a remote paging system is the issue of knowing where a particular page is. If

the location of each page is not known, then the time taken to fetch a particular page increases

with the number of locations to which a request is forwarded. Finally, the system must be flexible
enough to allow hosts to join and leave the scheme at any time to allow for the dynamism inherent

in a distributed system.

We have now covered the issues relating to paging to the local disk and paging across the net-
work. The next chapter looks at how the number of page faults serviced by the backing store can

be reduced in order to speed up overall application performance.



Chapter 5

Compressed Caching

He can compress the most words into the smallest ideas of any man I ever met.

Abraham Lincoln.

The memory requirements of average programs on workstations have grown by 50-100% per
year over the last decade and this growth is set to continue [KGJ96]. Compare this to the rate

of increase in memory cost/capacity (45% per year) and we see that memory is as valuable a

commodity as it has always been. This is particularly true for mobile computers. where increases

in memory sizes have been much more modest. Ifwe examine this data in the context of increases

in CPU speeds and disk latency. we can conclude that paging to a local disk is more expensive.
and just as likely to occur. than it ever was. Consequently. interest in storing data in memory in

compressed form has risen over the last five years.

Approaches to utilising compression as a way of "extending" physical memory has come in two

forms: hardware and software. Kjelse et. al. [KGJ96] describe a hardware data compressor with

a compression throughput of 100MB/second. They show several-fold increases in performance

for a range of traditional UNIX applications by eliminating paging to a local disk.

A new architecture for compressed memory has been proposed by Franaszek et. al. [FR98.

FHW99. BFROO] which could be viewed as extending the notion presented by Machanick et. al.

[MSP98]. All data in main memory (Ievel-4) is in compressed format and is decompressed when

faulted into the level-3 cache. Figure 5.1 shows the layout of the proposed memory hierarchy.

The level-3 cache is typically quite large. in the region of 16 or 32MB. When a line is evicted
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from the level-3 cache, it is compressed before being stored in level-4. If a page is faulted in

from backing store, it is faulted in directly to level-3. This system has the advantage that the

compression engine operates at a bandwidth close to that of the physical memory system.

Figure 5.1: Compressed Memory Architecture.

The software approach to using a compressed cache involves splitting physical memory into two

chunks: one chunk consists of the active pool of pages; the other is used as a cache into which

pages expelled from the active pool are compressed. instead of being sent to backing store (see

figure 5.2). Only when pages are expelled from the cache are they written to backing store. The

idea here is to obviate the writing of pages that may be required again soon to backing store.

This method relies on three inter-related factors: that we can achieve a compression ratio high

enough to make the compression worthwhile (even a 2:1 ratio may give us significant gains in

performance); that the time taken to compress/decompress a page is significantly less than the

time taken to write/read a page to backing store; and that the extra paging overhead incurred from

having the active pool reduced in size, in order to make space available for the cache, should still

out-perform paging to backing store.

While the hardware approach potentially offers increased throughput, the idea is still in its in-

fancy and one would not expect to see such support for many years. Consequently. this chapter

focuses on the software approach and the issues pertinent to implementing such a scheme. Sec-

tion 5.1 discusses the approaches other researchers have taken to compressed caching. Section

5.2 elaborates on the issues involved in providing such a scheme, before conclusions are drawn
in section 5.3.
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Figure 5.2: Paging to/from a Compressed Cache

5.1 Background

The potential benefits of on-line compression have increased dramatically in recent years due
to the increasing disparity between CPU, memory and disk speeds. For instance, Burrows et.

at. [BJLM92], as far back as 1992, suggested using on-line compression as a space-saving

mechanism in Sprite LFS but noticed a degradation of a factor of up to 1.6 for file intensive

operations. However, their throughput was only between 0.4 and 1.7MB per second. Contrast

this performance with the 20MB per second reported by Wilson et. at. [WKS99] and we can see

that, in just a short space of time (some 6 years), the compression throughput has increased by

more than an order of magnitude. Should the disparity between CPU, memory and disk speeds

continue, as is expected, then we should continue to gain more benefits from on-line compression

techniques both as a space saving mechanism and as a method for reducing paging overheads.

Douglis [Dou93] described the use of a compressed cache in the Sprite Operating System that
changed size dynamically according to the relative usage of pages in the cache, the compressed

cache and file blocks. The cache is implemented as a circular buffer with new entries added to

the end and old entries evicted from the front. However, should no clean entries be found at the

front, entries could be expelled from the middle. The cache is not divided into sub-pages, instead

entries are fitted together as they are entered in the cache. This arrangement means there is no

upper bound on the external fragmentation. Furthermore, it is quite possible that a page may be

evicted from the cache to make way for a new addition even though there is enough space. The

alternative, though a potentially expensive one, is that you compact the cache.

Douglis reported speedups between 0.73 and 2.68. In fact, only three applications of the seven

used in the test suite reported gains in performance. Wilson et. at. [WKS99) blamed the adaptive
caching strategy employed by Douglis for these relatively unpromising results.
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Russinovich and Cogswell [RC96] evaluated the potential benefits of a compressed cache in

the Windows95 OS but concluded it would not be beneficial. This seems to be related to the

fact that the compression speed they assumed was extremely poor - around 2ms to compress or

decompress a page. This speed was used to incorporate both the compression/decompression

time and the time taken for Windows to service a page fault. However, the same consideration

did not seem to be given to accessing the local disk. Consequently, compressing a page was only

five times faster than writing to the local disk. As shown by figure 5.3 (section 5.2.1), even on
a relatively slow machine (an Intel P2(0), compressing a page is an order of magnitude quicker

than writing to the local disk.

Wilson et. al. [WKS99] simulated the implementation of a compressed cache under differing

memory sizes with different compression algorithms, using their own compression algorithm.

The results were an average performance increase of 40%. Two key contributions are made in
their paper: the compression algorithm (WKdm), which out-performs even the mature LZO algo-

rithm; and their method for adapting the size of the compressed cache to take into account recent

program behaviour. The strategy for adjusting the size of the compressed cache uses a combina-

tion of least recently used (LRU) ordering and information on recently evicted pages. From this,

it performs a "what if analysis" on the current split of memory and attempts to determine if there

may be a better one. The actual split is generalised to a number of target compression sizes: 10.

23. 37 and 50% of memory. The "what if analysis" occurs on every uncompressed cache miss

and takes a "few hundred instructions".

Wilson et. al. [WKS99] traced six UNIX programs on an Intel x86 machine running Linux and
captured page image traces. The simulator takes a record of the touched pages with compressibil-

ity information and the cost of compression/decompression. For the purposes of the experiments,

disk writes were assumed to be free and the disk seek time was assumed to be 5ms. The results

showed that for varying memory sizes, the paging costs when using a compressed cache were

significantly smaller than for the traditional VM structure due to less disk VO.

Though more encouraging than the results reported by Douglis, there are a couple of potential

problems with the scheme described by Wilson et. al. Because the compression cache was

simulated, it was easy to separate the maximum potential benefits for each individual application.

However. there are limitations to simulating performance. Firstly, there is no accounting for

hidden implementation costs that could affect performance. For instance. there is no information

on how items are placed in the cache: Douglis [Dou93) originally intended to use an LRU cache
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split into sub-pages, where entries could be broken up and scattered throughout the cache, but

found that reclaiming physical memory for use by the active pool was much more expensive.

He subsequently resorted to a circular buffer implementation which did not split the cache into

sub-pages but attempted a kind of best-fit. Secondly, it is hard to accurately account for costs.

If, like Wilson et.al., we assume that disk writes are free and the disk latency is Sms, then on

each disk read we pay the cost of latency plus the time taken to read the page. This would result

in a disk read costing around 6-7ms. In theory, this seems quite reasonable but in practice, the

latency varies quite dramatically depending on the last position of the disk heads. This means

that the latency for the second disk access could be dramatically different from the first. A further

problem with simulating the cache performance for individual applications is that you do not take

into account the effect of interference from other applications. Although a simulation, Wilson
et.al.'s target environment seems to be UNIX-like, i.e. an environment where the OS manages
the physical memory and implements the page replacement policy.'

Both Douglis and Wilson performed measurements on UNIX-based systems (Sprite is largely

compatible with 4.3BSO) and yet provided per-application performance results. Although this

provides an upper-bound on performance gains, it does not accurately reflect a running system.

In a UNIX system where processes compete for memory, the compression cache would adjust

in size dynamically according to overall performance. This means that an application with very

poor locality, running at a time when many others with good locality are also running, may be

penalised by the reduction of the active pool even though that reduction is not to its benefit. An

ideal environment would provide memory management on a per-process basis. This would allow

each process to determine if a cache would be beneficial or not. It may also make the need for
an adaptive strategy largely redundant.

5.2 Issues in Compressed Caching

This section discusses some of the issues pertinent to the employment of a compressed caching

scheme. Some sub-sections here refer to measurements obtained from applications which are

more fully described in appendix G. Note that, because these applications were run with specific

IThe fact that the cache adapts according to recent performance suggests that the authors assume a competitive
environment.
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guarantees from the system, the results varied very little over many runs (typically within 1%).

See section 12.2 for a fuller discussion on the variation of results.

5.2.1 Compression Speed

As mentioned in section 5.1, the relative increase in processor speeds compared to memory

and disk speeds has made on-line compression increasingly attractive. Figure 5.3 shows the

relative times taken to compress/decompress? a page in memory and read/write to the local disk

for the Nemesis operating system. The measurements were taken on an Intel P200 with 64MB

RAM. The domain was guaranteed 100% of the disk bandwidth. The drive used was a Seagate
ST32132A DMA IDE hard drive with 128KB write cache. One hundred pages were written

consecutively followed by one hundred consecutive reads and the average taken.

TIme (mlcro-second.)
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Figure 5.3: In-Memory Compression Vs Reading and Writing from/to Disk.

As can be seen, even the slower process of compression is an order of magnitude quicker than a

disk read or write at full throughput. However, it is not enough for the compression/decompression

to be faster than a disk read/write, we must also consider the effects of using less working mem-

ory on paging behaviour. A smaller active pool means more page faults. Thus, given a smaller

2 Using the WKdm compression algorithm, available from http://www.cs.utexas.edulusers/oopslcompressed-

caching/index.htrnl.
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active pool, the overall performance of using a compressed cache must be significant enough to

out-perform paging using a local disk but with a larger active pool of memory.

Figure SA shows the time it takes to compress, decompress and copy a system page of 4KB

in memory for three Intel processors: the Pentium P200, the Celeron 366 and the Pentium PIlI

450. The compression/decompression rates on the PIII are almost four times faster than on

the P200. This suggests that in-memory compression will become increasingly attractive as

processor speeds increase.

Time (mlcro-aecond.)

200 I.........,

100

Intel P200 Intel Celeron 366 Intel Pili 450

Figure SA: In-Memory Compression and Copying for Different Processor Speeds.

Ifwe examine the figures for the PIII 450, we see that compressing a page takes 55 micro-seconds

and decompressing a page takes 41 micro-seconds. This gives us a compression throughput of

71MB/second and a decompression throughput of 95MB/second. These figures are not very far

away from the 100MB and 140MB per second throughput for Kjelse et. al.'s hardware imple-

mentation. This shows more than a threefold improvement for compression throughput in the

two years since Wilson et. al. reported their results. In that same time, the time taken to write a

page to disk has reduced from 2.2ms to lAms (from the P200 using a Seagate ST32l32A IDE

Drive to the PIlI 450 using a Fujitsu MPE31 02AT ATA IDE Hard Drive). These figures suggest

that the viability of compressed caching is improving as CPU and disk speeds diverge further

each year.
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5.2.2 Compression Ratio

The compression ratio must be such that there is a space-saving benefit to compressing pages. If

the cache holds little more than it would had the pages not been compressed then the cost of hav-

ing it may be more than the benefits. Wilson et. al. [WKS99] reported an average compression

ratio, for data pages, of 2: 1 and an average performance increase of approximately 40%. The

performance increase relies on applications performing a significant amount of paging.

Kjelse et. al. [KGJ98] examined the compressibility of memory-data, which they define as

everything in memory (code and data), for a suite of 16 typical UNIX applications plus the

operating system itself (SunOS 4.1.3). The total volume of memory-data for these tests exceeded
500MB. The authors found that memory-data contain a large proportion of zeros which often

Occur in contiguous runs. They also found that low values and ASCII lower case letters have
greater than average probabilities. They concluded that memory-data typically compresses by

50%, doubling the amount of data that can be kept in memory in compressed form.

This, taken with the throughput results from section 5.2.1, suggests that compressing data in

memory is not only viable due to speed. but also due to the compressible nature of data in

memory.

5.2.3 Global Management

Once it has been decided to utilise compressed caching. a policy for the management of pages

in physical memory must be decided. Two possible schemes for the management of physical

memory are redundant caching and exclusive caching.

Redundant Caching: A redundant caching scheme allows for the possibility that pages can

reside in both the active pool and the compressed cache simultaneously. When a page is faulted

in from the cache to the active pool, it is decompressed and the compressed form is maintained

in the cache. If that page should be subsequently evicted from the active pool, and has not been

written to, there is no need to compress it again - unless it has since been evicted from the

cache. This method sacrifices memory in favour of reducing the number of compressions. A

consequence of such a scheme is that a similar page replacement policy used in the active pool
may be required for the cache as well.
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Exclusive Caching: An exclusive caching scheme maintains only one copy of a page in memory

at any time. A page faulted in from the cache is decompressed to the active pool and then the

space in the cache is freed. Thus, if that page should then be evicted from the active pool, it must

be compressed once more whether it has been written to or not. This method attempts to keep as

many different pages in memory as possible at anyone time.

The reasoning behind redundant caching was that compression was expensive and an attempt

should be made to reduce the number of times it had to be performed. This is simply no longer

true in today's environment.

5.2.4 Page Access Patterns

There is no point in providing a compressed cache if page access patterns dictate that "cache-

hits" will be infrequent and most of the pages compressed to the cache end up on backing store
before being used again. In such a case, the application would be severely penalised. Firstly, it is

penalised by having its active pool reduced, potentially causing more page faults. Secondly, each

eviction from the active pool can cause a compression (depending on the overall management)

plus a potential write to disk. Thirdly, each page fault may cause a disk read plus a decompres-

sion. For instance, the compress application, whose memory access pattern is linear, suffered

a performance decrease of 25% over paging to a local disk when run with a compressed cache

and was nine times slower than with using the local disk and the friends prefetching algorithm

(described in 9.3.1).

Linked to this is the page replacement policy implemented in the active pool. Kaplan [Kap99]

studied memory reference patterns in programs and found that the replacement policy used in the

active pool had a marked effect on the compressed cache performance. He found that although

LRU was a good general policy, it was very poor for some types of programs, e.g. programs

with loop-like access patterns. This led to the development of early eviction least recently used

(EELRU). The idea behind EELRU was to use LRU where it performed well and adapt it, evicting

pages early, when pages were seen to be being faulted on after being recently evicted.
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5.2.5 Cache Size

How one organises the segmentation of the active pool and the compressed cache can have an

important impact on application performance. Wilson et. al. [WKS99] blamed the poor results

achieved by Douglis [00u93] on the adaptive caching strategy used in his tests. Figure 5.S shows

the effects of different sizes of cache, as a percentage of total memory, for a matrix multiplication

program (this application is fully described in section G.l). The program multiplied two matrices

of integers with dimensions 500 by 600, producing a result of 500 by 500. The application was

run with two megabytes of physical memory. As can be seen, the difference in the level of

performance can be quite significant.
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Figure 5.5: Effect of Cache Size as a Percentage of Memory on Performance

When the cache is greater than 25% of the physical memory, the application faults at a signifi-

cantly higher rate. At this point, the number of compressions and decompressions is sufficiently

high to be slower than servicing a much smaller number of page faults from the local disk.

An interesting aspect of the compressed cache is how it interacts with page prefetching and group

writes. If we take an application that performs worse with a compressed cache and add prefetch-

ing and group writes to the cache management, what effect does this have on performance?

Figure 5.6 shows the performance of an application which applies a sharpen filter to a 3210KB

bitmap (see appendix G for full description) running with 8MB of physical memory. The cache
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was augmented with the friends clustering and prefetching algorithm described in chapter 9. As

can be seen, although including a 1MB cache causes the performance over local paging to reduce

by over a third, adding prefetching and group writes causes more than a three-fold performance

increase.
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Figure 5.6: Effect of Adding Prefetching and Group Writes to a Compressed Cache.

By adding prefetching and group writes, the percentage of cache hits increase from 14% to 50%.
This has the effect of reducing the number of write requests from 5630 to 905 and the number

of read requests from 3845 to 1212 during the run of the application. Even in the case where the

cache is increased in size to 2MB and the performance improves, adding prefetching and group

writes still increases performance over three-fold.

5.2.6 Cache Arrangement

How pages are stored in the cache can have an effect on how the cache performs. For instance, as

mentioned earlier, Douglis originally intended to use an LRU cache split into sub-pages, where

entries could be broken up and scattered throughout the cache, but found that reclaiming physical

memory for use by the active pool was much more expensive.
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The decision about whether to split the cache into sub-pages or simply attempt to fit pages in

as well as possible affects potential fragmentation. Using sub-pages allows us to determine the

average fragmentation per page. It also makes cache management slightly easier due to using

fixed size blocks.

If it is decided to segment the cache into sub-units of a system page, then the size of these sub-

pages can have an effect on the performance of the cache. Figure 5.7 shows the results of the

effect of differing sub-page sizes in the compressed cache. The program multiplied two matrices

of integers with dimensions 1000 by 2000, producing a result of 1000 by 1000.3 The left bars

indicate the difference in cache-hit percentage and the right bars show the effect on overall run-

time.
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Figure 5.7: Effect of Sub-Page size on Cache Performance

A sub-page size of 128 bytes has one of the largest hit rates and performs best in terms of overall

run-time. Although the average size of a compressed page for the above experiment is around

1500 bytes, the smallest compressed page is 28 bytes. Such a page would only waste 100 bytes

of cache space. Even though this is more wastage than would be incurred using 64 byte blocks,

there are not enough instances of 28 byte pages to increase the cache hit percentage using this
size. Thus, the 128 byte sub-pages seem to offer a good compromise between fragmentation and

the simplicity of managing the cache.

3Note that the size of the matrices were increased only to increase the length of time the application takes to

complete and to highlight more clearly the effect of altering the sub-page size.
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S.2.7 Responsibility

The previous sub-sections have shown that the relative benefits of a compressed cache can depend

greatly on the type of applications running at anyone time, and yet Douglis' scheme described in

[Dou93] was implemented as part of the VM system where the compressed cache was shared by

all applications, even if the testing focused on a single running application. and the contents were

based on a global paging scheme. The scheme simulated by Wilson et. al. [WKS99], though not

implemented within a VM system, was based on simulations of traces of applications executed

on machines running UNIX. Subsequently, if it were implemented in such an environment it

would be subject to the same limitations as that implemented by Douglis. The problem with

the compressed cache being shared by all applications is that they all must pay the cost for the
behaviour of others. If a compressed cache greatly benefits one application but the performance
and compression ratio of others causes the cache size to be reduced to an insignificant amount

then the benefitting application will be penalised. Similarly, if an application receives no benefit
from the cache but others in the system are benefitting greatly then more resources may be given

over to the cache, reducing the size of the active pool. and penal ising the application receiving

no benefit.

In an environment that allows applications to handle their own virtual memory management. the

benefits of compressed caching could be much more significant. Furthermore. applications that

do not benefit from a compressed cache could decide not to use one. By making the compressed

cache domain-specific, it is possible to have the cache use much more accurate prefetching tech-

niques to increase performance.

A further consequence of the utilisation of a compressed cache in a UNIX-like environment is

that the operating system performs the compression/decompression on behalf of the applications.

This. of course. means that the applications not benefitting from the compressed cache, due

to poor locality, are further penalised by the operating system spending time compressing and

decompressing pages. This also has the effect of masking the cost of a compressed cache by

amortising that cost over all running applications. Thus, it is easy to see the benefits of running

a single application, which has good locality, with a compressed cache. Firstly, this application

will not be penalised by applications reducing the cache size. Secondly, in an environment

using round-robin scheduling, the application spends most of its time on the CPU and blocks

only for small periods during de/compression. In such an environment. blocking on the disk is

exaggerated by the fact that the application is otherwise afforded almost all of the CPU. How
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does competition for the CPU affect the performance of compressed caching? What happens if

the application had to perform the de/compression itself? Would compressed caching continue
to be viable?
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Figure 5.8: Matrix Multiplication Without Competition for CPU and Disk.

Figure 5.8 shows the performance of the matrix multiplication application (1000 X 2(00), run with

16MB of physical memory, for paging to the local disk with and without a compressed cache.

There is no competition for CPU or disk. As can be seen, the application benefits greatly from
a compressed cache. By splitting the memory 50-50 between the cache and the active pool, the

application's performance increases by 50%. There are two main reasons for this improvement.

Firstly, because there is no competition for the CPU, disk accesses are relatively more expensive:

disk accesses cannot be interleaved with processor bandwidth. Secondly, because the time taken

to service a page fault from the disk is an order of magnitude slower than de/compression, the

CPU time spent performing the de/compressions is far outweighed by the time the application

would spend blocked on VO.

Figure 5.9 shows the same application run with its CPU bandwidth limited to I mill i-second

every 10 milli-seconds, i.e., 10% CPU bandwidth (see chapter 7 for details on OS support for

this). The application was the only disk client and was assured 100% bandwidth. As can be

seen, the effect of limiting the CPU, in light of 100% disk bandwidth, is quite significant. By

scheduling the application in such a way as to afford it only Ims/IOms, the disk accesses can be
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Figure 5.9: Effect of CPU Competition and Having to Perform One's Own De/Compression.

interleaved with CPU access over that IOms period in such a way that the application can resolve

its faults and still get most of its allotted CPU bandwidth. The de/compression, however, now

actively eats into that bandwidth more significantly than performing I/O.

Figure 5.10 shows the same application run with its disk bandwidth also limited to 10% (lOOms

every I second). As can be seen, the effect of limited CPU and limited disk bandwidth has a

strong impact on the best hierarchy configuration for the application. When CPU bandwidth was

at a premium with respect to disk bandwidth, the compressed cache severely curbed the applica-

tion's performance. However, when access to both resources is equally competitive, compressed

caching once again becomes more viable.

5.3 Discussion

We have discussed the issues pertinent to the employment of a compressed caching scheme and

can conclude that such a scheme could offer real benefits to applications in an environment

where paging is likely. CPUs are sufficiently fast to make software compression/decompression

extremely fast and memory-data is compressible by, on average, a factor of two. However, we
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Figure 5.10: Effect of CPU and Disk Bandwidth Competition on Compressed Caching Perfor-
mance.

have also shown that the amount of memory allocated to each pool (active and compressed) has

a significant effect on cache performance, as indeed does an application's memory reference

behaviour. An interesting, though previously unexplored, aspect of compressed caching is how it

interacts with disk group writes and prefetching. It has been shown that, even when a particular

memory split seems to inhibit application performance, adding group writes and prefetching can

significantly improve an application's performance.

Although investigated by several researchers, a compressed cache implementation within a com-
mercial operating system is still a long way away. This could be attributed to the deficiencies of

the schemes proposed or it could be due to the deficiencies of modem operating systems. In an

environment where the operating system performs the virtual memory management on behalf of

all processes there is, by necessity, compromise. The result of this is that researchers have been

looking at adaptive caching methods that try and guess what configuration would be best for all

the running processes. I would argue that this is the wrong approach for software compressed

caching. The benefits of a compressed cache are there to see and it is obvious that these benefits

will increase as the disparity between disk and CPU speeds increases. However, a compressed

cache does not benefit every application and an environment that attempts to adjust the cache
size according to all running applications, in essence, penalises them all.

A significant oversight in the work carried out on the potential benefits of compressed caching

has been the effect of competition for CPU and resources. 1 have shown here that competition
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for the CPU severely affects application performance. It has also been shown that applications

benefitting from compressed caching under light CPU load, i.e., where there is a small number

of competing processes, can perform better without it when that load gets heavier. It is not until

competition for resources starts to balance out that compressed caching once again comes into

its own.

We have now covered the issues relevant to local paging, remote paging and compressed caching.

The next part sums up what we have discussed and describes the environment within which the

Heracles VMM system is provided.



Part II

Towards a Better Environment



Chapter 6

Discussion

Never hold discussions with the monkey when the organ grinder is in the room
Sir Winston Churchill.

In the previous part of this dissertation, we have looked at how operating systems manage mem-

ory on behalf of applications. We concluded that the approach taken by operating systems is

inadequate for the needs of modern applications. The operating system is not aware of the needs

of each individual application. Consequently the OS meets the general needs of many appli-

cations while meeting the specific needs of very few. External memory management has been

seen as a way of meeting the needs of each individual application. Unfortunately, some of the

systems offering external memory management have not gone far enough; for instance the Mach

kernel still manages the physical frames, limiting applications to performing their own paging.

The systems that allow the application to handle all aspects of its memory management provide a

great deal of flexibility that could be exploited by developers to provide truly application-specific

memory management. While this represents a real step forward in virtual memory management,

it could be construed as defeating one of the points of virtual memory management in the first

place: to free the programmer from the constraints of managing their own memory.

An ideal environment would consist of an operating system with application-specific memory

management where that management would be handled by the operating system itself or a third-

party external memory manager. The application developer could choose what components

would be used to meet their specific requirements and the operating system would construct
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the hierarchy appropriately. Furthermore, each component in the hierarchy could be parame-

terised to meet the specific requirements of each individual application. Such a hierarchy could

call upon many mechanisms for managing virtual memory.

Chapters 3 and 4 discussed the issues in paging to the local disk and across the network to a

remote host. Chapter 5 looked at a way of reducing the number of pages expelled to backing

store by compressing them in memory. Each technique discussed offers differing performance

improvements over the others. Furthermore, different combinations of these techniques offer

differing improvements again. For instance. I showed that a key factor in remote paging is net-
work bandwidth and that compressing pages could improve paging performance. Consequently.

combining a compressed cache with remote paging has the effect, provided there are sufficient

cache hits, of increasing paging bandwidth for free.

Techniques for improving page fault handling should not be exclusive. Many techniques benefit

different applications in different ways and it should be the application developer who chooses
which is best for his application. The operating system developer should not provide their "pre-

ferred" method of servicing page faults or impose a system wide policy for deciding which pages

should be evicted to make way for new ones. The operating system developer is not in a position

to make these decisions. However, neither should the operating system simply hand the problem

over to the application developer. The choice between default memory management or write

your own is, for most developers, no choice at all.

The next part in this dissertation describes the design and implementation of the Heracles virtual
memory management system. Built on top of the Nemesis operating system, Heracles allows

the application developer to specify a virtual memory hierarchy specific to their application.

The choices available to the developer include using a compressed cache, a local disk or remote

paging. The developer can further specify exactly how much physical memory their application

requires, how much should be given over to the compressed cache, whether to buffer disk writes

and whether to perform any page prefetching. Furthermore, the remote paging can be augmented

with compression, to save bandwidth and space, and local or remote mirrors in order to survive

server failure. The entire system is defined in an interface definition language and developers,

should they wish, can extend individual components and/or provide their own implementation.

The system is, to an extent, reconfigurable at run-time in that the size of the compressed cache

can be increased or reduced from within the application. Importantly, different regions of an

application's virtual address space can have different hierarchies associated with them.
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Before going on to describe Heracles, we will first look at the platform on which it was built.

The Nemesis operating system is described in the next chapter. focusing on the aspects important

to understand in order to appreciate the Heracles VMM system.



Chapter 7

Overview of the Nemesis Operating System

The translation of ideas into action is usually in the hands of people least likely
to follow rational motives. Hence, it is that action is often the nemesis of ideas, and

sometimes of the men who formulate them.

Eric Hoffer.

The emergence of 64-bit architectures has prompted interest in the development of single address

space operating systems (SASOS). Some of the benefits of a single address space include lower

context switch time, reduced data copying and a rich sharing environment.

Modem attempts to exploit these features include Angel [WMSS93], Opal [CLBHL93] and
Mungi [HEV+97]. The designers of these systems were motivated by the possibility of such

a large address space providing the impetus for distributed shared virtual memory (DSVM) and

persistent memory mapped objects. Nemesis [Ros95], on the other hand, considers these issues

to be the domain of the application developer. Its focus is on providing the mechanism for a rich

and highly specialised environment where the operating system domain is responsible for the

secure multiplexing of resources in a QoS framework and the application domain is responsible

for everything else.
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7.1 Structure

The vast majority of code traditionally executed by the operating system on behalf of an appli-

cation need not be executed in a different protection domain. Code that accesses and updates

important shared data structures is usually executed infrequently and is usually associated with

out-of-band operations like opening and closing a file [Bar96]. Nemesis exploits this to move the

majority of operating system functionality into the application domain. The result is a vertically

structured operating system (figure 7.1). This structure lends itself to more accurate accounting

as each domain is "billed" not only for the execution of its own code but also for execution of OS

code. In traditional systems, and in systems which provide shared servers. the OS would perform

many functions on behalf of a process making accounting difficult.
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Figure 7.1: Nemesis Structure.

7.2 Quality of Service

Nemesis offers domains the ability to acquire resource guarantees from the system. This means

that applications can specify the amount of CPU and disk bandwidth they receive. For instance.

an application may specify that it would like alms CPU slice every period of IOms (thus acquir-

ing 10% of CPU bandwidth). Furthermore. it may state that it requires a slice of lOOms out of

every 800 from the disk driver (thus acquiring 12.5% of disk bandwidth).

This ability to specify the parameters within which an application runs provides a great deal of

predictability. An application running at different times, with different system loads. but with
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the same QoS parameters will behave in almost exactly the same way each time. There will be

variances due to factors outwith the system's control: such as rotational latency in the local disk

or the time taken for the disk head to reach the correct track.

7.3 Virtual Memory Management

In terms of memory management, Nemesis is responsible for the allocation of virtual and phys-

ical addresses. The application domain can set up its own protection and virtual address map-

pings, and has to handle its own memory faults.

Nemesis splits the address space into sections called stretches [Han99, Han98]. A stretch is
an abstraction over a contiguous region of the virtual address space where every page has the

same access rights. A stretch cannot shrink or grow once created and different stretches cannot
overlap. A stretch is only meaningful when bound to a stretch driver. Any attempts to address

memory in an unbound stretch will result in an un-resolvable page fault.

The stretch driver handles page faults, implements the replacement strategies, and performs vir-

tual to physical mappings. The closest analog to a stretch driver is a memory object in Mach
[RTY+ 88]. Figure 7.2 shows the relationship between a stretch and stretch driver and the rest of

the system (from [Han97]).

Stretch
Allo<:"OI"---
Fram.

AUoc:atOf---

Figure 7.2: Nemesis VM System Architecture

On a page fault, the NTSCI sends an event to the appropriate domain. When that domain is

reactivated it should resolve the fault. This may involve replacing a page currently in physical

INemesis Trusted Supervisor Code: equivalent to an extremely small kernel.
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memory - the method used to do this is entirely the responsibility of the stretch driver for a

particular domain.

Note that unlike the tL-kernel model page faults are not serviced by "external" pagers, but are

rather satisfied "internally" within the application's domain. This method of paging is known as

self paging (figure 7.3) and Nemesis can be said to support "internal" virtual memory manage-

ment.

...
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Figure 7.3: Self Paging versus External Paging

7.4 Devices in Nemesis

Nemesis device drivers minimise QoS-crosstalk by separating the data and control paths [Bar96].

Figure 7.4 shows the architecture for a device driver under Nemesis. Nemesis places additional

demands on device drivers compared to those under traditional systerns-:

• Drivers do not hide the shared nature of the underlying physical resource but instead pro-

vide explicit control over the multiplexing of that resource.

• Applications need to be aware of the current level of resources to which they have access.

Negotiated QoS-guarantees are provided to each client of the driver.

2Takendirectly from [8al96].
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• There are simple and effective feedback mechanisms to allow an application to monitor

its progress and adapt its behaviour in light of the rate at which 110 requests are being
serviced.

: Clients
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Figure 7.4: Nemesis Device Driver Architecture

The architecture comprises of two components: the Device Abstraction Module (DAM) and the

Device Management Module (DMM). The DAM resides on the 110 datapath and contains the

minimal functionality to provide secure user-level access and support for QoS guarantees. The

DMM supplies out-of-band control and is never involved in in-band operations. It is responsible

for the setup of new connections and for adjusting the QoS of existing connections. Thus, the

more frequent in-band operations are subject to QoS guarantees and the servicing of one client

has no effect on the servicing of others.

7.5 Sharing in Nemesis

The entire Nemesis system is defined using an interface definition language (IDL) and all in-

terfaces are strongly typed. This has led to a programming paradigm where invocations across

an interface pass a reference to the interface as the first argument. known as a closure pointer.

This closure pointer constitutes a pointer to the method table for that interface and a reference to

per-client state (which is unavailable to the client) as shown in figure 7.5. The closure pointer,

along with the other arguments, represent the calling environment IRos941.
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Figure 7.5: Module Interface Data Structures in Nemesis

This method of programming allows modules) to be shared without the need for synchronisation

techniques or convoluted hacks to try and get round the problem of static data. For instance.
Opal [CFL93] allows domains to attach to only one application module that defines static data

because the static data is stored as an offset from a Global Pointer (GP) register. The difficulty

of coordinating such offsets proved prohibitive in allowing more sharing.

7.6 Nemesis10 System

The design for high volume packet-based data transfer in Nemesis is based on the Rbufs scheme

in [Bla95) (shown in figure 7.6).

Figure 7.6: High Volume VO using Rbufs

The data area consists of a small number of large contiguous regions backed by physical memory.

Protection of the area is determined by use: the sender must have at least write permissions

and the receiver at least read permissions. The regions can be grouped together using a data

3A module is just a piece of code with no external references and no internal shared state.
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structure known as an VO Record, or iorec, which consists of a header followed by a sequence
of (base,length) pairs.

The control area is a circular buffer in a producer / consumer arrangement. It is used to transfer

iorec information where the sender is responsible for populating the area the iorecs refer to and

the consumer is responsible for returning iorecs referring to the consumed areas to the sender.

7.6.1 The Nemesis QoSEntry

VO channels can have a scheduling policy attached to them in the form of a QoSEntry. A QoSEn-

try allows quality of service to be defined for each VO channel in the form of a slice s every period
p of time. Additional parameters indicate whether the VO channel will accept extra time and the
amount of latitude that should be afforded clients with poor blocking behaviour. The QoSEntry

interface is shown in appendix F.

On a call to "Rendezvous" (inherited from an IOEntry) an VO channel is selected according to

its QoS parameters and its used time. This channel is then serviced and charged for the service

time via a call to 'Charge'. The scheduling algorithm "operates using three internal queues of VO

channels - 'Waiting', for channels that have work pending but have run out of allocation, 'Idle',

for 110 channels that have no work pending, and 'Runnable', for VO channels that have work

pending and have remaining time in their current period." (taken from the QoSEntry interface).

7.7 Discussion

There are many reasons why Heracles was implemented in the Nemesis operating system. The

Nemesis SAS model affords more potential flexibility for managing virtual memory manage-

ment: different stretches of virtual memory can be backed by different stretch drivers, allow-

ing many different policies to be implemented within the same application domain. Also, the

Nemesis notion of internal virtual memory management means that it is possible to provide true

application-specific memory management: different applications do not share the same third-

party pager. The in-built support for quality of service makes it possible to provide applications

with guarantees about access to resources. While this in itself is not seen as central to the Her-

acles VM system, it allows applications to be tested in the equivalent of a competitive environ-
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ment: by limiting access to resources such as CPU and disk, the application can be measured as

if sharing these resources with other applications.

The flexibility of Nemesis as well as the philosophy that the operating system should expose

as much information as possible, instead of hiding implementations behind ill-fitting, generic

interfaces, provides a powerful framework for experimenting with virtual memory management.

The result of this experimentation is the Heracles virtual memory management system.



Part III

The Heracles VMM System



Chapter 8

Heracles System Design Overview

A common mistake that people make when trying to design something completely
foolproof is to underestimate the ingenuity of complete fools.

Douglas Adams.

I have discussed the relative benefits of compressed caching techniques in light of the growing

disparity between CPU and disk speeds and concluded that, for some applications. the benefits
of utilising a compressed cache can be quite significant. I have also looked at the problem

of paging across the network to memory on remote hosts and similarly concluded that it can

hold real benefits for the page fault handling performance of applications. In addition, I have

briefly mentioned some mechanisms for improving the performance of a local disk by masking

its inherent inefficiencies for paging. I have not. at any time. stated that anyone of these methods

is better than any other when it comes to managing virtual memory. Instead. I have tried to

highlight the possible benefits that applications can get from each one. Further, I have stated that

some applications benefit more from one technique than another and that no technique provides

the best solution for all applications.

In this chapter I focus on bringing all these techniques together in a user-level virtual memory

management scheme that allows the application developer/user to define the virtual memory

hierarchy for individual applications. The result is the Heracles virtual memory management

system. This caters to the requirements of individual applications and provides them with virtual
memory management specific to their needs. The system is defined in an interface definition
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language (IDL) allowing each component to be easily replaced should more specialisation be

required.

Figure 8.1 shows the design of the Heracles virtual memory management sub-system, while

figure 8.2 shows the possible hierarchy combinations. The focus of this is on the provision of a

flexible user-level virtual memory management unit that allows the developer/user to define an

application's VM hierarchy.

KEY

_ Write Request

-_ Read Reque.t
- --- - Result of Read
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Figure 8.1: System Design

There now follows a bottom-up look at the individual components that make up the sub-system.

8.1 Local Disk Manager

There are three possible Disk Managers to choose from: the basic disk manager reads and writes

pages to the local disk upon request; the asynchronous disk manager buffers write requests, emp-

tying the buffer periodically, and performs reads on request; and the prefetching disk manager

performs bulk reads and writes as well as single page read/write operations.
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Local Paging
Local Paging with a Compressed Cache
Local Paging with a Prefetching Compressed Cache
Local Paging with a Prefetching Non-Compressed Cache
Remote Paging
Remote Paging with a Compressed Cache
Remote Paging, Mirroring to Another Server
Remote Paging, Mirroring to Local Disk
Remote Paging, Mirroring to Another Server with a Compressed Cache
Remote Paging, Mirroring to Local Disk with a Compressed Cache

Figure 8.2: VM Hierarchy Combinations.

The disk manager is responsible for acquiring space on the local disk, the placement of pages
within that area, acquiring the appropriate QoS parameters, and, in the case of the prefetching
disk manager, implementing the prefetch algorithm. Chapter 9 describes the disk managers in
more detail.

8.2 Remote Paging

The remote paging subsystem includes a trader, which holds current adverts from servers; a

remote paging server, which services requests for the storage and retrieval of pages; and the
remote paging client, which acquires resources on remote servers and handles paging at the

client side. Note that a host can become a server or a client at any time, depending on current

commitments. There are no fixed servers that clients contact for resources.

The remote paging client can spread the application's pages over many servers and can employ
mirroring to increase the application's tolerance to faults. The exchange of pages is built on top

of the remote paging protocol (RPP) which ensures reliable delivery of data. The remote paging

environment is covered in chapter 10.
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8.3 Backing Store Manager

The backing store manager coordinates page reads and writes to the appropriate backing stores.

This may be to the local disk and/or to the remote paging client. The backing store manager

takes requests for page reads and page writes. Based upon the type of service it is providing (i.e.

whether performing remote paging with local mirroring, remote paging with remote mirroring,

remote paging only, or just paging to the local disk) it passes the request to the appropriate

sub-component/so

The backing store manager is also responsible for populating the local disk with pages revoked
by remote servers. If this should happen, the backing store manager is passed a reference to a

local disk manager by the stretch driver and instructed to populate it with the appropriate range
of pages. The backing store manager forks a thread which, in tum, requests each page in the

range from the remote paging client and passes them to the disk manager. When this process is
complete, it informs the remote paging client which in tum frees the resources at the appropriate

server.

While this population of the local disk is taking place, the backing store manager is also taking
evicted pages from further up the hierarchy. If any of these pages fall in the relevant range,

they are passed to the disk manager directly and are subsequently not requested from the remote

paging client.

8.4 CacheManager

The cache manager comes in three forms: the basic cache buffers writes and prefetching; the

compressed cache compresses pages in an attempt to "extend" the size of physical memory; and

the extended compressed cache is a combination of the basic cache with compression.

The basic cache manager splits its memory into two sections: the eviction area and the fetch area

(where the fetch area maybe of zero size). On a cache write, the page is placed in the eviction area

for writing to backing store. When the eviction area is full, all pages are written contiguously

to backing store. On a cache miss, the page request is forwarded to backing store along with

the size of the fetch area (if greater than zero). The backing store manager returns the faulted

page and enough other pages in the same group to populate the fetch area. If the fetch area is
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of zero size. a single read is performed directly from backing store to the appropriate location in

memory.

The compressed cache manager takes evicted pages and compresses them into the cache. On a

read. the cache manager decompresses the page directly to the appropriate location. When the

cache is full. the appropriate number of pages are evicted to make way for new entries.

The extended compressed cache manager combines the ideas of the previous two. It splits the

cache into three areas: a working pool. a fetch area and an eviction area. On a page write. the

page is compressed to the cache. If the working pool is full. space is created by evicting pages to

the eviction area. Once the eviction area is full. all the pages are written contiguously to backing
store.

A full discussion about the design and implementation of the compressed cache managers is
provided in chapter II.

8.S Page Replacement

The default page replacement algorithm for the HeracJes VM system is a second chance FIFO
implemented via a single hand clock. Research has shown (for example [LCC94]) that some

applications. admittedly a small subset. can benefit greatly from implementing their own page
replacement algorithm. An LRU algorithm is also provided but this performs rather poorly on

Nemesis running on Intel. This is because accessing the page tables to update LRU information

requires a system call. This greatly slows down the process of selecting victim pages for expul-

sion. In addition to these two algorithms. HeracJes provides a page replacement interface that

allows custom page replacement algorithms to be plugged in.

8.6 Stretch Driver

The stretch driver is the fulcrum of the virtual memory management system. It performs page

mappings. handles page faults and controls the use of the physical memory. In the case where
a cache is being utilised. the stretch driver allocates a range of physical frames to the cache and

can alter this split at run-time.
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The stretch driver is notified of page faults via a call from the memory management unit. The

stretch driver is passed the faulting virtual address and is responsible for bringing that page into

memory. Instead of dealing with the faults internally, the stretch driver passes the request for the

faulting page to the appropriate sub-unit/so

The application can interact with the stretch driver to lock down pages and subsequently unlock

them. alter the size of its compressed cache and provide its own page replacement implementa-

tion.

The stretch driver knows exactly what components are used to make up an application's virtual

memory hierarchy at any time.

8.7 Dynamic Behaviour Modification

Applications can choose to implement an AppHandler interface, which is passed to the stretch
driver on instantiation. This allows the stretch driver to propagate changes in resource guarantees

to the application. The application can subsequently adjust its behaviour to reflect these changes.

For instance. an application requesting the use of the remote paging subsystem may find its re-

sources revoked by servers. This in turn may affect its page fault handling rate. Should it choose,

the application can decide to alter its behaviour. or its configuration. to reflect this change. For

example, it may decide to increase the size of its compressed cache to reduce the number of

cache misses.

8.8 Application Startup

When an application is loaded Nemesis sets up its environment: its virtual memory areas. stack

and heap; its physical memory; its scheduling domain and its run-time context. This is controlled

primarily by the builder. When the builder is setting up an application's virtual memory hierar-

chy. it looks up the application in the namespace for its virtual memory management preferences.

It then instantiates the appropriate sub-units and passes them to the stretch driver.

The namespace configuration includes information on how much physical memory an application

requires; how much. if any. of that memory should be allotted to the compressed cache: what
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compression algorithm the compressed cache should use; what the quality of service parameters

should be for local CPU, local disk, and remote paging; and what type of paging the system is

performing: local, remote, local with prefetching, local mirroring or remote mirroring.

If desired, the application can choose to start up with no paging, i.e., with as much physical

memory as virtual memory. This could be due to the fact that its memory requirements are

reasonable, or that it wants to take more control over its virtual memory management. This

control is covered next.

8.9 Application Control

The Heracles VM system is intended to provide sufficient flexibility to empower the application

to control its own environment as much as possible. Each stretch bound to a stretch driver is sub-
ject to the hierarchy that stretch driver is employing. A feature of Nemesis is that an application

can utilise as many stretch drivers as it deems necessary. This means that an application can set

up a stretch of virtual memory with one instantiation of a hierarchy and another with a totally

different one. This flexibility coupled with the Heracles VMM, gives the application tremendous

control over its virtual memory management. For instance, the application developer may know

that part of its virtual memory would benefit from a compressed cache but others would not. In

this case, the application can set up a stretch of memory backed by a stretch driver utilising a

compressed cache. This allows it to utilise its physical memory more effectively.

8.10 Extending Heracles

The Heracles VM hierarchy aims at providing the application with a rich choice of alternatives

for constructing a customised hierarchy. However, there will be applications that benefit from

providing more specialised solutions for a particular component of the hierarchy. The use of

an interface definition language allows developers to provide a particular implementation of a

Heracles component without the need to recompile the others.

Also, the design of the hierarchy is such that there is no inferred knowledge in a particular

component about where requests come from or where they are serviced from. This allows the
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components of the hierarchy to be used in novel ways. For instance, the remote paging client

receives an instruction to store a page n of size s. The identifier n could be an arbitrary identifier

for a piece of data that is s bytes in length. Thus, the remote paging client could just as easily be

used for some remote caching scheme as it could for a remote paging scheme.
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Local Disk Manager

I have not lost my mind - it's backed up on disk somewhere.
unknown.

The disk manager is responsible for acquiring space on the local disk and for the placement of

pages on that space. It is also responsible for setting the disk QoS parameters. There are three

types of disk manager available to the Herac1es VM system: basic disk manager, asynchronous

disk manager and prefetching disk manager. The basic disk manager performs single-page reads

and writes to the local disk. The asynchronous disk manager performs single-page reads but
buffers writes, emptying the buffer periodically. This disk manager is primarily intended as a

backup method for remote paging. The prefetching disk manager supports single-page reads and

writes but also supports bulk reads and writes.

9.1 Basic Disk Manager

The basic disk manager maintains a table of pages stored on disk. On a request for a page,

it performs a table lookup to find the appropriate disk block. It then issues a request to the

underlying device driver for the appropriate number of blocks. A page write involves allocating

a disk block and issuing the request to the device driver.
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9.2 Asynchronous Disk Manager

The asynchronous disk manager maintains a small buffer, the size of which can be determined

by the application. On a page write, the buffer is checked for a free page. If a page is free the

page is copied into the buffer. If there is no free page in the buffer, a page is expelled to make

way. Although small, making a hit unlikely, the buffer must first be checked on a read request

before it is forwarded to the device driver.

The asynchronous disk manger forks a thread on the first entry into the buffer. The thread awak-

ens periodically and writes a page to disk. Once the page is written to disk, the space is freed for

re-use.

As mentioned previously, the asynchronous disk manager was designed primarily to be used in

conjunction with remote paging. By combining these two methods, pages are written to the local
buffer before being sent across the network. When the thread blocks on the network interface,

the disk manager thread chooses a page to expel from the buffer. Issuing a write request to the

disk device driver causes the disk thread to block on completion of the write request, allowing

the application thread to resume. By interleaving this blocking behaviour, it is possible to reduce

the overhead of maintaining a local copy of pages to ensure recovery in light of a server crash.

9.3 Prefetching Disk Manager

The prefetching disk manager extends the basic disk manager by providing support for bulk reads

and writes. It still supports single reads and writes but the assumption is that single writes will

seldom be used. The prefetching disk manager hides the prefetching strategy employed from the

cache layer above. Consequently, when the cache wishes to fetch a number of pages, it passes

the faulting page, the address of the read area and its size to the disk manager.

In the case where the disk manager is used for performing bulk writes without any prefetching,

the disk manager employs the friends algorithm, described below, to group the pages together.

However, this is simply a matter of convenience and disk reads are performed as in the basic

disk manager. The following section describes the algorithm used to determine which pages are

fetched along with the faulting page.
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9.3.1 The Friends Algorithm

The friends algorithm works on the basis of "pages evicted together are used together". When a

group of pages are passed to the disk manager for writing to disk, those pages become members

of the same group. Members of the same group must always be stored contiguously on the

disk. A page can leave one group and become a member of another group. If a page leaves

to join another group, it must be removed from the old group. This has ramifications for that
group's structure. If the leaving page was at the start, or the end, of the group on disk, it can

be removed easily and the appropriate disk space returned to the free list. However, if the page

resided somewhere in between the first and the last page in a group, the group no longer meets

the requirement of being contiguous. This causes the pages occurring after the leaving page to
form a breakaway group (see figure 9.1).

QAOW4 GROUP 53

Figure 9.1: A Group Split.

On a request to read a group of pages from the cache manager, the disk manager is passed the

faulting page and the size of the read area. The disk manager then examines the group to which

the faulting page belongs. If the group will fit in the read area, the entire group is read from disk

to the appropriate location. The cache manager is passed a list of page descriptors containing the

virtual page number (VPN) and size (as pages maybe in compressed form) of each page. If the

group is larger than the read area, a subset of the group is read from disk. When a subset of a

group is to be read from disk, the disk manager chooses those pages nearest the faulting page to

accompany it into memory.

Although the friends algorithm was shown to increase performance by up to a factor of two over

demand paging, much of the benefit was derived from buffering pages in order to perform con-

tiguous writes. However, the real benefit of prefetching was observed when used in conjunction

with a compressed cache. When combined with a 2MB compressed cache, the prefetching disk

manager increased the cache hit rate from 79% to 98% for the matrix multiplication program,
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and from 45% to 85% for the filter program. The performance of the disk manager when used in

conjunction with other components is further discussed in chapter 12.

9.4 Summary

The disk managers described here are presented as a means of highlighting some of the various

possibilities available to the application developer. They are not meant to provide a solution for

all cases, but rather to provide interesting differences in how paging to the local disk can be

approached. The asynchronous disk manager highlights the possibility of adding fault tolerance
to remote paging while incurring very little overhead. The basic disk manager is provided as a

basic read/write model for applications that do not require more sophisticated paging strategies.
This basic manager is extended to incorporate features such as contiguous writes and prefetching

as a means of examining the possible performance improvements available to applications that
choose a more sophisticated paging strategy.



Chapter 10

Remote Paging in Heracles

The charm, one might say the genius of memory, is that it is choosy, chancy, and
temperamental.
Elizabeth Bowen.

This chapter describes the design of the Heracles remote paging system. Section 10.1 defines

the protocol for the transfer of pages between hosts before going on to describe the participants

that make up the scheme. There are three components that make up the remote paging system:

the trader; the remote paging server; and the remote paging client. The trader, described in
section 10.2, tracks the availability of memory in the distributed system. The remote paging

server is described in section 10.3 and the client is covered in 10.4. Section 10.5 discusses how

the problem of revocation can be resolved and the provision of QoS is described in section 10.6.

This chapter concludes in section 10.7 with a description of how the remote paging system copes

with server crashes.

10.1 Remote Paging Protocol

The Remote Paging Protocol (RPP) I is used to implement the passing of data between a client

and a remote paging server. Although the transmission of data uses the unreliable delivery proto-

ISimilar to that described by [CG90].
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col (UDP), the RPP ensures that all data is delivered reliably. There are three allowed operations:

page read, page write and page exchange.

Each packet transmitted between client and server, UDP header information aside, consists of a

payload (part of a page) and a request block. The request block contains the following informa-

tion:

REQUEST TYPE = RECORD [
op Op,
vpn LONG CARDINAL,
size CARDINAL,
off CARDINAL,
dest LONG CARDINAL,
dsz CARDINAL,
tot CARDINAL,
num CARDINAL,
ack ACK ];

The op field informs the recipient what information is contained in the packet and can be either

read, write or exchange. The vpn refers to the virtual page number and the size refers to the size

of the payload in the packet. The off field informs the recipient of the offset from the start of

the page to the start of the payload. The dest and ds: fields are used to denote the virtual page

number and size of a page being returned in an exchange. The tot and num fields represent the

total number of packets the page is split into and the current packet number. Finally, the ack

field is used to piggyback acknowledgements (ACKs) on data packets. An ACK is identical in

structure to a NACK and consists of two words. The first word contains the VPN and, in the case

of the ACK, the second word contains an error code. The error code for an ACK is NONE.

Under the RPP, only full pages are acknowledged. When a page is transmitted, the sender expects

to receive an ACK for the entire page - not each packet. This reduces the amount of information

that has to be exchanged by both participants. Figure 10.1 shows the steps in a successful page

write to a server. However, we must have a method of detecting the loss of individual packets.

This is done by use of negative acknowledgements (NACKs). When the recipient of a page

detects a missing packet, for example if it receives packets number one and three but not two,

it sends a NACK to the sender. The NACK contains two words. the first of which is the VPN.
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Because the packet number can be represented using only the bottom eight bits of the second

word, the top twenty-four bits can be used to represent the type of error that occurred. Figure

10.2 shows what happens on a dropped packet during a page write operation.
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Figure 10.1: Successful Page Write.
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Figure 10.2: Dropped Packet on Page Write.

The RPP ensures that in the normal case, i.e., with no dropped packets, the overhead of transfer-

ring a page is one ACK. Only when packets are dropped do NACKs have to be transmitted.

Another way of handling dropped packets is to use a bitfield in the NACK which represents

missing packets. Under this scheme, a single NACK could be sent for all dropped packets in
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a page. For instance, if the receiver sees packets I, 2, 5 and 6, it could send back a NACK

containing a bitfield indicating that packets 3 and 4 were not received.'

10.1.1 RPP Operations

On a request to read a page, the client sends a packet containing the virtual page number (VPN)

and the size of the data to the server. The server examines the request block and translates the

VPN into a local address by way of a table lookup. The server then splits the page into multiples

of the maximum transfer unit (MTU), minus the size of the UDP header field and the size of

the request block. Each packet is stamped with the relevant information and transmitted to the
client. The server then awaits an acknowledgement for the page. Note that if the client does not
receive any data within a certain period of time, it assumes its request has not reached the server
and retransmits it.

The steps in a page write request are exactly the same as those in a page read except the roles are

reversed: the client breaks up the page, transmits it and awaits acknowledgement.

A page exchange is simply an optimisation of a page write followed by a page read. On an

exchange, the client performs a page write as normal but it also includes information about the

page it wants returned. The server, upon receiving the last packet for the page sent to it, then

sends the page the client requested as per the page read operation. The only difference is that the

server also stamps the request block with an ACK for the page it received.

There are three main components that make up the remote paging environment: the trader; the

client; and the server.

10.2 Remote Paging Trader

The remote paging trader is responsible for maintaining information about servers advertising

free memory. When a client wishes to find a server it contacts the remote paging trader with

information about how much physical memory it requires. The trader maintains a list of servers,

ordered by amount of physical memory, and returns up to the first five servers advertising enough

2Thanks go to my external examiner for this suggestion.
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frames (section 10.4 explains why). Once the client receives this information, it can then contact

the appropriate server/s to arrange suitable resources (see figure 10.3). The trader only keeps

information on current adverts for free memory, it is not involved in the acquisition of resources.

This process is carried out entirely between a client and a prospective server .

•• . • tep x

ID#lPort #

Figure 10.3: Setting up a Server Link

10.2.1 Locating the Trader

There are currently up to three traders on the local area network at anyone time and servers

send their advert to all three.' This is a probability based scheme. The probability that all three

traders will be down at once is considered extremely low. Furthermore, due to the fact that the

trader is not directly involved in the paging process (although having no trader means that clients

cannot lookup servers) it does not affect existing arrangements. Although a more complicated

and robust (with respect to the availability of a trader) election scheme was considered, the trade-

off between its complexity and its potential benefits were not deemed to be worth the effort.

Currently, the traders reside at well known addresses and a client can request the location of a

server from anyone of them. Note that because the trader only tracks current adverts and does

not keep any information about server commitments, consistency is not considered a problem.

A server assesses a client's request for resources based on its current commitments, not on what

the advert held at the trader was when the client contacted it. Therefore, the advert held at the

trader can be considered more an indication of available memory rather than an absolute.

A trader can become unreachable from a server due to a number of reasons: network congestion;

process failure; or machine failure. If a trader is deemed to be unreachable from a server it

3Under the current implementation, the adverts consist of three simultaneous unicasts.
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does not necessarily mean that that trader is not running. Consequently, the next time the server

polls its local resources, it will attempt to update the previously unreachable server, regardless of

whether its advert has changed.

From the perspective of a client, if a trader is seen to be unreachable, the client will simply try

another. If no trader is available, the client must utilise another method, e.g., paging to the local

disk.

10.3 Remote Paging Server

The remote paging server (RPSrv) is separated in the same way as normal device drivers un-
der Nemesis (see 7.4). The device management module, represented by the interface RPPCtl
(appendix C), provides the mechanisms for setting up a connection, via remote procedure call
(RPC), to a paging server and adjusting the QoS parameters. The device abstraction module is

solely responsible for dealing with page fetch/store requests from the remote paging client. The

QoS parameters are in the form of a slice s every period p with an additional flag stating whether

the client will take additional slack time.

10.3.1 Server Control Path

On a call to CreateStream, the paging server instantiates the necessary VO components for pass-

ing pages between itself and the client and allocates physical memory for their storage. The

server returns an id for the client and the UDP port on which it is bound. The client can then

set up its end of the VO channel using the port number passed to it by the server. Apart from
freeing the resources, adjusting QoS parameters and resource revocation (all relatively infrequent

occurrences), all other interaction is via the VO channel.

When a client has acquired resources, it can request further resources by calling the RPSrv di-

rectly, i.e., without performing a lookup via the trader. These further resources are subject to the

same QoS guarantees agreed on when the initial guarantees were acquired. Of course, the client

can, should it wish, request to have the guarantees altered at any time.

When a request from a client arrives, the RPSrv checks the request against current commitments

to determine if the request will be accepted. If the request involves additional memory for an
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existing client, the RPSrv only examines current memory commitments. If the request is for a

new client, the RPSrv also checks the CPU and network commitments. If these commitments do

not allow the RPSrv to meet the client's request, the request is denied.

10.3.2 Server Data Path

When a client has acquired memory guarantees from a server, the pages, and requests for pages,

are transferred in UDP packets in accordance with the RPP. The thread servicing requests for

pages sits atop a QoSEntry (see section 7.2 for a description and appendix F for the interface).

Requests are passed up by the QoSEntry according to each client's scheduling parameters.

On receiving a packet, the request block is examined to determine the nature of the transaction,
i.e., whether a read, write or exchange. A page exchange is equivalent to a write followed by a

read.

Page Read: On a read request, the server translates the VPN into an address within the stretch

of memory being used to hold the client's pages. The page is then broken down to be transferred

across the network in packets. When the last packet has been sent, the server waits on an ACK

from the client (as described in section 10.1). If the translation does not yield an address, the

server sends a a request block with a NACK for the requested VPN.

Page Write: On a write request, the server translates the VPN into an address. If it is the first

instance of that particular page, the server allocates a "page" for its storage." The page is then

copied to the address plus the offset from the start of the page (which may be zero). If the packet

is marked n of n, and all packets up to n have been received, an ACK for the page is returned to

the client. However. if the packet is marked nand n-l has not been received, the server sends a

NACK for the missing packet.

10.3.3 Advertising Threshold

On startup, the remote paging server forks a thread that keeps track of current system commit-

ments and previous commitments in an attempt to determine how much of its resources should

4Note that the page size at the client maybe different from the server. Thus. allocating a page refers to allocating

an area equivalent to the size of a page at the client.
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be advertised with the remote paging trader. The period between these checks is currently set

to 10 seconds but this can be altered to suit the needs of an individual server. The algorithm for

determining how much physical memory a server should advertise is shown in figure 10.4.

else

if(total_committed_memory > MAX_ THRESHOLD)

revokecuentt):

else if((total_committed_memory <= THRESHOLD) &&

(free_mem >= prev_free_mem) && cpu_committable)

if((total_committed_memory + amount_advertised) <= THRESHOLD)

increase_advert( 10%);

decrease_advert(5%);

else if((prev_free_mem > free_mem) II (prev_cpu > curr_cpu))

decrease_advert(20%); 1* back-off */

Figure 10.4: Algorithm for Monitoring Local Memory Commitments.

The algorithm is designed to give local domains priority over remote paging clients. If the total

memory usage rises above MAX_THRESHOLD then we revoke memory from a remote client

(see 10.5). Note that increasing the size of the advert does not affect the free.rnem or curr _cpu,

only a client acquiring resource guarantees, or a local domain starting up, can do this. An im-

portant point to also note is that a connection by a client can never cause another client to be

revoked. Only local domains starting up can cause this. This is because the algorithm is de-

signed to balance memory usage and memory advertised, keeping the combined total around the

THRESHOLD mark: more specifically, an advert cannot cause this total to rise above THRESH-

OLD plus 10%.

The algorithm itself is not the mechanism by which requests are granted; each attempt to acquire

resources causes a separate check on system commitments. Instead, the algorithm represents

an attempt to advertise as much memory as possible while maintaining "headroom" for local

domains to start up. If the current memory usage is more than it was the last time the algorithm

was run, we back-off on the basis that this may be due to a spurt of local activity.
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Another aspect of the algorithm is its monitoring of CPU usage. The cpu.committable flag is the

result of looking at CPU guarantees for local domains and the scheduling commitments of the

remote paging server and determining whether there is still enough available to take on another

client. As is the case for rising memory commitments, if there is a change in local guarantees,

the server reduces its advert.

10.3.3.1 Analysis of Advertising Threshold Algorithm

Table 10.1 shows the memory startup costs of some typical UNIX applications. The figures

represent the amount of physical memory being used by each application within five seconds
of being started on a PC-based machine running Linux version 2.2.12-20. The values were
obtained using the command 'cat /proc/e.pidc-zstatm'. These costs only represent the amount of

memory to start the application in physical memory, they do not represent the ongoing memory

consumption of each application. Note also that the memory consumed by shared libraries is
included in the cost. If all these applications were started within the same ten second period, the

initial memory consumption would total around 28MB.

I Application I Startup Cost (MB) I
Netscape 4.7 12.58

Gnuplot 3.7 1.16

Emacs 20.3.1 4.91

Tgif 4.1 (patch level 16) 1.52

Xterm 1.66

Python 2.1 1.35

Perl 5.005_03 0.11

Find 0.45

mpg1230.5q 2.02

ghostscript 5.10 2.30

Table 10.1: Memory startup costs of ten typical UNIX programs.

Table 10.2 shows some common memory sizes for desktop computers and the amount of mem-

ory represented by 10, 20 and 30% of the total available. If we consider this data in con-

junction with the application startup costs shown in table 10.1, we can see that the value of

MAX_THRESHOLD must necessarily vary with the total amount of physical memory on a given
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host if we are to maintain reasonable headroom. In the case of a host with only 64MB of RAM,

we may wish to set the MAX_THRESHOLD value as high as 50%. While, in the case of a host

with 512MB of RAM, 10% would be more than enough for most casual use. Note that the value

of THRESHOLD need not be set as this is determined by the value of MAX_THRESHOLD, i.e.,

MAX_THRESHOLD - 11%. Recall that this prevents resources obtained on behalf of remote

clients from causing memory utilised by other clients to be revoked.

1Memory Size (MB) 110% (MB) 120% (MB) 130% (MB) I
64 6.4 12.8 19.2

128 12.8 25.6 38.4

256 25.6 51.2 76.8

512 51.2 102.4 153.6

Table 10.2: Possible MAX_THRESHOLD values as a percentage of physical memory.

Let us consider a distributed system of 200 hosts where each machine has at least 512MB of

RAM. Ifwe set MAX_THRESHOLD at 10% for each, there may be as much as 10GB of memory

that will never be advertised for use as a backing store. However, each machine is capable of

advertising up to 460MB (minus memory reserved for the OS and any running daemons). Let us

assume, for the sake of argument, that at any time, some of the machines are idle, some are being

used heavily and others are utilising half of their available memory. This means that, on average,

there will be around 40GB of free memory available as backing store. Furthermore, each host
is capable of starting all ten of the UNIX applications entirely in physical memory well before

relying on memory being returned from client's whose resources have been revoked.

In the case where all machines have only 64MB there will be less available memory at any given

time but the MAX_THRESHOLD value will be set to reflect the lower memory capacity of each

host, thus still affording hosts advertising free memory enough headroom to cope with a spurt of

local activity.

Note that although the MAX_THRESHOLD value could be deduced on a reasonable guess basis,

it would be much more flexible to have this as a parameter. Thus, the value could be altered to

afford more, or less, headroom according to a host's particular requirements.
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10.4 Remote Paging Client

The remote paging client (RPClnt) is responsible for acquiring resources on remote servers, han-

dling page store/fetch requests and negotiating the appropriate QoS guarantees with the servers.

The RPClnt is also responsible for handling resource revocation, fault-tolerance, reliable delivery

of data and, where appropriate, compression and decompression of data.

On a call to the RPClnt's initialisation method, it is passed the start address and number of pages

in the stretch on behalf of whom it is acting. In addition, the RPClnt is also passed a flag to

inform it whether to provide fault-tolerance in the light of a possible server crash." Currently,

this consists of simply mirroring pages to another server. A parity scheme was considered but
was rejected on the grounds that it offered, if any, very little benefit over mirroring and yet
required more management.

The RPClnt also provides an interface to the server to allow the server to revoke resources and

to inform the RPClnt when it has off-loaded the client's pages to another server. What happens
when remote memory is revoked is discussed in detail in section 10.5.

When a client requests a suitable server from the trader, it is returned a list of potential hosts.

This allows the client to make an informed decision based on what resources it already holds.

For instance, a client may be employing a suite of servers to provide backing store for different

stretches of memory. It may be doing this to help increase throughput or reduce the possible
effects of revocation. Currently, the RPClnt is informed via a flag whether to attempt to spread

the load or not. When the client receives the list of potential servers, it can reject those it already

has a connection to. If the client is not attempting to spread the load, it can simply contact an

existing server requesting additional resources without again contacting the trader.

As mentioned previously, a server can refuse a client's request for resources. If this should occur,

the client will then attempt to acquire resources on another server, repeating this process until a

server is found, or the list of servers is exhausted. If the client cannot find a suitable server, it will

contact the trader for suitable servers once more before giving up. If the acquisition of a server

is unsuccessful, the client will return the value false, informing the backing store manager that it

should attempt to acquire local resources.

5This is a separate issue from mirroring to the local disk: that decision is taken further up the hierarchy and the

remote paging client is unaware whether a local disk is being used or not.
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If the client cannot make contact with a trader and it does not already have a connection to a

server, it cannot acquire resources and returnsfalse. If the client already has a server connection

it will attempt to increase the amount of memory reserved for its use.

10.4.1 Page Compression

A new RPClnt can take, as an argument, a reference to a compression interface. This is used to

compress data as it is sent to the server and decompress it when it arrives back. The viability

of compression is obviously affected by the network bandwidth and CPU availability. The time

taken to send a compressed page and receive an ACK is twice as fast compared to an uncom-
pressed page on a 100Mb Ethernet. However, the compression requires CPU bandwidth, and if
this is at a premium could cause the overall performance to degrade.

A typical compression ratio of 2: I has the effect of reducing the number of payload packets from
three to two per page (for an Intel host where page size is 4KB). This has the additional effect

of reducing the time taken to copy the page from the receive buffer to the appropriate location in

memory, thus reducing servicing cost and increasing the effective QoS rate at the server.

10.5 Resource Revocation

If a remote paging server decides that a client's resources must be revoked (due to an increase in

local demands for resources) it contacts the client and informs it of its decision. The client can

then attempt to locate other resources for the storage of the revoked pages. If this new resource

is in the form of another remote server, the client informs the old server of the new location and

requests that the pages be forwarded there.

The process of selecting a stretch of memory to be revoked consists of up to five rounds:

• least-recently-made-contact

• clients with local disk

• server versus mirror
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• QoS weighting

• memory weighting

The first round of checks attempts to single out clients that have not made contact for a long

time. Currently, this "long time" is set to sixty seconds, with an additional weighting of "times

two" for diskless clients. If the first round produces more than one possible client then the least-

recently-made-contact client is selected for revocation. If no possible victims are found in round

one, the server proceeds to round two. Note that it is still possible for a diskless client to be

selected in round one. However, the server shows preference to such clients in the form of the
"times two" weighting.

In the second round of checks, the server removes all diskless clients from the list of possible
victims and proceeds to round three. Round three consists of checking the role the server is

playing in each client's page fault handling scheme. The server attempts to find a client on
whose behalf it is acting as a mirror of another server. Round four consists of examining the QoS

parameters for each client. Clients running with only extra time, i.e., with no set guarantees,

are assumed to be less likely to be affected by the revocation. The final round, and that used if

rounds two, three or four do not produce any suitable victims, consists of selecting a client based

on the amount of memory being held on its behalf. Currently, the client that is using the most

memory is revoked. If, after revoking a client, there is still a need to free memory, the process is

repeated.

The reason that the client using the largest amount of memory is selected is due to a pessimistic

outlook on what is about to happen next. Only a local domain starting can cause a client to have

its resources revoked. Consequently, the server assumes that there is about to be a further spurt of

local activity and so tries to free as much memory as possible. Note that there is a certain in-built

assumption here. There is no need, under Nemesis, to have a single large heap like there is in

UNIX. It is perfectly feasible, in Nemesis, to instantiate different heaps for different purposes.

As a consequence, it is not expected that heaps will be in the region of 1()()s of megabytes;

rather they are more likely to be lOs of megabytes, or smaller, in size. However, there are many

possibilities for selecting a client to revoke and the possible impact of this algorithm on a large

system will need further investigation (see section 12.5). One particular problem that could arise

is that a distributed system operating near the threshold could thrash, passing stretches from one

host to another. This is considered an unlikely scenario as a client that has its resources revoked

would, especially in the case where the stretch is large, most likely not find a server willing to
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take its pages. Each server controls how much memory it allocates for clients use. If a server is

advertising b bytes of memory, it will not permit a single client, or multiple clients, to overextend

how much memory is reserved for remote clients.

However, if we consider a distributed system as it approaches full load, we can assume that there

are some hosts acting as backing store for others and that those clients will have their resources

revoked as a result of increased local activity. This means that it is possible, if each host's local

activity increases gradually before the next host's activity increases, for a client's resources to

be bounced from one server to another, increasing the load on the network. However, due to

the nature of the remote paging system and the Nemesis operating system, the effect that this

behaviour has on remote paging clients and other applications is actually quite small.

When a client has its resources revoked, in order to acquire new resources on another server,
that server must have enough free memory, an under-utilised CPU and available network access.

This means that a server offloading pages to another server does so within the constraints of all

the resources agreed with the client. During the offloading, the client knows exactly where the

most up-to-date version of a page resides and so never needs to request a page from more than

one server. Indeed the client sees no appreciable performance penalty. The client cannot in itself
cause that server to offload another client or penalise a local domain by utilising resources it

is relying on. Furthermore, when any server admits a client, it immediately backs off from its

advert and will not allow a further client to overextend its capabilities until the next advert is

placed.

The problem could arise if a client is revoked from one server, acquires resources on another and

is then revoked from the new server. If this happens, the client must back off from remote paging

and resort to using the local disk. If it was already mirroring evicted pages to the local disk, it

can simply inform both servers to free resources held on its behalf. Otherwise, it must take the

pages back from the second server. It cannot take the resources back from the first server as this

would cause the first server to be involved with the client for more time than it need be. The first

server continues to offload to the new server, which continues to return the pages to the client.

The revocation scheme used in the Heracles remote paging system is active participation revoca-

tion (see section 4.2.7). This provides the client with the maximum control over the placement

of its pages. For instance, the client may be mirroring its pages to another host and, as the server

does not have this information, allowing the server to locate a new host may leave both sets of

pages on the same host.
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On notification of resource revocation, the RPClnt first attempts to acquire another server to hold

the revoked pages. If a suitable server can be found, the client replies to the revocation notice

with a request to hold the pages for offtoading. The server marks the client as "being offtoaded"

and sets a timer for the offtoading process. It then contacts the client for the address of the

new server. When it has this, it sets up a connection to the new server and starts transmitting the

pages. Note that the client could return the address of the new server on its reply to the revocation

notice, reducing the need for the server to contact it once more.

Once the client has acquired a new server, it marks the status of the current server as "offloading"

and stores the address of the new server. On subsequent page evictions, pages are sent only to

the new server. The client maintains a temporary data-structure for pages sent to the new server.
On a page request, the client examines this data-structure for the appropriate VPN. If the VPN is
present, the request is forwarded to the new server, otherwise it is sent to the old server.

During the offloading process, the new server accepts pages from the old server. When it receives
a page, it checks to ensure it has not already received a copy from the client. If it has already

received the page, the new server simply discards the one received from the old server.

When the offloading is complete, the old server contacts the client informing it of the completion.

The client calls the new server informing it that the process is complete. It then switches over to

using the new server entirely and the resources on the old server are returned to the system.

If a new server cannot be found, the RPClnt contacts the stretch driver to inform it of the revo-

cation. The stretch driver is aware of all the resources being utilised to meet the client's needs

and can make an informed decision based on this. For instance, if the pages were being mirrored

to the local disk the stretch driver can inform the RPClnt to discard the relevant resources and

switch to paging from the local disk.

Note that offtoading pages on a client's behalf is considered part of the "deal" of accepting

requests for resources. Furthermore, Nemesis assumes that all parties behave in a cooperative

fashion.
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10.6 Quality of Service

An RPClnt is given QoS parameters for access to the local network interface in the form of x
amount of time every y period. It is also passed the QoS parameters that should be given to the

remote paging server. This is in the same form as the QoS at the client side and tells the server

how much processing time every period that this client should receive. The server then processes

requests according to these parameters and every client is charged for the processing time at the

server. The client must also provide the server with information regarding the role the server is

playing. i.e .• a server or mirror. and inform the server if it has a local disk.

10.7 Handling Server Crashes

An application that chooses to utilise the remote paging system can currently choose between

mirroring to the local disk or to another paging server (or not mirroring at ali). All page-outs

go to both the server and the mirror. If on requesting or sending a page to a server. the client

receives no response. it retries a number of times before deciding that the host is unreachable.

When a host is deemed unreachable. the client must take steps to again be in a state where it can

cope with a further crash.

A server can be deemed unreachable if it crashes or if requests timeout due to network congestion

or failure. The client has no way of knowing which of these is the reason for the inaccessibility

of a server. it only knows it has become unreachable.

If an RPClnt using remote mirroring decides one server (server 82) is unreachable. it contacts the

trader for another server (server 83)' The RPClnt then acquires the appropriate resources from 83

and informs the existing server (server 81) to send its pages to the new server. In the meantime,

the client sends evicted pages to both 81 and S3 and pages in only from SI. Note that. unlike

revocation. the client does not need to be informed when server 83 is up-to-date as it will only be

paging in from server 81.

If an RPClnt cannot acquire sufficient resources, it will issue a call to the stretch driver informing

it that a server has become unreachable. The stretch driver will then contact the backing store

manager to obtain local disk space to mirror the appropriate pages. When the backing store man-

ager has initialised the disk. it forks a thread that. in tum. requests each page from the remaining
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server and places it on disk. Note that this can have an effect on the application's performance,

especially if it has QoS guarantees and no "slack" time. Thus, during the population phase, the

RPClnt attempts to increase its guarantees at the server to reduce the impact on the application.

Of course this request can be refused. However, as the client has stated that fault tolerance is

important, it must be willing to make the necessary performance sacrifice if required.

While populating the local disk from a remote server, all page evictions are mirrored to the local

disk on the way out. The backing store manager must keep track of which pages have been

placed locally to prevent a request being issued for those pages. In all cases, pages evicted via

the stretch driver are considered more recent than those on a remote server. Thus, should a page

be received from the server that has since become resident on disk, due to being evicted, that
page is simply discarded.

If a client has no local disk and cannot acquire further resources, it cannot get into a state where

it can survive a further server crash. In this case, the client will periodically lookup a new server

and populate it when it can. In the meantime, it continues paging as normal from the remaining

server.

An important point to note about handling server crashes is that a client can be using many

servers and many mirrors. If this is the case, it only seeks to find a server capable of taking those

pages currently residing at one location.

In the case where a client is mirroring evicted pages to the local disk, it can simply switch over

to using the disk for paging. In the meantime, it can attempt to obtain a new server and populate

it from disk. Once the new server is up to date, the client then switches over to using the server,

still mirroring evicted pages to the local disk.

One of the effects of a server becoming unreachable, due to network congestion or failure, is

that memory reserved for clients who have deemed a server unreachable is not returned to the

system. The implementation of the revocation selection process is seen as a way of cleaning up

such memory. Clients that have not contacted the server for sufficient time are considered for

revocation first.



Chapter 11

Cache Manager

The English language is rather like a monster accordion, stretchable at the whim
of the editor, compressible ad lib.

Robert Burchfield.

Heracles takes the software approach to using a compressed cache. Memory is split into two

chunks: one chunk consists of the active pool of pages; the other is used as a cache into which

pages expelled from the active pool are compressed instead of being sent to backing store (see

figure 11.1). Only when pages are expelled from the cache are they written to backing store. The
idea here is to obviate the writing of pages that may be required again soon to backing store.

There are three types of cache manager available to the memory sub-system: the basic cache

manager, the compressed cache manager and the extended compressed cache manager. The

basic cache manager is used as a means of employing multiple simultaneous page writes and

possibly group-based prefetching (described in section 9). The compressed cache manager com-

presses pages in an attempt to 'extend' the size of physical memory. The extended compressed

cache manager represents a combination of the other two, utilising both compression and con-

tiguous writes, possibly with group-based prefetching.

The physical memory allocated to the cache is managed by the stretch driver. Figure 11.2 shows

the layout of the cache. The mapped pointer indicates the start of the cache backed by physical

memory. An important point to note is that the physical frames are always contiguous. The
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area. When the eviction area becomes full, all pages are written contiguously to backing store.

On a read request, the cache is checked to determine if the requested page is resident. If the page

is resident, it is copied out to the appropriate location. If the page is not resident, a request for

that page is forwarded to the backing store manager along with the size of the fetch area. The

page and other pages in its group are read into the fetch area and the faulting page is returned.

If the fetch area is of zero size, the faulting page is read directly from the disk to the appropriate

location in memory.

11.2 Compressed Cache Manager

The compressed cache manager divides the cache into sub-pages of 512 bytes in size. In the
original prototype, pages in the cache did not need to be stored contiguously. However, since the

physical memory allocated to the cache can grow or shrink, having the pages contiguous in the
cache allows physical frames to be freed more easily for return to the stretch driver.

11.2.1 Servicing a Cache Read

On a read request to the cache, a list of entries is searched for a match. If no match is found, the

request is forwarded to the backing store manager. When the page is returned from the backing

store, it is decompressed directly into the location supplied by the stretch driver. On a cache hit,

the appropriate page is decompressed to the location specified by the stretch driver, adding the

space to the free list. Note that a page never resides in both the cache and the active pool and that

all pages, even clean pages, are placed in the cache once evicted from the active pool.

11.2.2 Servicing a Cache Write

On a cache write, the page is compressed to a buffer. The page could be compressed directly to

the cache but, at this time. the size of the compressed page is unknown and, as it is possible for a

page to get larger when compressed, this would mean keeping at least a page of contiguous size

free at all times. Consequently, it was decided to use a buffer for compressions and then copy the

page to an appropriate location. Although this is slower than doing the compression directly to
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the cache we can maintain more items in the cache and, should space need to be freed, we know

exactly how much is required.

Once the page is in compressed form, the free space list is searched for a suitable location. If

there is not enough free space in the cache, enough space must be freed to accommodate the new

entry (see section 11.2.3).

11.2.3 Eviction Policy

When a new entry has to be added to a full cache, enough space to accommodate the entry must
be created. This is achieved by removing enough entries to create the required free space. There
are currently three methods available for choosing a victim to expel: strict FIFO, clean FIFO
and weighted clean FIFO. Strict FIFO evicts the oldest page in the cache, i.e., the one that was

placed in the cache first. Clean FIFO selects the FIFO clean page and expels it from the cache.

This prevents the need for a write to backing store. If there is no clean page present, the oldest

page is expelled to backing store. Weighted clean FIFO also attempts to select a clean page to

be expelled as this is a cheaper operation than expelling a dirty page. However, this must be

balanced against the probability that the clean page is more useful than the oldest dirty page.

Thus, in an attempt to avoid the possible cost of fetching clean pages from the disk that may

otherwise have been retained in the cache, a distance marker is used. The distance marker is

used to prevent moderately used clean pages from being expelled before very infrequently used

dirty entries. It represents the distance, in pages, from the FIFO clean page to the absolute FIFO

page. The algorithm for calculating the entry to be expelled is as follows (where DISTANCE

MARKER is currently greater than the number of pages in the cache):

1. Find FIFO clean entry (E).

2. If distance from absolute FIFO entry to E < DISTANCE MARKER then expel E.

3. Otherwise expel absolute FIFO entry.

Setting the distance marker to be larger than the number of pages in the cache, causes the algo-

rithm to revert to being a clean FIFO policy. While the distance marker should some potential,

more investigation is required into its effectiveness.
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11.2.4 Managing the free space

A free space node in the cache data-structure consists of an address and a number of free sub-

pages.

Before a page is written to the cache, free space must be found for it. The first thing the cache

manager attempts to do is to find an exact match according to the number of sub-pages a com-

pressed page will occupy. If this is unsuccessful, it attempts to resolve the request by breaking a

larger block.

When a page is expelled from the cache it is forwarded to the backing store manager for storage.
The node referring to the location and number of the sub-pages it occupies are added back into
the free-space data-structure. Freed nodes are first added according to their address. When the

correct position is found, the previous and the next node are checked to determine if the space
referred to by those nodes creates a larger block of free space.

11.3 Extended Compressed Cache Manager

Figure 11.3 shows the layout of the cache to accommodate prefetching and contiguous writes.

We describe the case where the cache manager employs both contiguous writes and prefetching
as this gives the full picture. In the case where the cache manager does not employ prefetching,

the fetch area is of zero size.

As can be seen, the cache is split into three areas: the general pool (Area I); the fetch area

(Area 2); and the eviction area (Area 3). An important difference to note is that, although Area I

can, theoretically, be split into sub-pages of any reasonable size, providing it is a power of two,

Areas 2 and 3 are split into sub-pages identical in size to the blocks of the underlying disk. The
reason for this is that it is not beneficial to have two pages with data on the same disk block: it

complicates reads (a read must start at the beginning of a block) and it does not lend itself to the

migration of pages from one group to another (see section 9).
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Figure 11.3: Cache Arrangement for Prefetching.

11.3.1 Servicing a Cache Read

On a cache read, each area is checked for the page in order Area 1 to Area 3. On a cache hit, the

appropriate page is decompressed to the location specified by the stretch driver, and the space is
added to the free list for the appropriate area. On a cache miss, a request for the page is forwarded
to the backing store manager along with the location the page is to be read into and the size of the

area. The backing store manager will then read in the faulting page and an appropriate number

of other pages to fill that area. The faulting page is decompressed to the location specified by the

stretch driver and the other pages are kept in the fetch area until required or until another cache

miss.

Note that the cache manager can utilise contiguous writes without employing any prefetching.

Under these circumstances, Area 2 is of zero size. Thus, a cache miss on a read will cause only

one page to be fetched from disk and decompressed directly to memory.

11.3.2 Servicing a Cache Write

Writes to the cache are to Area I only and are exactly the same as those in the compressed

cache manager (section 11.2.2). The only difference is that when pages are expelled, they are

not written directly to disk, they are moved to the eviction area. When the eviction area is full,

all pages are written contiguously to backing store.
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11.3.3 Fetch Area Adaption

Although the eviction area is of a fixed size, the fetch area was designed to be dynamically

adjustable to cope with changes in the performance of the prefetching algorithm. Thus, the fetch

area could be the same size as the eviction area or it could be eliminated entirely.

11.4 Revocation of Physical Memory

The memory allocated to the cache can be adjusted at any time during the lifetime of an applica-
tion. This allows the application to utilise more, or less. space for the compressed cache during
different phases of execution. When the physical memory allocated to the cache is to be reduced,

the stretch driver informs the cache how many frames must be returned. If all the frames are to
be returned, the cache manager flushes all of its contents to backing store.

If, for example, the compressed cache is instructed to return a single frame to the stretch driver,

the cache must free pages held in that frame. The cache first attempts to move those pages

resident in the bottom frame to another location in the cache. If the cache is full, enough pages

are evicted. in FIFO order, from the cache to make room for those pages resident in the revoked

frame. The pages left in the revoked frame are then copied to other locations in the cache.

11.5 Compression Algorithm

The compressed cache managers take an interface reference to a compression algorithm as one

of their arguments, allowing different algorithms to be used for different purposes. For instance,

a compression algorithm like LZO which is good for data compression is not very good for the

compression of code. Thus, a stretch containing code would require an algorithm suitable for

code compression. The compressed cache can be instantiated with the appropriate algorithm

without the need for re-cornpilation or re-linking,

The compressed cache initially used an LZO variant (miniLZO) but the overheads for compres-

sion (a 64KB buffer) proved prohibitive. The cache now uses the WKdm algorithm devised by

Wilson et. al. [WKS99]. This algorithm performs faster than LZO with comparable compression

ratios and only a 64byte overhead.



Chapter 12

Heracles Evaluation

Never judge a book by its movie.
J.W.Eagan.

In traditional operating systems, resources are managed by the kernel or privileged servers and

untrusted applications are forced to adhere to the existing interfaces and implementations of sys-

tem services. Such arrangements must meet all the needs of all the different types of application.

This organisation is contrary to who holds the knowledge about a particular application. The

notion that an operating system can anticipate the needs of every application for every environ-
ment is fundamentally flawed. Research suggests that attempting to provide such a system is

infeasible and that the cost of mistakes is high [And92, CD94, BSP+95, EK095, Ros95. S5S95,
LMB+96, KEG + 97].

Modem operating systems have attempted to provide a more flexible environment where the
application can exert more control over its run-time environment [Ber94. CD94, 5S94, Ros95,

Lie96a, Eng98]. However. these operating systems can be accused of placing too much respon-

sibility on the application developer. For most application developers, the cost of implementing

a virtual memory management system for their application is simply too high. A consequence of

this is that the developer is forced to use the system provided default. While assuming that most

application developers will implement their own VMM systems seems somewhat far fetched. the

assumption that they will understand their application seems fairly reasonable. Indeed. in order

to implement their own VMM system. the application developer must know at least how their

application behaves.
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The Heracles VMM system provides a framework that allows experienced application developers

to choose the particular VMM hierarchy that best meets the needs of their application. It also

provides the novice developer with a framework for more adventurous experimentation. Heracles

makes no assumption about the technology available to the application. It accepts that a particular

VM hierarchy may be most suitable for one environment and an entirely different hierarchy may

be required in another environment.

The key questions that we must answer are: can choice improve performance? And if so, can

different choices yield better performance for different applications? Let us look at the three

applications described in appendix G and consider their performance when utilising different

hierarchy configurations. Note that only three applications were chosen because only three were
required to answer the key questions. In order to show that application-specific memory manage-
ment can benefit applications more than a general purpose solution, it is only necessary to prove
that one application benefits most from a hierarchy that is not optimal for another application.

The particular applications presented here were chosen as a result of earlier experiments with

trace-driven simulations of applications from the SPEC INT 95 suite, in particular, Perl, Go,

Compress, and GCe. Traces from these applications were broken down and their memory ref-

erence behaviour was simulated on Nemesis. These experiments were exploratory in nature and

were used to highlight how the separate components that go to make up a VM hierarchy inter-

act. The three applications presented here all have linear memory access patterns, although they

are linear in slightly different ways. For instance the data for compress consists of three large

buffers, two of which are accessed sequentially in parallel during any given phase of execution.

Each buffer is accessed starting from the bottom address and continues sequentially, a word at a

time, until it reaches the top address. The matrix multiplication accesses the data in each column

or row linearly but the move from row to row, or column to column, is not a linear access. The

filter application operates on three separate buffers, accessing the data in each buffer linearly.

Applications with relatively similar memory access patterns were deliberately chosen because

they were more likely to benefit from the same hierarchy.
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12.1 Experimental Results

The results described in this section were taken on hosts with a Pentium PIlI 450MHz processor,

64MB of RAM, an ATA IDE hard drive, and a 100Mb Ethernet connection to the local switched

network.

Figure 12.1 shows the relative run-times for our three applications (filter, matrix multiplication,

and compress) utilising only the local disk in a pure demand paging configuration. This configu-

ration is found in most operating systems as the default. 1 Note that for the experiments described

in this chapter, each application was run with extra CPU and bandwidth and was the only running
process. The results obtained from limiting CPU and bandwidth showed comparable differences

for the different hierarchies. The compress and the matrix multiplication applications were run
with 16MB of physical memory and the filter application was run with 8MB of memory. The
physical memory allocations reflected the size of each application's data.

run-uee
(sccofxb)

MalnJ( MultLphcaliofl

200

100

Figure 12.1: Demand Paging in Heracles.

Figure 12.2 shows the run-time performance of the same applications using the remote paging

system described in chapter lOon hosts connected via a 100Mb Ethernet switched network.

As can be seen, adding remote paging increases the performance of all applications ( the filter

INote that some operating systems will buffer pages for expelling and some will attempt to free up pages in idle

time, however these strategies have not been applied on a per-application basis.
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application is improved by around 70%). These figures would suggest that there is no need for

utilising a local disk and we should instead use the remote paging system for all applications.

Indeed, as shown in figure 12.3, providing fault tolerance via mirroring pages to another host still

outperforms paging to the local disk. However, the remote paging system relies on there being

enough hosts attached to the network with free memory that can be utilised by those that are

heavily loaded. Furthermore, the speed of the network has an important impact on the potential

benefits of remote paging.
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Figure 12.2: Remote Paging in Heracles.

While the performance of remote paging appears attractive, its dependency on free memory

may mean that there will be times when it is not possible to acquire the necessary resources.

Consequently, it is worth considering whether it is possible to increase run-time performance

while relying only on local resources. In chapter 9 the friends algorithm was presented as a

possible enhancement to demand paging. Figure 12.4 shows the results of utilising this algorithm

for each of the applications.

While the performance of each application is significantly improved compared against local de-

mand paging, only compress achieves an improvement over remote paging. This suggests that

the best configuration for compress would not include remote paging. However, the other two

applications still perform better with remote paging than they do using local paging with the

friends algorithm. This does not mean that local paging with the friends algorithm should not be

reserved as a choice for these applications. If the load on the distributed system is high and free
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Figure 12.3: Remote Mirroring in Heracles.
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Figure 12.4: Local Paging using Friends.
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memory is unavailable, both of these applications would benefit from using local paging with the

friends algorithm compared to demand paging.

Now let us incorporate compressed caching into the list of possible configurations. Figure 12.5

shows the results of adding a compressed cache (cache sizes are 25 and 50% of physical memory)

to the Compress application. As can be seen, in both the remote and the local case, the addition

of a compressed cache hinders performance. This is because the Compress application accesses

each buffer sequentially from beginning to end and, as such, never requires any of the pages held

in the cache before they are expelled from memory.
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Figure 12.5: Effect of compressed cache on Compress.

Figure 12.6 shows the results of running the matrix multiplication application with various sizes

of compressed cache (representing 12.5,25 and 50% of physical memory) combined with paging

to the local disk and across the network to remote hosts. All configurations show significant

performance gains over paging to the local disk and paging across the network when used on

their own. The maximum benefit is gained when the cache is 8MB in size, i.e. half of the physical

memory allotted to the application. It is at this point where the applications ceases to expel any

pages to backing store and all data can be maintained in memory. The matrix multiplication

application was unique among the test applications in that it observed a steady benefit from a

compressed cache regardless of the size. This is because the application had very good locality

of reference and even when the compressed cache was only 2MB, it achieved a 79% hit rate.
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Figure 12.6: Effect of compressed cache on Matrix Multiplication.

Figure 12.7 shows the results of running the filter application with a compressed cache (the sizes

represent 12.5 and 25% of physical memory). This application highlights an interesting differ-

ence between combining a compressed cache with local paging and combining one with remote

paging. When the size of the compressed cache is set to 1MB, the run-time actually increases

by around 28% for the local case but improves by 15% for the remote case. This is due to the

fact that the hit rate for the compressed cache is only 14%. However, this does not explain the

improvement observed when using remote paging. The run-time performance improves in the

remote case because the pages being transferred across the network are compressed. Conse-

quently, the time taken to evict and fetch a page is drastically reduced. Because the limiting

factor for transferring a page across the network is bandwidth, the fact that the pages are now

only requiring two packets to transfer instead of three means the application runs faster. This is

not seen in the local case as the limiting factor for transferring a page to disk is latency.

Even when we increase the size of the compressed cache to 2MB, the performance gains for

the local case are less dramatic than for the remote case. This is due to the fact that the filter

application does not appear to exhibit very good locality. The cache hit rate for a 2MB cache is

only 45%.2 However, if we combine the compressed cache with the friends algorithm we can

actually improve the cache hit rate. Figure 12.8 shows the same results as figure 12.7 with the

2The performance starts to further degrade as the cache size is again increased as the impact on the working pool

with a relatively poor hit rate becomes more pronounced.
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Figure 12.7: Effect of compressed cache on Filter.

addition of the friends algorithm to compressed caching.

As can be seen, the combination of the compressed cache and the friends algorithm greatly im-

proves performance. This is because the cache hit rate is increased to 78% and 85% respectively

for a 1MB and a 2MB cache. This is due to the fact that the filter application actually does exhibit

some form of locality. It turns out that groups of pages close together tend to be used at around

the same time. Even though the groups themselves always end up on disk before being required
again, because they are fetched as a group, the cache hit rate increases significantly.

Note that for each application described here, each is affected in different ways by different hier-

archies. This is because each references its data in memory in different patterns. The compress

application performed best with a local disk and the friends algorithm. When compress was mea-

sured with a compressed cache, its performance degraded more significantly as the cache size

was increased. This is because the memory access patterns of compress are linear. This means

that when a page is expelled from the working pool into the compressed cache, it is compressed

and then eventually written to disk. On a page fault, the page is fetched from disk and decom-

pressed in memory. There will only ever be a cache hit when the cache is so large that all of

the data can fit in memory at once. However, at this point the application's VMM is spending

so much time compressing and decompressing pages to service page faults that the application

has little time to carry out its task. The matrix multiplication application, on the other hand,
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Figure 12.8: Effect of combining a compressed cache with the friends algorithm on Filter.

benefitted greatly from a compressed cache. This is because matrix multiplication has very good

locality. Also, because it operates on a row by row and column by column basis, it actually

makes better progress when all the data is in memory, even when more than half of that data is

in compressed form. This is not the case for the filter application which benefitted most from

a combination of a 2MB compressed cache and remote paging. This benefit was due to a com-

bination of a moderate cache hit rate and the effect that the smaller pages had on page network

transfer times. Interestingly, filter performed almost comparably well with the same sized cache

and the friends clustering and prefetching algorithm.

It is important to realise that improving performance is not only about choosing the right hierar-

chy, it is also about the environment within which an application is executed, the application's
failure model and about parameterising the different components that go into making up that

hierarchy. For instance, although remote paging greatly improves performance compared to pag-

ing to the local disk, this is greatly dependent on the speed of the network. Performing remote

paging over a 10Mb Ethernet will not outperform paging to a fast local disk. Similarly, network

congestion, the availability of free memory on remote hosts, and resistance to failure all playa

major part in the suitability of remote paging. For instance, the filter application performs best

with a 2MB compressed cache in conjunction with remote paging. However, if the network is

suitably slow or resources are unavailable the sensible approach would be to run filter with a

2MB compressed cache and local paging used in conjunction with the friends algorithm. Simi-
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larly, if an application cannot tolerate failure, remote paging must be combined with some form

of redundancy: this affects the potential benefits that can be gained from remote paging.

12.2 Experimental Variation

It is worth taking some time at this point to reinforce the difference between a conventional

operating system and one supporting quality of service. In a conventional operating system ap-

plications are affected by other applications that happen to be running at the same time: other
applications compete for resources such as physical memory, disk and network bandwidth and

CPU bandwidth. In a QoS operating system such as Nemesis, each application is isolated from
the effects caused by others running at the same time by acquiring guarantees for system re-
sources. Applications running on Nemesis can specify the timeliness of their CPU scheduling,

their disk bandwidth and their network bandwidth.' The consequence of this is that there is very

little variability between runs of an application regardless of what other applications are also
running. Table 12.1 shows the results of running the compress application with various virtual

memory configurations. Compress was run with 12% disk/network bandwidth and 10% of the

CPU. Each configuration was run between to and 25 times. The results show the mean, the

shortest and the longest run in seconds.

I Paging Type Mean I Shortest I Longest I Longest - Shortest I
Local Paging 2176.88 2161.64 2184.29 22.65

Remote Paging (10Mb) 1939.87 1938.76 1940.93 2.17

Remote Paging (100Mb) 1782.33 1776.48 1783.86 7.38

Local Paging with Compo Cache 2495.80 2483.55 2521.32 37.77

Remote Paging (100Mb) with Compo Cache 1813.74 1810.15 1817.46 7.31

Table 12.1: Mean value and range of results for different paging configurations.

As can be seen, the variability from the mean is extremely low. The worst case being just over

I%. Indeed it was not possible to present the data using error bars as the lines were completely

Hat. This was the case with all of the test applications.

31f the underlying network does not support this feature. then the guarantees received are for access to that
network at the network interface level.
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Most notable from the data is the difference in variation between remote paging and paging to the

local disk. In section 7.2, where Quality of Service in Nemesis was described, the predictabil-

ity of an application's behaviour was said to vary due to factors outwith the operating system's

control. More specifically, the rotational latency of the disk and disk head positioning was high-

lighted as such a factor. This seems to be borne out by these experiments. The variation in the

configurations utilising a local disk are significantly higher than those that do not.

12.3 The Cost of the Heracles VMM System

The Herac1es VMM system is much more complex than a traditional VMM system due to the

flexibility and choice that it offers. The code size is also bigger than a VMM system that simply
pages to a local disk. However, only the code that is required by a particular application needs

to be resident in memory. Also, because the code is provided as a shared library, only a single

copy is required in memory. However, there are additional book-keeping costs associated with

utilising a compressed cache, maintaining consistency of data on disk when using the friends

algorithm, and paging to remote hosts. Unlike traditional operating systems, these costs must

be met by the application. Additional data structures take up physical memory allocated to

an application, reducing the amount of physical memory available for that application's data.

Similarly, the compression and decompression of pages, when utilised, takes up CPU bandwidth

that the application must pay for out of its guarantees.

The costs associated with Herac1es are not hidden costs, but neither are the gains in performance

false gains. If a compressed cache was added to a traditional operating system, the costs associ-

ated with it would be met by the operating system and consequently spread over all the applica-

tions executing at a particular time. This makes judging the possible benefits of new techniques

potentially hazardous. This is not the case in the Nemesis operating system.

12.4 Using the Heracles VMM System

There are two ways of using the Herac1es VMM system. The first is to configure the application's

entry in the Nemesis namespace to specify the hierarchy preferences for the application. This

will result in the application being initialised with the specified memory management hierarchy.
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The second method, which can be used in conjunction with the first, involves accessing the

Heracles components from within the application. This allows specific hierarchies to be created

and "attached" to specific areas of memory. The Heracles interfaces are shown in appendices A

through E.

12.4.1 ApplicationStartup

b_lnY>nMNn=<lphysSytesz16777216,
cacheS1ze=4194304,prefetchlng=true, readS1ze=16384,wrIteSlze=16384, paglng="local_only·,
dlskp=1000, dlska=100, dlskl ..S, dlskx=false, netp=30, netS=O,netl=1, netx=true, netc=false, svp=30,
svs=O,s~=o,svx=truel>

Figure 12.9: Configuring the Nemesis Namespace to use Heracles.

Figure 12.9 shows the Heracles portion of an application's entry in the Nemesis namespace.

This information determines the components of the hierarchy that will be instantiated and what

parameters are passed to them. The parameters determine the following:

• physBytes: the amount, in bytes, of physical memory the application requires.

• cacheSize: the amount, in bytes, of physical memory assigned to the cache.

• prefetching: whether to perform prefetching or not - only supported when performing

paging to the local disk.

• readSize: the size, in bytes, of the prefetch area.

• writeSize: the size, in bytes, of the area used to perform contiguous writes.

• paging: the type of paging the application would like. This can be either "local.only",
"remote.only", "local.mirror" or "remote.mirror",

• diskp, disks. dish and diskl represent the QoS parameters that should be given to the local

disk. They represent period, slice. extra and latency respectively.

• netp. nets. netx and netl represent the QoS parameters for access to the network interface.

• svp. svs, svx and svl represent the QoS parameters for scheduling at the remote server.
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• netc: determines if compression will be used in conjunction with remote paging.

When an application is started, its virtual memory hierarchy is determined from these parame-

ters. The type of paging the application requests determines which parameters are examined and

which are discarded. For instance, the disk QoS parameters have no meaning if the application

is using remote paging. Similarly, "netc" is ignored if the VM hierarchy includes a compressed
cache.

The parameters represented in figure 12.9 would result in a VM hierarchy that consists of: an

extended compressed cache manager with 4MB of physical memory, 16KB of which will be

assigned to an eviction area and another 16KB to a fetch area (see section 11.3); and a prefetching
disk manager with 10% bandwidth to the local disk (lOOms every second).

12.4.2 Accessing Components from Within an Application

Figure 12.10 shows code fragments from an application that performs the same function as the

namespace configuration presented in the previous section. The code is simplified somewhat, in

that the checking of return values is omitted.

As can be seen, harnessing Heracles is a very simple process even from within an application

- there are only 15 lines of actual content in figure 12.10. Furthermore, the understanding

required to use this technology is very limited. The application developer need only concern

himself with understanding the nature of his application. The Heracles VM components provide

a high-level notion of virtual memory management while hiding the complexity of the underlying

system. An application developer may know, for instance, that the data, or a portion of the data,

used by the application is fairly compressible and can choose to have a compressed cache in the

application-specific hierarchy. This represents only a small insight on the developer's behalf.

Other components require even less insight into the behaviour of the application. The utilisation

of remote paging in the management of the application's virtual memory does not even require

the knowledge that a network exists - Heracles will determine that such an option is unavailable

and resort to using the local disk.

Operating systems that require application developers to implement their own strategy, by neces-

sity, require the application developer to understand a great deal about virtual memory manage-

ment. They must be aware of the page fault mechanisms implemented in a particular operating
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r LOOkup the cache manager module 'I
cmod = NAME_FIND("modules>CacheManagerMod", CacheManagerMod_clp);
r Lookup the compression module 'I
compmod = NAME_FIND("modules>CompressionMod", CompressionMod_clp);
r Initialise the Compreslion Module 'I
comp = CompressionMod$New(compmod,

CompressionMod_ALGType_WKDM, r The algorithm to use 'I
PAGE_SIZE, r The size of the input - a system page 'I
heap r A reference to a heap '/);

r Initialise the Cache 'I
cache = CacheManagerMod$NewCompPF(cmod,

st->cachestr r Stretch uled by Cache 'I,
st->buff r Buffer for comprel.ion 'I,
comp r Our compression algorithm 'I,
NULL r No backing 1I0re manager yet 'I, heap,
CacheManagerMod_Replacement_Weighted_Clean_FIFO,
ptype r type of paging 'I,
readarea, writearea r liz. 01 fetch and eviction area 'I);

r Lookup namelpace for Disk QoS parameters 'I
if (Context$Get(st->env, 'mem', &any»{

DEFVAL(qos.x, 'mem>diskx", bool_t,st->env, &any);
DEFSIZE(qos.p, 'mem>dlskp" .st-senv, &any);
DEFSIZE(qos.s, "mem>disks",st->env, &any);

}
r Lookup Disk Manager Module '/
dmmod = NAME_FIND("modules>DiskManagerMod", DiskManagerMod_clp);
r Get disk'/
Idisk = DlskManagerMod$NewPF(dmmod, &qos, offer, 512 r sub-page size '1, heap);
r Lookup the stretch driver module 'I
isdmod = NAME_FIND("modules>ISDrlverMod", ISDriverMod_clp);
r Lookup the backing .tore manag.r module '/
bsmmod = NAME_FIND("modules>BSManagerMod", BSManagerMod_clp);
r Get our Backing store manager and give It the disk manager '/
bsm = BSManagerMod$New(bsmmod, ptype, Idisk, rppclnt r NULL '/);
r Initialise our stretch driver 'I
isdriver = ISDriverMod$NewRes(lsdmod, Pvs(vp),

heap, st->strtab,
Pvs(time), my_pmem,
iostr, cae he,
cachestr, bsm,
cacheSize,
prep);

r Bind the stretch to the .tretch driver 'I
StretchDrlver$Blnd{isdriver, userStretch, PAGE_WIDTH);

Figure 12.10: Using Heracles Within an Application.
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system and how these interact with their application. They must further understand the issues of

clean and dirty pages and any synchronisation problems to do with the mapping and unmapping

of pages in memory. To provide a compressed cache. they must understand the issues involved

in cache performance and how these can affect the performance of an application. To provide

a remote paging system they must understand about distributed systems and network protocols

and failure models. They must also grasp the effect of issues such as CPU crosstalk at the paging

server and providing an appropriate scheduling policy.

While the potential for allowing the talented team of developers to take advantage of an operating

system's flexibility should not be ignored. we must accept the fact that such teams are by no

means the norm. It is for the majority that Heracles offers the real benefit. Furthermore, Heracles
is sufficiently flexible to not only allow for such instances. but to aid the development process by
providing components ready to be plugged in to existing designs.

12.5 Future Work

The Herac1es VM system is aimed primarily at developers who know how their application be-

haves. In order to extend the flexibility that HeracJes offers to less well informed developers,

tool support for program behaviour analysis would have to be provided. In particular, a tool that

analysed the memory access behaviour and attempted to discern the best possible configuration

for an application would greatly extend the applicability of HeracJes. An initial implementation

of such a tool was used to analyse the paging behaviour of applications using HeracJes. However,

this only recorded pages expelled and brought in from backing store, storing these in a file. It did

not attempt to identify key regions of memory that would benefit from a particular configuration.

An interesting aspect of Nemesis is that programs run with a particular configuration and partic-

ular QoS guarantees, will perform almost exactly the same each time they execute. This makes

off-line analysis much more useful than it would be in a UNIX system where an application's

performance can be affected by other processes.

In addition to the provision of proper tools, there are aspects of Heracles itself that require further

analysis to determine their suitability. In section 10.5, the remote paging revocation procedure

selected the largest stretch for revocation at the end of round five. The effect that this has on a

distributed system operating near the threshold requires further investigation. While the expecta-
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tion is that choosing the largest stretch is more likely to reduce the chance of a system operating

near threshold from thrashing. more investigation is required.

A further area of future research would be to look at the impact of a multiprocessor environment

on the Heracles VMM. A multi-processor version of Nemesis was not available while Heracles

was being developed. In theory the additional CPUs would simply mean that there is more pro-

cessor bandwidth available and that more applications could run with guarantees at the same

time. However. this could affect the demand for other resources such as disk and network band-

width. Future work would concentrate on analysing the effect this had on a machine running

close to capacity.



Chapter 13

Conclusions

That life is worth living is the most necessary of assumptions. and. were it not
assumed. the most impossible of conclusions.

George Santayana.

This dissertation has highlighted the deficiencies of virtual memory management in operating

systems. The notion of user-level virtual memory management has been welcomed but with

reservations. These reservations centre around the likelihood of application developers taking up

the challenge of implementing application-specific memory management. It has been concluded

that the overhead of implementing one's own virtual memory manager is too high for the majority

of developers. Consequently, providing the extra flexibility for user-level implementations goes

widely unused.

The Heracles virtual memory management system has been introduced as a method for pro-

viding application-specific memory management without the need for application developers to

provide the implementation. Heracles is extremely flexible and highly configurable. Application

developers can choose their own VM hierarchy from a suite of options and can parameterise

the individual components to best suit the needs of their application. Although this system was

implemented in a single address space operating system supporting quality of service, the prin-

ciples of its design are just as relevant to other operating systems supporting user-level memory

management schemes.
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The work presented in this dissertation represents a break from the traditional incremental. and

competitive. approach to improving system performance. The notion that one VMM technique

offers a better solution to others has been discarded in favour of a more inclusive approach to

virtual memory management. Each approach is seen to have merit and may be the most suitable

solution for particular circumstances.

I have examined, amongst other things, the issues relating to paging to the local disk. paging to

the memory of a remote host. and "extending" the size of physical memory by storing a portion of

virtual memory in compressed form. I have further looked at how these techniques interact with

each other and offered a more complete understanding of their behaviour than when examined in
isolation.

Chapter 4 discussed the issues related to paging across the network to the memory of remote
hosts. This was extended in chapter 10 with a description of remote paging in the Heracles VM

system. The remote paging scheme differs from other schemes proposed in that it is highly flexi-

ble and suitable for general distributed systems on local area networks. The scheme allows hosts

to determine their role within a distributed system dynamically according to local commitments.

The load monitoring algorithm described in 10.3.3 takes account of memory and CPU commit-

ments, the latter of which having gone previously unrecognised as a factor in a remote paging

system. The scheme also ensures reliable delivery of data and supports active participation within

a resource revocation framework. The potential benefits of on-line compression in conjunction

with remote paging was also examined and found to offer potential benefits to applications.

Chapter 5 introduced the issues pertaining to providing a compressed cache within a VMM

hierarchy and concluded that the application of such a scheme was not universally beneficial

but offered potentially large performance improvements for some types of application. The re-

sultant compressed caching scheme described in chapter 11 focused on deployment within an

application-specific environment. While other researchers have focused on the compressibility

of data and the speed of compression, the effect of CPU and disk bandwidth has been largely

ignored. This can be considered a hangover from the UNIX mind-set where such costs are ab-

sorbed by the operating system. Investigation of these issues showed that the potential benefits

of a compressed cache could not be measured simply in terms of x compressions plus y disk ac-

cesses versus Z disk accesses. It was found that the timeliness of page faults could have an effect

on the potential benefits of a compressed cache. The compressed cache was also examined in

conjunction with the remote paging system and it was found that the compressed cache enhanced
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the performance of the remote paging system, due to smaller network transfers, in a way that it

did not enhance paging to the local disk.

While proving the worth of novel approaches to remote paging and compressed caching. the ma-

jor contribution highlighted by the design ofthe Heracles VM system is that individual solutions

to VMM can be combined in diverse and powerful ways to provide a specialised environment

for all applications. Application developers do not need a deep understanding of VMM issues to
harness the power of an application-specific VM hierarchy.

Future work on Heracles could focus on an implementation on other operating systems. In

particular. it would be interesting to port Heracles to L4 and an exokernel as these systems offer
the same level of control, without the QoS, as the Nemesis operating system. Within the system

itself, there is still scope for the on-line analysis of how a particular configuration is performing

and ways in which this could be used to dynamically alter the application's hierarchy at run-time.

While this is not necessary for short-lived applications (simple profiling would be much more

sensible) it could be beneficial to large long-lived systems. Another way of extending Heracles

would be to leave the decision about the components required for a particular application in the

hands of the system. The user could provide a high-level notion of expected performance and

the system would construct a suitable hierarchy.

To conclude, this dissertation started with the realisation that while user-level virtual memory

management offers much more scope for an application-specific environment. OS developers

have been largely ignorant of what an application developer wants from an operating system.

This may be due to the fact that OS developers understand the issues and the techniques for

virtual memory management and assume these to be universal. For the most part, the application

developer does not understand how virtual memory is provided by the underlying system. This

should not be seen as an excuse to deny the accessibility to the power and flexibility offered by

modem operating systems that support user-level policies.

I have described the Heracles virtual memory management system. As well as affording appli-

cations real gains, Heracles is simple and easy to use. It places very little responsibility on the

application developer: the system can be configured easily without the need for the developer to

provide any code. However, Heracles is flexible enough to offer more power to the advanced de-

veloper. Components of the hierarchy can be created and combined from within applications to

meet the requirements of specific memory areas. The result is a powerful, flexible and accessible

virtual memory management hierarchy.
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Appendices



Appendix A

ReadlWrite Interface

RW : LOCAL INTERFACE =

BEGIN

Read : PROC[IN vpn : WORD,
IN loc : ADDRESS]

RETURNS[size : CARDINAL];
Reads page referred to by vpn into location
pointed to by loco Returns size if Read was
successful, 0 otherwise.

Write PROC[IN vpn : WORD,
IN loc : ADDRESS,
IN size : CARDINAL]

RETURNS[succ : BOOLEAN];
Stores page referred to by vpn situated at location
loco The size is required because different sub-units may
get a different sized chunk of memory.
Returns True for success, False for Failure.

END.



Appendix B

Disk Manager Interface

DiskManager : LOCAL INTERFACE =
EXTENDS RW;
NEEDS FSTypes;

BEGIN

Kind : TYPE = {STANDARD, ASYNCH, PREFETCH};

PageDesc : TYPE = RECORD [vpn : WORD,
size: CARDINAL];

PageDescs : TYPE = SEQUENCE OF PageDesc;

Init : PROC[IN pages : WORD]
RETURNS[succ : BOOLEAN];

-- initialises apt swap space to hold "pages" of VM pages.

AdjustQoS : PROC [IN OUT qos : FSTypes.QoS ]
RETURNS [ok : BOOLEAN];

WriteContiguous : PROC[IN pages PageDescs,
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IN loc ADDRESS]
RETURNS [];

ReadContiguou5 PROC[IN vpn WORD,
IN loc ADDRESS,
IN num CARDINAL]

RETURNS[ pages PageDescs];

Free: PROC []
RETURNSO;

-- Free up resources.

ResetStats: PROC[]
RETURNSO;

-- Reset measurements

PrintStats : PROC 0
RETURNSO;

-- Prints statistics about the Disk Manager

END.



Appendix C

Remote Paging Server Interface

RPPCtl INTERFACE =
NEEDS NetAddr;
NEEDS RPP;
BEGIN

Error: TYPE = { None, Failure, NoResources, DoesNotExist, OverCommitted };
Return type of method calls, as we do not really want to be
raising exceptions over RPC.
OverCommitted is used when a new stream is requested with given
QoS parameters and, although there are resources available, the
given
QoS causes the server to become over committed. In this case,
the QoS value is set to none.
It is also used if a stream attempts to attain more than the
maximum allowed stretches per stream.

STR_INFO TYPE = RECORD [ mem CARDINAL,
pout CARDINAL,
pin CARDINAL,
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role RPP.Role,
stat RPP. Status ,
qos RPP .QoSParms ,
charge : RPP.ns];

__ mem value in KBytes

HEM_USAGE TYPE = RECORD [ used CARDINAL,
free CARDINAL];

__ values in KBytes

CreateStream : PROC[IN client : NetAddr.SAP,
IN bytes : CARDINAL,
IN qos RPP.QoSParms,
IN role
IN cbport
OUT cid

RPP.Role,
CARDINAL,
RPP. ClientID]

RETURNS[error : Error];
Takes the number of pages in the stretch and the QoS
parameters.

CreateShallovStream PROC[IN client NetAddr.SAP,
IN qos : RPP.QoS,
IN sid : RPP.StreamID,
OUT cid : RPP.ClientID]

RETURNS[error : Error];
Used by a server to set up a connection to another server
for the offloading of a client's pages

RealiseStream : PROC[IN cid RPP.ClientID]
RETURNS[error : Error];

Activates stream cid set up on behalf of a client by another server.

AdjustQoS PROC[IN sid: RPP.StreamID,
IN qos : RPP.QoSParms]
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RETURNS[error : Error];
Adjusts the QoS parameters for the given client.

DestroyStream : PROC[IN sid RPP.StreamID]
RETURNS[error : Error];

Free up resources held on behalf of client

AddResources : PROC[IN sid
IN bytes

RETURNS[error : Error];
Takes the starting page in the client's stretch, the
amount of memory and the QoS

RPP .StreamID,
CARDINAL]

parameters. Tries to attain enough memory to meet the
requirements.

ForwardResources PROC[IN server: NetAddr.SAP,
IN sid: RPP.StreamID,
IN new_sid: RPP.StreamID]

RETURNS[];
Forwards resources held on behalf of stream sid
to new server where the sid there is new_sid.

These functions are for interaction from the graphical
swap daemon

RevokeStream : PROC[IN pos : RPP.StreamID]
RETURNS[] ;

Revokes stream at streams[pos]

GetStreamlnfo PROC[IN sid: RPP.StreamID,
IN OUT strinf : STR_INFO]

RETURNS [];
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GetHemUsage : PROC[IN OUT musage HEM_USAGE]
RETURNS[];

GetAdvert : PROC[]
RETURNS[ adv : CARDINAL];

__ Memory registered with trader

END.



Appendix D

Remote Paging Client Interface

RPPClnt : LOCAL INTERFACE =

EXTENDS RW;
NEEDS RPP;
NEEDS SDriverCallBack;
BEGIN

Init: PROC( IN start ADDRESS,
IN pages WORD,
IN mirror BOOLEAN]

RETURNS[success : BOOLEAN];
__ Initialises the Remote Paging Protocol layer.

Returns True if RPP layer was able to acquire
__ 'pages' of physical frames with server/so

Exchange : PROC[IN src_vpn : WORD, IN src : ADDRESS,
IN size : CARDINAL,
IN dest_vpn : WORD, IN dest : ADDRESS]

RETURNS[size : CARDINAL];
__ Takes the page src_vpn at address src and stores it.
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-- Fetches the page dest_vpn and reads it into address dest.

AdjustQoS : PROC[IN qos : RPP.QoSParms]
RETURNS[succ : BOOLEAN];

-- Adjusts the QoS. Returns True iff successful.

Free: PROC[IN addr ADDRESS]
RETURNS[];

-- Free up the resources ve hold for the relevant stretch.

FreeAll: PROC []
RETURNS [];

-- Free up all resources at server/s

RegisterCallBack : PROC[ brok lREF SDriverCallBack]
RETURNS[];

-- register a callback to propogate changes to stretch driver

SvitchHirror PROC [ vpn : WORD]
RETURNS[ succ : BOOLEAN];

-- Promote the mirror to server for the apt vpn



Appendix E

Cache Manager Interface

CacheHanager : LOCAL INTERFACE =
NEEDS BSHanager;
NEEDS Hem;
BEGIN

Init : PROC[IN num : CARDINAL]
RETURNS[succ : BOOLEAN];

The cache manager maintains a stretch backed by
some physical memory. The cache maybe compressed, in which
case, loads involve decompressing a page to the
location specified.

Read PROC[IN vpn WORD,
IN loc ADDRESS,
OUT clean BOOLEAN]

RETURNS[ hit: BOOLEAN];
Reads the VPN into address loco
Needs to tell the stretch driver if the entry was clean or
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not. This is because, a dirty entry may be expelled by the
stertch driver to the cache and then read in again from the
cache. If the cleanliness of the page is not passed back
then the stretch driver vould assume it vas clean. Thus, if
the page is expelled again vithout being touched, it may find
itself not being vritten to disk.
Returns vhether there vas a cache hit or not.

Write PROC[IN vpn WORD,
IN loc ADDRESS,
IN size CARDINAL,
IN clean BOOLEAN]

RETURNS[ succ : BOOLEAN];
Stores page referred to by vpn situated at location
loco The size is required because different sub-units may
get a different sized chunk of memory.
Returns True for success, False for Failure.

ExChange PROC[IN src_vpn : WORD, IN src : ADDRESS,
IN size : CARDINAL,
IN dest_vpn : WORD, IN dest ADDRESS]

RETURNS[sz : CARDINAL];
Takes the page src_vpn at address src and stores it.
Fetches the page dest_vpn and reads it into address dest.

RegisterBSM : PROC [IN bsm : lREF BSManager]
RETURNS [];
pass reference to Backing Store Manager

Present : PROC[IN vpn : CARDINAL]
RETURNS[present : BOOLEAN];
Returns True if vpn
present in the cache.
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Hem Inc : PROC[IN mem CARDINAL]
RETURNS [];
Increases physical memory available to cache

HemDec : PROC []
RETURNS[ ok : BOOLEAN];

-- Reduces physical memory available to cache

Free : PROC []
RETURNSO;
Frees up space being used by CacheHanager and returns
stretch to the system.

Flush : PROC []
RETURNS[] ;

-- Flushes the contents of the cache

PrintStats : PROC[]
RE11JRNS [] ;

-- Prints statistics about the cache manager.

Debug : PROC[IN stop : BOOLEAN]
RE11JRNS [] ;

END.



Appendix F

QoSEntry Interface

A "QoSEntry" is an extension of an "IOEntry". It incorporates a
scheduling policy for "10" channels based loosely on the Nemesis
EDF Atropos scheduler. This allows a quality of service to be
defined for each 10 channel in the form of a period and a slice of
"time" to allocate during that period. When "Rendezvous" is
called an 10 channel is selected according to the QoS declarations
for service by a single server thread. The server thread is then
expected to serve a single packet from the 10 channel, call
"Charge", and return for another 10 channel to service using
"Rendezvous",

The scheduling algorithm operates using three internal queues of 10
channels - "Waiting", for channels that have work pending but have
run out of allocation, "Idle", for 10 channels that have no work
pending and IIRunnable II , for 10 channels that have work pending and
have remaining time in their current period.

QoSEntry: LOCAL INTERFACE =
EXTENDS IOEntry;
NEEDS Time;
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BEGIN

OverAllocation : EXCEPTION [];
OverAllocation will be raised if a call to "SetQoS" requests a
level of service that would take the overall allocation over
100\%.

InvalidIO : EXCEPTION [];
An attempt was made to "Charge" or "SetQoS" on an 10 that is
not managed by this particular "QoSEntry".

As far as the "QoSEntry" is concerned, each binding it has
responsibility for is in one of a number of states:

State : TYPE = {
Idle,
Waiting,
Runnable,
CloseRequested,
Closing
};

open, but with nothing pending.
out of allocation.
ready to go.
to be closed down (any thread can do this work).
being closed down by a thread.

By default all channels added to an entry will have extra time service
only. This means that they get a fair proportion of the service
time that is currently unused being either unallocated or not
used by a channel with a guarantee.

"SetQoS" is invoked by the server to set the quality of service for
"io". "p" 1S the period, "s" is the slice and "x" allows the 10

cbannel sbare extra time in the system. The "I" parameter gives
tbe amount of latitude to be granted in the case that a client
bas poor block1ng behaviour; its default should be zero unless
you bave a good reason for increasing it.
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SetQoS PROC [ io: lREF 10, p:Time.T, s:Time.T, x:BOOLEAN , l:Time.T ]
RETIJRNS []

RAISES OverAllocation, InvalidIO;

Charge "io" for "time" nanoseconds of work. This allows a server
to charge an 10 channel for the work that it has carried out on
its behalf. This need not correspond to the wall-clock time
actually spent in the server for example, but could be estimated
time to transmit a packet or the seek time of a disk.

Charge PROC [ io: lREF 10, time: Time.T ]
RETURHS []

RAISES InvalidIO;

Dump a scheduler log. For debugging use only, requires
a custom-compiled "QoSEntry" to work. Will probably vanish in
the future.

dbg: PROC[] RETURNS [];

END.



Appendix G

Test Applications

G.I Matrix Multiplication

Given two matrices. A and B, the product C is derived from the formula:

MatMult creates two matrices (of dimensions x, y and y, x), populates them with random num-
bers from I to 10 and then multiplies them together. Table G.I shows the different sizes of

matrices used and the associated memory consumption of each.

Dimensions Memory Required (KB)

Total Row Column

500 x 600 1171 1.95 2.3
1000 x 2000 7812 3.9 7.8
2000 x 2000 15625 7.8 7.8

Table G.I: Matrix dimensions and their associated memory costs.

Each matrix is implemented as a two dimensional array. The y dimension is allocated first

and then each row is allocated in turn from the top down. This means that rows are allocated

contiguously. The effect of this is that, during multiplication, matrices A and C have good locality

and matrix B has poor locality (figure G.I).
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Figure G.I: Locality of Reference in Matrix Multiplication C = A * B

As a consequence of the poor locality observed by matrix B, memory allocation of matrix B was

optimised such that columns were allocated contiguously. This gives matrix B the same memory

access pattern as matrices A and C. Thus:

would become:

10 )
11

12

(~~!)C70181:2)
This slightly changes the previously mentioned formula to:

G.2 Image Filter

The filter program loads an image into memory (a 328KB bitmap file). It then splits the RGB

values into three separate buffers (each of which is 4MB in size) and applies a sharpen filter to

the data. The filter works on a pixel and those surrounding it, applying weightings to each. The

result is essentially linear memory access patterns. This also results in linear page eviction.
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G.3 SPEC Int 95 Compress

The compress program allocates three buffers of 14160KB on the heap. It then populates the

first buffer. compresses it to the second. decompresses it to the third and then compares the

decompressed results with the original. This application is close to the best case scenario for
paging to a local disk as page eviction patterns are linear.

The memory access patterns for compress are linear. From the population of the initial buffer to

the compression/decompression and finally to the comparison. each buffer is accessed linearly.

More interesting are the page eviction patterns. Even though. after the initial population. the
program is accessing two separate buffers. it is only ever writing to one of them. This means that

dirty pages are evicted linearly (figure G.2). This is extremely good behaviour for buffered writes
but extremely bad for a compressed cache. The behaviour is also very good for data prefetching.
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Figure G.2: Page Eviction Pattern in Data Compression Program

In a conventional UNIX system. compress would most likely be implemented using sequential

files. While this is possible in Nemesis. measuring the performance of the application using

sequential files would have introduced the file system performance as a factor in the results. For

this reason. the memory was populated and faulted out to disk in advance of the measurements

commencing. Thus. when the actual experiment starts. data is "faulted" in instead of read from

a file and. as that particular data is never dirty. it is never written back out.


