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ABSTRACT 

The parasitic nematodes Teladorsagia (Ostertagia) circumcincta and 

Haemonchus contortus are two of the most important pathogens of sheep and 

goats worldwide. Control has largely depended upon the use of anthelmintics. 

However with the widespread use of these compounds has come the emergence 

of parasite resistance. Other modalities of prevention and treatment are urgently 

needed. One of the most promising is the use of genetically resistant sheep. 

Although it is widely accepted that breeding for resistance to these parasites is 

possible, the mechanisms of resistance are unknown. The purpose of the work 

described in this thesis was to identify the mechanism of resistance to these 

parasites in young lambs. 

Lambs infected with T circumcincta are incapable of controlling their 

worm burdens. However, it appears that some are capable of controlling the 

growth and therefore the fecundity of adult female worms. Work described in 

chapter three shows that the most irnpOliant mechanism controlling the growth 

and fecundity of this parasite is the local IgA response. 933 lambs were studied 

over 5 years. Faecal egg counts were performed on these lambs and 485 of these 

lambs were slaughtered and the average female worm lengths determined. 

Analysis showed a highly significant effect of parasite specific IgA on worm 

length. Those lambs with higher IgA responses to fourth-stage larvae had on 

average shorter worms. This response was heritable. Thus genetic resistance to 

T circumcincta acts by reducing worm fecundity and works through a parasite

specific IgA response. In addition, this response is sex related with male lambs 

having the poorest responses and females the best. 
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Not only is the quantity of IgA important in determining host resistance, 

but also the specificity. Chapter four details work done in investigating the 

antigen specificity of the IgA response to T circumcincta. Here, the recognition 

of antigens from fourth-stage T circumcincta by plasma IgA was studied in a 

group of 30 ten-month-old Scottish Blackface sheep which had been naturally, 

then deliberately infected. There was a heterogeneous pattern of antigen 

recognition amongst the sheep. Two antigens with approximate molecular 

weights 87 000 Da and 129 000 Da were significantly associated with a 

reduction in mean adult worm lengths. The observed variation in recognition of 

these two antigens on fourth-stage preparations accounted, in a statistical sense, 

for nearly 40% of the total variation in worm length. In addition to the variation 

in antibody mediated recognition of these two parasite molecules, three other 

components have been implicated in regulating worm length. They are a 37 000 

Da band from adult worms, the amount of fourth-stage larval specific IgA in the 

abomasal mucosa and the density-dependent influence of adult worm burden. 

Together these components and their interactions accounted for over 90% of the 

variation in worm length. These results indicate that the parasite-specific IgA 

response or something extremely closely associated with it, is the major 

immunological mechanism controlling worm length. For another mechanism to 

control worm length it would have to account for more of the variation. It is 

difficult to envisage such a mechanism existing. 

Teladorsagia circumcincta is an extraordinarily successful parasite. One 

factor that undoubtedly contributes to its success is its ability to suspend 

development by going into inhibition at the early fOUlih-stage. Four mechanisms 

appear to underlie larval inhibition; genetic variation in the parasite, larval 
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response to seasonal changes, the host immune response, and density-dependent 

inhibition of larval development. To help defme this further, the influence of 

immune responses and of the number of adult worms was studied in both 

naturally and deliberately infected sheep and the results are described in chapter 

five. Variation among sheep in the number of inhibited larvae was significantly 

associated with variation in the size of the IgA response to fourth-stage larvae, 

with the specificity of the antibody response to third, fourth and adult stages, and 

with the number of adult parasites present. These results indicate that the IgA 

response may influence larval development and that the density-dependent 

constraints on larval development do not work through the IgA response. The 

immunological and density-dependent associations were additive. Taken 

together, the IgA response, antibody specificity, and numbers of adult parasites 

accounted, in a statistical sense, for over 90% of the variation in numbers of 

fourth-stage larvae present. 

In addition to T circumcincta it was of interest to see if IgA may be 

involved in the development of immunity to another abomasal parasite 

Haemonchus contortus. Hampshire Down lambs were trickle infected with H. 

contortus over ten weeks. The lambs were offered one of two diets: a basal diet 

and a diet supplemented with additional protein. Plasma samples were taken for 

determination of IgA responses and the lambs necropsied and the adult female 

worms measured. Those lambs on the supplemented diet had shorter adult 

worms and produced significantly more anti-parasite IgA. There was a 

significant association between IgA against third-stage or fourth-stage larvae and 

adult worm length. Most of the difference between the two dietary groups could 

be accounted for by differences in IgA responses. Therefore, IgA may be a 
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major mechanism controlling fecundity of H contortus and the magnitude of the 

IgA response is influenced by the quality ofthe diet. 

XIV 



CHAPTER ONE 

GENERAL INTRODUCTION 

1.1 GASTROINTESTINAL PARASITISM IN SHEEP 

1.1.1 General 

Sheep production constitutes an important part of livestock farming ill 

many parts of the world today. In many areas of the world they are the only 

livestock and therefore are the sole source of income to owners and landusers. 

Within the UK there are approximately 20 million ewes and 24 million lambs. 

The estimated sheepmeat value per annum is over £1 billion and wool 

approximately £30 million (Clarkson & Winter 1997). 

Parasitism constitutes the largest single constraint on sheep production 

worldwide. The costs incurred by parasitism are both direct and indirect. There 

are the direct effects of sheep mortality and reduced productivity, and the indirect 

effects of increased production costs incurred through treatment, increased labour 

and enforced changes in pasture management. 

Of the gastrointestinal parasites (table 1.1), Haemonchus contortus and 

Teladorsagia circumcincta are two of the most prevalent and economically 

important (Allonby & Urquhart 1975, Urquhart et al 1987). H contortus is 

predominantly found in tropical/sub-tropical regions while T. circumcincta is the 

predominant species in temperate regions. Both are remarkably successful 

parasites of sheep and goats in their respective regions. Other parasite 

nematodes rarely achieve similar high levels of prevalence or intensity of 
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infection as measured either by faecal egg counts or worm burdens (Shaw & 

Dobson 1995). Farmed ruminants may harbour more parasites than free roaming 

populations because of the combination of high stocking densities and restricted 

pasture leading to high pasture contamination. In such an environment, those 

parasites with higher fecundity or better viability would be expected to 

predominate. H contortus is a highly fecund parasite with even moderately 

infected sheep having very high faecal egg counts (Urquhart et al 1987). One 

estimate suggested that the daily egg output from one worm could be 9000 eggs 

(Cushnie & White 1947). However, T circumcincta is considerably less fecund 

than H contortus and does not appear to be significantly more fecund than other 

nematode parasites found in temperate regions although defmitive data is 

lacking. Its success may be the result of a superior ability of larvae to survive 

both on pasture during adverse weather conditions, and within hosts in an 

inhibited state (Boag & Thomas 1977; Stear et al1997a). 
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~ .. - .. - _ .. _ ... _- --- _ ... - -- _ .. _ ... - _ .. -

PARASITE SITE REGIONAL 
DISTRIBUTION 

Haemonchus contortus Abomasum Tropical/sub-tropical 

Teladorsagia circumcincta Abomasum T emperate/ sub-tropical 
0. trifurcata " " 

0. leptospicularis " " 

Trichostrongylus axei Abomasum Worldwide 
T colubriformis Small intestine " 

T vitrinus " " 

Cooperia curticei Small intestine Worldwide 
C. surnabada " " 

Nematodirus battus Small intestine Temperate 
N filicollis " " 
N spathiger " " 

Bunostomum Small intestine Worldwide 
trigonocephalum 

Gaigeria pachyscelis Small intestine Tropical 

Strongyloides papillosis Small intestine Worldwide 

Trichuris ovis Large intestine Worldwide 

Chabertia ovina Large intestine Worldwide 

Oesophagostum columbianum Large intestine Tropical/Sub-tropical 

0. asperum " " 
I 0. verulosum " " 

Table 1.1. Nematode parasites of sheep. 
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1.1.2 Haemonchus contortus 

1.1.2.1 Description 

H contortus belongs to the superfamily Trichostrongyloidea of the order 

Strongyloidea and the class Nematoda. It is large compared to other 

trichostrongyloid parasites with adults measuring 2.0-3.0 cm. It is found in the 

abomasum of sheep, goats and cattle. Adults can be identified by their reddish

brown colour, a consequence of their blood-filled intestine. The ovaries of the 

female wind spirally around the intestine. This gives them their characteristic 

red and white barber's-pole appearance. The males have an asymetrical dorsal 

10 be and barbed spicules. Both have cervical papillae and a lancet within the 

buccal capsule that they use to obtain blood from mucosal vessels. 

1.1.2.2 Life Cycle 

H contortus is a blood-feeding parasite of the abomasum. It has a direct 

life-cycle. The adult female parasite lays eggs in the abomasal lumen from 

where they are excreted in the faeces. On the herbage the parasite develops 

through three larval-stages Ll, L2, and L3 over a minimum of five days. The L3 

stage keeps the second stage cuticle which allows the parasite to resist 

desiccation. This allows them to survive desiccation for up to 3 months. The L3 

are ingested by the sheep and exsheath in the rumen. In the abomasum they 

develop through the fourth larval stage (L4) stage within the gastric gland and 

subsequently into adults on the abomasal surface. The pre-patent period is three 

weeks. 
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1.1.2.3 Epidemiology 

Tropical/sub-tropical regions 

H contortus develops optimally in warm climates. High humidity is 

necessary for larval development and survival and so the level of rainfall is a 

major constraint on its success. Due to the high fecundity of the female, pasture 

can become contaminated very quickly. In addition, immunity in adult sheep 

exposed to endemic infection is often not complete and can break down allowing 

for continual pasture contamination. In some areas of the world the parasite is 

able to an-est development (hypobiosis) at the beginning of dry periods when 

faecal eggs and larvae would be unable to survive. In other areas where there is 

a more frequent rainfall there appears to be no hypobiosis. 

Temperate regions 

Most commonly, there is a single annual life cycle. Larvae are ingested in 

the early summer and become an-ested. They complete their development in the 

following spring that often coincides with lambing. Consequently, clinical 

haemonchosis is rarely a problem in these areas. 

1.1.2.4 Pathogenesis and Clinical signs 

The disease produced is a direct consequence of the adults feeding on host 

blood. This leads to a protein losing gastropathy, which is exacerbated by 

anaemia. Under prolonged exposure the anaemia can become non-regenerative 

due to inadequate replenishment of iron. The clinical signs are a corollary of 

hypoproteinaemia and anaemia and thus can include reduced packed cell volume 

(PCV), mucus membrane pallor, oedema (patiicularly sub-mandibular), ascites, 
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lethargy, melaena, progressive weight loss, weakness, tachypnoea, and 

tachycardia. Typical findings at necropsy include petechiation of the abomasal 

mucosa, evidence of bone marrow exhaustion, and dark brown abomasal 

contents due to haemorrhage, and carcase oedema. 

The disease can be categorised into three syndromes depending on the 

degree of parasitism; acute, hyperacute, and chronic haemonchosis. In acute 

haemonchosis there is a dramatic fall in packed cell volume, which stabilises at a 

low level. However, as a result of iron loss a non-regenerative anaemia ensues 

which leads to death. In hyperacute haemonchosis sheep die suddenly as a result 

of a severe haemorraghic gastritis from a massive worm burden of up to 30,000. 

Chronic haemonchosis is seen where sheep are exposed to lower parasite burdens 

over a prolonged period. The chronic blood loss, often compounded by poor 

nutrition, leads to weight loss, weakness and decreased productivity. 

1.1.3 Teladorsagia (Ostertagia) circumcincta 

1.1.3.1 Description 

T circumcincta parasitises the abomasum of small ruminants and disease is 

associated with the emergence of the late L4 from the gastric gland and, the 

presence of adult parasites. Like H contortus, T circumcincta belongs to the 

superfamily Trichostrongyloidea of the order Strongyloidea and the class 

Nematoda. Adults appear light brown and measure 0.6-1.2 cm. Males have long 

slender spicules with three distal branches. 
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1.1.3.2 Life Cycle 

T circumcincta has a simple direct life cycle where eggs are laid in the 

lumen of the abomasum and are passed in the faeces. In the faecal pat the eggs 

hatch and develop through two stages to the infective third stage. In optimum 

conditions the development of eggs to larvae can occur within two weeks. When 

the faecal pat is moistened the larvae migrate onto the herbage. The L3 are 

ingested by the sheep and exsheath in the rumen. From there they pass into the 

abomasum and enter the gastric glands of the abomasum. In the abomasum they 

develop through a fourth-stage into the adult within the gastric gland and then 

emerge into the lumen 7-8 days after ingestion. Larvae can arrest their 

development at the early f0U11h-stage of development and resume development 

some time later (Armour et al 1966; Dunsmore 1960). The minimum prepatent 

period is 13 days. 

1.1.3.3 Epidemiology 

In temperate regions eggs are passed in the faeces of lambs during the 

spring reaching a peak in late summer (Boag & Thomas 1977). The source of 

infection for lambs is believed to come from overwintered larvae, eggs passed by 

ewes during the peri-parturient period, and from lambs developing patent 

infections (Boag & Thomas 1970). Thus pasture contamination builds up during 

the summer to give clinical teladorsagiasis. After October the majority of 

ingested larvae become arrested. These atTested larvae can subsequently develop 

to adults during the following spring. This can give rise to Type II 

teladorsagiasis although it is much less common in sheep than in cattle infected 

with 0. ostertagi (Armour & Bruce 1974). 
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1.1.3.4 Pathogenesis and Clinical signs 

Disease is thought to be a consequence of the presence of fourth-stage 

larvae within the gastric gland (Armour et al 1966). Infected gastric glands 

become stretched as the larvae grow and the surrounding epithelium becomes 

hyperplastic. Parietal cells are replaced by undifferentiated epithelial cells 

leading to a reduction of functional gastric gland mass. This de-differentiation 

occurs not only in infected glands but also in adjacent uninfected ones. The loss 

of parietal cells leads to an increase in abomasal pH and a failure to convert 

pepsinogen to pepsin and thus to a reduction in digestive efficiency. The actual 

effect of this on the host of this is uncertain as there is evidence that the small 

intestine can compensate for failure to digest abomasal protein (Parkins et al 

1973). There is also evidence that infection stimulates zymogen cells to secrete 

pepsinogen. Elevated levels of plasma pepsinogen can be detected in infected 

animals. This may be due either to leakage across the damaged mucosa or direct 

secretion into the circulation (McKellar 1993). The elevation in pH can also 

leads to a failure of bacteriostasis. 

The mucosa becomes oedemic and hyperaemic with occasional mucosal 

sloughing. At the cellular level, there is a leakage of plasma protein across the 

mucosal membrane, which may be due to a breakdown or incomplete formation 

of intracellular junctions. This is the main cause of the reduced nitrogen 

digestibility seen in infected animals (Parkins et aI1973). In addition, infection 

causes inappetance. The possible mechanisms of this are reviewed later. 

The clinical signs are therefore a consequence of a relative protein 

deficiency. Unlike in cattle, teladorsagiasis in lambs rarely causes dialThoea. 

The main clinical signs are a depression in feed intake and reduced liveweight 
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gam. Infection leads to reduced nitrogen digestibility, reduced calcium and 

phosphorous deposition, poor carcase conformation, and impaired wool growth 

(Sykes & Coop 1977; Symons et aI1981). Thus, the economic impact is through 

a depression in productivity. High levels of infection have been associated with 

population crashes in feral sheep on St. Kilda (Gulland 1992). Those animals 

that survived popUlation crashes were less heavily parasitised than those that 

died. Whether these deaths can be directly attributed to parasitism is uncertain 

but even a moderate experimental infection can reduce growth rate by 

approximately one third (Coop et aI1985). 

1.1.4 Present Control Strategies 

Control at present is dependant the use of anthelmintics and management 

of grazing. 

Most overwintered larvae die out during the spring (Boag & Thomas 

1970). Therefore it is possible to alternate pastures grazed by sheep with those 

grazed by cattle annually. Similarly, crops can be alternated with grassland and 

if cattle are available there could be a rotation of cattle, sheep, and crops 

(Armour & Coop 1991). However, these strategies are only applicable to T 

circumcincta as H contortus can infect both cattle and sheep. Unfortunately, 

strategies dependent on management alone are seldom practical as 'clean' 

pasture is rarely available. In addition, they can occasionally lead to parasitic 

gastroenteritis from those parasites such as Trichostrongylus colubriformis, 

Trichostrongylus axei and Nematodirus battus that are capable of crossing the 

species barrier between cattle and sheep. Also, there is evidence that a small 

proportion of infective larvae can survive beyond 2 years on the herbage and 
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upper soil layers (Armour et al 1980). Therefore there is a risk that reliance on 

pasture management alone may fail. Pasture that has been free from sheep for 12 

months can still harbour sufficient larvae to allow for sufficient generations to 

develop during the subsequent grazing year that clinical teladorsagiasis appears. 

More frequently, anthelmintics are used in conjunction with management 

in a "dose and move" strategy where animals are treated and moved to pasture 

known to be free of infection. However 'clean' pasture is rarely available and 

most commercial situations call for the exclusive use of anthelmintics. 

One of the most important sources of infection for lambs is the pen

parturient rise in faecal egg output in ewes during the last trimester of pregnancy 

and early lactation (Armour & Coop 1991). This appears to be due to a 

relaxation in the immune response to parasites resident within the abomasum and 

to freshly acquired larvae. Ewes are normally given an anthelmintic 

approximately one month before lambing and again shortly afterwards. Lambs 

are given anthelmintics at differing intervals dependent upon the preferences of 

the farmer. 

The universal use of anthelmintics has led to the evolution of anthelmintic 

resistance in both parasites (Jackson 1993). Initially, resistance developed 

slowly against the less efficient early benzimidazoles, but with the introduction 

of more efficient anthelmintics, selection pressure for resistance has increased. 

Presently there is resistance to pharmaceuticals within each of the anthelmintic 

groups available for treatment in both parasite species. There has been no 

convincing evidence that if selection pressure is removed there is a reversion to 

susceptibility to anthelmintic (Jackson 1993). This is supported by fmdings that 
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parasites resistant to benzimidazoles are as fit as susceptible parasites from the 

same strain (BIard et a11998). 

For strategies aimed at delaying the onset of resistance to be successful 

they must use a minimum of chemoprophylaxis in order to minimise the number 

of parasite generations exposed to anthelmintic while maximising the efficacy of 

the drug in order to remove heterozygous resistant genotypes. An important 

concept when considering this is the relationship between the parasite population 

within an animal (the infrapopulation) and the one on the pasture 

(suprapopulation). If there is a large infrapopulation and a small suprapopulation 

and the host is wormed frequently then there will be a rapid increase in the 

number of resistance alleles within the total worm population. So, for example, a 

dose and move strategy where animals coming from a highly contaminated 

pasture are treated and then moved onto a 'clean' pasture is likely to select for 

parasite resistance. 

One method to reduce selection for resistance is to rotate between groups 

of anthelmintic used. Resistance to one anthelmintic will confer cross-resistance 

to others within the same group and so rotation must be between anthelmintic 

groups. It has been shown that annual rotation is of more benefit than rotation 

after each treatment (Waller et aI1989). 

Other strategies aimed at increasing the parasite kill are the use of splitting 

the dose of anthelmintic and combination therapy. Splitting the dose over two 

days increases the efficacy of benzimidazole drugs as it is related to the length of 

time the parasite is exposed to the drug (Sangster et al 1991). Combination 

therapies are based on the premise that it is highly unlikely that resistance alleles 

to two groups of anthelmintics will be found on one parasite. Such a strategy has 
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been shown to delay the emergence of resistance compared to strategies 

employing single drug therapies (Jackson 1993). However, simultaneous 

resistance to both classes may emerge at the same time with both strategies. 

Such a strategy employing two or more anthelmintics would add to the cost of 

production and may not be economically feasible. At best all of these strategies 

will only delay the emergence of resistance. 

Perhaps one of the largest contributors to resistance emergence is the 

frequent underdosing of animals. Underdosing selects for heterozygous 

resistance thus increasing the number of resistance alleles within a population. 

The dose given should be that dose needed for the heaviest lamb but often a 

lower average dose is given thus underdosing the heaviest lambs. 

1.1.5 Future control strategies 

1.1.5.1 Vaccines 

Vaccines have proven to be an extremely useful means of protection 

against a vast range of microorganisms. This success and the need for efficient 

strategies for the prevention of parasitic infections has led to a large volume of 

work directed towards the development of vaccines (Newton & Munn 1999). 

Two types of vaccines have been studied and used. The first type is based on 

antigens that are accessible to the host's immune system during natural infection. 

The advantage of such a vaccine is that continual natural exposure acts as a 

booster to the primary vaccine. However, many of the antigens that the host 

mounts an immune response to are non-protective and there is considerable 

variation in the identification of parasite molecules between animals (Haswell

Elkins et al 1989; McCririe et al 1997). The second method has been to look for 
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antigens that are hidden from the afferent immune system during normal 

infection (Munn 1997). The target antigens must be inaccessible to the host's 

immune system but must be accessible to antibodies or other immune 

components induced by the vaccination. The advantage of such vaccines is that 

the parasite will not have evolved mechanisms to evade immune responses to 

such antigens. However, the main disadvantage is that continual boosting of the 

immune response through natural exposure would not be expected to occur. 

Despite this there is evidence that vaccination with the hidden antigen Hll does 

confer a long period of immunity (Andrews et aI1997). 

Currently there are successful vaccines against three parasites of veterinary 

importance; D. viviparous, Taenia ovis, and Boophilus microplus. The ftrst two 

consist of natural antigens while the vaccine against the tick B. microplus consist 

of a protein based on the gut membrane protein Bm86 (Willadson 1997). The 

vaccine against Dictyocaulus viviparous (DictoI™) consists of X-irradiated third

stage larvae and is accepted as the best means of control of bovine lungworm 

(David 1999). However, the protective antigens in this vaccine remain unknown. 

In comparison several protective antigens have been identifted from oncospheres 

of T ovis for vaccination of sheep (the intermediate host) although a commercial 

vaccine is not currently available (Newton & Munn 1999). 

Currently a number of antigens are being studied as nematode vaccine 

candidates and several have shown promise in vaccine trials. Most of the work 

on nematode vaccine candidates has focused on H contortus (table 1.2). 

However there are reports of some work that has been done on analogues to 

some of the antigens on H contortus. An equivalent to Hc-sL3 on T 

circumcincta has been identified by both anti-Hc-sL3 antisera and by probes 
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using antibody secreting cells isolated from draining lymph of infected animals 

(Newton & Munn 1999). Similarly the homologues ofHll, H-gal-GP and the 

70kDa cysteine protease in T. circumcincta (012 and O-gal-GP respectively) are 

reported to have been identified and characterised, although there are as yet no 

published details of their efficacy in vaccine trials. 

There is as yet no certainty over the mechanisms of resistance induced by these 

vaccines. In vitro killing of third stage larvae in the presence of anti-Hc-sL3 is 

eosinophil dependent (Ashman et al 1995). Also immunity induced by this 

antigen appears to be IgE independent as animals vaccinated with pertussis toxin 

adjuvant which strongly induces an IgE response abrogated immunity (Jacobs et 

al1995). 
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1.1.5.2 Biological Control 

Biological control is targeted at the free-living stages of the parasite. Two 

means of biological control that have provoked interest are the use of 

nematophagous fungi and species of grass used. 

When the chlamydospores of nematophagous fungi are ingested by 

parasitised animals and excreted in the faeces they develop in the faecal pat and 

produce hyphae that trap and kill developing nematode larvae (Waller & Faedo 

1996). Duddingtonia flagrans appears to survive passage through the ruminant 

gut more efficiently than other nematophagous fungi (Faedo et al 1998) and most 

recent work has focussed on this fungus. Clinical disease has been averted in 

trials where calves naturally infected with 0. ostertagi were given D. flagrans 

(Nansen et aI1995). Feeding lambs infected with predominantly T. circumcincta 

with D. flagrans led to a reduction in newly acquired worm burdens of 62 % 

(Githigia et al 1997). Further work is necessary to determine the optimum dose 

of chlamydospores and the environmental impact of seeding pasture with 

nematode trapping fungi. 

There is some evidence that changing the type of forage fed to lambs 

affects the worm burdens and faecal egg counts of lambs suffering from parasitic 

gastroenteritis. In one study feeding lambs sulla (Hedysarum coronarium) led to 

significant reductions in the worm burdens and faecal egg counts of lambs 

compared to others fed other types of forage (Niezen et al 1998a). It has been 

suggested that plants that contain condensed tannins reduce larval establishment 

and increase nematode mortality (Niezen et al 1998b). However, it remains 

unclear how certain forages might affect parasite nematodes. Condensed tannins 

reduce the amount of protein degradation in the rumen thus increasing rumen 
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bypass protein (Waghorn 1987). It could be that the effect of changing the 

forage is to improve the host's protein digestion, which in turn improves the 

host's immune response. 

1.1.5.3 Genetic Resistance 

The observation that different animals have differing susceptibilities to 

infectious disease is widely recognised. Several investigations have shown that 

sheep can be bred for resistance to gastrointestinal parasites and that individual 

breeds appear to be more resistant to infection than others (Gray & Woolaston 

1991). This increased resistance appears to work through immune responses that 

are more effective. The genetic influence on the immune response is reviewed 

later. 

Genetic resistance can be exploited in several ways. Breeds resistant to 

infection can be used in the place of those that are more susceptible. For 

example, the Red Massai breed is more resistant to H contortus than other 

European breeds (Mugambi 1994). However, for breed substitution to be 

effective the new breed must be acceptably productive. Resistant breeds are 

often smaller and a common perception is that they are less productive than the 

larger, more susceptible breeds. Associated with this is the perception of farmers 

that the new breed is inferior to the larger breed even when evidence to the 

contrary is available. For breed substitution to be effective, the farmers need to 

be persuaded, which can be a difficult task to achieve. 

Resistant breeds can also be exploited by the use of cross-breeding and the 

development ofa composite population (Nicholas 1993). However, there is little 
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published work on the use of such techniques to develop resistance amongst 

sheep to nematode infections. 

Most of the work to use genetic resistance to infection has been the 

selection from within populations of sheep for breeding programmes. The 

success of such programmes depends upon several factors. They include the 

heritability of resistance (generally approximately 0.3 (Stear & Wake lin 1998)), 

the intensity of selection (which must be offset by avoiding inbreeding), the 

genetic variation of the trait within the population, the accuracy of the selection 

process (for example using best linear unbiased prediction methods which uses 

information from relatives), the time from one generation to the next and the size 

of the population. 

1.2 IMMUNITY TO GASTOINTESTINAL PARASITES 

1.2.1 General 

Current opinion generally regards the immunological mechanisms 

controlling gastrointestinal parasites as complex (Miller 1984). Much work has 

gone into developing laboratory models for studying parasitelhost interactions. 

The advantages of using models are clear. They are relatively cheap and 

allow extensive manipulation of host responses by comparing the various 

responses to infection of different strains of host, notably inbred, congenic, 

recombinant inbred, mutant and genetically modified. In addition, the extensive 

knowledge of rodent immune systems and the availability of reagents to 

investigate immune responses have allowed extensive work to be done m 

defming these immune responses. 
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However, despite the undoubted usefulness of rodent models there remain 

limitations to their usefulness. Clearly, models are only indicators of what may 

be happening in the defmitive host/parasite. Any conclusions drawn must be 

confIrmed in the species under investigation. In some cases the parasites under 

investigation are not natural parasites of the model host making the model yet 

more artifIcial. 

It is however worthwhile to identify those major fmdings from models that 

may be pertinent in order to develop a context to look at immune responses to T 

circumcincta and H contortus. 

1.2.2 Disease Models 

1.2.2.1. Heligmosomoides polygyrus 

Adults of H polygyrus are found in the small intestine of the mouse but are 

not thought to be pathogenic. The females are larger than the males with tightly 

coiled bodies. Eggs are passed in the faeces and the larvae hatch and develop 

through 2 moults to infective third stage larvae within 4-6 days. After ingestion 

the larvae lose their sheath in the stomach and migrate to the small intestine 

where they burrow into the mucosa. The larvae moult to adults, 6-8 days after 

infection and can remain viable for several months. 

Infection of mice with H polygyrus is usually chronic (Behnke 1987). 

However, this does not appear to be due to any ability of the parasite to resist 

expulsion mechanisms. For example, Trichinalla spiralis evokes a rapid 

inflammatory response which is suffIcient to cause the expulsion of third stage 

and adult H polygyrus in concurrently infected mice (Behnke et al 1992). 

However, H polygyrus is able to slow down the normal immune response to T. 
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spiralis and thus delay worm expulsion (Behnke et al 1993). This is associated 

with a delay in mastocytosis and a reduction in production by mesenteric 

lymphocytes under mitogen stimulation of IL-9 and IL-10 normally seen during 

T. spiralis expulsion (Behnke et al1992). 

It appears to be adult parasites that modulate the immune response 

(Kurtzhals et al 1998). If infection is stopped before adult parasites develop, 

immunity is developed that is sufficient to prevent the establishment of 

subsequent larval infections (Wahid & Behnke 1992). The mechanism for this 

immunosuppression remains unclear. It may be mediated through impaired 

antibody production (Pritchard et al 1994), suppression of mastocytosis (Dehlawi 

& Wake lin 1988), hypergammaglobulinaemia (Robinson & Gustad 1996), or 

non-specific binding ofIgGl by a superantigen (Robinson et al1997a). 

However, immunomodulation is not seen in all strains of mice. Adult 

worms were used to successfully immunise mice to larval challenge in NIH mice 

but increased susceptibility to infection in an outbred strain of mouse (Pleass & 

Bianco 1994). It would appear some strains of mice are able to overcome any 

immunomodulatory effects of adults. 

Immunity to the parasite can be partially abrogated by a systemic infection 

with Trypanosoma congolense (Fakae et al 1997). Whether this is due to a 

redirecting of the immune response away from a mucosal response towards a 

systemic response or is a reflection of "stress" from concurrent infections 

remains unknown. 

Lymphocytes derived from the thymus are known as T cells. They can be 

divided into two sub-populations according to the expression of the cell surface 

receptors CD4 and CD8. CD4+ cells can be further categorised by the cytokines 
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they produce into Th1 or Th2 cells (Mosmann et al 1986). Although concerns 

about the danger of adhering too rigidly to this model have been raised (Allen & 

Maizels 1997), it remains a most useful model in elucidating basic types of 

immunological response. Th1 responses are characterised by production ofIFN

gamma, IL-2 and lymphotoxin while Th2 responses are characterised by 

production of IL-4, IL-5, IL-9 and IL-10. The Th2 response is generally 

associated with an effective immune response to parasitic infections as measured 

by the control of worm burden and worm fecundity. 

CD4+ cells are essential to the development of effective immunity in mice 

infected with H polygyrus. When mice are given anti-CD4 monoclonal 

antibody, host immunity is totally abrogated (Urban et aI1991a). In addition IL-

4 appears critical to immunity. Treatment with anti IL-4 or with anti-IL-4 

receptor monoclonal antibody increases both parasite survival and fecundity 

(Urban et aI1991b). Similarly treatment with IL-4 decreases fecundity and leads 

to worm expulsion (Urban et aI1995). 

The passive transfer of IgG 1 transfers immunity (Pritchard et al 1983). 

However, treatment with anti-IL-4 monoclonal antibody blocks immunity but 

does not block the polyclonal IgGl response (Finkelman et aI1990). This could 

be because IL-4 is needed either to recruit an essential cell type or for the 

production of parasite-specific IgG 1. The former possibility is supported by the 

observation that the effect on the immune response of passively transferring 

IgG 1 is augmented by the concurrent adoptive transfer of immune mesenteric 

lymph node cells (Williams & Behnke 1983). 

Identification of differences in worm burdens between and within outbred 

populations is often confounded by the large and over-dispersed variation in 
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worm burdens within host populations (Stear et al 1996b). This variation 

imposes on studies of immune responses the need to study large numbers of 

hosts to allow reliable conclusions to be drawn. To reduce this variation, inbred 

strains of mice are often used. However, in mice given primary infections of H 

polygyrus, there was no difference in the variance of worm burdens between 

inbred and outbred strains of mice. This suggests no advantage in using inbred 

rather than outbred strains to control variance (Tanguay & Scott 1992). This is 

in contrast to work with Trichuris muris where outbred lines had a greater 

variance in worm burdens (Wakelin 1975). This may reflect a difference in 

immune induction in that T. muris is able to induce a rapid and effective response 

in the host whereas H polygyrus does not, leading to chronic infections. 

Resistant and susceptible mouse strains are identified through deliberate 

infections. However, doubt has been cast on how representative this is of natural 

exposure. In one study it was found that resistant and susceptible strains when 

allowed to acquire infection naturally harboured indistinguishable parasite 

burdens and had similar faecal egg counts (Scott 1991). No explanation was 

proposed for this observation. 

Most studies involving the effect of diet on immunity have focused on the 

effects of protein and the mineral Zinc (Zn). Diets low in protein are associated 

with poor immune responses (Keymer & Tarlton 1991). However most of the 

studies have concentrated on the effect of severe protein restriction. The normal 

maintenance protein requirement for mice is regarded as 12-14% total diet 

(UP AW 1987). Diets of3% protein have been associated with reduced ability to 

control worm burdens and fecundity (Boulay et al 1998) and diets of 2% 

increased larval establishment compared to mice on 16% protein diets (Slater 
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1988a). For immunisation with irradiated larvae to be successful mice had to be 

on diets of 8% protein or greater (Slater & Keymer 1988). Mice on diets lower 

than this remained unprotected and showed a significant delay in eosinophilia. 

Zn deficiency is associated with increased adult worm burdens (Shi et al 

1995). However typically diets deficient in Zn will contain only trace amounts of 

the mineral (0.75 mg/kg compared to the recommended 30mg/kg). Animals on 

such a diet had reduced IL4, ILIO and IFN gamma, and a reduced eosinophilia 

(Hai et aII997). 

1.2.2.2 Trichinella spiralis 

Trichinella spiralis is a cosmopolitan parasite, able to infect many 

mammals. First-stage larvae are found encysted in muscle. After ingestion of 

infected muscle by a predator or scavenger, the larvae become free and moult 

through four stages within the small intestine to the adult within 4 days. After 

copulation the females burrow deeply into the mucosa via Lieberkiihn's glands. 

The females are viviparous and larvae enter the lymph, and reach the blood 

stream via the thoracic duct. From there they are distributed throughout the 

body. Each larva then enters a striated muscle fibre cell that becomes de

differentiated to form a nurse cell. Within these cells, the larvae grow for a 

number of weeks until they measure approximately Imm when they become 

encysted. Within these cysts the larvae can remain viable for many years until 

ingested by another mammal. 

Resistance to infection is associated with a type 2 immune response. What 

is less clear is which aspects of the Th2 response are important. One of the 

limitations in understanding the immunological responses are the substantial 
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differences in response seen between mice and rats (Bell 1992). This is 

compounded by there being many more reagents to examine the responses in 

mice compared to rats. Therefore, caution must be exercised in drawing parallels 

between the two model hosts and with other hosts. 

During infection in naIve mice there is an initial Th1-type immune 

response (Goyal et aI1994). This is characterised by production ofIFN-gamma 

followed by a switch to Th2 related cytokines ( IL-4 and IL-5) (Ishikawa et al 

1998). The rapidity of this switch appears to be dependent upon the strain of 

parasite used, ranging from 2 to 8 days (Goyal et al 1994). The timing of the 

switch may reflect differences in antigenic profiles. In the closely related species 

Trichinella pseudospiralis this switch takes place much more rapidly (Wakelin et 

aI1994). This may reflect a form ofimmunomodulation, allowing the first-stage 

larvae to establish and develop quickly to adults in order to produce progeny 

while preventing further incoming larvae to establish and compete for this niche. 

IL-4 appears to be involved in adult worm rejection and establishment of 

muscle larvae. Mice treated with ant i-IL-4 receptor monoclonal antibody have a 

small increase in the number of adult parasites surviving and in the number of 

larvae establishing in muscle cells (Finkelman et aI1997). 

IgE is important in parasite estblishment. Rats depleted of IgE had 

increased numbers of muscle larvae (Dessein et al 1981). In addition, IgE 

transferred with immune thoracic duct lymphocytes induced rapid expulsion in 

naIve adult rats (Ahmad et aI1991). These fmdings lend support to a role for IL-

4 in resistance to this parasite as parasite induced IgE production appears to be 

IL-4 dependent (Finkelman et aI1986). 
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IL-5 is a cytokine associated with a type 2 response and interest in it comes 

from its role in the production and activation of eosinophils. However, it seems 

unlikely that eosinophils are active against gut dwelling stages of the parasite in 

vivo. Certainly in mice treated with anti-IL-5 antibody there was no effect on 

parasite burden although there was a clear depletion of eosinophils (Herndon & 

Kayes 1992). This suggests neither IL-5 nor eosinophils are important in 

resistance to infection with T spiralis. 

Expulsion is T-cell dependent requiring the presence of CD4+ cells 

(Grencis et al 1985). However, there are clear differences in the way infections 

are rejected between mice and rats. In immune rats there is a near total rejection 

of parasites within hours and immune memory lasts for several months. In 

comparison, in mice the rejection process is slower. Here, not only are incoming 

larvae rejected a number of days after infection, they are rejected less efficiently 

than in rats, and the immune memory is shorter lasting a matter of days (Bell 

1998). 

Mast cell degranulation is associated with expulsion of the intestinal phases 

of the parasite. Primary infection in both mice and rats causes mastocytosis. In 

mice it lasts a short time after infection whereas in rats it lasts longer. Mice 

require a larger infection to induce mastocytosis compared to rats. However, 

despite their differences while mast cells numbers remain high, there is rapid 

subsequent rejection (Alizadeh & Wake lin 1982a). During expulsion there is an 

increase in the levels of mast cell products; mast cell protease (Woodbury et al 

1984), leucotrienes (Moqbel et al 1987), histamine, serotonin and prostaglandin 

E2 (Castro et al 1987). Blocking stem cell factor receptor (c-kit) by monoclonal 
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antibody prevents mastocytosis and completely abrogates expulsion in mice 

(Grencis et aI1993). 

Variation in the mast cell response is influenced by both host and parasite 

control. Comparison between inbred strains of mice has shown that variation 

between strains involves non-MHC genes (Alizadeh & Wakelin 1982b). The 

differences between resistant and susceptible strains appear to be a consequence 

of how rapidly they mount an immune response. Resistant strains mount more 

rapid responses as measured by IL-2 and IL-3. There appear to be no differences 

between the strains in absolute cytokine levels (Crook & Wake lin 1994). Mast 

cell responses are quicker and greater in high responder mice than in 

intermediate and low responder strains (Tuohy et aI1990). This response is also 

dependent upon parasite strain. Some strains elicit a greater mucosal 

mastocytosis than others (Bolas-Fernandez & Wakelin 1989). 

Further evidence of a role for immediate type hypersensitivity comes from 

serum transfer experiments. Transfer of IgE (Ahmad et al 1991) and IgG1 

(Appleton et a11988) is associated with expulsion of adult parasites from rats. 

During infection, there is a dramatic change in ion transport across the gut 

epithelium and a concomitant increase in fluid secretion. This may act as a 

possible mechanism of rejection through the physical flushing out of larvae 

(Harari et al 1987). When immune rats are exposed to antigen there is an 

increase in smooth wall contractility (Vermillion & Collins 1988) which is 

dependent on mast cell activation and serotonin release although not 

prostaglandin or histamine (Vermillion et al 1988). In addition, the release of 

leucotrienes has been associated with increased smooth muscle contractility, 

vascular permeability, mucus secretion and inflammatory cell activation (Moqbel 
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et al 1987). However, although serotonin does increase fluid secretion this 

increase does not appear to reduce larval numbers in rats. The induction of fluid 

secretion by prostaglandin E2, cholera toxin or hypertonic mannitol does not 

reduce larval numbers in rats (Zhang & Castro 1990). Although there is an 

association between mastocytosis and rejection there remains some doubt as to 

whether this association means that mast cell degranulation is the effector 

mechanism of rejection or is merely indirectly associated with it (Bell 1998). 

Vaccination with larval antigen was able to elicit a normal immune 

response in resistant strains of mice but could not confer resistance in susceptible 

strains (Robinson et al 1995c). The mechanism underlying this difference 

remains unclear, as serum from exposed but susceptible strains is able to confer 

immunity in resistant strains when transferred (Robinson et al 1995b). 

Immunisation with 2 antigens identified from infective larvae was able to 

accelerate expulsion and reduce fecundity in adults (Silberstein & Despommier 

1985b). This was similarly seen in hamsters vaccinated with larval stage antigen 

that showed a marked reduction in fecundity of adult females (Behnke et al 

1994). 

Eosinophils have been suggested as a possible effector mechanism for the 

killing oflarvae (Gansmuller et aI1987). However, studies supporting this have 

concentrated on in vitro killing. In vivo eosinophils appears to have no effect on 

the course of infection. Eosinophilia can be prevented by treatment with anti-IL-

5 monoclonal antibody without any effect on worm burdens and muscle larvae 

establishment after reinfection (Herndon & Kayes 1992). 

There is an increase in goblet cell hyperplasia soon after infection and this 

may be a Th2 driven response to infection (Ishikawa et al 1997). Certainly 
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intestinal mucus has been implicated in preventing the establishment of 

infections through the phenomenon of mucus trapping. It had been suggested 

that larvae trapped in mucus are unable to penetrate the mucosa. Larvae released 

from muscle become coated with antibody, which increases entrapment in mucus 

(Carlisle et al 1991a). However, it appears that mucus entrapment may not be 

the main mechanism underlying expulsion in rats. In vitro entrapment can occur 

with antibodies of specificities that are not protective in vivo (Carlisle et al 

1991b). Therefore, although mucus may playa role in helping to prevent 

infection it is not the primary effector mechanism in the rapid expulsion seen in 

rats. 

Concurrent infection with H polygyrus reduces the protective Immune 

response to T spiralis (Behnke 1987). This may be due to the 

immunomodulatory effects of adult H polygyrus or may result from the non

specific effects of parasitism causing a general reduction in ability to mount 

effective immune responses. Certainly a priming infection with H polygyrus 

will lead to the rapid expulsion of a primary infection of T spiralis in rats 

previously immunised with larval antigen (Bell & McGregor 1980). Conversely, 

the immune response to T spiralis infection is capable of removing adult H 

polygyrus (Behnke et al 1992). Again this may simply result from the release of 

the products of mast cell degranulation having a general effect. However, there 

is cross reactivity between antigens on H polygyrus and T spiralis (Robinson et 

aI1997b). This appears not simply to be due to one conserved immunodominant 

protein produced by both species as the same epitope is recognised on several 

dissimilar proteins. The biological significance of this remains unclear although 
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it has been suggested that this cross-reactivity accounts for some of the 

interactions seen in concurrent infections. 

Adequate Zn nutrition is a necessary mineral for effective cellular 

immunity (Tizard 1992). When rats were put on Zn deficient diets there was 

decreased expulsion of infection, which was abrogated when given normal 

quantities of Zn (Fenwick et al 1990). However the practical significance of this 

remains uncertain as the animals were severely Zn deficient. 

1.2.2.3 Trichuris muris 

The life cycle of T muris is simple and direct. Non-embryonated eggs are 

passed in the faeces and develop to the first larval stage, which remains within 

the egg. After ingestion the larvae hatch and penetrate the mucosa of the small 

intestine where they develop for 2-10 days. They then emerge back into the 

lumen and move to the caecum and colon where they again partially penetrate 

the mucosa. Here they develop to adults 3-4 months later. The females are 

highly fecund each laying up to 2000 eggs per day. 

The mechanisms of resistance remain unclear. For the host to develop 

resistance it must mount a Th2 response (Else et aI1993). Treatment of resistant 

mice with anti-CD4+ monoclonal antibody will abrogate resistance allowing the 

development of fecund adults (Koyama et al 1995). Those strains of mice that 

mount a Thl type response become chronically infected. However, this 

susceptibility can be abrogated by treatment with an anti-lPN-gamma 

monoclonal antibody (Else et al 1994). Conversely, treatment with IL-4 

facilitates expulsion in susceptible strains of mice. This is supported by evidence 

that treatment of resistant strains with IL-12 leads to susceptibility to chronic 
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infection (Bancroft et aI1997). IL-12 drives the immune response toward a Thl 

type response characterised by the production of interferon gamma. 

It is noteworthy that mice lacking a functional gene for IL-4 are still 

capable of expulsion (Finkelman et al 1997). This is in direct contrast with H 

polygyrus where mice with a non-functional IL-4 gene are incapable of expelling 

the infection. These fmdings suggest that mice could have an alternative 

pathway to develop an effector mechanism against T. muris but not for H 

polygyrus. 

Vaccination with adult worm antigen can lead to effective immunity in 

some strains of mice. This immunity is associated with a parasite-specific IgA 

production. Those strains of mice that remain unprotected do not mount an IgA 

response (Robinson et aI1995a). Work done with monoclonal antibodies raised 

against antigens on T. muris has shown that immunity as measured by worm 

burdens could be transferred by two IgA monoclonals recognising stichocyte 

granules (Roach et aI1991). Stichocyte granules are believed to be important in 

either tissue penetration or in feeding. Interestingly there is a correlation 

between humans with IgA deficiency and heavy infections with the similar 

human parasite Trichuris trichiura (Bundy 1988). However, it appears that 

expulsion of infection is not an antibody dependent event. Reconstitution of 

severely immunodeficient mice with CD4+ T cells led to expulsion of worms 

without any antibody responses (Else & Grencis 1996). However, this study 

only looked at IgG 1 and IgG2a responses. 

Mast cells are thought not to playa significant role in expulsion as their 

accumulation is similar in resistant and susceptible strains of mice; accumulation 
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of mast cells occurring approximately 3 days after expulsion (Lee & Wake lin 

1982). 

Finally it should also be noted that the outcome of infection is not just a 

product ofthe host's ability to mount an appropriate immune response. Different 

isolates of parasite are able to induce different responses in the same mouse 

strains (Bellaby et al 1995). Some isolates elicited a predominantly Th1 type 

response characterised by IgG2a and IFN-gamma production whereas other 

strains led to a Th2 response profile characterised by IgG 1 and IL-5 production. 

1.2.2.4 Nippostrongylus brasiliensis 

The life cycle is simple and direct with eggs passed in the faeces. Larvae 

hatch within 24 hours and develop to infective third stage larvae. The larvae 

enter the host through skin penetration and migration through the tissues to the 

lungs. Here they develop to fourth-stage larvae forming eosinophilic 

granulomas. From there, they emerge into the bronchi and trachea and are 

subsequently coughed up and swallowed. Within the small intestine, they 

develop to adults. The pre-patent period is 6-8 days. Infection lasts for 

approximately 10 days after infection in immunocompetant mice. 

Expulsion is a Th2 dependent phenomenon. This is supported by the 

observation that treatment with IFN-gamma or IL-12 increases fecundity and the 

time course of the infection (Urban et al 1996). IL-12 promotes IFN-gamma 

production and it is thought that it is through this mechanism that IL-12 affects 

infection. Treatment with IL-12 has minimal effects in mice concurrently given 

anti-IFN-gamma monoclonal antibody (Finkelman et al1997). This effect ofIL-
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12 is reversible. Discontinuation of treatment leads to reversion to a Th2 

cytokine profile. 

The role of IL-4 is somewhat different in infection in N brasiliensis 

compared to H polygyrus and T spiralis. Treatment with IL-4 does cause 

expulsion of the parasite in SCID mice (Urban et al 1995) and is B cell, T cell, 

leukotriene and mast cell independent (Finkelman et al 1997). Treatment with 

exogenous IL-4 leads to an initial decrease in parasite fecundity followed by 

caudal migration and expulsion of live parasites (Urban et al 1995). This may 

suggest that the effect on the parasite is a nutritional one. Certainly expelled 

parasites are not dead, and can recover if transferred to naive mice (Kassai et al 

1987). However, IL-4 is not necessary for expulsion. Anti-IL-4 monoclonal 

antibody does not prevent expulsion of adult parasites (Madden et al 1991) and 

mice deficient in IL-4 are able still to expel larvae as quickly as normal mice 

(Lawrence et al 1996). Although mice with abrogated CD4+ cell function are 

unable to expel parasites, when they are treated with IL-4 they can. This 

suggests that the mouse immune system has at least two separate methods of 

expelling this parasite, one that is IL-4 dependent and one that is not. Which 

method is used in normal infections remains unclear. 

One possible mechanism whereby IL-4 leads to expulsion would be if it 

acted directly on the parasite. However, this seems unlikely. Antibody to mouse 

IL-4 receptor blocks expulsion due to exogenous IL-4 in mice (Urban et aI1993). 

However, anti-mouse IL-4 receptor does not bind to rat IL-4 receptor. If IL-4 

acted directly on the parasite it would be expected that the parasite would have 

evolved a rat-like IL-4 receptor as rats are its natural host. In addition, 

exogenous IL-4 fails to cause expulsion in mice treated with anti-CD4+ 
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monoclonal antibody that are defective in the IL-4 signal transduction molecule 

Stat6 (Urban et al 1998). If IL-4 acted directly on the parasite, exogenous IL-4 

would still be expected to cause expulsion. Interestingly it has been suggested 

that IL-13 which acts through Stat6 may have a similar role in expulsion to IL-4. 

These 2 cytokines may act similarly to cause expulsion, with IL-13 fulfilling the 

role of IL-4 in deficient mice. Although anti-IL-4 receptor does block IL-13 

receptor it may not do so efficiently. Alternatively Stat6 may signal for an as yet 

unidentified cytokine (Finkelman et aI1997). 

Mast cells are not necessary for expulsion of N brasiliensis. W/Wv mice 

that are deficient in mast cells are still able to expel parasites although they are 

slower than normal mice (Mitchell et al 1983). The reason they are slower may 

not be due simply to their mast cell deficiency as reconstitution of mast cells 

does not speed up expulsion (Maeda et aI1992). It is known that such mice have 

other physiological abnormalities. Indeed there is evidence that mast cell 

hyperplasia may be beneficial to the parasite. In rats given stem cell factor there 

is an increase in jejunal mast cells and an increase in faecal egg output 

(Newlands et al 1995). It could be that increased permeability of the mucosa 

induced by mast cell degranulation increases the food available to the parasite for 

the short time it is resident in the gut. 

During the initial stages of infection, there is a suppression of mucosal 

mast cells (Raig et aI1994). Initially, there is a Thl type response characterised 

by mitogen stimulated mesenteric lymph node cells secreting IFN-gamma. This 

is quickly followed by a switch to a Th2 response characterised by secretion of 

IL-5 under the same conditions (Ishikawa et aI1998). This is similar to that seen 

in T. spiralis infection (Goyal et al 1994) and it may represent an 
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immunomodulation by the parasite to allow for development to take place for the 

short time it is resident in the host. 

As with the other parasites commonly used in models, N brasiliensis 

induces IL-5 production and eosinophilia. Antibody directed against IL-5 

suppressed blood eosinophilia and lung infiltration by eosinophils (Coffman et al 

1989). However such treatment had no effect on the numbers of parasites within 

the gut, although there is some evidence that treatment increased killing of lung 

stages (Dent L., cited in (Finkelman et aI1997)). 

Free radical production has been associated with rejection of the adult 

worm burden (Smith & Bryant 1989a). Further evidence comes from the 

observation that treatment with butylated hydroxyaniso Ie, which scavenges for 

reactive oxygen intermediates inhibits expulsion (Smith & Bryant 1989b) 

(although butylated hydroxyanisole has other metabolic effects). The source of 

these free radicals remains unclear. Eosinophils remain a strong candidate for 

their production and it may be that the free radical response is associated with the 

eosinophil response to lung stages and is only temporally associated with 

expulsion. 

1.2.2.5 Schistosomes 

Schistosomes are trematodes of widespread medical and veterinary 

importance. Although they are biologically very different from the nematodes, a 

brief review of their host-parasite interactions is valuable in casting light on 

possible immune mechanisms that may be relevant to the study of both T. 

circumcincta and H contortus. 
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The life cycles are indirect involving susceptible snail and warm-blooded 

vertebrate hosts. Eggs are passed in the faeces (in the case of Schistosoma 

mansoni and Schistosoma japonicum) or in the urine (Schistosoma 

haematobium). Free-swimming miracidia hatch from the eggs on contact with 

water. The miracidia penetrate the soft tissues of the snail host where they 

reproduce asexually to form sporocysts over several generations. These 

sporocysts develop into free swimming cercariae, which leave the snail and 

penetrate the skin of the host. After penetrating the skin, they migrate into the 

blood stream via subdermal capillaries. In the blood stream they are carried 

throughout the body but preferentially locate in the lungs. From there, they 

migrate to the liver where they enter the portal blood vessels. From here, they 

are carried to the vasculature surrounding the intestine or in the case of S. 

haematobium, surrounding the bladder. Once at their preferred site, the mature 

schistosomes lay their eggs, which are excreted into the intestinal or bladder 

lumen. Many of the eggs enter the circulation and lodge in various tissues. Here 

a granulomatous reaction is set up. It is these granuloma that account for much 

of the associated disease. 

An interesting original observation was that thymectomised mice infected 

with S. mansoni passed far fewer eggs than did infected immunocompetant mice 

(Doenhoff et al 1979). The numbers of faecal eggs could be increased by 

administering T cells from normal infected animals. It has been suggested that 

this effect may be a consequence of the T cells producing tumour necrosis factor 

a (TNF-a). Evidence for this comes from work involving infected SCID mice, 

which normally fail to excrete faecal eggs. When injected with recombinant 

TNF-a, faecal egg excretion was restored and egg production of female 
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schistosomes was increased (Amiri et al 1993). TNF-a analogues have been 

identified in invertebrates and it is possible that mammalian TNF-a has a direct 

effect on the parasite (Pearce 1995). 

Original work looking at immune sera of rats identified a 28kDa band that 

was associated with resistance (Capron 1992). It was subsequently identified as 

a glutathione s-transferase (GST). The most profound effect of using 

recombinant GST as a vaccine candidate was reduced fecundity of the parasite 

and reduced survival of eggs passed in the faeces (Xu et al 1993). IgA specific 

to this antigen appears to be an effector mechanism of resistance associated with 

this molecule (Grzych et aI1993). 

An important corollary of the fmding that the immune response to the 

parasite can reduce fecundity is that faecal egg counts may not be an accurate 

measure of infection intensity. For example high worm-specific IgE responses 

have been associated with reduced faecal egg counts amongst people living in 

endemic areas. The original assumption was that this represented a reduction in 

worm burden (ButterwOlth 1994). While it seems likely a parasite-specific IgE 

response does reduce worm burden (Hagan 1996), the suppression of parasite 

fecundity by immune individuals would need to be taken into account in order to 

understand the relative contribution of each to resistance (Pearce 1995). 

Interestingly there remains some controversy over the precise role of the 

IgE response to the parasite. The production of parasite-specific and parasite 

non-specific IgE is well recognised as often being associated with helminth 

infections (Jarrett & Miller 1982). However, there is uncertainty concerning the 

role of helminth induced non-specific IgE. It has been suggested that this may 

benefit the parasite by saturating FCe receptors. Therefore on mast cells this 

36 



would reduce parasite induced degranulation, on eosinophils and macrophages it 

would reduce antibody dependant cellular cytotoxicity, and on B-cells it would 

prevent them presenting antigen via IgE bound to CD23 (Pritchard 1993). 

Conversely this increase in non-specific IgE production may be a necessary host 

response to reduce the risk of anaphylaxis which could result from 

hyperreactivity to parasite antigen (Hagan 1993). 

1.2.3 Immunity to Gastrointestinal Parasites in Sheep 

The effectiveness of the mucosal immune response on gastrointestinal 

parasites is measured by its ability to control worm burdens, worm fecundity and 

worm development. The control of worm burdens can be through the control of 

incoming larvae by preventing their establishment (Miller et al 1983), the 

expulsion of developing larvae (Emery et al 1993) or through the rejection of 

adults (Miller 1984). 

As is evident from work with models, the development of immunity to 

helminths appears to vary between parasites and hosts in terms of both speed and 

mechanism. Although the initiation of immune responses is antigen specific, the 

mechanism underlying worm expulsion can have non-specific effects on other 

nematodes present in the same or distal part of the alimentary tract (Dineen et al 

1977). 

It is clear that the immune response to gastrointestinal parasites in 

ruminants is T cell dependent. Sheep immune to H contortus can have their 

immune response partially abrogated after treatment with anti-ovine CD4+ 

monoclonal antibody (Gill et al 1993a). No comparable effect is seen when the 

sheep are similarly depleted of CD8+ cells. However, there remains little 
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information on the process of antigen presentation, cellular recruitment and the 

role of regulatory cytokines in the immune responses to parasites in ruminants. It 

is generally assumed that the effector immune responses in ruminants follow a 

Th2 type response as seen in rodent models. This is supported by typical Th2 

type responses such as eosinophilia, mastocytosis and IgE production seen in 

helminth infected sheep and cattle (Miller 1984). 

Blood and tissue eosinophilia is a typical characteristic of helminth 

infections (Rothwell 1989). The function of eosinophils in mucosal parasites 

remains unclear. In mice their generation in the bone marrow is IL-5 dependent 

and they have been associated with protection against parasites migrating 

through tissues (Rothwell 1989). However there remains no conclusive evidence 

that that they are required for protection against gastrointestinal helminths 

(Miller 1996). Indeed, they have been associated with some of the detrimental 

effects of parasitism. There is an association between the levels of infiltration of 

eosinophils and diarrhoea in T. colubriformis infected sheep (Larsen et al 1994). 

In lambs infected with T. circumcincta, the number of submucosal eosinophils is 

associated with the degree of abomasal pH elevation. Those lambs with more 

eosinophils have a higher pH (I. Scott personal communication). 

Mast cells have often been implicated as an effector mechanism in the 

control of helminth burdens (Huntley et al 1987). The number of T. 

circumcincta parasites is associated with the numbers of globule leukocytes in 

animals over 6 months of age. In contrast worm burden is not associated with 

parasite specific IgM or IgG, numbers of peripheral eosinophils or the numbers 

of mucosal mast cells (Seaton et al 1989; Stear et al 1995). Those sheep with 

increased numbers of globule leucocytes have significantly fewer parasites. As 
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globule leucocytes are generally regarded as discharged mast cells (Murray et al 

1968), it would appear that control of T circumcincta worm burdens can be 

mediated through an immediate hypersensitivity response involving the 

discharge of mast cells. Although similar accumulations of mast cells have been 

associated with resistance of sheep to H contortus (Amarante et al 1999), there 

remains some doubt over their precise role in the control of this parasite. There 

is no unequivocal evidence of a role for mast cells in immune exclusion (Huntley 

et al 1992) and there are often poor correlations between numbers of 

intraepithelial globule leucocytes and mucosal mast cells (Seaton et al 1989). In 

sheep infected with T colubriformis there is a strong association between the 

numbers of globule leucocytes (G.L.) and worm burden (Douch et al 1986). 

Treatment of resistant sheep with dexamethasone abrogated resistance and led to 

decreased G.L. numbers. 

Mucosal mast cells may affect parasite loads in any of three ways. Firstly, 

they may be directly anti-parasitic. They can release a variety of low molecular 

weight mediators after attachment to IgE cross-linked with antigen. These 

mediators may have direct detrimental effects on the parasites' survival. 

Secondly, chymases released systemically and into the gut lumen increase gut 

permeability which would allow the leakage of plasma antibody into the gut 

lumen (Jones et a11994; Scudamore et aI1995). Thirdly, mast cells are a major 

source of cytokines and they may play an important role in the coordination of 

local immune responses through the production of cytokines such as IL-4, IL-5, 

and IL-6 (Miller 1996). 

Sheep possess three IgG subtypes, IgG1, IgG2 and IgG3 (Tizard 1992). 

IgG 1 is the predominant subtype found at mucosal surfaces. Increased levels of 
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IgG1 have been associated with resistance to H contortus (Gill et aI1993a). The 

mechanism by which IgG 1 may confer immunity remains unclear. In goats 

infected with T co lu briform is, anti-parasite IgG 1 was associated with decreased 

feeding by parasites incubated in vitro (Bottjer et al 1985). This effect was 

reversed after washing the parasites. 

IgG can stimulate the degranulation of mast cells. Immunity to T 

colubriformis was associated with increased levels of mucus IgG1, IgG2 and 

globule leukocytes (McClure et al 1992). However, mast cell products could 

cause leakage of proteins into the gut lumen. This could also account for 

increased gut antibody levels. Nonetheless, IgG 1 is regarded as a good marker 

for resistance to T colubriformis. Indeed parasite-specific IgG 1 titres have been 

suggested as phenotypic markers for the selection of genetically resistant sheep 

to T. colubriformis (Douch et al 1996). However, in cattle infected with 0. 

ostertagi, rising IgG 1 titres were not associated with immunity (Hilderson et al 

1995). Interestingly there was a negative correlation between IgA and IgG1 

responses in sheep to T circumcincta (Sinski et al 1995). IgA may have a role in 

resistance to this parasite in lambs (Stear et al 1995). Therefore, the negative 

relationship between IgA and IgG 1 in animals infected with T circumcincta 

would cast doubt on whether IgG 1 plays a role in immunity to T circumcincta at 

least in lambs. 

IgE has been associated with developing immunity to H contortus 

(Kooyman et al 1997). In this experiment increased total serum IgE and IgE 

directed against parasite excretory/secretory product were correlated with 

decreased worm burdens. However, there was no IgE response detected against 
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third-stage larvae. This would suggest that immunity involving IgE may not be 

directed at incoming larvae. 

In cattle infected with 0. ostertagi the influence of IgE on infection is 

poorly defined. There is evidence that the level of lymph IgE is negatively 

correlated with parasite burden (Baker & Gershwin 1993). However, there is 

conflicting evidence for the relationship between infection levels and total serum 

IgE. A high level of infection resulted in elevated IgE compared to calves 

exposed to lower levels (Miller et al 1996). In contrast, in a different 

experiment, higher IgE responses were seen in calves moderately infected 

compared to calves given higher infections (Baker & Gershwin 1993). 

IgA production is increased in lambs selectively bred for resistance to H 

contortus (Gill et al 1994). In sheep infected with T. circumcincta, local 

parasite-specific IgA was correlated with worm length (Smith et al 1985). Four 

experiments were recorded, two involving 4.5 month-old lambs and two 

involving 10 month old lambs. When the data was pooled the correlation 

between mean worm length and peak lymph IgA was 0.96. However, 

correlations between age groups can be misleading. Older lambs have shorter 

worms on average than younger lambs and younger lambs have generally lower 

immune responses than older lambs. Therefore, any parameter that varies with 

age will give strong correlations with worm length. 

During lactation, resistance to helminth infections is often poorer. 

However, sheep infected with T. circumcincta have increased levels of IgA in 

gastric lymph during lactation (Smith et al 1983). This would suggest that the 

depression in immunity seen at this time is not due to decreased IgA production, 
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although this does not rule out the possibility of impaired transport of IgA to the 

mucosal surface. 

Because of the association between IgA and worm length it is postulated 

that anti-parasite IgA works through interfering with the feeding of the parasite 

(Stear et al 1995). IgA may also work indirectly by binding to inflammatory 

cells in the mucosa provoking the release of cytokines. In humans IgAiantigen 

complexes induce eosinophils to release IL-5 (Dubucquoi et aI1994). Thus IgA 

may act indirectly in the orchestration of immune responses at mucosal surfaces. 

1.2.4 Factors that Influence the Immune Response in Sheep 

1.2.4.1 Sex 

In a wide variety of vertebrate hosts the sex of the host influences the 

infection rate, intensity of infection and rate of development of resistance to 

parasitic infection (Poulin 1996). Male animals are usually more susceptible to 

infection and develop resistance less quickly than females (Zuk & McKean 

1996). Entire male sheep were found to be more susceptible to infection with 

Oesophagostomum columbianum than entire females (Dobson 1964). Castration 

of females but not males reduced this sex difference. Other studies have 

suggested that castration of males does increase resistance to infection (Barger 

1993). These sex differences can theoretically be attributed to several factors. 

They could be due to differences in physiology between the sexes, differences in 

behaviour, differences in farm animal management or differences in the rate of 

ingestion of parasites. 

Four possible physiological mechanisms have been proposed for the sex 

differences in susceptibility to parasitism. They are the deleterious effect in 
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males of being the heterogametic sex, the effect of stress, the direct effects of sex 

steroids on the parasite, or indirect effects of steroid hormones on the immune 

system. 

The heterogametic hypothesis is based on the supposition that deleterious 

recessive alleles normally masked in the homogametic sex would have an effect 

in males because only one of their sex chromosomes is fully functional. 

However, in birds where the females are heterogametic there still remains the 

same sex effects as are seen in mammals i.e. female birds are more resistant to 

infection than males (Poulin 1996). 

Stress is widely recognised to have deleterious effects on immune 

responses. Stress responses have typically measured the release of 

corticotrophin-releasing hormone from the hypothalamus, which triggers the 

release of adrenocorticotrophic hormone by the pituitary which in turn act on the 

adrenal gland to produce glucocorticosteroids such as cortisol (Ganong 1987). 

Glucocorticosteroids have wide ranging effects on immune responses (Khansari 

et al 1990), suppressing antibody production, reducing cytokine release, and 

blocking lymphocyte proliferation. Treating sheep with cortisone can abolish 

immunity to T. circumcincta (Dunsmore 1961). It seems probable that males 

generally lead more stressful lives, particularly during breeding seasons by 

undergoing stress through antagonistic encounters with other males and in 

pursuing and mating females. Whether this may be an underlying reason for sex 

differences is uncertain and will be difficult to disentangle :Ii'om other 

confounding effects of sex steroids on resistance. 

Sex steroids could act directly on the parasite or indirectly by acting on the 

immune system. However, it is difficult to distinguish the two effects in a 
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parasitised animaL Certainly in laboratory animal models, physiological levels 

of oestrogens stimulate humoral responses while androgens suppress both 

cellular and humoral responses (Zuk & McKean 1996). For example, females 

tend to have higher levels of circulating antibody, and more active cell-mediated 

immune responses such as graft rejection (Grossman 1989). 

In summary, although sex differences in susceptibility and resistance to 

parasite infection are clear the mechanisms underlying these differences remain 

to be fully identified. 

1.2.4.2 Host Age 

Age is widely recognised to influence the ability of animals to mount 

effective immune responses to a wide variety of pathogens. Ruminants less than 

six months of age are generally more susceptible to many infectious agents than 

when mature. They are much more susceptible to viral, bacterial and parasitic 

intestinal and respiratory pathogens (Colditz et al 1996). The possible reasons 

for this include not having been previously exposed to the agent to develop 

active immunity, the suppressive effects of passively acquired maternal antibody 

or stress associated with early life such as weaning. However when these factors 

are taken into account there still appears to be a constitutive immunological 

hyporesponsiveness to infection (Watson & Gill 1991). Young lambs have 

significantly lower proportions of CD4+ and CD8+ lymphocytes though greater 

proportions ofB cells and T19+ lymphocytes (Watson et aI1994). Sheep less 

than a year old mount significantly poorer antibody and T cell responses to 

various antigens and mitogens in comparison to older sheep (Watson et al 1994; 

Watson & Gill 1991). 
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However young lambs are able to mount sufficient immune responses to a 

variety of antigens to confer immunity. For example, vaccination with 

inactivated clostridial and pasturella vaccines confers solid immunity to these 

pathogens. Work on mice models has challenged the widely held view that 

neonates are immunologically privileged but that they are able to generate 

immunity provided that antigen is correctly presented to T cells (Forsthuber et al 

1996). This would suggest that the hyporesponsiveness seen in young animals 

may not result from their immune system being immunoincompetent but rather 

from a lack of adult numbers of immune cells. 

1.2.4.3 Host genes 

It is conmlOnly acknowledged that individuals within a species are not 

equally susceptible to disease. Some individuals show resistance (either partial 

or total) while others show increased susceptibility. Variation in disease 

resistance to a wide variety of pathogens is seen both within and between breeds 

of most of the domestic animals (Owen & Axford 1991). Variation in resistance 

to gastrointestinal parasites is well recognised in sheep (Stear & Murray 1994) 

with substantial differences both within and between breeds. Further to this, 

selective breeding experiments and laboratory studies have indicated a genetic 

basis to resistance (Wakelin & Blackwell 1993). 

Apparent differences between breeds may be a consequence of genetic 

variation within breeds. Sampling error might result in selecting relatively 

resistant sheep from one breed and relatively susceptible sheep fi.-om another 

when in reality both breeds have a similar range of susceptibilities. However, 

there do appear to be real breed differences particularly in susceptibility to H 
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contortus. For example, Red Maasai sheep are consistently more resistant to H 

contortus infection than other East African breeds such as the Dorper and the 

Blackhead Somali (Mugambi 1994). 

Resistance may involve both innate and acquired mechanisms. Innate 

responses do not involve immunological mechanisms but are a consequence of 

the host being physiologically unsuitable for the pathogen to either establish or 

develop (Stear & Wake lin 1998). However, there is no evidence that innate 

resistance accounts for the genetic resistance seen in sheep to Teladorsagia 

circumcincta. In very young lambs, there is little or no genetic variation in faecal 

egg counts. As lambs age, heritability estimates increase until at 6 months of age 

the heritability of faecal egg counts is 0.22 (Bishop et al 1996a). This indicates 

that breeding for resistance to this parasite involves selecting for those animals 

more able to mount effective immune responses to the parasite. 

1.2.4.4 Nutrition 

There is a dynamic relationship between host nutrition and parasitism. 

Infection has important effects on host nutrition and the plane of host nutrition 

influences the severity and course of infection. 

In parasitic gastroenteritis there is an increased loss of endogenous protein 

into the gastrointestinal tract through leakage of plasma protein, increased 

turnover of epithelial cells, and mucoprotein secretion (Parkins & Holmes 1989). 

In sheep infected with H contortus most of this protein loss will be reabsorbed 

further down the gastroinestinal tract though partly as non-protein nitrogen 

(Rowe et al 1988). There is however an energy cost to the host in recycling 
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endogenous protein and the gross efficiency of use of metabolisable energy is 

decreased (Sykes & Coop 1977). 

Infection also affects host nutrition by reducing voluntary food intake 

(Symons 1985). The mechanisms for this remain unclear. Interest has recently 

focused on the effects of gastrointestinal hormones and factors influencing 

satiety centres in the central nervous system. 

Cattle infected with 0. ostertagi show an association between inappetance 

and elevated gastrin concentrations (Fox et al 1989a; Fox et al 1989b). This is 

consistent with the expectation that in infected animals, elevated abomasal pH 

would stimulate the release of gastrin. When treated with omeprazole, which 

inhibits gastric acid secretion and thus increases blood-gastrin, worm-free calves 

exhibited reduced feed intake (Fox et al1989c). 

In cattle infected with 0. ostertagi, gastrin levels increase at the same time 

as pH supporting the hypothesis that elevated gastrin is a consequence of 

elevated pH (Enterocasso et al 1986). However in sheep infected with T. 

circumcincta, gastrin levels become elevated before abomasal pH, and the 

elevated pH occurs when the sheep are infected with larval and adult stages 

(Anderson et al 1985). This suggests that elevated pH in sheep is not simply a 

consequence of loss of parietal cell function due to fourth-stage larvae occupying 

gastric glands nor that elevated gastrin levels are a consequence of increased 

abomasal pH. Therefore, caution should be exercised in drawing parallels 

between cattle infected with 0. ostertagi and sheep infected with T. 

circumcincta. 

Cholecystokinin release had been thought to be a candidate mechanism for 

depressing food intake but this now seems unlikely. Adding a potent CCK 
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antagonist had no effect on short-term food intake in infected lambs infected with 

T. colubriformis (Dynes et aI1998). 

Parasitism appears to affect the functioning of the hypothatlamus. In rats 

infected with Nippostrongylus brasiliensis, anorexia is accompanied by increased 

neuropeptide Y gene expression in the hypothalamic arcuate nucleus (Horbury et 

al 1995). If the satiety centre within the hypothalamus is blocked with a 

benzodiazepine drug, feed intake is increased in sheep infected with 

Trichostrongylus colubriformis (Coop & Holmes 1996). 

Host nutrition has important effects on the parasite and the detrimental 

effects of parasitism on the host. Improving nutrition improves both resilience to 

the effects of parasitism and resistance to the parasite. 

Improving protein nutrition improves resilience to haemonchosis. In one 

experiment 3 month-old Finn-DorsetlDorset Hom castrated male lambs infected 

with H contortus were put on either a high-protein diet (169g crude protein/kg 

dry matter) or a low protein diet (88g crude protein/kg dry matter). Those lambs 

on the low protein diet exhibited more clinical signs of haemonchosis than the 

high protein diet (Abbott et al 1986b). This was despite the diets having no 

effects on parasite establishment, worm burden or faecal egg counts. 

Although improved nutrition does not appear to improve parasite 

establishment in parasite-naIve sheep (Coop & Holmes 1996), it does increase 

the rate of acquisition of resistance. An original observation made with naturally 

infected sheep was that chronic haemonchosis is associated with reduced feed 

quality in Kenya (Allonby 1974). This has subsequently been supported by 

experimental evidence that improving protein nutrition improves resistance to 

further infection with H contortus (Abbott et al 1988). Similarly in lambs 
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infected with Trichostrongylus colubriformis, protein supplementation improved 

resistance to infection as measured by worm burdens and faecal egg counts 

(Kambara et al 1993). In both these cases the improvement was only seen in 

lambs less than 6 months of age. 

The method by which improved diet affects the immune response remains 

unclear. Protein supplementation did not significantly increase the degree of 

leucocyte responsiveness to mitogen or parasite antigen in lambs infected with T 

colubriformis (Kambara et al 1993). However supplementation did increase the 

numbers ofT19+ (CD4-ICDS-) cells (Kambara & McFarlane 1996). 

The rate of expulsion of T colubriformis has been associated with the 

amount of dietary rumen bypass protein in 3 month old Merino lambs. Those 

with greater proportions of rumen bypass protein had increased rates of 

expUlsion (Van Houtert et aI1995). In this experiment, expUlsion was associated 

with peripheral eosinophilia and increased mucosal mast cell proteases (MCP) 

although expulsion preceded the increase in MCP. Similarly lambs trickle 

infected with T circumcincta and directly infused with protein into the 

abomasum showed increased levels of gastric mast cell protease in the 

supplemented group compared to the controls (Coop et al 1995). Those lambs 

with increased MCP had more fourth-stage larvae and lower total worm burdens. 

In a similar experiment with T circumcincta, protein supplementation increased 

the numbers of mast cells, globule leucocytes and the concentration of MCP 

while worm burdens and faecal egg counts were reduced (Coop & Holmes 

1996). 

In lambs given fish-meal supplementation and infected with Nematodirus 

battus there was an enhanced anti-worm IgG response together with increased 
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mucosal globule leucocytes and eosinphils although there was no significant 

effect of supplementation on worm burden (Israf et al 1996). 

1.3 OBJECTIVES OF THIS STUDY 

T circumcincta and H contortus are two of the most important parasitic 

infections of sheep in the world. Although both can be controlled by the use of 

anthelmintics and grazing management, the rapid evolution of resistance to drugs 

(Jackson 1993) and the impracticability of control through management 

necessitates the development of new means of control. A variety of additional 

methods have been proposed to supplement existing control strategies. These 

include the use of genetically resistant sheep (Stear & Murray 1994), improved 

diets (Holmes 1993), the use of nematophagous fungi (Waller et al 1994), and 

the development of vaccines (Emery & Wagland 1991). The applicability of all 

of these methods will be greatly helped by a better understanding of the 

interaction between parasite and host and the identification of the major factors 

that influence that interaction. It is the general purpose of this thesis to look at 

some of the host parasite interactions involving sheep infected with T 

circumcincta and H contortus and to set this work in the context of the wider 

field of parasitology. 

It is well recognised that some lambs develop immunity to infections more 

quickly and effectively than others as measured by faecal egg counts, and that 

this resistance is heritable. However, the mechanisms underlying this resistance 

for each of the parasites remain unclear and controversial. One of the objectives 

of this work was to attempt to examine whether the local IgA response to T 

circumcincta was associated with resistance. Further to this was an attempt to 
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draw conclusions as to whether it was likely to be the controlling mechanism for 

resistance or merely associated with another as yet unidentified mechanism. 

The specificity of the IgA response was examined to attempt to identify 

antigens that might be associated with resistance or susceptibility. The goal of 

this work would be either to use antigens associated with resistance as vaccine 

candidates or to develop more efficient selection criteria for future breeding 

programmes that incorporated resistance traits. 

One of the major factors that allows T circumcincta to be so successful is 

its ability to go into inhibition. It has often been postulated that two factors 

involved in larval inhibition are the immune response and the infection intensity. 

Previously exposed lambs given new infections have a greater proportion of their 

parasite burden in inhibition than naively infected lambs (Smith et aI1984). This 

suggests an immunological mechanism underlying inhibition. However, the 

mechanisms underlying this are unknown. To investigate whether the IgA 

response may have a role to play in this, the relationship between the quantity 

and specificity ofthe IgA response and larval inhibition was studied. In addition, 

the effect of infection intensity on larval inhibition was also investigated. 

Finally, the independence of density-dependant effects and local antibody 

responses were investigated. 

H contortus is a highly pathogenic abomasal parasite. Previous work has 

shown that as with other nematode parasites there is genetic variability in 

resistance and resilience to infection (Abbott et al 1985; Abbott et al 1988). 

However, the mechanisms of resistance to natural infection are uncertain. One of 

the objectives of the work described here was to investigate if the parasite

specific IgA could be a possible effector mechanism for resistance to this parasite 
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and whether such a response might act in a similar way to that proposed for the 

IgA response to T circumcincta. 

Improved protein nutrition is known to improve resilience to haemonchosis 

in genetically susceptible sheep (Wallace et al 1995). Improved protein nutrition 

may both offset the detrimental effects of infection and improve the immune 

response to infection. To investigate this, the influence of protein 

supplementation on the parasite-specific IgA response was studied. 
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CHAPTER TWO 

MATERIALS AND METHODS 

2.1 PARASITOLOGICAL METHODS 

2.1.1 Modified McMaster Technique 

A modified McMaster egg counting method (Gordon & Whitlock 1939) 

(Ban'den 1991) was used to count trichostrongyle eggs in faeces. Three grams of 

faeces taken directly from the rectum of each animal was examined. The faeces 

were homogenised with 42ml of water and sieved through a 250 micron sieve 

and the filtrate collected. After thorough mixing, 15 ml of the filtrate was 

centrifuged for 5 minutes at 2000 rpm. The supernatant was discarded and the 

remaining faecal pellet broken up using a whirl mixer. The tube was then filled 

with saturated sodium chloride so lution and inverted six times. A sufficient 

volume to fill 2 chambers of a McMaster slide was taken off immediately. The 

total number of eggs within both chambers was counted and the result multiplied 

by 50 to give the estimated number of eggs per gram of faeces (epg). To help 

elimnlate error, two or four replicate samples were counted for each faecal 

sample. The numbers of Nematodirus spp., eggs were counted separately. In the 

natural infection, larval culture showed that the overwhelming majority of 

trichostrongyle eggs were T circumcincta (Bishop et a1.l996a). Over 4 years 

74% of adult worms counted at necropsy were T circumcincta (Stear et al. 1998) 

2.1.2 Total Worm Counts 

Total worm counts were estimated by counting the number of adult larvae 

in the abomasal contents and the number of larvae in the abomasal digest. Each 
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abomasum was removed, opened along the greater curvature and the lining 

washed. The abomasal contents and the washings were collected and made up to 

two litres. 10, four ml sub-samples were taken and examined to estimate the 

total adult worm burden. 

One half of each washed abomasum was digested for six hours with 

pepsin-HCI at 42°C (appendix 1). The digest was made up to two litres with 

deionised water and 10 four ml aliquots were examined to estimate the number 

of fourth-stage larvae (Armour et aII966). 

2.1.3 Worm Length Measurements 

Twenty female worms were randomly selected from each lamb and 

measured using image analysis (pC-image, Foster Findlay Associates) at x2S 

magnification to estimate average worm length. 

2.1.4 Culture of Third-Stage larvae 

The strains of T circumcincta and H contortus larvae used were originally 

a gift 'of the Moredun Institute, Pentlands Science Park, Penicuik, Scotland. 

Sufficient numbers of larvae for the preparation of somatic extracts were 

obtained by passaging larvae through helminth naIve lambs. Lambs were 

infected with third stage larvae and three weeks later faeces were collected by a 

faecal bag attached to a harness. Faeces were stored in cartons for 14 days at 

23°C. They were then soaked in water for 3 hours to liberate larvae from the 

faecal pellets. The contents were then passed through a coarse mesh sieve and 

the larvae recovered by baermanisation through gauze suspended in PBS. The 

larvae were subsequently concentrated by sedimentation. 
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2.1.5 Preparation of Larval Somatic Extract 

Fourth-stage T circumcincta larvae were harvested 6 days after infecting 

helminth naive lambs with 150 000 third-stage larvae. The lambs were killed 

and the abomasums removed. The abomasa were opened along the greater 

curvature and the contents discarded. The mucosal surface was washed under a 

gently running tap and the abomasum cut into strips. The strips were suspended 

in Baerman funnels containing phosphate buffered saline (PBS) (PH 7.4) at 

37°C. The larvae migrated into the PBS and collected at the bottom of the 

funnels. The larvae were collected at 30 minute intervals until migration had 

ended. The larvae were rebaermanised into PBS through surgical swabs 

suspended in 50ml tubes to remove any gross abomasal debris collected initially. 

The collected larvae were washed by centrifugation (800 g) and resuspension of 

the pellet 5 times in PBS. They were then washed once in PBS containing 100 

iu/ml penicillin, O.lmg/ml streptomycin, 2.5flg/ml amphotericin Band 0.05 

mg/ml gentamicin and once in a 10 roM Tris solution containing 1 roM disodium 

ethylene diamine tetracetic acid (EDT A), 1 roM ethylene glycol bis (2-amino 

ethyl ether)-N,N,N',N'-tetracetic acid (EGTA), 1 roM N-ethylmaleimide (NEM), 

0.1 flM pepstatin, 1 roM PMSF, and 0.1 roM TPCK as proteinase inhibitors 

(Tris-inhibitor solution) (Maize Is et al 1991). The pellet was resuspended in a 

1 % w/w solution of deoxycholate in Tris-inhibitor solution and homogenised 

using a hand-held electric homogeniser (Janke & Kunkel lKA Labortechnik) on 

ice. The supernatant was filtered through a 0.2flm filter and a protein assay 

performed using the Pierce BCA protein assay kit. This somatic extract was used 

as antigen for the ELISA. 
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Fourth-stage (L4) H contortus larvae were harvested 4 days after infecting 

helminth naive lambs with 75,000 third-stage larvae. After each lamb was killed, 

its abomasum was removed and opened along the greater curvature. The 

abomasal contents were discarded and the mucosal surface washed under a 

gently running tap. The abomasum was cut into strips which were then 

suspended in Baerman funnels containing acid-phosphate buffered saline (acid

PBS) (PHI) at 37°C. The larvae migrated into the PBS and were collected at 10 

minute intervals from the bottom of the funnels until migration had ended. The 

larvae were rebaermanised into PBS through surgical swabs suspended in SOml 

tubes to remove any gross abomasal debris. The collected larvae were washed 

three times at 200 g for five minutes in PBS and were then washed once in Hanks 

balanced salt solution. They were then given a final wash in a 10 roM Tris 

solution containing 1 mM EDTA, 5 IlM pepstatin, 1 roM PMSF, and 1.4 roM 

TPCK, 5.5 IlM antipain, 0.2 roM phenanthroline, 0.7 roM N-a-p-tosyl-L-Iysine 

chloromethyl ketone HCI (TLCK), and 5 IlM leupeptin as proteinase inhibitors 

(Tris-inhibitor solution). The pellet was resuspended in a 1% w/w solution of 

sodium deoxycholate in Tris-inhibitor solution and homogenised using a hand

held electric homogeniser (Janke & Kunkel lKA Labortechnik:) on ice. The 

supernatant was filtered through a 0.2 Ilm filter and a protein assay performed 

using the Pierce BCA protein assay kit. 

Adult worms were recovered from lambs 21 days after being infected with 

15,000 third-stage larvae. Each abomasum was opened along the greater 

curvature. The abomasal lining was washed and the contents and washings 

collected. These were sieved through a large pore sieve to remove large 

particulate debris and then sieved through a fine pore sieve to collect the adult 
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parasites. This filtrate was put in gauze and suspended in a beaker containing 

PBS for 4 hours at 37°C. The adults migrated into the PBS and settled at the 

bottom of the beaker. Thereafter they were treated in the same way as the fourth

stage larvae. 

A somatic extract of third-stage (L3) larvae was obtained by washing third 

stage larvae in a dilute hypochlorite solution to allow exsheathment. A somatic 

extract was then prepared in the same way as for the fourth-stage larvae. 

2.2 SEROLOGICAL METHODS 

2.2.1 Plasma samples 

Blood was collected fi:om the sheep by jugular venepuncture into 

heparinised evacuated glass tubes or into EDTA mono vette tubes (Starstedt). 

The tubes were centrifuged for 15 minutes at 1500 rpm and the plasma removed 

and stored at either -20°C or -80°C. 

2.2.2 Cell Culture 

Dr. S. Hobbes, Dr. P. Bird and Professor I. McConnell kindly donated the 

cells used to generate monoclonal IgG anti-sheep IgA (pers., comm.). 

The cell culture media used was 10% foetal bovine serum in RPM! with 

50flg/ml gentamicin (Gibco). Cells were thawed quickly from liquid nitrogen 

and suspended in 10ml of cell culture media and centrifuged for 5 minutes to 

pellet the cells. They were then resuspended in 10 ml of media and lOOfll of cell 

suspension was mixed with lOOfll of trypan blue stain made up in phosphate 

buffered saline. The number of viable cells was estimated by counting 200 

viable (unstained) cells using a haemocytometer. The cell concentration was 
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calculated by the formula; cell count x 2 x 104
• The cells were made up to a 

concentration of 3 x 105 cells/ml in cell culture media. 10 ml of the cell mixture 

was put into 25cm3 cell culture flasks. The flasks were incubated at 37°C in a 

5% C02 atmosphere. The cultures were examined daily and when the cells were 

nearing confluence they were subdivided into fresh culture media. The 

supernatant from the cultures was used for the ELISA and western blots after 

being titrated for amount of antibody. 

Cells were frozen down for storage before they became confluent at a 

concentration of 5-6 x 106 mrl. Cells were pelleted by centrifugation and the 

freezing mixture (appendix 2) added dropwise in order to reduce osmotic shock 

until the required volume was achieved. The mixture was then added to a 

cryovial and left in the N2 vapour above liquid nitrogen for two hours before 

transferring it into liquid nitrogen. 

2.2.3 ELISA 

2.2.3.1 TeJadorsagia circumcincta 

The wells on a microtitre plate (Nunc) were covered with 100111 of antigen 

solution in bicarbonate buffer (pH 9.6) at a protein concentration of 51lg/ml, and 

left overnight at 4°C. The plate was washed 5 times with a 0.05% w/v solution of 

Tween in PBS (T -PBS) and this was repeated between each subsequent stage. 

The wells were then filled with 200111 of a 4% w/w solution of skimmed milk 

powder in T -PBS (blocking buffer) to block any unoccupied sites on the wells 

and incubated at 37°C for 2 hours on a shaking platform. 100111 of the plasma 

samples diluted 1: lOin blocking buffer were added in triplicate to the plate and 

incubated at 37°C for 30 minutes. As there is a limited quantity ofIgA in serum a 

58 



1: 1 0 dilution was selected to maximise IgA binding. To allow for comparison 

between plates, and to minimise day to day variation, a strongly positive plasma 

sample and a negative plasma sample fi'om a lamb unexposed to T circumcincta 

were included on all plates. 100/.11 of a monoclonal rat IgG anti-sheep IgA diluted 

1:50 in blocking buffer was then added and incubated for 30 minutes at 37°C. 

The monoclonal antibody was a gift of Dr S. Hobbes, Dr. P. Bird and Professor 1. 

McConnell and its specificity validated by them (pers. Comm). Then 100/.11 of a 

goat IgG anti-rat IgG conjugated to alkaline phosphatase (Sigma) diluted 1: 1 000 

in blocking buffer was added and again incubated at 37°C for 30 minutes. Finally 

100/.11 of the alkaline phosphatase substrate 5-bromo-4-chloro-3indoyl-phosphate 

(KPL) was added and after a 30 minute incubation at 37°C the plate was read on 

a microtitre plate reader (Titertek) at a wavelength of 635nm. 

2.2.3.2 Haemonchus contortus 

The wells on a microtitre plate (Nunc) were covered with 100 /.11 of antigen 

solution in bicarbonate buffer (pH 9.6) at a protein concentration of 5 /.1g/ml, and 

left overnight at 4°C. The plate was washed 5 times with a 0.05% w/v solution 

of Tween (Sigma, Poole, Dorset, UK) in phosphate buffered saline (T-PBS) and 

this was repeated between each subsequent stage. The wells were then filled 

with 200/.11 ofa 4% w/w solution of skimmed milk powder (Safeway, UK) in T

PBS (blocking buffer) to block any unoccupied sites on the wells and incubated 

at 37°C for 2 hours on a shaking platform; 100 /.11 of the plasma samples diluted 

1: lOin blocking buffer were added in triplicate to the plate and incubated at 

3rC for 30 minutes. To simplify comparison between plates, and to minimise 

day to day variation, a strongly positive plasma sample and a plasma sample 
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from a helminth-naive lamb were included on all plates. 1 00 ~l of a monoclonal 

rat IgG anti-sheep IgA diluted 1 :50 in blocking buffer was then added and 

incubated for 30 minutes at 37°C. Then 100 ~l of a goat IgG anti-rat IgG 

conjugated to alkaline phosphatase (Sigma) diluted 1: 1000 in blocking buffer 

was added and again incubated at 37°C for 30 minutes. Finally, 100 ~l of the 

alkaline phosphatase substrate, p-nitrophenyl phosphate (Sigma) was added. 

After a 30 minute incubation at 37°C the plate was read on a microtitre plate 

reader (Titertek) at a wavelength of 405 nm. 

In both ELISAs, no attempt was made to quantifY the amount of parasite

specific antibody. The optical density is dependent upon the amount of antibody, 

and the avidity and affmity of the antibody for each component of the antigen 

preparation. Because ofthe complexity of the antigen preparations, any attempt 

to estimate absolute antibody concentrations would have been prone to error. 

Variation in batches of parasite antigen was avoided by using only one 

batch of antigen for each ELISA. To ensure an optimal concentration of 

antibody dilution the monoclonal antibody was titrated against against a postive 

serum control and a dilution selected where the optical densities had reached a 

plateau (Appendix 6). 

2.2.4 Western Blots 

Protein fractionation was accomplished by SDS-PAGE (Laemmli 1970) 

under reducing conditions (Bio-Rad Protean IIxi Cell). Vertical 7.5% and 15% 

polyacrylamide gels were used with 40~g protein per track (appendices 3 & 4). 

Protein standards (Bio-Rad Kaleidoscope Prestained Standards) were run 

simultaneously. 
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After electrophoresis the proteins were transferred onto nitrocellulose 

paper (Bio-Rad) with a pore size of 0.45 !-lm (Trans blot Electrophoretic Transfer 

Cell Bio-Rad) (appendix 4) (Bollag & Rozycki 1996). The nitrocellulose paper 

was stained with Ponceau-s to check for effective protein transfer and to enable 

accurate cutting of each protein track into strips. Non-specific binding sites were 

blocked with a 4% skimmed milk solution in PBS with 0.05% Tween (T-PBS) 

overnight. Following three washes, each of 10 minutes, in de-ionised water the 

strips were incubated in a 1:10 dilution of plasma in T-PBS for 3 hours. The 

strips were again washed three times in de-ionised water and incubated for 1 

hour with a 1 :40 dilution of a monoclonal rat anti-sheep IgA antibody. The strips 

were again washed as before and incubated for one hour in a 1: 1 000 dilution of 

an alkaline phosphatase-conjugated mouse anti-rat IgG monoclonal antibody 

(Sigma). After another three, 10 minute washes the strips were placed in a 

solution containing 5-bromo-4-chloro-3-indoyl phosphate (BCIP, KPL 

laboratories) to visualise the protein bands recognised by sheep antibodies. For 

convenience, each band is referred to as an antigen, although separate bands may 

not always represent distinct molecular species. 

No attempt was made to quantity the intensity of the bands. Bands were 

noted if observed and to limit day to day variation a strongly reactive plasma 

sample was used on each blot. 

2.3 STATISTICAL ANALYSIS 

For clarity the relevant statistical analyses are described in each chapter. 

61 



CHAPTER THREE 

THE RELATIONSIDP BETWEEN IgA DIRECTED AGAINST 

FOURTH-STAGE T. CIRCUMCINCTA LARVAE AND 

WORM LENGTH IN OUTBRED SHEEP 

3.1 INTRODUCTION 

Teladorsagia circumcincta is a major constraint on sheep production in 

temperate regions of the world (Urquhart et al 1987). Current methods of 

controlling nematode infections in livestock rely heavily on anthelmintic 

treatment, but these methods are threatened by the increasing frequency of 

anthelmintic resistance among nematode populations (Jackson 1993). There is 

an urgent and growing need for additional control strategies. One of the most 

promising strategies is the selective breeding of sheep for increased resistance to 

infection (Stear & Murray 1994). 

There is no doubt that there is substantial variation in resistance to many 

parasitic infections (Wakelin 1988). Some of this variation is due to host genetic 

factors. Resistance is usually measured by faecal egg counts. Most estimated 

heritabilities for single faecal egg counts in mixed natural infections have been 

approximately 0.3 (Stear & Murray 1994). Because there is a good genetic 

correlation between egg counts from 3-6 month old lambs (mean = 0.87), it is 

possible to combine these counts and thus increase the heritability estimate. The 

estimated heritability can be further increased by decreasing the measurement 

error by taking several counts per faecal sample (Stear et aI1997a). 
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Heritability estimates increase with age of the lamb. This strongly suggests 

that genetic resistance to T. circumcincta is an acquired response. There remains 

some debate over the mechanisms underlying genetic variation. One view is that 

resistance is highly complex with many different mechanisms having many 

different effects on the parasite (Miller 1984). An alternative view is that 

resistance to T. circumcincta is relatively simple; the most important 

manifestation of immunity in growing lambs being the control of worm growth 

causing a reduction in worm fecundity (Stear et aI1997b). 

Young lambs appear to be unable to control worm burdens (Stear et al 

1996a). It is known that sheep regulate worm length before they regulate worm 

numbers (Seaton et al 1989). The only mechanism to have been consistently 

associated with reduced worm length is the local IgA response (Smith et al 1985; 

Stear et al 1995). WOlm length is correlated with worm fecundity (Stear et al 

1999). Thus there is evidence that young lambs control worm fecundity through 

a local IgA response. Previous work has shown a strong relationship between 

IgA directed against fourth-stage larvae and adult worm fecundity (Stear et al 

1995) and that this parasite-specific IgA response was inversely related to 

parasite specigic IgG\ (Sinski et al 1995). 

The work described in this chapter was designed to examine on a large data 

set the relationship between parasite-specific IgA and the control of worm 

fecundity for T. circumcincta in lambs. 933, six-month old Scottish Blackface 

lambs were sampled for blood and faeces over 5 consecutive years. The lambs 

had a mixed nematode parasite burden but were overwhelmingly infected with T. 

circumcincta. An ELISA was developed to quantify IgA responses to fourth-
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stage larvae and faecal egg counts were performed. Heritability estimates were 

performed on the IgA response. 

3.2 MATERIALS AND METHODS 

3.2.1 Animals 

The lambs studied were straightbred Scottish Blackface lambs kept on an 

800 ewe commercial upland farm in Ayrshire, Scotland. The ewes lambed 

outdoors over three weeks between April and May and those ewes with twin 

lambs were brought onto two fields of improved pasture. These lambs were 

studied from 5 successive years, a total of 933. The lambs were weaned in July 

and kept on the larger of the inlproved fields. They were given an anthelmintic 

monthly, the dose appropriate for the heaviest lamb being given to all the lambs. 

The efficacy of the anthelmintic treatment was tested by faecal egg reduction 

tests. 

3.2.2 Parasitological methods 

The parasitological methods are described in Chapter 2. 

3.2.3 ELISA 

The ELISA method is described in Chapter 2. To avoid variation in the 

composition of antigen the same batch of antigen was used. 

3.2.4 Statistical analysis 

The Univariate program on the SAS package (SAS Institute, Cary, NC, 

USA) was used to estimate the means and variances of the parasitological data. 

64 



The optical densities were transformed into an optical density index for each 

animal using the following formula; 

aD! = Mean OD - Mean negative OD 
lvlean positive 0 D - Mean negative aD 

The associations between amount of parasite-specific IgA, adult worm 

burden and worm length were estimated by multiple regression analysis using the 

GLM program of the SAS package (SAS Institute). The sire and dam variance 

components of the IgA response were estimated using a mixed models analysis. 

The heritability of the IgA response was estimated as four times the sire variance 

component divided by the sum of the sire, dam and residual variances. 

3.3 RESULTS 

The most prevalent species found was T. circumcincta which accounted for 

over 74% of all nematodes recovered, although there was considerable variation 

between years with 96% of all nematodes in 1992 being T. circumcincta 

compared to, 77% in 1993, 71% in 1994 and 51% in 1995. The mean intensity 

of T circumcincta infection, as measured by arithmetic mean counts of larvae 

and adult nematodes, varied between years with 13,000 in 1992, 3,400 in 1993, 

2,300 in 1994 and 6,300 in 1995. Sinlilarly, the numbers of adult worms 

recovered at necropsy varied between years (table 3.1). Six other categories of 

parasite were found, Trichostrongylus axei, Haemonchus contortus, Cooperia 

spp., Trichostrongylus vitrinus, Nematodirus spp., and Bunostomum 

trigonocephalum (Stear et al. 1998). The distribution of T circumcincta was 

positively skewed with the majority of parasites being found in a minority of 

lambs. T. circumcincta was found in nearly all of the lambs examined (513 out 

of 514). The length of adult worms varied between 0.6 and 1.2 cm. 
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The IgA optical density indices (IgA-ODI) ranged from 0-0.75 (appendix 

5). The distribution of IgA-ODI over the 5 years was highly variable and 

positively skewed (Figure 3.1). A small proportion of the lambs (12 out of 933) 

appeared to raise no detectable IgA to fourth-stage larvae. 

There was a significant relationship between the IgA-ODI and adult worm 

length (p<0.0001). It appeared that those lambs with greater IgA responses had 

on average shorter adult worms. The relationship appeared to be linear (figure 

3.2). 

The degree of variance of the IgA-ODI response was significantly 

influenced by the year (p<O.OOOl) and the sex of lamb (p<0.0010) with female 

lambs having the highest responses followed by castrated males. A small 

proportion of the lambs had retained testicles (rigs) and these lambs had the 

lowest IgA responses (figure 3.3). 

There was a significant relationship between the number of adult worms 

and the length of adult female worms (p<O.Ol). It was of interest to examine 

whether the effect of the IgA response acted independently of the adult worm 

burden. To investigate this a multiple regression model that fitted the log 

transformed numbers of adult worms as well as the IgA-ODI response to fourth

stage larvae against the adult female worm length was used. Both traits remained 

significant and appeared to act at least in part independently of each other. The 

regression coefficient for the number of adults was -0.034 ± 0.012 when 

analysed on its own and -0.029 ± 0.012 when analysed jointly with IgA-ODI. 

For the IgA-ODI response the regression coefficient was -0.084 ± 0.016 when 

analysed on its own and -0.081 ± 0.016 when analysed in conjunction with the 

number of adult worms. The r-square values were 0.016 for the number of adult 
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worms and 0.056 for the IgA-ODI response alone. When analysed together, the 

r-square was 0.068. These suggest that the two mechanisms were acting in part 

independently. 

The components of variation in the IgA-ODI response could be partitioned 

into additive genetic effects (34%), maternal effects (13%) and a residual (53%) 

(figure 3.4). 
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1992 1993 1994 
(n = 109) (n = 100) (n = 153) 

Mean number 6570 2778 1548 
of adult worms 
The negative 1.90 1.79 1.63 

binomial 
distribution 
parameter k 

Table 3.1 The number of adult T circumcincta among lambs that had been 
naturally infected. 

1995 
, 

I 

(n = 152) I 

2992 

1.90 
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3.4 DISCUSSION 

This study supports the hypothesis that IgA is the major immunological 

controlling mechanism of the fecundity of T circumcincta (Stear et al 1995). 

There was a large variation between lambs in the IgA responses directed against 

fourth-stage larvae. The IgA response was very closely associated with adult 

worm length. This response was under genetic control and was influenced 

significantly by the year of sampling and the sex of the lamb. Male lambs had 

poorer IgA responses and longer, more fecund adult female worms. In addition, 

the number of adult worms influenced the length of adult female worms although 

the mechanism for this appeared to act only partially through the IgA response. 

No attempt was made to quantify the amount ofIgA in the plasma samples. 

The optical density is dependent upon the amount of antibody, its avidity and 

affmity to each component of the antigen preparation. Correlations between 

responses do not therefore necessarily indicate similar amounts of antibody, but 

rather higher-than average and lower-than average responses. 

There was extensive variation in the IgA responses among years and 

lambs. The distribution ofIgA responses was positively skewed. Several factors 

may be responsible for this. The distribution is similar to the distribution of T 

circumcincta worm burdens (Stear et al 1998) and worm lengths (Stear & Bishop 

in press). It would be expected that antigenic exposure would have an effect on 

the distribution of the immune response; those animals exposed to more antigen 

would be expected to mount greater immune responses. Although this could 

theoretically be avoided in deliberate infections, differences in exposure between 

groups infected naturally and groups infected artificially may not be as great as 

commonly assumed. The variance of faecal egg counts appears to be generally 
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similar irrespective of the infection being natural or deliberate. This will 

presumably be due to unavoidable differences in individual infection doses and 

non-specific differences between sheep that influence establishment and worm 

development. The IgA response was heritable and so some of the variation will 

be genetic in origin. 

The marked differences between castrated lambs and rigs could indicate 

either a direct depressive effect of testicular hormones on the IgA response or an 

indirect effect for example through dietary metabolism. Entire male lambs grow 

more quickly than castrated ones through increased feed intake and more 

efficient metabolic use of food for liveweight gain. Supplementing protein 

intake in susceptible lambs infected with Haemonchus contortus improves their 

immunological response (see chapter 6) (Wallace et al 1995). It could be that 

entire male lambs are directing dietary protein more towards growth than 

towards an effective IgA response. 

There was a strong and consistent correlation between IgA directed against 

fourth-stage larvae and length of adult female worms. Although this does not 

give conclusive evidence for a causal link, it strongly implies that the IgA 

response is controlling worm length. It could be that the IgA response is acting 

as a marker for some other response that is the effector mechanism. However, it 

is hard to envisage a response that would be more closely correlated to worm 

length than the IgA response. This finding is consistent with transfer 

experiments where local IgA responses were transferred from immune, infected 

sheep to parasite-naIve infected sheep and resistance, as measured by larval 

growth retardation, was transfened (Smith et al 1986). However this study could 
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not rule out a role for other substances secreted fi'om the adoptively transferred 

cells. 

Female lambs mounted significantly greater IgA responses to fourth-stage 

larvae than castrated male lambs which in turn had significantly greater 

responses than lambs with 1 or 2 retained testicles (rigs). This fmding supports 

the widely acknowledged sex differences in host-parasite interactions ill 

laboratory animals (Waddell et aI1971), and in sheep (Barger 1993). 

There was a significant effect of the number of adult worms on the length 

of female worms. Those lambs with large worm populations had on average 

shorter worms. This could be working through a dose dependent mechanism 

where more parasites lead to a greater antigenic challenge and therefore a greater 

IgA response. However, the result of the multiple regression analysis suggests 

that although this does appear to happen, it does not explain the entire effect 

seen. If this density-dependant effect worked solely through an increased IgA 

response then the effect of adult worm burden would cease to be significant in 

the combined analysis and the r-squares would not be partially additive. Other 

possible mechanisms by which the number of adult worms might influence worm 

length are through competition for food reserves or through the action of 

pheromones that retard development. These considerations are addressed further 

in chapter five. 

In conclusion there was considerable variation in IgA response to fourth

stage larvae. IgA appears to be the major mechanism of resistance to T 

circumcincta in 6-month old lambs. Historically, selection criteria for breeding 

for resistance have been based on faecal egg counts, which are a product of 

worm burden, which is not under genetic control, and worm fecundity, which is. 
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This work suggests that the IgA responses to fourth-stage larvae IS a more 

accurate criterion for future breeding for resistance. 
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CHAPTER FOUR 

THE RECOGNITION OF MOLECULES FROM FOURTH

STAGE LARVAE OF TELADORSAGIA CIRCUMCINCTA BY 

IgA FROM INFECTED SHEEP 

4.1 INTRODUCTION 

Genetic resistance to T circumcincta is an acquired response (Stear et al 

I 997a). There remains some debate over the mechanisms underlying genetic 

variation. One view is that resistance is highly complex with many different 

mechanisms having many different effects on the parasite (Miller 1984). An 

alternative view is that resistance to T circumcincta is relatively simple; the most 

important manifestation of immunity in growing lambs being the control of 

worm growth causing a reduction in worm fecundity (Stear et al 1997b). 

Previous work (Stear et al 1995) and the work described in chapter three suggest 

that the major mechanism regulating worm growth is the IgA response to fourth

stage larvae, or something closely related to this response. In adult sheep, 

additional mechanisms appear to regulate worm burdens (Stear et aI1995). 

A number of antigens have been identified on third-stage larvae and adult 

T circumcincta and some of these have been associated with protection or 

susceptibility to infection (McGillivery et al 1992). A comparison of IgA 

responses to third-stage, fourth-stage and adult T circumcincta indicated that the 

strongest association with reduced worm length was with increased responses to 

fourth-stage larvae (Stear et aI., 1995). The present study was designed to 
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identify those molecules on fourth-stage larvae that are recognised by sheep IgA 

and to investigate any associations between their recognition and the control of 

worm length and fecundity. 

4.2 MATERIALS AND METHODS 

4.2.1 Experimental design 

The experimental design has been described previously (Stear et al. 1995). 

Briefly, 30 six-month old sheep were taken from a farm where they had been 

naturally exposed to a predominantly T. circumcincta infection. They were kept 

in helminth-free conditions for another three months until their faecal egg counts 

were very low. Then, 24 of them were infected with a single dose of 50,000 

third-stage larvae (L3). Eight weeks later all 30 lambs were treated with two 

broad-spectrum anthelmintics, levamisole hydrochloride (Levacide, Norbrook 

Animal Health, London, UK) and albendazole sulphoxide (Rycoben, Young's 

Animal Health, Leyland, UK), at the recommended dose rates. After four weeks, 

when faecal egg counts were zero, the 24 previously infected lambs together with 

3 previously uninfected sheep were infected with 50,000 T. circumcincta L3. 

The remaining 3 lambs acted as previously exposed controls. All the lambs were 

necropsied eight weeks after the last infection. 

4.2.2 Plasma samples 

Blood samples were collected immediately before slaughter by jugular 

venepuncture into evacuated glass tubes containing 20mM disodium EDT A 

(Becton Dickinson UK Ltd., Oxford, UK). Plasma was obtained by 

centrifugation at 1000g for 20 minutes and stored at -20°C. 
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4.2.3 Necropsy 

The method for measuring adult female worm lengths is described ill 

chapter two. 

4.2.4 Preparation of parasite somatic extract 

The preparation of parasite somatic extracts is described in chapter two. 

4.2.5 Western blotting 

The Western blotting technique is described in chapter two. 

4.2.6 Statistical analysis 

The similarity between the reactions of different sheep against protein 

bands was assessed by Pearson product-moment correlation coefficients using 

the Corr procedure in the SAS package (SAS Institute, Cary, NC. USA). 

The influence of antigen recognition was tested by comparing mean female 

worm lengths in those animals that recognised a particular band against those 

animals that failed to recognise the same band. Those bands recognised by less 

than 5 or by more than 18 of the sheep were not analysed because of the 

umeliability of any conclusions drawn from their recognition. Separate one way 

analyses of variance were done for each of the 36 remaining bands. 

A single statistical model was then used to estimate the total amount of 

variation in worm length that could be attributed to variation in density

dependent effects together with variation in IgA quantity and specificity along 

with their interactions. Density-dependent effects were estimated by fitting the 

log-transformed adult worm burden. IgA quantity was the concentration of IgA 
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in the abomasal mucosa, as estimated from the mean of 8 sets of three replicates 

against fourth-stage somatic extracts in a simple indirect ELISA (Stear et al 

1995). Recognition of the adult parasite molecule of 28,000 Da (McCririe et al 

1997) was strongly correlated with recognition of the fourth-stage parasite 

molecule of 87,000 Da and the analysis did not include the 28,000 Da molecule. 

4.3 Results 

In total, 49 bands were recognised by some or all of the sheep and ranged 

in molecular weight from 3,000 to 184,000 Da. The frequency of recognition 

ranged from 9% to 100%; only 3 sheep recognised a band of75,000 Da whereas 

all 30 sheep recognised a band with a molecular weight of 18,000 Da (Table 

4.1). The parasite naIve lambs recognised two bands of approximate molecular 

weights 77,000 Da and 184,000 Da. 

There was considerable heterogeneity in the recognition patterns amongst 

the sheep (Appendix 7). No pair of sheep recognised the same set of bands and 

no sheep recognised all 49 bands. 

The mean adult worm lengths from each animal included in the analysis 

ranged from 0.751 to 1.095 cm. The recognition of two bands of approximate 

molecular weights 87,000 Da (p87) and 129,000 Da (p129) was associated with a 

reduction in adult worm length (Table 4.1). Those lambs that recognised p129 

had adult female worms 0.10cm shorter than those lambs that failed to recognise 

this molecule. Those lambs that recognised p87 had WOlIDS 0.12cm shorter. 

Recognition of both molecules accounted for 37% of the total variation in worm 

length. 
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A single statistical model was used to assess the total variation in adult 

worm length attributable to IgA quantity, antibody specificity and density

dependant effects. This model fitted recognition of p87, p129, the 37,000 Da 

adult worm molecule, total mucosal IgA (range 0 to 1.2 ODI), log transformed 

adult worm burden and their interactions. This model accounted, in a statistical 

sense, for 93% of the total variation in worm length. This is a remarkably high 

value and corresponds to a con-elation of over 0.96. 
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Table 4.1. The recognition of fourth-stage larval antigens by IgA and their 
associations with adult female worm length 

MOLECULAR MASS FREQUENCY (%) INFLUENCE ON WORM LENGTH (CM) PROBABILITY 

3 000 86 NT 

5 000 68 

7 000 91 NT 

8000 36 

14000 45 

15000 45 

16000 68 

17000 95 NT 

18000 100 NT 

19000 95 NT 

20 000 91 NT 

21000 91 NT 

22 000 45 

24000 82 

26000 23 

28000 59 
I 

I 

32 000 83 NT 'I 
I 

32500 87 NT 
II 

33000 17 NT I 

I 

36000 35 

37000 61 

38000 48 

39000 21 

40 000 30 
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MOLECULAR MASS FREQUENCY (%) INFLUENCE ON WORM LENGTH (CM) PROBABILITY 

41000 39 

70000 48 

71000 34 

75000 9 NT 

77000 91 NT 

81000 22 

84000 30 

87000 39 -0.12 +/- 0.04 0.011 

94000 43 

98000 57 

100000 65 

102000 74 

103000 74 

108000 65 

109000 65 

115000 83 

117000 74 

118000 70 

129000 57 -0.10 +/- 0.04 0.008 

141000 56 

145000 74 

153000 44 

165000 78 

172 000 61 

184000 96 NT 

NT not tested 

Table 4.1. The recognition of fourth-stage larval antigens by IgA and 
their associations with adult female worm length 
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4.4 DISCUSSION 

Sheep varied considerably in the recognition of antigens present on fourth

stage larvae of T. circumcincta. No single sheep recognised all the bands 

detected and only one antigen was recognised by all the sheep. The recognition 

of two bands with molecular weights of 87,000 and 129,000 Da was associated 

with decreased worm length. Variation in the amount of local fourth-stage 

specific IgA, in antibody specificity and in the number of adult worms present in 

individual sheep and their interactions accounted, in a statistical sense, for most 

of the observed variation in worm length. 

Considerable heterogeneity among sheep in the recognition of antigens by 

antibody has previously been reported for extracts ofthird stage larvae and adult 

T. circumcincta (McCririe et al 1997), among humans for excretory-secretory 

materials of Ascaris lumbricoides (Kennedy et al 1990) and among cattle for 

extracts of Ostertagia ostertagi (Hilder son et al 1993) and excretory-secretory 

materials fi'om Dictyocaulus viviparus (Britton et al 1992). Therefore, variation 

among outbred individuals in recognition of parasite molecules appears to be a 

widespread phenomenon. 

The variation among animals in antigen recognition is relevant to 

understanding resistance to nematode infection. Research in experimental 

models has clearly shown that resistant and susceptible strains of mice recognise 

different molecules on parasitic nematodes (Kennedy 1989). This differential 

recognition could be partly responsible for the differences in resistance. 

Interestingly, while recognition of most molecules differs among but not within 

strains, the recognition of other molecules differs within strains (Kwan-Lim & 

Maizels 1990). These results imply that differences in antigen recognition are 
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due to both genetic and non-genetic components. Further research is necessary 

to determine the relative importance of genetic and non-genetic elements in 

outbred species. 

Female worm length is an excellent indicator of worm fecundity. Female 

worm length is strongly correlated with mean number of eggs per female (r = 

0.97; p < 0.0001) (Stear et al. 1995). Of the 49 bands recognised in fourth-stage 

larval extracts, only 27 occurred at a suitable frequency for analysis. The 

recognition of only 2 of these 27 was associated with a reduction in worm length. 

Therefore, responses against most parasite molecules appear to have little if any 

effect on resistance to infection. The results of the present study suggest that 

anti-larval responses reduce the length and hence the size and fecundity of adult 

nematodes. This concurs with the observation that immune responses against 

Trichinella spiralis larvae reduce adult fecundity (Silberstein & Despommier 

1985a). Further research is necessary to characterise these bands and determine 

exactly how the inmlUne response influences worm growth. 

The variation among animals in antigen recognition also has implications 

for the future development of vaccines. If only some sheep are able to mount 

effective immune responses against each parasite antigen then vaccines are 

unlikely to be effective in all sheep tested. However, it has been argued that a 

successful vaccine does not need to invoke a protective response in all sheep; an 

effective immune response in some sheep could reduce pasture contamination 

and be beneficial to the flock as a whole (Barnes et al 1995). 

A remarkably high proportion (93%) of the variation in worm length could 

be accounted for by combining the effects on worm length of adult worm burden, 

IgA quantity and the recognition of the 87,000 Da, 129,000 Da bands from 
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fourth-stage larvae and the 37,000 Da band from adult parasites. In other words, 

after allowing for the influence of worm burdens, most of the variation in worm 

length among sheep can be accounted for by differences in IgA quantity and 

specificity. This observation implies that a single immunological mechanism 

plays a major role in regulating worm length and fecundity. This mechanism 

appears to be the parasite-specific, local IgA response or something that is very 

strongly associated with the quantity and specificity of this IgA response. 

It is known that allels of the class II DRBl locus are associated with 

reduced egg counts (Schwaiger et aI1995). The function of these molecules is to 

present parasite molecules to helper T lymphocytes. These helper T lymphocytes 

can potentially turn on a host of inunune responses, any combination of which 

could in theory be associated with reduced egg counts. One possible response 

could be the IgA response. The current study, using a statistical approach 

suggests that over 90% of the variation in worm length can be accounted for in 

variation of parasite-specfic IgA. For another mechanism to be at work, where 

IgA was acting merely as a marker, even more of the measured variation would 

have to be accounted for. As no known inununological response appears 

sufficiently strongly associated with both IgA quantity and specificity, our 

working hypothesis is that the observed association with worm length is directly 

due to the IgA response. 

In conclusion, following infection sheep showed considerable variation in 

recognition of antigens on fourth-stage larvae. The recognition of two bands was 

strongly associated with a reduction in mean length of adult female worms. 

Variation among sheep in the recognition of these two bands, together with 

variation in the recognition of a previously described band in adult parasite 
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extracts, accounted for a substantial proportion of the variation in worm length. 

The combination of variation in antigen recognition, variation in the production 

of IgA specific for fourth-stage larvae and the influence of variation in adult 

worm burdens accounted for over 90% of the total variation among sheep in 

adult female worm length. These results suggest that a single immunological 

mechanism is responsible for most of the variation in adult female worm length 

and that this mechanism is the IgA response to fourth-stage larvae or a response 

that is extremely strongly associated with this IgA response. 

87 



CHAPTER FIVE 

THE MECHANISMS OF INIDBITION OF TELADORSAGIA 

CIRCUMCINCTA LARVAE IN SHEEP 

5.1 INTRODUCTION 

Teladorsagia circumcincta is a major constraint on sheep production in 

temperate regions of the world (Urquhart et al 1987). It is remarkably well 

adapted to its host and is able to suspend development by going into inhibition 

within the host shortly after moulting to the fourth-stage (Eysker 1997). The 

ability of Teladorsagia circumcincta larvae to go into inhibition in adverse 

conditions may contribute to the extraordinary success of this parasite. This 

suspension of development may allow it to avoid development during periods 

that would be disadvantageous, for example due to reduced survival of larval 

progeny on pasture during cold weather. These inhibited larvae are then able to 

come out of inhibition and continue development to adults. Simultaneous 

development of large numbers of inhibited larvae can precipitate Type II 

teladorsagiasis. 

The mechanisms underlying inhibition and emergence from inhibition are 

poorly understood. There appear to be four possible mechanisms. The genetic 

makeup of a parasite strain influences the tendency to go into inhibition. Some 

isolates of the parasite can go into inhibition while others cannot (Borgsteede & 

Eysker 1987). The season influences the proportion of ingested parasites that go 

into inhibition. A larger proportion of third stage larvae ingested during the 

autumn will go into inhibition compared to those ingested earlier in the year. 
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This may be due to the effect oflarval chilling (Armour & Bruce 1974). Thirdly, 

the development of immunity has been associated with inhibition. Lambs 

previously infected are more likely to have larvae going into inhibition than 

naIve lambs (Smith et al 1984). This is supported by the observation that sheep 

immunosuppressed by treatment with cortisone or whole-body irradiated have 

fewer inhibited larvae than controls (Dunsmore 1961). Finally, there appears to 

be a density-dependent component where animals given heavy infections are 

more likely to have inhibited larvae than lambs given moderate infections. There 

is uncertainty as to whether the density-dependent component acts 

independently, for example through competition for food resources, or through 

an immune mechanism where a larger antigenic dose causes a greater 

immunological response (Anderson & Michel 1977). 

Animals with increased concentrations of parasite-specific IgA have 

shorter and less fecund worms (Stear et al 1995). IgA may inhibit larval 

development (Smith et al 1985). The present work was designed to investigate in 

two separate data sets whether variation in parasite-specific IgA was associated 

with variation among sheep in the extent of larval inhibition and to study the 

density-dependant effects of adult worm burden on larval inhibition. Sheep were 

studied over a 5 year period to avoid variation in numbers of larvae due to 

variation between years. A single farm was studied to avoid any major strain 

effects on inhibition. In addition, a group of deliberately infected sheep were 

studied where all fourth-stage larvae recovered after necropsy could be assumed 

to be inhibited and not recently ingested. 
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5.2 MATERIALS & METHODS 

5.2.1 Experimental design 

5.2.1.1 Deliberate infection 

The experimental design has been described previously in chapter 4 

5.2.1.2 Natural Infection 

A group of naturally infected lambs were studied the details of which are 

described in chapter 4. 

5.2.2 Plasma samples 

Blood samples were collected immediately before slaughter by jugular 

venepuncture into evacuated glass tubes containing 20mM disodium EDT A 

(Becton Dickinson UK Ltd., Oxford, UK). Plasma was obtained by 

centrifugation at 1000g for 20 minutes and stored at -20oe. 

5.2.3 Necropsy 

The methods of determining the numbers of adult and fourth-stage larvae 

are described in chapter two. 

5.2.4 Parasitology 

The parasitological methods are described in chapter two. 

5.2.5 Preparation of Parasite Somatic Extract 

The preparation of parasite somatic extract is described in chapter two. 
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5.2.6 ELISA 

The ELISA method is described in chapter two. 

5.2.7 Western Blot 

The Western blot method is described in chapter two. In addition to those 

bands identified in chapter 4 bands identified in previous studies (McCririe et al 

1997) on third-stage and adult T circumcincta were included in the analyses. 

5.2.8 Statistical analysis 

The optical densities were transformed into an optical density index for 

each animal using the following formula; 

OD! = MeanOD-MeannegativeOD 
Mean positive OD - Mean negative OD 

The numbers of fourth-stage larvae and adult worm burdens fi'om both the 

naturally and deliberately infected sheep followed a negative binomial 

distribution. Taylor's power law was used to fmd the appropriate transformation 

of data in order to satisfy the assumption of homogeneity of variance for analysis 

of variance. The appropriate transformation was logarithmic to the base ten. 

The correlations between parasite-specific IgA, bands fi'om fourth-stage 

and adult worms recognised by western blotting, and log transformed adult worm 

burdens, and numbers of fourth-stage larvae, were estimated by using the GLM 

procedure on the SAS package (SAS Institute). 
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5.3 RESULTS 

There was substantial variation among sheep in the number of fourth-stage 

larvae (L4) present, ranging from 0 in 130 sheep to a maximum of27,100 in one 

animal. The arithmetic mean was 2,492 L4, but this value masked considerable 

variation among years (Table 5.1). The mean number of L4 per sheep varied 

more than ten-fold from a high of 6170 in 1992 to a low of 542 in 1993. The 

number of larvae in these sheep followed a negative binomial distribution (Table 

5.1). The index of overdispersion (k) was only 0.223 and 0.280 in 1993 and 

1994 when the mean intensity of infection was relatively low but 0.516 and 

0.549 in 1995 and 1992 when the mean intensity of infection was relatively high. 

As k is an inverse index, these values indicate that the distribution of L4 is more 

variable in years with relatively low levels of infection. The ratio of L4 to adult 

T circumcincta also varied among years. The ratio was relatively low in years 

with low infection intensity, being only 0.16 and 0.32 in 1993 and 1994 

compared to 0.48 and 0.50 in 1992 and 1995. These ratios suggested that there 

was a positive relationship between the number of adults and L4 across years. 

There was a close relationship between the mean and the variance in 

different years. The variance was equal to the mean to the power 2.09 ± 0.04 (p 

< 0.0001). As the exponent was close to 2, the result suggests that a logarithmic 

transformation is most appropriate prior to parametric analyses. 

The relationship between the number of adult and L4 was further examined 

by regression analysis of the logarithms of both traits. The relationship was 

highly significant (p < 0.0001). The gradient was not significantly different :fl.-om 

one (1.21 ± 0.13). As gradients of one suggest a linear relationship, the 

untransformed data were then plotted. To minimise extraneous variation the 
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animals were grouped into classes ranging from 0-5000, 5001-10,000 fourth

stage larvae and so on. Again, these data were consistent with a linear 

relationship between the number of adult and fourth-stage T circumcincta 

(Figure 5.1). As the number of adults within a lamb increased, so did the number 

of larvae. This density-dependent relationship suggests that development of 

incoming larvae is retarded or inhibited in heavily-infected abomasa. However, 

the regression analysis on the transformed data indicated that the number of 

adults only accounted for a small proportion of the variation among sheep in 

numbers of fourth-stage larvae (1'2 = 0.14). 

There was also a positive relationship between the number of L4 and of 

adults in the deliberately infected sheep (p<0.05). Again the gradient was not 

significantly different from one (1.77 ± 0.85) and the relationship accounted for a 

relatively small propoliion ofthe total variation (r2 = 0.17). 

There was a significant association between parasite-specific IgA and the 

number of inhibited larvae in the deliberate infection (p<0.01). Those lambs 

with greater IgA responses had increased numbers of inhibited larvae. The 

relationship between IgA and numbers of inhibited larvae appeared to be linear 

(Figure 5.2). 

As the density-dependent relationship accounted for only a small 

proportion of the total variation, the association between immune responses and 

larval development was then investigated. In a multiple regression model that 

fitted the log-transformed number of adults as well as the IgA response to L4 

following deliberate infection, both traits were significant at the 5% level. 

Interestingly, the traits appeared statistically independent of each other. For the 

number of adults the regression coefficient was 1.77 ± 0.85 when the trait was 

93 



analysed on its own and 1.80 ± 0.78 when analysed jointly with the IgA 

response. For the IgA response the regression coefficient was 2.40 ± 1.24 when 

IgA was examined singly and 2.45 ± 1.13 when analysed in conjunction with the 

number of adult worms. The r-square values were 0.17 for the number of adult 

worms alone and 0.15 for the IgA response alone. When analysed together, the 

r-square value was 0.33. These analyses suggested that the mechanisms 

underlying density-dependence and immune regulation were independent of each 

other and that the mechanisms were acting additively to regulate the numbers of 

inhibited larvae. 

Among naturally infected sheep, multiple regression indicated that there 

was again a positive relationship between the number of adult and fourth-stage 

larvae (1.59 ± 0.28; p < 0.0001). The relationship between the number of fourth

stage larvae and the IgA response was not quite significant (5.46 ± 2.81; P = 

0.053). The interaction term was also not quite significant (-0.65 ± 0.36; p = 

0.068). The presence of the interaction term indicates that the IgA response and 

the density-dependent regulation are not acting completely additively in the 

naturally-infected animals, possibly because the intensity of infection was much 

higher in the naturally-infected individuals. 

Western blotting revealed 98 distinct bands that were recognised by some 

but not all sheep; 18 bands were recognised in preparations of third-stage larvae, 

49 in L4 and 31 in adult material. Separate multiple regression analyses were 

calTied out for each band. These analyses also included the transformed number 

of adult parasites and the mean mucosal IgA response to L4. The recognition of 

one or more of five bands was tentatively associated with the number of L4 (p < 

0.10). Sheep that recognised antigens in adult parasites with Mr of 16.5 kDa or 
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26 kDa had fewer L4. Sheep that recognised a 108 kDa band in the L4 

preparation had fewer L4 while those sheep that recognised a band at 41 kDa in 

the same L4 preparation had more L4 than those sheep that failed to recognise 

this band. Sheep that recognised a band with an Mr of 43 kDa in third-stage 

larvae also had fewer L4. 

A combined analysis included the number of adult T. circumcincta, the 

mean mucosal IgA responses to third and fourth-stage larvae and the presence or 

absence of each band. Each effect was significant at the 5% level and together 

these variables accounted for over 91% of the variation in the transformed 

number of fourth-stage larvae. 
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Year Number Mean S.E.M. 

1992 110 6170 810 

1993 99 542 106 

1994 165 726 122 

1995 156 3165 356 

K 

0.549 

0.280 

0.223 

0.516 

S.E. L4:Adult 

0.066 0.48 

0.045 0.16 

0.027 0.32 

0.055 0.50 

Table 5.1. Distribution and variation of fourth-stage larvae among naturally

infected sheep 
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5.4 DISCUSSION 

This chapter describes the distribution of fourth-stage larvae among 

infected sheep, the relationship between the parasite-specific IgA response and 

larval inhibition, the effect of the recognition of specific bands by antibody on 

variation in the numbers of inhibited larvae and the relationship between the 

number of adult worms and inhibited larvae. Two possible mechanisms of 

inhibition are identified; a parasite-specific IgA response and density

dependence. It appears that at high levels of infection these act independently of 

each other. 

The distribution of fourth-stage larvae indicates that there was wide 

variability in the numbers of larvae in an outbred flock exposed to natural 

infection. The variation in the distributions were less in years where there were 

high levels of infection compared to years with low infection intensity. This is 

presumably a consequence of fewer animals having no fourth-stage larvae in 

high intensity years. 

There was a linear relationship between the numbers of adults and fourth

stage larvae. Those sheep with greater adult burdens of parasites also had greater 

numbers of fourth-stage larvae. In the naturally infected sheep we were not able 

to distinguish recently ingested fOUlih-stage larvae from those in inhibition. Any 

association between numbers of fourth-stage larvae and numbers of adults could 

simply be a consequence of increased exposure where those lambs ingesting 

more larvae would be expected to have more adults as well. To overcome this a 

deliberately infected group of sheep were studied where all fourth-stage larvae 

could be assumed to be inhibited or retarded as the sheep had been infected eight 

weeks previously. Thus it could be concluded that the association between 
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adults and fourth-stage was not simply a consequence of increased parasite 

intake. Although in both data sets the effect of adult worm burden on numbers of 

L4 was significant this density-dependant effect on larval inhibition accounted 

for only a small proportion of the total variation in the numbers of L4, indicating 

other factors responsible for larval inhibition. 

The mechanism underlying the density-dependant relationship between the 

number of adult worms and of fourth-stage larvae remains unclear. Parasites 

might secrete a substance that allows incoming larvae to estimate the size of the 

existing population. In crowded or unfavourable conditions, some larvae might 

suspend development. Just such a facultative response is seen in the dauer 

response of Caenorhabitis elegans, where larvae are able to go into the dauer 

phase in the face of reduced food resources and under the influence of a 

pheromone (Wood 1988). 

Immunity has long been thought of as a possible mechanism whereby 

larvae are made to go into inhibition. Increased production of parasite-specific 

IgA is significantly associated with decreased worm length (Stear et al 1995), 

and in passive transfer experiments IgA appeared to have an effect of stunting 

adult worms, (Smith et al 1986). However in this experiment it is possible that 

the stunting was due to other factors secreted by the whole cells which were 

transferred. It could be that the association between IgA and number of fourth

stage larvae is an exaggerated effect of this reduction in worm length (McKellar 

1993). Alternatively, it may be a response of the parasite to unfavourable 

conditions for growth, perhaps a consequence of IgA binding to parasite 

molecules that influence parasite feeding or metabolism. 
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The recognition of five bands by antibody was associated with numbers of 

inhibited larvae in the deliberately infected sheep. Each was of a different 

molecular weight and had different recognition patterns indicating that they are 

distinct from each other. Interestingly four of the bands were associated with 

decreased numbers of larvae. It is tempting to speculate on the possible 

mechanism of such molecules particularly as two were recognised on adults. It 

could be that these molecules are acting as signals recognised by incoming larvae 

which communicate the presence of adults and by blocking these molecules by 

antibody these signals fail and so incoming larvae continue to develop. Such a 

mechanism could underlie density-dependence. However, the present results 

suggest that the IgA response and density-dependence act independently. More 

work is required to confirm that recognition of these molecules is associated with 

reduced inhibition and to determine the mechanism by which they act on 

incoming larvae. 

Recognition of one molecule on fourth-stage larvae was associated with 

increased larval inhibition. The recognition of two bands on L4 by IgA has been 

associated with decreased worm length and therefore reduced worm fecundity 

(chapter 4). However, the bands on L4 associated with numbers of inhibited 

larvae were different. No association between inhibition and the recognition of 

the two bands associated with reduced worm length were found. This may 

indicate separate immunological mechanisms for inhibition compared to those 

associated with reduced worm growth. 

The combined analysis of the effects of adult worm burden, IgA quantity 

and specificity accounted for over 90% of the variation in numbers of L4 in the 

deliberately infected sheep. This is a remarkably high figure when it is 
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considered there are inevitably inaccuracies in estimating parasite burdens and 

that the IgA response was measured in the plasma and not in the mucus. It 

appears that virtually all of the variation can be accounted for in this model. 

In conclusion the present study has described two possible mechanisms 

underlying larval inhibition of T circumcincta at the fourth-stage. The strength 

and specificity of the IgA response and the adult worm burden are associated 

with inhibition. These two mechanisms appear to work largely independently. 

The mechanism of how this IgA response works remains unknown. It may work 

through interferring with feeding, digestion, metabolism or population 

regulation. Further work will be required to confirm the associations seen here 

and to identify and define those molecules involved. This will involve N

terminal sequencing, immuno-Iocalisation through immunohistochemistry, and 

screening for enzymatic activity. In addition further work is required to 

determine how incoming larvae interact with established infections. 
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CHAPTER SIX 

THE CONTROL OF WORM LENGTH IN LAMBS INFECTED 

WITH HAEMONCHUS CONTORTUS 

6.1 INTRODUCTION 

Haemonchus contortus is a highly pathogenic parasite of small ruminants 

oftropical and sub-tropical regions in the world (Urquhart et aI1987). The adult 

parasite is a blood feeder. Consequently, infection causes a protein losing 

gastropathy exacerbated by anaemia. 

Nutrition has a major effect on both resistance to H contortus and 

resilience to the effects of infection (Coop & Holmes 1996). Supplementation 

with protein is associated with reduced faecal egg counts in lambs given trickle 

infections (Shaw et al 1995) and increases the rate of acquisition of immunity to 

a variety of parasites (Coop & Holmes 1996). Protein supplementation also 

offsets the increase in protein turnover and inappetance seen in haemonchosis 

(Abbott et al 1986a; Wallace et al 1996; Wallace et al 1995). However, it has 

been reported that it does not have an effect on parasite establishment in the 

cases of T circumcincta (Coop & Holmes 1996), or T colubriformis (Van 

Houtert et al 1995). However, in this last study there was evidence that protein 

supplementation was associated with decreased faecal egg counts. 

In addition, the influence of dietary protein on the course of infection 

depends on the breed of sheep under study. Susceptible breeds, such as the 

Hampshire Down, show greater improvements than resistant breeds such as the 

Scottish Blackface (Abbott et a11985; Wallace et aI1996). 

103 

l ~_ 



Although much work has been done on the development of vaccines to 

control H contortus (Munn 1993; Schallig & Van Leeuwen 1997; Smith et al 

1994), there remains uncertainty over the effector mechanisms of immunity and 

the genetic and non-genetic factors that influence the development of effective 

immunity. Effective immunity is dependent on CD4+ T-cells (Gill et al 1993b). 

Both IgG 1 and IgA have been associated with a reduction in faecal egg counts 

and worm burdens (Gill et al 1993a). Work with another abomasal parasite 

Teladorsagia circumcincta has indicated a very strong correlation between 

parasite-specific IgA and worm fecundity (Stear et a11995; Chapter 3). 

The purpose of the work described in this chapter was to determine if 

increased IgA is associated with decreased fecundity in H contortus and whether 

the magnitude of the IgA response is influenced by protein nutrition. 

6.2 MATERIALS AND METHODS 

6.2.1 Experimental animals 

The experimental design has been described previously (Wallace et al 

1995). Briefly, 16, five-month-old pedigree Hampshire down lambs reared in 

helminth-free conditions were divided by stratified random sampling into two 

groups according to bodyweight and sex. One group of twelve was given a basal 

diet containing 98g metabolisable protein (MP) kg-I dry matter (DM) and the 

other group of twelve, a supplemented diet containing 173g MP kg-I DM. Both 

diets were isocaloric. The additional protein was supplied in the form of 

soyabean meal. Each animal consumed 1.4 kg of fresh matter daily, divided over 

two feeds except for one lamb in the basal dietary group which consumed 95% 

and 97% of the feed on the first two days of the experiment. The two groups 
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were maintained on their diets for two months before eight of the twelve animals 

in each group were infected. Each animal was housed individually throughout 

the duration of the experiment. 

6.2.2 Parasitological technique 

Third stage Haemonchus contortus larvae of a strain originally obtained 

from the Moredun Research Institute (Edinburgh) were used. Each lamb 

received an initial infecting dose of 100 larvae kg bodyweighrl. Subsequently 

they were given a trickle infection of200 larvae three times a week for 10 weeks. 

Immediately after this period all the infected lambs were necropsied. 

6.2.3 Plasma samples 

Blood samples were collected from each lamb by jugular venepuncture into 

heparinised evacuated glass tubes on the day of slaughter. The tubes were 

centrifuged and the plasma removed and stored at -20oe. 

6.2.4 Necropsy 

The methods for determining total worm burden, average female worm 

length and number of eggs in utero are described in chapter two. 

6.2.5 Larval antigen preparation 

The method of preparing parasite somatic extracts is described in chapter 

two. 
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6.2.6 ELISA 

The ELISA method is described in chapter two 

6.2.7 Statistical Analysis 

The optical densities (OD) were transformed into an optical density index 

(ODI) for each animal using the following formula; 

OD! = MeanOD-MeannegativeOD 
Mean positive OD - Mean negative OD 

The associations between parasite-specific IgA and worm-length, and IgA 

and dietary group were examined with the general linear model procedure on the 

SAS package (SAS Institute). 

A multiple regression model was used to examine the effects of adult worm 

burden and IgA directed against L4 on adult female parasite worm length. 

6.3 Results 

Infected lambs fed the protein-supplemented diet appeared to produce 

significantly more parasite-specific IgA (p<0.005). They had on average 140% 

more parasite-specific IgA than the positive control whereas those lambs on the 

basal diet averaged only 80% ofthe positive control value. Figure 6.1 shows that 

the supplemented group had more IgA against all three stages of the parasitic 

life-cycle: third-stage, fourth-stage and adult parasites. 

Reduced adult worm length was significantly associated with increased 

IgA against L3 (p<0.05) and against L4 (p<0.05) (Figure 6.2). However, it was 

not significantly correlated with adult-specific IgA. 

The mean length of adult female worms was 2.13 em in the basal dietary 

group and 2.00 cm in the supplemented group (Wallace et al 1995). This 

106 



difference in worm length between the two groups could be almost entirely 

attributed to the difference in parasite-specific IgA (appendix 8). The multiple 

regression model fitting the effect of worm burden and IgA directed against L4, 

predicted a decrease in worm length of 5.74mm for each unit increase in IgA. 

The difference between the groups in the L4 response was 0.19 units IgA. This 

difference would be expected to lead to a reduction in length of 1.1mm. The 

actual measured difference between the two groups was 1.3mm. Therefore, the 

difference between the two groups in their worm length could, in a statistical 

sense, be explained almost entirely by differences in the amount of IgA against 

fourth stage larvae. 
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6.4 DISCUSSION 

Previous work has shown that lambs fed a protein-supplemented diet had a 

lower concentration of nematode eggs in their faeces following infection with H 

contortus. Lambs on a basal diet had worms with a mean of 669 eggs in utero 

while lambs on the supplemented diet had worms with a mean of 539 eggs in 

utero. Those worms from the protein-supplemented lambs were significantly 

shorter although there was no significant difference in the numbers of worms 

recovered at necropsy. As shorter worms had fewer eggs in utero and sheep with 

shorter worms had lower faecal egg counts, adult female worms infecting lambs 

given the supplemented diet appeared to be less fecund. 

The purpose of the present study was to identify a possible effector 

mechanism for this apparent difference in fecundity. This work has shown that 

those lambs offered the supplemented diet produced more parasite-specific IgA 

and that there was a significant association between the amount of parasite

specific IgA to third and fourth-stage larvae and adult worm length. Further, the 

increase in IgA was sufficient to account, in a statistical sense, for virtually all 

the difference in worm lengths between the two dietary groups. These results 

suggest that a major protective mechanism in lambs infected with H contortus is 

the IgA mediated suppression of worm growth and fecundity. Therefore, 

resistance to H contortus and T circumcincta appear to be remarkably similar. 

The present experiment did not provide any evidence that young animals 

can control worm burdens following infection with H contortus as there was no 

significant differerices in the total worm burdens between the two dietary groups 

(Wallace et aI1995). There is no convincing evidence in the literature that sheep 

younger than 7 months can mount effective responses to control the number of 
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H contortus or T. circumcincta. In contrast, lambs appear able to influence the 

number of the small intestinal nematodes Trichostrongylus colubriformis and 

Nematodirus battus (Dineen & Windon 1980) (McClure et al 1998). These 

differences may reflect the inability of lambs to mount effective responses in the 

abomasum or different susceptibility of the different nematode species to 

immune responses. 

There is some confusion concerning the effects of protein nutrition on the 

immune responses to T. colubriformis. In one study looking at the effects in a 

long-term sub-clinical infection no demonstrable effect was seen (Kyriazakis et 

al 1996). This is in comparison to another study where an effect was seen in the 

T-cell population in sheep exposed to T. colubriformis (Kambara & McFarlane 

1996). Here an increase in T19+ cells was detected in those on protein 

supplementation compared to those not supplemented. It may be that this subset 

of T cells is associated with resistance to this parasite. Certainly no direct 

comparison between the two experiments can be made as infection conditions, 

breed of sheep and diets were different between the two experiments. 

No significant effect was seen in protein supplementation of lambs exposed 

to N battus (Israf et aI1996). It was concluded in this study that when diet was 

adequate animals could be segregated into high responders and low responders in 

relation to their worm burdens and that genetic susceptibility was not overcome 

by improved nutrition. 

Although the present study indicates a correlation between IgA and worm 

fecundity, this need not mean that IgA is the controlling mechanism. With T. 

circumcincta there is such a strong and consistent correlation between IgA 

specific to fourth-stage larvae and fecundity it is hard to envisage a mechanism 
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for which IgA would merely be a marker. However, the present study had a 

relatively small number of animals and only IgA was measured. It could be that 

with H contortus increased parasite-specfic IgA is only a marker for the true 

controlling mechanism which is influenced by dietary protein. In addition the 

ELISA used does not directly measure quantity ofIgA but will be influnenced by 

binding avidity of the IgA to parasite molecules. Consequently, conclusions 

drawn concerning the role ofIgA in H contortus infections remain tentative until 

they can be confIrmed in other, larger studies or through passive transfer 

experiments. 

In the original study, the lambs on the basal diet seemed less able to 

withstand the pathophysiological effects of infection as measured by packed cell 

volume and liveweight gain (Wallace et al 1995). However, it may be that the 

effect of protein supplementation was not solely to offset the resulting protein 

loss from parasitism. Animals on lower protein diets mounted a less effective 

immune response as measured by IgA. It is plausible that shorter, less fecund 

worms are less active feeders and therefore less pathogenic. If this is the case 

then protein supplementation not only reduces the pathophysiological effects of 

infection, but also reduces the pathogenic effects of each parasite. 

The mechanism whereby IgA controls fecundity remains unknown 

although it would be reasonable to postulate that it affects the feeding, digestion 

or metabolism of the parasite. To elucidate this further will require the 

identification of those specific molecules recognised by IgA that are associated 

with reduced worm length. 
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In conclusion, this study indicates that parasite-specific IgA may be the 

major mechanism controlling fecundity of H contortus, and that in a relatively 

susceptible breed, this response is dependent on adequate dietary protein. 
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CHAPTER SEVEN 

GENERAL DISCUSSION 

The work described in this thesis was designed to elucidate the effect of the 

host IgA response to Teladorsagia circumcincta, as a mechanism of genetic 

resistance, and to identify recognised antigenic targets on the parasite associated 

with resistance. Evidence was also developed to determine if a similar response 

was seen in sheep infected with Haemonchus contortus and to see if this 

response could be improved by dietary supplementation. 

The salient findings were: 

• Genetic resistance to T. circumcincta in lambs is mediated through the 

control of worm fecundity and not worm burden. 

• The IgA response to fourth-stage T. circumcincta (estimated by optical 

density indices) appears to be the major immunological controlling 

mechanism in lambs. 

• This IgA response is heritable. 

• Most of the variation in T. circumcincta fecundity is attributable to three 

factors, IgA quantity, IgA specificity, and density dependence. 

• IgA appears to have a similar effect in lambs infected with H contortus 

where IgA levels are correlated with worm length. 

• IgA response is associated with larval inhibition. 

• Protein supplementation improves the IgA response. 
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• The number of adult T circumcincta has a density-dependant effect on the 

number of inhibited larvae. Those animals with large adult worm burdens 

have increased numbers of inhibited larvae. 

The faecal egg count of sheep infected with T circumcincta is heritable. 

Residual maximum likelihood fitting an animal model with all known pedigree 

relationships resulted in a heritability estimate of 0.22 (Bishop et aI1996b). This 

heritability is sufficiently high to make selective breeding for reduced faecal egg 

counts feasible. This estimate is similar to heritability estimates for infections 

with H contortus, T colubriformis, and mixed natural infections (Morris et al 

1997; Windon 1990; Woolaston & Piper 1996). 

Genetic resistance to Teladorsagia circumcincta is an acquired rather than 

an innate response. Heritability estimates of faecal egg counts are not 

significantly different from zero in young lambs (1-2 months of age) but increase 

with age to approximately 0.33 at six months of age (Stear et al 1999). This 

implies that genetic resistance is acting through an acquired response to the 

parasite. The most likely response is immunological. This is borne out by the 

correlations between certain MHC type I and II alleles and low and high faecal 

egg counts in mixed, predominantly T circumcincta infections (Schwaiger et al 

1995; Buitkamp et aI1996). 

Logically there are three factors that will influence faecal egg counts; 

worm numbers, average worm fecundity, and the dilution effect of faeces. 

Although there is considerable variation in worm burdens amongst individuals 

within a flock, there is no evidence that young lambs (less than 6 months of age) 

are able to control worm burdens. Mixed model analysis of variance revealed no 

115 



sire component in the variance of worm burdens (Stear et aI1998). However in 

the same analysis, there was a remarkably high heritability (0.62) for the mean 

length of adult female worms of T. circumcincta. Resistance must therefore 

work through the control of average worm length in this age of lamb. Indeed, 

this suggests that most of the variation in average worm length is genetic in 

ongm. 

There is considerable variation in mean female worm length between 

infected animals, with a twofold range between the shortest and longest worms 

(0.6-1.2 cm). Worms within the same lamb have similar lengths and the length 

of males, though on average shorter than females, has a strong and positive 

correlation with female worms within the same animal. Worm length is a good 

indicator of worm fecundity. Fecundity can be defmed as the eggs per worm per 

gram of faeces. The relationship between fecundity and worm length is 

curvilinear and is consistent in both natural and deliberate infections. In both 

cases fecundity = 1.1(worm length)oA (Stear et al 1999). Thus it appears that 

genetic resistance in lambs is working through an immunological response to the 

parasite, which controls worm growth and thus reduces worm fecundity. 

For some time the dominant factor controlling fecundity has been assumed 

to be worm burden whether working through an immune mechanism or through 

competition for food. If worm burden is plotted against worm fecundity the 

resulting relationship is a declining exponential (Anderson & Michel 1977). 

However, such a graph is in fact plotting worm burden against its inverse 

multiplied by the egg count. The relationship between a number and its inverse 

is so strong that it may obscure the true biological relationship. Therefore 

because worm length is a good marker for worm fecundity for T. circumcincta it 
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seems more appropriate to look at the effects of worm burden on worm length. 

There is a significant correlation between worm length and worm burden 

(p<0.001) (Stear et al 1999). As worm burden increases, the average worm 

length decreases. However this correlation is relatively weak (r=-0.23) 

indicating that there is substantial residual variation not accounted for by this 

density-dependant effect. Because worm burden is not under genetic control in 

lambs some of the residual variation must be accounted for by an immune 

response that is heritable. 

Only the IgA response to T circumcincta has been consistently associated 

with reduced worm length. When results from four separate experiments 

involving 4.5 month old and 10 month old lambs experiments were pooled, a 

very strong correlation (r=0.96) between peak lymph IgA concentration and 

mean worm length was found (Smith et aI1985). A similar correlation (r=0.95) 

was found when the two experiments involving the younger lambs were pooled. 

However, correlations between groups can give misleading results due to the 

increased likelihood of fmding spurious associations. For example, many 

immune responses are stronger in adults than in lambs and any of them could be 

correlated with mean worm length. It is statistically more reliable to look for 

correlations within groups. Previous work, which examined associations 

between various possible immune effector mechanisms and worm length, 

concluded that IgA directed against fourth-stage larvae was most strongly 

associated with reduced fecundity (Stear et al 1995). The correlation between 

mucus IgA and mean adult worm length was 0.62. The work described in 

chapter three was designed to examine the relationship between IgA and worm 
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length in a larger data set. It confrrmed a strong association between levels of 

fourth-stage parasite specific IgA and worm length and therefore fecundity. 

However, there appear to be a small number of sheep that though able to 

mount strong IgA responses are nonetheless unable to control worm length. It is 

not surprising that the specificity of the immune response is important in 

determining the effectiveness of the response to the parasite. The work described 

in chapter four indicates the wide variety of antigens recognised by lambs but the 

relatively few that are associated with resistance. Of a total of 99 bands from 

third-stage, fourth-stage and adult T circumcincta only four were associated with 

resistance. For a lamb to be resistant it must produce a sufficiently strong IgA 

response with the necessary antigen specificity. Some lambs with strong IgA 

responses did not recognise those bands associated with resistance. When taken 

together the effects of worm burden, IgA quantity and specificity account for 

over 90% of the variation in worm length. It would appear that the fecundity of 

T circumcincta in lambs is mediated through a relatively simple set of 

mechanisms. 

However, statistical associations do not conclusively prove cause and 

effect link. The most extreme example of this objection came from the 

philosopher David Hume who described such associations as no more than 

"constant conjunctions:" we can observe that one thing follows another but it can 

never be asserted that it must follow. Put differently, the IgA response is 

consistently associated with reduced adult female worm length in lambs infected 

with T circumcincta. This could simply mean that the IgA response is acting as 

a marker or is associated with a different mechanism which is itself the 

controlling mechanism. For example, sheep may be producing a substance that 
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stunts worms and also stimulates the production of IgA. In such a case IgA 

might be found to have a significant effect on worm length without it actually 

being the effector mechanism. 

There is no certain way of refuting this objection to statistical associations, 

however a number of observations can be made. There appear to be three major 

factors that influence worm length; IgA quantity, IgA specificity, and the adult 

worm burden. Work described in chapter four suggests that taken together these 

account for over 90% of the variation in worm length seen. For another immune 

mechanism to be the effector mechanism it would have to be very strongly 

associated with IgA responses. To the best of the author's knowledge no such 

response is known. The actual effector mechanism would have to account for 

more of the variation than is being accounted for by the IgA response. It seems 

unlikely that such a mechanism could exist. Support for the view that the 

parasite-specific IgA response is the effector mechanism comes from the 

observation that plasma IgA is only a moderately good marker for mucosal IgA 

(Sinski et al 1995). This showed a weak though statistically significant 

correlation between plasma and mucus IgA (p<0.001 r=0.48-0.63). However, 

this study gave no evidence of a non-linear relationship between plasma and 

mucus IgA. Consequently, plasma IgA can be taken to be a reasonable gauge of 

mucosal IgA. However only 25% of the variation in the plasma IgA could be 

accounted for by variation in the mucus IgA. Therefore, the association between 

plasma IgA and worm length is likely to be an underestimate of the true 

relationship between mucus IgA and worm length. 

More evidence of a role for IgA in immunity to T circumcincta comes 

from work that involved the transfer of lymphocytes between sheep (Smith et al 
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1986). Here the local IgA response was transferred to previously unexposed 

sheep that were subsequently infected with T. circumcincta. The transferral of 

the mucosal IgA producing cells was associated with stunting of worms. Thus, a 

good working hypothesis is that worm fecundity is controlled by the local IgA 

response in lambs. To conclusively prove IgA as the effector mechanism would 

require transfer experiments where parasite-specific IgA was transferred to 

naively infected sheep and worm growth measured. 

The parasite-specific IgA response was heritable (0.34). This estimated 

heritability is consistent with the hypothesis that genetic resistance to T 

circumcincta is almost entirely a result of the parasite-specific IgA response. 

Thus it is feasible to breed sheep for increased IgA responsiveness. This 

heritability estimate did not take into account IgA specificity. If the antigens 

associated with resistance could be confirmed, then the heritability of the IgA 

response to these molecules would be expected to be higher. However, whether 

breeding sheep for increased IgA responsiveness is commercially viable is 

dependent on its genetic correlations with production traits used in current 

selection procedures. In naturally infected Scottish Blackface sheep, the genetic 

correlation between decreased faecal egg counts and liveweight gain is strongly 

negative (-0.85) (Stear et al 1996a). This suggests that those genes that influence 

resistance also influence growth rate and that selection for an increased IgA 

response to T. circumcincta is both feasible and desirable. Studies in Australia 

and New Zealand have found weaker associations between faecal egg counts and 

production traits but these may reflect different parasite species, different breeds 

of sheep, and different management systems (Eady 1998). Indeed breeding for 

resistance may have previously unforeseen benefits to the longer-term control of 
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this parasite. Resistant sheep will excrete fewer eggs. This will lead to a lower 

level of contamination and thus lower numbers of infective larvae. Therefore, 

selection for resistance would be expected to lead to year on year reductions in 

pasture contamination and so to a reduced degree of parasitism (Bishop & Stear 

1997). 

The means by which the IgA response stunts larvae remains unknown. It 

seems reasonable to speculate that the response in some way interferes with the 

parasite's feeding or metabolism of food. However, surprisingly little is known 

about the parasite's feeding, metabolism or development. It is the IgA response 

to fourth-stage larvae rather than to third-stage or adults that is most closely 

associated with decreased adult worm length but it is unclear what the 

mechanism for this is. It is also unclear whether the stunting of adult parasites is 

permanent or temporary. It could be that stunted fourth-stage larvae are slower 

at growing once they have moulted to adults. The details of this will only be 

elucidated when the target molecules are defmitively identified and 

characterised. 

One of the factors that contribute to the remarkable success of T 

circumcincta is its ability to go into inhibition. Although it is known that the 

strain of parasite, previous larval chilling, previous exposure to parasite and the 

intensity of infection all contribute to inhibition, little is known about the 

mechanisms underlying it. Larval inhibition may be an extreme example of 

immune driven adult worm stunting. Because the IgA response is closely 

associated with adult worm stunting it is clearly a candidate mechanism for 

immune induced inhibition. Work described in chapter five described a 

significant association between the IgA response and larval inhibition in 
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deliberately infected lambs. Five bands recognised by antibody from third-stage, 

fourth-stage and adult T circumcincta were significantly associated with 

numbers of inhibited larvae. However, although increased levels of fourth-stage 

specific IgA were associated with increased numbers of inhibited larvae, 

recognition of four bands was associated with decreased numbers of inhibited 

larvae while only one band on fourth-stage larvae was associated with increased 

numbers. How the recognition of certain molecules by IgA could prevent larval 

inhibition is uncertain. It could be that the antibody response is blocking 

messenger or receptor molecules that regulate parasite population development. 

In the free living nematode, Caenorhabditis elegans, larvae can be induced to go 

into the dauer phase under the influence of a pheromone (Wood 1988). A food 

signal (a carbohydrate like substance) produced by E. coli has an opposite effect, 

inhibiting dauer larva formation and enhancing recovery from the dauer phase. It 

could be that if such a signalling system was involved in the regulation of T 

circumcincta populations then it could be interfered with by antibody. Clearly 

more work would need to be done to further identify and characterise such 

molecules. 

A similar though non-significant association between parasite-specific IgA 

and increased numbers of fourth-stage larvae was found in naturally infected 

sheep. In this experiment, the fourth-stage larvae recovered would have 

consisted not only of inhibited or retarded larvae but also of recently acquired 

larvae. It may be that this contributed to the association being non-significant 

(p=O.053). 

However, there was a significant effect of infection intensity on larval 

inhibition in both the naturally and deliberately infected animals. In the 
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deliberately infected animals where the number of adult worms was lower the 

effects of adult worm burden and the IgA response acted independently. It 

appears that at this level of infection the density of adults does not increase the 

number of inhibited larvae through the IgA response. However, at increased 

infection levels there is an interaction between the adult worm burden and the 

IgA response. It could be that in part the heavier antigenic load is provoking a 

greater antibody response. Nonetheless, only a small proportion of the effect of 

parasite burden on larval inhibition could be explained through the IgA response. 

Other possible mechanisms for these density-dependant effects could include the 

release of pheromones, or limited food resources. 

It was of interest to investigate whether a similar mechanism might be at 

work with another abomasal parasite of sheep, H contortus. Resistance to H 

contortus is slow to develop and as with T circumcincta there is no evidence that 

young animals are able to control worm burdens. A group of Hampshire Down 

lambs had previously been studied at Glasgow University Veterinary School to 

examine whether improving dietary protein could improve resilience to the 

effects of disease (Wallace et al 1995). This study showed that dietary 

supplementation ameliorated the effects of sub-clinical haemonchosis. 

Interestingly the only parasitological differences between the supplemented and 

non-supplemented groups were the faecal egg counts and the average length of 

worms. In the light of these findings, these animals were studied to determine 

whether parasite-specific IgA might be involved in controlling worm growth in 

this parasite. The results are described in chapter six and they show that there is 

a strong association between the parasite-specific IgA response and length of the 
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adult female parasite. This is consistent with the hypothesis that parasite-specific 

IgA may be involved in the control of the fecundity of H contortus in lambs. 

The only other parasites where a parasite-specific IgA response has been 

shown to be important in parasite regulation are schistosomes (Capron 1998). 

Here an IgA response has been associated with reduced parasite fecundity and 

egg viability (Grzych et al. 1993). In addition extensive work has indicated 

glutathione-s-transferase (GST) as a putative protective antigen. Recombinant 

Salmonella typhimurium expressing GST has been used to successfully 

immunise mice. This immunity was associated with a secretory IgA response 

(Capron 1998). Moreover, significant anti-fecundity effects have been 

demonstrated in all vaccine experiments performed with GSTs in all schistosome 

species, suggesting that GST has a central role to play in female worm fecundity. 

It would be of interest to investigate if the apparent ant i-fecundity effect of IgA 

seen in T circumcincta and H contortus was associated with a similar molecule. 

However, the GST of schistosomes has a molecular weight of 28 kDa and no 

such band of a similar molecular weight was associated with reduced fecundity 

in the present study. This does not rule out a role for a GST-like molecule in 

these species but this cannot be confirmed until the protective antigens are more 

fully characterised. 

Protein supplementation significantly improved the IgA response to H 

contortus. This has a number of important implications for the control of 

parasites. It gives further support to the view that for an animal to mount an 

adequate immune response it must be on an adequate diet. Hampshire Down 

sheep were studied in this experiment because they are particularly susceptible to 

haemonchosis (Loggins et a11965; Preston & Allonby 1979). This susceptibility 
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can in part be ameliorated by dietary supplementation. However, the adequacy 

of the diet for a susceptible breed may differ from that required for a more 

resistant breed which is mounting a better immune response to the parasite under 

the same conditions. Different breeds clearly utilise dietary intake differently 

leading to different growth rates. It could be that a fast growing breed needs 

more food intake to raise an adequate immune response. Thus advice concerning 

the adequacy of diets in terms of growth rate and immune responsiveness would 

need to be tailored to the individual breed and take into account the type and 

degree of parasitism the animal is subjected to. 

Virtually all of the parasitological differences between the two dietary 

groups could be accounted for in a statistical sense by the differences in the IgA 

responses between the two groups. This may have important implications for 

how dietary supplementation affects the course of infections. Dietary 

supplementation may help infected animals by offsetting the nutritional losses 

caused by the parasite or by improving the immune response to the parasite or 

both. If the IgA response interferes with the feeding of the parasite then the 

parasite will be less pathogenic than if no such response was being mounted. If 

dietary supplementation improves the IgA response then it would be expected 

that the effect of this on the parasite population would be to make it less 

pathogenic by slowing its feeding. Normally the degree of parasitism of an 

animal is related to the worm burden in that animal. It may be that this 

assumption needs to be revisited and that the pathogenic effect of an infection is 

more closely related to total parasite mass. Put differently, shorter worms appear 

to be less pathogenic than longer ones. For example, it is plausible to envisage a 

situation where two animals might have the same parasite burden. However, if 
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one of them had a greater IgA response the average worm length in that animal 

would be shorter and the pathogenic effects of the infection would be less. 

Interestingly, there appear to be substantial differences between young and 

older animals in their ability to control both T circumcincta and H contortus. 

Older animals tend to have substantially lower faecal egg counts than younger 

ones. This appears to be a consequence of their greater ability to control worm 

burden. There is substantial evidence that mast cell degranulation is associated 

with reduction in worm burdens in older sheep infected with T circumcincta or 

H contortus. Previous studies have shown that although there was not a 

significant association between worm burden and the numbers of mucosal mast 

cells in sheep infected with T circumcincta, there was a significant association 

with globule leucocytes (Stear et a11995; Seaton et aI1989). It also appears that 

the number of these cells recovered is related to the parasite burden (Huntley et 

al 1982). As there is considerable evidence that globule leucocytes are 

discharged mast cells (Murray et al 1968; Huntley et al 1984) these findings 

support the hypothesis that mast cell degranulation is the mechanism for 

expelling established or incoming larvae through immediate type hypersensitivity 

responses (Rothwell 1989). Similarly, sheep bred from a resistant sire and 

infected with H contortus had fewer worms and more mast cells and globule 

leucocytes than randomly bred sheep (Gill 1991). Also, lambs of the more 

resistant St. Croix breed have lower worm burdens and greater numbers of 

globule leucocytes than the more susceptible Dorset breed (Gamble & Zajac 

1992). Therefore, it appears that immunity to both T circumcincta and H 

contortus develops in two stages. Young animals are able to mount antibody 

responses to gastrointestinal nematodes that in resistant animals infected with T 
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circumcincta or H contortus causes stunting. As the animals mature, they 

develop the ability to control worm burdens and this appears to work through an 

immediate type hypersensitivity reaction. 

Although it is interesting to fmd the same mechanism at work in both T. 

circumcincta and H contortus care needs to be exercised in drawing conclusions 

to other parasites. Work with laboratory models indicates that generalisations 

from one parasite species to another cannot be made. Different parasites are 

controlled by different immune responses. An antibody response in young 

animals may have the effect of stunting in one species of parasite but expulsion 

or immune exclusion in another. Therefore, fmdings that indicate that an IgA 

response to T. circumcincta or H contortus inhibits worm development and 

growth does not indicate that such a response would have the same or any effect 

on a different gastrointestinal parasite. For example, there is good evidence to 

suggest that some young lambs are able to control the number of T. 

colubriformis. Following vaccination with irradiated T. colubriformis larvae and 

then deliberate infection, lambs could be segregated into low-responder and 

high-responder groups. High-responder groups had lower faecal egg counts and 

lower worm burdens (Windon et aI1980). 

It is of interest to speculate on why lambs appear incapable of controlling 

T. circumcincta and H contortus worm burdens. Clearly adult animals are 

capable of expelling adults although they never achieve sterile immunity. 

Expulsion appears to be associated with mast cell degranulation. Although 

young lambs do have mucosal mast cells they appear incapable of controlling 

worm burdens. It is generally recognised that mast cell degranulation is 

potentially detrimental to the host as it allows damage to the mucosa and leakage 
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of proteins into the gut. It may be that in young lambs the cost of an adult type 

mast cell degranulation is too great and would significantly delay the growth and 

therefore the sexual maturity of the lamb. Perhaps only more mature animals can 

'afford' the cost of widespread mast cell degranulation. 

There may be a similar evolutionary reason why T. circumcincta infection 

causes such a surprisingly large protein loss in the host. Clearly, the degree of 

protein loss far outweighs the nutritional demands of the parasite. In causing a 

relative protein deficiency the parasite is slowing the development of the host. In 

so doing not only does it reduce the antibody responses against it but it may be 

maximising the time before the host is capable of mast cell degranulation and 

therefore expulsion. 

These speculations illustrate the need for further work to elucidate the 

interactions between the host and each of these parasites. The role oflgA in the 

control of worm fecundity will need to be further defmed. In the case of T. 

circumcincta work needs to be done to investigate whether a similar mechanism 

is involved in resistance in other breeds of sheep and the degree of variation in 

worm length that can be attributed to it. This is of particular importance in the 

further selection of sheep for resistance. It may be that there is a strong and 

favourable association between the IgA response and liveweight gain. Certainly 

the genetic correlation between nematode egg counts in sheep predominately 

infected with T. circumcincta and liveweight gain is -0.8 (Bishop el al 1996a). 

This indicates that the most important genes for growth rate in grazing lambs are 

those that control parasite growth. Those breeds that have been most intensively 

selected for increased growth may have been inadvertently selected for increased 

IgA production. Thus there may be limited scope for further selection in some 
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breeds. This will be dependent upon whether such animals were selected under 

heavy or light parasite challenge. Under heavy parasite challenge it could be 

assumed that those animals that grew quickest were those that controlled the 

parasite best. However under limited challenge those animals selected for 

increased productivity may have an increased susceptibility to disease as they 

direct more of their nutritional resources toward liveweight gain as opposed to an 

effective immune response. 

An interesting corollary of the strong genetic correlation between 

livcweight and nematode egg counts is that it may be better for lambs to control 

worm growth than worm numbers. Put another way worm growth may be more 

closely associated with pathogenicity than worm numbers. This is supported by 

the fmding that increased plasma pepsinogen is associated with worm size 

(p<O.001) rather than with worm burden (p>O.05) (Stear and Bishop 1999). As 

increased plasma pepsinogen is regarded as an indicator of the severity of 

infection this would seem to indicate that it is in the lambs best interests to 

control worm growth. 

Those molecules on T. circumcincta that are recognised by resistant 

animals will need to be confIrmed on a larger data set to avoid spurious statistical 

associations with resistance. Similarly, those molecules on H contortus 

associated with resistance remain to be identified. In addition, knowledge 

concerning the function of these molecules would help to identify how resistance 

is working. Such work would not only help in developing better assays for the 

identification of resistant animals but would also help in the development of 

specifically targeted drugs. Indeed much remains to be discovered concerning 

the basic biology of these parasites. Nothing is known at the molecular level 
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about the mechanisms underlying inhibition. If inhibition is regulated by 

pheromones, as chapter five suggests, then these would be obvious targets for the 

development of vaccines or drugs. 

Based on the fmdings of this thesis, a number of areas require futher work. 

More work is required to answer remaining questions over the role of IgA and 

parasite control. Specifically further studies will be required to confirm the role 

of IgA and the mechanisms of its action on the two parasite species studied. 

These would involve further studies of large numbers of sheep of different breeds 

kept under differing conditions to identify whether IgA was involved generally in 

resistance. It would be informative to quantify the IgA responses as the present 

work measured only optical density indices. To conclusively indicate a role for 

IgA would require passive transfer experiments of recently infected sheep. 

In order to confirm which antigens are important in genetic resistance, 

studies involving larger numbers of animals will be required to avoid possible 

spurious statistical associations between recognition of an antigen and resistance. 

Candidate resistance antigens will then need to be biochemically characterised 

and their position within the parasites identified through the development of 

monoclonal antibodies to the antigens and immunohistochemistry on the 

parasites. Ultimately experimental vaccination may be attempted with the 

candidate vaccines although the present work is based on the observation that 

some animals are unable to mount effective immune responses. To take this into 

account will require work to identify those genes important in determining 

antigen recognition. 

Finally for this work to be of practical use in the development of new 

strategies for the control of these parasites field studies will need to set up 
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looking at ways of incorporating genetic resistance perhaps as measured by IgA 

responses to whole parasite somatic extract or to the relevant antigens with the 

normal selection criteria used for breeding programmes. 

In conclusion, the present work suggests that IgA is the major mechanism 

of resistance to T circumcincta in lambs and has identified several molecules 

that may be targets for this immune response. In addition, the IgA response is 

one possible mechanism for the development of larval inhibition in resistant 

animals and several molecules have been identified associated with this. Also, 

the IgA response appears also to playa role in resistance to H contortus. In this 

case the IgA response is greatly influenced by protein nutrition. This fmding 

may have important implications in the control of this parasite as sufficient 

nutrition may overcome to some extent genetic susceptibility. 
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Appendix 1. Abomasal digest solution 

300ml Hel concentrate 

100g Pepsin A powder 

Make up to 10 litres with dd H20 
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Appendix 2. Mixture for freezing down hybridoma cells 

10%DMSO 

20% Foetal Bovine Serum 

70% RPMI 1640 cell culture medium 
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Appendix 3. Solutions used for gel electrophoresis 

4 x Running Gel Buffer (1.5M Tris-Cl pH 8.8) 

36.3g Tris (FW 121.1) made up to 150ml with dd H20. 

pH is adjusted to 8.8 with concentrated HCI and then made up to a total volume of200mI 

with dd H20. 

4 x Stacking Gel Buffer (0.5 M Tris-Cl pH 6.8) 

3.0g Tris (FW 121.1) made up to 40 ml with dd H20 

pH is adjusted to 6.8 with concentrated HCI and then made up to a total volume of50mI 

with dd H20. 

10% SDS 

109 SDS made up to 100mI with dd H20. 

Running Gel Overlay 

1.0mI of 10% SDS 

25mI running gel buffer 

Solution is made up to 100ml with dd H20 
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2 x Treatment Buffer (0.125 M Tris-CI, 4% SDS, 20% v/v Glycerol, 0.2M 

Dithiotreitol, 0.02% Bromophenol Blue pH 6.8). 

2.5m! 4 x Stacking gel buffer 

4.0m!10% SDS 

2.0ml glycerol 

2.0mg bromophenol blue 

0.31g Dithiothreitol (FW 154.2) 

Solution made up to 10m! with ddH20. 

Electrophoresis Buffer (0,025 M Tris, 0,192 M Glycine, 0.1 % SDS, pH 8.3) 

30.28g Tris (FW 121.1) 

144.13 g glycine 

109 SDS H20 

Solution made up to 101 with ddH20. 

Western Blot Buffer 

1.93g Tris base (15.5mM) 

9g Glycine (120mM) 

Solution made up to 11 with ddH20. (pH without adjustment 8.1-8.4) 
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Appendix 4 Ingredients for gels. 

7.5% Gel 

7.5ml Monomer solution. 

7.5m14 x Running gel buffer. 

0.3mll0% SDS. 

14.6ml dd H20. 

15 111 10% Ammonium persulfate. 

10111 N,N,N',N'-TEMED. 

12.5% Gel 

12.5ml Monomer solution. 

7.5ml4 x Running gel buffer. 

O.3ml 10% SDS. 

9.6ml dd H20. 

15 11110% Ammonium persulfate. 

I0I11N,N,N',N'-TEMED. 
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Stacking Gel (4% acrylimide) 

133ml Mnomer solution. 

2.5ml Stacking gel buffer. 

0.lml10% SDS 

6.0ml ddH20 

50 11110% Ammonium persulfate. 

5 III N,N,N ',N '-TEMED. 
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Appendix 5. Optical densities for IgA directed against fourth-stage 
T circumcincta. 

Sample Number (Year) Mean Faecal Egg Count Optical Density 

1 (95) 425 0.185 
2 (95) 287.5 0.406 
3 (95) 375 0.254 
4 (95) 250 0.230 
5 (95) 337.5 0.205 
6 (95) 1100 0.495 
7 (95) 200 0.099 
8 (95) 362.5 0.534 
9 (95) 212.5 0.071 
10 (95) 550 0.467 
11 (95) 887.5 0.422 
12 (95) 250 0.316 
13 (95) 200 0.166 
14 (95) 212.5 0.900 
15 (95) 75 0.313 
16 (95) 487.5 0.696 
17 (95) 25 0.212 
18 (95) 100 0.208 
19 (95) 100 0.801 
20 (95) 62.5 0.221 
21 (95) 87.5 0.226 
22 (95) 700 1.194 
23 (95) 362.5 0.208 
24 (95) 50 0.131 
25 (95) 62.5 0.534 
26 (95) 0 0.486 
27 (95) 137.5 0.270 
28 (95) 75 0.698 
29 (95) 50 0.294 
30 (95) 50 0.274 

Positive Control 0.560 
Negative Control 0.043 

Within Subjects Coefficient 
of Variation 

0.148 
0.070 
0.097 
0.051 
0.084 
0.049 
0.095 
0.064 
0.051 
0.014 
0.006 
0.028 
0.049 
0.077 
0.059 
0.029 
0.028 
0.039 
0.025 
0.013 
0.020 
0.015 
0.019 
0.015 
0.029 
0.056 
0.088 
0.099 
0.073 
0.066 
0.061 
0.075 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

31 (95) 287.5 0.692 0.067 
32 (95) 112.5 0.373 0.067 
33 (95) 187.5 0.108 0.164 
34 (95) 637.5 0.096 0.229 
35 (95) 187.5 0.349 0.070 
36 (95) 362.5 0.384 0.064 
37 (95) 125 0.507 0.047 
38 (95) 100 0.958 0.036 
39 (95) 425 0.429 0.043 
40 (95) 100 0.249 0.018 
41 (95) 400 0.974 0.014 
42 (95) 75 0.263 0.027 
43 (95) 575 0.437 0.011 
44 (95) 212.5 0.355 0.150 
45 (95) 912.5 0.217 0.019 
46 (95) 312.5 0.321 0.034 
47 (95) 925 0.845 0.038 
48 (95) 50 0.270 0.020 
49 (95) 337.5 0.517 0.052 
50 (95) 25 0.975 0.012 
52 (95) 50 0.122 0.066 
53 (95) 300 0.089 0.026 
54 (95) 200 0.201 0.092 
55 (95) 212.5 0.299 0.021 
57 (95) 312.5 0.260 0.081 
58 (95) 237.5 0.080 0.144 
59 (95) 25 0.851 0.105 
60 (95) 225 0.128 0.098 
61 (95) 350 0.608 0.081 

Positive Control 0.641 0.049 
Negative Control 0.053 0.050 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

62 (95) 612.5 0.356 0.010 
63 (95) 212.5 0.696 0.071 
64 (95) 37.5 0.578 0.059 
65 (95) 125 0.508 0.051 
66 (95) 437.5 1.271 0.027 
67 (95) 87.5 2.145 0.006 
68 (95) 87.5 0.550 0.021 
69 (95) 262.5 0.691 0.033 
71 (95) 375 0.310 0.037 
72 (95) 562.5 0.723 0.036 
73 (95) 200 1.529 0.054 
74 (95) 350 1.124 0.037 
75 (95) 937.5 0.910 0.033 
76 (95) 200 0.908 0.012 
77 (95) 562.5 0.335 0.088 
78 (95) 500 0.635 0.021 
80 (95) 87.5 0.278 0.034 
81 (95) 412.5 0.803 0.049 
82 (95) 137.5 1.076 0.051 
83 (95) 162.5 0.814 0.028 
84 (95) 825 0.861 0.012 
85 (95) 412.5 0.823 0.014 
86 (95) 550 0.828 0.014 
87 (95) 100 1.585 0.028 
88 (95) 437.5 2.558 0.016 
89 (95) 550 1.349 0.068 
90 (95) 212.5 0.524 0.070 
93 (95) 512.5 0.196 0.013 
94 (95) 62.5 0.948 0.028 

Positive Control 1.043 0.017 
Negative Control 0.092 0.031 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

95 (95) 137.5 2.098 0.032 
96 (95) 200 1.901 0.015 
97 (95) 875 0.649 0.004 
98 (95) 275 1.019 0.038 
100 (95) 437.5 1.135 0.029 
101 (95) 300 0.622 0.034 
102 (95) 725 2.131 0.012 
103 (95) 75 0.867 0.015 
104 (95) 375 0.391 0.030 
107 (95) 737.5 0.373 0.051 
108 (95) 575 0.996 0.024 
109 (95) 362.5 0.744 0.007 
112 (95) 87.5 1.254 0.021 
113 (95) 112.5 0.315 0.029 
114 (95) 650 0.434 0.065 
115 (95) 200 1.605 0.053 
116 (95) 437.5 0.394 0.034 
117 (95) 250 0.753 0.014 
118 (95) 300 0.512 0.041 
119 (95) 200 0.719 0.047 
121 (95) 25 0.797 0.041 
122 (95) 37.5 1.418 0.008 
123 (95) 200 1.685 0.054 
124 (95) 200 0.974 0.066 
126 (95) 162.5 2.160 0.014 
127 (95) 550 0.541 0.067 
128 (95) 762.5 0.325 0.056 
129 (95) 175 1.023 0.066 
130 (95) 362.5 0.921 0.049 

Positive Control 1.000 0.013 
Negative Control 0.090 0.104 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

131 (95) 125 0.346 0.116 
132 (95) 12.5 0.335 0.100 
133 (95) 337.5 0.074 0.289 
134 (95) 425 0.225 0.081 
135 (95) 575 0.135 0.094 
136 (95) 575 0.176 0.066 
137 (95) 350 0.309 0.076 
138 (95) 600 0.940 0.057 
139 (95) 75 0.763 0.036 
140 (95) 112.5 1.167 0.003 
141 (95) 200 0.440 0.031 
142 (95) 175 0.624 0.034 
143 (95) 250 0.360 0.050 
144 (95) 512.5 0.455 0.039 
145 (95) 250 0.686 0.021 
147 (95) 162.5 0.573 0.034 
149 (95) 450 0.419 0.039 
150 (95) 237.5 1.060 0.018 
152 (95) 800 0.695 0.040 
153 (95) 650 0.288 0.020 
154 (95) 87.5 0.396 0.019 
155 (95) 175 0.973 0.023 
156 (95) 237.5 1.453 0.012 
157 (95) 112.5 0.330 0.042 
158 (95) 375 0.543 0.018 
159 (95) 1475 0.606 0.070 
160 (95) 125 0.864 0.004 
161 (95) 325 0.265 0.010 

Positive Control 0.673 0.011 
_ _Ne~ati~e (~ontrol 0.059 0.081 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

162 (95) 775 0.741 0.064 
163 (95) 750 0.244 0.101 
164 (95) 112.5 0.248 0.083 
165 (95) 437.5 0.521 0.077 
166 (95) 2350 0.539 0.014 
167 (95) 612.5 0.184 0.114 
168 (95) 187.5 0.251 0.094 
169 (95) 362.5 0.304 0.085 
170 (95) 212.5 0.330 0.119 
171 (95) 487.5 0.105 0.083 
172 (95) 587.5 0.135 0.065 
173 (95) 337.5 0.306 0.019 
175 (95) 275 0.539 0.013 
177 (95) 412.5 0.144 0.052 
179 (95) 300 0.238 0.037 
180 (95) 275 0.389 0.068 
181 (95) 62.5 0.503 0.003 
182 (95) 87.5 0.203 0.038 
183 (95) 87.5 0.592 0.016 
184 (95) 300 0.227 0.024 
185 (95) 100 0.866 0.026 
186 (95) 162.5 0.425 0.027 
187 (95) 137.5 0.645 0.021 
189 (95) 600 0.771 0.027 
190 (95) 137.5 0.540 0.026 
192 (95) 37.5 0.553 0.093 
193 (95) 550 0.094 0.063 
195 (95) 512.5 1.628 0.053 

Positive Control 0.737 0.044 
Negative Control 0.059 0.068 
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Sample Number (Year) 

196 (95) 
197 (95) 
198 (95) 
199 (95) 
200 (95) 

Positive Control 
Negative Control 

Mean Faecal Egg Count 

437.5 
212.5 
412.5 
775 

812.5 

Optical Density 

0.726 
0.426 
0.457 
0.691 
0.740 
0.811 
0.092 

Within Subjects coefficient 
of Variation 

0.056 
0.039 
0.088 
0.049 
0.040 
0.066 
0.073 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

1 (96) 412.5 0.393 0.065 
2 (96) 162.5 0.427 0.054 
3 (96) 0 1.348 0.020 
4 (96) 100 0.338 0.027 
5 (96) 450 0.195 0.031 
6 (96) 250 0.947 0.009 
7 (96) 387.5 0.290 0.027 
8 (96) 37.5 0.277 0.006 
9 (96) 562.5 0.489 0.020 
10 (96) 150 0.492 0.004 
11 (96) 50 0.813 0.048 
12 (96) 325 1.429 0.041 
13 (96) 387.5 0.365 0.029 
14 (96) 375 0.210 0.069 
15 (96) 112.5 0.245 0.015 
16 (96) 87.5 0.445 0.017 
17 (96) 1075 0.284 0.032 
19 (96) 650 1.384 0.009 
20 (96) 362.5 0.174 0.047 
21 (96) 825 0.307 0.008 
22 (96) 300 0.177 0.054 
23 (96) 737.5 0.807 0.013 

Positive Control 0.811 0.066 
Negative Control 0.092 0.073 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

25 (96) 12.5 0.593 0.040 
26 (96) 325 0.463 0.019 
27 (96) 1025 0.733 0.038 
28 (96) 25 1.478 0.044 
29 (96) 550 0.854 0.042 
30 (96) 550 0.213 0.075 
32 (96) 87.5 0.689 0.044 
33 (96) 225 0.304 0.037 
34 (96) 137.5 0.743 0.015 
35 (96) 1662.5 0.553 0.025 
36 (96) 475 0.283 0.023 
37 (96) 150 0.531 0.025 
38 (96) 637.5 0.600 0.038 
39 (96) 25 0.614 0.038 
40 (96) 287.5 0.597 0.013 
41 (96) 112.5 0.270 0.024 
42 (96) 175 0.715 0.016 
43 (96) 312.5 0.l37 0.057 
44 (96) 450 0.403 0.007 
46 (96) 500 1.220 0.013 
47 (96) 650 0.457 0.056 
48 (96) 462.5 0.891 0.026 
50 (96) 2300 0.370 0.014 
51 (96) 812.5 0.348 0.031 
53 (96) 412.5 0.209 0.048 
54 (96) 475 0.891 0.043 
55 (96) 2200 1.194 0.025 
56 (96) 187.5 0.305 0.008 
57 (96) 925 1.055 0.013 

Positive Control 0.778 0.014 
Negative Control 0.092 0.076 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

58 (96) 1087.5 1.201 0.049 
59 (96) 1175 1.148 0.052 
60 (96) 312.5 0.344 0.108 
61 (96) 262.5 0.556 0.063 
62 (96) 337.5 0.709 0.071 
64 (96) 875 0.776 0.067 
65 (96) 312.5 1.879 0.011 
66 (96) 975 0.262 0.064 
67 (96) 350 0.624 0.041 
68 (96) 287.5 0.619 0.067 
69 (96) 1300 0.176 0.031 
71 (96) 650 0.647 0.046 
72 (96) 0 0.672 0.020 
73 (96) 925 0.186 0.026 
74 (96) 125 0.459 0.036 
75 (96) 1625 0.613 0.041 
76 (96) 150 0.677 0.030 
78 (96) 150 0.969 0.030 
79 (96) 187.5 0.479 0.021 
80 (96) 200 0.215 0.022 
81 (96) 25 1.012 0.004 
82 (96) 412.5 0.564 0.042 
83 (96) 612.5 0.187 0.031 
84 (96) 237.5 1.052 0.020 
85 (96) 1012.5 1.903 0.025 
86 (96) 450 1.534 0.035 
87 (96) 187.5 0.740 0.056 
88 (96) 50 0.424 0.036 
89 (96) 212.5 0.296 0.038 
90 (96) 812.5 0.286 0.070 

Positive Control 0.685 0.033 
Negative Control 0.076 0.118 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

91 (96) 112.5 0.629 0.076 
92 (96) 275 1.360 0.040 
93 (96) 550 0.747 0.041 
94 (96) 1200 0.388 0.087 
95 (96) 387.5 0.835 0.015 
96 (96) 687.5 1.057 0.023 
97 (96) 1087.5 0.278 0.049 
98 (96) 450 0.549 0.044 
99 (96) 75 0.966 0.0l3 
100 (96) 300 1.103 0.030 
101 (96) 650 0.372 0.008 
102 (96) 525 0.116 0.040 
103 (96) 400 0.370 0.027 
104 (96) 150 1.659 0.004 
105 (96) 437.5 0.280 0.007 
106 (96) 1450 0.516 0.017 
108 (96) 175 0.341 0.045 
109 (96) 562.5 0.240 0.031 
110 (96) 975 0.825 0.014 
111 (96) 1225 0.156 0.061 
113 (96) 200 0.384 0.052 
116 (96) 650 0.902 0.054 
117 (96) 275 0.310 0.007 
118 (96) 150 0.225 0.045 
119 (96) 375 0.319 0.036 
120 (96) 62.5 0.658 0.054 
121 (96) 87.5 0.635 0.065 

Positive Control 0.765 0.046 
Negative Control 0.087 0.020 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

122 (96) 825 0.804 0.024 
124 (96) 475 0.930 0.044 
125 (96) 250 0.244 0.085 
126 (96) 37.5 0.717 0.080 
127 (96) 487.5 0.297 0.025 
130 (96) 300 0.298 0.083 
132 (96) 250 0.420 0.031 
134 (96) 387.5 0.351 0.044 
135 (96) 250 0.323 0.088 
136 (96) 687.5 0.846 0.054 
137 (96) 1300 1.081 0.048 
138 (96) 500 0.841 0.046 
139 (96) 562.5 0.573 0.041 
140 (96) 237.5 0.348 0.047 
141 (96) 775 0.852 0.023 
142 (96) 525 0.171 0.024 
143 (96) 175 0.282 0.046 
144 (96) 1200 0.401 0.047 
145 (96) 925 0.942 0.029 
146 (96) 425 0.495 0.053 
147 (96) 87.5 0.571 0.039 
148 (96) 437.5 0.181 0.039 
150 (96) 437.5 0.115 0.041 
151 (96) 162.5 0.747 0.008 
152 (96) 300 0.688 0.059 
155 (96) 1337.5 0.662 0.041 
156 (96) 25 0.591 0.003 

Positive Control 0.793 0.023 
Negative Control 0.069 0.075 _._ ....... - .. - -- ..... - -
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

157 (96) 425 0.139 0.148 
158 (96) 550 0.497 0.054 
159 (96) 612.5 0.268 0.035 
160 (96) 637.5 0.170 0.060 
161 (96) 1050 1.183 0.020 
162 (96) 537.5 1.031 0.027 
163 (96) 612.5 0.863 0.048 
164 (96) 12.5 0.400 0.020 
165 (96) 500 0.219 0.025 
166 (96) 212.5 1.589 0.011 
168 (96) 225 0.474 0.013 
169 (96) 1537.5 0.276 0.034 
170 (96) 312.5 0.631 0.038 
171 (96) 900 0.916 0.003 
172 (96) 150 0.804 0.081 
173 (96) 250 1.251 0.020 
174 (96) 162.5 1.267 0.005 
175 (96) 525 0.211 0.020 
177 (96) 150 0.212 0.096 
178 (96) 562.5 0.526 0.029 
179 (96) 612.5 1.013 0.018 
180 (96) 62.5 0.488 0.039 
181 (96) 0 1.006 0.010 
182 (96) 112.5 1.022 0.039 
183 (96) 712.5 0.427 0.070 
184 (96) 675 1.635 0.025 
185 (96) 337.5 0.864 0.067 
186 (96) 87.5 0.474 0.041 
187 (96) 775 0.407 0.031 

Positive Control 0.823 0.048 
Negative Control 0.080 0.044 
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Sample Number (Year) 

189 (96) 
190 (96) 
191 (96) 
192 (96) 
193 (96) 
194 (96) 
196 (96) 
197 (96) 
198 (96) 
199 (96) 
200 (96) 

Positive Control 
Negative Control 

Mean Faecal Egg Count 

362.5 
175 

137.5 
900 

312.5 
25 

1612.5 
475 

462.5 
37.5 
62.5 

Optical Density 

0.152 
0.443 
0.960 
0.997 
0.708 
1.008 
0.369 
1.240 
2.070 
0.815 
1.091 
0.655 
0.076 

Within Subjects coefficient 
of Variation 

0.162 
0.049 
0.035 
0.042 
0.070 
0.057 
0.122 
0.049 
0.007 
0.013 
0.011 
0.034 
0.066 
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Sample Number (Year) 

1 (93) 
2 (93) 
3 (93) 
4 (93) 
5 (93) 
6 (93) 
7 (93) 
9 (93) 
10 (93) 
11 (93) 
12 (93) 
13 (93) 
14 (93) 

Positive Control 
Negative Control 

Mean Faecal Egg Count 

25 
475 
300 
300 
400 
o 

100 
100 
325 
25 
25 
o 

150 

Optical Density 

0.162 
0.660 
0.787 
2.348 
1.975 
1.518 
1.028 
2.167 
0.525 
1.368 
0.252 
0.952 
1.281 
0.655 
0.076 

Within Subjects coefficient 
of Variation 

0.121 
0.023 
0.009 
0.006 
0.012 
0.019 
0.036 
0.008 
0.027 
0.027 
0.034 
0.045 
0.004 
0.034 
0.066 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

15 (93) 125 0.260 0.158 
16 (93) 75 1.146 0.052 
17 (93) 125 0.175 0.094 
18 (93) 0 0.149 0.083 
19 (93) 275 0.506 0.108 
20 (93) 25 0.377 0.090 
21 (93) 275 0.407 0.142 
22 (93) 300 0.521 0.104 
23 (93) 450 0.985 0.038 
24 (93) 75 1.705 0.034 
25 (93) 225 1.102 0.022 
26 (93) 50 0.490 0.010 
27 (93) 25 0.175 0.056 
29 (93) 0 0.881 0.038 
30 (93) 0 0.690 0.061 
31 (93) 75 1.693 0.015 
32 (93) 50 0.403 0.014 
33 (93) 450 0.567 0.013 
34 (93) 0 1.122 0.013 
35 (93) 0 1.812 0.012 
36 (93) 0 1.098 0.055 
37 (93) 75 1.922 0.007 
38 (93) 275 0.883 0.014 
39 (93) 100 1.214 0.025 
42 (93) 50 0.644 0.012 
43 (93) 50 0.944 0.031 
44 (93) 250 1.115 0.045 
45 (93) 500 0.326 0.060 
46 (93) 150 0.403 0.047 

Positive Control 0.644 0.012 

-
Negative Control 0.071 0.036 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

47 (93) 25 1.247 0.028 
48 (93) 550 1.269 0.026 
50 (93) 0 0.816 0.019 
51 (93) 700 1.850 0.013 
52 (93) 600 1.809 0.008 
53 (93) 100 1.008 0.040 
55 (93) 175 0.794 0.076 
56 (93) 250 0.808 0.064 
57 (93) 600 0.814 0.037 
58 (93) 350 0.829 0.031 
59 (93) 0 0.870 0.005 
60 (93) 25 1.863 0.032 
61 (93) 0 1.674 0.041 
62 (93) 25 0.842 0.027 
63 (93) 50 1.366 0.014 
64 (93) 75 1.820 0.026 
65 (93) 0 0.605 0.052 
66 (93) 25 0.888 0.055 
67 (93) 25 0.888 0.014 
68 (93) 150 0.410 0.059 
69 (93) 0 1.416 0.022 
70 (93) 0 1.338 0.006 
72 (93) 100 1.425 0.026 
73 (93) 75 1.331 0.008 
74 (93) 50 1.272 0.020 
75 (93) 50 0.574 0.051 
76 (93) 250 0.194 0.057 
77 (93) 0 1.012 0.024 
78 (93) 125 1.788 0.029 
79 (93) 75 0.299 0.034 

Positive Control 0.836 0.021 
Negative Control 0.073 0.060 

-
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

80 (93) 50 0.318 0.128 
82 (93) 25 0.842 0.027 
83 (93) 100 0.684 0.072 
84 (93) 800 0.465 0.078 
85 (93) 175 0.874 0.054 
86 (93) 225 0.548 0.054 
87 (93) 50 0.695 0.091 
88 (93) 125 0.999 0.060 
90 (93) 825 1.064 0.Q15 
92 (93) 325 0.153 0.004 
93 (93) 550 0.416 0.030 
94 (93) 125 0.925 0.023 
95 (93) 75 0.736 0.068 
96 (93) 125 0.773 0.016 
97 (93) 50 1.114 0.032 
98 (93) 450 0.478 0.027 
99 (93) 75 0.534 0.030 
100 (93) 25 1.592 0.037 
Yl (93) 150 l.038 0.Q18 
Y2 (93) 125 0.519 0.006 
Y3 (93) 600 0.740 0.019 
Y4 (93) 100 1.212 0.024 
Y5 (93) 100 0.817 0.008 
Y6 (93) 0 1.847 0.004 
Y7 (93) 100 0.593 0.053 
Y8 (93) 50 0.207 0.066 
Y9 (93) 100 0.875 0.015 

Y12 (93) 50 0.257 0.071 
Y13 (93) 50 2.118 0.018 

Positive Control 0.800 0.051 
Negative Control 0.081 0.086 

_.- -
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

Y14 (93) 500 1.164 0.042 
Y15 (93) 0 2.116 0.009 
Y17 (93) 50 l.291 0.039 
Y18 (93) 200 0.150 0.112 
Y19 (93) 600 0.458 0.073 
Y20 (93) 75 l.068 0.062 
Y21 (93) 475 0.087 0.l83 
Y22 (93) 0 1.307 0.031 
Y23 (93) 50 1.358 0.104 
Y24 (93) 100 0.204 0.033 
Y26 (93) 225 0.333 0.008 
Y27 (93) 550 l.070 0.023 
Y28 (93) 1050 0.457 0.043 
Y30 (93) 1875 0.388 0.052 
Y31 (93) 375 0.982 0.011 
Y32 (93) 75 0.750 0.007 
Y33 (93) 625 0.310 0.040 
Y35 (93) 0 0.587 0.040 
Y36 (93) 0 0.690 0.031 
Y37 (93) 200 0.400 0.031 
Y38 (93) 0 0.137 0.015 
Y39 (93) 50 1.645 0.022 
Y40 (93) 175 0.233 0.014 
Y41 (93) 375 0.482 0.015 
Y42 (93) 975 0.801 0.019 
Y43 (93) 575 0.289 0.031 
Y44 (93) 325 0.127 0.048 
Y45 (93) 100 0.298 0.092 
Y46 (93) 400 1.115 0.022 

Positive Control 0.623 0.040 
_ J'!egati~e Qontrol 0.088 0.020 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

Y47 (93) 425 0.286 0.049 
Y48 (93) 25 1.314 0.022 
Y50 (93) 250 0.404 0.053 
Y51 (93) 525 0.780 0.020 
Y52 (93) 75 0.983 0.026 
Y53 (93) 225 0.998 0.008 
Y54 (93) 175 0.645 0.006 
Y55 (93) 125 0.785 0.031 
Y56 (93) 100 1.503 0.056 
Y57 (93) 525 0.353 0.010 
Y59 (93) 25 0.385 0.004 
Y60 (93) 350 1.528 0.019 
B47 (93) 75 1.081 0.015 
B48 (93) 425 1.426 0.005 
B49 (93) 0 1.480 0.066 
B50 (93) 150 1.521 0.010 
B51 (93) 50 0.760 0.038 
B52 (93) 0 1.326 0.032 
B54 (93) 0 2.103 O.oI7 
B55 (93) 125 0.542 0.025 
B56 (93) 200 0.474 0.033 
B57 (93) 375 1.028 0.003 
B58 (93) 325 0.681 0.032 
B60 (93) 475 0.783 0.071 
B63 (93) 100 1.228 0.034 
B64 (93) 80 1.329 0.027 
B65 (93) 325 0.141 0.042 

Positive Control 0.809 0.017 
Negative Control 0.074 0.061 

- -_ ... - ---- --- - .. _- - .. -
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Sample Number Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

866 (93) 25 0.428 0.056 
867 (93) 25 1.385 0.045 
869 (93) 25 1.037 0.032 
870 (93) 325 0.348 0.008 
871 (93) 0 1.595 0.025 
872 (93) 150 0.710 0.051 
873 (93) 50 1.870 0.059 
874 (93) 300 0.281 0.067 
875 (93) 50 2.563 0.001 
876 (93) 0 0.661 0.020 
877 (93) 0 1.397 0.028 
878 (93) 25 2.466 0.007 
879 (93) 175 0.328 0.022 
880 (93) 75 0.835 0.010 
881 (93) 325 0.326 0.021 
882 (93) 100 1.073 0.013 
883 (93) 75 1.682 0.020 
884 (93) 200 0.433 0.042 
885 (93) 175 1.726 0.030 
887 (93) 25 2.004 0.051 
888 (93) 150 1.326 0.013 
889 (93) 125 2.175 0.009 
890 (93) 200 0.971 0.026 
891 (93) 175 0.209 0.010 
892 (93) 100 1.246 0.007 
893 (93) 125 0.243 0.025 
894 (93) 25 0.217 0.115 
895 (93) 25 1.497 0.019 
896 (93) 75 1.201 0.059 

Positive Control 0.730 0.049 
Negative Control 0.065 0.023 
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Sample Number (Year) 

B97 (93) 
B98 (93) 

Positive Control 
Negative Control 

Mean Faecal Egg Count 

600 
75 

Optical Density 

0.942 
0.787 
0.579 
0.047 

Within Subjects coefficient 
of Variation 

0.023 
0.026 
0.047 
0.074 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

B57 (94) 150 0.381 0.038 
B58 (94) 0 0.387 0.061 
B59 (94) 0 0.245 0.040 
B60 (94) 50 0.124 0.014 
B61 (94) 200 0.109 0.054 
B63 (94) 0 1.034 0.047 
B64 (94) 0 0.443 0.106 
B65 (94) 350 0.156 0.026 
B66 (94) 50 0.079 0.022 
B67 (94) 50 1.279 0.048 
B68 (94) 0 0.219 0.072 
B69 (94) 0 0.522 0.064 
B71 (94) 250 0.083 0.071 
B72 (94) 100 0.739 0.055 
B75 (94) 150 1.331 0.049 
B76 (94) 300 0.608 0.016 
B78 (94) 300 0.303 0.074 
B79 (94) 0 0.771 0.064 
B80 (94) 100 0.604 0.073 
B81 (94) 100 0.203 0.079 
B82 (94) 100 0.125 0.068 

Y124 (94) 0 0.720 0.044 
Y125 (94) 0 0.220 0.027 
Y126 (94) 50 0.244 0.038 
Y127 (94) 150 0.482 0.068 
Y128 (94) 100 0.246 0.088 
Y129 (94) 100 0.147 0.107 
Y131 (94) 0 0.242 0.062 

Positive Control 0.579 0.047 
Negative Control 0.047 0.074 
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Sample Number Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

Y132 (94) 0 0.257 0.042 
Y133 (94) 0 0.226 0.043 
Y134 (94) 0 0.189 0.026 
Y135 (94) 150 0.234 0.032 
Y136 (94) 150 0.094 0.048 
Y137 (94) 200 0.429 O.oI5 
Y138 (94) 200 0.895 0.040 
Y139 (94) 100 0.605 0.061 
Y140 (94) 0 0.377 0.008 
Y141 (94) 0 0.232 0.065 
Y142 (94) 50 0.198 0.020 
Y143 (94) 50 0.328 0.015 
Y144 (94) 650 0.508 0.013 
Y146 (94) 50 1.809 0.019 
Y147 (94) 0 0.191 0.022 
Y148 (94) 50 0.260 0.012 
Y149 (94) 0 0.275 0.208 
Y150 (94) 0 1.798 0.013 
Y151 (94) 0 0.168 0.030 
Y152 (94) 50 0.064 0.027 
Y153 (94) 0 0.500 0.038 
Y154 (94) 0 0.261 0.016 
Y156 (94) 150 0.634 0.039 
Y158 (94) 100 0.304 0.041 
Y160 (94) 150 0.856 0.053 
Y161 (94) 200 0.144 0.045 
Y162 (94) 0 0.234 0.038 
Y163 (94) 300 1.044 0.017 
Y164 (94) 50 0.486 0.089 
Y165 (94) 0 0.525 0.023 

Positive Control 0.764 0.051 
Negative Control 0.053 0.038 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

Y166 (94) 0 1.312 0.093 
Y167 (94) 0 0.494 0.023 
Y168 (94) 150 0.864 0.048 
B14 (94) 50 0.703 0.058 
B15 (94) 300 0.324 0.024 
B16 (94) 200 0.681 0.044 
B17 (94) 0 0.151 0.046 
B18 (94) 0 1.881 0.012 
B19 (94) 400 0.307 0.028 
B20 (94) 350 1.273 0.033 
B21 (94) 50 0.522 0.029 
B22 (94) 50 0.159 0.071 
B23 (94) 0 0.215 0.015 
B24 (94) 0 0.643 0.035 
B25 (94) 50 0.538 0.043 
B26 (94) 50 0.933 0.054 
B27 (94) 0 1.738 0.037 
B28 (94) 150 0.144 0.028 
B29 (94) 0 0.321 0.015 
B30 (94) 200 0.327 0.025 
B31 (94) 150 0.215 0.033 
B32 (94) 350 0.419 0.090 
B33 (94) 100 0.363 0.075 
B35 (94) 50 0.075 0.035 
B36 (94) 0 1.233 0.018 
B37 (94) 0 0.893 0.028 

Positive Control 0.678 0.032 
Negative Control 0.049 0.041 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

839 (94) 550 0.238 0.052 
840 (94) 50 0.314 0.054 
841 (94) 50 0.081 0.077 
842 (94) 150 0.389 0.076 
843 (94) 50 0.756 0.032 
844 (94) 0 0.483 0.012 
845 (94) 0 1.847 0.053 
846 (94) 400 0.805 0.034 
847 (94) 0 0.124 0.040 
848 (94) 250 0.118 0.061 
849 (94) 0 0.171 0.059 
850 (94) 150 0.580 0.080 
851 (94) 0 0.359 0.045 
852 (94) 50 0.528 0.022 
853 (94) 0 0.047 0.025 
854 (94) 550 0.219 0.029 
855 (94) 0 0.649 0.013 
856 (94) 400 0.516 0.012 
883 (94) 250 0.230 0.048 
884 (94) 150 0.263 0.025 
885 (94) 50 1.503 0.020 
887 (94) 100 1.168 0.014 
889 (94) 0 0.346 0.028 
890 (94) 300 0.113 0.044 
891 (94) 0 0.232 0.013 
892 (94) 0 0.550 0.021 
893 (94) 150 0.305 0.023 
895 (94) 0 0.358 0.021 
896 (94) 200 0.208 0.027 

Positive Control 0.623 0.025 
Negative Control 0.045 0.072 

---- -- .. -
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

B97 (94) 150 0.852 0.047 
B98 (94) 0 0.274 0.015 
P78 (94) 100 0.173 0.053 
P79 (94) 550 0.635 0.040 
Y62 (94) 150 0.497 0.079 
Y63 (94) 350 0.213 0.081 
Y64 (94) 150 0.543 0.106 
Y65 (94) 0 1.321 0.069 
Y66 (94) 0 0.342 0.043 
Y67 (94) 50 0.202 0.065 
Y68 (94) 300 0.201 0.026 
Y69 (94) 100 0.117 0.023 
Y70 (94) 0 0.231 0.026 
Y71 (94) 0 0.132 0.012 
yn (94) 200 0.096 0.028 
Y73 (94) 0 0.089 0.077 
Y76 (94) 0 0.108 0.054 
Y77 (94) 250 0.241 0.025 
Y80 (94) 0 0.326 0.057 
Y81 (94) 0 1.560 0.045 
Y82 (94) 0 0.217 0.066 
Y83 (94) 0 0.345 0.061 
Y85 (94) 0 0.119 0.078 
Y86 (94) 150 0.451 0.033 
Y87 (94) 0 0.232 0.024 
Y88 (94) 0 0.627 0.053 
Y89 (94) 0 0.297 o.on 
Y90 (94) 0 0.269 0.069 
Y91 (94) 50 0.160 0.029 
Y92 (94) 300 0.117 0.039 

Positive Control 0.497 0.029 
Negative Control 0.035 0.059 

204 



Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

Y94 (94) 0 0.627 0.054 
Y95 (94) 0 0.385 0.039 
Y96 (94) 0 0.470 0.054 
Y97 (94) 0 1.487 0.027 
Y100 (94) 0 0.150 0.028 
Y101 (94) 0 0.112 0.059 
YI03 (94) 0 0.295 0.033 
Y104 (94) 0 0.112 0.066 
Y105 (94) 100 0.407 0.013 
Y106 (94) 100 0.275 0.022 
Y107 (94) 150 0.256 0.045 
YI08 (94) 0 0.284 0.007 
YI09 (94) 0 0.189 0.003 
YllO (94) 0 0.171 0.032 
Y111 (94) 0 0.466 0.018 
Y1l2 (94) 200 0.248 0.053 
Yl13 (94) 150 1.333 0.045 
Yl14 (94) 200 0.224 0.071 
Y1l5 (94) 0 0.606 0.008 
Yl16 (94) 0 0.104 0.028 
Y1l7 (94) 150 0.213 0.024 
Yl18 (94) 50 0.456 0.068 
Y119 (94) 200 0.207 0.052 
Y120 (94) 900 1.611 0.034 
Y121 (94) 50 0.279 0.061 
Y122 (94) 0 0.273 0.035 
Y123 (94) 0 0.616 0.010 
Y176 (94) 0 0.804 0.047 

Positive Control 0.540 0.046 
_ l'-Teg~tive Control 0.036 0.141 
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Sample Number (Year) 

Yl77 (94) 
Y178 (94) 
Y179 (94) 
Y180 (94) 
YI81 (94) 
Y182 (94) 
Y183 (94) 
Y185 (94) 
Y186 (94) 
Yl87 (94) 
Yl88 (94) 
Y189 (94) 
Y191 (94) 
Yl92 (94) 

Positive Control 
Negative Control 

Mean Faecal Egg Count 

o 
o 
o 
o 

100 
o 

250 
100 
50 

350 
o 

100 
o 

250 

Optical Density 

0.283 
0.594 
0.452 
0.169 
0.216 
0.464 
1.319 
2.046 
1.667 
0.153 
0.152 
1.377 
0.298 
0.154 
0.493 
0.032 

Within Subjects coefficient 
of Variation 

0.037 
0.058 
0.045 
0.036 
0.042 
0.045 
0.064 
0.008 
0.026 
0.026 
0.060 
0.003 
0.017 
0.034 
0.042 
0.018 
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Sample Number (Year) 

Y1 (92) 
Y2 (92) 
Y3 (92) 
Y4 (92) 
Y5 (92) 
Y6 (92) 
Y7 (92) 
Y8 (92) 

Y10 (92) 
Yl1 (92) 
Y12 (92) 
Y13 (92) 
Y14 (92) 

Positive Control 
Negative Control 

Mean Faecal Egg Count 

o 
o 
o 

550 
250 

2700 
200 
50 
o 

300 
200 
1550 
o 

Optical Density 

0.576 
0.426 
0.453 
0.666 
0.207 
0.112 
0.116 
0.492 
0.524 
0.758 
1.013 
0.958 
0.265 
0.493 
0.032 

Within Subjects coefficient 
of Variation 

0.082 
O.oI8 
0.029 
0.088 
0.150 
0.105 
0.083 
0.053 
0.058 
0.060 
0.058 
0.125 
0.049 
0.042 
0.018 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

Y15 (92) 100 0.646 0.019 
Y16 (92) 50 0.991 0.059 
Y17 (92) 250 0.388 0.042 
Y18 (92) 0 0.274 0.048 
Y19 (92) 0 1.262 0.044 
Y20 (92) 150 0.754 0.039 
Y21 (92) 50 0.167 0.024 
Y22 (92) 150 0.247 0.027 
Y23 (92) 500 0.097 0.114 
Y24 (92) 250 0.137 0.101 
Y25 (92) 0 0.472 0.022 
Y26 (92) 0 0.218 0.030 
Y27 (92) 350 0.373 0.039 
Y28 (92) 300 0.967 0.040 
Y29 (92) 0 0.312 0.109 
Y30 (92) 0 0.226 0.019 
Y31 (92) 50 0.498 0.055 
Y32 (92) 400 0.268 0.069 
Y33 (92) 200 1.229 0.018 
Y34 (92) 450 0.545 0.034 
Y35 (92) 300 0.438 0.040 
Y36 (92) 250 0.656 0.030 
Y37 (92) 800 0.622 0.060 
Y38 (92) 200 1.947 0.039 
Y39 (92) 200 0.371 0.088 
Y41 (92) 0 0.917 0.040 
Y42 (92) 650 0.299 0.079 
Y43 (92) 150 0.842 0.054 

Positive Control 0.468 0.067 
Negative Control 0.028 0.137 

-- - .... _- -
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Sample Number Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

Y45 (92) 0 0.258 0.068 
Y46 (92) 150 1.162 0.034 
Y47 (92) 300 0.482 0.062 
Y48 (92) 250 0.305 0.060 
Y49 (92) 100 0.479 0.044 
Y50 (92) 200 0.583 0.042 
Y51 (92) 50 0.702 0.037 
Y52 (92) 100 0.677 0.049 
Y53 (92) 550 0.630 0.013 
Y54 (92) 700 0.541 0.020 
Y55 (92) 850 1.341 0.033 
Y56 (92) 300 1.647 0.025 
Y58 (92) 50 0.174 0.046 
Y59 (92) 150 2.000 0.020 
Y60 (92) 100 1.248 0.065 
Y61 (92) 700 0.111 0.037 
Y62 (92) 300 0.222 0.018 
Y63 (92) 50 0.516 0.035 
Y64 (92) 350 0.737 0.017 
Y65 (92) 350 0.556 0.011 
Y66 (92) 650 0.583 0.045 
Y67 (92) 0 1.465 0.018 
Y68 (92) 0 0.492 0.030 
Y69 (92) 300 2.062 0.011 
Y70 (92) 0 0.842 0.028 
Y71 (92) 750 2.012 0.016 
Y72 (92) 50 0.406 0.002 
Y73 (92) 250 0.595 0.037 
Y74 (92) 150 0.756 0.028 

Positive Control 0.704 0.025 
Negative Control 0.065 0.032 

-- _ ....... -
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Sample Number Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

Y76 (92) 50 0.536 0.035 
Y77 (92) 0 0.700 0.046 
Y78 (92) 0 1.065 0.037 
Y79 (92) 0 0.320 0.028 
Y80 (92) 950 0.083 0.062 
Y81 (92) 450 1.433 0.016 
Y82 (92) 50 0.791 0.058 
Y83 (92) 100 0.422 0.026 
Y85 (92) 0 0.660 0.039 
Y86 (92) 100 0.573 0.047 
Y87 (92) 0 0.659 0.002 
Y88 (92) 0 0.600 0.013 
Y89 (92) 50 0.139 0.011 
Y90 (92) 50 0.782 0.005 
Y91 (92) 50 1.167 0.022 
Y94 (92) 350 0.720 0.019 
Y95 (92) 150 0.553 0.013 
Y96 (92) 800 0.207 0.029 
Y98 (92) 50 0.829 0.022 
Y99 (92) 50 0.319 0.050 

Y100 (92) 0 1.065 0.017 
B15 (92) 150 0.333 0.029 
B17 (92) 2400 0.254 0.075 
B18 (92) 150 0.826 0.049 
B19 (92) 600 0.397 0.031 
B20 (92) 150 0.164 0.079 
B21 (92) 100 1.359 0.058 
B22 (92) 2150 1.656 0.056 

Positive Control 0.709 0.123 
Negative Control 0.062 0.147 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

Y936 (92) 0 1.010 0.057 
Y937 (92) 300 0.609 0.016 
Y938 (92) 50 1.068 0.045 
Y940 (92) 100 0.829 0.043 
Y941 (92) 500 0.104 0.034 
Y942 (92) 50 0.081 0.093 
Y943 (92) 0 0.367 0.044 
Y944 (92) 0 1.093 0.072 
Y945 (92) 100 1.382 0.015 
Y946 (92) 300 0.840 0.014 
Y947 (92) 50 0.406 0.027 
Y948 (92) 0 0.607 0.032 
Y949 (92) 50 0.253 0.005 
Y950 (92) 50 0.540 0.017 
Y951 (92) 100 0.630 0.029 
Y952 (92) 0 0.916 0.040 
Y953 (92) 100 0.680 0.042 
Y954 (92) 0 1.927 0.041 
Y955 (92) 800 0.726 0.006 
Y956 (92) 1200 0.325 0.016 
Y957 (92) 0 2.134 0.008 
Y958 (92) 0 0.660 0.024 
Y959 (92) 50 0.276 0.016 
Y960 (92) 1250 0.193 0.008 
Y961 (92) 150 0.968 0.085 
Y962 (92) 100 1.610 0.044 
Y963 (92) 50 0.174 0.072 
Y964 (92) 0 0.512 0.010 
Y965 (92) 100 1.154 0.024 
Y966 (92) 50 0.463 0.011 

Positive Control 0.724 0.044 
Negative Control 0.062 0.049 

~- .... - - ... _-
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

B23 (92) 1600 0.214 0.104 
B24 (92) 0 0.839 0.040 
B25 (92) 0 0.784 0.010 
B26 (92) 450 0.112 0.070 
B27 (92) 0 1.894 0.019 
B29 (92) 450 1.170 0.033 
B30 (92) 0 1.269 0.029 
B31 (92) 0 1.060 0.029 
B32 (92) 0 0.662 0.002 
B34 (92) 50 1.039 0.030 
B35 (92) 0 0.249 0.108 
B36 (92) 1200 1.735 0.012 
B37 (92) 50 0.983 0.015 
B39 (92) 0 0.632 0.014 
B40 (92) 350 0.429 0.007 
B41 (92) 500 1.130 0.037 
B45 (92) 200 0.387 0.068 

Y926 (92) 0 0.506 0.015 
Y927 (92) 0 1.038 0.006 
Y928 (92) 150 0.923 0.033 
Y929 (92) 100 2.266 0.019 
Y930 (92) 900 1.520 0.014 
Y932 (92) 200 0.996 0.058 
Y933 (92) 300 0.766 0.022 
Y934 (92) 0 1.251 0.060 
Y935 (92) 0 0.577 0.038 

Positive Control 0.809 0.031 
Negative Control 0.068 0.039 
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Sample Number (Year) Mean Faecal Egg Count Optical Density Within Subjects coefficient 
of Variation 

Y968 (92) 250 0.393 0.029 
Y969 (92) 100 1.372 0.064 
Y970 (92) 100 1.283 0.046 
Y971 (92) 0 1.050 0.040 
Y972 (92) 0 0.148 0.043 
Y975 (92) 50 1.448 0.039 
Y976 (92) 200 1.230 0.009 
Y977 (92) 100 0.756 0.021 
Y978 (92) 300 0.345 0.022 
Y979 (92) 100 1.295 0.033 
Y980 (92) 150 0.695 0.030 
Y981 (92) 0 0.295 0.048 
Y982 (92) 100 0.305 0.029 
Y983 (92) 0 0.914 0.019 
Y984 (92) 0 0.704 0.030 
Y987 (92) 150 0.327 0.077 
Y988 (92) 1000 0.721 0.036 
Y989 (92) 0 0.432 0.015 
Y990 (92) 0 0.566 0.042 
Y991 (92) 100 0.598 0.041 
Y992 (92) 50 0.255 0.126 
Y993 (92) 250 0.561 0.033 
Y994 (92) 400 0.710 0.071 
Y995 (92) 300 0.283 0.012 

Positive Control 0.594 0.008 
Negative Control 0.053 0.057 

~--~-- ... -.- _ .... _ .. __ .... - - -

213 



S
am

pl
e 

N
um

be
r 

(Y
ea

r)
 

Y
99

6 
(9

2)
 

Y
99

7 
(9

2)
 

Y
99

8 
(9

2)
 

P
os

it
iv

e 
C

on
tr

ol
 

N
eg

at
iv

e 
C

on
tr

ol
 

M
ea

n 
F

ae
ca

l E
gg

 C
ou

nt
 

o 15
0 

15
0 

O
pt

ic
al

 D
en

si
ty

 

0.
38

5 
0.

88
6 

1.
13

9 
0.

65
2 

0.
05

6 

W
it

hi
n 

S
ub

je
ct

s 
co

ef
fi

ci
en

t 
o

f V
ar

ia
ti

on
 

0.
60

7 
0.

03
4 

0.
02

4 
0.

04
4 

0.
03

1 21
4 



A
p

p
en

d
ix

 6
. 

T
it

ra
ti

on
 c

ur
ve

s 
fo

r 
M

on
oc

lo
n

al
 a

n
ti

b
od

y 
us

ed
 i

n 
E

L
IS

A
s 

0.
90

 
• 

• 

0.
85

 -
• 

~ 
0.

80
 

-0
 ..s .~
 

0.
75

 

0.
70

 
• 

• 

0.
65

 
• 

0.
60

 +
-
-
-
-
-
-
~
-
-
-
t
-
-
-
-
-
-
-
-
-
-
_
_
_
t
_
_
 

-
-
-
-
-
j
-
-
-
-
-
-
-
-
-
-
t
-

-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
j
 

o 
1 

2 
3 

4 
5 

M
on

oc
lo

na
l 

A
nt

ib
od

y 
C

on
ce

nt
ra

ti
on

 (
%

) 
in

 T
. 

ci
rc

um
ci

nc
ta

 E
L

IS
A

 



1.
2 

1.
0 

~
 

Q
) 

0.
8 

" ,s ;>
. 

.-t
= C
Il .:: 

0.
6 

Q
) 

0 t;
 

.S
;! .....

 
0.

4 
0.

. 
0 

0.
2 

0.
0 

1-
I 

I 
I 

-
-
~
-
-
-
-
-
-
~
-
-

-"
1

 

0 
1 

2 
3 

4 
5 

M
on

oc
lo

na
l 

A
nt

ib
od

y 
C

on
ce

nt
ra

ti
on

 (
%

) 
in

 H
 

co
nt

or
tu

s 
E

L
IS

A
 



Appendix 7. Western Blots ofT. circumcincta. Sheep sample numbers are 
shown along the top and molecular weight markers on the right hand scale (kDa). 
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