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Abstract

An injury to the cervical region of the spinal cord can cause paralysis affecting all four

limbs, termed tetraplegia. People with tetraplegia also have paralysis or impaired function

of the major respiratory muscles, namely the diaphragm and intercostal and abdominal

muscles. This often reduces respiratory function, with associated respiratory complications a

leading cause of morbidity and mortality for this population. Abdominal Functional Electrical

Stimulation (AFES), the application of electrical pulses to the abdominal muscles causing

them to contract, has been shown to improve respiratory function in tetraplegia. Despite these

positive results, further work is needed to establish AFES as a standard clinical treatment.

The aim of this thesis is to support the clinical introduction of AFES. This was achieved

by addressing two primary objectives. Firstly, the development of new technologies and

protocols to optimise AFES for use in a clinical setting. Secondly, the clinical evaluation of

these technologies and protocols with tetraplegic patients.

For research purposes, AFES has typically been applied manually, requiring an operator

to synchronise stimulation with respiratory activity. One important step necessary for the

clinical introduction of AFES is the development of an automated AFES device that can

apply stimulation in synchrony with the users respiratory activity, with different stimulation

parameters applied for different breath types such as a quiet breath and a cough. In this

thesis, the signal from a non-intrusive respiratory effort belt, worn around the chest, was

used to develop a statistical classification algorithm capable of classifying respiratory activity

in real-time, and applying AFES in synchrony with the user’s respiratory activity. The

effectiveness of AFES can also be enhanced by stimulating at the abdominal muscle motor

points. In this thesis the positions of the abdominal motor points were located systematically

for the first time, in ten able bodied and five tetraplegic participants.

To aid the clinical introduction of AFES it is necessary to establish the patient groups who

would benefit most from this intervention, and to develop appropriate clinical protocols.

This is addressed in two clinical studies, where the feasibility and effectiveness of AFES to

improve the respiratory function of the acute ventilator dependant and sub-acute tetraplegic

populations was demonstrated. In the first study, conducted with 10 acute ventilator

dependant tetraplegics, AFES was applied on alternate weeks for a total duration of eight

weeks. This resulted in acute improvements in breathing and led to a longitudinal increase
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in respiratory function over the study duration. It was found that participants weaned from

mechanical ventilation on average 11 days faster than matched historic controls.

Previous work, which investigated the effect of a three week AFES training programme on

the respiratory function of people with sub-acute tetraplegia, suggested that an extended

AFES training programme may be more effective. In the second clinical study in this thesis,

a continuous eight week AFES training protocol (combined with a six week control period)

was evaluated with three sub-acute tetraplegic participants. The application of AFES led

to an acute increase in respiratory function, with a longitudinal improvement in respiratory

function observed throughout the study. In a single participant case study, the feasibility

of combining AFES with assisted coughing delivered by mechanical insufflation-exsufflation

was demonstrated for the first time. This was shown to lead to an acute improvement in

respiratory function at six of the eight assessment sessions, indicating that this technique

could be used to aid secretion removal.

This thesis highlights the feasibility and effectiveness of AFES to improve the respiratory

function of the acute ventilator dependant and sub-acute tetraplegic populations. The clinical

protocols that enable AFES to be used with these patient groups, and the technological

developments detailed throughout this thesis, are an important step towards the introduction

of AFES as a regular treatment modality.
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Contributions

• In this thesis novel Abdominal Functional Electrical Stimulation (AFES) protocols and

technologies are developed and implemented, and it is shown that they can help improve

the respiratory function of the acute ventilator dependant and sub-acute tetraplegic

population. Demonstration of the feasibility and effectiveness of these technologies

and protocols is a necessary step towards the implementation of AFES as a clinical

treatment modality. As such, a key contribution of this thesis is proof of feasibility.

• By using the respiratory data recorded from 10 able bodied participants a novel

algorithm for non-intrusive real-time breathing pattern detection and classification has

been designed and tested. The use of a non-intrusive sensor, coupled with an improved

and less operator reliant classification algorithm, makes this method more suited to a

clinical setting than previous work where the signal from an intrusive spirometer was

used for breathing pattern classification.

• Neuromuscular electrical stimulation has been used for the first time to systematically

detect the position of the motor points of the abdominal muscles. By applying single

pulse electrical stimulation to the rectus abdominis and external oblique muscles, the

position of the motor points of these muscles were successfully located in 10 able bodied

and five tetraplegic participants. The position of the motor points of these muscles,

along with the repeatability and uniformity of the position, is presented. The results

of this study suggest that this method could be used to accurately detect the position

of the abdominal muscle motor points to select the optimum electrode location for the

application of AFES.

• In the main clinical study of this thesis the feasibility of using AFES to improve the

respiratory function of acute ventilator dependant tetraplegics is shown. To use AFES

with this patient group a number of adaptations to standard AFES protocols were

required. Novel engineering solutions to allow AFES to be synchronised with mechanical

ventilation, or with the user’s own breathing, are presented. A novel training protocol,

designed to improve respiratory function while allowing the effectiveness of AFES to be

evaluated, was also developed. The gains in respiratory function achieved using these
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novel technologies and protocols with 10 tetraplegic participants, who appeared to wean

faster from mechanical ventilation than matched historic controls, suggest that acute

ventilator dependent tetraplegic patients are a new treatment group who would benefit

from the use of an AFES intervention during the early stage post-injury. The feasibility

of using AFES to assist ventilator weaning for the chronic tetraplegic population who

retain some diaphragm function is also demonstrated in a case study.

• Previous work has demonstrated that three weeks of AFES training with sub-acute

and chronic tetraplegic participants did not appear to be sufficiently long to achieve the

maximum benefit from an AFES training program. In this thesis the feasibility of using

an eight week AFES training program to improve the respiratory function of people

with sub-acute tetraplegia is demonstrated in a case series with three participants. The

training effect shown in this study provides evidence for a potential future role of a

prolonged AFES training program to improve the respiratory function of all tetraplegic

participants.

• An engineering method to integrate AFES with mechanical insufflation-exsufflation,

a clinical treatment modality commonly used to simulate cough and aid secretion

clearance, is described and demonstrated in a case study with one sub-acute tetraplegic

participant. These results indicate that, with a further refinement of the protocol and

technology, the combination of these two treatment modalities could be used to help

clear the airway of people with tetraplegia more effectively.
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Chapter 1

Introduction

“If you can’t explain your physics to a barmaid it is probably not very good physics.”

Ernest Rutherford
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1.1 Summary

Damage to the spinal cord, which results in a Spinal Cord Injury (SCI), is a life changing

event that can have a profound effect on a person’s quality of life. An injury to the cervical

(neck) region of the spinal cord can cause paralysis or impaired function of all four limbs, a

condition termed tetraplegia. In this chapter the prevalence of SCI is outlined, along with a

description of the different classifications of SCI. How muscles work, along with the impact

of tetraplegia on muscle function, particularly respiratory function, is described. Ways of

measuring this respiratory function are also presented. The principles of Functional Electrical

Stimulation (FES), with a focus on how it can be used to cause a contraction of paralysed

muscles, are given. FES applied to the abdominal muscles, known as Abdominal Functional

Electrical Stimulation (AFES), can be used to improve the respiratory function of people

with tetraplegia and is described. This chapter concludes by outlining the aims of this thesis.

1.2 Spinal Cord Injury

The central nervous system is the part of the nervous system consisting of the brain and the

spinal cord. An injury to the central nervous system can result in paralysis. A stroke, which

is a loss of brain function due to a distrubance in blood supply to the brain, is the leading

cause of paralysis in the United States of America (USA) [1]. Paralysis after stroke occurs

due to the damaged brain no longer sending signals to muscles in the body. In the USA the

second leading cause of paralysis, after stroke, is Spinal Cord Injury (SCI) [1]. Unlike a stroke,

paralysis after SCI is caused by direct trauma to the spinal cord, resulting in a disruption in

the pathway between a muscle and the brain. The effects of an SCI vary greatly. However,

many people with SCI experience at least some loss of function (i.e. paralysis) and sensation.

Advances in medical care over the last decades have resulted in increased survival rates and

life expectancy for the spinal cord injured population [2]. This has led to an increase in the

number of people living with an SCI, with the effective treatment of SCI, and its associated

complications, becoming an increasingly important issue for society.

1.2.1 Prevalence

SCI most commonly affects young, active individuals, with the highest prevalence of new

SCIs in people between 20 and 40 years of age [3]. The Spinal Injuries Association for the

United Kingdom (UK) and Ireland estimates that there are over 40, 000 people (0.06 percent

of the UK population) living with an SCI in the UK1. Of these 40, 000, slightly over 3, 000

reside in Scotland (0.06 percent of the Scottish population) [4]. In the year 2011-2012, there

were 99 newly spinal cord injured patients admitted to the Queen Elizabeth National Spinal

Injuries Unit (QENSIU) [4], the sole centre for treating SCIs in Scotland and one of 12

dedicated SCI centres in the UK. These 99 injuries represent an annual rate of 18 new SCIs

1http://www.spinal.co.uk/page/Some-basic-facts-about-SCI (Accessed May 2014)

http://www.spinal.co.uk/page/Some-basic-facts-about-SCI
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per million of population. In comparison, the National Spinal Cord Injury Statistical Center

in the USA reported that in 2012, there were approximately 12, 000 new cases of SCI in

the USA2, representing an annual rate of 37 new SCIs per million of population. Using the

estimate developed by Lasfargues et al. [5], in 2013 there were approximately 270, 000 people

living with an SCI in the USA. This represents approximately 0.08 percent of the American

population, correlating with the data from the UK.

The etiology of an SCI can be classed as either traumatic or non traumatic. The most

common causes of non traumatic SCI are spinal multiple sclerosis, cervical spondylosis (spinal

stenosis) and amyotrophic lateral sclerosis (motor neuron disease), with tumour compression,

infectious abscesses and vascular malformations less common causes [6, 7]. Traumatic SCIs

result from trauma to the spinal cord. In the UK falls are the leading cause of traumatic

SCI, followed by Road Traffic Accidents (RTAs) and sporting injuries [4]3. In contrast, RTAs

are the primary cause of traumatic SCI in the USA, followed by falls and violence [8]. The

etiology of traumatic SCIs in Scotland, the UK and the USA is shown in Table 1.1.

Table 1.1: Number of traumatic spinal cord injuries in Scotland, the United Kingdom (UK)
and United States of America (USA) caused by falls, Road Traffic Accidents (RTAs), sports
and other etiologies in 2012. Results are expressed as a percentage of all reported traumatic
spinal cord injuries.

Region Year Causes
Falls RTA Sports Others

Scotland 2012 55% 21% 8% 16%

UK (inc. Scotland) 2012 46% 39% 10% 5%

USA 2012 21% 44% 10% 25%

Traumatic SCIs have a greater prevalence in males than females, with multi center studies

showing a male to female ratio of approximately four to one [9, 10]. Compared to traumatic

SCIs, non traumatic SCIs are associated with an older age at injury [11] and have an almost

equal prevalence amongst males and females [12]. Of the 99 patients admitted to the QENSIU

in 2011-2012 with an SCI, 35 percent (n = 35) had an SCI of a non traumatic nature [4].

This agrees with the findings of other incidence studies [11, 13], where approximately one

third of SCIs were found to have a non traumatic etiology.

1.2.2 Anatomy of the Spinal Cord

Humans are born with 33 vertebrae in the spinal column, consisting of seven cervical

vertebrae, 12 thoracic vertebrae, five lumbar vertebrae, five sacral vertebrae and four

coccygeal vertebrae. The cervical, thoracic and lumbar vertebrae are separated by

intervertebral discs, which are not present between the sacral or coccygeal vertebrae. This

leads to both the sacral and coccygeal vertebrae fusing in adult life to form two bones, known

2https://www.nscisc.uab.edu/ (Accessed May 2014)
3http://www.spinal.co.uk/page/Some-basic-facts-about-SCI (Accessed May 2014)

https://www.nscisc.uab.edu/
http://www.spinal.co.uk/page/Some-basic-facts-about-SCI
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as the sacrum and coccyx (or tailbone). In adult humans the cervical vertebrae are located

in the neck, the thoracic vertebrae are located between the shoulders and middle back and

the lumbar vertebrae are situated in the lower back, above the sacrum and the coccyx. These

vertebrae are shown in Figure 1.1.

Figure 1.1: Vertebrae of the adult spinal cord, highlighting the cervical, thoracic and lumbar
vertebrae, along with the sacrum and the coccyx. Also shown is the level of the spinal cord
from which the nerves emanate that control various muscles and functions of the body.

Humans have 31 left-right pairs of spinal nerves, which carry motor, sensory and autonomic

signals between the spinal cord and the body. These consist of eight cervical nerve pairs

(C1-8), 12 thoracic pairs (T1-12), five lumbar pairs (L1-5), five sacral pairs (S1-5) and one

coccygeal pair. These spinal nerves exit the spinal cord between adjacent vertebrae, except

for the first cervical nerve, referred to as C1, which exits above the first cervical vertebrae.

Therefore, the cervical nerves are all numbered according to the vertebrae below the nerve,

except for C8 which exists between C7 and T1, while the thoracic, lumbar and sacral nerves

are all numbered according to the vertebrae above.

1.2.3 Paralysis

There are two main factors that determine the severity of an SCI, namely the injury level

and completeness of injury.
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1.2.3.1 Injury Level

The neurological level of injury is defined in the International Standards for Neurological

Classification of Spinal Cord Injury as ‘the most caudal segment of the spinal cord with

normal sensory and antigravity motor function on both sides of the body’ [14]. Neurological

level is often further defined by both sensory and motor levels. The International Standards

describe the sensory level as ‘the most caudal, normally innervated dermatome for both pin

prick and light touch sensation’ and the motor level as ‘the lowest key muscle function that

has a grade of at least three’ (see Table 1.2 in Section 1.2.3.2 for more information on muscle

scoring). The sensory and motor level of an SCI can differ, as can the sensory or motor level

on either side of the body. When the scores differ on either side of the body, the different

levels are reported individually. An injury level reported as C5/6 would imply an injury level

of C5 on one side of the body and C6 on the other. The level at which skeletal damage to

the vertebrae occurs, termed skeletal level, may differ from the neurological level of injury.

Different muscles are innervated from descending levels of the spinal cord, as shown in

Figure 1.1. The more cranial the level of injury the more severe the impairment after SCI,

as a larger number of muscles will no longer be capable of being innervated from the spinal

cord.

1.2.3.2 Completeness of Injury

The severity of an SCI is commonly described using the five level American Spinal Injuries

Association (ASIA) Impairment Scale (AIS), based on the degree of sensory and motor

sparing. According to the AIS, an injury is sensory and motor complete, classed as AIS

A, if there is no function or sensation in muscles controlled by the nerves emanating from the

spinal cord at S4-S5. As these are the most caudal nerves emanating from the spinal cord

that are responsible for movement (the coccygeal nerve is only responsible for sensation), any

function or sensation in the muscles controlled by these nerves indicates that the pathway

between the brain and the most caudal portion of the spinal cord is still intact and that the

injury is incomplete. If sensation, but not function, is preserved below the injury, the injury is

classified as sensory incomplete, and classed as AIS B. If function and sensation is preserved

below the level of injury, the injury is defined as motor and sensory incomplete and classed

from AIS C to AIS E based on the level of muscle function. To determine this level of muscle

function a range of movement tests are performed, either against gravity or with caregiver

support depending on the level of impairment. Muscles are scored and classed using the six

point scale described in Table 1.2. The chart used to record AIS is shown in Figure 1.2.

Traditionally it was believed that a complete SCI severed the connection between the brain

and the spinal cord, preventing any signals from the brain reaching their destination. An

incomplete SCI was believed to disrupt the path from the brain to the spinal cord, with some

signals still able to reach their destination. It is now emerging that even in complete SCI some

signals may travel through the damaged site in the spinal cord [15]. Although these signals do
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Table 1.2: Explanation of ASIA Impairment Scale (AIS) muscle function scoring scale [14].
If more than 50% of the key muscle groups below the neurological level of injury have a score
of less than 3, the injury is classed as AIS C. If more than 50% of the key muscle groups
have a score ≥ 3, the injury is classed as AIS D. If function and sensation are normal this is
classed as AIS E

Muscle score Definition AIS Level

0 Total paralysis.
C1 Palpable or visible contraction.

2 Active movement, full range of motion (ROM) with
gravity eliminated.

3 Active movement, full ROM against gravity.
D

4 Active movement, full ROM against gravity and
moderate resistance in a muscle specific position.

5 (Normal) active movement, full ROM against gravity
and full resistance in a muscle specific position
expected from an otherwise unimpaired person.

E

0 = absent

1 = altered

2 = normal

NT = not testable

Figure 1.2: ASIA Impairment Scale scoring chart (taken from http://asia-spinalinjury.

org/ in May 2014).

not result in movement, believed to be because their amplitude is below the threshold required

to generate an action potential (see Section 1.3), they do reach their destination. As there is

no movement, or function, these injuries can be described as functionally complete. It appears

that almost no SCI is neurologically complete, whereby there is no connection between the

http://asia-spinalinjury.org/
http://asia-spinalinjury.org/
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brain and a muscle. Approximately 50 percent of SCIs are classed as complete [16]. Whether

an SCI is complete or incomplete can have a large effect on a patient’s rehabilitation and

their neurological, functional and social outcomes [17].

Patients with an SCI can also be grouped according to the time after injury. Acute SCI

generally refers to the immediate post-injury period when there is continuing tissue damage

and the patient is in spinal shock. Spinal shock causes an immediate loss of reflexes and

resulting flaccid paralysis in the muscles below the level of injury that return over time [18].

The acute phase of injury generally lasts for up to four weeks [19]. During the phase where

the spinal cord undergoes a reparative process and there is continuing neurological recovery

an SCI can be classified as sub-acute. The sub-acute phase typically begins around four

weeks after injury and continues for three to six months. When inflammation has stabilised

and neurological recovery has reached a plateau an SCI can be classified as chronic, which

typically does not occur until three to six months after injury [20]. While there is debate

as to the exact time frame for these classifications [21], within this thesis acute SCI will be

defined as any SCI up to four weeks post injury, sub-acute SCI will be defined as any SCI

between four weeks and three months post injury and chronic SCI will be defined as any SCI

greater than three months post injury.

1.2.4 Tetraplegia

An injury to the spinal cord in the cervical (C1 to C7) region can cause tetraplegia4.

Tetraplegia is defined as ‘impairment or loss of motor and/or sensory function in the cervical

segments of the spinal cord’ [14], and results in paralysis or impairment of all four limbs. An

injury to the spinal cord in the thoracic or lumbar region can cause paraplegia. Paraplegia

is defined as ‘impairment or loss of motor and/or sensory function in the thoracic, lumbar

or sacral (but not cervical) segments of the spinal cord’ [14], and results in paralysis or

impairment of the legs. Due to the paralysis affecting all four limbs, tetraplegia is a more

serious injury than paraplegia, with the extent of remaining upper limb function depending on

the neurological level of injury. Approximately half of all SCIs result in tetraplegia, although

the exact figure has been increasing in recent years with one study finding that 56.6 percent

of SCIs resulted in tetraplegia between 2000 and 2003 compared to 53.5 percent between

1973 and 1979 [22]. This rise can be attributed to improved medical care, which has led to

increased survival rates at the scene and in hospital, for people with tetraplegia.

Tetraplegia is associated with a significantly higher health care cost than paraplegia [22]. A

primary reason for this is that tetraplegia leaves patients particularly susceptible to secondary

complications of SCI, such as chronic pain, bladder and bowel dysfunction, pressure ulcers,

autonomic dysreflexia and respiratory complications [23, 24]. These secondary complications

place a large financial burden on the local health care provider [25] and are attributed to

approximately 30 physician visits per year [26]. As well as these high costs, secondary

4Tetraplegia is commonly referred to as quadriplegia in the USA
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complications can also leave the patient with a perceived reduction in their quality of life [27].

Of these secondary complications, respiratory complications are a leading cause of morbidity

and mortality for the tetraplegic population [2, 28, 29, 30]. Therefore, a reduction in the

rates of respiratory complications will improve the patient’s quality of life and reduce the

financial burden on the local health care provider.

For people with tetraplegia, secondary complications have a different prevalence depending on

whether the etiology of the injury is traumatic or non traumatic [31]. However, the prevalence

of respiratory complication observed in the acute care and rehabilitation setting are similar

for both cases [13]. Therefore, this thesis, which will seek methods to reduce the prevalence

of respiratory complications and improve respiratory function in the tetraplegic population in

the acute care setting, will make no distinction between traumatic and non traumatic SCIs.

1.3 Muscle Anatomy

The human body contains three types of muscle; skeletal, cardiac and smooth. Of these three

muscle types, skeletal muscle is the only one that is under voluntary control and as such will

be the only muscle type discussed in this thesis.

Each muscle of the body is supplied by a nerve that contains motor, sensory and sympathetic

nerve cells, used to supply movement, sensation and control the autonomic nervous system,

respectively. The nerve cells that control movement are called motor neurons and can be

split into Upper Motor Neurons (UMNs) and Lower Motor Neurons (LMNs). UMNs carry

motor information from the brain to the spinal cord, while LMNs branch out from the spinal

cord to carry motor information to different muscles as shown in Figure 1.3.

A lesion that affects either the UMNs or LMNs will result in a decrease or loss of voluntary

control of the muscles that they supply. Due to a lack of inhibition of the reflex pathways,

normally provided by the UMNs, an UMN lesion causes hyperactive or abnormal reflexes.

This results in spastic paralysis, which increases muscle tone. An UMN lesion occurs in

approximately 50 percent of SCIs [16], causing a motor complete SCI where paralysis affects

all the muscles innervated below this lesion.

Due to damage of the reflex pathways an LMN lesion causes absent or decreased reflexes. This

results in flaccid paralysis, which decreases muscle tone. In SCI an LMN lesion is observed

either i) at the point where the LMNs exit the spinal cord or ii) to the nerves away from

the spinal cord. LMN lesions at the spinal cord are usually caused by fractured vertebrae

damaging the nerve, with SCIs in the upper cervical area (C5 and above) particularly prone

to an LMN lesion caused by this method. An LMN lesion to the nerves away from the

spinal cord is especially common for the nerves that exit through the vertebrae of the lower

lumbar spine (L3 and below), where the LMNs are again damaged due to severe fractures of
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Figure 1.3: Diagram of the route of a motor signal (light blue) from the brain to a muscle.
The signal passes from the brain down the spinal cord (red) via Upper Motor Neurons. It
then travels down a nerve (orange) via Lower Motor Neurons, before entering a muscle. The
point at which a nerve enters a muscle is called the motor point.

these vertebrae. An LMN lesion usually presents as localised weakness of muscles innervated

by nerves affected by the lesion. Importantly, as the use of electrical stimulation to cause a

muscle contraction requires an intact pathway between the stimulated nerve and its associated

muscle, electrical stimulation cannot be used to cause a muscle contraction in the presence

of LMN damage. Therefore, electrical stimulation will only be used with patients who have

not suffered LMN damage within this thesis.

The neuromuscular junction, or motor point, is the location where a nerve enters a muscle

as shown in Figure 1.3. A muscle is made up of contractile cells, often called fibres as they

are so long, which are joined by connective tissue. Skeletal muscle fibres can be divided into

two categories, Type I (slow twitch) and Type II (fast twitch). Type I fibres contain large

amounts of myoglobin, a protein found in muscles that carries oxygen. Therefore, Type I

fibres have a large supply of oxygen. Type II fibres contain only small amounts of myoglobin

and hence oxygen. Type I fibres are smaller than Type II fibres and are largely fatigue

resistant due to their large supply of oxygen, while the decreased oxygen supply to a Type II

fibre results in rapid fatigue. Type I fibres are designed for endurance, while Type II fibres

are designed for power and speed. The percentage of each type of muscle fibre within the
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body varies from person to person. Typically sprint athletes will have more Type II fibres,

while endurance athletes will have more Type I fibres. The combination of an LMN with all

of its corresponding muscle fibres is called a motor unit. Motor units can vary in size from

small units, with small diameter axons, to large units, with larger diameter axons. Small

motor units, which contain only a few fibres, are used to achieve precise movements. The

activation of additional larger motor units results in a larger muscle contraction, allowing

more powerful tasks to be executed. All motor units contain only one type of muscle fibre.

Small motor units tend to be made up of Type I muscle fibres, with larger motor units more

likely to be made up of Type II muscle fibres. Henneman’s size principle states that the

natural recruitment order of motor units is from smallest to largest (fewest fibres to most

fibres) [32].

In the able bodied population a muscle contraction is activated by an electrical signal sent

from the brain, via the spinal cord, to the nerve controlling the muscle as shown in Figure 1.3.

This electrical signal creates an action potential, a short lasting increase in electrical potential

of a cell, which starts a chain of electrochemical events that cause a muscle contraction. A

muscle can be made to contract in two ways. When a single stimulus of adequate strength

is applied to a muscle this generates a twitch contraction. If stimulation pulses are delivered

at a frequency of greater than 12.5 Hz this generates a constant tetanic contraction because

the muscle does not have time to relax between individual twitches.

1.4 Respiratory Function

Respiration, or breathing, provides oxygen to the body and removes carbon dioxide. As air

naturally resides in the area of lowest pressure, the respiratory muscles are used to increase

or decrease the pressure around the lungs, called the intrathoracic pressure. The decrease

of intrathoracic pressure to a pressure lower than that outside the body causes air to flow

into the lungs, a process called inhalation. An increase in the intrathoracic pressure to a

pressure greater than that outside the body causes air to flow out of the lungs, a process

called exhalation.

The two most common types of breathing are quiet breathing and coughing. A cough is

used to clear the airway, while a quiet breath is taken during normal relaxed breathing. To

generate the power required to clear the airways, a cough has a greater peak expiratory air

flow rate than a quiet breath, with this peak flow rate reached earlier in the exhalation. The

exhalation length of a cough is often shorter than the exhalation length of a quiet breath.

The difference between these two breath types is shown in Figure 1.4.

1.4.1 Respiratory Muscles

The main muscles used for respiration are the diaphragm and the intercostal and abdominal

muscles, with the location of each of these muscles shown in Figure 1.5.
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Figure 1.4: A measurement of respiratory flow, recorded using a spirometer, highlighting the
difference in peak expiratory flow rate, and the time point where this peak expiratory flow
rate occurs, during quiet breathing (blue) and coughing (red).

Figure 1.5: Respiratory muscle anatomy. Highlighted are the rectus abdominis muscles
(green), the external oblique muscles (purple), the internal oblique muscles (pink), which are
situated under the external oblique muscles, and the transversus abdominis muscles (yellow),
which are situated under the internal oblique muscles. These muscles are situated in the same
location on both sides of the body and make up the abdominal muscles. The intercostal
muscles (red), which are interwoven around the ribs on both sides of the body, and the
diaphragm (blue) are also shown.
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The diaphragm is situated across the bottom of the rib cage, separating the thoracic and

abdominal cavity, and takes the form of a dome shaped thin layer of muscle. The diaphragm

aids inspiration by contracting to increase the volume of the thoracic cavity, reducing

the intrathoracic pressure and causing an inhalation. The diaphragm is responsible for

approximately 65 percent of a persons vital capacity (see Section 1.4.2) [33].

During quiet breathing, exhalation is passive. The return of the diaphragm to its original

position, coupled with the elastic recoil of the lungs, acts to increase intrathoracic pressure and

cause exhalation. A forced exhalation, such as that observed during exercise or coughing, is

an active process. During a forced exhalation, a contraction of the intercostal and abdominal

muscles, coupled with the return of the diaphragm to its original position and the elastic

recoil of the lungs, increases the intrathoracic pressure, causing exhalation.

The intercostal muscles are a network of interwoven muscles, located between the ribs. They

are composed of the external, internal and innermost intercostal muscles, and are innervated

by 24 separate nerves. Each nerve innervates muscles that have both an inspiratory and

expiratory function. The external intercostal muscles aid inhalation by pulling the ribcage

upwards and outwards, increasing the diameter of the chest and decreasing intrathoracic

pressure. The internal and innermost intercostal muscles aid forced exhalation by pulling the

ribcage downwards and inward, increasing intrathoracic pressure. The intercostal muscles

are responsible for approximately 35 percent of a persons vital capacity [34].

The abdominal muscle group consists of four muscles situated within the abdomen, namely

the transversus abdominis, the rectus abdominis and the internal and external oblique

muscles. The location of these muscles within the abdominal cavity is shown in Figure 1.5.

The abdominal muscles support forced exhalation by drawing the abdominal contents inward,

increasing intrathoracic pressure and pushing the diaphragm upwards.

The diaphragm is innervated by the phrenic nerve, originating from the spinal cord at C3

to C5. The intercostal muscles are innervated by the intercostal nerves, originating from the

spinal cord at T1 to T11, and the abdominal muscles are innervated by the thoracoabdominal

nerves, originating from the spinal cord at T7 to T11. People with motor complete tetraplegia

will have paralysed intercostal and abdominal muscles. If the neurological level of injury is

C3, C4 or C5 they will have impaired diaphragm function. If the neurological level of injury is

C1 or C2 they will have no diaphragm function and will be unable to breathe independently.

Damage to the LMNs within the phrenic, intercostal or thoracoabdominal nerves would result

in an inability to activate the diaphragm, intercostal or abdominal muscles respectively.

1.4.2 Measures of Respiratory Function

A number of measures can be used to evaluate the status of a persons respiratory function,

with these measures varying between people depending on sex, age, height and weight [35].
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A summary of these respiratory measurements is presented in Table 1.3, with each of these

respiratory measurements explained in further detail in this section.

Table 1.3: Summary of different measurements of respiratory function. The acronym used
for each measure throughout this thesis, what the tests measure and whether this measure
relates to the strength of the inspiratory or expiratory muscles is given.

Measurement Acronym Measurement of Muscles

Peak Expiratory Flow PEF Maximum Expiratory Flow Rate Expiratory
During Normal Breath

Cough Peak Flow CPF Maximum Expiratory Flow Rate Expiratory
During Cough

Maximum Expiratory MEP Maximum Pressure During Expiratory
Pressure Exhalation

Maximum Inspiratory MIP Maximum Pressure During Inspiratory
Pressure Inhalation

Forced Vital Capacity FVC Actively Exhaled Volume Inspiratory

Vital Capacity VC Passively Exhaled Volume Inspiratory

Forced Exhaled Volume FEV1 Actively Exhaled Volume Expiratory
in 1 Second in First Second

Tidal Volume VT Exhaled Volume of Inspiratory
Normal Breath

The volume of air exhaled in each normal breath is called Tidal Volume (VT ), and is measured

in litres (L). A healthy adult has an VT of approximately 0.5 L [36, 37]. To normalise

respiratory function across a group weight corrected tidal volume (VT /kg), which is a persons

VT divided by their body weight, is often reported [38, 39] and will be used for all group

comparisons in this thesis.

Respiratory failure leads to some patients with tetraplegia requiring mechanical ventilation,

a method to assist or replace spontaneous breathing (see Section 2.3.1 for more information).

VT plays an important role during mechanical ventilation, with a VT /kg of approximately

8 to 15 ml/kg applied to ensure adequate ventilation [38]. During mechanical ventilation,

an VT /kg of greater than 15 ml/kg has been linked to complications such as barotrauma

(alveolar rupture due to high pressure) and pulmonary edema (fluid accumulation in the

lungs). However, some research suggests that a high VT /kg may be useful in treating

atelectasis (collapse of part of the lung), a common complication after SCI [39].

Cough Peak Flow (CPF) is the maximum rate at which a person can exhale air from their

lungs during a cough, while Peak Expiratory Flow (PEF) is the maximum rate at which a

person can exhale air from their lungs when exhaling as forcefully and as quickly as possible.

As both CPF and PEF are measures of the rate at which air leaves the lungs, both can be

used to detect obstruction of the airways. As both are taken during an active exhalation,
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whereby the participant actively exhales, they also give an indication of the strength of the

expiratory muscles. Both CPF and PEF are measured in litres per second (L/s), although

litres per minute (L/min) may sometimes be reported. An example of a typical PEF trace

recorded from a healthy adult male and female is shown in Figure 1.6.
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Figure 1.6: Peak Expiratory Flow (marked with black circle) recorded from a healthy, 183 cm
tall, 26 year old male (blue) and a healthy, 170 cm tall, 26 year old female (red).

Maximum Expiratory Pressure (MEP), the maximum pressure generated against resistance

during an exhalation, can be used to measure the strength of the expiratory muscles, while

Maximum Inspiratory Pressure (MIP), the maximum pressure generated against resistance

during an inhalation, can be used to measure the strength of the inspiratory muscles. Both

MEP and MIP are recorded using a pressure meter and are measured in centimeters of

water (cmH2O). For males MEP and MIP vary depending on age, while for females MEP

and MIP vary depending on height [40].

As well as the aforementioned flow and pressure measurements, respiratory function can also

be evaluated using a number of volumetric measurements, with some of these measurements

shown in Figure 1.7.

Vital Capacity (VC), the total volume of air exhaled after inhaling to total lung capacity

and exhaling passively, and Forced Vital Capacity (FVC), the total volume of air exhaled

after inhaling to maximum lung capacity and exhaling as forcefully as possible, can be used

to evaluate the strength of the inspiratory muscles [41]. For people with tetraplegia, severe

impairment or paralysis of the respiratory muscle prevents them from inhaling to total lung

capacity. This results in people with tetraplegia only being able to inhale to a percentage of

their lung capacity, denoted here as their functional lung capacity. VC and FVC can be used

to assess the degree of respiratory muscle impairment after SCI. In this thesis, tetraplegic

patients will be asked to inhale as fully as possible, to what will be their functional lung
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Figure 1.7: Example respiratory measurements highlighting: Forced Vital Capacity (FVC),
Vital Capacity (VC), Tidal Volume (VT ), Residual Volume (REV) (the volume of air which
permanently resides in the lungs), total lung capacity (the maximum volume of the lungs),
inspiratory reserve volume (the additional volume of air that can be inhaled at the end of a
normal inhalation) and functional residual capacity (the volume of air which remains in the
lungs after a normal exhalation).

capacity, and then exhale fully to establish VC and FVC. As FVC is recorded during an

active exhalation, the exhalation length during an FVC manoeuvre is normally shorter than

when measuring VC , as shown in Figure 1.7. Both FVC and VC are measured in L, with

only a small difference in the values recorded from both tests. As with VT , to allow a

comparison between different people weight corrected forced vital capacity (FVC/kg) and

weight corrected vital capacity (VC/kg) are often reported [42], and will be used for all group

comparisons in this thesis.

From an FVC manoeuvre, the Forced Exhaled Volume in one second (FEV1) can also be

measured. FEV1, which is the volume of air which can be exhaled from the lungs in the

first second of a forced exhalation, provides an indication of the strength of the expiratory

muscles. FEV1 is measured in L/s, and is approximately 80 percent of a persons FVC [43].

An example of an FVC and FEV1 recording is shown in Figure 1.8.

All of the aforementioned measures of respiratory function, except for MIP and MEP which

require a pressure meter, can be recorded using a spirometer, which is a device use to measure

the volume, or flow, of air inhaled and exhaled by the lungs. PEF is also often measured

using a peak flow meter. Miller et al. [44] have shown that peak flow meters can have a large

inter device variability, hence the use of a spirometer is now becoming the ‘gold standard’

for PEF measurement. The predicted values of respiratory function for a healthy 30 year old

male and female are shown in Table 1.4.
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Figure 1.8: Example of Forced Exhaled Volume in one second (FEV1) recorded during a
Forced Vital Capacity (FVC) manoeuvre recorded from a 170 cm tall, 30 year old male.

Table 1.4: Predicted values of Peak Expiratory Flow (PEF), Maximum Expiratory Pressure
(MEP), Maximum Inspiratory Pressure (MIP), Forced Vital Capacity (FVC), Forced Exhaled
Volume in one second (FEV1) and Tidal Volume VT for a healthy, 180 cm tall, 30 year old
male and a healthy, 160 cm tall, 30 year old female [35, 37, 40, 43].

Respiratory Measure Male Female

PEF 10.5 L/s 6.8 L/s
MEP 153 cmH2O 91 cmH2O
MIP 111 cmH2O 71 cmH2O
FVC 5.6 L 3.7 L
FEV1 4.6 L/s 3.1 L/s

VT 0.5 L 0.4 L

1.4.3 Respiratory Function in Tetraplegia

Paralysis, or severe impairment, of the main respiratory muscles leaves many people with

tetraplegia with reduced respiratory function. A person with tetraplegia is likely to have

an FVC of less than 50 percent of the predicted value for a healthy adult, and a reduced

VT [30]. This reduced respiratory function leaves many people with tetraplegia unable to

effectively clear their airways through cough, leading to a build up of secretions in the lungs

and airways and making people with tetraplegia prone to respiratory infections. These

respiratory infections often lead to the development of respiratory complications such as

pneumonia (inflammation of the alveoli often caused by respiratory infection) and atelectasis

(collapse or closure of the lung resulting in poor gas exchange often caused by a mucus plug

in the lungs). Dryden et al. found that in a six year follow up study, 33.8 percent of people

with an SCI developed at least one case of pneumonia [45]. This increased susceptibility to
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respiratory complications makes them a leading cause of morbidity and mortality for people

with tetraplegia [28], while placing a cost burden on the local health care provider [25].

Mechanical ventilation reduces a patient’s quality of life, delays rehabilitation and places

a large financial burden on the local health care provider [27]. Dasta et al. estimate that

mechanical ventilation costs the health care provider an additional $1500 per day based on the

USA hospital system [46]. People with tetraplegia who have a very high level complete injury

(C2 and above) will have no diaphragm function (see Section 1.4.1). For these patients chronic

use of mechanical ventilation is necessary to support respiratory function. For many other

tetraplegic patients who retain some diaphragm function (injury C3 and below) mechanical

ventilation is required to assist respiration in the acute stage of injury due to respiratory

failure [47]. Most of these patients require only short periods of mechanical ventilation and

will wean from ventilation within a number of weeks. For some, particularly those with a

greater reduction in diaphragm function, the weaning process can take longer and sometimes

requires the chronic use of mechanical ventilation. As these patients retain some level of

diaphragm function, and hence have the ability to breathe independently, with assistance

they should eventually wean from ventilation.

It is clear that an improvement in the respiratory function of people with tetraplegia would

not only improve the patient’s quality of life, but would also result in a significant cost saving

for the local health care provider.

“Improvements in respiration and the elimination of ventilator-dependence are extremely

important to the quality of life, and this topic should be at the forefront of research.”

Kim Anderson [48]

Therefore, the poor respiratory function of the spinal cord injured population requires to be

addressed.

This is currently achieved clinically using a number of methods. For those who lack the ability

to breathe independently due to severely impaired diaphragm function mechanical ventilation

is the clinically accepted method to assist respiration. This can be applied either invasively,

by attaching the ventilator to a endotracheal or tracheostomy tube, or non-invasively, using

an orofacial mask. For those who retain the ability to breathe spontaneously but have reduced

respiratory function resulting in an ineffective cough manually assisted coughing, mechanical

insufflation-exsufflation or tracheal suctioning are all used to simulate a cough and clear

secretions from the airways. For these patients, respiratory muscle training, which typically

uses restrictive air flow devices to train the muscles used for inspiration and expiration, is

also used clinically to try and improve respiratory function. As discussed in Chapter 2, none

of these methods are a panacea, with a non-invasive, reliable alternative still to be introduced

clinically.
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1.5 Functional Electrical Stimulation

Neuromuscular Electrical Stimulation (NMES) is the application of a train of electrical pulses

to a motor nerve, causing contraction of the associated muscle. NMES can be used in health

care for one of three purposes: to aid diagnosis, as a therapeutic tool, and/or to restore lost

or damaged function [49]. The concept of Functional Electrical Stimulation (FES) was first

proposed by Liberson et al. [50] to describe the use of NMES to activate muscles in a precise

sequence to achieve a functional task, in this case for the correction of foot drop, alluding

to the third of these health care uses. Transcutaneous Electrical Nerve Stimulation (TENS)

also comes under the canopy of NMES. Unlike FES, TENS is used as a therapeutic treatment

without a functional outcome, primarily being used for pain relief.

1.5.1 Principles of FES

For people who have paralysis that does not result in LMN damage, the pathways from the

spinal cord to the nerves remain intact below the level of injury (i.e. below the neurological

level of injury in SCI and below the level of the brain in stroke). This means that although

a muscle may be paralysed and no longer under voluntary control, it still retains the ability

to contract. FES can be used to provide an electrical signal to a nerve, which generates an

action potential and causes these paralysed muscles to contract. Note, electrical stimulation

is applied to the nerve rather than the muscle itself as the stimulation threshold required to

generate a nerve fibre action potential is significantly lower than that required to generate a

muscle fibre action potential. FES may also be used to initiate a reflex, rather than muscle,

response, such as when stimulating the peroneal nerve to initiate the nociceptive withdrawal

reflex and correct foot drop.

When using FES to achieve a muscle contraction, the optimum muscle contraction is

usually observed when stimulation is applied close to the motor point of the muscle (see

Section 1.3) [51]. Studies have shown that placing the stimulating electrodes at the motor

point maximises force output and minimises discomfort [52, 53]. In implanted systems

stimulation may be applied to the nerve directly, away from the motor point, to achieve

a similar effect. The effect that FES has on the way muscles are recruited is less clear. It is

believed that the use of FES leads to a ‘reverse recruitment order’, where larger diameter,

Type II (see Section 1.3), motor units are recruited preferentially to smaller diameter, Type

I, motor units [51, 54]. According to Bickel et al. [55], the theory of ‘reverse recruitment

order’ is based on the finding that FES appears to lead to faster muscle fatigue than normal

muscle recruitment. This appears to indicate that large motor units, which are more easily

depolarised (depolarisation is the process required to generate an action potential) [55] and

are more prone to fatigue than smaller motor units, are being recruited preferentially. Bickel

et al. argue that motor unit recruitment with FES is actually random, with motor units

being recruited in a non selective way. They state that increased levels of muscle fatigue

observed during FES is caused by the repeated application of the same stimulation parameters
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continuing to recruit the same motor units. Whether FES does follow the reverse recruitment

order or activates motor units at random, it is working differently to the body’s natural

recruitment order as: large muscle fibres are being recruited during FES more often than

during natural recruitment; the same muscle fibres are being recruited repeatedly as opposed

to natural recruitment where alternating fibres are recruited to avoid fatigue and all recruited

fibres are being activated synchronously rather than individually as observed during natural

recruitment. Therefore, the use of FES can lead to an increased level of muscle fatigue

compared to natural recruitment. This means that to maintain a constant muscle contraction

when using FES for an extended period of time the stimulation charge must be increased.

1.5.1.1 Electrodes

FES can be delivered in three ways i) via electrodes placed on the skin (transcutaneous or

surface stimulation), ii) via electrodes inserted through the skin (percutaneous stimulation)

or iii) via electrodes implanted into the body and placed around or in close proximity to the

nerve (implanted devices) [51]. Transcutaneous stimulation is simple and non-invasive, but

it can be affected by poor selectivity of the correct muscle and can lead to skin irritation if

improperly applied. Percutaneous stimulation allows for a greater selectivity of the correct

motor unit. However, the needle electrodes used to deliver stimulation can be prone to

failure, with Knutson et al. [56] reporting that in a study involving the insertion of 858

electrodes, 222 (26%) had to be removed due to failure. Implanted devices are designed for

long term use, with their implantation involving an invasive and sometimes extensive surgical

procedure. They apply stimulation via one of four types of electrode i) epimysial electrodes

which are sutured directly onto the target muscles and are useful for the activation of thin

muscles, ii) epineural electrodes which are sutured to tissue around the nerve and can be

used to stimulate the nerve directly, iii) intraneural electrodes which penetrate into the nerve

(currently only used in research applications) or iv) cuff electrodes which are placed directly

around the nerve trunk and are the most common method of implanted stimulation. These

implanted electrodes allow for more targeted stimulation than transcutaneous electrodes,

with a much lower stimulation charge required to invoke a response. However, they create

greater safety and biocompatability issues, involve extensive surgery and are expensive.

There are two types of transcutaneous electrode configuration, monopolar and bipolar. In

a bipolar electrode configuration the active electrode and reference electrode are situated

close together, forming a small electrical circuit. In a monopolar configuration, the active

electrode is positioned on top of the target nerve, with the reference electrode positioned

somewhere along the neural pathway. While a bipolar configuration allows for targeting of

specific motor units, monopolar configurations are popular when using electrode arrays, as

only one reference electrode is required.
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1.5.1.2 Stimulation Parameters

The stimulation parameters required to envoke an effective muscle contraction vary depending

on the electrode type and target muscle. Each electrical stimulation pulse can be characterised

by its pulsewidth, current, waveform and frequency.

Pulsewidth, also referred to as pulse duration, is the duration of each stimulation pulse and

is normally in the range of 100 to 500 microseconds (µs). Stimulation current is the current

applied during each stimulation pulse and for transcutaneous stimulation is normally in the

range of 10 to 100 mA. The charge (Q) delivered during each electrical stimulation pulse is

the stimulation current (I) multiplied by the pulsewidth (P ), as shown in Equation 1.1, and

is measured in Coulombs.

Q = I×P (1.1)

As can be seen in Equation 1.1, the charge delivered during each stimulation pulse can be

increased by increasing the pulsewidth or the stimulation current. An increase in charge will

lead to an increase in muscle fibre recruitment and result in a greater force being generated.

The production of a greater force results in faster muscle fatigue, therefore it is important to

only apply as much force as necessary to complete the desired task.

The waveform can either be biphasic, with a positive and negative charge, or monophasic,

which applies only a positive or negative charge. A biphasic waveform is widely regarded

as safer as the polarity of the charge entering the body is balanced. As such, for chronic

applications electrical stimulation should always be charge balanced. This can be achieved

through either: a monophasic charge balanced waveform, where a large short stimulating

pulse (which activates the motor units) is followed by a longer period of small current in the

opposing direction resulting in an overall neutral charge; or a biphasic waveform, where a

stimulating current pulse in one direction is followed by a similar, charge balancing, pulse in

the opposite direction. An example of these two waveforms is shown in Figure 1.9.

Stimulators are designed to work with either a fixed current or fixed voltage output, with

the charge that is applied to the nerve depending on the impedance created by the contact

with the skin. A voltage regulated stimulator applies a constant voltage (V) following the

principles of Ohm’s law, shown in Equation 1.2.

V = I×R (1.2)

As can be seen in Equation 1.2, when using a voltage regulated stimulator an increase in

impedance (R) results in a decrease in the current (I) being delivered to the skin. A current

regulated stimulator is not affected by a change in impedance. This results in a constant

current being delivered to the skin, and in turn the nerve, generating a consistent muscle
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Figure 1.9: Example of electrical stimulation waveforms. A stimulating pulse (shown in
black) is applied with a current amplitude of 10 mA, a pulsewidth of 200 µs and a frequency
of 100 Hz. This stimulating pulse is charge balanced by a biphasic pulse (shown in red) and
a monophasic charge balanced pulse (shown in blue).

contraction. If the electrode becomes dislodged or damaged this current may be applied over

a smaller surface area, resulting in an increase in the current density applied to the skin.

In the most extreme case this could cause skin burns or tissue damage, however modern

stimulators are designed to detect these situations and to limit the current accordingly. A

voltage regulated stimulator does not allow control of the current being applied to the nerve,

meaning that a consistent muscle contraction is not guaranteed. Therefore, when choosing

between a current or voltage regulated stimulator a balance has to be struck between the

risk of damage to the skin or tissue and the need for a consistent muscle contraction. While

in a transcutaneous system voltage regulation will almost certainly prevent damage to the

skin, with due vigilance current regulated stimulation can be used safely and achieve a far

more consistent muscle contraction. Almost all implanted systems use current regulated

stimulation as there is less variability in impedance, resulting in less chance of tissue damage,

and a constant muscle contraction is of upmost importance.

Depending on stimulation frequency, electrical stimulation is capable of generating either a

tetanic (constant) or twitch (intermittent) muscle contraction (see Section 1.3). To achieve a

tetanic contraction the stimulation frequency must be greater than 12.5 Hz [51]. The greater

the stimulation frequency above 12.5 Hz, the stronger the force generated. Due to an increase

in the amount of time for which a fibre is recruited, increased stimulation frequency will result

in faster muscle fatigue resulting in a decline in force.

FES has been used for a number of clinical applications. One of the most successful of these

has been the use of FES to improve ambulation in patients who suffer from foot drop caused
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by a stroke or SCI [57]. FES has also been used to stimulate i) the triceps to improve

upper limb function [58, 59] ii) muscles of the upper leg as an exercise modality after stroke

and SCI [60, 61], and iii) the sacral nerve roots to improve bladder and bowel function

after SCI [62, 63]. In tetraplegic patients who lack the ability to breathe independently and

are reliant on chronic mechanical ventilation FES has been applied to the phrenic nerve or

diaphragm to generate an artificial breathing pattern, enhancing inhalation and enabling the

removal of mechanical ventilation [64, 65, 66]. This thesis will focus on the use of FES of the

abdominal muscles to improve respiration in tetraplegia.

1.5.2 Abdominal FES

FES has previously been used to activate the abdominal muscles. This has been achieved

using: an implanted system to activate their thoracic nerve roots at the spinal cord [67, 68];

magnetic stimulation of these thoracic nerve roots [69] and the transcutaneous application

of FES to the abdominal muscles, a technique called Abdominal Functional Electrical

Stimulation (AFES). AFES is commonly applied to either, or both of, the rectus abdominis

and external oblique muscle groups (see Section 1.4.1). It has been suggested that AFES

training increases muscle mass, providing greater support to the abdominal contents. As the

abdominal contents act as a pivot point for the diaphragm when it contracts, the greater

support provided to them by the abdominal muscles places the diaphragm in a more efficient

position after contraction [70]. It is also possible that by achieving an acute increase in

respiratory function, AFES is assisting motor relearning, teaching the body a more efficient

method of respiration. A typical electrode placement for a transcutaneous AFES system is

shown in Figure 1.10.

Figure 1.10: Electrode placement for abdominal stimulation showing four pairs of electrodes,
positioned to stimulate the rectus abdominis and external oblique muscles on either side of
the body.
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As the abdominal muscles are an important muscle group for forced exhalation and cough,

the strengthening of this muscle group can lead to an improvement in respiratory function.

The application of AFES has been shown to achieve an acute increase in quiet breathing

and cough function [71, 72]. The use of an AFES training program has also been shown to

achieve longitudinal changes in quiet breathing and cough function [70, 73]. Despite these

positive results AFES has yet to be introduced as a standard clinical treatment modality.

This thesis will focus on the development of new technology and protocols to aid the clinical

introduction of AFES with the tetraplegic population.

1.6 Aim and Objectives

The overall aim of this thesis is to add evidence to support the clinical introduction of AFES to

improve the respiratory function of both acute ventilator dependent and sub-acute tetraplegic

patients. This aim will be achieved by developing and implementing new technologies and

protocols, which will firstly be tested with the able bodied population, and then developed

for use with tetraplegic patients. The feasibility and effectiveness of these technologies and

protocols to improve respiratory function will be investigated with acute ventilator dependent

and sub-acute tetraplegic patients.

The objectives that will lead to the accomplishment of this aim are:

1. Technological development To develop technology capable of overcoming the

challenges that exist in using AFES with the tetraplegic population. This new

technology should include systems capable of synchronising AFES with the respiratory

activity of both acute ventilator dependant and sub-acute tetraplegics and a system that

can be used to identify the motor points of the abdominal muscles. The integration of

AFES with existing methods for improving the cough of sub-acute tetraplegic patients

will also be addressed.

2. Clinical evaluation To evaluate and develop the optimum protocols for the use of

AFES with the tetraplegic population. Clinical studies will be undertaken to establish

whether the use of novel protocols, which incorporate the new technology developed in

objective 1, are feasible, and whether they can be used to improve respiratory function.

An investigation into the optimum duration of an AFES training program will also be

undertaken.

1.6.1 Thesis Outline

These aims will be addressed in the chapters of this thesis, which are outlined below.

Chapter 2 : A review of studies investigating the effect of paralysis on respiration in

tetraplegia is provided in this chapter. Various methods that have been employed to help

improve the respiratory function of people with tetraplegia are reviewed, with a particular

focus on AFES. The open questions surrounding the use of this technique, and possible
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developments that should improve this techniques effectiveness, are presented here.

Chapter 3 : The experimental methods used throughout this thesis are presented here.

This includes a description of the methods used to measure respiratory function, the methods

used to record respiratory activity and a description of the AFES system. An overview of the

statistical methods used in this thesis is also given. This chapter also includes a small study

investigating the optimum set up parameters for using a respiratory effort belt to measure

respiratory function.

Chapter 4 : In this chapter the use of non-intrusive sensors for the real-time detection

and classification of respiratory activity is explored. A range of non-intrusive sensors are

evaluated to assess their suitability for real-time detection of respiratory activity. The non-

intrusive sensors found to be capable of real-time detection of respiratory activity are then

used to develop a statistical classification algorithm to classify respiratory activity, capable

of differentiating between a cough and quiet breath in real-time.

Chapter 5 : A novel application of NMES to locate the position of the motor points

of the abdominal muscles is presented here. The feasibility of using this technique for

abdominal muscle motor point detection is demonstrated with 10 able bodied and five

tetraplegic participants. The repeatability and uniformity of these motor point positions

is evaluated and compared for both groups, with the implications of these results discussed.

The repeatability of this technique is demonstrated and the potential of this technique to

improve the effectiveness of AFES research is discussed.

Chapter 6 : This chapter begins by documenting a single participant case study, used

to demonstrate the feasibility of using AFES to assist ventilator weaning for the tetraplegic

population who retain some diaphragm function. A larger feasibility study investigating the

use of AFES to improve the respiratory function of acute ventilator dependant tetraplegics

and assist weaning from mechanical ventilation is then presented. This is the main clinical

study conducted for this thesis. The engineering methods developed to allow the automatic

synchronisation of AFES with mechanical ventilation or the participant’s respiratory activity

are described. The improvements in respiratory function gained during the eight week

study are presented, along with the weaning outcomes for all participants and their matched

controls. The potential future applications and implications of this new technique are also

discussed.

Chapter 7 : A randomised crossover study investigating the effect of AFES training on

respiratory function is described here. The feasibility of using five times weekly AFES training

sessions for a period of eight weeks is demonstrated with three tetraplegic participants. The

results achieved during the intervention and a four week control period are presented and

discussed. A novel method of combining AFES with mechanical insufflation-exsufflation to
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improve cough is also described.

Chapter 8 : This chapter draws on all the work presented in this thesis to provide a

balanced assessment of the use of AFES to improve the respiratory function of people with

tetraplegia. The limitations of AFES, along with the potential future work generated by the

research presented here, are also discussed in this chapter.

Chapter 9 : The main conclusions of this thesis are summarised.
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Chapter 2

Literature Review

“One never notices what has been done; one can only see what remains to be done.”

Marie Curie
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2.1 Summary

Paralysis, or severe impairment, of the respiratory muscles causes many people with

tetraplegia to have reduced respiratory function. Associated respiratory complications are

a leading cause of morbidity and mortality for the tetraplegic population. This literature

review begins by describing research conducted into the effect of tetraplegia on respiratory

function. A number of techniques are available to improve the respiratory function of people

with tetraplegia. None of these techniques are without drawbacks. The function, benefits

and practicality of each system is discussed in detail, with a specific focus on abdominal

functional electrical stimulation.

2.2 Respiratory Function in Tetraplegia

An injury to the cervical region of the spinal cord, termed tetraplegia, leads to paralysis, or

severe impairment, of the abdominal and intercostal muscles, as well as paralysis or reduced

function of the diaphragm. As these are the main muscles used for respiration, people with

tetraplegia often have reduced respiratory function and an inability to generate an effective

cough.

A number of studies have compared the predicted values of respiratory function for the able

bodied population (see Section 1.4.2) with the respiratory function of people with tetraplegia.

A summary of the results from a selection of these studies is shown in Table 2.1.

Table 2.1: Summary of studies investigating respiratory function in tetraplegia. The Forced
Vital Capacity (FVC), Forced Exhaled Volume in one second (FEV1), Peak Expiratory Flow
(PEF), Tidal Volume (VT ), Maximum Inspiratory Pressure (MIP) and Maximum Expiratory
Pressure (MEP) of people with tetraplegia, compared to the predicted value for the able
bodied population, is shown. The injury levels of the participants and the minimum time
post injury is also shown.

Author Injury Time Post FVC FEV1 PEF VT MIP MEP
Level Injury

Spungen et al. [36] Tetra > 2 years 52% 52% - 74% 65% 36%
Langbein et al. [71] C5-C7 > 1 year 64% 67% 60% - - -
Linn et al. [74] C2-C5 > 1 year 49% 52% 42% - - -

C6-C8 > 1 year 62% 69% 54% - - -
Baydur et al. [75] C3-C8 > 8 months 57% 65% - - - -
Thomaz et al. [76] C4-C8 > 2 months 55% - - - - -
Linn et al. [77] C3-C5 > 1 year 49% - - - - -

C6-C8 > 1 year 73% - - - - -

It should be noted that the studies presented in Table 2.1 did not exclude tetraplegic

patients who had Lower Motor Neuron (LMN) damage. As intact LMNs are necessary for

Functional Electrical Stimulation (FES) to be successful, some of the candidates in these
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studies may not have been eligible for the Abdominal Functional Electrical Stimulation

(AFES) studies conducted in this thesis. Patients with LMN damage will have flaccid

paralysis, meaning that disuse atrophy occurs quickly after injury (see Section 1.3 for further

details regarding LMN damage). As a result, these patients may display different levels of

respiratory function compared to those without LMN damage, with the possibility that due

to severe muscle atrophy the respiratory muscles, and hence respiratory function, are more

severely compromised in these patients. Therefore, caution should be exercised when making

a quantitative comparison of the respiratory function of participants in AFES studies with

studies investigating the respiratory function of the general tetraplegic population, such as

those detailed in Table 2.1. Within this thesis, the results of the studies presented in Table 2.1

will be used to provide a qualitative indication of the effect of tetraplegia on respiratory

function.

As can be seen from Table 2.1 tetraplegia reduces respiratory function to a level well below

the predicted values for the able bodied population, with this reduction in function shown to

increase with ascending injury level [74, 77]. This reduced respiratory function has a direct

impact on the ability of people with tetraplegia to generate an effective cough, leading to an

inability to effectively clear the airway of secretions. This poor secretion clearance is a key

factor in respiratory complications being a leading cause of morbidity and mortality for this

population [2, 28, 29, 30] with a mortality rate of 21 percent [78].

Fishburn et al. [79] found that of 30 tetraplegic patients studied in the first 30 days post

injury, 17 (57%) developed atelectasis or pneumonia. In a study investigating the number

of respiratory complications observed in 261 tetraplegic patients in the first six weeks after

injury Jackson and Groomes [80] found that 175 of the 261 (67%) participants developed a

respiratory complication, with atelectasis (36%) and pneumonia (31%) the most common.

These cases of atelectasis and pneumonia were found to occur on average 18 and 25 days

post injury. This shows that respiratory complications are a common occurrence in the acute

stage of injury. An early intervention which acts to improve respiratory function is likely to

be beneficial in preventing respiratory complications in this patient group.

2.3 Clinical Methods to Support Respiration

A number of methods are currently employed in the clinical setting to compensate for

the reduction in respiratory function caused by tetraplegia. For tetraplegic patients who

are unable to breathe independently mechanical ventilation is used to provide artificial

respiration. For people with tetraplegia who are unable to generate an effective cough,

manually assisted coughing, mechanical insufflation-exsufflation and tracheal suctioning are

all used to aid secretion removal.
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2.3.1 Mechanical Ventilation

Respiratory failure leads to some patients with tetraplegia requiring mechanical ventilation

in the acute stage of injury. This respiratory failure is commonly caused by paralysis or

severe impairment of the respiratory muscles, the neurological level of Spinal Cord Injury

(SCI) ascending one or two levels because of bleeding or swelling in the area of the trauma

(reducing function of respiratory muscles not originally affected by the SCI) and subsequent

respiratory complications [47]. Gay [81] reports that of the 12, 000 new cases of SCI per

year in the United States of America (USA), more than 2, 700 lead to the patient requiring

mechanical ventilation. Claxton et al. [82] reported that of 72 patients with tetraplegia, 29

(40%) required mechanical ventilation due to respiratory failure. Twenty six (90%) of these

cases of ventilation occurred less than four days post injury, indicating that respiratory failure

primarily occurs soon after injury.

For tetraplegic patients who require mechanical ventilation in the acute stage of injury the

paralysis of the intercostal muscles becomes spastic over time, resulting in the chest wall

becoming more rigid and no longer collapsing during inspiration [47]. Vital Capacity (VC)

has also been reported to improve significantly in the weeks following injury [83]. These two

factors combine to mean that many of these patients will wean from mechanical ventilation.

Gay states that of the 2, 700 SCI patients who require mechanical ventilation annually in the

USA, 2, 000 will wean from mechanical ventilation and 500 will become ventilator dependant

(with the other 200 patients dying in the acute stage of injury) [81]. The duration of

mechanical ventilation varies significantly between patients, with no clearly defined prediction

methods. Claxton et al. [82] found that patients required mechanical ventilation for an

average duration of 11 ± 31 days, showing a wide range of ventilation durations. Current

understanding is that injury level, age and sex may be the best indicators of this ventilation

duration [39, 38, 42]. Therefore, while many people with tetraplegia will require ventilation

in the acute stage after injury the majority of these patients will wean from ventilation.

However, there is a wide variation in the duration of ventilation, with this duration not easy

to predict.

Mechanical ventilation is associated with an increase in the likelihood of developing a

respiratory infection [84], with Krause et al. [85] reporting that the mortality rate for people

with an SCI was approximately three and a half times greater if they required mechanical

ventilation. The need for ventilation also reduces a persons quality of life, can delay

rehabilitation [27] and leads to an increased cost for the health care provider of approximately

£1000 per ventilated day [46].

Several methods are used to promote weaning from mechanical ventilation. Intermittent

Mandatory Ventilation (IMV) involves the degree of ventilatory support being decreased

over time until the patient is eventually disconnected from the ventilator and required to
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breathe independently. Spontaneous Breathing Trials (SBTs) (often referred to as t-piecing

due to the use of a t-piece to provide oxygen) encourage the patient to breathe on their own

several times a day. The duration of initial SBTs will be short due to the patient suffering

respiratory muscle fatigue. As the respiratory muscles regain strength the duration of each

SBT is increased until the patient no longer requires the support of mechanical ventilation [86].

When using IMV there is no clear point at which to remove mechanical ventilation. This

results in SBTs freeing a patient from ventilation up to three times faster than IMV [84]. The

addition of an intervention to strengthen the abdominal muscles during the weaning process

may lead to an improvement in respiratory function and result in a reduced time to wean.

An improvement in respiratory function resulting in earlier weaning from, or avoidance of,

mechanical ventilation will i) improve the patient’s quality of life ii) allow the patient to

begin rehabilitation earlier iii) reduce the likelihood of the patient developing respiratory

complications and iv) result in a significant cost saving for the local health care provider.

To evaluate the effectiveness of an intervention in enabling faster weaning from mechanical

ventilation it is necessary to clarify when a person has successfully weaned. Narh et al. [38]

suggest that someone has weaned from mechanical ventilation after seven days without

ventilatory support. Within the Queen Elizabeth National Spinal Injuries Unit it has been

observed that most people who achieve a period of 24 hours without ventilatory support

will require no further mechanical ventilation, with the exception being people who suffer

from comorbidities such as respiratory complications. Twenty four hours of ventilator free

breathing was also used by Martin et al. [87] to define successful weaning. Therefore, by

comparing the time to achieve both 24 hours and seven days without ventilatory support for

patients who receive an intervention with a control group, matched with each patient based

on injury level, age and sex, it should be possible to assess the effectiveness of an intervention

in enabling faster weaning from ventilation.

2.3.2 Assisted Secretion Removal

In the clinical setting antibiotics, mucolytics (medicines that make mucus less sticky and easier

to cough up) and the application of number of drugs via a nebuliser are all used to break

up secretions and assist secretion removal. Another approach to assist secretion removal for

tetraplegic patients is to apply a manual intervention. Currently manually assisted coughing,

mechanical insufflation-exsufflation or, in the case when a tracheostomy is present, tracheal

suctioning, are commonly used to aid secretion removal in the clinical setting.

2.3.2.1 Manually Assisted Coughing

Manually assisted coughing involves the manual compression of the thoracoabdominal cavity

during the exhalation phase of a voluntary cough. Various studies have shown that this

compression increases Cough Peak Flow (CPF) and Maximum Expiratory Pressure (MEP)
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compared to a voluntary cough [88, 89, 90], helping to release secretions trapped in the

airway. While a manually assisted cough is a safe and effective procedure for secretion

removal it needs to be provided by a trained caregiver. This has associated cost and resource

implications for the local health care provider [91, 92]. Additionally, the force used by the

caregiver to generate an effective cough is subjective. This makes it unlikely that the same

force is applied by different caregivers, or by the same caregiver in consecutive sessions,

resulting in a variability in the effectiveness of the technique.

2.3.2.2 Tracheal Suctioning

For many people with acute tetraplegia a tracheostomy, which is an incision in the trachea

to provide direct access to the airway, is applied. This allows a tube providing suction to

be inserted into the tracheostomy tube to remove secretions from the airway, a technique

known as tracheal suctioning. While tracheal suctioning can be used to successfully remove

secretions, it is uncomfortable for the patient and can induce gagging. Additionally,

tracheal suctioning often misses the left bronchus, which Sancho et al. [93] state is one

of the contributing factors to 80 percent of pneumonia occurring in the left lung of the

SCI population. Moreover, tracheal suctioning can lead to serious complications including

hypoxemia, bronchoconstriction and cardiac arrhythmias [93].

2.3.2.3 Mechanical Insufflation-Exsufflation

An alternative method to help clear secretions and improve respiration is Mechanical

Insufflation-Exsufflation (MI-E). MI-E involves applying alternating positive and negative

pressure to the user’s airway to simulate a cough. A number of studies have shown that

MI-E is more effective at removing secretions and reducing respiratory infections than

both manually assisted coughing and tracheal suctioning [92, 93, 94], with the advantage

over the latter that secretions are removed from both bronchi. MI-E has also been

shown to significantly reduce the length of stay in an intensive care unit and reduce the

rates of reintubation [95], with users finding MI-E to be more comfortable than tracheal

suctioning [93, 96].

All of the above outlined techniques can successfully be used to aid secretion removal in

the clinical setting, and hence reduce the risk of respiratory infection. However, all of these

techniques are passive and are used to replace the user’s own cough, leading to none of

the techniques directly improving respiratory function. An alternative solution, which uses

training of the respiratory muscles to provide an improvement in respiratory function, may

be beneficial to a patient’s long term respiratory health. This thesis will focus on the use of

electrical muscle stimulation to improve respiratory function.
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2.4 Methods to Improve Respiratory Function

During respiration the diaphragm is the main muscle used for inspiration, the intercostal

muscles are active during both inspiration and expiration and the abdominal muscles are

the main muscle group used during a forced exhalation, such as that taken during exercise

or cough. A number of methods have been developed to improve the respiratory function

of people with tetraplegia, with these methods designed to improve the function of one or

several of these major respiratory muscles. The methods that have been used include electrical

and magnetic stimulation and respiratory muscle training, with each of these methods being

discussed in detail in this section.

Electrical stimulation involves the application of a train of electrical pulses to a motor nerve,

causing the associated muscle to contract (see Section 1.5 for further explanation). An

improvement in respiratory function has been achieved by applying electrical stimulation to

either the diaphragm or the intercostal or abdominal muscles of tetraplegic patients.

Magnetic stimulation can be used to produce an electrical field in neural tissue. If this

electric field is large enough it can generate enough current to depolarise a nerve, creating

an action potential and resulting in a contraction of the associated muscle. Magnetic

stimulation has been used to improve respiratory function in tetraplegia in two ways: i) by

activating the phrenic nerve to cause a contraction of the diaphragm and ii) by activating

the thoracoabdominal nerve roots, causing the abdominal muscles to contract. While

magnetic stimulation to activate the diaphragm or abdominal muscles has the advantage

over transcutaneous electrical stimulation of being painless, as the cutaneous pain receptors

are not activated, it is associated with some problems of practicality. Firstly, magnetic

stimulation systems use a large stimulation coil that requires a large amount of power. This

requires these systems to be mains powered, making them non-portable and reducing their

practicality in a clinical setting. The amount of power that can be generated is also limited

by how fast the capacitors used to deliver the magnetic stimulation can be charged. Finally,

the magnetic coil used to deliver stimulation can generate a large amount of heat, creating

a potential risk of skin burns to the user. Despite these drawbacks, several studies have

demonstrated the use of magnetic stimulation to improve respiratory function.

Respiratory Muscle Training (RMT) uses flow resistive devices, pressure threshold devices

or abdominal weights to train either the inspiratory or expiratory muscles. RMT has been

used with the tetraplegic population to improve respiratory function by training both the

inspiratory (intercostal and diaphragm) and expiratory (abdominal) muscles.

Studies that have applied electrical or magnetic stimulation or respiratory muscle training to

the diaphragm, intercostal or abdominal muscles will be discussed in the remaining portion

of this chapter.
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2.4.1 Diaphragm

The phrenic nerve is used to send signals from the brain to the diaphragm, the main

respiratory muscle used during inhalation. This nerve originates from C3 to C5 of the spinal

cord. Therefore, anyone with an SCI with a neurological level of injury of C5 or above is

likely to have impaired diaphragm function, while an SCI with a neurological level of C2

or above is likely to result in complete paralysis of the diaphragm. For some people with a

complete SCI in the range C3 to C5 who have severely impaired diaphragm function, and

almost all people with a complete SCI at level C2 or above, respiratory support in the form

of mechanical ventilation is required. For these patients stimulation of the phrenic nerve can

be used to make the diaphragm contract, even when paralysed. This contraction causes the

diaphragm to descend, decreasing intrathoracic pressure and resulting in an inhalation. When

stimulation is stopped the diaphragm relaxes and returns to its original position, increasing

intrathoracic pressure and causing an exhalation. Repeated rhythmical stimulation of the

phrenic nerve can be used to create an artificial breathing pattern and reduce the need for

mechanical ventilation, a technique called diaphragm pacing. For diaphragm pacing to be

successful the phrenic nerve must be intact [34]. As the phrenic nerve originates from C3 to

C5 of the spinal cord, it is common that after a cervical SCI with a neurological level of C5

and above the patient will have sustained LMN damage to the phrenic nerve. This means

that the phrenic nerve cannot be stimulated [97].

Previous studies have used both electrical or magnetic stimulation of the phrenic nerve to

achieve diaphragm pacing with tetraplegic participants who did not have LMN damage.

2.4.1.1 Electrical Diaphragm Pacing

Electrical stimulation of the phrenic nerve for diaphragm pacing is currently achieved by either

phrenic nerve or intramuscular diaphragm pacing. It should also be noted that transcutaneous

electrical stimulation can be used to activate the phrenic nerve. While this can be useful for

identifying whether the phrenic nerve remains intact, necessary for a patient to be a suitable

candidate for diaphragm pacing (see Section 2.4.1.2 for more information on this technique),

due to co-activation of muscles in the neck transcutaneous electrical stimulation is not suitable

for long term electrical diaphragm pacing.

Phrenic Nerve Pacing Phrenic Nerve Pacing (PNP)1 is a technique where electrodes are

implanted around the phrenic nerves that control each hemidiaphragm. To trigger stimulation

a signal is sent from a transmitter, located outside the body, to an implanted radio frequency

receiver. The receiver then sends a signal to the electrodes that electrically stimulate the

phrenic nerves, causing the diaphragm to contract.

In 1968 Judson and Glenn [98] published a single participant case study where PNP was

1PNP is sometimes referred to in the literature as phrenic nerve stimulation
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successfully used to aid a patient with primary hypoventilation, preventing them from

requiring mechanical ventilation. In 1972 Glenn and colleagues [99] published the first use of

PNP to aid people with SCI. In this study PNP was used with a C1/2 tetraplegic patient to

replace the need for mechanical ventilation. This was followed in 1976 by the first large scale

documentation of the use of PNP to decrease reliance on mechanical ventilation for people

with SCI [64]. In the proceeding years, the use of PNP to replace mechanical ventilation for

people with SCI has grown, with the technique being applied to over 2, 400 patients worldwide

by 2013 [100].

PNP has some major advantages over mechanical ventilation. Successful diaphragm

pacing results in decreased dependance on mechanical ventilation, which reduces the

risk of developing respiratory infections associated with being connected to a mechanical

ventilator [74]. PNP users also have increased mobility as they are not attached to a

mechanical ventilator [34], and as such, no longer have the fear associated with being

disconnected from the ventilator [97]. Users are also less likely to suffer social stigma, have

improved speech, have reduced reliance on care giver support and have a greater level of

overall health compared to using mechanical ventilation [101, 102]. These factors all combine

to improve the user’s quality of life.

PNP is not a panacea and has some significant drawbacks. Firstly, the use of PNP cannot

achieve instant full time ventilatory support. For PNP candidates, it is likely that the

diaphragm will have suffered from disuse atrophy during the period after SCI. For PNP

to be successful, a reconditioning period, aimed at strengthening the diaphragm, must be

conducted. Glenn et al. [103] report that for four adults (age 15 to 26 years) the length

of this reconditioning period was three to four months. Furthermore, the implantation of

the PNP system is most commonly performed through an incision in the chest, known as a

thoracotomy. This is a major surgical procedure and is associated with a lengthy hospital stay

and high costs [34, 51]. As the technique for implanting the electrodes requires manipulation

of the phrenic nerve, this can also lead to additional phrenic nerve damage [64]. PNP

was also associated with a high infection and failure rate in early studies, although Sheffler

and Chae report that the infection and failure rates associated with PNP have significantly

improved [51]. Even with this improvement in failure rate, the risk of device failure means

that a ventilator is required to be on stand by while PNP is in use [81]. Therefore, while PNP

is an effective technique to support inspiration, with advantages over mechanical ventilation

such as reduced respiratory infection rates and improved quality of life, a less invasive and less

costly alternative would be beneficial for both the patient and the local health care provider.

Intramuscular Diaphragm Pacing Diaphragm pacing can also be achieved by electric-

ally stimulating the phrenic nerve at the location where it enters each hemidiaphragm, a

technique called intramuscular diaphragm pacing (DP). To stimulate the phrenic nerves,

electrodes are implanted onto the diaphragm at the motor points of the phrenic nerves, via a
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small incision in the abdomen, known as a laparoscopy [65]. The phrenic nerves can then be

stimulated rhythmically, causing the diaphragm to contract and achieving diaphragm pacing.

By 2012, 350 patients worldwide had been fitted with a DP system [66]. Tedde et al. [104]

reported that six months after implantation, 60 percent (3 of 5) of patients fitted with a DP

system were able to breathe independently of mechanical ventilation, relying solely on DP.

This correlates with the findings of Onders et al. [105] who report that greater than 70 percent

of people who were fitted with DP systems were able to permanently free themselves from

mechanical ventilation. As with PNP, this reduced dependence on mechanical ventilation

reduces the risk of respiratory infection associated with being connected to mechanical

ventilation.

The implantation of a DP system has an advantage over PNP in that a laparoscopy is

not a major surgical procedure, with a shorter hospital stay and lower overall cost than a

thoracotomy [106]. Although the risks of a laparoscopy are lower than that of a thoracotomy,

the procedure is not without risk. There is a small risk of the patient developing a

pneumothorax or subcutaneous emphysema caused by the placing of the electrodes [106].

The system developed by DiMarco et al. [65] also has wires exiting the skin to an external

power source. These wires pose a risk of infection or breakage, which would require another

laparoscopy to correct. While DP has been shown to be capable of generating a similar

Tidal Volume (VT ) to that achieved using PNP [106] it is not an instant solution, with users

required to undergo a reconditioning program to strengthen the diaphragm, avoid fatigue

and maintain adequate ventilation. Onders et al. [66] report that the reconditioning time

that allowed participants to achieve four hours of DP breathing was less than one week for

18 to 20 year olds who had been on a ventilator for less than one year. However, for two

participants over 65 years of age the reconditioning time required to achieve four hours of DP

breathing was 21 weeks. Despite these drawbacks DP is a viable alternative to mechanical

ventilation, with benefits over PNP of reduced cost and reduced length of hospital stay.

2.4.1.2 Magnetic Diaphragm Pacing

Man et al. [107] describe three methods of using magnetic stimulation of the phrenic nerve

to achieve diaphragm pacing. When a patient is sitting upright magnetic stimulation can be

applied to the back of the neck at level C7, a technique called cervical magnetic stimulation.

This technique achieves diaphragm pacing by stimulating the phrenic nerves roots, causing a

contraction of the diaphragm. Anterior pre-sternal magnetic stimulation involves placing the

patient in a supine position and applying stimulation over the sternum. This activates the

phrenic nerve at the point where it enters the diaphragm, again causing a contraction of the

diaphragm and achieving diaphragm pacing. Unilateral/bilateral anterolateral stimulation

can also be used to stimulate the phrenic nerve. In this case stimulation is applied on either

one (unilateral) or both sides of the neck (bilateral) to achieve phrenic nerve stimulation at

the nerve root.
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While the use of magnetic stimulation for diaphragm pacing has the advantage over electrical

diaphragm pacing (see Section 2.4.1.1) of being non-invasive, there are two significant

drawbacks when using the technique with people with tetraplegia. Firstly, for both cervical

and unilateral/bilateral anterolateral magnetic stimulation, stimulation is applied at the

cervical level and requires the users neck to be moved to allow placement of the stimulation

coil. Polkey et al. [108] state that this would make magnetic stimulation unsuitable for

anyone with an unstable SCI, common in the acute stage of injury. Secondly, while anterior

pre-sternal magnetic stimulation does not require neck movement, there is only limited data

supporting the use of this technique [107].

One potential use of magnetic stimulation of the phrenic nerve is to identify candidates

who have not suffered LMN and who would be suitable candidates for electrical diaphragm

pacing. To achieve this, magnetic stimulation is applied to the motor cortex, the area

of the brain responsible for motor function, and the results compared to those achieved

using cervical magnetic stimulation. If there is no response of the diaphragm to stimulation

of the cortex (indicating diaphragm paralysis) and the diaphragm contracts using cervical

magnetic stimulation (indicating that the phrenic nerve is intact) then the patient is likely

to be a suitable candidate for electrical diaphragm pacing [109]. It should be noted that

transcutaneous electrical stimulation can also be applied to the same areas to identify

candidates who have not suffered LMN. However, due to electrical stimulation activating

cutaneous pain receptors, this method is likely to be more painful for the user than magnetic

stimulation.

In summary, for people with tetraplegia whose diaphragm function renders them unable

to breathe spontaneously, PNP, DP and magnetic diaphragm stimulation can be used to

activate the diaphragm and create an artificial breathing pattern, termed diaphragm pacing.

Successful diaphragm pacing results in decreased dependance on mechanical ventilation and

reduced risk of respiratory infection. As the diaphragm is only active during inhalation (see

Section 1.4.1 for more information on respiratory muscle function) diaphragm pacing does not

improve expiratory function. The expiratory muscles are used to generate a cough, the body’s

main defence against respiratory infection. Therefore, a gain in expiratory muscle function

that leads to the generation of a more effective cough should decrease the risk of respiratory

infection and subsequent respiratory complications such as pneumonia and atelectasis.

2.4.2 Intercostal Muscles

The intercostal muscles are innervated by 24 separate nerves, termed the intercostal nerves,

which originate from the spinal cord at T1 to T11. Each of these nerves innervates muscles

that have both an inspiratory and expiratory function. The intercostal muscles play a

significant role in inhalation, being responsible for approximately 35 percent of a persons

VC [34]. They also play a role during forced exhalation, such as that taken during a cough.

Both electrical stimulation and RMT techniques have been applied to the intercostal muscles
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to try and improve respiratory function.

2.4.2.1 Intercostal Spinal Cord Stimulation

Spinal Cord Stimulation (SCS) is the electrical stimulation of spinal nerve roots via an

epidural electrode placed on the spinal cord. DiMarco et al. [110] used SCS of the intercostal

nerve roots (located at T1 to T4) to activate the intercostal muscles, denoted Intercostal

Spinal Cord Stimulation (iSCS), of five ventilator dependent tetraplegic patients. They

found that initially iSCS provided very small (less than 240 mL) inspired volumes. After

a reconditioning program participants were able to achieve inspired volumes of as large as

850 mL. However, due to co-activation this reconditioning program led to hypertrophy of

the upper trunk muscles, which is undesirable. DiMarco et al. [111] have also combined iSCS

with DP and found that it could be used to achieve extended periods (between 16 and 24

hours per day) of ventilator free breathing. Both these forms of electrical intercostal muscle

stimulation require a surgical technique to implant electrodes on the spinal cord.

Due to the intercostal muscles being innervated by nerves that have both an inspiratory and

expiratory function, transcutaneous electrical stimulation of the intercostal muscles would

cause contraction of muscles that had both an inspiratory and expiratory role. This makes

non-invasive transcutaneous electrical stimulation an unsuitable method to achieve intercostal

muscle stimulation. Due to a lack of data on the effectiveness of intercostal muscle stimulation,

and an inability to apply this technique non-invasively, it remains experimental [112].

2.4.2.2 Intercostal Muscle Training

Liaw et al. [113] used RMT to train the inspiratory muscles (primarily the diaphragm and

intercostal muscles) of 10 tetraplegic (C4 to C7) participants who were less than six months

post injury, comparing changes in respiratory function to 10 tetraplegic controls. Intervention

participants were asked to inhale against a resistive load for up to 20 minutes, twice per day,

seven days a week, for six weeks. They found a statistically significant increase in Forced Vital

Capacity (FVC), which is a measure of inspiratory muscle function (see Section 1.4.2), for

both groups. They also found a statistically significant increase in Forced Exhaled Volume in

one second (FEV1), Maximum Inspiratory Pressure (MIP) and MEP over the six week period

for both groups and a statistically significant increase in Peak Expiratory Flow (PEF) for the

intervention group. Notably the FVC, FEV1 and PEF of the treatment group increased by

67, 63 and 39 percent compared to a 27, 21 and 23 percent increase for the control group. It

should be noted that all measures of respiratory function were greater for the control group

both pre and post intervention. In summary, this study appears to show an improvement in

respiratory muscle function using inspiratory muscle training of the intercostal muscles.

Martin et al. [87] applied inspiratory muscle training, using a pressure threshold device,

to assist weaning from mechanical ventilation for 10 critically ill able bodied participants.



CHAPTER 2. LITERATURE REVIEW 38

Participants were required to generate an inspiratory pressure greater than a threshold to

open a valve and obtain a breath. They found an increase in MIP from 8 ± 3 cmH2O

to 18 ± 7 cmH2O. They also found that nine of the 10 (90%) participants weaned from

mechanical ventilation. No further respiratory measures were presented, making it difficult

to assess the effectiveness of RMT in this study.

Interestingly both Liaw et al. [113], who applied inspiratory muscle training, and Zupan et

al. [114], who applied expiratory muscle training (see Section 2.4.3.1), found a decrease in

dyspnea (shortness of breath) after RMT. Despite this, Houtte et al. [115] state that the

lack of controlled studies make it difficult to draw conclusions on the effectiveness of RMT

to improve the respiratory function of people with tetraplegia. They state that it is difficult

to differentiate between the effect of the intervention and natural recovery in many of these

studies, a problem inherent in many studies with the SCI population. This corroborates the

opinions of Stiller and Huff [116] who suggest that the lack of controlled RMT studies make

it difficult to exclude natural recovery to explain improvements in respiratory function. Due

to the lack of certainty regarding the effectiveness of the intervention, RMT is currently not

an established method for improving the respiratory function of the tetraplegic population.

2.4.3 Abdominal Muscles

The abdominal muscles are innervated by the thoracoabdominal nerves, which originate from

the spinal cord at T7 to T11. They are the major muscle used for forced exhalation, such as

that taking during coughing and exercise. An improvement in abdominal muscle function will

result in improved cough generation, which should lead to more effective secretion clearance

and decrease the risk of developing a respiratory infection. RMT, magnetic stimulation and

electrical stimulation have all been applied to the abdominal muscles to improve respiratory

function.

2.4.3.1 Abdominal Muscle Training

Zupan et al. [114] investigated the effect of inspiratory and expiratory muscle training on

the respiratory function of 13 people with tetraplegia (C4 to C7). Inspiratory muscle

training was performed using breathing exercises that recruit inspiratory muscles, principally

the diaphragm and intercostal muscles. Expiratory muscle training was performed using

breathing exercises that recruit the abdominal muscles and was coupled with AFES (see

Section 1.5.2 and 2.4.4). Each method was performed for up to 30 minutes, twice per day,

six days a week, over two four week periods. They found that when measuring the patient’s

unassisted effort, inspiratory muscle training caused a larger increase in respiratory function

than expiratory muscle training. Inspiratory muscle training was found to increase FVC

and FEV1 by 19 and 20.5 percent in the sitting position and 17.5 and 16 percent in the

supine position, while expiratory muscle training was found to cause no significant increase

in FVC and FEV1 in the sitting position and a 17 and 16 percent increase in the supine
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position. When measuring respiratory function with the support of AFES, FVC and FEV1

were greater than the participant’s unassisted efforts. These results should be treated with

caution as the addition of AFES during expiratory muscle training may effect the expiratory

muscle training results, as AFES training alone has been shown to lead to an improvement

in FVC and FEV1 (see Section 2.4.4).

2.4.3.2 Magnetic Abdominal Stimulation

Magnetic stimulation can also be used to activate the abdominal muscles by applying

a magnetic field close to the thoracic spinal cord. This magnetic field stimulates the

thoracoabdominal nerve roots (located at T7 to T11), causing the abdominal muscles to

contract. As the nerve roots below the level of SCI usually remain intact, this is a viable

method for improving the respiratory function of people with a cervical, or high thoracic,

SCI [69].

Lin et al. [69] used magnetic stimulation to activate the thoracoabdominal nerve roots of 13

tetraplegic patients (injury levels C4 to C7). They showed that the MEP generated using

magnetic stimulation was increased compared to voluntary efforts. They also found that the

respiratory flow rates of the tetraplegic participants, generated using magnetic stimulation,

were comparable to the voluntary respiratory flow rates generated by able bodied individuals.

The improvements in MEP and respiratory flow rates achieved using magnetic stimulation

were not found to be statistically significantly different to the results achieved during the

maximum spontaneous efforts of the participants. Polkey et al. [108] found that magnetic

stimulation could be used to generate large pressures in able bodied participants, although

no comparison of the pressure or respiratory flow rates that could be achieved with and

without stimulation were made. These results suggest that magnetic stimulation can be used

to improve cough generation.

Lin et al. [69] found that at high stimulation intensities respiratory function actually

decreased. This was believed to be caused by the recruitment of inspiratory antagonists,

attributed to the poor targeting of muscles with magnetic stimulation. Polkey et al. [108] also

found a high variability in the respiratory flow rate that could be generated using magnetic

stimulation, which they hypothesis to be due to glottal closure. DiMarco [34] alludes to these

drawbacks of magnetic stimulation. However, he is of the belief that with further development

of the equipment and identification of the correct users, magnetic stimulation could become

a practical tool to improve respiratory function.

2.4.3.3 Abdominal Spinal Cord Stimulation

Spinal Cord Stimulation (SCS) can also be used to activate the abdominal muscles, denoted

Abdominal Spinal Cord Stimulation (aSCS). In an aSCS system three electrodes are

implanted directly into the spinal cord, around the lower thoracoabdominal and upper lumbar
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nerve roots (T9, T11 and L1). These electrodes can be activated using the signal from an

external transmitter, controlled by the user or their caregiver.

The use of aSCS to improve respiratory function was first documented by DiMarco et al. [117].

In this preliminary study, aSCS was used with one tetraplegic patient (C5/6) who had

difficulty clearing secretions. This study found that the combined activation of the electrodes

implanted at T9 and L1, compared to activation of each electrode individually, improved PEF

(7.4 L/s v 6.4 and 5.0 L/s) and MEP (132 cmH2O v 90 and 82 cmH2O), although no baseline

measures of respiratory function were reported. In 2009 DiMarco et al. [67, 68] presented a

follow-up study where aSCS was used with a further nine tetraplegic patients to achieve a

mean CPF of 8.6 ± 1.8 L/s and a mean MEP of 137 ± 30 cmH2O, both of which approach

the predicted values for the able bodied population. Interestingly, as with the results reported

in [117], these values were achieved by stimulating the electrodes implanted at T9 and L1.

When the electrode at T11 was also activated, there was no additional increase in respiratory

function. As well as an acute increase in cough function DiMarco et al. [117] found that

continued use of aSCS reduced the participant’s reliance on a caregiver to provide an assisted

cough (see Section 2.3.2.1) from 8.57 to zero times per week. In the follow-up study, DiMarco

et al. [68] found the number of respiratory infections developed by each participant fell from

a mean of 2.0 events per year pre aSCS, to 0.7 events per year after implantation. They also

found that the use of aSCS led to fewer problems raising sputum, reduced need for suction,

an improvement in the user’s quality of life and an improvement in the control each user had

on their breathing. All of these factors led to the users of aSCS having improved respiratory

function.

The need for further surgery on the spinal cord to implant the aSCS electrodes, with an

associated hospital stay, may deter people from having the procedure. DiMarco et al. [68]

found that aSCS was associated with a large rise in blood pressure for three of the nine (33%)

users studied. They also found that due to co-activation, whereby the electrodes used for

aSCS activated any muscle controlled by nerves emerging from the stimulated nerve roots,

aSCS led to a significant contraction of the muscles in the back and leg. They also report

that a major drawback of aSCS is equipment failure rates of as high as 25 percent. These

findings led Butler et al. [118] to conclude that while aSCS can be used to improve cough, it

will only be implanted in a limited number of patients.

A summary of the pros and cons of the aforementioned techniques to improve the respiratory

function of the tetraplegic population is presented in Table 2.2.

2.4.4 Abdominal Functional Electrical Stimulation

Abdominal Functional Electrical Stimulation (AFES) is the non-invasive application of a

train of electrical pulses to the abdominal motor nerves, causing the abdominal muscles to

contract (see Section 1.5.2). A number of studies have used AFES to improve the cough and
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Table 2.2: A summary of the pros and cons of using Phrenic Nerve Pacing, Intramuscular
Diaphragm Pacing, Magnetic Diaphragm Pacing, Intercostal Spinal Cord Stimulation,
Intercostal and Abdominal Muscle Training, Magnetic Abdominal Stimulation and
Abdominal Spinal Cord Stimulation to improve the respiratory function of the tetraplegic
population.

Technique Pros Cons

Phrenic Nerve Alternative to mechanical Invasive. Extensive surgical
Pacing ventilation. procedure. Expensive.

Intramuscular Alternative to mechanical Wires exiting skin pose risk
Diaphragm Pacing ventilation. Less invasive of infection. Requires

surgery than Phrenic extensive training program.
Nerve Pacing.

Magnetic Non-invasive. Requires user to move neck.
Diaphragm Pacing

Intercostal Spinal Combined with Intramuscular Requires surgical procedure.
Cord Stimulation Diaphragm Pacing to achieve Small initial inspired volumes.

ventilator free breathing. After Hypertrophy of the
training can achieve adequate upper trunk muscles.

inspired volumes.

Intercostal & Non-invasive. Easy to apply. Lack of control studies.
Abdominal Muscle Decrease in dyspnea. Unclear whether intervention

Training effect or natural recovery.

Magnetic Abdominal Less painful than electrical Requires mains power.
Stimulation stimulation. Unportable. Risk of burns.

Abdominal Spinal Reduced caregiver reliance for Surgical procedure. Significant
Cord Stimulation assisted cough. Reduced contraction of the muscles in

respiratory infection rate. Less the back and leg. High rate
problems raising sputum. of equipment failure.

quiet breathing of the tetraplegic population, in both an acute and long term manner, with

these studies discussed in this section.

2.4.4.1 Acute Effect

The acute effect of AFES, or the immediate improvement in respiratory function that can

be achieved by applying stimulation, has been observed during both quiet breathing and

coughing.

Coughing In two almost simultaneous studies by Jaeger et al. [88] and Linder [89] AFES

was used to produce a more effective cough for people with tetraplegia. In the study by Jaeger

et al. AFES was applied to the rectus abdominis muscle, via electrodes situated on either
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side of the umbilicus (see Figure 2.1(a)), of 24 tetraplegic participants (C4 to C7). They

found that coughs produced with the assistance of AFES had a similar CPF as manually

assisted coughs (3.83 v 3.97 L/s) and a 13 percent greater CPF than voluntary coughs (3.83

v 3.38 L/s). In the study by Linder, AFES was applied during the cough of eight tetraplegic

participants, via electrodes situated on the abdominal wall. Linder showed an increase in

MEP from 27.3 to 60 cmH2O (120%) with the application of AFES, although this was lower

than the MEP of 80 cmH2O that could be achieved via a manually assisted cough.

Taylor et al. [119] applied AFES to the rectus abdominis muscles during coughing via two

pairs of electrodes, with one electrode positioned below the costal margin and the other

above the pubic symphysis on either side of the body (see Figure 2.1(g)). With a single

participant they found an increase in CPF of 55 percent. This increase is greater than that

found by Gollee et al. [72] who applied AFES to the rectus abdominis and external oblique

muscles. The electrodes used to stimulate the rectus abdominis muscles were located in a

similar position to that used by Taylor et al. and the electrodes used to stimulate the external

oblique muscles were situated between the costal margin and the iliac crest (top of hip bone)

(see Figure 2.1(f)). AFES was applied to four tetraplegic (C4 to C6) participants during

cough and was found to lead to a mean increase in CPF of 40 percent, along with an increase

in VT of 31.5 percent. Butler et al. [118] also stimulated the rectus abdominis and external

oblique muscle (see Figure 2.1(d)) to achieve an increase in CPF (36%), mean respiratory flow

(80%) and FEV1 (39%) during coughing. In this study one large pair of electrodes was used

to stimulate both the rectus abdominis and the external oblique muscles, with the position

used to stimulate the external oblique muscles more posterolateral (on the side and towards

the posterior) than that used by Gollee et al.

Quiet Breathing In a preliminary study involving nine able bodied and one tetraplegic

(C6/7) participant, Sorli et al. [120] applied AFES to the rectus abdominis muscles during

quiet breathing via one pair of electrodes, situated above and below the umbilicus on the

midline. They found that the VT of the able bodied participants increased from 667 mL to

1100 mL (65%) during stimulation, with an increase also observed in the participant with

tetraplegia. Stanic et al. [121] applied AFES to the rectus abdominis muscles of six able

bodied and five tetraplegic (C4 to C7) participants during quiet breathing, via electrodes

positioned in the same location as that used by Taylor et al. [119]. They found that the

application of AFES increased the VT of the able bodied participants by a mean of 34 percent

(1370 versus 1026 mL), a similar absolute increase to that observed by Sorli et al. They also

found that the tetraplegic participant’s VT increased by 35 percent (852 versus 629 mL)

during stimulation, a similar increase to that observed by Gollee et al. [72].

Langbein et al. [71] applied AFES to the rectus abdominis muscles via four pairs of electrodes,

positioned on either side of the umbilicus, with one pair located close to the costal margin

and one pair located close to the pubic symphysis (see Figure 2.1(e)). They found that for
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10 SCI (C5 to T7) participants, the application of AFES led to an increase in FVC (13%),

FEV1 (11%) and PEF (15%) compared to voluntary efforts. This increase in PEF is greater

than that observed by Lee et al. [122] who found that the use of AFES with a posterolateral

placement could increase the MEP (80%), PEF (10%), FVC (14%) and FEV1 (23%) of one

tetraplegic participant compared to their voluntary efforts. After a four week AFES training

protocol the application of AFES was found to lead to a larger acute improvement in MEP

(83%), PEF (32%), FVC (17%) and FEV1 (25%) than before training.

Ventilated Patients Kandare et al. [123] used AFES to support ventilation in three

tetraplegic (C0 to C2) participants who had complete diaphragm paralysis and were unable to

breathe independently of either mechanical ventilation or a PNP device (see Section 2.4.1.1).

AFES was applied to the rectus abdominis muscles via electrodes positioned in the same

location as used by Taylor et al. [119] and to the external oblique muscles via a pair of

electrodes placed parallel to those on the rectus abdominis muscle (see Figure 2.1(b)). The

participants were able to achieve up to three minutes of unsupported ventilation. VT was

25 percent less with AFES than with mechanical ventilation (0.83 versus 1.06 L), with the

stimulated VT being similar to that achieved by Stanic et al. [121]. This paper showed that

AFES could be used to support ventilation with ventilated patients, in addition to ventilator-

free patients, indicating an additional patient group who could benefit from AFES.

2.4.4.2 Long Term Effect

The long term effects of an AFES training program on cough and quiet breathing function

has also been investigated in a number of studies.

Coughing McBain et al. [73] used AFES to train the abdominal muscles of 15 SCI

participants (C4 to T5) by applying stimulation during five sets of 10 coughs per day, five

days per week, for six weeks. AFES was applied to the rectus abdominis and external oblique

muscles, using the same posterolateral electrode placement as Butler et al. [118]. They found

that the application of AFES achieved an acute improvement in PEF of 50 percent. After

the training period they found a statistically significant increase in stimulated PEF (16%)

and unstimulated VC (20%), FVC (12%), FEV1 (8%) and PEF (14%).

Quiet Breathing Cheng et al. [124] applied AFES to the pectoralis major and rectus

abdominis muscle, using the same electrode position as Taylor et al. [119], of 13 tetraplegic

participants in the acute stage of injury, for 30 minutes per day, five days per week, for

four weeks. Unlike Zupan et al. [114], who had earlier combined AFES with active RMT

exercises, Cheng et al. used a passive intervention protocol, with participants not required

to interact with the stimulation. The results were compared to 13 tetraplegic participants

who had received no intervention. They found that after a four week training period VC

(32%), FVC (32%), FEV1 (12%), PEF (33%), MIP (25%) and MEP (29%) had all increased,

with a further increase observed both three and six months post intervention. All of the
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respiratory measurements were statistically significantly greater for the intervention group

than the control group after the training period. These results agree with the findings of

McBain et al. who also found an increase in VC , FVC, FEV1 and PEF after an AFES

training program.

McLachlan et al. [70] used a three week AFES training program, during which AFES was

applied to the rectus abdominis and external oblique muscles of 12 tetraplegic participants

(C3 to C6) using the same electrode position as Gollee et al [72]. Stimulation was applied

five days per week for a duration of 20 minutes per day in week one, 40 minutes per day in

week two and 60 minutes per day in week three. Like Cheng et al. [124] this intervention

protocol was also passive, with participants not required to interact with the stimulation.

Like both Cheng et al. and McBain et al. [73], McLachlan et al. observed an increase

in FVC (0.36 L), FEV1 (0.18 L) and PEF (0.39 L/s)2 after the AFES training program,

and like Cheng et al. they also observed an increase in MEP (2.6 cmH2O). Interestingly,

some of the respiratory measures (notably FVC and MEP) had not plateaued after the three

week training program, suggesting that a longer training intervention may be beneficial.

They also found no increase in respiratory function during a one week pre-treatment and

three week post-treatment control phase, suggesting that the intervention and not natural

recovery was responsible for the increases in respiratory function. This suggests that while an

AFES training program can be used to improve respiratory function, the optimum treatment

duration has yet to be established.

Ventilated Patients Lee et al. [122] applied an AFES training program to one 65 year old

tetraplegic (C4) who was eight months post injury and required non-invasive ventilation and

a tracheostomy due to repeated respiratory infections caused by an ineffective cough and poor

respiratory function. The AFES training program led to a 27 percent increase in unstimulated

PEF and a 29 percent increase in FVC. This improvement in respiratory function allowed the

patient to cough unaided after two weeks of AFES training and to have their tracheostomy

removed after three weeks of training. They did not have a further respiratory infection in

their 11 month hospital follow up. This suggests that AFES may be a suitable treatment

modality to improve the respiratory function of ventilator dependant tetraplegics and may

enable them to achieve faster weaning from mechanical ventilation.

Routsi et al. [125] applied FES to the leg muscles of acute ventilator dependant able patients

in an intensive care unit and found that these patients weaned from mechanical ventilation at

a statistically significantly faster rate than patients who did not receive FES. This suggests

that FES may be preventing muscle atrophy and thereby improving the health status of the

patient, enabling faster weaning from ventilation.

2Baseline, or percentage increases in, respiratory function were not published
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2.4.4.3 Electrode Placement

Another challenge in the use of AFES is to establish the optimum electrode placement. A

number of electrode placements have been used for AFES. These electrodes placements are

shown in Figure 2.1 and discussed in further detail in this section.

(a) Jaeger et al. [88]. (b) Kandare et al. [88]. (c) Lim et al. [126].

(d) [Lim et al., Lee et al. [122],
Butler et al. [118], McBain et
al. [73].

(e) Langbein et al. [71]. (f) Gollee et al. [72, 127],
McLachlan et al. [70].

(g) Taylor et al. [119].

Figure 2.1: Diagram of the different electrode placements used to apply AFES. The authors
who used each placement are shown in the caption for each subfigure.

In early studies AFES was only applied to the rectus abdominis muscles [88] (Figure 2.1(a)).

Kandare et al. [123] included the stimulation of the external oblique muscles (Figure 2.1(b)),

the most common electrode placement for studies involving AFES.

Lim et al. [126] used a gastroesophageal catheter to compare the gastric and esophageal

pressures generated using two alternative AFES electrode positions. Large electrodes were

used to stimulate both the rectus abdominis and external oblique muscles, with the external
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oblique muscles being stimulated in both an anterior (Figure 2.1(c)) and posterolateral

(Figure 2.1(d)) position. They found that at the highest intensity of stimulation, gastric

pressure generated using the posterolateral placement was two and a half times greater

than that generated using the anterior placement. No statistically significant difference in

esophageal pressure was observed for the two electrode positions. They also observed that

the application of magnetic stimulation (see Section 2.4.3.2) at T10 led to a statistically

significantly increase in both gastric and esophageal pressures, compared to AFES using

the anterior placement. There was no significant difference in the pressures produced using

magnetic stimulation or AFES using the posterolateral placement. They hypothesise that

the superior results achieved using the posterolateral position is due to the posterolateral

placement innervating the internal and external oblique, rectus abdominis, transverse

abdominis and some of the intercostal muscles, with a greater degree of muscle recruitment

than when using the anterior position.

Lee et al. [122] and Butler et al. [118] have both since used the posterolateral electrode

placement suggested by Lim et al. (Figure 2.1(d)). The acute gains in quiet breathing

function observed by Lee et al. were similar to those observed by Langbein et al. [71],

who only applied stimulation to the rectus abdominis muscles (Figure 2.1(e)). After Lee

et al. applied a four week AFES training program the acute improvements in respiratory

function from AFES were greater than those observed by Langbein et al. The increase

in CPF observed by Butler et al. was similar to that achieved by Gollee et al. [72] using

an anterior electrode placement (Figure 2.1(f)), and less than that observed by Taylor et

al. [119] who only stimulated the rectus abdominis muscles (Figure 2.1(g)). Therefore, the

results achieved using a posterolateral electrode placement are inconclusive as to whether

this position is superior to an anterior electrode placement.

The electrode placement that achieves the optimum muscle contraction when using AFES

remains to be established. Sheffler and Chae [51] state that, when using FES, the strongest

contraction of the target muscle is observed when stimulation is applied close to the muscle

motor point (see Section 1.3). Studies by Gobbo et al. [52] and Botter et al. [128] used

electrical stimulation to identify the position of the motor points of muscles in the leg, with

Botter et al. reporting the position, intrasubject variability and uniformity of the motor

points. A similar technique could be used to determine the position of the motor points of

the abdominal muscles, which should be the optimum AFES electrode location.

2.4.4.4 Automated AFES System

The suitability of AFES for use in a clinical setting could be improved by the development

of an automated AFES system. Such a system would allow AFES to be automatically

synchronised with the user’s respiratory activity, reducing operator dependence and allowing

AFES to be applied consistently over extended periods of time. Synchronisation of such

a system with a mechanical ventilator would also be useful for applying AFES with
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acute ventilator dependent tetraplegic patients. Such a system would also allow different

stimulation parameters to be applied for different breathing situations, such as quiet breathing

and coughing, improving the effectiveness of cough generation. Development of such a system

requires three main areas of focus, namely stimulation timing, classification of respiratory

activity and identification of a suitable sensor to allow this timing and classification to be

achieved.

Timing As the abdominal muscles are used for exhalation, AFES should only be applied

during exhalation to avoid interfering with inhalation. Previous studies have used a manual

input from the user [118, 119] or therapist [114] to apply stimulation at the correct point in

the breathing cycle. The use of manual triggering has two drawbacks. Firstly, if AFES is

being initiated by a therapist then they must be present at all times while AFES is being

used. This has a cost implication for the health care provider. Secondly, the application of

manual triggering is not as consistent as automatic triggering, especially over longer periods

of time.

The signal from a spirometer, regarded as the ‘gold standard’ device for respiratory function

measurement [129, 130], provides a direct measurement of respiratory flow and has been

widely used to measure the respiratory activity of people with tetraplegia [34, 72, 127]. Gollee

et al. [72], Sorli et al. [120] and Stanic et al. [121] have all developed AFES systems that are

able to automatically trigger stimulation at the start of exhalation using the signal from a

spirometer. All three studies reported an acute improvement in respiratory function when

using AFES, along with a consistent application of stimulation. A spirometer is typically

used with a full face mask, which is uncomfortable and intrusive, leaving the user unable to

eat, drink or verbally communicate while in use. This limits the long term use of a spirometer

within an AFES system, with a less invasive sensor being more suitable for this application.

Spivak et al. [90] developed a system that used an Electromyograph (EMG) signal from

the respiratory muscles to automatically apply AFES during exhalation to assist coughing.

They compared the PEF and FVC of 10 people with tetraplegia achieved using either EMG,

caregiver or patient activated stimulation. They found that patient activated AFES actually

resulted in a reduction in PEF and FVC, while caregiver and EMG activated stimulation

produced a PEF and FVC similar to unassisted efforts. While the result of this study did not

show any improvement in respiratory function with AFES, it did demonstrate the possibility

of using the signal from a non-intrusive sensor to automatically apply stimulation at the

correct point in the breathing cycle.

Classification To maximise the effectiveness of AFES, Gollee et al. [72] suggest that a

quiet breath and a cough should be stimulated at different points in the breathing cycle, using

different stimulation intensities. They suggest that during quiet breathing AFES should be

applied at, or shortly after, the start of exhalation, to effectively support exhalation, while
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during coughing stimulation should be applied at the end of inhalation to contribute to

pressure build-up during glottal closure. A higher level of stimulation for coughing than

for quiet breathing may also increase intrathoracic pressure, improving cough generation.

To enable the application of the correct stimulation parameters at the correct point in the

breathing cycle an automatic AFES algorithm must be capable of differentiating between a

quiet breath and cough.

Gollee et al. [72] designed a system that used respiratory flow measurements, recorded using

a spirometer, to identify a cough based on the inhalation flow rate and a quiet breath based

on a cross-correlation algorithm. This system required manual setting of threshold values

for the cross correlation and respiratory flow rate on a session by session basis. For clinical

use, it would be desirable to minimise manual intervention during setup, resulting in a fully

automated system.

Statistical classification, which is the principle of identifying the group an item belongs to

using statistical methods, may be suitable for classifying respiratory activity. By using

features within a signal statistical classification can be used to identify different groups.

McCaughey and Gollee [131] used the signal from a spirometer as the input to a statistical

classifier that made decisions based on a maximum likelihood algorithm. In this algorithm

the features used for classification were selected manually for each participant. This manual

selection of features is time consuming and not feasible in a clinical setting. A Support Vector

Machine (SVM) is a statistical learning technique for binary classification problems. An SVM

uses training data, marked as belonging to a certain group, to separate the data points in

higher dimensional space by as large a margin (also referred to as a gap) as possible. The

data points belonging to each group that are closest to this margin are called the support

vectors. By assigning new data points to the same space, they can be classified as belonging

to either group depending on their position relative to the support vectors.

When using an SVM data can either be separated linearly, using a linear kernel, or non-

linearly, using a Radial Basis Function (RBF) kernel. However, even when using the correct

kernel, data cannot always be separated cleanly. When this is the case the introduction of

a soft margin technique can be used to control the generalization ability of the classifier.

This soft margin technique splits data as cleanly as possible, allowing for misclassifications

to occur to maximise the size of the margin. This technique is particularly useful when noise

is present in a data set. In the case of a hard, or fixed margin, these noisy data points will

determine the location of the support vectors. When using a soft margin these noisy data

points are effectively ignored, allowing for a better and more stable separation of the data at

very little cost to the classification ability. Adjustment of the soft margin must be done with

care. If this boundary is too strict, or too loose, then some outliers will be assigned to the

wrong class, with an associated negative impact on classification performance.
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SVMs have a high generalization ability and good performance when compared to other

classifiers [132]. They use automatic feature selection giving them an advantage over

other classification techniques that require a greater degree of user input. Due to the

low level of user input and high classification performance, SVMs are widely used in a

clinical setting. Pradhapan et al. [133] used an SVM to successfully identify sleep apnea

(pauses in breathing during sleep) from photoplethysmography data while Tenev et al. [134]

used a combination of SVMs to use electroencephalography data to accurately identify

attention deficit hyperactivity disorder in the adult population. The accuracy of an SVM

was demonstrated by Qiu et al. [135] who used an SVM to predict the genotype of Hepatitis

C Virus with an accuracy of 99 percent.

The use of an SVM is a possible solution for the automatic classification of respiratory activity

within an AFES system. Such a system should allow a cough and a quiet breath to be

stimulated at different points in the breathing cycle, with different stimulation parameters,

increasing the effectiveness of an AFES system. The practicality of such a system could

be further increased by replacing an intrusive spirometer, the ‘gold standard’ sensor for

measuring respiratory function, with a non-intrusive sensor.

Non-Intrusive Sensors A number of non-intrusive sensors exist that could replace an

intrusive spirometer for the detection and classification of respiratory activity within an

automatic AFES system. Respiratory effort belts are made up of piezoelectric crystals which,

when placed under stress such as a displacement, produce a change in voltage. This is known

as the ‘piezoelectric effect’ (see Section 3.3.2 for further explanation of the piezoelectric effect).

Respiratory effort belts are a well established method of detecting apnea during sleep studies,

following offline respiratory activity analysis [136, 137]. The results of a single participant

feasibility study by Gollee et al. [138] suggest that respiratory effort belts could be used

to detect respiratory activity in real-time. They also show that the respiratory effort belt

signal was not disturbed by the belt being placed on top of electrodes delivering AFES.

This suggests that a respiratory effort belt may be a suitable sensor for real-time detection

and classification of respiratory activity within an AFES system. A nasal thermocouple

is a non-intrusive sensor that measures air temperature. As an inhaled breath is cooler

than an exhaled breath, a nasal thermocouple is able to provide a qualitative measurement

of breathing activity [139]. Farre et al. [140] suggest that nasal thermocouples are only

semiquantative devices, which do not have the ability to accurately quantify respiratory

flow. This would suggest that while nasal thermocouples may have potential to be used to

detect the correct point for stimulation, they may be unsuitable for classifying respiratory

activity. Accelerometers have previously been used to record physical activity [141]. These

sensors, positioned on the abdomen or chest, may be suitable for monitoring respiratory

activity. Gollee and Chen [142] demonstrated that an Inertial Measurement Unit (IMU),

which integrates accelerometers and gyroscopes to give an estimate of its relative orientation,

could be used to detect respiratory activity. They also suggest that due to a difference in the
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magnitude of the sensor signal during quiet breathing and coughing, that these sensors may

be suitable for the classification of respiratory activity. While the small size of an IMU makes

them suitable for a clinical setting, they are considerably more expensive than accelerometers.

Additionally, the sensor used by Gollee and Chen was attached to an elastic belt, similar to

a respiratory effort belt. Therefore, there is no obvious practical advantage to using an IMU

when already using a cheaper respiratory effort belt. Therefore, this thesis will focus on the

use of respiratory effort belts, nasal thermistors and accelerometers for breathing pattern

detection and classification. The suitability of these sensors for real-time respiratory activity

detection and classification remains to be investigated.

2.5 Conclusions

In conclusion, AFES has been shown to be a suitable method to improve cough and quiet

breathing for the tetraplegic population. The non-invasive nature and easy application

of AFES make it a potentially suitable system for use in a clinical setting. Despite

these positive results AFES has yet to be adopted as a standard clinical treatment for

the tetraplegic population. To aid this clinical introduction it would be beneficial to

have an AFES system capable of automatically applying stimulation in synchrony with

the user’s respiratory activity, with stimulation effectiveness enhanced by applying it at

the abdominal muscle motor points. Additionally, case studies have indicated that AFES

may be suitable for improving respiratory function and assisting ventilator weaning for the

ventilator dependent tetraplegic population. A larger study that investigates the feasibility

and effectiveness of using AFES with the ventilator dependent tetraplegic population has

yet to be conducted. Finally, the optimum training protocol for use of AFES with the sub-

acute tetraplegic population and the combination of AFES with techniques currently used to

improve respiratory function remain to be investigated.

Therefore, this thesis will aim to develop a system capable of the automatic application of

AFES in a number of clinical settings. A simple technique capable of identifying the location

of the abdominal muscle motor points will also be investigated. Finally, the feasibility and

effectiveness of using AFES in a clinical setting with the ventilator dependent and sub-acute

tetraplegic population, along with the integration of AFES with MI-E, will also be evaluated.

This work should provide further evidence to support the clinical introduction of AFES for

improving the respiratory function of the tetraplegic population.
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Chapter 3

Experimental Methods

“Before anything else, preparation is the key to success.”

Alexander Graham Bell
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3.1 Summary

This chapter introduces the methods used throughout this thesis to evaluate the feasibility

and effectiveness of using Abdominal Functional Electrical Stimulation (AFES) to improve

respiratory function. The methods used to measure the respiratory function of tetraplegic

participants are explained here. The methods used to record respiratory activity, which

allow AFES to be automatically synchronised with the user’s own respiratory activity, are

then outlined. The hardware, software and experimental set-up used to apply AFES with the

able bodied and tetraplegic population, including a description of how respiratory activity

was used to provide automatic stimulation, are then described. This chapter concludes by

providing a description of the statistical methods used to evaluate the effectiveness of AFES.

3.2 Measurement of Respiratory Function

In this thesis respiratory function was evaluated by measuring Tidal Volume (VT ), Vital

Capacity (VC), Forced Vital Capacity (FVC), Forced Exhaled Volume in one second (FEV1)

and Peak Expiratory Flow (PEF). All of these measures, except for VT , were calculated from

the output of a FVC or VC manoeuvre.

To conduct an FVC manoeuvre participants were instructed to inhale to maximum lung

capacity and exhale as fully and as forcibly as possible, with verbal encouragement provided.

To conduct a VC manoeuvre the same procedure was followed, however participants were

not asked, and not verbally encouraged, to exhale as forcibly as possible. The procedure for

conducting an FVC or VC manoeuvre is outlined in the American Thoracic Society (ATS)/

European Respiratory Society (ERS) standards for spirometry [129], with these standards

followed throughout this thesis. An FVC or VC manoeuvre was deemed to be successful if:

• Breaths were free from artefacts such as a cough, early termination, leakage or an

obstructed mouthpiece.

• Breaths had a satisfactory start i.e FEV1 was acceptable (FEV1 should be approxim-

ately 80 percent of FVC [43]).

• Breaths had a satisfactory exhalation i.e. participant was judged to have exhaled fully.

An example of features that would lead to an FVC or VC manoeuvre being classed as

unsuccessful are shown in Figure 3.1.

In the clinical study reported in Chapter 6 a VC manoeuvre was performed up to five times,

both with and without AFES, to form one run. A second run of VC manoeuvres was then

performed after VT had been recorded. This resulted in each assessment session providing

up to 10 stimulated and unstimulated VC manoeuvres. Whether stimulation was applied

during the first or second set of five VC manoeuvres within each run was randomised for

each participant at each session. In Chapter 7 an FVC manoeuvre was performed up to five

times, both with and without AFES, to form one run. A second run of FVC manoeuvres
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Figure 3.1: Example of a successful (blue) and unsuccessful (red) FVC manoeuvre. The
manoeuvre shown in red was deemed unsuccessful due to i) an unsatisfactory start (identified
from a low FEV1) ii) a leakage artefact (identified from a plateau in the volume) and iii) the
participant not exhaling fully (identified from early curtailment of the manoeuvre).

was then performed after a rest period of approximately two minutes. This resulted in each

assessment session providing up to 10 stimulated and unstimulated FVC manoeuvres. As

with Chapter 6, whether stimulation was applied during the first or second set of five FVC

manoeuvres within each run was randomised for each participant at each session.

The validity of each FVC or VC manoeuvre was checked offline and any attempts that did

not meet the above criteria were rejected. FVC and VC is the largest exhaled volume, of at

least three successful FVC or VC manoeuvres, which is within 0.15 L of another attempt.

From the FVC or VC manoeuvres FEV1 and PEF were also calculated. FEV1 is the largest

volume recorded during the first second of an exhalation, of at least three successful FVC

or VC manoeuvres, which is within 0.15 L of another attempt. PEF is the largest exhaled

flow rate, from at least three successful FVC or VC manoeuvres, which is within 0.67 L/s of

another attempt.

VT was measured in Chapter 6 by asking participants to breathe normally for six minutes, or

until their oxygen saturation level (SaPO2) dropped below 92 percent. The participant’s VT

was the mean of the values recorded during this six minute period. VT was recorded both with

and without AFES, with the order of these measurements randomised for each participant at

each session. Stimulated and unstimulated measurement periods were separated by a break

of two minutes, or until the participant’s SaPO2 returned to baseline, with participants being

ventilated during this break if required.

To allow for effective group comparisons of respiratory function, the aforementioned measures

of respiratory function were normalised by weight for each participant. This provided weight
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corrected VC (VC/kg), VT (VT /kg), FVC (FVC/kg), PEF (PEF/kg) and FEV1 (FEV1/kg).

3.3 Respiratory Activity Sensors

Respiratory activity was recorded with a number of different sensors within this thesis,

including spirometers, respiratory effort belts, nasal/oral thermocouples, accelerometers and

pressure sensors. An example of the signals recorded using these sensors is presented in

Figure 3.2, with these sensor signals explained in further detail in this section.
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(b) Respiratory effort belt.
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(c) Nasal/oral thermocouple.

0 1 2 3 4 5
−0.02

−0.01

0

0.01

0.02

Time (s)

S
ig

na
l (

V
)

Inhalation Exhalation

(d) Accelerometer.
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(e) Pressure sensor.

Figure 3.2: Example signals recorded using a spirometer, respiratory effort belt, nasal/oral
thermocouple and accelerometer. These signals were all recorded during the same quiet
breath from a human participant. Also shown is the signal recorded using a pressure sensor
during a quiet breath provided by a mechanical ventilator. For all of these sensors a negative
signal represents an inhalation and a positive signal represents an exhalation.

3.3.1 Spirometer

A spirometer (Microloop, Micromedical, UK), hereafter referred to as the Microloop

spirometer, was used to record respiratory activity in Chapters 4, 6 and 7. This device uses
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a turbine and light gate to measure respiratory activity. Every spin of the turbine, measured

using the light gate, represents a volume increment. Multiplying the total number of volume

increments within a specified sample time by the value of this volume increment provides the

respiratory volume during that sample time. Respiratory flow rate is the derivative of this

volume over the sample time. Whether this volume and flow rate was recorded during an

inhalation or exhalation can be established from the direction of the turbine.

This spirometer provides both a flow signal, in litres per second (L/s), and a volume signal,

in litres (L). The range and accuracy of this device is 0.1 to 8.0 L and 0.01 L when measuring

volume and 0.2 to 15.0 L/s and 0.03 L/s when measuring flow rate. This spirometer signal was

low pass filtered offline to smooth the signal (eighth order simple moving average filter, cut off

frequency 2.7 Hz), necessary due to the use of volume increments to record respiratory volume,

with a filtered spirometer flow signal recorded during a quiet breath shown in Figure 3.2(a).

The spirometer was interfaced with a laptop computer using an RS232 interface.

To measure respiratory volume an interface is needed between the spirometer and the user.

In Chapter 4 the spirometer was attached to a full face mask (Hans Rudolph Inc., USA) and

in Chapters 6 and 7 the spirometer was attached to a mouthpiece, via a catheter mount tube.

When the mouthpiece was used a nasal clip was also used to prevent air leakage at the nose,

with participant’s also instructed to form a seal at the mouth to prevent air leakage there.

In Chapter 7 respiratory activity was measured during Mechanical-Insufflation Exsufflation

(MI-E) using a different spirometer, hereafter referred to as the ADInstruments spirometer.

The ADInstruments spirometer was used here as, unlike the Microloop spirometer, it could be

fitted in line with the MI-E device. In this system a spirometer pod (ML311, ADInstruments,

New Zealand), which is a differential pressure transducer, was connected to a respiratory flow

head (MLT1000L, ADInstruments, New Zealand), which contains a wire mesh at its centre.

Air flowing through this wire mesh creates a pressure difference on either side, with a larger

flow creating a greater pressure difference. This pressure difference, which is measured by

the spirometer pod, is directly related to the flow rate.

This spirometer was designed to be used with the manufacturer’s software (LabChart,

ADInstruments, New Zealand) and amplifier, the gain of which was unknown. As the

spirometer output was in Volts (V) it was necessary to calculate a calibration factor that

allowed the flow rate, and in turn volume, to be calculated from this voltage signal. To find

this calibration factor a 3 L syringe was used (3 Litre Calibration Syringe, Micromedical,

UK). The full volume of the syringe was passed through the ADInstruments spirometer 100

times, at manually varying flow rates. The signal, which corresponds to flow and is measured

in V, was integrated with respect to the sample time (0.02 s), with the maximum value of this

integrated signal corresponding to the respiratory volume. The mean of the 100 maximum

values was 0.0737 Volts seconds (Vs). By dividing the volume of the calibration syringe, which
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was known to be 3 L, by this mean value of 0.0737 Vs, it was found that a signal of 1 V

corresponded to a flow rate of 40.7 L/s. This corresponds with the manufacturers suggested

calibration factor of 40.1 L/s [143]. Therefore, the ADInstruments spirometer signal was

multiplied by a calibration factor of 40.7 L/s to provide a respiratory flow in L/s, a signal

which could be integrated to provide respiratory volume. The calibration syringe was also

used to verify that the Microloop spirometer was properly calibrated.

The ADInstruments spirometer is capable of measuring flow rates in the range of ± 16.7 L/s,

with a repeatability of 0.03 L/s. This spirometer had an in-built low pass filter (30 Hz) and

was interfaced with a laptop computer using a 16-bit data acquisition card (NI DAQCard

6036E, National Instruments, TX, USA). It was fitted in line with the tubing connecting the

participant and the MI-E device as shown in Figure 3.8.

3.3.2 Respiratory Effort Belts

Respiratory activity was also recorded using respiratory effort belts (Piezoelectric belts,

ProTech, USA). These belts make use of the ‘piezoelectric effect’, whereby certain solid

materials produce an electrical voltage when deformed. In an unstrained crystal, such as

that shown in Figure 3.3(a), the positively and negatively charged atoms are separated

symmetrically, causing the overall crystal structure to be charged balanced and no voltage to

be produced. When a force is applied to the crystal, such as that shown in Figure 3.3(b), the

symmetry of the charge separation is lost. This causes certain areas of the crystal to become

positively and negatively electrically charged, causing a voltage to be generated. This voltage

is proportional to the deformation of the material, hence respiratory effort belts positioned

around the body can be used to measure the deformation of these areas during respiration.

The signal from a respiratory effort belt is a measure of the stretch velocity of the belt and

is directly related to the respiratory flow recorded using a spirometer. This sensor provides

a signal in V, where a typical signal has a peak to peak amplitude of 600 µV and the sensor

has a sensitivity in the range of 2 to 30 µV/mm. The respiratory effort belts were connected

to a custom built amplifier that provided a gain of approximately 1000, a low pass filter

(cut off frequency 15 Hz), high input-impedance and a high common mode rejection ratio.

The respiratory effort belt signals were high pass filtered offline to remove signal bias (1st

order butterworth, cut off frequency 0.04 Hz). In Chapter 4 these sensors were interfaced

with a laptop computer via a 16-bit data acquisition card (NI DAQCard 6036E, National

Instruments, TX, USA), while in all other chapters these sensors were interfaced via a 14-bit

USB data acquisition card (NI USB-6009, National Instruments, USA). Figure 3.2(b) shows

the amplified and filtered signal from a respiratory effort belt placed around the abdomen

recorded during a quiet breath.

In Chapter 4 two respiratory effort belts were used to measure respiratory activity; one

positioned around the participant’s abdomen, at the umbilicus, and the other positioned
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(a) Charge balanced piezoelectric crystal. (b) Charge unbalanced piezoelectric crystal.

(c) Respiratory effort belt.

Figure 3.3: Example of the piezoelectric effect. a) A charge balanced piezoelectric crystal,
with the symmetry of the crystal shown in purple and the walls of the crystal shown in grey.
b) The crystal is displaced by a compressive force, causing the upper surface of the crystal to
adopt a more positive charge and the lower surface of the crystal to adopt a more negative
charge. The new shape of the crystal is shown in green, with the previous, symmetrical,
shape shown in purple for comparison. c) The respiratory effort belt used in this thesis, with
the location of the piezoelectric crystal highlighted.

around the front of the chest, at the sternum. In Chapters 6 and 7 a respiratory effort belt

was positioned around the abdomen to measure respiratory activity. The optimum set-up

parameters for these respiratory effort belts were found in the study outlined below.

3.3.3 Respiratory Effort Belt Calibration

When using a respiratory effort belt to record respiratory activity a large signal magnitude is

desirable, as this will result in a large signal to noise ratio. This should allow for more accurate

measurement of respiratory activity. To establish the set-up parameters that provided the

largest signal magnitude a servo motor was used to accurately displace a respiratory effort

belt and the belt signal was recorded. The initial stretch, frequency of displacement and

displacement of the belt that provided the largest signal magnitude was investigated in the

experiment outlined below. When respiratory effort belts are used to measure respiratory

activity the initial stretch of the belt is the only one of these three variables that is directly
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under the operator’s control. Therefore, the initial stretch that provided the largest signal

magnitude was established first. This initial stretch was then applied to the belt when

investigating the frequency and magnitude of displacement that provided the largest signal

magnitude, both of which were deemed less within the operator’s control as they are more

dependant on the user’s respiratory activity.

3.3.3.1 Methods

Equipment and Pre-processing A respiratory effort belt (Piezoelectric belt, ProTech,

USA) was displaced by attaching it to a servo motor using a wire. The rotation of the servo

motor, and hence displacement of the belt, was controlled using a closed loop feedback system

implemented in the Simulink (Mathworks, USA) modeling environment. A diagram of the

experimental set up is shown in Figure 3.4.

Figure 3.4: Experimental set up used to measure the magnitude of a piezoelectric belt signal
under different conditions. Black arrows represent direction of data.

The belt signal was amplified using the custom amplifier described in Section 3.3.2. As the

belt signal is directly related to the velocity of the belt, the signal was integrated to provide

a signal relative to displacement, the variable being controlled by the feedback system. All

data was recorded in Simulink using custom-made blocks to enable real-time data acquisition

at a sample rate of 50 Hz.

The belt was tested under a number of different conditions, outlined below, to validate that
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the signal from a respiratory effort belt is suitable for measuring respiratory activity and to

establish the conditions under which the belt signal was largest.

Shape of Displacement The belt was displaced in a sinusoidal motion to provide a simple

representation of the movement of the chest, or abdomen, during respiration. However, this

movement is variable and can also be represented by a ramp. Therefore, the belt was also

displaced using two different ramps. The first ramp had a rise and fall time equal to 50

percent of the total displacement duration. The second ramp had a rise and fall time of 40

percent of the total displacement duration, with the belt held at its maximum displacement

for 20 percent of the total duration.

Initial Stretch An initial stretch of 0 cm was defined as the point where the belt was

under enough tension to remove all slack but where the addition of any further tension would

result in the belt being displaced from its initial position. To establish the initial stretch that

provided the largest signal magnitude the belt was displaced with an initial stretch that was

varied between 0 and 3 cm, in increments of 0.2 cm. This provided 16 measurement stretches.

The initial stretch was set by hand using a measuring tape. During each initial stretch the

belt was displaced by 2 cm for 60 s at a constant frequency of 0.2 Hz (chosen to correspond

to the human respiratory rate, which is approximately 12 breaths per minute [144]). This

movement provided 12 unique displacements, each of which had a unique maximum. The

value of the signal at each of these maximum points was used for analysis.

Each test was repeated a further twice. The first maximum of each test was ignored due

to potential noise, resulting in a total of 33 data points for each initial stretch value. The

mean value of each of these data points was assumed to be the maximum signal amplitude

for that displacement. After the initial stretch that provided the largest signal amplitude was

established, this value of initial stretch was used for all further tests.

Frequency The effect of the frequency of displacement on the signal magnitude was

analysed by displacing the belt at a frequency of between 0.1 and 0.5 Hz, in increments

of 0.1 Hz, resulting in five measurement frequencies. The initial stretch was optimised from

the information gathered from the previous test and the belt was displaced by 2 cm for 60 s.

This resulted in six, 12, 18, 24 and 30 data points for each frequency respectively. Each test

was repeated a further twice and the first maximum of each test was ignored. This resulted

in a total of 15, 33, 51, 69 and 87 data points for each frequency of displacement. The mean

value of the data points at each frequency was assumed to be the maximum signal amplitude

for that frequency.

Magnitude of Displacement To establish the displacement that provided the largest

signal magnitude the belt was displaced by between 0.2 and 5.0 cm, in increments of 0.2 cm,

resulting in 25 measurement displacements. The belt was displaced for 60 s at a constant
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frequency of 0.2 Hz and with a constant initial stretch, resulting in 12 measurement points.

Each test was repeated a further twice and the first maximum of each test was ignored. This

resulted in a total of 33 data points for each magnitude of displacement. The mean value of

the data points at each displacement was assumed to be the maximum signal amplitude for

that displacement.

3.3.3.2 Results

Shape of Displacement On all occasions the magnitude of the belt signal was greater

when displacing the belt using a sinusoidal motion, compared to both forms of ramp.

Initial Stretch Figure 3.5 shows the maximum amplitude of the belt signal for each initial

stretch, where each maximum is the mean of 33 maximums per displacement, taken from

three recordings. For all three shapes of displacement the data takes the form of a concave,

with an initial stretch of 0 cm having the largest signal magnitude, closely followed by an

initial stretch of 3 cm. From an initial stretch of 2 cm the gradient starts to increase, with

this trend continuing to the largest tested value of 3 cm.
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Figure 3.5: Maximum belt signal magnitude (mean ± standard deviation) for varying initial
stretch values. Belt was displaced by 2 cm at a frequency of 0.2 Hz using a sine wave (black),
a ramp with a rise time corresponding to 50% of total displacement duration (blue) and a
ramp with a rise and fall time corresponding to 40% of total displacement duration (red).

Frequency Figure 3.6 shows the maximum magnitude of the belt signal recorded when the

belt was displaced at five different frequencies. Each maximum is the mean of 15, 33, 51, 69

and 87 maximums for each of the respective frequencies. The maximum magnitude of the

signal was found to decrease with increasing frequency of displacement, with the maximum

signal amplitude observed when the belt was displaced at a frequency of 0.1 Hz.
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Figure 3.6: Maximum belt signal magnitude (mean ± standard deviation) for varying
frequency of displacement. Belt was displaced by 2 cm, with an initial stretch of 3 cm, using a
sine wave (black), a ramp with a rise time corresponding to 50% of total displacement duration
(blue) and a ramp with a rise and fall time corresponding to 40% of total displacement
duration (red).

Displacement The maximum magnitude of the belt signal recorded when the belt was

stretched to 25 different displacements is shown in Figure 3.7. Each maximum is the mean

of 33 maximums recorded for each displacement. The maximum magnitude of the signal

exhibits a linearly increasing response to increasing displacement. The largest maximum

magnitude of the belt signal was observed at 5 cm for all three shapes of displacement.
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Figure 3.7: Maximum belt signal magnitude (mean ± standard deviation) for varying
displacement. Belt was displaced by 2 cm at a frequency of 0.2 Hz using a sine wave (black),
a ramp with a rise time corresponding to 50% of total displacement duration (blue) and a
ramp with a rise and fall time corresponding to 40% of total displacement duration (red).
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3.3.3.3 Discussion and Conclusion

The largest magnitude of belt signal was observed when the belt was displaced from an

initial stretch of 0 cm. However, an initial stretch of 0 cm is not practical for use with a

human subject as any negative displacement from this point, such as would occur during an

exhalation, would result in a ‘negative stretch’. During this time the belt signal would not

change, rendering the belt unsuitable for measuring respiratory activity at these ‘negative

stretch’ values. An initial stretch of 3 cm provided the largest signal magnitude away from

the 0 cm point. The magnitude of the belt signal increased as the initial stretch was increased

between 2 and 3 cm. This increase in magnitude may continue for initial stretches of greater

than 3 cm. However, due to the tension that the initial stretch generates in the belt it was

difficult to apply an initial stretch of greater than 3 cm using the servo motor. It was decided

that 3 cm was the most suitable initial stretch value when using respiratory effort belts to

measure respiratory activity.

The largest magnitude of the belt signal occurred when the belt was displaced at a frequency

of 0.1 Hz, with only a small decrease in the magnitude of the signal when the belt was

displaced at 0.2 Hz. The average human breathing rate is approximately 0.2 Hz, with the

belt signal having a large signal amplitude when displaced at this frequency. This would

provide a suitable signal to noise ratio at this frequency, hence respiratory effort belts were

deemed suitable for measuring respiratory activity at these frequencies.

The magnitude of the belt signal increased linearly as the belt was displaced by an increasing

amount. Therefore, larger displacements have a larger signal to noise ratio. As the magnitude

of the movement of the chest, or abdomen, during respiration will vary between participants,

the belt should always be placed in the position with the largest displacement. The magnitude

of the signal was larger when the belt was displaced in a sinusoidal motion compared to a

ramp. The shape of respiratory activity is outside of the operators control. However, having

the user relax into a cyclic breathing pattern, which best represents a sinusoidal wave, will

result in the largest signal magnitude.

One problem encountered when using piezoelectric crystals, such as those found within these

piezoelectric respiratory effort belts, for measurements is ‘leakage’. Leakage causes the signal

to slowly drifts back towards the baseline value during periods with no displacement, or

displacement at a low frequency. During this experiment no evidence of leakage was observed,

even when the belt was displaced at a frequency of 0.1 Hz.

It can be concluded that the set-up parameters outlined in this study should make respiratory

effort belts suitable for measuring respiratory activity. Therefore, an initial stretch of 3 cm

was applied to the respiratory effort belt for all use in this thesis. To allow for the greatest

magnitude of displacement to be recorded the belt was positioned to detect the greatest
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movement of the chest or abdomen. As the average human respiratory rate is approximately

12 breaths per minute [144], it was felt that respiration at this frequency would provide a

signal magnitude that would provide a suitable signal to noise ratio.

3.3.4 Nasal/Oral Thermocouple and Tri-Axial Accelerometers

In Chapter 4 respiratory activity was also recorded using a nasal/oral thermocouple (ProTech,

USA), placed on the participant’s top lip. A nasal/oral thermocouple measures the

temperature of air around prongs situated at the nose and mouth. As inhaled air has a lower

temperature than exhaled air direction of respiratory flow can be calculated. This sensor

provides a signal in V, where a typical signal has a peak to peak amplitude of 400 µV and

the sensor has a sensitivity in the range of 2 to 30 µV/mm. The nasal/oral thermocouple

was connected to an amplifier with similar characteristics to that used for the respiratory

effort belts (see Section 3.3.2). In this thesis the amplified nasal/oral thermocouple signal

was differentiated to allow comparison with the spirometer respiratory flow rate.

Two tri-axial accelerometers (ADXL 335, Analog Devices, USA), positioned on top of the

respiratory effort belts located on the abdomen and chest, were also used in Chapter 4 to

record respiratory activity. The accelerometers were used to measure acceleration with a

range of ± 3.6 g and a sensitivity of 300 mV/g. They provide an output in V, with a signal

of 1 V equal to an acceleration of 0.7 g. They were connected to a custom built electronic

subtractor, which was used to remove the gravitational offset from each of the accelerometer

signals. Each accelerometer provides three separate acceleration signals in cartesian x, y and

z coordinates. These signals were combined offline using a custom MATLAB (Mathworks,

USA) script to provide one signal, in spherical coordinates, for each accelerometer. For all

analysis within this thesis this acceleration signal was integrated, resulting in a velocity signal,

which could be directly compared with the spirometer signal.

Both the nasal/oral thermocouple and accelerometer signals were high pass filtered offline

to remove signal bias (first order butterworth, cut off frequency 0.04 Hz). In Chapter 4

these sensors were interfaced with a laptop computer using a 16-bit data acquisition card

(NI DAQCard 6036E, National Instruments, TX, USA), while in all other chapters these

sensors were interfaced using a 14-bit USB data acquisition card (NI USB-6009, National

Instruments, USA). Figure 3.2(c) shows an amplified and filtered nasal/oral thermocouple

signal recorded during a quiet breath, while Figure 3.2(d) shows the combined and filtered

signal from an accelerometer placed on the abdomen recorded during the same quiet breath.

3.3.5 Pressure Sensor

In Chapter 6 a pressure sensor (HDIM050GBZ8H5, First Sensor AG, Germany) was

connected to the filter located on the exhalation limb of a mechanical ventilator (Evita

XL, Draeger, Germany) to provide a measure of the ventilatory flow. This pressure sensor
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measures gauge pressure (pressure relative to the atmosphere) of gas (in this case air), with

a range of ± 50 mbar and an accuracy of 0.75 mbar. It provides an output in V, with 1 V

corresponding to 25 mbar. The pressure sensor signal was high pass filtered offline to remove

signal bias (first order butterworth, cut off frequency 0.04 Hz) and interfaced with a laptop

computer using a 14-bit USB data acquisition card (NI USB-6009, National Instruments,

USA). A filtered pressure sensor signal recorded from a mechanical ventilator is shown in

Figure 3.2(e).

This pressure sensor was also used in Chapter 7 to measure the flow from a MI-E device.

To achieve this the pressure sensor was connected to a filter, fitted in line with the tubing

between the participant and the MI-E device as standard clinical practice, to measure when

insufflation and exsufflation were applied. This setup is shown in Figure 3.8.

Figure 3.8: Spirometer interface used during Mechanical Insufflation-Exsufflation (MI-E).
This shows the MI-E device, the respiratory flow head connected to the spirometer pod,
filters to prevent secretions reaching the spirometer pod and a pressure sensor used to record
respiratory activity. The filter on the right hand side of the image is the same filter as
highlighted in Figure 7.2.

3.3.6 Software

All data was recorded in the Simulink modeling environment (Mathworks, USA) using

custom-made blocks to enable real-time data acquisition at a sample rate of 50 Hz. A

custom LabVIEW (National Instruments, USA) Graphical User Interface (GUI) was created

and interfaced with the Simulink model using the LabVIEW simulation interface toolkit

connection manager. This GUI displayed the sensor signals in real-time.

All of the MATLAB, Simulink and LabVIEW software used for data acquisition in this thesis,
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and all of the MATLAB software used for data analysis, was created by the author.

3.4 Methods For AFES

AFES was applied and triggered in this thesis using a number of different methods,

descriptions of which are provided below.

3.4.1 Stimulation System

A neuromuscular stimulator (RehaStim v1, Hasomed, Germany) was used to stimulate the

abdominal muscles, bilaterally, using four stimulation channels. Bi-phasic current controlled

stimulation pulses were applied at a frequency of 30 Hz and the pulsewidth varied between

100 and 500 µs. Current was adjusted on a channel by channel basis until a visible muscle

contraction was observed.

Stimulation was controlled using a custom built Simulink model. Once the criteria to trigger

stimulation had been met (see Section 3.4.3) the model sent a signal to the stimulator, via

a USB interface, initiating stimulation. The Simulink model was interfaced with a custom

LabVIEW model, using the LabVIEW simulation interface toolkit connection manager. This

LabVIEW model provided a GUI that allowed adjustment of the stimulation current, duration

and trigger threshold in real-time and also displayed the stimulation pulsewidth. Stimulation

pulsewidth was adjusted in real-time by the operator using a variable resistor shown in

Figure 3.9.

Figure 3.9: Stimulation pulsewidth could be adjusted by the operator using a variable resistor.
Two switches were also used to control stimulation, one which acted as a safety switch to
stop stimulation being applied (shown in red) and one which allowed stimulation to manually
be applied by the operator (shown in black).

This switch was interfaced with a laptop computer using a 16-bit data acquisition card in

Chapter 4 and a 14-bit USB data acquisition card in all other chapters. Two switches, also

shown in Figure 3.9, were interfaced in a similar manner. The first of these acted as a

safety switch which, when pressed, prevented stimulation being applied while the program

was running, even if the criteria to start stimulation was met. The second of these switches
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allowed stimulation to be manually triggered by the operator. Both of these switch inputs

were controlled within the Simulink model. The model also prevented stimulation from being

triggered within one second of the previous stimulation burst ending.

3.4.2 Electrode Placement

During the studies outlined in Chapters 4, 6 and 7 stimulation was applied via four pairs of

transcutaneous electrodes (33 mm x 53 mm rectangular, PALS, Axelgaard, USA) placed

on the abdomen over the rectus abdominis and external oblique muscles on both sides

of the body, as shown in Figure 1.10. In Chapter 4 the electrodes used to stimulate the

external oblique muscles were placed horizontally, just below the bottom rib with a spacing

of approximately 3 cm between the electrodes. The electrodes used to stimulate the rectus

abdominis muscles were placed horizontally, approximately 2 cm horizontally and vertically

from the umbilicus, with a spacing of approximately 3 cm between the electrodes. In the

two clinical studies presented in Chapters 6 and 7 the electrodes were positioned horizontally

around the motor point of the muscles, determined using the motor point location method

described in Chapter 5, with a spacing of approximately 3 cm between the electrodes.

3.4.3 Automatic Stimulation

A number of the methods used to measure respiratory activity (see Section 3.3) were also

used to automatically synchronise stimulation with the participant’s respiratory activity. In

all cases stimulation was applied at the start of exhalation for a period of 1 to 2 s (set

manually using the LabVIEW GUI), with the exact duration dependant on the length of

each participant’s average exhalation.

In Chapters 4, 6 and 7 the signal from a spirometer was used to apply stimulation in

synchrony with the participant’s respiratory activity. Stimulation was applied at the start of

exhalation, which was defined as a positive sample that proceeded a negative sample when the

previous zero crossing was an inhalation (detected using the opposite logic). The signal from

a respiratory effort belt was also used to apply stimulation in synchrony with the participant’s

respiratory activity. In this case the start of exhalation was defined as two consecutive positive

samples, preceded by three non positive samples, where the previous zero crossing was an

inhalation (detected using the opposite logic). If a participant was dependant on mechanical

ventilation stimulation was automatically synchronised with the mechanical ventilator using

the signal from a pressure sensor. The start of exhalation was defined as two samples with

a value of greater than 0.05 V1 (corresponding to a pressure of 1.25 mbar, used to avoid

noise around 0 V) which preceded three samples with a value of less than 0.05 V, with the

previous zero crossing being an inhalation (detected using the opposite logic). A graphical

representation of these automatic triggering methods is shown in Figure 3.10. These three

methods for triggering stimulation, along with the switch that could be used by the operator

1The stimulation threshold could be adjusted by the operator in real-time using the LabVIEW GUI
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to apply stimulation (see Section 3.4.1), are shown in Figure 3.11.

In Chapter 7 stimulation was automatically synchronised with MI-E using the signal from a

pressure sensor. The criteria to start stimulation was the same as outlined for the pressure

sensor above, with stimulation being applied for the whole exsufflation period of 3 s.
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(a) Spirometer.
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(b) Respiratory effort belt.
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(c) Pressure sensor.

Figure 3.10: A graphical representation of the stimulation triggering algorithm for the
spirometer, respiratory effort belts and pressure sensor. Figure 3.10(a) shows the stimulation
triggering algorithm for the spirometer. When using the signal from the spirometer
stimulation is automatically applied after detection of a negative sample (individual samples
are shown by black ∗) directly followed by a positive sample when the previous zero
crossing was an inhalation (detected using the opposite logic). Figure 3.10(b) shows the
stimulation triggering algorithm for the respiratory effort belts. When using the signal from
the respiratory effort belts, in this example the respiratory effort belt positioned around
the abdomen, stimulation is automatically applied after the detection of three negative
samples proceeded by two positive samples, when the previous zero crossing was an inhalation
(detected using the opposite logic). Figure 3.10(c) shows the stimulation triggering algorithm
for the pressure sensor. When using the signal from the pressure sensor stimulation is
automatically applied after the detection of three samples less than 0.05 V proceeded by two
samples greater than 0.05 V, when the previous zero crossing was an inhalation (detected
using the opposite logic). In all figures the point where stimulation is applied is shown by a
green line.
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(a) Pressure sensor used when participant was
connected to mechanical ventilation.

(b) Spirometer used during assessment sessions.

(c) Respiratory effort belt used during training
sessions.

(d) Manual switch which could be used to apply
stimulation at all times.

Figure 3.11: Experimental set up showing the four sensors used to trigger stimulation in
synchrony with the user’s respiratory activity. Black arrows indicate direction of data.

3.5 Statistical Analysis

A number of statistical tests were used in this thesis. They were employed to test for

normality of data, linear dependance, statistical significance and to measure the effect size

of an intervention. All of these statistical calculations were performed using the MATLAB

statistics toolbox (version 7.3).

3.5.1 Normality

The normality of a data set affects the test employed to test for statistical significance. In

this thesis normality was tested using the Shapiro-Wilk test of normality, which tests the null

hypothesis that a sample originates from a normally distributed population. If the p-value is

found to be smaller than the chosen significance, or alpha level (in this thesis set at 0.05 for

all statistical tests), then the null hypothesis is rejected and it can be assumed that the data

does not come for a normally distributed population. This test was chosen as it has been

shown to be the most powerful normality test [145].
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3.5.2 Linear Dependance

A Pearson product-moment Correlation Coefficient (PCC) was used to test for linear

correlation, or dependance, between two data sets. The PCC, calculated as the covariance of

two data sets divided by their standard deviation, is a value between one and minus one. A

value of one indicates a total positive correlation (i.e all data points lying on a linear line and

as one data set increases so does the other), minus one indicates a total negative correlation

(i.e all data points lying on a linear line and as one data set increases the other decreases)

and a value of zero shows that there is no correlation between the data sets. If the data

could not be represented by a linear line a PCC of greater than 0.8 was regarded as a strong

positive correlation.

3.5.3 Significance Testing

Three different statistical tests were used in this thesis to test for statistical significance, with

the choice of test depending on whether the data was normally distributed or not. For all

significance testing the significance level, or p-value, was set as 0.05, with a p-value of less

than 0.05 deemed statistically significant.

3.5.3.1 Parametric Test

For data that was found to be normally distributed, or parametric, when using a Shapiro-Wilk

test, an analysis of variance (ANOVA) was used to test for a statistically significant difference

between data sets. This test, which allows a significance test to be performed on more than

one group of data, provides an indication of whether the means of the groups are equal. This

is found by calculating the within and between group variances, both of which should be equal

if the means of the two data seats are equal, or different if the means differ. In the case where

a statistically significant difference between means was found, post hoc multiple comparison

testing was performed using the Tukey-Kramer honest significant difference test. This test

compares the mean of every group with the mean of every other group to identify differences

between pairs of means that are greater than the expected standard error, calculated using

the ANOVA test. When analysing individual participant’s data a one-way ANOVA was

performed and when analysing grouped data, where the data was collected from the same

group of participants at different time points, a two-way repeated measures ANOVA was

performed.

An independent Student’s t-test is used to test the null hypothesis that the difference between

two independent data sets comes from a normal distribution that has a mean of zero. An

independent Student’s t-test was used in this thesis to test for a statistically significant

difference between the means of two different groups, where the data within each group was

found to be normally distributed. A one-way ANOVA is an extension of the Student’s t-test

for comparing the means of at least three groups.
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3.5.3.2 Non-parametric Test

For data that was found to not be normally distributed, or non-parametric, when using

a Shapiro-Wilk test, a Kruskal-Wallis test was used to test for a statistically significant

difference between groups of data sets. This test, which is the non-parametric equivalent of a

one-way ANOVA, allows a significance test to be performed on more than one group of data

and provides an indication of whether the groups originate from the same distribution. This

is found by summing the ranks of both groups and calculating the test statistic. In the case

where a statistically significant difference was found, post hoc multiple comparison testing

was performed using the Tukey-Kramer honest significant difference test, with the expected

standard error calculated using the Kruskal-Wallis test.

When comparing two groups of data that were found to not be normally distributed when

using a Shapiro-Wilk test, and found to be linearly correlated, using a PCC test, a Wilcoxon

signed-rank test was used to test for statistical significance. This test provides an indication of

whether the medians of two groups are statistically significantly different by firstly comparing

the pre and post treatment values, then ranking them and applying a sign to the rank (i.e.

negative if the post treatment value was less than the pre treatment value and vice-versa).

The positive and negative ranks are then summed and the lowest value of the negative and

positive summed values provides the test statistic. If this test statistic is greater than the

critical value for the test criteria, computed from standard statistical tables, then the null

hypothesis (that the data comes from a distribution with the same median) cannot be rejected.

3.5.4 Effect Size

While significance testing provides an indication of whether the mean, or median, of two

different groups is statistically significantly different, it does not provide an indication of the

size of this difference. In intervention studies with a large enough sample size, any differences,

or effect, will be found to be statistically significantly different, even when this difference has

no practical importance or is not clinically relevant. Likewise, a study with a small sample

size can show a large effect, which is clinically relevant, even when no statistically significant

difference is shown. Effect size is a way of quantifying the size of an intervention effect. In this

thesis the effect size of an intervention is quantified using Cohen’s d [146], which expresses the

difference between two means in standard deviation units i.e. a Cohen’s d of one implies that

the means are different by one standard deviation. An effect size less than 0.2 is regarded

as small, 0.5 medium and greater than 0.8 large [146]. It should be noted that a large effect

size between two means can be detected even when the difference between these two means

is not statistically significant. Cohen’s d, d, is calculated using Equation 3.1, where x̄ is the

mean of the value being analysed before (1) and after (2) an intervention has been applied.

d =
x̄1 − x̄2

s
(3.1)

The pooled variance, s, is calculated using Equation 3.2, where n is the number of sample
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points and s is the standard deviation of the data before (1) and after (2) an intervention

has been applied.

s =

√
(n1 − 1)s1 2 + (n2 − 1)s2 2

n1 + n2 − 2
(3.2)

The margin for error within an effect size estimate can be analysed using confidence intervals.

If these confidence intervals show that the lower confidence is greater than zero then it can

be concluded that there is almost certainly a positive effect from the intervention. The

confidence interval, c, of the effect size was calculated in this thesis using Equation 3.3.

c =

√
n1 + n2
n1n2

+
d2

2(n1n2)
(3.3)

It should be noted that when using an ANOVA to test the effect of an intervention Eta-squared

η2 can be used to estimate the amount of the variance between the pre and post intervention

results that can be explained by the intervention (i.e the effect size). η2 is a ratio between the

sum of the squares of the treatment (SSTreatment) and the total sum of the squares (SSTotal)

and can be calculated using Equation 3.4.

η2 =
SSTreatment

SSTotal
(3.4)

This calculation tends to seriously over estimate the size of the effect, especially when using

a small sample size, as it is a sample based estimate [147]. Therefore, due to the low sample

sizes in the studies reported in this thesis, Cohen’s d was used to quantify the effect size,

even when using an ANOVA.
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Chapter 4

Real-time Detection and

Classification of Respiratory

Activity For Automatic Abdominal

Functional Electrical Stimulation

“In every branch of knowledge the progress is proportional to the amount of facts on which

to build, and therefore to the facility of obtaining data.”

James Maxwell
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4.1 Summary

The effectiveness of Abdominal Functional Electrical Stimulation (AFES) can be enhanced

by using different stimulation parameters, optimised for quiet breathing and coughing.

Previously, respiratory flow, measured using a spirometer coupled with an intrusive facemask,

has been used to detect and differentiate between these two breath types allowing the correct

stimulation parameters to be applied. In this chapter five non-intrusive sensors were evaluated

for their suitability to detect respiratory activity in real-time. The signals from two of these

sensors, respiratory effort belts positioned around the chest and the abdomen, were then

used for real-time breathing pattern classification. In this work, which has been published

in Medical Engineering and Physics [148], a Support Vector Machine (SVM) algorithm was

trained on a participant by participant basis to classify respiratory activity as either quiet

breathing or coughing. By using the signal from the respiratory effort belt positioned around

the chest the SVM could be used to achieve an acceptable classification performance compared

to that achieved using the signal from a spirometer. The signal from the belt positioned

around the abdomen and a combination of both belt signals resulted in a lower classification

performance. This novel SVM algorithm could be incorporated into an automatic AFES

device, designed to improve the respiratory function of people with tetraplegia.

4.2 Background

AFES has been shown to improve the respiratory function of people with tetraplegia (see

Section 2.4.4). Gollee et al. [72] show that the effectiveness of AFES could be improved

by using different stimulation parameters for quiet breathing and coughing. They suggest

that quiet breaths should be stimulated at the start of exhalation, to support exhalation and

avoid interfering with an inhalation, while coughs should be stimulated during glottal closure

(between the end of inhalation and the start of a cough exhalation) with a higher level of

stimulation than a quiet breath. This would increase intrathoracic pressure and aid cough

generation.

A number of AFES systems have been developed which i) detect respiratory activity to

allow AFES to be applied at the correct point in the breathing cycle and ii) differentiate

between quiet breathing and coughing, enabling different stimulation parameters to be applied

for each breath type (see Section 2.4.4.4) . Many of these systems use the signal from a

spirometer. A spirometer is typically coupled with a full face mask which is uncomfortable

and intrusive, leaving the user unable to eat, drink or verbally communicate while in use.

Using a non-intrusive sensor, such as those described in Section 2.4.4.4, would make these

systems considerably more practical. Additionally, the systems previously used to classify

respiratory activity require operator intervention to optimise classification performance. This

is time consuming and unsuitable in a clinical setting. The use of a statistical classifier based

on an SVM (see Section 2.4.4.4) could decrease the need for operator intervention, making
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such an AFES system more suitable for a clinical setting.

The two aims of this study were i) to identify a non-intrusive sensor capable of detecting

respiratory activity in real-time, and ii) to develop a classification algorithm capable of using

the signal from this non-intrusive sensor to classify respiratory activity in real-time, with

minimal operator intervention.

4.3 Methods

Ten able bodied participants (six males, four females, age 27.6 ± 5.2 years (mean ± standard

deviation) [range 24 : 40 years]) were recruited for this study and asked to attend two sessions,

described below. The study was approved by the Faculty of Biomedical and Life Sciences

ethics committee at the University of Glasgow (Local Code: FBLS 1034). All procedures

conformed to the declaration of Helsinki and all participants gave written informed consent.

4.3.1 Equipment

The participant’s respiratory activity was recorded using a spirometer, two respiratory effort

belts, a nasal/oral thermocouple and two tri-axial accelerometers, as described in Section 3.2.

A diagram of this experimental set up is shown in Figure 4.1.

All data was recorded on a laptop computer in the Simulink modeling environment

(Mathworks, USA) at a sample rate of 50 Hz. The spirometer was connected to the laptop

computer using an RS232 interface and the respiratory effort belts, nasal/oral thermistor

and accelerometers were connected using a 16-bit data acquisition card (NI DAQCard 6036E,

National Instruments, TX, USA). The respiratory effort belt, nasal/oral thermocouple and

accelerometer signals were high pass filtered offline to remove signal bias while the spirometer

signal was low pass filtered to smooth the signal. This pre-processing is described in further

detail in Section 3.3.

4.3.1.1 Stimulation System

Stimulation was applied using the system described in Section 3.4.1. Stimulation current was

adjusted on a channel by channel basis for each participant (with a pulsewidth of 100 µs)

until a visible contraction was observed (range 10 to 60 mA for all participants), with this

current remaining fixed for the remainder of both sessions. Stimulation pulsewidth was varied

between 100 and 150 µs within each session to account for muscle fatigue. Stimulation was

automatically applied for 1.5 seconds for a quiet breath and one second for a cough at the

start of exhalation, in synchrony with the participant’s respiratory activity, using the signal

from the spirometer. This automatic application of stimulation is described in further detail

is Section 3.4.3.
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Figure 4.1: Experimental set up showing methods used to record respiratory activity;
namely a spirometer, two respiratory effort belts, a nasal/oral thermocouple and two tri-
axial accelerometers. Also shown is a stimulator and electrodes used to apply AFES, a
laptop computer used to record data, a RS323 interface used to connect the spirometer
to the laptop, an amplifier used to amplify the signals of the respiratory effort belts and
the thermocouple, an electronic subtractor used to remove the gravitational offset from
the accelerometer signals and a DAQ card used to connect the respiratory effort belts,
accelerometers and the thermocouple to the laptop. Bold arrows represent direction of data.
Thin arrows indicate items.

4.3.2 Data Collection Protocol

The data collection protocol is summarised in Figure 4.2. Experimental sessions included

runs consisting of approximately six to ten coughs and one minute of quiet breathing, with

and without the support of AFES. The order of each of these four breath types within each

run was randomised, with each breath type following directly one after the other. Each

run was repeated three times per session, separated by a rest period of approximately two

minutes. The session was repeated after a period of approximately seven days.

The data recorded during the two sessions was combined for each participant. Data sets

containing all of the cough data or all of the quiet breathing data were then created for each

sensor, for each participant.

4.3.3 Analysis

The suitability of the non-intrusive sensor signals for real-time detection of respiratory activity

was evaluated by analysing the time shift of these signals relative to the respiratory flow

measured by the spirometer. In a second step, the signals found to be suitable for real-time

respiratory activity detection were used to construct SVMs, and the ability of these SVMs
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Figure 4.2: Protocol showing two sessions, split into three runs, with each run containing a
period of AFES assisted and unassisted quiet breathing and coughing.

to accurately classify respiratory activity as quiet breathing or coughing was evaluated.

4.3.3.1 Time Shift

To determine the suitability of the non-intrusive sensors for real-time detection of respiratory

activity, the time shift between the start of exhalation detected by each of the non-intrusive

sensor signals and the spirometer signal was calculated for all breaths recorded from each

participant (approximately 100 coughs and 200 quiet breaths). The spirometer signal provides

a direct measurement of respiratory flow, with positive values corresponding to exhalation

and negative values representing inhalation. A positive zero crossing of the spirometer signal

(i.e. from a negative to a positive value as marked on Figure 4.3) was taken to represent

the start of exhalation. For the non-intrusive sensors, the start of exhalation was defined as

two consecutive positive samples, preceded by three non positive samples, where the previous

zero crossing was an inhalation (detected using the opposite logic). Due to the high signal

to noise ratio achieved using the filtering techniques described in Section 3.3 these methods

were found to be robust enough to minimise false positive detection.

A mean time shift for a sensor across all participants of ± 0.1 s (2% of the length of a breath

assuming a breathing rate of 12 breaths per minute [144]) was considered acceptable for real-

time respiratory activity detection. Zero crossings that occurred outside 0.4 s of the start

of exhalation, as detected by the spirometer, were deemed incorrect and ignored to avoid

incorrect detections caused by noise.

Figure 4.3(a) shows a typical example of the sensor signals recorded during a full breath.

Details of the respiratory effort belt and spirometer signals around the zero-crossing are

depicted in Figure 4.3(b), which shows the time shift between the signals. In this example,
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the abdominal belt signal precedes (a signal that precedes the spirometer signal will be

denoted by a negative value of time shift) the spirometer signal by T1 = 0.08 s and the chest

belt signal lags the spirometer signal by T2 = 0.02 s.
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Figure 4.3: Example of sensor signals and the time shift between these signals and the
spirometer. (a) shows an example of all of the sensor signals and their respective zero crossings
during one full breath. (b) shows the time shift between the respiratory effort belt signals
and the spirometer signal, where T1 is the time shift between the spirometer (black) and the
abdominal (blue) belt signal and T2 is the time shift between the spirometer and the chest
(red) belt signal.

4.3.4 Support Vector Machine

From pre-processed data (see Section 4.3.1) inhalations were detected, based on when

the zero-crossings occurred (see previous section), and from each inhalation features were

extracted (see below). The features from a subset of approximately 50 cough and 100 quiet

breath inhalations, together with information indicating whether the data represented a quiet

breath or a cough, were used to train an SVM on a participant by participant basis. After

training, the SVM was used to classify all of the breaths recorded from that participant, and

not used to train the SVM, as either a quiet breath or a cough, again using features extracted

from each inhalation. The classification structure is shown in Figure 4.4 and explained in

further detail in this section.
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Figure 4.4: Classification structure. The classification algorithm firstly pre-processes all data
and then extracts the inhalations and features from all data sets. The algorithm can then be
used to either train the Support Vector Machine (SVM), or can use a trained SVM to classify
respiratory activity.

4.3.4.1 Feature Extraction

Twenty one features (listed below), extracted from both the time and frequency domain, were

calculated for each inhalation.

1. Length

2. Sum

3. Minimum value

4. Maximum value1

5. Number of peaks

6. Mean

7. Mean magnitude (power spectral density) of Fast Fourier Transform (FFT)

8. Sum of magnitude (power spectral density) of FFT

9. Maximum magnitude (power spectral density) of FFT

10. Minimum magnitude (power spectral density) of FFT

11. Sum of magnitude (power spectral density) of FFT, divided by signal length

12. Index of minimum value

13. Mean gradient (Equation (4.1))

14. Minimum gradient (Equation (4.1))

15. Maximum gradient (Equation (4.1))

16. Sum of gradient (Equation (4.1))

17. Cross correlation with a quiet breath (Equation (4.2))

1If using continuous sampling the maximum value of inhalation would be zero. Due to the discrete sampling
technique employed, this was not the case. As quiet breaths have a smaller inhalation amplitude than coughs,
the maximum sampled value of a quiet breath is likely to be closer to zero than the maximum sampled value
of a cough
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18. Cross correlation with a cough (Equation (4.2))

19. Mean of autocorrelation (Equation (4.3))

20. Maximum value of autocorrelation (Equation (4.3))

21. Minimum value of autocorrelation (Equation (4.3))

The gradient, ∆s, was calculated using Equation (4.1).

∆s = s(i) − s(i− 1) (4.1)

∆ s is the difference between the value of the current data point, s(i), and the previous data

point, s(i− 1).

Cross correlation, c(t), between the measured signal, y(k), and a reference breath, x(k),

was calculated using the equation used by Gollee et al. [72], shown in Equation (4.2). The

reference breath, x(k), was the mean of either all of the quiet breaths or all of the coughs

collected from all participants during session one.

c(t) =

∑N
i=1 x(i)y(t−N + i)√∑N

i=1 x
2(i)

∑N
i=1 y

2(t−N + i)
(4.2)

c(t) is defined as the similarity between the measured signal, y(k), and the reference signal,

x(k), where the measured signal has a length of N sample points. The reference signal

has a length of t sample points and i denotes the sample point being compared. If c(t) is

one, both samples are identical. If c(t) is minus one both samples are identical, but have

a phase difference of 180 degrees. A value of zero indicates that the signals are not correlated.

Autocorrelation, a(t), was calculated using Equation (4.3).

a(t) =
N∑
k=1

N∑
i=1

x(i)x(k + i− 1) (4.3)

a(t) is a comparison of a signal, x, of length N , at time point (i), with the same signal at

every other time point (k + i− 1).

Examples of some of the quiet breath and cough features extracted from the time domain of

the chest belt signal are shown in Figure 4.5.

To evaluate whether combining the signals from more than one sensor provided a better

classification performance, the features from the respiratory effort belts positioned around

the chest and the abdomen were combined, providing a total of 42 feature values.

4.3.4.2 Classification

Peak Expiratory Flow Peak Expiratory Flow (PEF), the maximum flow rate during

exhalation (recorded with the spirometer), is greater for a cough than for a quiet breath.

Therefore, PEF was used offline to label each inhalation as a quiet breath or a cough. The
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Figure 4.5: Respiratory flow signal recorded using a respiratory effort belt positioned around
the chest. An example of the signal recorded during a cough and a quiet breath, in addition
to example features extracted from these two breath types, is shown.

threshold for a breath to be deemed a cough was a PEF of 0.1 L/s greater than the maximum

expiratory flow recorded during any of the quiet breaths recorded from that participant. This

threshold was set on a participant by participant basis and provided a sensitivity of 100

percent. The labelled data was used to train the SVM and to allow the performance of the

SVM to be assessed. Note that a real-time classification must be made at the end of each

inhalation. For this reason PEF data, which is based on exhalation, would not be available

for online classification in real-time.

Support Vector Machine The signals from the respiratory effort belts positioned around

the abdomen and the chest, as well as a combination of these signals, were used to construct

SVMs for each participant. The signal from the spirometer was used to create a baseline SVM

with which the classification performance using the different non-intrusive sensor signals could

be compared. To test the robustness of the SVMs a simple cross validation method was used.

The SVMs were trained on a participant by participant basis using the data collected from

session one (Train 1 ), session two (Train 2 ) and the first 50 percent of the data recorded

from each session (Mix ). This training data contained approximately 50 coughs and 100

quiet breaths.

The feature values, and a label denoting whether each breath was a quiet breath or a cough,

were used to train the SVM model. Training was performed using a model developed from

the MATLAB Bioinformatics Toolbox (Version 3.5), which was used to find the combination

of features that separated the data in higher dimensional space by as large a margin, also

known as a gap, as possible (see Section 2.4.4.4 for further explanation). When using an

SVM data can be separated linearly, using a linear kernel, or non-linearly using a Radial
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Basis Function (RBF) kernel. Therefore, an SVM was created using both kernel types. The

strength of the soft margin (see Section 2.4.4.4 for further explanation) is controlled within

this SVM model using a variable called ‘boxconstraint’. For both kernel types boxconstraint

was varied offline between 1x10−5 and 1x105, in steps of 1x101, and the value of boxconstraint

that achieved the highest combination of quiet breath and cough sensitivity was evaluated

on a participant by participant basis for both kernel types.

4.3.4.3 Classification Performance

To evaluate the performance of the SVMs the data collected during the sessions that was not

used to train the SVMs was classified as either a quiet breath or a cough, using the previously

trained SVMs. For each breath type the classification sensitivity, Se, was calculated. Se is

defined as the percentage of the number of breaths that were correctly classified as that

breath type, N i
y, over the total number of breaths that should have been classified as that

breath type, N i
t , where i denotes the breath type (c=cough, q=quiet breath).

Sei =
N i

y

N i
t

× 100 (4.4)

Sensitivity of one breath type alone is not a suitable parameter to evaluate a classifier: for

example, if every breath was classified as a cough this would lead to 100 percent cough

classification sensitivity, even though all quiet breaths had been incorrectly classified as

coughs, as false positives are not accounted for [149]. In the general case, specificity can be

used to include the effect of false positive detection. In this case where only two classes are to

be distinguished, the cough classification sensitivity is equal to the quiet breath classification

specificity and vice versa.

As previously stated, it is believed that a greater stimulation intensity is required to generate

an effective cough compared to a quiet breath [72]. Therefore, incorrect classification of a

quiet breath as a cough would lead to a higher stimulation intensity than necessary being

applied, with the breath said to be over stimulated. While this is not dangerous, as this higher

stimulation intensity is safely being used to stimulate a cough, it may be less comfortable

for the user as the greater stimulation intensity may lead to the recruitment of more pain

receptors. It was agreed with clinical colleagues that in the context of an AFES system a

high quiet breath sensitivity, which would lead to less quiet breaths being incorrectly over

stimulated as coughs, was more important than a high cough sensitivity, which would lead

to less coughs being incorrectly under stimulated as quiet breaths. It was agreed that a quiet

breath sensitivity of greater than 95 percent was clinically suitable, as this would result in

only one out of 20 quiet breaths being incorrectly stimulated as a cough, or approximately one

quiet breath per 100 seconds of use (assuming a breathing rate of 12 breaths per minute [144]).

A cough sensitivity of greater than 90 percent, which would lead to one in every 10 coughs

being under stimulated, was also deemed to be clinically acceptable.
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4.3.5 Statistical Analysis

A Shapiro-Wilk test was performed to test for normality of the feature values during

both quiet breathing and coughing. A Pearson product-moment Correlation Coefficient

(PCC) was calculated to ascertain whether quiet breaths and coughs and stimulated and

unstimulated breaths were linearly correlated. A Wilcoxon signed-rank test was used to test

for a statistically significant difference (p-value less than 0.05) between: quiet breath and

cough feature values for each participant; the stimulated and unstimulated feature values

for each participant; the classification performance between each of the non-intrusive sensors

and the spirometer and the classification performance when classifying only stimulated or

unstimulated breaths.

4.4 Results

The signals from the accelerometers and nasal/oral thermocouple could not be used for

analysis. This was mainly attributed to poor data collection protocol and is discussed in

further detail in Section 4.5. Therefore, this results section will only include data collected

from the respiratory effort belts and spirometer.

4.4.1 Statistical Testing

The results of a Shapiro-Wilk test showed that for the spirometer all of the 210 (100%)

quiet breath feature values and 174 (82.9%) of the cough feature values were not normally

distributed (21 features for each of the 10 participants). This confirmed the use of a non-

parametric test for significance testing. The PCC between quiet breathing and coughing was

found to be 0.79, and the PCC between stimulated and unstimulated breaths was found to

be 0.98, indicating a strong linear correlation between both sets of variables. Non-parametric

distribution and high linear dependance between variables advocated the use of a Wilcoxon

signed-rank test for significance testing.

4.4.2 Time Shift

Table 4.1 shows the mean time shift between the respiratory effort belt and spirometer signals

at the start of exhalation (positive zero crossing). This value is calculated for each participant

from all (approximately 300) breaths recorded from that participant, and then averaged over

all participants.

The signal from the belt positioned around the abdomen was used to detect the start of

exhalation 0.01 s before the spirometer, while the signal from the belt positioned around the

chest was used to detect the start of exhalation 0.04 s after the spirometer. The signal from

both of the belts could be used to detect the start of exhalation within 0.1 s of the spirometer

signal.
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Table 4.1: Time shift (mean ± standard deviation) between the respiratory effort belt and
spirometer signals at the start of exhalation for 10 participants. The time shift for each
participant is calculated from approximately 300 breaths.

Sensor Time Shift (s)

Chest Belt 0.04 ± 0.12
Abdominal Belt −0.01 ± 0.12

4.4.3 Feature Selection

Of the 21 features (see Section 4.3.4.1) extracted from the various sensor signals, the number

of features that had a statistically significantly different median for a quiet breath and cough

for all 10 participants is shown in Table 4.2. The median of the feature values for each

participant was calculated from the features of around 100 coughs and 200 quiet breaths.

Table 4.2: Number of features extracted from the spirometer, chest belt and abdominal belt
signals that had a statistically significantly different median for quiet breathing and coughing
for all 10 participants.

Sensor Number of features

Spirometer 21
Chest Belt 18
Abdominal Belt 13

The median of all 21 features extracted from the spirometer signal was found to be statistically

significantly different for a quiet breath and cough for all 10 participants. This advocated

the use of these features within an SVM. For both the chest and abdominal belt over half

of the features had a median that was statistically significantly different for a cough and

a quiet breath. A list of the features that were found to have a statistically significantly

different median for quiet breathing and coughing for each sensor can be found in Appendix A,

Table A.1.

To find the effect of stimulation on the feature values, the number of features that had

statistically significantly different medians for stimulated and unstimulated breaths, for all

10 participants, is shown in Table 4.3. Again the median was calculated from around 100

coughs and 200 quiet breaths for each participant.

It was found that the signals from the respiratory effort belts had a very low number of

features that had a statistically significantly different median for stimulated and unstimulated

breaths. A list of the features that were found to have a statistically significantly different

median for stimulated and unstimulated breaths for each sensor can be found in Appendix A,

Table A.2.
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Table 4.3: Number of features extracted from the spirometer, chest belt and abdominal belt
signals that had a statistically significantly different median for stimulated and unstimulated
breaths for all 10 participants.

Sensor Total no. of features

Spirometer 9
Chest Belt 1
Abdominal Belt 3

4.4.4 Classification

Boxplots showing the quiet breath and cough classification sensitivities achieved with the 10

participants when using the different sensors and training methods outlined in Section 4.3.4.2

are shown in Figure 4.6. The SVMs were trained on a participant by participant basis and

evaluated using the data, collected over the two sessions, which was not used to train the

classifier (approximately 50 coughs and 100 quiet breaths). Training was performed using a

linear kernel and a boxconstraint value of 0.1.

The classification sensitivities achieved when training the SVM with data collected at both

session one and two (Mix ) provided the best combination of high cough and quiet breath

classification sensitivities for all sensors. The cough classification sensitivity achieved using

the signal from the abdominal belt and training with the data collected at session one (Train

1), was the only non-intrusive sensor that provided a cough classification sensitivity that was

statistically significantly inferior to that achieved using the signal from the spirometer. The

signal from the spirometer provided the highest quiet breath sensitivity, with this sensitivity

found to be statistically significantly greater than that achieved using all bar one of the non-

intrusive sensor and training data combinations (chest belt and Train 2). The inter-quartile

range of the quiet breathing sensitivity using the spirometer signal was consistently small,

whereas the inter-quartile range was larger when using the signal from the non-intrusive

sensors. The inter-quartile range of the cough sensitivity was generally larger than for quiet

breathing, with minimal sensitivity as low as 50 percent. It should also be noted that when

performing quiet breath classification using the chest belt and Train1 there was one outlier,

which had a classification sensitivity of 57 percent. This is believed to be due to non optimal

training methods, detailed further in the discussion.

The classification performance that could be achieved using either a linear or RBF kernel was

investigated, with a boxconstraint value of 0.1 and 1 found to provide the highest classification

performance for these two kernel types respectively. The classification performance obtained

when optimising the boxconstraint value on a participant by participant basis was also

evaluated. The mean classification sensitivity achieved when training the SVM with the first

50 percent of the data recorded from session one and session two (Mix ) (found to provide

the best combination of high cough and quiet breath classification sensitivity as shown in
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Figure 4.6) on a participant by participant basis and classifying the data not used to train

the classifier (approximately 50 coughs and 100 quiet breaths) is presented in Table 4.4. The

classification sensitivity achieved using Train1 and Train2 is presented in Appendix A.

Table 4.4: Mean percentage quiet breath (q) and cough (c) sensitivity (Se) (± standard
deviation) achieved using the signals from the respiratory effort belts placed around the
abdomen (abdo) and the chest, a combination of respiratory effort belt signals and the signal
from a spirometer (spiro). The SVM was trained for each participant using a mix of the
first 50% of the data recorded from session one and session two (Mix ). Classification was
performed on the data not used to train the SVM using: a linear kernel with a boxconstraint
value of 0.1, a linear kernel with an optimised (opti) box constraint value for each participant,
an RBF kernel with a boxconstraint value of one and an an RBF kernel with an optimised
boxconstraint value for each participant. ∗ indicates statistically significantly different from
spirometer when using the same training data and † indicates statistically significantly
different from results achieved using a linear kernel and box constraint of 0.1.

Sensor Linear & 0.1 Linear & opti RBF & 1 RBF & opti
Sec (%) Seq (%) Sec (%) Seq (%) Sec (%) Seq (%) Sec (%) Seq (%)

Spiro 90.7 98.9 93.0 98.9 92.2 91.8† 96.2† 90.9†

±7.6 ±1.6 ±5.7 ±1.6 ±9.6 ±5.3 ±3.9 ±6.4

Chest 92.9 96.1∗ 93.4 96.8∗ 91.6† 86.7 90.6† 90.0
Belt ±4.9 ±4.2 ±5.3 ±3.7 ±11.8 ±3.8 ±11.7 ±2.4

Both 92.0 91.5∗ 92.1 91.6∗ - - - -
Belts ±6.0 ±7.9 ±6.0 ±7.8 - - - -

Abdo 83.1 89.4∗ 84.5 91.5∗ 62.9∗† 92.0 82.3∗† 83.6†

Belt ±14.6 ±5.3 ±12.9 ±4.6 ±27.7 ±5.3 ±11.1 ±11.2

Due to problems believed to be associated with over classification, the combined belt signals

could not be evaluated with an RBF kernel. This issue is discussed in further detail in

Section 4.5. The use of a linear kernel with a boxconstraint value optimised for each

participant resulted in a slight (generally less than two percent) increase in the cough and

quiet breath classification sensitivity. For the spirometer and chest belt the use of an RBF

kernel led to a large (statistically significant in the case of the spirometer) decrease in quiet

breath sensitivity, whether the value of boxconstraint was optimised or not, compared to

when using a linear kernel. Similar trends were observed when using Train1 and Train2.

To assess the impact of AFES on classification performance, the classification sensitivity

achieved when training with the same three training methods and classifying only stimulated

or unstimulated breaths was investigated. The mean sensitivity achieved when training with

the first 50 percent of the data recorded from session one and session two (Mix ) and when

classifying only stimulated or unstimulated breaths that were not used to train the SVM

is shown in Table 4.5. The classification sensitivity achieved using Train1 and Train2 is
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presented in Appendix A.

Table 4.5: Mean percentage cough (c) and quiet breath (q) sensitivity (Se) (± standard
deviation) of stimulated (stim) and unstimulated (unstim) breaths using the signals from
respiratory effort belts placed around the abdomen and the chest, a combination of these
signals, and the signal from a spirometer. The SVM was trained for each participant using a
mix of the first 50% of the data recorded from session one and session two (Mix ). Classification
was performed on the second 50% of the data recorded from session one and session two using
a linear kernel and a boxconstraint value of 0.1.

Sensor Stim Unstim Stim Unstim
Sec (%) Sec (%) Seq (%) Seq (%)

Spirometer 91.7 89.7 98.9 98.7
±7.6 ±7.3 ±2.0 ±1.9

Chest Belt 93.0 93.3 95.9 96.0
±6.3 ±6.0 ±4.9 ±4.0

Both Belts 90.1 90.7 89.9 91.4
±7.8 ±9.3 ±8.5 ±8.6

Abdominal Belt 81.7 84.8 88.2 91.2
±17.1 ±14.1 ±7.2 ±6.6

It was found that the classification performance was not statistically significantly different

when classifying only stimulated or unstimulated breaths for any of the sensors. Similar

trends were observed when using Train1 and Train2.
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(a) Quiet breathing sensitivity
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(b) Cough sensitivity

Figure 4.6: Boxplots showing the classification sensitivities for different sensors and training
data sets. Each box shows the median together with the inter-quartile range, with outliers
marked by a black dot. (a) shows the median quiet breath sensitivity and inter-quartile range
for the spirometer and respiratory effort belts when trained for each participant using: 1) all
the data collected from that participant during session one (black), 2) all the data collected
from that participant during session two (blue), Mix the first 50% of the data recorded from
session one and session two (red). A linear kernel and a boxconstraint value of 0.1 were
used to train the SVM, with classification performed on the data collected at the two sessions
which was not used to train the classifier. (b) shows the cough sensitivity for the same sensors
using the same training data. ∗ indicates statistically significantly different from spirometer
when using the same training data.
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4.5 Discussion

In this chapter the signals from non-intrusive sensors were used to automatically detect

and classify respiratory activity with minimal user intervention. The results show that a

non-intrusive respiratory effort belt positioned around the chest can be used for the real-

time detection and classification of respiratory activity, with an acceptable classification

performance compared to that achieved using the signal from an intrusive spirometer. This

suggests that a respiratory effort belt positioned around the chest, together with an SVM

classification algorithm, can be used to detect and classify respiratory activity in the context

of an automatic AFES system.

4.5.1 Timing

The abdominal muscles are active only during exhalation. Therefore, it is desirable to only

apply AFES during this time, while avoiding the early application of stimulation which may

curtail an inhalation. The signal from a spirometer, which is usually coupled with an intrusive

facemask, has previously been used to detect respiratory activity, allowing AFES to be applied

at the correct point in the respiratory cycle [72, 120, 121]. For a non-intrusive sensor to be

suitable to detect respiratory activity in real-time it must have as small a time shift compared

to the spirometer signal as possible, allowing accurate detection of the start of exhalation.

The signal from a non-intrusive respiratory effort belt, positioned around the chest or the

abdomen, was found to have a time shift of less than 0.05 s (1% of the length of a breath

assuming a breathing rate of 12 breaths per minute [144]) compared to the signal from a

spirometer. To perform the time shift analysis breaths that had a time shift of greater than

0.4 s were ignored in case of noise. It was found that for the chest belt signal, which had a

larger time shift than the abdominal belt, the mean time shift plus three standard deviations

was exactly 0.4 s, justifying this 0.4 s window. These results indicate that respiratory effort

belts positioned around the chest or abdomen are suitable for the real-time detection of

respiratory activity.

4.5.2 Classification Performance

To create a stand alone AFES device capable of differentiating between quiet breathing and

coughing the signal from the input sensor must have features that differ for the two breath

types. In this study 21 features were identified from the time and frequency domain of an

inhalation, with the signal from the spirometer found to have a statistically significantly

different median for a quiet breath and cough for all 21 features. This validated the use of

these features for the classification of respiratory activity. It was also found that the use of

AFES did not have a statistically significant impact on the feature values of the respiratory

effort belts positioned around the chest and the abdomen, with one and three features having

statistically significant medians for stimulated and unstimulated breaths for all 10 participants

respectively. This allowed all breaths of the same type, stimulated or not, to be combined
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into one data set for training purposes.

McCaughey and Gollee [131] used the signal from an intrusive spirometer as the input to

a maximum likelihood classification algorithm, which was capable of differentiating between

quiet breathing and coughing. This algorithm required a high degree of manual intervention,

with the operator selecting the optimum features for classification based on each participant’s

training data. Here, the manual assignment of features was replaced with automatic feature

selection and classification using an SVM. It was found that for all sensors the highest

combination of quiet breath and cough classification sensitivities was achieved when training

the SVM with a mixture of data collected at session one and two (Mix ). Using this training

method a non-intrusive respiratory effort belt positioned around the chest was used to provide

a cough classification sensitivity (92.9%), which was similar to that achieved using the signal

from an intrusive spirometer (90.7%). Although the quiet breathing sensitivity of 96.1

percent, achieved using the signal from the chest belt and training with Mix, was found

to be statistically significantly lower than that achieved using the signal from the spirometer

(98.9%), it would result in only one breath every two minutes (assuming a breathing rate

of 12 breaths per minute [144]) being classified incorrectly. This quiet breath classification

performance was greater than the minimum clinically relevant quiet breath classification

performance of 95 percent that was agreed with clinical colleagues (see Section 4.3.4.3).

The classification performance achieved using the signal from the belt positioned around the

abdomen, and a combination of the chest and abdominal belt signals, provided an inferior

classification performance compared to that achieved using the spirometer, which was not

deemed to be clinically suitable. As the stimulation intensity applied during a quiet breath is

lower than that applied during a cough, it is more desirable to incorrectly stimulate coughs as

quiet breaths, where a breath will be under stimulated, than quiet breaths as coughs, where a

breath will be overstimulated. The cough sensitivity achieved with the chest belt and training

the SVM with a mixture of the data collected at session one and two (Mix ) of 92.9 percent

was lower than the quiet breath sensitivity of 96.1 percent achieved using the same sensor

and training methods. However, this sensitivity, which would result in approximately 1 in

every 12 coughs being incorrectly under stimulated, was greater than the clinically relevant

minimum cough classification performance of 90 percent that was deemed acceptable in the

context of an AFES system. Therefore, these results suggest that a respiratory effort belt

positioned around the chest, together with the SVM classification algorithm, can be used to

classify breathing patterns in the context of an automatic AFES system.

To test the robustness of the classifier, the impact of training the classifier with data recorded

on different days was investigated. While training with a mix of data recorded at two

different sessions (Mix ) provided the best combination of high quiet breath and high cough

classification sensitivities (see Figure 4.6), for the spirometer and chest belt these classification

sensitivities were not statistically significantly different to those achieved when training the

SVM with the data collected at session one (Train 1 ). This suggests that, with further
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refinement of the training protocol, only one training session per user may be required to

train the SVM. The lack of impact of stimulation on classification performance was also

demonstrated by the classification sensitivity not being statistically significantly different

when classifying only stimulated or unstimulated breaths. This would allow the user to

receive a mixture of stimulated and unstimulated breaths during the training/familiarisation

session. Practically, this would give the user the opportunity to experience the sensation of

stimulation while the classifier was being trained, saving valuable time in the clinical setting

where patient contact time can be limited.

The classification sensitivities that could be achieved by training the SVM with a non-linear

RBF kernel, as opposed to a linear kernel, was investigated. However, the use of an RBF

kernel instead of a linear kernel led to a large, statistically significant, decrease in quiet

breath sensitivity when using the spirometer or chest belt. In addition, an RBF kernel

is computationally more expensive than a linear kernel [150]. Therefore, a linear kernel

was deemed preferential for this system. The boxconstraint value controls the strength of

the soft margin (i.e how many misclassifications are allowed in the training data). The

effect of optimising the boxconstraint value offline, on a participant by participant basis, to

provide the best combination of high quiet breath and cough classification sensitivity, was

also investigated. While this led to small, non statistically significant, improvements in cough

and quiet breath sensitivity, this optimisation on a participant by participant basis requires

a high degree of operator input, making it unsuitable for a clinical setting. Therefore, a

boxconstraint value of 0.1 and a linear kernel is suggested for all further developments of the

SVM.

4.5.3 Limitations

An RBF kernel could not be used to classify the combined belt signals, although the use

of this kernel with the individual signal from both belts did provide a suitable classification

performance. With the combined signals it was observed that every breath that was in the

training data was classified correctly, while every breath that was not in the training data

was classified as a quiet breath. When using the combined signals the classifier was provided

with 42 features, compared to just 21 for the single signals. If the number of features was

reduced, classification performance improved. This indicated that when using the 42 features

there was a problem with over fitting. Over fitting occurs when classification is memorised

rather than learned and the model has poor generalisation, a problem commonly encountered

when using an RBF kernel and a large number of input features [151]. When using the linear

kernel the classification performance achieved using both belt signals was not found to be

greater than that achieved using the chest belt signal alone, leading to the belief that this

problem of over fitting when using both belt signals did not justify further exploration.

The signals from the accelerometers and nasal/oral thermocouple were not suitable for
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analysis due to a large amount of signal noise, attributed to poor data collection protocols.

The amplitude of both signals was small leading to a poor signal to noise ratio. Data was

sampled at 50 Hz, rendering the removal of mains artefact (also at 50 Hz) very difficult

from both signals. For the accelerometers, the magnitude of acceleration achieved by body

movement was much greater than that achieved during respiration. As the participants

were not instructed to remain still during each session, this body movement artefact added

a large degree of noise to the signal. As people with tetraplegia are likely to have some

form of paralysis below the level of injury, body movement may be less of an issue with this

group, making the accelerometers a potentially suitable sensor for measuring their respiratory

activity. While the inability to use the nasal/oral thermocouples was disappointing, Farre

et al. suggest that they are only semiquantative and cannot be used to accurately measure

respiratory flow [140], which would have made them unsuitable for classifying respiratory

activity. The sampling of data at 50 Hz, along with participants being free to move, should

be avoided if using these sensors in future studies.

4.5.4 Future Work

While the current classification performance achieved using the signal from the spirometer and

chest belt was deemed acceptable, the range of classification sensitivities observed across the

participants may be improved by optimising the selection of training data. This may provide

a better representation of a quiet breath and cough on which to base the classification. This

optimisation could take the form of selecting more and/or better features or further refinement

of the classification algorithm. This may allow the generation of a ‘universal’ training data set

that provides a high classification performance for all users, negating the need for a training

session. The classifier presented here is only capable of assigning breaths into one of two

classes, a quiet breath or a cough. The system developed by Gollee et al. [72] was able to

mute stimulation for periods of unexpected activity, such as speaking. Development of the

classification algorithm to utilise a hierarchy of SVMs, where one level decides whether a

breath is valid for classification, and another classifies a valid breath as a quiet breath or a

cough, would enable the introduction of a ‘zero class’ for all breaths that were not suitable

for classification. This would allow stimulation to be muted in all unusual situations, further

improving the usefulness of the system.

In future work, the classification algorithm should be tested with tetraplegic participants. As

people with tetraplegia have a reduced PEF, the difference in the feature values between a

quiet breath and cough may not be as distinct as with the able bodied population. This may

cause a reduction in classification performance for this patient group. Additionally, people

with tetraplegia often exhibit paradoxical breathing, where the chest and abdomen move

in opposing motions to that expected [152, 153, 154]. It is not anticipated that paradoxical

breathing will lead to a reduction in classification performance, as breath features, and hence a

distinction between breath types, should remain (with a phase shift of 180 degrees). However,

further tests with tetraplegic patients who exhibit paradoxical breathing would be required
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to establish the suitability of the system for this patient group.

4.6 Conclusion

The signal from a non-intrusive respiratory effort belt positioned around the chest can be

used to achieve real-time classification of respiratory activity, with an acceptable performance

compared to that achieved using the signal from an intrusive spirometer.
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Chapter 5

Detection of the Motor Points of

the Abdominal Muscles

“Everything should be made as simple as possible, but not one bit simpler.”

Albert Einstein



CHAPTER 5. MOTOR POINT DETECTION 95

5.1 Summary

It is widely known that the optimum muscle response to electrical stimulation occurs when

stimulation is applied in close proximity to the muscle motor point. Despite this, Abdominal

Functional Electrical Stimulation (AFES) studies continue to use a range of empirically

derived electrode locations, with no consensus as to the optimum electrode location. In this

study the feasibility of using Neuromuscular Electrical Stimulation (NMES) to locate the

motor points of the Rectus Abdominis (RA) and External Oblique (EO) muscles, along with

the repeatability and uniformity of these motor point positions, was investigated with 10 able

bodied and five tetraplegic participants. The motor points of the RA and EO muscles were

successfully located for all 15 participants. The position of these motor points was found to

change little over time, but was posture dependent and found to vary between participants.

It was also shown that NMES could be used to detect these motor point positions with

an adequate repeatability. Implementation of this motor point detection technique should

indicate the optimum electrode placement for AFES. Application of AFES at these motor

points should help achieve the optimum muscle contraction, which should lead to the greatest

improvement in respiratory function and allow for easier comparison of AFES studies.

5.2 Background

When using electrical stimulation the optimum muscle contraction is observed when

stimulation is applied close to the motor point, the location where the motor branch of a

nerve enters a muscle [51]. Studies have shown that placing the stimulating electrodes at

the motor point maximises force output and minimises discomfort [52, 53]. Despite this,

studies investigating the effectiveness of AFES to improve respiratory function continue to

use a range of empirically derived electrode locations (outlined in Section 2.4.4.3). This lack

of consistency in electrode placement, and hence muscle contraction, makes a comparison of

AFES studies difficult.

While anatomical charts showing the location of the motor points for the limbs have long

been available [155], less information is available about the motor points of the muscles of

the abdominal wall. Bell et al. [156] studied the underlying anatomical structures at the

sites where AFES is usually applied and found that there were significant differences in these

structures between participants. Botter et al. [128] used NMES to identify the position of

the motor points of muscles in the leg and showed that these motor point positions varied

between participants. The location of the motor points of the abdominal muscles, how they

vary between participants and whether they are time and posture dependent has not been

investigated in detail. This information would be useful for optimising the electrode placement

used for AFES.

The aims of this study were i) to assess the feasibility of using NMES to detect the position of
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the motor points of the RA and EO muscles and to assess the repeatability of this technique,

ii) to evaluate the intersubject uniformity of these motor point positions, and iii) to evaluate

how the motor point locations depend on posture and whether they vary over time.

5.3 Methods

5.3.1 Participants

Ten able bodied (five males, five females, age 29.5 ± 7.9 years (mean ± standard deviation)

[range 24 : 40 years]) and five tetraplegic participants (demographics shown in Table 5.1) were

recruited. The tetraplegic participants, who were inpatients at the Queen Elizabeth National

Spinal Injuries Unit, Southern General Hospital, Glasgow, were able to breathe independently,

but had no useful abdominal movement and associated reduced respiratory function. Ethical

approval to conduct the study with the able bodied participants was granted by the University

of Glasgow College of Science and Engineering ethics committee (Local Code: CSE00965),

while for the tetraplegic participants approval was granted by the National Health Service

West of Scotland Research Ethics Committee (Local Code: 13/WS/0002). All procedures

conformed to the Declaration of Helsinki and all participants gave written informed consent.

Table 5.1: Tetraplegic participant demographics showing sex, age, injury level, American
Spinal Injuries Association Impairment Scale (AIS) level (see Section 1.2.3.2) and time post
injury at recruitment.

Participant Sex Age Injury AIS Time post
(years) level level injury (days)

1 M 77 C3/4 C 31
2 M 24 C5/6 A 52
3 M 32 C5 B 46
4 M 20 C5 C 29
5 M 24 C5/6 C 19

5.3.2 Motor Point Detection

A virtual line was taken superiorly from the highest point of the iliac crest (top of the hip

bone) until reaching the costal margin, as shown in Figure 5.1, with this distance used as

the reference measurement in the superior direction (yn). The lateral distance between the

umbilicus and this virtual line was taken as the reference measure in the lateral direction

(xn). Both measurements, performed on the right hand side of the body, were recorded

using a measuring tape and assumed to remain fixed throughout each assessment. They were

used to normalise motor point positions in the corresponding direction to allow intersubject

comparison.

To locate the position of the motor points, a bar electrode (MLADDF30, ADInstruments, New

Zealand), with 9 mm diameter electrode contacts and 3 cm spacing between the contacts,
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Figure 5.1: Diagram of reference and motor point position measurements. A virtual line was
taken superiorly from the highest point of the iliac crest until reaching the costal margin. The
superior length of this line (yn) and its lateral distance from the umbilicus (xn) were used
as reference measurements for motor point positions. Motor point positions were normalised
with respect to these distances. The white arrows illustrate the definition of the superior (y)
and lateral (x) position of a motor point (represented by the white circle). Position of the
iliac crest, costal margin and umbilicus is indicated by blue arrow.

was used. Electrolytic gel was applied to the electrode to enable the effective transfer of

current from the electrode to the skin. To locate the position of the motor points of the EO

muscles the bar electrode was positioned horizontally, slightly below the costal margin. The

stimulation system outlined in Section 3.4.1 was used to apply single biphasic stimulation

pulses, at a frequency of 0.5 Hz and a pulsewidth of 100 µs, to initiate a twitch contraction.

Stimulation current was adjusted on a participant by participant basis (20 to 60 mA for

all participants) until a visible contraction of the muscle was achieved. The bar electrode

was moved horizontally until the strongest muscle contraction was observed. This point of

maximum contraction, determined both visually and from participant feedback, was recorded

as the position of the motor point of the EO muscle. To locate the position of the motor point

of the RA muscle the electrode was positioned vertically, approximately 3 cm horizontal of

the umbilicus, and moved vertically and horizontally until the strongest muscle contraction

was observed. This procedure was performed on both sides of the body, with the order in

which each motor point was identified randomised for each participant. The position of each

motor point was measured superiorly from the highest point of the iliac crest (y) and laterally

from the umbilicus (x), as illustrated in Figure 5.1. This procedure took approximately two

to five minutes. To reduce inter-operator variability the author of this thesis recorded the

motor point positions for all participants. To further reduce experimental variability the

same measuring tape, which had a resolution of approximately 0.25 cm, was used to measure

all motor point positions.
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Able bodied participants were asked to attend one assessment session (A1). Each participant

was asked to sit in an upright position and the landmark measurements and motor point

positions were recorded. Motor point position measurements were repeated after a rest period

of approximately 30 minutes, during which time participants were free to move or walk about

the room. The total duration of A1, summarised in Figure 5.2(a), was approximately one

hour.

(a) Able bodied.

(b) Tetraplegic.

Figure 5.2: Experimental protocol showing periods of anatomical measurements, motor point
recording and rest.

The same motor point detection procedure was used for the tetraplegic participants, but this

was conducted at the participant’s bedside, with participants in a supine position due to

the acute stage of their Spinal Cord Injury (SCI). For these participants the procedure was

repeated after three days, as shown in Figure 5.2(b), due to constraints on participant’s time.

Both measurements are referred to as assessment T1.

Five of the able bodied participants (three males, two females, age 28.8 ± 7.4 years (mean ±
standard deviation) [range 25 to 42 years]) were recalled after an 18 month period and

the same motor point detection procedure performed, with the motor points being detected

twice in both an upright seated (A2) and supine (A3) position. This 18 month period was

chosen due to the realisation at this time of the need for the follow-up experiment, with

only five participants recalled due to participant availability. The assessment procedures are

summarised in Table 5.2.

Table 5.2: Summary of motor point detection assessment procedures for the able bodied and
tetraplegic participants.

Assessment Participant Posture Repeat Time of assessment

A1 Able bodied Seated 30 minutes Baseline
A2 Able bodied Seated 30 minutes 18 months after A1
A3 Able bodied Supine 30 minutes 18 months after A1
T1 Tetraplegic Supine 3 days Baseline



CHAPTER 5. MOTOR POINT DETECTION 99

5.3.3 Analysis and Outcome Measures

Motor point positions were analysed in the x direction as follows, equivalent calculations

apply to motor point positions in the y direction. The absolute motor point position within

an assessment session, measured in centimeters (cm), was calculated as the mean (x̄i) of the

two measurements recorded at each assessment session from each (i) participant (xi1, x
i
2). The

absolute motor point position was also normalised by the corresponding landmark distance

xni (see Section 5.3.2), providing the mean normalised motor point position, x̄in, measured

as a percentage of the corresponding landmark distance.

x̄i =
xi1 + xi2

2
(5.1)

x̄in =
x̄i

xni
(5.2)

The standard deviation of the absolute difference between the two measurements within each

assessment session for each participant was also calculated.

sx =

√√√√ 1

N

N∑
i=1

(xi1 − xi2)
2 (5.3)

(Note: 1/N is used to calculate sx as real difference between these measurements is assumed

to be zero).

The mean (X̄) and standard deviation (sX) of the motor point positions recorded at each

assessment session for the N participants was calculated. This measurement is reported in

absolute, measured in cm, and normalised (denoted by subscript n), measured as a percentage

of the corresponding landmark distance, terms. A Student’s independent t-test was used to

test for a statistically significant difference (p-value less than 0.05) in the group motor point

positions recorded at A1 and T1.

X̄ =
1

N

N∑
i=1

x̄i (5.4)

X̄n =
1

N

N∑
i=1

x̄in (5.5)

sX =

√√√√ 1

N − 1

N∑
i=1

(x̄i − X̄)2 (5.6)

sXn =

√√√√ 1

N − 1

N∑
i=1

(x̄in − X̄n)2 (5.7)

The standard deviation of the normalised measurements, sXn , represents the intersubject

uniformity of the motor point positions.
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Assuming the real difference between a repeated measurement, taken from the same

participant, is zero, the coefficient of repeatability (CoR) provides a range within which

95 percent of test-retest measurements will lie [157]. CoR was calculated to assess the

repeatability of the two measurements recorded within the same assessment session (A) and

is measured in cm.

CoR(A) = 1.96×sx (5.8)

CoR was also calculated to compare the motor point positions recorded at two different

assessment sessions.

CoR(A1, A2) = 1.96×

√√√√ 1

N

N∑
i=1

(x̄iA1 − x̄iA2)
2 [cm] (5.9)

To assess the repeatability of using NMES to detect motor point position, the mean of the

CoR calculated for the two motor point positions recorded from each participant at A1, A2,

A3 and T1, using Equation 5.8, was used.

CoR =
1

4
(CoR(A1) + CoR(A2) + CoR(A3) + CoR(T1)) (5.10)

To evaluate the time and posture dependence of the motor point positions, Equation 5.9 was

used to calculate the CoR for the motor point positions recorded at sessions (A1,A2) and

(A2,A3).

5.4 Results

The mean of the reference measurements, yn and xn, recorded at the various assessment

sessions are shown in Table 5.3.

The normalised locations of the motor points of the RA and EO muscles recorded at A1 and

T1 are shown in Figure 5.3. Figure 5.3(a) depicts the motor points for each participant (taken

as the mean of the two repeat measurements within each assessment session). Figure 5.3(b)

shows the normalised motor point positions for each muscle, grouped by assessment session.

While the median motor point positions of the EO muscles are in approximately the same

normalised position for both the able bodied and tetraplegic participants, the range of the

positions when measured superiorly from the iliac crest line was relatively large. For the RA

muscles, the motor point positions for the two participant groups are different in both the

lateral and superior directions. Also shown are the normalised locations of the umbilicus in

the superior direction, which indicates that these also differ between both groups.

The mean (± standard deviation) motor point positions recorded at A1 and T1 are shown in

Table 5.4 as both absolute and normalised measurements. It can be seen that the absolute

motor point positions recorded at T1 were all statistically significantly different to the motor

point positions recorded at A1 when measured from the iliac crest (Ȳ ). However, when these
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Table 5.3: Mean (± standard deviation) and range of reference measurements recorded in
the vertical yn and horizontal direction xn for the 10 able bodied participants who took part
in A1 and the five tetraplegic participants who took part in T1. Also shown is the mean (±
standard deviation) of the reference measurements of the five able bodied participants who
were recalled for a second assessment session, recorded at A1 and A2/3.

Assessment Number of Measurement Mean±std Range
Participants (cm) (cm)

A1 10 yn 11.1 ± 2.3 9 − 16.5
xn 18.0 ± 2.2 14 − 20

T1 5 yn 14.6 ± 4.7 12 − 23
xn 17.1 ± 2.3 13.5 − 20

A1 5 yn 10.6 ± 0.5 10 − 11
xn 18.2 ± 2.4 14 − 20

A2/3 5 yn 10.4 ± 0.5 10 − 11
xn 17.7 ± 2.4 13.5 − 19

measurements were normalised to allow for more effective comparison between groups, Ȳn,

only the motor points of the RA muscles were in a statistically significantly different position

at T1 compared to A1. These motor points were found to be statistically significantly closer

to the costal margin. The uniformity of these motor point positions, the standard deviation

of the normalised positions, was found to range from 2.8 to 8.8 percent.

Table 5.4: Mean position and standard deviation (intersubject uniformity) of the position
of the Rectus Abdominis (RA) and External Oblique (EO) motor points for assessment A1
(10 able bodied participants) and T1 (five tetraplegic participants). Results are expressed
as absolute distances measured superiorly from the iliac crest (Ȳ ) and laterally from
the umbilicus (X̄), and corresponding normalised distances with respect to the reference
measurements (Ȳn and X̄n), ± standard deviations s. ∗ indicates mean of T1 is statistically
significantly different to mean of A1.

Ass. Muscle Ȳ ± sY X̄ ± sX Ȳn ± sYn X̄n ± sXn

[cm] [cm] [%] [%]

A1 RA–Right 6.2 ± 1.1 4.3 ± 0.7 55.8 ± 6.1 24.1 ± 4.0
RA–Left 6.2 ± 1.3 4.0 ± 0.7 55.8 ± 4.4 22.3 ± 2.8
EO–Right 9.2 ± 1.4 15.6 ± 2.1 83.9 ± 8.8 86.9 ± 7.8
EO–Left 9.1 ± 1.7 15.6 ± 2.3 82.3 ± 7.3 86.7 ± 6.3

T1 RA–Right 9.9 ± 4.3∗ 4.8 ± 0.5 66.0 ± 5.8∗ 28.0 ± 2.5
RA–Left 9.8 ± 4.5∗ 4.8 ± 0.6 65.4 ± 7.1∗ 28.1 ± 4.1∗

EO–Right 12.6 ± 4.3∗ 14.7 ± 1.3 85.7 ± 4.0 86.2 ± 5.8
EO–Left 13.0 ± 5.0∗ 14.8 ± 1.6 87.7 ± 6.3 86.9 ± 3.9

The mean (± standard deviation) motor point positions recorded from the five participants

who took part in A1, A2 and A3 are shown in Table 5.4 as both absolute and normalised
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(a) Normalised individual motor point positions recorded at A1 (black ×) and T1 (blue o). Also shown
are the landmarks for the reference measurements (top of the iliac crest (purple ∗), corresponding point
on the costal margin (purple +)).
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(b) Group motor point positions (median and inter-quartile ranges), recorded at A1 (black) and T1
(blue), normalised with respect to the vertical distance from the Iliac Crest (IC) to the Costal Margin
(CM) and the horizontal distance from the Umbilicus (UM) to the Iliac Crest.

Figure 5.3: Individual and group motor point position of the external oblique (outer left
and right) and rectus abdominis (inner left and right) muscles of 10 able bodied (assessment
A1, black symbols) and five tetraplegic (assessment T1, blue symbols) participants, with the
position of the umbilicus shown on the midline. Motor point positions are normalised to the
reference measurements shown in Figure 5.1.

measurements. It can be seen that the motor point positions recorded 18 months apart at A1

and A2 were very similar, with only the normalised position of the right EO muscle, when

measured from the umbilicus (X̄n), being found to be statistically significantly different.

However, when comparing the motor point position in an upright (A2) and supine position

(A3) the absolute position of the motor points of the RA muscle on both sides of the body,

and the EO muscle on the left side of the body, when measured from the iliac crest (Ȳ )

were found to be statistically significantly different. Although the normalised motor point
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positions of the RA were closer to the costal margin at A3 compared to A2 (i.e. a larger value

of Ȳn) none of the normalised motor point positions were found to be statistically significantly

different.

Table 5.5: Mean position and standard deviation of the position of the Rectus Abdominis
(RA) and External Oblique (EO) motor points for assessment A1 (five able bodied
participants) and A2 (18 months later) and A3 (supine). Results are expressed as absolute
distances measured superiorly from the iliac crest (Ȳ ) and laterally from the umbilicus (X̄),
and corresponding normalised distances with respect to the reference measurements (Ȳn and
X̄n), ± standard deviations s. ∗ indicates mean of A2 is statistically significantly different to
mean of A1, † indicates mean of A3 is statistically significantly different to mean of A2.

Ass. Muscle Ȳ ± sY X̄ ± sX Ȳn ± sYn X̄n ± sXn

[cm] [cm] [%] [%]

A1 RA–Right 6.0 ± 0.8 4.0 ± 0.7 56.1 ± 6.8 22.6 ± 5.1
RA–Left 5.7 ± 0.4 4.1 ± 0.8 54.0 ± 2.2 22.4 ± 3.2
EO–Right 9.1 ± 0.9 15.0 ± 2.2 85.6 ± 8.4 82.2 ± 4.8
EO–Left 9.0 ± 0.9 15.4 ± 2.5 84.3 ± 5.9 84.5 ± 6.5

A2 RA–Right 6.1 ± 0.7 3.8 ± 0.4 58.2 ± 6.8 21.7 ± 3.1
RA–Left 5.8 ± 0.5 3.9 ± 0.6 55.3 ± 3.9 21.9 ± 2.8
EO–Right 8.8 ± 0.6 15.6 ± 2.0 84.4 ± 8.2 88.2 ± 1.3∗

EO–Left 8.6 ± 0.3 15.6 ± 1.8 82.4 ± 4.8 88.2 ± 5.3

A3 RA–Right 7.1 ± 0.7† 4.3 ± 0.7 61.4 ± 7.1 24.8 ± 3.0
RA–Left 6.9 ± 0.6† 3.7 ± 0.5 59.4 ± 7.3 21.7 ± 3.1
EO–Right 9.0 ± 0.3 15.4 ± 1.8 77.4 ± 4.6 89.3 ± 1.5
EO–Left 9.0 ± 0.2† 15.1 ± 1.8 77.9 ± 4.7 87.6 ± 1.5

Table 5.6 shows the mean CoR between the two measurements of motor point position

recorded at all assessments (A1, T1, A2 and A3, CoR) which provides a measure of

the repeatability of the measurement technique. The repeatability of the motor point

position over time was assessed by comparing motor point positions at assessments A1

and A2 (CoR(A1, A2)), which were performed 18 months apart, while the coefficient of

repeatability between assessment A2 (seated) and A3 (supine) shows the influence of posture

(CoR(A2, A3)) on motor point position. From CoR it can be concluded that 95% of test-retest

measurement differences would be less than 1.7 cm, with a similar CoR even after an 18 month

period (CoR(A1, A2)). The CoR is greater if tests are performed with different postures

(CoR(A2, A3)), indicating a dependence of motor point position on posture in particular for

the RA muscle when measured in the superior direction (y).
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Table 5.6: Mean coefficient of repeatability (CoR) of the position of the motor points
of the Rectus Abdominis (RA) and External Oblique (EO) muscles recorded 30 minutes
apart for: 10 able bodied participants in seated position (A1); five able bodied participants
after 18 months in seated position (A2); five able bodied participants after 18 months in
supine position (A3) and three days apart for five tetraplegic participants in supine position
(T1). Also shown is the mean CoR of the motor point positions recorded 18 months apart
(CoR(A1, A2)) and in a seated and supine position (CoR(A2, A3)). Results are expressed
as absolute distances measured superiorly from the iliac crest (y) and laterally from the
umbilicus (x).

CoR CoR(A1, A2) CoR(A2, A3)
Muscle y x y x y x

[cm] [cm] [cm] [cm] [cm] [cm]

RA–Right 1.2 0.9 0.9 1.3 3.1 1.5
RA–Left 0.9 0.8 0.7 0.9 2.3 1.1
EO–Right 1.0 1.6 1.3 1.5 1.5 1.4
EO–Left 1.3 1.6 1.5 1.6 1.0 1.9

5.5 Discussion

In this chapter the feasibility of using NMES to detect the position of the motor points of

the RA and EO muscles was demonstrated for the first time. Using a simple and quick

procedure, these motor points were detected successfully in all 10 able bodied and five

tetraplegic participants. A range of intersubject uniformities and an adequate intrasubject

repeatability was demonstrated for these motor point positions when recorded at the same

assessment session and after 18 months. Variations in posture resulted in a change of the

position of the motor points of the RA muscle.

The results of this study suggest that the use of NMES can be easily adopted to reliably detect

the position of the motor points of the abdominal muscles. As the abdominal muscles are

often not included in standard motor point charts [155], and due to the adequate repeatability

found here, it is suggested that this technique should be adopted as standard procedure for

all future AFES studies.

5.5.1 Motor Point Position

When analysing the position of the motor points of muscles in the leg Botter et al. [128]

developed criteria that allowed values of uniformity to be classed as ‘good’, ‘fair’ or ‘bad’.

It was found that when classifying the intersubject uniformity of the motor point position

measurements recorded at assessments A1 and T1 (see sXn and sYn in Table 5.4), three were

‘good’, six were ‘fair’ and seven were ‘bad’. However, it should be noted that uniformity

depends on how normalisation is performed. Botter et al. based their uniformity calculations

on normalising the muscles by their estimated lengths, while in this study the locations are
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normalised by anatomical reference measurements. Additionally, Botter et al. had a sample

size of 53 participants, compared to the two groups of five tetraplegic and 10 able bodied

participants in this study. This lower sample size inherently leads to a greater standard

deviation and poorer uniformity. Nevertheless, the range of intersubject uniformity observed

here suggests that the use of standard motor point locations may not be suitable for detecting

the exact location of the motor points of the abdominal muscles, agreeing with the finding

of Botter et al. for the muscles of the leg.

Bland and Altman [157] suggest the CoR as a technique to assess the test-retest repeatability

of a method with a 95 percent confidence. In this study the largest CoR between the motor

point positions recorded at A1, A2, A3 and T1 was 1.6 cm for the EO muscles and 1.2 cm

for the RA muscles. This indicates that if the motor points of these muscles were to be

detected twice, on 95 percent of occasions the difference between these measurements would

be 1.6 cm or less. During the two measurements no restrictions were placed on participant

movement, indicating that NMES can be used to detect the position of the motor points with

good repeatability, even after time and activity.

When the positions of the motor points were detected 18 months apart the largest CoR was

also 1.6 cm, indicating that the positions of the motor points remain relative constant over

time. The electrodes typically used for AFES studies are approximately 5 cm long with a

space of approximately 3 cm between the electrodes [71, 72]. This means that the CoR would

fall within this electrode area and suggests that use of the motor point detection technique

outlined here to locate the position of the motor points once for each individual, at the start

of a course of AFES, would be adequate.

Placement of the stimulating electrodes at the motor points appeared to lead to a more

effective muscle contraction compared to when using empirically derived electrode locations.

The effect of this should be twofold. Firstly, this should lead to a greater benefit from

using AFES which may, in turn, lead to a greater improvement in the respiratory function

of the user and improve their quality of life. Secondly, it should ensure a consistent muscle

contraction across AFES studies, making a comparison of such studies easier.

The motor points of the tetraplegic participants were detected in a supine position due to

the acute stage of their SCI. For these participants the motor points of the RA muscle, when

measured vertically from the iliac crest, were statistically significantly closer to the costal

margin than for the able bodied participants (see Ȳn for RA in Table 5.4). This posture

dependance of motor point position was further highlighted when the motor points of five

of the able bodied participants were detected in both an upright and supine position. In

these tests the absolute position of the motor points of the RA muscle were found to be

statistically significantly (greater than 1 cm) closer to the costal margin in a supine position.

Additionally, while the normalised positions were not statistically significantly different, they
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were again closer to the costal margin in a supine position. The CoR between motor point

positions detected in an upright and supine position was also found to be as large as 3.1 cm.

This suggests that motor point positions are posture dependant and should be re-identified

if posture changes occur.

5.5.2 Impact of Findings

The detection of the motor points of the abdominal muscles may be useful in the development

of an AFES garment, which houses electrodes at a fixed location for a particular user. This

garment could take the form of a belt with an array of buttons or velcro, with electrodes

attached to the garment at the appropriate location to stimulate the motor points, detected

using the technique outlined here. Such a garment would ensure that stimulation was

applied at the same location at different training sessions, reducing intersession variability.

The incorporation of a garment into an automatic AFES device, such as that discussed in

Section 8.5, would further increase the usefulness of an AFES system.

Dyskinesia, a movement disorder causing involuntary muscle movements, has been reported

to affect the abdominal muscles [158, 159, 160]. The application of Botulinum toxin A

(BoTN-A) to a nerve to prevent it from functioning, known as nerve blocking, has been

used to treat dyskinesia [161]. For effective nerve blocking BoTN-A should be applied at

the motor point [162]. The detection of the motor points of the abdominal muscles using

the methods outlined here may aid in the application of BoTN-A for treating dyskinesia

and other movement disorders that cause spasm of the abdominal wall. Studies have shown

that the use of NMES to train the abdominal muscles of able bodied participants can lead to

improved muscle strength, endurance and appearance [163, 164]. This method of motor point

detection may be beneficial to select the optimum electrode placement when using NMES for

this use.

Anatomical investigations of the abdominal muscles [156] suggest that the RA and EO muscles

have more than one motor point. In this study, the focus was to detect the location where the

strongest contraction was observed. For two of the able bodied participants there appeared

to be a second motor point of the RA muscle, located just below the costal margin. This

motor point was not present in all participants, or could not be as easily detected as the

other motor point positions reported here. One reason for this difficulty of detection may

be that this motor point is located deeper than the other motor points. It is also possible

that this motor point belonged to another muscle group, situated in close proximity to the

RA muscle. While Langbein et al. [71] used an electrode position that may have stimulated

this ‘second’ motor point of the RA muscle (see Figure 2.1(e)), the difficulty of detection

found here suggests that the application of AFES at this point would not achieve an effective

muscle contraction. The position of the motor points of the EO muscle reported here were

the only motor points of this muscle detected.
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5.5.3 Limitations

A potential limitation of this study was the accuracy with which the motor point positions

could be measured. By using a traditional measuring tape the resolution was approximately

0.25 cm. This resolution may account for some of the CoR and uniformity values that were

observed. One solution to this problem would be to use position markers in combination with

an accurate position measurement system to measure the motor point positions. However,

these devices tend to be large, making them impractical in an acute care setting. Additionally,

the author measured all motor point positions to reduce inter-operator variability. To evaluate

this inter-operator variability a second operator could have been used to detect all motor point

positions. Finally, previous motor point detection studies have used a pen electrode to apply

stimulation [52, 128]. In this study a bar electrode, which spreads stimulation over a larger

surface area, was used to minimise user discomfort. This larger electrode size may have led

to it being more difficult to accurately locate the position of a motor point. The low CoR

observed in this study suggests that neither of these measurement inaccuracies had a major

influence on accurately locating the position of the motor points.

5.6 Conclusion

This study has demonstrated for the first time the feasibility of using NMES to reliably

detect the position of the motor points of the abdominal muscles in both the able bodied and

tetraplegic population. While the position of the motor points of the RA and EO muscles

change little over time, they were found to be posture dependent, and variations were observed

between participants. The motor point detection procedure described in this study should

enable the optimum AFES electrode location for each user to be identified, which if adopted

as a standard technique for all AFES studies, would allow easier comparison of studies.
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Chapter 6

Abdominal FES to Assist

Ventilator Weaning in Tetraplegia

“Money does not represent such a value as men have placed upon it. All my money has been

invested into experiments with which I have made new discoveries enabling mankind to have

a little easier life.”

Nikola Tesla
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6.1 Summary

Paralysis of the respiratory muscles, resulting from tetraplegia, leads to reduced respiratory

function. This reduction in respiratory function causes many people with tetraplegia to

require mechanical ventilation in the acute stage of injury. In a single participant case

study documented in this chapter, the use of an Abdominal Functional Electrical Stimulation

(AFES) training program was found to be a feasible technique to assist ventilator weaning

with one chronic ventilator dependent tetraplegic participant. This study was the motivation

for investigating the use of an AFES training program to assist ventilator weaning for the

acute tetraplegic population in a larger clinical study. In this study the feasibility of using an

AFES training program to improve respiratory function and assist weaning from mechanical

ventilation was investigated with 10 acute ventilator dependant tetraplegics. Each participant

was matched with a retrospective ventilator dependent control, based on injury level, age

and sex, who had received no intervention. AFES was applied five times per week, on

four alternate weeks, for between 20 and 40 minutes per day. Vital Capacity (VC) and

Tidal Volume (VT ) were measured at weekly assessment sessions, with weaning progress

also recorded and compared to the retrospective controls. The application of AFES was

associated with an acute increase in VT and VC . VT and VC increased throughout the study.

Participants who received AFES training were found to wean from mechanical ventilation on

average 11 days faster than their matched controls. The results of this study indicate that

AFES is a feasible technique for improving the respiratory function of ventilator dependent

acute tetraplegics, and that this technique may enable faster weaning from mechanical

ventilation.

6.2 Introductory Case Study

A Spinal Cord Injury (SCI) can be classified by three distinct phases of recovery from

injury, namely the acute, sub-acute and chronic phase. Acute SCI generally refers to the

immediate post-injury period when there is continuing tissue damage and the patient is in

spinal shock. This phase generally lasts for up to four weeks [19]. While the spinal cord

undergoes a reparative process and there is continuing neurological recovery an SCI can be

classified as sub-acute, with this phase typically beginning around four weeks after injury

and continuing for three months. When neurological recovery has reached a plateau an

SCI can be classified as chronic, which typically occurs approximately three months after

injury [20]. Respiratory failure leads to some patients with tetraplegia requiring mechanical

ventilation in the acute stage of injury. This respiratory failure is commonly caused by

paralysis or severe impairment of the respiratory muscles, the neurological level of SCI

ascending one or two levels because of bleeding or swelling in the area of the trauma (reducing

function of respiratory muscles not originally affected by the SCI) and subsequent respiratory

complications [47]. This use of mechanical ventilation reduces the patient’s quality of life and

costs the health care provider approximately an additional £1000 per ventilated day [27, 46].
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While most of these patients will wean from mechanical ventilation within a number of weeks

people with chronic tetraplegia who retain some diaphragm function can fail to wean from

mechanical ventilation for a number of reasons, most notably as a result of frequent respiratory

infections and complications [47, 122]. These patients continue to suffer a decrease in quality

of life and an increased susceptibility to respiratory infections while reliant on mechanical

ventilation [27, 84]. Therefore, a reduction in time spent dependent on mechanical ventilation

will have benefits for both the patient and the health care provider.

A study by Lee et al. [122] demonstrated that an AFES training program could be used to

assist ventilator weaning, the process of removing a patient from mechanical ventilation, for a

ventilator dependent chronic tetraplegic patient who retained some diaphragm function (see

Section 2.4.4.2). However, no larger studies investigating the effectiveness of AFES to assist

ventilator weaning for patients who retain some diaphragm function have been conducted1.

Before conducting a larger study investigating the effectiveness of AFES to assist ventilator

weaning at the Queen Elizabeth National Spinal Injuries Unit (QENSIU), the feasibility of

conducting such a study with the tetraplegic population had to be determined.

In Chapter 4 the use of a respiratory effort belt positioned around the chest to automatically

detect and classify respiratory activity was demonstrated. Clinically, this technology would

allow AFES to be applied in synchrony with the user’s respiratory activity, reducing reliance

on a trained operator. In Chapter 5 the use of Neuromuscular Electrical Stimulation (NMES)

to detect the abdominal muscle motor points of able bodied and tetraplegic patients was also

demonstrated. By placing AFES at the motor points found using this technique the optimum

muscle contraction should be achieved. It is hypothesised that this will lead to the greatest

improvement in respiratory function. However, the suitability of these two methods for

use with the ventilator dependent tetraplegic population required to be tested before being

implemented in any larger study.

The three aims of this case study were to assess the feasibility of using i) an AFES training

program to assist ventilator weaning for the tetraplegic population, ii) a respiratory effort belt

to automatically apply stimulation in synchrony with the respiratory activity of tetraplegic

patients and iii) NMES to detect the motor points of the abdominal muscles of ventilator

dependent tetraplegic patients.

6.2.1 Methods

One chronic tetraplegic participant (female, age 76 years, C5, AIS A, 13 weeks post injury),

who was an inpatient at the QENSIU and had difficulty weaning from mechanical ventilation,

despite retaining some diaphragm function, was recruited for this study. Due to the need

for mechanical ventilation the participant had a tracheostomy, which was present throughout

1Patients who do not retain diaphragm function will not be able to breathe independently of mechanical
ventilation or diaphragm pacing
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the study duration.

Five times weekly training sessions, used to strengthen the abdominal muscles, were

performed for 20 minutes per day for three weeks. AFES was applied using the system

described in Section 3.4.1. During training sessions stimulation was applied in synchrony

with the participant’s respiratory activity using the signal from the respiratory effort belt

positioned around the abdomen (automatic stimulation methods are explained in more detail

in Section 3.4.3). The rectus abdominis and external oblique muscles were stimulated using

electrodes positioned at the motor points of these muscles, found using the protocol outlined in

Chapter 5. A stimulation current of 100 mA was used to achieve a visible muscle contraction

at all training sessions. Stimulation pulsewidth was varied between 100 and 500 µs within

each session to account for muscle fatigue. Where possible, training sessions were performed

while the participant was disconnected from mechanical ventilation, with the participant

reconnected to mechanical ventilation during the session if their oxygen saturation level

decreased below 92 percent. If the participant could not be disconnected from mechanical

ventilation, as was the case at the first three sessions and at the fourth and fifth training

sessions in week two, training was performed while the participant remained connected to

mechanical ventilation throughout.

The participant’s VC was measured at the first and final training session by disconnecting

the participant from mechanical ventilation and asking them to inhale as deeply as possible

and exhale fully. No verbal encouragement was provided during the exhalation. The

maximum value of three successful attempts, judged to be such using the protocol described

in Section 3.2, which lay within 0.15 L/s of another attempt was taken to be the participant’s

VC . This measurement was made using a standard medical spirometer (Wright Respirometer,

Ferraris Development and Engineering Company Limited, London, United Kingdom) which

was attached to the participant’s tracheostomy tube. While this is a rudimental way

of recording VC , only the feasibility of measuring the respiratory function of ventilator

dependent tetraplegic patients, rather than the effect of this technique on respiratory function,

was assessed within this study.

The daily time spent breathing without the support of mechanical ventilation was used to

give a primitive indication as to the effectiveness of the intervention.

6.2.2 Results

The training session on day four of week two of AFES training was missed due to the patient

being unwell, resulting in a compliance rate to training sessions of 93 percent. The participant

had spent 14 weeks without being able to breathe independently of mechanical ventilation

before AFES training commenced. Figure 6.1 shows the daily time spent breathing without

mechanical ventilation during the AFES training period.

After three days of AFES training the participant was able to breathe independently of
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Figure 6.1: Time spent per day breathing without mechanical ventilation for one chronic
tetraplegic participant during a three week AFES training program. Solid black line along
bottom of plot indicates AFES training period.

mechanical ventilation for the first time. The participant being unwell during the middle

part of week two of participation (15 weeks after ventilation) resulted in them not spending

any time breathing without the assistance of mechanical ventilation for three days. Despite

this, the time spent breathing independently of mechanical ventilation increased from zero

hours per day to one a half hours per day during the AFES training period. Importantly, on

the final day of the second week of the study this one and a half hours was achieved in three

separate 30 minute sessions, while in the final week of the study this one and a half hours was

achieved in one session. The participant’s VC was 60 mL before the AFES training period

and 160 mL after, indicating that AFES training may be improving respiratory function.

6.2.3 Discussion

People with chronic tetraplegia who retain some diaphragm function can fail to wean from

mechanical ventilation for a number of reasons, most notably as a result of frequent respiratory

infections and complications [47, 122]. The aim of this case study was to evaluate the

feasibility and effectiveness of using an AFES training program to assist ventilator weaning

for the chronic tetraplegic population who retain some diaphragm function. The feasibility

of this intervention was demonstrated by the adequate muscle contraction observed in this

case study and the 93 percent compliance to the training sessions achieved. The results show

that time spent breathing independently of ventilation and VC increased during the AFES

training period. This suggests that AFES training can be used to assist chronic tetraplegic

patients to wean from mechanical ventilation, agreeing with the findings of Lee et al. [122].

While the participant was only able to achieve 90 minutes of ventilator free breathing during

the study duration, this had some significant effects on the participant’s quality of life.



CHAPTER 6. AFES TO ASSIST VENTILATOR WEANING 113

Firstly, the ability to breathe independently of mechanical ventilation removed some of

the participant’s fear of disconnection from mechanical ventilation, a common problem for

ventilator dependant tetraplegics [97]. Breathing independently of ventilation also improved

the participant’s feeling of wellbeing and made their transfer from a supine position to

a wheelchair easier. All of these factors combined to give the participant a perceived

improvement in quality of life.

This case study also provided the opportunity to test some of the technology developed in the

previous two chapters of this thesis in a clinical setting. In Chapter 4 the use of a respiratory

effort belt positioned around the chest was shown to be suitable for detecting and classifying

respiratory activity. In this case study no classification of respiratory activity was made as it

was assumed the participant would only be taking quiet breaths and not coughing. However,

it was initially assumed that the signal from a respiratory effort belt positioned around the

chest would allow AFES to be applied in synchrony with the respiratory activity of the

participant. By conducting this study it was found that the respiratory effort belt used

to measure respiratory activity had to be placed around the abdomen. This was because

many tetraplegics require a halo or back brace to stabilise their SCI, limiting access to their

chest. It was established that the signal from a respiratory effort belt positioned around the

abdomen could be used to apply AFES in synchrony with the patient’s respiratory activity. In

Chapter 5 the use of NMES to detect the abdominal muscle motor points was demonstrated

with 10 able bodied and five tetraplegic participants. In this case study the use of NMES to

detect the motor points of ventilator dependent tetraplegic participants was also shown to

be feasible.

To confirm the effectiveness of AFES to improve respiratory function and assist ventilator

weaning for chronic tetraplegic participants who retain some diaphragm function a random-

ised clinical study is required, with the weaning progress of the intervention group compared

to that of a control group who did not receive AFES training. However, due to the small

number of chronic tetraplegic participants who retain diaphragm function but have difficulty

weaning from mechanical ventilation at the QENSIU (one or two per year) it was not possible

to conduct such a study within this thesis. A multicentre study may enable the recruitment

of a sufficient number of participants to evaluate the effectiveness of this intervention.

However, this case study does demonstrate that AFES can feasibly be used to assist ventilator

weaning for the ventilator dependent tetraplegic population.
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Clinical Study

6.3 Background

Poor respiratory function often leads to people with tetraplegia requiring mechanical

ventilation during the acute stage of injury (see Section 2.3.1). Reliance on mechanical

ventilation reduces a patient’s quality of life, leaves them more susceptible to respiratory

infection and places a cost burden on the local health care provider [27, 46]. An improvement

in respiratory function that leads to a reduction in time spent dependant on mechanical

ventilation will have significant benefits.

The use of AFES has been shown to improve the respiratory function of people with chronic

(greater than three months post injury) and sub-acute (between four weeks and three

months post injury) tetraplegia. The acute effect of AFES, the immediate improvement

in respiratory function achieved by applying stimulation, has been observed in a number of

studies (see Section 2.4.4.1). Langbein et al. [71] found that the application of AFES led

to a mean 13 percent increase in the Forced Vital Capacity (FVC) of 10 spinal cord injured

participants. This increase in FVC was slightly less than the 17 percent increase observed

by Lee et al. [122] with one chronic tetraplegic participant. Gollee et al. [72] found that

the application of AFES led to an increase in Tidal Volume (VT ) of between nine and 71

percent for four chronic tetraplegic participants. Kandare et al. [123] used AFES to support

ventilation in three chronic tetraplegic participants who had no respiratory drive and were

unable to breathe independently. However, they found that the VT generated with AFES was

approximately 25 percent less than that generated with the support of mechanical ventilation.

Additionally, the repeated application of AFES, known as AFES training, has been shown

to lead to a longitudinal increase in respiratory function. McBain et al. [73] found a mean

longitudinal increase in VC of 20 percent after a six week AFES training program with 15

chronic tetraplegic participants, while McLachlan et al. [70] found FVC to increase by a

mean of 0.36 L after a three week AFES training program with 12 sub-acute and chronic

tetraplegic participants. Therefore, these studies indicate that AFES can be used to improve

the respiratory function of chronic and sub-acute tetraplegic participants.

A study by Lee et al. [122] demonstrated that an AFES training program could be used

to improve respiratory function and assist ventilator weaning for a ventilator dependent

chronic tetraplegic patient who retained some diaphragm function (see Section 2.4.4.2). The

feasibility of conducting a clinical study using this method at the QENSIU was demonstrated

by the case study outlined above. For tetraplegic patients who require mechanical ventilation

in the acute stage of injury, the need for mechanical ventilation reduces quality of life and

has a cost implication for the health care provider. Additionally, both the acute stage of

tetraplegia and the need for mechanical ventilation are associated with a high susceptibility
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to respiratory complications (see Section2.4), largely attributed to poor respiratory function.

Therefore, an early intervention that improves respiratory function would not only reduce

this patient groups susceptibility to respiratory complications, it would also improve quality

of life and reduce the cost to the health care provider. Routsi et al. [125] applied FES

to the leg muscles of acute ventilator dependant patients, hypothesising that FES could

beneficially improve muscle functional status. They found that in addition to improving

muscle function, FES training led to these patients weaning from mechanical ventilation

statistically significantly faster than patients who did not receive FES. In this chapter the

use of AFES to improve respiratory function and assist ventilator weaning for the acute (less

than four weeks post injury) ventilator dependent tetraplegic population is investigated.

To evaluate the effectiveness of this intervention it is necessary to estimate when weaning

has occurred and the time to wean if the intervention had not been applied. Current

understanding is that injury level, age and sex are the best indicators of weaning time for

this patient group, with weaning being deemed to be successful after a period of 24 hours or

seven days of ventilator free breathing (see Section 2.3.1).

The aim of this study was to evaluate the feasibility and effectiveness of using an AFES

training program to improve respiratory function and assist ventilator weaning in acute

tetraplegia.

6.4 Methods

Ten tetraplegic participants, who were inpatients on the high dependency ward of the

QENSIU, were recruited for this study. The study was approved by the National Health

Service Scotland A research ethics committee (Local Code: 11/SS/0098). Patients were

unable to give written informed consent due to high levels of sedation needed in the

early stages of mechanical ventilation. Written informed consent was obtained from each

participant’s welfare guardian. Consent was later sought from the participant if they were

deemed to have regained capacity within the study duration. All experimental procedures

conformed to the Declaration of Helsinki.

Participants were recruited according to the following inclusion and exclusion criteria.

Inclusion criteria:

1. Men or women over 16 years of age;

2. Acute tetraplegia (patients less than four weeks post injury);

3. Reduced respiratory function requiring mechanical ventilation;

4. Good visual response to surface electrical stimulation of the abdominal muscles,

suggesting that lower motor neurons are intact.

Exclusion criteria:

1. Under 16 years of age;
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2. Female participants who are pregnant;

3. Significant history of autonomic dysreflexia;

4. No visual response to surface electrical stimulation of the abdominal muscles, suggesting

that lower motor neurons are not intact;

5. Unstable chest or abdominal injury;

6. Bulbar dysfunction.

Participants were recruited for this study by consultants at the QENSIU, based on the

inclusion and exclusion criteria provided above. However, the ultimate decision for inclusion

was based on the clinical judgement of the consultant.

All participants in this study had a tracheostomy tube fitted to allow mechanical ventilation

to be applied via the trachea. This tracheostomy tube was removed within one week of

weaning from mechanical ventilation for all participants.

Each participant was matched with a retrospective control participant, obtained from records

of previous patients at the QENSIU, based on injury level, age (within five years) and sex.

Each of these control participants required mechanical ventilation in the acute stage of injury.

All matching of intervention and control participants was performed by a consultant at the

QENSIU, based on the criteria outlined above. However, due to the relatively small number

of retrospective controls available at the QENSIU, a limited number of suitable controls were

available to the consultants. Therefore, matching was based on the clinical judgement of the

consultant, with the author not made aware of the detailed process.

The daily time that each of these participants spent breathing without the support of

mechanical ventilation, along with the point at which they weaned from mechanical

ventilation, was retrieved from their patient notes by a consultant at the QENSIU.

This allowed a comparison of the time to wean from mechanical ventilation between the

intervention and control participants. The demographics of both the intervention and control

participants are shown in Table 6.1. It should be noted that Participant 5 was a non-responder

to electrical stimulation, whereby the applications of AFES achieved no muscle contraction.

Therefore this participant did not complete the study and as such no control participant was

sought for Participant 5.

6.4.1 Protocol

Each participant took part in AFES training sessions five times per week, on four alternate

weeks, with the total duration of participation eight weeks. The participant’s progress was

monitored at weekly assessment sessions. An effort was made to perform all procedures at

the same time of day and all procedures were performed at the participant’s bedside with

the participant in a supine position.
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Table 6.1: Intervention and control participant (part’) demographics showing sex, age, injury
level, American Spinal Injuries Association Impairment Scale (AIS) level (see Section 1.2.3.2),
weight and time post injury at recruitment.

Intervention Control
Part’ Sex Age Injury AIS Weight Time Post Sex Age Injury AIS

level level injury level level
(years) (kg) (days) (years)

1 F 42 C4 A 50 20 M 34 C5 A
2 M 63 C3/4 A 70 39 M 63 C3 C
3 M 38 C4 C 78 24 M 35 C5 A
4 M 53 C4 B 81 29 F 58 C4 A
5 M 44 C0/5 A 90 24 - - - -
6 M 77 C3/4 C 76 10 M 78 C4 A
7 M 74 C6/7 C 82 43 M 73 C6 A
8 M 24 C5/6 A 80 11 M 25 C5 B
9 M 32 C5 B 95 11 M 32 C5 A
10 F 35 C7 A 75 11 M 32 C5 A

6.4.1.1 Training Session

Five weekly training sessions, used to strengthen the abdominal muscles, were performed for

20 minutes per day in week one, 30 minutes per day in week three and 40 per day minutes in

weeks five and seven as shown in Figure 6.2. The cycle of one week with AFES training and

one week without was used to provide an indication of the effectiveness of the intervention

for improving respiratory function in the short term.

Figure 6.2: Study timeline showing weeks with and without AFES training, training duration
and assessment sessions (A.).

Based on previous research [86, 165, 166] participants were expected to go through four

distinct phases before successfully weaning from mechanical ventilation. These phases are

summarised in Table 6.2. This table shows that participants were initially fully ventilator

dependent and unable to breathe without the support of mechanical ventilation. However,

it should be noted that during this time participants could be disconnected from mechanical

ventilation for short periods of time, during which they would show some respiratory
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activity. As the study progressed these participants were disconnected from the ventilator

and encouraged to breathe independently from mechanical ventilation for increasing periods

of time, a process refereed to as ventilator weaning.

Table 6.2: Expected phases of weaning, adapted from [86, 165, 166]

Phase 1. Participants unable to breathe
independently of mechanical ventilation

Participants are not be able to breathe
independently of mechanical ventilation.
Levels of ventilatory support are reduced
throughout this period.

Phase 2. Participants disconnected from
mechanical ventilation and Spontaneous
Breathing Trials (SBTs) begin

Participants are only able to undertake
SBTs (see Section 2.3.1) for a short period
of time before oxygen saturation level
(SaPO2) falls below 92 percent. During
this time participants struggle to actively
participate or follow instructions. All
breaths at Vital Capacity (VC).

Phase 3. Participants become accustomed
to breathing without ventilator support

Duration of each SBT can be increased
before SaPO2 falls below 92 percent.
All breaths continue to be at VC until
respiratory function begins to improve.

Phase 4. Participants can actively parti-
cipate while disconnected from mechanical
ventilation

Duration of SBTs increases beyond one
hour. Respiratory function improves to
a level where Tidal Volume (VT ) of a
normal breath is below VC . Participants
are able to actively take deeper breaths
to VC when requested. Duration of SBTs
continues to increase until participant is
freed from mechanical ventilation.

While participants were not able to breathe independently of mechanical ventilation,

represented by Phase 1 in Table 6.2, AFES was applied while the participants remained

connected to mechanical ventilation. As weaning progressed through the stages outlined in

Phases 2 to 4 of Table 6.2, Spontaneous Breathing Trials (SBTs) (see Section 2.3.1) began,

during which participants were encouraged to breathe independently of mechanical ventilation

for increasing periods of time. During this time AFES was applied while participants were

disconnected from mechanical ventilation. However, during SBTs the participant’s oxygen

saturation level (SaPO2) was monitored and recorded every minute. If SaPO2 decreased below

92 percent participants were immediately reconnected to mechanical ventilation until SaPO2

returned to baseline, at which point they were once again disconnected from mechanical

ventilation. AFES was applied throughout this process. AFES training sessions continued

throughout the eight weeks even if the participant successfully weaned from mechanical

ventilation within the study duration as it was believed that, even if the participant

had weaned from mechanical ventilation, AFES training would continue to improve their

respiratory function.
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6.4.1.2 Assessment Session

Before the study commenced, and at the end of each week, an assessment session was

conducted as shown in Figure 6.2. Before the first assessment session commenced the

stimulation current required to achieve a visible contraction of the rectus abdominis and

external oblique muscles was established. During each assessment session VT and VC were

measured, with and without AFES, using the protocol described in Section 3.2. To record VC

participants were asked to inhale to maximum lung capacity and exhale as fully as possible.

This manoeuver was repeated up to five times, both with and without AFES, to form one

run. VT was then recorded by measuring six minutes of normal relaxed breathing, both with

and without the support of AFES, separated by a rest period of approximately two minutes.

This provided approximately 75 stimulated and unstimulated breaths, the mean of which was

denoted as the VT . A second run of VC manoeuvres was then performed after a rest period

of approximately two minutes. This resulted in each assessment session providing up to 10

stimulated and unstimulated VC manoeuvres. The maximum of these manoeuvres, which

was within 0.15 L of another breath, was taken as the VC . Whether stimulation was applied

during the first or second set of five VC manoeuvres within each run was randomised for each

participant at each session. During all measurements of VC participants were asked to inhale

and exhale as deeply as possible. However, no verbal encouragement was provided during the

exhalation. It should be noted that VC was recorded rather than FVC as, at early assessment

sessions, participants could not always exhale as ‘forcibly as possible’ due to sedation levels

and poor respiratory muscle coordination. However, as explained in Section 1.4.2, there is

very little difference between the values of VC and FVC. A plot demonstrating a VT and VC

measurement, recorded using a spirometer with Participant 10 at the final assessment session

(A8), is shown in Figure 6.3.
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Figure 6.3: A respiratory volume trace recorded from Participant 10 using a spirometer at
the final assessment session. A positive gradient represents an inhalation and a negative
gradient represents an exhalation. The participant was asked to undertake a Vital Capacity
(VC) manoeuvre (shown in red), preceded and proceeded by a regular breath (shown in blue).
VC was calculated from the total volume during the exhalation phase of the VC manoeuvre,
found to be approximately 1.3 L. Tidal Volume (VT ) was calculated from the total volume
during the exhalation phase of the normal breaths, found to be approximately 0.6 L.



CHAPTER 6. AFES TO ASSIST VENTILATOR WEANING 120

In cases where participants were unable to actively participate, most commonly due to high

levels of sedation in the early stages of the study, their VT , which was assumed to also

be their VC at this acute stage of injury, was recorded from the output of the mechanical

ventilator. During the first (A0) and second (A1) assessment with Participant 1, and the first

(A0) assessment with Participant 6, VT was calculated as the mean of six breaths recorded

from the ventilator, while VC was calculated as the maximum of these breaths. All other

participants were able to actively participate at all assessment sessions.

In cases where the participant was unable to sustain respiration without the support of

mechanical ventilation for extended periods of time their SaPO2 was monitored and recorded

during every minute of the assessment session. If SaPO2 decreased below 92 percent

participants were immediately reconnected to mechanical ventilation until SaPO2 returned to

baseline, at which point they were once again disconnected from mechanical ventilation and

the assessment session resumed. If SaPO2 fell below 92 percent during a period where VT

was measured only breaths measured before the participant was reconnected to mechanical

ventilation were used for analysis. This only occurred at the first assessment session (A0) for

Participant 10, where 20 stimulated and unstimulated quiet breaths were used to calculate

VT .

6.4.1.3 Time to Wean

Each participant’s weaning progress was monitored on a daily basis throughout the course

of the study. Two measures were used to determine whether weaning had been successful:

i) Short term weaned - Participant able to breathe independently of mechanical ventilation for

24 hours and ii) Long term weaned - Participant able to breathe independently of mechanical

ventilation for seven days.

The duration of SBTs conducted within the QENSIU is recorded in the patient’s notes.

This allowed a comparison of the time spent breathing without mechanical ventilation

to be made between the intervention and control participants. The time for the control

participants to wean from mechanical ventilation was retrospectively assessed over the first

100 days of ventilation, used as an approximate comparison with the maximum possible

participation in the intervention arm of this study (assuming intervention participant is

recruited approximately four weeks after initial ventilation and takes part in the full eight

week AFES training program).

6.4.2 Equipment

During training sessions the participant’s respiratory activity was detected using a respiratory

effort belt positioned around the abdomen, while during assessment sessions respiratory

activity was recorded using a spirometer, with both of these methods described in Section 3.3.

The reliability of a respiratory effort belt to detect respiratory activity was shown in Chapter 4
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(Note no classification of different kinds of respiratory activity was performed in this study as

all breaths were assumed to be quiet breaths). In initial assessment sessions the spirometer

was connected to the participant’s tracheostomy tube. If the tracheostomy cuff, a balloon

which directs all air out of the tracheostomy tube, was removed during the study duration the

spirometer was connected to a mouthpiece. The participant was asked to breathe through this

mouthpiece while their tracheostomy tube (if still present) was capped to avoid air leakage. If

the participant was unable to breath without the support of mechanical ventilation a pressure

sensor was connected in line with the expiratory limb of the ventilator and used to measure

the ventilator’s, and in turn the participant’s, respiratory activity. Data was collected and

pre-processed using the methods described in Section 3.3.

6.4.2.1 Stimulation System

AFES was applied using the stimulation system described in Section 3.4.1. During training

sessions stimulation was applied in synchrony with the participant’s respiratory activity using

the signal from the respiratory effort belt positioned around the abdomen. During assessment

sessions stimulation was applied in synchrony with the participant’s respiratory activity using

the signal from the spirometer. If the participant was unable to breath without the support

of mechanical ventilation stimulation was applied in synchrony with the ventilator using the

signal from the pressure sensor (automatic stimulation methods are explained in more detail

in Section 3.4.3). The rectus abdominis and external oblique muscles were stimulated using

electrodes positioned at the motor points of these muscles, found using the protocol outlined

in Chapter 5. The stimulation currents required to achieve a visible muscle contraction of

these muscles at the pre-study assessment (with a pulsewidth of 100 µs), was used at all

subsequent sessions, and is shown for each participant in Table 6.3. The same stimulation

current was used throughout the eight weeks of participation, with the response to stimulation

not appearing to change over this period. Stimulation pulsewidth was varied between 100

and 500 µs within each session to account for muscle fatigue. It should be noted that

as Participant 5 was a non-responder to AFES, no stimulation currents could achieve a

contraction with this participant.

6.4.3 Analysis and Outcome Measures

The primary outcomes measures of this study are the time to wean from mechanical

ventilation and respiratory function. Respiratory function was quantified by VT and VC .

Individual results recorded from each participant are presented as VT and VC measured in

litres (L). Group results are normalised by weight and are presented as weight corrected tidal

volume (VT /kg) and weight corrected vital capacity (VC/kg) [39, 38, 42]. VT /kg and VC/kg

are measured in milliliters per kilogram (mL/kg).

The variability of time to wean from mechanical ventilation in the tetraplegic population,

coupled with the fact that the quantitative effectiveness of the intervention was largely
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Table 6.3: Stimulation currents, in mA, used to achieve a visible contraction of the External
Oblique (EO) and Rectus Abdominis (RA) muscle groups for each participant.

Participant Right EO Left EO Right RA Left RA
mA mA mA mA

1 70 70 50 50
2 30 50 40 40
3 50 50 30 30
4 60 60 50 60
5 N/A N/A N/A N/A
6 50 50 50 50
7 100 105 100 105
8 60 50 50 50
9 75 70 55 75
10 75 75 75 65

unknown in this patient group, made it difficult to reliably estimate the required sample

size for this study. The target number of participants was determined by an estimate of the

available patient population at the QENSIU who would be eligible for this study.

Participant 7 did not complete the final assessment session (A8) due to poor health.

Therefore, their results recorded during the previous assessment session were used for

group analysis. The eight assessment sessions conducted with Participant 7, and the nine

assessment sessions conducted with the eight other participants, provided 80 individual

assessment sessions. These 80 assessment sessions, conducted with nine participants, allowed

71 longitudinal comparisons (i.e. A0 compared to A1).

The stimulated and unstimulated VT /kg data recorded during the nine assessment sessions

with each of the nine participants were grouped into two data sets and tested for normality

using the Shapiro-Wilk test. The same process was performed on the VC/kg data. Based

on the results of these tests a Kruskal-Wallis test was used to test for statistically significant

longitudinal changes in stimulated and unstimulated VT /kg and VC/kg and for a statistically

significant difference in the stimulated and unstimulated VT , VT /kg and VC/kg recorded at

each assessment session. In the case of significance (p-value of less than 0.05), post hoc

multiple comparisons were performed using the Tukey-Kramer honest significant difference

test to identify statistically significantly different pairs. As VC is the maximum value recorded

at an assessment session, it was not possible to test for a statistically significant difference

between the stimulated and unstimulated VC recorded at any individual assessment session,

or for longitudinal changes in stimulated and unstimulated VC for each participant. On the

advice of clinical colleagues, it was agreed that an increase in VC of 200 mL was regarded as

clinically significant.
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The mean time for the intervention and control participants to achieve 24 hours (short term

weaned) and seven days (long term weaned) of ventilator free breathing, from the date of

initial ventilation, was compared for statistical significance using an independent Student’s

t-test.

6.5 Results

At the initial assessment session (A0) conducted with Participant 5 it was observed that this

participant did not respond to AFES. Despite this AFES was applied daily for three further

days with varying electrode positions and stimulation intensities. AFES was then applied on

a weekly basis throughout the eight weeks of participation, however no response to AFES

was observed at any of these sessions. As described in Section 6.6.2, it was later discovered

that this participant had suffered Lower Motor Neuron (LMN) damage. Due to this lack of

response to AFES Participant 5’s data was not included in the analysis.

A Shapiro-Wilk test showed that both the stimulated and unstimulated VT /kg data sets,

which contained approximately 3000 breaths each, and the stimulated and unstimulated

VC/kg data sets, which contained 81 breaths each, were not normally distributed, validating

the use of a non-parametric test for significance testing.

In the remainder of this section improvements in respiratory function, assessed by measuring

VT and VC , and time to achieve ventilator weaning, will be presented.

6.5.1 Tidal Volume

Figure 6.4 shows example signals recorded using the spirometer and the respiratory effort

belt positioned around the abdomen during a quiet breath, both with and without AFES. As

can be seen in Figure 6.4(b), a stimulation artefact can be observed in the respiratory effort

belt signal at the onset of stimulation. However, this stimulation artefact is only present for

approximately the first 0.5 seconds of stimulation, after which the respiratory effort belt signal

matches the spirometer signal. The short duration of this stimulation artefact means that it

does not affect the respiratory effort belt signal during either the preceding, or proceeding,

inhalation.

The stimulated and unstimulated VT recorded from Participant 1 at each of the nine

assessment sessions is shown in Figure 6.5. The stimulated and unstimulated VT of the

other eight participants who completed the study are shown in Appendix B.

Participant 1’s stimulated VT was found to be statistically significantly greater than

unstimulated VT at five of the nine (55.6%) assessment sessions. Their stimulated and

unstimulated VT was found to statistically significantly increase during three (37.5%) of

the eight weeks of participation, with a statistically significant decrease observed during one

of the eight (12.5%) weeks.
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Figure 6.4: Signals recorded during quiet breaths taken by Participant 8 at assessment session
A7, using a spirometer, shown in blue, and a respiratory effort belt positioned around the
abdomen, shown in red. Figure 6.4(a) shows a quiet breath where stimulation is not applied.
Figure 6.4(b) shows a quiet breath where stimulation is applied for one second at the onset of
exhalation, shown in green. A stimulation artefact, which can be detected in the respiratory
effort belt signal at the onset of stimulation, is also highlighted.
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Figure 6.5: Tidal Volume (VT ) ± standard deviation of Participant 1, recorded at nine weekly
assessment sessions, where a blue line represents stimulated, and a red line unstimulated,
breaths. Solid black line along the bottom of plot represents one week of AFES training,
solid grey line along bottom of the plot represents one week of no training, due to patient
developing pneumonia (P), and no line indicates week with no training. Black x indicates
stimulated VT was statistically significantly different to unstimulated VT , blue ∗ indicates
that stimulated VT was statistically significantly different to stimulated VT recorded at
previous assessment and red ∗ indicates that unstimulated VT was statistically significantly
different to unstimulated VT recorded at previous assessment.
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Across all participants stimulated VT was found to be statistically significantly greater than

unstimulated VT at 42 of the 80 (52.5%) assessment sessions and statistically significantly

smaller at three of the 80 (3.8%) assessment sessions. Stimulated VT was found to statistically

significantly increase during 20 of the 71 (28.2%) combined weeks of participation and

statistically significantly decrease between 12 (16.9%) of the weeks of participation. Fourteen

(70.0%) of the increases occurred during weeks where AFES was applied, while three (25.0%)

of the decreases occurred during weeks when AFES was applied. Unstimulated VT was

found to statistically significantly increase during 21 of the 71 (29.6%) combined weeks

of participation and statistically significantly decrease during 12 (16.9%) of the weeks of

participation. Of these increases 14 (66.7%) occurred during weeks where AFES was applied,

while four (33.3%) of the decreases occurred during weeks when AFES was applied.

The mean VT /kg of all nine participants at each of the nine assessment sessions is shown

in Figure 6.6. There was no statistically significant difference between stimulated and

unstimulated VT /kg at any assessment session, or stimulated or unstimulated VT /kg over the

study duration. Stimulated VT /kg increased in all weeks where AFES training was applied,

but only increased in the final week when AFES training was not applied. The change in

unstimulated VT /kg was found to be similar during weeks with and without stimulation.
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Figure 6.6: Mean weight corrected tidal volume (VT /kg) ± standard deviation for all
nine participants, recorded at nine weekly assessment sessions, where a blue line represents
stimulated, and a red line unstimulated, breaths. Solid black lines along the bottom of plot
represent one week of AFES training and no line indicates one week with no training.

Figure 6.7 shows each participant’s unstimulated VT /kg at each of the nine assessment

sessions. Participant 7 had the lowest unstimulated VT /kg, with a mean of around 3 mL/kg

across the study duration. Participant 7 was the only participant who received AFES training

and did not wean from mechanical ventilation within the eight week study duration.

The group cumulative change in stimulated and unstimulated VT /kg during weeks with and
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Figure 6.7: Unstimulated weight corrected tidal volume (VT /kg) of all participants, recorded
at nine weekly assessment sessions. Participant 7 is represented by a red line. A VT /kg of
5 mL/kg is also marked, which is the point at which participants were expected to wean from
mechanical ventilation.

without AFES training is shown in Figure 6.8. It can be seen that stimulated VT /kg decreased

in weeks without training over the study duration, while changes in unstimulated VT /kg are

similar throughout the study.
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Figure 6.8: Group cumulative change in stimulated and unstimulated Weight Corrected (WC)
Tidal Volume (VT /kg) ± standard deviation for all nine participants, recorded at nine weekly
assessment sessions, where a blue line represents weeks with AFES training and a red line
represents weeks without AFES training. Black ∗ indicates change recorded after a week with
AFES training was statistically significantly different to change recorded after the following
week with no AFES training.

6.5.2 Vital Capacity

Stimulated and unstimulated VC recorded from Participant 1 at each of the nine assessment

sessions is shown in Figure 6.9. Also shown is the daily time spent breathing without

ventilator support. The stimulated and unstimulated VC of the other eight participants who

completed the study, along with the daily time spent breathing without ventilator support,
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are shown in Appendix B.
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Figure 6.9: Vital Capacity (VC) of Participant 1, recorded at nine weekly assessment sessions,
where a blue line represents stimulated, and a red line unstimulated, breaths. Solid black
line along the bottom of plot represents one week of AFES training, the solid grey line
along the bottom of the plot represents one week of no training, due to patient developing
pneumonia (P), and no line indicates one week with no training. Green line represents time
spent breathing without ventilator support per day, while broken black line represent a VC

of 500 mL, the VC at which participants were expected to wean based on clinical experience.
The dashed magenta line represents the time point at which the participant achieved 24 hours
of ventilator free breathing, while the dashed cyan line represents the time point at which
the participant achieved seven days of ventilator free breathing.

Participant 1’s VC appeared to show a strong positive correlation to time spent breathing

without ventilator support. It can also be observed that while the development of pneumonia

in week four of the study delayed weaning, it did not appear to affect VC , which increased

slightly during the two weeks where Participant 1 received no AFES training.

Across all participants stimulated VC was found to be clinically significantly greater than

unstimulated VC at nine of the 80 (11.3%) assessment sessions and clinically significantly

smaller at two of the 80 (2.5%) assessment sessions. Stimulated VC was found to increase

clinically significantly during 17 of the 71 (23.9%) combined weeks of participation and

decrease clinically significantly between 11 (15.5%) of the weeks of participation. Of these

increases, 10 (58.8%) occurred during weeks where AFES was applied, while seven (63.6%) of

the decreases occurred during weeks when AFES was applied. Unstimulated VC was found to

increase clinically significantly during 15 (21.1%) of the 71 combined weeks of participation

and decrease clinically significantly between three (4.2%) of the weeks of participation. Of

these increases, nine (60.0%) occurred during weeks where AFES was applied, while three

(100%) of the decreases occurred during weeks when AFES was applied.

The combined mean of each participant’s VC/kg at each of the nine assessment sessions is

hg35a
Oval
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shown in Figure 6.10. For the combined data there was no statistically significant difference

between either the stimulated and unstimulated VC/kg during any assessment session, or the

stimulated or unstimulated VC/kg recorded over the study duration. Both stimulated and

unstimulated VC/kg increased throughout the study duration.
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Figure 6.10: Mean weight corrected vital capacity (VC/kg) ± standard deviation for all
nine participants, recorded at nine weekly assessment sessions, where a blue line represents
stimulated, and a red line unstimulated, breaths. Solid black lines along the bottom of the
plot represent one week of AFES training and no line indicates one week with no training.

The group cumulative change in stimulated and unstimulated VC/kg during weeks with and

without AFES training is shown in Figure 6.11. Stimulated VC/kg increased to a greater

degree during weeks of AFES training than without, while the changes in unstimulated VC/kg

are similar throughout the study.
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Figure 6.11: Group cumulative change in stimulated and unstimulated Weight Corrected
(WC) Vital Capacity (VC/kg) ± standard deviation for all nine participants, recorded at
nine weekly assessment sessions, where a blue line represents weeks with AFES training and
a red line represents weeks without AFES training.
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6.5.3 Time to Wean

Participant 7, and the control participant matched to Participant 6, did not wean from

mechanical ventilation during the study. All other participants went through a standard

weaning procedure whereby after reaching short term (24 hours) weaned no further

mechanical ventilation was necessary. Figure 6.12(a) and Figure 6.12(b) show the group

time to achieve short term and long term weaning respectively, while Table 6.4 shows the

time to wean for each participant from the date of initial ventilation, with the group mean also

shown. From Table 6.4 it can be seen that five of the nine (55.6%) participants who received

AFES training weaned from mechanical ventilation at a faster rate than their matched control

participant. The intervention participants weaned from mechanical ventilation on average 11

days faster than the control participants. However, the group means were not found to be

statistically significantly different. It should be noted that the grouped data presented in

Table 6.4 and Figure 6.12 ignore the data for a participant in each group who did not wean

from ventilation.
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Figure 6.12: Boxplots showing time to wean for the Intervention (blue) and Control (red)
groups. Each box shows the median together with the inter-quartile range, with outliers
marked by a black +. a) shows the time to achieve 24 hours of ventilator free breathing,
denoted short term weaned. b) shows the time to achieve seven days of ventilator free
breathing, denoted long term weaned.
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Table 6.4: Time to wean for each participant who received AFES training from date of initial
ventilation. Also shown is the time to wean for their matched control. Short term weaned
is a period of 24 hours without ventilation and long term weaned is a period of seven days
without ventilation. Participants who did not wean from ventilation are denoted by N/A.
The means of each group ± standard deviation (s.d.) are also shown, which do not include
the data of Participant 7 and control Participant 6 due to these participants not weaning
from ventilation.

AFES Control
ID Short Term Long Term Short Term Long Term

Weaned Weaned Weaned Weaned
(days) (days) (days) (days)

1 58 64 42 48
2 22 28 33 39
3 12 18 34 40
4 32 38 86 92
6 30 36 N/A N/A
7 N/A N/A 45 51
8 25 31 8 14
9 21 27 12 18
10 17 23 44 50

Mean ± s.d. 27 ± 14 33 ± 14 38 ± 24 44 ± 24

6.6 Discussion

The primary aim of this study was to evaluate the feasibility of using AFES to assist acute

ventilator dependent tetraplegics in weaning from mechanical ventilation. The feasibility

of this intervention has been demonstrated here for the first time, by applying AFES in a

clinical setting with nine participants during four weeks, over an eight week period, without

any negative side effects and a high compliance of the participants to the training sessions

(see Section 6.6.2). The effectiveness of the intervention was demonstrated by the increases

in respiratory function that were observed throughout the study duration.

6.6.1 Improvements in Respiratory Function

Acute Effect The stimulated VT of each participant was statistically significantly greater

than unstimulated VT at 55.6 percent of the assessment sessions. While this agrees

with previous studies which also found an acute increase in VT during the application

of AFES [120, 121], the extent of this increase differs across studies. Sorli et al. [120]

applied AFES to the rectus abdominis muscles during quiet breathing with nine able bodied

participants. They found that the VT of the able bodied participants increased by 65% during

AFES. This increase is much greater than the average increase of approximately 15 percent

observed here. However, Sorli et al. do not report the stimulation intensity used to achieve

this increase. It may be that a much larger stimulation intensity was used than with the

participants in this study. As some of the participants in this study retained sensation of the
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abdomen, stimulation intensity was set at a level that achieved a visible muscle contraction.

It may be that a higher level of stimulation intensity would have achieved a greater increase in

VT . Stanic et al. [121] reported an increased in VT of 35 percent with the chronic tetraplegic

population, and 34 percent with the able bodied population, using a similar stimulation

intensity as was used in this study. While this is still a greater increase than observed here,

all three studies used different electrode locations to apply AFES. The difficulty in comparing

AFES studies caused by a lack of common clinical protocol is discussed in further detail in

Section 8.2. Finally, the participants in this study were ventilator dependent and were likely

to be suffering from muscle weakness associated with critical illness [125]. This may be

another contributing factor as to why the acute increase in VT during AFES observed here

was less than that observed with the able bodied and chronic tetraplegic population.

Stimulated VC was only clinically significantly greater (more than 200 mL) than unstimulated

VC at 11.3 percent of the assessment sessions. It may be that a value of 200 mL, which

represented a greater than 20 percent acute increase in VC for some participants, is too large

for this population and requires to be revised for future studies.

Longitudinal Effect Stimulated and unstimulated VT /kg and VC/kg increased through-

out the study. This agrees with previous studies that also showed an increase in VC after

AFES training [70, 73, 124]. However, neither of these changes were found to be statistically

significant. VT /kg was not expected to greatly increase as once a participant reaches a VT

at which they are able to breathe comfortably there is no need for further increase. The lack

of a statistically significant increase in VC/kg is largely due to the large standard deviation

of the data. A larger study may reduce this deviation, leading to a greater likelihood of

achieving a statistically significant increase in VC/kg after AFES training.

With any intervention study in the acute spinal cord injured population it is difficult to

distinguish between the effect of an intervention and ‘natural recovery’. By applying AFES on

alternate weeks it was hoped that it would be possible to identify improvements in respiratory

function caused by the intervention. It was found that stimulated and unstimulated VT

increased statistically significantly during 28 and 30 percent of weeks respectively. Of these

increases, 70.0 and 66.7 percent occurred during weeks where AFES was applied, indicating

that a statistically significant increase in VT is more likely to be observed after a week of

AFES training. Stimulated and unstimulated VC increased clinically significantly during 24

and 21 percent of weeks respectively. Of these increases, 58.8 and 60.0 percent occurred during

weeks where AFES training was applied, again indicating a greater likelihood of achieving a

clinically significant increase in VC during a week where AFES training was applied. These

results indicate that there may be an effect from AFES training, although further work is

required to quantify this effect.

Liaw et al. [113] found a statistically significant 27 percent increase in Forced Vital Capacity
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(FVC) over a six week period for sub-acute tetraplegics who received no intervention. In this

eight week intervention study it was found that unstimulated VC/kg increased by 48 percent.

This is greater than the increase observed by Liaw et al. and suggests that there may

be an intervention effect from AFES training. Rather than natural recovery, the increases

in respiratory function observed during non treatment weeks may be caused by an acute

carry over effect from the previous week’s AFES training. Although there is no literature

investigating the duration, or presence, of the carry over effect from AFES, previous studies

have found a carry over effect from FES training of the lower limbs to correct foot drop [57,

167]. However, the duration of such a carry over effect has not been established and is

disputed in the literature. There are two possible approaches to determine whether there

is a carry over effect from AFES training. The first approach would be to randomise the

order of treatment, i.e. AFES training may commence in either week one or week two of

the study, which will give an indication as to whether respiratory function increases in the

first week of the study when no AFES training is applied. A second approach would be to

increase the duration of the control periods. By having a one week treatment period and

a two week control period any acute carry over effect of the AFES training should have

diminished to a greater extent than in this study. The drawback of this approach is an

increased study duration and a reduction in AFES application in the early stages when it

is thought to be most beneficial. The majority of participants in this study weaned from

mechanical ventilation in the first few weeks. An increased control duration would reduce

the amount of AFES training that each participant received while dependant on mechanical

ventilation. This may reduce the benefit of the intervention for this patient group.

Ventilator Weaning It was found that five of the nine (55.6%) participants who completed

the intervention weaned from mechanical ventilation at a faster rate than their matched

controls, with one participant in each group not weaning from mechanical ventilation. When

these two participants were ignored it was found that participants who received AFES training

weaned from mechanical ventilation on average 11 days faster than their matched controls.

While the numbers in this study are too small for this difference to be statistically significant,

this finding indicates that the application of an AFES training program may enable faster

weaning from mechanical ventilation.

Clinically, a value of 500 mL is often used as the VT at which people are predicted to

wean from mechanical ventilation. However, this does not take into account a persons body

weight, with a greater body weight inherently leading to an increased VT and VC . This was

highlighted by Participant 1, whose weight was 50 kg, weaning from ventilation despite their

VT being less than 500 mL for the whole study duration, while Participant 7, whose weight

was 82 kg, did not wean from ventilation despite achieving similar VT values. In this study

all of the participants, except Participant 7 who did not wean from ventilation, achieved a

VT /kg of greater than 5 mL/kg, suggesting this may be an indicator for weaning success in

the tetraplegic population.
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6.6.2 Other Observations

For electrical stimulation to be successful the LMNs, which carry motor information from

the spinal cord to a muscle, must be intact (See Section 1.3 for further information). It was

later established that Participant 5, who was a non responder to stimulation, had suffered

LMN damage, either at the time of SCI or due to a large edema (extra cellular fluid [168])

which was later observed in the spinal cord. This participant was discharged from hospital

requiring full time ventilatory support. The impact of LMN damage on electrical stimulation

is discussed in further detail in Section 8.4.

Participant 7 did not wean from ventilation during the study, which may be attributed to this

participant’s poor health after injury. Additionally this participant, along with the chronic

participant who took part in the case study described at the start of this chapter, had a

large amount of edema in the abdomen. This resulted in these participants requiring a much

larger amount of stimulation current to initiate a contraction of the abdominal muscles (see

Table 6.3 and Section 6.2.1), which may pose a problem for participants who retain sensation

of the abdomen. The impact of edema on the effectiveness of AFES is discussed in further

detail in Section 8.4. Interestingly Participant 7 had a cardiac pacemaker, with no negative

effects of stimulation observed. This agrees with the findings of Shade [169]. Despite these

problems the finding that two out of 10, or 20 percent, of the acute participants did not

wean from mechanical ventilation agrees with the findings of Gay [81], who states that every

year in the USA 2700 acute tetraplegics require ventilation in the acute stage of injury but

ultimately wean, while 500 (18.5%) require permanent mechanical ventilation. These results

are similar to those reported by Martin et al. [87] who applied inspiratory muscle training,

using a pressure threshold device, to assist weaning from mechanical ventilation for 10 able

bodied participants. They found that nine out of the 10 (90%) participants weaned from

mechanical ventilation within a six week intervention protocol.

Participant 1 developed pneumonia during week four of the study and was unable to

participate in AFES training for one week. During this time the participant returned to

being ventilator dependant, with SBTs resuming after the pneumonia had cleared. For this

participant the study duration was extended to take account of the missed week. Of the eight

participants who weaned, Participant 1 had the lowest absolute value of VT (although not

the lowest VT /kg) for the first three assessment sessions. They also took the longest time to

wean from mechanical ventilation and were the only participant to suffer from a respiratory

complication during the study. This suggests that a low VT may be an indicator of increased

weaning time and increased susceptibility to respiratory complications. The impact of AFES

on respiratory complications is discussed in further detail in Section 8.2.2.

The development of this respiratory complication highlights the challenges of attaining a

high compliance in a study with the acute tetraplegic population. However, except for this
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week of pneumonia for Participant 1, and Participant 7 missing the final assessment session

due to poor health, all other training sessions were met. This represented a compliance

rate of 96.7 percent. McBain et al. [73] report a similar compliance rate of 97.8 percent

when conducting AFES training with the chronic tetraplegic population. While McLachlan

et al. [70] present no compliance rate, they indicate that one of the chronic patients missed

an assessment session due to ‘personal time constraints’. Such problems are inherent with

conducting studies with the chronic tetraplegic population. However, in this study all patients

were less independent and were heavily reliant on caregiver support. For this reason AFES

training could be incorporated as part of their normal daily rehabilitation program, making

missed sessions for any other reason than poor health unlikely.

Another interesting observation was that AFES training sessions tended to lead to an

increased demand for removal of secretion from the airways, both during the training sessions

and for a short period after. Although this outcome could not be quantified and the evidence

was largely anecdotal, it was observed by the researchers, clinicians and participants. This

observation is not entirely surprising as AFES causes the abdomen to move in a similar

motion as during a manually assisted cough (see Section 2.3.2.1). The use of AFES to

aid secretion removal, and hence improve respiratory health, may improve the effectiveness

of mechanical insufflation-exsufflation. This possibility was further investigated in Chapter 7.

Lee et al. [122] used AFES to assist ventilator weaning and tracheostomy decannulation for

one chronic C4 tetraplegic patient. The results observed here when using AFES with the

acute tetraplegic population, and with a chronic tetraplegic participant in the case study

reported at the start of this chapter, suggest that for ventilator dependant tetraplegics who

retain some diaphragm function (i.e. an injury level of C3 and below) the principles described

here may be used to increase respiratory function and aid faster weaning from mechanical

ventilation. This would in turn lead to a significant improvement in this patient groups

quality of life, reduce susceptibility to respiratory complications and result in a cost saving

for the local health care provider.

6.6.3 Limitations

A number of limitations of this study were identified. Firstly, from a clinical viewpoint, a

continuous training protocol may be more beneficial for patients than the week on week off

protocol adopted here, as patients would receive a higher dose of the intervention. However,

this protocol was used to highlight the effectiveness of AFES, which should aid its clinical

introduction. As a result of this study, a continuous training protocol will shortly be

introduced at the QENSIU to assist all acute ventilator dependent tetraplegic participants

in weaning from mechanical ventilation. Additionally, many of the participants in this study

had a VC of less than 1 L. The ATS/ERS standards for spirometry [129] suggest that

for a person with a VC of less than 1 L, their VC should be the maximum breath that is

within 0.1 L of another. Although the ATS/ERS standards have been shown to be applicable
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for chronic (in this case greater than one year post injury) tetraplegic participants [130],

a repeatability value of 0.15 L was used for all participants in this study to allow for the

large variations in values that were observed when McLachlan et al. [70] performed a VC test

with the sub-acute and chronic tetraplegic population. Participant 6 suffered a stroke that

is thought to have occurred during week two or three of their participation in this study.

This stroke left the participant with a slightly impaired ability to follow instructions, making

the recording of accurate VC results more difficult. However, with encouragement from the

participants regular caregiver, it was possible to record a VC measurement that was believed

to be accurate as it met the ATS/ERS standards.

This study aimed to recruit participants as soon as possible after ventilation. While

Participant 10 started the study two days after ventilation commenced, they were the only

participant recruited in the first five days after ventilation. Many of the participants in this

study spent time on a high dependency ward outside the QENSIU before being admitted

to the QENSIU for specialist SCI care. In the cases of Participant 2 and Participant 4 this

initial care was provided outside of the United Kingdom, resulting in these participants being

recruited slightly after the four week acute injury period. Participant 7 was recruited for this

study 22 days post injury. However, due to repeated poor health this participant did not

actually commence on the study until 43 days post injury. Due to the apparent reduction

in time spent dependent on mechanical ventilation after an AFES training program, earlier

recruitment may lead to a greater benefit from the intervention.

A previous study by Girard et al. [166] suggests a SaPO2 of 88 percent as the point at which

heterogeneous participants in an intensive care unit should be reconnected to mechanical

ventilation during SBTs. However, in line with current clinical procedures at the QENSIU,

a SaPO2 of 92 percent was deemed the appropriate level at which participants should be

reconnected to mechanical ventilation during this study. Using SaPO2 of 88 percent as the

point at which participants were reconnected to mechanical ventilation would have increased

the time that participants spent breathing independently, which may have led to a greater

improvement in respiratory function.

Finally, many of the participants had their tracheostomy removed during the study, which

often left a large stoma. Although this stoma quickly healed, its presence could make

assessment sessions difficult. The removal of Participant 6’s tracheostomy, during week seven

of the study, left a large stoma from which there was a large amount of air leakage during

assessment session seven (A7). This assessment was repeated the following day after the

stoma had been sealed by a trained clinician, which greatly reduced the air leakage and led

to a 200 mL increase in the measured VT . The stoma had healed significantly by assessment

session eight (A8), during which there was not deemed to be any air leakage. Participant 1 had

their tracheostomy cuff removed during week eight of the study. At assessment session eight

(A8) the tracheostomy was capped and the respiratory flow was measured using a spirometer
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coupled with a full face mask. However, with the participant in the supine position there

was a large amount of air leakage under the mask. This assessment session was repeated the

following day with the spirometer coupled with a mouthpiece rather than a face mask. This

method proved to be more effective and was adopted to measure the respiratory flow of all

participants who no longer had a cuffed tracheostomy.

6.7 Conclusion

The results of this study indicate that AFES is a feasible technique for assisting ventilator

weaning for people with acute tetraplegia. AFES training was also shown to improve

the respiratory function of this population, with an associated decrease in the time spent

dependant on mechanical ventilation observed.
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Chapter 7

Abdominal FES to Improve

Respiratory Function in Sub-acute

Tetraplegia

“The scientific man does not aim at an immediate result. He does not expect that his

advanced ideas will be readily taken up. His work is like that of the planter - for the future.

His duty is to lay the foundation for those who are to come, and point the way. He lives and

labors and hopes.”

Nikola Tesla
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7.1 Summary

Previous research has shown that an Abdominal Functional Electrical Stimulation (AFES)

training program can improve the respiratory function of people with tetraplegia. The optimal

training protocols, in particular the training duration that achieves the greatest improvement

in respiratory function, have yet to be established. Additionally, findings outlined in the

previous chapter indicate that AFES may cause increased loosening of lung secretions. In this

chapter, a randomised crossover study is presented that investigates the feasibility of applying

an extended AFES training program with the sub-acute tetraplegic population. Three non

ventilator dependent tetraplegic patients participated in pilot experiments outlined in this

chapter. Forced Vital Capacity (FVC), Peak Expiratory Flow (PEF) and Forced Exhaled

Volume in one second (FEV1) were measured fortnightly, with and without AFES. The

feasibility of combining AFES with Mechanical Insufflation-Exsufflation (MI-E) was assessed

with one tetraplegic participant by measuring respiratory function during MI-E, again with

and without AFES. The application of AFES led to an acute increase in FVC, PEF and FEV1.

FVC, PEF and FEV1 increased throughout the study, with FVC increasing at a greater rate

during the AFES training period than during the control period. Combining AFES with

MI-E led to an acute increase in respiratory function at the majority of assessment sessions.

While the feasibility of these two novel protocols was demonstrated, additional participants

are required to fully assess the effectiveness of these interventions and establish the optimum

AFES training duration.

7.2 Background

Respiratory complications are a leading cause of morbidity and mortality for the tetraplegic

population [29]. People with tetraplegia have poor respiratory function and are unable to

generate an effective cough (see Section 1.4.3). Therefore, these respiratory complications

are primarily attributed to respiratory infections caused by the build up of secretions in the

lungs and airways. Previous work within our group [70] indicated that a three week AFES

training program led to a statistically significant increase in the FVC of 12 participants with

sub-acute and chronic tetraplegia. This increase in FVC was associated with improved cough

generation, which should reduce the likelihood of respiratory infection. The results of this

study showed that FVC had not plateaued by the end of the three week intervention period,

indicating that a longer training period may lead to further improvements in respiratory

function.

Clinically, the problem of secretion removal for the tetraplegic population is often addressed

by using tracheal suctioning, where suction is applied via a patients tracheostomy tube to

remove secretions. While tracheal suctioning can be used to successfully remove secretions,

it is uncomfortable for the patient, often misses the left bronchus and does not directly

loosen secretions. To aid the loosening of secretions assisted coughing, which is designed to
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simulate a cough, is often employed. Assisted coughing is usually delivered in one of two ways,

namely a manually assisted cough or Mechanical Insufflation-Exsufflation (MI-E). A manually

assisted cough involves a caregiver applying pressure to the thoracoabdominal cavity during

the exhalation phase of a voluntary cough. The requirement for a care giver to apply this

approach has cost and resource implications for the local health care provider [91, 92]. The

force used by the caregiver to generate an effective cough is subjective, leading to a variability

in the success of this approach. MI-E applies alternating positive and negative pressure to

the user’s airway to simulate a cough and loosen secretions, with suction applied after each

simulated cough to remove these secretions. This mechanical system provides a cheaper and

easier to implement alternative to manually assisted coughing. During the study presented

in Chapter 6 it was observed that AFES led to an increased need for secretion removal,

indicating that AFES was loosening lung secretions. The combination of AFES with MI-

E, hypothesised to lead to an additional improvement in cough generation and secretion

clearance compared to MI-E alone, is investigated here.

The aims of this study were i) to evaluate the feasibility and effectiveness of an

extended AFES training program to improve the respiratory function of sub-acute tetraplegic

participants and ii) to evaluate the feasibility of combining AFES with MI-E.

7.3 Methods

Four tetraplegic inpatients at the Queen Elizabeth National Spinal Injuries Unit (QENSIU)

were recruited for this study, with the participant demographics shown in Table 7.1. Ethical

approval was granted by the National Health Service West of Scotland Research Ethics

Committee (Local Code: 13/WS/0002). All procedures conformed to the Declaration of

Helsinki and all participants gave written informed consent. It should be noted that the

sub-acute phase of injury begins approximately four weeks after injury (see Section 1.2.3.2),

with three of the participants recruited for this study before this point. However, due to half

of the participants undergoing a four week control period before any intervention is applied,

coupled with the eight week duration of the intervention period (meaning participants will

only receive a small dose of the intervention in the acute period of injury), all patients in this

study will be regarded as sub-acute.

Participants were recruited according to the following inclusion and exclusion criteria.

Inclusion criteria:

1. Men or women over 16 years of age;

2. Reduced respiratory function as a result of tetraplegia;

3. No reliance on mechanical ventilation;

4. Good visual response to surface electrical stimulation of the abdominal muscles,

suggesting that lower motor neurons are intact.

Exclusion criteria:

1. Under 16 years of age;



CHAPTER 7. AFES IN SUB-ACUTE TETRAPLEGIA 140

Table 7.1: Participant demographics showing sex, age, injury level, American Spinal Injuries
Association Impairment Scale (AIS) level (see Section 1.2.3.2), weight and time post injury
at recruitment.

Participant Sex Age Injury AIS Weight Time post
(years) level level (kg) injury (days)

1 M 69 C6 A 74 26
2 M 19 C6 A 80 22
3 M 24 C5/6 C 83 19
4 M 20 C5 C 69 29

2. Female participants who are pregnant;

3. Significant history of autonomic dysreflexia;

4. No visual response to surface electrical stimulation of the abdominal muscles, suggesting

that lower motor neurons are not intact;

5. Unstable chest or abdominal injury;

6. Bulbar dysfunction;

7. Participant unable to give informed consent.

As with the clinical study outlined in Chapter 6, participants were recruited by consultants

at the QENSIU, based on the inclusion and exclusion criteria outlined above. However, the

ultimate decision for inclusion was based on the clinical judgement of the consultant.

7.3.1 Experimental Procedures

The study took the form of a randomised crossover design, consisting of a four week control

period and an eight week training period, with this training period followed by a two week

follow up/wash out period, resulting in a total duration of participation of 14 weeks. The

order of the control and training periods was randomised for each participant. At a pre-study

assessment, and at the end of every second week, an assessment session was conducted. An

effort was made to perform all procedures at the same time of day and all procedures were

performed at the participant’s bedside with the participant in a supine position. The study

timeline is shown in Figure 7.1 and described in further detail below.

7.3.1.1 Pre-study Assessment

After recruitment each participant took part in a pre-study assessment, which also served as a

familiarisation session. At this session AFES was applied to the rectus abdominis and external

oblique muscles to ascertain whether these muscles responded to electrical stimulation. If

a contraction was achieved the optimum stimulation current and pulsewidth required to

induce a visible contraction of these muscles was established. After the optimum stimulation

parameters had been established, a full assessment session (see Section 7.3.1.4) was conducted
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Figure 7.1: Study timeline indicating control (red), training (black) and follow up/wash out
(blue) periods. Assessment sessions are also indicated.

(denoted on Figure 7.1 as A0).

7.3.1.2 Training Sessions

AFES training sessions were conducted five times per week (Monday to Friday) for a total

of eight weeks. During each training session AFES was applied to the rectus abdominis and

external oblique muscles for 40 minutes, using the stimulation current established at the pre-

study assessment. Pulsewidth was adjusted throughout each training session to account for

muscle fatigue. The aim of these training sessions was to strengthen the abdominal muscles.

7.3.1.3 Follow up/Wash out Period

Each training period was followed by a two week follow up period. If the training period

preceded the control period the follow up also served as a wash out period, used to minimise

the impact of any carry over effect from the training to the control period. During this

follow up period no AFES training was performed, but a scheduled assessment session was

conducted at the end.

7.3.1.4 Assessment Sessions

Fortnightly assessment sessions were conducted throughout the 14 week study duration. At

each assessment session a series of FVC manoeuvres were performed with and without AFES,

with the success of each manoeuvre judged using the protocol described in Section 3.2. To

conduct an FVC manoeuvre participants were instructed to inhale to maximum lung capacity

and exhale as fully and as forcibly as possible, with verbal encouragement provided. This

manoeuvre was repeated up to five times, both with and without stimulation, to form one

run. A second run of FVC manoeuvres was performed after a rest period of approximately
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two minutes, providing a total of up to 10 stimulated and unstimulated FVC attempts in

each assessment session. Whether stimulation was applied during the first or second set of

five FVC manoeuvres within each run was randomised for each participant at each session.

FVC is the largest exhaled volume, of at least three successful FVC manoeuvres, which is

within 0.15 L of another attempt. From the FVC manoeuvres FEV1 and PEF were also

calculated. FEV1 is the largest volume recorded during the first second of an exhalation, of

at least three successful FVC manoeuvres, which is within 0.15 L of another attempt. PEF is

the largest exhaled flow rate, from at least three successful FVC manoeuvres, which is within

0.67 L/s of another attempt.

7.3.1.5 MI-E Sessions

Participant 1 also took part in fortnightly MI-E sessions (on alternate weeks to the assessment

sessions outlined above), at which cycles of MI-E were applied both with and without AFES.

Each MI-E cycle had an insufflation pressure of 20 cmH2O and an exsufflation pressure of

−20 cmH2O. The exsufflation period was three seconds, the insufflation period two seconds,

with a pause of two seconds between each cycle.

During each MI-E cycle the participant was asked to inhale as fully as possible during the

insufflation phase and exhale as fully and as forcibly as possible during the exsufflation phase.

This provided a measure of Exhaled Volume (EV). Following the protocol used by Gonalves

et al. [95], and the standard clinical protocol at the QENSIU, five insufflation-exsufflation

cycles were applied during both unassisted and AFES assisted MI-E, to form one run. This

provided five stimulated and five unstimulated measures of EV. A second run of MI-E was

then conducted after a rest period of approximately two minutes, providing a total of 10

stimulated and 10 unstimulated measures of EV at each assessment session. From these

10 breaths the participant’s maximum EV and the Peak Flow (PF) measured during these

exhalations were calculated. EV is the largest exhaled volume which is within 0.15 L of

another attempt. PF is the largest exhaled flow rate which is within 0.67 L/s of another

attempt. It should be noted that due to the short insufflation and exsufflation periods, FVC

and PEF, which require the participant to inhale and exhale as fully as possible without any

limitation put on the length of these periods, could not be recorded. Whether stimulation

was applied during the first or second set of five MI-E cycles within each run was randomised

at each session.

7.3.2 Equipment

During AFES training sessions the participant’s respiratory activity was detected using a

respiratory effort belt positioned around the abdomen. During assessment sessions respiratory

activity was recorded using a spirometer, which was attached to a mouthpiece. These methods

are described in further detail in Section 3.3. Data was collected and pre-processed using the
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methods described in Section 3.3.

7.3.2.1 MI-E

MI-E was applied using a commercially available MI-E system (Cough-Assist, Phillips

Respironics, Netherlands), via a mouthpiece, which was connected to the MI-E tubing as

shown in Figure 7.2. A nasal clip was used to prevent air leakage at the nose, with participants

instructed to form a seal at the mouth to prevent air leakage there. A pressure sensor was

fitted in line with the MI-E tubing to detect the insufflation and exsufflation periods of the

MI-E device. During the MI-E assessment sessions the participant’s respiratory function was

measured using a spirometer as described in Section 3.3. This spirometer was attached to a

respiratory flow head, which was fitted in line with the MI-E tubing as shown in Figure 3.8.

Figure 7.2: Mechanical Insufflation-Exsufflation (MI-E) system showing the MI-E device, the
tubing connecting the device with the user, a filter used to prevent secretion entering the
machine and the mouthpiece.

7.3.2.2 Stimulation System

The stimulation system described in Section 3.4.1 was used to apply AFES during this study.

Stimulation was applied in synchrony with the participant’s respiratory activity: i) during

training sessions using the signal from a respiratory effort belt positioned around the abdomen

ii) during assessment sessions using the signal from a spirometer, and iii) during MI-E sessions

using the signal from the pressure sensor fitted in line with the MI-E tubing (automatic

stimulation methods are explained in more detail in Section 3.4.3). Electrodes were positioned

at the motor points of the rectus abdominis and external oblique muscles, located using

the protocol outlined in Chapter 5. The stimulation current required to achieve a visible

muscle contraction at the pre-study assessment (with a pulsewidth of 100 µs) was used at all
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subsequent sessions and is shown for each participant in Table 7.2. Stimulation pulsewidth

was varied between 100 and 500 µs within each session to account for muscle fatigue.

Table 7.2: Stimulation currents applied to the External Oblique (EO) and Rectus Abdominis
(RA) muscle groups to achieve a visible contraction for each participant at the pre-study
assessment session. These stimulation currents were used at all subsequent sessions.

Participant Right EO Left EO Right RA Left RA
(mA) (mA) (mA) (mA)

1 40 30 60 40
2 80 80 80 80
3 30 30 30 30
4 50 50 35 35

7.3.3 Analysis and Outcome Measures

The primary outcome measure in this study was respiratory function, which was quantified

using FVC, PEF and FEV1. Individual results recorded from each participant are presented

as FVC, PEF and FEV1, with FVC and FEV1 measured in litres (L) and PEF measures

in litres per second (L/s). Group results are normalised by weight and are presented as

weight corrected FVC (FVC/kg), weight corrected PEF (PEF/kg) and weight corrected

FEV1 (FEV1/kg).

Participant 2 withdrew from the study, and their results were not used for analysis. Each

of the remaining three participants took part in eight assessment sessions, giving a total of

24 assessment sessions. Conducting fortnightly assessment sessions over the 14 week study

duration provided seven longitudinal comparisons for each participant (i.e. A0 compared to

A1), giving a total of 21 longitudinal comparisons. The longitudinal change in respiratory

function over the total study duration, the eight week intervention period and the four week

control period was assessed by calculating i) the absolute change over the period ii) the

percentage change over the period, defined as the change over the period divided by the

initial value, and iii) the absolute change normalised by the total number of weeks within

each period.

The unstimulated FVC data recorded during the 24 assessment sessions was tested for

normality using the Shapiro-Wilk test. Based on the results of this test a two-way analysis

of variance (ANOVA) was used to test for longitudinal changes in FVC/kg, PEF/kg and

FEV1/kg. A one-way ANOVA was used to test for a statistically significant difference

in the FVC/kg, PEF/kg and FEV1/kg recorded at each assessment session. In the case

of significance (p-value of less than 0.05), post hoc multiple comparisons were performed

using the Tukey-Kramer honest significant difference test to identify statistically significantly
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different pairs. As FVC is the maximum value recorded at an assessment session, it

was not possible to test for a statistically significant difference between the stimulated

and unstimulated FVC recorded at any individual assessment session, or for longitudinal

changes in stimulated and unstimulated FVC, for each participant. On the advice of clinical

colleagues, it was agreed that an increase in FVC of 200 mL was regarded as clinically

significant.

For the participant who took part in the MI-E session their respiratory function was quantified

using EV and PF, which were measured in L and L/s, respectively.

7.4 Results

Participant 2 complained of abdominal discomfort after the pre-study assessment session

(discussed in more detail in Section 7.5) and was removed from the study at this point. Their

data was not used for analysis.

The results of a Shapiro-Wilk test showed that 21 (87.5%) of the unstimulated FVC data sets

were normally distributed, validating the use of a parametric test for significance testing.

7.4.1 AFES Training

In this randomised crossover design, Participant 1 completed the training period before the

control period, while Participants 3 and 4 completed the control period first. Participant 1’s

stimulated and unstimulated FVC, PEF and FEV1, recorded at each of the eight assessment

sessions, are shown in Figure 7.3, with the data recorded from Participants 3 and 4 shown in

Appendix C. Participant 1’s FVC and PEF increased over the study duration, while FEV1

was found to be more variable.

Stimulated FVC was found to be clinically significantly greater than unstimulated FVC at

five of the 24 (20.8%) assessment sessions and clinically significantly smaller at three of the 24

(12.5%) assessment sessions. Stimulated FVC increased clinically significantly during eight

of the 21 (38.1%) combined fortnights of participation and decreased clinically significantly

during three (14.3%) of the fortnights of participation. Of these increases, six (75.0%)

occurred during AFES training, while one (33.3%) of the decreases occurred during AFES

training. Unstimulated FVC was found to increase clinically significantly during nine (42.9%)

of the 21 combined fortnights of participation and decrease clinically significantly during four

(19.0%) of the fortnights of participation. Of these increases, eight (88.9%) occurred during

AFES training, while two (50%) of the decreases occurred during AFES training.

The grouped changes in respiratory function over the 14 week study duration, as well as over

the four week control and eight week AFES training periods, are shown in Table 7.3. All

measures of respiratory function increased during the study. The effect size (see Section 3.5.4)

for the changes over the entire study duration, as well as during the control and training
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Figure 7.3: Forced Vital Capacity (FVC), Forced Exhaled Volume in one second (FEV1)
and Peak Expiratory Flow (PEF) of Participant 1 recorded at eight fortnightly assessment
sessions, where a blue line represents stimulated, and a red line unstimulated, breaths. Solid
black line along the bottom of the plot represents the eight week period of AFES training
and no line indicates no training.

periods, is shown in Appendix C, with a large effect size observed for all measures. When

taking into account the shorter (four week) control period, stimulated and unstimulated

FVC/kg increased to a greater degree during the AFES training period than the control

period, while stimulated and unstimulated PEF/kg and FEV1/kg increased to a greater

degree during the control period. None of the longitudinal changes in respiratory function

observed over the whole study duration, over the control period or over the training period,

were statistically significant. Due to the small number of participants who completed this

study it was not possible to assess whether respiratory function plateaued within the study

duration.

7.4.2 AFES with MI-E

Participant 1 also took part in eight MI-E assessment sessions. Figure 7.4 shows Participant

1’s EV and PF recorded during unassisted and AFES assisted MI-E at each of the eight MI-E

sessions.
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Table 7.3: Change (mean ± standard deviation) in Stimulated (Stim) and Unstimulated
(Unstim) Weight Corrected Forced Vital Capacity (FVC/kg), Weight Corrected Peak
Expiratory Flow (PEF/kg) and Weight Corrected Forced Exhaled Volume in one second
(FEV1/kg), calculated from three participants, over the 14 week study duration, the eight
week AFES training period and the four week control period. Results are presented as the
absolute change and the change normalised per week for each period. Baseline values for
each measurement are also given.

Variable Stim Baseline Mean change Mean change Mean change
over study over control over training

Absolute
FVC/kg (mL/kg) Stim 29.8 ± 3.5 14.1 ± 7.5 4.9 ± 4.3 10.9 ± 5.1

Unstim 28.5 ± 5.5 15.4 ± 9.7 4.9 ± 6.9 12.2 ± 5.2

PEF/kg (mL/kg/s) Stim 27.6 ± 7.9 24.5 ± 27.1 12.4 ± 16.5 11.8 ± 10.3
Unstim 26.5 ± 6.9 27.6 ± 26.3 12.9 ± 16.0 12.0 ± 9.6

FEV1/kg (mL/kg) Stim 20.9 ± 5.4 11.6 ± 14.9 5.1 ± 7.8 7.8 ± 7.4
Unstim 18.2 ± 4.7 15.0 ± 14.0 8.6 ± 7.2 8.5 ± 5.8

Normalised per week
FVC/kg Stim - 1.0 ± 0.5 1.2 ± 1.1 1.4 ± 0.6

(mL/kg/week) Unstim - 1.1 ± 0.7 1.2 ± 1.7 1.5 ± 0.6

PEF/kg Stim - 1.7 ± 1.9 3.1 ± 4.1 1.5 ± 1.3
(mL/kg/s/week) Unstim - 2.0 ± 1.9 3.2 ± 4.0 1.5 ± 1.2

FEV1/kg Stim - 0.8 ± 1.1 1.3 ± 2.0 1.0 ± 0.9
(mL/kg/week) Unstim - 1.1 ± 1.0 2.1 ± 1.8 1.1 ± 0.7

When comparing the results achieved with MI-E combined with AFES to those achieved

with MI-E alone the application of AFES led to an acute increase in EV and PF at six of the

eight (75%) assessment sessions. The results recorded at assessment four (A4) appeared to

be outliers, with the EV and PF recorded at that assessment much greater than the results

obtained at any other assessment session. However, these results did meet the repeatability

criteria outlined in the ATS standards (see Section 3.2) and can therefore be assumed to have

been recorded correctly.
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Figure 7.4: Stimulated (blue) and unstimulated (red) Exhaled Volume (EV) and Peak Flow
(PF) for Participant 1 over the 14 week study duration when using MI-E. The solid black
line along the bottom of the plot indicates the eight week period of AFES training.

7.5 Discussion

The aims of this study were i) to evaluate the feasibility and effectiveness of an

extended AFES training program to improve the respiratory function of sub-acute tetraplegic

participants and ii) to evaluate the feasibility of combining AFES with MI-E.

While ethical approval to recruit 10 participants for this study has been granted four

participants were recruited within the time frame of this thesis. Participant 2 withdrew from

the study after the familiarisation session due to abdominal pain. It is believed this pain

was caused by this participant’s regular rehabilitation therapy, rather than the intervention

applied here. Therefore, only three participants completed AFES training. Additionally,

due to this time frame and a number of practical problems, AFES combined with MI-E was
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only tested with one participant. These practical problems are discussed in further detail in

Section 7.5.3.

7.5.1 AFES Training

The feasibility of using an extended AFES training program with the sub-acute tetraplegic

population was demonstrated by the 100 percent compliance of the three participants to the

training sessions.

Acute Effect AFES led to an acute, clinically significant (greater than 200 mL), increase

in FVC at 21 percent of the assessment sessions.

Longitudinal Effect FVC, PEF and FEV1 increased throughout the study, however only

unstimulated FVC increased at a faster rate during the AFES training period than the control

period. While this may suggest that the improvements in PEF and FEV1 observed in this

study can be attributed more to natural recovery than the training intervention, anomalies

within this study could explain the apparent lack of training effect. As two of the three

participants completed the control period before the training period, with natural recovery

expected to be greatest in the early weeks of the study, the natural recovery observed during

the control period may mask any training effect. This natural recovery was particularly

evident in Participant 3 (see Appendix C) whose unstimulated FVC (45%), PEF (164%)

and FEV1 (128%) greatly increased during the control period before increasing to a lesser

degree (FVC 28%, PEF 44% and FEV1 37%) during the intervention period. It was found

that for Participant 1, who completed the AFES training period first, FVC, PEF and FEV1

increased by 33, 8 and 10 percent during the intervention period and 9, −2 and 34 percent

during the control period and for Participant 4, who completed the control period first, FVC,

PEF and FEV1 increased by 53, 48 and 29 percent during the intervention period and −2,

16 and 27 percent during the control period. These results, which show a greater increase in

FVC and PEF during the intervention period than the control period, suggest that there may

be a training effect from the intervention. The large increase in the respiratory function of

Participant 3 over the control period may mask this training effect in the grouped data. The

recruitment of additional participants is required to clarify the presence of this training effect.

McLachlan et al. [70] demonstrated that a three week AFES training program led to a

statistically significant increase in FVC with 12 tetraplegic participants. In Chapter 6

a statistically significant increase in VC was demonstrated over an eight week period,

where AFES was applied on alternate weeks with nine acute, initially ventilator dependant,

tetraplegic participants. In this study no statistically significant differences in longitudinal

measures of respiratory function were found. This can be attributed to low participant

numbers.
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While stimulated and unstimulated FVC only increased by a clinically significant amount

between 38 and 43 percent of the assessment sessions respectively, 75.0 and 88.9 percent of

these improvements occurred during weeks when AFES training was applied. This suggests

that while it is not always possible to achieve a clinically significant improvement in FVC in

a two week period, the probability is greater when AFES training is applied. One motivation

for this study was to establish the optimum duration for AFES training, denoted as the point

at which respiratory function begins to plateau. Due to the small number of participants it

was not possible to establish this optimum training duration.

Ethical approval has been granted for a total of 10 participants to take part in this study,

however only four were recruited, and three completed the study, within the time frame of

this thesis. The continuation of the study with an additional six participants may make it

possible to demonstrate statistically significant gains in respiratory function over the AFES

training period.

7.5.2 AFES with MI-E

The feasibility of combining AFES with MI-E was demonstrated by the successful integration

of the technology at the eight MI-E sessions. At these assessment sessions it was possible

to measure EV and PF during MI-E, with and without AFES. The results show that at

75 percent of the MI-E sessions stimulated EV and PF were greater than unstimulated EV

and PF. This suggests that the addition of AFES to MI-E may provide an additional boost

to cough power. This should lead to more effective secretion clearance compared to the

application of MI-E alone. As AFES is non-invasive, the integration of AFES with MI-E is

worth considering for all future uses of MI-E. The development of an inexpensive and practical

AFES device, which can easily be synchronised with MI-E and used by a caregiver, would

make this even more practical. The development of such a device is discussed in Section 8.5.

The EV and PF results recorded at MI-E session four (A4) were very different to the results

recorded at all other MI-E and assessment sessions. The fact that these values met the

ATS/ERS guidelines, and the fact the stimulated and unstimulated values are similar, suggest

that this was not a measurement error. One possibility is that the MI-E device was on a

different setting at this session compared to the other sessions. As the controls for this device

are analogue it is difficult to guarantee the same pressures were applied at each MI-E session.

It is also possible that the participant managed to form a different/better seal around the

mouthpiece at this session, although it is unlikely this would cause such a large deviation in

the results.

A large difference was observed between the PF measured with and without MI-E. This is

attributed to the spirometer at the MI-E sessions measuring the PF produced by the MI-E

device, rather than the PF generated by the participant. This is due to the large change in

flow rate when MI-E alternates between positive and negative pressure. As the spirometer
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needs to be placed in line with the MI-E tubing to accurately measure flow this can not be

avoided. Therefore, a true measure of a persons PF can not be established when measuring

PF from MI-E. Additionally, when measuring respiratory function the participant was unable

to inhale to total lung capacity and exhale fully due to the short inhalation and exhalation

duration used with an MI-E device. This means that a true measure of FVC can not be

obtained when measuring the volume exhaled during MI-E.

7.5.3 Limitations and Future Work

One of the greatest challenges when conducting a study with the sub-acute tetraplegic

population is effective patient selection. This is due to the vastly different rates of recovery

and levels of respiratory function observed in this population. In this study the inclusion

criteria was sub-acute tetraplegic patients with reduced respiratory function, as judged

by a consultant at the QENSIU. However, due to the limited number of patients at the

QENSIU, and a fear of excluding otherwise eligible participants, no quantitative measure

of this reduction in respiratory function was used. If conducting a larger trial, with access

to greater patient numbers, it may be worth considering the use of a quantitative measure

of reduction in respiratory function to enable greater patient matching in this population.

Such patient matching may reduce some of the intersubject variability in respiratory function

observed in this study.

To fully compare the effectiveness of combining AFES with MI-E it would be desirable to also

compare respiratory function during MI-E combined with manually assisted coughing (see

Section 7.2). However, as the force required to successfully apply a manually assisted cough

is subjective the same caregiver should apply all manually assisted coughs in a longitudinal

study. Due to shift rotations it was not possible to have the same caregiver attend all

assessment sessions in this study and a comparison between the use of AFES and manually

assisted coughing with MI-E was not made.

Participant 2, who did not complete the study, had a large amount of edema in the abdomen

which made it difficult to achieve a strong muscle contraction using AFES, requiring around

50 percent more current to achieve a visible muscle contraction compared to the other

participants (see Table 7.2). This agrees with the findings in Chapter 6 and is discussed

further in Section 8.4.

The effectiveness of combining AFES with MI-E was only assessed with one participant. This

was for two reasons. Firstly, it was originally intended only to use MI-E with participants

who were receiving this treatment as part of their regular rehabilitation. However, MI-E was

only routinely being used in the QENSIU with ventilated patients, who were not included

in this protocol. This meant that the device and experience of MI-E was unfamiliar for the

participant in this study. The use of MI-E with participants who have experience using the

device may improve the results. Secondly, the participant indicated that they did not feel
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that they were always actively contributing during MI-E. As the feasibility of combining

AFES with MI-E had been shown, and the novel use of a pressure sensor to automatically

synchronise AFES with MI-E had been successfully demonstrated, no further assessments

were carried out. A larger trial that measures the difference between FVC with AFES assisted

and unassisted MI-E, and incorporates manually assisted coughing, may further demonstrate

the effectiveness of this technique.

A further limitation of this study is that an FVC test, from which the results were derived,

relies on the maximum effort of the participant. It is possible that participants did not make

as much effort at certain assessment sessions, which may account for some of the variability

observed in the results. Finally, a control period of four weeks and a training period of eight

weeks were used in this study. These durations were chosen as it was felt that, based on

the results observed by McLachlan et al. [70], a training period of eight weeks may lead to

a plateau in respiratory function. Due to the small number of participants recruited in this

study it was not possible to establish whether such a plateau had occurred. Although it would

have been desirable to also have an eight week control period, it was highlighted at the study

conception phase that this would have increased the study duration to 18 weeks, and would

have led to some participants being discharged from the QENSIU before the final assessment

sessions. Rather than have incomplete results, it was decided to shorten the duration of the

control period. In further experiments it may be beneficial to increase the duration of the

control period.

7.6 Conclusion

This study has shown that FVC, PEF and FEV1 increase in the weeks after a spinal cord

injury, with FVC increasing at a greater rate during an eight week AFES training program

than during a four week control period. It was also shown that AFES could be combined

with MI-E to generate an acute increase in respiratory function compared to MI-E alone.

However, to show statistical significance, more participants are required.
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Chapter 8

Discussion and Recommendations

for Future Work

“I think that in the discussion of natural problems we ought to begin not with the Scriptures,

but with experiments, and demonstrations.”

Galileo Galilei
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8.1 Summary

The main findings of this thesis are summarised in this chapter. An evaluation of the

techniques and protocols developed to improve the effectiveness of Abdominal Functional

Electrical Stimulation (AFES) in improving the respiratory function of people with tetraplegia

is provided. This chapter also outlines possible future directions for research involving the use

of AFES as a treatment modality. Important outstanding issues that require to be addressed

before AFES becomes a standard clinical technique are discussed.

8.2 Evaluation of AFES to Improve Respiratory Function

The patients who would benefit most from the application of AFES have yet to be clearly

identified. AFES is commonly used with any tetraplegic patient, however the response from

patient to patient can vary significantly. The difference in response is further complicated

by the lack of common protocol between AFES studies, especially with regard to electrode

placement as described in Section 2.4.4.3. While motor point charts exist for many muscle

groups [155], relatively little attention has been given to mapping the abdominal motor

points. In Chapter 5 the use of Neuromuscular Electrical Stimulation (NMES) to establish

the position of the motor points of the abdominal muscles is described. By using this

technique the motor points of the abdominal muscles were quickly and easily detected in

both able bodied and tetraplegic participants. These motor point positions were found to

differ between participants, suggesting that empirically derived electrodes positions are too

general to accurately target the motor points and achieve the optimum muscle contraction.

In this study it was also established that the position of the motor points could be detected

with good repeatability, suggesting that this technique only needs to be performed once for

each user. If future AFES studies were to identify the motor points of the abdominal muscles

using NMES, application of AFES at these motor points would help achieve the optimum

muscle contraction. This should lead to the greatest improvement in respiratory function and

should ensure a consistent electrode placement across studies. While the results achieved in

different AFES studies is influenced by a wide range of factors, and is more complex than

just ensuring that electrodes are placed in the same location, a consistent electrode placement

will remove one variable for these studies, enabling an easier comparison.

8.2.1 Clinical Studies

In this thesis it has been shown that AFES is a feasible technique for use with acute ventilator

dependant (see Chapter 6) and sub-acute, non-ventilator dependant, tetraplegic patients (see

Chapter 7). It was also shown that AFES led to an acute and a longitudinal increase in

respiratory function.
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8.2.1.1 Acute Effect

In the two clinical studies conducted in this thesis, documented in Chapters 6 and 7, it

was shown that the application of AFES led to an acute increase in Vital Capacity (VC)

and Forced Vital Capacity (FVC) compared to unassisted measurements. This agrees with

Langbein et al. [71] and Lee et al. [122] who both found an acute increase in FVC during

the application of AFES. In Chapter 6 it was also shown that that the application of AFES

led to an acute increase in Tidal Volume (VT ), agreeing with previous studies that also

demonstrated acute improvements in VT during the application of AFES [72, 120, 121].

This indicates that the use of AFES can lead to an immediate improvement in respiratory

function. This could be beneficial for tetraplegic patients who require an acute improvement

in respiratory function to aid cough generation or combat a respiratory infection.

It should be noted that results in Chapter 6 are expressed as VC rather than FVC as,

at early assessment sessions, participants could not always exhale as ‘forcibly as possible’

due to sedation levels and poor respiratory muscle coordination. However, as explained in

Section 1.4.2, there is very little difference between the values of VC and FVC. It should

also be noted that for the purpose of these tests patients were assumed to be inhaling to the

maximum lung volume that they could achieve, denoted as their functional lung capacity,

rather than their total lung capacity which is typically used for an FVC and VC manoeuvre

with the able bodied population. Inhalation to functional lung capacity provided both a

measure of the impairment of the respiratory muscles and the improvement in respiratory

function over the study duration.

8.2.1.2 Longitudinal Effect

In Chapters 6 and 7, VC and FVC were found to increase over the study duration,

agreeing with previous studies that used an AFES training protocol with the tetraplegic

population [70, 73, 124]. The increase in Peak Expiratory Flow (PEF) and Forced Exhaled

Volume in one second (FEV1) observed in Chapter 7 also agrees with these previous studies.

The clinical studies described in Chapters 6 and 7 included control periods, used to estimate

the effect of natural recovery. This was necessary as Liaw et al. [113] showed a statistically

significant increase in FVC (27%) and FEV1 (21%) over a six week period for tetraplegic (C4

to C7) participants who were less than six months post injury and received no intervention.

While they also found an increase in PEF (23%), this was not statistically significant. These

increases in FVC, FEV1 and PEF are equivalent to 4.5, 3.5 and 3.8 percent per week. In

Chapter 7 it was found that unstimulated FVC, FEV1 and PEF increased by an average of

3.9, 5.9 and 7.4 percent per week and in Chapter 6 unstimulated VC was found to increase

by an average of six percent per week over the eight week study duration. While these results

were found to vary from week to week and between participants, they suggest that the

improvements in respiratory function reported in this thesis may be larger than those caused

by natural recovery alone. However, it is difficult to effectively quantify the intervention effect
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with the small number of participants recruited for the studies documented in this thesis.

In clinical studies the most common way to estimate the effect of natural recovery during

an intervention protocol is to conduct a Randomised Control Trial (RCT) which includes a

control group, with the changes in the intervention and control groups compared. A number

of issues surround the use of RCTs in studies that recruit patients with Spinal Cord Injury

(SCI). Firstly, the large variations in function and recovery after SCI make it difficult to

establish control and intervention groups that have similar characteristics, especially in the

case of respiratory function. When conducting studies that involve an intervention, such

as AFES, which has been shown to be potentially useful, and importantly not harmful,

there is also an ethical concern as to whether denying the control group this treatment is

ethically responsible. Therefore, RCTs may not be the most suitable design for studies in

tetraplegia, with a randomised cross-over design (as used in Chapter 7) potentially more

appropriate. Due to the low number of participants available for the studies documented in

this thesis (see Section 8.4), each participant acted as their own control. By conducting similar

multicentre studies, which would provide access to more participants, it may be possible to

include a control group. Large scale clinical trials investigating the effect of AFES training on

respiratory function have yet to be conducted, with the only such study conducted by Cheng

et al. [124] recruiting only 13 participants for each of the intervention and control groups.

When investigating the effect of an extended AFES training program in Chapter 7, FVC

was found to be the only measure of respiratory function that increased to a greater extent

during an AFES training period than during the control period. As explained in Section 7.5,

the respiratory function of one participant in this study improved significantly during the

control period, with a much greater improvement in respiratory function during this period

than observed for the other two participants who also completed this study. When comparing

the group results it is possible that this participants large increase in respiratory function

during the control period is masking any increase in respiratory function that was caused by

the intervention. The recruitment of additional participants should clarify this effect. When

applying AFES with acute ventilator dependent tetraplegia patients in the study documented

in Chapter 6 VT was found to increase over the study duration, although this change was

not found to be statistically significant. Stimulated VT was the only measure of respiratory

function that was found to increase to a greater extent during weeks where AFES training

was applied compared to control weeks. As explained in Section 6.6, the apparent lack of

difference between intervention and control weeks may be caused by an acute carry over effect

from AFES training, rather than a lack of an intervention effect. Further investigations will

be required to quantify this carry over effect.

AFES training was found to lead to a clinically significant (greater than 200 mL) increase in

stimulated and unstimulated FVC between 33.3 and 37.5 percent of assessment sessions in

Chapter 7 and between 21.1 and 23.9 percent of assessment sessions in Chapter 6. In both

studies the majority of these clinically significant increases in stimulated and unstimulated
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FVC were found to occur during weeks where AFES training was applied (75.0 and 88.9

percent in Chapter 7 and 60.0 and 58.8 percent in Chapter 6). This provides another

indication that there may be a positive longitudinal training effect from AFES with the

tetraplegic population.

In Chapter 6 the use of an AFES training program with the acute ventilator dependant

tetraplegic population was shown to decrease the time that the participants were dependant

on mechanical ventilation by an average of 11 days compared to matched controls. While this

study only recruited tetraplegic participants in the acute stage of injury, a single participant

case study, also reported in Chapter 6, investigated the use of an AFES training program to

assist a chronic tetraplegic participant to wean from mechanical ventilation. This case study

demonstrated that AFES was a feasible technique for assisting chronic ventilator dependant

tetraplegics, who retain some diaphragm function, in weaning from mechanical ventilation.

The time this participant spent breathing independently of mechanical ventilation increased

from zero minutes per day before a three week AFES training intervention, to 90 minutes

per day after. While these results suggest that an AFES training program may be suitable

to assist all tetraplegics who retain diaphragm function to wean from mechanical ventilation,

further work is required to establish the effectiveness of this treatment modality with the

chronic tetraplegic population.

8.2.1.3 Technological Aspects

In Chapter 4 it was shown that a respiratory effort belt positioned around the chest could be

combined with a Support Vector Machine (SVM) algorithm to classify respiratory activity,

with an acceptable classification performance compared to that achieved using the signal

from a spirometer. The integration of this algorithm into an AFES device would allow the

correct stimulation parameters for different breath types to be automatically applied at the

correct point in the respiratory cycle. It was also shown in Chapter 4 that the signal from

a respiratory effort belt positioned around the abdomen could be used to detect the start

of exhalation at approximately the same time as when using the signal from a spirometer,

indicating that this sensor could be used to automatically apply AFES at the correct point in

the respiratory cycle. In Chapters 6 and 7 the respiratory effort belt used to detect respiratory

activity had to be placed around the abdomen. This was because many acute tetraplegics

require a halo or back brace to stabilise their SCI, limiting access to their chest. Therefore, the

combination of a respiratory effort belt positioned around the chest with a SVM may not be

a suitable method for classifying the respiratory activity of the acute tetraplegic population.

Despite this, the signal from the respiratory effort belt positioned around the abdomen was

used to automatically apply stimulation at the start of exhalation in Chapters 6 and 7, with

high accuracy. For the clinical application of AFES training, where it can be assumed all

breaths will be quiet breaths, the automatic application of AFES using the signal from a

respiratory effort belt placed around the abdomen could be integrated into an automatic
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AFES system.

Pressure ulcers, or pressure sores, develop when pressure is applied to the same are of

skin over an extended period of time [170]. To avoid the development of pressure ulcers

tetraplegic patients are normally turned in their bed every few hours, changing their centre

of pressure. This meant that the respiratory effort belts used to record respiratory activity

in the clinical studies documented in this thesis were applied with tetraplegic patients in

a number of different positions, ranging from the patient lying on their pelvis through to

the patient being in a fully supine position. While it was shown in Section 3.3.3.1 that the

largest signal magnitude was observed when the respiratory effort belt was under the greatest

displacement, the pre-processing methods employed (discussed in Section 3.3.2) led to a very

low level of signal noise. Therefore, the position of the patient, and hence the position of the

respiratory effort belt, did not affect its performance for the automatic application of AFES.

The successful automatic application of AFES indicates that the patient’s respiratory activity

was detected successfully, no matter their position. The statistical classification algorithm,

described in Chapter 4, relies on successful detection of respiratory activity. Therefore, it

is believed that the patient position would not affect the classification performance of this

algorithm. However, this hypothesis remains to be tested with tetraplegic participants.

Both of the clinical studies described in this thesis (Chapters 6 and 7) included the use of

the motor point detection technique described in Chapter 5 to select the optimum electrode

position. The inclusion of this technique in all AFES studies should achieve a consistent

muscle contraction and enable an easier comparison of the effectiveness of the intervention.

Positive findings in such studies would add support to the use of AFES as a standard clinical

intervention.

In summary the use of AFES to improve the respiratory function of the tetraplegic patient

group is non-invasive and easy to apply, making it suitable for a clinical setting. Further

evidence of the effect of AFES on respiratory function is required before it becomes an

accepted treatment modality.

8.2.2 Respiratory Complications

Of the 12 tetraplegic participants who received AFES training in this thesis, only one (8%)

developed a respiratory complication (pneumonia). These participants were recruited in the

acute or sub-acute stage of injury, with nine of these participants observed for eight weeks

(mean 22 ± 12 days post injury [range 10 to 39 days]) and three observed for 14 weeks

(mean 24 ± 4 days post injury [range 19 to 29 days]). This respiratory complication rate

is much lower than that observed in other studies with the acute tetraplegic population.

Fishburn et al. [79] reported that of 30 tetraplegic patients studied in the first 30 days post

injury, 17 (57%) suffered from a respiratory complication while Jackson and Groomes [80]

report that in the first six weeks after injury 175 of the 261 (67%) tetraplegic participants
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studied suffered from a respiratory complication. While these studies began observing the

participants slightly earlier than in this thesis, none of the participants recruited in this

thesis had, to date of recruitment, developed a respiratory complication. The low numbers

of respiratory complications reported here agrees with the finding of Cheng et al. [124]

who observed a reduction in the number of respiratory infections after an AFES training

program. This suggests that the improvements in respiratory function achieved using an

AFES training protocol may be beneficial in preventing respiratory infection and subsequent

respiratory complications. It should be noted that patients who were severely unwell were not

recruited for the studies in this thesis, which may reduce the observed number of respiratory

complications.

8.3 Clinical Significance

The results of this thesis have led to AFES shortly being introduced as a standard treatment

to assist ventilator weaning for acute ventilator dependent tetraplegic participants at the

Queen Elizabeth National Spinal Injuries Unit (QENSIU). The use of AFES to assist all

chronic ventilator dependent tetraplegics who retain some diaphragm function to wean from

mechanical ventilation is also being piloted. This clinical implementation makes use of some

of the technology described in Chapter 4 and the motor point detection technique outlined in

Chapter 5, as well as the clinical protocols developed in Chapters 6 and 7. The results in this

thesis add further evidence to support the clinical introduction of AFES. Despite this, AFES

continues to suffer from a poor clinical uptake. Reasons for this are discussed in Section 8.5.

8.4 Limitations of AFES in People With Tetraplegia

In many critically ill patients there is a marked increase in body water which leads to an

increase in extra cellular fluid volume, termed edema [168]. A study by Harper et al. [171]

showed that when using FES to induce a contraction of the wrist muscles, stimulation current

had to be approximately doubled in the presence of edema. It is hypothesised that this

increase is caused by edema decreasing the current density of the stimulation and, in turn,

decreasing the amount of charge reaching the nerve. During the clinical studies documented

in Chapters 6 and 7 three participants who had a large amount of edema in the abdomen were

found to be poor responders to AFES. Harper et al. describe a significant lowering of the

current required to induce a contraction in the presence of edema when pressure was applied

to the stimulating electrodes. It is believed that this is because when pressure is applied to

the electrodes it brings the nerve closer to the stimulating electrode, increasing the charge

delivered to the nerve resulting in a greater muscle contraction. This finding was supported

in the three poor responders in this thesis, with the application of pressure to the stimulating

electrodes found to induce a muscle contraction at lower stimulation currents than when

pressure was not applied. In the clinical study documented in Chapter 6 a stimulation current

of approximately 100 mA was required to achieve a muscle contraction with the participant
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who had edema. The neuromuscular stimulator used in this thesis is limited to 120 mA.

Therefore, in the presence of edema a muscle contraction may not be able to be achieved in

all patients, with the presence of adipose tissue heightening this effect. Additionally, such

high stimulation currents are likely to activate the pain receptors in incomplete patients who

retain sensation in the abdomen, resulting in the application of AFES being painful. The

presence of abdominal edema may need to be considered as an exclusion criteria in future

AFES studies.

For FES to initiate a muscle contraction the Lower Motor Neurons (LMNs), which carry

motor information from the spinal cord to a muscle (see Section 1.3 for more information),

must be intact. If the LMNs are not intact the pathway between the nerve and a muscle

is damaged. This means that the nerve can no longer be electrically stimulated to cause a

muscle contraction, with the muscle said to be denervated [51]. One participant in Chapter 6

was found to be a non responder to AFES. It was later discovered that this participant

had LMN damage. As LMN damage is often difficult to detect in the acute stage of injury,

and as function can sometimes return after time in SCI when the LMNs are not damaged

(largely attributed to spinal shock), this participant was followed up for eight weeks, with

AFES being applied on a weekly basis. Over this eight week period no abdominal muscle

contraction was achieved when using AFES and the participant never recovered the ability

to breathe independently of mechanical ventilation by the time they were discharged from

hospital. With this participant the presence of LMN damage was not established until a

considerable time after injury. Therefore, the use of LMN damage as an exclusion criteria

for AFES studies with the acute tetraplegic population may not be practical. While there

are stimulators available that can stimulate denervated muscle by stimulating the muscles

directly [172], as opposed to the nerve, they have not been used to apply AFES in the case of

LMN damage. This may be a potential solution for the use of AFES for patients with LMN

damage.

It is well known that the use of Functional Electrical Stimulation (FES) leads to faster

muscle fatigue than natural recruitment (see Section 1.5.1 for further explanation). To allow

for the effect of abdominal muscle fatigue within the clinical studies outlined in this thesis,

stimulation pulsewidth was increased manually by approximately 20 µs per five minutes of

AFES training. There is currently no automatic way to detect this fatigue in the context of

an AFES system, meaning that an automatic AFES system would rely on either a manual

intervention or time signal to increase pulsewidth. Al-Mulla et al. [173] suggest ultrasound

or electromyography (EMG) signals combined with a statistical classification algorithm as a

potential solution for the real-time detection of muscle fatigue. Spivak et al. [90] used an

EMG signal from the respiratory muscles to automatically apply AFES during exhalation to

assist coughing. It may be that this EMG signal changes over time due to muscle fatigue,

and that a statistical classification algorithm, such as that developed in Chapter 4, could be

used to automatically adjust stimulation pulsewidth to account for respiratory muscle fatigue



CHAPTER 8. DISCUSSION AND FUTURE WORK 161

in the context of an AFES system.

One of the greatest challenges in this thesis was participant recruitment. As can be seen in

Figure 8.1, recruitment of the 10 participants in Chapter 6 took 20 months, with large breaks

in recruitment. This is a problem inherent with studies involving the SCI population. As

outlined in Section 1.2.1 there are around 100 patients admitted to the QENSIU per year,

with a low number of these patients requiring mechanical ventilation. Due to these patients

having a large number of comorbidities and a poor state of health, coupled with the number of

patients who only require ventilation for a few days, the recruitment rates seen in Chapter 6

were in line with expectation. The benefit of AFES may be further highlighted by greater

participant recruitment. To achieve this it may be necessary to establish multicentre trials,

as the patient numbers seen in single SCI units are insufficient for such studies.
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Figure 8.1: Participant recruitment for the studies reported in Chapter 6 and 7. Recruitment
for the study reported in Chapter 6 started in January 2012 and recruitment for the study
reported in Chapter 7 started in April 2013.

8.5 Future Work

“The inventor looks upon the world and is not contented with things as they are. He wants

to improve whatever he sees, he wants to benefit the world; he is haunted by an idea. The

spirit of invention possesses him, seeking materialization.”

Alexander Graham Bell

This thesis adds further support to the efficacy of AFES to improve respiratory function, yet

the uptake of AFES with the tetraplegic population is still very low. While larger studies

would add weight to support the use of AFES, the number of eligible participants for studies

within any one spinal injuries unit is small, making the implementation of large studies within

any one spinal injuries unit difficult. Collaborations in multicentre studies should lead to

larger recruitment figures. After larger studies have been conducted that show the benefits of

AFES, AFES may become a standard clinical procedure for the tetraplegic population. One

problem with conducting such multicentre studies is ensuring all locations apply stimulation

in the same way. This may be achieved by the steps outlined below.
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8.5.1 Clinical Uptake of AFES

The lack of an easy to use clinical device, established clinical AFES protocols that allow a

patient’s regular caregiver to set up and use the system and a lack of clinical evidence are three

major factors contributing to the poor clinical uptake of AFES and may be an important

factor in the lack of multicentre AFES studies. The development of a statistical classifier

that uses the signal from a non-intrusive sensor to distinguish between quiet breathing and

coughing (see Chapter 4), allowing the appropriate stimulation parameters to be applied

at the correct point in the breathing cycle, is a major step towards the development of a

stand alone AFES device. In Chapter 5 it was shown that the position of the motor points

of the abdominal muscles, around which it is desirable to place the stimulation electrodes,

had a large intersubject variability. By using the technique described in Chapter 5 motor

point positions can be found quickly, with the good repeatability of this method meaning

that the positions of the motor points only require to be identified once for each user. A

technique that ensures a consistent electrode placement is an important step towards the

establishment of a clinical AFES protocol. Once the motor points have been detected it may

be possible to develop a garment for each participant that allows electrodes to be positioned

around the motor points, possibly by using velcro or buttons to attach the electrodes. The

use of such a garment would avoid the time consuming process of donning and doffing

electrodes, would avoid loose wires and would make the application of AFES much more

compact. This garment could be integrated with a stand alone AFES device. Such a

garment and device may enable the combination of AFES with mechanical ventilation (see

Chapter 6) or Mechanical Insufflation-Exsufflation (MI-E) (see Chapter 7) as standard clinical

practice. Effective clinical protocols for the use of AFES with acute ventilator dependent

and sub-acute tetraplegic patients were demonstrated in Chapters 6 and 7, respectfully. A

stand alone AFES device and effective AFES protocols should enable easier execution of

multicentre trials, as all researchers would be using the same equipment, and would mean

that, given proper training, AFES could be applied by nurses or physiotherapists as part of

a regular care plan. This should increase the likelihood of AFES being adopted as a clinical

intervention. The willingness of a company to develop such a system without the results

from a multicentre study may make this difficult to achieve, meaning that a greater amount

of clinical evidence may be needed before AFES becomes a standard clinical treatment for

the tetraplegic population.

8.5.2 New Applications of AFES

The motivation for the use of AFES with the tetraplegic population has largely been that

an improvement in respiratory function should lead to a reduction in respiratory infections

and subsequent respiratory complications [70, 72, 73], a leading cause of rehospitalisation

for this patient group. To date, Cheng et al. [124] are the only people to use an AFES

training program to directly assess the impact of an AFES training program on the number of

respiratory infections. While they did show a decrease in the number of respiratory infections
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after an AFES training program, this was only evaluated in 13 treatment and 13 control

patients. This effect may be further demonstrated by a large control study, with the number

of respiratory infections developed by the control and intervention groups assessed to give an

indication of the effectiveness of AFES in reducing respiratory infections, which, if proven,

would add support to the adoption of AFES as a standard clinical treatment modality.

The use of FES as a treatment modality for critically ill, able bodied, patients in an intensive

care unit is gaining interest, with a number of studies being conducted in the last few

years [174]. In these studies FES has been applied to the muscles of the arms or the legs

to prevent muscle atrophy and maintain muscle strength during periods of illness. The

application of FES to the leg muscles of able bodied patients in an intensive care unit has

been shown by Routsi et al. [125] to lead to faster weaning from mechanical ventilation,

leading to a significant cost saving for the health care provider. The fact that the abdominal

muscles are involved in respiration, whereas the muscles of the leg are not, might suggest that

the application of AFES in the critically ill able bodied population may lead to faster weaning

from mechanical ventilation. The large number of critically ill, able bodied, patients in an

intensive care unit make it an ideal location to conduct a large RCT into the effectiveness of

this intervention, yet, to date, no studies have used AFES with this patient group. Such a

study may reveal a new and diverse area for AFES research.

In summary there are a number of areas in which the application and availability of AFES

for the tetraplegic population can be developed. These developments should promote further

research into the effectiveness of AFES with the tetraplegic population, which should further

highlight the improvements in respiratory function that can be achieved using this treatment

modality.
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Chapter 9

Conclusions

“To succeed, jump as quickly at opportunities as you do at conclusions.”

Benjamin Franklin
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This thesis describes the development and implementation of novel protocols and technologies

designed to enhance the effectiveness of Abdominal Functional Electrical Stimulation (AFES)

to improve the respiratory function of the tetraplegic population. The development of such

technologies and protocols is required to allow AFES to be implemented as a treatment

modality in the acute and sub-acute care setting. As such, a key contribution of this thesis

is proof of feasibility.

One approach which would improve the effectiveness of AFES is the development of a

stand alone AFES device, capable of stimulating different breath types with different

stimulation parameters. As a first step towards this aim a non-intrusive respiratory effort

belt positioned around the chest was used to record the respiratory activity of 10 able bodied

participants. This signal was used to develop a novel support vector machine algorithm

for non-intrusive real-time respiratory activity detection, which produced an acceptable

classification performance compared to that achieved using the signal from a spirometer.

It was also demonstrated that the signal from a respiratory effort belt could be used to apply

stimulation at the correct point in the breathing cycle. The use of a non-intrusive sensor,

coupled with an improved classification algorithm, improves on previous work, where the

signal from an intrusive spirometer was used to detect and classify respiratory activity.

While it is known that when using electrical stimulation the optimum muscle contraction

is achieved when stimulation is applied close to the motor point, current AFES studies use

a range of empirically derived electrode positions to initiate a muscle contraction, with no

consensus over the optimum electrode location. In this thesis a novel use of neuromuscular

electrical stimulation to detect the position of the motor points of the abdominal muscles

was developed. By applying single pulse electrical stimulation to the rectus abdominis and

external oblique muscles, the position of the motor points of these muscles were successfully

located in 10 able bodied and five tetraplegic participants. It was demonstrated that while

motor point position changed little over time, they were posture dependent with a degree

of intersubject variability. By using this new technique the motor points could be detected

with an adequate repeatability. Placement of electrodes at the motor points found using

this method is therefore believed to improve upon the use of empirically derived electrode

locations and is recommend for all future AFES studies.

The feasibility of using AFES to improve the respiratory function of acute ventilator

dependant tetraplegics is demonstrated in a clinical study. A novel AFES protocol, combined

with novel engineering solutions to allow AFES to be synchronised with a mechanical

ventilator or a user’s respiratory activity, are presented. The respiratory function of nine

tetraplegic participants increased throughout an eight week AFES training protocol. These

gains in respiratory function suggest that these protocols are feasible for this patient group,

indicating a new treatment group who may benefit from the use of AFES. It was also shown

that the participants who received AFES training weaned from mechanical ventilation on
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average 11 days faster than their matched controls. This suggests that the improvements in

respiratory function achieved using this protocol may enable faster weaning from mechanical

ventilation. The feasibility of using AFES to assist ventilator weaning for the chronic

tetraplegic population who retain some diaphragm function is also demonstrated.

During the aforementioned clinical study it was observed that AFES appeared to lead to

an increased demand for secretion clearance, necessary to avoid respiratory infections. This

suggested that traditional methods of secretion loosening and clearance may be enhanced by

combining them with AFES. To investigate this a novel engineering solution was developed

to integrate Mechanical Insufflation-Exsufflation (MI-E) with AFES, and the feasibility of

this integration demonstrated with one tetraplegic participant. The results show that the

application of AFES led to an acute increase in respiratory function compared to when

using MI-E alone, indicating that with further refinement of the protocol and technology

the integration of these two treatment modalities could be used to more effectively remove

secretions for people with tetraplegia.

Finally, the feasibility of using an eight week AFES training program to improve the

respiratory function of people with tetraplegia is demonstrated. Respiratory function was

shown to increase throughout the study duration, although further participant recruitment is

required to clarify the effect of natural recovery in this increase. This training effect provides

further evidence for the clinical use of an AFES training program to improve the respiratory

function of tetraplegic participants.

In conclusion a number of novel technologies and protocols have been developed which can

be used to enhance the effectiveness of AFES to improve the respiratory function of the

tetraplegic population.
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Appendix A

Classification of Respiratory

Activity

A list of the features used with the classification algorithm in Chapter 4 that were found

to have a statistically significantly different median for quiet breathing and coughing, and

stimulated and unstimulated breaths, is presented here. The quiet breath and cough

sensitivities achieved using the classification algorithm described in Chapter 4 with different

kernels and training methods are presented here. The classification accuracies that could be

achieved when classifying only stimulated or unstimulated breaths are also given.
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Table A.1: Features that were found to have a statistically significantly different median for
quiet breathing and coughing, for all 10 participants, using the signal from a spirometer and
respiratory effort belts positioned around the chest and abdomen. Statistical significance was
determined using a Wilcoxon signed-rank test.

Sensor Statistically significant Features

Spirometer Length
Sum
Minimum value
Maximum value
Number of peaks
Mean
Mean magnitude (power spectral density)
of Fast Fourier Transform (FFT)
Sum of magnitude (power spectral density) of FFT
Maximum magnitude (power spectral density) of FFT
Minimum magnitude (power spectral density) of FFT
Sum of magnitude (power spectral density) of FFT,
divided by signal length
Index of minimum value
Mean gradient
Minimum gradient
Maximum gradient
Sum of gradient
Cross correlation with a quiet breath
Cross correlation with a cough
Mean of autocorrelation
Maximum value of autocorrelation
Minimum value of autocorrelation

Chest belt Length
Sum
Minimum value
Maximum value
Number of peaks
Mean
Mean magnitude (power spectral density)
of Fast Fourier Transform (FFT)
Sum of magnitude (power spectral density) of FFT
Maximum magnitude (power spectral density) of FFT
Minimum magnitude (power spectral density) of FFT
Sum of magnitude (power spectral density) of FFT,
divided by signal length
Mean gradient
Minimum gradient
Maximum gradient
Sum of gradient
Cross correlation with a quiet breath
Maximum value of autocorrelation
Minimum value of autocorrelation
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Abdominal belt Length
Minimum value
Maximum value
Mean
Mean magnitude (power spectral density)
of Fast Fourier Transform (FFT)
Minimum magnitude (power spectral density) of FFT
Sum of magnitude (power spectral density) of FFT,
divided by signal length
Mean gradient
Minimum gradient
Maximum gradient
Sum of gradient
Cross correlation with a quiet breath
Maximum value of autocorrelation

Table A.2: Features that were found to have a statistically significantly different median
for stimulated and unstimulated breaths, for all 10 participants, using the signal from a
spirometer and respiratory effort belts positioned around the chest and abdomen. Statistical
significance was determined using a Wilcoxon signed-rank test.

Sensor Statistically significant Features

Spirometer Sum
Minimum value
Number of peaks
Mean
Mean magnitude (power spectral density)
of Fast Fourier Transform (FFT)
Sum of magnitude (power spectral density) of FFT
Maximum magnitude (power spectral density) of FFT
Sum of gradient
Mean of autocorrelation

Chest belt Minimum gradient

Abdominal belt Index of minimum value
Minimum gradient
Sum of gradient



APPENDIX A. CLASSIFICATION OF RESPIRATORY ACTIVITY 186

Table A.3: Mean percentage quiet breath (q) and cough (c) sensitivity (Se) (± standard
deviation) achieved using the signals from the respiratory effort belts placed around the
abdomen (abdo) and the chest, a combination of respiratory effort belt signals and the signal
from a spirometer (spiro). The SVM was trained for each participant using the data collected
during session one (Train1 ). Classification was performed on the data collected during session
two using: a linear kernel with a boxconstraint value of 0.1, a linear kernel with an optimised
(opti) box constraint value for each participant, a RBF kernel with a boxconstraint value of 1
and an a RBF kernel with an optimised boxconstraint value for each participant. ∗ indicates
statistically significantly different from spirometer when using the same training data and †

indicates statistically significantly different from results achieved using a linear kernel and
box constraint of 0.1.

Sensor Linear & 0.1 Linear & opti RBF & 1 RBF & opti
Sec (%) Seq (%) Sec (%) Seq (%) Sec (%) Seq (%) Sec (%) Seq (%)

Spiro 93.9 98.2 97.8 97.0 96.9 91.5† 96.9 92.3†

± 9.2 ± 2.2 ± 2.7 ± 3.4 ± 5.6 ± 5.9 ± 5.6 ± 5.9

Chest 96.6 90.6∗ 96.9 91.2 96.8 74.5∗† 96.1 80.2†

Belt ± 5.8 ± 13.3 ± 5.9 ± 13.4 ± 11.8 ± 16.9 ± 8.2 ± 16.0

Both 93.8 84.4∗ 95.4 86.7 - - - -
Belts ± 9.5 ± 15.1 ± 7.5 ± 14.0 - - - -

Abdo 79.3∗ 88.9∗ 84.2∗ 89.3∗ 58.1∗ 91.8 86.6∗† 75.7∗†

Belt ± 14.9 ± 7.4 ± 12.1 ± 9.0 ± 27.7 ± 7.4 ± 9.7 ± 14.2
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Table A.4: Mean percentage quiet breath (q) and cough (c) sensitivity (Se) (± standard
deviation) achieved using the signals from the respiratory effort belts placed around the
abdomen (abdo) and the chest, a combination of respiratory effort belt signals and the signal
from a spirometer (spiro). The SVM was trained for each participant using the data collected
during session two (Train2 ). Classification was performed on the data collected during session
one using: a linear kernel with a boxconstraint value of 0.1, a linear kernel with an optimised
(opti) box constraint value for each participant, a RBF kernel with a boxconstraint value
of one and an a RBF kernel with an optimised boxconstraint value for each participant. ∗

indicates statistically significantly different from spirometer when using the same training
data and † indicates statistically significantly different from results achieved using a linear
kernel and box constraint of 0.1.

Sensor Linear & 0.1 Linear & opti RBF & 1 RBF & opti
Sec (%) Seq (%) Sec (%) Seq (%) Sec (%) Seq (%) Sec (%) Seq (%)

Spiro 84.5 99.0 88.7 99.1 80.9 93.0† 87.4 90.5†

± 16.4 ± 1.2 ± 13.8 ± 1.1 ± 21.3 ± 5.4 ± 19.4 ± 6.5

Chest 82.5 97.5 86.0 97.3∗ 84.6 88.6† 85.9 91.7
Belt ± 14.7 ± 4.2 ± 12.6 ± 4.2 ± 16.9 ± 5.6 ± 13.6 ± 4.0

Both 74.5 94.2∗ 78.6† 94.1∗ - - - -
Belts ± 15.5 ± 6.7 ± 14.2 ± 6.5 - - - -

Abdo 76.2 90.9∗ 78.3† 91.8∗ 61.8∗ 85.2 74.7 80.8†

Belt ± 12.7 ± 7.8 ± 13.1 ± 7.7 ± 32.8 ± 12.0 ± 20.3 ± 13.0

Table A.5: Mean percentage cough (c) and quiet breath (q) sensitivity (Se) (± standard
deviation) of stimulated (stim) and unstimulated (unstim) breaths using the signals from
respiratory effort belts placed around the abdomen (abdo) and the chest, a combination
of these signals, and the signal from a spirometer (spiro). The SVM was trained for each
participant using the data collected during session one (Train1 ). Classification was performed
on the data collected during session two using a linear kernel and a boxconstraint value of
0.1.

Sensor Stim Unstim Stim Unstim
Sec (%) Sec (%) Seq (%) Seq (%)

Spiro 93.4 94.3 97.7 98.7
± 9.9 ± 8.9 ± 2.8 ± 1.8

Chest Belt 96.5 97.1 87.6 94.3
Belt ± 6.8 ± 6.2 ± 19.1 ± 6.5

Both Belts 95.0 94.3 80.7 90.2
Belts ± 9.7 ± 10.2 ± 22.5 ± 10.0

Abdo 79.1 79.8 87.3 91.6
Belt ± 18.1 ± 15.7 ± 9.1 ± 8.0



APPENDIX A. CLASSIFICATION OF RESPIRATORY ACTIVITY 188

Table A.6: Mean percentage cough (c) and quiet breath (q) sensitivity (Se) (± standard
deviation) of stimulated (stim) and unstimulated (unstim) breaths using the signals from
respiratory effort belts placed around the abdomen (abdo) and the chest, a combination
of these signals, and the signal from a spirometer (spiro). The SVM was trained for each
participant using the data collected during session two (Train2 ). Classification was performed
on the data collected during session one using a linear kernel and a boxconstraint value of
0.1.

Sensor Stim Unstim Stim Unstim
Sec (%) Sec (%) Seq (%) Seq (%)

Spiro 85.8 83.6 99.3 98.5
± 18.1 ± 17.2 ± 0.8 ± 1.7

Chest 83.3 82.0 97.4 97.3
Belt ± 19.6 ± 13.0 ± 5.0 ± 5.3

Both 77.3 74.6 93.4 95.3
Belts ± 19.5 ± 14.7 ± 7.9 ± 6.1

Abdo 74.2 79.5 89.9 92.3
Belt ± 20.2 ± 8.6 ± 8.0 ± 9.0
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Appendix B

Ventilator Weaning Study Data

The Tidal Volume (VT ) and Vital Capacity (VC) results of Participants 2 to 4 and 6 to 10

from the clinical study presented in Chapter 6 are given here.
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(b) Participant 3.
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(c) Participant 4.
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(e) Participant 7.
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(f) Participant 8.

A0 A1 A2 A3 A4 A5 A6 A7 A8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Assessment

T
id

al
 V

ol
um

e 
(L

)

x x x x x x

* *
* * *

 

 

Unstimulated
Stimulated

(g) Participant 9.
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(h) Participant 10.

Figure B.1: Tidal Volume (VT ) ± standard deviation of Participants 2 to 4 and 6 to 10,
recorded at nine weekly assessment sessions, where a blue line represents stimulated, and
a red line unstimulated, breaths. The solid black line along bottom of plot represents one
week of AFES training and no line indicates one week with no training. Black x indicates
stimulated VT was statistically significantly different to unstimulated VT , blue ∗ indicates
that stimulated VT was statistically significantly different to stimulated VT recorded at
previous assessment and red ∗ indicates that unstimulated VT was statistically significantly
different to unstimulated VT recorded at previous assessment.
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(e) Participant 7.

Assessment

V
ita

l C
ap

ac
ity

 (
L)

A0 A1 A2 A3 A4 A5 A6 A7 A8

0.5

1.0

1.5

2.0

2.5

5

10

15

20

25

T
im

e off vent (hours/day)

(f) Participant 8.

Assessment

V
ita

l C
ap

ac
ity

 (
L)

A0 A1 A2 A3 A4 A5 A6 A7 A8

0.8

1.6

2.4

3.2

4

5

10

15

20

25

T
im

e off vent (hours/day)
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Figure B.2: Vital Capacity (VC) of Participants 2 to 4 and 6 to 10, recorded at nine weekly
assessment sessions, where a blue line represents stimulated, and a red line unstimulated,
breaths. The solid black line along bottom of plot represents one week of AFES training
and no line indicates one week with no training. Green line represents time spent breathing
without ventilator support per day, while broken black line represent a VC of 500 mL, the
VC at which participants were expected to wean based on clinical experience. The dashed
magenta line represents the time point at which the participant achieved 24 hours of ventilator
free breathing, while the dashed cyan line represents the time point at which the participant
achieved seven days of ventilator free breathing.
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Appendix C

Cough Assist Study Data

The Forced Vital Capacity (FVC), Peak Expiratory Flow (PEF) and Forced Exhaled Volume

in one second (FEV1) of Participants 3 and 4 from the study presented in Chapter 7 are given

here, along with the effect size of these measures.
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Figure C.1: Forced Vital Capacity (FVC) of Participants 3 and 4 recorded at eight fortnightly
assessment sessions, where a blue line represents stimulated, and a red line unstimulated,
breaths. Solid black line along the bottom of the plot represents the eight week period of
AFES training and no line indicates no training.
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Figure C.2: Peak Expiratory Flow (PEF) of Participants 3 and 4 recorded at eight fortnightly
assessment sessions, where a blue line represents stimulated, and a red line unstimulated,
breaths. Solid black line along the bottom of the plot represents the eight week period of
AFES training and no line indicates no training.
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Figure C.3: Forced exhaled volume in one second (FEV1) of Participants 3 and 4 recorded
at eight fortnightly assessment sessions, where a blue line represents stimulated, and a red
line unstimulated, breaths. Solid black line along the bottom of the plot represents the eight
week period of AFES training and no line indicates no training.

Table C.1: Effect sizes (ES) and lower (LI) and higher (HI) confidence intervals for changes
in stimulated (stim) and unstimulated (unstim) weight corrected Forced Vital Capacity
(FVC/kg), weight corrected Peak Expiratory Flow (PEF/kg) and weight corrected Forced
Exhaled Volume in one second (FEV1/kg) across the 14 week study duration, four week
control period and eight week intervention period.

Measure Stim Study Control Training
LI ES HI LI ES HI LI ES HI

FVC/kg Stim 0.97 1.90 2.83 0.76 1.67 2.58 0.29 1.15 2.01
Unstim 0.75 1.65 2.56 0.26 1.12 1.98 0.29 1.16 2.02

PEF/kg Stim 0.72 1.62 2.52 0.59 1.47 2.36 −0.05 0.78 1.62
Unstim 0.86 1.78 2.69 0.68 1.58 2.48 −0.06 0.77 1.61

FEV1/kg Stim 0.36 1.22 2.09 0.07 0.92 1.76 0.05 0.89 1.73
Unstim 0.80 1.71 2.63 0.84 1.76 2.68 0.11 0.96 1.80
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