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Abstract 

 

Background: Interleukin (IL)-33 is a newly identified member of the IL-1 

cytokine family. Multiple cell types are able to produce or respond to IL-33, 

including non-haematopoietic structural cells, innate and adaptive immune cells. 

The biological activity of IL-33 was initially described as being associated with 

the promotion of type 2 immune responses which were characterized by the 

induction of CD4+ T helper (Th) 2 cells. For example, exogenous administration 

of IL-33 in experimental models caused pathological changes in mucosal tissues 

such as the lung and gastrointestinal tracts; early studies reported that IL-33 can 

activate Th2 cells, mast cells, eosinophils or basophils to produce type 2 

cytokines such as IL-4, IL-5, and IL-13. This was associated with pathological 

changes reminiscent of asthma, fibrosis and ulcerative colitis. Recently, a newly 

recognised cell population which was inducible by IL-33 and referred to as ‘type 

2 innate lymphoid cells’ was identified and these were thought to be important 

for initiating type 2 immunity. However, the underlying mechanism by which IL-

33 was involved in the inflammation and remodelling of diseases of the 

respiratory and gastrointestinal tracts remains to be fully understood. 

 

Hypothesis: My hypothesis is that IL-33 is induced in the gut and lung mucosa by 

inflammatory signals and mediates both early inflammation and late fibrosis by 

amplifying the innate immune response.  

 

Aims: To address this hypothesis I set out the following aims: i) to investigate 

the induction and effect of IL-33 via its receptor ST2 on cellular pathogenic 

pathways in the development of lung fibrosis (chapter 3); ii) to unravel the 

mechanism by which IL-33 promotes lung fibrosis (chapter 4); iii) to understand 

the involvement of the IL-33/ST2 pathway in ulcerative colitis (chapter 5). 

 

Methods: To address these aims I used two experimental murine models. To 

investigate the effect of IL-33 in the fibrosis phase of airway mucosal 
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inflammation I used the bleomycin (BLM)-induced lung fibrosis (chapters 3 and 4). 

To investigate the effect of IL-33 in the acute phase of mucosal inflammation in 

the gut, I used dextran sulphate sodium (DSS)-induced colitis (chapter 5).   

These disease models are widely accepted for laboratory investigation and I 

acknowledge that they do not reflect the full complexity of the human 

conditions. However they are extremely useful for hypothesis generation. 

 

Results: My results showed  

i) that IL-33 promotes the pathogenesis of bleomycin-induced lung fibrosis. This 

was indicated by IL-33 being constitutively expressed in lung epithelial cells but 

induced in macrophages by bleomycin. The specificity of this response was 

confirmed by using either ST2-deficient mice, or neutralising anti-IL-33 antibody 

treatment, which both attenuated lung fibrosis (chapter 3). 

ii) that IL-33 promotes the initiation and progression of pulmonary fibrosis by 

recruiting and directing inflammatory cell function, and enhancing the 

production of pro-fibrogenic cytokines IL-13 and TGF-β in an ILC2- and M2-

macrophages (chapter 4). 

iii) that IL-33 signalling via ST2 induces an IL-4-dependent immune response that 

is pathogenic in the early stage of ulcerative colitis. I found that the clinical 

indices of DSS-induced experimental UC, diarrhoea and colon inflammation, 

were respectively impaired in ST2 knockout mice and exacerbated in WT mice by 

treatment with exogenous recombinant IL-33. These were associated 

respectively with reduced and enhanced expression of inflammatory chemokines 

and angiogenic cytokines in vivo. The exacerbation effect of treatment with 

recombinant IL-33 on DSS-induced acute colitis was abolished in IL-4 knockout 

mice (chapter 5). 

 

Conclusion and prospect: Together, my results demonstrated that IL-33 

expression was up-regulated in the lung and colon epithelium/endothelium in 

experimental BLM-induced fibrosis and DSS-induced colitis respectively. 

Furthermore, IL-33 exacerbated both diseases through recruiting and activating 
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inflammatory cells and increasing the production of type 2 cytokines. Finally, I 

discussed the pathological mechanisms of IL-33 in mucosal tissue based on my 

results and the current literature. I concluded that this insight into IL-33 biology 

is informative of a new potential pathogenic pathway and might be a useful 

biomarker of disease and that targeting IL-33 may provide a new biological 

therapeutic approach in these disorders (chapter 6). 
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IPF Idiopathic pulmonary fibrosis 

IRAK IL-1 receptor-associated kinase 

i.t. Intratracheal 

JAK Janus kinase 

JNK c-Jun N-terminal kinase 

KC Keratinocyte chemoattractant (CXCL1) 

kDa Kilodaltons 

KO Knock out gene deletion 

LCMV Lymphocytic choriomeningitis virus 

LPS Lipopolysaccharide 

LYN Src-family kinase 

M1 Classically activated macrophages 

M-CSF Macrophage colony-stimulating factor 

MAPK Mitogen-activated protein kinase 

MC Mast cell 

MCP-1 Monocyte chemotactic protein-1 

mIL-33 Mature IL-33 

m/h IL-33 Murine/human recombinant IL-33 

min(s) Minute(s) 

MIP-1α macrophage inflammatory protein-1 (CCL3) 
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MIP-2α chemokine (C-X-C motif) ligand 2 (CXCL2) 

MMP matrix metalloproteinase 

MPO Myeloperoxidase 

MR Mannose receptor (CD206), M2 macrophages marker 

mRNA Messenger ribonucleic acid 

MS Multiple sclerosis 

MyD88 Myeloid differentiation primary response gene (88) 

NF-HEV Nuclear factor from high endothelial venules 

NF-κB 
Nuclear factor kappa-light-chain-enhancer of 

activated B cells 

NLR nucleotide-binding oligomerization domain-like receptor 

NLS nuclear location sequence 

NO Nitric oxide 

NOD Nucleotide-binding oligomerization domain 

NK Natural killer cell 

OVA Ovalbumin 

PAMP Pathogen-associated molecular patterns 

PB peripheral blood 

PBMCs Peripheral Blood Mononuclear Cells 

PBS Phosphate buffered saline 

PE Phycoerythrin 

PM Pulmonary fibrosis 

PMA Phorbol 12-myristate 13-acetate 

PRR pattern recognition receptors 

P value (P) Probability value 

qPCR Quantitative polymerase chain reaction 

RA Rheumatoid arthritis 

RAGE Receptor for advanced glycation end products 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RPE R-phycoerythrin 

RPMI Roswell Park Memorial Institute 

rpm Rotations per minute 

RT-PCR Reverse transcription polymerase chain reaction 
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SAMP1/YitFc Senescence accelerated mice P1/YitFc 

s.c. Subcutaneous 

SCF Stem cell factor 

SD Standard deviation 

SDS Sodium dodecyl sulphate 

SEM Standard error of the mean 

sec(s) Second(s) 

SIGIRR Single Ig IL-1-related molecule 

SMC Smooth muscle cells 

SNP Single-nucleotide polymorphism 

SSc Systemic sclerosis 

ST2 Tumorigenicity 2 

sST2 Soluble ST2 

ST2(L) Membrane bound ST2 

STAT Signal transducers and activators of transcription 

TAE Tris-acetate-EDTA 

TAK1 Transforming growth factor beta activated kinase-1 

TBE Tris-borate-EDTA 

TCA Trichloroacetic acid 

TCA3 T-cell activation-3 (CCL1) 

TCR T cell receptor 

Tg Transgenic 

TGF Transforming growth factor 

Th T helper (cell) 

TIMP Tissue inhibitors of metalloproteinases 

TIR Toll/interleukin 1 receptor 

TLR Toll-like receptor 

TMB 3,3’,5,5’-tetramethylbenzidine 

TNBS trinitrobenzenesulfonic acid 

TNF-α Tumor necrosis factor alpha 

TRAF TNF receptor-associated factor 

Treg Regulatory T cells 

TRIF TIR-domain-containing adapter-inducing interferon-β 

Tris Tris (Hydroxymethyl)aminomethane 
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U Unit 

UC Ulcerative colitis 

UV Ultraviolet 

VCAM-1 vascular cell adhesion molecule 

VEGF Vascular endothelial growth factor 

VSMC Vascular smooth muscle cell 

WT Wild type 

w/v Weight/volume 
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Chapter 1: Introduction 

1.1 Immune system and inflammation 

 

The human body has evolved a complementary and sophisticated immune system; 

including immune organs, immune cells and immune effector molecules (Murphy, 

2011). 

 

The functions of this immune system can be categorized as:  

1. Immune defence: to prevent and eliminate invading pathogens, such as 

bacteria, viruses, fungi, parasites and other harmful elements.  

2. Immune surveillance: to identify and eliminate ‘altered-self material’ inside 

the body, such as tumour cells caused by gene mutation, apoptotic and necrotic 

cells.  

3. Immune homeostasis: to maintain immune system stability through immune 

tolerance and immune regulation (Abbas et al., 2011). 

 

The processes by which the immune system recognises and eliminates antigens is 

called the ‘immune response’. This can be divided into two types: ‘innate’ or 

‘non-specific’ immunity and ‘adaptive’ or ‘specific’ immunity (Delves et al., 

2011). 

 

The immune response can protect against pathogens but can also contribute to 

disease if the regulatory mechanisms become dysfunctional. This abnormal 

immune response can cause a variety of autoimmune and hypersensitivity 

diseases (Murray et al., 2012). 

 

1.1.1 Innate immunity 
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Innate immunity is also referred to as non-specific immunity. Innate immunity is 

the body’s first line of defence formed through evolution. The innate immune 

response is mediated by innate immune cells including monocytes, macrophages, 

dendritic cells (DC), granulocytes, natural killer (NK) cells and innate lymphoid 

cells (ILC). These cells do not express antigen receptors but express pattern 

recognition receptors (PRR), thereby recognising pathogen associated molecule 

patterns (PAMP). For instance, macrophage and DC can recognise 

lipopolysaccharide (LPS) in the cell wall of Gram-negative microbes via toll like 

receptor 4 (TLR-4) on its membrane to initiate innate immune response (Akira et 

al., 2006, Abbas et al., 2011). 

 

The innate immune response is characterised by its rapid engagement 

immediately after infection by innate immune cells but it lacks the antigen-

specificity and memory response characteristic of the adaptive immune response. 

The innate immunity system includes tissue barriers, innate immune cells and 

innate effector immune molecules. This system exists from birth and can provide 

an immediate immune protection against pathogens or against damaged or 

mutated cells through non-specific effects (Sompayrac, 2011). 

 

1.1.1.1 Tissue barrier 

 

Physical barriers: skin epithelium and mucosal membranes that line our digestive, 

respiratory and reproductive tracts form the physical barriers that restrict the 

entrance of pathogens (Pichery et al., 2012). 

 

Chemical barriers: skin and mucosal tissues secrete anti-microbial molecules 

such as unsaturated fatty acid from sebaceous glands, lactic acid from sweat 

glands, lysozyme and antibiotic peptides in saliva and in gastric, respiratory and 

reproductive tracts (Murphy, 2011). 
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Haemato-encephalic (blood-brain) barrier: pia mater, choroid plexus capillary 

walls and astrocytes separate the circulating blood from the brain extracellular 

fluid (Abbas et al., 2011). 

  

Placental barrier: syncytiotrophoblast, cytotrophoblast, villus mesenchyma and 

the foetal capillary walls prevent harmful molecules or microbes from entering 

the foetal blood (Abbas et al., 2011). 

 

1.1.1.2 Innate cells 

 

Monocytes-macrophages 

Monocytes are white blood cells which originate in the bone marrow. 

Macrophages differentiate in tissues from monocyte precursors. Monocytes 

circulate in the peripheral blood before entering tissues to develop into tissue-

specific macrophage populations such as osteoclasts, microglial cells, histiocytes, 

Kupffer cells and alveolar macrophages in different tissues. The primary function 

of macrophages is believed to involve their role as critical immune effector cells 

in host defence recognising microbial signals and acting as both innate effector 

cells and antigen-presenting cells. In addition to host defence, macrophages 

have also been involved in the processes of wound healing, homeostasis and 

immune regulation (Alber et al., 2012). Examples of these effects include 

phagocytosis of senescent erythrocytes, cellular debris and clearance of 

apoptotic cells (Aderem and Underhill, 1999). 

 

Activation of macrophage 

Macrophages can be further differentiated into two subset phenotypes: M1 

(classically activated) or M2 (alternatively activated) under different activation 

conditions. In the type I immune response (T helper type 1 subset involved) such 

as inflammatory disease and infectious environment, macrophages undergo 

activation influenced by IFN-γ, IL-12 and LPS; this is termed classical activation 
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and macrophages are differentiated into the M1 phenotype. Classical activated 

M1 macrophages express inducible nitric oxide synthase (iNOS) and pro-

inflammatory cytokines and are therefore potent effector cells against 

microorganisms and tumour cells. In the type 2 immune response (T helper type 

2 subset involved) which includes allergic disorders and parasite infection, 

macrophages undergo an alternative activation influenced by interleukin (IL)-4 

or IL-13 and differentiate into the M2 phenotype. The M2 macrophage expresses 

arginase I and TGF-β and is critically involved in tissue repair and fibrosis 

(Gordon, 2003, Mosser and Edwards, 2008, Alber et al., 2012). 

 

Neutrophils 

Among the white blood cells, 60-70% are neutrophils. Neutrophils are generated 

from bone marrow and have an average life of five days. Neutrophils are 

involved in the early defence against infection; they traverse blood vessel 

endothelium into sites of tissue infection or damage and clear microbes or cell 

debris by phagocytosis. Neutrophils also express pro-inflammatory cytokines and 

mediators and are closely associated with the inflammatory response (Godaly et 

al., 2001). 

 

Dendritic cells 

Dendritic cells (DC) are present in a variety of tissues and organs, especially 

where tissues are in contact with the external environment. DC is named for its 

branched projections like the dendrites of the nerve system. The main function 

of DCs is to sample antigen from tissue and transport and present this to 

lymphocytes in lymph nodes. There it not only provides antigen but also the co-

stimulatory and cytokine signals for activation of T cells. It is the most important 

antigen-presenting cell (APC), thus it is considered as a crucial link between the 

innate and adaptive immunity. There are three major subsets of DC: 

conventional DCs (cDC) and monocyte-derived DCs which act as APCs, and 

plasmacytoid DCs (pDC) which produce type I interferons in infection  (Plantinga 

et al., 2010, Spears et al., 2011).   
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Eosinophils and basophils 

The number of eosinophils and basophils is much less than the neutrophils. They 

are considered to be very important in the innate immunity for defending 

against parasite infection by releasing toxic granular and type II cytokines. Thus, 

they also play a critical role in the progress of allergy and asthma (Abbas et al., 

2011). 

 

Mast cells 

Mast cells are found resident in the tissues throughout the body, especially 

beneath mucosa and in blood vessels. They are believed to be involved in the 

allergic response by the release of vaso-active mediators e.g. histamine when 

their membrane immunoglobulin (Ig) E receptor-bound IgE are cross-linked by 

allergen or antigen. However, mast cells are also involved in the pro-

inflammatory response and host defence against bacterial infection by producing 

cytokines and chemokines (Abbas et al., 2011, Menzies et al., 2011). 

 

Natural killer cells 

Natural killer (NK) cells are derived from the same common lymphoid progenitor 

in the bone marrow as T cells and B cells, but do not express antigen receptors. 

They are considered to be important in anti-tumour and anti-virus immunity 

since they recognize and kill abnormal cells by inducing apoptosis. (Abbas et al., 

2011) 

 

Innate lymphoid cells 

Innate lymphoid cells (ILCs) are newly identified lymphocytes which do not 

express T cell or B cell antigen receptors and cell-surface markers associated 

with other cell lineages of the immune system (Buonocore et al., 2010, Moro et 

al., 2010). 
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On the basis of their cytokine profile associated with Th1, Th2 or Th17 cells, ILCs 

can be classified into three subsets (Spits et al., 2013, Walker et al., 2013): 

 ILC1 include natural killer cells and interferon-γ-producing non–natural killer 

cells and mainly produce type I cytokine interferon-γ.  

 ILC2 produce type II cytokines IL-5, IL-9 and IL-13 in response to IL-25 and IL-

33. 

 ILC3 include both ILCs and lymphoid tissue–inducer cells and produce Th17 

cytokines IL-17A and IL-22.   

 

ILC2: phenotype and function 

ILC2s are closely associated with allergy and tissue fibrosis and are involved in 

this thesis; therefore I will focus on ILC2 cells and discuss their phenotype and 

functions. 

 

ILC2 cells were identified independently by four research groups (Moro et al., 

2010, Neill et al., 2010, Saenz et al., 2010, Price et al., 2010). They were 

derived from precursors in bone marrow which express high levels of GATA3 

(Walker et al., 2013). GATA3 is required for the development of ILC2 cells since 

GATA3 gene-deficient mice cannot produce ILC2 cells. These cells do not express 

lineage (Lin) markers (CD3ε, CD4, CD8α, TCRβ, TCRδ, CD5, CD19, B220, NK1.1, 

Ter119, Gr-1, Mac-1, CD11c and FcεRIα), however they express c-Kit, Sca-1, IL-

7R, ICOS and ST2 and produce IL-5 and IL-13 in response to IL-33 or IL-25 

stimulation (Salimi et al., 2013). There are no definitive markers for ILC2, 

therefore using these markers helps in their identification and isolation.   
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1.1.2 Adaptive immunity 

 

The adaptive immune response is mediated by adaptive immune cells; mainly 

the T and B lymphocytes which express antigen receptors. It takes longer to be 

mobilized than the innate immune response because it is antigen-specific and 

requires organisational steps.  

 

The adaptive immune response can be divided into four phases:  

1. Initiation (priming) phase, T lymphocytes and B lymphocytes recognise 

antigens via T-cell receptor (TCR) and B-cell receptor (BCR).  

2. Activation and differentiation phase, lymphocytes are started to activate, 

proliferate and differentiate into effector cells when received antigen, co-

simulation and cytokine signals.  

3. Effector-stage, antigens are eliminated by effector cells and related effector 

molecules.  

4. Recovery phase, most effector cells are eliminated by apoptosis and only 

small amounts of effector cells develop into memory cells.  

 

The adaptive immune response includes a cellular immune response; activation 

of lymphocytes, and a humoral immune response; production of antibody 

(Murphy, 2011).  

 

1.1.2.1 T Cell-mediated immunity  

 

The cellular immune response is mediated by effector T cells (mainly the CD4+ 

and CD8+ T cells) via their cell surface receptors and secreted molecules, and 

plays a critical role in defence particularly against intracellular microbial 

infection  (Delves et al., 2011). 
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The cellular immune response is initiated by the activation of naive T cells which 

receive TCR signals triggered by the interaction of the T-cell receptor (TCR) and 

the antigen/MHC complex on antigen-presenting cells (APC). The full T cell 

activation also requires the signals from APC co-stimulatory molecules and 

cytokines. The most efficient APCs are dendritic cells (DC), but could also be 

macrophages or activated B cells. The activation of naive T cells then leads to 

their proliferation and differentiation into effector T cells. Naive CD8+ T cells 

are differentiated into cytotoxic T cells which kill infected cells; naive CD4+ T 

cells can be differentiated into several subsets including T helper (Th) 1, Th2, 

Th9, Th17 and regulatory T (Treg) cells depending on the cytokine milieu (Fig. 1-

1). These cell subsets secrete specific cytokines and provide helper or regulatory 

roles in immunity and hypersensitivity diseases (Fig. 1-1). The tissue 

environment of inflammation and/or bacterial infection promotes the 

development of Th1 cells. Allergy and parasite infection promote Th2 cell 

differentiation. The cytokine environment of inflammatory and autoimmune 

conditions favours the development of either Th17 cells which are pro-

inflammatory or Treg cells which are suppressive for T cells in immunity and 

disease. Most of the effector T cells are short-lived, but some could differentiate 

into long-lived memory T cells which are important in the protection against re-

infection and in vaccine development. (Sprent and Surh, 2002, Garcia and Adams, 

2005, O'Shea and Paul, 2010)     
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Fig. 1-1 CD4+ T cell subsets and functions.  

(Modified from O'Shea, J. J. & Paul, W. E. 2010. Mechanisms underlying lineage 

commitment and plasticity of helper CD4+ T cells. Science, 327, 1098-1102.) 
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1.1.2.2 B cell-mediated humoral immunity  

 

The humoral immune response is mediated by B cells and the antibodies they 

produce, and plays an important role in protection against extracellular 

pathogens. The activation of B cells and differentiation into antibody producing 

plasma cells is dependent on antigen and T cell help; T-dependent (TD) antigens 

require Th cells, whereas T-independent (ID) antigens do not require T cells. 

Peripheral B cells consist of B1 and B2 subsets, which can be distinguished by 

their origin, surface markers, location, and distinct antibody production profile 

(Martin and Kearney, 2001). The majority of B cells are conventional B2 cells 

which are located in the spleen or lymph nodes and produce all types of 

antibody in an antigen and T cell-dependent manner. In contrast, B1 cells 

represent about 5% of the total B cells in mice, are mainly found in the body 

cavities and spontaneously secrete natural IgM in a T cell-independent manner 

(Fagarasan and Honjo, 2000). 

 

Antigens bound to B cell receptors (BCR) on the B cell surface trigger the first 

signal for B cell activation. The co-stimulatory signals generated by the 

interaction between CD40 ligand on T cells and CD40 on B cells and T cell 

secreted cytokines (IL-4, IL-5 and IL-13)  are also necessary for B cell activation. 

Furthermore, toll-like receptor signals on the mature B cells provide an 

additional signal for B cell activation (O'Rourke et al., 1997). 

 

Upon activation, conventional B cells will proliferate and differentiate into 

antibody-producing plasma cells. Antibodies eliminate pathogens mainly by three 

mechanisms:  

neutralization, which prevents bacteria binding to target cell surface and 

forming a focus of infection, and binding bacterial toxins;  

opsonisation, which enhances phagocytosis of phagocytes;  

complement activation, via the  classic complement activation pathway.  
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There are five subtypes of antibodies, namely IgM, IgA, IgG, IgD and IgE (Shapiro-

Shelef and Calame, 2005, Moser et al., 2006, Ohta and Flajnik, 2006).  

IgM is the low affinity high molecular weight “natural” immunoglobulin only 

found in blood and lymph, and clears pathogen through activating complement. 

IgA functions mainly as a neutralizing antibody in mucosal tissues.  

IgG is the most stable antibody and induces phagocytosis as well as activates 

complement.  

IgD is considered co-expressed with IgM. 

IgE functions mainly through activating mast cells to release other chemical 

mediators causing reaction that can expel pathogens but may also induce 

hypersensitivity.  

 

Some activated B cells do not differentiate to plasma cells post-activation; they 

develop into memory B cells instead. Memory B cells do not produce antibody, 

but are located in high numbers in secondary lymphoid tissue where they can be 

activated quickly when in contact with the same antigen or TLR agonists and 

rapidly produce a large amount of antibody (Liu et al., 1991, Hardy and 

Hayakawa, 2001). 

 

1.1.3 Inflammatory response 

 

The inflammatory response is primarily the host defence response to harmful 

stimuli, such as trauma, chemical or physical stress, or infectious agents. It is 

characterized by redness, swelling, heat and pain in the affected tissues. Most of 

these symptoms result from increased local vascular permeability to allow the 

access of protein-rich fluid and leukocytes.  
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1.1.3.1 Trauma  

 

Trauma is always accompanied by a local inflammatory response. In the case of 

severe injury there may be systemic inflammation. The systemic inflammatory 

response is essential for tissue repair and has evolved in all mammals to help the 

healing process, but an over-reactive inflammatory response, e.g. 

hypersensitivity can also be pathogenic or occasionally life-threatening 

(Heideman and Bengtsson, 1992). 

 

1.1.3.2 Infection 

 

Infection is caused by pathogens such as viruses, prions, bacteria, fungi, 

parasites and other infectious agents. The immune system defends against all 

these pathogens through a variety of effector cells and molecules. 

 

The first line of defence is the innate immune response which is available almost 

immediately to prevent or eliminate any foreign pathogens but is not specific 

and does not lead to immune memory. The antigen-specific adaptive immune 

response which is triggered by innate immunity is responsible for defending 

against most pathogens that cannot be dealt with by the innate immune 

response alone. Furthermore, adaptive immune responses include the 

development of immune memory post-infection to prevent future infection by 

the same pathogens  (Murphy, 2011). 

 

1.1.3.3 Sterile inflammation 

 

Although most inflammation is triggered by invading microbes, some 

inflammatory responses are triggered by sterile stimuli such as dead cells and 

other irritant particles. The downstream reactions of inflammation are very 

similar whatever the initial triggers.  There is often collateral damage to normal 



37 
 
healthy tissue during the course of inflammation especially during the innate 

immune response. In case of a sterile inflammatory response the disadvantages 

are much greater than the advantages since most sterile stimuli do no harm 

whereas the inflammation can be disproportionate and damaging. Prolonged 

acute inflammation can cause chronic remodelling and fibrosis (Rock et al., 

2010). 

 

The exact mechanisms by which sterile stimuli can trigger inflammation are still 

not fully understood. The best understanding so far recognises three possible 

interactive pathways (Fig. 1-2). These are (i) the activation of pattern 

recognition receptors (PRRs), as in the infectious immune response, (ii) the 

release pro-inflammatory cytokines and chemokines such as the IL-1 family 

cytokines and (iii) other receptors not common in infections such as receptors 

for advanced glycation end-products (Chen and Nunez, 2010).  

 

Studies showed that the IL-1 family cytokines IL-1α and IL-1β are involved in the 

inflammatory response triggered by necrotic cells and irritant particles via the 

MyD88 pathway and blockage of the IL-1 pathway showed therapeutic potentials. 

However, whether other IL-1 family cytokines such as IL-18 and IL-33 are 

involved in the sterile inflammatory response is still largely unknown (Garlanda 

et al., 2013). 

 

IL-33, a newly recognised member of the IL-1 family of cytokines, is realized 

when cells undergo necrosis and is considered as similar to stereotype ‘alarmin’ 

high-mobility group box 1 protein (HMGB1) (Moussion et al., 2008). Its role in 

sterile inflammation is still poorly understood despite intensive investigation of 

its biological effects since its discovery nine years ago (Schmitz et al., 2005). 

Further studies with IL-33 are needed to understand the pathogenesis of sterile 

inflammation and eventually help the development of new therapeutic methods. 
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Fig. 1-2 Necrosis induced sterile inflammation.  

 

When cells have been sufficiently damaged so that apoptosis cannot occur, then 

necrosis happens. The loss of plasma membrane integrity allows intracellular 

material to escape from necrotic cells. These molecules include (i) purine 

metabolites, cytokines like IL-1α and IL-33, (ii) IL-1 receptor agonist, and (iii) 

high-mobility group box 1 (HMGB1) proteins and heat shock proteins (HSP). 

These stimuli can trigger sterile inflammation. 

(Adapted from CHEN, G. Y. & NUNEZ, G. 2010. Sterile inflammation: sensing and 

reacting to damage. Nat Rev Immunol, 10, 826-37.) 
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1.2 Interleukin-33 and its receptor system 

1.2.1 Cytokine 

 

Cytokines are regulatory peptides, produced by every nucleated cell (Thomson 

and Lotze, 2003). They are small (around 8 to 40 kDa) proteins or glycoproteins 

that are produced by cells in response to an activating stimulus. Up to now, 

more than 200 cytokine-like molecules, including 38 interleukins, have been 

identified. Many of the cytokines possess overlapping functions and many of the 

functions are still unexplored. Cytokines bind to their specific receptors and 

perform pleiotropic functions in different cells and in different in vivo contexts 

as shown in table 1-1. They act as a coordinated cytokine network and very 

likely affect every biological process, primarily in homeostasis, immunity and 

disease (Dinarello, 2007). 

 

1.2.1.1 Cytokine classification 

 

Cytokines can be classified based on their source, function and structure 

(Thomson and Lotze, 2003, Dinarello, 2000, Dinarello, 2007). 

 

According to their cellular sources, cytokines can be classified into: 

• Lymphokines - cytokines produced by lymphocytes 

• Monokines - cytokines produced by monocytes and macrophages 

• Interleukins (IL)  - cytokines produced by leukocytes 

 

Based on their function, cytokines can be divided into: 

• Pro-inflammatory cytokines - responsible for acute inflammation 

• Anti-inflammatory cytokines - inhibiting inflammation and supporting 

healing  

• Growth factors – required for cell growth and survival 
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• Chemokines – responsible for directional movement of cells 

 

According to their structure, the cytokines can be classified into 7 cytokine 

families: 

• The hematopoietin family (e.g. IL-2, IL-4, IL-5, IL-13, IL-15, IL-21) 

• The Interferon family (IFNα, IFNβ, IFNγ) 

• The tumour necrosis factor (TNF) family (TNFα, LTα, LTβ, RANKL, APRIL, 

et al) 

• The IL-1 family (IL-1α, IL-1β, IL-1Ra, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, 

IL-36Ra, IL-37, IL-38) 

• The IL-17 family (IL-17, IL-25) 

• The IL-10 family (IL-10, IL-22) 

• The IL-12 family (IL-12, IL-23, IL-35, IL-27)  

• The TGF family (TGF-α,β) 

• The chemokine family (CCL1 to 28, CXCL1 to 17, XCL1,2, CX3CL1) 
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Table 1-1. Functional classification of cytokines and receptors. a) 

 

Functional class Primary property Other effects Examples 

Lymphocyte 

growth factors 
clonal expansion Th1/Th2/Th17 polarization IL-2, IL-4, IL-7, IL-17, IL-15 

Th1 cytokines ↑ Th1 responses clonal expansion of CTL IFN-γ, IL-2, IL-12, IL-18 

Th2 cytokines ↑ Th2 responses ↑ antibody production IL-4, IL-5, IL-18, IL-25, IL-33 

Th17 cytokines 
↑ Th17 responses, 

IFN-γ 
autoimmune responses IL-17, IL-23, IFN-γ 

Pro-inflammatory 

cytokines 

↑ inflammatory 

mediators 
↑ innate immune responses 

IL-1α, IL-1β, TNF-α, IL-12, 

IL-18, IL-23, MIF, IL-32, IL-

33, CD40L 

Anti-inflammatory 

cytokines 

↓ inflammatory 

genes 

↓ cytokine-mediated 

lethality,↓ autoimmune disease 

IL-10, IL-13, TGF-β, IL-22, 

IL-1Ra, IFN-α/β 

Adipokines pro-inflammatory 
pro-atherogenic, 

anti-inflammatory 

IL-1α, TNF-α, IL-6, leptin, 

adiponectin, resistin 

gp130 signaling 

cytokines 
growth factors B cell activation, acute phase 

IL-6, CNTF
c)

, IL-11, LIF
c)
, 

CT-1
c)

 

Nerve growth 

factors 

↑ nerve/Schwann 

cells 
B cell activation BNDF

c)
, NGF

c)
 

Osteoclast-

activating 

cytokines 

bone resorption immune stimulation RANKL
c)

 

Colony-stimulating 

factors 
hematopoiesis pro- and anti-inflammatory 

IL-3, IL-7, G-CSF, GM-CSF, 

M-CSF 

Angiogenic 

cytokines 
neovascularization pro-metastatic VEGF

c)
, IL-1, IL-6, IL-8 

Mesenchymal 

growth factors 
fibrosis pro-metastatic FGF, HGF, TGF-β, BMP

c)
 

Type II IFN 
macrophage 

activation 
↑ MHC class II IFN-γ 

Type I IFN 
anti-viral, 

↑ MHC class I 

anti-inflammatory, 

anti-angiogenic 
IFN-α, IFN-β 

Chemokines
b)

 ↑ cellular emigration ↑ cell activation IL-8, MCP-1, MIP-1α, others 

a) Does not include soluble cytokine receptors such as sTNFRp55, sTNFRp75, sIL-1R type II, IL-18 binding 

protein, osteoprotegerin. 

b) The chemokine family includes CC and CXC chemokines with over 30 members. 

c) BMP, bone morphogenic protein; BNDF, brain-derived neurotrophic factor; CNTF, ciliary neurotrophic 

factor; CT-1, cardiotrophin-1; LIF, leukemia inhibitory factor; NGF, nerve growth factor; RANKL, receptor 

activator of NF-κB ligand; VEGF, vascular endothelial growth factor. 

 (Adapted from DINARELLO, C. A. 2007. Historical insights into cytokines. Eur J 

Immunol, 37 Suppl 1, S34-45.)  
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1.2.1.2 The IL-1 family of cytokines 

 

The IL-1 family consists of about 11 members including IL-1α, IL-1β, IL-1Ra, IL-18, 

IL-33, IL-36α, IL-36β, IL-36γ, IL-36Ra, IL-37 and IL-38 (van de Veerdonk et al., 

2012). This cytokine family is characterized by containing the compiling β-trefoil 

structures of IL-1-like cytokine domain (Dinarello, 1994, Dinarello, 2012, 

Garlanda et al., 2013). 

 

There are several important features of the IL-1 family members:  

a) All have the IL-1-like domain (Garlanda et al., 2013).  

b) Lack of a signal peptide that addresses the proteins to the endoplasmic 

reticulum and Golgi pathway. Therefore, they are released through 

unconventional secretory mechanisms, via secretory lysosomes, exosomes 

or exocytosis vesicles (Carruth et al., 1991) or when cells undergo necrosis 

(Hogquist et al., 1991).  

c) All the members signal via a hetrodimer receptor complex consisting of a 

receptor and a co-receptor (Gabay et al., 2010).  

d) The function of IL-1 cytokines is self-regulated either by a soluble 

receptor or antagonising protein (Garlanda et al., 2013).  

e) Some members have dual functions as both a transcription factor in the 

nucleus or as a cytokine when released, for instance, IL-1α, IL-33 and IL-

37 (Gabay et al., 2010, Boraschi et al., 2011, Roussel et al., 2013).  

 

1.2.1.2.1 Functions of IL-1 family members 

 

This family plays different but important roles in immunity and disease. As 

shown in Table 1-2: IL-1α and IL-1β are closely associated with the inflammatory 

response and Th17 polarisation (Mills et al., 2013). IL-1 function can be 

regulated by IL-1 receptor antagonist (IL-1Ra) (Joosten et al., 1996, Palmer et 

al., 2003). IL-18 is mainly involved in Th1 development and response by 



43 
 
potentiating IL-12’s effect which can be inhibited by IL-18 binding protein (IL-

18BP), but IL-18 can also stimulate Th2 response in absence of IL-12 and IL-15   

(Sedimbi et al., 2013, Dinarello et al., 2013). IL-36 is composed of IL-36α, IL-36β, 

and IL-36γ isoforms which share the common receptor complex and play a 

pathogenic role in dermatitis and lung inflammation (Vigne et al., 2012, Tripodi 

et al., 2012). The functions of IL-36 are controlled by both IL-36 receptor 

antagonist (IL-36Ra) and the IL-36 binding protein IL-38 (van de Veerdonk et al., 

2012). IL-37 is a recently identified immune-regulator which inhibits the 

inflammatory response (Nold et al., 2010). While the detailed mechanism is still 

poorly understood, IL-37 may do so by inducing the SMAD3, a signalling 

component of transforming growth factor-β (TGF-β) in the presence of the decoy 

receptor, Single Immunoglobulin IL-1 Related Receptor (SIGIRR) (Boraschi et al., 

2011, Banchereau et al., 2012). Finally, IL-33 signals via ST2 and IL-1RAcP and 

predominantly induces a Th2 response in immunity and disease which can be 

regulated by soluble ST2 (sST2) receptor (Schmitz et al., 2005, Liew, 2012, Carta 

et al., 2013). 
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Table 1-2. IL-1 family members. 

 

Family 

name 
Name 

Receptor/

coreceptor 
Property 

Synthesized 

as precursor 

Processing 

required for 

activity 

IL-1F1 IL-1α 
IL-1RI 

IL-1RAcP 
Pro-inflammatory Yes No 

IL-1F2 IL-1β 
IL-1RI 

IL-1RAcP 
Pro-inflammatory Yes Yes 

IL-1F3 IL-1Ra IL-1RI 
Antagonist for IL-

1α,β 
No No 

IL-1F4 IL-18 
IL-18Rα 

IL-18Rβ 
Pro-inflammatory Yes Yes 

IL-1F5 IL-36Ra IL-1Rrp2 
Antagonist for IL-

36 
Yes Yes 

IL-1F6 IL-36α 
IL-1Rrp2 

IL-1RAcP 
Pro-inflammatory Yes Yes 

IL-1F7 IL-37 
IL-18Rα  

IL-18BP 

Anti-

inflammatory 
Yes Yes 

IL-1F8 IL-36β 
IL-1Rrp2 

IL-1RAcP 
Pro-inflammatory Yes Yes 

IL1-F9 IL-36γ 
IL-1Rrp2 

IL-1RAcP 
Pro-inflammatory Yes Yes 

IL-1F10 IL-38 IL-1Rrp2 ? Antagonist Yes ? No 

IL-1F11 IL-33 
ST2 

IL-1RAcP 
Pro-inflammatory Yes No 

 

 (Adapted from CARTA, S., LAVIERI, R. & RUBARTELLI, A. 2013. Different 

Members of the IL-1 Family Come Out in Different Ways: DAMPs vs. Cytokines? 

Front Immunol, 4, 123.) 
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1.2.2 IL-33 

 

Interleukin 33 (IL-33) was identified as a new IL-1 family member by Schmitz et 

al., in 2005.  

  

1.2.2.1 IL-33 gene and protein 

 

The gene encoding il33 was originally identified as the Dvs27 gene, which is 

upregulated in canine vasospastic cerebral arteries after experimental 

subarachnoid haemorrhage in 1999 (Onda et al., 1999), and as the gene for the 

nuclear factor from high endothelial venules (NF-HEV) described in 2003 

(Baekkevold et al., 2003). The human il33 gene is located on chromosome 9 and 

mouse il33 on chromosome 19; both genes contain 7 exons (Fig. 1-3). 

 

The human and mouse il33 genes encode proteins of 270 and 266 amino acids 

with a molecular weight of IL-33 about 30 and 29.9kDa, respectively. Human and 

mouse IL-33 share 55% homology at the amino-acid level. Furthermore, within 

the IL-1 family, IL-33 most closely resembles IL-18 (Schmitz et al., 2005).  

 

As with other members of the IL-1 family, IL-33 is produced primarily as a 

precursor protein, which is the full-length IL-33 (fl-IL-33). The N-terminal of fl-

IL-33 contains a Helix-turn-helix (HTH) motif and a nuclear location sequence 

(NLS), which facilitates the transport of fl-IL-33 into the cell nucleus (Carriere et 

al., 2007). Fl-IL-33 also possesses several enzyme cleavage sites and can be 

differently processed by these proteases (Liu et al., 2013) (Fig. 1-4). It has been 

reported that fl-IL-33 can be processed into mature IL-33 (mIL-33) by elastase, 

cathepsin G and proteinase 3 which are produced by neutrophils during 

inflammation (Ali et al., 2007, Lefrancais et al., 2012). Cleavage creates three 

active forms of mIL-33: IL-3395-270, IL-3399-270 and IL-33109-270; between 18 and 21 

kDa in human and 20 kDa mIL-33102-266 in mouse (Fig. 1-4). While both full-length 
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and mature IL-33 can bind to its receptor, it has been demonstrated that mature 

IL-33 has 10-fold greater bioactivity than the full-length protein (Talabot-Ayer et 

al., 2009). IL-33 also contains caspase 3 and 7 sites in the IL-1-like cytokine 

domain (Fig. 1-4) and the cleavage by these enzymes results in degradation and 

inactivation of IL-33 (Bae et al., 2012, Kakkar et al., 2012). Since caspase 3 and 

7 are induced when cells undergo apoptosis this suggests that IL-33 may not play 

an important role in apoptosis. 
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Fig. 1-3 Genomic structure of the human and mouse NF-HEV (il33) 

genes.  

Open boxes indicate non-translated exon sequences and black boxes indicate 

coding exon sequence. The two genes share a similar organization with seven 

exons. (Adapted from  BAEKKEVOLD, E. S., ROUSSIGNE, M., YAMANAKA, T., 

JOHANSEN, F. E., JAHNSEN, F. L., AMALRIC, F., BRANDTZAEG, P., ERARD, M., 

HARALDSEN, G. & GIRARD, J. P. 2003. Molecular characterization of NF-HEV, a 

nuclear factor preferentially expressed in human high endothelial venules. Am J 

Pathol, 163, 69-79.) 
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Fig. 1-4 IL-33 protein structure and processing sites.  

Intracellular proteases (caspases or calpain) or extracellular proteases from 

immune cells cleave IL-33 at indicated processing sites of human (A) and mouse 

(B) IL-33; these cleavages either deactivate IL-33 or generate more bioactive 

mature IL-33. 

(Adapted from Quan Liu & Hēth R. Turnquist. 2013. Implications for Interleukin-

33 in solid organ transplantation. Cytokine, 62, 183-194.) 
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1.2.2.2 Expression, location and release of IL-33 

 

IL-33 is widely distributed in a range of tissues, including brain, lung, heart, gut, 

joints, skin, spleen and lymph nodes. IL-33 is expressed in a variety of non-

haematopoietic cells, mainly the innate immune cells, including fibroblasts, 

adipocytes, smooth muscle, endothelial and epithelial cells, macrophages and 

dendritic cells (Sattler et al., 2013). In contrast, adaptive immune cells (T and B 

lymphocytes) do not make IL-33.  

 

IL-33 is synthesised at a very low level and is difficult to detect in serum in 

homeostatic conditions. However, it can be readily detected in inflamed tissue, 

organs and serum during trauma, and in infectious and inflammatory disorders, 

suggesting that IL-33 is closely associated with inflammatory conditions (Miller, 

2011, Liew, 2012, Hu et al., 2013, Januzzi, 2013, Pastorelli et al., 2013). 

 

Using an IL-33–LacZ gene trap reporter strain of mice, Melanie Pichery analyzed 

the expression and location of endogenous IL-33 in mice. She found that once 

expressed, IL-33 protein was always localized in the nucleus of producing cells 

(Pichery et al., 2012). This is due to fl-IL-33 protein containing the HTH and NLS 

domains at the N-terminal which allow the translocation of the IL-33 into the 

nucleus. This is consistent with the early finding that IL-33 is a nuclear factor 

from high endothelial venules (Baekkevold et al., 2003, Moussion et al., 2008). 

 

As with other IL-1 family members, fl-IL-33 protein does not have a leading 

sequence and current evidence suggests that IL-33 can be secreted by some cells 

in certain culture conditions or released when cells undergo damage or necrosis 

(Moussion et al., 2008, Sattler et al., 2013). 

 

It has been reported that IL-33 can be secreted without cell damage in vitro. 

Human bronchial epithelial cells cultured with extracts of the fungus Alternaria 
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which causes allergy can stimulate the secretion of IL-33 into the culture 

supernatant without affecting cell viability (Kakkar et al., 2012). While the 

precise mechanism is largely unknown, it has been shown that the secretion of 

IL-33 is dependent on the concentration of intracellular calcium and ATP in 

astrocytes and glial cells when stimulated with TLR ligands (Hudson et al., 2008, 

Zhang et al., 2011, Kouzaki et al., 2011). 

 

How IL-33 is secreted from intact cells is incompletely understood. It is possible 

that IL-33 is secreted via the unconventional secretion pathway used by IL-1 

family members, which uses secretory lysosomes, exosomes or exocytosis 

vesicles but not the classic protein secretion pathway. However, whether IL-33 

can be naturally secreted by cells in vivo is largely unknown (Kakkar et al., 2012). 

 

IL-33 is constitutively expressed and stored in the nucleus of cells. Current 

evidence suggests that IL-33 may be mainly released in vitro and in vivo when 

cells undergo damage or necrosis (Lefrancais et al., 2012, Lefrancais and Cayrol, 

2012). The release of fl-IL-33 when cells undergo chemical or physical injury, 

infection or necrosis has been demonstrated in different in vitro conditions 

(Cayrol and Girard, 2009, Andronicos et al., 2012). In vivo, extracellular IL-33 

has been detected in many inflammatory, traumatic and infectious conditions in 

human and mouse blood and tissue fluids, and in organs where cells have been 

damaged (Matsuyama et al., 2010, Le Goffic et al., 2011, Lefrancais and Cayrol, 

2012, Pushparaj et al., 2013). 

 

 

Once released, fl-IL-33 can be processed into mature IL-33 by the neutrophil 

serine proteases, cathepsin G and elastase secreted during infection or 

inflammation. The secreted full-length or mature IL-33 can serve as a cytokine 

which binds to its receptors and triggers signalling pathways and plays an 

important role in immunity and disease (Lefrancais et al., 2012, Luzina et al., 

2012).  
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However, during apoptosis, IL-33 will be cleaved by caspase 3 and 7, and 

degraded and inactivated (Luthi et al., 2009, Ali et al., 2010). Therefore, IL-33 

may mainly serve as a danger signal for trauma, inflammation and infection in 

the host (Lamkanfi and Dixit, 2009).  

 

1.2.3 IL-33 receptors 

 

IL-33 signals via its receptor complex consisting of ST2 and IL-1RAcp. 

 

1.2.3.1 ST2 

 

ST2 (also designated T1 or DER4) was originally identified as an early responding 

protein in mouse fibroblasts (BALB/c- 3T3 cells) stimulated by serum or 

oncogene but not in resting cells (Tominaga, 1989, Tominaga et al., 1991). ST2 

contains three immunoglobulin-like domains in the extracellular region for ligand 

binding, and a toll-IL-1R (TIR) domain in the cytoplasmic region for signalling, 

thereby belonging to the IL-1R/toll-like receptor (IL-1R/TLR) family. The ST2 

gene is located close to the IL-1R genes on mouse chromosome 1 and human 

chromosome 2 (Tominaga et al., 1991). In the mouse, differential mRNA splicing 

within the ST2 gene generates two mRNAs of 2.7 and 5 kb, which translates into 

a shorter secreted form (soluble ST2 or sST2) and a longer, trans-membrane 

form (ST2L) of the protein, respectively. The sST2 is identical with the 

extracellular region of ST2L but with an additional nine amino acids at the C 

terminus (Tominaga et al., 1999). Transcription of ST2 is controlled by two 

distinct promoters: an upstream promoter directs transcription in haemopoietic 

cells such as mast cells, while a promoter 10.5 kb downstream directs expression 

in fibroblasts (Tominaga et al., 1991, Yanagisawa et al., 1993).  

 

ST2L is the signal receptor for IL-33. It is expressed in a wide range of cells: 

innate immune cells (monocytes, macrophages, DCs, fibroblasts, eosinophils, 
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basophils, mast cells and ILC2) and subsets of lymphocytes (NKT, CD8, Th2 and 

B1 cells). ST2L was found to be expressed on Th2 but not on Th1 cells and thus 

may serve as a stable marker to distinguish between these two T cell lineages 

(Xu et al., 1998). Current evidence suggests that soluble ST2 is a decoy receptor 

which is antagonistic to IL-33 function in vitro and in vivo. Expression of sST2 is 

highly induced during trauma, inflammation and infection, which also correlates 

with induction and function of IL-33. Given the pro-inflammatory role of IL-33, 

sST2 production may have a protective effect against over-activated IL-33-

mediated inflammatory responses (Liew et al., 2010, Palmer and Gabay, 2011, 

Salas, 2013).   

 

The widespread gene expression of ST2 in a wide range of cell types indicates 

that it might serve important functions across a broad spectrum of biological 

systems. Indeed, increasing reports demonstrate that ST2 mediates important 

functions in immunity and in diseases as demonstrated using ST2 deficient mice, 

neutralising antibody or sST2 (Mato et al., 2009, Sedhom et al., 2013, Sattler et 

al., 2013). 

 

1.2.3.2 IL-1RAcP 

 

IL-1 receptor accessory protein (IL-1RAcP) was originally identified as the IL-1R 

co-receptor. IL-1 only binds to IL-1RI but not to IL-1RAcP (Dinarello, 1994). 

However, IL-1RAcP can bind to IL-1RI, thereby increasing the affinity of IL-1RI 

for IL-1 about 5-fold (Greenfeder et al., 1995). IL-1RAcP is also a co-receptor for 

IL-36 and IL-33 (Garlanda et al., 2013). 

 

IL-33 binds to the receptor ST2 but not to IL-1RAcP. The binding and interaction 

of IL-33 with ST2 subsequently recruits the accessory receptor IL-1RAcP. The IL-

33 binding induced receptor heterodimerization leads to the juxtaposition of the 

intracellular toll/IL-1 receptor (TIR) domain of both receptors which is required 
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for triggering downstream signalling pathways in target cells (Schmitz et al., 

2005, Martin, 2013). 

 

1.2.3.3 IL-33/ST2 signalling 

 

The precise IL-33 signalling pathways are not yet fully understood. Available 

evidence suggests that the MyD88/IRAK/TRAF6 pathway is critically involved in 

IL-33 signalling (Martin, 2013) (Fig. 1-5).  

 

The TIR-dimers of ST2 and IL-1RAcP complex initially recruit the adaptor protein 

MyD88 to the TIR-dimers by homotypic protein–protein interaction with its own 

C-terminal TIR domain. The MyD88 then recruits the IRAK-4 and IRAK-1 into the 

signal transduction platform which results in the activation of IRAK-4 which then 

phosphorylates and activates IRAK-1 (Suzuki et al., 2002, Burns et al., 2003, 

Loiarro et al., 2005). Once activated IRAK-1 dissociates from MyD88 and the 

receptor complex and interacts with Tumour Necrosis Factor receptor associated 

factor 6 (TRAF6) (Kollewe et al., 2004). TRAF6 then activates TAK1 which results 

in the activation of the classical NF-κB pathway, the activation of stress-

activated protein kinase p38 and c-Jun N-terminal kinases (JNK) (Bonizzi and 

Karin, 2004). In parallel, extracellularly regulated kinases (ERK1/2) become 

activated (Schmitz et al., 2005, Funakoshi-Tago et al., 2008). Other related 

pathways, including the PI-3K/PKB/mTOR pathway and the JAK/STAT pathway 

may also be involved in IL-33 signalling in different cells (Pecaric-Petkovic et al., 

2009, Salmond et al., 2012). These pathways may act synergistically to induce 

gene expression leading to, for example, cytokine and chemokine synthesis 

(Pecaric-Petkovic et al., 2009, Salmond et al., 2012, Mirchandani et al., 2012). 
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Fig. 1-5 IL-33 signal pathways.  

IL-33 signalling via ST2 and IL-1Rap dimmers leads to the recruitment of MYD88 

complex. The complex may activate two independent pathways: the pLD-SPHK 

pathway that leads to Ca2+ mobilization and activation of NF-κB; the MApK 

pathway is mediated by the activation of ERK, p38 and JNK via MApKKs. These 

two pathways may act synergistically to induce gene expression of other 

cytokines and chemokines. Soluble ST2 can act as a decoy receptor by binding to 

IL-33 directly.  

(Adapted from LIEW, F. Y., PITMAN, N. I. & MCINNES, I. B. 2010. Disease-

associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol, 

10, 103-10.) 
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1.2.4   Biological functions of the IL-33 system 

1.2.4.1 Function of nuclear IL-33 

 

Fl-IL-33 contains the HTH motif and is constitutively located in the nucleus of 

the producing cell. The function of IL-33 in the nucleus is poorly understood, 

however the HTH motif is necessary for fl-IL-33 to translocate into the nucleus. 

Full length IL-33 then can bind to heterochromatin and repress cellular gene 

expression in a promoter-reporter gene assay (Carriere et al., 2007, Roussel et 

al., 2008).  

 

Furthermore, fl-IL-33, but not mature IL-33, interacts with the free and 

activated transcription factor NF-κB p65. The IL-33/NF-κB complex reduces NF-

κB p65 binding to its cognate DNA response element and impairs p65-triggered 

transactivation. Over-expression of IL-33 reduces the IL-1–stimulated expression 

of NF-κB target-genes such as IkBα, TNF-α, and C-REL. Since IL-1 and NF-κB 

pathways play a pro-inflammatory role in many inflammatory responses by 

inducing other gene expressions, these results suggest that in contrast to free IL-

33, the nuclear IL-33 may act as a transcriptional regulator/repressor and play 

an important role in gene regulation by directly binding to chromosomal DNA. 

While the function of nuclear IL-33 in immunity and disease is poorly understood, 

it has been shown that the over-expression of nuclear fl-IL-33 may contribute to 

the development of lung inflammation and fibrosis via an undefined mechanism 

(Luzina et al., 2013). Therefore, IL-33 is a dual-functional mediator, which can 

act as a cytokine when released and a nuclear factor when translocated to the 

cell nucleus (Luzina et al., 2012, Luzina et al., 2013). 

  

I next will focus on the cytokine function of IL-33 in immunity and in disease 

models. The function of nuclear IL-33 will be discussed further in Chapter 6. 
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1.2.4.2 Function of cytokine IL-33  

 

Current evidence suggests that IL-33 is a pleiotropic cytokine which signals via 

its receptor ST2 and can elicit different innate and adaptive immune responses 

depending on in vivo context (Sattler et al., 2013) 

 

1.2.4.2.1 Effect on innate immune cells 

 

The innate immune response is the first line of host defence against infection 

but is also involved in inflammatory and stress responses. Accumulating evidence 

demonstrates that IL-33 is predominantly involved in innate immune response in 

immunity and in disease. The epithelium and endothelium are the cell layers in 

mucosal organs primarily protective against infection and stress. IL-33 is 

expressed primarily in the epithelium and endothelium and can be released 

when cells sense inflammatory signals or undergo necrosis. The IL-33 receptor, 

ST2, is expressed by almost all innate cells. Therefore once released, IL-33 

signalling via ST2 can induce innate immune responses by directly activating a 

wide range of innate immune cells including the key innate cells, eosinophils, 

macrophages, DCs, type 2 innate lymphoid cells (ILC2) and mast cells in the 

organs (Lamkanfi and Dixit, 2009, Palmer and Gabay, 2011, Mirchandani et al., 

2012, Komai-Koma et al., 2012). Research findings from the author’s laboratory 

have demonstrated several important functions of IL-33 in these key innate cells 

as described below.  

 

Eosinophils 

Eosinophils are closely associated with allergic response and contribute by 

secreting cytokines, chemokines and inflammatory molecules (Cherry et al., 

2008). Stolarski et al. have shown that IL-33 is a novel factor for the 

differentiation of eosinophils from bone marrow progenitor cells (Stolarski et al., 

2010). IL-33 can enhance ST2L expression on eosinophils, and IL-33 induced the 
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production of IL-13, CCL17, and TGF-beta by eosinophils in vitro and in vivo. 

These inflammatory mediators can then enhance the eosinophil-mediated 

inflammatory response in allergy and asthma in vivo (Salmond et al., 2012, Oh et 

al., 2013). 

 

Macrophages 

Macrophages are important innate immune cells with three key functions: 

phagocytosis of microbial and apoptotic cells, antigen-presentation via their 

MHC class I and II molecules and secretion of a wide range of cytokines, 

chemokines and inflammatory mediators (Martinez et al., 2008). The 

macrophages can differentiate into two subset phenotypes: M1 (classically 

activated) by IFN-γ and LPS or M2 (alternatively activated) by IL-4 and IL-13 

(Gordon, 2003, Wynn and Barron, 2010, Biswas and Mantovani, 2010).  

 

Kurowska-Stolarska et al. found that IL-33 potentiates IL-13-mediated 

polarisation of M2 and contributes to airway inflammation (Kurowska-Stolarska 

et al., 2009). In vitro, IL-33 enhanced IL-13-induced polarization of alveolar- and 

bone marrow-derived macrophage toward an M2 phenotype by increasing the 

expression of arginase I, Ym1, and chemokines CCL24 and CCL17. In vivo, the 

injection of recombinant IL-33 enhanced airway inflammation and the 

development of alveolar M2 cells in mice (Van Dyken and Locksley, 2013). 

 

Mast cells 

Mast cells are the key granular myeloid cells and are closely associated with 

homeostasis and disease. Mast cells are located in most organs and can be 

amplified during inflammatory conditions (Metcalfe et al., 1997). 

 

Xu et al. found that mast cells expressed high levels of ST2 and responded 

directly to IL-33 to produce a spectrum of inflammatory cytokines and 
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chemokines in vitro. In vivo, IL-33 exacerbates inflammatory arthritis by 

increasing the production of pro-inflammatory cytokines and increases mast cell 

degranulation in the joints (Xu et al., 2008, Xu et al., 2010). Thus, the IL-33-

mast cell pathway plays a pathogenic role in the exacerbation of inflammatory 

arthritis in mice.  

 

Komai-Koma et al. found that IL-33 enhanced IgE production in naive mice 

depending on IL-4 mainly produced by innate cells including mast cells (Komai-

Koma et al., 2012). The increased IgE then binds to IgE receptors on mast cell 

surface. Together the IL-33/ST2 and IgE signals triggered mast cell degranulation 

and systemic anaphylaxis in allergen-naive mice.  

 

Innate lymphoid cells 

Innate lymphoid cell 2 (ILC2s) are newly identified lymphocytes which do not 

express T cell or B cell antigen receptors but express ST2 and are closely 

associated with IL-33 function. The ILC2s produce type II cytokines IL-5, IL-9 and 

IL-13 in response to IL-33.  ST2 signals are required for the optimal proliferation 

and activation of ILC2 cells (Spits et al., 2013).  

 

Since ILC2s mainly produce IL-5 and IL-13 they play an initial and amplificatory 

role in innate and adaptive type 2 responses. Therefore, ILC2s are critically 

involved in anti-helminth infection but also in allergic disorders. 

  

These findings suggest that IL-33 is exclusively expressed by innate immune cells 

and is sufficient to activate a wide range of innate immune cells via their ST2 

and to initiate innate immune response. 

 

 



59 
 

1.2.4.2.2 Effect on adaptive immune cells 

 

The adaptive immune response is induced mainly by the T (CD4 and CD8) and B 

lymphocytes which express antigen receptors. Among the adaptive immune cells, 

ST2 is selectively expressed on Th2, IL-5-producing Th cells, CD8 and B1 cells 

(Sattler et al., 2013). 

 

Th2 cells 

It has been reported before the identification of IL-33 that the orphan receptor 

ST2L was expressed constitutively and stably on the surface of Th2 but not Th1 

cells (Xu et al., 1998). ST2L is also related to Th2 but not Th1 cell function in 

vitro and in vivo. Thus ST2L is a reasonable marker distinguishing Th2 from Th1 

cells and is also associated with Th2 cell function. This finding has been 

confirmed by the report that ST2L is the IL-33 receptor and IL-33 is able to 

directly activate Th2 cells in vitro and mainly induces Th2 type immune response 

in vivo (Schmitz et al., 2005). 

 

IL-5+ Th cells 

IL-5+ Th cells are IL-5 producing CD4+ T cells:  Kurowska-Stolarska et al. found 

that IL-33 directly polarizes naive CD4+ T cells into a novel T cell population 

which primarily produces IL-5 and IL-13 but not IL-4. This novel Th cell 

phenotype is different from other Th2 cells because its polarization requires ST2 

and MyD88 but not IL-4/IL-4R or STAT6. Furthermore, it depends on the 

phosphorylation of MAPKs and NF-κB but not the induction of Th2 transcription 

factor GATA3. In vivo, adoptive transfer of the IL-33-polarized IL-5(+) IL-4(-) T 

cells triggered allergic airway inflammation in naive IL-4 knockout mice. Thus IL-

33 selectively polarises IL-5-producing T cells which play a critical role in allergic 

response independent of IL-4 (Kurowska-Stolarska et al., 2008).  

 

CD8+ T cells 
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CD8+ T cells are cytotoxic T cells (CTL) which play an important role in host 

defence against infection and cancer. CD8+ T cells do so by secreting cytotoxic 

granular molecules, perforin and granzymes (Green et al., 2003, Ashton-Rickardt, 

2005). It has been reported that CD8+ T cells express ST2 (Yang et al., 2011, Gao 

et al., 2013). IL-33 is necessary for CD8+ T cell responses that induce protection 

against RNA and DNA viruses in mice (Bonilla et al., 2012). IL-33 signals through 

ST2 on activated CTLs, enhances clonal expansion and differentiation of CTL and 

is necessary for virus control (Komai-Koma et al., 2009, Yang et al., 2011). 

 

B1 cells 

B1 B lymphocytes produce natural IgM and play a critical role in the early 

defence against bacterial and viral infections. Komai-Koma et al. have reported 

that B1 but not B2 cells express the IL-33 receptor ST2. IL-33 markedly activated 

B1 cell proliferation and enhanced IgM, IL-5, and IL-13 production in vitro and in 

vivo in an ST2-dependent manner (Komai-Koma et al., 2011). 

 

Indirect effects on other adaptive immune cells 

It is noteworthy that IL-33 is also capable of promoting Th1 and/or Th17 type 

responses and B2 cell antibody production in different in vivo contexts in mice 

such as increasing IFN-γ production in presence of IL-12 and IL-17 released from 

effector memory T cells, by as yet undefined mechanisms (Komai-Koma et al., 

2007, Yang et al., 2011, Wakahara et al., 2012). Since these cell subsets do not 

express ST2 it is likely that IL-33 promotes these responses indirectly by 

enhancing the cytokines production required for their polarisation or functions in 

vivo (Xu et al., 2008). 

 

1.2.5 The role of the IL-33 system in health and disease 

 

Growing evidence demonstrates that IL-33 system plays a critical role in health 

and disease. This is mainly because IL-33 is a pleiotropic cytokine and induced by 
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infection, stress and inflammation and ST2 is expressed on a wide range of 

immune cells (Sattler et al., 2013). I will mainly describe the key function of IL-

33 in infectious, allergic and inflammatory disorders. 

 

1.2.5.1 Role of IL-33 in infections 

 

Current evidence suggests that IL-33 plays different roles in parasitic, bacterial 

and viral infections (Liew et al., 2010). 

 

Parasite infection  

An increasing number of reports demonstrate that the IL-33/ST2 system 

contributes to host defence against parasite infections (Table 1-3). It has been 

reported that the IL-33 system protects against Leishmania major (Kropf et al., 

2003), Trichuris muris (Humphreys et al., 2008), Toxoplasma gondii (Jones et al., 

2010), Nippostrongylus brasiliensis (Harvie et al., 2013) and Strongyloides 

venezuelensis (Yasuda et al., 2012). The protective effect of the IL-33 system is 

mainly due to its key role in the induction of Th2 responses which are required 

for the expulsion of the parasites (Sattler et al., 2013). 

 

Bacterial infection 

The IL-33 system is also critically involved in protection against some bacterial 

infections (Sattler et al., 2013) (Table 1-3). The IL-33 system is required for the 

induction of protective immunity against Gram-negative bacterial sepsis and 

Pseudomonas aeruginosa infection (Hazlett et al., 2010). These beneficial 

effects of IL-33 signals are due to the pleiotropic effect on a given pathogen and 

immune context as reported.  However, the IL-33 system seems less important in 

protection against Mycobacterium tuberculosis infection, because ST2-deficient 

mice developed a normal host defence against this pathogen (Wieland et al., 

2009). This suggests that the role of the IL-33 system in bacterial infection may 
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vary depending on the type of bacteria, the levels of IL-33 expressed within the 

infected cell type and the host immunity. 

 

Virus infection 

There is limited information suggesting that the IL-33 system is implicated in 

protection from viral infections. However, available evidence indicates that IL-

33 may play different roles in different virus infections; it protects against LCMV 

(Bonilla et al., 2012) but promotes the infection of influenza (Le Goffic et al., 

2011). 

 

Thus, current evidence suggests that the IL-33 system may have a beneficial 

effect on parasite infection. However, its role in bacterial and virus infection 

varies depending on the types of pathogen, the levels of IL-33 expressed within 

the infected cell type and the host immunity. Further studies are required to 

gain a fuller appreciation of the role of the IL-33 system in infection. 
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Table 1-3. Implication of IL-33 and its receptor ST2L in host immune defence. 

Organism / 
experimental 
setting 

Evidence for IL-33 
involvement 

References 

Parasites 

 Leishmania major 

ST2L expressing CD4 T cells 
localize at site of infection 

(Kropf et al., 2002) 

ST2L signalling regulates 
excessive type 1 responses 

(Kropf et al., 2003) 

 Toxoplasma gondii 

Infection upregulates ST2 
mRNA 

(Jones et al., 2010) 
ST2−/− mice are more 

susceptible to infection 

 Trichuris muris 

Infection upregulates IL-33 
expression 

(Humphreys et al., 2008) IL-33 induces parasite 
expulsion and secretion of TSL, 
IL-4, IL-9, and IL-13 

 Nippostrongylus 
brasiliensis 

ILC expand in response to IL-
33 and are sufficient for worm 
clearance 

(Neill et al., 2010, Price et 
al., 2010)  

 Strongyloides 
venezuelensis 

Infection induces pulmonary 
accumulation of iLC which 
proliferate and produce IL-5 
and IL-13 in response to IL-33 

(Yasuda et al., 2012) 

Bacteria 

 Bacterial TLR agonists 
and other bacterial PAMP 
mimics 

Upregulation of IL-33 mRNA 

(Hudson et al., 2008, Nile 
et al., 2010, Polumuri et 
al., 2012, Shimosato et 
al., 2010, Zhang et al., 
2011)  

 Lipopolysaccharides 
IL-33 enhances LPS-induced 

inflammatory cytokine 
production by macrophages 

(Espinassous et al., 2009) 

 Pseudomonas 
aeruginosa 

IL-33 dampens inflammation 
and tissue damage due to M2 
macrophage polarization 
resistance against keratitis 

(Hazlett et al., 2010) 

 Experimental sepsis 

Increased neutrophil 
recruitment and bacterial 
clearance 

(Alves-Filho et al., 2010) 

Enhanced phagocytosis and 
killing activity 

(Le et al., 2012) 

 Leptospirosis 
Increased levels of sST2 are 

associated with bleeding and 
mortality in leptospirosis 

(Wagenaar et al., 2009) 

Virus 
 Viral TLR agonists and 

other viral PAMP mimics 
Upregulation of IL-33 mRNA 

(Hudson et al., 2008, 
Polumuri et al., 2012) 

 Influenza virus 
Upregulation of IL-33 mRNA 

correlates with increase in pro-
inflammatory cytokines 

(Le Goffic et al., 2011) 
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 Dengue virus 

sST2 levels are associated 
with disease severity 

(Houghton-Trivino et al., 
2010) 

Negative correlation 
between sST2 serum levels and 
platelet/white blood cell count 

(Becerra et al., 2008) 

 LCMV 
IL-33 mediates protective 

antiviral CD8+ T cell responses 
(Bonilla et al., 2012) 

 Influenza virus 

Increased IL-33/ST2 
expression levels 

(Le Goffic et al., 2011) 

ST2−/− infected mice have 
decreased lung function, loss of 
airway epithelial integrity and 
impaired respiratory tissue 
remodelling 

(Monticelli et al., 2011) 

Infection induces IL-33 
production by alveolar 
macrophages 

(Chang et al., 2011) 

Fungus/Yeast 

 Pneumocystis murina 
IL-33 induced M2 

macrophages cause enhanced 
fungal clearance 

(Nelson et al., 2011) 

 Candida albicans 
IL-33 enhanced neutrophil 

recruitment and neutrophil 
effector functions 

(Le et al., 2012) 

 Alternaria alternata 
Infection-induced ATP 

release induces IL-33 secretion 
(Chaturvedi et al., 2006) 

 

 (Adapted from SATTLER, S., SMITS, H. H., XU, D. & HUANG, F. P. 2013. The 

evolutionary role of the IL-33/ST2 system in host immune defence. Arch Immunol 

Ther Exp (Warsz), 61, 107-17.) 
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1.2.5.2 Role of IL-33 in allergic diseases 

 

Allergy and asthma: exogenous or transgenic expression of IL-33 in antigen-

naive mice can induce a typical Th2 response and the key asthma characteristics 

including type II cytokine and IgE production, airway inflammation, mucus 

secretion, eosinophilia and airway hyper-reactivity (AHR) in antigen-dependent 

or independent manners (Liew et al., 2010). It is also reported that both il33 and 

st2 polymorphisms are closely associated with asthma and allergy susceptibility 

in human, suggesting that IL-33 system may be a new therapeutic target (Xu et 

al., 2013, Sattler et al., 2013).  

 

Anaphylaxis: findings from the author’s laboratory have demonstrated that IL-33 

amplifies IgE synthesis and triggers mast cell degranulation and anaphylaxis in 

mice via IL-4 (Komai-Koma et al., 2012). IL-33 can induce IgE production and 

anaphylaxis in the presence or absence of allergen in mice. Therefore, IL-33 may 

play an important role in atopic or non-atopic allergy and idiopathic anaphylaxis 

(Miller, 2011). 

 

Contact hypersensitivity: ST2-/- mice developed impaired oxazolone-induced 

contact sensitivity (CS) compared with wild-type (WT) mice. IL-33 treatment 

significantly exacerbated CS in mice by inducing B1 cell proliferation and 

function (Komai-Koma et al., 2011). Thus, IL-33 may play an important role in 

delayed-type hypersensitivity.  

 

1.2.5.3 Role of IL-33 in chronic inflammatory disorders  

 

Rheumatoid arthritis 

Rheumatoid arthritis (RA): IL-33 and ST2 are highly expressed on the synovial 

membrane in the joints of RA patients, and their expression level correlates with 
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the severity of RA (Hong et al., 2011). In RA animal models, IL-33 injection 

exacerbated RA in WT mice but ST2 knockout mice developed impaired collagen-

induced arthritis (CIA). Mast cells which express ST2 in the joints play an 

important role in the IL-33-promoted CIA development and exacerbation (Xu et 

al., 2010). Disease exacerbation was accompanied by elevated expression levels 

of pro-inflammatory cytokines. Results from the author’s laboratory demonstrate 

that IL-33 is a critical pro-arthritic cytokine for inflammatory joint disease 

mainly via an IL-33-driven, mast-cell-dependent inflammatory pathway (Xu et al., 

2008). Thus, IL-33 and its receptor system may represent a therapeutic target 

for RA. 

 

Atherosclerosis 

Atherosclerosis is a chronic inflammatory disease of the vasculature commonly 

leading to myocardial infarction and stroke. Miller et al. have shown that IL-33 

and ST2 are expressed in the normal and atherosclerotic vasculature of mice and 

humans. Exogenous IL-33 administration impairs the development of 

experimental atherosclerosis in apolipoprotein (Apo) E-/- mice given a high-fat 

diet.  As reported, the treatment markedly reduced the development of severe 

and inflamed atherosclerotic plaques in the aortic sinus and lesions. This 

protective effect is associated with increased concentrations of antibodies to 

oxidized low-density lipoprotein (ox-LDL) and reduced inflammatory cytokines. 

This finding suggests that IL-33 may play a protective role in the development of 

atherosclerosis (Miller et al., 2008).  

 

There is evidence for the biologic relevance of both ST2 and IL-33 in other 

inflammatory disease, for example lung fibrosis (Mato et al., 2009) and colitis 

(Pastorelli et al., 2010). I will describe these examples in detail below in 

sections 1.3.1.2 and 1.3.2.2 and in the General Discussion.   
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Table 1-4. Role of IL-33 in diseases 

 

Asthma 

IL-33 levels are elevated in clinical and experimental 

asthma  

Blocking ST2 or IL-33 attenuates disease in some models  

Administration of IL-33 exacerbates experimental asthma 

and induces features of asthma in animals 

Allergy and 

anaphylaxis 

In the presence of IgE, IL-33 induces anaphylactic shock  

IL-33 causes degranulation of IgE-primed mast cells in the 

skin  

Increased expression of IL-33 by skin cells in clinical atopic 

dermatitis 

Cardiovascular 

disease 

Serum ST2 levels increased in myocardial infarction and 

heart failure  

Protective effect of IL-33 in experimental heart failure  

Atherosclerosis in mice is attenuated by IL-33 and 

exacerbated by soluble ST2 

Central nervous 

system disease 

ST2 and IL-33 detected following subarachnoid 

haemorrhage  

IL-33 associated with Alzheimer's disease where expression 

is increased 

Pain IL-33 induces cutaneous and articular hypernociception 

Arthritis 

IL-33 and ST2 are increased in the synovium in rheumatoid 

arthritis  

Blocking ST2 attenuates collagen-induced arthritis  

IL-33 exacerbates collagen-induced arthritis 

 (Adapted from LIEW, F. Y., PITMAN, N. I. & MCINNES, I. B. 2010. Disease-

associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol, 

10, 103-10.) 
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1.3 Pulmonary fibrosis and ulcerative colitis 

1.3.1 Pulmonary Fibrosis 

 

Pulmonary fibrosis is a restrictive lung disease with impaired lung function 

resulting from reduced alveolar inflation. Around the world, the prevalence is 

around 2 to 20 cases per 100 thousand of the population. One of the most 

common forms of lung fibrosis is idiopathic pulmonary fibrosis (IPF) (Bradley et 

al., 2008). 

 

IPF is the most common form of idiopathic interstitial pneumonia (IIP), and used 

to be known variously as the Hamman-Rich syndrome, alveolitis fibrosis, 

cryptogenic fibrosing alveolitis and IIP. Epidemiologically it affects 20 per 100 

thousand of the population in the USA, and 2-8 per 100 thousand of the 

population in Japan and Europe. The incidence of disease increases with age, 

and is more common in males.  The average survival time after diagnosis is 2.8-

3.6 years, and symptoms include difficulty in breathing, dry cough, anorexia, 

body weight loss, and lack of strength (Cottin, 2013, Wolters et al., 2014). 

 

The aetiology of IPF is unknown, but may be related to chronic inflammation. 

Around 20% of IPF patients have a history of occupational exposure to metals and 

wood dust (Wilson and Wynn, 2009, Noble et al., 2012). 

 

Fibrosis occurs when myofibroblasts produce new collagen at a rate higher than 

can be normally degraded, thus the total amount of collagen increases over time 

and finally causes permanent fibrotic scarring.  The exact mechanisms of fibrosis 

are still largely unknown. One explanation could be that when tissue damage 

occurred as a result of infection, autoimmune reactions, toxins, radiation or 

mechanical/thermal trauma, the delicate interaction between activated immune 

and stromal cells to regulate normal wound healing was disrupted or over-

exuberant. Fibroblasts and macrophages (M2) are believed to be key players in 
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the pathogenesis of fibrosis (Shepherd, 2006, Martinez et al., 2006, Meneghin 

and Hogaboam, 2007, Wynn, 2008, Alber et al., 2012). 

 

Many fibrotic disorders are thought to be caused by pathogenic organisms 

(Meneghin and Hogaboam, 2007). The pathogen-associated molecular patterns 

(PAMPs) found on these organisms promote and maintain myofibroblasts 

activation via TLRs or NLRs (nucleotide-binding oligomerization domain-like 

receptors) (Otte et al., 2003, Shishido et al., 2003, Pierer et al., 2004). However 

some fibrotic diseases do not have a clear infectious aetiology, like idiopathic 

pulmonary fibrosis; paracrine cytokines derived from active leukocytes could 

initiate and maintain myofibroblasts activation as well (Wolters et al., 2014). 

 

In recent years, there have been substantial studies of the mechanisms and 

pathogenesis of lung fibrosis, however currently lung transplantation is the only 

effective treatment for idiopathic pulmonary fibrosis (Wilson and Wynn, 2009, 

Wynn and Ramalingam, 2012, Kolb and Shargall, 2013). 

 

1.3.1.1 Immune cells in pulmonary fibrosis 

 

Numerous cells have been reported to play a role in the development of fibrosis. 

Of these, the immune cells that are recruited after epithelium and/or 

endothelium damage may play key roles in fibrosis as follows (Wynn, 2011). 

 

B cell 

B cells are known to produce IL-6 upon activation. This may therefore directly 

promote fibrosis because IL-6 has a potential effect on tissue fibrosis as it could 

stimulate fibroblasts to synthesize collagen (Duncan and Berman, 1991). B cells 

also produce IL-10 which decreases IL-12 production thus promoting Th2 

differentiation. Th2 cytokines like IL-4 and IL-13 are believed to be pro-fibrotic 
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mediators (Wynn, 2004, Hasegawa et al., 2005, Zhang et al., 2013). This is 

discussed extensively in section 1.3.1.2. 

 

T cell 

T cells, especially CD4+ T cells, play a prominent role in the progression of lung 

fibrosis. Studies on gene expression patterns of fibrotic tissues found very 

different profiles during Th1 and Th2 polarized conditions. Th1 cells were 

reported to have potential anti-fibrotic functions whereas Th2 and Th17 cells 

very likely play a pro-fibrotic role. The role of regulatory T cells (Treg) is 

complicated in the pathogenesis of fibrosis; Tregs producing IL-10 along with Th1 

cytokines play an anti-fibrotic role but they could also produce TGF-β which is a 

powerful pro-fibrotic cytokine (Park et al., 2005, Wynn, 2011). 

 

Macrophage 

Macrophages are directly involved in the process of wound healing and fibrosis. 

Their phagocytic role is essential for wound healing by removing microbes, cell 

debris and dead cells thus eliminating the causes of pro-fibrotic and pro-

inflammatory responses (Duffield et al., 2013, Alber et al., 2012). 

 

Macrophages do not produce collagen but produce matrix metalloproteinases 

(MMP) and tissue inhibitors of metalloproteinases (TIMP), especially MMP-2, 9 

and 13 that could break down ECM and attenuate scarring. However MMP-9 can 

also up-regulate TGF-β and IL-13 production thus promoting fibrosis. IL-13 can 

recruit neutrophils infiltration (Kinyanjui et al., 2013). Macrophages can increase 

fibroblast proliferation, survival and migration by producing TGF-β and platelet-

derived growth factor (PDGF) (Duffield et al., 2005, Gibbons et al., 2011). 

 

Macrophages play different roles in the pathogenesis of fibrosis depending on the 

cytokine context. Th2 cytokines generate alternatively activated macrophages 

(M2) which produce arginase-1, and the arginase-1 pathway has pro-fibrotic 
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properties (Gibbons et al., 2011, Alber et al., 2012). The Th1 cytokines promote 

iNOS producing classically activated macrophages (M1) which have anti-fibrotic 

functions (Murray and Wynn, 2011). 

 

Mast cell 

Mast cell numbers are increased in the affected tissues in fibrotic diseases but 

the mechanism behind this relationship is unclear. There is evidence suggesting 

that mast cells could increase smooth muscle thickness in asthma by release of 

tryptase onto smooth muscle and epithelium (Amin, 2012). 

 

Other leukocytes such as DC (Spears et al., 2011), neutrophils, basophils and 

eosinophils might have some effects on the development of fibrosis but the 

precise mechanisms are still largely unknown (Duffield et al., 2013).  

 

1.3.1.2 Cytokines in pulmonary fibrosis 

 

Cytokines play a crucial role during both the formation and inhibition of lung 

fibrosis (Borthwick et al., 2013). Some examples are as follows: 

 

TGF-β1 

TGF-β1 is the most studied and best known pro-fibrotic cytokine and it is mainly 

released from circulating monocytes and tissue macrophages. TGF-β1 is reported 

to promote fibrosis directly; it could promote fibroblasts differentiate to α-

smooth muscle actin (α-SMA) positive myofibroblasts which are the key 

pathogenic cell type in all fibrotic diseases (Hinz et al., 2007). It also could 

activate mesenchymal cells to go through epithelial/endothelial-mesenchymal 

transition (EMT) to differentiate into collagen-synthesizing myofibroblasts 

(Ashcroft et al., 1999, Wynn and Ramalingam, 2012). 

 



72 
 
Th2 cytokines 

Th2 cytokines such as IL-4 and IL-13 are considered potential fibrotic factors 

through both TGF-β1-independent and –dependent pathways. Besides their 

ability to promote fibrosis via directly activating fibroblasts to produce collagen, 

they also promote fibrosis indirectly via increasing the production and activation 

of TGF-β1 (Kaviratne et al., 2004, Wynn, 2008). 

 

IL-33 

The importance of IL-33 in fibrogenesis especially lung fibrosis was observed 

even before it was finally named ‘IL-33’ in 2005 (Schmitz et al., 2005) by the 

studies of its receptor ST2 which was first discovered in fibroblast cells 

(Tominaga et al., 1991). Oshikawa et al. reported that sST2 could modulate lung 

inflammation in 2002 (Oshikawa et al., 2002), Tajima et al. discovered that the 

serum level of sST2 was increased in patients with IPF and correlated with 

disease severity in 2003 (Tajima et al., 2003). In 2009, the pro-fibrotic role of IL-

33 was observed by using sST2 over-expressing mice in BLM-induced lung fibrosis 

model (Mato et al., 2009). Another in vitro experiment also confirmed the 

pathological role of IL-33 (Yagami et al., 2010). The pro-fibrotic property of IL-

33 was further reported in multi-walled carbon nanotube and bleomycin induced 

fibrosis models (Wang et al., 2011, Luzina et al., 2013). 

 

IL-33 also plays a pathological role in other fibrotic disease in other organs for 

example cutaneous fibrosis (Rankin et al., 2010), hepatic fibrosis (McHedlidze et 

al., 2013),  renal fibrosis (Akcay et al., 2011), gut fibrosis (Sponheim et al., 2010, 

Lopetuso et al., 2012) and pancreatic fibrosis (Masamune et al., 2010). But IL-33 

seems to play a protective role in central nervous and cardiovascular systems 

fibrotic diseases (Miller et al., 2008, Jiang et al., 2012). 

 

Despite extensive studies having already been done to understand the role of IL-

33 in fibrotic diseases, the exact mechanism of IL-33 involvement in fibrosis is 



73 
 
still largely unknown; it might be due to its ability to promote other Th2 

cytokines production.  

 

Pro-inflammatory cytokines 

The process of a progressive fibrotic response that can evolve from acute lung 

injury requires inflammatory factors such as TNFα, IL-1β, IL-6, IL-8 (CXCL8), 

CXCL1 (KC) and CXCL2 (MIP-2) (Parmentier et al., 2000, Hirani et al., 2001). 

These cytokines are reported to be responsible for the initiating and prolonged 

progression of lung inflammation and eventual lung fibrosis. TNFα and IL-1β are 

reported to promote epithelial cells differentiate to myofibroblasts in a TGF-β1-

dependent manner. IL-6 is considered to be an autocrine growth factor in 

fibroblasts (Wynn, 2011).  

 

Th17 cytokines such as IL-17A and IL-21 are also reported to play a pathological 

role in the initiation and development of fibrosis in some animal models via 

recruitment of neutrophils. And there are reports about the link between IL-17A 

expression and TGF-β1 (Borthwick et al., 2013, Duffield et al., 2013). 

 

Th1 cytokines  

Th1 cytokines, for example IFN-γ and IL-12, are reported to have anti-fibrotic 

properties. These cytokines could alter the polarization from type I immunity to 

type II immunity, thus reducing the production of Th2 cytokines  (Borthwick et 

al., 2013). 

 

1.3.1.3 Animal models 

 

Most experimental models of lung fibrosis involve rodents and the intra-

pulmonary administration of antigens or irritants (Moore and Hogaboam, 2008). 
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FITC 

Intratracheal administration of fluorescein isothiocyanate (FITC) can induce 

pulmonary fibrosis in mice. This causes infiltration of macrophages and 

neutrophils into the lung interstitium. The main advantages of this model are 

that the lung injury site can be easily visualized, the mouse strain is 

independent and fibrosis formed does not self-limit; the main disadvantage is 

that this model is not clinically relevant (Roberts et al., 1995). 

 

Irradiation 

Thorax-limited exposure to a single dose of irradiation can induce lung fibrosis.  

The advantage of this model is that it is clinically very relevant and important, 

and the disadvantages are the length of time (30 weeks) necessary for the 

fibrotic response, and the cost (Rube et al., 2000).  

 

Silica 

Aerosolization or intratracheal instillation of mineral fibers can induce fibrosis in 

rodents. The main advantage of this model is that it is close to human diseases 

caused by occupational exposure to dusts and particulates; the disadvantages 

are that the experiment aerosolization requires specific equipment that is not 

widely available, and the time for fibrosis to develop is more than 60 days (Davis 

et al., 1998). 

 

Bleomycin 

The best characterized murine model of human lung fibrosis is intrapulmonary 

administration of bleomycin (Moore and Hogaboam, 2008, Mouratis and Aidinis, 

2011). Bleomycin (BLM) is a family of compounds produced by Streptomyces 

verticillis. It has potent tumour killing properties and is used in cancer 

chemotherapy, but its use is limited as it causes lung fibrosis in some patients.  

BLM can induce lung injury by causing DNA strand breakage and inducing lipid 

peroxidation (Fleischman et al., 1971, Hay et al., 1991) causing alveolar cell 



75 
 
damage, lung inflammation and fibrosis (Izbicki et al., 2002). The advantages of 

this model include: i) it is the best characterized model; ii) the BLM can be 

delivered by a variety of methods (i.n., i.p., i.t. and i.v.); iii) this model is 

clinically relevant; iv) time for development of fibrosis only takes 14-28 days.  

 

1.3.2 Ulcerative colitis 

 

Inflammatory bowel disease (IBD) includes two major forms, ulcerative colitis 

(UC) and Crohn’s Disease (CD). The epidemiology of UC in the USA shows 

occurrence in 10-12 per 100 thousand of the population and the incidence is 

higher in northern than southern locations, and greater in females. Clinical 

symptoms of UC include diarrhoea, abdominal pain, fever, anorexia, nausea and 

body weight loss. In some cases, UC can result in gastrointestinal bleeding or 

colorectal cancer (Podolsky, 2002, Kaser et al., 2010). 

 

The pathogenesis of UC is not completely understood. It is believed that the 

chronic relapsing inflammation results from a dysregulated immune response 

(Maloy and Powrie, 2011, Bamias et al., 2012). 

 

Treatment of ulcerative colitis must be personalized depending on the individual 

circumstances. Patients need consistent medical approach underpinned by 

professionals. Nutritional deficits must be corrected, plus medical therapy for 

progressive disease and timely surgery for refractory inflammation or 

complications. Treatment should be adjusted according to disease severity and 

clinical symptoms. The goal of treatment is mucosal healing and this probably 

reduces risk of complications. Cases with severe disease should be admitted to 

hospital for intravenous corticosteroids, fluids and electrolytes with close 

monitoring. The main principles of therapy for the treatment are to control 

active disease fast, to maintain remission, to select patients for whom surgery is 

appropriate, and to ensure as good a quality of life as possible (Vermeire et al., 

2011, Kiesslich, 2012, Assadsangabi and Lobo, 2013). 
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1.3.2.1 Immune cells in ulcerative colitis 

 

Phagocyte 

Innate immune cells such as macrophages, DC and neutrophils play an important 

pro-inflammatory role in the development of both CD and UC (Yamamoto-

Furusho and Podolsky, 2007, Kaser et al., 2010). 

 

B cells and T cells 

Although there is evidence of adaptive immunity involved in the development of 

IBD, the results from animal models using Myd88 Trif knockout mouse showed 

IBD to be innate immunity dependent (Brandtzaeg et al., 2006, Slack et al., 

2009). 

 

1.3.2.2 Cytokines in ulcerative colitis 

 

Pro-inflammatory cytokines 

IL-1, IL-6, IL-17 and TNF cytokines contribute to the pathogenesis of UC. The 

most efficient method to treat IBD is anti-TNF neutralizing antibody (Baumgart 

and Sandborn, 2007). 

 

Th1 cytokines 

IFNγ and IL-12 play an important role mainly in CD, but might have some effects 

in the development of UC (Baumgart and Carding, 2007). 

 

Th2 cytokines 
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Although plenty of work has been done to investigate the role of type II 

cytokines including IL-4, IL-5 and IL-13 in the pathogenesis of IBD, the results are 

inconsistent or controversial (Stevceva et al., 2001, MacDonald et al., 2012). We 

still poorly understand the mechanisms of these cytokines’ involvement in the 

IBD.   

 

Immune regulatory cytokines 

TGF-β and IL-10 have a protective effect on IBD as they can suppress the 

inflammation (Maloy and Powrie, 2011). 

 

IL-33  

IL-33 is expressed mainly in the epithelium and endothelium cells and it can be 

released from cells when in contact with inflammatory signals or when cells 

undergo necrosis. IL-33 signalling via ST2 can induce both varieties of immune 

response, both antigen-dependent and antigen–independent. IL-33 is now being 

considered as an amplifier of innate immune response, and there is evidence 

suggesting that IL-33 may play a pathogenic role in IBD (Sponheim et al., 2010, 

Oboki et al., 2010, Beltran et al., 2010, Seidelin et al., 2011, Grobeta et al., 

2012, Sedhom et al., 2013). Thus, to investigate the role of IL-33 in the 

development of IBD might provide new therapeutic ideas. 

 

1.3.2.3 Animal models 

 

SAMP1/YitFc mice 

Senescence accelerated mice (SAM) P1/YitFc (SAMP1/Fc) mice develop chronic 

inflammation of the ileum and therefore share many similar mechanisms with 

human CD. This is the best model to study human CD (Sugawara et al., 2005, 

Pastorelli et al., 2010). 
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TNBS-induced colitis 

Intrarectal instillation of haptenating substance TNBS in ethanol can induce 

colitis in some strains of mice, rats and rabbits. Ethanol is used to break the 

mucosal barrier; TNBS is thought to haptenize colonic autologous or microbiota 

proteins rendering them immunogenic to the host immune system. This model is 

helpful to study T helper cell-dependent mucosal immune response. But the 

disadvantages of this model are the individual optimization of concentration if 

TNBS is required and the fact that it is strain-dependent (Wirtz et al., 2007). 

 

Oxazolone-induced colitis 

Intrarectal instillation of hapten reagent oxazolone in ethanol can induce colitis 

in some strains of mice and rats. Similar to TNBS-induced colitis, this model is 

useful to study T helper cell-dependent colitis; it is also strain-dependent and 

requires individual optimization (Wirtz and Neurath, 2007). 

 

DSS-induced colitis 

Administration of dextran sodium sulfate (DSS) in drinking water ad libitum can 

induce colitis in guinea pigs, rats, hamsters and mice, both acute and chronic 

depending on the dosage and time (Okayasu et al., 1990). The exact mechanism 

of DSS-induced colitis is still unknown, possibly the direct alteration of gut 

permeability, and gut bacteria may play a key role in DSS-induced colitis since 

under germ-free conditions mice develop very severe colitis after administration 

of DSS (Dieleman et al., 1994, Wirtz et al., 2007). The DSS model of colitis has 

many pathological similarities to human IBD especially UC. The DSS model of 

colitis is a cheap and easy way to mimic human IBD in animals, and is also highly 

reproducible and applicable to a variety of species (Mahler et al., 1998). It is a 

suitable model for investigating the role of permeability and epithelial 

destruction in the initiation of IBD (Maxwell and Viney, 2009). 
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1.4 Hypothesis and Aims 

 

Increasing evidence suggests that the IL-33/ST2 axis plays a critical role in 

several chronic inflammatory disorders, including asthma, rheumatoid arthritis 

and atherosclerosis. However, the relevance of ST2 and IL-33 in other 

inflammatory and remodelling diseases, for example colitis and lung fibrosis, at 

the time when I started my PhD study in 2010 was largely unknown. These two 

diseases are common with unknown aetiology and there is therefore an 

important clinical unmet need to investigate them. It has been suggested that 

both diseases may be initiated by the dysregulation of mucosal barrier function 

involving the innate immune response playing a critical role in the development 

and perpetuation of the disorders.   

 

Hypotheses: 

Based on the current literature and findings described above, I hypothesised that 

IL-33 is induced in the gut and lung epithelium and mediates inflammation 

mainly by engaging the innate inflammatory response.  

 

Aims: 

1. To investigate the effect of IL-33 and its receptor ST2 in the 

development of bleomycin-induced lung fibrosis in mice (Chapter 3)  

2. To elucidate the mechanism by which IL-33 signals promote bleomycin-

induced lung fibrosis (Chapter 4)  

3. To study the expression and function of IL-33 and ST2 in colitis 

(Chapter 5)  

4. To understand the possible mechanism underlying pathogenic role of IL-

33 in colitis (Chapter 5)  

5. To improve the understanding of IL-33 in the pathogenesis of 

inflammatory diseases and thereby its potential therapeutic value.  
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Chapter 2: Materials and Methods 

2.1 Mice 

 

All mice were housed in the Biological Services facility, University of Glasgow, 

according to United Kingdom Home Office regulation. All experiments were 

undertaken in the same facility under project licenses (No. 60/3791 and 

60/4405); mice were used typically starting at 6-8 weeks old. I hold a personal 

license (No. 60/12410). The mice strains used are summarized in Table 2-1. ST2 

knockout mice were kindly supplied by Prof. F. Y. Liew (Institute of Infection, 

Immunity and Inflammation, University of Glasgow, Glasgow, UK) (Xu et al., 

2010); IL-4 knockout and IL-4 receptor knockout mice were kindly supplied by 

Prof. J. Alexander (Strathclyde Institute of Pharmacy and Biomedical Sciences, 

University of Strathclyde, Glasgow, UK) (Mohrs et al., 1999).  

 

Table 2-1. Mice strains used 

Strain Genetic Modification Source 

Balb/C Wild-type Harlan Olac 

Balb/C ST2 gene knockout (ST2 KO) Bred at University of Glasgow (Xu et 

al., 2010) 

Balb/C IL-4 gene knockout (IL-4 KO) Bred at University of Strathclyde (Mohrs 

et al., 1999) 

Balb/C IL-4 receptor gene knockout  

(IL-4R KO) 

Bred at University of Strathclyde (Mohrs 

et al., 1999) 

C57B/6 Wild-type Harlan Olac 

C57B/6 ST2 gene knockout (ST2 KO) Bred at University of Glasgow (Xu et 

al., 2010) 
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2.2 Buffers and reagents 

 

2.2.1 Cytokines 

 

Table 2-2. Cytokines used for in vitro culture 

 

Cytokine Supplier Source Working concentration Use 

M-CSF PeproTech Murine 10 ng/ml BMDM culture 

IL-4 PeproTech Murine 5—50 ng/ml Cell stimulation 

IL-13 PeproTech Murine 5—50 ng/ml Cell stimulation 

IL-33 PeproTech Murine 5—50 ng/ml Cell stimulation 

 

 

2.2.2 Antibodies 

 

Antibodies used for immunohistochemistry and western blot are summarized in 

Table 2-3; and for flow cytometry (FACS) are summarized in table 2-4. 
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Table 2-3. Antibodies and isotype controls used in 

Immunohistochemistry and Western Blot. 

 

 Produced in Stock 

concentration 

Dilution Company 

Anti-mouse IL-33 Goat 0.2 mg/ml 1:40 R&D Systems 

Anti-mouse 

F4/80 

Rat 1 mg/ml 1:50 AbD Serotec 

Goat IgG Goat 5 mg/ml 1:1,000 Vector Labs Ltd. 

Rat IgG Rat 1 mg/ml 1:50 Vector Labs Ltd. 

Biotinylated anti-

goat IgG 

Rabbit 1.5 mg/ml 1:200 Vector Labs Ltd. 

Biotinylated anti-

rat IgG 

Rabbit 0.5 mg/ml 1:200 Vector Labs Ltd. 

Horseradish 

Peroxidase-

linked anti-Goat 

IgG  

Rabbit Not specified 

by supplier 

1:1,000 R&D systems 
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Table 2-4. Antibodies used in FACS 

Antigen Label Isotype Stock Volume

/100 μl 

Company 

CD11b PE Hamster IgG 0.2 mg/ml 1 μl eBioscience 

CD11b FITC Rat IgG2b 0.5 mg/ml 1 μl eBioscience 

CD11c PE Rat IgG2b 0.2 mg/ml 1 μl eBioscience 

CD11c FITC Hamster 

IgG1 

0.2 mg/ml 2 μl BD Bioscience 

CD16/32 

(FcBlocker) 

none Rat IgG2b 0.5 mg/ml 2 μl BD Bioscience 

CD3 PE Hamster IgG 0.2 mg/ml 1 μl  eBioscience 

CD3 PerCP Rat IgG2b 0.2 mg/ml 1 μl eBioscience 

CD4 FITC Rat IgG2b 0.2 mg/ml 1 μl eBioscience 

CD45 PB Rat IgG2b 0.5 mg/ml 0.5 μl BioLegend 

CD45 Alexa700 Rat IgG2b 0.2 mg/ml 1 μl eBioscience 

CD45R/B220 PE Rat IgG2a 0.2 mg/ml 2 μl eBioscience 

CD49b/pan-NK PE Rat IgM 0.2 mg/ml 1 μl eBioscience 

CD206/MR Alexa647 Rat IgG2a 50 μg/ml 10 μl AbD Serotec 

CD278/ICOS PerCP Hamster IgG 0.2 mg/ml 1 μl eBioscience 

CD282/TLR2 PE Rat IgG2b 0.2 mg/ml 1 μl eBioscience 

ST2L/T1 FITC Rat IgG1 1 mg/ml 2 μl MD Bioscience 

F4/80 APC Rat IgG2b 0.2 mg/ml 2 μl AbD Serotec 

F4/80 PB Rat IgG2a 0.5 mg/ml 0.5 μl BioLegend 

F4/80 FITC Rat IgG2a 0.5 mg/ml 0.5 μl eBioscience 
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FceR1 PE Hamster IgG 0.2 mg/ml 1 μl eBioscience 

Gata-3 PE Rat IgG2b 0.2 mg/ml 2 μl eBioscience 

MHC Class II PerCP Rat IgG2b 0.2 mg/ml 0.5 μl eBioscience 

IL-4 APC Rat IgG1 0.2 mg/ml 0.5 μl eBioscience 

IL-13 APC Rat IgG1 0.2 mg/ml 0.5 μl BioLegend 

IL-33 PE Rat IgG2a Not 

specified 

by 

supplier 

10 μl R&D systems 
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2.2.3 Chemicals and buffers 

 

Chemicals and buffers used throughout the projects are listed in table 2-5 and 

table 2-6. 

 

Table 2-5. Chemicals 

Chemicals Supplier Usage 

0.01% hydrogen peroxide Sigma-Aldrich, USA IHC 

1M /1N hydrochloric acid Sigma-Aldrich, USA ELISA 

1M/2N sulphuric acid Sigma-Aldrich, USA ELISA 

3,3',5,5'-Tetramethylbenzidine (TMB) eBioscience, USA ELISA 

3,3'-diaminobenzidine 

tetrahydrochloride (DAB) 

Vector Labs Ltd., 

USA 

IHC 

Agarose Sigma-Aldrich, USA Genotyping 

Bleomycin (BLM) Sigma-Aldrich, USA in vivo experiments 

Clodronate Liposomes ClodLip BV, 

Netherlands 

in vivo experiments 

Dextran Sulphate Sodium (DSS)  ICN Biomedicals, 

USA 

in vivo experiments 

Ecoscint A Scintillation Fluid National 

Diagnostics, USA 

Proliferation assay 

Ethidium Bromide Invitrogen, UK Genotyping 

4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES) 

Sigma-Aldrich, USA ELISA 

Ionomycin calcium salt Sigma-Aldrich, USA Cell activation 
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Isoflurane  Sigma-Aldrich, USA in vivo experiments 

Phenylmethanesulfonyl fluoride 

(PMSF) 

Sigma-Aldrich, USA Protein extraction 

Phorbol 12-myristate 13-acetate 

(PMA) 

Sigma-Aldrich, USA Cell activation 

Phosphatase Inhibitor Cocktail Thermo Fisher 

Scientific, USA 

Protein extraction 

Protease Inhibitor Cocktail Sigma-Aldrich, USA Protein extraction 

Pierce RIPA Buffer Thermo Fisher 

Scientific, USA 

Protein extraction 

Sodium orthovanadate Sigma-Aldrich, USA Protein extraction 

[methyl-3H] thymidine PerkinElmer Inc., 

USA 

Proliferation assay 

Tris Acetate-EDTA (TAE) Sigma-Aldrich, USA Genotyping 

Trichloroacetic acid (TCA) Sigma-Aldrich, USA Proliferation assay 

Tween®  20 Sigma-Aldrich, USA ELISA, western blot 

IHC 

Chemicals used throughout the projects; other chemicals not listed were 

obtained from Sigma-Aldrich, USA. IHC = immunohistochemistry;  
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Table 2-6. Buffers 

Buffer Constituents 

Phosphate buffered saline (PBS) 8g NaCl, 1.16g Na2HPO4, 0.2g KCl, 0.2g 

KH2PO4 in 1 litre distilled water, pH7.4 

Tris-Buffered Saline (TBS) 2.422g Trizma base, 9g NaCl in 1 litre 

distilled water, pH 7.6 

ELISA Coating buffer 0.1M NaHCO3 pH 8.4, unless specified 

otherwise 

ELISA Wash buffer 0.05% (v/v) Tween-20 in PBS pH 7.4, unless 

specified otherwise 

ELISA assay buffer 10% FBS in PBS, unless specified otherwise 

Radioimmunoprecipitation Assay 

(RIPA) buffer 

25mM Tris-HCl (pH 7.6), 150mM NaCl, 1% NP-

40, 1% sodium deoxycholate, 0.1% SDS 

FACS buffer 0.5% BSA and 2mM EDTA in DPBS 

Immunohistochemistry Wash 

Buffer (TBST) 

0.05% (v/v) Tween-20 in PBS pH 7.6 

Acid Alcohol 1 ml 37% (w/v) HCl in 100 ml 70% (v/v) 

Ethanol 

Scott’s tap water substitute 3.5g Sodium hydrogen carbonate, 20g 

Magnesium sulphate in 1 litre distilled water 

Chromotrope-green mixture 0.6g Chromotrope 2R, 0.3g Fast green FCF, 

0.6g phosphotungstic acid, 1 ml acetic acid in 

100 ml distilled water 

Buffers used throughout the projects. 
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2.3 Tissue culture 

 

Cells were cultured in complete medium (RPMI 1640 or DMEM, 10% heat-

inactivated FBS, 100 U/ml Penicillin, 100 μg/ml Streptomycin, 2 mM L-glutamine; 

Invitrogen Ltd., UK), unless otherwise specified. Cultures were incubated at 

37.0°C in a humidified incubator (Heraeus Instruments, Germany) supplemented 

with 5% CO2. Viable cells were counted with a Neubauer haemocytometer 

(Weber Scientific International Ltd, UK) on a Nikon Labphot microscope, staining 

with 0.1% (w/v) Trypan Blue (Sigma-Aldrich, USA).  

 

2.3.1 Culture of mice pulmonary fibroblast cells  

 

Primary fibroblasts of 5-6 weeks mice were obtained from freshly excised lungs 

using an explant technique (Peacock et al., 1992). Briefly, lungs were dissected 

from the thorax, laid out onto the sterile Petri dish filled with 2 ml of wash 

buffer (DMEM containing 100 U/ml Penicillin, 100 μg/ml Streptomycin), the 

tissue was then cut into ~1 mm3 pieces, 25 of which were evenly distributed over 

the base of a 25-cm2 culture flask containing 2 ml of DMEM with 20% fetal calf 

serum (FCS), penicillin/streptomycin. Explants were incubated in a humidified 

atmosphere of 5% CO2 in air at 37°C. After 4 days, add 2 ml of same complete 

media to each flask and change the medium every 3 days afterwards; the growth 

of fibroblasts from tissue fragments was monitored. Once a monolayer of cells 

had partially covered the flask (approximately 70% confluence), tissue fragments 

were removed by aspiration, and cells were passaged as follows. Cells were 

washed twice with 2 ml of trypsin solution (0.05% trypsin / 0.02% EDTA; 

Invitrogen, UK), incubated at 37°C for approximately 10 minutes or until cells 

were rounded and began to detach from the flask, add 10 ml of culture medium 

(containing serum to inactivate the trypsin) and transfer to new flasks. Cells 

were subsequently maintained in DMEM containing 10% FCS, supplemented with 

antibiotics and L-glutamine as before, and used between passages 3 and 10. 
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2.3.2 Primary culture of mice bone marrow-derived macrophages 

 

Mice were sacrificed by exposing to CO2, the pelvic and femoral bones were 

removed from the joints, each end of the bones was cut off, and the bone 

marrow cells were expelled using a 26-gauge needle/5 ml syringe filled with 

wash buffer (PRMI 1640 containing 100 units/ml penicillin, 100 μg/ml 

streptomycin) to flush through both ends of the bones. The bone marrow cells 

were washed once with RPMI and harvested by centrifugation 1200rpm for 10 

minutes, and the cells were cultured in 10 ml of RPMI 1640 supplemented with 

10% FBS, 2mM L-glutamin, 100 units/ml penicillin, 100 μg/ml streptomycin, 0.05 

M 2-mecaptoethanol on Petri dish (10 x106 cells per dish) in the presence of M-

CSF (10ng/ml; PeproTech, USA). The cells were fed with fresh complete medium 

supplemented with M-CSF (10ng/ml) every 3 days. On day 7 of the culture, cells 

were collected with a scraper in cold PBS buffer and the purity checked using 

the macrophage marker (F4/80) by flow cytometry. The cell preparations should 

contain >95% of F4/80+ macrophages. 

 

2.3.3 Primary culture of lung cells 

 

For the isolation of total lung cells, mouse lungs were extracted as described in 

section 2.8.2. The lungs were transferred to a Petri dish, where connective 

tissues and lymph nodes were removed and the remaining lung parenchyma cut 

into 1-2 mm cubes using curved scissors in 1 ml RPMI 1640 containing 100 

units/ml penicillin. The tissue fragments were then transferred via pipette to a 

bijou and digested with 1 ml per lung of Digestion Buffer (RPMI 1640 completed 

with 100 U/ml DNAse, 1 mg/ml Collagenase D (Roche, USA)), on a mechanical 

shaker and incubated at 37°C for 45 minutes. The tissue was passed through an 

18-gauge needle every 12 minutes to further disperse the tissue. After washing 

twice with RPMI 1640 then collecting the cells by centrifugation at 1200 rpm for 

5 min at 4°C, the separated cells were resuspended in complete culture media 

and filtered through a strainer in order to get single cells. The cells (0.5x106/ml) 

were placed into the wells of a 24-well cell culture plate and cultured in 
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complete DMEM for 24 to 72 hours. The culture supernatants were harvested and 

stored at -20°C for cytokine analysis and the cells were placed into RNA 

stabilisation buffers for storage and kept at -80oC for mRNA extracted for 

subsequent PCR assay. 

 

2.3.4 Colon cultures 

 

Colons were removed from mice, opened longitudinally and washed in sterile 

PBS supplemented with antibiotics (200 units/ml penicillin, 200 μg/ml 

streptomycin). Three segments (1 cm in length) from the distal colon were 

placed in 24-well flat-bottom culture plates (Costar, USA) containing fresh RPMI 

1640 supplemented with 1% penicillin/streptomycin and cultured at 37°C for 24 

h. The culture supernatants were then harvested by centrifugation at 13,000 

rpm for 10 minutes at 4°C and transferred to new tubes and stored at −20°C for 

analysis of cytokine and chemokine by Luminex or ELISA. 
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2.4 Measurement of fibroblasts proliferation  

 

The measurement of DNA replication determined by the incorporation of 

tritiated [3H] thymidine (PerkinElmer Inc., USA) was used to measure the cellular 

proliferation. Briefly mice pulmonary fibroblasts (MPFs) were grown in 10% FCS 

to approximately 60% confluence in 24-well or 96-well flat bottom plates and 

then were serum starved for 24 hours using serum-free medium to establish cell 

cycle synchronization (Chen et al., 2012). Cells were then cultured under 

different conditions for 24 or 48 hours. Cellular proliferation was determined by 

incorporation of [3H] thymidine. Briefly, [3H] thymidine (3.7 kBq/well for a 24-

well plate; or 14.8 kBq/well for a 96-well plate) was added to fibroblast cultures 

4 hours before the end of the experiments. After the culture, for cells grown in 

a 24-well plate, the medium was removed and the plate placed on ice; the cells 

were washed twice with 0.5 ml ice-cold PBS. The cells were further washed with 

5% ice-cold trichloroacetic acid (TCA) to precipitate cellular proteins and with 

ice-cold 100% ethanol to extract lipid fractions. The remaining cell contents 

were dissolved in 0.3M NaOH. The contents of each well were transferred to a 

scintillation vial and 1.5 ml of Ecosint A scintillation fluid (National Diagnostics, 

USA) was added into each vial. The vials were vortexed thoroughly before the 

radioactive counts were done using a scintillation counter (PerkinElmer Inc., 

USA). The counts were measured in CPMs (counts per minute). For cells grown in 

a 96-well plate, the samples are harvested to a filtermat (PerkinElmer Inc, US) 

with a cell harvester (PerkinElmer Inc., US), the filtermat was air dried, then 

put into a plastic sample bag filled with 5 ml of Ecosint A scintillation fluid and 

sealed. The filtermats were then measured by a MicroBeta counter (PerkinElmer 

Inc., US). Counts were also measured as CPMs. 
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2.5 Recombinant IL-33 production 

 

The His-tagged recombinant IL-33 proteins were produced in E.coli and affinity 

purified using Ni-NTA Agarose in Dr. Xu’s lab as described previously (Komai-

Koma et al., 2007).  

 

2.5.1 Endotoxin removal  

 

Endotoxin in the purified rIL-33 products was removed by purification with 

polymyxin B columns following the manufacturer’s instruction: briefly, a pre-

packed column (EndoTrap) was placed in a holder and remove the top cap 

before the bottom cap, allowing the storage solution to drain from the column 

(approx 8 min), making sure the EndoTrap resin does not run dry. Activate the 

column as follows: fill the column with regeneration buffer (approx 3 ml) and let 

the column drain out, repeat once; fill up the column with equilibration buffer 

(approx 3 ml) and drain out the column, repeat once. Then fill the column with 

sample (Ni-NTA agarose purified rIL-33 protein) in equilibration buffer and 

collect the flow through liquid immediately, the column can be repeatedly filled 

with up to 50 ml of samples, fill the column with 1 ml of equilibration buffer and 

let the column drain out to elute samples completely.  

 

2.5.2 Endotoxin detection 

 

Endotoxin levels in the rIL-33 preparations were measured using Limulus 

amebocyte lysate (LAL) QCL-1000 pyrogen test following the manufacturer’s 

manual: briefly, the microplate was preheated to 37oC in a heating block 

adapter (Thermo Fisher Scientific, USA). While leaving the plate in the heating 

block, add 50 μl of standards and samples to the wells, for blank control using 50 

μl of LAL reagent water. 50 μl of LAL was then added into each well using a 

multi-channel pipette in the order of reagent addition. Briefly tap the plate for 

mixing and incubate the plate for 10 minutes followed by adding 100 μl of 
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preheated substrate solution into each well. 16 minutes later, stop the reaction 

by adding 100 μl of stop reagent in the same sequence as the previous steps. 

Remove the plate from the heat blocker, read the plate with an ELISA reader 

(Dynex Technologies, USA) using absorbance at 410 nm, record the optical 

density (OD) and calculate the samples’ concentration based on the linear 

standard curve obtained by the standards on the same plate. 

 

2.5.3 Protein concentration measurement 

 

Protein concentrations of rIL-33 preparations were determined using Coomassie 

Protein Assay Kit (Bradford). First, perform 2-fold serial dilutions of the standard 

protein (Bovine serum albumin standards; Thermo Scientific, USA). Add 480 μl of 

Coomassie Reagent to 20 μl of the serial diluted standards, samples and PBS as 

blank, mix well and incubate 10 min at room temperature. Transfer 150 μl of the 

samples to a 96-well flat-bottom plate; the OD values were measured using an 

ELISA reader using 600-nm absorbance. The protein concentrations in the 

samples were determined by interpolating the readings to the OD values of the 

Standards. 

 

2.5.4 Bioactivity test 

 

To determine the bioactivity of the in-house prepared rIL-33, total splenocytes 

(2x106/ml) obtained from WT and ST2KO mice were stimulated with plant-bound 

anti-CD3 (2ug/ml) in the presence of 0, 10, 20 and 50 ng per ml of the sample 

rIL-33 and commercial rIL-33 (PeproTech, USA) as a standard. The cells were 

cultured in 24-well plate for 72 hours and supernatants were harvested. The 

concentrations of IL-5, the major cytokine induced by IL-33, in the culture 

supernatants were measured by ELISA. The IL-33 preparations which specifically 

induce IL-5 production in WT but not ST2KO cells were collected and used for 

further experiments. The relative bioactivity of home-made IL-33 was 

determined relative to the commercial standard. 
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2.6 Soluble collagen assay 

 

The Sircol Collagen Assay kit (Biocolor Ltd, UK) was used to measure the soluble 

collagen levels in cell culture fluids or in lung tissue homogenates as 

recommended by the manufacturer. To measure the collagen production of 

fibroblast cells in vitro, the supernatants of cell culture were collected after 24h 

or 48h of incubation under different conditions. To measure the collagen levels 

in mouse lung tissue, add 1 ml of RIPA lysis buffer to frozen lung tissue samples, 

homogenize the tissue for 20 seconds at 19,000 rpm using an electric 

homogenizer (Fisher Scientific, US), centrifuge the samples 10 minutes at 12,000 

rpm at 4℃, and collect supernatants for collagen assay.   

 

The principal feature of this assay is the use of Sirius Red, which can specifically 

bind to collagen and be detected in alkali buffer by spectroscopy at 555 nm 

absorption (Streuli and Grant, 2000). Briefly, add 1.0 ml Sircol Dye Reagent to 

each tube containing 100 μl of samples, blanks (PBS, culture media or RIPA 

buffer, respectively) or standards. Cap the tubes, mix by inverting contents first 

and then using a mechanical shaker for 30 minutes. Transfer the tubes to a 

micro-centrifuge and spin at 12,000 rpm for 10 minutes to collect the 

precipitated collagen. Carefully invert and drain the tubes and add 750 μl ice-

cold Acid-Salt Wash Reagent to the collagen-dye pellet to remove unbound dye 

by centrifugation at 12,000 rpm for 10 minutes and carefully remove any fluid 

from the lip of the tubes using cotton wool buds. Add 1000 μl Alkali Reagent to 

the samples, recap tubes and release the collagen-bound dye into solution using 

a vortex mixer. When all of the bound dye has been dissolved, transfer 200 μl of 

each sample to individual wells of a 96-well plate; set the micro-plate reader 

(Dynex Technologies, USA) to 570 nm. Measure optical density (OD) against the 

reagent blanks, standards and test samples, and obtain collagen concentrations 

by interpolating the readings into the Standard Curve. 
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2.7 Gene expression assay 

2.7.1 Quantitative-PCR analysis 

2.7.1.1 RNA extraction 

2.7.1.1.1 Isolation of total RNA from cells 

 

A spin-column based RNA extraction kit (Qiagen, Germany) was used for this 

purpose, all procedures were conducted according to manufacturer’s instruction 

manuals: briefly, add 350 μl of Buffer RLT to lyse cells (up to 5x106); transfer the 

lysate directly into a QIAshredder spin column placed in a 2ml collection tube, 

centrifuge for 2 minutes at 13,000 rpm; transfer flow-through to an RNeasy spin 

column placed in a 2 ml collection tube, centrifuge for 15 seconds at 12,000 rpm, 

discard the flow-through; add 700 μl Buffer RW1 to RNeasy spin column, 

centrifuge for 15 seconds at 12,000 rpm, discard the flow-through; wash RNeasy 

spin column twice with 500 μl Buffer RPE, centrifuge at 12,000 rpm for 15 

seconds the first time and 2 minutes the second time, discard the flow-through; 

place the RNeasy spin column in a new 1.5 ml collection tube, add 40 μl RNase-

free water directly to RNeasy spin column membrane, centrifuge for 1 minute at 

12,000 rpm to elute the RNA. 

 

2.7.1.1.2 Isolation of RNA from tissues   

 

TRIzol Reagent (Invitrogen, UK) was used for the isolation of total RNA from 

tissues: briefly, wash the tissue preserved in RNAlater using PBS; then add 1ml 

TRIzol Reagent per sample (10-100 mg), homogenize the sample for 20 seconds 

at 19,000 rpm using an electric homogenizer (Thermo Fisher Scientific Inc., US) 

and incubate the homogenized sample for 5 minutes at room temperature. 

Purify the RNA by adding 0.2 ml of chloroform into the sample tube, shake 

vigorously by hand for 20 seconds, incubate 3 minutes at room temperature and 

centrifuge the samples at 12,000 rpm for 15 minutes at 4oC. Remove the 

aqueous phase of the sample by pipetting and transfer into a new tube. To 

precipitate the RNA, add 0.5 ml of 100% isopropanol to the aqueous phase, 
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incubate 10 minutes at room temperature, centrifuge the samples at 12,000 rpm 

for 10 minutes at 4℃; discard the supernatants, leaving only the RNA pellet. 

Wash the RNA with 1 ml of 75% ethanol, vortex the tubes briefly then centrifuge 

the tubes at 12,000 rpm for 5 minutes at 4℃. Discard the supernatants, air dry 

the RNA pellet for 6 minutes; re-suspend the RNA pellet in 40 μl of RNase-free 

water.  

 

The purity and quantity of RNA extractions were determined by using a 

NanoDrop spectrophotometer (Thermo Scientific, US), and the quality was 

assessed by the A260/A280 ratio (1.8~2.1 was considered optimum). 

 

2.7.1.2 Reverse Transcription 

 

Reverse Transcription (RT) of RNA into cDNA was carried out using High-Capacity 

cDNA Reverse Transcription Kits according to manufacturer’s protocol (Applied 

Biosystems, US).  Dilute RNA samples to 1.5 μg per 10 μl using nuclease-free 

water. Prepare 2X reverse transcription master mix, each 10 μl mix containing 

2.0 μl of 10X RT Buffer, 0.8 μl of 25X dNTP Mix, 2.0 μl of 10 RT Random Primers, 

1.0 μl of MultiScribe reverse transcriptase and 4.2 μl of nuclease-free water.  For 

a 20 μl RT reaction, mix 10 μl of 2X reverse transcription master mix with 10 μl 

of RNA samples in individual PCR tube, briefly centrifuge the tubes to eliminate 

any air bubbles; load the tubes in thermal cycler (Eppendorf, UK); perform 

reverse transcription reaction in the following conditions: 25oC 10 minutes, 37℃ 

120 minutes, 85℃ 5 seconds and 4℃ to stop the reaction. Keep the cDNA 

samples at -20℃ until further experiments. 

 

2.7.1.3 Real-time PCR 

 

Real-time polymerase chain reaction (RT-PCR) was performed using Fast SYBR 

Green master mix (Applied Biosystems, USA): pipette 10 μl of 2X Fast SYBR 
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Green master mix, 1 μl of each forward and reverse PCR primers (Tab 2.7), 2 μl 

of cDNA samples and 7 μl of nuclease-free water into each well of a 96-well 

reaction plate, briefly centrifuge the plate to eliminate any air bubbles; load the 

plate into an Applied Biosystems real-time quantitative PCR instrument; set the 

thermal cycling condition: 95℃ 20 seconds; 95℃ 3 seconds, 60℃ 30 seconds, 

repeat 40 cycles; calculate the results using ΔΔCT method (Livak and Schmittgen, 

2001, Giulietti et al., 2001).  

The primers (Integrated DNA Technologies, USA) were synthesized according to 

the sequences in table 2-7.  
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Table 2-7. Real-time PCR primers 

Mice forward reverse 

TPB 5’- 

ACTATGTGGTCTTCCTGAATCC 

-3’ 

5’- 

CAAACCCAGAATTGTTCTCCTT - 

3’ 

sST2 5’- CTTGTTCTCCCCGCAGTC -

3’ 

5’- CCAATGTCCCTTGTAGTCGG -

3’ 

ST2L 5’- 

TCTGTGGAGTACTTTGTTCACC 

-3’ 

5’- 

TCTGCTATTCTGGATACTGCTTTC 

-3’ 

Il-13 5’- 

GAATCCAGGGCTACACAGAAC -

3’ 

5’- 

AACATCACACAAGACCAGACTC -

3’ 

IL-33 5’- 

ACTATGAGTCTCCCTGTCCTG -

3’ 

5’- ACGTCACCCCTTTGAAGC - 3’ 

TGFβ1   5’- CCATGAGGAGCAGGAAGG -

3’ 

5’- 

ACAGCAAAGATAACAAACTCCAC -

3’. 

Collagen 

I 

5’- 

CATTGTGTATGCAGTGACTTC -

3’ 

5’- 

CGCAAAGAGTCTACATGTCTAGG 

-3’ 

Collagen 

III 

5’- 

TCTCTAGACTCATAGGACTGAC

C -3’ 

5’- 

TTCTTCTCACCCTTCTTCATCC -

3’ 

Collagen 

IV 

5’- 

AATCCAATGACACCTTGCAAC -

3’ 

5’- TCTGGCTGTGGAAAATGTGA 

-3’ 
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Arginase I 5’- 

AGTGTTGATGTCAGTGTGAGC -

3’ 

5’- 

GAATGGAAGAGTCAGTGTGGT -

3’ 

Arginase 

II 

5’- 

GTATTAATGTCCGCATGAGCAT

C -3’ 

5’- 

GTGGTTAGTAGAGCTGTGTCAG -

3’ 

iNOS 5’- GCCTCGCTCTGGAAAGA -3’  5’- TCCATGCAGACAACCTT -3’ 

 

Real-time PCR primers used for detecting specific genes expression in mRNA. 
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2.7.2 Genotyping  

2.7.2.1 DNA extraction 

 

Genotyping of ST2KO mice was regularly performed by PCR. Mouse tail-tip 

biopsies (1cm) were taken under isoflurane anaesthetic condition. DNA from the 

tails of the mice was extracted using DNeasy Blood & Tissue kit according to 

manufacturer’s instruction (Qiagen, Germany). Cut the tail tissue into small 

pieces and place into a 1.5 ml micro-centrifuge tube, add 180 μl Buffer ATL; 

then add 20 μl of proteinase K to digest the tissue. Mix thoroughly by vortexing, 

and incubate at 56℃ until the tissue is completely lysed (approximately 6-8 

hours). After lysis, bring the samples to room temperature, vortex the tubes for 

15 seconds, add 200 μl Buffer AL and mix thoroughly by vortexing; then add 200 

μl of ethanol and mix well; transfer the mixture into the DNeasy Mini spin 

column placed in a 2 ml collection tube, centrifuge at 8000 rpm for 1 minute, 

discard the flow-through. Wash the DNA sample by adding 500 μl of Buffer AW1 

per tube and centrifuge at 8000 rpm for 1 minute, followed by adding 500 μl of 

Buffer AW2 per tube and centrifuge at 14000 rpm for 3 minutes. Place the 

DNeasy Mini spin column in a 1.5 ml micro-centrifuge tube, add 200 μl Buffer AE 

directly onto the DNeasy membrane and incubate for 1 minute, centrifuge at 

8000 rpm for 1 minute to elute the chromosome DNA. Determine the 

concentration and purity of the DNA by NanoDrop spectrophotometer. 

 

2.7.2.2 PCR 

 

Two separate PCR reactions were carried out for genotyping to identify ST2 

knockout (KO; neo-cassette) mice and distinguish the wild-type (WT) mice from 

ST2KO mice with or without the specific size of the PCR products. Primer pairs 

used are shown in table 2-8. 

 

PCR using GoTaq®  Master Mixes (Promega, UK): pipette 10 μl of 2X master mix, 1 

μl of forward and reverse primers, 2 μl of DNA samples and 7 μl of nuclease-free 
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water into PCR reaction tubes, briefly centrifuge the tubes to eliminate any air 

bubbles; load the tubes into a thermal cycler (Applied Biosystems, USA); perform 

PCR under the following reaction conditions: 94℃ 3 minutes; 94℃ 45 seconds, 60℃ 

30 seconds, 72℃ 90 seconds, repeat 30 cycles; 72℃ 10 minutes and 4℃ ∞; store 

samples at -20℃. 

 

The PCR products were diluted with 5X Bromophenol Blue loading buffer 

(Invitrogen, UK). Then 20 μl of each sample were loaded into separate wells of 2% 

Agarose/1X TAE gels containing 0.5 μl/ml ethidium bromide. The PCR samples 

were run together with a DNA ladder (Invitrogen, UK) in TAE buffer in an 

electrophoresis tank at 100mV for 30 min and imaged under UV light using a Gel 

Logic 200 Imaging System and software (Kodak, USA). Fig. 2-1 presents typical 

bands for WT and ST2 knock mice. 

 

Table 2-8. Primer pairs for genotyping 

 Forward  Reverse PCR 

product 

ST2 

(WT) 

5’- TTGGCTTCTTTTAATAGGCCC -

3’ 

5’- 

TGTTGAAGCCAAGAGCTTACC 

-3’ 

500 bp 

Neo 

(KO) 

5’- 

CTATCAGGACATAGCCTTGGCTACC 

-3’ 

5’- 

TGTTGAAGCCAAGAGCTTACC 

-3’ 

200 bp 

 

Primer pairs used for genotyping and related sizes of PCR products of mouse 

tissue. 
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Fig. 2-1 Genotyping  

Typical bands obtained from wild type (WT), ST2 knockout (KO) and 

heterozygous (HT) mice, with molecular weight ladders. The bands are 

approximately 500 bp for WT and 200 bp for KO. 

  

506 bp
220 bp
201 bp
154 bp

HT WT KO
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2.8. Murine disease models 

2.8.1 DSS-induced colitis 

 

For the induction of acute colitis, female mice were fed with 3.5% 

(weight/volume) DSS in their drinking water from day 0 for 12 consecutive days 

as previously described (Wirtz et al., 2007). Some mice also received 

recombinant IL-33 or PBS daily by intraperitoneal injections.  

 

The body weight, stool consistency, and rectal bleeding of the mice were 

monitored daily. The development of stool consistency and rectal bleeding was 

scored using the modified method of Cooper (Yoshihara et al., 2006) as shown in 

table 2-9: 

 

Table 2-9. Scoring system for the comparative analysis of 

diarrhoea 

 

Score Stool consistency and bleeding condition 

0 Normal; Negative Hemoccult 

1 Soft but Still Formed; no Blood Traces in Stool 

2 Very Soft; Blood Traces in Stool Visible 

3 Diarrhoea; Rectal Bleeding 

 

Mice were sacrificed at different time points. Tissues of the colon were removed 

and cleaned for histology and culture. Serum was collected for cytokine 

measurement. 
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2.8.2 Bleomycin (BLM)-induced lung injury 

 

This model works optimally on C57BL/6 mice. Mice were lightly anaesthetized by 

exposure to 4% isoflurane gas, and then given 30 μl of a solution of bleomycin 

(BLM) dissolved in PBS (0.06units/25g mouse) intranasally (i.n.). The same 

volume of PBS was given to the control groups. The experiment lasted up to two 

weeks when the lung fibrosis was evident (Adamson and Bowden, 1974, Izbicki et 

al., 2002). 

 

Mice were sacrificed at different time points. The bronchoalveolar lavage fluid 

(BALF), serum and lung tissues were collected for further analysis.  

 

2.8.2.1 Alveolar macrophage depletion 

 

To evaluate the role of alveolar macrophages in bleomycin-induced lung fibrosis, 

mice were administered intranasal (i.n.) with clodronate or control liposomes 

(40 μl per mouse) 72 and 24 hours before bleomycin administration. All mice 

were sacrificed 7 days after the bleomycin injection. The success of macrophage 

depletion was determined by counting the macrophage numbers in lungs and 

BALF by FACS before and after the clodronate administration.  

 

2.8.2.2 IL-33 neutralizing 

 

Neutralizing anti-IL-33 antibodies (Rabbit IgG) were kindly provided by Professor 

Mingcai Li, Medical School of Ningbo University, China. (Liu et al., 2009) To 

evaluate the role of IL-33 in bleomycin-induced lung fibrosis, anti-IL-33 antibody 

or control rabbit IgG (150 μg per mouse) were administered intraperitoneally 

(i.p.) 30 minutes before bleomycin administration and every five days afterwards. 

All mice were sacrificed 14 days after the bleomycin injection. The success of IL-
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33 neutralization was determined by the reduction in IL-33 concentration in the 

lung tissue and BAL fluid by ELISA, before and after the antibody treatment. 

 

2.9 Histological Analysis  

 

For colon tissues: the tissues were fixed and then embedded in paraffin. Briefly, 

colon tissues dissected from mice were fixed for 24 hours at room temperature 

in 10% (v/v) formalin; then put into 70% (v/v) ethanol for 1 hour twice, 80% 

ethanol 1 hour twice, 90% ethanol 1 hour twice, 95% ethanol 1 hour twice, 100% 

ethanol 1 hour twice, Xylene 1 hour twice and then placed into pre-melted wax 

at 60°C for 1 hour; then the tissues were transferred into Embedding Cassettes 

(VWR International Limited, UK) filled up with fresh wax using Embedding 

Workstation (Thermo Scientific, UK). Colons were divided into right, transverse 

and left, and cut samples into 4 μm slices using Microtome (Bright Instrument, 

UK). The cut specimens were stained with haematoxylin and eosin (H&E; see 

details in section 2.9.1). Histological examination was performed on serial 

sections. Three serial sections of five to six different sites of the colon 

(accounting for up to 18 sections per mouse) were examined. 

 

For lungs: The mice lung tissues were excised, fixed in 10%neutral buffered 

formalin for 24hr and then embedded in paraffin as described above. Sections 

were cut into 4 μm slices, which were stained by H&E (see details in section 

2.9.1) or Gomori’s Rapid One-Step Trichrome Stain (see details in section 2.9.2). 

 

2.9.1 Haematoxylin and Eosin (H&E) Staining 

 

To stain the sections using the H&E method, heat the paraffin sections first in 

oven for 45 minutes at 60℃. Then rehydrate sections as follows: Dewax in 

Xylene 3 minutes twice, 100% Ethanol 3 minutes twice, 90% Ethanol 3 minutes 

twice, 70% Ethanol 3 minutes twice, followed by running water 3 minutes. Stain 
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the sections in Harris Haematoxylin (Cell Path Ltd., UK) for 2 minutes; wash 

extra stain in running water 3 minutes, 1% Acid/Alcohol 3 seconds, running water 

10 seconds, Scotts Tap Water substitute 30 seconds, running water 10 seconds. 

Counter stain in 1% eosin (Surglpath Medical Industries, Inc., UK) 2 minutes; 

wash off extra stain in running water. Dehydrate the sections as follows: 70% 

Ethanol 30 seconds, 90% Ethanol 30 seconds, 100% Ethanol 1 minute twice, 

Xylene 3 minutes twice. Mount coverslip over tissue section from Xylene with 

DPX mountant (Raymond A Lamb Ltd, UK). 

 

The sections were then observed and images were taken using an Olympus BX41 

microscope with an attached Olympus DP25 digital camera, using Cellb software 

(Olympus, Japan). The pathology changes were scored double blind. 

  

2.9.2 Gomori’s Rapid One-step Trichrome Stain 

 

To stain the sections for collagen, rehydrate the sections as described above. 

Stain in Harris Haematoxylin 2 minutes, wash extra stain in running water for 2 

minutes; stain in chromotrope-green mixture for 20 minutes, rising in 0.2% 

acetic acid 2 dips; wash extra stain in running water for 3 minutes. Dehydrate 

sections and mount coverslip as described above. 

 

Lung sections from mice were processed and the pathology conditions were 

determined using 1~4 scoring systems (Daniels et al., 2004) as shown in table 2-

10:  
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Table 2-10. Scoring system for comparative analysis of fibrosis 

 

Score  

1 no fibrosis 

2 occasional small subpleural foci 

3 moderate interalveolar septal thickening and subpleural foci 

4 continuous interalveolar and subpleural fibrosis 

 

2.9.3 Immunohistochemistry  

 

The staining of IL-33 and F4/80 in lung tissue: 

As above, heat the paraffin sections in an oven at 60℃ for 45 minutes. 

Rehydrate the sections: Dewax in Xylene 3 minutes twice, 100% Ethanol 3 

minutes twice, 90% Ethanol 3 minutes twice, 70% Ethanol 3 minutes twice, wash 

buffer (TBST; 1X TBS, 0.05% Tween-20) 3 minutes. Blocking endogenous 

peroxidase activity: incubate the sections in 0.5% hydrogen peroxide/methanol 

at room temperature for 30 minutes; wash in wash buffer for 5 minutes twice. 

Block Fc receptors: use wax pen (Vector Labs, Ltd., USA) to draw a ring around 

sections, add 50 μl of Fc-blocker (anti-mouse CD16/32; Innovex Biosciences, Inc., 

USA) per section, incubate 30 minutes at room temperature; quick wash in TBST. 

To prevent non-specific bindings: add 100 μl per section of 2.5% rabbit serum 

(Vector Labs, Ltd., USA) in wash buffer containing 200 μl/ml of Avidin D block 

(Vector Labs, Ltd., USA) and incubate for 30 minutes at room temperature; 

briefly wash in wash buffer; add a block solution of 2.5% rabbit serum in wash 

buffer containing 200 μl/ml of Biotin Block (Vector Labs, Ltd., USA) diluents 100 

μl per section and incubate for 30 minutes at room temperature; wash once 

after the incubation. Addition of primary antibody/isotype control: add 100 μl 

diluted 1°Ab or control antibody (Table 2-3) to the appropriate tissue section; 
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incubate the sections at 4℃ overnight. Bring the sections to room temperature 

for 1 hour. Wash the sections in wash buffer for 5 minutes twice. Addition of 

Biotinylated secondary antibody: add 100μl diluted species specific Biotinylated 

2°Ab (1:200 dilution) to the tissue section; incubate for 30 minutes at room 

temperature and wash in wash buffer for 5 minutes twice. Addition of 

Avidin/Biotin Complex: add the Avidin/Biotin complex (Vector Labs, Ltd., USA) 

in wash buffer (50 μl per ml of Avidin and Biotin prepared 30 minutes before use) 

to the sections and incubate at room temperature for 30 minutes and wash in 

wash buffer for 5 minutes twice. Visualize using DAB: add 100 μl DAB (Vector 

Labs Ltd., USA) to the section and allow the stain to develop; stop the reaction 

by washing the section in wash buffer for 5 minutes; wash in running water for 5 

minutes. Counter stain: stain the sections in Haematoxylin for 5 seconds, wash in 

running water. Dehydrate sections: 70% Ethanol 30 seconds, 90% Ethanol 30 

seconds, 100% Ethanol 1 minute twice, Xylene 3 minutes twice. Mount coverslip 

over tissue section from Xylene with DPX mountant. The antibodies and negative 

controls used throughout the projects are listed in table 2-3; all antibodies were 

diluted with 2.5% rabbit serum (Vector Labs, Ltd., USA) and 2.5% mice serum 

(Thermo Scientific, USA) in wash buffer. 
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2.10 Tissue homogenising 

  

To measure the protein levels in the tissue samples, less than 1 g of frozen 

samples was put into 1 ml ice cold RIPA lysis buffer completed with protease 

inhibitors. Homogenize the tissue for 20 seconds at 19,000 rpm using an electric 

homogenizer (Thermo Fisher Scientific Inc., US); incubate the homogenized 

sample for 5 minutes at 4℃; centrifuge the samples at 12,000 rpm for 10 

minutes at 4℃; transfer the supernatants to new tubes and measure the protein 

concentration using Coomassie Protein Assay Kit (Bradford); store the samples at 

-70℃ for further collagen or cytokine measurements.  

 

2.11 Lung digestion for flow cytometry 

 

For the isolation of total lung cells, mouse lungs were extracted as described in 

section 2.8.2. The lungs were transferred to a Petri dish, cut into small pieces 

using scalpels in 1 ml RPMI 1640 containing 100 units/ml penicillin. The tissue 

fragments were then transferred via pipette to 24-well-plate and digested with 2 

ml per lung of digest media (RPMI 1640 completed with 100 units/ml penicillin, 

0.5 g/ml DNAse, 0.125 mg/ml Liberase TL (Roche, USA)), on a mechanical shaker 

and incubated at 37°C for 60 minutes. The digested material was then passed 

through a 100 μM Cell Strainer (Corning, USA) and fresh cold medium added to 

stop the digestion reaction. The cells were washed once by centrifugation at 

1200 rpm for 10 minutes and then resuspended in 1.5 ml of red blood cell lysis 

buffer for 1 minute. Fresh medium was added to the cells and they were washed 

again. A single cell suspension was prepared in 10 ml of complete media for 

further experiments. 

 

2.12 Broncho Alveolar Lavage Fluid (BALF) analysis 

 

The post mortem mouse lungs were lavaged twice in situ with 0.8 ml of PBS via a 

catheter and syringe. After lavage, the total number of cells was counted using a 
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haemocytometer and the cell type was identified by differential cell count. For 

the determination of cell types, BALF was centrifuged at 1400rpm for 5 minutes, 

the supernatant was collected and stored at −20°C for further analysis of soluble 

collagen and cytokines; the remaining cells were resuspended and counted, and 

5x104 cells were used to make a slide smear using a cyto-centrifuge (Fisher 

Scientific Ltd., UK) at 450 rpm for 6 minutes. The slide preparations were 

stained with Rapid Romanowsky Stain (TCS Biosciences Ltd. UK) and a 

differential cell count was made based on the morphology of at least 400 cells 

under a Motic B1 microscope (Motic, Germany). 
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2.13 Cytokine measurements  

 

2.13.1 Enzyme-linked immunosorbent assay 

 

Murine cytokines IL-1β, IL-4, IL-5, IL-10, IL-12, IL-13 and IFN-γ were analyzed by 

ELISA using Ready-SET-Go! ELISA kits (eBioscience, USA) and TGFβ1, IL-33, ST2, 

CCL2, CXCL1 and CXCL9 using R&D DuoSet ELISA Development kits (R&D systems, 

USA). All ELISAs were conducted according to the manufacturers’ protocol.  

 

For IL-1β, IL-4, IL-5, IL-10, IL-12, IL-13 and IFN-γ: Coat an ELISA plate (Costar 

9018, Corning, USA) with 100 μl/well of capture antibody in Coating Buffer (0.1M 

NaHCO3) and incubate at 4°C overnight. Wash the wells 5 times with >300μl/well 

Wash Buffer (1X PBS, 0.05% Tween-20), blot plate on absorbent paper to remove 

any residual buffer. Block the wells with 200 μl/well Assay Diluent (1X PBS, 

10%FBS), incubate at room temperature for 1 hour. Wash as step 2. Add 100 μl 

per well of 2-fold serial dilutions of the top standards to make the standard 

curve and blanks (PBS, RIPA buffer or media, respectively) as control. Incubate 

the plate at room temperature for 2 hours followed by wash as previous 

described. Add 100 μl/well of Biotin-conjugated detection antibody diluted in 

Assay Diluent and incubate at room temperature for 1 hour. Wash as previously 

steps. Add 100 μl per well of Avidin-HRP diluted in Assay Diluent and incubate at 

room temperature for 30 minutes. Wash the plate for a total of 7 times. Add 100 

μl of Substrate Solution (Tetramethylbenzidine Substrate Solution) to each well, 

incubate at room temperature for 15 minutes. Stop the reaction by adding 100 μl 

per well of Stop Solution (1M HCl). Read the plates using an ELISA reader (Tecan, 

Switzerland) at 450 nm and subtract the value read at 570 nm. Measure the OD 

against the reagent blanks, standards and test samples, and obtain the relative 

cytokine concentrations by interpolating the readings to the Standard Curve.  

 

For TGFβ1, IL-33, ST2, CCL2, CXCL1 and CXCL9: Coat the ELISA plate (Costar 

9018, USA) with 100 μl per well of capture antibody in Coating Buffer (1X PBS) 
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and incubate overnight at room temperature. Wash the plate 5 times 

with >300μl/well Wash Buffer (1X PBS, 0.05% Tween-20). Block the wells with 

300μl/well of Block Buffer (1X PBS, 5% Tween-20) at room temperature for 1 

hour. Wash as step 2. To detect TGFβ1 levels in cell culture or BAL fluid, add 0.1 

ml 1N HCl to 0.5 ml sample and incubate at room temperature for 10 minutes, 

then neutralize the samples by adding 0.1ml 1.2N NaOH/0.5M HEPES. For serum 

samples, add 0.1 ml 2.5N Acetic Acid/10 M Urea to 0.1ml serum sample and 

incubate at room temperature for 10 minutes, then  neutralize the samples by 

adding 0.1ml 2.7N NaOH/1M HEPES. Add 100 μl per well of 2-fold serial dilutions 

of the standards, blanks and samples to the appropriate wells and incubate at 

room temperature for 2 hours. Wash as step 2. Add 100 μl per well of detection 

antibody diluted in Reagent Diluent and incubate at room temperature for 2 

hours. Wash as step 2. Add 100μl/well of Streptavidin-HRP diluted in Reagent 

Diluent and incubate at room temperature for 20 minutes. Wash the plates 5 

times and then add 100 μl of Substrate Solution (Tetramethylbenzidine Substrate 

Solution) to each well and incubate at room temperature for 15 minutes. Stop 

the reaction by adding 50 μl per well of Stop Solution (2N H2SO4). Read the plate 

and obtain the concentrations as above. 

 

2.13.2 Luminex 

 

The concentrations of multi cytokine and chemokines were also detected by a 

Magnetic beads-based (20-plex) cytokine fluorescence assay method (Invitrogen, 

UK) according to the manufacturer's instructions, using a Luminex platform (Bio-

Rad Laboratories Inc., UK). The 20-plex cytokine assay can detect 20 mediators, 

including: cytokines: IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, IL-17, 

TNF-α, INFγ; chemokines: MIG, MIP-1α, KC, IP-10, MCP-1; inflammatory 

mediators: FGF-Basic, VEGF, and GM-CSF.  

 

First of all, the protein standard was reconstituted with 0.5 ml of Assay Diluent 

and then the serially diluted reconstituted standard to make a standard curve. 

Pre-wet the assay wells by adding 200 μl of Working Wash Solution into 
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designated wells; incubate plate 20 seconds at room temperature; aspirate the 

Working Wash Solution from the wells using the vacuum manifold (do not exceed 

5 mm Hg). Vortex the antibody beads for 30 seconds, then sonicate using 

Ultrasonic water bath (Dawe Instruments, UK) for 40 seconds immediately prior 

to use in the assay; pipette 25 μl of the antibody bead solution into each well, 

keep the plate from light. Wash the beads twice by adding 200 μl Working Wash 

Solution to the well and dry the filter plate using vacuum manifold. Pipette 50 μl 

Incubation Buffer into each well, add 100 μl of appropriate standard dilution and 

blank to wells designated for the standard curve, add 50 μl Assay Diluent 

followed by 50 μl sample to each well designated for the samples; cover the 

filter plate with an aluminium foil and incubate the plate for 2 hours at room 

temperature on an orbital shaker (500-600 rpm); wash the filter plate twice. Add 

100 μl of 1X Biotinylated Detector Antibody to each well and incubate the plate 

for 1 hour at room temperature on an orbital shaker. Wash the filter plate twice. 

Add 100 μl of Streptavidin-RPE to each well and incubate the plate for 30 

minutes at room temperature with shaker. Wash the filter plate three times. 

Add 100 μl of Working Wash Solution to each well, shake the plate (500-600 rpm) 

for 3 minutes to re-suspend the beads. Uncover the plate and insert the plate 

into the XY platform of Luminex instrument, and analyze the samples. 

Determine the concentration of the samples from the Bio-Plex standard curve 

fitting software (Bio-Rad Laboratories, UK). 

 

2.13.3 Western blotting 

 

Fibroblast cells cultured in 24-well plate were washed twice using 500 μl ice-

cold PBS followed by 50 μl of ice-cold RIPA buffer supplemented with protease 

inhibitor cocktail, 1 mM PMSF, and 1 mM sodium orthovanadate. Cells lysis was 

then collected using a cell scraper and the protein concentrations were 

measured using Coomassie Blue method. The protein samples were denatured by 

mixing with NuPAGE LDS sample buffer containing NuPAGE reducing agent and 

incubated at 70°C for 10 min. An equal amount (~25 µg) of protein samples was 

loaded onto 10% NuPAGE Bis-Tris gel placed in an XCell Surelock Mini-Cell 

Electrophoresis System (Invitrogen, UK). Fill the inner chamber of the 
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electrophoresis system with 200 ml of running buffer supplemented with 500 μl 

of NuPAGE antioxidant and the outer chamber with running buffer. The proteins 

were electrophoretically separated for 1 h (150 V). The separated proteins were 

transferred onto a nitrocellulose membrane for 1 h (30 V) in an XCell II blot 

module (Invitrogen, UK) containing transfer buffer. The membrane was then 

washed in PBS and blocked with 10% (w/v) non-fat milk powder in PBS for 1 h at 

room temperature. After 3 × 5 minutes washes in PBS, the membrane was 

probed with primary antibody diluted in 5% (w/v) non-fat milk powder in PBS-

Tween 2 hours at room temperature. The antibodies used were affinity purified 

polyclonal rabbit anti-mouse IL-33 Ab (1:1000, R&D System). The membrane was 

washed in 3 × 5 minutes washes in PBS-Tween and probed with horseradish 

peroxidase-conjugated secondary antibody (1:4000) in PBS-Tween for 1 hour at 

room temperature. After the 3 × 5 minutes washes in PBS, the membrane was 

incubated in chemiluminescent substrate (Amersham ECL, Amersham Bioscience) 

for 30 seconds. The membrane was then placed between two layers of acetate 

film and exposed to X-ray film (Kodak BioMax Light Film, Sigma-Aldrich). The 

film was then developed in a Kodak X-OMAT developer. 
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2.14 Flow Cytometry  

 

For surface staining, the cells from each sample were washed with Fluorescence 

Assisted Cell Sorting (FACS) buffer (0.5% BSA and 2mM EDTA in DPBS), 

resuspended in 100 μl of FACS buffer and incubated for 30 minutes at 4°C with 

FcBlocker to prevent non-specific antibody binding to Fc receptors. Wash the 

samples once with 1 ml FACS staining buffer per tube, and stain with relevant 

fluorochrome-conjugated antibody (Table 2-3) or isotype controls for 30 minutes 

at 4°C in the dark (always avoiding light from this step). Wash the samples twice 

with 2 ml of FACS buffer, and resuspended in 400 μl of FACS buffer. The cells 

were then collected and analyzed with a FACSCalibur flow cytometer (BD 

Bioscience, USA). 

 

For intracellular staining, cells were stimulated with PMA (50 ng/mL) and 

Ionomycin (1 μg/mL) for 4 hours before staining. Stain the cells with suitable cell 

surface antigens as described above. Wash once, then fix the cells by adding 100 

μl of IC Fixation Buffer (eBioscience, USA) and incubate for 20 min at 4°C in the 

dark, wash twice by adding 2 ml of Permeabilization Buffer (eBioscience, USA). 

Resuspend the cells with 100 μl of Permeabilization Buffer, add the appropriate 

amount of fluorochrome-labeled antibodies for the detection of intracellular 

antigen and incubate for 20 min at room temperature, wash once by adding 2 ml 

of Permeabilization Buffer. Then wash by adding 2 ml of FACS staining buffer, 

resuspending the cells with 400 μl of staining buffer for the acquiring. To 

exclude dead cells, 2 μl of Via-probe (BD Bioscience, USA) was added to each 

tube immediately before acquiring and analysis on Beckman Coulter CyAn Flow 

Cytometer. The data was analysed by using FlowJo software (Tree Star Inc., 

USA). The anti-mouse antibodies used throughout the projects are listed in Table 

2-4. 
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2.15 Statistical analysis 

 

Data were analyzed by using one-way Analysis of Variance (ANOVA) followed by 

Tukey’s or Newman-Keuls post-hoc analysis. One way ANOVA was used to 

examine mean differences between two or more groups, in order to compare 

every mean to every other mean. All results showed throughout were displayed 

as mean + standard error mean (SEM) from 5 to 7 mice unless stated otherwise. 

Data are representative of at least 2 separated experiments. A p value of less 

than 0.05 was considered to indicate statistical significance.  

 

The experimental group size was determined by disease incidence and from the 

expected difference among experimental groups from preliminary experiments 

or from literature search wherever possible, also taking into account resources 

available and ethical animal use. A power of 0.8 was used to calculate the 

experiment group sizes (Festing and Altman, 2002, Charan and Kantharia, 2013).  
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Chapter 3: The pathogenic role of IL-33 in bleomycin-induced lung 

fibrosis in mice 

3.1 Introduction 

 

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia of unknown 

cause and poor prognosis (Martinez et al., 2006). While the etiology of IPF is still 

not fully understood, it has histological similarities to other forms of lung fibrosis 

which result from chronic inflammatory reactions induced by variety of stimuli 

including persistent infections, autoimmune reactions, allergic response, 

chemical toxins, radiation and tissue injury (Scotton and Chambers, 2007, Wynn 

and Ramalingam, 2012). No drugs have been approved so far for the treatment 

of IPF, although several new drugs are currently undergoing clinical trials (Noble 

et al., 2012). Patients with IPF live for an average of 2-3 years after the 

diagnosis (Ley et al., 2011, Cottin, 2013). There is an imperative to understand 

the underlying pathogenesis in order to direct novel therapies for IPF and other 

fibrotic diseases.  

 

Bleomycin (BLM) is an anti-neoplastic antibiotic isolated from Streptomyces 

verticillus and is a cancer chemotherapy drug (Umezawa et al., 1967). Its major 

side effect is pulmonary toxicity (Muggia et al., 1983, Hay et al., 1991, Sugiyama 

and Kumagai, 2002). Bleomycin is reported to cause lung damage by direct 

breakage of DNA strands and by the induction of reactive oxygen species (ROS) 

therefore inducing oxidative stress (Moeller et al., 2008). While this limits its 

clinical application, using BLM to induce lung fibrosis in animals has provided a 

useful model to study human lung fibrosis. This animal model was established on 

dogs first, and then extended to rodents (Fleischman et al., 1971, Adamson and 

Bowden, 1974, Frost et al., 1983).  

 

The lung fibrosis is characterized by excessive accumulation of fibroblasts and 

extracellular matrix (ECM) components, including collagens. Many inflammatory 

chemokines and cytokines are involved in the mechanism of fibrogenesis, 
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especially Th2 type cytokines (IL-4 and IL-13) which promote fibroblast 

activation and collagen production (Wynn, 2003, Barron and Wynn, 2011, Wynn 

and Ramalingam, 2012, Wynn, 2011, Borthwick et al., 2013).  

 

IL-33, a member of the IL-1 cytokine family, is a dual functional factor. Full-

length IL-33 contains a nuclear target domain and may act as a transcription 

factor (Lefrancais et al., 2012, Lefrancais and Cayrol, 2012). However, the 

pathophysiological role of nuclear IL-33 is still largely unknown (Lefrancais and 

Cayrol, 2012). Mature cytokine IL-33 may serve as an ‘alarmin’ which is released 

when cells sense inflammatory signals or undergo necrosis (Moussion et al., 2008, 

Lamkanfi and Dixit, 2009, Oboki et al., 2010, Liew, 2012) The cytokine IL-33 

then binds to its receptors and mainly induces type 2 cytokines (IL-5 and IL-13) 

and promotes a type 2 response in inflammatory and allergic diseases (Komai-

Koma et al., 2007, Kurowska-Stolarska et al., 2008). It is reported that the IL-

33/ST2 axis may also play a profibrotic role in different organs, including the 

lung (Yanaba et al., 2011, Lopetuso et al., 2012, Santulli et al., 2012, Cevikbas 

and Steinhoff, 2012, Zhu and Carver, 2012, Roussel et al., 2013). It has been 

shown that over-expressing soluble ST2 could attenuate BLM-induced lung 

fibrosis in transgenic mice (Mato et al., 2009). However, the role of IL-33, as a 

cytokine, in the pathogenesis of lung fibrosis has not been defined although as a 

nuclear factor, it was recently reported to be a pro-fibrotic factor (Luzina et al., 

2013).  

 

The aim of the work presented in this chapter was to determine the effect of IL-

33 as a cytokine in BLM-induced lung fibrosis and any associated mechanism. I 

used two experimental approaches:  

1) using BLM to induce fibrosis in ST2 deficient mice,  

2) treating mice with neutralising anti-IL-33 antibody before inducing fibrosis, 

 

Our results demonstrated that the IL-33/ST2 axis is essential for the 

development and exacerbation of BLM-induced pulmonary fibrosis.   
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3.2 Bleomycin up-regulates IL-33 expression in lung tissue 

 

As IL-33 may serve as an alarm cytokine released to indicate tissue damage, I 

sought first to find out if bleomycin could induce the expression of ST2 and IL-33 

in lung cells in vitro and in lung tissue in vivo. 

 

I first studied the expression of IL-33 and ST2 in vitro. The lung tissues from 

normal C57B/6 mice were collected and digested into single cells and cultured 

with BLM for 24 hours. The culture supernatants were collected to measure the 

concentration of IL-33 and cells for the mRNA expression levels of IL-33 and its 

receptor ST2L mRNA by real-time PCR. BLM induced the expression of both IL-33 

and its receptor ST2L in total lung cells in a dose-dependent manner (Fig. 3-1).  

 

To study the induction of IL-33 and ST2 expression in vivo, groups of WT C57B/6 

mice were given BLM or control PBS on day 0, and sacrificed at different times 

up to 14 days (Fig. 3-2). The BAL fluid (BALF) and lung tissues were collected 

and the protein and mRNA levels of IL-33 were determined by IHC, ELISA and 

real-time PCR. The tissue samples were processed and stained for IL-33 as 

described in Chapter 2. The IHC results demonstrated that airway epithelial cells 

were constitutively positive for IL-33 staining (Fig. 3-3a). However, BLM also 

induced the production of IL-33 protein in cells located in the alveoli of airway 

compared to PBS controls (Fig. 3-3b). The location and morphological 

appearance of these cells suggest that the IL-33+ cells in the alveoli of airway 

were likely to be alveolar macrophages. 

 

The dynamics of IL-33 expression were explored by a kinetic study demonstrated 

that BLM induced the expression of IL-33 starting from day 1 and lasting for at 

least 14 days (Fig. 3-4a).  The BALF of mice treated with BLM contained 

significantly higher concentration of IL-33 compared to control group (Fig. 3-4b).   
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Together these results demonstrated that IL-33 as well as its receptor ST2 is up-

regulated by the BLM challenge in lung tissue, indicating that the IL-33/ST2 axis 

may play an important role in BLM-induced fibrosis. 
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Fig. 3-1 BLM increases IL-33 and ST2 expression in total lung cells. 

 

Total lung cells from normal C57B/6 mice were digested and cultured with 

different doses of BLM for 24 hours. The cells were then harvested and digested 

for PCR assay as described in Chapter 2. IL-33 and ST2L expression were 

measured by real-time PCR. Data are representative of three experiments, mean 

± SEM, n=3 per group, *P < 0.05 compared to PBS group. 
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C57B/6                                                                           lungs 

 mice                                                                              BALF 

 

            day 0                      1     3     5     7                 14 

            BLM (0.1U, i.n.)                        cull 

 

 

 

 

 

Fig. 3-2 Experimental plan used to induce fibrosis in WT mice. 

 

Male WT C57B/6 mice were administered with 0.1U BLM or control PBS i.n. on 

day 0. The mice were monitored daily. BAL fluid (BALF) and lungs were collected 

at cull times; Cytokine concentrations in BALF were measured by ELISA; lung 

tissue was used for histology analysis, digested in RIPA buffer for measurement 

of collagen and cytokines or digested in Trizol for PCR analysis as described in 

Chapter 2. 
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Fig. 3-3 BLM increases IL-33 expression in lung tissue. 

 

Lung tissue samples from groups of male mice treated with BLM or PBS as control 

were harvested 7 days after BLM/PBS administration.  The tissue samples were 

processed and stained for IL-33 as described in Chapter 2. Staining showed that 

IL-33 positive cells are consistently existed among bronchioles but increased in 

the alveolus area. (original magnification x100, enlarged to x400) 

a Isotype IL-33
control staining
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Bronchioles
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Fig. 3-4 BLM increases IL-33 mRNA expression in lung tissue. 

 

Lung tissue and BALF fluid samples from groups of C57B/6 mice given BLM or PBS 

control were harvested from day 1 to day 14 after BLM administration.  The 

tissue samples were directly digested using RIPA buffer and TRIzol. The level of 

IL-33 gene expression was measured using real-time PCR (a). The IL-33 

concentrations in BALF (left) and lung tissue (right) were measured using ELISA 

(b). Data are representative of three experiments, mean ± SEM, n= 6 mice per 

group, *P < 0.05 compared to PBS group. 
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3.3 ST2 deficient mice show impaired BLM-induced lung fibrosis  

 

We next investigate the importance of IL-33 specificity and signalling by 

examining its receptor ST2 in the pathogenesis of fibrosis. We did this by using 

ST2 gene-deleted mouse strain on a C57B/6 background in BLM-induced fibrosis 

model. Groups of WT and ST2-/- mice were given BLM or PBS as control on day 0. 

The mice were sacrificed on day 7 and day 14 (Fig. 3-5). Lung tissues and BALF 

were collected for analysis. 

 

WT mice that received BLM developed lung inflammation (Fig. 3-6a) and fibrosis 

(Fig. 3-7a) from day 7 and further enhanced on day 14 compared to PBS control 

groups. This was evidenced by significantly increased inflammatory leukocyte 

infiltration and collagen deposition in the lung which quantified by the 

histological inflammatory and fibrosis scores, (Fig. 3-6b and 3-7b). The soluble 

collagen content and collagen III gene expression in the lung tissue of WT mice 

were also enhanced statistics (Fig. 3-8).  Importantly, all the BLM-induced lung 

inflammation, fibrosis and collagen production in the same-treated ST2-/- mice 

were significantly reduced compared to the WT controls (Fig. 3-7 and 3-8). 

Furthermore, ST2-/- mice that received BLM also had significantly lower 

leukocyte counts in the BAL fluid, and lower proportions of macrophages, 

neutrophils and lymphocytes on day 14 compared to control groups (Fig. 3.9). 

Moreover, the reduced lung inflammation and leukocyte infiltrations in the lung 

of ST2-/- mice were also accompanied by significantly reduced levels of IL-33, 

IL-1β and inflammatory chemokines (CXCL1, CXLC2 and CCL2) compared to WT 

control (Fig. 3-10). 

 

Taken together, these results suggest that ST2 signals play a pathological role in 

the development of BLM-induced fibrosis in mice and in the enhanced production 

of IL-33 and other inflammatory cytokines and chemokines in lung tissue. 
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Fig. 3-5 Experimental plan used to induce fibrosis in WT and ST2-/- 

mice. 

 

Male WT and ST2-/- C57B/6 mice were administered with 0.1U BLM or PBS control  

i.n. on day 0. The mice were monitored daily. BAL fluid and lung tissue were 

collected on day 7 and day 14. Cytokine concentrations in BALF were measured 

by ELISA; lung tissue was used for histology analysis, digested in RIPA buffer for 

measurement of collagen and cytokines or digested in Trizol for PCR analysis as 

described in Chapter 2. 
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Fig. 3-6 ST2-/- mice have impaired bleomycin-induced lung 

inflammation 

 

Lung tissue from WT and ST2-/- C57B/6 mice was harvested 7 days and 14 days 

after BLM administration.  The lung tissue histological sections from WT mice (a) 

or ST2-/- mice (b) were stained with H&E as described in Chapter 2. 

Representative pictures of mean histological change were shown from each 

group (original magnification x100).  
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Fig. 3-7 ST2-/- mice have impaired BLM-induced lung fibrosis  

Lung tissue from male WT and ST2-/- C57B/6 mice was harvested on days 7 and 

14 after BLM administration.  The tissue histology sections were stained with 

Trichrome as described in chapter 2 (a). Representative pictures of mean 

histological change were shown from each group (original magnification x100). 

Pathological scores were determined as described in Chapter 2 (b). Data are 

representative of three experiments, mean ± SEM, n= 6 mice per group, *P < 

0.05 compared to PBS groups. 
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Fig. 3-8 ST2-/- mice showed reduced collagen content of lungs 

after BLM administration. 

 

Lung tissue from male WT and ST2-/- C57B/6 mice was harvested on days 7 and 

14 after BLM administration.  The collagen content in the lung tissue was 

measured using a Sircol soluble collagen assay; collagen III mRNA expression was 

measured using real-time qPCR as described in chapter 2. Data are 

representative of three experiments, mean ± SEM, n= 6 mice per group, *P < 

0.05 compared to PBS groups. 
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Fig. 3-9 ST2-/- mice have reduced inflammatory lung lavage 

cytology following administration of bleomycin 

 

 

BAL of WT and ST2-/- C57B/6 mice was harvested 7 days and 14 days after BLM 

administration.  Cells in the BAL fluid were stained and counted as described in 

chapter 2. Data are representative of three experiments, mean ± SEM, n= 6 mice 

per group, *P < 0.05 compared to PBS groups. 
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Fig. 3-10 ST2-/- mice have reduced lung inflammatory cytokine and 

chemokine profiles in BLM-induced fibrosis. 

 

Lung tissues were collected on days 7 and 14 after administration of bleomycin. 

The tissues were lysed and the extract was measured for IL-1β, IL-33, CXCL1, 

CXCL2 and CCL2 concentrations. Data are representative of three experiments, 

mean ± SEM, n= 6 mice per group, *P < 0.05 compared to PBS groups. 
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3.4 IL-33 neutralizing antibody suppresses BLM-induced lung 

fibrosis 

 

We further assessed the importance of endogenous IL-33 in the development of 

BLM-induced fibrosis by treating the mice with anti-IL-33 antibody as described 

previously (Qiu et al., 2013). Groups of WT C57B/6 mice were administered 

intranasally with BLM or control PBS on day 0, some mice were also treated with 

anti-IL-33 antibody or control rabbit IgG intraperitoneally on day 0, 5 and 10. 

Mice were sacrificed on day  14 and lung and BALF samples were collected and 

analysed as described in chapter 2 (Fig. 3-11). 

 

In WT mice given bleomycin, those that were treated with anti-IL-33 antibody 

developed significantly less lung inflammation (Fig. 3-12) and fibrosis (Fig 3-13) 

compared to those treated with non-specific IgG control. This was demonstrated 

by significantly decreased histological inflammatory and fibrosis scores, soluble 

collagen content and collagen III gene expression (Fig. 3-14). In the BAL fluid, 

leukocyte numbers including macrophages and neutrophils were significantly 

reduced on day 14 by the anti-IL-33 antibody treatment (Fig. 3-15). The anti-IL-

33 antibody treatment significantly reduced IL-33 protein levels in lung tissue 

(Fig. 3-16), and also concentration of IL-1 and inflammatory chemokine 

production in the lung tissue, consistent with the reduced IL-1 and inflammatory 

chemokine production in ST2-/- mice (Fig. 3-16 and 3-10). 

 

These results therefore demonstrated that endogenous cytokine IL-33 is critically 

involved in the pathological progress of BLM-induced fibrosis in mice, especially 

during the inflammatory phase preceding fibrosis. 
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WT                                                                                  lungs 

Mice                                                                                BALF 

 

               day 0             day 5(i.p.)   day 10 (i.p.)   day 14 

               BLM (0.1 U, i.n.)                                      cull 

                   αIL-33 or IgG (150 μg/mouse, i.p.) 

 

 

Fig. 3-11 Experimental plan for the treatment of BLM-induced 

fibrosis in mice using anti-IL-33 antibody 

 

WT C57B/6 mice were administered with or without 0.1U BLM i.n. on day 0. The 

antibody or control rabbit IgG (150 μg/mouse) was given intraperitoneally 30 

minutes before BLM on day 0 and also on day 5 and day 10. The mice were 

monitored daily and culled on day 14. Cytokine concentrations in BALF were 

measured by ELISA; lung tissue was used for histology analysis, digested in RIPA 

buffer for measurement of collagen and cytokines or digested in Trizol for PCR 

analysis as described in Chapter 2. 

 

 

 



136 
 
 

 

 

 

 

 

 

 

 

Fig. 3-12 anti-IL-33 antibody treated mice have reduced 

development of BLM–induced airway inflammation. 

 

Lung tissue from male WT mice was harvested 14 days after BLM and antibody 

administration.  The tissue histological sections were stained with H&E as 

described in chapter 2. Representative pictures of mean histological change 

were shown from each group (original magnification x100).  
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a 

 

b 

 

 

Fig. 3-13 αIL-33 antibody treated mice have ameliorated BLM-

induced lung fibrosis. 

 

 

Lung tissue male WT mice were harvested 14 days after BLM and antibody 

administration.  a. The tissue samples sections were stained with Trichrome as 

described in chapter 2. b. Pathological scores were determined as described in 

chapter 2; representative pictures of mean histological change were shown from 

each group (original magnification x100). Data are representative of three 

experiments, mean ± SEM, n=3 per group, *P < 0.05.  
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Fig. 3-14 αIL-33 treatment reduces collagen content of lungs in 

BLM-induced fibrosis mice.  

 

The mice were treated as in Fig. 3-11. Lung tissues were collected on day 14, 

collagen content in the lung tissues was measured using Sircol soluble collagen 

assay; collagen III expression was measured using real-time PCR. Data are 

representative of three experiments, mean ± SEM, n= 6 mice per group, *P < 

0.05. 
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Fig. 3-15 αIL-33 treatment reduces BLM-induced leukocyte 

infiltrations in the lung. 

 

 

Leucocytes in the BAL fluid were stained and counted as described in chapter 2. 

Data are representative of three experiments, mean ± SEM, n= 6 mice per group, 

*P < 0.05 compared to PBS group. 
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Fig. 3-16 αIL-33 treatment reduces inflammatory cytokines and 

chemokines in BLM-induced lung fibrosis mice.   

Lung tissues were collected on day 14 and lysed using RIPA buffer, the IL-1β, IL-

33, CXCL1, CXCL2 and CCL2 concentrations were measured using ELISA. Data are 

representative of three experiments, mean ± SEM, n= 6 mice per group, *P < 

0.05. 
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3.5 Chapter Discussion 

 

By using three different experimental approaches, we demonstrated that IL-33 is 

a key pro-inflammatory factor in lung fibrosis possibly through its ability to 

promote inflammation. The main findings from this work described in this 

chapter are summarised: 

i) Administration of BLM stimulates IL-33 mRNA expression in the lung.  

ii) Treatment with IL-33 neutralizing antibody prevents IL-33 expression 

and BLM-induced lung fibrosis. 

iii) ST2 deficient mice develop impaired lung fibrosis and IL-33 expression 

after BLM administration.  

 

These results together suggest that IL-33 expression induced by bleomycin is 

necessary for the development and severity of BLM-induced fibrosis. 

 

We observed that IL-33 was constitutively expressed in normal mouse lung tissue, 

predominantly in airway epithelium.  Administration of bleomycin induced an 

increased expression of lung tissue IL-33 within one day and this lasted for at 

least 14 days. Thus, the constitutive low levels of IL-33 could be increased and 

prolonged in vivo. However, the cellular source of this increased IL-33 

expression is not fully understood. The histological results suggest that lung 

epithelial cells constitutively express IL-33 independently of BLM as reported 

before (Kurowska-Stolarska et al., 2009). In contrast, location and morphological 

appearance suggests that the increased expression of IL-33 in lung tissue cells 

inducible by BLM appeared related to the alveolar macrophages as seen by IHC 

of lung tissue histology using anti-IL-33 antibody. This antibody has been 

demonstrated in several papers to specifically detect IL-33 in the tissues 

(Pastorelli et al., 2010, Lefrancais et al., 2012). The specific staining of the 

antibody was also confirmed by using the appropriate antibody isotype control in 

the IHC.  Additional validation experiments that would further confirm the 

specificity of the antibody would include, for example, using the same antibody 
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and method to stain lung tissue from IL-33 knockout or IL-33 over-expressing 

mice, or by blocking this anti-IL-33 antibody with increasing amounts of 

recombinant IL-33 before staining which would demonstrate elimination of 

specific staining.  

 

Furthermore, in order to identify the cellular sources of IL-33, an effort to 

double stain the IL-33-positive cells in lung tissue sections with a combination of 

antibodies that recognises both the macrophage marker F4/80 as well as IL-33 

did not show double staining. It is possible that there were technical problems 

which I didn’t understand. I therefore couldn’t confirm that the IL-33-positive 

cells are macrophages, because mouse type II pneumocytes were also reported 

to be IL-33-positive, which do not express F4/80 (Kim et al., 2012). In contrast 

to this report, we did not observe IL-33 positive type II pneumocytes in healthy 

control mouse lung tissue. However, analysing cells dispersed from mouse lung 

tissue using flow cytometry, we demonstrated that bleomycin significantly 

increased the frequency and number of cells expressing IL-33 that also stained 

positive for cytokeratin suggesting that they were epithelial cells, as well as 

cells expressing IL-33 that also stained with F4/80 suggesting they were 

macrophages and this was increase did not occur in St2-/- mice (Li et al., 2014, 

Fig. E7 and Fig. 4). These data indicate that both lung epithelial cells and 

macrophages are the likely source of endogenous IL-33 in the bleomycin-induced 

fibrosis.  

 

It is still unclear how the IL-33/ST2 pathway is involved in lung fibrosis. It was 

recently reported that increased IL-33 expression is associated with increased 

leukocyte infiltration of lung tissue, including macrophages and neutrophils 

(Salmond et al., 2012). It is known that these cells are associated with the 

pathogenesis of lung fibrosis and migrate to lung tissue by chemotaxis in 

response to chemokines including CXCL1 and CXCL2 (Rot and von Andrian, 2004). 

Interestingly, we found that IL-33 could induce the mRNA expression and 

synthesis of these chemokines early in the development of bleomycin-induced 

lung fibrosis.  Thus, IL-33 may increase inflammatory cell infiltration to the lung 

at least in part by enhancing the expression of related chemokines. 
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A potential role for IL-33 in lung fibrosis has been described in a recent report 

(Luzina et al., 2013). This group demonstrated that adenovirus-delivered full-

length (fl) IL-33 which was located in the nucleus promoted lung fibrosis via an 

undefined, but ST2-independent, mechanism. This observation is complementary 

to the work of this chapter and suggests that while the nuclear IL-33 and 

cytokine IL-33 may have distinct biological effect (Luzina et al., 2012, Lefrancais 

and Cayrol, 2012), both the full length and mature-IL-33 are pro-fibrogenic but 

may induce fibrosis via distinct mechanisms. Additional studies will be necessary 

to resolve this dual role and likely help clarify the overall mechanism of how IL-

33 contributes to fibrosis. In contrast to our result, the study of Luzina et al  

showed that ST2-deficiency had no effect on the development of BLM-induced 

fibrosis (Luzina et al., 2013, Li et al., 2014). The discrepancies may be in part 

due to the strain of mice used. The mouse strain, including the ST2 gene-deleted 

mice, used in our study was the commonly used, fibrosis-sensitive C57B/6 strain, 

whereas the ST2 knockout mice used in the Luzina et al. study were of a BALB/c 

background which are resistant to the fibrotic stage of BLM (Gur et al., 2000). 

Furthermore, the flIL-33 was expressed and delivered by a non-replicating 

adenoviral transfection agent and the role of this vehicle itself was not fully 

characterized in the production of IL-33 or in BLM-induced fibrosis (Luzina et al., 

2013). More work is needed to clarify these issues.  

 

To understand the possible mechanisms of idiopathic pulmonary fibrosis, several 

animal models have been developed. These display some of the fibrotic changes 

and the putative early inflammatory changes but they do not recapitulate the 

pathogenic feature of human IPF. While valuable in the understanding of clinical 

IPF, these models have shown the limitation in the modelling of human IPF. This 

is mainly because of the pulmonary anatomical and physiological differences 

between human and animal but also because the aetiology of IPF is unknown. 

The bleomycin-induced lung fibrosis model is the most commonly employed and 

referenced model of lung fibrosis (Mouratis and Aidinis, 2011). This model is 

proposed to mimic some of the histological hallmarks of human interstitial lung 

fibrosis that might be informative of IPF, and to help to study and understand 
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the pathogenic roles of immune system, including the contribution of activities 

of cytokines, signalling pathways and immune cells to pulmonary fibrosis 

(Moeller et al., 2008, Gibbons et al., 2011). However, there are limitations of 

this model when used to mimic IPF. It is acknowledged that this model failed to 

recapitulate some important aspect of human IPF, for example, the 

experimental animal models are often associated with a dense inflammatory 

infiltrate whereas this is not typical in human IPF which can be less 

inflammatory and more fibrotic perhaps due to chronicity. (Umezawa et al., 

1967, Moore and Hogaboam, 2008, Degryse and Lawson, 2011, Mouratis and 

Aidinis, 2011, Smith, 2013). The lack of fibroblastic foci and hyperplastic 

epithelium; and the neutrophil rich inflammatory process in post-bleomycin 

injury that is not common in human IPF (Moore and Hogaboam, 2008, Degryse 

and Lawson, 2011). Furthermore, the animal model is unable to reproduce the 

chronic aspect of IPF due to the spontaneous remission of the disease in the 

model when a single dose of bleomycin is administered. 

 

The clinical significance of IL-33 in fibrosis is unknown. IL-33 can be detected in 

the lungs in several chronic fibrotic diseases, including interstitial lung disease 

(ILD), scleroderma lung disease, cystic fibrosis and systemic sclerosis (Yanaba et 

al., 2011, Luzina et al., 2012, Luzina et al., 2013). Our findings extend these 

observations and provide compelling evidence for a mechanistic role for IL-33 in 

the development of fibrosis and may be a new therapeutic target. For example, 

our results suggest that blocking the IL-33/ST2 pathway by using either 

neutralising anti-IL-33 antibody or soluble ST2 receptor to antagonist IL-33 

function may have a beneficial effect on fibrosis.  

 

However, the precise mechanism by which the IL-33/ST2 pathway induces the 

development and exacerbation of lung fibrosis is largely unknown and some of 

the possible mechanisms are addressed in the next chapter.  
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Chapter 4 

Mechanisms by which IL-33 promotes 

bleomycin-induced lung fibrosis 
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Chapter 4: Mechanisms by which IL-33 promotes bleomycin-

induced lung fibrosis 

4.1 Introduction 

 

In Chapter 3, I found that IL-33 plays a fibrogenic role in BLM-induced lung 

fibrosis in mice. However, the mechanism by which IL-33 promotes fibrosis was 

unclear and will be investigated in this Chapter.   

 

In Chapter 3, I found that BLM induced the expression of IL-33 protein in cells 

located in the alveoli of airway compared to PBS controls (Fig. 3-3b). The 

location and morphological appearance of these cells suggested that they were 

likely to be alveolar macrophages. Furthermore, in BLM-induced fibrosis WT 

mice treated with recombinant IL-33 had enhanced BLM-induced lung fibrosis, 

and ST2-/- mice had reduced lung fibrosis and reduced numbers of macrophages 

(Fig. 3-7, 3-9, 3-19 and 3-21). In the present chapter I will explore the roles of 

macrophage phenotype and also type 2 innate lymphoid cells in the process of 

fibrosis.  

 

Macrophages can be polarized into two phenotype subsets by classical activation 

(M1) and alternative activation (M2), dependent on different environmental 

conditions. In the presence of type 1 cytokines (IFN-γ) and bacterial LPS, they 

can be polarized into M1; whereas in the presence of type 2 cytokines (IL-4, IL-

13), they can be polarized into M2. The M1 macrophages mainly express 

inducible nitric oxide synthase (iNOS) and produce pro-inflammatory cytokines 

which together play an important role against infection. On the other hand, M2 

macrophages express arginase I (ARGI) and produce pro-fibrotic cytokine and are 

closely involved in tissue repair and remodelling (Gordon, 2003, Biswas and 

Mantovani, 2010, Alber et al., 2012). Our group found that macrophages express 

ST2, and that IL-33 is able to potentiate IL-13-polarised M2 development 

(Kurowska-Stolarska et al., 2009). The potential role of macrophages and in 
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particular the M2 macrophages in the IL-33-mediated fibrosis will be investigated 

in this Chapter. 

 

Group 2 innate lymphoid cells (ILC2s) or nuocytes are a newly discovered 

category of innate immune cells that express high levels of ST2 and IL-25 

receptor by which they can be activated and recruited by IL-33 and IL-25 

respectively (Neill et al., 2010, Moro et al., 2010, Price et al., 2010). ILC2s are 

mainly found in lymphoid tissues associated with barrier surfaces such as skin, 

gut and lung, and can produce type 2 cytokines (Chang et al., 2011),  such as IL-

13, which are reported to be involved in the polarizing of M2 macrophages and 

development of fibrosis (Doherty et al., 1993, Bogdan et al., 1997, Wynn and 

Ramalingam, 2012). The involvement of ILC2 in IL-33-mediated fibrosis will also 

be investigated in this chapter. 

 

It is known that both IL-33 and ST2 are expressed in fibroblasts (Xu et al., 2008). 

However, the role of IL-33/ST2 in the function of fibroblasts is less well 

understood. Therefore, the roles of IL-33/ST2 in fibroblast function in vitro and 

in fibrosis in vivo were also investigated.  

 

Profibrotic cytokines, in particular IL-13 and TGF-β, play a critical role in organ 

fibrosis, including IPF and BLM-induced lung fibrosis (Borthwick et al., 2013). 

These cytokines may cause fibrosis by promoting fibroblast proliferation and 

collagen production (Wynn, 2011). It is known that IL-33 is able to induce IL-13 

(Liew, 2012, McHedlidze et al., 2013), however, whether and how IL-33 induces 

TGF-β is less well understood. More importantly, whether and how these 

cytokines contribute to IL-33-promoted lung fibrosis is currently unknown.  

 

Thus, the aim of this project is to understand the mechanism by which IL-33 

affects BLM-induced fibrosis. I will focus mainly on its role in the key 

inflammatory cells associated with fibrosis, including the alveolar macrophage 
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and ILC2s. Our results demonstrated that IL-33 mediated lung fibrosis mainly by 

promoting the function of ILC2s and macrophage. 
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4.2 IL-33 promotes bleomycin-induced lung fibrosis via alveolar 

macrophages  

 

Using immune-histochemical staining of mouse lung tissue after BLM instillation, 

we found that cells in the alveoli were induced to express IL-33, and that these 

IL-33 positive cells had alveolar macrophage morphology (Fig. 3-2). In order to 

confirm if they were macrophages, adjacent lung tissue sections (Fig. 3-2) were 

stained for the macrophage marker F4/80 using specific antibody (Fig. 4-1). The 

F4/80 positive cells were also located in the alveoli and had the same 

morphology as the IL-33-expressing cells in figure 3-2 (Fig. 4-1). An effort to 

stain the tissue sections simultaneously with both anti-IL-33 and anti–F4/80 

failed due to technical problems (data not shown), therefore we solved this 

problem by using flow cytometry to analyze dispersed lung cells double stained 

with anti-IL-33 and F4/80 antibodies. To do this, WT and ST2-/- mice were given 

BLM or PBS for control and the lung tissues were harvested. The tissues were 

digested to generate single cell suspensions and then stained with anti-IL-33 and 

-F4/80 antibodies. BLM significantly increased the IL-33+/F4/80+ macrophage 

numbers in lung tissue of WT mice compared to the control mice (Fig. 4-2, Li et 

al., 2014). However, the induction of IL-33+ macrophages in lung tissues by BLM 

was abrogated in the ST2-/- mice compared to WT mice (Fig 4-2). These results 

suggest that IL-33/ST2 signals are required for the expression of IL-33 and 

recruitment of macrophages in BLM-induced fibrosis. 

  

To define the importance of macrophages in the BLM-induced and IL-33 

exacerbated lung fibrosis, we depleted alveolar macrophages firstly by treating 

the mice with clodronate liposomes before the administration of BLM and IL-33 

in mice (Van Rooijen and Sanders, 1994). Clodronate is the drug bisphosphonate 

and in liposome is cytotoxic to macrophages when phagocytosed. This method 

has been shown to effectively deplete only alveolar macrophages when given i.n. 

to mice (Kurowska-Stolarska et al., 2009). The experiment was performed as 

planned (Fig. 4-3). The administration of clodronate significantly decreased lung 

macrophages, lung inflammation (Fig. 4-4) and fibrosis (Fig. 4-5) in both BLM and 

IL-33 plus BLM groups compared to the PBS liposome control group. The 
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increased collagen content and collagen III mRNA expression induced by BLM and 

IL-33 plus BLM were also attenuated by the clodronate depletion of alveolar 

macrophage compared to PBS liposome controls (Fig. 4-6). Furthermore, 

clodronate depleted ∼80% of alveolar macrophages compared with the control 

group (Fig. 4-7). Intriguingly, alveolar macrophages depletion also resulted in 

the reduction of the number of BLM-induced and IL-33-enhanced neutrophils and 

lymphocytes in the BAL fluid (Fig. 4-7), suggesting that alveolar macrophages 

play a pivotal role in the recruitment of these inflammatory leukocytes by BLM 

and IL-33 in fibrosis (Fig. 4-7).  

 

These findings suggest that although IL-33 plays a role in the pathogenesis of 

BLM-induced fibrosis, it cannot replace the function of alveolar macrophages in 

the fibrogenic progress, and IL-33 is unlikely to exacerbate BLM-induced lung 

fibrosis through any cell types except alveolar macrophages. 
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Fig. 4-1 BLM administration enhances F4/80 positive macrophages 

in lung tissue 

Lung tissue samples from groups of mice were harvested 7 days after BLM 

administration.  The tissue samples were processed and stained for F4/80 using 

specific antibody as described in chapter 2, section 2.13. (original magnification 

x100, enlarged to x400)  

ISO F4/80
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Fig. 4-2 ST2-/- mice with reduced number of IL-33 positive 

macrophages in lung tissue. 

WT and ST2-/- mice were given BLM on day 0 and culled on day 7. The lung 

tissues were dispersed and stained with both IL-33 and F4/80 using appropriate 

antibodies, and analysed using FACS as described in chapter 2, section 2.13. 

*p<0.05 compared to PBS groups.  
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C57B/6                                                                                lungs 

 mice                                                                                   BALF 

 

               

              day -3  day-1        day0                              day 7 

             Clodronate            BLM (0.1U, i.n.)              cull          

           or PBS (40µl, i.n.)    or IL-33 (500ng/mouse, i.n.) 

                 

 

 

Fig. 4-3 Experimental plan to deplete macrophages using 

clodronate liposomes in BLM-induced fibrosis in mice. 

The depleting effect of clodronate liposomes typically lasts up to 7 days in vivo. 

Two weeks prior to the first clodronate injection and during the experiment, 

mice were kept in filtered cages and given sterile food and water. C57B/6 mice 

were administered with clodronate liposome or control liposome (40μl) i.n. 3-

day and 1-day before 0.1U bleomycin (BLM) i.n./PBS on day 0. Some mice were 

also given IL-33 with BLM at the same time. The mice were monitored daily, 

culled on day 7. BAL fluid and lung tissue were collected and analyzed as 

described in chapter 2. 
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Fig. 4-4 Clodronate depletion of macrophages reduces lung 

inflammation and fibrosis in mice given BLM and IL-33. 

Mice were treated with clodronate or control liposomes (40μl) 3 days and 1 day 

before the BLM and IL-33 administration as shown in Fig 4-3. The lung tissues 

were harvested 7 days after BLM and IL-33 administration.  The lung tissue 

sections were stained with H&E as described in chapter 2, section 2.9.1. 

Representative pictures of mean histological change are shown from each group. 

(original magnification x100)  

 

 

Lip PBS
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Lip Clod
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Fig. 4-5 The depletion of macrophages reduces BLM and IL-33 

enhanced lung fibrosis in mice.   

Groups of mice were treated as described in Fig. 4-3. The lung tissues were 

harvested 7 days after PBS, BLM or BLM plus IL-33 administration. The tissue 

sample sections were stained with trichrome and the pathological score was 

determined as described in chapter 2, section 2.9. Representative pictures of 

mean histological change are shown from each group (original magnification x100). 

Data are representative of two experiments, mean ± SEM, n= 6 mice per group, * 

p<0.05 compared to PBS group; # p<0.05 compared to BLM alone group. 
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Fig. 4-6 Clodronate depletion of macrophages reduces lung tissue 

collagen content and mRNA expression after administration of BLM 

and IL-33.  

Groups of mice were treated as shown in Fig. 4-3. Lung tissues were collected on 

day 7 after BLM, and collagen content was measured using the Sircol soluble 

collagen assay. Collagen III expression was measured using real-time qPCR. Data 

are representative of two experiments, mean ± SEM, n= 6 mice per group, 

*p<0.05 compared to PBS group; # p<0.05 compared to BLM alone group. 
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Fig. 4-7 The depletion of macrophages reduces BLM and IL-33 

enhanced leukocyte infiltration in mice.  

Groups of mice were treated as shown in Fig. 4-3. Briefly, liposome clodronate 

or control PBS liposomes were instilled i.n. to mice 3 days and 1 day before BLM. 

After mice were culled 7 days after BLM, cells from BAL fluid (BALF) were 

stained and counted as described in chapter 2, section 2.12. Data are 

representative of two experiments, mean ± SEM, n= 6 mice per group, *P < 0.05 

compared to PBS group. 
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4.3 IL-33 amplifies the polarization of M2 macrophage in BLM-

induced lung fibrosis. 

 

After establishing the essential role of macrophages in BLM-induced and IL-33-

exacerbated lung fibrosis, we further investigate the involvement of subsets of 

macrophages in the IL-33-mediated effect on BLM-induced fibrosis in vitro and in 

vivo.  

 

We initially determined whether and how IL-33 and BLM can polarize M2 in vitro 

using bone marrow-derived macrophages (BMDM). BMDMs were polarized with IL-

13, IL-33 or BLM alone or together for 48 hours. The levels of M2 cytokines, IL-4, 

IL-13 and TGF-β1, and the surrogate cell markers inducible nitric oxide synthase 

(iNOS) and arginase I (ARGI) for M1 and M2 respectively were measured by ELISA 

or qPCR. 

 

IL-33 enhanced IL-13 production in BMDM (Fig. 4-8a). IL-13 markedly enhanced 

IL-4 but only slightly enhanced TGF-β1 production in BMDM (Fig. 4-8b). The IL-33 

alone elevated TGF-β1 but not IL-4. However, it is noteworthy that IL-13 plus IL-

33 synergistically enhanced TGF-β1 production in BMDM (4.8b). BLM alone could 

induce TGF-β1 production but failed to induce/enhance IL-13 and IL-4 

production in BMDM. 

 

IL-13, which polarizes M2 (Van Dyken and Locksley, 2013), enhanced the 

expression of the M2 marker ARG1 but reduced the expression of the M1 marker 

iNOS, compared to controls (Fig. 4-9a and b). IL-33 or BLM alone failed to induce 

either M1 or M2 markers. However, IL-13 plus IL-33 markedly enhanced ARG1 but 

not iNOS expression compared to IL-13 alone (Fig. 4-9a and b). These results 

suggest that IL-33 may induce IL-13 production by macrophages and 

subsequently enhance IL-13-mediated M2 polarization in vitro. 
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In order to demonstrate that M2 macrophages are involved in the development 

of fibrogenesis in vivo, we then determined the M1 and M2 proportions using the 

surrogate markers iNOS and arginase I (ARGI), for M1 and M2, respectively, in 

lung tissue. The lung tissues were collected from the experiments described in 

Chapter 3 using ST2-/- mice (Fig. 3-5) and anti-IL-33 antibody treated mice (Fig. 

3-11). The expression of ARGI was markedly reduced in lung tissue of ST2 

deficient mice on day 14 (Fig. 4-10a) and anti-IL-33 antibody treated mice on 

day 7 (Fig. 4-10b) compared to controls. In contrast, the iNOS expression was 

enhanced in the lung of ST2-/- mice on day 14 (Fig. 4-10a) and anti-IL-33 

antibody treated mice on day 7 compared to control groups (Fig. 4-10b). We 

next determined the frequencies of macrophages and M2 macrophages and IL-33-

expressing M2 in fibrotic lung tissue of WT and ST2-/- mice by flow cytometry. 

The CD45+ leucocytes in the digested lung tissues were gated first as in Fig. 4-

11a and then the F4/80+ macrophages and CD206+ M2 and IL-33+ M2 levels were 

determined by FACS (Fig. 4-11 b and c). The FACS analysis showed that while the 

percentage of F4/80+ macrophages was slightly but significantly reduced in ST2-/- 

compared to WT mice (Fig. 4-12a), the percentage of M2 macrophages in ST2-/- 

mice was markedly reduced 7 days after being given BLM (Fig. 4-12b). More 

interestingly, most of the M2 macrophages were expressing IL-33 in WT mice, 

which was nearly completely abolished in the ST2-/- mice (Fig. 4-12c). These 

results suggested that IL-33/ST2 signals are required for the induction of M2 

macrophages and M2 IL-33 expression but not the M1 macrophages in lung tissue 

in mice.  

 

Together with the result from alveolar macrophage depletion experiments, we 

conclude that IL-33 signals may promote BLM-induced fibrosis by polarizing M2 in 

mice.  
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Fig. 4-8 The role of IL-33 in the induction of profibrogenic 

cytokine productions in BMDM in vitro. 

BMM were stimulated with IL-13, IL-33 or BLM for 48 hours, the supernatants 

were harvested and IL-4, IL-13 and TGF-β1 concentrations were measured by 

ELISA as described in section 2.12.1. Data are representative of two experiments, 

mean ± SEM, n= 6 mice per group, *P < 0.05 compared to media group. 
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Fig. 4-9 IL-33 potentiates IL-13 induced M2 but not M1 

polarisation in BMDM in vitro.  

BMMs were stimulated by IL-13, IL-33 or BLM alone or together for 24 hours and 

then ARGI and iNOS expression measured by qPCR as described in chapter 2, 

section 2.7.1. Data are representative of two experiments, mean ± SEM, n= 6 

mice per group, *P < 0.05 compared to media group. 
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Fig. 4-10 ST2 deficiency or anti-IL-33 treatment reduces M2 

marker ARGI and enhances M1 marker iNOS expression in fibrotic 

lungs. 

Group of mice were treated as in Fig. 3-5, 3-11 and 4-3. Lungs were collected 

and expression of ARGI and iNOS were analyzed by qPCR as described in chapter 

2. Data are representative of two experiments, mean ± SEM, n= 6 mice per group, 

*P < 0.05 compared to PBS group. 

 

 

0

50

100

150

*
*

c

F
o

ld
 c

h
a

n
g

e
 

n
o

rm
a

li
se

d
 t

o
 T

B
A

 R
N

A

PBS             BLM      BLM+IL-33        

Lip PBS
Lip Clod

Arginase I (M2) iNOS (M1)

F
o

ld
 c

h
a

n
g

e
n

o
rm

a
li

se
d

 t
o

 T
B

A
 R

N
A

PBS BLM+IgG BLM+αIL-33

F
o

ld
 c

h
a

n
g

e
n

o
rm

a
li

se
d

 t
o

 T
B

A
 R

N
A

WT
ST2KO

PBS                        BLM               

PBS BLM+IgG BLM+αIL-33

0

5

10

15

20

*

*

PBS                        BLM               

0

50

100

150

*
*

*

0

50

100

150

*

*

0

5

10

15

20

*

*

PBS             BLM      BLM+IL-33        

0

5

10

15

20

*

N.S.

*

b

a



163 
 

C
D

1
1
b

F4/80

WT PBS ST2-/- PBS WT BLM ST2-/- BLM

F
4

/8
0

CD206

Mφ

M2Mφ

S
S

C

IL-33

M2Mφ

IL-33

a 

     

b 

 

 

c 

 

 

d 

 

 

 

 

 

Fig. 4-11 FACS gating strategy for subsets of macrophages in the 

lung digests. 

Lungs from WT and ST2-/- mice were collected and digested, and stained with 

appropriate antibodies for FACS analysis as described in chapter 2. 
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Fig. 4-12 ST2-/- mice reduce cell numbers of macrophages, M2 

macrophages and IL-33 producing macrophages in the lung digests. 

Lungs from WT and ST2-/- mice were collected and digested, and stained with 

appropriate antibodies for FACS analysis as described in chapter 2. Data are 

representative of two experiments, mean ± SEM, n= 6 mice per group, *P < 0.05 

compared to PBS group. 
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4.4 IL-33 signals increase IL-13-expressing Type 2 innate lymphoid 

cells in BLM-induced lung fibrosis 

 

ILC2 is a newly discovered innate cell subset which produces type 2 cytokines, 

including IL-13, and plays an initiating role in Th2 response and fibrosis (Neill et 

al., 2010, Spits and Di Santo, 2011). We found that macrophages, perhaps the M2, 

are required for IL-33 to exacerbate lung fibrosis and M2 can be polarised by IL-

13 and IL-33. We next investigated the role of IL-33 in the induction of IL-13 

expressing ILC2 in BLM-induced fibrosis. 

 

Lung fibrosis was induced in WT and ST2-/- mice by BLM as above. The lungs were 

harvested and digested as described in section 2.13, and the dispersed cells 

were labelled and gated for CD45+ICOS+ST2+ and IL-13+ ILCs as indicated in Fig. 

4-13a. Our results showed that giving BLM markedly enhanced lung ILC2 numbers 

in WT mice as early as day 3 with further enhancement by day 7 (Fig. 4-13b).  

However, the enhancement of lung ILC2 was completely abolished in ST2-/- mice 

(Fig. 4-13b).  Furthermore, the IL-13 producing ILCs were also increased in WT 

but not in ST2-/- mice 3 days after receiving BLM (Fig. 4-13b). 

 

These results demonstrated the ILC2 cell numbers are enhanced in the BLM-

induced lung fibrosis and IL-33 signals play an important role in ILC2 function. 

These ILC2 may provide an additional source of IL-13 in M2 polarisation and lung 

fibrosis.  
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Fig. 4-13 ST2 is required for the induction of ILC2 in the fibrotic 

lung in mice. 

Lungs from BLM-treated WT and ST2-/- mice were collected and digested, 

stained with appropriate antibodies for FACS analysis as described in chapter 2. 

a) FACS gating strategy for ILC2s and numbers of ILC2s in the lung digests. b) The 

numbers of IL-13+ILC2. Data are representative of two experiments, mean ± SEM, 

n= 6 mice per group, *P < 0.05 compared to PBS group. 
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4.5 IL-33 induced pro-fibrogenic cytokine production in BLM-

induced fibrosis  

 

Both IL-13 and TGF-β1 are well-known cytokines with pro-fibrotic functions 

(Borthwick et al., 2013). However, it is less known a) how and when these 

cytokines are induced in the context of fibrosis; b) the relationship between IL-

13 and TGF-β1 in this context; c) whether IL-33 is able to induce these cytokines 

in fibrosis. We sought to answer these questions by the following experiments. 

 

In section 4.3, we initially determined that IL-33 and BLM could induce pro-

fibrotic cytokines in vitro in bone marrow-derived macrophages (BMDM). BMDM 

were stimulated with IL-13, IL-33 or BLM alone or together for 48 hours. The 

levels of M2 cytokines, IL-4, IL-13 and TGF-β1 were measured by ELISA or qPCR. 

 

We found that IL-33 alone enhanced IL-13 production in BMDM compared to 

controls (Fig. 4-8a). IL-13 alone significantly enhanced IL-4 but slightly enhanced 

TGF-β1 production in BMDM (Fig. 4-8b). The IL-33 elevated TGF-β1 but not IL-4 

production was further enhanced by IL-13 in BMDM (Fig. 4-8b). BLM alone could 

induce TGF-β1 production but failed to induce/enhance IL-13 and IL-4 

production alone or together with IL-13 and IL-33 in BMDM. Therefore, it was IL-

13 and IL-33 that mainly induce pro-fibrotic cytokines in macrophages. 

 

We found in Chapter 3 that IL-33 could exacerbate BLM-induced fibrosis. We 

then determined the kinetics of production of IL-13 and TGF-β1 in the BAL fluid 

from mice given either BLM or IL-33 alone or together in mice. BLM alone 

induced IL-13 production which appeared from day 1 and declined on day 5 (Fig. 

4-14a). BLM-induced TGF-β1 appeared later on day 5 and lasted at least 14 days. 

The BLM-induced IL-13 and TGF-β1 production was further enhanced in their 

combination with IL-33 (Fig. 4-14a). However, IL-33 alone had no effect on the 

production of these cytokines at this stage (first two weeks post BLM) (Fig. 4-
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14a). These results suggest that IL-33 may induce IL-13 first and this IL-13 

subsequently induces TGF-β1 in the context of lung fibrosis.  

 

As described in section 3.3 and 4.2, ST2 deficiency and macrophage depletion 

ameliorated BLM-induced fibrosis.  We further determined the IL-13 and TGF-β1 

mRNA expression in lung tissue from these experiments.  In alveolar macrophage 

depleted mice, the expressions of IL-33, IL-13 and TGF-β1 induced by BLM and 

BLM plus IL-33 were nearly completely abolished compared to control mice (Fig. 

4-14b).  Furthermore, the expression levels of IL-13, IL-33 and TGF-β1 induced 

by BLM were also abolished in ST2-/- group (Fig. 4-12c).  

 

These results suggested that BLM induces pro-fibrotic cytokines mainly via 

macrophages and is dependent on ST2 signals.  
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Fig. 4-14 BLM induces ST2-dependent production of profibrotic 

cytokines by macrophages 

BALF was collected as shown in Fig. 3-2, 3-5 and 3-11 and the content of IL-13 
and TGF-β1 were measured by ELISA (a). The mRNA expressions of il33, il13 and 
tgfβ1 were measured by qPCR in lung tissue collected as shown in Fig. 3-2 and 4-
3(b). Data are representative of two experiments, mean ± SEM, n= 6 mice per 
group, *P < 0.05 compared to PBS groups.   
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Fig. 4-15 Schematic representation of a potential mechanism of 

BLM-induced IL-33 synthesis and lung fibrosis 

BLM triggers the release of flIL-33 from damaged airway epithelial cells and the 

recruitment of neutrophils. Neutrophil cathepsin G (CG) then processes flIL-33 to 

mIL-33. The mIL-33 stimulates early ST2-dependent ILC2 cell expansion and IL-13 

production. IL-33 and IL-13 then synergistically polarize alveolar macrophages 

into the M2 phenotype that produces TGF-β1, IL-13 and more IL-33, which in 

turn activates fibroblasts to proliferate and overproduce collagen. IL-33 also 

enhances macrophage production of chemokines which induce the infiltration of 

neutrophils and lymphocytes into the lung, which together may exacerbate lung 

inflammation and the development of fibrosis.   
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4.6 Chapter Discussion 

 

The main findings from the work described in this chapter are: 

i) Exacerbation effect of IL-33 on BLM-induced lung fibrosis is abolished 

by alveolar macrophage depletion. 

ii) IL-33 could polarize M2 macrophages which promote BLM-induced lung 

fibrosis. 

iii) IL-33 signals increased the number of lung interstitial ILC2 in BLM-

induced lung fibrosis and ILC2 may provide a source of early IL-13 in 

fibrosis. 

iv) IL-33 induces fibrogenic cytokines in BLM-induced lung fibrosis. 

 

Alveolar macrophages, in particular M2 macrophages, are closely associated with 

the pathogenesis of fibrosis by producing fibrogenic cytokine and chemokines 

(Wynn and Barron, 2010, Alber et al., 2012, Gibbons et al., 2011). Our previous 

results in Chapter 3 demonstrated that IL-33 signals play a critical role in BLM-

induced lung fibrosis and suggested that IL-33 may be expressed in alveolar 

macrophages. In this chapter we demonstrated that macrophages are one of the 

main sources of IL-33, because lung macrophages express IL-33 and macrophage 

depletion reduced IL-33 production in the lung. Furthermore, ST2 signals are 

required for the optimal induction of IL-33 in tissue, suggesting that IL-33 is 

produced by macrophages in an autocrine manner. However, at the moment, we 

do not have direct evidence to show the importance of macrophage-derived IL-

33 in BLM-induced lung fibrosis. Future work will be required to help resolve this 

question, for example, by adoptive transfer of macrophages from WT or IL-33 

transgenic mice, using macrophages from IL-33-/- mice as controls, into the lung 

of IL-33-/- recipients to see if the macrophage-derived IL-33 is sufficient to drive 

the fibrotic process in the BLM model. 
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Finally, since epithelial cells are the first cell layer that comes into contact with 

BLM in the airway and they constitutively express IL-33, epithelial cells may also 

contribute to the cytokine pool of IL-33 in this context.  

 

Macrophages can be polarized to different subsets, one of the subsets, M2 

macrophages, producing IL-13 and TGF-β1. Our results are consistent with 

previous reports (Kurowska-Stolarska et al., 2009) that IL-33 plus IL-13 could 

induce M2 polarization. These could explain how IL-33 is critical in the induction 

of fibrotic cytokines and chemokines by M2 macrophages and thereby promoting 

the pathogenesis of lung fibrosis. 

  

Our work also showed that the IL-33/ST2 axis induces the production of key 

chemokines CXCL1, CXCL2 and CCL2 in BLM-induced fibrosis. It is known that 

CXCL1 and CXCL2 are chemoattractants for the migration of neutrophils, and 

CCL2 for macrophages and lymphocytes in fibrotic lung tissue caused by BLM 

(Car et al., 1994, Rot and von Andrian, 2004, Strieter et al., 2007). And IL-33 

could induce the production of CXC chemokines alone within the mucosal surface 

(Guabiraba et al., 2014). These results might explain how IL-33 recruited pro-

inflammatory leukocytes to the lung which contribute to the early inflammation 

and subsequent fibrosis. In addition, we found that alveolar macrophage 

depletion also abolished the infiltration of lymphocytes and neutrophils, 

suggesting that alveolar macrophages play a central role in the recruitment of 

inflammatory cells into lung tissue. 

 

We found that IL-33 could also increase the level of pro-fibrogenic cytokines IL-

13 and TGF-β1 in lung tissue in an ST2 and macrophage-dependent manner (Fig. 

4-14). Furthermore, our kinetic cytokine expression experiment showed that BLM 

and IL-33 first induce the expression of IL-13 and then production of TGF-β1 in 

BAL fluid, suggesting that the TGF-β1 may be induced in macrophage by IL-33-

derived IL-13. This agrees with the previous reports showing that IL-13 can 

induce TGF-β1 expression in vivo (Fichtner-Feigl et al., 2006). As shown in 

section 2.13.1, the TGF-β1 we measured was total TGF-β1 not active TGF-β1 
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which needed to be measured using receptor-based assay (Albro et al., 2013). As 

the concentration of active TGF-β1 is a more accurate description of the 

biologically functionality of TGF-β1 and these two measures are not necessarily 

interchangeable (Gibbons et al., 2011, Mackinnon et al., 2012), more work is 

required to determine the nature of the TGF-β1 induced by IL-33.  

 

Our results showed that the IL-33/ST2 pathway is required for the recruitment of 

ILC2s and for the ILC2s to produce IL-13. This is consistent with published 

reports showing that IL-33 signals promote early ILC2 development and 

proliferation in different contexts in vivo (Moro et al., 2010, Spits and Di Santo, 

2011, Salmond et al., 2012, McHedlidze et al., 2013, Pastorelli et al., 2013, 

Molofsky et al., 2013). Since IL-13 is needed for M2 polarization and for 

fibroblast function, our results suggest that IL-33 may initially induce IL-13 

production by ILC2, and IL-13 then subsequently amplify M2 and fibroblast 

function in lung fibrosis (Fig. 4-15). To further understand the role of ILC2 in IL-

33- and BLM-induced pulmonary fibrosis, we amplified the ILC2 cell numbers in 

vivo by injection of recombinant IL-33, daily for 5 days, which is a well-

established method for the enrichment of ILC2 for adaptive transfer experiments. 

The ILC2 were purified by cell sorting and were adoptively transferred into 

normal recipient mice 1 day after BLM (Li et al 2014). The ILC2 transfer resulted 

in more severe bleomycin-induced lung inflammation and fibrosis in the 

recipient mice (Li et al 2014). The pathogenic changes were accompanied by 

increased inflammatory cell infiltration and collagen production, and the mRNA 

expression of collagen 3, Il13 and Tgfβ1 in the lung tissue compared to controls. 

Together, these data demonstrate that ILC2 cells may contribute to the BLM- 

and IL-33-mediated pulmonary fibrosis, perhaps by providing an additional 

source of IL-13 in this context (Fig 4-15). 

 

Fibroblasts are the key cell in the development of fibrosis mainly by producing 

collagen and cellular matrix molecules (Wynn, 2008, Wynn, 2011, Wynn and 

Ramalingam, 2012, Shepherd, 2006). It is known that fibroblasts express both IL-

33 and ST2 (Xu et al., 2008). However, the role of IL-33 in fibroblast function is 

largely unknown. I therefore generated primary fibroblasts from mouse lungs as 
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described in Chapter 2 to study the effect of IL-33 on fibroblast function in vitro. 

I found that stimulation by recombinant IL-33 seemed to have no significant 

effect on the proliferation, migration and collagen production of cultured 

fibroblasts in normal conditions, suggesting that IL-33 alone may be unable to 

affect fibroblast functions directly and those fibroblasts may mainly produce IL-

33 for other cells (data not shown). Therefore, based on the current evidence, 

the promoting role of IL-33 system in lung fibrosis may be mainly attributed to 

its effect on the induction of lung inflammation and indirect activation of 

fibroblast function via enhance IL-13 and TGFβ-1 production in this context (Fig 

4-15). However, we cannot eliminate the possibility that IL-33 may synergise 

with other factors/cytokines to promote fibroblast function, for instance, that 

IL-33 needs IL-13 to polarize M2; and that stimulation of hepatic stellate cells 

with IL-13 could increase their proliferation and expression of pro-fibrotic genes 

(McHedlidze et al., 2013). More work is needed to clarify the role of IL-33 in lung 

fibroblast function.  

 

In summary, our experiments demonstrated that IL-33 amplified BLM-induced 

pulmonary fibrosis via inducing inflammation through recruiting a number of 

inflamed immune cells, in particular the ILC2s and alternatively activating 

macrophages. IL-33 recruits ILC2s which produce IL-13, and IL-13 plus IL-33 

induce M2 macrophages, and M2 macrophages produce IL-13 and TGFβ1 which 

promote the collagen production and deposition which accelerate the lung 

fibrosis (Fig 4-15).  
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Chapter 5 

The pathogenic role of IL-33 in DSS-

induced colitis in mice 
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Chapter 5: The pathogenic role of IL-33 in DSS-induced colitis in 

mice 

5.1 Introduction 

 

Ulcerative colitis (UC) is one of the most common idiopathic disorders in 

inflammatory bowel disease (IBD) (Hanauer, 2006). The etiology of UC is still 

largely unknown. Current evidence suggests that UC is caused by environmental, 

genetic and immunological factors (Hanauer, 2006, Podolsky, 2002, Baumgart 

and Carding, 2007). The initiation of UC may be due to barrier dysfunction and 

unusual angiogenesis in gut epithelium caused by environmental or infectious 

factors (Podolsky, 2002, Papadakis and Targan, 2000, Sanchez-Munoz et al., 2008, 

Bamias et al., 2012). Despite considerable research, few therapeutic options 

have emerged, and there remains considerable unmet clinical need for the 

treatment of the disorder (Frei et al., 2012).  

 

Dextran sodium sulphate (DSS)-induced colitis is the best characterised animal 

model of human UC (Okayasu et al., 1990, Wirtz et al., 2007, Maxwell and Viney, 

2009). The pathological process in mice given DSS is similar to that in patients 

with UC, including diarrhoea, chronic inflammation and ulcerations (Wirtz et al., 

2007). The mechanism of DSS-induced colitis is not fully understood; DSS has a 

direct toxic effect on gut epithelial cells and this might cause gut damage and 

inflammation (Okayasu et al., 1990, Dieleman et al., 1994). Acute DSS-induced 

colitis is T and B lymphocyte independent, so it is an ideal model to investigate 

the role of gut epithelial cells and the innate immune response in the 

development of inflammatory colitis (Dieleman et al., 1994, Ghosh, 2004). 

 

Current studies show that type II cytokines such as IL-4, IL-5 and IL-13 play an 

important role in the development of UC (Maloy and Powrie, 2011, Targan and 

Karp, 2005, Papadakis and Targan, 2000, Mizoguchi et al., 1999, Heller et al., 

2005, Fuss et al., 1996). IL-4 deficient mice developed much less severe colitis 

using the DSS-induced colitis, suggesting that IL-4 has direct effects on the 

development and severity of colitis potentially by modulating innate cell 
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function in colon tissue (Mizoguchi et al., 1999, Stevceva et al., 2001). Type I 

cytokines including IFN-γ and pro-inflammatory cytokines (IL-1, IL-6, IL-17 and 

TNFα) might also contribute to the pathogenesis of colitis, but mainly in the 

chronic stage (Maloy and Powrie, 2011, Obermeier et al., 1999, Bauer et al., 

2010, Sanchez-Munoz et al., 2008, Papadakis and Targan, 2000). However, the 

mechanism by which the type 1 and 2 cytokines are induced by DSS and the cell 

source of these cytokines are unresolved. In this regard, IL-33, a newly described 

type II cytokine inducer, might play a critical role in colitis (Schmitz et al., 2005, 

Beltran et al., 2010, Pastorelli et al., 2010, Sedhom et al., 2013).  

 

IL-33 is predominantly expressed and released by the epithelial and endothelial 

cells after sensing of inflammatory signals e.g. undergoing necrosis (Schmitz et 

al., 2005). Its receptor ST2 is expressed in all innate leukocytes recognised to 

date, but only in selective adaptive leukocytes (Schmitz et al., 2005, Liew et al., 

2010, Liew, 2012, Kurowska-Stolarska et al., 2008, Xu et al., 1998, Stolarski et 

al., 2010, Neill et al., 2010, Komai-Koma et al., 2012). Thus the IL-33/ST2 

pathway can directly activate eosinophils, macrophages, innate lymphoid cells 

(ILCs), mast cells and thereby trigger innate immune responses (Schmitz et al., 

2005, Liew et al., 2010, Liew, 2012, Kurowska-Stolarska et al., 2008, Xu et al., 

1998, Stolarski et al., 2010, Neill et al., 2010, Komai-Koma et al., 2012). IL-33 

can also induce Th1- and Th17-mediated immune responses in pro-inflammatory 

disorders through unknown mechanisms (Xu et al., 2008, Verri et al., 2008). 

Recent reports show that the mRNA expression of IL-33 is up-regulated in human 

biopsy specimens from UC patients in which the increase is specifically in 

intestinal epithelial cells (Pastorelli et al., 2010, Beltran et al., 2010, Kobori et 

al., 2010, Seidelin et al., 2011). Furthermore, IL-33-deficient mice showed 

impaired development of experimental colitis after DSS administration (Oboki et 

al., 2010). There is also evidence suggesting that the IL-33/ST2 pathway plays an 

important role in IBD in general, but the underlying mechanism is unknown 

(Seidelin et al., 2011, Oboki et al., 2010, Palmer and Gabay, 2011, Vermeire et 

al., 2011, Pastorelli et al., 2010, MacDonald et al., 2012, Pastorelli et al., 2013).  
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The aim of this part of the overall PhD project is to investigate whether IL-33 

has a role in the development of UC using an acute model of DSS-induced colitis 

in mice, and to investigate any associated mechanisms. In summary; our 

experimental data suggested that IL-33 exacerbated colitis by the induction of 

pro-inflammatory and angiogenic cytokines and chemokines in an ST2 and IL-4 

dependent manner.  
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5.2 DSS enhances IL-33 and other inflammatory cytokine and 

chemokine production in colonic tissue 

 

Pro-inflammatory cytokines and inflammatory chemokines are closely associated 

with the pathogenesis of colitis (Bamias et al., 2011).  Group of WT BALB/c mice 

were fed with or without DSS for 7 continuous days, and then the colon tissues 

were removed and placed into organ culture to measure spontaneous cytokine 

release (Fig. 5-1). After 24 hours of culture, the supernatants were collected and 

the levels of cytokines and chemokines were measured by ELISA. Some 

specimens of colon were also digested using RIPA buffer to measure the 

intracellular IL-33 concentration in the tissue. The group treated with DSS had 

significantly higher concentration of IL-33 in both colon tissue culture 

supernatants and lysed tissue cell cultures compared to similar cultures from 

sham-treated control group (Fig. 5-2). Similar phenomena were observed for 

type II cytokines (IL-4 and IL-13) and pro-inflammatory factors (TNFα, KC and 

MIP-2); the type I cytokine IFN-γ had the same trend as the type II cytokines (Fig. 

5-3). 

 

Together these results demonstrated that IL-33 as well as other Th2 type 

cytokines, pro-inflammatory cytokines and inflammatory chemokines are 

induced and released in DSS stimulated colonic tissue of mice. They suggest that 

IL-33 may be involved in the initiation of pathogenesis of colitis. 
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BALB/c                                                                            colon 

 mice                                                                              serum 

 

                day0                                                                day7 

                DSS (3.5%, ad libitum)                                        cull 

                IL-33 (1μg, i.p.) 

 

 

 

Fig. 5-1 Experimental plan used to induce acute colitis in WT mice. 

 

Female WT BALB/c mice were fed with or without 3.5% (weight/volume) DSS in 

their drinking water from day 0 for 7 continuous days. Some mice were injected 

i.p. with 1μg IL-33 or PBS daily from day 0 to day 7. The body weight, stool 

consistency and bleeding condition were monitored daily. Serum and colon were 

collected and analysed as described in chapter 2. 
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Fig. 5-2 DSS induces IL-33 production ex vivo in mice. 

 

Colon tissue samples from groups of female BALB/c mice were harvested 7 days 

after DSS administration.  The tissue samples were directly digested using RIPA 

buffer or cultured for 24 hours before the supernatant was collected. The IL-33 

concentrations in supernatant (left) and cell lysis (right) were measured using 

ELISA as described in chapter 2. Data are representative of two experiments, 

mean ± SEM, n= 5 mice per group, *P < 0.05 compared to PBS group. 
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Fig. 5-3 DSS induces cytokine and chemokine production in colon 

tissue of mice. 

 

Colon tissue samples from groups of female WT BALB/c mice fed with or without 

DSS were harvested on day 7.  The tissue samples were cultured for 24 hours 

before the supernatant was collected. The cytokine/chemokine concentrations 

in the supernatant were measured using ELISA as described in chapter 2. Data 

are representative of two experiments, n= 5 mice per group, mean ± SEM, *P < 

0.05 compared to PBS group. 
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5.3 ST2 gene-deficient mice show impaired DSS-induced colitis  

5.3.1 ST2 deficiency mice develop less severe colitis 

 

We next investigate the importance of IL-33 signalling in the pathogenesis of 

colitis by using ST2, the IL-33 receptor, deficient mice in an acute DSS-induced 

colitis model. Groups of WT and ST2-/- mice were given DSS or not in their 

drinking water and the development of clinical parameters of colitis were 

monitored daily for up to 20 days (Fig. 5-4).  

As shown in Fig. 5-5, WT mice but not ST2-/- mice developed colitis-related 

diarrhoea 10 days after DSS administration. However, diarrhoea became evident 

at 20 days, which was significantly delayed by 10 days in ST2-/- mice.  Colon 

shortening is a pathology sign of gut inflammation (Kojouharoff et al., 1997, 

Axelsson et al., 1998). Compared to the mice without DSS, both DSS-treated WT 

and ST2-/- mice had significantly shortened colon length loss. However the colon 

length was longer in ST2-/- group than that in the WT mice (Fig. 5-6). The 

histological analysis of colon tissue showed clearly inflammation in both groups 

(Fig. 5-7). Consistent with the report (Oboki et al., 2010), the body weight 

changes between WT and ST2-/- mice were not significantly different (Fig. 5-8) at 

this time point. 
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WT/ST2-/-                                                                              colon 

 mice                                                                                   serum 

 

               day 0                                       day 12                     day 20 

                DSS (3.5%, ad libitum)        withdrawal of DSS                cull 

 

 

Fig. 5-4 Experimental strategy used to induce colitis in WT and 

ST2-/- mice. 

 

Female WT and ST2-/- BALB/c mice were given or not 3.5% (weight/volume) DSS 

in their drinking water from day 0 for 12 continuous days. The body weight loss 

was calculated as percentage of the baseline body weight as on day 0. The body 

weight, stool consistency and bleeding condition were monitored daily. Serum 

and colon were collected and analysed as described in chapter 2. 

 

 

 



185 
 
 

 

 

                  

                 

 

Fig. 5-5 Diarrhoea score of DSS-induced colitis in WT and ST2-/- 

mice. 

 

Female WT and ST2-/- BALB/c mice were given 3.5% (weight/volume) DSS in their 

drinking water from day 0 for 12 continuous days and culled on day 20. The stool 

consistency and bleeding condition was scored as follows: 0 (normal, negative 

hemoccult); 1 (soft but still formed, no blood traces in stool); 2 (very soft, blood 

traces in stool visible); 3 (diarrhea, rectal bleeding).  Data are representative of 

three experiments, mean ± SEM, n= 5 mice per group, *P < 0.05 compared to 

control group. 
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Fig. 5-6 Comparison of the colon length of different treated WT 

and ST2-/- mice. 

 

The colon tissues were collected on day 20 and the length measured as in 

chapter 5. Data are representative of three experiments, mean ± SEM, n= 5 mice 

per group, *P < 0.05 compared to PBS group. 
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Fig. 5-7 Histological analysis of DSS-induced colitis in WT and ST2-/- 

mice. 

 

The colon tissues were collected on day 20. The colon sections were stained with 

H&E and scored as described in chapter 2. Data are representative of three 

experiments, mean ± SEM, n= 5 mice per group, *P < 0.05 compared to control 

group. 
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Fig. 5-8 Body weight changes of DSS-induced colitis in WT and  

ST2-/- mice. 

 

Female WT and ST2-/- BALB/c mice were given 3.5% (weight/volume) DSS in their 

drinking water from day 0 for 12 continuous days and culled on day 20. The body 

weight changes were calculated as the percentage of the baseline body weight 

as on day 0. Data are representative of three experiments, mean ± SEM, n= 5 

mice per group, *P < 0.05 compared to control group. 
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5.3.2 ST2 deficiency mice show reduced inflammatory cytokines 

and chemokines in DSS-induced colitis 

 

Local and systemic inflammatory cytokines and chemokines play a critical role in 

colitis (Hanauer, 2006). We further assessed the serum cytokine and chemokine 

profile in WT and ST2-/- DSS colitis mice by 20-plex Luminex. Compared to 

control, WT mice treated with DSS had significantly increased concentration of 

IL-6, IL-13, IL-17 and VEGF (Fig. 5-9). There were no significantly increased 

concentrations of these in ST2-/- mice (Fig. 5-9).  

 

Also compared to control, DSS-administered WT mice had significantly increased, 

but ST2-/- mice had significantly decreased serum IL-4 concentration (Fig. 5-10). 

However, DSS treated WT and ST2-/- mice had similarly enhanced serum IL-12 

levels compared to control (Fig. 5-10). The levels of IFN-γ, chemokines CXCL9 

and CXCL10, and the immune suppressive cytokine IL-10 were unchanged 

compared to WT control (Fig. 5-11).  

 

These results demonstrated that ST2 is necessary for the development of DSS-

induced colitis suggests that IL-33/ST2 pathway plays a pathogenic role in acute 

colitis. 
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Fig. 5-9 IL-17 and IL-6 levels in WT and ST2-/- mice. 

 

Serum samples from groups of female WT and ST2-/- BALB/c mice fed with or 

without DSS were harvested on day 20. The IL-6 and IL-17 concentrations in 

serum samples were measured using Luminex as described in chapter 5. Data are 

representative of three experiments, mean ± SEM, n= 5 mice per group, *P < 

0.05 compared to control group. 
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Fig. 5-10 Serum IL-4 and IL-12 levels in WT and ST2-/- mice. 

 

Serum samples from groups of female WT and ST2-/- BALB/c mice fed with or 

without DSS were harvested on day 20. The IL-4 and IL-12 concentrations in 

serum samples were measured using Luminex as described in chapter 5. Data are 

representative of three experiments, mean ± SEM, n= 5 mice per group, *P < 

0.05 compared to PBS group. 
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Fig. 5-11 IL-10, IFN-γ, CXCL9 and CXCL10 levels in WT and   ST2-/- 

mice. 

 

Serum samples from groups of female WT and ST2-/- BALB/c mice fed with or 

without DSS were harvested on day 20. The IL-10, IFN-γ, CXCL9 and CXCL10 

concentrations were measured using Luminex as described in chapter 5. Data are 

representative of three experiments, mean ± SEM, n= 5 mice per group, *P < 

0.05 compared to control group. 
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5.4 Exogenous IL-33 exacerbates DSS-induced colitis in mice 

5.4.1 Exogenous IL-33 enhances severity of colitis in mice 

 

We next investigate the importance of IL-33 in the pathogenesis of colitis by 

administration of exogenous IL-33 by directly injecting IL-33 recombinant protein 

(rIL-33) into the mice intraperitoneally (i.p.). Groups of mice were given either 

PBS, IL-33, DSS alone or DSS plus IL-33. The developments of clinical parameters 

of colitis were monitored daily up to 20 days (Fig. 5-12). As shown in Fig. 5-13, 

the administration of PBS or IL-33 did not caused diarrhoea in mice from day 10 

compared to controls. As before, administration of DSS caused diarrhoea which 

was significantly enhanced by exogenous IL-33 on day 20 (Fig. 5-13).  Exogenous 

IL-33 and DSS reduced the colon length; however DSS plus IL-33 further 

decreased the colon length as compared to the control groups (Fig. 5-14). The 

histological analysis of colon tissue showed that IL-33 and DSS alone significantly 

and IL-33 plus DSS group markedly enhanced gut inflammation in mice (Fig. 5-15). 

As reported before (Oboki et al., 2010), there was no significant difference in 

body weight changes between DSS alone and DSS plus IL-33 groups (Fig. 5-16). 

Taken together, our results demonstrated that the severity of DSS-induced colitis 

was significantly increased in the presence of IL-33.  
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BALB/c                                                                                   colon 

 mice                                                                                   serum 

 

                day0                                       day12                        day20 

                DSS (3.5%, ad libitum)        withdrawal of DSS                cull 

                IL-33 (1μg, i.p.) 

 

 

 

Fig. 5-12 Experimental strategy used to induce colitis in BALB/c 

mice. 

 

Female BALB/c mice were given or not 3.5% (weight/volume) DSS in their 

drinking water from day 0 for 12 continuous days. Some mice were injected i.p. 

with 1μg IL-33 or PBS daily from day 0 to day 20. The body weight, stool 

consistency and bleeding condition were monitored daily. Serum and colon were 

collected and analysed as described in chapter 2. 
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Fig. 5-13 Diarrhoea score in mice with or without DSS/IL-33  

 

Groups of female mice were given DSS, IL-33 alone or DSS plus IL-33. The stool 

consistency and bleeding condition were scored as follows: 0 (normal, negative 

hemoccult); 1 (soft but still formed, no blood traces in stool); 2 (very soft, blood 

traces in stool visible); 3 (diarrhoea, rectal bleeding) as described in chapter 2. 

Data are representative of three experiments, mean ± SEM, n= 5 mice per group, 

*P < 0.05 compared to PBS alone group. 
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Fig. 5-14 Comparison of the colon length of mice administered PBS, 

DSS, IL-33 alone or DSS plus IL-33. 

 

The colon tissues were collected on day 20 and the length measured as in 

chapter 2. Data are representative of three experiments, mean ± SEM, n= 5 mice 

per group, *P < 0.05. 
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Fig. 5-15 Histological score of DSS, IL-33 and DSS plus IL-33 

induced colitis in mice. 

 

The colon tissues were collected on day 20. The colon sections were stained with 

H&E and scored as described in chapter 2. Data are representative of three 

experiments, mean ± SEM, n= 5 mice per group, *P < 0.05. 
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Fig. 5-16 Body weight changes in mice given DSS, IL-33 and IL-33 

induced colitis. 

 

Female BALB/c mice were given 3.5% (weight/volume) DSS in their drinking 

water from day 0 for 12 continuous days and culled on day 20; IL-33 

(1μg/day/mouse) was injected intraperitoneally. The body weight changes were 

calculated as the percentage of the baseline body weight as on day 0. Data are 

representative of three experiments, mean ± SEM, n= 5 mice per group. 
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5.4.2 Exogenous IL-33 enhances inflammatory cytokine and 

chemokine production in mice  

 

We compared the serum cytokine and chemokine concentrations in mice given 

PBS, IL-33, DSS alone and DSS plus IL-33 by 20-plex Luminex. IL-33 alone induced 

IL-13 (Fig. 5-17), reduced IL-10 and IFN-γ (Fig. 5-18) production, but had no 

significant effect on other 17 cytokines tested. DSS administration induced IL-4, 

IL-13 and other inflammatory cytokines in colon tissue (Fig. 5-3), there was no 

equivalent increase in the concentration in the serum except IL-12 (Fig. 5-17 and 

5-18), suggesting that DSS mainly induces these cytokines locally in the colon. 

However, DSS plus IL-33 induced higher concentrations of Th2 type cytokine IL-4 

and IL-13 (Fig. 5-17), inflammatory cytokines (IL-6 and IL-17, Fig. 5-17) but 

lower levels of IL-10 and IFN-γ (Fig. 5-18) than the control groups (Fig. 5-17 and 

5-18). IL-33 alone also increased the levels of angiogenic cytokine (VEGF), 

chemokines CXCL9 but not CXCL10 in the serum (Fig. 5-19) compared to PBS 

controls. Whereas DSS alone had no significant effect on VEGF and chemokine 

production, DSS plus IL-33 group induced higher levels of VEGF and chemokines 

(CXCL9, CXCL10) in the serum (Fig. 5-19).  

 

Together, these results demonstrated that IL-33 is an important inducer of the 

key pathogenic Th2 type cytokines (IL-4, IL-13), Th17 type cytokines (IL-6, IL-17) 

and angiogenic cytokines (VEGF) and chemokines (CXCL9, CXCL10) in colitis in 

vivo. The results suggest that IL-33 may promote colitis by inducing pro-

inflammatory and angiogenic cytokines and chemokines and reducing Th1 type 

cytokine (IFN-γ) and immune suppressive cytokine (IL-10) expression in DSS-

induced colitis. 
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Fig. 5-17 Serum cytokine IL-4, IL-13, IL-17 and IL-6 levels in mice 

in vivo. 

 

Serum samples from groups of female BALB/c mice receiving PBS, IL-33 alone, 

DSS alone or DSS plus IL-33 were harvested on day 20. The IL-4, IL-13, IL-17 and 

IL-6 concentrations in serum samples were measured using Luminex as described 

in chapter 5. Data are representative of three experiments, mean ± SEM, n= 5 

mice per group, *P < 0.05 compared to PBS alone group. 
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Fig. 5-18 Serum IL-10, IFN-γ and IL-12 levels in mice. 

 

Serum samples from groups of BALB/c mice given PBS, IL-33 alone, DSS alone or 

DSS plus IL-33 were harvested on day 20. The IL-10, IFN-γ and IL-12 

concentrations in serum samples were measured using Luminex as described in 

chapter 5. Data are representative of three experiments, mean ± SEM, n= 5 mice 

per group, *P < 0.05 compared to PBS alone group. 
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Fig. 5-19 The serum levels of VEGF, CXCL9 and CXCL10 in mice. 

 

Serum samples from groups of BALB/c mice given PBS, IL-33 alone, DSS alone or 

DSS plus IL-33 were harvested on day 20. The VEGF, CXCL9 and CXCL10 

concentrations in serum samples were measured using Luminex as described in 

chapter 5. Data are representative of three experiments, mean ± SEM, n= 5 mice 

per group, *P < 0.05 compared to IL-33 alone group. 
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5.5 IL-33 exacerbates colitis via IL-4  

 

IL-4, the prototype type II cytokine, is reported to play an essential role in the 

initiation of DSS-induced colitis. Our results described above demonstrated that 

IL-33 which exacerbates DSS-colitis also induces IL-4 (Fig. 5-17). To further 

assess the importance of IL-4 in the IL-33 exacerbated DSS-induced colitis, we 

investigated the mechanism by which IL-33 exacerbates colitis using IL-4-/- mice. 

The experimental plan is shown in Fig. 5-20.  
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WT and IL-4-/-                                                                    colon 

 mice                                                                               serum 

 

                day 0                                      day 12                day 20 

                DSS (3.5%, ad libitum)      withdrawal of DSS           cull 

                IL-33 (1μg, i.p.) 

       PBS (i.p.) 

 

 

 

Fig. 5-20 Experimental plan used to induce colitis in WT and IL-4-/-

mice. 

 

Female WT and IL-4-/- BALB/c mice were given or not given 3.5% (weight/volume) 

DSS in their drinking water from day 0 for 12 continuous days. Some mice were 

injected i.p. with 1μg IL-33 or PBS daily from day 0 to day 20. The body weight, 

stool consistency and bleeding condition were monitored daily. Serum and colon 

were collected and analysed as described in chapter 2. 
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5.5.1 IL-4 deficiency abolished IL-33-mediated exacerbation of 

DSS colitis 

 

We next directly evaluate the role of IL-4 in IL-33-enhanced DSS colitis using IL-

4-/- mice. WT and IL-4-/- mice were treated with PBS, IL-33, DSS alone, or DSS 

plus IL-33 as above. The clinical parameters, histological changes in colon tissue 

and cytokine/chemokine levels were determined.  

 

Consistent with result in Fig. 5-13, control PBS and IL-33 alone caused no 

diarrhoea and DSS-induced colitis related diarrhoea from day 10 (Fig. 5-13). 

However, the DSS induced diarrhoea was markedly delayed in IL-4-/- mice and 

appeared from day 20 (Fig. 5-21).  More importantly, similar to ST2-/- mice, IL-33 

also failed to exacerbate the clinical change of colitis in the IL-4-/- mice (Fig. 5-

21). 

 

Both IL-33 and DSS alone significantly and DSS plus IL-33 synergistically caused 

the shortness of colon length in WT mice (Fig. 5-14). The synergistic effect of 

DSS and IL-33 in the pathogenic changes in the colon was lost in IL-4-/- mice 

compared to WT controls (Fig. 5-21). 

 

Unlike the WT controls, changes in histological score associated with 

administration of IL-33 were also not apparent in IL-4-/- mice (Fig. 5-21). 

 

Furthermore, IL-4-/- mice also failed to produce IL-13, IL-12, CXCL9 and VEGF in 

the IL-33-treated group, IL-12 and VEGF in the DSS-treated group and IL-5, IL-13, 

IL-12, CXCL9 and VEGF in the DSS plus IL-33-treated group in contrast to 

similarly treated WT mice on day 20. However, the serum IL-10 level remained 

unchanged (Fig. 5-22).  
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Fig. 5-21 Diarrhoea score and colon length in WT and IL-4-/- mice. 

The WT and IL4-/- mice were given 3.5% DSS or normal drinking water. Some 

mice were injected i.p. with 1μg IL-33 or PBS daily for continuous 20 days. The 

stool consistency and bleeding condition of groups of WT and IL4-/- female mice 

was scored as follows: 0 (normal, negative hemoccult); 1 (soft but still formed, 

no blood traces in stool); 2 (very soft, blood traces in stool visible); 3 (diarrhoea, 

rectal bleeding). The colon tissue samples were collected on day 20, the length 

was measured, the colon tissue sections were stained with H&E and scored as 

described in chapter 2. Data are representative of two experiments, mean ± SEM, 

n= 5 mice per group, *P < 0.05 compared to IL-33 group. 
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Fig. 5-22 The levels of IL-5, IL-10, IL-12, IL-13, CXCL9, CXCL10 

and VEGF in serum from WT and IL-4-/- mice. 

 

Serum samples from groups of female WT and IL-4-/- BALB/c mice given or not 

DSS were harvested on day 20. The IL-5, IL-10, IL-12, IL-13, CXCL9, CXCL10 and 

VEFG concentrations in serum samples were measured using Luminex as 

described in chapter 2. Data are representative of two experiments, mean ± SEM, 

n= 5 mice per group, *P < 0.05 compared to IL-33 alone group. 
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5.6 Chapter Discussion 

 

The main findings from the work described in this chapter are: 

i) IL-33 production was induced  in colon of mice with DSS-induced colitis 

ii) DSS-induced colitis is ameliorated in ST2 deficient mice 

iii) IL-33 exacerbated DSS-induced colitis in mice 

iv) The effect of IL-33  colitis exacerbation is IL-4 dependent 

v)  IL-33 also induces angiogenic and inflammatory cytokines in DSS colitis. 

 

Our results showed a pro-inflammatory role for IL-33/ST2 axis played in DSS-

induced colitis. This formed the basis of this manuscript (Pushparaj et al., 2013). 

Briefly we demonstrated that IL-33 is one of the first response genes in acute 

colitis and IL-33 plays a pathological role in colitis. Increasing evidence suggests 

that intestinal epithelial barrier dysfunction and unusual angiogenesis contribute 

to the development of UC, which is also reported to be lymph node independent 

(Podolsky, 2002, Papadakis and Targan, 2000, Sanchez-Munoz et al., 2008, 

Bamias et al., 2012, Dieleman et al., 1994). Our results contribute to these 

concepts and suggest that colon-derived IL-33 may be an important key factor in 

the initial stage of colitis (Pushparaj et al., 2013). 

 

It is reported that IL-33 is expressed in the early stage of colitis (Kobori et al., 

2010, Sedhom et al., 2013). We recently systematically studied the early colon 

gene expression profile of DSS-induced colitis by analysing the publicly available 

microarray datasets deposited in the Gene Expression Omnibus (GEO) using a 

meta analysis method and found that IL-33 is one of the early response genes 

after epithelium damage in DSS-induced colitis (Pushparaj et al., 2013). Given 

the direct effect of IL-33 on a wide range of innate immune cells, it may serve 

as an ‘alarmin’ molecule which is released from damaged cells in response to 

infection or inflammation, and thereby triggers an inflammatory response in the 

intestine (Moussion et al., 2008, Pastorelli et al., 2010, Guabiraba et al., 2014). 

IL-33 is also capable of inducing other important pathogenic cytokines (IL-4, IL5, 
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IL-6, IL-13, IL-17, IFN-γ, TNF-α, VEGF) and chemokines (CXCL9, CXCL10) 

(Guabiraba et al., 2014) while reducing immune suppressive cytokine IL-10 (Fig. 

5-18 and 5-19). 

 

It is well documented that Th2 type cytokines, in particular IL-4, play a 

pathological role in the development of UC (Papadakis and Targan, 2000, 

Stevceva et al., 2001, Sanchez-Munoz et al., 2008). But how type II cytokines are 

induced and are involved in the initial stage of colitis is still largely unknown. 

Our results demonstrated that IL-33 is one of the important IL-4 inducers in 

colitis and that IL-4 plays an essential role in exacerbation of IL-33-mediated 

colitis.  

 

How IL-4 is involved in the early stage of pathogenesis of colitis is poorly 

understood (Papadakis and Targan, 2000, Kmiec, 1998, Iijima et al., 1999, 

Mizoguchi et al., 1999, Akbari et al., 2003). Our results show for the first time 

that IL-4 is required for the amplification of IL-33 in DSS-induced colitis and for 

the induction of VEGF and CXCL9 production. VEGF is a major pro-angiogenesis 

cytokine which plays a crucial role in the development of colitis. It enhances 

colon epithelial permeability and sequenced local migration of inflammatory 

cells (Scaldaferri et al., 2009, Dorward et al., 2007). CXCL9 is an important 

inflammatory chemokine for the recruitment of monocytes and macrophages 

(Tokuyama et al., 2005).  These cytokines and chemokines are intimately 

associated with the pathogenesis of colitis (Kmiec, 1998, Baumgart and Carding, 

2007) and together may provide a possible mechanism underlying the IL-33/IL-4 

pathogenic pathway in colitis. 

 

Th1 and Th17 cytokines including IL-12, IL-17 are also reported to be key 

cytokines in the development of colitis, especially in the chronic stage of DSS-

induced colitis (Obermeier et al., 1999, Papadakis and Targan, 2000, Sanchez-

Munoz et al., 2008). Our results showed that IL-33 increased the level of these 

cytokines in serum at a later stage (20 days after DSS administration) as shown in 
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Fig. 5-13 and 5-14. These suggested that in addition to the involvement in the 

initial stage, IL-33 may also contribute to the chronic stage of colitis. 

 

It is unclear why the changes in severity of colitis caused by administration of 

exogenous IL-33 or ST2 deficiency were not significantly associated with a 

change in body weight in the mice (Fig. 5-16). However, this is consistent with a 

report showing unchanged body weight in WT C57BL/6 and IL-33-/- mice when 

fed with DSS (Oboki et al., 2010). In this report, intriguingly, in contrast to WT 

mice, the IL-33-/- mice had a delayed recovery in body weight after withdrawal 

of DSS, suggesting that IL-33 may have a beneficial effect on the recovery of 

colitis. However, this effect was not observed in ST2-/- mice in our study and the 

reasons are currently unknown. It could be because of the different genetic 

backgrounds of mice and the experimental conditions that have been used. 

Furthermore, since full-length (fl) IL-33 has ST2-independent bioactivity as 

reported previously (Lefrancais and Cayrol, 2012, Luzina et al., 2012), the 

different effect in IL-33-/- and ST2-/- mice may be due to the activity of flIL-33.  

More work is needed to clarify the issue. 

 

The DSS-induced colitis mouse model is well established and widely used for the 

understanding of human ulcerative colitis (UC). It provides several advantages 

over other models of ulcerative colitis, such as the atraumatic method of 

induction, the consistency of colitis disease severity and replication of several 

key pathogenic features of human disease (Strober et al., 2002, Jurjus et al., 

2004, Kawada et al., 2007). However, there are certain limitations of this animal 

model, mainly because the aetiology of human ulcerative colitis is still 

unresolved, the DSS model may only mimic the colitis caused by certain 

environmental factors such as infections and/or exposure to toxic chemicals 

(Rachmilewitz et al., 2002, O'Hara et al., 2012). Furthermore, there is an 

emerging literature showing that the intestinal bacterial flora plays a 

determinant role in human UC and the effects of DSS (Knights et al., 2013, 

Vermeire et al., 2011). However, the gut microbiota in human is likely to be 

different from that in animals (Perse and Cerar, 2012, Yin et al., 2013), which 

makes it’s difficult to draw conclusions generated from animal experiments to 
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human studies in this context. While IL-33 and ST2 genes are expressed in colitis 

patients, the importance of the IL-33 pathway in clinical colitis is still unknown 

(Baumgart and Carding, 2007, Liew et al., 2010, Pastorelli et al., 2013, Liew, 

2012, Lefrancais and Cayrol, 2012). Results from our animal studies suggest that 

IL-33 highlights a novel pathogenic pathway in the development and 

exacerbation of colitis. 
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Chapter 6: General Discussion 

 

The results from this thesis demonstrated that IL-33 played a pathological role in 

two inflammatory diseases which involve the mucosal immune system, at the 

earlier phase of disease development (ulcerative colitis), and at the later phase 

of disease remodelling (pulmonary fibrosis), by inducing respectively IL-4 

(Chapter 5) and IL-13 and TGF-β1 (Chapters 3 and 4).  In this chapter, I will 

discuss: i. the role of IL-33 in tissue fibrosis and in inflammatory bowel disease; 

ii. the function of IL-33 in inflammatory diseases either as a cytokine or as a 

nuclear factor; and iii. the therapeutic potential of targeting IL-33 in disease.       

 

6.1 Is IL-33 a key cytokine in tissue fibrosis? 

 

My results from Chapters 3 and 4 suggest that IL-33 is an important pro-fibrotic 

cytokine in lung fibrosis. Since several cytokines, including IL-13 and TGF-β1, are 

known to contribute to tissue fibrosis (Wynn, 2011) it would be important to 

identify the relative contribution of IL-33 in the pathogenesis of fibrosis 

compared to these other cytokines. Furthermore, it is also important to know 

whether IL-33 is specific for lung fibrosis or if it is involved in other organ 

fibrosis as described in a search of the literature.  

 

6.1.1 Current evidence of IL-33 in fibrosis in different organs in 

animal models and in humans 

 

Growing evidence suggests that IL-33 is closely associated with fibrotic diseases 

and tissue remodelling across a variety of organs, including respiratory, 

alimentary, skin and cardiovascular systems. However, the functions of IL-33 in 

organ fibrosis can vary depending on the specific organ and the stage of disease, 

where IL-33 may have either pro-fibrotic or anti-fibrotic activity (Sattler et al., 

2013, Pei et al., 2014) depending on specific context. 
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In the digestive systems, IL-33 is considered as a pro-fibrotic cytokine. In the 

liver, its expression in hepatic stellate cells and concentration in serum were 

both increased in patients with hepatic fibrosis (Marvie et al., 2010, Cacopardo 

et al., 2012) suggesting that IL-33 has a pro-fibrotic role in liver fibrosis. In 

recent mechanistic studies, it was reported that hepatic expression of IL-33 was 

both necessary and sufficient for severe hepatic fibrosis in mice using the carbon 

tetrachloride (CCL4)-induced liver fibrosis model (McHedlidze et al., 2013). IL-33 

is also involved in pancreatic fibrosis via regulating proliferation of human 

pancreatic stellate cells (Masamune et al., 2010).  

 

The IL-33/ST2 nexus could also contribute to systemic sclerosis (SSc). SSc is a 

multisystem autoimmune disease which is characterized by abnormal growth of 

connective tissue. IL-33 serum levels were increased in SSc patients and 

correlated with the extent of skin sclerosis and with the severity of pulmonary 

fibrosis determined by high-resolution computed tomography. Therefore, IL-33 

possibly plays a pro-fibrotic role in cutaneous and pulmonary fibrosis in SSc 

patients (Yanaba et al., 2011).  In animal models of SSc, administration of IL-33 

by subcutaneous (s.c.) injection resulted in ST2-dependent accumulation of 

eosinophils and mononuclear cells, and the development of cutaneous fibrosis. 

In parallel, the IL-33 also resulted in a significant increase in the number of 

extracellular matrix-associated genes, including collagen III, collagen IV, and 

tissue inhibitor of metalloproteases (TIMP)-1 indicating the pro-fibrotic role of 

IL-33 in skin fibrosis (Rankin et al., 2010).  

 

In patients with other fibrotic conditions e.g. uterine fibroids and endometriosis, 

serum IL-33 concentrations were higher than normal suggesting that IL-33 may 

also be related to these disorders (Santulli et al., 2012, Santulli et al., 2013).  

 

IL-33 is reported to be involved in the pathology of remodelling in several 

clinical and experimental respiratory diseases. Patients with cystic fibrosis 
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(Roussel et al., 2013), and with idiopathic pulmonary fibrosis (Luzina et al., 2013) 

had increased expression of IL-33 in their upper airway epithelium. Activating 

the IL-33/ST2 pathway by stimulating with pro-inflammatory and Th2-type 

cytokines enhanced lung fibrosis and remodelling in bleomycin-induced lung 

fibrosis mouse model by increasing the Th2 response and the TGF-β1 levels, 

resulting in increased deposition of extracellular matrix (ECM) proteins (Tajima 

et al., 2007). Furthermore, recombinant adenovirus-mediated il33 gene delivery 

exacerbated bleomycin-induced lung fibrosis (Luzina et al., 2013). In human lung 

tissue, IL-33 expression was enhanced in patients with idiopathic pulmonary 

fibrosis and in scleroderma lung disease (Luzina et al., 2013). Most of the 

observed IL-33 expression was intracellular and intranuclear, suggesting 

involvement of the full-length (fl) protein. In the current thesis we described the 

potential role for the mature cytokines form of IL-33 and I will discuss the 

functions of flIL-33 in detail in section 6.3. Together, these observations 

suggested that IL-33 is a pro-fibrotic factor in lung fibrosis. 

 

In contrast to the previous reports that show a pro-fibrotic role for IL-33 in the 

lung and skin, the IL-33/ST2 system may protect against fibrosis in the 

cardiovascular system. IL-33 and ST2 was considered to be beneficial in cardiac 

hypertrophy. This was first observed by Sanada et al. in 2007 using a heart 

failure model of transverse aortic constriction (TAC)-induced cardiac 

hypertrophy in mice. They found that recombinant IL-33 treatment reduced 

hypertrophy and fibrosis and improved survival after TAC (Sanada et al., 2007). 

In high fat diet (HFD)-induced hypertrophy and fibrosis models, IL-33 also 

showed protective effects (Willems et al., 2012, Martinez-Martinez et al., 2013). 

The exact mechanisms by which IL-33 had a protective role are still largely 

unknown.  

 

In patients with acute myocardial infarctions, the serum concentrations of 

soluble ST2 (sST2) were higher than normal, which suggests that sST2 could be a 

potential biomarker to predict future heart failure (Januzzi, 2013). However, 

the mechanism of increased production of sST2 in this context is still largely 

unclear; but its potential function is to bind IL-33 and prevent its subsequent 
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activity. Recently, in vitro experiments showed that primary cultured vascular 

smooth muscle cells (VSMCs) stimulated with sST2 demonstrated an increase in 

collagen type I and fibronectin production. This study suggested a pathogenic 

role for sST2 in vascular remodelling associated with vascular hypertrophy and 

fibrosis potentially by blocking a putative protective effect of IL-33 in 

cardiovascular systems (Martinez-Martinez et al., 2013).  

 

This potential for IL-33 to modulate fibrosis in different tissues suggests that this 

diversity will be useful to improve our understanding of the function of IL-33 in 

future studies comparing and contrasting mechanisms. However, this may 

provide a potential barrier to therapy if targeting IL-33 to improve fibrosis in one 

tissue increases the risk in another. 

 

6.1.2 Does IL-33 mediate fibrosis in different organs via the same 

mechanism? 

 

While accumulated evidence suggests that IL-33 is critically involved in the 

fibrotic process, the detailed mechanisms underlying this effect are still not 

fully studied. Current evidence suggests that IL-33 may be associated with the 

fibrotic process via different mechanisms in different organs. 

 

In the case of liver fibrosis, IL-33 exacerbates CCL4-induced liver fibrosis and this 

is related to the activation and expansion of liver resident innate lymphoid cells 

(ILC2). ILC2-derived IL-13 then signals through the type-II IL-4 receptor to induce 

the transcription factor STAT6 and hepatic stellate-cell activation. Thus IL-13 is 

a critical downstream cytokine of IL-33-dependent pathologic tissue remodelling 

and fibrosis (McHedlidze et al., 2013).  

 

In skin fibrosis, IL-33 mediates fibrogenesis through its ability to recruit 

eosinophils and enhance Th2 cytokine (IL-13) production. In this model the IL-33-
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mediated fibrosis is attenuated in IL-13 knockout and eosinophil-deficient 

(ΔdblGATA) mice, suggesting again that in this case eosinophil-derived IL-13 

rather than ILC2 cells may promote IL-33-induced cutaneous fibrosis (Rankin et 

al., 2010). 

 

For BLM-induced lung fibrosis in our study, the mature cytokine form of IL-33 

exacerbated fibrosis by attracting and activating ILC2s which then produced IL-

13, and also polarized M2 macrophages which in turn produced IL-13 and TGF-β1 

which contributed to fibrosis. However, in the model of virus-delivered full-

length (fl) IL-33 reported by Luzina et al, the mechanism underlying flIL-33 

enhanced lung fibrosis is unclear. Intriguingly, it was shown that the effect of 

flIL-33 was independent of ST2, but instead was associated with increased 

production of heat shock protein (HSP70) which may contribute to the fibrosis 

(Luzina et al., 2013). These findings suggest that both mature and flIL-33 are 

pro-fibrotic factors. They appear to drive lung fibrosis via distinct mechanisms, 

and a more complete understanding of these potentially parallel pathways will 

be informative of the fibrotic process.  

 

In cardiovascular diseases, IL-33/ST2 signals may have a beneficial role by 

antagonizing angiotensin II in phenylephrine-induced cardiomyocyte hypertrophy. 

NF-κB activity plays a critical role in inflammation and cardiomyocyte 

hypertrophy and it was suggested that the protective function of IL-33 may be 

the inhibiting of angiotensin II and phenylephrine-induced phosphorylation of 

IκBα, an inhibitor of NF-κBα, thereby reducing NF-κB nuclear binding activity. 

Furthermore, sST2 was shown to block the anti-hypertrophic effects of IL-33, 

indicating that sST2 functions in the myocardium as a soluble decoy receptor for 

IL-33, blocking its protective activity (Sanada et al., 2007, Martinez-Martinez et 

al., 2013).  
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6.1.3 The importance of IL-33 compared to other cytokines in 

fibrosis  

 

Many fibrotic disorders result from chronic infection and/or inflammation. In 

sterile inflammation, as discussed in chapter 1, damage-induced cell necrosis 

results in the release of cytokine IL-33 and other mediators e.g. HMGB1 which 

give a danger signal for triggering sterile inflammation. It has been shown that in 

both infection and sterile inflammation, IL-33 can be induced, released and is 

sufficient to trigger an inflammatory response (Fig. 1-2) (Lukens et al., 2012, 

Sattler et al., 2013). The ability of IL-33 to prolong acute inflammation into 

chronic inflammation, and finally to the activation of myofibroblasts 

demonstrates its importance in the temporal profile of inflammation (Meneghin 

and Hogaboam, 2007, Wynn and Ramalingam, 2012).  

 

My results show that while it exacerbated bleomycin-induced lung fibrosis, one 

administration of exogenous IL-33 itself was not sufficient to induce pulmonary 

fibrosis by day 14 (Fig. 3-18 and 3-19). By collaborating with Professor Zhang in 

Beijing China, we further investigated the importance of IL-33 on its own in 

fibrosis. We found that il33 transgenic (Tg) mice constitutively express low level 

of mIL-33 (about 80 pg/ml in serum) and spontaneously developed interstitial 

pulmonary fibrosis by age of 6 months (unpublished results). Thus, mIL-33 at this 

concentration is sufficient to induce fibrosis and is potentially a key profibrotic 

factor.  

 

It is widely accepted that profibrogenic cytokines TGF-β1 and IL-13 are 

necessary for the development of tissue fibrosis. However, how these cytokines 

are induced in BLM-induced fibrosis is unresolved. We demonstrated in section 

4.5 that IL-33 signalling via ST2 is essential for the optimal induction of both IL-

13 and TGF-β1 expression in BLM-induced lung fibrosis, but in different cells and 

with different kinetics. IL-33 induces the early production of IL-13 by ILC2 (day 1 

to day 3), and the production of TGF-β1 by macrophages (day 5 onwards) during 
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the fibrosis process. These findings suggest that mIL-33 is a novel TGF-β1 inducer, 

which may further explain its fibrogenic role in tissue fibrosis (Fig. 4-15).  

 

Fibroblasts express receptors for IL-13 and TGF-β1, and both cytokines have 

been shown to stimulate fibroblast proliferation and collagen production (Wynn, 

2008, Shepherd, 2006). Interestingly, fibroblasts also express ST2 and synthesise 

and secrete IL-33 (Yanagisawa et al., 1993, Yagami et al., 2010). However, 

whether the IL-33/ST2 pathway plays a direct role in fibroblast function in vitro 

and in vivo is as yet unexplored. To address this issue, I generated primary 

fibroblasts from explant murine lung tissue and stimulated the cells with IL-33, 

but did not observe any significant effect of IL-33 on either their proliferation, 

collagen or cytokine production in vitro (data not shown). However, I did 

observe enhanced proliferation and increased IL-33 production of lung 

fibroblasts cultured from explanted lung tissue after bleomycin instillation (data 

not shown). Whether IL-33 is able to directly activate fibroblasts in vivo, perhaps 

together with other factors, needs be confirmed in future studies. 

 

6.1.4 IL-33 in tissue fibrosis: conclusions and perspectives 

 

Current evidence suggests that IL-33 is an important factor in the pathogenesis 

of several fibrotic diseases, and measurement of either IL-33 or sST2 may 

emerge as a useful biomarker for the diagnosis or prognosis of fibrotic diseases.  

 

In addition, the IL-33/ST2 pathway may be a therapeutic target for a range of 

fibrotic disorders. Blockade of the IL-33/ST2 pathway by exogenous sST2 may 

have beneficial effects against progressive liver, pancreas, skin and lung fibrosis.  

 

Compared to animal studies, the role of the IL-33 system in human fibrotic 

disease and its mechanism are less well understood. Therefore, more detailed 
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translational research is recommended to confirm the potential profibrotic 

effect of IL-33 in human disease. 
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6.2 The controversial role of IL-33 in inflammatory bowel disease  

 

The aetiology of inflammatory bowel disease (IBD), such as Crohn’s disease (CD) 

and ulcerative colitis (UC), is unclear. Recent evidence suggests that the IL-33 

system may have beneficial or detrimental roles in these disorders (Sponheim et 

al., 2010, Palmer and Gabay, 2011, Grobeta et al., 2012). The apparently 

contradictory protective or pro-inflammatory roles of IL-33 in these intestinal 

disorders suggest that IL-33 may be pivotal in the development and treatment of 

chronic intestinal diseases. Therefore, understanding the basis of the different 

functions of IL-33 will be clinically important. 

 

6.2.1 The role of IL-33 in colitis in patients and in animal models  

 

The literature provides inconsistent evidence for the role of IL-33 in colitis. 

Growing evidence suggests that the gene expression of IL-33 and its receptor ST2 

are both up-regulated in endoscopic biopsy tissue from IBD patients. In 2010, 

four research groups independently reported that the expression of IL-33 is up-

regulated in active gut tissue lesions from patients with IBD (Beltran et al., 2010, 

Kobori et al., 2010, Pastorelli et al., 2010, Seidelin et al., 2010), and this 

expression was reduced after anti-inflammatory, including anti-TNF, treatment 

(Pastorelli et al., 2010). Furthermore, the expression of IL-33 and ST2 was up-

regulated in mucosal colonic biopsies from patients with Crohn's disease (CD) 

and ulcerative colitis (UC) (Latiano et al., 2013), and the serum concentration of 

sST2 was also increased in these patients  (Beltran et al., 2010, Pastorelli et al., 

2010).  

 

This evidence suggests that IL-33 has a pathogenic role in IBD, and this is 

supported in several animal colitis models (Garcia-Miguel et al., 2013). In our 

study, using the DSS-induced colitis model in susceptible BALB/c mice, we found 

that IL-33 can exacerbate experimental UC (Fig. 5-13). The importance of IL-33 

in colitis in our study is supported by clinical findings that IL-33 is one of the 

early response genes found to be up-regulated in gut tissue at the onset of colitis 
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(Beltran et al., 2010), where its function was suggested to be as an epithelial 

‘alarmin’, similar to HMGB1 and IL-1, and to promote an innate immune 

response to a range of toxic and infectious agents as discussed in section 5.6. 

While it is recognised that the type II cytokines, IL-4, IL-5 and IL-13 play a 

pathogenic role in the development of UC (Fuss et al., 1996, Mizoguchi et al., 

1999, Stevceva et al., 2001), until now it was unknown how these typical Th2 

cytokines were induced in colitis, and whether these cytokines contributed to 

the IL-33-mediated effects. Our mechanistic studies suggest that IL-33 can 

induce type II cytokines, especially IL-4, in order to exacerbate DSS-induced 

ulcerative colitis. Our results using IL-4 gene deficient mice show for the first 

time that IL-4 is required for IL-33-mediated exacerbation of colitis, and for the 

subsequent production of cytokines VEGF, CXCL9 and CXLC10 (Fig 5-21 and 5-22). 

VEGF is a major pro-angiogenic cytokine and plays an important role in the 

pathogenesis of colitis by enhancing colonic permeability and facilitating 

migration of inflammatory cells (Scaldaferri et al., 2009). CXCL9 and CXCL10 are 

the key chemokines for the recruitment of monocytes and macrophages, and 

these cells are intimately associated with the pathogenesis of colitis (Tokuyama 

et al., 2005, Thomas and Baumgart, 2012).  

 

A pathogenic role for IL-33/ST2 in IBD has also been identified by other research 

groups. Using senescence-prone (SAM) P1/YitFc mice that develop a mixed 

Th1/Th2 model of IBD, it was shown that IL-33 expression is upregulated in full-

thickness ilea that correlated with the disease severity, and that the absence of 

a functional IL-33/ST2 pathway, as shown in St2-/- mice, reduced disease 

severity (Pastorelli et al., 2010, Pizarro et al., 2011, Sedhom et al., 2013). There 

are reports showing that IL-33 promoted early-stage disease development of IBD 

(Imaeda et al., 2011, Grobeta et al., 2012). This finding was validated by 

demonstrating reduced DSS-induced colitis in IL-33 knockout mice (Oboki et al., 

2010). 

 

To further support the hypothesis that IL-33/ST2 has a pathogenic role in human 

IBD, it was reported recently that common IL-33 and ST2 polymorphisms 
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contributed to the risk of IBD in an Italian cohort of patients (Latiano et al., 

2013).  

 

On the other hand, different studies suggest that IL-33 could have a protective 

role in IBD (Grobeta et al., 2012, Sedhom et al., 2013). For example, IL-33 

treatment increased epithelial barrier permeability in vivo, whereas in mice 

genetically deficient for ST2 the wound healing response following acute 

mechanical injury in the colon was enhanced (Sedhom et al., 2013). In the 

established chronic stage of DSS-colitis, the administration of exogenous IL-33 

attenuated the pathogenesis of disease as assessed by colon length and body 

weight loss (Grobeta et al., 2012). Using the same DSS-colitis model, Oboki et al 

also found that while IL-33 attenuated the development of acute colitis, IL-33 

deficient mice of a C57BL/6 background had a delayed return to normal body 

weight in the recovery stage compared to wild type mice, suggesting that IL-33 

may also be involved in the recovery phase after tissue damage (Oboki et al., 

2010). Furthermore, recent evidence suggests that injection of IL-33 may have a 

beneficial effect on trinitrobenzene sulfonic acid (TNBS)–induced colitis, a model 

of Crohn's disease (CD) in mice, suggesting that IL-33 may play a complex role in 

different types of IBD and at different times throughout the duration of disease 

(Duan et al., 2012).      

  

6.2.2 What is the reason for the inconsistent findings describing 

the effects of IL-33 in colitis?  

 

While the reason behind the inconsistencies in the findings that show that IL-33 

seems to have both pathogenic and protective functions is still unknown, this 

may be due to several reasons; the different isoforms of IL-33, the differences in 

disease models, the genetic background of the mice, colonies of microorganisms 

and the experimental conditions (Knights et al., 2013).  
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A) The controversial effect of IL-33 in different disease models of IBD may be 

due to the difference in immune-pathogenic mechanisms. 

Current evidence suggests that IL-33 primarily elicits a type II immune response, 

by enhancing IL-4, IL-13, and IgE production, and eosinophil and mast cell 

activities. IL-33 does so by directly activating a wide range of innate immune 

cells, including mast cells, eosinophils, macrophages and NK/NKT cells via their 

cell membrane ST2. IL-33 could also promote Th2-type adaptive immune 

responses by directly activating Th2 lymphocytes, but not Th1 or Th17 cells 

because they do not express ST2 (Xu et al., 1998). The IL-33/ST2 pathway 

therefore has a dominant role in stimulating type II immune responses, including 

their functional physiological consequences in allergy, asthma and tissue repair. 

Since Th2 cytokines are able to counter-regulate the Th1 response, these Th2 

cytokines are considered important in the control of Th1-mediated inflammatory 

diseases (Pastorelli et al., 2011). In human and animal models, CD is generally 

considered to be mainly a Th1-associated disease, whereas UC is considered to 

be Th2-mediated. The evidence for this was indicated by purified lamina propria 

lymphocytes from IBD patients expressing increased level of IFN-γ not IL-4 from 

patients with CD, and high level of IL-4 and IL-13 but low level of IFN-γ from UC 

patients (Fuss et al., 1996, Fuss et al., 2004). These findings may help to explain 

the different role of IL-33 in Th2 (DSS-induced) and Th1 (TNBS-induced) 

mediated colitis. In the models considered to be Th1 dominated, the IL-33 has a 

protective role based on its ability to induce Th2 cytokines and thereby reduce 

Th1 cytokines; whereas in the Th2 dominated model, IL-33 may have an opposite 

role by increasing Th2 responses thereby decreasing the Th1 response (Grobeta 

et al., 2012, Pastorelli et al., 2013).  

 

B) The different roles of IL-33 in the acute and recovery stages of IBD.  

The studies using the colitis models in mice suggest that IL-33 may be involved in 

the recovery from gut damage after withdrawal of DSS (Oboki et al., 2010).  

While the mechanism is poorly understood, it is known that the IL-33 and Th2 

response is critically involved in tissue repair and remodelling by promoting 

fibroblasts and epithelial cell proliferation and collagen production (Moussion et 

al., 2008). These authors reported that IL-33 plays a pathogenic role in intestinal 
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fibroblast function in senescence-accelerated SAMP1/Fc mice treated with anti-

ST2 blocking antibodies, with decreased collagen deposition within the intestinal 

wall, together with a reduced production of pro-fibrotic molecules, such as TGF-

β1, connective tissue growth factor (CTGF), collagen-1, insulin growth factor 

(IGF)-1, and matrix metalloproteinase (MMP)-9 (Mattioli et al., 2011). These 

findings suggest that IL-33 plays a protective role in the recovery phase of IBD. 

We also demonstrated that IL-33 is a powerful factor in fibroblast functions such 

as collagen production in lung fibrosis (Chapters 3 and 4). Thus, it is likely that 

IL-33-mediated type II responses may contribute to the recovery and tissue 

repair of IBD. 

 

6.2.3 Conclusion and perspectives about IL-33 function in 

inflammatory bowel disease 

 

Inflammatory bowel disease (IBD) is a complicated condition with several clinical 

phenotypes and unknown aetiology. Animal studies have enhanced our 

understanding of some of the immune mechanisms of experimental IBD and 

suggest a role for IL-33 and ST2.  While the clinical relevance of the IL-33/ST2 

system in IBD is largely unknown, current evidence suggests that the IL-33/ST2 

system functions differently in the UC and CD syndromes of IBD, and may 

represent an important factor for the development and exacerbation specifically 

of UC. Furthermore, IL-33 signalling may play a different role in CD and chronic 

UC and may not only be involved in the pathogenesis of IBD but may also 

contribute to the recovery of IBD. Therefore, more work is needed to understand 

the precise mechanism of IL-33 in IBD. Because it potentially has dual roles in 

homeostasis and pathogenesis, therapeutic targeting of the IL-33 pathway must 

be considered with caution especially with patients with cardiovascular risk 

factors. 
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6.3 Cytokine IL-33 compared with nuclear IL-33: how important is 

nuclear IL-33 for inflammatory disease?  

 

The Il33 gene was first identified in canine vasospastic cerebral artery cells and 

described as Dvs 27 which encoded a then unknown nuclear protein (Onda et al., 

1999). This protein was subsequently described as a nuclear factor in high 

endothelial venules and was named NF-HEV (Baekkevold et al., 2003). A smaller 

molecular isoform of the nuclear IL-33 was later identified as a member of the 

IL-1 cytokine family and named mature IL-33 (Schmitz et al., 2005, Liew et al., 

2010). Current evidence shows that the function of nuclear IL-33 may differ from 

mature cytokine IL-33 which was considered as a Th2-like cytokine (Martin, 

2013). Therefore, IL-33 may possess dual functions as a gene regulator in the 

nucleus and/or as a cytokine after release.  

 

6.3.1 What do we know about the function of nuclear IL-33? 

 

The function of full-length, nuclear (fl)IL-33 is unresolved. After expression, the 

flIL-33 is translocated immediately into the cell nucleus via the N-terminal of IL-

33 which contains a chromatin-binding domain and a nuclear transfer domain. 

Thus, the flIL-33 is mainly found in the nucleus; mainly in barrier tissue cells 

including epithelial cells, endothelial cells, fibroblasts and smooth muscle cells. 

Current reports suggest that flIL-33 is released predominantly when cells sense 

infection, inflammation, stress or undergo necrosis (Kakkar et al., 2012, Martin, 

2013). This suggests that nuclear IL-33 could be considered as a stored stress or 

damage ‘alarmin’, with a similar function to IL-1α and HMGB1 that initiate 

inflammatory responses when released. 

 

Recent findings suggest that flIL-33 may not only be stored in the cell nucleus 

but may also be actively involved in gene regulation. It is reported that the N-

terminal chromatin-binding domain of flIL-33 facilitates nuclear translocation of 

flIL-33 and the binding to histone H2A-H2B dimer at the surface of the 

nucleosome and affects chromatin compaction (Carriere et al., 2007, Roussel et 



227 
 
al., 2008). Unlike cytokine IL-33, the mature form of IL33, which can activate 

NF-κB via its receptor ST2 and MyD88, flIL-33 might down-regulate NF-κB 

pathway. It is reported that flIL-33 could bind to NF-κB by the interaction 

between the N-terminus (aa 66-109) of murine IL-33 and N-terminal Rel 

homology domain of NF-κB p65. This complex reduced NF-κB bioactivity by 

interfering with NF-κB DNA binding and p65-mediated trans-activation (Ali et al., 

2011). Furthermore, over-expression of flIL-33 decreases the IL-1β-stimulated 

expression of endogenous NF-κB target genes such as IκBα, TNF-α, and C-REL, 

suggesting that nuclear flIL-33 may serve as a gene repressor to sequester the 

pro-inflammatory response (Ali et al., 2011). 

 

However, it is also reported that nuclear flIL-33 can also upregulate the 

expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell 

adhesion molecule (VCAM-1) in TNF-α activated human umbilical vein 

endothelial cells (HUVECs) (Choi et al., 2012). The author further demonstrated 

that the mechanism by which flIL-33 enhances adhesion molecule expression was 

through binding to the p65 promoter (Choi et al., 2012). Thus, nuclear flIL-33 

may also serve as a transcriptional activator in gene expression. However, the 

precise conditions for the different effects of flIL-33 on gene regulation 

particularly in fibrotic disease are still unknown. 

 

In summary, flIL-33 could serve as a nuclear factor with transcriptional 

regulatory properties. It could decrease the IL-1β-stimulated responses via 

binding to NF-κB and increase TNF-α via binding to NF-κB p65 promoter. 

 

6.3.2 Does nuclear flIL-33 play a role in inflammatory diseases?  

 

Whereas in vitro evidence suggests that nuclear flIL-33 may play both repressor 

and activator roles in gene regulation, its role in inflammatory diseases in vivo is 

still largely unknown. It is reported that flIL-33 and mIL-33 delivered into the 

lung by intratracheal instillation in an adenovirus vector resulted in different 
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effects in mice (Luzina et al., 2012). Both isoforms caused pulmonary infiltration 

of lymphocytes and neutrophils, whereas the mIL-33 form also caused pulmonary 

eosinophilia and goblet cell hyperplasia and increased the expression of IL-4, IL-

5 and IL-13. Furthermore, the mIL-33-induced Th2-associated effects did not 

occur in ST2 deficient mice, but this did not affect the flIL-33-mediated 

response. Thus, this report provided the first in vivo evidence that flIL-33 is 

functionally active in an ST2-independent manner, and its effects partially differ 

from those of mature IL-33 (Luzina et al., 2012). Recently by using the same 

approach, this group also showed that over-expression of flIL-33 using an 

adenovirus vector exacerbated bleomycin-induced lung injury in mice, 

associated with increased pulmonary lymphocyte infiltration, collagen 

accumulation and lung fibrosis independent of ST2 (Luzina et al., 2013). These 

results indicate that flIL-33 which is located in the nucleus may be functional in 

this disease. However, these results were generated by using a complicated virus 

flIL-33 gene-delivery system. Therefore more definitive and physiological 

systems are needed to define the role of flIL-33 in vivo.  

 

More recently, the function and importance of nuclear IL-33 was further studied 

in vivo using a mature IL-33 knock-in mouse model (Bessa et al., 2014). This 

strain of mice was generated by replacing the nuclear domain of flIL-33 with a 

dsRed fluorescent protein (Bessa et al., 2014). The mice therefore lacked the 

nuclear domain of flIL-33 and produced higher concentration of mature IL-33 in 

circulation. Importantly, these mice developed severe multi-organ inflammation 

in an ST2-dependent manner and died within 3 month of birth. This new finding 

suggests that the nuclear domain of IL-33 is important at least for the safe 

storage of IL-33 within the nucleus. However, whether this is the main function 

of nuclear IL-33 and whether it has further regulatory functions in gene 

regulation in vivo as suggested by the results in vitro is still unclear.  
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6.3.3 Nuclear IL-33: conclusion and perspectives 

 

Although the flIL-33 isoform is located in the cell nucleus, the studies of IL-33 

function are mainly focused on its role as a cytokine using the mature (m)IL-33 

isoform (Klemenz et al., 1989, Tominaga, 1989, Schmitz et al., 2005). I believe 

this is mainly because the identification of the nuclear function of IL-33 is much 

more difficult to study because currently there is no definitive method available 

to identify nuclear IL-33 function in vivo. Therefore, it is important to establish 

a study system. I would suggest, for example, generating flIL-33 transgenic/ST2 

deficient mice which would eliminate the potential confounding involvement of 

cytokine mIL-33. With this system, the physiological and pathological role of 

nuclear flIL-33 in different conditions could be studied in more detail.   
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6.4 Is the IL-33/ST2 system a likely therapeutic target in disease?  

6.4.1 Targeting cytokines in inflammatory disease  

 

Inflammatory diseases, in particular the chronic diseases, are still a serious 

health problem with major unmet clinical needs. The traditional treatment 

strategy for many inflammatory diseases was mainly based on the use of non-

specific anti-inflammatory or cytotoxic drugs for example corticosteroids or 

methotrexate. With better understanding of disease immune-pathogenesis, it is 

clear that inflammatory diseases are largely controlled by complex 

communication networks of cytokines and these cytokines may represent novel 

therapeutic targets. While cytokines function within a network, the 

identification of key cytokines and their specific signalling pathways in disease 

may lead to successful therapy.  Clinical evidence demonstrated that cytokines 

play a critical role in health and disease, and cytokines may therefore be key 

therapeutic agents or targets in many inflammatory, infectious disorders and 

cancer (Yoshimoto and Yoshimoto, 2014). 

 

Developing these ‘biological’ reagents against chronic inflammatory diseases is 

an important goal for clinical treatment by pharmaceutical companies. The first 

successful therapy targeting a specific cytokine is anti-TNF therapy. It has 

become the most valuable drug class with global sales of around 27 billion US 

dollars in 2013 since its first clinical trial in 1992. TNF inhibition is approved for 

the treatment of a variety of inflammatory diseases including rheumatoid 

arthritis (RA), juvenile RA, psoriasis, psoriatic arthritis, CD, UC, and ankylosing 

spondylitis (Nanchahal et al., 2014). Besides the pro-inflammation property, TNF 

also has pro-fibrotic properties thus TNF blockade might apply to fibrotic 

disorders in the future (Harari and Caminati, 2010). 

 

IL-6 is another important pro-inflammatory cytokine, and neutralization using 

anti-IL-6 antibody and anti-IL-6R antibody represents an excellent target for 

therapy in inflammatory diseases. It has been approved in some countries for the 
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treatment of RA; but some studies that used IL-6 inhibitor showed limited 

efficacy in other chronic diseases such as juvenile idiopathic arthritis (Jones et 

al., 2011, Schett et al., 2013). The drugs used for targeting other cytokines in 

inflammatory diseases, including IL-1, IL-12, IL-17A and IL-23 are also in clinical 

trials or in production pipelines with encouraging results. Inhibition of IL-1 was 

initially considered as a treatment for RA, CD and psoriasis and it also has 

positive effect on some genetic syndromes for example gout (Neogi, 2011, 

Dinarello and van der Meer, 2013). IL-12 and IL-23 combined, or IL-17A inhibition 

might be beneficial for RA and psoriasis, but it could worsen symptoms of CD 

(Nickoloff, 2007, Sandborn et al., 2012, Baeten et al., 2013, McInnes et al., 

2013).  

 

6.4.2 The beneficial vs. detrimental effects of IL-33 in immunity 

and in disease  

 

Mature IL-33 is a pleiotropic cytokine in immunity and disease. Therefore it can 

induce either beneficial or detrimental effects depending on disease conditions, 

dose/time and in vivo cytokine milieu.  

 

Allergic diseases: since the main properties of IL-33 appear to be related to the 

induction of Th2 immune responses, then IL-33 may be an important therapeutic 

target in these Th2-mediated diseases; including tissue fibrosis, allergy and 

asthma.  

 

Asthma is an increasingly common disease worldwide, with complex phenotypes 

and unresolved aetiology. Severe asthma is of considerable clinical and economic 

importance because of its high morbidity, in part due to a poor therapeutic 

response to current treatments. Recent findings suggest that IL-33 is one of the 

earliest cytokines released by airway epithelial cells after contact with allergen 

or with bacterial products e.g. LPS (Smith, 2010, Liew, 2012). Research results 

from the author’s laboratory have shown that IL-33 instillation into the airways 
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of mice is sufficient to induce airway inflammation, IgE production and bronchial 

hyper-reactivity (BHR) (Kurowska-Stolarska et al., 2009). This is due to IL-33 

which can directly activate an array of key innate cells in asthma pathogenesis, 

including basophils, neutrophils, macrophages, dendritic cells, mast cells and 

Th2 cells (Kurowska-Stolarska et al., 2011). 

 

The clinical relevance of the IL-33/ST2 system in human asthma remains 

unresolved. Recent reports demonstrated that IL33 and ST2 (IL1RL1) single 

nucleotide polymorphisms (SNPs) were major factors associated with both atopic 

(IgE antibody and eosinophilia) and non-atopic asthma (Reijmerink et al., 2008, 

Gudbjartsson et al., 2009). Thus, the IL-33/ST2 system is associated with clinical 

asthma and may be a determining factor for asthma susceptibility. Therefore, 

the IL-33/ST2 system should be a key therapeutic target in allergy/asthma. 

 

Inflammatory disease: current evidence has demonstrated that IL-33 expression 

is closely associated with the development of several inflammatory autoimmune 

diseases, including IBD, systemic lupus erythematosus, multiple 

neurodegenerative diseases and rheumatoid arthritis (RA) (Martin, 2013, 

Pastorelli et al., 2013).  

 

RA is a common condition of unknown aetiology characterised by chronic 

inflammatory cell infiltration into the synovium, leading to cartilage and bone 

destruction. The pro-inflammatory cytokine milieu in synovial fluid, including 

TNF-α, IL-6 and IL-1 family members, is thought to play an arthritogenic role in 

RA. Dr. Xu’s lab has demonstrated that, while IL-33 mainly induces a type II 

response in allergy and asthma, IL-33 also contributes to the pathology of 

inflammatory joint diseases. IL-33 and its receptor ST2 are expressed in the RA 

synovial membrane and the dominant synovial source of IL-33 was the fibroblast 

(Xu et al., 2008). Moreover, administration of IL-33 promoted the development 

of inflammatory arthritis and bone erosion in DBA/1 mice, whereas ST2 

deficiency or soluble ST2 (sST2) suppressed disease (Schmitz et al., 2005, Gadina 

and Jefferies, 2007, Carriere et al., 2007).  The arthritogenic effect of IL-33 is 
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mainly due to its role in the activation of mast cells in the joints. These data 

strongly implicate IL-33 as an important mesenchymal derived cytokine that 

could drive pathogenic immune responses in the synovium. 

 

Cardiovascular diseases: consistent evidence suggests that higher than normal 

serum sST2 concentrations are closely associated with patients with heart failure 

or myocardial infarction. Thus sST2 is a potential biomarker for adverse 

cardiovascular disorders (Januzzi, 2013). Accumulating evidence also 

demonstrates that the IL-33/ST2 pathway is cardio-protective in mouse models 

of myocardial infarction, heart transplantation and cardiac hypertrophy and 

fibrosis. Furthermore, treatment with IL-33 reduced the development of plaques 

in atherosclerotic mice (Miller et al., 2008, Liew et al., 2010, Miller and Liew, 

2011). Therefore, administration but not blockage of IL-33 may be beneficial for 

cardiovascular disorders. 

 

Infectious diseases: like most other pro-inflammatory cytokines, IL-33 is also 

involved in host defence against some pathogenic infections (Sattler et al., 2013). 

IL-33 plays a critical protective role against a range of parasite infections, 

including Nippostrongylus brasiliensis, Trichuris muris and Toxoplasma gondii 

(Table 1-1). This is mainly due to its role in the promotion of Th2 response and 

activating/recruiting immune cells, including eosinophils, macrophages and NKT 

cells which protect against parasites. However, its role in bacterial and viral 

infection differs and depends on the type of pathogens (Sattler et al., 2013). For 

example, IL-33 can protect against Gram-negative bacteria sepsis and 

Pseudomonas aeruginosa infection (Hazlett et al., 2010). However, the IL-

33/ST2 system seems less important in protection against 

Mycobacterium tuberculosis infection. Available evidence indicates that IL-33 

may also play different roles in viral infections: it protects against lymphocytic 

choriomeningitis virus (LCMV) (Bonilla et al., 2012) but promotes the infection of 

influenza (Le Goffic et al., 2011). 
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Altogether, the IL-33 system may be an important therapeutic target in allergic 

and inflammatory diseases. However, in cardiovascular and parasite infections, 

IL-33 may have a beneficial effect.  

 

6.4.3 Potential clinical application of IL-33 and ST2  

 

How to target the IL-33 system in allergic and inflammatory diseases?  

Research from our and other groups suggests that there are several potential 

approaches which may be feasible to block IL-33 bioactivity; by using 

neutralising anti-IL-33 antibodies, anti-ST2, exogenous sST2 protein or blocking 

the downstream IL-33/ST2 signalling pathways.  

 

Anti-IL-33 antibodies 

Anti-IL-33 antibodies should block free IL-33 in blood, body fluids and in the 

tissues. As I discussed in section 3.4, anti-IL-33 antibody effectively reduced 

serum IL-33 levels and attenuated bleomycin-induced lung fibrosis. This suggests 

in principle that it is possible to use anti-IL-33 to block IL-33 function in vivo. 

However, the antibody I used was polyclonal IgG from rabbit. For clinical 

purpose, humanised monoclonal antibodies are needed and currently no such 

antibody against human IL-33 is available.  

 

Anti-ST2 antibodies  

The IL-33 receptor complex consists of ST2 and IL-1RacP, in which cytokine IL-33 

signals via binding to ST2. In addition, the IL-1RacP is also shared by IL-1 and IL-

36; therefore, targeting ST2 is more sensible in order to specifically block IL-33 

function.   

 

Soluble ST2 (sST2) 
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There is sST2 naturally occurring in blood which is induced during infection and 

inflammation. We and others have demonstrated that sST2 is a decoy receptor 

which binds to IL-33 and blocks IL-33 interaction with cell surface ST2. It has 

been shown that recombinant sST2-Fc fusion protein can block the activity of IL-

33 in vivo in inflammatory arthritis (Leung et al., 2004) and intestinal mucositis 

(Guabiraba et al., 2014) in mice. A similar approach has been applied to develop 

soluble TNF-receptor-FC fusion protein to block TNF-α in inflammatory diseases 

(Taylor, 2010).  

 

IL-33/ST2 signal pathways 

Targeting the downstream IL-33 signalling pathway is another option to block IL-

33 function. IL-33/ST2 signals via the common IL-1/TLR signalling cascade, 

including MyD88, NF-Kb, IRAKs, p38, p65 et al (Liew et al., 2010, Miller, 2011). 

However, more work is needed to identify the specific signalling element in the 

IL-33 signalling pathway before selecting a specific signalling target.  

 

However, since IL-33 has beneficial effects on the cardiovascular system and 

against parasite infections, targeting the IL-33 pathway must be done with 

caution. The potential therapeutic value and side-effects have to be carefully 

balanced in any given individual and disease condition. 
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IL-33 promotes ST2-dependent lung fibrosis by the
induction of alternatively activated macrophages and
innate lymphoid cells in mice
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Background: The initiation and regulation of pulmonary
fibrosis are not well understood. IL-33, an important cytokine
for respiratory diseases, is overexpressed in the lungs of patients
with idiopathic pulmonary fibrosis.
Objectives: We aimed to determine the effects and mechanism
of IL-33 on the development and severity of pulmonary fibrosis
in murine bleomycin-induced fibrosis.
Methods: Lung fibrosis was induced by bleomycin in wild-type or
Il33r (St2)2/2 C57BL/6 mice treated with the recombinant
mature form of IL-33 or anti–IL-33 antibody or transferred with
type 2 innate lymphoid cells (ILC2s). The development and
severity of fibrosiswas evaluatedbased on lung histology, collagen
levels, and lavage cytology. Cytokine and chemokine levels were
quantified by using quantitative PCR, ELISA, and cytometry.
Results: IL-33 is constitutively expressed in lung epithelial cells
but is induced in macrophages by bleomycin. Bleomycin
enhanced the production of the mature but reduced full-length
form of IL-33 in lung tissue. ST2 deficiency, anti–IL-33 antibody
treatment, or alveolar macrophage depletion attenuated and
exogenous IL-33 or adoptive transfer of ILC2s enhanced
bleomycin-induced lung inflammation and fibrosis. These
pathologic changes were accompanied, respectively, by reduced
or increased IL-33, IL-13, TGF-b1, and inflammatory chemokine
production in the lung. Furthermore, IL-33 polarized M2

macrophages to produce IL-13 and TGF-b1 and induced the
expansion of ILC2s to produce IL-13 in vitro and in vivo.
Conclusions: IL-33 is a novel profibrogenic cytokine that signals
through ST2 to promote the initiation and progression of
pulmonary fibrosis by recruiting and directing inflammatory
cell function and enhancing profibrogenic cytokine production
in an ST2- and macrophage-dependent manner. (J Allergy Clin
Immunol 2014;nnn:nnn-nnn.)

Key words: IL-33, lung fibrosis, alternatively activated macro-
phages, type 2 innate lymphoid cells

Bleomycin is an important cancer chemotherapeutic agent.
However, its cytotoxic activity associated with DNA strand
cissation and reactive oxygen species induction can cause
severe side effects, including pulmonary fibrosis. This can be
recapitulated in experimental models designed to investigate the
pathogenesis of pulmonary fibrosis and some aspects of idiopathic
pulmonary fibrosis (IPF),1-3 a devastating treatment-refractory
interstitial lung disease of unknown origin.4,5 A better understand-
ing of the fibrotic process might lead to novel therapeutic
approaches for this unmet clinical need. Bleomycin-induced
fibrosis in susceptible C57BL/6 mice provides a reliable model
to study the underlying mechanisms of fibrosis.1

Although the pathogenic mechanisms of bleomycin-induced
fibrosis and IPF are not fully understood, both conditions are
characterized by alveolar epithelial injury, accumulation of
fibroblasts and myofibroblasts, and deposition of collagenous
extracellular matrix in the lung, which together compromise
functional gas exchange.1,2,4,5 Lung histology and bronchoalveolar
lavage (BAL) show inflammatory cytology, including neutrophils,
lymphocytes, and macrophages, which are thought to contribute
to fibrogenesis.1,2,4,5 Macrophages can be polarized into 2 pheno-
types: classically activated macrophages (M1 macrophages),
which are activated by IFN-g and LPS, or alternatively activated
macrophages (M2 macrophages), which are activated by IL-4
and IL-13.6,7 M1 macrophages express inducible nitric oxide syn-
thase and proinflammatory cytokines and protect against infection,
whereas M2macrophages express arginase 1 and TGF-b1 and are
critically involved in tissue repair and fibrosis.6,7

The profibrogenic cytokines TGF-b1 and IL-13 are essential
for the development of lung fibrosis by promoting myofibroblast
differentiation and stimulating production of extracellular matrix
proteins, primarily collagen,4,5 and thus are important potential
therapeutic targets in fibrosis. Similar strategies can be applied
to other mediators, including cytokines of the IL-1 family, among
which IL-1 and IL-18 have a role in clinical and experimental
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Abbreviations used

APC: Allophycocyanin

Arg1: Arginase 1

BAL: Bronchoalveolar lavage

BMDM: Bone marrow–derived macrophage

CT: Computed tomography

FITC: Fluorescein isothiocyanate

flIL-33: Full-length IL-33

ICOS: Inducible costimulator

ILC2: Type 2 innate lymphoid cell

IPF: Idiopathic pulmonary fibrosis

M1 macrophage: Classically activated macrophage

M2 macrophage: Alternatively activated macrophage

mIL-33: Mature IL-33

Nos2: Inducible nitric oxide synthase 2 gene

PE: Phycoerythrin

qPCR: Quantitative PCR

WT: Wild-type

lung fibrosis.8 IL-33 is a new member of the IL-1 family and is
overexpressed in the lungs of patients with IPF.9

IL-33 is a dual-function cytokine: the full-length IL-33
(flIL-33) form serves as an intracellular gene regulator in the
nucleus, and the mature IL-33 (mIL-33) form serves as an
extracellular cytokine after releasewhen cells sense inflammatory
signals or undergo necrosis.10-15 Once released, flIL-33 can be
processed by neutrophil-derived proteases into mIL-33.13

Although both flIL-33 and mIL-33 are able to bind to and signal
through their receptor, ST2, mIL-33 has a 10-fold higher affinity
and bioactivity than flIL-33.13 ST2 is expressed on most innate
cells, including macrophages and the newly identified type 2
innate lymphoid cells (ILC2s), and IL-33 plays a direct role in
the function of these cells.16-19 mIL-33 mainly elicits a type 2
immune response and is closely associated with allergic and
parasitic diseases.11,18-22 It has recently been reported
that nuclear flIL-33 potentiates bleomycin-induced lung
injury in an undefined but ST2-independent manner.9 The
expression of IL-33 mRNA is increased in IPF lung tissue9;
however, the role of mIL-33 as a cytokine in the fibrotic process
is unknown.

We have investigated the effect and mechanism of mIL-33 in
the initiation and exacerbation of bleomycin-induced fibrosis in
mice. We report here that mIL-33, through ST2, strongly
enhances bleomycin-induced pulmonary fibrosis, mainly by
promoting inflammatory cell infiltration and function, including
polarization of M2 macrophages and ILC2s, and enhancing their
IL-13 and TGF-b1 production.

METHODS
Experimental details are provided in the Methods section in this article’s

Online Repository at www.jacionline.org.

RESULTS

Bleomycin-induced fibrosis is impaired in

St22/2 mice
Groups of wild-type (WT) and St22/2 C57BL/6 mice were

given bleomycin or PBS intranasally on day 0. The mice were
killed on day 7 or 14 to investigate the role of the cytokine

IL-33 in the development of bleomycin-induced fibrosis. WT
mice that received bleomycin had progressive lung inflammation
(Fig 1, A) and fibrosis (Fig 1, B) from day 7 compared with PBS
control mice. This bleomycin-induced inflammatory and fibrotic
response was demonstrated by enhanced inflammatory cell
infiltration and collagen deposition in the lung and quantified by
using histologic inflammatory and fibrosis scores (Fig 1, C).
The pathologic changes observed in WT mice given bleomycin
were significantly reduced in St22/2 mice given bleomycin
(Fig 1, A-C).

Compared with bleomycin-treated WT mice, bleomycin-
treated St22/2 mice also had significantly reduced infiltration
of neutrophils on day 7 and total leukocytes, including
macrophages, neutrophils, and lymphocytes, on day 14 in BAL
fluid (Fig 1, D). Furthermore, bleomycin-enhanced concentra-
tions of soluble collagen and the expression of collagen 3,
which is associated with early-repair fibrosis, were reduced in
St22/2 compared with WT mice (Fig 1, E and F), whereas
the expression of collagen 1 remained unchanged (data not
shown). Moreover, bleomycin-treated St22/2 mice have
reduced concentrations of IL-33, IL-1, and chemokines
(CXCL1, CXCL2 and CCL2) in lung tissue extracts
compared with concentrations seen in bleomycin-treated WT
mice (see Fig E1, A, in this article’s Online Repository at www.
jacionline.org).

Neutralizing anti–IL-33 antibody attenuates

bleomycin-induced fibrosis
We next assessed the role of endogenous IL-33 in the

development of bleomycin-induced fibrosis by treating WT
mice with anti–IL-33 antibody. C57BL/6 mice were injected
intraperitoneally with anti–IL-33 every fifth day from day 0 of
bleomycin administration and killed on day 14. Anti–IL-33
antibody reduced IL-33 and IL-1 levels in the lung tissue of
bleomycin-treated mice compared with that seen in control
IgG-treated mice (see Fig E1, B). The antibody treatment also
markedly reduced bleomycin-induced airway inflammation
and lung fibrosis (Fig 2, A-C) and the number of macrophages,
neutrophils, and lymphocytes in BAL fluid on day 14 compared
with IgG control values (Fig 2, D). Furthermore, the antibody
treatment significantly reduced lung tissue soluble collagen
(Fig 2, E) and collagen 3 mRNA expression (Fig 2, F).

Recombinant mIL-33 exacerbates bleomycin-

induced fibrosis in mice
Mice were administered intranasal mIL-33 together with

bleomycin on day 0 and lung tissues were analyzed on day 7 to
directly assess the role of the cytokine IL-33. Control mice
were given either PBS, mIL-33, or bleomycin alone. One
administration of exogenous mIL-33 significantly enhanced
bleomycin-induced lung inflammation (Fig 3, A), collagen
deposition (Fig 3, B), and pathology score (Fig 3, C), compared
with controls. The IL-33–enhanced histologic changes were
accompanied by significantly increased total numbers of cells in
BAL fluid, mainly neutrophils and lymphocytes, compared with
control values (Fig 3, D). The coadministration of IL-33 did not
change the macrophage numbers in BAL fluid at this time point
(7 days) compared with bleomycin alone. IL-33 further increased
the levels of bleomycin-induced collagen production (Fig 3, E)
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and collagen 3 mRNA expression (Fig 3, F). No differences were
observed in control groups given one dose of IL-33 compared
with the PBS control.

Bleomycin induces IL-33 production, which

promotes lung fibrosis through alveolar

macrophages
We next determined the kinetics of bleomycin-induced IL-33

expression in the lung. Mice were given bleomycin as above.
Bleomycin administration rapidly enhanced Il33 expression in
lung tissue from day 1 after bleomycin inoculation and lasted
for at least 14 days (Fig 4, A). Compared with PBS, bleomycin
treatment also enhanced lung tissue IL-33 protein production
(see Fig E2, A, in this article’s Online Repository at www.
jacionline.org) and St2 mRNA expression (see Fig E2, B).
Furthermore, although PBS control WT mice expressed only
flIL-33, bleomycin-treated WT mice markedly enhanced
mIL-33 concomitant with reduced flIL-33 production (Fig 4,
B). Bleomycin also increased production of neutrophil cathepsin
G (Fig 4, B) and myeloperoxidase in lung tissue compared with
that seen in PBS control in WT mice (see Fig E2, C). The
induction of IL-33 isoforms, cathepsin G, and myeloperoxidase
in St22/2mice given bleomycin was markedly reduced compared
with that seen in WT mice given bleomycin (see Fig E2, C-E).

Immunohistochemical analysis of lung tissue sections
of PBS- and bleomycin-treated WT mice demonstrated
that alveolar epithelial cells constitutively expressed IL-33
(Fig 4, C). However, administration of bleomycin induced
immunohistochemistry-detectable IL-33 protein in cells located
within the alveoli compared that seen in with PBS control mice
(Fig 4, C). The location and morphologic appearance of these
cells suggest that they are alveolar macrophages. The likelihood
that these cells were alveolar macrophages is supported by
fluorescence-activated cell sorting analysis, showing that
bleomycin treatment significantly increased the frequency and
number of IL-33–expressing F4/801 macrophages in the lung
(approximately 2.5 times the number seen in PBS control
mice). This increase was not seen in the St22/2 mice given
PBS or bleomycin (Fig 4, D).

We next evaluated the importance of alveolar macrophages in
bleomycin-induced and IL-33 plus bleomycin–exacerbated
lung fibrosis based on their depletion.19,23 Mice were treated
with clodronate in liposomes or control liposomes alone
administered intranasally on days 2 and 1 before administration
of bleomycin or bleomycin plus IL-33. This route of liposome
administration depletes alveolar but not lung parenchymal
macrophages.24 Clodronate depleted approximately 80% of
alveolar macrophages compared with the control group (Fig 4,
F) and significantly reduced bleomycin-induced and bleomycin
plus IL-33–exacerbated lung fibrosis (Fig 4, E) and inflammation
(see Fig E3 in this article’s Online Repository at www.jacionline.
org). Consistent with these observations, macrophage depletion
also reduced bleomycin-induced and bleomycin plus IL-33–
enhanced neutrophil and lymphocyte numbers in BAL fluid
(Fig 4, F) and collagen production in lung tissue (Fig 4, G)
compared with values seen in the control group given PBS.

IL-33 polarizes M2 macrophages in lung fibrosis
M2 macrophages play a critical role in fibrogenesis.6 We have

shown previously that IL-33, together with IL-13, can polarize
alveolar M2 macrophages, but not M1 macrophages, in murine
allergic lung remodeling.19 Therefore we further investigated
the effect of bleomycin and IL-33/ST2 signaling on the
generation of M2 macrophages in patients with lung fibrosis.

FIG 1. St22/2 mice have attenuated bleomycin (BLM)–induced fibrosis. Lung

hematoxylinandeosinstaining (A), collagenstaining (B), lungpathologyscore

(C), total and differential lung lavagecytology (D), lung tissue collagen content

(E), and lung tissuecollagen3mRNAexpression (F)are shown.Vertical bars5
SEMs (n5 5-7 mice per group per experiment). *P < .05 compared with PBS

control and #P < .05 compared with WT values. Data are representative of

3 experiments. Lym, Lymphocytes;Mac, macrophages, Neu, neutrophils.
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The frequency and number of total macrophages (CD11b1F4/
80high) in the lung tissue of bleomycin-treated St22/2 mice was
slightly but significantly reduced compared with that of the
bleomycin-treated WT mice (Fig 5, A, and see Fig E4, A and B,
in this article’s Online Repository at www.jacionline.org).
Bleomycin markedly enhanced the number and percentage of
M2 macrophages (CD11b1F4/801CD2061) in the lungs of
WT, but not St22/2, mice on day 7 after bleomycin treatment
(Fig 5, B, and see Fig E4, C). Furthermore, bleomycin also
increased IL-331 M2 macrophage numbers (Fig 5, C, and see

Fig E4, D and E) and expression of the gene encoding the M2
macrophage marker arginase 1 (Arg1), but not the M1
macrophage marker inducible nitric oxide synthase 2 (Nos2), in
lung tissue in WT mice compared with that seen after control
PBS treatment (Fig 5, D). The effects of bleomycin administra-
tion on macrophage polarization in St22/2 mice given bleomycin
showed no increase in Arg1 expression and increased Nos2
expression compared with that seen in St22/2 mice given the
PBS control (Fig 5, C and D). However, the expression levels of
MHC class II, a common marker on all macrophages, in mice

FIG 2. Anti–IL-33 antibody treatment attenuates bleomycin (BLM)–induced fibrosis. Lung hematoxylin and

eosin staining (A), collagen staining (B), lung pathology score (C), total and differential lung lavage cytology

(D), lung tissue collagen content (E), and lung tissue collagen 3 mRNA expression (F) are shown. Vertical

bars 5 SEMs (n 5 5 mice per group per experiment). *P < .05 compared with PBS and #P < .05 compared

with IgG values. Data are representative of 3 experiments. Lym, Lymphocytes; Mac, macrophages, Neu,

neutrophils.
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given bleomycin were not significantly affected by St2 deficiency
compared with that seen in WT control mice (see Fig E4, F).

We further assessed the ability of bleomycin, IL-13, and IL-33
to polarizeM1 orM2macrophages in vitro. Mouse bonemarrow–
derived macrophages (BMDMs) were cultured with medium or
bleomycin, IL-13, or IL-33 (alone or together), and the induction
of Arg1 and Nos2 was determined by using quantitative PCR
(qPCR). IL-13, but not IL-33, alone significantly induced Arg1,
but not Nos2, expression in macrophages compared with medium
control (Fig 5, E). The IL-13–induced Arg1 expression was
significantly increased by the presence of IL-33. However,
bleomycin alone or in combination with IL-13 or IL-33 had no
additional effect on the polarization of M1 or M2 macrophages
(Fig 5, E).

Bleomycin and IL-33 induce fibrogenic cytokine and

chemokine production
IL-13 and TGF-b1 are key cytokines required for the

development of fibrosis.4,5,25 We next determined how the

IL-33/ST2 pathway contributes to bleomycin-induced fibrosis
by assessing the cytokine and chemokine profiles induced by
bleomycin and IL-33. We first analyzed Il33, Il13, and Tgfb1
mRNA expression in the lung tissue of WTor St22/2 mice given
bleomycin with or without IL-33. Bleomycin significantly
induced expression of these cytokines in WT mice (Fig 6, A).
Consistent with the attenuated lung fibrosis seen in St22/2 mice
given bleomycin compared with that seen in WT mice given
bleomycin (Fig 1, A), bleomycin did not induce Il33, Il13, and
Tgfb1 expression in the lungs of St22/2 mice beyond that seen
in PBS-treated St22/2 mice (Fig 6, A). Furthermore, alveolar
macrophage depletion, which abolished bleomycin-induced and
IL-33–exacerbated lung fibrosis (Fig 4, E), also abrogated the
bleomycin and bleomycin plus IL-33–induced expression of
these cytokines (Fig 6, B).

We then determined the levels of key inflammatory cytokines
and chemokines in the BAL fluid of bleomycin-treated mice by
using Luminex (Luminex; Biosource, Invitrogen, Carlsbad, Calif)
or ELISA (BD Biosciences, San Jose, Calif). Only the fibrogenic
cytokines IL-1, IL-33, IL-13, and TGF-b1 and 3 chemokines

FIG 3. Recombinant IL-33 exacerbates bleomycin (BLM)–induced fibrosis in mice. Mice were treated with

PBS, IL-33, and bleomycin with or without IL-33. Lung hematoxylin and eosin staining (A), collagen staining

(B), lung pathology score (C), total and differential lung lavage cytology (D), lung tissue collagen content

(E), and lung tissue collagen 3 mRNA expression (F) are shown. Vertical bars5 SEMs (n5 5 mice per group

per experiment). *P < .05 compared with PBS and #P < .05 compared with bleomycin values. Data are

representative of 3 experiments. Lym, Lymphocytes; Mac, macrophages, Neu, neutrophils.
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FIG 4. Bleomycin (BLM) induces IL-33 and IL-33 production and promotes lung fibrosis through alveolar

macrophages. WT and St22/2 mice were given bleomycin, and lung tissues were analyzed on day 7. A-D,

Il33mRNA expression (Fig 4, A); IL-33 isoforms, cathepsin G, and b-actin detected by using western blotting

(Fig 4, B); immunohistochemical staining of IL-33 (3400 magnification; Fig 4, C), and percentage and

number of IL-331 macrophages determined by using fluorescence-activated cell sorting (Fig 4, D). E-G,

Mice were given PBS, bleomycin, or bleomycin plus IL-33 and treated with clodronate or control liposomes.

Lung collagen staining and pathology score (Fig 4, E), total and differential lung lavage cytology (Fig 4, F),

and lung collagen content (Fig 4,G) are shown. Vertical bars5 SEMs (n5 6mice per group per experiment)

*P < .05 compared with PBS and #P < .05 compared with bleomycin values. Data are representative of

2 experiments. Lym, Lymphocytes; Mac, macrophages, Neu, neutrophils.
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(CXCL1, CXCL2, and CCL2) were significantly induced by
bleomycin and bleomycin plus IL-33 (Fig 6, C, and see Fig E1).
No other type 2 and inflammatory cytokines were detected at
significant levels (data not shown). We also determined the levels
of key fibrogenic cytokines in BAL fluid. Bleomycin induced
IL-13 production from day 2, and IL-33 plus bleomycin induced
IL-13 synthesis from day 1; both returned to baseline by day 5
(Fig 6, C). Bleomycin-induced TGF-b1 production appeared

from day 3 and increased progressively up to at least day 14
(Fig 6, C), and this was further increased by IL-33.

We further confirmed the ability of macrophages to produce
IL-13 and TGF-b1 in response to IL-33. BMDMswere stimulated
with IL-13, IL-33, or IL-13 plus IL-33. IL-33 stimulated BMDMs
to produce a significant amount of IL-13 compared with medium
alone (Fig 6, D). IL-13 or IL-33 alone stimulated significantly
increased levels of TGF-b1 compared with medium alone.

FIG 5. IL-33 polarizes M2macrophages. A-C,Numbers of macrophages (Fig 5, A), CD2061 M2macrophages

(Fig 5, B), and IL-331 M2 macrophages (Fig 5, C). D, Lung tissue Arg1 and Nos2 mRNA expression.

E, BMDMs were stimulated with IL-13, IL-33, and bleomycin (BLM; alone or together). Arg1 and Nos2

mRNA expression was quantified. Vertical bars 5 SEMs (n 5 5 mice per group per experiment). *P < .05

compared with PBS and #P < .05 compared with WT values. Data are pooled from 3 experiments.

J ALLERGY CLIN IMMUNOL

VOLUME nnn, NUMBER nn

LI ET AL 7



Furthermore, IL-13 and IL-33 synergized to stimulate even higher
levels of TGF-b1 production (Fig 6, E) and Il13 expression in
macrophages (Fig 6, F).

IL-33 enhances ILC2 expansion and function in

fibrosis through ST2
Recent reports show that ILC2s are a major source of IL-13

in vivo and that IL-33 is a key inducer of ILC2s through

ST2.17,26,27 We sought determine whether ILC2s also contribute
to the bleomycin plus IL-33–induced IL-13 production and lung
fibrosis. WT and St22/2 mice were given bleomycin or PBS
control, and the lineage-negative, inducible costimulator,
(ICOS)–positive ST21 ILC2s in the lungs were analyzed 3 to 7
days after bleomycin treatment (see Fig E5, A and B, in this
article’s Online Repository at www.jacionline.org).28 Bleomycin
treatment markedly enhanced ILC2 numbers in the lungs of WT

FIG 6. Bleomycin (BLM) and IL-33 induce fibrogenic cytokine production. A, Cytokine mRNA expression in

the lungs. B, Cytokine mRNA expression in the lungs of clodronate- or liposome-treated mice. C, IL-13 and

TGF-b1 production in lung lavage fluid. D and E, IL-13 and TGF-b1 in culture supernatants of BMDMs. F, Il13

mRNA expression in BMDMs. Vertical bars 5 SEMs (n 5 5 mice per group per experiment). *P < .05 and

#P < .05 compared with control values. Data are representative of 3 experiments.
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FIG 7. Induction and function of ILC2s in the lungs.A and B, Total number of ILC2s (Fig 7,A) and IL-131 ILC2s

(Fig 7, B). C-F, ILC2s were adoptively transferred into mice after bleomycin (BLM) instillation. Collagen

staining (Fig 7, C), pathology score (Fig 7, D), total/differential lung lavage cytology (Fig 7, E), and collagen

content (Fig 7, F) are shown. G and H, Collagen 3 (Fig 7, G) and Il13 and Tgfb (Fig 7, H) mRNA expression.

Vertical bars 5 SEMs (n 5 6 mice per group per experiment). *P < .05 compared with PBS and #P < .05

compared with bleomycin values. Data are representative of 2 experiments.
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mice compared with those seen in control PBS-treated mice
(Fig 7, A). In contrast, ILC2s were almost completely absent in
St22/2 mice, irrespective of whether they were treated with
bleomycin. By day 7, the number of IL-131 ILC2s was enhanced
8-fold in WT mice given bleomycin compared with that seen in
PBS control mice (Fig 7, B, and see Fig E5, C). Again, IL-131

ILC2s were almost completely absent in St22/2 mice (Fig 7,
B). To understand the role of ILC2s in IL-33– and bleomycin-
induced pulmonary fibrosis, we adoptively transferred purified
ILC2s into WT mice 1 day after bleomycin and compared this
with conditions after bleomycin alone. The ILC2 transfer led to
exacerbation of lung inflammation and fibrosis compared with
bleomycin alone (Fig 7, C and D, and see Fig E5, D), and
this was similar to that observed after bleomycin plus IL-33
instillation (Fig 3). The pathogenic changes were accompanied
by increased inflammatory cell infiltration and collagen
production and expression of collagen 3, Il13, and Tgfb1 in
lung tissue compared with that seen in mice given bleomycin
alone (Fig 7, E-H, and see Fig E5, E).

DISCUSSION
Data reported in this study reveal a hitherto unrecognized effect

and mechanism by which IL-33 exacerbates bleomycin-induced
lung fibrosis in mice (see Fig E6 in this article’s Online
Repository at www.jacionline.org). Bleomycin can elicit early
neutrophil infiltration and release of flIL-33 mainly by airway
epithelial cells and alveolar macrophages (see Fig E7 in this
article’s Online Repository at www.jacionline.org). flIL-33 can
then be processed into mIL-33 by neutrophil proteases, which
subsequently stimulates macrophages and ILC2s to produce
IL-13. IL-13 and mIL-33 then synergistically induce the
polarization of M2 macrophages and increase production of
IL-13 and TGF-b1. These cytokines are powerful activators of
fibroblasts, stimulating proliferation and increased collagen
synthesis and thereby amplifying pulmonary fibrosis. Thus
the IL-33/macrophage/M2 macrophage pathway is centrally
involved in the bleomycin-mediated fibrotic process, whereas
the IL-33/ILC2 pathway only contributes to the process by
providing a proportion of the IL-13 pool in fibrotic tissue
(see Fig E6).

Although a single administration of exogenous mIL-33 on its
own was not sufficient to induce pulmonary fibrosis by day 14
(Fig 3), we found that Il33 transgenic mice that constitutively
express low mIL-33 levels (approximately 80 pg/mL in serum)
spontaneously had lung interstitial fibrosis (see Fig E8 in this
article’s Online Repository at www.jacionline.org). Thus
mIL-33 is likely a key profibrotic factor.

We also show that the profibrogenic effect of mIL-33 is
mainly attributed to its role in M2 macrophage polarization.
Macrophages are polarized toward an M2 phenotype in a TH2
cytokine–dominant milieu,6 and local mIL-33, together with
IL-13, enhanced M2 macrophage polarization in our study.
Furthermore, the specificity of the requirement for IL-33 in this
process is demonstrated by the fact that bleomycin alone, which
was not able to induce M2 macrophage polarization in St22/2

mice, also did not cause fibrosis in St22/2 mice. We found that
macrophages are the predominant cells that express both IL-33
and ST2 in fibrotic lungs (see Figs E7 and E9 in this article’s
Online Repository at www.jacionline.org). Thus IL-33/ST2
signaling might promote M2 macrophage development and

function in bleomycin-induced fibrogenesis in an autocrine and
paracrine fashion.

The profibrogenic cytokines TGF-b1 and IL-13 are necessary
for the development of tissue fibrosis.4,5,25 However, how
these cytokines are induced in bleomycin-induced fibrosis is
unresolved. Here we show that IL-33 signaling through ST2 is
essential for optimal induction of both IL-13 and TGF-b1
expression in bleomycin-induced lung fibrosis, although in
different cells. IL-33 primarily induces the production of IL-13
by both macrophages and ILC2s and production of TGF-b1 by
macrophages. These findings also suggest that mIL-33 is a novel
TGF-b1 inducer, which might explain its fibrogenic role in
bleomycin-induced fibrosis.

We demonstrated that bleomycin instillation increased the
infiltration of leukocytes, mainly neutrophils but also macro-
phages and lymphocytes, into the airways and lung interstitium.
This might be a consequence of IL-33/ST2–dependent and
independent production of the key chemokines CXCL1 and
CXCL2 in the context. As reported, CXCL1 and CXCL2
determine the migration of neutrophils, and CCL2 is used for
the migration of lymphocyte and monocyte/macrophage into the
inflamed lung tissue of mice.29,30 Because these chemokines are
mainly produced by macrophages,29,30 this might explain why
macrophage depletion also reduced lung lavage neutrophils and
lymphocytes in the setting of bleomycin-induced fibrosis.

The precise role of neutrophils in IL-33–exacerbated
pulmonary fibrosis is incompletely understood. We suggest an
additional role through which neutrophil proteases contribute to
fibrosis. We found that bleomycin simultaneously enhanced
the production of mIL-33 but reduced the production of flIL-33
in lung tissue. mIL-33 production was associated with
neutrophil cathepsin G production in the same lung tissue,
suggesting that flIL-33 was processed to mIL-33, which has
greater bioactivity.31 Because epithelial cells and alveolar
macrophages can produce CXCL1 and CXCL2 independent of
IL-33/ST2 signals,29,30,32 these cells might be responsible for
the bleomycin-induced early neutrophil infiltration in lung tissue
(see Fig E6).

A recent report showed that adenovirus-delivered flIL-33, the
form of IL-33 located in the nucleus, promoted lung fibrosis
through an undefined but ST2-independent mechanism.9 This
study, together with data in the present report, suggests that
both flIL-33 andmIL-33 are fibrogenic and that theymight induce
fibrosis through distinct mechanisms. These findings are themat-
ically linked with the data presented here; however, there are
several important differences between these 2 studies that might
together provide deeper understanding of the role of IL-33 in
fibrosis. We tested the role of mIL-33 as a secreted cytokine,
which acts through the cell-surface IL-33 receptor (ST2), whereas
Luzina et al9 tested the function of intranuclear flIL-33 delivered
through a viral vector. We used St22/2 mice of the fibrosis-
sensitive C57BL/6 strain, whereas Luzina et al9 used St22/2

mice of the fibrosis-resistant BALB/c strain.33 Thus the apparent
discrepancies between the 2 studies might be partly due to the
different mode of action of mIL-33 versus flIL-33 and the strain
of mouse used.

IL-33 is clearly detected in patients with several chronic
fibrotic diseases, including IPF, cystic fibrosis, and systemic
sclerosis.9,34,35 Given that inflammation and fibrogenesis are the
common pathogenic characteristic of these disorders and can be
exacerbated by IL-33, IL-33 might have a general contribution
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to a range of fibrotic diseases. Therefore regulation of IL-33 could
be a novel therapeutic strategy for these diseases.

We thank Mr Jim Reilly for help with histology and Mrs Helen Arthur for

proofreading.

Key messages

d Bleomycin enhanced the production of mIL-33 but
reduced flIL-33 production in lung tissue in vivo.

d ST2 deficiency, anti–IL-33 antibody, or alveolar macro-
phage depletion attenuated and exogenous mIL-33 or
adoptive transfer of ILC2s enhanced bleomycin-induced
lung fibrosis in mice.

d IL-33 polarized M2 macrophages to produce both IL-13
and TGF-b1 and induced the expansion of ILC2s to pro-
duce IL-13 in vitro and in vivo.
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METHODS

Mice
C57BL/6 mice were purchased from Harlan Olac (Bicester, United

Kingdom). St22/2micewere on a C57BL/6 background.E1 Mice were housed

in specific pathogen-free conditions at Glasgow University, and procedures

were in accordance with the UK Home Office animal experimentation guide-

lines. Il33 transgenic micewere on a C57BL/6 backgroundE2 and housed in an

Association forAssessment andAccreditation of LaboratoryAnimal Care–ac-

credited facility (Beijing, China). The procedures were approved by the Insti-

tutional Animal Care and Use Committee of the Chinese Institute of

Laboratory Animal Science (GC-08-2018).

Bleomycin-induced fibrosis
C57BL/6 mice were lightly anaesthetized with isoflurane gas (4%), and

bleomycin sulfate (0.1 U per 25-g mouse in 30 mL of PBS; Sigma, St Louis,

Mo) or PBS was administered intranasally. BAL fluid, blood, and lungs were

harvested 7 or 14 days later and processed and analyzed, as described

previously.E3,E4 The time points selected in the experiments were determined

by our pilot experiments and by a consensus of the various time points used in

the literature describing mouse bleomycin-induced lung fibrosis. After

bleomycin instillation in mice, lung tissue displays typical acute inflammation

from days 1 to 5, and early expression of fibrotic markers and collagen

deposition can be seen from day 7 and is more pronounced by day 14. Thus

days 7 and 14 were used to investigate whether ST2 signals are involved in

early development and overall severity of lung fibrosis in St22/2 mice. Day

7 was also used to determine whether exogenous IL-33 instillation could

exacerbate bleomycin-induced fibrosis. The mice were inoculated

intranasally with a single dose (500 ng per mouse) of recombinant murine

mIL-33 (BioLegend, San Diego, Calif, or prepared as described previouslyE5)

on day 0 of bleomycin treatment and killed on day 7. Day 7 was also the end

point used for the macrophage depletion experiment to test whether this

procedure would abolish exogenous IL-33–exacerbated fibrotic effect seen

at day 7. Alveolar macrophage depletion was performed by means of

intranasal administration of clodronate (ClodLip BV) or control liposomes

(40 mL per mouse) at 24 and 72 hours before bleomycin administration, and

the mice were killed on day 7.E3,E6 Day 14 was selected to study the potential

therapeutic effect of neutralizing anti–IL-33 on the more severe established

fibrosis. The mice were treated intraperitoneally with neutralizing anti–IL-

33 antibodyE7 or control normal rabbit IgG (Sigma, 150 mg per mouse) on

the day of bleomycin administration and 5 and 10 days thereafter. The mice

were killed on day 14. Perfused lung tissue (100 mg) was dispersed in 1 mL

of ice-cold RIPA Lysis Buffer with a cocktail of protease inhibitors (Sigma)

for 45 minutes. Cell suspensions were centrifuged at 13,000 rpm in an

Eppendorf tube for 5 minutes, and the supernatant was collected for cytokine

and collagen assay.

Cell culture
Primary BMDMs were generated with macrophage colony-stimulating

factor (10 ng/mL; PeproTech, Rocky Hill, NJ), as described previously.E3

The subsequent cell preparations contained more than 95% F4/801

macrophages, as determined by using fluorescence-activated cell sorting.

The cells (0.5 3 106/mL) in culture medium were placed into 24-well plates

(Invitrogen) and cultured for 24 or 48 hours. Culture supernatants were stored

at2208C for cytokine analysis, and cells were harvested for mRNA extraction

for the qPCR assay.

Western blotting analysis
Tissue was lysed in RIPA buffer (Thermo Scientific, Uppsala, Sweden)

containing protease inhibitors (Roche, Mannheim, Germany). Protein

concentrations were estimated by using the BCA protein assay (Pierce,

Rockford, Ill). Proteinswere then incubated at 708C for 10minutes in reducing

SDS sample buffer, and 30 mg of protein lysate per lane was run through

NuPAGE Novex 4-12% Bis-Tris Protein Gels (Life Technologies, Carlsbad,

Calif) and transferred to Hybond ECL membranes (GE Healthcare, Fairfield,

Conn). Membranes were blocked for 1 hour in 5% nonfat dried milk in

double-distilled PBS and incubated overnight with the appropriate primary

antibody at 48C.Membraneswere then washed in double-distilled PBS/Tween

20 and incubated with the appropriate secondary antibody. Detection was

performed with ECLWestern Blotting Detection Reagents (GE Healthcare).

Antibodies against flIL-33 and mIL-33 were obtained from R&D Systems

(Minneapolis, Minn; AF3626, goat anti-mouse IL-33 polyclonal antibody);

cathepsin G, b-actin, and all secondary antibodies were obtained from Santa

Cruz Biotechnology (Dallas, Tex). The intensity of Western blot bands was

quantified bymeans of densitometrywith ImageJ software (National Institutes

of Health, Bethesda, Md).

Determination of myeloperoxidase activity
Lung homogenates were prepared in 1 mL of RIPA buffer by using a tissue

homogenizer and myeloperoxidase assay performed as previously

described.E8 Results are expressed as relative units (OD, 492 nm) and were

corrected for the activity of other peroxidases, which were not inhibited by

3-amino-1,2,4-triazole.

Flow cytometry
Lungs were harvested on day 3 or 7 after bleomycin administration

and digested in 125 mg/mL Liberase TL and 100 mg/mL DNAse 1

(Roche Diagnostics) to characterize the infiltrating leukocytes. Dispersed

cells (13 106 cells per tube)were stainedwith 49-6-diamidino-2-phenylindole

dihydrochloride, UVE/DEAD fixable Aqua Dead cell stain (Life

Technologies), and fluorochrome-conjugated mAbs against F4/80-Pacific

blue (eBioscience, San Diego, Calif), cytokeratin 11–fluorescein

isothiocyanate (FITC; panepithelial cell marker; Abcam, Cambridge, United

Kingdom), ER-TF7–allophycocyanin (APC; panfibroblast marker, Santa

Cruz Biotechnology), CD3-PercP, CD11b-FITC or PercP, CD11c-APC,

CD49b–phycoerythrin (PE), CD206-APC, Ly6G-APC, Siglec-F–PE, MHC

class II–PercP, CD45-AF700, and isotype controls (all from BD Biosciences,

unless otherwise indicated). Leukocytes were stained with antibodies against

ST2–FITC (MD Biosciences), lineage markers (B220, FcεRI, CD11b, CD3ε,

and Siglec F) labeled with PE, CD45-AF700, and ICOS-PerCP/Cy5.5

(eBioscience) to characterize the infiltrating ILC2s. Intracellular IL-33 or

IL-13 was detected by staining with anti–IL-33–PE (R&D Systems) or anti–

IL-13–APC (eBioscience) after activation with phorbol 12-myristate 13-

acetate (50 ng/mL) and ionomycin (1 mg/mL) in the presence of BD

GolgiStop and cell permeabilization (BD Cytofix/Cytoperm, BD Biosci-

ences). Cells were analyzed with a Beckman Coulter CyAn ADP Analyzer

(Beckman Coulter, Fullerton, Calif). Gating strategy (Fig E4, A, and E5, A)

and analysis were performed with FlowJo software (TreeStar, Eugene, Ore).

ILC2 amplification and isolation and adoptive cell

transfer
For ILC2 amplification in vivo, mice were anesthetized with isoflurane and

treated with IL-33 (1 mg administered intranasally) daily for 5 days, as

described previously.E9 Lungs were harvested on day 6 and digested in 125

mg/mL Liberase TL and 100 mg/mL DNAse 1 (Roche Diagnostics). Nonad-

herent cells were stained for ST2, lineage markers, ICOS, CD45, and UVE/

DEAD fixable Aqua Dead cell stain (Life Technologies) as above and sorted

with a BD FACSAria. For cell transfer, 53 105 ILC2s in 40 mL of PBS were

inoculated intranasally 1 day after bleomycin challenge. Mice were culled on

day 7 after bleomycin instillation to assess lung inflammation and fibrosis.

Cytokine measurements
Concentrations of cytokines and chemokines in BAL fluid, cell cultures,

and whole-lung homogenates were determined by using Luminex (Luminex,

Biosource, Invitrogen) or ELISA (BD Biosciences), according to the

manufacturers’ instructions.

qPCR
RNA was purified from tissue samples by using the RNeasy Mini Kit

(Qiagen, Manchester, United Kingdom), according to the manufacturer’s
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instructions. Reverse transcription of RNA into cDNA was carried out with

High-Capacity cDNAReverse TranscriptionKits (AppliedBiosystems, Foster

City, Calif). RT-PCR was performed with Fast SYBR Green master mix on a

Prism 7900HT (Applied Biosystems). The primers used were as follows: Il13

forward 59-GAATCC AGG GCTACA CAG AAC-39, reverse 59-AAC ATC

ACA CAA GAC CAG ACT C-39; Il33 forward 59-ACT ATG AGT CTC

CCT GTC CTG-39, reverse 59-ACG TCA CCC CTT TGA AGC-39; St2
forward 59-TCT GTG GAG TAC TTT GTT CAC C-39, reverse 59-TCT
GCTATT CTG GATACT GCT TTC-39; Tgfb1 forward 59-CCATGA GGA

GCA GGA AGG-39, reverse 59-ACA GCA AAG ATA ACA AAC TCC

AC-39; Arg1 forward 59-AGT GTT GAT GTC AGT GTG AGC-39, reverse
59-GAA TGG AAG AGT CAG TGT GGT-39; Nos2 forward 59-GCC TCG

CTC TGG AAA GA-39, reverse 59-TCC ATG CAG ACA ACC TT-39;
collagen 1 forward 59-CAT TGT GTA TGC AGT GAC TTC-39, reverse
59-CGC AAA GAG TCT ACA TGT CTA GGC-39; and collagen 3 forward

59-TCT CTA GAC TCATAG GAC TGA CC-39, reverse 59-TTC TTC TCA

CCC TTC TTC ATC C-39.

Collagen assay
The soluble collagen in lung tissues was quantified with the Sircol

Collagen Assay (Biocolor, Carrickfergus, United Kingdom), according to

the manufacturer’s instructions.

Histologic analysis
The larger left lung lobe was excised, fixed in 4% buffered formalin, and

embedded in paraffin. Sections (4 mm) were stained with hematoxylin and

eosin (Cellpath, Newtown, United Kingdom) or Gomori Rapid One-Step

Trichrome Stain (Sigma) for collagen. The pathology score (from 1-4) was

determined by using a method modified from a previous reportE10: 1, no

abnormal fibrosis; 2, occasional small interstitial fibrotic foci; 3, moderate

interalveolar septal thickening and fibrotic foci; and 4, continuous interalveo-

lar fibrosis.

Micro–computed tomographic scanning
Il33 transgenic mice, which overexpress the mature form of IL-33, were

kept in pathogen-free conditions for up to 6 months, and the development of

lung fibrosis was determined by using computed tomographic (CT) scans.

Scans were performed with a cone-beammicro-CT scanner (Inveon; Siemens

Healthcare, Munich, Germany), as previously described.E11 WT and Il33

transgenic mice were anesthetized and placed in the prone position on the

micro-CT bed without respiratory gating. The tube voltage was 70 kVp,

current was 400 mA, and exposure time was 800 ms. The scan field of view

was 72.44 mm 3 71.31 mm. Projection images were acquired with a

single tube/detector over a circular orbit of 3608 with a step angle of 18.
Reconstructions were performed by using a commercially available CT

reconstruction program (COBRA Exxim, version 6.3), with a filtered

back-projection technique. A resolution of approximately 70.74 mm per pixel

was achieved.

Statistical analysis
Data were analyzed by using 1-way ANOVA, followed by Tukey or

Newman-Keuls post hoc analysis. One-way ANOVA was used to examine

mean differences between 2 ormore groups to compare everymeanwith every

other mean. Kinetic experiments (ie, cytokine expression over time or in vitro

data) were analyzed by using repeated-measures ANOVA. The analyses were

performed with GraphPad Prism 5.0 statistical software (GraphPad software,

San Diego, Calif). All results were presented as means and SEMs from 5 to 7

mice per group per experiment. Data are representative of at least 2 separated

experiments. A P value of less than .05 was considered to indicate statistical

significance.
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FIG E1. Cytokine and chemokine concentrations quantified by means of ELISA in dispersed lung tissue

(in milligrams) supernatants of WT and St22/2 mice treated with PBS or bleomycin (BLM) at days 7 and 14

(A) and WT mice given bleomycin; treated with PBS, anti–IL-33, or control IgG; and killed on day 14 (B) are

shown. Vertical bars5means6 SEMs (n5 5-6 mice per group per experiment) *P < .05 compared with PBS

control and #P < .05 compared with ST22/2 mice or IgG control values. Data are representative of 3

experiments.
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FIG E2. Bleomycin (BLM) induces IL-33 and ST2 production in fibrotic lung tissue. WT and St22/2 mice were

given bleomycin, and lung tissues were analyzed on day 7. IL-33 concentration determined by means of

ELISA (A), St2 mRNA expression (B), myeloperoxidase (MPO) activity (C), and IL-33 isoforms, cathepsin

G, and b-actin detected by means of Western blotting (D) are shown. E, The intensity of Western blot bands

in Fig E2, D, was quantified by means of densitometry. Vertical bars 5 SEMs (n 5 6 mice per group per

experiment). *P < .05 compared with PBS values. Data are representative of 3 experiments.
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FIG E3. Depletion of alveolar macrophages reduces bleomycin (BLM)– and bleomycin plus IL-33–induced

lung inflammation. Mice were treated with PBS, clodronate in liposome (Clod), or liposomes alone (Lip)

1 day before administration of bleomycin or bleomycin plus IL-33. Lungs were harvested on day 7, and

lung tissue sections were stained with hematoxylin and eosin (original magnification 3200). Data are

representative of 3 experiments (n 5 5-6 mice per group per experiment).
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FIG E4. A, Flow cytometric gating strategy for analysis of macrophages in dispersed lung cell suspensions.

B-F,WT or St22/2 mice were administered intranasally with PBS or bleomycin, and lung tissue harvested on

day 7 was dispersed. The percentage of macrophage subsets in the tissue was determined by using

flow cytometry. The percentage of macrophages (Fig E4, B), percentage of CD2061 (M2) macrophages

(Fig E4, C), percentage of IL-331 M2 macrophages (Fig E4, D), isotype control for the anti–IL-33–PE staining

(Fig E4, E), and percentage and total number of MHC class II–positive macrophages (Fig E4, F) are shown.

Vertical bars 5 SEMs (n 5 5-6 mice per group per experiment). *P < .05 compared with control values.

Data are representative of 2 experiments. N.S., Not significant.
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FIG E5. Induction and function of ILC2s in lung fibrosis of mice. A,

Fluorescence-activated cell sorting gating strategy used for identification

of ILC2s in murine lung tissue. B, ILC2s from WT but not St22/2 mice

expressed ST2. C, Percentage of IL-131 ILC2s in lung tissue ofWTmice after

bleomycin (BLM) instillation. D and E, Adoptive transfer of ILC2s

contributes to lung inflammation in mice. WT mice were instilled with

PBS or bleomycin. Sorted ILC2s (5 3 105) were adoptively transferred

intranasally into mice 1 day after bleomycin instillation, and lung

inflammation was assessed on day 7. Fig E5, D, Hematoxylin and eosin

staining of lung tissues. Fig E5, E, Lung lavage fluid IL-13 and TGF-b1

concentrations quantified by means of ELISA. Vertical bars 5 SEMs

(n 5 5-6 mice per group per experiment). *P < .05 compared with PBS

control and #P < .05 compared with bleomycin control values. Data are

representative of 2 experiments.
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FIG E6. Schematic representation of the proposedmechanism of bleomycin (BLM)–induced IL-33 synthesis

and its contribution to lung fibrosis. Neomycin triggers release of flIL-33 from damaged airway epithelial

cells and recruitment of neutrophils. Neutrophil cathepsin G (CG) then processes flIL-33 to mIL-33.

mIL-33 stimulates alveolar macrophages and ILC2s to produce IL-13. mIL-33 and IL-13 then synergistically

polarize macrophages into the M2 macrophage phenotype, which produces more IL-33, IL-13, and TGF-b1

and in turn activates fibroblasts to proliferate and overproduce collagen. IL-33 also enhances macrophage

production of chemokines, which induce the infiltration of neutrophils and lymphocytes into the lung and

together might exacerbate lung inflammation and development of fibrosis. Mon, Monocytes; Neu,

neutrophils.
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FIG E7. Detection of IL-33–producing cell populations in bleomycin-induced fibrotic lung tissue. Mice were

given intranasal PBS or bleomycin (BLM) on day 0, and lung tissues were harvested on day 7. Tissues were

dispersed, and live single-cell preparations were stained with fluorescently labeled antibodies to CD45 to

categorize hematopoietic (A and B) and nonhematopoietic (C and D) cells. Staining for IL-33 and the

different cell linage markers are as described in the Methods section. Fluorescence-activated cell sorting

dot plots and histograms are presented. IL-331 cells were detected in macrophages (CD11b1F4/801;

Fig E7, A); conventional DCs (cDCs; CD11c1), CD11bdim, and resident/plasmacytoid DCs (Fig E7, B);

epithelial cells (cytokeratin 111; Fig E7, C); and fibroblasts (ER-TF71; Fig E7, D). Data are representative of

3 experiments (n 5 5-6 mice per group per experiment).
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FIG E8. Il33 transgenic mice have spontaneous lung fibrosis. WT and Il33 transgenic mice were kept in

pathogen-free conditions for up to 6 months. A, Lung tissues were stained for collagen deposition at 6

months. B, CT scan of mouse thorax was performed, and lung radiodensity scale (Hounsfield units [HU])

was calculated. C, Lung tissue collagen 1 and 3 mRNA expression was quantified by using qPCR. D, IL-33

concentration in mouse serum was quantified by means of ELISA at 2, 4, and 6 months of age. Vertical

bars 5 SEMs (n 5 10 mice per group per experiment). *P < .05 compared with WT control values.

Data are representative of 2 experiments.
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FIG E9. Detection of ST21 cell populations in bleomycin (BLM)–induced fibrotic lung tissue. Mice were

given intranasal PBS or bleomycin on day 0, and lung tissues were harvested on day 7. Tissues were

dispersed, and live single-cell preparations stained with fluorescently labeled antibodies to ST2 and

different cell linage markers, as described in the Methods section. Fluorescence-activated cell sorting dot

plots and histograms are presented. ST2 expression was detected on macrophages (CD11b1F4/801;

Fig E9, A), dendritic cells (CD11c1, conventional DCs [cDCs], CD11bdim and resident/plasmacytoid dendritic

cells [pDCs]; Fig E9, B), granulocytes (neutrophils [NOS] and eosinophils [EOS]), and lymphocytes

(Lymphs), natural killer (NK) cells, and natural killer T (NKT) cells (Fig E9, D). Data are representative of 2

experiments (n 5 5-6 mice per group per experiment).
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Summary

Interleukin-33 (IL-33) and its receptor ST2 are over-expressed in clinical

colitis tissue. However, the significance of these observations is at present

unknown. Significantly, we demonstrate here that IL33 and ST2 are the

primary early genes induced in the inflamed colon of BALB/c mice follow-

ing dextran sulphate sodium (DSS)-induced experimental ulcerative coli-

tis. Accordingly diarrhoea and DSS-induced colon inflammation were

impaired in ST2�/� BALB/c mice and exacerbated in wild-type mice by

treatment with exogenous recombinant IL-33, associated respectively with

reduced and enhanced expression of chemokines (CXCL9 and CXCL10),

and inflammatory (IL-4, IL-13, IL-1, IL-6, IL-17) and angiogenic (vascular

endothelial growth factor) cytokines in vivo. The exacerbation effect of

treatment with recombinant IL-33 on DSS-induced acute colitis was abol-

ished in IL-4�/� BALB/c mice. Hence, IL-33 signalling via ST2, by induc-

ing an IL-4-dependent immune response, may be a major pathogenic

factor in the exacerbation of ulcerative colitis.

Keywords: colitis; early interleukin-33 expression; interleukin-4 deficiency;

ST2 deficiency.

Introduction

Ulcerative colitis (UC) is an inflammatory disease of the

colon associated with recurring inflammation and the for-

mation of ulcers.1 This leads to clinical symptoms and

signs including diarrhoea and serious complications, such

as peritonitis and increased risk of colorectal cancer.1 The

aetiology of UC is largely unknown, which is the main

reason why current therapeutic options are limited. Envi-

ronmental and infectious disease factor-mediated barrier

dysfunction and abnormal angiogenesis in gut epithelium

are thought to play a critical role in the initiation and

perpetuation of the disease.1,2

Dextran sulphate sodium (DSS) -induced colitis in

mice is a well-established model for human UC.3 Mice

fed with DSS polymers develop disease similar to human

UC, characterized by diarrhoea, colonic inflammation

and ulceration. This is a result of direct toxic effects of

DSS on the gut epithelial cells of the basal crypts.3,4 The

induction of acute DSS-induced colitis does not depend

on lymphocytes;4 therefore it is a particularly useful

model to study innate immune mechanisms of the intes-

tinal epithelium in the pathogenesis of colitis.

The pathogenesis of ulcerative colitis in humans and

animal models is primarily associated with dysregulation

of type II cytokines [interleukin-4 (IL-4), IL-5 and

IL-13],2,5–7 whereas type I [interferon-c (IFN-c)], and

pro-inflammatory [IL-1, IL-6, IL-17 and tumour necrosis

factor-a (TNF-a)] cytokines may also contribute to the

pathogenesis, probably in the chronic phase of UC.2,8–10

The early innate inflammatory signal(s) that coordinate

the engagement of these cytokines are unresolved

although IL-33, a new member of the IL-1 family, is a

potential candidate.11

Interleukin-33 is a pleiotropic cytokine that signals via

its receptor ST2 and can elicit different immune

responses depending on context.11,12 It is expressed pri-

marily in the epithelium and endothelium and can be

released when cells sense inflammatory signals or undergo

necrosis.11,12 The IL-33 receptor, ST2, is expressed by

almost all innate cells but only by selected adaptive

immune cells.11–17 Interleukin-33 signalling via ST2 can

induce both antigen-dependent and antigen-independent

type II immune responses by directly activating a wide-

range of innate immune cells including eosinophils, mac-

rophages, nuocytes, mast cells or T helper type 2 (Th2)

ª 2013 John Wiley & Sons Ltd, Immunology, 140, 70–7770

IMMUNOLOGY OR IG INAL ART ICLE



and IL-5+ Th cells in vitro and in vivo.11–17 In addition,

IL-33 can also promote Th1 and/or Th17 type responses

in pro-inflammatory disorders in mice, by as yet unde-

fined mechanisms.18,19 Increasing evidence suggests that

IL-33 and ST2 play a pathogenic role in inflammatory

bowel disease.20–23 Interleukin-33 and ST2 expression is

increased in inflamed colonic mucosa and in the serum

of patients with inflammatory bowel disease.20–23 Experi-

mental IL-33 gene-deletion impairs pathogenesis of coli-

tis,24 although the mechanisms by which the IL-33/ST2

system exacerbates colitis are unresolved.

The aims of this study were to elucidate the mecha-

nisms by which IL-33 exacerbates experimental colitis in

mice. Our study demonstrated that IL-33 and ST2 are the

genes early induced in the colonic tissue during DSS-

induced colitis. Furthermore, IL-33 exacerbates acute coli-

tis in association with the induction of pro-inflammatory

and angiogenic cytokines as well as chemokine produc-

tion in an ST2-dependent and IL-4-dependent manner.

Materials and methods

Mice

BALB/c mice were purchased from Harlan Olac (Bicester,

UK), and ST2�/�, IL-4�/� and IL-4R�/� mice on a

BALB/c background were generated as described previ-

ously.13,17 Mice were housed in specific pathogen-free

conditions at the University of Glasgow in accordance

with the UK Home Office animal welfare guidelines.

The induction of DSS colitis

For the induction of acute colitis, female mice were given

3�5% (weight/volume) DSS (ICN Biomedicals, Aurora,

OH) in their drinking water from day 0 for 12 consecutive

days. Some mice received recombinant IL-33 (1 lg/mouse/

day) or PBS intraperitoneally daily from day 0 for 19 days.

The IL-33 was produced and purified as previously

described.13 The body weight and stool consistency were

monitored daily. Diarrhoea was scored as follows: 0 (nor-

mal); 2 (loose stools); 4 (watery diarrhoea).25 Body weight

loss was calculated as the difference between the baseline

weight on day 0 and the body weight on a particular day.

Cytokine/chemokine measurements

Colons were opened longitudinally and washed in sterile

PBS supplemented with 1% penicillin/streptomycin (Life

Technologies, Carlsbad, CA). Three segments from the

distal colon of 1 cm in length were placed in 24

flat-bottom well culture plates (Costar, Cambridge, MA)

containing fresh RPMI-1640 (Life Technologies) supple-

mented with 1% penicillin/streptomycin and incubated at

37° for 24 hr. Culture supernatants were then harvested,

centrifuged at 13 000 g, and stored at � 20°. Cytokine/
chemokine concentrations were detected by a multi-cyto-

kine/chemokine (20-plex) bead fluorescence assay (Invi-

trogen, Paisley, UK) according to the manufacturer’s

instructions, using a Luminex platform.

Histological analysis

Colon specimens were fixed in 10% neutral formalin,

embedded in paraffin and stained with haematoxylin &

eosin. Histological examination was performed on three

serial sections at six different sites of the colon and was

scored blind using a standard histological scoring

system.25

Meta-analysis of high-throughput transcriptomics data

Raw RNA microarray (Affymetrix CEL) files in the public

domain derived from mouse colon tissue response to DSS

induction at days 0, 2, 4 and 6 were downloaded from

the Gene Expression Omnibus (GEO, GSE22307 and ref

26) and analysed as previously described.27 Briefly, the

analysis of the differential gene expression patterns used

Affymetrix Gene Chip Mouse Genome 430 2.0 Array.26

The CEL files were normalized with the RMA algorithm

and subjected to a highly stringent statistical analysis

using one-way analysis of variance, followed by the Tukey

honestly significant difference post-hoc test and multiple

testing correction by applying the Benjamini–Hochberg

false discovery rate (P < 0�05) and using GENESPRING GX11

software (Agilent, Santa Clara, CA). The significantly

expressed genes were selected by a standard cut-off at

twofold increased expression compared with the values

on day 0. These differentially expressed genes were then

classified based on GENE ONTOLOGY (GO) software specifi-

cally for genes implicated in the ‘regulation of inflamma-

tory response’ as well as the ‘cytokines and chemokines’

in the colonic epithelium of DSS-induced colitis in mice.

Statistical analysis

Analysis using Student’s t-test was applied to in vitro

studies. Analysis between individuals in groups in vivo

was by analysis of variance followed by Student’s t-test.

Results are expressed as mean � SEM, and are represen-

tative of at least two individual experiments. P < 0�05,
was considered significant.

Results

IL-33 and ST2 are the major genes early induced in
the colonic tissue in DSS colitis

While it has been suggested that IL33 and ST2 are

expressed in colonic tissue and in epithelial cells in clinical
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colitis,20–23 the kinetics of their expression and relative

expression compared with other DSS-induced genes in

inflamed colonic tissue is unknown. To understand the

inflammatory process associated with the initiation of

colitis, we systematically studied the early colon gene

expression profile of DSS-induced colitis by analysing the

publicly available microarray datasets deposited in the

GEO using a meta-analysis approach.26,27

We specifically focused on the expression of cytokines

and chemokines, and genes implicated in the regulation

of inflammation using the Gene Ontology Analysis mod-

ule in GENESPRING GX11. Hierarchical clustering analysis

showed that IL33 was the strongest of the 40 differentially

expressed cytokine and chemokine genes expressed early

in the colonic tissue (see Supplementary material,

Fig. S1A). Furthermore, IL33 and its receptor; the ST2

gene (IL1RL1) were the most highly induced genes,

among the 28 genes, involved in the regulation of the

inflammatory response (Fig. S1B). The induced IL33 mes-

sage in colonic tissue was detectable from day 4, and ST2

from day 6 after DSS administration (Fig. 1a and Fig.

S1A,B). The expression levels of several other key inflam-

matory cytokine and chemokines, including IL-1b, IL-6,
CXCL9 and CXCL10 were also significantly up-regulated

(> 2-log fold) by DSS in the acute inflamed colonic tissue

(Fig. 1a). However, Th2 (IL-4 and IL-5), Th1 (IFN-c),
IL-17 and the ‘alarmin’ (IL-1b and HMGB1) cytokine

genes were not significantly induced (Fig. S1A,B, and data

not shown).

We further determined IL-33 protein levels in vitro in

the cultured colonic tissue from mice that had received

DSS or PBS as control as described in the Materials and

methods. Consistent with the induction of IL33 message

(Fig. 1a), IL-33 secretion in cultured colonic tissue from

mice 5 days after DSS administration was also signifi-

cantly enhanced compared with that from PBS-adminis-

tered control mice (Fig. 1b).

These results therefore demonstrated that IL-33 and ST2

are key genes induced early in the inflamed colon of DSS-

treated mice, suggesting that this cytokine/receptor system

may be associated with the development of acute colitis.

ST2 deficiency impairs, and exogenous IL-33
exacerbates DSS-induced colitis

We next defined the importance of IL-33 and ST2 in the

pathogenesis of colitis in wild-type (WT) and ST2�/�

mice in vivo. Groups of WT and ST2�/� BALB/c mice

were given either PBS, DSS, IL-33 alone or DSS plus

IL-33 and the development of clinical signs of colitis was

monitored up to day 20. As shown in Fig. 2(a), WT mice

that received DSS but not PBS or IL-33 alone developed

diarrhoea from day 10, which was markedly delayed by

10 days in ST2�/� mice. In addition, exogenous IL-33

significantly exacerbated diarrhoea particularly on day 20

in the WT but not ST2�/� DSS colitis mice (Fig. 2a).

However, as reported,24 the injection of IL-33 or ST2

deficiency had no significant effect on body weight

Figure 1. Interleukin-33 (IL-33) and ST2 are the early induced genes

in colonic tissue of colitic mice. (a) Genespring GX11 analysis of

Affymetrix Gene-Chip Expression Data (GSE22307) from the colonic

tissue of dextran sulphate sodium (DSS) -induced colitis on Days 0,

2, 4 and 6, respectively, in mice. The differentially expressed cyto-

kines and chemokines and genes implicated in the regulation of

inflammation has been obtained from the hierarchical clusters and

displayed as Box Plots (Fig. S1). (b) In vitro IL-33 protein levels in

cultured colonic tissues from mice five or 6 days after DSS or PBS

administration, respectively.
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changes in the acute stage of colitis in mice (see Supple-

mentary material, Fig. S2A,B).

Consistent with these clinical parameters, compared

with PBS control, the IL-33 alone group had slightly

shortened, and the DSS, but in particular the DSS plus

IL-33-treated group had markedly shortened, colon

lengths (Fig. 2b) and colon inflammation (Fig. 2c) that

persisted for at least 8 days after DSS was withdrawn.

These pathogenic changes examined in groups of similarly

treated ST2�/� mice were significantly reduced (Fig. 2b,c).

These results demonstrated that IL-33/ST2 signals have

a pathogenic role in the early development and exacerba-

tion of acute colitis.

IL-33 enhances inflammatory cytokine and chemokine
productions in colitis

Pro-inflammatory and angiogenic cytokines and inflam-

matory chemokines are closely associated with the patho-

genesis of colitis.2,10,28–30 We further assessed the serum

cytokine/chemokine profile in colitis mice by 20-plex

Luminex (see Materials and methods). Experimental coli-

tis was induced in naive WT and ST2�/� mice, which

were then treated with or without IL-33 or PBS as

described above. The experiment was terminated on day

20 and serum samples were collected for multi-cytokine/

chemokine analysis. Interleukin-33 given alone signifi-

cantly enhanced IL-13 and CXCL9 but reduced IFN-c
and IL-10 production in WT mice but not ST2�/� mice,

compared with PBS control serum (Fig. 3). The group

treated with DSS alone had no significant effect on serum

cytokine concentration, except for increased IL-12 expres-

sion in WT and ST2�/� mice at this time-point. How-

ever, treatment with DSS plus IL-33 markedly enhanced

most of the key pro-inflammatory cytokines and chemo-

kines, including IL-4, IL-13, IL-6, IL-17, vascular endo-

thelial growth factor (VEGF), CXCL9 and CXCL10 but

reduced IL-10 and IFN-c production in WT mice but not

ST2�/� mice compared with control mice treated with

PBS, DSS or IL-33 alone.

Together these results suggest that IL-33 may promote

colitis by inducing an ST2-dependent production of

inflammatory type II (IL-4, IL-13), type 17 (IL-6, IL-17)

and angiogenic (VEGF) cytokines and chemokines

(CXCL9 and CXCL10) as well as by reducing type I

(IFN-c) and immuno-suppressive (IL-10) cytokine pro-

duction in mice with DSS-induced colitis.

IL-33 exacerbates colitis via IL-4

Type II cytokines (IL-4 and IL-13), in particular IL-4,

have been reported to have a critical role in the initiation

of DSS-induced colitis5,7,28 and we found, above, that IL-

33 can induce serum type II cytokines in mice with colitis

(Fig. 3). To define the requirement of IL-4 in colitis exac-

Figure 2. ST2 deficiency impairs and interleukin-33 (IL-33) injection

exacerbates dextran sulphate sodium (DSS) colitis. Groups of wild-

type (WT) and ST2�/� mice were either fed or not fed with DSS

and injected with IL-33 (1 lg/mouse/day) or PBS. (a) Diarrhoea

score and (b) colon length (on day 20) in the mice were determined

as described in the Materials and methods. (c) The colon sections

were stained with haematoxylin & eosin and scored. Data are repre-

sentative of two experiments, n = 5 mice per group, *P < 0�05,
**P < 0�01 compared with PBS controls.
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erbation and type II cytokine induction by IL-33, IL-4�/�

mice were given the same treatments of PBS, IL-33, DSS

or DSS plus IL-33 as described in Fig. 2. As reported,27

IL-4�/� mice that received DSS to induce colitis showed

a delayed appearance of diarrhoea on day 10 and had

attenuated pathogenic changes in the colon compared

with WT mice (Fig. 4a,b). More importantly, similar to

ST2�/� mice, IL-33 failed to exacerbate these clinical and

pathological parameters of colitis in the IL-4�/� mice.

Compared with WT controls, changes in colon length

and histological score associated with administration of

IL-33 were also not apparent in IL-4�/� mice (Fig. 4b).

In addition, IL-4 deficiency abolished the production

of IL-13, IL-12, CXCL9 and VEGF in the IL-33-treated

group, IL-12 and VEGF in the DSS-treated group and

IL-5, IL-13, IL-12, CXCL9 and VEGF in the DSS plus IL-

33-treated group compared with cytokine and chemokine

induction in similarly treated WT mice on day 20

(Fig. 4c). However, the serum concentrations of IL-10

were not affected by IL-4 deficiency.

We further investigated the importance of IL-4 receptor

(IL-4R) in the context, which is required for both IL-4

and IL-13 signalling. We found that similar to ST2�/�

and IL-4�/� mice, the shortened colon lengths in DSS or

DSS plus IL-33 treated WT mice were also prevented in

the groups of similarly treated IL-4R�/� mice (see Sup-

plementary material, Fig. S3A). The reduced colon patho-

genic change was accompanied by reduced IFN-c and

TNF-a, but enhanced IL-4 and IL-13 production in colon

cultures in IL-4R�/� mice groups compared with the

groups of similarly treated WT mice (Fig. S3B). The

enhanced IL-4 and IL-13 may be a result of the loss of

consumption of these cytokines in the IL-4R�/� mice

tissues.

Therefore, these results suggest that IL-33 exacerbates

colitis primarily via IL-4.

Discussion

Data reported in this comprehensive study reveal a hith-

erto unrecognized effect and mechanism by which the

IL-33/ST2 axis exacerbates DSS-induced colitis. Increasing

evidence suggests that the development of UC may be

attributed to intestinal epithelial barrier dysfunction and

abnormal angiogenesis.1–4 Our results contribute to this

evidence and suggest that colon-derived IL-33 may be an

additional key pathogenic factor that links epithelial dam-

age and the initiation of colitis for several reasons:

(i) Interleukin-33 may function as a novel epithelial

‘alarmin’, similar to high-mobility group box 1 (HMGB1)

and IL-1b, that initiate early inflammatory immune

responses.31 Interestingly, we found that IL-33, but not

IL-1b and HMGB1, is the earliest inflammatory cytokine

induced in inflamed colonic epithelium in colitis (Fig. 1

and data not shown). Hence, colon-derived IL-33 may be

a critical initiator of pathogenesis of DSS colitis. (ii)

ST2�/� mice have impaired colitis (Fig. 2). (iii) IL-33 is

capable of specifically inducing the key pathogenic cyto-

kines (IL-4, IL-5, IL-13, IL-6, IL-17, IFN-c, TNF-a and

VEGF) and chemokines but reducing immunosuppressive

(IL-10) cytokines in DSS-induced colitis via ST2 (Fig. 3).

Although it is recognized that type II cytokines, IL-4,

IL-5 and IL-13 play a pathogenic role in the development

of UC,5,7,28 until now, it was unknown how these typical

Th2 cytokines were induced in the innate context of

colitis and whether these cytokines contributed to the IL-

33-mediated effect. Our mechanistic studies suggest that

IL-33 can induce these type II cytokines and directly via

IL-4 and IL-4R in colitis. It is well documented that IL-

Figure 3. Interleukin-33 (IL-33) enhances key inflammatory cyto-

kines and chemokines in colitis. Serum samples were collected on

day 20 from the groups of wild-type (WT) and ST2�/� mice in

Fig. 2 Total serum cytokine and chemokine concentrations were

measured by luminex. Data are representative of two experiments,

n = 5 mice per group, *P < 0�05, **P < 0�01 compared with the

PBS control.
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33 can induce all these type II cytokines by an array of

innate cells, including eosinophils, basophils, mast cells,

but not nuocytes which only produce IL-5 and IL-13, not

IL-412–17 and data not shown). In contrast, T cells, which

are the key cells expressing type II cytokines in allergy

and asthma, are not the main IL-4 producers in this

innate immune UC model, because naive T cells do not

express ST2 in the absence of T-cell receptor activation

and are thus unresponsive to IL-33.14,15

Our results also show for the first time that IL-4 is

required for IL-33-mediated exacerbation of colitis, and

for subsequent VEGF and CXCL9 production (Figs. 3

and 4). VEGF is a major pro-angiogenic cytokine and

plays an important role in the pathogenesis of colitis by

enhancing colonic permeability and facilitating migration

of inflammatory cells.29 CXCL9 and CXCL10 are the key

chemokines for the recruitment of monocytes and macro-

phages, and these are intimately associated with the path-

ogenesis of colitis.30,32 Together, these results provide a

possible mechanism underlying the IL-33 / IL-4 patho-

genic pathway in colitis.

Interleukin-12 and IL-17 are the key cytokines for type I

and 17 responses and are also thought to play pathogenic

roles in UC, Crohn’s disease and the chronic stage of DSS-

induced colitis.2,8,10 We noted in this study that IL-33 can

also induce serum IL-12 and IL-17, at the later stages of

the disease, 20 days after DSS administration (Fig. 3). This

suggests that in addition to its role in the early stages of

disease, IL-33 may also contribute to the switching of the

early type II to late type I and IL-17 responses in the

chronic stages of UC and Crohn’s disease. Whereas it is

still unclear how IL-33 induces IL-12 and IL-17 in colitis,

as Th1 and Th17 cells do not express ST2, it is likely that

IL-33 may promote these responses via innate cells.18,33

It is noteworthy that changes in the severity of colitis

caused by IL-33 injection or ST2 deficiency were not sig-

nificantly associated with a change in body weight in the

mice (Fig. S2A,B). This is consistent with a previous study

showing identical body weight loss in WT C57BL/6 and

IL-33�/� mice when fed with DSS.24 Intriguingly, com-

pared with WT mice, the IL-33�/� mice had a delayed

recovery in body weight after withdrawal of DSS.24 How-

ever, this was not the case in ST2�/� mice in the present

study and the reason is currently unclear. It may be

because of the differences in genetic background of the

mice and experimental conditions or the ST2-independent

bioactivity of full-length IL-33 as previously suggested.34

Furthermore, recent evidence suggests that injection of

IL-33 may have a beneficial effect on chronic DSS-

induced colitis or trinitrobenzene sulphonic acid-induced

colitis, a model of Crohn’s disease in mice,35,36 suggesting

that IL-33 may play a complex role in different types and

throughout the duration of colitis. More studies are

needed to clarify this issue.

Figure 4. Interleukin-33 (IL-33) exacerbates colitis via IL-4. Groups

of wild-type (WT) and IL-4�/� mice were injected with IL-33 as

above. (a) Diarrhoea score, (b) colon length and histological score in

the mice were determined as described in the Materials and meth-

ods. (c) The levels of serum cytokine were measured by luminex.

Data are representative of two experiments, n = 5 mice per group,

*P < 0�05, **P < 0�01 compared with the PBS group.
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Interleukin-33 is clearly expressed in the inflamed

mucosa of patients with inflammatory bowel disease,

particularly in UC, and is reduced after anti-TNF-a ther-

apy.20–23 In these cases mucosal expression of IL-33 is also

mostly localized to intestinal epithelial cells20,21,23 and in

activated sub-epithelial myofibroblasts.22 However, the

clinical relevance of the IL-33/ST2 system in inflammatory

bowel disease is unknown. Our results have extended these

clinical findings with a putative mechanism and suggest

that colon-derived IL-33 may represent an important

factor for the development and exacerbation of UC.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. The early gene profile in colonic epithelia in

dextran sulphate sodium (DSS) colitis mice. Genespring

GX11 analysis of Affymetrix Gene-Chip Expression Data

(GSE22307) from the colonic epithelium of DSS-induced

mouse colitis on Days 0, 2, 4 and 6, respectively. The

differentially expressed genes were then classified and

clustered based on Gene Ontology (GO) Analysis to

decode the differentially expressed genes in (A) Cytokines

and Chemokines and (B) Regulation of Inflammatory

Response.
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Figure S2. Interleukin-33 (IL-33) injection and ST2

deficiency do not significantly affect body weight in dex-

tran sulphate sodium (DSS) colitis mice. Groups of wild-

type (WT) and ST2�/� mice were fed with or without

3�5% DSS and/or injected with or without IL-33. (A)

Body weight in WT colitis mice with or without IL-33

(B) Body weight in WT and ST2�/� colitic mice. Data

are representative of two experiments, n = 8 mice per

group.

Figure S3. Role of interleukin-4 receptor (IL-4R) in IL-

33 exacerbates colitis. Groups of wild-type (WT) and IL-

4R�/� mice were either fed or not fed with dextran sul-

phate sodium (DSS) and injected with IL-33 as above.

(A) Colon length score in the mice was determined. (B)

The cytokine levels in cultured colonic tissues from PBS,

DSS or DSS plus IL-33-treated mice were measured by

luminex as described in Materials and methods. n = 5

mice per group, *P < 0�05 compared with PBS group.
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