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Abstract

The domain with which this research is concerned is traumatic brain injury and models

which attempt to predict hypotensive (low blood pressure) events occurring in a hospital

intensive care unit environment. The models process anonymised, clinical, minute-by-

minute, physiological data from the BrainIT consortium. The research reviews three

predictive modelling techniques: classic time series analysis; hidden Markov models;

and classifier models, which are the main focus of this thesis.

The data preparation part of this project is extensive and six applications have been

developed: an event list generator, used to process a given event definition; a data set

generation tool, which produces a series of base data sets that can be used to train ma-

chine learning models; a training and test set generation application, which produces

randomly drawn training and test data sets; an application used to build and assess a se-

ries of logistic regression models; an application to test the statistical models on unseen

data, which uses anonymised real clinical data from intensive care unit bedside monitors;

and finally, an application that implements a proposed clinical warning protocol, which

attempts to assess a model’s performance in terms of usefulness to a clinical team. These

applications are being made available under a public domain licence to enable further

research (see Appendix A for details).

Six logistic regression models and two Bayesian neural network models are examined

using the physiological signals heart rate and arterial blood pressure, along with the

demographic variables of age and gender. Model performance is assessed using the

standard ROC technique to give the AUC metric. An alternative performance metric, the

H score, is also investigated. Using unseen clinical data, two of the models are assessed

in a manner which mimics the ICU environment. This approach shows that models may

perform better than would be suggested by standard assessment metrics. The results of

the modelling experiments are compared with a recent similar project in the healthcare

domain and show that logistic regression models could form the basis of a practical early

warning system for use in a neuro intensive care unit.
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• Episode — a collection of events separated by a maximum amount time defined

by the parameter, NewEpisodeGap (NEG)

• EUSIG — University of Edinburgh Secondary Insult Grades
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• ICU — intensive care unit
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provides a key to be used in subsequent flow charts.

xvii



xviii

JSON
Format

CSV
Format

R Script

shell 
script

python 
script

PDF
Format

Text
File

R 
Object

Figure 1: File Types Used



1

Chapter 1

Introduction

This thesis details extensive research regarding the question of whether or not early warn-

ing of hypotensive (dangerously low blood pressure) episodes can be provided for a neu-

rosurgical team treating patients in an intensive care setting by using simple statistical

models. The hypothesis is that classifier methods, specifically the well established lo-

gistic regression model, favoured by clinicians, can provide useful early warning which

matches the current state of the art in the traumatic brain injury (TBI) domain.

In many areas of modern society there is an interest in predicting the probability of

an event. If a system could be produced that gave early warning of a particular event

then some kind of pre-emptive action might be taken. For example, it may be possible to

provide early warning of a dangerous medical condition to the clinical staff in a hospital

intensive care unit (ICU). An example from the commercial world, with similar safety

implications, would be the prediction of the onset of jet engine malfunction. Early warn-

ing of this condition would give the pilots of the aircraft time to take the appropriate

action and thereby ensure the safe completion of the journey. Many other examples of

a purely financial nature can be constructed, such as the prediction that a project will

go over budget. In all these examples the early warning system is providing the end

user with a estimate of the probability that an event will occur within a specified time

period. Ideally the user would prefer values of high probability along with a sufficient

early warning before the event. In addition, the system must be accurate i.e. when it

gives a high probability warning, the event is highly likely to happen.

These are examples of problems that are studied in the field of “Machine Learning”,

a combination of computer science, statistics and mathematics which explores methods

of learning from data with a view to producing cross-domain solutions. Although a

relatively new discipline (mid 1990s) in its current form, the roots of the research can

be traced back to early work in artificial intelligence in the 1950s. Machine learning

applications have achieved widespread use and can range, for example, from medical

diagnostics to in-car satellite navigation systems. The field continues to address real-

world problems from a broad range of subject areas. A review of machine learning

research and its relationship with science as a whole is discussed in an insightful paper
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by Wagstaff (2012).

In the above examples, the approach to the problem can be generalised, resulting in

the following tasks:

• Agree a definition of the event — this can be a lot harder than it sounds. This

process should involve domain experts who might hold very differing opinions.

Another crucial point to establish is whether or not the system under study is sub-

ject to episodes of events. It is often the case that a steady state system will briefly

enter an event condition and then return to its steady state regime. If a full fault

condition is going to happen this first excursion into the event condition may be a

precursor to a much longer event. If this is the case then the grouping of several

associated events is called an episode. A useful early warning system predicts the

onset of a new episode.

• Collect relevant data — again this can be straightforward or extremely complex.

The important point is to have a good understanding of the quality of the data that

is available. The task is to collect as many signals as is practical before the event,

along with the times that the event actually occurred. It may, however, be the case

that the creation of the event timings falls into the next step of the process.

• Prepare the data for statistical assessment — the raw measurements taken are

rarely in the form that is required for the modelling techniques that will be used.

Preparing the data can be a time-consuming step and it is essential that any steps

taken to preprocess the raw measurements are fully repeatable by an independent

research team. This involves careful record keeping of all the transformations

together with full availability and documentation for any software tools used. As

mentioned above, this step may also include the production of the event list itself.

It may be the case that the events, of which the system is trying to provide some

early warning, are poorly understood and not routinely identified or dealt with

at the data source. In this situation the system will have to sweep through the

collected data generating a list of events that match the agreed definition. Once the

event list is available, a further processing step is required to provide two classes

of data; one that precedes the event condition (conventionally called the positive

case) and the other for when the process is in a steady state condition.

• Construct suitable models — several techniques are available to the researcher.
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Simpler models are preferred, as this makes the validation process more straight-

forward and also helps when trying to interpret the model parameters. It is also

easier to explain the output of the models to a non-specialist audience (who may

well be the client). This topic, acceptance of the model by domain experts, will be

shown to have a large influence on deciding which techniques are to be used.

• Assess the models — how do the models perform on unseen data? Is one model

better overall or is performance improved if models are changed, depending on

the current regime of the system? How should a model be assessed? There are

several well established methods for checking model performance using objective

measures. However, the models will hopefully be used in a practical setting and

the operation and usefulness of the results, which can be harder to assess, must

also be taken into account.

The project will show how the general steps required to address an event prediction

problem can be applied to the specific problem of providing early warning of a dangerous

complication which occurs in treating patients in an ICU.

This thesis investigates problems from the medical world, specifically from the trau-

matic brain injury (TBI) domain. Chapter 2 provides medical background material. In

particular the research focuses on phenomena known as secondary insults. A secondary

insult is a condition that occurs after a TBI patient has been stabilised by emergency

treatment and transferred to a neurointensive ICU. There are several types of secondary

insult however the focus of this current research is on the condition known as hypoten-

sion (dangerously low blood pressure). Hypotension is a clinical problem that affects a

substantial number of TBI patients, (Chesnut et al., 1993).

Research carried out in the mid 1990s, at the Western General Hospital, Department

of Clinical Neurosciences, University of Edinburgh, resulted in a published paper, (Jones

et al., 1994), which defined the “Edinburgh University Secondary Insult Grades” (EU-

SIG). The EUSIG definition for hypotension, is systolic arterial blood pressure ∑ 90

mmHg or mean arterial blood pressure of ∑ 70 mmHg for at least 5 minutes.

The data used to demonstrate the application of these techniques is actual clinical

data from TBI patients, gathered by the BrainIT Consortium (2007). This group of se-

nior neurosurgeons and intensivists ran a European Union (EU) funded project (QLG3-

CT_2002-01160) over a three year period from 2003 to 2005. This project produced

a database of minute-by-minute physiological data along with treatment notes and lab
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results from approximately 200 patients in a multi-centre study across 22 hospitals in

Europe, (Piper et al., 2010). Using the BrainIT database and the EUSIG definition for

hypotension, a dataset of approximately 3000 events can be identified from 136 patients.

A definition of the problem of event prediction is provided in section 2.2 and a dis-

cussion is provided on the situation where closely spaced events form a single episode.

The research focus is on predicting the start of an episode however, as most occurrences

of hypotension will take the form of a single event, for readability, the two terms are often

used interchangeably. A section on three possible approaches to the prediction problem

is presented and this section discusses using time series analysis, hidden Markov models

and classifier techniques. As well as technical aspects of how to approach the project,

context is provided by considering the important problem of how the models could be

used in a clinical setting which crucially requires that clinicians have some understanding

of the approach being used.

Data preparation for the chosen classifier based approach is considerable and a full

explanation is detailed in chapter 4. This process moves through three stages: iden-

tification of events and episodes; production of a pool of data by processing the ICU

monitoring data from all patients; and finally construction of two randomly drawn data

sets, a training set and a test set.

Using the training and test sets, this thesis will show the development of a logistic

regression based model which attempts to estimate the probability of a EUSIG defined

hypotensive event occurring with at least 10 minutes warning.

Model assessment is an essential part of the model building cycle and approaches

to this assessment are discussed in the latter part of chapter 5 and again from a clinical

perspective in chapter 7.

Six software applications have been developed to support this research:

Event Analysis Application (EAA) — an application for the identification of episodes

and events given a set of general defining parameters; Base Set Generator (BSG) —

an application which uses a list of events, and the data associated with these events, to

produce base data sets containing all possible feature vectors corresponding to a base

data set definition; Training and Test Set Generator (TTG) — a program to produce

randomly drawn training and test sets suitable for further statistical processing; Build

LR Models — an application to run the logisitic regression model functions provided

by the R statistical framework; ICU Data Stream — a software tool specific to the

research data source, which drives anonymised real clinical data from the ICU through
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the developed models; Clinical Warning Protocol Processor (CWPP) — a program for

assessing the model’s predictive capability from a clinical perspective. It is intended to

make these applications available to the research community by publishing the source

code under an open source agreement.
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In summary, the research question for this thesis is whether or not early warning of

hypotensive events can be provided for a neurosurgical team. The research hypothesis

is that classifier methods, specifically logistic regression models (a simple and explain-

able technique readily accepted by clinicians) can provide useful early warning which

matches the current state of the art in the TBI domain.

An outline of the research process is shown in Figure 1.1.
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Chapter 2

Background — Traumatic Brain Injury

A person does not expect to suffer traumatic brain injury (TBI). This condition is often

only one aspect of polytrauma resulting from an accident, and might only be recognised

after the initial assessment and stabilisation of a patient, (American College Of Surgeons,

2011). TBI is usually classified as mild or severe and is a major cause of healthcare costs

which are estimated at $60 billion (mild and severe) in the US in 2000, (Centers for

Disease Control and Prevention, 2011), with approximately 90% of these costs being

due to severe TBI, (Centers for Disease Control and Prevention, 2012) and C3 billion

(hospitalisation costs only) in Europe in 2005, (Andlin-Sobocki et al., 2005). This thesis

only considers severe TBI where the patient requires hospitalisation.

After the initial stabilisation, if TBI is recognised, the patient will be transferred to a

neurointensive ICU. The patient will usually be in a coma and mechanically ventilated.

The specialist clinical teams in the unit will subsequently be on alert for a class of con-

ditions known as secondary insults. These are conditions caused by changes in brain

physiology and chemistry and are not fully understood. In layman’s terms, the problems

arise from the fact that the body’s normal methods of dealing with injury i.e. swelling

and bruising, are confined within the fixed volume of the skull. In fact, these mechanisms

do occur and it is this internal swelling that affects blood flow and pressures within the

brain.

It is one of these secondary insults, hypotension, that is the focus of this thesis.

2.1 TBI pathophysiology, primary/secondary insults

The pathophysiology of a medical condition is the attempt to classify and understand

the underlying changes, caused by that condition, to the normal processes of the body.

TBI pathophysiology focuses on two areas, the primary injury — describing the external

forces involved in the damage to the brain, and the secondary injuries — which examine

the processes which occur over an extended time period after the initial trauma.

The primary injury falls into one of two main categories, physical contact with an

object, or acceleration followed by deceleration of the head. Physical contact may result

in visible injuries such as bruising and hematomas. Contact injury may also result in
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contusions, swollen brain tissue, and skull fractures which are typically detected by CT

scans. Acceleration/deceleration injury involves considerable internal forces and can

result in intracranial hematoma and damage to blood vessels and nerves within the brain.

TBI will usually result in further complications, the secondary injuries.

Although references to secondary complications can be found in the literature from

the 1950s, (Maciver et al., 1958), the major breakthrough in this domain is considered to

have started with the work of neurosurgeons in Glasgow in the mid 1970s, (Rose et al.,

1977).

Secondary insults often do not present with clinical signs. These secondary com-

plications are usually the result of the initial injury, but can also be associated with the

treatment given during the patient’s stay in the ICU, so called iatrogenic events.

With the advent of more affordable computerised data recording techniques in the

1990s, a group led by the leading neurosurgeon Douglas Miller, (Royal Society Edin-

burgh, 1995), at Edinburgh’s Western General Hospital published a paper, (Jones et al.,

1994), which classified the main types of secondary insult and showed that they were

more prevalent than previously thought. More importantly, the research showed that

secondary insults could be related to patient outcome. The study identified 14 types

of secondary insults and classified them into either systemic or intracranical problems.

These secondary insult types are presented in Table 2.1. The systemic secondary insult

hypotension — dangerously low blood pressure — was shown to be the most signifi-

cant when compared to the standardised Glasgow Outcome Scale (see Table 2.2). The

standardised Glasgow Outcome Scale is a measure of the patient’s long term recovery

(Jennett and Bond, 1975; Teasdale et al., 1998; tbi impact.org, 2013) and is best obtained

by the use of a structured interview (Wilson et al., 1997, 2007).
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Systemic Intracranial

Hypoxemia Hematoma

Arterial hypotension Raised intracranial pressure

Anemia Seizures

Hypocarbia Infection

Hypercarbia Vasospasm

Pyrexia

Hyponatremia

Hypoglycemia

Hyperglycemia

Table 2.1: Secondary insults that can contribute to hypoxic and/or ischemic brain

damage. Adapted from Table 1, p5 (Jones et al., 1994)

Survival vs. death Good vs. poor outcome

Variable Signif. Variable Signif.

Duration of hypotension 0.0064 Duration of hypotension 0.0118

Duration of pyrexia 0.0137 Pupil response O/A 0.0226

Duration of hypoxemia 0.0244 Duration of pyrexia 0.0772

Age 0.0652 Age 0.0964

Duration of raised ICP 0.1162 Duration of hypoxemia 0.1217

Duration of hypertension 0.3689 Duration of raised ICP 0.1941

ISS 0.3855 Duration of bradycardia 0.3737

GCSs postresuscitation 0.3858 ISS 0.5701

Duration of tachycardia 0.4001 Duration of hypertension 0.6133

Pupil response O/A 0.4857 Duration of tachycardia 0.6327

Duration of bradycardia 0.8733 GCSs postresuscitation 0.9051

Goodness of fit 90.00 % Goodness of fit 83.32 %

Table 2.2: Significance of logistic regression components for GOS outcomes at 12

months. Adapted from Table 8, p10 (Jones et al., 1994). ICP, intracranial pressure;

ISS, Injury Severity Score; GCS, Glasgow Coma Score; O/A, on admission.

The group also defined the Edinburgh University Secondary Insult Grading scheme,

which detailed thresholds for the various physiological signals as well as time durations

over which these signals must be maintained. These levels were based on previous stud-

ies and the clinical judgement of the group.
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Secondary Insult Grade 1 Grade 2 Grade 3

Raised ICP (mmHg) ∏ 20 ∏ 30 ∏ 40

Hypotension (mmHg) systolic ∑ 90 ∑ 70 ∑ 50

or mean ∑ 70 ∑ 55 ∑ 40

Hypertension (mmHg) systolic ∏ 160 ∏ 190 ∏ 220

or mean ∏ 110 ∏ 130 ∏ 150

CPP (mmHg) ∑ 60 ∑ 50 ∑ 40

Hypoxemia SaO2 (%) ∑ 90 ∑ 85 ∑ 80

or PaO2 (kPa) ∑ 8.0 ∑ 7.0 ∑ 6.0

Cerebral oligemia SjvO2 (%) ∑ 54 ∑ 49 ∑ 45

Cerebral hyperemia SjvO2 (%) ∏ 75 ∏ 85 ∏ 95

Hypercarbia (kPa) ∏ 6.0 ∏ 8.0 ∏ 10.0

Hypocarbia (kPa) ∑ 3.0 ∑ 2.5 ∑ 2.0

Pyrexia (±C) ∏ 38 ∏ 39 ∏ 40

Tachycardia (bpm) ∏ 120 ∏ 135 ∏ 150

Bradycardia (bpm) ∑ 50 ∑ 40 ∑ 30

Global cerebral hypoxia

Ca-jvO2( mlO2/100 ml blood) ∏ 9 (one grade only)

Global cerebral hyperemia

Ca-jvO2( mlO2/100 ml blood) ∑ 4 (one grade only)

Table 2.3: Edinburgh University secondary insult grades (EUSIG), in adults > 14 years.

Adapted from Table 2, p7 (Jones et al., 1994)

The timing definitions for the secondary insults are defined on page 6 of the Jones

paper as:

“To be considered a secondary insult in this study, abnormal values had to

persist for ∏ 5 min. The insult was deemed to have ended only when values

returned to normal for five consecutive minutes”

Further background material on TBI pathophysiology can be found on the Medscape

website; the article by Pangilinan (2012), is a good starting point. An accessible review

of the topic of secondary insults in TBI can be found in the PhD thesis by Elf (2005) of

Uppsala University Hospital.

2.2 Hypotensive event definition

There are many definitions of hypotension and the definition varies across the clinical

domains, (Berry et al., 2011; Bijker et al., 2009; Physio Net, 2009). In the TBI domain, a
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well respected example is the Brain Trauma Foundation (2007) “Guidelines for the Man-

agement of Severe Traumatic Brain Injury, 3rd Edition” which defines hypotension as

arterial systolic pressure < 90 mmHg. However, this document also states, “The impor-

tance of mean arterial pressure, as opposed to systolic pressure should also be stressed,

...”. Research undertaken as part of the AvertIT (2008) project, showed that both systolic

and mean arterial blood pressure play a role in current clinical management. This the-

sis therefore uses the EUSIG definitions, which require monitoring of both systolic and

mean arterial pressures. It can be shown, when using the EUSIG definition for hypoten-

sion, that most hypotensive events are in fact triggered by a breach of the mean arterial

blood pressure level of 70 mmHg, (Donald et al., 2012a).

The general definition of an event is presented in Section 2.2.1. A section is then

provided on the question of groups of events, which are called episodes, and is discussed

fully in Section 2.2.2 .

2.2.1 Event definition
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Threshold
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Time
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D

ADG

Figure 2.1: General event definition

Consider a trace of a measured signal being scanned, the sequence of measurements that

are being looked for are detailed in Table 2.4.
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Position Description

A Trace falls below the “Event Threshold”.

B Trace remains below the event threshold for the de-

fined “Event Holddown” period. The event is now

“Active” starting from point “A”.

ADG It is possible to tolerate some small data gaps; Al-

lowable Data Gap (ADG). This is an area for possible

future work (see Section 9).

C Trace rises above the event threshold.

D Trace remains above the event threshold for the

“Clear Holddown” period. At this point the event

is declared complete and subsequently the event is

defined from point “A” to “C”.

Table 2.4: Event characteristics

2.2.2 Episode definition
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) 

Event 
Threshold 

Time

Event #2Event #1 Event #3 

Episode #1 Episode #2 

1 2 3 4 5 6

BA

Figure 2.2: General episode definition

In conversations with clinical staff, anecdotal evidence suggests that short hypotensive

events often precede a main prolonged event. This gives rise to the concept of an episode

whereby a group of events, separated by a small gap, are combined to form a single

episode. Although every hypotensive event is considered dangerous, it is the prediction

of the first event in an episode that would be of most clinical use.

Figure 2.2 shows two episodes made up from three events. Consider the case where
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the tick markers on the time axis represent 5 minutes and the “new episode gap” (NEG)

is defined as ∑ 15 minutes. The initial dip below the event threshold at point 1 starts the

first event and the first episode. This event lasts for 35 minutes until it clears at point 2.

A second event begins 14 minutes later at point 3. The NEG (line A) is < 15 minutes

therefore the first episode remains active. The second event lasts for just over 25 minutes

before clearing at point 4. The measurement continues above the event threshold for

some 25 minutes (line B) and therefore the first episode can be declared complete 15

minutes after point 4. The trace again drops below the threshold at point 5, which starts

off event 3, and also constitutes the start of episode 2. The signal then rises above the

threshold at point 6 to complete the event. It stays above this level for more than 15

minutes thereby completing the episode.

2.3 BrainIT database

The primary source of data for this research comes from the BrainIT Consortium (2007).

Through a series of EU funded projects, the most recent of which was QLG3-CT_2002-

01160, this group has produced a database of clinical measurements on patients suffering

from TBI. Crucially, the time series data in the form of minute by minute readings from

the ICU monitors is available.

The database is not strictly public domain but is available for academic research by

contacting the coordinator, Dr Ian Piper, by email at ian.piper@brainit.org. The ethos

of the group is one of information sharing and therefore any results derived from the

database are expected to be published via the academic community.

The database contains three classes of information: demographic data — giving one

off information about the patient such as age, gender, time and type of trauma, along

with initial clinical readings collected at admission to both the nearest emergency hospi-

tal and the specialist neurosurgery unit; physiological data — minute-by-minute readings

of clinical vital signs for example, intracranial pressures, blood pressures, heart rate and

oxygen saturation; and episodic data — notes regarding any treatments given to the pa-

tient, laboratory results from the regular blood samples taken, and regular Glasgow Coma

Scores (GCS) which are used to assess a patient’s neurological condition. The GCS is a

scale ranging from 3 to 15 which is used by clinical staff to monitor the state of the pa-

tient’s conciousness (Teasdale and Jennett, 1974). It consists of three tests which check

a patient’s eye, verbal and motor responses. Episodic data also contains notes on any

nursing care which has occurred during the patient’s stay in the ICU.
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For this research program, two releases of the BrainIT database were used. Using

the 2008 release, a cohort was constructed by examining the database for patients who

were over 15 years of age and had more than 24 hours of data available for the signals

described in Section 2.4. This reduced the number of suitable patients from 199 to 136.

The demographic characteristics of this first cohort are described in Table 4.1. Using

the 2011 release, a cohort of 30 patients was identified using the same criteria and this

was used to test the developed models in a manner which simulates the actual stay in

the ICU by having the model process the minute-by-minute data. The demographic

characteristics of this validation cohort are described in Table 7.1.

2.4 Data used for research

A modern neurointensive ICU contains a wide range of sophisticated equipment to help

the clinical teams look after the patient. Central to this range of equipment is the physi-

ological monitoring system which records minute-by-minute values of the patient’s vital

signs. A typical system will capture values for heart rate, breathing, blood pressures and

body temperatures. This research uses only heart rate and blood pressure signals.

Figure 2.3: Modern neuro intensive care unit

The data source from the BrainIT Consortium (2007), contains the four signals that

will be used during this research: heart rate (HRT), systolic arterial blood pressure (BPs),

diastolic arterial blood pressure (BPd) and mean arterial blood pressure (BPm). An

example of these traces is shown in Figure 2.4. The plots are from BrainIT patient

73704046, a 54 year old male. This series of plots show the signal trace for each variable
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in the 40 minutes leading up to a hypotensive event. The grey hatched area covers the 10

minutes just before the event which is not used in the training of the models.
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Figure 2.4: Physiological signals associated with episode 1 from patient 73704046 in

the BrainIT database; y-axis pressures in mmHg, HRT in beats/min, x-axis in minutes
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Figure 2.4 shows the four physiological signals that are being tracked. In each trace,

t = 0 is the point where a hypotensive event occurred, in this case a breach of the BPm

threshold of 70 mmHg. The trace between t ° 40 and t ° 10 is the data on which the

model will operate, as the aim is to provide at least 10 minutes of warning of increased

risk of an event. The horizontal lines on the BPs and BPm traces are the EUSIG threshold

values of 90 and 70 mmHg respectively. Details of the measurements are given below:

Signal Description Units Comments

HRT heart rate beats/min Measured by electrocardiogram.

BPs systolic arterial

blood pressure

mmHg The maximum blood pressure

measured by intravenous (IV)

cannulation (permanent nee-

dle) in one of the patient’s main

arteries.

BPd diastolic arterial

blood pressure

mmHg The minimum blood pressure

measured in the same line as BPs.

BPm mean arterial

blood pressure

mmHg The average blood pressure com-

puted by the bedside monitoring

device. This is not a simple arith-

metic average due to the shape of

the cardiac cycle.

Table 2.5: ICU signals used for research

The statistical properties of blood pressures in TBI patients have been identified in a

paper by Mitchell et al. (2007). A brief description of the signal characteristics is detailed

below. A full discussion on the processing applied to these signals is given in Chapter 4,

Section 4.2.2.

One limitation imposed on the models is that they must operate on a minimal amount

of data, ideally 30 mins (this will be discussed in more detail in Section 4.2.6). All the

traces in Figure 2.4 show a disturbance in the section between t ° 40 to t ° 20 period.

The question must be asked — is this what the data looks like all the time? The next plot

shows that this patient was, in fact, in a relatively stable condition before the 40 minutes

shown in Figure 2.4.
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Figure 2.5: Physiological signals associated with episode 1 from patient 73704046 in

the BrainIT database, stable pattern moving to episode, y-axis pressures in mmHg,

HRT in beats/min, x-axis in minutes

Figure 2.5 is provided to show that the patient was in a stable condition prior to the

event. Notice that the traces do not contain as much variation as the -40 to -20 section of
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Figure 2.4 however, there are definite positive and negative trends.

There are, of course, several ways of attacking this problem; the increasing trend

pattern shown by BPs in Figure 2.5 would suggest that some measure of long term trend

would be a useful characteristic to assess. However, discussions with clinical colleagues

suggest that a practising clinical team would tend to focus on the most recent 30 minutes

and be less trusting of earlier data. It can, of course, be argued that with modern com-

puting hardware it is easier to monitor longer term trends, and indeed some patterns may

be developing much earlier than current clinical practice can spot. This is the nature of

cutting edge research — a balance between acceptance by clinical teams resulting in a

willingness to try new techniques and novel research to identify unknown patterns. This

topic will be addressed in Chapter 9 with regard to future work.

2.4.1 Signal characteristics

The following pages showing kernel density estimates and box plots for each of the four

signals that are used in the thesis. The plots are produced by combining the raw clinical

data from the bedside monitors with a database of episode start times, which have been

constructed as part of the research (see Section 4.1.1). The first plot on a page shows the

kernel density plot of measurements at a point n minutes before an event. This period of

n minutes is known as the event horizon (EH) and the technique for characterising the

data will be fully explained in Section 4.2.2. Each plot shows two traces; a density curve

for measurements that subsequently became an event n minutes later (the red trace) along

with a density curve of measurements that represent the stable state of the patient (the

black trace). This stable state measurement means that n minutes after the measurement

was taken, the patient was still in a stable condition. Construction of the density plots

allows a value for mode separation to be calculated. The second plot on the page uses a

box plot to characterise the data. In this plot the median separation has been calculated.
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Figure 2.6: HRT — positive and negative cases; mode separation, x-axis beats per

minute

40 60 80 100 120 140

HRT − EH:10; separation: 0.00

40 60 80 100 120 140

HRT − EH:15; separation: −1.50

40 60 80 100 120 140

HRT − EH:20; separation: −1.00

40 60 80 100 120 140

HRT − EH:25; separation: −2.00

40 60 80 100 120 140

HRT − EH:30; separation: 0.00

positive cases
negative cases

Figure 2.7: HRT — positive and negative cases; median separation, x-axis beats per

minute
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Figure 2.8: BPs — positive and negative cases; mode separation, x-axis mmHg
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Figure 2.9: BPs — positive and negative cases; median separation, x-axis mmHg
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Figure 2.10: BPd — positive and negative cases; mode separation, x-axis mmHg
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Figure 2.12: BPm — positive and negative cases; mode separation, x-axis mmHg
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Figure 2.13: BPm — positive and negative cases; median separation, x-axis mmHg
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2.4.2 Correlation assessment

It is expected that the available signals will show some correlation. Tables 2.6 to 2.8

examine the correlation between available physiological signals.

HRT BPs BPd BPm
HRT 1.00 -0.03 0.11 0.05
BPs -0.03 1.00 0.49 0.73
BPd 0.11 0.49 1.00 0.91

BPm 0.05 0.73 0.91 1.00

Table 2.6: Correlation between physiological measures, stable condition

HRT BPs BPd BPm
HRT 1.00 -0.15 0.13 0.05
BPs -0.15 1.00 0.23 0.58
BPd 0.13 0.23 1.00 0.87

BPm 0.05 0.58 0.87 1.00

Table 2.7: Correlation between physiological measures, unstable condition

HRT BPs BPd BPm
HRT 0.00 0.11 -0.02 0.00
BPs 0.11 0.00 0.26 0.15
BPd -0.02 0.26 0.00 0.03

BPm 0.00 0.15 0.03 0.00

Table 2.8: Difference between stable and unstable correlations between physiological
measures, i.e. the difference between Table 2.6 and 2.7

In order to assess the correlation between physiological signals, the data from 50

random draws of the 10_5 base data set was averaged to give Tables 2.6 and 2.7. Table

2.6 show the correlation when the patient is in a stable condition. It can be seen that

there is considerable correlation between the values for systolic arterial blood pressure

(BPs) and mean arterial blood pressure (BPm). Table 2.7 show the correlation when the

patient is in a unstable condition i.e. the patient will start a hypotensive episode in 10

minutes time. This correlation is to be expected as the signals are all derived from the

same intravenous line and BPm is the geometric mean of the aortic pressure trace (see

Figure 2.14) over the last minute of heartbeats (typically 72).
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Figure 2.14: Wiggers diagram showing the cardiac cycle which consists of the Systole

phase followed by the Diastole phase (Wikipedia, 2012). The trace of particular inter-

est is the aortic pressure wave (top grey trace).

The BPm value is approximated by the equation (Klabunde, 2005, Chapter 5):

BPm = 1
3

BPs + 2
3

BPd (2.1)

Eqn 2.1 results from the fact that a complete cardiac cycle (see Figure 2.14) is made

up from the systolic phase which takes approximately 1/3 of the cycle followed by the

diastolic phase which accounts for the remaining 2/3 of the cycle. This ratio is main-

tained if the patient is in a stable state. If the patient is unstable the shape of the cardiac

cycle may change and the ratio 1 : 2 may change. This is known as tachycardia if the

heart rate is too fast and bradycardia if the heart rate is too slow. If either of these com-

plications become severe they are deemed secondary insults in their own right (see Table

2.3).

Because of the correlation between signals, normal modelling practice would be to

leave one of the signals out of any models under investigation. However because BPm

is acting as a measure of instability the research will also investigate a model using all
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three blood pressure signals. This will be discussed in more detail in Section 5.2.

2.4.3 Signal characteristics by injury type

A classification of the episodes by injury type is given in Figure 2.15. This plot clearly

shows that the bulk of the episodes fall into three injury categories: road traffic accidents

(RTA); falls (Fl); and pedestrian (Pd).
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Episodes by Injury Type

Type of trauma
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ou

nt

0
20

0
40

0
60

0
80

0
10

00

Figure 2.15: Episodes by injury types: At = Assault; Fl = Fall; Pd = Pedestrian; Sp =

Sport; RTA = Road Traffic Accident; Un = Unknown; Wk = Work.

Taking the data from the three main injury types, Figure 2.16 details the median val-

ues of each physiological signal over the 30 minutes of available data used for modelling

purposes. Each strip plot shows green markers indicating the median value when the

patients are in a stable state. The red markers shows the median value for the unstable

state. This data comes from the BDS_10_30_all_data.csv data set (See Section 4.2.4 for

a description of the data sets and their naming conventions). The patterns for the blood

pressure signals are similar for all three types of injuries. The stable and unstable medi-

ans for the blood pressure signals tend to be higher for patients who have suffered a fall.

The pattern for heart rate is not so clear. For patients admitted with injuries classified as

RTA or Pedestrian, the heart rate before an episode is higher than the median stable heart
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rate. Interestingly, for patients suffering from falls the heart rate is lower than the median

stable heart rate.
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Figure 2.16: Signal medians by injury types. The green markers are from the sta-

ble state of the patients. The red markers indicate values just before a hypotensive

episode is about to start.
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Chapter 3

Methods Review

This chapter provides a review of three modelling approaches: classic time series analy-

sis; a hidden Markov model based approach; and finally, classifier systems.

3.1 Approaches to modelling episodes

Although there are various approaches to the analysis of the problem of detecting the

onset of hypotensive episodes, it is useful to restate the aim of the project which is to

produce a system for predicting increased probability of a risk of a hypotensive episode,

i.e. it would not be expected to exactly predict the start time of the episode. Indeed,

clinicians would not accept such a system. The system should, however, ideally pre-

dict the possible onset of hypotension as far in advance as possible and be suitable for

incorporation into an online decision support system.

The available data is essentially a collection of time series profiles with associated

meta data (age, gender, type of injury, etc.). A first approach could be to produce a “typ-

ical” time series profile and attempt to use the techniques of classic time series analysis.

This approach is discussed in Section 3.2. Another approach would be to use a method

which accepts that the observed measurements are symptomatic of the underlying state

of the patient and that the real processes contributing towards the onset of the hypoten-

sive state are unobservable, at least in the context of during treatment in an ICU. This

approach is discussed in Section 3.3. Finally, one could take the approach that the patient

is either in one of two states: stable or unstable and approaching hypotension. The sig-

nals from the ICU monitors can then be classified as being from either one or the other

of these states. If these assumptions are used, then a group of techniques called pattern

classification can be used. This is the main approach taken in this thesis and is discussed

in considerable detail in Section 3.4.

3.2 Classic time series analysis

As can be seen from the typical data described in Section 2.4, the identification of hy-

potensive episodes could be considered as an exercise in time series analysis. The data is

collected at regular intervals i.e. Xt = (HRTt ,BPst ,BPdt ,BPmt ) the time interval index
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t in this case being one minute, and it is likely that an individual vector of measurement,

Xt , will have some correlation with previous vectors of measurement ( . . . , Xt°2, Xt°1).

Time series analysis is a well studied field and standard approaches to the analysis of

time series signals have been developed. In particular, the techniques described by Box

et al. (1994) are considered the classic method of building time series models. A useful

text, with many examples and supporting analysis code using the R statistical language

(R Development Core Team, 2008) is provided by Shumway and Stoffer (2006). An-

other accessible text is provided by Chatfield (2004) and the following description of the

methods used during a time series analysis use the structure from chapters two to five of

this book.

An examination of a given series should always start with exploratory data analysis of

the data. This involves plotting the data and visually checking for trends and patterns that

may be present. This initial approach is discussed in Section 3.2.1. Various probability

models can then be tried and the approaches to building these models are discussed in

Section 3.2.2. Once a suitable model has been chosen, the next step in the analysis is

to fit the model to the observed time series data set, this procedure is detailed in Section

3.2.3. Finally, having chosen and fitted a model to the time series under investigation,

the model can be used to make predictions regarding the future path of the time series

signal. This is discussed in Section 3.2.4 with respect to both simple univariate models

and more complex multivariate models that would be required in any attempt to predict

the onset of a hypotensive episode.

In any time series analysis it is possible to examine the series from a time domain or

frequency domain perspective. The frequency domain is not a natural area that clinical

teams are familiar with and therefore the following discussions are confined to techniques

developed in the time domain. Although time series analysis is not the focus of this the-

sis, there are examples of researchers using this type of approach in medical domains for

example Christini et al. (1995) who investigated heart rate dynamics, and Vandenhouten

et al. (2000) who examined brainstem signals using these techniques.

3.2.1 Descriptive procedures for time series data sets

A fundamental difference between a time series data set and a more “standard” data

set obtained from some experimental procedure is the existence of correlation between

successive measurements in the data set. Typically the major assumption made when

examining a data set and beginning an analysis is that the observed measurements for a
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given variable are independent of each other. This is not the case in a typical time series

data set. It is one of the main tasks of any time series analysis to assess and quantify the

correlation between successive measurements for a given signal. It is important to realise

that the normal measures that are used to characterise a data set e.g. mean and standard

deviation are inappropriate for a time series.

A general model for a time series data set is often represented by the equation

xt =µt +∞t +≤t (3.1)

where xt are the observations, µt is a trend component, ∞t is a seasonal effect and ≤t is

the random error or unexplained component. A more detailed analysis may also include

terms ct for a cyclic effect, it for intervention effects controlled by an indicator variable

and cvt for covariate effects.

Note that this is a relatively simple form of a time series model. In practice, each of

the terms on the right hand side can consist of further terms.

Eqn. 3.1 describes an additive model where the components of the model act inde-

pendently. Another possible model uses the same components however they act multi-

plicatively as in Eqn. 3.2.

xt =µt∞t≤t (3.2)

This results in the seasonal effect or variation depending on the size of the trend

effect. If this structure is suspected it is best to transform the data set using, for example,

the natural logarithm on both sides of Eqn. 3.2 to give

l og (xt ) = l og (µt∞t≤t )

= l og (µt )+ log (∞t )+ log (≤t ) (3.3)

which can be analysed as an additive model. Other transformations are often used

e.g. square root. Both natural logarithms and square root transformations are examples

of the general Box-Cox transformation (Box and Cox, 1964).

As time series are often considered over a yearly period, there is frequently a “sea-

sonal” aspect to the data e.g. higher temperatures in summer. For the the physiological

signals that are being studied, the seasonal effect ∞t can usually be ignored. Cyclic ef-

fects can however be found even in shorter duration time series. In the context of the ICU
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measurements being studied, a possible cyclic effect would be the rise in blood pressure

due to the regular breathing cycle. This may be particularly of concern if the patient

is being mechanically ventilated. The more likely systematic variation would be in the

form of a trend component which can be described as a long-term change in the mean

value of the signal. An analysis would start with an investigation for a trend component

and consideration of two cases. The first case sets µt to a constant value e.g. BPm in a

patient who has been stabilised with the observed variation being modelled solely by the

≤t term. The second case assumes µt is changing over time i.e. a trend effect. This would

be observed, for example, in the case where BPm begins to rise due to the administration

of fluids by the clinical staff. In this situation the slope of the trend, positive or negative,

is of interest.

Once any cyclic and trend components have been removed the signal should consist

of a series of “residual” measurements. It is this residual signal that is modelled using the

techniques and models to be discussed in subsequent sections. It is important however

to stress that all of the components of the time series signal may be of use during the

treatment of the patient.

An important concept in time series analysis is the idea of a “stationary” signal. This

will be defined formally in Section 3.2.2.1. Conceptually a stationary process is one

where there is no systematic trend away from the mean value of the signal, no systematic

change in the variance of the data and all identifiable periodic variations have also been

removed. In other words the residual time series is more or less the same across the entire

data set. This property is unlikely to be strictly present in real world signals however

as the probabilistic models are based on this assumption it is essential that the data is

checked to judge if it is reasonable to assume this property is close to being achieved.

Perhaps the most important tool in the initial exploratory phase of the analysis is the

“time plot”. The two plots in Figure 3.1 are examples of time plots and show real blood

pressure data from a patient. It is possible to see from these simple plots whether or not

there is a possible trend and the general nature of the variation about a mean value.
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Figure 3.1: Two traces of mean blood pressure data from BrainIT patient 7157372, a

46 year old female. The top plot (from 2003-09-05) shows a stable mean arterial blood

pressure of approximately 80 mmHg across a two hour period. The bottom plot (from

2003-09-01) shows a rising trend in mean arterial blood pressure over a different two

hour period. The blood pressure rises from about 80 mmHg to about 98 mmHg. A

visual examination suggests a linear trend may be present across the entire range of

data from 02:42 to 04:42.

3.2.1.1 Characterising trends within a time series

If a trend component is suspected, there are typically three ways it can be removed:

regression analysis; differencing; or moving average smoothing.

The trend component µt from Eqn. 3.1 is often modelled using a standard curve

fitting technique. Techniques that may be used are: simple linear regression, a quadratic

or higher order polynomial, natural splines or a logistic curve. Regression analysis is the

most useful because part of the procedure obtains an estimate for the slope of the trend.

A common analysis would start by using the familiar equation for a straight line with an

added zero mean Gaussian noise term. This is shown in Eqn. 3.4 for a realisation xt of a

random variable Xt .
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xt =Æ+Øt +≤t (3.4)

with constants Æ and Ø. ≤t represents the zero mean Gaussian noise. The parameters

would typically be estimated using a maximum likelihood procedure. By subtracting the

original series from the estimated trend a stationary residual series should be produced.

The correlation (if any) in this residual series can then help to chose a suitable model for

the stationary stochastic process generating the residuals (see Section 3.2.2). It should

be noted that when using these curve fitting techniques to estimate the trend component,

assumptions such as independence of observations and normality of the data may not be

strictly valid and may explain problems with the resulting residual series.

Another common technique is differencing the series, which involves working with a

series which is achieved by taking the difference between successive observed samples.

A first order difference would be zt = xt °xt°1.

The third technique is to use a filter to smooth the observations and thereafter proceed

to analyse the residual series. A moving average is a form of linear filter which converts

the original time series {xt } into another series {yt } using the linear operation

yt =
+sX

r=°q
ar x(t+r ) (3.5)

with {ar } equal to a set of weights with the property that
P

ar = 1. The usual approach

is to make the filter symmetric with s = q and a j = a° j .

The simple moving average would define all ar = 1/(2q +1) to give

yt =
1

2q +1

+sX

r=°q
x(t+r ) (3.6)

It remains for the analyst to pick a value for q , the smoothing order, which is done

using empirical methods. This also results in the removal of some of the data from the

analysis. Moreover this approach does not provide a value for the trend gradient.

A more popular filter, which preserves the length N of the data, is the exponential

smoother which is defined as

yt =
NX

j=0
Æ(1°Æ) j x(t° j ) (3.7)

with Æ a constant defined as 0 <Æ< 1.
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3.2.1.2 Auto correlation

It is useful to assess the degree of correlation between measurements within a time series.

The measurements can be taken at different distances within a series and provide use-

ful properties called the sample autocorrelation coefficients. The interpretation of these

coefficients can be used to choose a suitable probability model (see Section 3.2.3).

From standard statistics, given N pairs of observations (x1, y1), (x2, y2), . . . , (xN , yN )

the sample correlation coefficient r is defined as

r =
P

(xt ° x̄)(yt ° ȳ)
p

[
P

(xt ° x̄)2 P
(yt ° ȳ)2]

(3.8)

The value for r can vary between +1 (complete positive correlation) through zero (no

correlation) to -1 (complete negative correlation).

For a time series with N observations x1, x2, . . . , xN , N °1 pairs of observations can

be formed by taking each pair to be separated by one time interval, in other words,

(x1, x2), (x2, x3), . . . , (xN°1, xN ) by comparison with Eqn 3.8, this gives the autocorrelation

coefficient at lag 1, r1, as

r1 =
PN°1

t=1 (xt ° x̄)(xt+1 ° x̄)

(N °1)
PN

t=1(xt ° x̄)2/N
(3.9)

where x̄ = PN
t=1 xt /N is the overall mean. For large N the factor N /N ° 1 can be

dropped and Eqn 3.9 becomes

r1 =
PN°1

t=1 (xt ° x̄)(xt+1 ° x̄)
PN

t=1(xt ° x̄)2
(3.10)

The autocorrelation coefficient can also be defined at an arbitrary lag k, where the

observations are at k steps apart from each other. This gives from Eqn 3.10

rk =
PN°k

t=1 (xt ° x̄)(xt+k ° x̄)
PN

t=1(xt ° x̄)2
(3.11)

Note that, in practice, the autocorrelation coefficients, {rk }, are often calculated by

first forming the autocovariance coefficents, {ck }, using the formula

ck = 1
N

N°kX

t=1
(xt ° x̄)(xt+k ° x̄) (3.12)

then computing

rk = ck /c0 (3.13)
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for k = 1,2, . . . , M with M < N

A useful graphical representation of the {rk } autocorrelation coefficients is called the

correlogram, also known as the autocorrelation function (ACF) plot. The correlogram

plots the sample autocorrelation coefficients against the lags k for k = 0,2, . . . , M with

M typically being 20 or 30. Note that r0 is by definition 1 but it is usually plotted to

give a reference for the other coefficients. Fig 3.2 gives an example of a correlogram for

the blood pressure time series depicted in Fig 3.1. The dashed lines indicate approximate

95% confidence limits (see Section 3.2.3 ), values of rk below these limits are considered

to be not significantly different from zero.
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Figure 3.2: The correlogram for the stable blood pressure (BPm) time series plot

shown in Fig 3.1. After three minutes the autocorrelation coefficients have decayed

to below the significant level.
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Figure 3.3: The correlogram for the rising trend blood pressure (BPm) time series plot

shown in Fig 3.1. The effects of the trend are shown in the slowly deceasing values of

the autocorrelation coefficients at increasing lags.

3.2.2 Probability models for time series data sets

A class of models known as “stochastic processes” can be defined for a collection of

observed time points which constitute a time series. Chatfield (2004) defines a stochastic

process as ‘a statistical phenomenon that evolve in time according to probabilistic laws’.

Each time point t = 0,±1,±2 within a discrete time series is considered to be a ran-

dom variable Xt and the observed time series itself, xt , with t = 1, . . . , N is considered to

be a single realisation of an infinite set of possible time series from an assumed stochastic

process.

A stochastic process is characterised by its moments with the first and second mo-

ments being used in practice although higher moments are theoretically possible. The

first moment is called the mean and is defined for all t as:
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µ(t ) = E [X (t )] (3.14)

The second moment is called the autocovariance function (acv.f) is defined for all t

as

∞(t1, t2) = E [X (t1)°µ(t1)][X (t1)°µ(t1)] (3.15)

A useful special case of the acv.f is the variance function which is defined for t1 = t2

as

æ2(t ) =V ar [X (t )] (3.16)

3.2.2.1 Stationarity in a time series data set

This section formally defines stationarity which was discussed in Section 3.2.1. A time

series is defined as strictly stationary if the joint distribution of X (t1), X (t2), . . . , X (tk ) is

the same as the joint distribution of X (t1+ø), X (t2+ø), . . . , X (tk+ø) for all t1, . . . , tk and ø.

This implies that it does not matter which point is used for the origin within the series i.e.

the origin can be shifted ±ø with no effect. The joint distribution therefore only relies

on the interval between the k values of the series. The special case of k = 1 yields that

the X (tk ) must be identically distributed, including µ(t ) =µ and æ2(t ) =æ2 i.e. constants

which do not depend on t . For the case k = 2, the joint distribution of X (t1) and X (t2)

only depends on the time interval (t2 ° t1) ¥ ø which is know as the lag. This leads to

Eqn 3.17 for the autocovariance function ∞(t1, t2) as

∞(ø) = E {[X (t )°µ][X (t +ø)°µ]}

=Cov[X (t ), X (t +ø)] (3.17)

Eqn 3.17 is usually normalised using ∞(0) to give the autocorrelation function

Ω(ø) = ∞(ø)/∞(0) (3.18)
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This strict definition of stationarity is, in practice, often replaced with a requirement

for second-order stationarity also know as weakly stationary. In this case the mean must

be constant and the autocovariance function must only depend on the lag ø. This gives

E [X (t )] =µ (3.19)

and

Cov[X (t ), X (t +ø)] = ∞(ø) (3.20)

Although the autocorrelation function (acf) is unique to a given stochastic process it

should be noted that the opposite is not true. In other words, a given acf may represent

many different stochastic processes and care must be taken when interpreting the plot of

the output of an acf.

3.2.2.2 Pure random model

A pure random model consists of a series of random variables, {Zt } which must be

mutually independent and identically distributed. It is usual to assume that the random

variables are drawn from a Gaussian distribution with mean zero and variance of æ2
Z .

These assumptions therefore give a constant mean and variance and it follows that

∞(k) =Cov(Zt , Zt+k ) =

8
<

:

æ2
Z k = 0

0 k =±1,±2, . . .
(3.21)

also, as different values of the series are uncorrelated, the autocorrelation function is

given by

Ω(k) =

8
<

:

1 k = 0

0 k =±1,±2, . . .
(3.22)

A pure random model produces a time series that is both second-order stationary

and strictly stationary. This model is often used as a building block for other more

complicated models such as the moving average (MA) model and the autoregressive

(AR) model.
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3.2.2.3 Random walk model

A random walk model is defined as

Xt = Xt°1 +Zt (3.23)

where Zt is drawn from a random (usually Gaussian) model {Zt } with zero mean

and variance æ2
Z as described in Section 3.2.2.2. It is usual to start the model at zero for

t = 0 giving X1 = Z1 and Xt =
Pt

i=1 Zi .

A random walk model is non-stationary as the mean, E(Xt ) = tµ, and variance,

Var(Xt ) = tæ2
Z , are both functions of t .

3.2.2.4 Autoregressive (AR) model

The definition of a autoregressive model of order p (written as AR(p)) is

Xt =Æ1Xt°1 +Æ2Xt°2 +·· ·+Æp Xt°p +Zt (3.24)

this has a similar form to a multiple linear regression model with Xt regressed against

past values of itself. Zt is drawn from a random model {Zt } with zero mean and variance

æ2
Z .

3.2.2.5 Moving average (MA) model

The definition of a moving average model of order q (usually written as MA(q)) is

Xt =Ø0Zt +Ø1Zt°1 +·· ·+Øq Zt°q (3.25)

with the Øi coefficients as constants and Zt , . . . , Zt°q drawn from a random model

{Zt } with zero mean and variance æ2
Z .

3.2.2.6 Autoregressive moving average (ARMA) model

It can be useful to combine the AR and MA models to give an ARMA(p,q) process

defined as

Xt =Æ1Xt°1 +Æ2Xt°2 +·· ·+Æp Xt°p +Zt +Ø1Zt°1 +·· ·+Øq Zt°q (3.26)
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An ARMA model may be found to describe a stationary time series with fewer pa-

rameters than either a pure AR or pure MA model. In these circumstances an ARMA

model is preferred.

3.2.3 Fitting probability models to a given time series data set

Having discussed the properties of possible stochastic processes in Section 3.2.2, this

section describes the steps necessary to chose a model and estimate the parameter values

of that model. The main tool used to identify a possible model for a given time series

is a plot of the autocorrelation function for increasing values of lag. This plot is known

as the correllogram and was introduced in Figures 3.2 and 3.3. The patterns produced

by this plot and a related plot the Partial Autocorrelation Function (PACF, to be detailed

later), can guide the modelling process. An essential part of these two plots are the 95%

confidence bands which, for N observations, have values approximated by ±1.96/
p

(N ).

Assuming that trend effects have been removed, the analysis proceeds by estimating

characteristics of the remaining stationary series. The first parameter to assess is the au-

tocovariance, a measure of how much “memory” of past values is contained within the

current observation. The derivation of the normalised value of autocovariance, the auto-

correlation, of a time series was presented in Section 3.2.1.2. The partial autocorrelation

function (PACF) at lag ø, written as ºø, gives a value for the excess correlation that has

not been quantified by the correlation by the ø°1 lags. The ºø value is equal to the Æø
value when an AR(ø) model is fitted to the time series.

After obtaining a correlogram for the time series under investigation, it can be com-

pared against correlograms generated from one of the standard types of models: au-

toregressive (AR); moving average (MA); or a combination of both autoregressive and

moving average (ARMA). First consider an MA(q) process. The correlogram for such

a process will cut off at lag q . If such a distinct pattern is not present, the process may

be characterised by an AR(p) or ARMA(p,q) process. In both cases the lags greater than

zero will tend to decay gradually in an exponential manner.

The following sections provide more detail on each of these model types in particular

the use of the correlogram to aid model choice.

3.2.3.1 Fitting an AR model

There are two tasks required to fully specify an AR(p) model. Firstly, the order p must

be decided, this is followed by the estimation of the, Æi parameters. The order of the

process can be found by starting with an AR(1) process and comparing the theoretical
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acf and pacf plots to those obtained from the time series under investigation. The order

p is increased until the PACF plot cuts off at lag ø. The estimation of the parameters

can be done by either the least squares method or by using the sample autocorrelation

coefficients in the first p Yule-Walker equations (Chatfield, 2004, §3.4.4).

3.2.3.2 Fitting an MA model

The same two tasks are required to specify a MA(q) model. The order of an MA(q) pro-

cess can be easily obtained from the acf plot as the plot cuts off at lag q . In other words

the autocorrelation values at lags greater than q are within the 95% confidence mark-

ers. The estimation of parameters is carried out using an iterative numerical technique as

direct least squares estimates are not available.

3.2.3.3 Fitting an ARMA model

It is possible that neither and AR(p) or MA(q) will adequately fit the time series un-

der investigation. In these cases it is possible to try a combination of both techniques.

However, the orders p and q are difficult to estimate from the acf and pacf plots. The

estimation of the parameters will continue to require numerical optimisation techniques

due to the the MA(q) components of the model.

3.2.3.4 Model checking

Finally, once a model has been chosen and the order and parameters have been estimated,

the model should be checked to ensure that it provides a reasonable estimate of the time

series under investigation. The most straightforward technique is to generate a residual

time series by calculating the one-step-ahead forecast and subtracting it from the ob-

served data. This provides the one-step-ahead forecast error. As an example, consider

an AR(1) model, Xt =ÆXt°1 +Zt . The fitted value at t is given by Æ̂xt°1. The residual,

zt for the observed value xt is ẑt = xt ° Æ̂xt°1. If the model is adequate a plot of the

residuals should be close to zero and be random, i.e. with no discernible pattern.

Rather than carry out each of the above steps separately, these approaches can be com-

bined by building a SARIMA (p,d , q)£ (P,D,Q)s model, (Box et al., 1994, Chapter 9).

In this model a linear regression model is constructed to handle the seasonal and trend

aspects of the series and an ARIMA model deals with the residual part of the observa-

tions.
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3.2.4 Prediction using time series probability models

The final task is to use the model in practice to provide a prediction of the quantity of

interest. Assuming several variables are involved, as is the case in this research, two

approaches can be tried.

The first approach is to use univariate analysis for each of the variables separately.

This is a basic technique and uses a model fitted only on currently available observations

from a single variable. Therefore the predicted value xt+1 depends only on some function

of xt , xt°1, xt°2 . . .. For example in this project the two primary variables of interest are

the systolic arterial blood pressure (BPs) and the mean arterial blood pressure (BPm).

The second approach is called multivariate analysis and uses the information from

other available measurements in an attempt to provide a more accurate forecast for the

values of the variables of interest. In this research other time series variables could be

considered such as the patient’s Glasgow Coma Score (GCS) (see Section 2.3) which is

assessed at regular intervals by the clinical staff. In a multivariate setting, in addition to

time series variables, static variables such as the demographic variables age and gender

could be used. It is also possible to add in more subjective information from the clinical

staff into the model.

If a system based on time series forecasting were to be used in a clinical setting, it is

likely that a combination of both the above techniques would be used. As the univariate

approach relies on regularly collected observations it can easily be automated and tables

and plots can be regularly updated. The multivariate approach can also possibly be au-

tomated (or at least a portion of it can be automated) however, the final result may come

from a manual review of all the component parts of the overall model.

Another consideration is whether the model will only be used to provide a point

forecast, i.e. a single value, or whether there is an additional requirement to provide an

assessment of the uncertainly around the point forecast.

In a univariate setting the model can be used to calculate the n-step ahead predictions.

An n-step prediction is simply the model evaluated at points in time 1, . . . ,n beyond the

currently measured values. Using this approach for this project would require building

models for both the BPs and BPm signals as the EUSIG definition for a hypotensive

event has a threshold for both measurements. As each new minute vector of information

is received, the n-step predictions need to be carried out to determine whether or not the

EUSIG threshold has been breached. If a breach has occurred, a further n-step process
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is required to check if the hysteresis requirements are likely to be met. The output from

this process is a prediction that an episode will occur in EH minutes time and unless

this prediction is extremely accurate, the system is be unlikely to be accepted. These

classic techniques are also capable of computing confidence intervals around the n-step

prediction, albeit at the expense of more processing power. Therefore a system could be

developed which would give a quantitative indication of the uncertainty in the predicted

signal trajectory. The above steps constitute a univariate analysis.

A multivariate approach would jointly model more than one variable e.g. heart

rate (HRT) and diastolic arterial blood pressure (BPd). This makes the analysis much

more complex. Given that an autoregressive model can be identified for the individ-

ual time series components of the overall model a vector autoregressive model (VAR)

could be constructed. The complexity in these types of models comes from the need to

consider serial correlation within an individual component and the correlation between

each univariate series. This correlation between series is carried out by using the cross

correlation function. Given a multivariate time series with m components {X t } where

X

N
t = (X1t , X2t , . . . , Xmt ), the cross correlation function can be used to construct the cross

covariance matrix of X t and X t+k .

A simple form for a VAR(1) model can be seen by considering m = 2 which gives

two equations where the values of X1t , X2t are linearly dependent at time (t °1). This

can be written as two equations

X1t =¡11X1,t°1 +¡12X2,t°1 +≤1t

X2t =¡21X1,t°1 +¡22X2,t°1 +≤2t (3.27)

Eqn 3.27 in vector form is

X t =©X t°1 +≤t (3.28)

with ≤T
t = (≤1t ,≤2t ) and

©=

2

4 ¡11 ¡12

¡21 ¡22

3

5



3.3. HIDDEN MARKOV MODELS 43

3.3 Hidden Markov models

Another approach would be to use a hidden Markov model (HMM), a technique sug-

gested in the 1970s by Baum et al. (1970), with the leading reference in the literature

being the papers by Rabiner and Juang (1986) and Rabiner (1989). This approach has

the advantage of trying to make use of the temporal structure that is intuitively present

in the physiological measurements. The model combines observed measurements (de-

mographic and physiological variables) in a vector x with a set of unobserved states in a

vector z .

This form of model can be illustrated using a Directed Acyclic Graph (DAG), (Bishop,

2006, Chapter 8), that shows the factorisation of the joint distribution of x and z . Figure

3.4 shows this graphical model for an HMM with the shaded nodes representing the ob-

served clinical variables. The unshaded nodes are the “hidden” variables and can take on

one of the 1. . .K states representing, in this case, the patient’s “clinical” state i.e. stable,

hypotensive risk, hypotensive, recovering from hypotension. This is the state that would

be displayed to the clinical team in an attempt to give them warning of the “hypotensive

risk” condition.

A critical assumption made by the HMM is that given the current hidden state, the

past is conditionally independent of the future. Ignoring estimated parameters, the cur-

rent hidden state therefore contains all information required to predict the future. This

assumption simplifies the model and thus the calculations. However, it could be argued

that this is unrealistic in the context of this research.

z1

x1 x2

z2 z3

x3

zt

xt

Single
Time Slice

Figure 3.4: HMM graphical model
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The following description is based on Bishop (2006, §13.2). Considering a single

time slice, t , the distribution p(xt ) is a mixture distribution with component-wise densi-

ties given by p(xt |zt ). The variable z uses a 1-of-K coding scheme where ztk = 1 if the

observations come from state k at time t . As signified by the arrow on the left hand side

of the unshaded node, the probability distribution of zt depends on the previous state

zt°1 through the conditional distribution p(zt |zt°1).

The hidden variable zt is modelled using a transition matrix A of dimension K £K ,

where A j k is the probability of the hidden variable moving from state j to state k during

a single time slice,t . The transition probabilities are given by A j k ¥ p(ztk = 1|zt°1, j = 1)

with 0 ∑ A j k ∑ 1 and
P

k A j k = 1.

This leads to the conditional distribution

p(zt |zt°1,A

) =
KY

k=1

KY

j=1
A

zt°1, j ztk

j k (3.29)

The starting node for the model, z1 has no previous node and has a marginal distri-

bution, p(z1) represented by a vector of probabilities º with elements ºk ¥ p(z1k = 1).

This gives

p(z1|º) =
KY

k=1
º

z1k
k (3.30)

with
PK

k=1ºk = 1

The next step is to define the conditional distribution of the observed variables p(x

t

|zt ,¡),

with ¡ a set of parameters controlling the distribution. These are known as the emission

probabilities. Given that xt is observed, the distribution p(x

t

|zt ,¡) is, for a given value

of ¡, a vector of K values corresponding to the K possible states of the binary vector zt

This allows the emission probabilities to be written as

p(xt |zt ,¡) =
KY

k=1
p(xt |¡k )ztk (3.31)

Using Eqns 3.29 to 3.31 allows the joint probability distribution over both latent

variables ,Z and observed variables, X to be given by

p(X , Z |µ) = p(z1|º)

"
NY

t=2
p(zt |zt°1,A

)

#
NY

m=1
p(xm |zm ,¡) (3.32)

with X = {x1, x2, . . . , xN }, Z = {z1, z2, . . . , zN }, and µ =
©
º, A,¡

™
being the parameters

governing the model.
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3.3.1 Parameter estimates using maximum likelihood

In general, given an observed data set X = {x1, x2, . . . , xN }, the model parameters can be

determined by the maximum likelihood method. The required likelihood function can be

obtained from Eqn 3.32 by marginalising over the latent variables, z , using

p(X |µ) =
X

Z
p(X , Z |µ) (3.33)

A difficulty with Eqn 3.33 is that it does not factorise over t . The more usual approach

used to determine values for the emission and transition matrices would be to use a

variant of the EM algorithm proposed by Dempster et al. (1977), frequently referred to

in the literature as the Baum Welch algorithm. This algorithm starts with an initial set

of parameters, µol d . The E step of the algorithm uses these initial parameters to find the

posterior distribution of the latent variables, p(Z |X ,µol d ). The posterior distribution is

then used to calculate the expectation of the logarithm of the complete-data likelihood as

a function of the parameters µ giving the function Q(µ,µol d ) as

Q(µ,µol d ) = p(Z |X ,µol d )lnp(X , Z |µ) (3.34)

The EM algorithm is first used to develop an expression for the quantities ºk and A j k

in terms of the marginal posterior distribution of a latent variable,zt designated by

∞(zt ) = p(zt |X ,µol d ) (3.35)

and an expression for the joint probability of two steps of a latent variable given by

ª(zt°1, zt ) = p(zt°1, zt |X ,µol d ) (3.36)

this leads to values for ºk and A j k as

ºk = ∞(z1k )
PK

j=1∞(z1 j )
(3.37)

A j k =
PN

t=2ª(zt°1, j , ztk )
PK

l=1
PN

t=2ª(zt°1, j , ztl )
(3.38)

Having obtained values for ºk and A j k , a further algorithm known as the forward-

backward algorithm (Rabiner, 1989) or Baum Welch algorithm (Baum, 1972) is used to

evaluate ∞(zt ) and ª(zt°1, zt ).
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However, given that labelled training data {xt , zt } for t = 1, . . . , N is available, training

for the HMM can be carried out assuming the observed clinical values can be described

with a multi-variate Gaussian distribution. The maximum likelihood parameters, µ j and

ß j for each state j = 1, . . . ,K , are the calculated sample means and covariances of the

observed signals xt at each state. Estimates for the transition probabilities, can be carried

out using

p(zt = j |zt°1 = k) =
n j ,k

PN
k=1 n j ,k

(3.39)

where n j ,k is the number of transitions from state j to state k in the training data.

To use the HMM in the clinical setting, as each new vector of information arrives

from the ICU monitors, the task is to infer zt . This calculation task must consider the

possibility of the observations having been in each state at every time point. A useful

property of HMMs (making them attractive in online-prediction settings) is that only the

current hidden state zt , the current parameter estimates of the transition matrix, and the

parameters (mean, variance) of p(xt |zt ) must be stored. Assuming initial conditions of

p(z0 = j ), j = 1, . . . ,K , inference proceeds as

p(zt = i |x1:t ) / p(xt |zt = j ) p(zt = i |zt°1 = j )p(zt°1 = j |x1:t°1) (3.40)

normalised such that
PN

j=1 p(zt = j |x1:t ) = 1.

The above calculations assume that the training and test data can be labelled into

one of the four previously described states. This could be particularly difficult for the

“hypotensive risk” state.

3.3.2 Extensions to the Hidden Markov Model

There are assumptions which make this modelling technique difficult to implement. For

example, the assumptions regarding the number of states within a hidden variable and the

number of observations, N , used during the minute-by-minute calculations performed

during real-time operation. The model can be computationally expensive and various

extensions have been proposed. Ghahramani (2001) details three extensions: Factorial

HMMs; Tree Structured HMMs; and Switching state space models. However even these

extensions can often prove intractable and approximations may be required.

Above all, this is not an easy model to explain to clinical teams who prefer to have at

least a minimal grasp on the mathematics behind a technique. However, a recent paper

by Singh et al. (2010), using the HMM approach reports good results in providing early
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warning of hypotension albeit using the Physio Net (2009) definition of hypotension

which is markedly different to the EUSIG definition. This group also took the approach

of training only two HMMs, one for the unstable state and the other for the stable state

of the patient. This is in contrast to the four states mentioned above.

3.4 Classifiers

A third approach, a classifier model, like the HMM also takes advantage of the fact that

the available data can be labelled to produce distinct classes of information.

The three most common techniques are: logistic regression; support vector machines;

and neural networks. The first two are examples of linear models, the neural network is

a non linear technique.

Logistic regression is a well established technique that is readily accepted by the

medical community. The technique is an extension of the well known linear regression

procedure. The extension allows for a binary response and non-normal residual values.

This technique will be examined in detail in Section 3.4.1.

Support vector machines are a more recent technique (1995) which attempt to find a

separating hyperplane between classes. Vapnik, working in the Soviet Union, originally

proposed the technique in 1965 to deal with linearly separable classes (Vapnik, 1982).

The method in common use today is able to deal with non-linearly separable classes

(Cortes and Vapnik, 1995). The support vector machine is a powerful technique and an

attractive feature of the method is that it only requires data around the boundary area of

a group of observations. The support vector machine is certainly worthy of further study

however, due to time constraints, it will not be examined further in this thesis.

The most flexible approach to classification is to use a neural network. A key compo-

nent of a neural network, the perceptron, was first proposed in the 1960s by Rosenblatt

(Rosenblatt, 1962) and considerable research was carried out during the first wave of

enthusiasm regarding “artificial intelligence”. However, limited computing power at the

time and concerns published by Minsky and Papert (Minsky and Papert, 1969) resulted in

the technique dropping out of favour and it became difficult to fund research in this area.

Renewed interest within the machine learning community started again in the 1980s with

the publication of details regarding the back propagation algorithm (Rumelhart et al.,

1986). The neural network technique is considered in detail in Section 3.4.2.

Examples of using classifiers are to be found in the AvertIT (2008) project in TBI,

and the work by Christensen et al. (2012) regarding the classification of EEG data. The
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AvertIT project is cited (Singh et al., 2010; Jousset et al., 2009; Stell et al., 2009) as the

current state of the art with respect to attempts to predict hypotensive events and will be

discussed further in Section 8 as it is a project which also used a sophisticated Bayesian

Artificial Neural Network (BANN) model.

3.4.1 Logistic Regression

The logistic regression model was first proposed by Berkson (1944) and is one type of

generalized linear model, a framework developed in the 1970s by Nelder and Wedder-

burn (1972). It has been used extensively in the medical literature, (Bland and Altman,

2000). An attractive feature of this model is that the interpretation of the coefficients of

the model can be easily converted to an odds ratio, a concept with which most clinicians

are familiar.

A comprehensive treatment of the model is provided by Harrell (2001, Chapter 10)

and Hastie et al. (2009, Chapter 4). The following description follows the text of Zumel

(2011).

The logistic regression model assumes that two classes define a binary response vari-

able Y . For this research the classes are coded 1 for “hypotensive episode started” and 0

for the “stable condition”. The model also uses the concept of “odds” where the odds of

an event occurring is defined as

P (event occur s)
P (event does not occur )

(3.41)

with P (event does not occur ) being equal to 1°P (event occur s).

For a series of observations indexed by i , i = 1. . . Nobs , the model assumes that the log

odds of a binary response variable Y with a vector X of J predictor variables , j = 1. . . J

is a linear function of the J input variables which, for the i th observation, is given by,

log
µ

P (yi )
1°P (yi )

∂
=Ø0 +

JX

j=1
Ø j xi j (3.42)

with x j being a component of X and P (yi ) defined as the probability that the response

variable Y for the i th observation is equal to 1 (by convention called “success”). The left

hand side of Eqn 3.42 is called the logit transform of P (Y ).

In Eqn 3.42 the intercept term Ø0 can be included in the main summation by setting

x0 = 1 giving J +1 terms as follows
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log
µ

P (yi )
1°P (yi )

∂
=

JX

j=0
Ø j xi j (3.43)

Consider taking the exponent of both sides of Eqn 3.43 to give

P (yi )
1°P (yi )

= exp

√
JX

j=0
Ø j xi j

!

(3.44)

As the right hand side of Eqn 3.44 is the exponential of a sum, this can be rewritten

as a product of exponentials to give

P (yi )
1°P (yi )

=
JY

j=0
exp

°
Ø j xi j

¢
(3.45)

Eqn 3.45 shows that logistic models are multiplicative in their inputs (compared with

additive as in a standard linear model). This also provides a way to interpret the coef-

ficients. If all variables are held constant apart from x j , then the odds ratio for a unit

increase in Ø j x j is given by

odds{yi = 1|xi 1, xi 2, . . . , (xi j +1)}

odds{yi = 1|xi 1, xi 2, . . . , xi j }
= exp(Ø j ) (3.46)

Therefore, from Eqn 3.46, a simple exponentiation of a predictor’s coefficient pro-

vides an estimate of the multiplicative increase or decrease in odds ratio. Despite this

simplicity, the odds ratio concept must be used with caution and several authors have

noted inconsistencies its use, (Moss et al., 2003; Davies et al., 1998).

Taking the inverse of Eqn 3.43 and using the notation Pi = P (yi = 1) gives a direct

expression for Pi .

Pi =
exp(

PJ
j=0Ø j xi j )

1+exp(
PJ

j=0Ø j xi j )
(3.47)

the right hand side of Eqn 3.47 is called the logistic function of
PJ

j=0Ø j xi j .

The standard method of calculating the values for the Ø coefficients is to use the max-

imum likelihood approach. To proceed, it is required to develop the likelihood function



50 CHAPTER 3. METHODS REVIEW

for the model. Consider the likelihood function with data observations = X . Because this

research only uses two classes, the likelihood, L(X |Ø), is binomial and for the yi case is

given by

L(X |Ø) = P (xi )yi £ (1°P (xi ))(1°yi ) (3.48)

with yi = 1 where a hypotensive episode started event horizon minutes after the xi mea-

surements were recorded and yi = 0 for the situation where event horizon minutes after

the xi measurements were taken the patient was still in a stable condition. For this re-

search event horizon is set to 10 (see Section 4.3).

Using Eqn 3.47 and Eqn 3.48 gives the likelihood for the i th row of observations

from the ICU monitors

L(xi |Øi ) =

0

@
exp(

PJ
j=0Ø j xi j )

1+exp(
PJ

j=0Ø j xi j )

1

A
yi

£

0

@1°

0

@
exp(

PJ
j=0Ø j xi j )

1+exp(
PJ

j=0Ø j xi j )

1

A

1

A
(1°yi )

(3.49)

Assuming independence between observations in a training set containing Nobs rows

of data this gives

L(X |Ø) =
NobsY

i=1

8
<

:

0

@
exp(

PJ
j=0Ø j xi j )

1+exp(
PJ

j=0Ø j xi j )

1

A
yi

£

0

@1°

0

@
exp(

PJ
j=0Ø j xi j )

1+exp(
PJ

j=0Ø j xi j )

1

A

1

A
(1°yi )9=

; (3.50)

To avoid problems with overflow and underflow during calculations it is recom-

mended that logarithms are used and this leads to the well known log-likelihood form

of Eqn 3.50 as

L (X |Ø) =
NobsX

i=1
yi=1

log P (xi )+
NobsX

i=1
yi=0

log (1°P (xi )) (3.51)

In order to find the maximum likelihood estimates, it is required to take the derivative

of Eqn 3.51 with respect to the coefficients Ø and then set this to zero to find the maxi-

mum. This will require an expression for P (xi )0 in terms of P (xi ) which, starting from

Eqn 3.47, is given by
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P (xi ) = exp(z)
1+exp(z)

= exp(z)£ (1+exp(z))°1

Using the chain rule gives

P (xi )0 = (exp(z)) · (1+exp(z))°1

+ (exp(z)) · (°1) · (1+exp(z))°2 · (exp(z))

= exp(z)(1+exp(z))
(1+exp(z))2 ° (exp(z))2

(1+exp(z))2

= exp(z)
(1+exp(z))2

= exp(z)
1+exp(z)

· 1
1+exp(z)

= P (z)(1°P (z)) (3.52)

with z =PJ
j=0Ø j xi j

The derivative of Eqn 3.51 can then be obtained using the following two steps

dL (X |Ø)
dØ

=
NobsX

i=1
yi=1

P (xi )0

P (xi )
xi +

NobsX

i=1
yi=0

P (xi )0

1°P (xi )
xi (3.53)

Using Eqn 3.52 in Eqn 3.53 gives

dL (X |Ø)
dØ

=
NobsX

i=1
yi=1

P (xi )(1°P (xi ))
P (xi )

xi +
NobsX

i=1
yi=0

P (xi )(1°P (xi ))
1°P (xi )

xi

=
NobsX

i=1
yi=1

(1°P (xi ))xi °
NobsX

i=1
yi=1

P (xi )xi

=
NobsX

i=1
[yi (1°P (xi ))° (1° yi )(P (xi ))]xi (3.54)

Cancelling terms and setting Eqn 3.54 to zero gives a maximum at

NobsX

i=1
yi xi °P (xi )xi = 0 (3.55)

This can be written in matrix notatation as
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X (y °P ) = 0 (3.56)

To obtain the estimates for the coefficients Ø the iteratively re-weighted least squares

(IRLS) algorithm is used. This algorithm typically uses an iterative Fisher scoring

method which is a generalised version of a Newton-Raphson procedure. To illustrate this

algorithm consider a Newton-Raphson procedure which takes a vector valued function

y = f (b) and determines an optimal value, bopt . such that f (bopt ) = 0. The algorithm

starts with an initial guess b0 and constructs a Taylor expansion of f (b0) as

f (b0 +¢) º f (b0)+ f

0(b0)¢ (3.57)

As f is a vector valued function f

0 is a matrix. This matrix is known as the Jacobean

and is defined as the matrix of first derivatives of f with respect to b. Solving for ¢ by

setting the left hand side of Eqn 3.57 to zero gives

¢0 =° f (b0) · [ f

0(b0)]°1 (3.58)

The algorithm proceeds by updating each estimate bn = bn°1 +¢n°1 until conver-

gence.

For this research, the vector valued function f is the derivative of the log-likelihood,

Eqn 3.55. The Jacobean matrix required for Eqn 3.57 is therefore the Hessian matrix of

the log-likelihood function, Eqn 3.51, where a Hessian is defined as the matrix of second

partial derivatives with respect to the coefficients Ø.

An expression for the Hessian matrix is



3.4. CLASSIFIERS 53

H = @

@Ø

d

dØ
L

=°
NobsX

i=1
xi

d

dØ
Pi

=°
NobsX

i=1
xi Pi (1°Pi )xT

i

which written in matrix notation becomes,

= X W X

T (3.59)

Where W is the diagonal matrix of derivatives P

0
i .

Using Eqn 3.59 in Eqn 3.58 gives an expression for each Newton-Raphson update as

¢n = (X Wn X

T )°1
X (y °Pn) (3.60)

with W being the current matrix of derivatives, y the response vector, and Pn the

vector of probabilities calculated using the current estimate of Ø.

By comparing Eqn 3.60 with the standard matrix solution to a linear regression model

(Hastie et al., 2009, §3.2) which is given by

y = X

TØ

X y = X X

TØ

Ø= (X X

T )°1
X y (3.61)

it can be seen that each iteration of the IRLS algorithm gives a weighted, by Wn ,

solution to a least squares problem where the usual response vector y is replaced by

a response, y ° Pn , i.e. the difference between the observed response and its current

estimated probability of being true.

3.4.1.1 Penalised Logistic Regression

The derivation of the logistic regression technique presented in Section 3.4.1, in particu-

lar Eqn 3.60 for the estimation of the model’s parameters, show that problems can occur

if inputs to the model are highly correlated. Correlated inputs can lead to a Hessian ma-

trix which is ill-conditioned or possibly even singular if the two variables within the data
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are collinear. A technique to reduce these effects is called penalised logistic regression.

A further benefit of penalised logistic regression is that it can model linearly separated

data, for which standard logistic regression diverges.

Penalised logistic regression adds a penalty term proportional to the some combina-

tion of the coefficients of the model. There are many different penalty schemes, popular

schemes are a ridge penalty (Hoerl and Kennard, 1970) or LASSO penalty (Tibshirani,

1996). The ridge penalty technique shrinks the regression coefficients towards zero, by

constraining the sums of squares of the model coefficients (the L2 norm). The LASSO

(least absolute shrinkage and selection operator) constrains the model parameters by us-

ing the L1 norm of the coefficients. A useful introduction to several forms of penalised

logistic regression can be found in Krol (2013).

For this research, a penalty term was constructed by taking the squared second order

difference between coefficients. This is defined as a centre point at coefficient Ø j and

calculates a forward difference ± f =Ø j+1°Ø j and a backward difference ±b =Ø j °Ø j°1

the penalty term is then defined as the squared difference between these two points i.e.

(± f °±b)2, the coefficient ∏ controls the amount of penalty applied to the system.

L (Ø)penal i sed =L (Ø)°∏
JX

j=3
(± f °±b)2 (3.62)

Eqn 3.62 can be reformulated as

L (Ø)penal i sed =L (Ø)°∏(DØ) (3.63)

where the X is the usual design matrix and the D matrix form is,

D =

2

66666666666666666664

1 °2 1 0 0 0 · · ·
0 1 °2 1 0 0 · · ·
... 0 1 °2 1 0 · · ·
...

... 0 1 °2 1 · · ·
...

...
... 0 1 °2 · · ·

...
...

...
... 0 1

. . .
...

...
...

...
... 0

. . .
...

...
...

...
...

... . . .

3

77777777777777777775
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Note that the first three terms of the model: intercept; Age; Gender are not penalised

and therefore the three columns of zeros are added to the left of the D matrix.

There remains the task of determining the best value for the penalty control parameter

∏. This is done by maximising the log-likelihood given by Eqn 3.62. This research takes

a two pass vector search approach which is discussed fully in Section 5.3.1.

The results of using the squared difference penalty described above are detailed in

Section 5.3. The results of using the LASSO penalty are reported in Section 5.4.3.
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3.4.2 Neural Networks

Neural networks are non-linear classifier models that can be used for complex problems.

Research on these models was originally motivated by a desire to mimic the functioning

of the human brain. The requirement to analyse large dimensionality problems sug-

gested the use of an array of parallel processing units similar to the basic processing

unit of the brain which is the “neuron”. The field was started by research by McCulloch

and Pitts (1943) in the 1940s enabled by the emerging electronic computing machines.

Their work used threshold switches to model the neuron. By the 1960s Widrow and

Hoff. (1960) had developed the adaptive linear neuron which was used used in analog

telephone equipment. Rosenblatt (1962) proposed the perceptron which is the basis for

the current mathematical models. After initial excitement in the field a critical paper by

Minsky and Papert (Minsky and Papert, 1969) resulted in a drop off in research for nearly

15 years although a key technique, that of “back propagation of errors” was proposed by

Werbos (1974). It was not until the mid 1980s when Rumelhart et al. (1986) published

details regarding an algorithm for back propagation that the field as it currently exists

began.

The following section describes the neural network model in mathematical detail,

the approach is adapted from Bishop (1995, Chp. 4) and Bishop (2006, Chp. 5). The

model consists of a series of inputs which are combined to form the input to a group of

processing nodes. In the general case, the output of the first group of processing nodes

can form the input into a further series of processing nodes. Each group of processing

nodes is know as a hidden layer. The last group of processing nodes output values which

provide the inputs to a final set of nodes which are known as the output units. The

processing nodes can be any function however it is typical to use logistic sigmoid, tanh

or step functions. This architecture is known as a feed forward network. For this research

a neural network is constructed using a single hidden layer of logistic sigmoid processing

nodes which form the input to one logistic sigmoid output unit.

The neural network model is depicted in Figure 3.5.
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Figure 3.5: Generic single hidden layer neural network

Using the index notation from Eqn 3.42, with reference to Figure 3.5, starting on the

left hand side of the diagram, the general form of the model takes a series of variables

with values xi 1, . . . , xi J for the i-th observation and constructs K linear combinations in

the form

ai k =
JX

j=1
∫ j k xi j +∫0k (3.64)

where j = 1, . . . , J are the indices of the input variables and k = 1, . . . ,K are the indices
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of the hidden units. Note that the input x0 is given the fixed value 1. This is known as

the “bias” input and a connection is taken from this input to each linear combination, ak

known as an “activation”. Each activation forms the input to a logistic sigmoid function

activation unit, zk . The series of activation units z1, . . . , zk form the single hidden layer.

For the i th observation, the output of a single activation unit is given by

zi k = exp(ai k )
1+exp(ai k )

(3.65)

In Figure 3.5, the blue weights ∫11,∫12, . . . ,∫1k are the weights for input variable x1.

The output from the K activation units are combined to form the input, ¥i =
PK

k=1 wk zi k+
w0, to a single output unit which is again a logistic sigmoid function. This gives a final

output, which is the probability of y = 1 given the inputs as

P (xi ) = P (Yi = 1|xi ) = exp(¥i )
1+exp(¥i )

(3.66)

The next task is to “train” the network i.e. determine values for all the weights and

biases in the model. This can be achieved using a maximum likelihood or Bayesian

approach. In order to obtain a fully Bayesian model we assume that the weights w =
(∫11, . . . ,∫JK ,∫01, . . . ,∫0K , w1, . . . wK , w0) have a normal distribution with mean 0 and vari-

ance æ2I as prior distribution. Samples from the posterior distribution of the model pa-

rameters, denoted by µ = (w ,æ2), are then obtained using Sequential Monte Carlo.

The loglikelihood, as a function of ¥i , is identical to the likelihood used in logistic

regression and given by Eqn 3.51. The difference between the neural network and logistic

regression is that the neural networks assumes that the zi j are logistic functions of linear

combinations of the covariates, whereas logistic regression simply uses the covariates

themselves as the zi j ’s.

For completeness, a brief overview of the maximum likelihood approach to esti-

mating the model parameters is now given. In the likelihood framework, the first step

consists of finding a weight vector w which minimises Eqn 3.51. This requires that the

gradient of the negative loglikelihood be evaluated and typically, this gradient will be de-

termined using the error back propagation technique (Rumelhart et al., 1986), (Bishop,

1995, §4.8). The error back propagation algorithm aids the first stage of the training of

the network i.e. the calculation of the derivatives of the error function with respect to
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weights. The second stage of network training is to use these derivatives to adjust the

weights.

The error back propagation algorithm can be summarised as

• Apply input xn to the network and forward propagate using Equations 3.64 and

3.65 to determine the activations for all the hidden nodes and the output node.

• Evaluate ±k ¥ @L
@a j

• Backpropagate ±s to given ± j

• Evaluate the derivatives h0(·) using ± j = h0(a j )
X

k
wk j±k

Finally the use of regularisation is often recommended when using maximum likeli-

hood to estimate the model parameters. This takes the form

Lr eg (w ) =L (w )° ∏

2
w

T
w (3.67)

and is known as “weight decay” in the literature.

3.5 Bayesian techniques for parameter estimation

In the discussions for both the logistic regression model, Section 3.4.1 and neural net-

work model, Section 3.4.2, equations were provided which contain parameter values as

part of the model specification. Typically the parameter values are obtained by classical

“frequentist” methods and provide the maximum likelihood estimation (MLE) of the pa-

rameters. An alternative approach to parameter estimation is to use Bayesian techniques.

Bayesian techniques make use of Bayes Theorem (Bayes and Price, 1763), first pro-

posed by Thomas Bayes (1701 - 1761) but published, after his death, by his friend

Richard Price. Bayesian techniques for practical problems usually require considerable

numerical calculations and have only become feasible in recent times with the advent of

commodity computing power.

A Bayesian analysis can be described in words as

Poster i or / Li kel i hood £Pr i or (3.68)

A Bayesian analysis can be used to find the credible ranges (known as the highest

density intervals, HDI) for the parameters of the logistic regression model. To recap

from Section 3.4.1, the logistic regression model is given by
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P (yi ) =
exp(

PJ
j=0Ø j xi j )

1+exp(
PJ

j=0Ø j xi j )
(3.69)

with the likelihood function for this model as

L(X |Ø) =
NobsY

i=1

8
<

:

0

@
exp(

PJ
j=0Ø j xi j )

1+exp(
PJ

j=0Ø j xi j )

1

A
yi

£

0

@1°

0

@
exp(

PJ
j=0Ø j xi j )

1+exp(
PJ

j=0Ø j xi j )

1

A

1

A
(1°yi )9=

; (3.70)

The prior term of Eqn 3.68 is constructed by the following logic. For this analysis the

data will be normalised to have zero mean. This normalisation technique supports the

a priori assumption that the coefficients (the Øs) of the model are likely to be small and

close to zero. The prior for the Bayesian analysis is therefore chosen to be a multivariate

Gaussian distribution with a mean vector µ = 0 and covariance matrix ß to indicate a

non-informative prior. This is written as

Øª Nk (0,ß) (3.71)

There are many possible choices for ß. One can use a ridge prior by using a diagonal

matrix for ß. Another possibility would be to use the differencing matrix D from Section

3.4.1.1 to construct a prior covariance ß = æ2(DT D)°1. An inverse gamma distribution

is used as the prior distribution for æ2.

Eqn 3.71 gives a density function for mean vector µ= 0 and covariance matrix ß, as

f (Ø1,Ø2, . . .Øk ) = 1
p

(2º)k |ß|
exp

µ
°1

2
(Ø°µ)Tß°1(Ø°µ)

∂
(3.72)

however µ= 0 giving

f (Ø1,Ø2, . . .Øk ) = 1
p

(2º)k |ß|
exp

µ
°1

2
ØTß°1Ø

∂
(3.73)

Combining Eqns 3.70 and 3.73 gives the full posterior as
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Poster i or /
nY

i=1

8
<

:

0

@
exp(

PJ
j=0Ø j xi j )

1+exp(
PJ

j=0Ø j xi j )

1

A
yi

£

0

@1°

0

@
exp(

PJ
j=0Ø j xi j )

1+exp(
PJ

j=0Ø j xi j )

1

A

1

A
(1°yi )9=

;

£ 1
p

(2º)k |ß|
exp

µ
°1

2
ØTß°1Ø

∂
(3.74)

Eqn 3.74 has no closed form solution due to the logistic functions of Ø therefore a

numerical technique will be required to obtained the parameter estimates.

3.5.1 Sequential Monte Carlo techniques for Bayesian analysis

As discussed at the end of the introduction to Section 3.5, (Eqn 3.74), a method is re-

quired to obtain parameter estimates from the posterior distribution. The most common

method would be to use a Monte Carlo Markov chain (MCMC) algorithm (Metropolis

and Ulam, 1949; Metropolis et al., 1953). The roots of the MCMC technique came from

the Manhattan Project during World War II. The technique is computationally intensive,

can be complex to set up and requires careful attention to avoid problems with respect

to the convergence of the Markov chains. There have been many variants of the orig-

inal technique with the papers by Hastings (1970) and the Gibbs sampler (Geman and

Geman, 1984) being two frequently used modifications. See Johansen and Evers (2007)

for a comprehensive series of lecture notes on the topic. However, the popularity of

the technique is largely due to the availability of affordable computing power and sev-

eral standard software packages — WinBUGS (Lunn et al., 2000) and its cross platform

variants OpenBUGS (Lunn et al., 2009) and JAGS (Plummer, 2003) being the most used.

A recent alternative approach is called “Sequential Monte Carlo” (SMC) (Doucet

et al., 2000). Although this approach was originally used for dynamic state space models

the application of the technique to static models was recognised in the paper by Chopin

(2002). The SMC method is a generalisation of the importance sampling method which

also incorporates elements of the MCMC technique (Moral et al., 2006). The following

description of the technique is taken from Fan et al. (2008, §3 and Appendix).

Inference is performed by obtaining samples from the joint posterior density of the

parameters, µ, of the logistic regression model. Let º(µ) be the unnormalised density

of this distribution. SMC techniques, when solving static problems, introduce a series

of auxiliary distributions º0,º1,º2, . . . ,ºS°2,ºS°1 to gradually move from the initial dis-

tribution, º0, to ºS = º(µ) the final target distribution. At each stage s, s = 0. . .S of the

sampler algorithm a weighted sample from ºs°1 is used to form a weighted sample from



62 CHAPTER 3. METHODS REVIEW

ºs . It is the controlled manner of the transition along the series of distributions which

overcomes the well known problem of particle depletion. Particle depletion in an SMC

sampler is the case when a small number of particles carry all the weight in the final

target distribution. A single iteration of the SMC algorithm uses weighted particles from

ºs°1 to produce particles from ºs as it proceeds through the steps of: reweighting; po-

tentially resampling; and MCMC move. The following sections provide more detail on:

the construction of º0; the sequence of auxiliary distributions used to move from º0 to

ºS ; and the individual steps of the algorithm.

3.5.1.1 Initial distribution º0

The key element of the SMC technique is a smooth transition between auxiliary distri-

butions. Given that a non-informative prior from the description of the Bayesian anal-

ysis (Eqn 3.71) may be too far from the target distribution, the initial distribution º0 is

constructed with a mean vector and covariance matrix obtained from the previous exper-

iments using penalised logistic regression (See Section 3.4.1.1).

The SMC algorithm is initialised with N samples (aka “particles” hence the other

term “particle filters” often found in the literature) from º0. Let µ0
i be the i th particle

at initial stage s = 0 with weight w 0
i ¥ 1 given to each of the N particles, thus

©
µ0

i , w 0
i

™

forms a weighted sample from º0.

3.5.1.2 Auxiliary distributions

There are many ways that the auxiliary distributions can be constructed, this research

will use the technique suggested in the paper by Fan et al. (2008) which is based on a

method initially described in Moral et al. (2006). The technique uses

ºs /º
1°∞s
0 £º∞s , wi th

0 = ∞0 ∑ ∞1 ∑ . . . ∑ ∞S = 1 (3.75)

3.5.1.3 Reweighting

With N weighted particles
©
µs°1

i , w s°1
i

™
from ºs°1, set

w s
i = w s°1

i £
√
ºs(µs°1

i )

ºs°1(µs°1
i )

!

(3.76)

The weights are normalised using wi = wi /
PN

j=1 w j . This gives
©
µs°1

i , w s
i

™
as a
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weighted sample from ºs

3.5.1.4 Resampling

Resampling is conditional on the value of the effective sample size (ESS). ESS is defined

as

ESS =
°PN

i=1 w s
i

¢2

PN
i=1

°
w s

i

¢2 (3.77)

and provides an estimate of the number of independent random samples from the target

distribution that are required to give an equivalent Monte Carlo variation using the N

weighted particles. The aim of resampling is to discard particles with low weight and

replicate particles with high weight i.e. the particles that are likely to contribute to the

final estimate of the target distribution. After resampling particle weights are reset to

w s
i ¥ 1.

The literature suggests that if the ESS is below cN , where c is typically taken as 1/2,

then resampling should be performed. There are many resampling procedures (See Hol

et al. (2006) for a review) for this research a simple residual resampling technique is

used.

3.5.1.5 MCMC Move

The final part of the algorithm is to move the particles within the current distribution ºs

in order to increase particle diversity. In this section two possible updates are proposed,

the Metropolis-Hastings update and the Gibbs update. In the logistic regression models

and the neural networks the Metropolis-Hastings update is used to update the regression

coefficients (weights for the neural network) and the Gibbs sampler is used to update the

prior variances.

Let
©
µs

i

, w s
i

™
, i , . . . , N be the samples (and weights) in this distribution after reweight-

ing and potential resampling. As described above split µs

i

= (Øs

i

,æs
i ). Øs

i

is updated using

a (symmetric) Metropolis transition kernel. For each Øs

i

draw a new proposed value

Øs

i

§ ª Ks(Øs

i

, .) (3.78)

and calculate the acceptance ratio
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Æs
i =min

(

1,
ºs( ˜Øs

i

§,æs
i )

ºs(Øs

i

,æs
i )

)

(3.79)

With probability Æs
i we set Øs

i

to Øs

i

§. In this research a Gaussian transition kernel is

used

Øs
i
§ ª N (Ø̃i

s ,øß) (3.80)

with ø being a tuning parameter, controlling the acceptance rate. Due to high dimen-

sion of the covariate space, it is important that the matrix ß is appropriately scaled. For

the logistic regression models used in this thesis it is chosen proportional to the asymp-

totic covariance of the estimates from penalised logistic regression model. The goal is to

achieve an acceptance rate of approximately 0.23 as suggested by Roberts et al. (1997).

For this research ø was set to a range of values between 0.2 and 0.3 depending upon the

model being used.

The prior variance (æs
i )2 is updated using a Gibbs sampler, by replacing (æs

i )2 with a

draw from the full conditional distribution of (æs
i )2|Øs

i

.

For every iteration of the SMC algorithm the Metropolis update of the regression

coefficients and the Gibbs update of the prior variance of the coefficients is performed

once for each particle.

In summary, the elements of the SMC technique that must be configured are

• the initial distribution º0

• the total number of distributions S which span the transition from º0, to ºS =º(µ)

• the ∞s sequence ∞0 to ∞S used to move between the auxiliary distributions

• the transition kernel Ks used to move the particles within a single ºs distribution

• the number of particles N within a single ºs distribution

The SMC technique is used for both the penalised logistic regression (Section 5.3)

and neural network models (Section 6.1). For the penalised logistic regression models

each “particle” contains all the settings for the model coefficients. The 500 particles

make up a single “s” auxiliary distribution ºs from the total of 300 distributions used. For
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the neural network models each “particle” contains a complete neural network consisting

of the biases and weights for the inputs, hidden nodes and output node. The neural

network models use 1000 particles and 400 auxiliary distributions.

3.5.2 Example SMC for Bayesian analysis

The following “toy” problem illustrates using SMC to move from a known (i.e. prior)

distribution to a target distribution. Consider the need to draw samples from the expo-

nential distribution however a technique is unavailable. It is known how to draw from a

lognormal (draw from a normal and exponentiate). SMC can be used to turn the sample

from the lognormal into a sample from the exponential.

In this example each particle is a number, initially drawn from the lognormal, but

updated along the way. Instead of moving from the lognormal immediately to the expo-

nential, construct a “bridge” of distributions of the form

fexponenti al (x)∞£ flog nor mal (x)1°∞ (3.81)

for ∞ = 0, this is just the lognormal (for which it is known how to sample from),

for ∞ = 1 this is the exponential (the target distribution). For 0 < ∞ < 1 it some “blend”

between the two distributions. Moving slowly across the “bridge” (i.e. from ∞ = 0 to

∞= 1) between the two distributions, the algorithm does three things:

• Update the weights

• If the weights are too degenerate, resample

• MCMC move to perturb the particles

For this example, the settings were º0 = lognormal, S = 50 , N = 100. Figure 3.6

shows the movement of particles across the 50 distributions.
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Figure 3.6: SMC, particle sampling visualisation. The initial draw from the lognormal

is shown at the bottom of the plot. The colour key is a relative scale with the range

being from dark blue for low weights to red for high weights. Each row of the image is

a set of calculations (update of weights and MCMC move) across all 100 particles. The

gaps indicate where a resample procedure occurred. The aim is to arrive at the top of

the plot with an even spread of mid weight particles i.e. no particles dominating the

distribution.

3.6 Assessment of classifier performance

Once the classifier has produced a probability prediction there is still a task to decide at

which point to raise an alarm to the clinical team. This is ultimately the real performance

that the system will be judged on. This task resolves to a trade off between the number

of true positive identifications of episode starts and the number of times a false alarm is
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raised.

For the binary classifiers studied in this research, the following definitions apply:

for each instance, I , within a test set, the classifier model maps I to one of four possible

outcomes. If I is positive and the classifier predicts a positive class label, this is deemed a

True Positive (TP). If I is positive and the classifier predicts a negative class label, this is

deemed a False Negative (FN). If I is negative and the classifier predicts a negative class

label, this is declared a True Negative (TN). If I is negative and the classifier predicts a

positive class label, this is declared a False Positive (FP). These definitions are shown in

Figure 3.7 known as the “Confusion Matrix” and are used in the equations 3.82 to 3.86

True
Positives

False
Positives

False
Negatives

True
Negatives

P N

P

N

True
Class

Predicted
Class

Figure 3.7: Classifier Confusion Matrix

t p r ate = T P

T P +F N
(3.82)

where T P +F N is the column total of positives from the confusion matrix. The term

t p r ate is also known as the sensitivity, hit rate or recall.

f p r ate = F P

F P +T N
(3.83)

where F P+T N is the column total of negatives from the confusion matrix. This term

is also often called the false alarm rate.
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speci f i ci t y = T N

F P +T N

= 1° f p r ate (3.84)

pr eci si on = T P

T P +F P
(3.85)

accur ac y = T P +T N

(T P +F N )+ (F P +T N )
(3.86)

3.6.1 ROC curves

A standard visual technique to assess the trade off between true positive identifications

of episode starts and false alarms is to use a receiver operating characteristic (ROC)

curve. This technique was first developed in the 1940s during the development of radar

detection equipment. Early academic references are attributed to Hanley and McNeil

(1982, 1983), with a through treatment being available in the papers by Fawcett (2004,

2006).
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Figure 3.8: ROC Curve

The ROC curve (Figure 3.8) plots the specificity (false positive rate) on the x-axis and

the sensitivity (true positive rate) on the y-axis. The cross markings on the plot indicate

probability decision thresholds and move from a decision setting of equal to or greater

than probability zero at the top right of the plot, which would accept all predictions from

the classifier, to must be probability one at the bottom left of the plot which would reject

all predictions from the classifier. The dotted blue line shows that for a decision threshold

of approximately 0.26, the classifier could be expected to detect 48% of positive cases

whilst producing a false positive rate of 10%. The red dash dot y = x line indicates the

random guess line. All useful classifiers must produce a curve that lies above this line.

A random guess classifier could be constructed from any data set whereby the classifier

randomly predicts a positive case 50% of the time. This would be expected to be correct

in 50% of the cases and incorrect for the other 50% of cases. The produces a point on

the ROC graph of (0.5, 0.5). If the classifier randomly predicts a positive case 90% of

the time, it would identify 90% of the true positives however it would also suffer from a

false positive rate of 90% giving the ROC point of (0.9, 0.9). Therefore the performance
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of a random guess classifier is determined by the proportion of instances it randomly

guesses a positive case leading to the y = x diagonal line. An attractive property of the

ROC curve is that it is also invariant to class distribution i.e. the proportion of positive

cases to negative cases in the test set.

3.6.2 Area under the ROC curve (AUC)

The ROC curve gives rise to a metric called the area under the ROC curve which is

usually abbreviated to AUC. The AUC value of a classifier gives the probability that the

classifier will score a randomly chosen positive instance higher than a randomly chosen

negative instance. As the ROC graph comprises a unit square, the value of AUC must

lie between 0 and 1. As described in Section 3.6.1 all useful classifiers must be above

the diagonal y = x and therefore all AUC values should be above 0.5. The AUC gives a

convenient single measure that can be used to compare classifier models however it must

be examined with care in the case where ROC curves from different classifiers cross. In

this situation, Figure 3.9, classifier B has a higher AUC at 0.804 but performs poorer

with respect to false positive rates below 30%. Clearly if false positive performance is

the major requirement classifier A is better.
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Figure 3.9: Crossing ROC curves. Judged on AUC scores alone, classifier A would be

considered poorer. However, if system requirements called for a false positive rate

below 30%, it is clear that classifier A is superior to classifier B.

3.6.3 H score

As prevalent as the AUC metric is in the literature on classifier performance, it is noted

by researchers (Figini and Maggi, 2014; Hand, 2012) and described in Section 3.6.2,

that there are problems in comparing classifier performance particularly when the ROC

curves cross. Hand (2009) proposed an alternative metric, the H score, which attempts

to deal with the issue of differing costs associated with class “true” vs. class “false”.

The H score assumes that a Beta distribution can be parametrised to reflect the relative

costs of the two classes being investigated. The measure is then defined (Hand, 2012) as

“ . . . the mean loss from a classifier when the distribution of relative costs is taken to be

a beta(1 + º1, 1 + º0) distribution”. Hand (2009) provides an R function to calculate the

H score from a series of classifier predictions and known class labels. This research has

investigated the use of the H score on the logistic regression model described in Section

5.5. It can be seen from Figure 5.36 and Tables 5.9 and 5.10 that, for this research, the H
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score does not provide any additional insight into the classifier performance.

3.7 Approaches to input data

By using the episode list produced by the EAA application, it is possible to identify over

3000 events from 136 patients which match the EUSIG definition (see Section 4.1.3).

The physiological measurements which are available each minute from the ICU monitors

can be split into two classes. One class, representing an unstable condition, containing

vectors of readings that occurred at n minutes before the event, where the n minutes is

called the event horizon (see Figure 4.4), and another class which contains vectors of

readings that represent the stable state of the patient, i.e. no event occurred n minutes

after the readings were taken. The classifier model provides a probability estimate as to

how likely the new vector of information, which arrives on a minute-by-minute basis,

belongs to the unstable class, i.e. “will have an event in n minutes” where n is the event

horizon used to build the training data.

For this thesis, it is assumed that the available patients have been randomly split into

two independent groups. One group will be used for training the model with the other

group forming a test set for model validation. There is also an assumption during model

training that each row of data is independent of any other row. It is assumed in the case

of the positive vectors, that each episode start is a new situation for the patient. In the

case of the negative vectors, which are assumed to represent the stable state of the patient,

this is more difficult as the vast majority of rows available for training are in fact negative

vectors separated by a single minute. This single minute separation will often result in

high correlation between negative vectors. Therefore it is required to perform a random

selection of these negative vectors with a similar proportion to that found in the real ICU

monitor data stream. For this research, a value of 10% positive cases to 90% negative

cases has been chosen to represent the ICU data. This proportion allows for the use of

all the positive cases along with a random selection of negative cases whilst allowing

the training file to be a small enough size for model processing. This 10:90 ratio will

only affect the intercept in the logistic regression modelling however, the intercept has

no meaning in this particular context and can be ignored.

3.7.1 Using each minute of the data buffer

Another decision that must be made regards how to use the time series data available for

each of the physiological processes. The standard approach from a statistical modelling

point of view is to use as much data as possible to train the models. To use this approach,
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each minute of data that is available becomes an input variable into the model. If we

consider a training set using an event horizon of 10 minutes, given a constraint of 30

minutes of data, this method is represented in Figure 3.10.

= P(Y = 1 X)Σ
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Figure 3.10: Each minute as an input to the model. Each of the 127 inputs is controlled

by a model coefficient Ø0 . . .Ø126. This leads to the expression for z =PK
k=0Øk xk

.

3.7.2 Using statistical measures of the data buffer

An alternative approach would be to summarise the data over suitable window sizes

before the event horizon and then use these summary statistics as inputs to the model.

This approach is possibly more intuitive to clinicians as they effectively carry out this

process in their daily work looking at the ICU monitors. Again, using a training set with
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an event horizon of 10 minutes, this is shown diagrammatically in Figure 3.11.
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Figure 3.11: Summary statistics as input to the model. Each of the 19 inputs is con-

trolled by a model coefficient Ø0 . . .Ø18. This leads to the expression for z =PK
k=0Øk xk

.

A valid criticism of both the above techniques is that the data contains multiple

episodes from each patient and would be more comprehensively examined by using a

mixed effects modelling approach. In this type of approach an additional term is intro-

duced into the model to account for the variability between patients. Literature on this

approach can be found in Pinheiro and Bates (2000) and Laird and Ware (1982) and the

topic of mixed effects models is further discussed in Section 9.4 on future work.

Both of these input architectures are examined in Chapter 4 on data preparation and

in the two Chapters 5 and 6 on model building.
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3.8 Using the model in practice

The aim of this thesis is to provide further evidence to the community of TBI researchers

and clinicians that, using statistical techniques, it is possible to develop a system which

provides warning of hypotensive episodes. It is only recently, with the publication of

results from the AvertIT project which has shown early warning of hypotension in ap-

proximately 40% of cases, (Donald et al., 2012b; Stell et al., 2012), that TBI practitioners

have been willing to engage with statistical modelling researchers to better understand

this area. The clinical community recognises the need for a monitoring system, how-

ever, they did not think that it was possible to provide any useful warning using software

and statistics. What has been shown by the AvertIT group, is that it is possible to pro-

vide early warning, albeit with a very sophisticated technique (Bayesian Artificial Neural

Network — BANN), and that this general approach, i.e. using software and statistics, is

worth supporting.

However, a significant problem with the BANN approach is the difficulty in explain-

ing what is producing the prediction in terms of the input signals, i.e. it is a black box and

clinicians do not like something that they have to take on trust. The central aim of this

thesis is about exploring the possibility that a simple approach, based on logistic regres-

sion models — which clinicians understand and accept — can actually perform as well,

or nearly as well, as the BANN approach. This will be a significant contribution to the

domain knowledge in TBI. If it turns out that logistic regression models can give useful

early warning, it will show that the problem is not quite as non linear as perceived wis-

dom suggests. If not, then the research will have shown that more sophisticated models

are required.
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Chapter 4

Data Preparation

The data preparation for this research is extensive. This chapter describes the process of

producing data sets, from the raw ICU monitoring data, which can be used to investigate

ways of detecting possible hypotensive episodes. The tasks involved in this process are

illustrated by the flow chart in Figure 4.1.

BaseSet
Generator

Data Preparation

Event
Analysis

Application
Event

Detection
Dir

BrainIT
Database
Rel 2008

TrgTest
Generator

BaseSet
Generator

TrgTest
Generator

1

2

3

Figure 4.1: Data preparation research tasks

The first task is to produce the list of events and episodes which match the agreed

definition for a hypotensive event. Section 4.1.1 provides a brief outline of the Event

Analysis Application (EAA) program used to produce this list, along with the character-

istics of the events and episodes obtained from the ICU data in the BrainIT database.

The second task is to produce base data sets. Each base data set contains minute-

by-minute values from all patients. Each row constitutes a single vector consisting of

the episode start marker and all the available predictor data at suitable time points before

the event occurred. These vectors of information detail both the positive cases, i.e. sig-

nal values that were present just before an episode starts, and the negative cases which
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contain the information regarding the steady state or “normal”condition of the patient.

For this research two types of base data set are produced to support the two different

input architectures used by the models (see Section 3.7). The first type supports both the

“All Data” and “Stats Based” models and allows comparison between all the different

model types. Each vector (i.e. row) in the file contains demographic and hospital admis-

sion data along with a value for each minute of each physiological signal from the ICU

monitors. A single file called BDS_10_30_all_data.csv was produced and this file was

used to produce all the training and test sets used to compare the modelling techniques.

The second type of base data set used preprocessing methods to create a group of 30

files that were used to support the research into varying event horizons and window sizes

described in Section 5.5.

Section 4.2.6 describes a software application, Base Set Generator (BSG), that can

produce this initial list of all possible candidate vectors from the available data. A base

data set typically contains approximately 1000 examples of positive vectors along with

1.4 million examples of negative vectors obtained from 136 patients.

The third and final data preparation task is to produce a series of training and test data

sets randomly drawn from the base data sets. The random draw of results from the time

series is used to minimise the correlation between each set of inputs, thereby allowing

the use of standard statistical techniques. The Training Test Generator (TTG) software

described in Section 4.3.1 performs this function ensuring that once a patient has been

chosen for the training set it cannot be used in the test set. The TTG application was

used on the BDS_10_30_all_data.csv base data set file to produce 50 randomly drawn

training and test set pairs of files. These 100 files were used to develop and test all the

models described in Chapters 5 and 6.

The following sections describe each one of the above tasks in more detail.

4.1 Event and Episode Analysis

This part of the data preparation cycle takes the definitions discussed in Chapter 2,

Section 2.2 and processes the minute by minute data, building up a list of events and

episodes. Due to the requirements for holddown and clear times, this task is performed

by a custom application that has been specifically written for this thesis. The custom

program Event Analysis Application (EAA) has been written with a view to being a

more general purpose tool and is described in Section 4.1.1. Whilst the EAA produces

comprehensive output, only the list of episode start and stop times is required for the
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project.

4.1.1 Event Analysis Application (EAA)

The EAA is a general purpose application, written in Java, that initially processes a

configuration file to obtain the definition of (1) event trigger and clear thresholds and

(2) holddown and clear times. It also reads the value for the “new episode gap” which

is used to coalesce closely spaced events into a single episode. The program then runs

through a finite state machine pattern for each minute by minute row of ICU data for a

patient. The output of the application is a structured file in JSON format, (JSON, 2011),

which contains details of all the events and episodes found that meet the definitions

in the configuration file. This application is being made publicly available under an

open source licence and can be obtained in due course from the web site, http://www.

statsresearch.co.uk. Further details of obtaining and configuring the EAA can be

found in Appendix A.2.

4.1.2 EUSIG hypotensive event definition

Medical opinion is not settled on the definition of hypotension, as discussed in the medi-

cal background in Section 2.2. In order to make progress, this thesis uses the Edinburgh

University Secondary Insult Grades (EUSIG). The reasoning to support this decision is

discussed in the work of Donald (2008), carried out during the AvertIT (2008) project.

In summary, the EUSIG definitions are from published work, (Jones et al., 1994), and

require the monitoring of both systolic and mean arterial blood pressure.

The EAA is configured with the EUSIG definitions (see Appendix A.2) and the ap-

plication is used to process 136 patients from the BrainIT database.

4.1.3 Episode analysis of BrainIT database

The data used to illustrate the techniques described in this thesis comes from the BrainIT

database. This data source is described in Section 2.3. Applying the EAA to the BrainIT

database (2008 release) provides the following characteristics.
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Total Patients 136

Females 24 (17.6%) Median age 39 Range 16 — 82

Males 112 (82.4%) Median age 34 Range 16 — 83

Total Episodes Total Events

2382( ERF=76.7%) 3105

Type of Trauma

Assault Fall Pedestrian Sport Traffic Accident Unknown Work

10 39 13 2 63 7 2

Table 4.1: Training and test cohort — demographic summary

Table 4.1 and Figure 4.2 show the demographic characteristics of the data and plots

of statistical measures of the hypotensive episodes that occurred within the cohort. The

Episode Reduction Factor (ERF), shows the reduction from EUSIG events to the more

relevant episodes and it these episodes which cause the clinical teams most concern.
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Figure 4.2: Training and test cohort summary plots: (a) histogram showing the num-

ber of patients (Count) having a given number of episodes during their stay in the

ICU; (b) the spread of episode durations across the cohort, limited to durations un-

der three hours; (c) the number of events contained within an episode; (d) types of

trauma: At = Assault; Fl = Fall; Pd = Pedestrian; Sp = Sport; TA = Road Traffic Accident;

Un = Unknown; Wk = Work.

4.2 Base data sets

This section describes a system that generates base data sets from a combination of pa-

tient ICU monitoring measurements, which contains possible predictor variables, and a

list of episode start and stop times produced by the EAA program of Section 4.1.1. This
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is a general purpose requirement for building a classifier based system. The starting point

for any such system is a collection of labelled data which details the state of the predic-

tor variables at a given point in time, and the class label to which these measurements

belong. In the case of this project, we are dealing with binary classification, i.e. the class

choice is (a) did these measurements precede an episode start by n minutes, where n is

the event horizon or (b) was the patient in a stable state n minutes after these readings

were taken. Class (a) is given the value 1 and class (b) is given the value 0.

4.2.1 Base data sets for hypotension prediction

The central aim of this project is to produce an early warning of a hypotensive episode

that is clinically useful. What is considered clinically useful is, of course, a subjective

view of a clinical team. This thesis takes as its starting point the values of approximately

10 minutes of warning with a sensitivity of at least 30% and a false positive rate below

10%. These values come from a paper by the AvertIT team, (Stell et al., 2012). Discus-

sion with clinical colleagues suggests this low sensitivity target is still acceptable because

at the moment there are no clinically available systems which give early warning of these

dangerous episodes.

Another constraint imposed on a useful system is that the system does not require

large amounts of past data to perform its calculations. This constraint is to ensure that

once an event has occurred, and then cleared, the system does not need to wait too long

before it is operating on “clear” data. These two constraints are further described below

with reference to Fig. 4.3.
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Figure 4.3: Event run

From Figure 4.3, consider point 3 where the event actually occurred. The last time
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to usefully predict the event is at point 2. Assuming a model runs on a 10 minute event

horizon, the predictions at point 2 could be using the 30 minutes of data from point 1 up

to point 2.

The event clears at point 4, although the clearance signal does not occur until point

5. At point 5, assuming a minimum window size of five minutes, the model can restart.

Note however, it is not until point 6 that enough data is collected to run models which

require a 30 minute window size.

The 10 minute gap between the second and third events is an example of a situation

where there is limited ability to give an early warning of the third event due to lack of

data. Point 7 is the first time that models using a window size of five minutes can be

restarted. However, the best the model can do is give an indication of the probability of

an event which may occur in the next 10 minutes. The model, therfore may not accurately

forecast the event which occurs at point 8. It is not until point 9 that predictions can be

restarted.

4.2.2 Characterising physiological time series measurements
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Figure 4.4: Event horizon and window size

This section defines terms used in subsequent sections which describe how the time series

signals are processed to provide values for statistical measures concerning the signal.

Figure 4.4 defines the concept of event horizon and window size (WS).

The period of n minutes before an event is known as the event horizon (EH). From

point 4, a set of measurements can subsequently become an event n minutes later (the

red trace) or represent the stable state of the patient (the green trace).

The information that is being assessed is contained in the window size (WS) collec-

tion of measurement values. In the case of Figure 4.4, two window sizes are shown;
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measurements from point 1 to 4 constitute a 10 minute window size, measurements from

point 2 to 4 constitute a five minute window size.

4.2.3 Statistical measures
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Figure 4.5: Event run expanded

Having defined a window size of data for the time series, a decision is required regard-

ing which statistical characteristics are to be obtained from this window. Each of the

characteristics will become one variable in the vector of information from each minute’s

readings from the ICU monitors. A good starting point is to use the standard statistical

measures which describe a sample from a distribution i.e. mean and standard deviation.

There is also clinical evidence in the literature suggesting that heart rate variability is a

strong factor predicting hypotension, (Smiley, 2005). In addition, it is considered that

the slope of the trace may contain information on the trend of the data over the window

time period. Another interesting approach is to use only the spot value at the start of each

window, where start is the measurement closest to the event horizon.
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Consideration could also be given to frequency domain characteristics such as spec-

tral density and FFT coefficients. Frequency domain analysis relies on an assumption

that there are periodic signals within the data. Although there is a strong periodic signal

associated with heart rate, and hence blood pressure, this would normally require higher

resolution data, typically at millisecond level, for accurate analysis. There could also be

some periodic element associated with breathing and circadian rhythms. However, the

availability of respiration rate data tends to be limited and it is rare for the heart rate and

blood pressure data to be complete over more than 24 hours — the timescale required to

investigate circadian rhythms.

From discussions with clinical colleagues, and taking into account the above consid-

erations, this thesis will only use information from the time domain. The BSG applica-

tion, Section 4.2.6, will store the spot value and calculate and store the mean, standard

deviation and slope for each measurement from a given window. These four statistical

measures are shown in Figure 4.5 for the signal BPm using an event horizon of 10 min-

utes and a window size of 15 minutes. Note from Figure 4.4, considering the window

size of 5 minutes, that the mean and standard deviation calculations are carried out on

the five values between point 3 and 4, whilst the slope calculation is carried out on the

six values from point 2 to 4.

4.2.4 Data set contents

As described in the medical background, Section 2.4, the research uses data sets which

contain the following information: two demographic variables, age and gender; four

raw continuous physiological variables, heart rate (HRT), systolic blood pressure (BPs),

diastolic blood pressure (BPd) and mean blood pressure (BPm). The blood pressure

measurements are from an invasive arterial line.

The base data set is produced by working through all the data from a patient file on a

minute-by-minute basis. Each row consists of variables taken at points in time before an

event. Each variable name takes the following format:

<measurement>_<process>_<event horizon>_<window size>

giving for example, BPm_slope_10_15. This represents the slope (as calculated by

linear regression) of the mean arterial blood pressure starting at 10 minutes before the

event and extending backwards in time by 15 minutes from the start point, i.e. the slope

from 25 minutes before the event to 10 minutes before the event. This is shown in Figure

4.5.
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4.2.5 Measurement processing
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Figure 4.6: Base data set grid

Given that a useful system will predict episodes at least 10 minutes in advance and as-

suming that a practical window step size is five minutes, a total of 30 data sets have been

constructed requiring a maximum of 30 minutes of data in an operational system. These

base data sets (BDS) use event horizons at times 10, 15, 20, 25, 30 minutes before an

episode and window sizes of 5, 10, 15, 20, 30 minutes. These are shown as the grey bars

in Figure 4.6. Note that although Figure 4.6 seems to indicate that 50 minutes of data are

required, in a real system operating in an ICU only 30 minutes of data are required before

a model trained on WS=30 data can run. This is because in a real system 30 minutes of

data are collected, at which point any one of the models, e.g. trained on 10_30, 15_30,
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. . . 30_30 data sets, can be run on the same 30 minutes of data. The probability result

that is obtained from a model indicates how likely this 30 minute data set is EH minutes

before the start of an episode.

4.2.6 Base data set generator software

Although the preceding description is specific to the clinical data that is being used, the

software application written for this task is a general purpose tool that could be used for

other application domains given a database in the required format. Similar to the other

tools written for this thesis, this application will be made publicly available under an open

source licence and can be obtained from the website http://www.statsresearch.co.

uk. Further details of obtaining and configuring the base set generator (BSG) can be

found in Appendix A.3.

As detailed in Section 4.2.5, there are 30 base data sets that are being used to develop

models for the prediction of hypotensive events. It is useful to have an overall picture of

the process of creating an individual base data set. Fig. 4.7 provides a flowchart of the

BSG tasks.
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Figure 4.7: Overview of the data preparation cycle for a single base data set

4.2.7 Example data set row calculation

Each base data set consists of rows in the following form:

<timestamp><Series of Variables><hypotensive case label = 1 or 0>
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These rows are built up by processing all the physiological data from a patient’s stay

in the ICU on a minute by minute basis. This process is repeated for all the patients in

the database. The algorithm is detailed below:

• Load current minute values

• Load window_size previous values

• Are there minimum number of values?

– Yes — Perform <process> calculations

– No — Move to next minute

• Add event horizon to current minute

• Was there an event at this new time?

– Yes — Mark as positive vector, case label = 1

– No — Mark as negative vector, case label = 0

• Write row to BDS .csv file

• Move to next minute

Consider an example using actual clinical data. Figure 4.8 plots 70 minutes of data

from an ICU monitor for the signals HRT, BPs, BPd, BPm and Table 4.2 gives the actual

values, in two columns.
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Figure 4.8: Clinical data, patient 73704046, episode 6
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Time Stamp HRT BPs BPd BPm Time Stamp HRT BPs BPd BPm
2003-09-21 23:19 87 126 67 85 2003-09-21 23:54 93 124 66 86
2003-09-21 23:20 86 124 67 84 2003-09-21 23:55 87 131 69 88
2003-09-21 23:21 87 125 67 85 2003-09-21 23:56 87 132 69 90
2003-09-21 23:22 85 123 67 84 2003-09-21 23:57 87 131 69 89
2003-09-21 23:23 86 123 67 84 2003-09-21 23:58 85 131 69 89
2003-09-21 23:24 84 124 67 85 2003-09-21 23:59 87 130 71 90
2003-09-21 23:25 86 124 67 86 2003-09-22 00:00 86 129 70 89
2003-09-21 23:26 86 123 66 85 2003-09-22 00:01 87 131 71 90
2003-09-21 23:27 85 123 67 85 2003-09-22 00:02 89 131 70 91
2003-09-21 23:28 87 124 66 86 2003-09-22 00:03 87 132 72 91
2003-09-21 23:29 87 125 67 86 2003-09-22 00:04 87 130 69 89
2003-09-21 23:30 85 125 67 86 2003-09-22 00:05 87 131 69 90
2003-09-21 23:31 86 129 69 88 2003-09-22 00:06 85 128 68 88
2003-09-21 23:32 85 125 68 86 2003-09-22 00:07 86 129 68 88
2003-09-21 23:33 87 126 68 86 2003-09-22 00:08 86 131 69 90
2003-09-21 23:34 87 124 68 85 2003-09-22 00:09 86 132 70 91
2003-09-21 23:35 87 125 68 85 2003-09-22 00:10 84 133 70 91
2003-09-21 23:36 88 124 68 86 2003-09-22 00:11 86 130 69 89
2003-09-21 23:37 87 128 68 87 2003-09-22 00:12 85 131 69 90
2003-09-21 23:38 86 127 67 86 2003-09-22 00:13 90 125 64 86
2003-09-21 23:39 86 122 65 83 2003-09-22 00:14 100 127 58 78
2003-09-21 23:40 86 122 64 83 2003-09-22 00:15 90 121 53 73
2003-09-21 23:41 87 122 65 84 2003-09-22 00:16 88 120 51 71
2003-09-21 23:42 87 125 66 85 2003-09-22 00:17 85 120 51 69
2003-09-21 23:43 87 126 67 87 2003-09-22 00:18 85 121 53 71
2003-09-21 23:44 89 127 68 88 2003-09-22 00:19 85 110 50 67
2003-09-21 23:45 87 130 69 89 2003-09-22 00:20 84 107 49 64
2003-09-21 23:46 87 126 67 86 2003-09-22 00:21 86 108 49 64
2003-09-21 23:47 86 126 66 86 2003-09-22 00:22 86 110 50 65
2003-09-21 23:48 86 128 67 87 2003-09-22 00:23 84 110 50 66
2003-09-21 23:49 88 128 68 88 2003-09-22 00:24 84 111 50 67
2003-09-21 23:50 88 130 69 89 2003-09-22 00:25 84 111 50 67
2003-09-21 23:51 88 129 67 87 2003-09-22 00:26 84 112 51 68
2003-09-21 23:52 91 129 67 88 2003-09-22 00:27 82 112 50 67
2003-09-21 23:53 90 130 68 88 2003-09-22 00:28 83 115 52 70

Table 4.2: Data values, patient 73704046, episode 6

Consider the base data set 10_15 built up, as described above, by processing each

row of physiological data for each patient. With reference to Table 4.2, consider process-

ing the row of data starting at 2003-09-21 23:40 (light grey highlight, left hand column)

and the calculations required for the variables BPm_Slope_10_15, BPm_Mean_10_15,

BPm_SD_10_15. The 15 values previous to this timestamp are available (blue highlight,

left hand column) therefore the calculations required for mean and standard deviation
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can be performed. Calculation of the slope requires 16 values (light green and blue high-

lights, left hand column). The next part of the algorithm looks ahead for event horizon

minutes. In this example, this would be EH = 10, giving the timestamp 2003-09-21 23:50

(darker grey highlight, left hand column) which is not an event. This row, therefore, is

marked as a negative vector, case label = 0. The algorithm proceeds, minute by minute,

until the timestamp 2003-09-22 00:09 (light grey highlight, right hand column).

The 15 values previous to this timestamp are available (blue highlight, right hand

column) therefore once more the calculations required for mean and standard deviation

can be performed. Again, calculation of the slope requires 16 values (light green and blue

highlights, right hand column). As before, the next part of the algorithm looks ahead for

event horizon minutes. In this example, for EH = 10, this gives the timestamp 2003-09-

22 00:19 (red highlight, right hand column). In this case, the timestamp is the start of an

episode (which is known from the EAA JSON file of episode information) therefore this

row is marked as a positive vector, case label = 1.

4.3 Training and test data sets

This section describes how the files produced by the BSG application from Section 4.2

are transformed into training and test files that can be used by the model building process

described in chapter 5.

To expand on the description given in Section 3.4 regarding classifier models, at a

first level, there is a need to separate the available patients into two groups; one that will

be used for training a model and one that will form a test set for model validation. This

is done by randomly splitting the total cohort into two groups using a standard random

number generator function.

An assumption used during the model training process is that each row of data in a

training file is reasonably independent of any other row. This is straightforward in the

case of the positive vectors as each episode start is a new situation for the patient and the

process of coalescing close events into a single episode, see Section 2.2.2, minimises the

effect of closely spaced events. In the case of the negative vectors, which are assumed to

represent the stable state of the patient, this is more difficult as the vast majority of rows in

a BDS file are, in fact, negative vectors separated by a single minute. This single minute

separation would suggest that there will often be high correlation in a contiguous group

of negative vectors. What is required is a random selection of these negative vectors in

a similar proportion to that found in the real ICU monitor data stream. In the case of
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this research, a mix of 10% positive cases to 90% negative cases was chosen to represent

the ICU data. This proportion allows for the use of all the positive cases together with a

random selection of negative cases whilst still keeping the training file to a manageable

size for model processing. As only a small proportion of negative cases are being used,

it is unlikely that overlapping sequences are chosen. A further important aspect is that

the selection is very sparse.

The training and test set generator application (TTG), Section 4.3.1, carries out this

process on the two groups of patients separated during the first pass through the data.

Because of the 10:90 ratio, the file size is manageable, typically 500 KB, and this allows

the process to be repeated a number of times, giving a bootstrap effect. For this research,

the number of training/test file repeats is set to 50.

4.3.1 Training and test data set generator software

An R application was written to carry out the task of producing training and test files

for the model building process. As before, this application will be made publicly avail-

able under an open source licence and can be obtained from the website http://www.

statsresearch.co.uk. Further details of how to obtain and configure the training and

test set generator application (TTG) can be found in Appendix A.4.

The application writes 50 training, test and information files for a given BDS. The

information file is included as a result of the random pick process carried out to select

patients for either the training or test set. This random pick phase results in a varying

number of episodes each time due to the varying number of episodes each patient suffers.

This means that each training/test file in the 1 to 50 repeat sequence will have a varying

number of positive vectors. This of course will result in a varying number of negative

vectors because of the fixed 10:90 ratio.

Figure 4.9 shows a flow chart of the TTG operation.
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Figure 4.9: Overview of a single repeat of the training and test set generation process

From Figure 4.9 above, the generation of the training and test files moves through

four stages. Given a base data set, the first stage is to split the total cohort into two

groups of patients. This is achieved by assigning each unique patient ident from the

study a numerical index from the sequence 1 to the maximum number of patients. Half

the total is then picked by a random number generator and marked as the training set; the
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remaining half is marked as the test set.

The second stage is detailed in the “Training File” grey shape. This process involves

counting the number of positive vectors associated with the training idents. Once the

number of positive vectors is known, a calculation can be performed to obtain the number

of negative vectors required to maintain a 10:90 ratio of positive to negative cases. This

total number of negative vectors is randomly picked from the several thousand available

for each patient. All the positive vectors and the randomly selected negative vectors are

subsequently written out to the training file.

The third stage, the “Test File” grey shape, repeats the actions from the Training File

but uses the test set patients, with the results being written out to the test file.

The final stage is to write out the summary statistics gathered during the formation

of the training and test sets into a JSON format information file. This entire four stage

process is repeated 50 times.
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Chapter 5

Logistic Regression Models

This chapter describes in detail a series of logistic regression models that can provide

early warning of a hypotensive event. It will be shown that a model built with this

relatively simple technique can produce predictive results in line with current state of the

art research.

Model_Info_X

LRModels

TrgTest
Generator

Build_
LR_Models

4

Model_Info_X

SMC Models

Figure 5.1: Logistic regression modelling research tasks

5.1 Chapter overview with summary plots

There are six logistic regression models detailed in this section. These six models use

two different architectures for their input structure, these architectural structures were

introduced in Section 3.7. The first set of two models use each minute of each phys-

iological signal as inputs to the model (Figures 3.10 and 5.6). The second set of four

models performs a series of statistical pre-calculations on each minute of each physio-

logical signal and the results of these calculations form the inputs to the models (Figures

3.11 and 5.25). The first section of the chapter proposes a series of models. For each

proposed model full details of the model parameters and their estimates are provided.

Taking each proposed model structure, the R statistical package, (R Development

Core Team, 2008), is used to train the model on a randomly drawn training set. For
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the two models based on each minute of the available data, parameter estimation is car-

ried out using a penalised maximum likelihood technique and a Bayesian model using

Sequential Monte Carlo (Section 3.5). Both of these approaches are coded from first

principles. The parameter estimates for the models based on statistical measures of the

inputs are obtained by using packages available within the R framework.

A model, using the parameter estimates from the training phase, is then tested against

a group of unseen patients in a test set. The predictions obtained from applying the model

to the test set are used to generate an ROC curve. This process is repeated 50 times. A

standard measure of classifier performance, the area under the ROC curve (AUC) is used

to assess the model. The ROC plot shows the median ROC curve along with a 90%

credible limit around the median. This provides a measure of the variability of model

performance. This assessment method is used to decide whether or not to proceed with

a model to the next stage of testing using clinical data.

Details of the R code used to provide the results presented in this chapter are provided

in Appendix A.

Figures 5.2 to 5.5 are provided as an executive summary of the six logistic regression

models.
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5.1.1 Summary of models using each minute as input
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Figure 5.2: Penalised Logistic Regression Models Performance Summary. Models us-

ing “all data” i.e. each minute from each physiological signal forms an input to the

model. The parameters for the two penalised logistic regression models were obtained

by both maximum likelihood and sequential Monte Carlo techniques. The top row of

this plot shows the ROC curves obtained from the model whose parameters were ob-

tained by maximum likelihood. The bottom row shows the ROC curves obtained from

the model whose parameters were obtained using a sequential Monte Carlo method.
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Figure 5.3: Penalised Logistic Regression Models AUC Density Plots. The heavier lines

are the density curves, from 50 iterations of each model, showing the spread of AUC

values for the two penalised logistic regression models and two fully Bayesian pe-

nalised logistic regression models. For comparison density traces are provided from

the four statistics based input models. These are shown as the thinner lines on the

plot.
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5.1.2 Summary of models using statistical measures as input
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Figure 5.4: Logisitic Regression Model Performance Summary. Models use “statistics

based” model inputs. Summary statistics are formed for each physiological signal and

it is the values of these statistical measures that form the inputs to the models.
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Figure 5.5: Logistic Regression Models AUC Density Plots. The heavier lines are the

density curves, from 50 iterations of each model, showing the spread of AUC values

for the four logistic regression models that use statistical measures as input.

5.2 Model proposals

There are many different models that could be examined; these range from the very

complex, e.g. examining main effects and interactions for all signals, to simpler models

containing only clinically significant signals. The aim of the research is to examine

whether or not simpler models can be as effective as more complex models. The primary

motive for simpler models is that they are easier to explain and hence acceptable to

clinical teams. Six proposed models are outlined below.

The first two models use the complete 30 minutes of data from relevant physiological
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signals, Sections 5.4.1 to 5.4.4 provide the more detailed reasoning behind the model

structures. The parameters for the two models are first obtained using a penalised maxi-

mum likelihood approach and are also estimated using the Bayesian parameter estimation

technique from Section 3.5 in the Methods Review chapter.

The next group of four models, detailed in Sections 5.4.1 to 5.4.4 use a technique of

summarising an available physiological signal using four statistical measures. This re-

sults in a model with fewer parameters that must be estimated. It is also a straightforward

method to explain to clinical colleagues.

5.3 Models using each minute of data
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Figure 5.6: Input architecture, “All Data” models. These models use each minute of

data as inputs.

• All signals, Model name: PLR-Full — a model using the age and gender of the

patient plus all the available signals from Table 2.5. For each of the physiological

signals each minute of a 30 minute buffer is used as an input signal.

• Minimum signals, Model name: PLR-Min — a model using the age and gender

of the patient plus the signals HRT and BPm which are suggested by clinical col-

leagues. Again for each of the HRT and BPm signals each minute of a 30 minute

buffer is used as an input signal.
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In the following sections, the probability of a hypotensive event starting in EH min-

utes, pi , is given by,

pi = p(Yi = 1|Xi ) (5.1)

and,

logit(Yi = 1|Xi ) = logit(pi ) = log
µ

pi

1°pi

∂
(5.2)

Also note that all models use normalised data i.e.

xi = xi i nput °µi nput (5.3)

with µi nput = 1/N
PN

i=1 xi

5.3.1 Determination of optimal penalty setting ∏

All the penalised logistic regression models require a value for the penalty parameter

∏. The optimal value for ∏ was determined using a two pass approach along vectors of

possible ∏ values.

The first pass used a coarse grain approach with values for ∏ from the vector

{1,10,100,1e3,1e4,1e5,1e6,1e7,1e8,1e9,1e10,1e12,1e14}. For each ∏ value, the Ø values

for the model were estimated and then a predictive loglikelihood value was calculated

using a test set of data. This process was repeated for 10 test sets. The resulting vector

of loglikelihood values was processed to find the value of ∏ that gave the maximum

loglikelihood.

The second pass used a fine grain approach which takes as its mid point the value of

∏ that gave the maximum loglikelihood from the first pass. The ∏ value is converted to a

log (∏) value and then the range is defined as l og (∏maxLL)±2. This range is then divided

into a fine grain vector with a spacing of 0.1. Again a loglikelihood value was calculated

using a test set of data. This process was repeated for 50 test sets. The final setting for ∏

was taken as the value that gave the maximum predictive loglikelihood.

5.3.2 All signals, Model name: PLR-Full

The PLR-Full model is the baseline for the penalised logistic regression group of models.

It utilises data from the BrainIT database which reflects the signals that are available from

a typical installation of ICU bedside monitors. Full details of the available signals are
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provided in the medical background, Section 2.4. To briefly recap, this model uses two

demographic signals and four measured signals from the ICU monitoring system. The

demographic signals are age and gender. The measured signals are: heart rate (HRT);

systolic arterial blood pressure (BPs); diastolic arterial blood pressure (BPd); and mean

arterial blood pressure (BPm). For each of the four measured signals, this model uses

each available minute from a 31 minute buffer as inputs. This gives a total of 127 input

parameters which must be estimated. The clinical basis for this model comes from dis-

cussions with colleagues and builds on the work of the AvertIT project, (Donald et al.,

2012b). Formally the model is defined as:

log
µ

pi

1°pi

∂
=Ø0 +Ø1 Ag ei +Ø2Genderi

+Ø3HRT _10i +Ø4HRT _11i +Ø5HRT _12i + . . .+Ø33HRT _40i

+Ø34BPs_10i +Ø35BPs_11i +Ø36BPs_12i + . . .+Ø64BPs_40i

+Ø65BPd_10i +Ø66BPd_11i +Ø67BPd_12i + . . .+Ø95BPd_40i

+Ø96BPm_10i +Ø97BPm_11i +Ø98BPm_12i + . . .+Ø126BPm_40i (5.4)

with

L (Ø)penal i sed =L (Ø)°∏([(Ø4 °Ø3)° (Ø5 °Ø4)]2)

°
...

°∏([(Ø125 °Ø124))° (Ø126 °Ø125)]2) (5.5)

As described in the Methods Review Section 3.4.1.1, estimation of the 127 param-

eters was carried out using a penalised logistic regression technique. This technique is

implemented in the R script PenalisedLogisticRegression.R, (see Appendix B.1).

The model performance, as measured using the ROC technique, is presented in Fig-

ure 5.7. The profile of the model coefficient values is presented in Figure 5.3.2.2. The

full summary of the parameter values is provided in Table 5.1.
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5.3.2.1 Model Performance ROC curves (Model: PLR-Full)
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Figure 5.7: Model: PLR-Full, ROC and AUC detail. This plot is generated from 50 runs

of the model. Each run consists of a training and test set. The blue trace shows the

median performance, the green (upper) and red (lower) traces give the 95% and 5%

quantiles.
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5.3.2.2 Estimation of lambda (Model: PLR-Full)
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Figure 5.8: PLR-Full: Coarse search for optimal ∏. Ten iterations of the coarse search

returns a value for ∏= 13.82. The y-axis shows the deviation from the mean loglikeli-

hood at each ∏ setting across the ten iterations. This accounts for the different abso-

lute values of loglikelihood due to the different data sets.
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Figure 5.9: PLR-Full: Fine grain search for optimal ∏. Thirty iterations of the fine grain

search returns the same value of 13.82 for ∏. The y-axis shows the deviation from the

mean loglikelihood at each ∏ setting across the 30 iterations.
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5.3.2.3 Parameter Profiles (Model: PLR-Full)
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Figure 5.10: Model: PLR-Full, parameter effect size profiles. Effect size is defined as

Ø j£ std dev(x j )
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Table 5.1 details the parameter estimates obtained from 50 runs of the model. Each

training run of the model uses a randomly drawn training set from half (approximately

50) of the patients. The model is then tested using the ROC technique on the appropriate

test set, containing the other half of the available patients.

Measure Mean (SE) Measure Mean (SE) Measure Mean (SE) Measure Mean (SE)

HRT_10 0.0088 (0.00038) BPs_10 -0.0083 (0.00039) BPd_10 0.0081 (0.00084) BPm_10 -0.0331 (0.00090)

HRT_11 0.0074 (0.00031) BPs_11 -0.0061 (0.00032) BPd_11 0.0082 (0.00074) BPm_11 -0.0284 (0.00077)

HRT_12 0.0060 (0.00025) BPs_12 -0.0040 (0.00026) BPd_12 0.0083 (0.00064) BPm_12 -0.0238 (0.00065)

HRT_13 0.0047 (0.00021) BPs_13 -0.0023 (0.00021) BPd_13 0.0082 (0.00054) BPm_13 -0.0195 (0.00055)

HRT_14 0.0035 (0.00019) BPs_14 -0.0009 (0.00018) BPd_14 0.0078 (0.00046) BPm_14 -0.0155 (0.00048)

HRT_15 0.0025 (0.00017) BPs_15 0.0001 (0.00016) BPd_15 0.0071 (0.00039) BPm_15 -0.0119 (0.00043)

HRT_16 0.0017 (0.00017) BPs_16 0.0006 (0.00016) BPd_16 0.0061 (0.00035) BPm_16 -0.0087 (0.00040)

HRT_17 0.0009 (0.00017) BPs_17 0.0007 (0.00017) BPd_17 0.0048 (0.00033) BPm_17 -0.0060 (0.00039)

HRT_18 0.0003 (0.00018) BPs_18 0.0005 (0.00020) BPd_18 0.0033 (0.00034) BPm_18 -0.0037 (0.00039)

HRT_19 -0.0002 (0.00019) BPs_19 0.0002 (0.00021) BPd_19 0.0018 (0.00036) BPm_19 -0.0016 (0.00038)

HRT_20 -0.0006 (0.00019) BPs_20 -0.0000 (0.00022) BPd_20 0.0003 (0.00037) BPm_20 0.0002 (0.00038)

HRT_21 -0.0008 (0.00019) BPs_21 -0.0003 (0.00022) BPd_21 -0.0012 (0.00039) BPm_21 0.0017 (0.00038)

HRT_22 -0.0009 (0.00018) BPs_22 -0.0005 (0.00022) BPd_22 -0.0026 (0.00040) BPm_22 0.0031 (0.00038)

HRT_23 -0.0008 (0.00017) BPs_23 -0.0006 (0.00021) BPd_23 -0.0039 (0.00040) BPm_23 0.0042 (0.00038)

HRT_24 -0.0006 (0.00016) BPs_24 -0.0004 (0.00021) BPd_24 -0.0052 (0.00040) BPm_24 0.0050 (0.00037)

HRT_25 -0.0005 (0.00016) BPs_25 -0.0002 (0.00020) BPd_25 -0.0063 (0.00039) BPm_25 0.0056 (0.00037)

HRT_26 -0.0004 (0.00017) BPs_26 0.0002 (0.00018) BPd_26 -0.0073 (0.00038) BPm_26 0.0060 (0.00035)

HRT_27 -0.0004 (0.00018) BPs_27 0.0005 (0.00017) BPd_27 -0.0082 (0.00037) BPm_27 0.0061 (0.00034)

HRT_28 -0.0005 (0.00019) BPs_28 0.0009 (0.00016) BPd_28 -0.0090 (0.00035) BPm_28 0.0059 (0.00034)

HRT_29 -0.0007 (0.00019) BPs_29 0.0013 (0.00016) BPd_29 -0.0097 (0.00033) BPm_29 0.0056 (0.00033)

HRT_30 -0.0010 (0.00019) BPs_30 0.0018 (0.00017) BPd_30 -0.0102 (0.00031) BPm_30 0.0051 (0.00032)

HRT_31 -0.0013 (0.00019) BPs_31 0.0024 (0.00018) BPd_31 -0.0103 (0.00029) BPm_31 0.0046 (0.00032)

HRT_32 -0.0016 (0.00018) BPs_32 0.0029 (0.00019) BPd_32 -0.0101 (0.00029) BPm_32 0.0039 (0.00031)

HRT_33 -0.0017 (0.00017) BPs_33 0.0032 (0.00019) BPd_33 -0.0093 (0.00031) BPm_33 0.0033 (0.00031)

HRT_34 -0.0018 (0.00016) BPs_34 0.0031 (0.00018) BPd_34 -0.0080 (0.00035) BPm_34 0.0026 (0.00033)

HRT_35 -0.0017 (0.00014) BPs_35 0.0028 (0.00016) BPd_35 -0.0061 (0.00041) BPm_35 0.0019 (0.00037)

HRT_36 -0.0015 (0.00014) BPs_36 0.0021 (0.00014) BPd_36 -0.0038 (0.00048) BPm_36 0.0012 (0.00043)

HRT_37 -0.0012 (0.00016) BPs_37 0.0011 (0.00013) BPd_37 -0.0011 (0.00057) BPm_37 0.0004 (0.00052)

HRT_38 -0.0008 (0.00021) BPs_38 -0.0001 (0.00017) BPd_38 0.0019 (0.00067) BPm_38 -0.0004 (0.00061)

HRT_39 -0.0005 (0.00028) BPs_39 -0.0012 (0.00024) BPd_39 0.0050 (0.00077) BPm_39 -0.0011 (0.00072)

HRT_40 -0.0001 (0.00037) BPs_40 -0.0023 (0.00032) BPd_40 0.0082 (0.00089) BPm_40 -0.0018 (0.00083)

Table 5.1: Parameter coefficients for model: PLR-Full

5.3.2.4 Sequential Monte Carlo (SMC) Parameter Estimation

As described in Section 3.5, an alternative method of estimating the parameters of the

PLR-Full model was carried out. The alternative method uses a fully Bayesian model,

including a Bayesian estimate of the penalty parameter ∏. Sampling from the posterior is

performed using the Sequential Monte Carlo algorithm. The results, to be compared with

the maximum likelihood estimates from Section 5.3.2, are presented in Figures 5.11 and

5.12 and Table 5.2. In addition, diagnostics plots from the SMC process are provided in

Figures 5.13 to 5.15.
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Figure 5.11: Model: PLR-Full, SMC parameter estimation. ROC and AUC detail. This

plot is generated from 50 runs of the model. Each run consists of a training and test

set. The blue trace shows the median performance, the green (upper) and red (lower)

traces give the 95% and 5% quantiles.
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Figure 5.12: Model: PLR-Full, SMC parameter estimation, parameter effect size pro-

files. Effect size is defined as Ø j£ std dev(x j )
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Table 5.2 details the parameter estimates obtained from 50 runs of the model. Each

training run of the model uses a randomly drawn training set from half (approximately

50) of the patients. The model is tested using the ROC technique on the appropriate test

set, containing the other half of the available patients.

Measure Mean (SE) Measure Mean (SE) Measure Mean (SE) Measure Mean (SE)

HRT_10 0.0102 (0.00145) BPs_10 -0.0253 (0.00202) BPd_10 0.0166 (0.00374) BPm_10 -0.0348 (0.00539)

HRT_11 0.0155 (0.00113) BPs_11 0.0139 (0.00180) BPd_11 -0.0115 (0.00404) BPm_11 -0.0398 (0.00493)

HRT_12 0.0066 (0.00142) BPs_12 -0.0081 (0.00209) BPd_12 0.0108 (0.00419) BPm_12 -0.0019 (0.00521)

HRT_13 0.0031 (0.00129) BPs_13 -0.0050 (0.00188) BPd_13 0.0187 (0.00274) BPm_13 -0.0370 (0.00336)

HRT_14 -0.0096 (0.00141) BPs_14 0.0037 (0.00206) BPd_14 0.0185 (0.00311) BPm_14 -0.0258 (0.00377)

HRT_15 0.0053 (0.00115) BPs_15 -0.0014 (0.00195) BPd_15 0.0030 (0.00304) BPm_15 -0.0087 (0.00413)

HRT_16 0.0003 (0.00140) BPs_16 0.0091 (0.00164) BPd_16 0.0047 (0.00321) BPm_16 0.0011 (0.00397)

HRT_17 0.0081 (0.00156) BPs_17 -0.0000 (0.00160) BPd_17 0.0033 (0.00257) BPm_17 -0.0078 (0.00331)

HRT_18 0.0019 (0.00123) BPs_18 -0.0142 (0.00128) BPd_18 0.0240 (0.00273) BPm_18 -0.0245 (0.00304)

HRT_19 -0.0058 (0.00145) BPs_19 0.0082 (0.00170) BPd_19 -0.0079 (0.00350) BPm_19 0.0059 (0.00435)

HRT_20 0.0075 (0.00132) BPs_20 0.0021 (0.00182) BPd_20 -0.0135 (0.00350) BPm_20 0.0163 (0.00447)

HRT_21 -0.0107 (0.00141) BPs_21 0.0070 (0.00183) BPd_21 -0.0057 (0.00372) BPm_21 -0.0091 (0.00441)

HRT_22 -0.0043 (0.00139) BPs_22 -0.0144 (0.00115) BPd_22 0.0241 (0.00312) BPm_22 0.0011 (0.00350)

HRT_23 -0.0045 (0.00144) BPs_23 0.0032 (0.00140) BPd_23 -0.0361 (0.00310) BPm_23 0.0201 (0.00390)

HRT_24 0.0071 (0.00107) BPs_24 -0.0038 (0.00154) BPd_24 -0.0121 (0.00293) BPm_24 0.0199 (0.00276)

HRT_25 -0.0011 (0.00115) BPs_25 0.0056 (0.00179) BPd_25 0.0089 (0.00309) BPm_25 -0.0195 (0.00327)

HRT_26 -0.0027 (0.00122) BPs_26 -0.0010 (0.00140) BPd_26 -0.0089 (0.00323) BPm_26 0.0076 (0.00358)

HRT_27 0.0004 (0.00141) BPs_27 -0.0016 (0.00161) BPd_27 -0.0019 (0.00328) BPm_27 0.0087 (0.00378)

HRT_28 0.0040 (0.00111) BPs_28 0.0193 (0.00179) BPd_28 0.0313 (0.00356) BPm_28 -0.0465 (0.00443)

HRT_29 0.0089 (0.00121) BPs_29 -0.0156 (0.00182) BPd_29 -0.0135 (0.00293) BPm_29 0.0210 (0.00385)

HRT_30 -0.0126 (0.00114) BPs_30 -0.0012 (0.00153) BPd_30 -0.0137 (0.00351) BPm_30 0.0159 (0.00379)

HRT_31 0.0019 (0.00096) BPs_31 -0.0004 (0.00152) BPd_31 -0.0002 (0.00284) BPm_31 -0.0009 (0.00331)

HRT_32 0.0020 (0.00108) BPs_32 0.0050 (0.00148) BPd_32 -0.0297 (0.00267) BPm_32 0.0157 (0.00328)

HRT_33 -0.0144 (0.00127) BPs_33 0.0098 (0.00139) BPd_33 -0.0282 (0.00373) BPm_33 0.0163 (0.00351)

HRT_34 0.0007 (0.00122) BPs_34 -0.0061 (0.00171) BPd_34 -0.0174 (0.00301) BPm_34 0.0152 (0.00326)

HRT_35 0.0041 (0.00119) BPs_35 0.0111 (0.00177) BPd_35 -0.0131 (0.00333) BPm_35 0.0002 (0.00357)

HRT_36 -0.0059 (0.00135) BPs_36 0.0026 (0.00174) BPd_36 -0.0253 (0.00289) BPm_36 0.0239 (0.00360)

HRT_37 -0.0044 (0.00099) BPs_37 0.0039 (0.00134) BPd_37 0.0125 (0.00275) BPm_37 -0.0148 (0.00336)

HRT_38 0.0001 (0.00136) BPs_38 -0.0009 (0.00153) BPd_38 -0.0009 (0.00206) BPm_38 -0.0017 (0.00302)

HRT_39 0.0077 (0.00118) BPs_39 -0.0153 (0.00138) BPd_39 0.0183 (0.00285) BPm_39 -0.0054 (0.00367)

HRT_40 -0.0027 (0.00131) BPs_40 0.0070 (0.00131) BPd_40 0.0078 (0.00292) BPm_40 -0.0043 (0.00380)

Table 5.2: Parameter coefficients for model: SMC-PLR-Full

5.3.2.5 SMC-PLR-Full, Algorithm diagnostics

The internal operation of the SMC algorithm can be examined to ensure that the pro-

cedure is working efficiently. The diagnostic plots in Figures 5.13 through 5.15 show

that the SMC technique is performing as expected. This technique works best when the

starting point is close to the target distribution and that is ensured by using the coeffi-

cients from the maximum likelihood based model of Section 5.3.2. The SMC technique

proceeds to move in small stages from the starting distribution and this can be seen in

Figure 5.13 where the ESS gradually gets less as a group of particles takes on most of
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the weight.
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Figure 5.13: Model: PLR-Full, SMC parameter estimation,SMC ESS Diagnostics. S is

the number of auxiliary distributions, n is the number of particles. The start distribu-

tion is good as the initial ESS value is well above the 50% threshold which triggers a

resample procedure.

This deterioration of the particles can also be seen in Figure 5.15, where some of the

particles (columns in the plot) begin to move colour from darker blue to lighter colours

which indicates that the particle is becoming too dominant within the distribution. Once

particles dominate the distribution a resample is performed to smooth out the distribution.
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Figure 5.14: Model: PLR-Full, SMC parameter estimation, SMC MCMC Move Accept

Rate Diagnostics. This plot shows an evenly distributed accept rate with a mean value

of 0.25. The acceptance rate is controlled by ø∫j , the Metropolis-Hasting tuning pa-

rameter, which for this model is set to 0.2



5.3. MODELS USING EACH MINUTE OF DATA 113

Particles

Ite
ra
tio
ns

0.4

0.6

0.8

1.0

Figure 5.15: Model: PLR-Full, SMC parameter estimation, particle weights across aux-

iliary distributions. This plot shows the particle weights as the auxiliary distribution

moves from the start weights at the bottom of the plot (set using penalised logistic

regression) to the final target distribution at the top of the plot. Each band of angled

lines is a resample procedure which is triggered as a group of weights begins to dom-

inate (moves from dark blue towards lighter then dark red colours). The colour key

is a relative scale with the range being from dark blue for low weights to red for high

weights.

5.3.2.6 Model: PLR-Full, Summary

Interpreting the coefficients of the model shows that for the variables HRT, BPs and BPm

the initial five to ten minutes of data have the strongest effect. The coefficients for the

remaining 20 minutes of data oscillate around zero. The coefficients for BPd show a

pattern that starts negative for the first ten minutes in line with the other variables but
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then swings positive for the following 15 minutes before swinging negative for the final

five minutes. The overall effect across the 31 minute data being approximately zero.

The HRT signal has a positive effect over its initial phase i.e. an increase in HRT

will tend to increase the probability of a hypotensive episode. The two blood pressure

signals BPs and BPm both have negative effects i.e. a decrease in BPs, which would tend

to cause a decrease in BPm, will increase the chance of a hypotensive episode starting.

The effect is stronger for the BPm signal.

Using the SMC technique, the coefficient profile from Figure 5.12 does not show as

distinct a pattern as the PLR-Full model. The penalty effect, which is estimated from the

data, is clearly not as strong thereby allowing a larger variation of the coefficient values.

The AUC value produced when using the parameters estimated by SMC is slightly down,

at 0.776 vs. 0.788, this is most likely due to the reduced penalty effect.
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5.3.3 Minimum signals, Model name: PLR-Min

The PLR-Min model is the model suggested by clinical colleagues. It utilises data from

the BrainIT database which reflects the signals that are available from a typical instal-

lation of ICU bedside monitors. Full details of the available signals are provided in the

medical background, Section 2.4. This model uses two demographic signals and the two

measured signals. The demographic signals are age and gender. The measured signals

are: heart rate (HRT); and mean arterial blood pressure (BPm). For each of the two mea-

sured signals, this model uses each available minute from a 31 minute buffer as inputs.

This gives a total of 65 input parameters which must be estimated. Again, the clinical

basis for this model comes from discussions with colleagues and builds on the work of

the AvertIT project, (Donald et al., 2012b). Formally the model is defined as:

log
µ

pi

1°pi

∂
=Ø0 +Ø1 Ag ei +Ø2Genderi

+Ø3HRT _10i +Ø4HRT _11i +Ø5HRT _12i + . . .+Ø33HRT _40i

+Ø34BPm_10i +Ø35BPm_11i +Ø36BPm_12i + . . .+Ø64BPm_40i (5.6)

with

L (Ø)penal i sed =L (Ø)°∏([(Ø4 °Ø3)° (Ø5 °Ø4)]2)

°
...

°∏([(Ø63 °Ø62))° (Ø64 °Ø63)]2) (5.7)

The model performance, as measured using the ROC technique, is presented in Fig-

ure 5.16. The profile of the model coefficient values is presented in Figure 5.3.3.2. The

full summary of the parameter values is provided in Table 5.3.
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5.3.3.1 Model Performance ROC curves (Model: PLR-Min)
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Figure 5.16: Model: PLR-Min, ROC and AUC detail. This plot is generated from 50

runs of the model. Each run consists of a training and test set. The blue trace shows

the median performance, the green (upper) and red (lower) traces give the 95% and

5% quantiles.
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5.3.3.2 Estimation of lambda (Model: PLR-Min)
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Figure 5.17: PLR-Min: Coarse search for optimal ∏. The coarse search using ten it-

erations returns a value of 13.82 for ∏. The y-axis shows the deviation from the mean

loglikelihood at each∏ setting across the ten iterations. This accounts for the different

absolute values of loglikelihood due to the different data sets.
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Figure 5.18: PLR-Min: Fine grain search for optimal∏. The fine grain search procedure

using 30 iterations returns a value of 13.67 for ∏. The y-axis shows the deviation from

the mean loglikelihood at each ∏ setting across the 30 iterations.
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5.3.3.3 Parameter Profiles (Model: PLR-Min)
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Figure 5.19: Model: PLR-Min, parameter effect size profiles. Effect size is defined as

Ø j£ std dev(x j )
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Table 5.3 details the parameter estimates obtained from 50 runs of the model. Each

training run of the model is uses a randomly drawn training set from half (approximately

50) of the patients. The model is then tested using the ROC technique on the appropriate

test set, containing the other half of the available patients.

Measure Mean (SE) Measure Mean (SE)

HRT_10 0.0113 (0.00049) BPm_10 -0.0408 (0.00053)

HRT_11 0.0090 (0.00034) BPm_11 -0.0319 (0.00039)

HRT_12 0.0066 (0.00027) BPm_12 -0.0235 (0.00031)

HRT_13 0.0045 (0.00029) BPm_13 -0.0163 (0.00028)

HRT_14 0.0029 (0.00031) BPm_14 -0.0103 (0.00026)

HRT_15 0.0020 (0.00030) BPm_15 -0.0057 (0.00024)

HRT_16 0.0014 (0.00028) BPm_16 -0.0027 (0.00024)

HRT_17 0.0008 (0.00028) BPm_17 -0.0013 (0.00026)

HRT_18 0.0001 (0.00029) BPm_18 -0.0007 (0.00029)

HRT_19 -0.0006 (0.00030) BPm_19 -0.0003 (0.00030)

HRT_20 -0.0011 (0.00030) BPm_20 -0.0000 (0.00030)

HRT_21 -0.0015 (0.00028) BPm_21 0.0001 (0.00027)

HRT_22 -0.0016 (0.00026) BPm_22 0.0004 (0.00023)

HRT_23 -0.0012 (0.00024) BPm_23 0.0005 (0.00023)

HRT_24 -0.0006 (0.00023) BPm_24 0.0007 (0.00025)

HRT_25 -0.0001 (0.00023) BPm_25 0.0007 (0.00027)

HRT_26 0.0002 (0.00024) BPm_26 0.0008 (0.00027)

HRT_27 0.0003 (0.00025) BPm_27 0.0007 (0.00027)

HRT_28 0.0001 (0.00026) BPm_28 0.0004 (0.00027)

HRT_29 -0.0004 (0.00027) BPm_29 0.0000 (0.00026)

HRT_30 -0.0012 (0.00027) BPm_30 -0.0002 (0.00025)

HRT_31 -0.0019 (0.00027) BPm_31 -0.0002 (0.00022)

HRT_32 -0.0025 (0.00026) BPm_32 0.0000 (0.00020)

HRT_33 -0.0029 (0.00026) BPm_33 0.0003 (0.00017)

HRT_34 -0.0028 (0.00026) BPm_34 0.0007 (0.00016)

HRT_35 -0.0024 (0.00027) BPm_35 0.0011 (0.00017)

HRT_36 -0.0020 (0.00026) BPm_36 0.0014 (0.00019)

HRT_37 -0.0014 (0.00023) BPm_37 0.0015 (0.00022)

HRT_38 -0.0007 (0.00024) BPm_38 0.0016 (0.00027)

HRT_39 0.0001 (0.00034) BPm_39 0.0020 (0.00037)

HRT_40 0.0008 (0.00051) BPm_40 0.0026 (0.00053)

Table 5.3: Parameter coefficients for model: PLR-Min

5.3.3.4 Sequential Monte Carlo (SMC) Parameter Estimation

As described in Section 3.5, an alternative method of estimating the parameters of the

PLR-Min model was carried out. This alternative method uses the technique of Sequen-

tial Monte Carlo for static problems. The method uses a Bayesian framework and a series

of joint distributions of parameters to explore possible parameter combinations for the

model. The results, to be compared with the maximum likelihood estimates from Section

5.3.2, are presented in Figures 5.20 and 5.21 and Table 5.4. In addition, diagnostics plots

from the SMC process are provided in Figures 5.22 to 5.24.
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Figure 5.20: Model: PLR-Min, SMC parameter estimation. ROC and AUC detail. This

plot is generated from 50 runs of the model. Each run consists of a training and test

set. The blue trace shows the median performance, the green (upper) and red (lower)

traces give the 95% and 5% quantiles.
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Model:SMC−PLR−Min, Parameter Estimates n=50
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Figure 5.21: Model: PLR-Min, SMC parameter estimation, parameter effect size pro-

files. Effect size is defined as Ø j£ std dev(x j )
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Table 5.4 details the parameter estimates obtained from 50 runs of the model. Each

training run of the model is uses a randomly drawn training set from half (approximately

50) of the patients. The model is then tested using the ROC technique on the appropriate

test set, containing the other half of the available patients.

Measure Mean (SE) Measure Mean (SE)

HRT_10 0.0125 (0.00129) BPm_10 -0.0554 (0.00170)

HRT_11 0.0170 (0.00122) BPm_11 -0.0358 (0.00166)

HRT_12 0.0053 (0.00150) BPm_12 -0.0028 (0.00182)

HRT_13 0.0033 (0.00133) BPm_13 -0.0252 (0.00166)

HRT_14 -0.0106 (0.00135) BPm_14 -0.0068 (0.00160)

HRT_15 0.0071 (0.00133) BPm_15 -0.0107 (0.00171)

HRT_16 0.0008 (0.00133) BPm_16 0.0128 (0.00146)

HRT_17 0.0060 (0.00145) BPm_17 -0.0021 (0.00132)

HRT_18 0.0015 (0.00142) BPm_18 -0.0175 (0.00154)

HRT_19 -0.0068 (0.00172) BPm_19 0.0017 (0.00159)

HRT_20 0.0095 (0.00139) BPm_20 0.0075 (0.00111)

HRT_21 -0.0112 (0.00153) BPm_21 -0.0081 (0.00135)

HRT_22 -0.0029 (0.00136) BPm_22 0.0084 (0.00148)

HRT_23 -0.0064 (0.00151) BPm_23 -0.0034 (0.00159)

HRT_24 0.0108 (0.00115) BPm_24 0.0032 (0.00137)

HRT_25 -0.0028 (0.00127) BPm_25 -0.0060 (0.00113)

HRT_26 -0.0013 (0.00157) BPm_26 0.0034 (0.00131)

HRT_27 -0.0017 (0.00158) BPm_27 0.0074 (0.00145)

HRT_28 0.0010 (0.00117) BPm_28 -0.0005 (0.00120)

HRT_29 0.0107 (0.00099) BPm_29 -0.0076 (0.00118)

HRT_30 -0.0143 (0.00142) BPm_30 0.0009 (0.00118)

HRT_31 0.0040 (0.00118) BPm_31 0.0001 (0.00117)

HRT_32 0.0012 (0.00103) BPm_32 -0.0008 (0.00127)

HRT_33 -0.0161 (0.00120) BPm_33 0.0044 (0.00129)

HRT_34 0.0017 (0.00127) BPm_34 -0.0029 (0.00129)

HRT_35 0.0052 (0.00122) BPm_35 0.0008 (0.00114)

HRT_36 -0.0078 (0.00152) BPm_36 0.0080 (0.00136)

HRT_37 -0.0063 (0.00086) BPm_37 0.0026 (0.00118)

HRT_38 0.0001 (0.00146) BPm_38 -0.0038 (0.00113)

HRT_39 0.0094 (0.00131) BPm_39 -0.0039 (0.00138)

HRT_40 -0.0037 (0.00125) BPm_40 0.0093 (0.00142)

Table 5.4: Parameter coefficients for model: SMC-PLR-Min
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5.3.3.5 SMC-PLR-Min, Algorithm diagnostics
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Figure 5.22: Model: PLR-Min, SMC parameter estimation,SMC ESS Diagnostics. S is

the number of auxiliary distributions, n is the number of particles. Again, the start

distribution is good as the initial ESS value is well above the 50% threshold which

triggers a resample procedure.
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Figure 5.23: Model: PLR-Min, SMC parameter estimation,SMC MCMC Move Accept

Rate Diagnostics.This plot shows an evenly distributed accept rate with a mean value

of 0.21.
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Figure 5.24: Model: PLR-Min, SMC parameter estimation, particle weights across aux-

iliary distributions. This plot shows the particle weights as the auxiliary distribution

moves from the start weights at the bottom of the plot (set using penalised logistic

regression) to the final target distribution at the top of the plot. Each band of angled

lines is a resample procedure which is triggered as a group of weights begins to dom-

inate (moves from dark blue towards lighter then dark red colours). The colour key

is a relative scale with the range being from dark blue for low weights to red for high

weights.

5.3.3.6 Model: PLR-Min, Summary

This model performs very closely to the PLR-Full model. The median AUC of 0.785

is only fractions of a percentage point lower than the PLR-Full median AUC of 0.788.

Interpreting the coefficients of the model shows that again, for the variables HRT and

BPm, the initial five to ten minutes of data have the strongest effect. The coefficients for
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the remaining 20 minutes of data oscillate around zero.

The same pattern as the PLR-Full model is repeated for the HRT and BPm signals.

The HRT has a positive effect, an increase in HRT tends to increase the probability of a

hypotensive episode. The BPm variable has a negative effect i.e. a decrease in BPm will

increase the chance of a hypotensive episode starting.

For the PLR-Min model, the estimation of the parameters using the SMC technique

has caused a slight decrease in AUC performance although not as big a drop (0.7% vs.

1.2%) as in the PLR-Full model. The penalty effect, again estimated from the data,

is not as strong as that determined by the two-pass vector approach. This results in a

coefficient profile that contains more parameters with non-zero values. The diagnostics

show that the SMC algorithm is performing as expected albeit resulting in marginally

lower performance.

5.3.4 Models using each minute of data, Summary

Section 5.3 has presented two penalised logistic regression models using two methods

to estimate the parameters of the models. The results are very similar with the range of

AUC values being 0.788 to 0.776. Both models show that the initial five to ten minutes

of data are the main contributors to the probability output of the model. The sequential

Monte Carlo technique produced similar values to the more usual maximum likelihood

approach albeit using more complex computational techniques.
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5.4 Models using statistical measures
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Figure 5.25: Input architecture, “Stats Based” models. Models using statistical mea-

sures of the data as inputs

• All signals, Model name: Full — a model examining the main effects using all the

available signals (from Table 2.5) and all the available statistical measures.

• All signals + quadratic mean, Model name: FullQuadMean — it is suspected that

the relationship between the signals may not be adequately modelled with just

linear effects. This model adds a quadratic term of the mean value from each

available signal to the full signal model.

• Features identified using lasso regression, Model name: Full-Lasso — this model

is automatically built by using the lasso regression technique which uses a penalty

factor to reduce the number of non-zero coefficients in a model. The purpose of

examining this technique is to see whether or not an algorithmic method could be

used to remove the subjective selection of features carried out in the Minimum

model.

• Minimum signals, Model name: Minimum — this model is suggested by clinical

teams and based on current techniques used in the ICU.
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5.4.1 All signals, Model name: Full

The Full model is the baseline for the research. It utilises data from the BrainIT database

which reflects the signals that are available from a typical installation of ICU bedside

monitors. Full details of the available signals are provided in the medical background,

Section 2.4. To briefly recap, this model uses two demographic signals and four mea-

sured signals from the ICU monitors. The demographic signals are age and gender. The

measured signals are: heart rate (HRT); systolic arterial blood pressure (BPs); diastolic

arterial blood pressure (BPd); and mean arterial blood pressure (BPm). The spot value

is used along with three statistical measures: mean; standard deviation and slope. The

clinical basis for this model comes from discussions with colleagues and builds on the

work of the AvertIT project, (Donald et al., 2012b). Formally the model is defined as:

log
µ

pi

1°pi

∂
=Ø0 +Ø1 Ag ei +Ø2Genderi

+Ø3HRT _spoti +Ø4HRT _meani +Ø5HRT _sdi +Ø6HRT _sl opei

+Ø7BPs_spoti +Ø8BPs_meani +Ø9BPs_sdi +Ø10BPs_sl opei

+Ø11BPd_spoti +Ø12BPd_meani +Ø13BPd_sdi +Ø14BPd_sl opei

+Ø15BPm_spoti +Ø16BPm_meani +Ø17BPm_sdi +Ø18BPm_sl opei

(5.8)

This model contains 19 parameters which must be estimated. Using the R function

glm() from the stats package, the parameter values estimated by maximum likelihood are

tabulated in Table 5.5. The model performance, as measured using the ROC technique,

is presented in Figure 5.26. The profile of the model coefficient values is presented in

Figure 5.27.
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5.4.1.1 Model: Full, ROC Curves
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Figure 5.26: Model: Full, ROC and AUC detail. This plot is generated from 50 runs

of the model. Each run consists of a training and test set. The blue trace shows the

median performance, the green (upper) and red (lower) traces give the 95% and 5%

quantiles.
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5.4.1.2 Model: Full, Parameter estimates
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Figure 5.27: Model: Full, Parameter Effect Size. Effect size is defined asØ j£ std dev(x j )
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Measure Mean (SE)

Age -0.0007 (0.00082)

Sex -0.1232 (0.03833)

HRT_spot 0.0174 (0.00116)

HRT_mean -0.0016 (0.00119)

HRT_sd -0.0146 (0.00372)

HRT_slope -0.0024 (0.00028)

BPs_spot -0.0201 (0.00161)

BPs_mean 0.0150 (0.00174)

BPs_sd 0.0715 (0.00237)

BPs_slope -0.0000 (0.00022)

BPd_spot 0.0245 (0.00336)

BPd_mean -0.0645 (0.00495)

BPd_sd 0.0363 (0.00399)

BPd_slope -0.0051 (0.00070)

BPm_spot -0.0519 (0.00469)

BPm_mean -0.0439 (0.00652)

BPm_sd 0.0019 (0.00496)

BPm_slope 0.0087 (0.00065)

Table 5.5: Parameter coefficients for model: Full

5.4.1.3 Model: Full, Summary

This is the best performing model from the research. However all the models perform

similarly and the performance in terms of AUC value, at 0.804, is only just over 2%

better than the much simpler Minimum model.

Interpreting the coefficients, the demographic variable Age has little effect and Sex

has a small negative effect which means that males (coded 1) have more chance of having

hypotensive episodes.

For the physiological variables the spot value (i.e. the single value 10 mins before an

episode start) has a strong effect on the output. For the HRT variable the spot value is

the only measurement contributing to the output. For the BPs and BPd variables the spot

and mean variables have an effect with opposite signs. For BPs the standard deviation

has a positive effect, intuitively this makes sense as it indicates that as the variance of

BPs increases the patient is more likely to have an episode start. The slope for BPs has

little effect. The same pattern is observed for the BPd measurement, increasing variance

indicates an increase in the probability of an episode start. For the BPd signal the slope

measurement does appear to have a negative influence on the outcome. For the BPm

measurement both the spot and mean values have a negative effect. This indicates that a
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drop in BPm is associated with an increased risk of a hypotensive event.
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5.4.2 All signals + quadratic mean, Model name: FullQuadMean

The FullQuadMean model is included to introduce an additional limiting mechanism on

the Full model, mean value signals. By introducing a quadratic term, this model attempts

to limit the signals to realistic physiological values. As a signal increases, the quadratic

term with a negative coefficient will reduce the signal, thereby providing a damping

effect. The opposite effect will occur for signals that are approaching unrealistic low

values. The model is defined as:

log
µ

pi

1°pi

∂
=Ø0 +Ø1 Ag ei +Ø2Genderi

+Ø3HRT _spoti +Ø4HRT _meani +Ø5HRT _sdi +Ø6HRT _sl opei +Ø7(HRT _meani )2

+Ø8BPs_spoti +Ø9BPs_meani +Ø10BPs_sdi +Ø11BPs_sl opei +Ø12(BPs_meani )2

+Ø13BPd_spoti +Ø14BPd_meani +Ø15BPd_sdi +Ø16BPd_sl opei +Ø17(BPd_meani )2

+Ø18BPm_spoti +Ø19BPm_meani +Ø20BPm_sdi +Ø21BPm_sl opei +Ø22(BPm_meani )2

(5.9)

This model contains 23 parameters which must be estimated. Again, using the R

function glm() from the stats package, the parameter values estimated by maximum

likelihood are tabulated in Table 5.6. The model performance, as measured using the

ROC technique, is presented in Figure 5.28. The profile of the model coefficient values

is presented in Figure 5.29.
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5.4.2.1 Model: FullQuadMean, ROC Curves
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Figure 5.28: Model: FullQuadMean, ROC and AUC detail. This plot is generated from

50 runs of the model. Each run consists of a training and test set. The blue trace shows

the median performance, the green (upper) and red (lower) traces give the 95% and

5% quantiles.
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5.4.2.2 Model: FullQuadMean, Parameter estimates
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Figure 5.29: Model: FullQuadMean, Parameter Effect Size. Effect size is defined asØ j£
std dev(x j )



136 CHAPTER 5. LOGISTIC REGRESSION MODELS

Measure Mean (SE)

Age -0.0015 (0.00086)

Sex -0.1122 (0.04069)

HRT_spot 0.0174 (0.00112)

HRT_mean -0.0034 (0.00105)

HRT_sd -0.0083 (0.00359)

HRT_slope -0.0024 (0.00027)

HRT_mean2 0.0002 (0.00002)

BPs_spot -0.0200 (0.00158)

BPs_mean 0.0163 (0.00179)

BPs_sd 0.0718 (0.00238)

BPs_slope 0.0000 (0.00022)

BPs_mean2 0.0001 (0.00002)

BPd_spot 0.0255 (0.00340)

BPd_mean -0.0571 (0.00534)

BPd_sd 0.0293 (0.00385)

BPd_slope -0.0051 (0.00072)

BPd_mean2 0.0009 (0.00020)

BPm_spot -0.0506 (0.00474)

BPm_mean -0.0472 (0.00683)

BPm_sd 0.0074 (0.00490)

BPm_slope 0.0086 (0.00066)

BPm_mean2 0.0005 (0.00019)

Table 5.6: Parameter coefficients for model: FullQuadMean

5.4.2.3 Model: FullQuadMean, Summary

This model produces the same performance figures in terms of AUC values as the Full

model. The additional variables formed from the square of the appropriate mean value

do have non-zero coefficients but they are not increasing the predictively ability of the

model. Taking the usual approach that a more parsimonious model is better, this model

would not be used.
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5.4.3 Features identified using lasso regression, Model name: Full-

Lasso

The Full-Lasso model comes from the field of feature selection, which is still an active

area of research in the statistical modelling community. One of the methods that has been

used introduces a penalty technique to try to reduce the number of terms that are included

from the set of all possible predictors. An example of this technique is “least absolute

shrinkage selection operator” (Lasso) regression, (Tibshirani, 1996). In this technique

the usual loss function, consisting of the residual sum of squares, is complemented by

an L1 norm penalty on coefficients resulting in the absolute values of coefficients being

constrained. This constraint has the effect of setting a number of the predictors to zero

and these predictors are effectively dropped from the model. This is an algorithmic

technique and therefore removes the subjective nature of feature selection. However, the

technique still has difficulty with highly correlated signals, and although a data driven

method, it is not guaranteed to indicate causal signals. The technique is included in this

research in order to investigate its use in a clinical environment. The interest lies in

whether or not Lasso regression will identify signals which clinicians also believe are

driving the underlying physiological processes.

log
µ

pi

1°pi

∂
=Ø0 +Ø1 Ag ei +Ø2Genderi

+Ø3HRT _spoti +Ø4HRT _meani +Ø5HRT _sdi +Ø6HRT _sl opei

+Ø7BPs_spoti +Ø8BPs_meani +Ø9BPs_sdi +Ø10BPs_sl opei

+Ø11BPd_spoti +Ø12BPd_meani +Ø13BPd_sdi +Ø14BPd_sl opei

+Ø15BPm_spoti +Ø16BPm_meani +Ø17BPm_sdi +Ø18BPm_sl opei

(5.10)

This model contains 19 parameters which must be estimated. Using the R function

cv.glmnet() from the glmnet package, the parameter values estimated by maximum like-

lihood are tabulated in Table 5.7. The model performance, as measured using the ROC

technique, is presented in Figure 5.30. The profile of the model coefficient values is

presented in Figure 5.31.
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5.4.3.1 Model: Full-Lasso, ROC Curves
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Figure 5.30: Model: Full-Lasso, ROC and AUC detail. This plot is generated from 50

runs of the model. Each run consists of a training and test set. The blue trace shows

the median performance, the green (upper) and red (lower) traces give the 95% and

5% quantiles.
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5.4.3.2 Model: Full-Lasso, Parameter estimates
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Figure 5.31: Model: Full-Lasso, Parameter Effect Size. Effect size is defined as Ø j£ std

dev(x j )
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Measure Mean (SE)

Age -0.0000 (0.00037)

Sex 0.0000 (0.00000)

HRT_spot 0.0107 (0.00053)

BPs_spot -0.0057 (0.00063)

BPd_spot -0.0006 (0.00036)

BPm_spot -0.0558 (0.00168)

HRT_mean 0.0003 (0.00025)

BPs_mean 0.0000 (0.00000)

BPd_mean -0.0195 (0.00207)

BPm_mean -0.0161 (0.00217)

HRT_sd 0.0000 (0.00000)

BPs_sd 0.0180 (0.00202)

BPd_sd 0.0000 (0.00000)

BPm_sd 0.0000 (0.00000)

HRT_slope -0.0012 (0.00019)

BPs_slope 0.0038 (0.00020)

BPd_slope 0.0000 (0.00000)

BPm_slope 0.0006 (0.00014)

Table 5.7: Parameter coefficients for model: Full-Lasso

5.4.3.3 Model: Full-Lasso, Summary

This model is very interesting in that it performs very closely to the Full model being,

at AUC = 0.795, only half of a percentage point down on AUC value. The coefficients

selected by the procedure are very different from the other models. Age, Gender and

BPm are effectively dropped from the model. There are only three variables that have

much effect on the model: HRT slope; BPs slope; and BPd mean. This would be a

difficult model to explain to a clinical team.
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5.4.4 Minimum signals, Model name: Minimum

The Minimum model comes from discussions with clinical teams. This is a very simple

model which only uses: a single measure of blood pressure, BPm, as it captures the infor-

mation from both the systolic and diastolic pressures; the heart rate of the patient, HRT;

and the demographic variables of age and gender. The summary statistics used are mean

value and standard deviation. When interpreting these signals experienced clinicians in-

tuitively average out the fluctuations which are displayed on the ICU monitors. They

also take into consideration the fact that an increase in signal fluctuation often precedes

an unstable condition. Translated into statistical modelling terms, their interpretation

becomes mean value and standard deviation. Age and gender are included as these vari-

ables would be expected to influence the physiological response. The formal model is

defined as:

logit(Yi = 1|X
i

) =Ø0 +Ø1 Ag ei +Ø2Genderi

+Ø3HRT _meani +Ø4BPm_meani

+Ø5HRT _sdi +Ø6BPm_sdi

(5.11)

This model contains 7 parameters which must be estimated. Using the R function

glm() from the stats package, the parameter values estimated by maximum likelihood are

tabulated in Table 5.8. The model performance, as measured using the ROC technique,

is presented in Figure 5.32. The profile of the model coefficient values is presented in

Figure 5.33.
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5.4.4.1 Model: Minimum, ROC Curves
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Figure 5.32: Model: Minimum, ROC and AUC detail. This plot is generated from 50

runs of the model. Each run consists of a training and test set. The blue trace shows

the median performance, the green (upper) and red (lower) traces give the 95% and

5% quantiles.
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5.4.4.2 Model: Minimum, Parameter estimates
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Figure 5.33: Model: Minimum, Parameter Effect Size. Effect size is defined as Ø j£ std

dev(x j )
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Measure Mean (SE)

Age 0.0037 (0.00084)

Sex -0.0866 (0.03740)

HRT_mean 0.0152 (0.00062)

HRT_sd 0.0007 (0.00309)

BPm_mean -0.1240 (0.00137)

BPm_sd 0.1222 (0.00241)

Table 5.8: Parameter coefficients for model: Minimum

5.4.4.3 Model: Minimum, Summary

This simple model performs well and is only 2% lower than the best performing Full

model. All the variables apart from the standard deviation of the HRT measurement

are contributing to the model output. The largest influence comes from the BPm mean

value which has negative effect. This implies that an increase in mean arterial blood

pressure will decrease the probability of the onset of a hypotensive episode. This is to be

expected as the patient’s blood pressure moves away from the EUSIG threshold. Perhaps

of more interest are the two coefficients for HRT mean and BPm standard deviation.

Both coefficients are positive indicating that a rise in average HRT or the variability of

the average BPm indicate an increased risk of a hypotensive episode.

5.4.5 Models using statistical measures, Summary

Section 5.4 has reported the results from four penalised logistic regression models. The

results for the three models using all the available measurements are marginally better

than the penalised logistic regression models. The simplest model using only two physio-

logical variables and requiring the estimation of only 7 parameters performs very closely

to the more complex penalised logistic regression models. The similar performance to the

penalised logistic regression models can probably be attributed to the dimension reduc-

tion from using the statisitical pre-processing and that fact that most of the information

in the data appears to be in the first five to ten minutes of the 31 minute data buffer.

5.5 Varying event horizon and window size

Using the “Stats Based” input architecture described in Section 3.7.2 allows an investi-

gation into the effect of varying both the event horizon and window size used to train and

test the models. A group of 30 base data sets was constructed as described in Section

4.2.5. The four “Stats Based” models from Section 5.4 were configured to use these data
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sets for training and test and a summary of the results is presented in Figure 5.34.
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Figure 5.34: Stats based logistic regression model comparison. Each grid point on a

3D plot shows the AUC value from a test set of data with the defined event horizon

(EH) and window size (WS). Apart from the Minimum model, window size has little

effect on model performance. Increasing the EH used for model training results in a

lower predictive ability from the model.

Figure 5.34 presents a 3D plot for each model showing a surface constructed by

plotting the AUC value from a test set of data with the defined event horizon (EH) and

window size (WS) at each grid point on the surface. Apart from the Minimum model,

window size has little effect on model performance. Increasing the EH used for model

training results in a lower predictive ability from the model. These results are in line with

the results from the previous sections in this chapter. Indeed the top right hand grid point
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(EH10, WS30) is the common data set used to assess all models. The models based on

using all variables, the “FullQuadMean/-Lasso” models, perform slightly better than the

Minimum model. Interestingly the 3D grid for the Minimum model suggests that if a

window size of five or ten minutes had been used that its performance would be similar

to the other models.

As the surfaces from Figure 5.34 are all similar, the opportunity was taken to investi-

gate the use of the H-score (Section 3.6.3) to see if a more distinct pattern would emerge.

Figure 5.35 and Tables 5.9 and 5.10 present the results of this investigation when using

the Full model. The conclusion being that using the H-Score gives a similar picture in

terms of predictive ability of the model. The procedure was run for all the “Stats Based”

models with similar results.

Figure 5.35: Model: Full, varying EH and WS, AUC and H-Score metrics

5.5.1 Model: Full, ROC and H-Score estimates

Event Window Size

Horizon 5 10 15 20 25 30

10 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01)

15 0.77 (0.01) 0.77 (0.01) 0.77 (0.01) 0.77 (0.01) 0.77 (0.01) 0.77 (0.01)

20 0.75 (0.02) 0.75 (0.01) 0.76 (0.01) 0.75 (0.01) 0.75 (0.01) 0.75 (0.01)

25 0.74 (0.02) 0.74 (0.02) 0.74 (0.02) 0.74 (0.01) 0.74 (0.02) 0.73 (0.02)

30 0.72 (0.01) 0.72 (0.02) 0.72 (0.01) 0.73 (0.02) 0.72 (0.01) 0.72 (0.01)

Table 5.9: ROC assessment results for Model: Full. Each cell represents the average

AUC for 50 iterations with (std dev).
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Event Window Size

Horizon 5 10 15 20 25 30

10 0.99 (0.13) 1.03 (0.17) 0.98 (0.15) 0.98 (0.11) 0.98 (0.13) 1.01 (0.16)

15 0.74 (0.12) 0.77 (0.13) 0.78 (0.13) 0.77 (0.10) 0.78 (0.11) 0.74 (0.11)

20 0.61 (0.11) 0.62 (0.11) 0.63 (0.10) 0.61 (0.10) 0.62 (0.10) 0.61 (0.10)

25 0.54 (0.10) 0.54 (0.12) 0.52 (0.10) 0.51 (0.09) 0.53 (0.09) 0.50 (0.10)

30 0.45 (0.08) 0.46 (0.11) 0.45 (0.08) 0.47 (0.09) 0.44 (0.08) 0.46 (0.07)

Table 5.10: ROC assessment results for Model: Full. Each cell represents the average

H Score £10 for 50 iterations with (std dev).
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Figure 5.36: EH 10, AUC and H score. This plot shows a “slice” through the 3D surfaces

of Figure 5.34 for the different models. The event horizon (EH) is fixed at 10 minutes.

The AUC value lines are similar and hard to distinguish between models at this y scale.

The H-score shows more separation between models.
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Figure 5.37: EH 10, AUC model comparison. This plots takes as it base line the “Full”

model. The plot shows the performance offset for the other models relative to this

baseline. Although the “Minimum” model’s performance drops as window size is in-

creased, its performance is comparable if a five or ten minute window size is used.

5.6 Logistic regression models, Summary

This chapter has considered eight logistic regression models using two input architec-

tures and two parameter estimation techniques. The results, using a common data set,

have been broadly similar and provide evidence that simpler models, admittedly using

data pre-processing, can be used to provide early warning of the increased risk of a hy-

potensive episode.
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Chapter 6

Neural Network Models

This chapter describes the tasks required to build a non linear model called a neural

network. Two models are presented which are the neural network versions of the full

signals and minimum signals models reported in Chapter 5 on logistic regression. This

chapter will detail the model topology and the estimation of the parameters of the models

using both maximum likelihood and Bayesian techniques.

Model_Info_X

NNModels

TrgTest
Generator

Build_
NN_Models

5

Model_Info_X

SMC Models

Figure 6.1: Neural networks modelling research tasks

6.1 Neural Network Model Proposals

Two neural network models are investigated. The two models use the same input struc-

ture as the “All Data” penalised logistic regression models from Section 5.3.

• SMC-BANN-Full, this model uses the inputs age, gender, HRT, BPs, BPd, BPm.

The models uses 12 hidden nodes, the activation functions are logistic sigmoids.

The single output node is also a logistic sigmoid unit. Both the hidden layer and

output layer have bias inputs for each activation unit, this leads to a total of (127£
12)+ (1+12) = 1537 model parameters (aka weights) which must be estimated.
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• SMC-BANN-Min, this model uses the minimal set of inputs suggested by clini-

cians. The inputs are age, gender, HRT and BPm. The models uses 12 hidden

nodes, the activation functions are logistic sigmoids. The single output node is

also a logistic sigmoid unit. Again, both the hidden layer and output layer have

bias inputs for each activation unit, leading to a total of (65£12)+ (1+12) = 793

model parameters to be estimated.

For both models, alternative models structures of four and eight hidden nodes were

tried however these configurations gave poorer results. Again note that all models use

normalised data i.e.

xi = xi i nput °µi nput (6.1)

with µi nput = 1/N
PN

i=1 xi

6.1.1 Neural Network Models MLE using R nnet package

It is instructive to investigate what values of AUC could be achieved using the standard

R package nnet (Venables and Ripley, 2002). This package uses a maximum likelihood

approach to estimate the parameters of the neural network. This provides a comparative

target which can be used when assessing the neural networks built using the sequential

Monte Carlo method. The script NNetVariability.R was written to investigate the “all

data” input architecture with “full” and “minimum” signal inputs, (see Appendix B for

script details).

An essential part of the the investigation is determining a value for the “weight decay”

parameter. This parameter is similar to the penalty term used in the penalised logistic

regression models. The suggested weight decay range of 1e-4 to 1e-2 (Venables and

Ripley, 2002, §8.10) was extended to 1e-5 to 1e-1 and Figures 6.2 and 6.3 show the

AUC results determined from both the training and test sets.
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Figure 6.2: NNet-Full, AUC vs weight decay setting
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Figure 6.3: NNet-Min, AUC vs weight decay setting

As expected, both plots show that the neural network can achieve very good AUC

values on the training set but that the generalisation ability is relatively poor. The best

AUC values, on the test sets, of approximately 0.7 are well below the values achieved by
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the logistic regression models. The variability of the nnet AUC performance is presented

in Figure 6.4.
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Figure 6.4: NNet-Full, AUC variability.

This section has shown that basic neural networks can be easily constructed using

standard R functions. The performance of these models is in line with the logistic re-

gression models of Chapter 5. The AUC value is lower but provides a starting point

for the investigation into the use of sequential Monte Carlo techniques for parameter

estimation.
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6.1.2 NN Models All signals, Model: SMC-BANN-Full
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Figure 6.5: SMC-BANN-Full, Test Set ROC curves. This plot is generated from 5 runs

of the model. Each run consists of a training and test set and produces 1000 nets each

of which contributes an ROC trace to the overall calculations. The blue trace shows

the median performance, the green (upper) and red (lower) traces give the 95% and

5% quantiles.

6.1.2.1 SMC-BANN-Full, Algorithm diagnostics

Figures 6.6 to 6.8 provide some insight into the operation of the SMC algorithm. Figure

6.6 plots the ESS value as the distributions step through from the starting distribution

º0 to the final target distribution ºS . This same pattern is displayed in Figure 6.7 which

provides a visualisation of the particle weight as the stepping across the distributions

occurs. In this figure the distributions steps are displayed on the y-axis. Finally Figure

6.8 provides an expanded view of the initial steps of the distribution movement and

shows an area of initialisation that must be assessed when checking the SMC procedure
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operation.
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Figure 6.6: SMC-BANN-Full, ESS Diagnostics

Figure 6.6 shows that the SMC procedure has some initial difficulty is starting as

the first two points are well below the ESS resampling threshold. The procedure takes

approximately 70 steps to settle and then begins to form a more regular pattern. This can

also be seen in Figure 6.7 and is discussed with reference to Figure 6.8.
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Figure 6.7: SMC-BANN-Full, SMC sampling. This plots shows the 1000 particles as

columns of colour rising from the x-axis. The columns are built up as the distribution

moves from º0 at the bottom of the “Iterations” axis to ºS the final target distribution

at the top. The colour key is a relative scale with the range being from dark blue for

low weights to red for high weights.
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Figure 6.8: SMC-BANN-Full, Initial SMC sampling. The colour key is a relative scale

with the range being from dark blue for low weights to red for high weights.

Figure 6.8 illustrates an area that must be assessed when starting the SMC algorithm.

The starting distribution can be dominated by a limited number of particles which, al-

though resampled, can limit the amount of exploration of the parameter space. This

effect is apparent in Figure 6.8 as the darker red and orange segments that are heavily

used during the first resample step. This corresponds to the left hand side of Figure 6.6

as the single point just above the zero line.

6.1.2.2 Model: SMC-BANN-Full, Summary

This section shows that a neural network model can produce AUC values similar to the

logistic regression models of Chapter 5. The use of the SMC technique to estimate the



6.1. NEURAL NETWORK MODEL PROPOSALS 157

model weights has improved the performance of the model compared to using the nnet

package with maximum likelihood. However the complexity of the model requiring the

estimation of hundreds of parameters has resulted in a poorer performance on this data set

when compared to the simpler logistic regression models. The SMC technique has been

more difficult to initialise than in the penalised logistic regression models of Sections

5.3.2.4 and 5.3.3.4. The technique recovers well from an initial poor start and provides

an even distribution of model weights by the end of the process.

A disadvantage of the neural network technique is the considerable computation com-

plexity required to calculate the parameter estimates. The SMC-BANN-Full model takes

approximately eight hours to process a single data set. This is to be compared to a few

minutes for a “StatsBased” logistic regression model. A bootstrap procedure was em-

ployed during the construction of the logistic regression models to assess the variability

of the parameter estimates using 50 randomly drawn training and tests. To replicate this

degree of variability using the SMC BANN models would require a prohibitively long

calculation run of several weeks (although it must be stressed that the current code base

has not been optimised). In order to report some measure of variability the bootstrap runs

were reduced to five which still requires in the order of 40 hours of calculations.
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6.1.3 NN Models Minimum signals, Model: SMC-BANN-Min
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Figure 6.9: SMC-BANN-Min, Test Set ROC curves. This plot is generated from 5 runs

of the model. Each run consists of a training and test set and produces 1000 nets each

of which contributes an ROC trace to the overall calculations. The blue trace shows

the median performance, the green (upper) and red (lower) traces give the 95% and

5% quantiles.

6.1.3.1 SMC-BANN-Min, Algorithm diagnostics

Figures 6.10 to 6.12 provide detail regarding the operation of the SMC algorithm. Figure

6.10 plots the ESS value on the y-axis from the starting distribution º0 at the left hand

side of the x-axis to the final target distribution ºS on the right. Figure 6.7 provides a

visualisation of the particle weight as the algorithm steps across the distributionss. This

figure displays distribution steps on the y-axis. Figure 6.8 provides an expanded view of

the first few steps of the distribution movement.
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Figure 6.10: SMC-BANN-Min, ESS Diagnostics

Figure 6.10 shows that again the SMC procedure has some initial difficulty is starting

although not as much as for the SMC-BANN-Ful model. The initial two points are well

below the ESS resampling threshold. For this model the algorithm settles quicker taking

approximately 50 steps to settle before forming a more regular pattern. This is shown in

Figure 6.11 and is discussed with reference to Figure 6.12.
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Figure 6.11: SMC-BANN-Min, SMC sampling. This plots shows the 1000 particles as

columns of colour rising from the x-axis. The columns are built up as the distribution

moves from º0 at the bottom of the “Iterations” axis to ºS the final target distribution

at the top. The colour key is a relative scale with the range being from dark blue for

low weights to red for high weights.
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Figure 6.12: SMC-BANN-Min, Initial SMC sampling. The colour key is a relative scale

with the range being from dark blue for low weights to red for high weights.

Figure 6.12 shows the starting steps of the SMC algorithm. As in the SMC-BANN-

Full model, the starting distribution can be dominated by a limited number of particles

limiting the amount of exploration of the parameter space. In Figure 6.12 the darker red

and orange segments dominate during the first resample step. This corresponds to the

initial points on the left hand side of Figure 6.10.

6.1.3.2 Model: SMC-BANN-Min, Summary

The SMC-BANN-Min model shows a slight improvement with respect to AUC values

over the SMC-BANN-Full model. However, it is still well below the best performing

logistic regression models of Chapter 5. The complexity of this model still requires the
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estimation of hundreds of parameters resulting in poorer performance when compared

to the simpler logistic regression models. As noted before, the SMC technique is more

difficult to initialise than in the penalised logistic regression models. The technique does

however recover well from the poor start and provides an even distribution of model

weights for the final distribution.

Again, in order to report some measure of variability the bootstrap runs were reduced

to five requiring in the order of 30 hours of calculations.

6.1.4 Neural network models, Summary

This chapter has described the performance of two neural networks which have been

trained and tested on the same data that was used to build the logistic regression mod-

els of Chapter 5. The predictive ability of the models, as measured by the AUC metric

(Figure 6.5 for the SMC-BANN-Full model and Figure 6.9 for the SMC-BANN-Min

model), is similar to, but lower than, the much simpler logistic regression models. The

SMC procedure performed well as a method of estimating the parameters of the model.

The algorithm produced an increase in performance when compared to estimation us-

ing “off-the-shelf” procedures which shows that careful tuning of neural networks can

provide better performance.

However, this flexibility has not produced any increase in performance from the neu-

ral network models and suggests that the underlying structure of the data does not warrant

the use of these complex models.
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Chapter 7

Model Assessment Using Clinical Data
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Figure 7.1: Assessing models using unseen patient ICU data

7.1 ICU data stream

The final stage of the model building process is the assessment of the models using un-

seen clinical data. A cohort of 30 patients from the 2011 release of the BrainIT database

was prepared using the Event Analysis Application (EAA) program from Section 4.1.1.

This application creates the event and episode list for each patient. Applying the EAA to

the model assessment cohort provides the following characteristics.

Total Patients 30

Females 9 (30.0%) Median age 44 Range 17 — 64

Males 21 (70.0%) Median age 33 Range 15 — 68

Total Episodes Total Events

864 (ERF=80.1%) 1079

Type of Trauma

Fall Pedestrian Sport Traffic Accident Work

8 2 3 14 3

Table 7.1: Model assessment cohort — demographic summary

Table 7.1 and Figure 7.2 show the demographic characteristics of the data and plots
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of statistical measures of the hypotensive episodes that occurred within the model as-

sessment cohort. The episode reduction factor (ERF), shows the reduction from EUSIG

events to the more relevant episodes which cause the clinical teams most concern. These

demographic measures are broadly similar to those which were used to construct the

system (see Table 4.1 and Figure 4.2).
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Figure 7.2: Model assessment cohort — summary plots: (a) histogram showing the

number of patients (Count) having a given number of episodes during their stay in

the ICU; (b) the spread of episode durations across the cohort, limited to durations

below three hours; (c) the number of events contained within an episode; (d) types of

trauma, Fl = Fall, Pd = Pedestrian, Sp = Sport, TA = Traffic Accident, Wk = Work.
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The assessment procedure is to use a given model and calculate an episode prob-

ability from each new vector of each new minute of data. This is how a real system

would need to operate in an ICU. In order to carry out this assessment, an application,

ICU_DataStream, was written. This application takes the minute-by-minute data and

carries out the required statistical processes across the model’s window size and then

presents these pre-calculations to the model equation. The model result is the probability

of a hypotensive event starting in the next “event horizon” minutes. For the models being

assessed, which have been trained on an event horizon of 10 minutes, this can be read as

— "the probability that this patient will have a hypotensive event in the next 10 minutes".

The complete assessment process is illustrated in Figure 7.3.

7.2 Testing the model using clinical data
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Figure 7.3: Phase 1 of model assessment on clinical data — ICU DataStream

The results from running the model using a complete minute-by-minute set of ICU data

are stored in a .csv file. At the end of the test run, the results from all 30 patients are

combined and used to produce the ROC curves shown in Figure 7.4.
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ROC from ICU Data Stream
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Figure 7.4: ROC for clinical data

Figure 7.4 shows the ROC curves produced by combining the prediction data from 30

unseen patients. For the 10 minute event horizon (EH), this produces a file with 416945

rows of data, made up of 717 positive cases (i.e. timestamps where a hypotensive event

did occur EH minutes later) and 416228 negative cases (i.e. the patient was in a stable

state). The black line is from the Full 10_5 model; the blue line is from the Minimum

10_5 model.

A criticism of this method of assessing model performance is that it uses too narrow

a definition of what constitutes a true positive outcome from the model. If the model

delivers a raised probability of an episode 15 minutes before an event, it will be penalised

for having produced a false positive even though in fact, it provided the clinical team with

more warning of a possible hypotensive episode. Using this technique it can be expected
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that the number of true positives will be biased low while the number of false positives

will be biased high. This might result in a valuable model being discarded. In order to

provide a more realistic assessment of the model’s performance an alternative protocol

is proposed in Section 7.3.

7.3 The Clinical Warning Protocol — testing the model

in a clinical setting

Clinical
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Figure 7.5: Phase 2 of model assessment on clinical data — Clinical Warning Protocol

processor (CWPP)

The clinical warning protocol (CWP) is proposed to provide an alternative assessment

of model performance. There are two key elements to the protocol. The first is that

the model is predicting an episode might start within the next 30 minutes rather than at

an exact time. The second is the assumption that once a clinical team has been called

out, they are prepared to stay in a heightened state of readiness for 30 minutes. If a

hypotensive episode does start, it has been a true positive call. If an episode does not
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occur it has been a single false positive call. The effect is that the protocol coalesces

individual minute-by-minute predictions into clinical blocks of time. The 30 minute

setting is a judgement of the clinical team. It does not mean a senior neurosurgeon

stands by the bed, it means the whole team is on heightened alert.
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Warning Given
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Figure 7.6: Clinical Warning Protocol

Using the protocol described in Figure 7.6, with warning holddown set to three min-

utes, the Minimum model produces the results in Table 7.2 which are plotted in the

pseudo ROC curves shown in Figure 7.7.
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study id age gender trauma type episodes sens sens2 spec avg wrn

PDB-16138373 45 Male Fall 4 100.00 100.00 99.34 27.25

PDB-72705050 57 Male Work 2 0.00 0.00 99.82 0.00

PDB-83705040 56 Female Fall 19 0.00 0.00 99.98 0.00

PDB-84884871 24 Male Traffic Accident 33 90.62 87.88 95.03 27.41

PDB-84884946 26 Male Fall 1 0.00 0.00 98.20 0.00

PDB-84884950 33 Male Traffic Accident 9 100.00 100.00 96.65 26.22

PDB-84884951 64 Female Fall 13 0.00 0.00 99.83 0.00

PDB-84884952 36 Female Sport 103 22.77 22.33 99.60 18.61

PDB-84884953 17 Female Pedestrian 24 20.83 20.83 99.71 22.60

PDB-84884954 57 Male Fall 62 66.13 66.13 98.35 23.12

PDB-84884956 59 Male Fall 27 70.37 70.37 98.97 19.68

PDB-84884958 40 Male Traffic Accident 40 77.78 70.00 97.07 22.82

PDB-84884959 15 Male Traffic Accident 57 76.36 73.68 97.40 23.29

PDB-84884960 44 Female Traffic Accident 25 8.00 8.00 99.80 23.50

PDB-84884961 41 Male Traffic Accident 12 58.33 58.33 98.74 26.14

PDB-84884962 32 Male Traffic Accident 7 71.43 71.43 98.85 22.40

PDB-84885004 18 Male Sport 39 94.74 92.31 95.29 27.03

PDB-84885005 18 Male Pedestrian 104 90.82 85.58 96.83 23.12

PDB-84885006 51 Female Traffic Accident 11 0.00 0.00 99.80 0.00

PDB-84885007 25 Female Traffic Accident 3 33.33 33.33 99.67 17.00

PDB-84885009 62 Male Fall 15 53.33 53.33 99.47 24.50

PDB-84885011 61 Female Sport 41 7.32 7.32 99.84 13.33

PDB-84885012 26 Male Traffic Accident 7 83.33 71.43 99.49 25.80

PDB-84885015 28 Female Traffic Accident 34 27.27 26.47 99.69 19.56

PDB-84885017 24 Male Work 79 87.18 86.08 96.47 24.00

PDB-84885060 17 Male Traffic Accident 16 93.33 87.50 98.07 23.14

PDB-84885062 42 Male Traffic Accident 17 73.33 64.71 98.67 25.36

PDB-84885067 68 Male Traffic Accident 11 45.45 45.45 99.53 20.40

PDB-84885068 42 Male Work 5 60.00 60.00 99.63 18.33

PDB-84885073 19 Male Fall 44 88.37 86.36 98.03 26.53

Table 7.2: Model assessment summary results, Model: Minimum, 0.15 warning

threshold — sens = sensitivity; spec = specificity; avg wrn = average warning given

in minutes

Table 7.2 above presents the results for the 30 patient cohort using the 0.15 decision

threshold. These results show, for patients detected by the system, the average warning

is 23 minutes (sd=4). There is warning given for 25 of the 30 patients (83%).

Two sensitivity results (sens and sens2) are reported. This is to account for the two

scenarios caused by complete and incomplete data respectively. Incomplete data results

in the model being unable to make a prediction under certain conditions. There are

occasions e.g. when the data stream resumes after a break, when an episode will start

before the model has sufficient data with which to operate. Consequently the number
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of episode starts does not match the sum of the true positive calls and the false negative

calls i.e. numE pi °(numT P+numF N ) 6= 0. This mismatch check is carried out by the

Clinical Warning Protocol processor (CWPP) software, which is processing the minute-

by-minute data, and is reported in the full table of results in Appendix B, B.1 as the

column, statsCheck.

As mentioned above, the decision was taken to report both complete and incomplete

data scenarios. In Figure 7.7, the blue trace uses the assumption that the missed episode

could not be reported due to missing data and it is therefore excluded from the sensitivity

calculation. This is reported in the column, sens. The red trace includes the missing

episode as a false negative, thereby reducing the sensitivity. This is reported in the col-

umn, sens2.
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Figure 7.7: Model: Minimum, ROC using Clinical Warning Protocol on ICU data

stream

Figure 7.7 shows a pseudo ROC curve constructed from the results produced by the

CWPP running the Minimum model. This suggests that, with a decision threshold of
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between 0.15 and 0.2, the system would detect 30 to 50% of episodes.

7.4 Visual checks — physiological signals and model pre-

dictions

The final section in this chapter provides a visual check of the model performance by

plotting the time series data as it would appear to a clinical team.
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Figure 7.8: Visual checks, Model: Minimum, PDB-84884961 episode 11, warning

threshold = 0.15, y-axis pressures in mmHg, HRT in beats/min, x-axis in minutes, pred

= output from Minimum model
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In Figure 7.8 from patient 84884961, the three physiological signals HRT, BPs and

BPm are plotted along with the output of the Minimum model. This shows increased

probability approximately 25 to 30 minutes before the episode start.
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Figure 7.9: Visual checks, Model: Minimum, PDB-84885068 episode 5, 60 mins, warn-

ing threshold = 0.15, y-axis pressures in mmHg, HRT in beats/min, x-axis in minutes,

pred = output from Minimum model

In contrast, Figure 7.9 shows the signals from patient 84885068 as they are possibly

more typical of a clinical situation. It can be seen that warning is given 15 to 20 minutes
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before the episode start. However, there has also been a false positive call at approxi-

mately 60 to 40 minutes before the episode. If viewed across 180 minutes, as shown in

Figure 7.10 below, it could be argued that the system has given about 90 minutes warning

of an increased risk of a hypotensive episode, as the risk probability is very low before

the t °90 marker.
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Figure 7.10: Visual checks, Model: Minimum, PDB-84885068 episode 5, 180 mins,

warning threshold = 0.15, y-axis pressures in mmHg, HRT in beats/min, x-axis in min-

utes, pred = output from Minimum model



174 CHAPTER 8. DISCUSSION AND CONCLUSIONS

Chapter 8

Discussion and Conclusions

This chapter provides a discussion of the effectiveness of the models proposed in Chap-

ters 5 and 6 and offers some conclusions regarding the research to date.

8.1 Discussion

The research carried out in this thesis is attempting to answer the question, “ ... can

simple logistic regression models provide early warning of the start of a hypotensive

episode”. In order to investigate this question both simple statistical models, using a lim-

ited number of inputs and well established statistical techniques, and advanced models,

using a large number of possible contributing variables and modern up-to-date statistical

methods, have been constructed and tested on real-world clinical data. The results are

discussed below and also compared with the current state-of-the-art project that has been

carried out in this domain.

Three broad areas of modelling approach have been tested using eight models. These

three areas, in order of decreasing complexity, are neural networks, penalised logistic

regression and standard logistic regression. Figure 8.1 shows the best performing model

from each area along with the simplest model in terms of complexity and inputs.
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Figure 8.1: Model Assessment Summary Results, the best performing models from

each modelling approach along with the simplest model (Minimum). The top row

shows models using “All Data”, top left is from the neural network approach, top right

used a penalised logistic regression method. The bottom row shows the best perform-

ing “Stats Based” model (Full) and the simplest model (Minimum) which is also “Stats

Based”. These models were built using the standard R glm() function. All models per-

form broadly the same.

It can be seen that all the models perform broadly similar with the simpler logistic

regression model, Full, giving slightly better results. Variants of each technique were

built and tested and as expected the more complex logistic regression models can be



176 CHAPTER 8. DISCUSSION AND CONCLUSIONS

tuned to increase the AUC metric by a small amount. Table 8.1 reports the median AUC

for all the models that were investigated.

Model Name AUC Data Source Approach

SMC-BANN-Full 0.740
All Data Neural Networks

SMC-BANN-Min 0.753

PLR-Full 0.788

All Data Penalised Logistic Regression
SMC-PLR-Full 0.776

PLR-Min 0.785

SMC-PLR-Min 0.778

Full 0.804

Stats Based
Logistic RegressionFullQuadMean 0.804

Minimum 0.780

Full-Lasso 0.797 Stats Based Penalised Logistic Regression

Table 8.1: All Model Approaches AUC Summary, median AUC is reported for all mod-

els, grouped by data source and modelling approach.

The results from this research are in line with the results from the AvertIT (2008)

project which used the same BrainIT Consortium (2007) clinical database for model

training. The AvertIT project used a sophisticated Bayesian Artificial Neural Network

(BANN) written in the C programming language. Their system is based on the work of

Neal (1996). The project was able to show that the results could be carried forward into

a clinical setting (Donald et al., 2012b) and are the only group that have been able to

to this within the TBI domain. Their system used a windowing approach to reduce the

input dimensionality to the model. As such it is a combination of the two techniques in-

vestigated in this thesis i.e. it used a summarising technique for the model’s input section

coupled with a complex model structure in the form of a neural network.

In Chapter 6, by taking the general architecture from the AvertIT project, but also

attempting to simplify their approach, two neural networks were constructed to investi-

gate the effect of using each minute of available data rather than the summary techniques

across a window of data. The parameter estimation was carried out using a Bayesian

framework and a sequential Monte Carlo (SMC) approach. Although this method would

be considered as a fairly complex technique it is arguably less complex than the Bayesian

framework with Hamiltonian dynamics based parameter estimation system used by the

AvertIT group. The group has, so far, only published early results (Stell et al., 2009,

2010; Donald et al., 2012b) however they have kindly agreed to supply the ROC data
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from their model construction stage. This is presented in Figure 8.2 along with the best

performing neural network model from this research.
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Figure 8.2: AvertIT ROC vs SMC-BANN-Min

Figure 8.2 shows that the neural networks models constructed as part of this research

performed slightly better than the Avert-IT BANN. The performance improvement is

marginal and it is known that the Avert-IT group were unable to optimise their model

due to funding constraints.
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Although neural networks can be constructed to address the hypotension prediction

problem they are complex models to set up as noted by Faraway and Chatfield (1998).

They require architectural decisions beyond the choice of inputs e.g. number of hidden

nodes, type of node activation units. The SMC parameter estimation technique also re-

quires algorithm configuration choices to be made such as the number of particles and

number of auxiliary distributions. Perhaps the most challenging aspect of the neural net-

work model is that they are very difficult to explain to clinicians as the model parameters

are not directly related to the clinical inputs of the system.

Turning to simpler, and to clinicians more familiar, models, six logistic regression

models, using two different input architectures, were proposed in Chapter 5.

The “All Data” models were constructed using penalised logistic regression as this

technique can guard against the expected correlation between the adjacent minutes of the

data buffers. These models performed well but looking at the coefficient profiles in Fig-

ures 5.10 and 5.19 it is clearly seen that the initial five to ten minutes of the data buffers

are contributing most to the probability output of the model. The sequential Monte Carlo

(SMC) approach was also used to estimate the parameters of the penalised logistic regres-

sion models and it gave very similar AUC performance, 0.776 vs. 0.788 for the PLR-Full

penalised logisitic regression model built with maximum likelihood parameter estimates.

For both the PLR-Full and PLR-Min models, using SMC for parameter estimation gave

slightly lower performance. The main reason for this is that the Bayesian model does

not appear to penalise the coefficients enough. This is due to the Bayesian model being

more “honest”. The distribution of ∏ is based on the prior and the training data whereas

for the penalised logistic regression models ∏ was chosen such that it minimised the test

set error.

The technique of using summary measures across the data buffers was investigated

with three models using standard logistic regression. The models were: the Full model

— based on several statistical measures from the heart rate and arterial blood presssure

signals (Section 5.4.1); the FullQuadMean model — which added a quadratic term to

each of the mean values of the first model to provide a limiting device to an increase or

decrease of the base signal (Section 5.4.2); and finally the Minimum model — guided

by clinical experience which used a minimum number of signals, in fact only six i.e. age

and gender along with the mean values of heart rate and mean arterial blood pressure and

the standard deviation of heart rate and the mean arterial blood pressure (Section 5.4.4).

As expected, the correlation between blood pressure terms allows variables to be
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dropped and the Minimum model, using only BPm from the blood pressure signal, per-

formed well. Because the system is predicting episodes rather than investigating causes,

it does not matter which covariates are used as long as the system gives a good predic-

tion. However, it does matter when trying to explain/interpret the model. These models

also make sense when comparing them to the penalised logistic regression models using

the “All Data” input architecture as the penalised logistic regression models show that

in general it is the first five to ten minutes which are contributing to the response. The

standard logistic regression models use the statistical preprocessing of the input buffer to

reduce the complexity of the model and do not appear to lose any information during the

process.

The research also investigated the use of the Lasso (Tibshirani, 1996) penalty tech-

nique with the Full-Lasso model — which is an attempt at algorithmic feature selection

(Section 5.4.3). This model performed well, indeed it gave the second highest score by

AUC assessment, but the parameter profile seen in Figure 5.31 would be difficult to ex-

plain to a clinical team. For example age and gender are effectively dropped from the

model.

In summary, all the models were able to detect hypotensive episodes and all showed

similar characteristics. From Section 5.5, the statistical measures based models worked

better with smaller event horizons. Apart from the Minimum model, window size ap-

pears to have little effect on predictive ability. Intuitively, this is to be expected. It would

appear that physiologically, the internal processes which subsequently combine to cause

a hypotensive episode, start in the region of 10 to 15 minutes before the episode com-

mences.

When comparing this research to the current state-of-the-art results from the AvertIT

project, the observation that most of the information seems to appear in the 15 minutes

leading up to the episode may explain why the logistic regression performs as well as the

much more complex technique encompassed in the Bayesian Artificial Neural Network

(BANN). The AvertIT group used data that was further in front of the event; their event

horizons were effectively 15 minutes and 30 minutes. The finding that shorter buffers

of information i.e. smaller window sizes, improve the prediction is also of interest. This

would suggest that as more information is processed, the averaging effect smooths out the

predictive ability. Again, the AvertIT project used a buffer of 15 minutes of information

whereas the results from this thesis used 30 minute data buffers.

The results using the standard technique of 50% training data and 50% test data were
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positive however, it would be of interest to see what level of improvement could be

gained by using more training data and a cross validation approach.

Assessing the models on an unseen cohort of patients showed that the Minimum

model gave similar predictions to the Full model and has the advantage of being easily

explained to clinicians. There is some warning given for 25 of the unseen cohort of

30 patients (83%). Considering the 25 patients where some warning was given, the

Minimum model was able to give an average early warning of 23 minutes (sd = 4). It is

interesting to note that for five of the patients in the cohort no warning was given at all.

A brief investigation of these five patients shows that three of the five were female over

50 years old. In each of these three cases there were more than 10 episodes. The two

male patients, age 57 and age 26, had very few episodes, two and one respectively. It

would be informative to see if this pattern is repeated using a larger cohort.

From the interpretation of the model coefficients for each model, it would appear

that gender has a strong influence, with males having an increased risk of hypotensive

episodes. There has been research into this effect by Berry et al. (2009). This group

observed that peri (age 45 - 54) and post ( age ∏ 55) menopausal females had a lower risk

of mortality or further complications after TBI. The group does not offer any explanation

for the cause of this effect. However, it may also be the case that gender is acting as a

proxy for the type and severity of injury. For example, from the demographics of the

BrainIT database, males make up 83% of the road traffic accidents. The median age of

this group is 30 (n=52).

It is notable that in both patient cohorts, i.e. the training/test cohort described in

4.1.3 and the clinical validation cohort from Section 7.1, that approximately 20% of

episodes contained multiple events. Using the additional tables contained within the

BrainIT database, further research could investigate whether these are linked to other

clinical events such as blood sampling or physiotherapy.

The introduction of the model into a clinical setting is the ultimate goal. However,

assessing how it behaves in a clinical environment could be problematic. Section 7.3

proposed the clinical warning protocol, which crucially assumes that the clinical team

will observe the patient for some period of time (in Section 7.3 this was 30 minutes)

to see if a hypotensive episode will develop. In practice this would not happen. In a

real situation the clinical team, once alerted, will use their experience to decide on a

course of treatment. The obvious aim of this course of treatment would be to prevent

a hypotenive episode from occurring. If successful, in terms of assessing the model,
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there will be no event within 30 minutes. How then will this be scored? The model

has, in a sense, done its job effectively but there is no concrete objective proof that

a hypotensive episode would have occurred. Any clinical trial would need to include

some mechanism for testing this practical situation as there would be the possibility of

unnecessary treatments being carried out and a bias (positive or negative) thus being

introduced into the model performance figures. One could argue, of course, that if a

model is producing these predictions this has a beneficial effect in terms of patient care

even if the actual mathematical performance of the model appears unreliable. These

concerns would have to be addressed by the ethics committee scrutinising any proposed

clinical trial.

Substantial discussion on clinical usefulness and validation of prediction models can

be found in chapters 16 and 17 of the text by Steyerberg (2010).

8.2 Conclusions

This thesis set out to investigate whether or not simple logistic regression models could

provide early warning of impending hypotensive episodes. The answer is clearly yes.

The evidence provided allows the conclusion to be drawn that the simpler models could

contribute to further research with an aim of improving the understanding of the factors

affecting these predictions.

The preparation of the data is key to the research and Chapter 4 details how this was

achieved. Generating the base data sets was by far the most computationally intensive

part of the research. The availability of the multi-core server within the University of

Glasgow School of Mathematics and Statistics was a significant benefit. However, the

emerging ease with which parallel computing systems can be constructed e.g. Hadoop,

(The Apache Software Foundation, 2011), and the SNOW package for R, (Tierney et al.,

2012), suggests that, with minimal rearrangement of the code base, this stage of the

project could be run on larger data sets on standard desktop computers. The code base

for the BSG, TTG and CWPP applications has been written in a map reduce style with a

top level controlling program processing a routine for a single patient.

Having decided on a logistic regression approach, the model construction and testing

is relatively straightforward due to the tools provided by the R statistical programming

framework.

The final contribution to the TBI domain is the approach taken to assess the model’s

performance in a clinical setting. The clinical warning protocol described in chapter 7
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and the tool set used to run the protocol would allow rapid assessment of alternative

models.

There are several avenues of further research to which this thesis could contribute;

the topic of future work is discussed in the next chapter.
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Chapter 9

Future Work

A project of this nature often unveils new avenues of possible research. However, in or-

der to complete any thesis, only one approach can be fully explored. From this thesis five

key areas have been identified which could form potential future projects for research.

These topics are: data quality; episode characteristics; additional covariates; model con-

struction; and clinical acceptance. The following sections provide more detail on each

topic.

9.1 Data quality

Starting from Chapter 2, Section 2.2.1, the definition of an event itself specifies the pos-

sibility of an “allowable data gap”. This is a consequence of using “real” clinical mea-

surements which frequently contain gaps. The EAA has used a very strict definition of

an event and if a break in the data is detected whilst the event is “Active”, the event is

discarded from the list of possible events. It would be useful to assess the characteristics

and magnitude of this phenomena and understand whether or not a small gap time could

be tolerated. It is assumed this would result in more events being added to the list thereby

providing additional material for research.

As well as the data frequently containing gaps, there are also patterns which can indi-

cate that the measuring sensor is faulty. Two examples of this type of measurement fault

are: when a signal becomes very stable and does not exhibit the normal physiological

variation; and when the the difference, BPm °BPd drops below 10 mmHg. Models to

identify this type of artifact in the neonatal ICU domain have been studied by a group at

the University of Edinburgh, (Williams et al., 2005; Quinn, 2007).

9.2 Episode characteristics

The EAA application produces additional output beyond that required for this thesis.

The episode and event list could be studied to look for patterns and correlation between

episodes and events, e.g. patterns showing the time from the end of one episode to the

start of the next. In addition there are other questions which could be asked regarding

episode patterns. Do events have a time pattern i.e. are there more events during the
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evening/night? Can episodes be attributed to circadian rhythms? Do episodes display a

gender pattern?

As previously discussed, it has been noted in both cohorts of patients that approxi-

mately 20% of episodes contained multiple events. Using the additional tables contained

within the BrainIT database, further research could determine whether or not this multi-

plicity is linked to other clinical events.

9.3 Additional covariates

The signals that were chosen for this research were based on the availability of data

from the BrainIT database and the experience of the clinical teams. The primary signals

of interest came from the minute-by-minute physiological measurements. The BrainIT

database contains other admission demographic variables that could form additional fea-

tures that might be included in future models. The inclusion of demographic variables

measured at the time of injury and at pre-neurosurgical hospital (PNSH) and neurosur-

gical hospital (NSH) admission times could also provide stratification information. See

the paper by Piper et al. (2010) for a recent description of the BrainIT database.

9.4 Model construction

There are a number of decisions taken during the model construction phase, each of

which could become a topic for further research. Perhaps the most beneficial addition to

the analysis would be to use a mixed effects model as briefly discussed in Section 3.7.

This approach would provide an assessment of the variability of the patient cohort and

could ultimately lead to an early warning system that would allow a measure of patient

specific treatment. It can be imagined that such a system would initially monitor a newly

admitted patient in order to assess to which risk group the patient was likely to belong.

These risk groups would be determined from the mixed effects approach. This need to

take into account the individuality of each patient’s situation is discussed in the work of

Nortje and Menon (2004).

Another approach would be to use the techniques of function data analysis. These

technique would treat the blood pressure and heart rate signals as functional input into a

model.

The use of longer timespans of data, rather than the 30 minute limitation, could be

investigated. In particular a measure of the long term trend of the physiological signals

over the last 6, 12 or 24 hours could be studied, although artifactual problems could be
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an issue.

Furthermore, a study could be carried out examining how to combine the output

from each one of the useful models into a single prediction. A starting point for this

work would be the text by Bishop (2006, Chapter 14).

9.5 Clinical acceptance

The AvertIT project showed that it is possible to obtain early warning of hypotension

in approximately 40% of cases, (Donald et al., 2012b; Stell et al., 2012). In the future

it is hoped to pursue further research using other techniques to see if this figure can

be improved upon, all the time being aware of the need for clinical acceptance. Any

research may wish to explore the possibility that a combination of techniques might

provide a more acceptable solution. For example, a logistic regression based system, with

decision thresholds giving fairly high false positives, working alongside an expert system

based on clinical knowledge, may be able to suppress the false positives to an acceptable

level. However, while the general notion of combining software and statistics gains

clinical acceptance, further research should continue to explore other entirely data driven

techniques such as Gaussian processes, HMMs and, of particular interest, combinations

of these techniques.

Another major requirement for clinical acceptance is the timely and accurate display

of predictions. The introduction of yet another system into a typical ICU environment,

which contains many sophisticated pieces of monitoring equipment, often with each one

having its own form of alarm enunciation, is problematic. There is considerable litera-

ture on the alarm workload of ICU staff, (Gorges et al., 2009; Imhoff and Kuhls, 2006;

Chambrin, 2001), which identifies the need for accurate display of information. Because

the aim of any future system built on this research will be to provide early warning of a

possible hypotensive episode, an acceptable way to raise awareness of this early warning

will require careful thought.
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Appendix A

Software for Data Preparation and Test

A.1 Background

A large part of the research carried out requires specialised software. This Appendix

provides an overview of each application and the commands used to produce the results.

More details, and the code available for download, can be found on the project’s website

http://www.statsresearch.co.uk. The following sections assume that the code has

been downloaded and installed at a location [INSTALL_DIR].

ICUDataStream LRModels Logs

BaseSetGenerator ClinicalWarning
Protocol EventAnalysisApp

TopLevelCode TrgTestGenerator UtilScripts

EventDetectionDir Rel_2011

BrainIT

ThesisSoftware

[INSTALL_DIR]

Figure A.1: Project directory structure
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A.2 Event Analysis Application

The Event Analysis Application is designed to take a data source which contains time

series information and process each time row looking for events which have been prede-

fined in terms of threshold levels and holddown time periods. The application can group

events into episodes where an episode is defined as a group of events closely spaced in

time. The software also supports the use of entity tables which provide supporting meta

data for the time series which is being analysed. The application currently assumes that

each patient file is a single SQLite DB, (The SQLite Consortium, 2012).

The application has been designed as a general purpose tool and can be applied

to a range of event analysis projects. Some general terminology regarding events and

episodes is given in section 2.2.

The application provides support for automatically handling files that fail to process.

These are marked as <fileName>.INVALID and can then be processed as required. The

commands to run this section are

1 $ cd [INSTALL_DIR]/ThesisSoftware/EventAnalysisApp
2 $ vi EA.xml (as required)
3 $ vi EUSIG_EventDef.xml (as required)
4 $ cd dist
5 $ java -jar EventAnalysis.jar -cf ../EA.xml

On a MacBook Pro, the EventAnalysis app takes about 1 sec/patient. The directory

with the patient database files, the output directories for the JSON and log files are all

controlled by the EA.xml configuration file.

A.3 Base Set Generator

This application processes the minute by minute data in the physiological table of a

BrainIT patient database and the associated event and episode list produced by the Event

Analysis Application (see A.2) The operation of the Base Set Generator is described in

Section 4.2. This is by far the most computationally intensive part of the research and was

run on the University of Glasgow School of Mathematics andd Statistics 24-core server

“euclid-18”. This process involved transferring the required BrainIT patient SQLite DB

files to a mirror of the predefined structure detailed in Figure A.1. The BSG was then

run by the following commands.

1 $ cd [INSTALL_DIR]/ThesisSoftware/TopLevelCode
2 $ ./CalcAndCompress.sh <event horizon> <window size>
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Line 2 is repeated for all six window sizes (5,10,15,20,25,30) for a given event hori-

zon, resulting in six processes running in the background. This six process combination

then takes just over 24 hours to run. Once the process is complete, all six compressed

base data set files are transferred back to the MacBook Pro.

A.4 Training and Test Set Generator

The operation of the Training and Test Set Generator is described in Section 4.3. This

application processes the information produced by the Base Data Set Generator applica-

tion, A.3.

The commands to run this section are

1 $ cd [INSTALL_DIR]/ThesisSoftware/TopLevelCode
2 $ Rscript TTG_TopLevelControl.R EH=10

Line 2 is repeated for each event horizon. A run for a single event horizon takes about

5.5 hours on the MacBook Pro.

A.5 Logistic Regression Models

The commands to run this section are

1 $ cd [INSTALL_DIR]/ThesisSoftware/LRModels
2 $ ./BuildAllModels.sh
3 $ ./RunCompleteLassoModel.sh Full-Lasso-Model-V1-20120424.R Full-Lasso
4 $ ./BuildAllFeatureGrids.sh
5 $ ./BuildFourModelSummaryPlots.sh
6 $ cd [INSTALL_DIR]/RobDonaldThesis
7 $ ./CopyThesisSoftwareFiles.sh

Note that shell script BuildAllFeatureGrids.sh, line 4, contains a configuration pa-

rameter ’selectionThreshold’, value = 0.6, which is used to control the level at which the

Bold Font display is used within the table.

A.6 ICU Data Stream

This application is used to test models that have been constructed by the logistic regres-

sion process.

Testing models on the cohort of 30 unseen patients. The lines below are used to test

the Full and Minimum models.

1 $ cd [INSTALL_DIR]/ThesisSoftware/TopLevelCode
2 $ Rscript ICUDataStream_TopLevelControl.R EH=10 WS=5 model.name=Full score.type=AUC
3 $ Rscript ICUDataStream_TopLevelControl.R EH=10 WS=5 model.name=Minimum score.type=AUC



A.7. CLINICAL WARNING PROTOCOL PROCESSOR 189

To combine the files produced by the Phase 1 operations from the above commands

(see Figure 7.3) to produce Figure 7.4.

1 $ cd [INSTALL_DIR]/ThesisSoftware/ICUDataStream/output/MN_Full_10_5
2 $ ls -1 *.csv > ICU-DSFullList.txt
3 $ cd [INSTALL_DIR]/ThesisSoftware/ICUDataStream
4 $ python CombineICUDataStreamResults.py -e 10 -w 5 -m Full
5 $ Rscript ICUDataStreamROC.R

The command on line 4 produces the file that is then processed into an ROC plot by

the command on line 5.

A.7 Clinical Warning Protocol Processor

The ClinicalWarningProtocolProcessor.py application processes the ICU Data Stream

output and produces an ROC summary for each warning threshold in the top level control

file, runCWPP.sh file. The commands below produce the output files which contain

the sensitivity and specificity results along with other summary statistics on the model

performance. These output files are used by the command processCWPResults.sh which

calls two R scripts to produce the plot in Figure B.1 and 7.7.

1 $ cd [INSTALL_DIR]/ThesisSoftware/ClinicalWarningProtocol
2 $ ./runCWPP.sh <model name>
3 $ ./processCWPResults.sh <model name>
4 $ python PrepareCWPPThresholdTables.py -t <warning threshold> -m <model name>
5 $ cd ../../RobDonaldThesis/
6 $ ./CopyThesisSoftwareFiles.sh

The command on line 2 will take approximately 45 mins for a given model, whilst

the commands on line 3,4 and 6 will each be less than a minute. For this thesis, the

command on line 4 is currently using 0.15 for <warning threshold>.

A.8 Visual Checks

The commands to produce the visual check plots Figures 7.8, 7.9 and 7.10 are given

below.

1 $ cd [INSTALL_DIR]/ThesisSoftware/LRModels
2 $ VisualCheckEpisodePrediction.R
3 $ python PrepareCWPPThresholdTables.py -t <warning threshold> -m <model name>
4 $ cd ../../RobDonaldThesis/
5 $ ./CopyThesisSoftwareFiles.sh
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A.9 Research machines

Most of the research was carried out on two laptops and one desktop machine. However,

the scripts to produce the base data sets (see Sections 4.2 and A.3 ) were run on the

University of Glasgow server euclid-18. This is a 24 core server and each one of the six

calculations required to produce the results for a given event horizon was able to be run

on a seperate core. The hardware details of the machines are given in Table A.1.

Machine OS CPU Memory Disk

MacBook Pro OSX 10.6.8 Core 2 Duo 4 GB, DDR 3 320 GB

2.66 GHz 1067 MHz Hitachi

Dell XPS M1330 Ubuntu 10.04 Core 2 Duo 4 GB, DDR 250 GB

T8300, 2.40GHz 667 MHz WDC

Dell Dimension 4700 Ubuntu 10.04 Pentium 4 4 GB, SDRAM 500 GB

3.00GHz 533 MHz WDC

HP Proliant DL360G5 CentOS release 6.2 (24core) X5650 32 GB Network

2.67GHz Storage

Table A.1: Research machine specifications

A.10 R Support

Version 2.14 of the R statistical framework was used throughout this thesis, (R Develop-

ment Core Team, 2008).

This section provides details of the R packages that have been used in the experiments

that have been carried out to construct the thesis.

A.10.1 A cautionary tale

Checks carried out on a MacBook Pro with 64-bit R and two Ubuntu 10.04 linux ma-

chines with 32-bit R showed different output files. The files on the two linux machines

were identical but they did not match the file produced on the MacBook Pro.

Debugging traced this to different behaviour of the lm() routine between the two

systems when dealing with a zero slope i.e. a group of numbers all the same. In the case

of the MacBook Pro, lm() returned an NA for the slope, in the 32-bit R on linux a very

small number was returned e.g. 4.123 e-15. The lm() was contained within the method

CalcSlope() which was called within a tryCatch block.
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A.10.2 R Packages

R Package Version Description Citation

glmnet 1.7.3 Lasso regression support (Friedman et al., 2010)

lattice 0.20-0 Graphics support (Sarkar, 2008)

lubridate 0.2.5 Time utilities (Grolemund and Wickham, 2011)

MASS 7.3-16 Support utilities (write.matrix) (Venables and Ripley, 2002)

RJSONIO 0.98-1 JSON support (Lang, 2011)

ROCR 1.0-4 ROC curve support (Sing et al., 2009)

Table A.2: R packages

A.10.3 Useful R commands

• List installed libraries — >library()

• Install a library — >install.packages(<library name>)

• Install a library (from outside R) — % R CMD INSTALL <library name>
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Appendix B

Model Parameter Estimation Software

This appendix provides details of the R code used to obtain the parameter estimates for

the six logistic regression models and two neural network models described in the thesis.

The code is available for download and can be found by visiting the links

• http://www.statsresearch.co.uk

• http://statsresearch.wordpress.com/about/

The following sections provide very brief notes on the routines. The idea is to provide

an entry point to the website material. This material will be updated as required.

B.1 Penalised logistic regression

B.1.1 MLE — PenalisedLogisticRegression.R

This script provides functions for building penalised logistic models from first principles.

Parameter estimation is carried out by MLE using QR matrix decomposition.

B.1.2 SMC — SMC_LR.R

This script provides functions for building penalised logistic models from first principles.

The parameter estimates are obtained using Sequential Monte Carlo techniques.

B.2 GLM logistic regression

B.2.1 Build_LRModels.R

This script is used to train and test three of the “Stats Based” logistic regression models.

It uses the glm function from the R {stats} package.

B.3 GLMNET LASSO logistic regression

B.3.1 Test_Lasso_LRModels.R

This script is used to train and test the “Stats Based” logistic regression model “Full-

Lasso”. It uses the cv.glmnet function from the R {glmnet} package.
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B.4 BANN using Sequential Monte Carlo

B.4.1 SMC_NeuralNet.R

Bayesian Artificial Neural Network (BANN) models are built from first principles using

SMC_NeuralNet.R

B.5 Neural Network using NNET

B.5.1 NNetVariability.R

This script was written to build basic neural networks as described in Venables and Rip-

ley (2002, §8.10). It uses the the nnet function from the R {nnet} package.

B.6 Model assessment using clinical data

This section provides the full table of results for the Minimum model followed by the

summary and full tables for the Full model.

B.6.1 Full results table, Minimum model
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B.6.2 Summary results table, Full model

study id age gender trauma type episodes sens sens2 spec avg wrn

PDB-16138373 45 Male Fall 4 100.00 100.00 99.29 26.25

PDB-72705050 57 Male Work 2 50.00 50.00 99.20 30.00

PDB-83705040 56 Female Fall 19 47.06 42.11 99.25 23.75

PDB-84884871 24 Male Traffic Accident 33 87.50 84.85 96.28 26.54

PDB-84884946 26 Male Fall 1 0.00 0.00 98.28 0.00

PDB-84884950 33 Male Traffic Accident 9 88.89 88.89 97.10 24.25

PDB-84884951 64 Female Fall 13 33.33 30.77 99.05 21.50

PDB-84884952 36 Female Sport 103 49.48 46.60 99.19 20.29

PDB-84884953 17 Female Pedestrian 24 37.50 37.50 99.41 20.22

PDB-84884954 57 Male Fall 62 80.33 79.03 97.22 23.92

PDB-84884956 59 Male Fall 27 74.07 74.07 99.09 22.20

PDB-84884958 40 Male Traffic Accident 40 97.22 87.50 92.48 24.06

PDB-84884959 15 Male Traffic Accident 57 76.36 73.68 97.74 21.86

PDB-84884960 44 Female Traffic Accident 25 41.67 40.00 99.69 17.60

PDB-84884961 41 Male Traffic Accident 12 66.67 66.67 98.63 27.00

PDB-84884962 32 Male Traffic Accident 7 100.00 100.00 97.14 24.71

PDB-84885004 18 Male Sport 39 86.84 84.62 97.30 25.09

PDB-84885005 18 Male Pedestrian 104 82.83 78.85 97.43 22.16

PDB-84885006 51 Female Traffic Accident 11 18.18 18.18 99.82 23.50

PDB-84885007 25 Female Traffic Accident 3 0.00 0.00 99.86 0.00

PDB-84885009 62 Male Fall 15 57.14 53.33 98.82 26.38

PDB-84885011 61 Female Sport 41 50.00 48.78 99.14 20.70

PDB-84885012 26 Male Traffic Accident 7 83.33 71.43 99.49 26.80

PDB-84885015 28 Female Traffic Accident 34 53.12 50.00 99.42 19.18

PDB-84885017 24 Male Work 79 92.31 91.14 96.59 23.94

PDB-84885060 17 Male Traffic Accident 16 80.00 75.00 98.70 23.58

PDB-84885062 42 Male Traffic Accident 17 93.33 82.35 98.43 23.93

PDB-84885067 68 Male Traffic Accident 11 50.00 45.45 99.48 24.60

PDB-84885068 42 Male Work 5 60.00 60.00 99.71 18.67

PDB-84885073 19 Male Fall 44 86.05 84.09 98.12 24.49

Table B.2: Model assessment summary results, Model: Full, 0.15 warning threshold —

sens = sensitivity; spec = specificity; avg wrn = average warning given in minutes

Table B.2 above shows the results for the 30 patients for the 0.15 decision threshold and

this shows that, for patients that are picked up by the system, the average warning is 23

mins (sd = 3). There is some warning given for 28 of the 30 patients (93%). A more

detailed set of results for the 0.15 decision threshold is provided in Appendix B.3.
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Figure B.1: Model: Full, ROC using Clinical Warning Protocol on ICU data stream

Figure B.1 shows a pseudo ROC curve which is constructed from the results produced

by the CWPP running the Full model. This shows that with a decision threshold of

between 0.15 and 0.2, the system would detect 30 to 50% of episodes.

B.6.3 Full results table, Full model
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