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2 Abstract 

The development of new drugs against Human African Trypanosomiasis is much needed 

due to toxicity, efficacy and availability problems with current drug treatments for this 

resurgent parasitic disease. Delivery of drugs into cells is an important determinant of 

therapeutic efficacy of drugs. An effective means of selective drug delivery is to use 

plasma membrane transport systems to mediate the entry of drugs into the cell. 

Some amino acid transporters fulfil the criteria needed for successful exploitation of 

nutrient transport systems for drug delivery. The Trypanosoma brucei genomic database 

was screened to identify the full gene repertoire of amino acid transporters. From this, 

candidate genes were selected and functional genetic approaches were employed to 

characterise candidate amino acid transporter genes. Further characterisation of TbAATP1, 

a RNAi cell line shown to be a transporter of small neutral amino acids (serine, glycine, 

cysteine, asparagine and alanine), showed a role in threonine uptake. 

Amino acid analogues were tested for trypanocidal activity. Of the 96 tested, two 

(Azaserine and Levodopa) were investigated in more detail, paying special attention to the 

nature of their trypanocidal action and possible route of entry through an amino acid 

transporter. Azaserine showed a trypanostatic action as well multiple routes of entry into 

the protozoan interior (as shown by inhibition of glutamine, phenylalanine and tyrosine 

uptake). The trypanocidal Levodopa showed entry through a tyrosine specific transporter. 

However, it is possible that Levodopa’s trypanocidal activity may not be as a result of the 

analogue itself, but secondary products of the analogue. 

Amino acids are important for protozoa as energy sources as well as forming pools of 

soluble osmolites. Amino acid usage in trypanosomes was investigated. Upregulation of 

proline transport and catabolism in response to reduced glucose availability was exhibited 

by the genome strain of T. brucei. Moreover, this metabolic shift could be mimicked by 

addition of GlcNAc to the medium, which blocks the hexose transporter limiting glucose 

entry to the cell. Systems biology approaches were initiated to investigate the undergoing 

metabolic changes. More specifically, mass spectrometry methodologies were employed to 

investigate underlying metabolite changes in procyclic form trypanosomes grown in 

differing medium. 
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at the centre of the world, that from there thou mayest more conveniently look around 

and see whatsoever is in the world. Neither heavenly nor earthly, neither mortal nor 

immortal have I made thee. Thou, like a judge appointed for being honourable, art the 

molder and maker of thyself; thou mayest sculpt thyself into whatever shape thou dost 

prefer. Thou canst grow downward into the lower natures which are brutes. Thou canst 

again grow upward from thy soul’s reason into the higher natures which are divine. 

 

- Giovanni Pico della Mirandola 

- “Oration on the Dignity of Man”
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1 Introduction 

The underlying goal of this project is to assess the suitability of amino acid transporters to 

deliver trypanocidal compounds to the interior of the trypanosome, encompassing the 

investigations of selected aspects of amino acid usage (from transport capacity to 

metabolic usage). Molecular, biochemical, pharmacological and ultimately systems 

biology approaches were employed, specifically to: (1) characterise amino acid transporter 

genes by RNA interference; (2) test amino acid analogues for trypanocidal activity; (3) test 

the ability of GlcNAc to induce a metabolic shift from glucose to proline metabolism; (4) 

investigate changes to the trypanosome metabolome as a result of utilisation of different 

carbon sources. 
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1.1 The Disease 

Parasitic protozoa infect hundreds of millions of people every year and are collectively 

some of the most important causes of human misery (Barrett et al., 2003). Human African 

Trypanosomiasis (HAT), or sleeping sickness, is in resurgence (Moore & Richer, 2001). 

Devastating epidemics of HAT re-emerged in many sub-Saharan countries in the late 

1990’s (Stich et al., 2003). The invariably fatal disease puts at risk 60 million of the 400 

million people inhabiting 36 sub-Saharan African countries (Barrett, 1999). Of those at risk 

from the disease only a mere 4 million are under surveillance (Etchegorry et al., 2001). 

The annually reported cases are therefore an underestimation of the real problem. 

 

Figure 1-1: Human African trypanosomiasis endemicity in the WHO African Region. 

Number of reported cases from 2000-2005 (www.who.int). 
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The disease spreads in poor settings. Displacement of populations by war and poverty are 

important factors which lead to increased transmission. The disease develops in areas 

whose size can range from a village to entire regions, and within a given area, the intensity 

of disease can vary. There have been several human epidemics of HAT in Africa over the 

last century. The major one occurred between 1896 and 1906, and affected mostly Uganda 

and the Congo basin. This was followed by one in 1920 which struck a number of African 

countries. The disease did resurge in the 1970’s leading to alarming epidemics in the 

1990’s. Recently in 2005, outbreaks were still reported in Angola, the Democratic 

Republic of Congo and Sudan. In the Central African Republic, Chad, Congo, Côte 

d’Ivoire, Guinea, Malawi, Uganda and United Republic of Tanzania the threat of HAT still 

remains an important public health problem, with 50-1000 new cases reported every year 

(www.who.int). Countries such as Burkina Faso, Cameroon, Equatorial Guinea, Gabon, 

Kenya, Mozambique, Nigeria, Rwanda, Zambia and Zimbabwe are reporting fewer than 50 

new cases per year (Figure 1-1). In countries such as Benin, Botswana, Burundi, Ethiopia, 

Gambia, Ghana, Guinea Bissau, Liberia, Mali, Namibia, Niger, Senegal, Sierra Leone 

Swaziland and Togo transmission seems to have stopped and no new cases have been 

reported for several decades (www.who.int). However, any assessment of the current 

situation of sleeping sickness in Africa will always be, at best, an underestimate due to the 

fact that a lack of surveillance as well as clinical and diagnostic expertise does exist. 

Trypanosoma species of the order Kinetoplastida are early branching eukaryotes and are a 

major public health problem across the new and old world. Trypanosoma brucei is the 

agent of two major afflictions affecting the African continent, sleeping sickness (human 

form) and nagana (animal form) (Lecordier et al., 2005). Possibly no other disease, with 

the exception of Malaria, HIV and Tuberculosis, has a stranglehold on the development of 

a continent that trypanosomiasis has on Africa. The disease in domestic animals especially 

cattle, is also a major obstacle to the economic development of the region. Biting tsetse 

flies of the genus Glossina transmit the subspecies of the salivarian Trypanosoma brucei 

group across east, west and central Africa to both livestock and humans. The “Gambian” 

infection, caused by Trypanosoma brucei gambiense, which accounts for 90% of reported 

cases, is characterised by a long asymptomatic stage (2 or more years) that gives way to 

febrile illness followed by late stage chronic meningoencephalitis (Murray et al., 2000). 

The “Rhodesian” infection caused by Trypanosoma brucei rhodesiense progresses more 

quickly (few weeks to 2 months). Gambian infection has a mainly human reservoir while 

Rhodesian infection is fuelled by a large animal reservoir. 
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During the first stage of HAT, after infection from the bite of an infected tsetse fly, 

parasites spread to the draining lymph node and bloodstream. General malaise, headache, 

fever, peripheral oedema and anaemia characterise the early stages, which may be 

accompanied by a series of other more problematic symptoms like myocarditis, pulmonary 

oedema, splenomegaly and hepatomegaly. These are problematic because these symptoms 

are not specifically diagnostic for African sleeping sickness. These symptoms are also 

associated with other diseases, frequently leading to misdiagnosis (Bogitsh et al., 2005). 

Second stage is more serious, with the parasites crossing the blood-brain barrier and 

invading the central nervous system. This invasion is accompanied by infiltration of 

lymphocytes. General malaise worsens, headaches become more severe and patient sleep 

pattern is altered as a result of alterations in brain function later escalating in to coma and 

eventually leading to death (Barrett et al., 2003). 

1.2 Vector Biology & Control 

According to some authorities, trypanosomiasis has kept Africa ‘green’. By allowing 

survival of the native fauna and preventing overstocking of fragile land with cattle, and 

hence preventing widespread erosion. Conversely, trypanosomiasis disrupts the 

development of sustainable mixed farming over large and potentially productive areas 

(Hursey, 2001). The ultimate result being agricultural impoverishment. A burden that 

accounts for a reduction in agricultural production, and further enhances the struggle of 

this developing continent. 

The long history of trypanosomiasis control started at the turn of the 20th century with the 

identification of the infectious agents and their vectors (Evans, 1881; Dutton, 1902; Kleine, 

1909 – as reviewed by Cox, 2004). The first stage of disease control must always be 

stopping transmission. This is even more apt for trypanosomiasis as clinical treatment has 

always been problematic (chapter 1.5). Different species of tsetse have different habitats, 

mainly found in vegetation by rivers and lakes, in gallery forests and in vast stretches of 

wooded savannah (www.who.int/mediacentre/factsheets/fs259/en/). Control of the tsetse 

fly vector was initially a large undertaking. Large areas of vegetation where the flies rested 

were cleared and the wild game that acted as an animal reservoir for the disease were shot 

(Schofield & Maudlin, 2001). Although proving effective, such methods are not employed 

today. Synthetic insecticides were the next major advent in disease control. During the 

1940’s large landmasses were sprayed with Dichloro-Diphenyl-Trichloroethane (DDT), 

pyrethroids, and other organochlorides (Vreysen, 2001; Vreysen et al., 2000). Although 
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Glossina was once widespread, it is now limited to continental Africa south of the Tropic 

of Cancer (Bogitsh et al., 2005). Tsetse transmitted trypanosomiasis affects a 9-million 

km2 area in sub-Saharan Africa (Hursey, 2001). Vector life cycle is an important facet of 

transmission. Fertilised eggs, within the female, hatch at intervals into larvae (Bogitsh et 

al., 2005). A single female tsetse will deposit up to 10 larvae at any one time, usually at 9 

day intervals. The adult fly emerges after a month in gestation. 

Tsetse control in Africa has become multi-faceted. Fly biology, behaviour and life cycle 

have allowed more methods of control. The problem of insecticide resistance faced by 

mosquito control has never been seen with tsetse flies, possibly due to slower reproduction 

time of the flies (female flies gestate once every 9 days). Some problems faced at the turn 

of the 21st century still remain, but an understanding of the seasonal movements of the flies 

to more humid areas during the dry seasons has allowed use of this natural limitation of 

tsetse movement to great advantage (Schofield & Maudlin, 2001). Ground and aerial 

spraying remain the first method of effective control. However, despite being effective, 

these processes are not only costly but also labour and management intensive. Continuous 

monitoring, sustainability and vigilance are serious requirements to prevent against re-

invasion and re-infestation of cleared areas (Schofield & Maudlin, 2001). This 

sustainability relies on effective co-operation of concerned governments and the 

consolidating of peoples affected. International declarations, programme activities, 

mandates and campaign strategies are a step forward, but without the infrastructure needed 

to maintain such initiatives, Africa will always fall victim to trypanosomiasis. 

The other form of control is on a much smaller scale and involves odour-baited traps and 

applying insecticides to the animal reservoir on which tsetse flies feed. Odour traps attract 

flies over a relatively small distance towards visual ‘targets’ (dark blue) treated with 

insecticides (Schofield & Maudlin, 2001). This local population control, together with 

cattle dipping helped reduce the vast amounts of insecticides used when spraying 

(Esterhuizen et al., 2006; Torr et al., 2007) and also meant that the control method was 

sustained all year round, which is an added advantage. 

In recent years, control has taken a more molecular biology orientated approach, using 

molecular genetics and vector-parasite interactions to help curb the resurgence of the 

disease. These control methods are often seen as ‘high-tech’ especially when compared to 

the control methods already previously discussed. These high-tech methods employ 

detailed analysis of tsetse fly variation, population structure, evolutionary dynamics, 

behaviour, susceptibility, and ecology as the basis for control (Aksoy, 2003). The sterile 
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insect technique (SIT), where infertile flies are released into wild populations to compete 

with natural males, is a method that employs genetic population suppression with the 

ultimate result of eradication. An area-wide tsetse eradication project was initiated in 

Zanzibar in 1994, consisting of the release of gamma-sterilised males and resulting in the 

successful eradication of Glossina austeni from the island of Unguja (Vreysen et al., 

2000). The SIT has the advantage in that tsetse flies are slow to reproduce, meaning 

eradication is a distinct possibility. However, the large numbers of irradiated sterile males 

needed and the implementation of such a release method mean that it is not viewed as a 

favourable method of control (Rogers & Randolph, 2002). 

All tsetse are potential vectors, and their presence thus presents a risk for parasite 

transmission (Fèvre et al., 2006). With all species of Glossina able to carry the parasite, 

vector biology is becoming more important in terms of control. The focus in the past has 

been only to concentrate on the human-parasite interaction. Now, investigations are 

underway to identify factors that influence parasite transmission as a way to intervene at 

the level of the fly. The flies own innate immune system and trypanocidal midgut lectins 

are just two potential areas that could lead to fruitful knowledge. There is still a huge 

deficit in what is known on tsetse biology (Aksoy et al., 2002). Information on the 

genome, proteins and metabolic pathways are needed to understand how the parasite 

infestation works, with the hope of ultimately bringing about new applications for vector 

control. 

1.3 Life Cycle 

Introduction of the infective stage of the parasite into the human host begins with the bite 

of an infected tsetse fly vector (Figure 1-2). Blood clotting is prevented by factors in the 

saliva of the insect (Bogitsh et al., 2005). The metacyclic trypomastigote is a distinctive 

life cycle stage not only in terms of morphology but also in certain biochemical 

characteristics. Its morphology is blunt with a short free flagellum and the mitochondrion 

has few cristae and it has diminished classical electron transport complexes (Vickerman, 

1985). Metacyclic trypanosomes transform to the long slender form, eventually finding 

their way into the cerebrospinal fluid (chronic form of the disease diagnosed by parasites 

found in lumbar punctures). The mammalian bloodstream form stage exhibits three distinct 

forms; the long slender form with a free flagellum extending from the undulating 

membrane, a short stumpy form and an intermediate form that is not that clearly defined 

(Vickerman, 1985). 



Charles E. Ebikeme, 2007   Chapter 1, 7 

 

Figure 1-2: Life cycle of the African trypanosome in the human and tsetse fly. 

Image credit: da Silva & Moser, Public Health Image Library. 

 

Completion of the life cycle comes with ingestion of infected blood by the tsetse fly vector. 

The short stumpy form bloodstream trypomastigote is pre-adapted for life within the 

vector. Upon entering the midgut of the fly complete adaptation is rapid. Transformation to 

the procyclic insect form is characterised by the loss of the surface coat and antigenic 

identity. Procyclics invade the extraperitrophic spaces, migrating anteriorly towards the 

foregut where they transform once again to the epimastigote form trypomastigote. 

Migration continues through the oesophagus into the salivary gland of the fly. The final 

metamorphosis comes with the transformation of the epimastigote into the mammalian 

infective metacyclic form (Bogitsh et al., 2005). 

1.4 Control Strategies 

Control of African trypanosomiasis is multifactorial and relies initially on identifying 

(usually by microscopic detection of parasites on a thick blood smear) the largely 

asymptomatic human reservoir (Murray et al., 2000). Diagnosis forms one step in the 
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range of control strategies. The diagnosis of HAT is based upon a combination of clinical 

and investigative data (Kennedy, 2004). The non-specific nature of many of the clinical 

symptoms, together with the epidemiological context of geographical location shared with 

many other tropical infections means it is important to rule out other diseases such as 

malaria, tuberculosis, HIV and various other wormal infections. Differentiating between 

acute and chronic stages of the disease is the next important step once the disease has been 

confirmed. This is mainly due to the drug treatment regimes that differ for the different 

stages of the disease. 

The definitive diagnosis of the rhodesiense form of the disease is made by identifying 

parasites in the peripheral blood using thin or thick films (Kennedy, 2006). For the 

gambiense form of the disease, serological methods are used due to the fact that 

parasitaemia is usually intermittent. The card agglutination trypanosomiasis test (CATT) is 

a quick and easy test for screening potential HAT cases and also allows the collection and 

storage of dried blood samples on filter-paper for future serological analysis (Magnus et 

al., 1978; Truc et al., 2002). Parasite identification, however, is crucial given the dangers 

associated with treatment (chapter 1.5). 

CNS involvement with HAT is the key issue for diagnosis and subsequent therapeutics. 

Hence, a lumbar puncture for collection of cerebro-spinal fluid (CSF) is essential. The 

criterion for defining late-stage HAT as set by the World Health Organisation (WHO) is 

based on the presence of trypanosomes in the CSF and/or a CSF white blood cell count of 

>5/uL (WHO, 1983). However, the CSF white blood cell count cut-off varies for different 

countries (www.who.int). Other methods of detection exist for diagnosis of CNS involved 

HAT, which include PCR, raised CSF proteins, EEG abnormalities, and the presence of 

intrathecal IgM synthesis. However, such tests are not easily applicable in the field and as 

such are not convenient methods of diagnosis. 

Vector control and chemotherapeutic regimes are present as control strategies. With no 

vaccine under development, the impetus is to improve existing strategies and formulate 

new drug regimes. Emphasis is on development of new orally effective trypanocides and 

vector control with new technology (Stich et al., 2003). Halting the surgence of the disease 

is a realistic goal. This can only come from the co-operation of the international public 

health communities as well as the drug companies that once, and to some extent still do, 

view development of anti-trypanosomiasis drugs as not economically viable. Evidently, the 

emergence of public-private partnerships aimed at developing new drugs for various 

afflictions of the developing world have been exceptional (Barrett, 2006). Initiatives and 
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funding bodies like the Drugs for Neglected Diseases Initiative (DNDi), the Wellcome 

Trust, the Bill & Melinda Gates Foundation, Médecins Sans Frontières (MSF), Malteser, 

WHO/Special Programme for Research and Training in Tropical Diseases (WHO/TDR), 

and Caritas, to name just a few are providing not only the funds but also the infrastructure 

to combat HAT from the bench to the field. Moreover, the WHO surveillance and control 

programme collaborates with a number of international organizations, research institutions, 

development agencies, NGOs and private firms to achieve its objective of ensuring that a 

broader context of the disease, in terms of social and urban development, is met 

(http://www.who.int/mediacentre/factsheets/fs259/en/). 

A network of field researchers, operational agents, epidemiologists, and scientists work 

under an umbrella created by the WHO in order to monitor drug resistance as well as 

finding solutions to the problems of treatment of trypanosomiasis (Etchegorry et al., 2001); 

including the dissemination of information on current regimes, availability and 

affordability of current drugs, as well as the promotion of research on the causes of 

treatment failure (Legros et al., 1999). Treatment failure is a big issue when combating 

sleeping sickness, especially gambiense sleeping sickness (Brun et al., 2001). The fact that 

treatment relies on very few drugs means that resistance and relapse plays an important 

part in disease burden. Refractoriness and unresponsiveness to drug also fall under the term 

treatment failure. Reasons for this are not always parasite related, with host related factors 

(patient’s metabolism resulting in altered pharmacokinetics) also a relevant cause. 

Some initiatives are already in place (Stich et al., 2003). The release of sterile tsetse flies 

has been proposed by the International Atomic Energy Agency (IAEA). The WHO in 

collaboration with MSF are encouraging drug companies to donate the vital drugs needed 

and commit themselves to continued production. In addition, funding from notable 

benefactors like the Bill & Melinda Gates Foundation has allowed progression of drug 

trials for novel drug candidates (Jannin & Cattand, 2004). Campaigns initiated to stimulate 

efforts in combating neglected diseases such as this perpetuate the false belief that 

persistence of disease is solely due to a lack of effective and affordable treatments by 

focussing on the absence of appropriate research and the unaffordability of current drugs 

(Anon, 2006). Access to medicines is as much a crucial issue as the development of new 

drugs, and only when infrastructures are put in place to aid support delivery of drugs to 

people most in need will the disease burden be lightened.  

No vaccines exist against sleeping sickness, and the prospects of prophylactic 

immunisation are poor since the parasites change their surface coat periodically in a 
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process termed antigenic variation (Van der Ploeg et al., 1992). Current drug regimes 

suffer many drawbacks. Some are decades old, toxic and would never achieve licensing 

today. This is the problem faced. 

1.5 Chemotherapy 

Only four drugs are licensed for treatment against African sleeping sickness: suramin 

(Germanin), pentamidine (Pentamidine isethionate), melarsoprol (Arsobal) and eflornithine 

(Ornidyl). Drug of choice depends on whether the parasite has established within the 

central nervous system. Suramin first came into use in 1922 and is a colourless 

polysulphonated symmetrical naphthalene derivative (Voogd et al., 1993). Suramin covers 

treatment of early stage sleeping sickness, but is the drug of choice for Rhodesian 

infection. The drug’s mode of action is obscure. The highly charged molecule accumulates 

in trypanosomes very slowly and is believed to be taken up via receptor-mediated 

endocytosis possibly bound to low density lipoproteins (Vansterkenburg et al., 1993). 

Dosage for suramin starts at 20 mg/kg on a weekly basis for children whereas the adult 

dose is a 100–200 mg test dose then 1 g given intravenously on a weekly interval for 6 

weeks. 

Pentamidine, the drug of choice for early stage Gambian infection, is an aromatic 

diamidine (Sands et al., 1985) that was developed from a related compound (synthalin) 

that induces hypoglycaemia in mammals. Although the mode of action has not been 

established it is observed to accumulate to high levels within the parasite, where it possibly 

reacts electrostatically with cellular polyanions, including the network of circular DNA 

that make up the mitochondrial genome (kinetoplast) (Burchmore et al., 2002). While 

much remains unclear about the precise mechanism of action in kinetoplastids, 

longstanding issues like selective uptake and mechanism of (cross) resistance have now, 

for the most part, been resolved (Bray et al., 2003). It is administered every two days by 

intramuscular injection for 3 weeks at a dose of 4 mg/kg for both adults and children. 

Pentamidine is far from ideal. The range of side effects caused by this drug includes 

hypotension, nausea and nephrotoxicity (Burchmore et al., 2002). Diabetes mellitus is not 

uncommon after therapy. New classes of orally available diamidines with fewer side 

effects or improved central nervous system penetration are being developed (Bray et al., 

2003). 

Melarsoprol is a dangerous drug (Stich et al., 2003), one that would never achieve 

licensing today. This arsenical has been in use for more than half a century. It is the only 
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effective treatment for the chronic form of the disease caused by Trypanosoma brucei 

rhodesiense, due to its ability to cross the blood-brain barrier. A mode of action for 

melarsoprol is yet to be established. Cell lysis upon exposure to melarsoprol occurs 

rapidly. Biochemical targets of melarsoprol have been postulated to include trypanothione 

and glycerol-3-phosphate dehydrogenase (Burchmore et al., 2002). Melarsopol has the 

most complicated chemotherapeutic regimen of all the sleeping sickness drugs. For adults 

it has traditionally been administered intravenously in three series each at 2-3.6 mg/kg per 

day for 3 days at intervals of 1 week., then followed by another 3.6 mg/kg per day dose for 

a further 3 days. This regimen must be repeated again after 2-3 weeks. For children it 

needs administration at 18-25 mg/kg total over a 1 month period with an initial dose of 

0.36 mg/kg increasing gradually to a maximum of 3.6 mg/kg at intervals of 1-5 days. 

Recently, a new treatment schedule comprising of 10 daily injections of 2.2 mg/kg was 

shown to have a similar treatment outcome and is now in use in most areas (Burri et al., 

2000). The new schedule therefore offers economic and practical advantages over the 

standard 26-day treatment schedule, with a similar outcome. Melarsopol kills around 5-

10% of patients treated due to drug enduced encephalopathy. Frequent adverse effects of 

this antiparasitic drug include, but are not limited to, myocardial damage; hypertension; 

vomiting; peripheral neuropathy; Herxheimer-type reaction, whereas the rare adverse 

effect is almost always shock. 

Treatment failure has become an increasing problem in melarsopol therapy (Brun et al., 

2001; Legros et al., 1999). A possible link between the emergence of melarsoprol 

resistance in man and imprudent use of diamidine drugs in livestock has been speculated 

(Barrett, 2001). Selection of resistance to veterinary trypanocides is suggested to lead to 

cross-resistance to drugs used in the treatment of African trypanosomiasis in man. Drug 

entry into the cell has been elucidated and resistance is conferred without loss of parasite 

viability by the loss of the unusual amino-purine transporter called P2 (encoded by the 

TbAT1 gene) (Carter & Fairlamb, 1993). However, deletion of TbAT1 by gene knock-out 

revealed only a 2-3 fold resistance to melarsen oxide in vitro thereby implicating other 

factors (Matovu et al., 2003). Drug mode of action has been attributed to cell lysis due to 

loss of ATP which occurs as a result of glycolysis inhibition (Denise et al., 2001). 

However, the glycolytic pathway has not yet been verified as a target for arsenical action. 

The debate still goes on with other targets being postulated, including glycerol-3-phosphate 

dehydrogenase and the low molecular weight thiol trypanothione. The link between 

treatment failure and resistance has yet to be established. 
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Because of their capacity for rapid growth within mammals, trypanosomes have been 

likened to some types of cancer cell (Barrett & Barrett, 2000). The inhibitor of polyamine 

biosynthesis difluoromethylornithine (DFMO) or eflornithine was originally developed as 

an anti-cancer agent (Siimes et al., 1981; Jänne et al., 1981). Uptake of this analogue of 

ornithine has been proposed to occur via passive diffusion, although a transport component 

has been implicated (Bacchi et al., 1983; Bitonti et al., 1987). It acts as a specific suicide 

inhibitor of the enzyme ornithine decarboxylase (ODC). Even though its specificity 

originates from the fact that the protozoan has an ODC that is degraded and replenished 

much more slowly than that of its mammalian host (Phillips et al., 1987), DFMO needs to 

be given in large doses to be of any effect. Again, expense of treatment as well as the fact 

that it has no activity against rhodesiense sleeping sickness is a major drawback. A dosage 

of 400 mg/kg given by intravenous infusion in 4 equal doses (100 mg/kg every 6 hours) 

over the course of 2 weeks is the suggested regimen for eflornithine. 

Few new drugs show promise as effective treatments against sleeping sickness (Legros et 

al., 2002). One drug which has been developed recently and is currently in trials is the 

diamidine derivative DB289 (Jannin & Cattand, 2004). DB289 is only active against the 

early stage of the disease and will possibly be available in 2 years time (www.who.int). 

With the limitations of drug candidates already in the field, drug combinations are a 

potential method to increase the treatment options. Clinical trials of potential drug 

combinations have been initiated, one of which evaluated the efficacy and toxicity of three 

drug combinations using doses smaller than those used in monotherapy (Priotto et al., 

2006; Bisser et al., 2007). Drug combinations have the advantage of protection from the 

selection of resistant strains (or at least, slow down the emergence). Combinations also 

allow dosage reduction of each drug, hence reducing the overall toxicity while maintaining 

good efficacy. 

1.6 The Genome & Genomics 

The gap between research and clinical need is being bridged; although not at a rate needed 

to provide immediate relief. Despite the medical and healthcare revolution of the late 20th 

century, billions of people still suffer from one or more tropical parasitic disease and the 

constant drain imposed by chronic sickness, loss of productive labour and premature death, 

imposes a multibillion dollar restriction on the economic development of the Third World 

(Johnston et al., 1999). 
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The ever-emerging availability of genome sequences for hosts, vectors and numerous 

parasites, our rapidly expanding repertoire of computational methodologies and internet 

databases, functional genomics, proteomics, gene knockout/silencing protocols, and 

transgenesis strategies, provide the requisite tools needed to begin unravelling the 

intricacies of the host-pathogen-environment relationship (Christensen, 2004). 

Recent technological advances have permitted the identification and validation of 

numerous drug targets. And the advent of molecular biology has highlighted the unique 

biochemical physiology in the protozoa when compared to their mammalian hosts. The 

Parasite Genome Initiatives are ongoing efforts of full genomic sequencing to facilitate full 

understanding of how parasites develop, survive and reproduce in their respective hosts, of 

parasite-host and parasite-immune system interactions and of the factors that determine 

behaviour, pathogenicity, drug resistance and antigenic variation (Johnston et al., 1999). 

Traditionally, the route for drug identification has been through comparative biochemistry. 

Biochemical pathways present in the protozoa but absent from the mammalian host should, 

in theory, provide targets for drug design. However, this rationale is complicated by other 

factors: drug entry, if the drug has to cross more than one plasma membrane, especially if 

one of the membrane’s is mammalian in the case of Leishmania which reside 

intracellularly. 

The natural progression from comparative biochemistry has been the genome sequencing 

projects. These provide automation and informatics, allowing rapid identification of drug 

targets. The parasites that cause most parasitic diseases do not pose as ‘model organisms’ 

to analyse gene function. The yeasts and nematodes like Saccaromyces cerevisiae and 

Caenorhabditis elegans are ideal model organisms. Most of all they are easy and cheap to 

maintain in the laboratory since they show rapid growth and can be obtained in very large 

numbers. Genome organisation is conventional and amenable to a wide variety of 

functional assays. Parasites often prove more difficult, needing more ‘real world’ 

maintenance (Johnston et al., 1999) including animal passaging. Many cannot be cultured 

in vitro, restricting experimental manipulations. But, most crucially of all, their genomes 

may display complicated characteristics which make it difficult for functional analysis. 

Classical genetic analysis of Trypanosoma brucei is possible, but restricted by difficulties 

in obtaining large numbers of hybrid offspring from tsetse fly infections. The 

characteristics of individual parasitic genomes (haploid genome size, chromosome number, 

size, and codon content) impose limitations on the type of analysis possible (Johnston et 

al., 1999). 
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Despite the limitations of the biological systems involved, the Parasite Genome Initiatives 

have provided a wealth of information. This, coupled with in vivo genetic manipulation, 

proves to be the most exciting prospect for parasitic diseases. Gene knockout approaches 

and transfection systems have become fashionable for the identification of functionally 

important genes. Gene knockout involves introducing a DNA construct that contains an 

antibiotic resistance gene, flanked by the 5’ and 3’ untranslated sequences from the gene to 

be knocked out. This leads to replacement of the gene via homologous recombination 

(Conway et al., 2002). However, due to its complex genome repertoire, sometimes more 

than one round of gene knockout needs to be done. Trypanosoma brucei holds a unique 

advantage over the other kinetoplastida in that because both forms (procyclics and 

bloodstream forms) can be cultivated in vitro, selective gene replacements can be done 

before placing transfectants in vivo. 

With the genome of trypanosomatid organisms now complete, a huge door has been 

opened that has the potential to decipher the long unanswered questions (Ash & Jasny, 

2005); from RNA editing to immune evasion to antigenic variation to energy metabolism. 

The sequence analysis of the 11 megabase-sized chromosome of T. brucei revealed a 26 

megabase genome containing 9068 predicted genes, including ~900 pseudogenes and 

~1700 T. brucei specific genes (Berriman et al., 2005). 

Annotation of genetic information (Aslett et al., 2005) is only the first step. It only allows 

target identification and selection of potential virulence determinants, protein antigen and 

drug target. Due to the complexity involved this needs to be coupled to a more in-depth 

analysis of metabolic pathways. The sequential interconvertions of every single compound 

within a cell, building up into metabolic pathways and further still into metabolic networks 

allows the entire picture to be seen, defining specific processes at the biological level 

(Fairlamb, 2002). The full cellular component of RNA molecules (transcriptome), proteins 

(proteome) and metabolites (metabolome) can be used to predict the full potential 

biosynthetic capability of an organism, in studying the response of a parasite when 

invading a host cell and vice-versa. The same can be applied in the discovery of potential 

drug targets and determining the implications associated with applied drug pressure 

(Breitling et al., 2006). 

1.7 Metabolomics 

Systems biology is a rapidly emerging field. Technological advances have allowed 

metabolomics, the study of all metabolites within a given system, to emerge as a field 
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(Breitling et al., 2006). Individual metabolites, and their relative abundance in different 

cell types, or similar cell types exposed to different environmental conditions, can be 

assessed by a range of techniques (Breitling et al., 2006; Goodacre, 2004; Dettmer et al., 

2007). Arguably, the most powerful technique involves Fourier transform ion cyclotron 

resonance mass spectrometry (FT-ICR-MS) (Brown et al., 2005; Hirai et al., 2004; 

Marshall et al., 1998). The recently introduced Orbitrap mass analyser (Hu et al., 2005) 

offers resolution and accuracy close to that of classical high field FT-ICR-MS (Brietling et 

al., 2006). However, the Orbitrap operates using electrostatic rather than magnetic fields 

and hence by-passes the requirement of a large, super-cooled magnet. This allows it to be 

linked to chromatographic columns and thus avoids the risk of ion suppression effects 

which can occur with directly infused complex samples. This technique can resolve 

thousands of metabolites, in the molecular mass range of 100–1500, with extreme mass 

accuracy (routinely <2 ppm). This technique has been employed to build ab initio 

networks of metabolites whose masses can be linked by masses of common biochemical 

transformations in trypanosomes (Brietling et al., 2006). Exact mass can also be used to 

predict likely formulae for metabolites and tentatively to identify compounds based on 

comparison to databases of known metabolites. The fact that multiple formulae can yield 

masses within 2 ppm (Kind & Fiehn, 2006) means that orthogonal approaches are required 

to confirm identity such as Tandem mass spectrometry (Breitling et al., 2006). 

In FTMS (including Orbitrap analysis), ions, generated from soft ionisation methods (e.g. 

electrospray) are excited into cyclotron resonances that are a function of mass and charge. 

The frequency of gyration of these ions is detected in the mass spectrometer and then 

converted to high accuracy masses using the Fourier transform. The determined mass is as 

a result of several different physical principles within the analyser (Hu et al., 2005). The 

ionized metabolite mixture is trapped in an orbital trajectory of which the frequency of the 

orbit depends on mass/charge ratio. 

In the case of the orbitrap, the trapping is achieved without the need of a magnetic field, 

with ions trapped in a radial electric field between a central and outer cylindrical electrode. 

The ultra-high resolution enables simultaneous identification of ions that would not be 

resolved using less accurate mass determination approaches. The combined advantage of 

accurate mass determination and resolution makes it possible to restrict the number of 

possible molecular formulae that represent an individual molecular mass (Hu et al., 2005; 

Breitling et al., 2006).  
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The number of metabolites present in trypanosomes is sufficiently small enough to ensure 

very good resolution using high resolution, high mass accuracy mass spectrometry without 

the need for subcellular fractionation. Metabolomics requires special approaches for 

sample preparation, separation, and mass spectrometric analysis (Dettmer et al., 2007). The 

metabolome represents a vast number of components belonging to a wide variety of 

compound classes (amino acids, lipids, organic acids, nucleotides etc). Such diversity of 

compounds have reflecting diversity in their physical and chemical properties and occur in 

a wide range of abundances. To this effect, a careful experimental design is needed for the 

success of metabolomic investigations (Dettmer et al., 2007). While processing samples, 

formation and degradation of metabolites due to remaining enzyme activity or oxidation 

processes is a possibility (Dettmer et al., 2007). Therefore, rapid quenching and 

metabolism inhibition is required. Rapid quenching of metabolism with hot HEPES-

buffered ethanol with subsequent freezing in liquid nitrogen has proven the most effective 

method of identifying metabolites in our hands (D. Wildridge, personal communication). It 

is necessary to also analyse culture medium without cells in order to generate spectra of 

medium associated metabolites to subtract from the metabolic profile. Any and every kind 

of preparation step will involve metabolite loss (Dettmer et al., 2007). For example, the 

aqueous extraction employed here (chapter 5) results in poor recovery of very polar 

compounds as well as the loss of volatile organic compounds. 

Within the metabolomics field three distinct definitions of investigations exist; metabolic 

profiling, metabolic fingerprinting and metabolic footprinting (Dettmer et al., 2007). 

Profiling involves quantitative targeted metabolite analysis of metabolites of a specific 

class or related to a selected pathway. The disadvantage of profiling is the fact that targeted 

analysis is a hypothesis-driven approach rather than a hypothesis-generating one, and that 

the data generated is not a global view of occurrences within the metabolome. Metabolic 

fingerprinting involves an unbiased global screening approach. The intention is not to 

identify each observed metabolite but allows comparison of patterns or “fingerprints” as a 

result of cellular perturbations. Fingerprinting observes the true phenotype, however, the 

causal metabolites of the observed phenotype must be identified if any biochemical 

understanding is to be gained from the data. With this in mind, metabolomic fingerprinting 

can be used to classify or diagnose a particular perturbation. Metabolomic footprinting 

involves the analysis of extra-cellular metabolites in cell culture medium, which is a 

reflection of metabolites used or excreted by cellular processes. These three different 

metabolomic investigative methods shall be employed to address the question of metabolic 

adaptation in PCF trypanosomes (chapter 5). 
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1.8 Trypanosome Molecular Biology 

In conjunction to the unique biochemical characteristics of trypanosomes that make 

attractive drug targets, other aspects of their biology including gene expression, antigenic 

variation, genetic diversity, are a necessity when trying to decipher the complex life cycle 

of these parasites. 

Antigenic variation is an important aspect of African trypanosome molecular biology 

because this is what makes the possibility of a vaccine virtually impossible. Antigenic 

variation is the process by which the parasite evades the immune system of their animal 

host (Vickerman, 1978). Covered on the surface membrane of the parasite is a dense 

surface coat composed of a unique protein known as the variant surface glycoprotein 

(VSG) (Englund et al., 1982). Recognition of this surface coat by the host immune system 

results in killing of the parasite. Evasion of this killing involves antigenic variation, 

whereby the parasite switches to the synthesis of a different variant surface glycoprotein 

(Barry, 1979). This indefinite process of variation is what gives rise to the relapsing 

parasitemia seen in patients of sleeping sickness. About 1000 VSG genes (VSGs) and 

pseudo-VSGs are scattered throughout the trypanosome genome (Barry et al., 2005). 

Transcriptional activation of VSGs comes with the copying of a particular VSG into a 

bloodstream expression site (BES) (Horn, 2004). All expressed VSGs are located at the 

telomere, suggesting that VSG genes are translocated into these specific sites (Donelson, 

2003). Different molecular mechanisms exist for the introduction and removal of VSG 

genes from these sites, but not all have been accurately characterised. 

Regulation of antigenic variation is as complex as the event itself. The presence of a VSG 

in a sub-telomeric expression site, although necessary, does not seem to be sufficient for 

expression; with further events required for activation of the particular expression site 

(Donelson, 2003). And because only one VSG is expressed at a time, the parasite 

mechanism must also involve silencing of other expression sites as well as specific 

transcription at a particular site. Suggestions have been made for the presence of a 

modified base (base J) being involved in the stabilisation of repression of expression sites 

(Ulbert et al., 2004). The genome sequence has revealed not only the location of most of 

the VSG genes towards the telomeric ends of chromosomes but also the fact that most 

VSG genes are incomplete (Barry et al., 2005). Of all the identified VSGs, 95% do not 

properly encode protein, 5% are fully functional, 9% are atypical, 62% are full-length 

pseudogenes, and 19% are gene fragments. The fact that a small proportion of the total 
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VSG population seem to have full functional ability (as predicted from gene sequences) 

suggest that the possibility of incomplete genes provide a level of complexity and diversity 

involving mosaic gene formations. 

In contrast to the bloodstream form of the African trypanosome, the procyclic form also 

possesses a glycoprotein coat composed of procyclins. Procyclins are first expressed in the 

midgut of the tsetse fly, upon bloodstream form differentiation to the procyclic form. The 

fact that expression of the procyclin coat is coupled to the loss of the VSG coat means a 

tightly regulated system is highly likely to be involved (Roditi et al., 1998). Procyclin 

genes are organised in tandem arrays of two or three copies on two pairs of chromosomes, 

encoding proteins with internal dipeptide or pentapeptide repeats. Control of expression is 

multifactorial involving both positive and negative control elements (Matthews, 1999). 

Phenotype of expression is related to the ability of the trypanosome to infect the tsetse fly. 

Its repeat domains are protease resistant, providing a protective glycocalyx in the 

hydrolytic environment of the tsetse fly midgut (Gruszynski et al., 2006). 

Control of gene expression in trypanosomes has several novel features to it. In 

trypanosomes, genes contain no introns and appear packed in dense clusters along the 

genome, with tandem repeats of either the same or very similar genes. Gene arrays are 

transcribed into long polycistronic units and, uniquely, individual genes belonging to the 

same transcriptional unit will show significantly different expression patterns. Processing 

of primary transcripts into individual mature mRNAs occurs by the trans splicing of a 5’ 

cap (a 39 nt RNA spliced leader sequence bearing a trimethyl cap) and the addition of a 3’ 

poly(A) tail (Vanhamme et al., 1995). The splice acceptor site is an AG dinucleotide 

immediately downstream of a polypyrimidine tract and polyadenylation sites are usually 

located 100-300 nucleotides upstream from the trans splicing signal (Clayton & Shapira, 

2007). 

Polyadenylation is dependent on downstream splicing which means independent 

processing regulation for adjacent genes are absent. This is due to the fact that poor 

transplicing of a particular mRNA results in poor polyadenylation of the mRNA directly 

upstream (Clayton & Shapira, 2007). No known polyadenylation signal exists for 

trypanosomes, in contrast to other many eukaryotes. The genome encodes very few 

potential regulatory transcription factors, meaning regulation of gene expression is post-

transcriptional. With genes encoding the major surface proteins of African trypanosomes – 

the EP procyclin of the procyclic (insect) stage and the VSGs of the bloodstream stage 

being the only exception (Clayton & Shapira, 2007). It has been shown that certain 
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sequences in the 3’-UTR determine developmental regulation of the mRNA transcript. 

Indeed, regulation of an amino acid transporter in T. brucei has been investigated (Robles 

& Clayton, 2007; chapter 1.17). Investigations into regulatory sequences commonly 

employ cloning the intergenic region in question downstream of a reporter gene, with the 

reporter either as an episome or integrated into a different chromosomal location. 

However, this poses the problem that the regulatory sequence is removed from its usual 

chromosomal context, plus the fact that expression is driven by polymerases other than 

RNA polymerase II. 

1.9 RNA Interference & Gene Knockout 

The discovery of double-stranded RNA interference (dsRNAi) in Trypanosoma brucei 

provides a convenient method to generate knockout phenotypes and has allowed the advent 

of rapid-to-employ reverse-genetic approaches (Ngo et al., 1998). The introduction of 

double-stranded RNA molecules in cells triggers what is thought to be a mechanism that 

has evolved to protect cells against undesirable RNAs (e.g. viruses or mobile genetic 

elements) (Clayton, 2004; Rusconi et al., 2005). The mechanism is simple and, on the 

surface, highly specific (Figure 1-3). Introduced dsRNA proceeds through a number of 

sequential steps. Firstly, there is cleavage by the RNase III enzyme DICER into shorter 21-

23 nucleotide dsRNA pieces termed short interfering RNAs (siRNA). These siRNAs have 

a characteristic phosphorylated 5’ end and a two nucleotide overhang at the 3’OH end. The 

siRNAs then enter a RNA-induced silencing complex (RISC). A helicase, belonging to the 

argonaute (AGO1) family or Slicer, unwinds the two strands of the siRNA to form 

singlestranded RNAs (ssRNA), and RISC scans the mRNAs in the cytoplasm and cleaves 

the molecules that are found complementary to the RISC-contained siRNA. Hence, leading 

to down regulation of mRNA transcript and gene silencing. 
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Figure 1-3: General RNAi mechanism (taken from Balaña-Fouce & Reguera, 2007). 

 

This RNAi mechanism has been found in a number of organisms including the nematode 

worm C. elegans, flies and mammals (Fire et al., 1998). RNAi potency and flexibility has 

allowed use of high through-put genetic screen methodologies in several organisms. 

Although, there is some recent debate as to the specificity of RNAi. The triggering of a 

number of unspecific targets is a possibility that has been postulated. The degradation by 

the RISC complex of partially complementary mRNA due to cross hybridisation leads to a 

phenotypic effect that is not due to silencing of the target gene. Reports of these 

phenomena have prompted scientists into assessing the specificity of RNAi silencing and 

posing solutions. One of which is based on the rescuing of the RNAi-mediated loss-of-

function phenotype by expressing an RNAi-resistant version of the target gene (Rusconi et 

al., 2005). Functional complementation (using an orthologue protein different in gene 

sequence but identical in function) offer a way to ascertain that phenotypic effects 

observed upon RNAi experiments are indeed due to the specific silencing of the targeted 

gene. 

The development of tetracycline-regulated vectors for production of dsRNA has facilitated 

widespread use. The first RNAi experiments in Trypanosoma brucei used electroporation 
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of dsRNA into cells, leading to potent but transient phenotypes (Motyka et al., 2004). The 

utility of RNAi was greatly enhanced with the production of vectors that stably integrate 

into the genome and that express dsRNA in an inducible manner. The first such vector 

used a tetracycline-inducible promoter to drive RNA expression. Lately, there has been 

development of newer vector that surround a fragment of the gene between two opposing 

tetracycline-inducible T7 promoters (Wang et al., 2000; LaCount et al., 2000). The dual T7 

promoter system is applicable for both the procyclic and bloodstream forms of the parasite. 

It also possesses the advantage of also using a single construct to carry multiple genes, 

allowing simultaneous targeting (Motyka et al., 2004). However, it has been noted that the 

two promoter system does not work for all genes (La Count et al., 2000). Mutant 

phenotypes may not be seen due the fact that the genes chosen are non essential or because 

they have overlapping functions in other proteins. 

The T. brucei Functional Genomics Project (TrypanoFAN), funded by the Wellcome Trust, 

aimed to utilise the information from the T. brucei genome project to produce a research 

resource and systematic collection of mutants by targeted gene inactivation using RNAi 

(http://trypanofan.path.cam.ac.uk/). To date, 272 gene products have been assessed by the 

RNAi method. This represents the first systematic analysis of gene function in a parasitic 

organism (Subramaniam et al., 2006). 

With the completion of the sequence of the megabase chromosomes of Trypanosoma 

brucei, it has become straightforward to design primers and amplify the appropriate 

flanking sequences to knock out genes by homologous recombination (ten Asbroek et al., 

1990). Homologous recombination in biology has important implications for growth, 

development and adaptation of all organisms. It has roles in DNA damage repair (van Gent 

et al., 2001), for the generation of genetic diversity (Masson & West, 2001), and to ensure 

chromosomal segregation at meiosis (Masson & West, 2001). In African trypanosomes 

homologous recombination has implications in the antigenic variation processes (Conway 

et al., 2002). Recombination is used to move new VSG genes into specialised bloodstream 

VSG transcription sites. Genetic and molecular evidence has suggested that antigenic 

variation uses homologous recombination; however the detailed reaction pathways are yet 

to be elucidated (Conway et al., 2002). Recently the techniques of stable transformation, 

exploiting the natural phenomenon of homologous recombination have been successfully 

applied to trypanosomes (ten Asbroek et al., 1990). Linearised DNA constructs, 

transfected into the cell, allows replacement of a gene to occur by homologous 

recombination. This means highly specific targeting of a chosen genomic locus. In the 

African trypanosome T. brucei a number of selectable marker genes are now employed to 



Charles E. Ebikeme, 2007   Chapter 1, 22 

achieve stable transformations (Clayton, 1999); the blasticidin (Izumi et al., 1991), 

puromycin (Vara et al., 1986), neomycin (ten Asbroek et al., 1990), hygromycin B (Lee & 

van der Ploeg, 1991), and bleomycin (Jefferies et al., 1993) antibiotic resistance genes. 

The one pitfall of gene knockout experiments is to think that the product of an essential 

gene is automatically a good drug target. Although gene knockout removes functional 

protein from the cell, that level of inhibition would be hard to achieve with 

pharmacological agents because, rarely is 100% inhibition of target enzyme activity 

achieved. 

1.10  Perspectives for Drug Targets 

A substantial proportion of research into trypanosomes over the past two decades has been 

devoted to target identification and development of lead compounds that interact with these 

targets (Barrett et al., 2003). A proven drug target is the well-known enzyme ornithine 

decarboxylase in T. brucei, inhibited by the suicide inhibitor DFMO (eflornithine) at the 

early stages of the polyamine biosynthesis pathway (chapter 6). Validation in vitro is 

conditional (polyamines must be of limiting availability in medium), whereas under 

mammalian physiological conditions (where polyamines are scarce) cell death is a 

certainty. Turnover for ornithine decarboxylase in T. brucei gambiense is less rapid than in 

its mammalian host (Phillips et al., 1987), hence the parasite is deficient in polyamines for 

a prolonged period of time once the enzyme has been inactivated by DFMO. However, a 

functional immune system is also needed to clear parasites. 

The first seven enzymes of the glycolytic pathway reside in unusual peroxisome-like 

organelles termed glycosomes (Michels et al., 2000). Glycolysis in the bloodstream form 

of Trypanosoma brucei provides a convenient context for studying the prospects for using 

enzyme inhibitors as antiparasitic drugs (Bakker et al., 1999; Bakker et al., 1999; Eisenthal 

et al., 1998). Glucose metabolism and the glycosome prove an attractive target, as 

bloodstream African trypanosomes are solely dependent on glycolysis for their ATP 

energy production needs. The kinetics of these glycolytic enzymes are known in detail as 

well as crystal structures of some enzymes of the pathway. Hence, the impetus has been 

“intelligent drug design” based on inhibitory molecules. However, it is usually the case 

that production of substrate analogues is the method of choice. This proves problematic, as 

novel substrate analogues usually do not out-compete the natural substrate. Binding is 

never much tighter than natural substrates and inhibition is ineffective. 
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Hexose analogues may represent good compounds to inhibit glucose metabolism (chapter 

4) in trypanosomes. Several sugar analogues were developed in order to test the limits of 

the structure-activity relationship of the THT1 hexose transporter in bloodstream 

trypanosomes (Azema et al., 2004). THT1 is the principal hexose transporter exhibited by 

bloodstream form Trypanosoma brucei. THT1 itself proves an attractive cellular target 

because it differs markedly from all of the mammalian GLUT transporters (Tetaud et al., 

1997). 

There are two basic metabolic methods of killing an organism; either flux through an 

essential metabolic pathway can be decreased to the point where life is no longer possible, 

or a metabolite’s concentration can be increased to toxic levels (Eisenthal et al., 1998). The 

difference being that decreasing flux need not be accompanied by large changes in 

metabolite concentration and increases in metabolite concentration may not necessarily 

lead to changes in flux. It all depends on the integrated enzyme system involved. 

Glucose is also metabolised by a second route, the pentose phosphate pathway (PPP); a 

pathway that does play a crucial role both in the metabolism of many parasitic protozoa 

and in the host's relationship with these organisms (Barrett, 1999). The pentose phosphate 

pathway of trypanosomes poses another attractive target mainly because of the fact that 

enzymes of that pathway are more closely related to cyanobacterial isoforms than they are 

to eukaryotes (Barrett et al., 2003). The PPP serves to convert glucose 6-phosphate (G6P) 

to ribose 5-phosphate (R5P), which is used in nucleotide biosynthesis. In some systems, it 

also provides other important phosphorylated carbohydrates, such as erythrose 4-phosphate 

(E4P), which serves as a precursor in the synthesis of aromatic amino acids and vitamins, 

as well as sedoheptulose 7-phosphate (S7P), an important component of some bacterial cell 

walls. The other key product of the pathway is NADPH, which serves as a hydrogen donor 

in reductive biosynthesis, and plays an integral role in the defence against oxidative stress. 

The enzyme 6-phosphogluconate dehydrogenase may prove to be a potential target for 

chemotherapy. This has been elucidated from the fact that in other eukaryotic organisms, 

absence of the 6PGDH gene has been shown to be conditionally lethal (Barrett, 

unpublished). The Trypanosoma brucei 6PGDH gene has been cloned and its enzyme 

purified (Barrett, 1994). Subsequently, it has been found to not only have a number of key 

kinetic features that distinguish it from its mammalian counterpart but also interact with 

suramin and trivalent aromatic arsenoxides (Hanau et al., 1996). Recently, three series of 

inhibitors have been designed for this target. These include phosphorylated carbohydrate 

substrate and transition state analogues, non-carbohydrate substrate analogues and also 
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triphenylmethane-based compounds. All have shown selective inhibition of the 

trypanosomal 6-phosphogluconate dehydrogenase and representatives of each have 

trypanocidal activity (Hanau et al., 2004). More recently, crystal structures of recombinant 

Lactococcus lactis 6-phosphogluconate dehydrogenase (LlPDH), which shares significant 

sequence identity with the enzymes from sheep liver and the protozoan parasite, have been 

determined (Sundaramoorthy et al., 2007). Studies through complex with substrate, 

cofactor, product and inhibitors showed high conservations of key residues in the active 

site, allowing LlPDH to serve as a model system for further structure-based inhibitor 

design. 

Thiol metabolism is also a much studied system in trypanosomes (Comini et al., 2004). 

The role of glutathione in most eukaryotes, is undertaken by a unique low molecular 

weight thiol called trypanothione (N1,N8-bis-glutathionylspermidine). Low molecular 

weight thiols contribute to defence against reactive oxygen species, which arise internally 

through the normal respiration or from the host. The biosynthetic pathway of trypanothione 

consists of two steps; formation of glutathionylspermidine from spermidine and 

glutathione by glutathionylspermidine synthetase, and the formation of trypanothione from 

glutathionylspermidine and glutathione by trypanothione synthetase (Fairlamb et al., 

1990). The enzymes of trypanothione biosynthesis are also potential targets for drug design 

(Schmidt et al., 2002), due to the fact that dithiol trypanothione has many downstream 

cellular processes including DNA synthesis, ascorbate regulation, and detoxification of 

hydrogen peroxides. 

1.11  Drug Uptake via Nutrient Transporters 

Drug uptake via nutrient transporters is the one field that has received a lot of interest in 

recent times (Barrett & Gilbert, 2006). Trypanosoma brucei, in comparison to the other 

trypanosomes which reside intracellularly, is in the privileged position of being exposed in 

the bloodstream. Privileged from a drug design point of view meaning potential drugs do 

not have to cross mammalian cell membranes prior to reaching their target. A dense coat of 

variant surface glycoprotein (VSG) prevents complement from reaching the membrane and 

immunoglobulin from “seeing” membrane proteins (Borst & Fairlamb, 1998). There is 

sufficient space between VSG dimers to allow low molecular weight compounds to reach 

transporters in the membrane. This has the added advantage of allowing selective targeting 

via routes of entry that are unique to trypanosomes. This concept has been highlighted in 
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the case of the TbAT1 nucleoside transporter, P2 (Barrett & Gilbert, 2006; Carter et al., 

1995; Carter & Fairlamb, 1993).  

The role of the P2 transporter was discovered when it was found that Trypanosoma brucei 

cultures selected for resistance to melamine based arsenicals had lost this transporter 

(Carter & Fairlamb, 1993). The trypanosomal gene TbAT1 has been found to encode the P2 

adenosine/adenine transporter (Maser et al., 1999; Matovu et al., 2003). Diamidine and 

melamino phenyl arsenical entry into the cell, via this transporter, is due to the similarity in 

recognition motifs between diamidines and arsenicals and the transporter’s normal amino-

purine substrates (Tye et al., 1998; Barrett & Fairlamb, 1999; de Koning et al., 1999). The 

6-amino group of the purine ring, attached to a carbon, in turn bound via a double bond to 

a nitrogen is crucial for recognition. Identification of this recognition motif has led to the 

development of cytotoxic molecules with that motif grafted on (Tye et al., 1998). Several 

compounds have been identified through the empirical route and are getting some use 

(Barrett et al., 2002). For example, the triazine derivative SIPI 1029 is used in China 

against Trypanosoma evansi infections in domestic livestock, as well as another inhibitor 

of polyamine biosynthesis: CGP40215, which interacts via S-adenosylmethionine 

decarboxylase. 

In general, exploitation of nutrient transport systems for delivery of new drugs needs to 

confer to several key conditions; namely selectivity and efficacy. More specifically, there 

needs to be high affinity of the trypanocide for the particular transporter, coupled with low 

affinity for the mammalian transporter. Furthermore, there needs to be low abundance of 

competing substrates and ideally there needs to be concentrative rather than equilibrative 

uptake (Hasne & Barrett, 2000; Barrett & Fairlamb, 1999; De Koning et al., 1999). The P2 

purine transporter, thus far, appears to satisfy these two conditions but has one major 

disadvantage: the fact that the parasite can lose this transporter without compromising 

viability. Therefore, developing resistance without a loss in virulence. Hence, new routes 

of drug delivery are essential. 

1.12  Transport Phenomena across Membranes 

A cell or an organelle cannot be either wholly open or wholly closed to its surroundings. 

Its interior must be protected from certain toxic compounds, and yet metabolites must be 

taken in and waste products removed. As well as uptake of nutrients, all communication 

among cells and between cells and their environment must occur through the membrane 

interface. Biological membrane lipid bilayers allow selective permeability. The double 
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hydrocarbon tail of the lipid molecules allows bilayer formation rather than the micelle 

formation that would occur with the single tail. Lipids are the major constituents of 

biological membranes with glycerophospholipids, sphingolipids, glycosphingolipids, and 

glycoglycerolipids the four main classes of membrane-forming lipids. Membrane fluidity 

is essential for all living cells. At low temperatures, the head groups and hydrocarbon tails 

pack closely, forming an almost solid gel state. As the temperature increases the membrane 

“melts” and becomes thinner as a more fluid state is adopted. 

For essential small molecules, such as amino acids, sugars and ions, crossing the plasma 

membrane is through the action of integral membrane protein pumps, channels, or 

transporters. Internalisation of particles, macromolecules and solutes occurs by 

endocytosis. This involves the membrane folding around material on the outside the cell 

(Conner & Schmid, 2003). Vesicles are then pinched off from the cell surface so that it lies 

within the cell. Endocytosis can be separated into pinocytosis and phagocytosis. These two 

can be distinguished from one another by the size of particle ingested and by its 

dependence on actin polymerization (Liu & Shapiro, 2003). Phagocytosis can be described 

as “cell eating” (the uptake of large particles) whereas pinocytosis or “cell drinking” can be 

described as the uptake of fluids and solutes. 

Three categories of transport across biological membranes exist – passive, facilitated and 

active. All have quite different properties and serve different purposes for the cell. There is 

an equilibrium approached by transport across any membrane. That is, a substance that can 

traverse the membrane will eventually reach the same concentration on both sides, 

meaning no net transport. This equalisation can only be circumvented under certain 

conditions; preferential binding and subsequent modification of substrate upon transport, 

membrane potential that influences the distribution of ions, or coupling of a 

thermodynamically favoured process to transport. 

It has been said that transporters cannot catalyse an increase in the rate of biomembrane 

transport to near that which would occur if simple diffusion across the membrane was 

possible (Van Winkle, 1999). Passive transport is essentially diffusion and occurs via the 

random motion of molecules (Brownian motion). This leads to equilibrium of free 

concentration across the membrane. The net rate of transport depends on the concentration 

difference across the membrane – the higher the difference, the higher the net rate. 

However, with hydrophilic substances, diffusion occurs very slowly due to the insolubility 

of hydrophilic substances within the membrane itself. 
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Facilitated transport, sometimes called accelerated diffusion, occurs via two methods – 

pores, formed by transmembrane proteins, or by carrier molecules. Pore formation 

increases the diffusion rate by a large order of magnitude. Carrier facilitated transport 

effectively increases the solubility of its substrate in the membrane. Flow is never directed 

and thus can occur in both directions. The distinguishing feature of both types of 

accelerated diffusion methods is the fact that carrier facilitated diffusion is a saturable 

process, due to the fact that there is a limited number of carrier molecules within a 

membrane system. Whereas the rate of passive diffusion can increase linearly with the 

concentration difference. 

Active Transport is transport of a substrate against its concentration gradient and this 

requires a free energy source. The free energy source comes from the hydrolysis of ATP. 

Coupling of the energy to the transport process can either be direct or indirect. Ion pumps 

directly couple the hydrolysis of ATP to transport, with a subunit of the protein being 

enzymatically active. The pump exists in two conformational states – open to the cytosol 

and open to the cell exterior. Transition between the states is directly linked to the free 

energy change. Transition to the cytosol-open state is triggered by the binding of ATP and 

release of phosphate, whereas transition to the outside-open state occurs when ADP is 

released. 

The other form of active transport does not depend directly on ATP but employs the 

hydrolysis of ATP in an indirect way. In this instance, a favourable gradient is used to 

drive the transport of another molecule against its unfavourable concentration gradient. 

Transport of both molecules can occur in the same direction (symport) or in opposite 

directions (antiport). 

One other method that achieves transport against a concentration gradient is transport by 

modification. Upon moving into a cell by diffusion the molecule is modified in a way that 

prohibits its exit through the membrane. The modified molecule accumulates within the 

cell but the apparent concentration gradient is maintained. 

1.13  Amino Acid Transporters 

Protein phylogeny, based upon primary amino acid sequence relatedness, reflects the 

evolutionary process and therefore provides a guide to structure, mechanism and 

underlying function (Chang et al., 2004). Any two proteins that are related by a common 

descent are expected to exhibit similar structures and functions to a degree proportional to 
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sequence similarity. The transporter classification system (TC) (http://www.tcdb.org) has 

been adopted based on similarity between transporters (Busch & Saier, 2003; Busch & 

Saier, 2004). This employs computational methods to determine distant relationships. In 

general, transporter types can be distinguished according to phylogeny, substrate 

specificity, transport mechanism and cell specificity. Amino acids and their derivatives are 

known to be transported by 21 families of secondary carriers, 13 families of ATP-

dependent transporters, and 3 families of channel proteins (Saier, 2000). 

The primary modes of transport with transporters of amino acids and their derivatives have 

always been thought to involve channels and carriers (Saier, 2000) with most being 

secondary carriers. Mechanisms of channel transport are well understood whereas the 

carrier system is still unclear. This, in large part, is due to the availability of high-

resolution three-dimensional structural data for channel systems. 

Work by Saier has provided a comprehensive guide to the diversity of carriers that mediate 

the transport of amino acids across membranes. The range of substrates transported by an 

individual member of a family can be narrow or broad and structural similarity in substrate 

is not a requirement. With regards to energy-coupling mechanisms employed for transport, 

amino acid transporters use chemical energy in the form of ATP and electrochemical 

energy stored in favourable ion gradients (H+, Na+). Syntheses, activities, and degradation 

of amino acid transport proteins are similar to the mechanisms employed for other 

transport proteins and cytoplasmic enzymes. Classification and characterisation of 

transporter families from studies have shown underlying evolutionary traits. Transport 

mode and energy coupling mechanisms are highly conserved, protein topology, polarity of 

transport and substrate specificity are conserved to an intermediate degree, whereas the 

regulatory mechanisms imposed on transporters are poorly conserved (Saier, 2000). 

Conserved amino acid transporters among three sequenced eukaryotic genomes – 

Saccharomyces cerevisiae, Arabidopsis thaliana and Homo sapiens showed transporters 

belonging to five different superfamilies: amino acid/polyamine/organocation transporter 

superfamily (APC), sodium/dicarboxylate symporter superfamily (SDS), neurotransmitter 

superfamily (NTS), amino acid transporter superfamily 1 (ATF1), and the amino acid 

transporters within major facilitator superfamily (MFS) (Wipf et al., 2002). 

Classified among the transporter superfamilies is the amino acid/polyamine/organocation 

(APC) superfamily, which includes proteins that function as solute-cation symporters and 

solute-solute antiporters. APC family members are not highly specific but instead transport 
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several related, or even a wide spectrum of structurally different amino acids including 

sometimes D-isomers (Wipf et al., 2002). APC transporters are ubiquitous; homologues 

are found in animals, plants and bacteria but are best understood in yeast. Amino acid 

transport mediated by members of the APC family is diverse; has functions in uptake and 

nutrition and is ion coupled with all members catalysing transport using a monovalent 

cation symport mechanism (Chang et al., 2004). In multicellular organisms they might 

function as exchangers for both selective accumulation of specific amino acids, and 

redistribution and homeostasis of the intracellular concentrations. The majority of proteins 

exhibit uniform topology with twelve transmembrane α-helical domains (Jack et al., 2000) 

although exceptions to this trend do exist. 

Distantly related to the APC superfamily are the amino acid/auxin permease family 

(AAAP) and the hydroxyl and aromatic amino acid porter family (HAAAP). The AAAP 

family includes hundreds of proteins from plants, animals, yeast and fungi. They exhibit 

very broad specificities as well as transporting D-isomers. The proteins have 11 putative 

transmembrane spanning domains and show limited sequence similarity with members of 

the large APC superfamily (Saier, 2000). The HAAAP family is found exclusively in 

bacteria, transporting aromatic amino acids, but show topological features common to 

members of the eukaryotic AAAP family. 

The sodium/dicarboxylate symporter superfamily (SDS) and neurotransmitter superfamily 

(NTS) are exclusive to animal genomes, with no homologues found in yeast or plant 

genomes. SDS members mediate electrogenic glutamate and aspartate uptake and their 

proteins contain 10 putative membrane spanning domains (Wipf et al., 2002). NTS 

members share a common structure with 12 transmembrane domains and include 

membrane carriers for γ-aminobutyric acid (GABA), proline and glycine. 

ATF1 family members were first seen in plants with homologues later found in yeast and 

animals. Membrane domains differ from 9-11 segments. This superfamily contains plant-

specific sub-branches and branches that are more related to yeast and human transporters 

(Wipf et al., 2002). 

Within two subfamilies of the major facilitator superfamily (MFS) amino acid transporters 

were found. MFS proteins transport a wide spectrum of substances unrelated to amino 

acids, including sugars, polyol drugs, neurotransmitters, phosphorylated glycolytic 

intermediates, peptides, nucleosides and organic anions (Saier, 2000). They employ 

multiple transport mechanisms such as uniport or hydrogen ion cotransport (Wipf et al., 
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2002). They are ubiquitous in all three domains of organism and each of the 29 currently 

recognised families is specific for one class of compound. 

1.14  Human Amino Acid Transporters 

Mammalian amino acid transporters consist of a complex system allowing amino acids to 

be transported through a number of different carrier-proteins exhibiting overlapping 

specificity. In general, they are divided into Na+-dependent and Na+-independent groups. 

The mammalian amino acid carrier proteins belong to different gene families, exhibit 

overlapping but distinctive substrate specificities, and can further be distinguished by their 

requirement for the co-transport or counter-transport of inorganic ions (Closs et al., 2004). 

The main functional criteria used to define amino acid transporters in mammals are 

substrate specificity and the thermodynamic properties of transport (Palacin et al., 1998). 

One of the first amino acid transport systems described for mammalian cells was a Na+-

independent system termed System L (Kilberg et al., 1993), named ‘L’ because of its high 

affinity for leucine, it is also able to transport large apolar branched amino acids, catalysing 

exchange of amino acids rather than net uptake. 

System A, originally described four decades ago is a pH-dependent transporter of alanine, 

glycine and proline (Oxender & Christensen, 1963). The activity of this system is pH 

dependent and is expressed in response to substrate deprivation. There is the suggestion 

that it provides the concentrations of cytosolic amino acids necessary to drive the uptake of 

other amino acids by exchange through other systems. Unusually, System A recognises N-

methylated amino acids and can tolerate the substitution of Na+ with Li2+ (Christensen et 

al., 1965). Other homeostatic roles have been implicated in its repertoire and it has been 

shown that in many cell types its activity is highly regulated, including upregulation during 

cell-cycle progression and hormonal control (Palacin et al., 1998). 

System Gly, first identified in isolated rat hepatocytes that were shown to contain a 

glycine specific system (Christensen & Handlogten, 1981), occurs in several cell types 

(Eavenson & Christensen, 1967). Glycine and sarcosine are the two known substrates for 

this system with a strict dependence on Na+ and Cl- availability. The hepatic System Gly is 

Na+-dependent and appears to transport two sodium ions for each glycine (Kilberg et al., 

1993). 
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System N, called System N to reflect an apparent affinity for neutral amino acids 

containing nitrogen-bearing side chains, is involved in the Na+-dependent uptake of 

glutamine and histidine and other amino acids with nitrogen in their side chain (Kilberg et 

al., 1980). Present mainly in liver cells, it has been suggested that a System N-like activity 

is an important component of histidine-induced gastric acid secretion. It has high pH 

sensitivity and resembles System A in sequence but differs in mechanism (Reimer et al., 

2000). 

System ASC shows variable pH dependency for transport of the amino acids alanine, 

serine, cysteine, and threonine but also recognises other aliphatic amino acids. Although 

Na+ dependent, System ASC appears to mediate amino acid exchange rather than net 

uptake (Reimer et al., 2000). 

System ββββ is used to transport taurine and alanine in erythrocytes, cardiac muscle and 

kidney, with differences in substrate affinity and specificity (Miyamoto et al., 1990). 

Systems y
+, B0,+, b0,+, b+ and y+

L are the five transport systems that mediate the uptake of 

cationic amino acids (Palacin et al., 1998). System y
+ is the most widespread, transporting 

lysine, histidine and arginine in a selective sodium independent manner. The rest have 

been described only in specific tissues. System B
0,+ is found in only blastocysts and oocyte 

fibroblasts and transports alanine, valine and lysine. System b
0,+ shows similarity to 

System B
0,+ but is only found in kidney, small intestine and blastocysts. System y

+
L 

transport neutral amino acids, with Na+ dependency, while for lysine transport there is no 

sodium requirement. Systems b
0,+ and y+

L are the result of activity of heteromeric amino 

acid transporters, meaning transporter activity is elicited by coexpression of a heavy and 

light subunit (Palacin et al., 2001). 

Conversely, the two acidic amino acids, glutamate and aspartate are transported into 

mammalian cells via five different transporters: ASC, GLT-1 (Glutamate transporter 1), 

GLAST (Glutamate/aspartate transporter), EAAT4 (excitatory amino acid transporter 4) 

and EAAC1 (excitatory amino acid carrier 1). Recently, it has been found that glutamate 

transporters in the mammalian central nervous system exhibit glutamate-gated chloride-

channel activity in addition to glutamate-transport activity (Slotboom et al., 2001). The 

physiological function of this chloride-channel activity is still unknown, however, an 

excitatory response might be a consequential result. The transporters remove the excitatory 

neurotransmitter glutamate from the synaptic cleft driven by the sodium/potassium 

concentration gradient. 
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Mammalian cells express many amino acid transport systems which differ in mechanism 

and substrate specificity (Ganapathy et al., 2004). Many are needed because no single 

transport system can satisfy the structural requirements to take up all the different amino 

acids. The fact that amino acid requirements differ for each cell type means that expression 

profiles of transport systems will also differ. The potential for any given amino acid 

transport system will depend on its substrate specificity and its tissue expression profile 

(Ganapathy & Ganapathy, 2005). Different cells contain a distinct set of transport systems, 

as a combination of common or almost ubiquitous (Systems A, ASC, L, and y+) and tissue-

specific (systems B0,+, Nm, and b0,+) transport systems (Palacin et al., 1998). The vast range 

of amino acid transporters with overlapping substrate specificities means uptake of a 

particular amino acid within a given type of cell is always as a function of many different 

transporters. 

1.15  Amino Acids & Trypanosomes 

In yeast, animals and plants amino acids play an essential role in various processes, 

including protein synthesis, hormone metabolism, cell signalling, nerve transmission, cell 

growth, osmoregulation, cell cycling, production of metabolic energy, nucleobase 

synthesis, nitrogen metabolism and urea biosynthesis. The digenetic life cycle of T. brucei, 

which involves a complex development of morphologically distinct forms in the insect 

vector and the mammalian host, indicates that the parasites are exposed to ever changing 

environments (Besteiro et al., 2005). Of the three trypanosomatids, T. brucei has the most 

restrictive metabolic repertoire, reflecting its extracellular bloodstream form life cycle 

(Berriman et al., 2005), which has greater access to nutrients in the plasma. Trypanosomes 

lack biosynthetic pathways for the essential amino acids and the procyclic form requires 

exogenous proline as an energy source. 

Plants and fungi can synthesise each of the 20 amino acids by using biosynthetic pathways 

inherited from their bacterial ancestors and the ability to synthesise the nine amino acids 

(Phe, Trp, Ile, Leu, Val, Lys, His, Thr, and Met) was lost in a wide variety of eukaryotes 

that evolved to feed on other organisms (Payne & Loomis, 2005). The genome of the 

African trypanosome (Berriman et al., 2005) has revealed that most of the enzymes of the 

classical pathways for aromatic amino acid oxidation are missing. Conversion of 

phenylalanine to tyrosine does not occur in T. brucei, due to the fact that it does not have 

the enzyme phenylalanine-4-hydroxylase. All trypanosome species have genes for 

transamination and reduction to the corresponding aromatic lactate derivative. Studies have 
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found that aromatic amino acids were the preferred amino donors for the transamination of 

α-ketomethiobutyrate to methionine (Berger et al., 1996). The transamination of aromatic 

amino acids is essential to regenerate methionine from α-ketomethiobuytrate (KMTB), an 

end product of S-adenosylmethionine from the synthesis of polyamines. 

Catabolism of histidine is absent in T. brucei and a functional urea cycle is missing across 

the trypanosomes. Branched chain amino acids can be converted to acetyl-CoA derivatives 

within the mitochondria. 

In T. brucei, threonine is not oxidised via the 2-oxobutyrate pathway, instead being 

degraded to acetyl-CoA and glycine by a mitochondrial specific threonine dehydrogenase. 

Threonine has been found to be a precursor for acetate (which feeds into lipid biosynthesis, 

Figure 4) in Trypanosoma brucei (Cross et al., 1975). There is cleavage of threonine to 

form glycine and acetate within the mitochondrial compartment. Preliminary examination 

of changes in medium amino acid levels during growth of Trypanosoma brucei revealed 

complete utilisation of threonine (Cross et al., 1975). 

Alanine was found to be the most abundant amino acid present in T. gambiense (Chappell 

et al., 1972). Cysteine is an essential growth factor for bloodstream form trypanosomes and 

is involved in protein biosynthesis as well as in the production of glutathione and 

trypanothione (Duszenko et al., 1992). Cysteine essentiality was discovered by mishap 

when cysteine was added into the culture medium instead of cystine (Cross & Manning, 

1973). In a mammalian culture system, feeder cells can take up cystine and excrete 

cysteine, which is otherwise toxic to the cells being cultured. Cross & Manning 

demonstrated that the addition of cysteine eliminated the feeder-cell requirement for T. 

brucei culture. 
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Figure 1-4: Schematic representation of carbon source metabolism in the procyclic form of 
T. brucei (taken from Lamour et al., 2005). 

Enzymatic steps of D-glucose and L-threonine metabolism are represented by gray arrows, 
while those for L-proline are represented by black arrows. Excreted end products (acetate, 
L-alanine, L-glycine, lactate, succinate, and CO2) are in white characters on a gray 
background (from D-glucose and L-threonine metabolism) or on a black background (from 
L-proline metabolism). The metabolic flux at each enzymatic step is tentatively 
represented by arrows with different thicknesses. Dashed arrows indicate steps which are 
supposed to occur at a background level or not at all, under the standard growth conditions 
(glucose-rich medium). The enzymatic reaction leading to the production of lactate 
(possibly from pyruvate) is not known and is indicated by a question mark. The 
glycosomal and mitochondrial compartments and the tricarboxylic acid cycle (TCA) are 
indicated. The underlined and boxed ATP molecules are produced by substrate level 
phosphorylation and oxidative phosphorylation, respectively. The circled metabolites 
(phosphoenol- pyruvate (PEP), pyruvate, and acetyl-CoA) are located at a branching point. 
Abbreviations: AA, amino acid; AOB, amino oxobutyrate; 1,3BPGA, 1,3-
bisphosphoglycerate; C, cytochrome c; Cit, citrate; CoASH, coenzyme A; DHAP, 
dihydroxyacetone phosphate; F-6-P, fructose 6-phosphate; FBP, fructose 1,6-bisphosphate; 
G-3-P, glyceraldehyde 3-phosphate; G-6-P, glucose 6-phosphate; GLU, glutamate; Gly-3-
P, glycerol 3-phosphate; IsoCit, isocitrate; 2Ket, 2-ketoglutarate; OA, 2-oxoacid; Oxac, 
oxaloacetate; 3-PGA, 3-phosphoglycerate; Pi, inorganic phosphate; PPi, inorganic 
pyrophosphate; γ-SAG, glutamate γ-semialdehyde; SucCoA, succinyl-CoA; UQ, 
ubiquinone pool. Enzymes are as follows: 1, hexokinase: 2, glucose-6-phosphate 
isomerase; 3, phosphofructokinase; 4, aldolase; 5, triose-phosphate isomerase; 6, glycerol-
3-phosphate dehydrogenase; 7, glycerol kinase; 8, glyceraldehyde-3-phosphate 
dehydrogenase; 9, phosphoglycerate kinase; 10, phosphoglycerate mutase; 11, enolase; 12, 
pyruvate kinase; 13, phosphoenolpyruvate carboxykinase; 14, pyruvate phosphate 
dikinase; 15, glycosomal malate dehydrogenase; 16, glycosomal fumarase; 17, NADH-
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dependent fumarate reductase; 18, glycosomal adenylate kinase; 19, malic enzyme; 20, 
alanine aminotransferase; 21, pyruvate dehydrogenase complex; 22, acetate:succinate 
CoA-transferase; 23, unknown enzyme, possibly acetyl-CoA synthetase; 24, succinyl-CoA 
synthetase; 25, citrate synthase; 26, aconitase; 27, isocitrate dehydrogenase; 28, 2-
ketoglutarate dehydrogenase complex; 29, succinate dehydrogenase (complex II of the 
respiratory chain); 30, mitochondrial fumarase; 31, mitochondrial malate dehydrogenase; 
32, proline dehydrogenase; 33, pyrroline-5 carboxylate dehydrogenase; 34, glutamate 
aminotransferase; 35, glutamate dehydrogenase; 36, L-threonine dehydrogenase; 37, 
acetyl-CoA:glycine C-acetyltransferase; 38, glycerol-3-phosphate oxidase; 39, rotenone-
insensitive NADH dehydrogenase; 40, alternative oxidase; 41, F0/F1-ATP synthase; I-IV, 
complexes of the respiratory chain. 

 

Proline is the principal source of carbon and energy of procyclic forms provided glucose is 

absent (Lamour et al., 2005; Evans & Brown, 1972; L’Hostis et al., 1993). The proline 

ring is opened up and oxidised to α-ketoglutarate and subsequently to succinate which 

forms part of the Kreb’s Cycle (Figure 1-4). Proline has also been implicated in the 

differentiation from the non-infective to the infective stage within the insect vector 

(Contreras et al., 1985). Within the tsetse fly, proline is the principal energy source 

(Balogun, 1974), as the digestive contents of the gut are rich in amino acids but lacking in 

glucose. Proline metabolism has been studied in procyclic form Trypanosoma brucei and 

its implications with glucose availability are intertwined (Lamour et al., 2005; chapter 4). 

Trypanosomes seem to be able to use proline as an energy source in the absence of 

glucose. Similarly, Leishmania donovani has adapted to the extreme changes in proline 

environments, from the sandfly gut to the mammalian intracellular environment. Three 

proline transport systems have been identified in axenic cultures of Leishmania donovani 

(Marazeb et al., 1999). Systems A and B are cation dependent and independent in 

promastigotes, respectively. Whereas, System C is cation independent in amastigotes. 

Proline uptake in procyclic forms of the African trypanosome has been shown to be carrier 

mediated with an apparent Km of 21 +/-2.9 µM and a Vmax of 7.0 nanomoles/min/108 cells. 

This level of uptake is modulated by the presence or absence of glucose in the growth 

media (Lamour et al., 2005, chapter 4). 

Methionine is involved in protein synthesis and is a primary sub-unit source in the 

polyamine biosynthetic pathway. Methionine uptake in procyclic and bloodstream form 

trypanosomes has been shown to be mediated by a similar transporter with a high affinity 

(Hasne & Barrett, 2000). Exogenous methionine is adenosylated by S-adenosylmethionine 

synthase to form S-adenosylmethionine (AdoMet). AdoMet is a key metabolite in 

transmethylation reactions and its decarboxylated derivative provides aminopropyl group 

in polyamine synthesis. AdoMet also plays a role as the alternative source of adenosine. 
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The by-product of polyamine synthesis is 5’-methylthioadenosine (MTA). MTA is 

enzymatically degraded to adenine and 5’-methylthioribose-1-phosphate, a carbohydrate 

intermediate that is recycled to methionine in the methionine cycle (Goldberg et al., 1997; 

Berger et al., 1996). 

African trypanosomes have been proposed to exhibit a dedicated transporter for S-

adenosylmethionine that is independent of methionine uptake (Goldberg et al., 1999). This 

has been shown by challenging uptake of AdoMet with methionine and compounds which 

compete with adenosine for transport. Goldberg et al found that neither methionine nor 

adenosine analogues significantly inhibited AdoMet uptake. However, certain aspects of 

their methodology do not stand up to criticism. Challenging compounds were never in 

excess within the uptake assay (Goldberg et al., 1997). A unique transporter, highly 

specific for AdoMet, was not confidently shown and was only assumed from other 

compounds (not in excess concentrations) not inhibiting AdoMet uptake. 

1.16  Amino Acid Transporters in Trypanosomes 

The metabolism of the protozoan parasites of the Trypanosoma and Leishmania genus is, 

in general, strongly based on amino acid consumption (the BSF African trypanosome 

being an exception). Amino acid transporters are key to this process. However, amino acid 

transporters can provide another function – as environmental sensors (Holsbeeks et al., 

2004). The duality of the life cycle of these parasites requires that changes in its 

surrounding environment be observed. Membrane proteins, including transporters, are the 

first cell proteins to come into contact with its surrounding environment and therefore 

provide the cues for many downstream cell processes. 

Most work in the area of amino acid transporters in trypanosomatids only deals with 

general uptake and biochemical characterisation of uptake. Only recently have researchers 

gone on to isolate or characterise transporters or transport systems. RNAi and gene-

knockout are methods that allow a specific gene to phenotype characterisation, yet have 

gone unused by much of the research into amino acid transport to date. 

Since around 5-10% of the genes of most organisms encode membrane transporters, there 

is likely to be in the order of 400 membrane transporters in Trypanosoma brucei. Amino 

acid transporters constitute one of the largest families of permeases in the genome 

(Berriman et al., 2005). A family of amino acid transporters exist with overlapping 

substrate specificities, encoded by 46 genes, as found from the Trypanosoma brucei 
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genome project. One amino acid transporter, TbAATP1, has been preliminarily 

characterised by RNAi (Accoceberry & Barrett, unpublished data). This transporter has 

been shown to be a transporter of small uncharged amino acids (serine, threonine, alanine, 

glycine, cysteine and asparagine), with uptake of these amino acids being repressed in cell 

lines that contained down-regulation of this transporter (chapter 3). With the use of uptake 

assays to screen potential trypanocidal amino acid analogues and RNAi cell lines of 

parasites with reduced transporter activity, more insight into the role of this transporter can 

be gained, not only in the identification of trypanocidal properties of amino acid analogues 

but also in the uptake mechanisms involved. 

Work has also been published on the family of amino acid transporters in Leishmania and 

Trypanosoma cruzi. Work done on Leishmania donovani revealed genus specific motifs as 

well as motifs common across the trypanosomatidae family (Akerman et al., 2004). A 

large number of amino acid transporters have been located in the T. cruzi genome (Bouvier 

et al., 2004). The tandem organisation of such genes seems to be a feature common to 

trypanosomatidae. Whereas in Trypanosoma brucei there is indication of the presence of a 

family of amino acid transporters with broad substrate specificity, the substrate 

specificities for T. cruzi and Leishmania remain unclear, although in the case of 

Leishmania, developmental regulation has been shown to be exhibited for one amino acid 

transporter gene (Geraldo et al., 2005) as well as for general proline transport (Mazareb et 

al., 1999). 

In Trypanosoma brucei, amino acid transport has been studied since the 1970’s. These 

studies highlighted the potential of the amino acid transport system as drug targets. The 

aim was to separate various trypanosomal carriers from each other by kinetic means, 

showing a transport system specific for neutral amino acids (Owen & Voorheis, 1975). 

Amino acid transport was divided into certain systems; the neutral amino acid carrier 

mediating transport of glycine, alanine, serine and threonine, the second neutral amino acid 

carrier mediating transport of valine, leucine, proline and methionine, the first acid amino 

acid carrier mediating transport of glutamic acid, and the first basic amino acid carrier 

mediating lysine transport (Voorheis, 1973). With the vast information now available on 

the genome we know there is a more complex story at play, with many transporter genes 

showing probable variable expression and broad substrate specificity. 
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1.17  Genes of the Amino Acid Transporter Family 

The amino acid transporter family constitutes one of the largest families of permeases in T. 

brucei. From the genome database 46 amino acid transporter genes were identified 

(including 3 pseudogenes) in T. brucei, however, only 38 were initially annotated 

(Berriman et al., 2005). 

 

Figure 1-5: Amino acid permeases from L. major, T. brucei and T. cruzi, respectively (taken 
from Berriman et al., 2005). 

In L. major 3 belong to the amino acid/polyamine/organocation transporter superfamily 
(APC), 26 to the amino acid/auxin permease family (AAAP), with no lysosomal cystine 
transporter members present. In T. brucei 3 belong to the APC family, 35 to the AAAP 
family and no LCT family members are present. In T. cruzi 8 belong to the APC family, 32 
to the AAAP family and 2 to the LCT family. 

 

Large amino acid transporter gene families have been identified across the trypanosomatid 

species (Bouvier et al., 2004; El-Sayed et al., 2005; Jackson, 2007; Berriman et al., 2005). 

Biochemical characterisation of amino acid transport has been studied but no study has 

linked transport to a specific genomic locus. It is clear that the genomic repertoire far 

exceeds biochemical characterisation, especially given the fact that transport of a particular 

amino acid can be shared with other structurally or functionally similar amino acids. 

A systematic approach was taken to the assessment of the origin of those genes as well as 

associations with homolog genes in the other trypanosomatid species (Jackson, 2007). The 

large number of amino acid transporter genes and the fact that they are often arranged in 

arrays point to mechanisms by which new loci originated during evolution. It seems 

possible that the multitude of diverse amino acid transporter repertoires enables 

specialisation of individual loci to regulation of particular amino acids and enables 
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modulation of incoming amino acids in response to environmental changes. The study 

undertaken by Jackson applied a comparative approach to gene family evolution, 

investigating the mechanisms responsible for loci differences between species. 
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Parallel Classifications 

Gene I.D. 
AATP# 

(from GeneDB) 
AAT 

Locus 

Tb927.8.7610 AATP1 AAT7 

Tb927.8.7620 AATP1 AAT7 

Tb927.8.7630 AATP1 AAT7 

Tb927.8.7640 AATP1 AAT7 

Tb927.8.7660 AATP1 AAT7 

Tb927.8.7600  AAT7 

Tb927.8.7650  AAT7 

Tb927.8.7670  AAT7 

Tb927.8.7690  AAT7 

Tb927.8.7680  AAT7 

Tb927.8.7700  AAT7 

Tb927.4.4830  AAT4 

Tb927.4.4850  AAT4 

Tb927.4.4870  AAT4 

Tb927.4.4840 AATP7 AAT4 

Tb927.4.4820 AATP10 AAT4 

Tb927.4.4860 AATP8 AAT4 

Tb927.4.3990  AAT2 

Tb927.4.4000  AAT2 

Tb927.4.4010  AAT2 

Tb927.4.4020  AAT2 

Tb927.8.8290 AATP5 AAT10 

Tb927.8.8300  AAT10 

Tb11.017590  AAT17 

Tb11.01.7600  AAT17 

Tb927.6.4660 CAATP - 

Tb927.8.5450  AAT6 

Tb09.211.1760  AAT11 

Tb10.6k15.0450  AAT14 

Tb927.8.7740  AAT8 

Tb927.4.4730 AATP11 AAT3 

Tb927.4.3930  AAT1 

Tb927.8.4700 AATP6 AAT5 

Tb927.8.4710  AAT5 

Tb927.8.4720  AAT5 

Tb927.8.4730  AAT5 

Tb927.8.4740  AAT5 

Tb927.8.4750  AAT5 

Tb11.01.7500  AAT16 

Tb11.01.7520  AAT16 

Tb927.8.8220  AAT9 

Tb927.8.8230  AAT9 

Tb927.8.8240  AAT9 

Tb927.8.8250  AAT9 

Tb927.8.8260  AAT9 

Tb10.70.1170  AAT12 

Tb11.02.4520  AAT15 

Tb10.70.0300  AAT13 

Table 1: Amino acid transporter genes from T. brucei. 
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Table 1 shows GeneDB identification cross-referenced to AATP number classification 

(Hasne & Barrett, 2000) and AAT loci (Jackson, 2007). The three genome sequences were 

compared and defined by their genomic position, giving specific gene loci which could be 

defined as shared or distinct across the tritryp genomes (Figure 1-6). Loci that are found in 

different genomic locations or different loci in same position point to evolutionary 

influences. 

 

Figure 1-6: Trypanosoma brucei AAT loci (taken from Jackson, 2007). 

11 Chromosomes are arranged circularly and labelled by number in clockwise fashion. 
Dark shaded bars across chromosomes represent AAT loci and are labelled with locus 
number, GeneDB identifier and copy number (also reflected in the band width). Grey 
shaded bars represent the genomic positions of AAT loci found in L. major or T. cruzi, but 
absent in T. brucei, and are labelled inside the circle. The status of each AAT locus in L. 

major and T. cruzi are represented by red and black circles respectively; shaded circles 
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indicate the presence of a homoeologous gene, open circles indicate the absence of any 
AAT gene, but with typically conserved synteny around the location. 

 

This throws up an obvious problem due to the fact that the primary definition of an amino 

acid transporter locus is gene location, and not sequence. This presents numerous 

problems, for example the AATP1 locus of T. brucei includes an array of 11 genes but is 

classed as a single locus based on location (AAT7), when in reality those 11 genes group 

together more subtly, with 3 distinct groups emerging when comparing gene sequences 

(chapter 3). 

Jackson concluded that the repertoires of amino acid transporter loci are fluid in both 

complement and gene dosage, although there seems to be a somewhat customised 

transporter repertoire when comparing the three species. A vacant locus in a particular 

species was attributed to either a loss or an origin of genomic content. However, the 

statement of a “customised AAT gene repertoire” is likely to translate into the unique 

amino acid requirements for each species but, at the same time, is unlikely to be a distinct 

characteristic. However, several gene loci specific to T. brucei (one without homeologous 

loci in other species) were identified (AAT2, AAT3, AAT4, AAT6, AAT7, AAT9, and 

AAT10). 

The digenetic lifestyle of the African trypanosome, involving the mammalian bloodstream 

and the tsetse midgut, offers variation in temperature and nutrient availability. 

Developmental regulation of certain genes to adapt to divergent environments is necessary 

and investigations into these processes will provide more information on the cues leading 

up to differentiation from one life cycle stage to the next. Developmentally regulated genes 

in two strains of T. brucei have been reported using microarray analysis (Brems et al., 

2004). Expression patterns obtained showed that 2% of trypanosome genes showed 

developmental regulation at the mRNA level – including 3 groups of amino acid 

transporter genes upregulated in procyclic forms (Tb927.4.4730, AAT3; Tb927.8.4700, 

AAT5; and Tb927.4.3990, AAT2). 

Differential expression of genes between the bloodstream form and procyclic form 

trypanosome has been investigated (Clayton, unpublished data). From this, key amino acid 

transporters that were upregulated in either the BSF or the PCF have been identified. In 

PCF trypanosomes, a single amino acid transporter Tb04.3I12.190 (Tb927.4.4730, 

AATP11, AAT3) has been shown to be upregulated. Regulation of TbAATP11 mRNA has 
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been investigated (Robles & Clayton, 2007), showing that the 3’-UTR causes higher 

expression of the reporter gene in PCF trypanosomes, with multiple elements within the 

intergenic sequence being required for this control. The mRNA of this particular amino 

acid transporter seems to be under the control of the 5’-3’ exonuclease XRNA and shows a 

half-life of 10 mins and 60 mins in BSF and PCF trypanosomes respectively (Robles & 

Clayton, 2007). 

In BSF trypanosomes, two amino acid transporters, Tb04.3I12.30 (Tb927.4.4820, AAT4, 

AATP7/8/10) and Tb04.3M17.60 (Tb927.4.4870, AAT7, AATP1) are shown to be 

upregulated. Tb927.4.4730 is closely related to Tb927.8.7740, showing greater than 90% 

similarity. Tb927.4.4820 sits at the start of a six gene array comprising of Tb927.4.4820, 

4830, 4840, 4850, 4860 and 4870. At this point in time we are unable to assign a 

phenotype to those amino acid transporters that are differentially upregulated. However, by 

analysing the amino acid requirements of both forms of the parasite we can infer metabolic 

consumption of amino acids and relate that to amino acid transporters (chapter 3). 

1.18  Drug Uptake via Amino Acid Transporters 

Amino acids are important for protozoa as energy sources as well as forming pools of 

soluble osmolites (Burchmore et al., 2002). Selective plasma membrane transporters can 

be exploited in the delivery of drug targeting. Amino acid transporters are one group of 

transporters that fulfil the criteria needed for successful exploitation of nutrient transport 

systems for drug delivery (chapter 1.11). 

The precedent set by work with the P2 transporter, with regard to targeting toxins to the 

trypanosome interior via nutrient transporters, inspired a search for amino acid analogues 

with trypanocidal activity that might enter trypanosomes through members of the amino 

acid transporter family. Several amino acid analogues that kill trypanosomes are known. 

Most notably, Acivicin and 6-diazo-5-oxo-l-norleucine (DON), which are glutamine 

analogues and inhibit CTP synthetase and can kill trypanosomes in vitro. Trypanosomes 

have very low levels of CTP due to limited capacity for de novo synthesis and lack of 

salvage pathways for cytidine (Hofer et al., 2001). Acivicin and DON reduce CTP levels 

even further, inhibiting parasite growth in vitro. The similarity between trypanosomiasis 

and cancer (Barrett & Barrett, 2000) is further exemplified by the fact that the 

pharmacological properties of acivicin and DON have been extensively studied as cancer 

drugs. However, these glutamine analogues only arrest the proliferation of the parasites. A 

functional immune response is then required to eradicate the static trypanosomes (Fijolek 
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et al., 2007). Most recently, the methionine analogue buthionine sulphoxamine (BSO) 

(Huynh TT et al., 2003; Arrick et al., 1981) has been identified as a potential trypanocide. 

The mode of action of BSO seems to involve inhibition of γ-Glutamylcysteine synthetase 

(γ-GCS) resulting in trypanolytic effects. However, γ-GCS inhibition was not conclusively 

shown to be the sole target for BSO. 

1.19  Trypanosomes & the Blood-Brain Barrier 

The neurological manifestations of “sleeping sickness” in man are attributed to the 

penetration of the blood-brain barrier and invasion of the central nervous system by 

Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense. However, how 

African trypanosomes cross the blood-brain barrier remains an unresolved issue. Recent 

progress in understanding the neuropathological mechanisms of sleeping sickness reveals a 

complex relationship between the parasite and the host nervous system (Engana et al., 

2002; Mulenga et al., 2001). 

Following the insect bite, parasites replicate at the site of infection, producing a local 

inflammatory reaction (Winterbottom’s sign), then spread to the lymph nodes and 

eventually throughout the entire blood stream with final parasite establishment in the CNS. 

This is known as late stage HAT, or sleeping sickness, and it compromises the integrity of 

the blood-brain barrier due to the inflammation that occurs when parasites become 

associated with the brain capillaries. It is as yet unknown how trypanosomes penetrate the 

blood-brain barrier but it is thought that the general permeabilisation of the barrier during 

the accumulation of mononuclear cells to the site of infection could influence the migration 

of trypanosomes (Engana et al., 2002). Moreover, it has been shown that IFN-γ is an 

essential cytokine in allowing trypanosomes to circumvent the BBB (Masocha et al., 

2004). There is also evidence that parasites can cross the BBB without a generalised loss of 

tight junction proteins (Mulenga et al., 2001), suggesting migration of parasites by 

transcytosis through the cerebral endothelial cells rather than between them. 

As well as multiple systemic features seen in the early acute stage, the late chronic stage is 

associated with a wide range of neurological features; including neuropsychiatric, motor 

and sensory abnormalities, all of which may not occur in the same patient. Late stage 

trypanosomiasis is often gradual in onset and differs depending on the gambiense or 

rhodesiense disease (Kennedy, 2006). The CNS features observed in trypanosomiasis 

stretch further than the characteristic sleep disturbances which give the disease its name. 
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The features can broadly be divided into psychiatric disturbances, sleep disorders, motor 

system disorders, sensory syndromes and abnormal reflexes (Kennedy, 2006). In the final 

stages of the disease the sufferer develops seizures, incontinence, cerebral oedema, 

progressive mental deterioration, and finally death as a direct result of the disease or 

indirect result such as intercurrent infection or heart failure. 

Psychiatric disturbances of the late stage CNS involvement of African trypanosomiasis 

include, but are not limited to, anxiety and irritability, lassitude and indifference, mania 

and agitation, violent and suicidal behaviour, uncontrolled sexual impulses, hallucinations 

and delirium. Sleep disturbances include daytime somnolence, nocturnal insomnia, 

narcoleptic crises, and uncontrollable urges to sleep. Motor disturbances include limb and 

tongue tremors, muscle fasciculation, slurred speech and cerebella ataxia, focal motor 

weakness, neuritis and polyneuritis. Sensory involvement includes parathesia and pruritis. 

How the parasite perturbs brain function to bring about the various CNS features is a 

problem that is not well understood and involves many possible immunopathological 

pathways. Many abnormalities of CNS-involved trypanosomiasis have been reported 

(Kennedy, 2004), some of which include a diffuse perivascular infiltration with 

lymphocytes, macrophages, and activated astrocytes. It seems evident from studies that 

early astrocyte activation plays an essential role in driving the inflammatory response 

(Kennedy et al., 1997). Current understanding of parasite neuropathogenesis is based upon 

the balance between pro-inflammatory and counter-inflammatory cytokines, macrophage 

activation by cytokines and parasite components, and interactions between cytokines and 

chemokines (Kennedy, 2006). 

Any potential trypanocidal drug for late stage disease will need to cross the BBB. Entry 

into the CSF by potential drug candidates is by three main routes; passive diffusion of 

lipid-soluble compounds, trans-cytosis, and by transport of specific water-soluble 

substances using transporters (Engana et al., 2002). The brain is one of the least accessible 

organs for the delivery of active pharmacological compounds due to the fact it creates a 

unique physical and enzymatic barrier, capable of metabolising nutrients and drugs. BBB 

capillary endothelia lack fenestrations, are sealed by tight junctions and contain specific 

efflux transporters for nutrients, drugs and waste products (Witt & Davis, 2006). 

The influence of brain pathology during disease must be taken into account when 

developing drug delivery strategies. Several disease states have been reported to increase 

BBB permeability to fluid and solutes (Banks et al., 1996) and trypanosomiasis is one of 
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them. Increasing bioavailability to the CNS can be achieved via different methods 

depending on the class of drug in question, including pharmacological-based approaches to 

increasing specific biochemical properties and physiological-based approaches to exploit 

the various features and characteristics of the BBB. One such example of the latter is 

exploiting nutrient transporters of the BBB. Levodopa (L-Dopa), a lipid-insoluble 

compound used for the treatment of Parkinson’s disease, is the prime example. L-Dopa 

availability within the CNS is very high due to the fact that it is actively transported across 

the BBB by the large neutral amino acid carrier, System L (Wade & Katzman, 1975). 

Uptake has been shown to be time-dependent, temperature-sensitive, and Na+-independent 

(Kageyama et al., 2000). 

There is evidence that changes in the concentrations of the monoamine neurotransmitters 

within the brain are associated with changes in mental processes, with disorders of control 

of movement and with certain neuropsychiatric diseases (Daniel et al., 1976). These 

neurotransmitters are synthesized in the brain from aromatic amino acid precursors that 

have to be obtained from the circulating blood. Changes in the cerebral concentrations of 

one or more neurotransmitters are the cause of certain neuropsychiatric disorders 

(Fernstrom & Wurtman, 1971; Shoemaker & Wurtman, 1971; Bernheimer & 

Hornykiewicz, 1973). Moreover, other amino acids like the branched-chain amino acids 

(leucine, isoleucine and valine) are involved directly and indirectly in a variety of 

important biochemical functions in the brain (Fernstrom, 2005). The branched-chain amino 

acids influence brain function by modifying transport of aromatic amino acids into the 

CNS. Transporter competition between the branched-chain amino acids and the aromatic 

amino acids mean that a rise in plasma branched-chain amino acid concentration leads to 

decrease in aromatic amino acid availability within the CNS. The formation of 

neurotransmitters is largely determined by how the CNS can acquire pre-cursor aromatic 

amino acids from the circulating blood (Coppen et al., 1963; Daniel et al., 1976). More 

specifically, elevating brain tyrosine concentrations stimulates catecholamine production 

(Fernstrom & Fernstrom, 2007). 

Trypanosome-induced alterations and deprivations to host environment is wide ranging 

with trypanosomiasis. Evidently, trypanosome tryptophan metabolism is thought to 

contribute to the pathogenesis of trypanosomiasis (Vincendeu et al., 1999). The aromatic 

amino acids are involved in transamination reactions of α-ketomethiobutyrate and 

methionine recycling in trypanosomes (Berriman et al., 2005; Berger et al., 1996; El 

Sawalhy et al., 1995; Vincendeau et al., 1999). It has been noted that a significant decrease 

in serum tryptophan levels during trypanosomiasis occurrs regardless of late stage 
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involvement (Vincendeau et al., 1999). Studies investigating the importance of tryptophan 

metabolism pointed to an essential role for tryptophan in parasite growth both in an in vivo 

and in vitro setting (Vincendeau et al., 1999). However, the aromatic amino acids do not 

serve as a carbon source for growth. Moreover, decreased levels of the neurotransmitter 

serotonin within the brain may be one of the pathophysiological mechanisms provoking 

sleeping sickness. The functional significance of tryptophan catabolism is unclear. 

However, it is important to note that the range of pathophysiological effects associated 

with the disease are linked to trypanosome involvement, possibly by reducing host levels 

of essential amino acids (El Sawalhy et al., 1995). Another possibility is the direct 

involvement of toxic or inhibitory actions of metabolites produced from aromatic amino 

acid metabolism in trypanosomes. The aromatic α-keto acids and indole-3-pyruvic acids 

have been shown to accumulate abnormally in the urine of infected mice (El Sawalhy et 

al., 1995). This pathological symptom has been likened to other inherited disorders of 

aromatic amino acid metabolism. Indeed, the correlation between the physiological 

manifestations of trypanosomiasis and other neurological disorders cannot be discounted. 

It is evident that the perturbations of host environment brought about by trypanosome 

amino acid metabolism result in pathogenesis and physiology of the disease. 



48 

2 Materials & Methods 
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2.1 Cell Culture 

2.1.1 Trypanosomes 

T. brucei procyclic form (PCF) strains 427, 927, and various derivatives were cultivated in 

SDM79 medium (Brun & Schonenberger, 1979), Cunningham’s medium (Cunningham, 

1972) and SDM80 medium (Appendix 8.2) supplemented with 10% (v/v) heat inactivated 

FCS (for SDM80 dialysed against 0.15 M NaCl with a molecular mass cut-off of 10,000 

Da), at 25-28˚C. A typical culture was started at 105 cells/ml. After 4 days, the culture 

reached mid-log phase (106 cells/ml) and after 7 days the stationary phase was reached (107 

cells/ml). 

T. brucei bloodstream form (BSF) strain 427 were cultured in HMI-9 medium containing 

10% heat inactivated FCS (Hirumi et al., 1977; Hirumi, 1994) at 37˚C in a 5% CO2 

incubator. 

T. brucei PCF strain 29-13 (La Count et al., 2000) were used in all RNAi experiments. For 

the transgenic trypanosomes, the tetracycline repressor constructs were maintained by the 

addition of 15 µg/ml G418 and 25 µg/ml Hygromycin B to the medium. To induce the 

RNAi effect, tetracycline was added at a concentration of 100 ng/ml. 

Development of cultures was monitored by microscopy and cell numbers were determined 

using an improved Neubauer haemocytometer (counting chamber; Weber Scientific). 

2.1.2 Mammalian cells 

The Human Embryonic Kidney cell line strain 293T (HEK) were cultured in Dulbecco’s 

Modified Eagle’s Medium (Sigma) with penicillin/streptomycin (10 mg/ml), L-Glutamax 

(200 mM), and 10% FCS in vented culture flasks at 37ºC in 5-10% CO2 atmosphere, 

passaging when cells on the monolayer were 80-85% confluent. Cells were passaged by 

the addition of pre-warmed 0.25% Trypsin-EDTA solution (Sigma). After detachment of 

cells from the culture dish surface, cells were mixed with a further 8 ml of pre-warmed 

medium and spun down at 1,200 rpm for 5 mins. Supernatant was decanted and pelleted 

cells were resuspended in 10 ml of medium, with 1 ml of cell suspension added to a fresh 

sterile culture dish containing 10 ml of medium. 

Development of cultures was monitored by microscopy and cell numbers were determined 

using an improved Neubauer haemocytometer (counting chamber; Weber Scientific). 
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2.2 Alamar Blue Assay 

The Alamar blue assay is used to determine the relative number of live cells in a 

population (Raz et al., 1997). The assay was employed to test potential trypanocidal drugs 

or as a measure of growth by different carbon sources. The assay was carried out on both 

PCF and BSF trypanosomes. 

Trypanosomes (typically at a density of 105 per 100 µl for PCF and 104 per 100 µl for 

BSF) were incubated for 72 hrs in 96-well flat bottomed microtiter plates. Drug 

concentration started at 100 µM and decreased in doubling dilution across rows in the 

plate, with no drug used as a control. All experiments were performed twice with each 

drug in duplicate. 

Alamar blue reagent (Resazurin; Raz et al., 1997), at 12.5 mg per 100 ml, stored and 

protected from light at 4ºC, was added after 48 hrs incubation (at 10% - 20 µl per well). 

Measurement of fluorescence was carried out in a Millipore Cytoflour plate reader (Perkin 

Elmer, LS 55, Luminescence Spectrometer) at 530 nm excitation wavelength and 590 nm 

emission wavelength after a further 24 h incubation. The IC50 value is the concentration 

inhibiting a parameter (growth in this case, or conversion of oxidised to reduced resazurin) 

by 50%. 

Human Embryonic Kidney cells (strain 293T) were used as the mammalian cell line for 

comparative analyses and to give a preliminary therapeutic index. The Alamar blue assay 

protocol was modified from the one used for live trypanosomes. Briefly, 100 µl of a 3 x 

105 cells/ml suspension was added to each well of a 96-well plate and incubated at 37ºC 

for 3 hours to allow cells to adhere to the bottom of the wells. Preparation of drug stocks in 

doubling dilution was added after the incubation period, incubated for a further 12-16 

hours before the addition of 10% resazurin. After 24 hours plates were read. 

In all, 92 amino acid analogues (Appendix 8.14, chapter 6) have been screened for 

trypanocidal activity using the Alamar Blue method. 

2.3 Isolation of genomic DNA 

For isolation of genomic DNA from T. brucei, 108 parasites were pelleted by 

centrifugation at 2,000 g for 10 min at 4˚C and resuspended in 150 µl of TELT buffer 

(Appendix) (Medina-Acosta & Cross, 1993) and incubated at room temperature for 5 min. 
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150 µl of Phenol-Chloroform was added and mixed gently by inversion. The aqueous mix 

was centrifuged at 13,000 g for 5 mins at room temperature. The aqueous layer was 

transferred into a sterile 1.5 ml Eppendorf tube and the DNA was precipitated by addition 

of 1/10 volume of 3 M sodium acetate and 2 volumes of 100% ethanol and placed on ice 

for 5 mins. The DNA was pelleted by centrifugation at 13,000 g at room temperature. The 

pellet was washed in 1 ml 70% ethanol, air dried for 5 mins and resuspended in TE buffer 

(Appendix 8.6). The DNA was incubated with 1 mg/ml RNAse (Sigma) for 30 min at 

room temperature and stored at -20˚C for further work. 

2.4 Total RNA Isolation 

A pellet of 108 cells was resuspended in 1 ml of Trizol reagent (Gibco), comprising 

monophasic solutions of phenol and guanidine isothiocyanate, to maintain the integrity of 

RNA (Sambrook & Russell, 2001). The mixture was incubated at room temperature for 5 

mins before 200 µl of chloroform was added, then mixed by inversion. Organic and 

aqueous phases were separated after a further 2 min of incubation at room temperature. 

Addition of chloroform generates an organic phase into which DNA and proteins are 

extracted, leaving RNA in the aqueous supernatant. After centrifugation for 15 min at 

12,000 g and 4˚C, the aqueous phase was transferred to a fresh sterile 1.5 ml Eppendorf 

tube and 0.5 ml of isopropyl alcohol was added. The mixture was incubated for 10 min at 

room temperature to precipitate the RNA. The RNA pellet was collected by centrifugation 

at 12,000 g for 10 min at 4˚C, and then washed with 70% ethanol, air dried for 10 min and 

resuspended in RNAse-free water. RNA was then stored at -20˚C. 

RNA is chemically more active than DNA; ergo it is prone to digestion by contaminating 

RNases. The simple and most effective way to guard against RNase contamination is 

prevention. Sterile technique and proper sterile equipment were used throughout. RNases 

are ubiquitous, resistant to prolonged boiling, and are able to refold after denaturation 

(Sambrook & Russell, 2001). All equipment and reagents were made RNAse free by 

treatment with 0.01% diethylpyrocarbonate (DEPC). DEPC is a highly reactive alkylating 

agent that destroys the enzymatic activity of RNase. 
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2.5 Molecular Cloning Techniques 

2.5.1 Polymerase Chain Reaction (PCR) 

PCR was used to amplify segments of DNA between two known regions for various 

cloning exercises. All oligonucleotides were synthesized by MWG-Biotech. The two 

primers (forward and reverse) used in each amplification had sequences complementary to 

those flanking the region for amplification. One primer was designed in the 5’-3’ direction 

of the sense strand (forward primer) and the other was designed in the 5’-3’ direction of the 

anti-sense strand (reverse primer) of DNA. Enzymatic replication of DNA used Taq DNA 

polymerase (Promega). A 50 µl reaction contained 200 µM of dNTP, 50 µl of 10 X buffer, 

upstream and downstream primers at 0.1 µM, 200 ng of genomic DNA and 1 unit of Taq 

DNA Polymerase. The amplification was performed using a thermal cycler (PTC200 DNA 

Engine Thermal Cycler, MJ Research) under differing conditions. Temperature and 

incubation times were optimized for each reaction. The PCR was performed in three 

stages: 94˚C for 2 min followed by 30 cycles composed of a denaturation step at 94°C for 

15 sec, an annealing step at Tm for 30 sec and an amplification step at 72°C for 2 minutes, 

a final extension at 72°C for 5 minutes. The Tm is the annealing temperature, which was 

chosen to be a few degrees below the predicted Tm of each primer pair. Correctly sized 

products were isolated by electrophoresis on a 1% agarose gel containing ethidium 

bromide and then purified using a QIAquick PCR purification kit according to 

manufacturer’s instructions (Qiagen). 

2.5.2 Plasmid Vectors 

DNA fragments can be inserted into vectors and efficient cloning is achieved when DNA 

insert and plasmid are digested by restriction enzymes creating “sticky” ends. TA cloning 

takes advantage of the single A-residue at the 3’end of the insert generated during PCR by 

Taq DNA polymerase enzyme. The specific vector pGEM-T (Promega) contains a single 

T-residue overhang allowing ease of cloning. 

PCR fragments were cloned into the pGEM-T vector. Ligation reactions were carried out 

using a 3 fold-excess in terms of molar ends of the insert DNA and the vector. The ligation 

reaction was performed under the following conditions: final concentration of 1X ligation 

buffer, 1 µl vector (20-50 ng/µl), 3 µl PCR product, 1 µl T4 DNA Ligase (1 U/µl). The 

reaction was incubated for at 16˚C for at lest 5 hrs. A positive control (control insert DNA) 

and a background control (digested vector without insert DNA) were used to assess re-
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ligation of the vector. Once plasmid had been purified and the presence of insert verified 

the PCR products could then be digested, isolated and cloned into various other vectors 

depending on use (see relevant chapters). 

Restriction enzymes recognize specific palindromic sequences in the DNA. Standard 

restriction enzyme digests were typically performed using a final concentration of 1X 

restriction enzyme buffer, 50-100 ng of DNA, 1 unit BSA, and 5 units of enzyme. The 

digest mixtures were incubated at 37°C for at least 2 hrs or until complete digestion was 

obtained. 

2.5.3 E.coli Transformations 

The E. coli chemically competent cell line JM109 (Promega) were transfected with 

plasmid containing the DNA segment of choice. 50 µl of cells were added to a chilled 

Eppendorf tube containing 10 µl of ligation mix. The tubes were left on ice for 30 min, 

then heat shocked for 3 min at 42°C and immediately placed on ice for 1 min and spread 

on LB agar plates containing ampicillin (100 µg/ml), isopropylthio-β-D-galactoside (IPTG; 

40 µg/ml), and 5-bromo-4-chloro-indolyl-β-D-galactoside (X-Gal; 40 µg/ml). IPTG and X-

Gal were added for blue/white colony screening. Successful cloning of the insert into 

pGEM-T was indicated by the presence of white colonies as opposed to blue colonies. 

Many commonly used plasmid vectors carry a short segment of DNA containing the 

regulatory sequence and the coding information for the first 146 amino acids of ß-

galactosidase (lacZ). Usually, host cells express the complementary C-terminal portion of 

ß-galactosidase, and together host and transformed vector will express the active enzyme. 

This is known as α-complementation. Insertion of a fragment of foreign DNA results in the 

disruption of the lacZ gene, the resulting ß-galactosidase transcript is non-functional and α-

complementation is abolished. Bacteria that result from α-complementation form blue 

colonies in the presence of the chromogenic substrate X-Gal. Therefore colonies 

containing recombinant plasmids appear white. IPTG is an analogue of lactose that 

inactivates the lacZ repressor and therefore induces transcription of the lac operon. The 

fact that IPTG is nonfermentable means it can act as a gratuitous inducer of the lac operon. 

For other vectors that do not allow blue/white screening, insertion of correct insert was 

confirmed by PCR. Briefly, a PCR reaction was set up broadly as previously described, 

containing primers specific for the insert. The DNA template, however, was simply a 

single bacterial colony picked from a plate and dipped into the PCR reaction mix (with the 
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colony preserved as a culture). Generation of a PCR product indicated successful insertion 

of the gene target into the plasmid vector. 

For each transformation, single transformed colonies (containing vector and insert) were 

picked from plates into 5 ml of LB/ampicillin (100 µg/ml) medium and incubated 

overnight at 37°C under vigorous shaking. The bacterial cells were harvested by 

centrifugation at 13,000 rpm for 15 minutes at 4°C and the pellets processed using a 

Qiagen Plasmid Miniprep Kit according to the manufacturer’s specification. The plasmid 

DNA quality was analyzed by agarose gel electrophoresis after the liberation of the 

inserted fragment from the vector by restriction enzyme digestion as previously described. 

Purified but non digested DNA plasmid was used as control. The vectors with cloned 

inserts were sent to MWG-Biotech for sequencing. 

For the preparation of large-scale plasmid DNA, a pre-culture of 5 ml, with a positive 

transformed colony, was grown overnight and then transferred to 100 ml of LB/ampicillin 

medium, which was grown overnight at 37°C under shaking. The culture was spun and the 

bacterial pellet processed using a Qiagen Plasmid Maxiprep Kit according to the 

manufacturer’s specification. The yield and quality of the plasmid DNA was also assessed 

by the NanoDrop® ND-1000 UV-Vis Spectrophotometer. 

2.6 Northern Blot Analysis 

Northern hybridization is used to measure the amount and size of RNAs transcribed from a 

particular gene. RNA samples were separated according to size using 1% 

agarose/formaldehyde gel electrophoresis for at least 4 hr at 70 V. The gel contained 1% 

agarose, 12% formaldehyde, and 2 X northern gel buffer (1 X MOPS, Appendix 8.10). 

RNA samples were prepared by adding the RNA (4 µg) to RNA loading mix consisting of 

12.5% formaldehyde, 50% formamide and sterile water to 20 µl. Formamide is used to 

assist the denaturation of RNA before electrophoresis through the gel. RNA mix was then 

heated briefly at 65˚C for 15 min. RNA was transferred to a nylon membrane (Hybond N, 

Amersham) by capillary transfer under 20 X SSC – a technique similar to that used in 

Southern blotting (Sambrook & Russell, 2001), that involves transfer of nucleic acids from 

gel to membrane in an upward flow of buffer. After transfer the RNA was UV cross-linked 

to the membrane, using a Stratalinker apparatus set at “optimal cross-link.” The membrane 

was then air dried and is now ready for hybridisation, and can be stored in a sealed plastic 

bag in the dark at room temperature indefinitely. 
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2.7 Probe Labelling 

Prehybridisation of the membrane was carried out for a minimum of 2 hr at 65˚C in 50% 

formamide, 6 X SSC, 5 X Denhardt’s solution, 1% SDS, and 0.1 mg/ml denatured 

sonicated salmon sperm DNA. Purified PCR product was labelled using α32P (Amersham). 

Random priming of PCR product was done using the Prime It II Kit (Stratagene). Briefly, 

10 µl of random oligonucleotide primers were added to 25 ng of DNA in a total reaction 

volume of 34 µl. The mixture was denatured by boiling for 5 min and then snap-cooled on 

ice. 10 µl of 5 X dATP primer buffer, 50 µCi α32dATP and 1 µl of Exo-Klenow enzyme (5 

U/µl; Stratagene) were added and incubated at 37˚C for 10 min. The Exo-Klenow 

Fragment is the large fragment of DNA Polymerase I (obtained from E. coli). It exhibits 

5’-3’ polymerase activity, but lacks the 3’-5’ and 5’-3’ exonuclease activities of DNA 

Polymerase I. The labelled probe was finally denatured by boiling for 5 min before 

addition to the membrane and hybridization buffer. Hybridization was performed overnight 

at 42˚C in the same prehybridisation solution lacking Denhardt’s solution but containing 

50 % formamide and the denatured probe. After overnight hybridization, blots were 

washed once in 10 X SSC, 1% SDS for 30 min at room temperature, once in prewarmed 1 

X SSC, 0.5 % SDS for 45 min at 42˚C, and once in prewarmed 0.1 X SSC, 0.2 % SDS for 

30 min at 42ºC. Blots were then dried, covered with a sheet of saran wrap and exposed to 

X-ray film for at least 16 h at -80ºC then developed using Compact X4 X-ograph (Imaging 

systems). 

Nylon membranes containing either genomic DNA or RNA can be stripped and 

rehybridised up to 4 times. Hybridized probes can be stripped by immersing the membrane 

in boiling SDS solution (0.1%), repeated twice with a fresh batch of boiling solution. 

Membrane was then dried and prehybridised before hybridization with a second probe. 

2.8 RNA Interference in T. brucei 

RNA interference (RNAi) refers to the introduction of homologous double stranded RNA 

(dsRNA) to specifically target a gene product of interest, resulting in an apparent “null” 

phenotype caused by the ablation of mRNA (chapter 1.9). 
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Figure 2-1: RNAi vector p2T7Ti. 

 

The RNAi vector (Figure 2-1) used in this study (p2T7Ti) is based on the strategy of 

placing the sequence of interest between opposing T7 promoters (La Count et al., 2000). 

The vectors contain a rRNA spacer for integration into the rRNA locus of the parasite’s 

genome, a tetracycline inducible operator, as well as a drug resistance gene for selection 

(phleomycin). The vector must be used in specially derived T. brucei cell lines (29-13), 

which express bacteriophage T7 RNA polymerase and the tet repressor from bacteriophage 

λ. The T7 polymerase and the tetracycline repressor constructs were maintained in the 29-

13 cell line (La Count et al., 2000) by the addition of 15 µg/ml G418 and 25 µg/ml 

Hygromycin B to the medium. To induce the RNAi effect, tetracycline was added at a 

concentration of 100 ng/ml. Without tetracycline, the tet repressor expressed in the cells 

binds to the tet operator to inhibit transcription from the integrated construct. With the 

addition of tetracycline, the repressor is bound and its action prevents binding to the 

operator allowing transcription to occur. 

2.9 Plasmid Construction 

For the RNAi constructs, gene fragments of around 400-600 bp in size were amplified by 

PCR of gDNA using specific primers containing appropriate restriction enzyme linkers. 

Isolated, purified PCR products were cloned firstly into the pGEM-T vector following a 

cloning strategy as previously described. Following digestion and isolation from the 

pGEM-T vector, the PCR generated fragments were cloned into the appropriate RNAi 

vector, transfected into competent E. coli bacteria and positive transformed colonies grown 

up in large quantities. Plasmid DNA was extracted ready for transfection into the parasite. 
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2.10  Transfection of Trypanosomes 

For stable transfection of the procyclic host strain 29-13 via integration into an rDNA 

spacer region, the RNAi constructs were linearised by NotI digestion (Wirtz, 1995). The 

digestion of plasmid DNA was carried out in a volume of 40 µl using 1 unit of the enzyme, 

4 µl of 10X buffer and 10 µg of plasmid DNA and incubated at 37°C for two hours. After 

the addition of 1 unit of the enzyme, the reaction was re-incubated overnight, with the final 

digest checked by agarose gel electrophoresis. 

The linearised DNA plasmid was sterilized, by ethanol precipitation after an inactivation of 

the enzyme at 65°C for 20 minutes, then air dried in a sterile hood and resuspended in 20 

µl of sterile water. Agarose gel electrophoresis was used to assess proper linearization of 

the vector. 

For the transfection, PCF 29-13 cells were grown to mid-log phase (5 x 106 cells/ml). 5 x 

107 cells were collected by centrifugation at 1,500g for 10 min at room temperature, 

washed twice in 10 ml of ZPFM buffer (Appendix 8.11) and then resuspended in 0.5 ml of 

the buffer. To minimise the possibility of degradation, linearised plasmid DNA was added 

to the cells just before electroporation. Cells were electroporated by using a Biorad Gene 

Pulser set at 1.4 kV and 25 µF in 0.4-cm-gap cuvettes using two pulses delivered 10 

seconds apart. Immediately following transfection, cells were transferred into 10 ml of 

fresh pre-warmed SDM79 medium with 10% heat inactivated foetal calf serum 

supplemented with neomycin, hygromycin. Drug selection was started after overnight 

recovery to allow the build up of resistant proteins. 

After one day the 10 ml culture of cells was split into the top 6 wells of a 24-well 

microtitre plate, and diluted down stepwise by doubling dilution. Drug resistant cells were 

selected between 7 to 14 days and then cloned by limiting dilution in 96-well plates. 

2.11  Analysis of Growth Rates 

Growth rate analysis was also used to assess the effect of trypanocidal drugs on BSF 

trypanosomes, growth of RNAi cell lines upon tetracycline induction, and the effect of 

different carbon sources for growth of PCF trypanosomes. PCF cultures were commonly 

initiated at a starting density of 5 x 105 cells/ml. For RNAi cell lines growth was 

determined in the presence and absence of tetracycline. Cells were grown in 24 well plates, 

using a total volume of 1 ml of SDM79 medium, CM or SDM80 medium (Appendix 8.2) 
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supplemented with proline or glucose individually at 10 mM (other supplements were 

added at concentration specified in the results section). 

In general, master cultures were propagated in SDM79 (strain 427) or CM (strain 927). 

Differing medium conditions employed a general strategy of centrifugation of aliquots of 

the master cultures (1,250 rcf for 10 mins) and resuspending cells to the desired cell 

density. Experimental counts involving SDM80 based medium (with or without 

supplementation) involved an overnight recovery in SDM80. 

BSF cultures were typically started at a density of 2 x 104 cells/ml, in HMI-9 medium in 

the presence and absence of drug. Parasite numbers were measured by counting with an 

improved Neubauer haemocytometer (Weber Scientific). 

2.12  Radiolabeled Uptake Assays 

Parasites were harvested during the mid-log phase of growth, at indicated times post-

induction, by centrifugation at 1,250 rcf (2,500 rpm) for 10 minutes and washed three 

times with assay buffer (CBSS or PBS; Appendix 8.3, 8.12) by centrifugation at 1,250 rpm 

at 4ºC. Parasites were resuspended in assay buffer at the density of 2 x 108 cells/ml and 

kept on ice, and brought up to room temperature when the experiment was about to 

proceed. 

Uptake of radiolabelled compounds was determined using a derivation of the rapid oil/stop 

spin protocol, as previously described (Carter & Fairlamb, 1993). Transport was initiated 

with 100 µl of cells being mixed with 100 µl assay buffer, containing radiolabelled 

compounds (Amersham), at a specific concentration of (see relevant results section) plus or 

minus other test compounds, at the concentrations specified in the Results sections. Uptake 

was left to proceed over time points specified in the results section. 

To separate trypanosome cells from radiolabelled amino acid solution, oil was used (1-

Bromodo-decane, density: 1.066 gcm-3). The buffer was layered over a 90 µl cushion of 

oil. The oil’s density, upon centrifugation, separates the trypanosome cells from the 

radioactive medium containing labelled amino acid. The tube was flash frozen in liquid 

nitrogen, and the pellet was separated from the remnants of the tube with a tube cutter, and 

lysed in 200 µl SDS (2%) and mixed with 3 ml scintillation fluid (Ecoscint A, National 

Diagnostics) and incorporated activity counted after 24 hrs (to avoid luminescence) using a 

liquid scintillation counter (Perkin Elmer, liquid scintillation & luminescence counter, 
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1450 Microbeta). All experiments (at each time point for each substrate) were carried out, 

at least, in duplicate, and three times independently. 

Non-transported radiolabeled compounds, associated with cells or in interstitial spaces, 

were measured by performing control uptake determinations on ice (by commencing the 

reaction at a zero time point using cells, and buffer kept on ice to ensure, essentially, no 

uptake).  

2.13  Metabolomic Profiling 

Metabolomics requires special approaches for sample preparation, separation, and mass 

spectrometric analysis (Dettmer et al., 2007). Rapid quenching of metabolism with hot 

ethanol has proven to be an effective method of identifying metabolites (D. Wildridge, 

personal communication). It is necessary to also analyse culture medium without cells in 

order to generate spectra of medium associated metabolites to subtract from the metabolic 

profile. Sample preparation involves bringing the large quantity of cells grown into a 

format that is compatible with the analytical technique used, while removing components 

(serum proteins) that will interfere with the analysis (Dettmer et al., 2007; M Kamleh, 

personal communication). The procedure includes a pre-concentration step to achieve the 

detection limits required. The large volume of cells grown are pelleted by centrifugation at 

1,250 rpm at 4ºC and resuspended at a concentration of 2 x 108 cells/ml in serum-free 

medium and incubated at room temperature for 30 mins. Cells were separated from 

medium by spinning down at 6,000 rpm for 5 mins at 4ºC. 0.75 ml of 80% EtOH/20 mM 

HEPES (pH 7) at 80ºC was quickly added to separated medium and cell pellet, cooled on 

ice for 5 mins, vortexed, and then the supernatant recovered by centrifugation at 13,000 

rpm for 5 mins. Recovered supernatant was frozen in liquid nitrogen and stored at -80ºC 

for further analysis. 

Samples were processed using an Orbitrap Mass Spectrometer (Kamleh M & Watson D, 

University of Strathclyde). Metabolites were separated on a ZIC-HILIC (Sequant) 

chromatographic column over a period of 55 minutes by eluting 10 µl of sample with 80% 

Acetonitrile/20% water (0.1% formic acid), gradually increasing the concentration of the 

aqueous component to 60%, and then returning to 20%. The Orbitrap mass spectrometry, 

employed here, is not strictly quantitative (in the absence of an authenticated standard). 

However, the data generated is quantitative in a relative sense. The increase or decrease in 

size of a given peak is related to the changes in abundance of that metabolite across 

conditions. The exact masses derived from the Orbitrap mass spectrum are assigned 
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putative formulae using an algorithm that sums all possible combinations of the elements 

C, H, O, P, N, S. Although for a given mass there may be many possible elemental 

combinations, in practice many of these can be eliminated as improbable. 

2.14  Bioinformatic Analyses 

The data was analysed using the GraFit 5.0 data analysis software (Erithacus). Kinetic 

constants were determined by non-linear regression analysis using the Michaelis-Menten 

equation. Vector NTI was used to analyse DNA and protein sequences. Sequence 

alignments were studied using Clustal W (www.ebi.ac.uk). Clustal W is a general purpose 

multiple sequence alignment program for DNA or proteins, which calculates the best 

match for the selected sequences, and lines them up so that the identities, similarities and 

differences can be seen, and apparent evolutionary relationships can be seen via viewing 

Cladograms or Phylograms. Prediction of transmembrane domains within amino acid 

sequences was done by TMpred (www.ch.embnet.org). The TMpred program makes 

predictions on membrane-spanning regions and their orientation. The following web 

resources were used to analyse nucleic acid and amino acid sequences. Metabolomic data 

was analysed using the Cytoscape software (chapter 5). 

Databases: 

TIGR database: www.tigr.org 

NCBI database: www.ncbi.nlm.nih.gov 

GeneDB: www.genedb.org 

KEGG: www.genome.jp/kegg 
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3.1 Introduction 

3.1.1 Amino Acid Usage in Trypanosomes 

The completion of the T. brucei genome sequence (Berriman et al., 2005) highlighted 

several interesting characteristics of trypanosome amino acid metabolism. It revealed that 

most of the enzymes of the classical pathways for aromatic amino acid oxidation are 

missing. Conversion of phenylalanine to tyrosine does not occur in T. brucei, due to the 

fact that it does not have the enzyme phenylalanine-4-hydroxylase. All trypanosome 

species have genes for transamination and reduction to the corresponding aromatic lactate 

derivative. Branched chain amino acids can be converted to acetyl-CoA derivatives within 

the mitochondria. In T. brucei threonine is apparently not oxidised via the 2-oxobutyrate 

pathway, instead being degraded to acetyl-CoA and glycine by a mitochondrial specific 

threonine dehydrogenase. Catabolism of histidine is absent in T. brucei and a functional 

urea cycle is missing across the trypanosomes. 

In spite of the extrapolation possible from genome analysis, little is known about amino 

acid usage and consumption in BSF trypanosomes. Cysteine is an essential amino acid for 

in vitro cultures (Duszenko et al., 1992). The enzyme L-threonine 3-dehydrogenase is 

important in metabolising threonine. L-threonine metabolism takes place in the 

mitochondrion producing glycine and acetyl CoA. BSF trypanosomes, however, lack a 

complete functional mitochondrion, and nothing is known so far about the subcellular 

localization of the threonine metabolism in this life form. Recently, Nano LC-MS/MS 

proteomic analysis has revealed the presence of an L-threonine 3-dehydrogenase 

(Tb927.6.2790) enzyme in the glycosome of BSF trypanosomes (Colasante et al., 2006), 

suggesting that BSF trypanosomes do metabolise threonine. However, the authors were 

unable to postulate a reason why this enzyme is localised in the glycosome of the BSF 

trypanosome. 

One important use of amino acids is in the regulation of cell osmolarity. Osmoregulation is 

the active regulation of the osmotic pressure of fluids to maintain the homeostasis of water 

content, which, in trypanosomes is closely linked to amino acid accumulation and release. 

The mechanics of osmoregulation has been more closely studied in Leishmania. 

Accumulated amino acids provide the cell with an osmotic reservoir, which is readily 

utilised for osmoregulation. When Leishmania promastigotes are exposed to a sudden 

decrease in osmolality, they initially swell but subsequently undergo shrinkage to 

compensate (Blum et al., 1999). This regulatory volume decrease (RVD) response 
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mechanism involves anionic amino acid channels (HAAC – hypotonic-activated amino 

acid anion channel), which allow neutral and acidic amino acids to be released from the 

cells. The HAAC system has been likened to volume activated anion channels at work in 

mammalian cells that mediate the efflux of small organic osmolytes. 

In a hypotonic environment, osmosis causes water to flow into the cell, leading to swollen 

cell morphology. The release of amino acids by Leishmania promastigotes has been shown 

to be proportional to the osmotic stress placed on the cell (Blum et al., 1999). That is to 

say, that the proportionality was independent of ionic strength and proportional to the 

imposed osmotic gradient. Alanine, proline and glutamate (among others) are the principal 

amino acids implicated in osmoregulation in Leishmania. 

Other cell species use the dissipation of potassium and chloride ions (linked to water 

release) for correcting volume changes (Vieira et al., 1996). The use of osmotic reservoirs 

of organic solutes means adaptive regulation of volume changes. Leishmania 

promastigotes swell in hypotonic media but recover their resting shape and volume within 

15–20 mins. In T. brucei swelling of cells by decreasing the osmotic strength of the 

extracellular medium has been used for membrane permeability experiments and as a 

method for incorporating non-penetrating (non-transported) low molecular weight 

molecules into cells (Voorheis et al., 1980). 

3.1.2 Genes of the Amino Acid Transporter Family 

Large amino acid transporter gene families have been identified from the tritryp genome 

sequences (Berriman et al., 2005; Jackson, 2007). Across the 11 megabase chromosome of 

the African trypanosome, 6 chromosomes contain repetoires of amino acid transporters. 

Chromosome 8 of the T. brucei genome is rich in amino acid transporter genes and two 

transporter islands were located – one containing Tb927.8.4700 (AATP6, AAT5) and the 

other containing Tb927.8.7610 (AATP1, AAT7), Tb927.8.7600 (AATP2, AAT7) and 

Tb927.8.7680 (AATP4, AAT7) in a tandem array (Figure 3-1). AATP6 and AATP1 were 

chosen for knock-down functionality investigations. At the same time, a candidate amino 

acid transporter that showed the most sequence divergence within the family was chosen 

(Figure 3-2). 
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Figure 3-1: Amino Acid Transporter location (TbAATP6 and TbAATP1). 

All 11 megabase chromosomes of the T. brucei genome, showing relative amino acid 
transporter densities (A). Chromosomal location of two identified amino acid transporter 
islands along chromosome 8. Gene arrays of individual transporter islands (B), showing 
TbAATP6 five gene array (red box) and the downstream array containing TbAATP1 
(AAT7), TbAATP2 (AAT7) and TbAATP4 (AAT7). 
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Figure 3-2: Amino Acid Transporter location (TbAATP12). 

All 11 megabase chromosomes of the T. brucei genome, showing relative amino acid 
transporter densities (A). Chromosomal location of TbAATP12 (AAT13) along 
chromosome 10 (B). 

 

Of the three gene groups selected AATP1 has no homeologs in Leishmania or T. cruzi 

genomes, whereas AATP12 is present in all three species and an AATP6 homolog is only 

found in T. cruzi (Jackson, 2007). In general, TbAATP1 shows a ≥95% similarity within 

the group, TbAATP2 shows a ≥85% similarity within the group, TbAATP4 genes are 99% 

similar to one another, and TbAATP6 genes show a ≥98% similarity within the group. 

TbAATP1 is most closely related to TbAATP2 (>70%) and least to TbAATP6 (~40%). It 

was hoped that these investigations would provide information into the function and 

regulation of closely related, co-located transporters. Genetic modification of 

trypanosomes (removal of transporter genes via gene knock out or knock down of 

transcripts by RNAi-based systems) should help to clarify the role of individual 

transporters to net measured uptake of amino acids in these cells. As well as evaluating the 

function of T. brucei AATP genes. 

Previously, Dr. I. Accoceberry amplified segments of the T. brucei TbAATP1 gene, from 

T. brucei strain 427 genomic DNA using the following primers: 
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5’-ATATGGATCCAACATCGGATCAACTACCATTG-3’, sense from position 201 to 

223 of the TbAATP1 coding region, including a BamHI site (underlined). 

5’-ACATAAGCTTACCAAAGAAGGCTGTCAGTGCA-3’antisense complementary to 

positions from 915 to 936, including a HindIII site (underlined), for amplification of 735 

bp (N terminal region). 

The construct carrying a 606 bp fragment of TbAATP1 gene was cloned into the p2T7Ti 

vector (LaCount et al., 2000) for use in RNAi experiments. Two cloned lines of PCF 

trypanosomes generated for RNAi-based experiments were selected by Dr. I Accoceberry 

– the lines were named IC8 and 4E8. Preliminary experiments indicated that the TbAATP1 

transporter is a carrier of small, uncharged amino acids with specificity for L-serine, L-

threonine, L-alanine, glycine, L-cysteine and L-asparagine. Here, I set out to confirm L-

threonine uptake via TbAATP1 as well as search for a functional role of this newly 

characterised amino acid transporter. 

TbAATP6 is one of the three groups of amino acid transporter genes upregulated in 

procyclic forms (Tb927.4.4730, Tb927.8.4700, and Tb927.4.3990) (Brems et al., 2004). In 

all, RNAs from BSF and PCF trypanosomes were used as templates for the generation of 

fluorescent cDNA probes. The resulting probes were hybridised to the generated genomic 

arrays, revealing differentially regulated genes. AATP6 was chosen for knock-down 

functionality investigations. 

TbAATP12 was chosen under the basis of it being an ‘orphan’ (one that bears the least 

similarity to any of its neighbours). This ‘orphan’ amino acid transporter (Figure 3-2), 

located on chromosome 10, was termed TbAATP12. TbAATP12 shows only a 15% 

homology to the other amino acid transporter along the chromosome (Tb10.6k15.0450, 

AAT14) and a 36% homology to its closest related amino acid transporter (Tb927.4.4860, 

AAT4). 

Genetic modification of trypanosomes (removal of genes via knock-out or knock-down of 

transcripts) can help identify the roles of amino acid transporter genes in trypanosomes. I 

report here the use of RNAi to evaluate the function of candidate amino acid transporter 

genes from T. brucei. 



Charles E. Ebikeme, 2007   Chapter 3, 67 

3.2 Results 

3.2.1 Identification of Genes 

The GeneDB Trypanosoma brucei database was screened using the name “amino acid 

transporter.” From the database 46 genes with the molecular function, biological process 

and cellular component corresponding to amino acid transport were revealed (Table 2). 

The GeneDB annotations of amino acid transporter gene products are based on inferred 

electronic annotation (annotations based on "hits" in sequence similarity searches), and 

inferred from sequence or structural similarity to known amino acid transporters. 

 

Figure 3-3: Dendogram of aligned AATP genes. 

DNA sequence alignment of all 46 putative amino acid transporter genes as annotated by 
the T. brucei genome database. 

 

All 46 genes were aligned using Clustal W and grouped based on homology, as a guide to 

the level of relationship exhibited by all genes, with a view to later functional expression 

experiments to find a phenotype. From the alignments, close clustering of gene groups 
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emerged (Figure 3-3). Closely related genes, showing a sequence identity greater than 75% 

were classed into AATP groups and given new AATP numbers (Table 2). 

Parallel Classification 

Gene I.D. 
AATP# 

(from GeneDB) 
New AATP# 

(by alignments) 
AAT 

Locus 

Tb927.8.7610 AATP1  AAT7 

Tb927.8.7620 AATP1  AAT7 

Tb927.8.7630 AATP1  AAT7 

Tb927.8.7640 AATP1  AAT7 

Tb927.8.7660 AATP1  AAT7 

Tb927.8.7600  AATP2 AAT7 

Tb927.8.7650  AATP2 AAT7 

Tb927.8.7670  AATP2 AAT7 

Tb927.8.7690  AATP2 AAT7 

Tb927.8.7680  AATP4 AAT7 

Tb927.8.7700  AATP4 AAT7 

Tb927.4.4830  AATP3 AAT4 

Tb927.4.4850  AATP3 AAT4 

Tb927.4.4870  AATP3 AAT4 

Tb927.4.4840 AATP7  AAT4 

Tb927.4.4820 AATP10  AAT4 

Tb927.4.4860 AATP8  AAT4 

Tb927.4.3990  AATP13 AAT2 

Tb927.4.4000  AATP13 AAT2 

Tb927.4.4010  AATP13 AAT2 

Tb927.4.4020  AATP5 AAT2 

Tb927.8.8290 AATP5 AATP5 AAT10 

Tb927.8.8300  AATP9 AAT10 

Tb11.017590  AATP14 AAT17 

Tb11.01.7600  AATP14 AAT17 

Tb927.6.4660 CAATP ATP15 - 

Tb927.8.5450  AATP16 AAT6 

Tb09.211.1760  AATP17 AAT11 

Tb10.6k15.0450  AATP18 AAT14 

Tb927.8.7740  AATP11 AAT8 

Tb927.4.4730 AATP11 AATP11 AAT3 

Tb927.4.3930  AATP20 AAT1 

Tb927.8.4700 AATP6 AATP6 AAT5 

Tb927.8.4710  AATP6 AAT5 

Tb927.8.4720  AATP6 AAT5 

Tb927.8.4730  AATP6 AAT5 

Tb927.8.4740  AATP6 AAT5 

Tb927.8.4750  AATP6 AAT5 

Tb11.01.7500  AATP21 AAT16 

Tb11.01.7520  AATP21 AAT16 

Tb927.8.8220  AATP22 AAT9 

Tb927.8.8230  AATP22 AAT9 

Tb927.8.8240  AATP22 AAT9 

Tb927.8.8250  AATP22 AAT9 

Tb927.8.8260  AATP22 AAT9 

Tb10.70.1170   AAT12 

Tb11.02.4520   AAT15 

Tb10.70.0300  AATP12 AAT13 

Table 2: Amino acid transporter genes from T. brucei. 
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In general, closely located genes (along the same chromosome) show a high similarity to 

each other. For example, AATP1 (Tb927.8.7610/20/30/40/60) and AATP2 

(Tb927.8.7650/70/90) show a ≥70% identity to each other. The identity found among 

tandem copies (see later) indicates that duplication of these genes constitutes a recent 

dynamic event. It is possible that gene duplication resulted in close forms of co-located 

transporters and over time the slight divergence in sequence emerged. 

The advantage of indexing amino acid transporter genes by sequence homology rather than 

genomic position (Jackson, 2007) means individual genes with related function can be 

grouped, leading to easier and more efficient downstream functional genomic strategies. 

With the amount of genetic redundancy in amino acid transporter genes, it is hard to assess 

what level of homology is required between genes that would translate to function. 

3.2.2 TbAATP1 & Growth of PCF trypanosomes 

TbAATP1 RNAi cell lines were used to explore a role for this transporter system in 

growth. Cells of the 4E8 clone (previously derived by Dr Accoceberry) were grown in the 

presence and absence of tetracycline. Furthermore, loss of threonine was explored in 

differing medium conditions. When D-glucose is not the main carbon source PCF 

trypanosomes have more reliance on proline for growth (Lamour et al., 2005). It is 

possible that other amino acids become more essential for growth in the absence of 

glucose. 
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Figure 3-4: Growth of TbAATP1 4E8 RNAi cell lines. 

Tetracycline induced an uninduced, grown in SDM80 (panel A), SDM80 plus 10 mM D-
glucose (panel B), SDM80 plus 10 mM L-proline (panel C), and SDM79 (panel D). 
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Figure 3-5: Growth of PCF trypanosomes (strain 427) in threonine deficient medium. 

SDM80 deficient of L-threonine supplemented with 10 mM threonine and 10 mM proline 
and 10 mM glucose. 

 

It seems apparent here that, for the ∆TbAATP1-i cell line, there is no significant difference 

in growth when cells are utilising differing carbon sources. However, with RNAi knock-

down, total protein loss of function is seldom attained. With this in mind I wanted to test 

threonine’s contribution to cell growth by using a more robust control. Wild type PCF 

trypanosomes were grown in threonine deficient medium to ascertain if PCF trypanosomes 

were capable of growing without the amino acid. It was found that there is no growth 

defect seen when growing wild type PCF trypanosomes in L-threonine deficient medium 

with L-proline or D-glucose as the primary carbon source. Cells grown in L-threonine 
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deficient medium showed no growth disadvantage over controls, even in the absence of 

glucose. Growth during mid-log phase of RNAi cell lines was explored by systematic 

passaging of cells.  
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Figure 3-6: Growth counts of TbAATP1 4E8 RNAi cell lines. 

Induced and uninduced cell lines (SDM79). 

 

Induced cells showed stunted growth over time (after the first passage). In comparison with 

non-induced cell lines, they fail to reach comparable numbers. With RNAi non-

responsiveness to tetracycline can occur after prolonged tetracycline exposure (La Count, 

personal communication). With the growth defect seen (Figure 3-6) it was important to 

determine TbAATP1 transporter activity through measuring threonine uptake. 



Charles E. Ebikeme, 2007   Chapter 3, 72 

Day

0 1 2 3 4 5 5 6 7 8 9 10 10

%
 U

p
ta

k
e

20

40

60

80

100

thr uptake (+tet)

C
e

ll 
N

u
m

b
e

rs
 (

p
e

r 
m

l)

510

610

710

+ tet

- tet

thr uptake (-tet)

 

Figure 3-7: Growth and measure of threonine uptake. 

Tetracycline induced and uninduced TbAATP1 4E8 RNAi cell lines (this result represents 
data from 3 similar repeats). 

 

By day 5, threonine uptake shows a ~70% reduction and remained reduced by day 10, 

however, only at ~40%. It is possible that it is the initial loss of transporter activity that 

results in the stunted growth. Although, a role for threonine in growth has been ruled out, a 

role for TbAATP1 in growth has not been ruled out. It is possible that the cumulative 

reduction of six amino acids (threonine, cysteine, glycine, serine, asparagine, and alanine) 

is what leads to the growth defect seen, but the effect is time dependent. Trypanosomes 

contain high intracellular pools of amino acids which they utilise for cellular processes 

(such as osmoregulation). It is possible that with TbAATP1 not-functioning, the cells are 

able to use their intracellular pools to compensate. However, once the pool is exhausted, 

defective growth is seen. 

L-threonine’s role in acetate formation and downstream lipid metabolism is a potential 

avenue that needs further investigation. L-threonine has been proposed as a major supply 

of acetyl-CoA for fatty acid biosynthesis (Cross et al., 1975). Investigations into the 

changes in the lipid profile of knock-down cell lines are ongoing (Dr Terry Smith, 

University of Dundee). By diminishing threonine uptake the cells might end up altering 

their lipid profiles by shifting dependency on synthesised versus acquired fatty acids. 
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3.2.3 L-threonine Transport in T. brucei 

Time dependence of L-threonine uptake was studied in tetracycline induced and uninduced 

∆TbAATP1-i cells (96 hour induction); by incubating cells for different time periods in 

CBSS buffer (Appendix 8.3) containing 10 µM [3H] L-threonine. 
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Figure 3-8: Threonine uptake. 

Uptake of 10 µM L-[3H] Threonine in TbAATP1 4E8 RNAi cell lines (plus and minus tet 
induction) over a 2 minute time period (n=3, Error bars = ±SEM). 

 

Measured internalised threonine is significantly reduced in induced ∆TbAATP1-i cell 

lines, showing a 60-70% reduction in uptake over the 2 min incubation period. Reduction 

of threonine uptake is never total probably due to the fact that RNAi knock-down is never 

total. It was previously shown that uptake of radiolabeled serine was inhibited by excess of 

unlabelled serine, L-threonine, L-alanine, glycine, L-cysteine, and L-asparagine 

(Accoceberry, unpublished). Therefore, TbAATP1 substrate specificity was further 

examined by measuring uptake of radiolabelled L-threonine (at 10 µM) in the presence of 

10 mM of each of the 20 non-radiolabelled amino acids (Figure 3-9). 
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Figure 3-9: Threonine inhibition. 

Inhibition of L-[3H] Threonine uptake. Uptake in PCF trypanosomes of 10 µM threonine in 
the presence of all 20 amino acids at a concentration of 10 mM. Uptake shown as a 
percentage of control with no inhibitor (L-Tyrosine is not soluble at a concentration of 10 
mM under the conditions required for this experiment. Consequently inhibition of uptake 
was not determined in the presence of tyrosine) (n=4, Error bars = ±SEM). 

 

Results represent the percentage of L-threonine uptake over a time period of 30 sec against 

a control containing only L-[3H] threonine. All amino acids show some degree of 

inhibition but maximal inhibition of uptake of radiolabelled L-threonine is seen in the 

presence of cold L-serine, L-threonine, glycine, L-cysteine, L-alanine and L-asparagine. 

Biochemically, this suggests a common route of entry for these six amino acids. 

I wanted to ascertain the order of preference of substrate for TbAATP1. I measured uptake 

of radiolabeled serine in the presence of unlabelled serine and threonine (up to 1 mM) to 

find out which inhibited to a greater degree. 
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Figure 3-10: Serine inhibition. 

Uptake of 10 µM L-[3H] Serine in the presence of increasing concentrations of cold serine 
and threonine (no inhibitor, 10 µM, 50 µM, 100 µM, 500 µM, and 1 mM) (n=1). 

 

Inhibition gave IC50 values in the micro molar range, with serine giving an IC50 value of 

147.1 µM ± 82.3 and threonine giving an IC50 value of 26.7 µM ± 1.5. Inhibition of 

radiolabeled serine is more complete and to a greater degree in the presence of threonine. 

This suggests that TbAATP1 has a higher affinity for threonine than it does for serine. 

In order to ascertain affinities for each substrate that uses the threonine-specific transporter 

system a more detailed inhibition assay was performed. L-threonine was used as the 

primary radiolabel due to the fact that it was the most specific for this transporter system 

(uptake of cold L-threonine inhibited radiolabelled L-serine by a greater degree at the same 

concentration). Uptake of radiolabelled L-threonine (10 µM), in the presence of 0-10 mM 

of each of the inhibiting amino acids, was studied using a single 30 sec time point. 



Charles E. Ebikeme, 2007   Chapter 3, 76 

[Inhibitor] (mM)

10-3 10-2 10-1 1 101

%
 U

p
ta

k
e

0

20

40

60

80

100 Thr

[Inhibitor] (mM)

10-3 10-2 10-1 1 101

%
 U

p
ta

k
e

0

20

40

60

80

100

120

140

Ser

[Inhibitor] (mM)

10-3 10-2 10-1 1 101

%
 U

p
ta

k
e

0

20

40

60

80

100 Asn

[Inhibitor] (mM)

10-3 10-2 10-1 1 101

%
 U

p
ta

k
e

0

20

40

60

80

100

120

140

160 Ala

[Inhibitor] (mM)

10-3 10-2 10-1 1 101

%
 U

p
ta

k
e

0

20

40

60

80

100

120

Gly

[Inhibitor] (mM)

10-3 10-2 10-1 1 101

%
 U

p
ta

k
e

0

20

40

60

80

100 Cys

A B

C D

E F

 

Figure 3-11: Threonine inhibition by AATP1 specific amino acids. 

Inhibition of 10 µM L-[3H] Threonine using cold threonine (A), serine (B), asparagine (C), 
alanine (D), glycine (E), and cysteine (F) over a range of concentrations (no inhibitor, 1 
µM, 10 µM, 50 µM, 100 µM, 500 µM, 1 mM, 2 mM and 4 mM). Uptake shown as a 
percentage of control with no inhibitor (n=3, Error bars = ±SEM). 

 

Using a range of concentrations can distinguish between ‘weak’ and ‘partial’ inhibition. In 

each case these amino acids gave a progressive dose-dependent inhibition. Suggesting the 

order of affinity for AATP1 being L-threonine>>L-serine>>Glycine>>L-alanine>>L-

cysteine>>L-asparagine. 

 IC50 SEM 

Threonine 27.9 µM 5.3 

Serine 197.3 µM 91.9 

Glycine 296.2 µM 71.4 

Cysteine 5.74 mM 4.91 

Asparagine 9.57 mM 5.35 

Alanine 1.17 mM 0.335 

Table 3: Calculated IC50 for the TbAATP1 specific amino acids. 
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L-threonine, L-serine and glycine have the highest affinities for TbAATP1, showing IC50 

values in the micro molar range. The calculated IC50 values refer to the amount of inhibitor 

required to inhibit uptake of a particular amino acid by 50%. 

Kinetic parameters for the mode of threonine uptake were determined. Measuring initial 

velocity of L-threonine transport against substrate concentration (starting at 200 µM 

threonine) for the TbAATP1 cell line grown with and without tetracycline revealed a 

typically hyperbolic curve, and Vmax and Km values were calculated by non-linear 

regression. 
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Figure 3-12: Kinetics of threonine uptake in uninduced TbAATP1 RNAi cell lines. 

Uptake of L-[3H] Threonine over a range of concentrations at a single 30 sec time point 
(n=3). 
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Figure 3-13: Kinetics of threonine uptake in tetracycline induced TbAATP1 RNAi cell lines. 

Uptake of L-[3H] Threonine over a range of concentrations at a single 30 sec time point 
(n=3). 

 

The apparent kinetic behaviour of L-threonine uptake is comparable to the inhibition 

constant (IC50) previously found. Inhibition of uptake of radiolabelled L-threonine by cold 

L-threonine over a range of concentrations gave an inhibition constant of 27.96 µM. Here, 

kinetic constants were calculated by non-linear regression using the Michelis-Menten 

equation. For the uninduced cell line a Km value of 73.925 µM and a Vmax of 35.3 

picomols/sec/107 cells were calculated, whereas for the induced cell line a Km value of 

86.967 µM and a Vmax of 14.8 picomols/sec/107 cells were calculated. 

3.2.4 Osmoregulation 

When L. donovani are challenged with an acute decrease in osmolarity, the parasites 

rapidly release amino acids of which Ala, the major osmolyte in cells, accounted for half of 

the total amino acid loss (Darling & Blum, 1990). Osmoregulation in PCF trypanosomes 

was tested here in the context of the RNAi cell line TbAATP1. TbAATP1 is a transporter 

of small, uncharged neutral amino acids (alanine, glycine, cysteine, serine, threonine and 

asparagine). The proposition is that with transporter availability cells will be unable to 

regulate cell volume and shape under hypotonic stress. All observations for this cell line 

were done at 72 hrs post tetracycline induction. 
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Three different hypotonic conditions was used, simply differing in water content (0, 25% 

and 50% water). Cells were monitored by microscopy after a 30 min time period to judge 

the level of swelling that initially occurred and the change in cell shape. 

Overrall, there was no difference in the amount of general swelling when comparing 

induced and uninduced cell lines. It is entirely possible that the length of time needed for 

TbAATP1 induced cells to recover resting shape within hypotonic media is altered. Hence, 

no difference in swell shape is seen between the two cell lines. This could be due to the 

fact that although there is a common transport route for these amino acids, other general 

amino acid transport mechanisms could contribute. As well as the fact that release of 

alanine to compensate for swelling could easily be substituted with another amino acid 

pool. Although, the TbAATP1 transporter has here not been shown to be implicated in 

osmoregulation, other systems could be at play. 

3.2.5 Cloning of TbAATP6 & TbAATP12 RNAi Constructs 

In this study I tested the ability of the p2T7Ti vector to generate, by RNAi knockdown, 

mutant phenotypes for TbAATP12 and the TbAATP6 set of genes not previously 

characterised in T. brucei. I attempted to inhibit expression of the T. brucei TbAATP6 and 

TbAATP12 genes in PCF trypanosomes. A previously developed T. brucei cell line 29-13, 

engineered to express T7 RNA polymerase and the tetracycline repressor, was used. A 600 

bp fragment from the TbAATP6 open reading frame was inserted between the two 

opposing T7 promoters of the p2T7Ti vector that are both regulated by tetracycline 

repressors. A 554 bp fragment and a 620 bp fragment from the TbAATP12 open reading 

frame was inserted between the two opposing T7 promoters of the p2T7Ti vector that are 

both regulated by tetracycline repressors. 

A 3’end segment of the T. brucei “TbAATP6” gene was amplified from T. brucei strain 

427 genomic DNA using the following primers: 

5’- ATATGGATCCATTGTCAATCTTCATGTTTTC-3’, sense from position 980 to 1001 

of the TbAATP6 coding region, including a BamHI site (underlined), and 5’- 

ACATCTCGAGATTGAGGCAGCCGTACCAAAC-3’, antisense complementary to 

positions from 1559 to 1580, including a XhoI site (underlined), for amplification of 600 

bp (C terminal region) (Figure 3-14). 
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Figure 3-14: Ethidium bromide stained gel showing PCR amplification of a segment of 
TbAATP6. 
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Figure 3-15: Ethidium bromide stained gel showing excision of p2T7Ti ligated TbAATP6 
insert. 

 

5’end and 3’end segments of the T. brucei “TbAATP12” gene were amplified from T. 

brucei strain 427 genomic DNA using the following primers: 

5’- ATATGGATCCATGGTTGTGAATTCTGATGGG-3’, sense from position 1 to 21 of 

the TbAATP12 coding region, including a BamHI site (underlined), and 5’- 

ACATCTCGAGAAAAATGTTGTTAGGCGGACA-3’, antisense complementary to 

positions from 533 to 554, including a XhoI site (underlined), for amplification of 554 bp 

(N terminal region) (Figure 3-17). 
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5’- ATATGGATCCGGGATTTGGTATTTTTATCTT-3’, sense from position 740 to 761 

of the TbAATP12 coding region, including a BamHI site (underlined), and 5’- 

ACATCTCGAGATTGATAATCGCATAAATCGT-3’, antisense complementary to 

positions from 1518 to 1539, including a XhoI site (underlined), for amplification of 620 

bp (C terminal region) (Figure 3-16). 
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Figure 3-16: Ethidium bromide stained gel showing both fragments of TbAATP12 amplified 
by PCR. 
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Figure 3-17: Ethidium bromide stained gel showing excision of p2T7Ti ligated TbAATP12a 
insert. 

 

Transfection of the PCF cell line 29-13 with the RNAi constructs directed against 

TbAATP6 and TbAATP12 proved moderately efficient. The cells survived 14 day 

phleomycin selection (0.1 µg/ml) and were subsequently cloned out by limiting dilution. 
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However, for TbAATP6, viable cells grew very slowly initially even in the presence of up 

to 75% conditioned medium. 

3.2.6 Northern Blot Analysis 

The effectiveness of RNAi on mRNA levels and the correlation between the growth 

defects and mRNA levels was examined. RNA was extracted from clonal lines before and 

after induction with tetracycline. Total isolated RNA was then subjected to Northern 

analysis with a probe derived from the coding region of TbAATP6 and TbAATP12. 

 

Figure 3-18: Northern blot analysis of RNA from TbAATP6 RNAi cell lines. 

Northern blot was probed with a fragment from the TbAATP6 gene and a ß tubulin gene 
was used as a control. Lanes 1-4 indicate days post tet induction (T0, 0 hr; T1, 24 hr; T2, 
48 hr; T3, 72 hr). 

 

Northern analysis of RNA from ∆TbAATP6-i (Figure 3-18) shows that the target 

TbAATP6 mRNA was readily detectable in transfected cells in the absence of the inducer 

tetracycline (Lane 1: T0). However, analysis indicated that degradation of the TbAATP6 

mRNA was not efficient. At time points up to 72 hours no loss of mRNA was seen, with 

only a significant loss of mRNA after 24 hours (Lane 2: T1). This means that RNAi gene 

silencing of TbAATP6 is not operating in an efficient and inducible manner in this 

instance. RNAi is powerful tool for selective interference of gene expression in PCF but 

experiments presented here didn’t demonstrate its effectiveness. 
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Figure 3-19: Northern blot analysis of RNA from TbAATP12 RNAi cell lines. 

Northern blot was probed with a fragment from the TbAATP12 gene and a ß tubulin gene 
was used as a control. Lanes 1-4 indicate days post tet induction. 

 

Northern analysis shows that the target TbAATP12 mRNA was readily detectable in 

transfected cells in the absence of the inducer tetracycline and that degradation of the 

TbAATP12 mRNA was efficient, even after 24 hours post tetracycline induction (Figure 3-

19). 

3.2.7 Tetracycline Induction and Growth Curves 

The growth of clonal cells carrying the RNAi construct upon tetracycline induction was 

compared uninduced cells. Growth was determined in normal medium as well as in 

medium containing single carbon sources (SDM80 plus proline or glucose at 10 mM). In 

∆TbAAT6-i PCF clones, tetracycline induction caused a dramatic growth phenotype, not 

only in SDM79, but also in SDM80 supplemented with 10 mM L-proline. Growth of 

induced cell lines in SDM80 plus D-glucose (10 mM) showed no difference from 

uninduced cell lines. 
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Figure 3-20: Growth of TbAATP6 RNAi cell lines. 

Tetracycline induced and uninduced cell lines grown in SDM80 (panel A), SDM80 plus 10 
mM L-proline (panel B), SDM80 plus 10 mM D-glucose (panel C) and SDM79 medium 
(panel D) (this result represents data from 3 similar repeats). 
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Figure 3-21: Growth of TbAATP12 RNAi cell lines. 

Tetracycline induced and uninduced cell lines grown in SDM80 (panel A), SDM80 plus 10 
mM L-proline (panel B), SDM80 plus 10 mM D-glucose (panel C) and SDM79 medium 
(panel D) (this result represents data from 3 similar repeats). 
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For ∆TbAATP6-i, a decrease in the growth rate of induced culture in SDM79 medium was 

evident within 24 hours of tetracycline induction. The uninduced cells grew at much higher 

rate than the induced cells (Figure 3-20 D), exhibiting a reduced doubling time in normal 

medium and proline only medium. Microscopic inspection of the cells showed no major 

changes in cell morphology upon the addition of tetracycline. L-proline is the only amino 

acid that can serve as a carbon source (Lamour et al., 2005). It is possible that TbAATP6 

has a role in proline transport due to the fact that a reduction of growth upon tetracycline 

induction is associated with growing cells in proline only medium. However, with the 

northern blot analysis showing ineffective knock-down of the gene transcript, the 

significance of this is most likely be due to abarrent effects of the RNAi mechanism and 

not due to the TbAATP6 gene. 

In ∆TbAATP12-i PCF clones, tetracycline induction caused no significant growth 

phenotype. Growth of ∆TbAATP12-i induced cell lines in SDM80 plus D-glucose (10 

mM), SDM79, SDM80 plus L-proline (10 mM) showed no difference from uninduced cell 

lines. Moreover, microscopic inspection of the cells showed no major changes in cell 

morphology upon the addition of tetracycline. 

3.2.8 TbAATP6 Transporter Phenotype 

I wanted to test a possible transporter phenotype to see if TbAATP6 knock-down 

corresponds to reduced uptake of a particular amino acid. Since TbAATP6 showed a 

growth phenotype, particularly in proline only medium, I assessed TbAATP6 as a possible 

proline transporter. 
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Figure 3-22: Proline uptake in TbAATP6 RNAi cell lines. 

Uptake of 100 µM L-[3H] Proline in TbAATP6 RNAi cell lines (plus and minus tet 
induction) over a 1 hour time period (n=3, Error bars = ±SEM). 

 

TbAATP6 RNAi cell lines showed no reduced accumulation of proline over the one hour 

time period, suggesting that this transporter is not involved in proline uptake. However, in 

the absence of a working RNAi mechanism (as shown by northern blots) a phenotype for 

TbAATP6 cannot be postulated. 

3.3 Discussion 

Why the redundancy in amino acid transporter genes? It is possible that in addition to the 

fact that genes correspond to a given/particular structure-activity relationship, amino acid 

transporter genes could have evolved out of a particular need for a particular metabolic 

pathway. It is possible that important metabolites involved in the same pathway could be 

co-transported together, resulting in different transporters for different amino acid groups, 

of which the groups are not based on structural relationships. 

3.3.1 TbAATP1 

Previous studies involving the use of a number of amino acids to competitively inhibit the 

uptake of others have allowed the differentiation of several separate amino acid 

transporters (Voorheis, 1971). Four amino acid transport systems were defined; first 

neutral amino acid carrier (transporting glycine, alanine, serine and threonine), second 
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neutral amino acid carrier (transporting valine, leucine, proline and methionine), first acid 

amino acid carrier (transporting glutamate only), and the first basic amino acid carrier 

(transporting lysine only). However, it is now evident from the vast number of amino acid 

transport genes identified from the genome database as well as the biochemical 

characterisations of transport of certain amino acids that a more complex story is at play. 

Voorheis (1971) reported the existence of a neutral amino acid transport system in 

bloodstream form trypanosomes (questionable since no data was presented). Here I report, 

through RNAi, a similar transport system that exists in PCF trypanosomes. TbAATP1 

(AAT7) mediates the transport of alanine, threonine, serine, glycine, cysteine and 

asparagine. This genomic locus seems unique to T. brucei as no homeologs are found in 

Leishmania or T. cruzi. This suggests that only T. brucei has a transporter system unique 

for the amino acids transported by TbAATP1 (ser, gly, cys, ala, asn, thr). 

Acetate derived from threonine has a role as a precursor for lipid biosynthesis and 

inhibition of threonine metabolism via the enzyme aldehyde dehydrogenase showed a 

marked growth phenotype (Voorheis et al., 1975). Here, with TbAATP1, I show some 

indication to a growth phenotype when downregulation of this transporter system is in 

play. However, this growth phenotype has not been linked exclusively to reduced threonine 

uptake. 

The segment of TbAATP1 amplified for creation of the RNAi construct shows high 

sequence homology to the three unannotated genes flanking TbAATP1 (termed 

TbAATP2). TbAATP1 and TbAATP2 show >80% sequence identity (with 70% usually 

needed for knock down experiments). Therefore, it is a certainty that the RNAi phenotype 

is also as a result of TbAATP2 knock down. Most amino acid transporters have been 

biochemically characterised but few have been related to a specific genomic locus. Here, 

uptake of L-serine, glycine, L-cysteine, L-asparagine, L-alanine and L-threonine is 

specifically linked to the AAT7 genomic locus of T. brucei. This genomic locus seems to 

play a role in cell growth as seen by stunted growth of cell lines exposed to tetracycline for 

prolonged periods. However, this growth phenotype does not seem to be related to 

immediate transporter activity, yet seems more of a delayed effect of initial amino acid 

depletion. 

I have shown an order of affinity for the TbAATP1 transport system (L-threonine>>L-

serine>>Glycine>>L-alanine>>L-cysteine>>L-asparagine). Does the order of preference 

relate to downstream metabolic requirement? Only few studies into amino acid usage in 
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trypanosomes have been performed, and most focus on a few. Apart from use in protein 

synthesis the most biologically relevant of the TbAATP1 specific amino acids are L-

threonine and L-cysteine. Cysteine is an essential growth factor for bloodstream form 

trypanosomes and is involved in protein biosynthesis as well as in the production of 

glutathione and trypanothione (Duszenko et al., 1992). Dr I. Accoceberry has suggested at 

least one other route of entry for L-cysteine (unlabelled cysteine was unable to inhibit 

radiolabelled cysteine). 

L-threonine usage by African trypanosomes has previously been studied and been found to 

be a precursor for acetate (which feeds into lipid biosynthesis) in T. brucei (Cross et al., 

1975). There is cleavage of L-threonine to form glycine and acetate within the 

mitochondrial compartment. Preliminary examination of changes in medium amino acid 

levels during growth of Trypanosoma brucei revealed complete metabolisation of L-

threonine (Cross et al., 1975). BSF and PCF trypanosomes were reported previously to be 

able to catabolise L-threonine (Colasante et al., 2006). In PCF trypanosomes threonine 

metabolism has been shown to occur exclusively in the mitochondrion: here threonine is 

converted to acetyl-CoA and glycine by the enzymes L-threonine 3-dehydrogenase (EC 

1.1.1.103) and acetyl-CoA:glycine C-acetyltransferase (Opperdoes et al., 1981). 

Here I have shown no essentiality for L-threonine in PCF trypanosomes. Removal of 

threonine from the growth medium showed no disadvantage for growth of wild type cells 

whether proline or glucose was used as the primary carbon source. This suggests that the 

acetate units provided by acetyl-CoA from the catabolism of threonine can be compensated 

for by another source (pyruvate when glucose is metabolised and fatty acid metabolism 

when glucose is absent). It is also possible that the internal threonine pool can be 

supplemented by another source. Lack of threonine essentiality suggests that the growth 

defect of ∆TbAATP1-i cell lines is not as a result of threonine alone and most likely due to 

the other TbAATP1 specific amino acids, either individually or cumumulatively. Salvage 

of these six amino acids in trypanosomes occurs via transport processes as well as from 

side products of other metabolic processes with the exception of glycine and serine, of 

which biosynthesis does not seem to occur from another metabolic pathway (KEGG). The 

essentiality of all AATP1 specific amino acids (individually and in combination) will need 

to be investigated much in the same way threonine was investigated. 

The six amino acids specific for TbAATP1 give more insight into the structural specificity 

of the transporter. Asparagine is the only TbAATP1 specific amino acid with a hydrophilic 

side group and, consequently, is the least specific for TbAATP1. However, its side group is 
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small enough to be recognised by the transporter. Other amino acids with hydrophilic side 

groups contain a charged group or are too large to be recognised by the transporter. The 

rest of the TbAATP1 specific amino acids share common neutrality and a small side chain 

of two carbon units or less.  

There is a consistency shown among the uptake of currently characterised amino acids by 

their various systems. Modes of entry of amino acids have affinities in the micro molar 

range, reflecting the relative abundance of these substances the parasite encounters. Here I 

have determined the kinetic constants of threonine transport by ∆TbAATP1-i cell lines. A 

Km value of 73.925 µM and a Vmax of 21.18 nanomols/min/108 cells were calculated. L-

methionine transport in both PCF and BSF parasites were measured in the presence of 

various methionine concentrations (Hasne & Barrett, 2000). The kinetic constants were 

determined by non-linear regression analysis using the Michaelis–Menten equation. A Km 

value of 30.99 +/-7.6 µM and a Vmax of 16.29 +/- 0.01 nmol/min/108 cells were calculated. 

For uptake in bloodstream forms, a Km value of 32.89 +/-3.4 µM and a Vmax of 28.89 +/-

0.1 nmol/min/108 cells were calculated (Hasne & Barrett, 2000). Proline uptake in 

procyclic trypanosomes has been shown to be carrier mediated with an apparent Km of 21 

+/-2.9 µM and a Vmax of 7.0 nanomoles/min/108 cells. This level of uptake is modulated by 

the presence or absence of glucose in the growth media (Lamour et al., 2005). 

Cell survival is dependent on the ability of cells to maintain a chemically stable 

intracellular milieu (for optimal enzyme activity) and to regulate their volume. Cells 

exposed to a medium of reduced osmolarity swell initially, but subsequently undergo 

compensatory shrinkage by a regulatory volume decrease (RVD) response. Different types 

of osmolytes have been implicated in the RVD process, from amino acids such as alanine, 

glutamine, glycine, proline, and glutamate, to sugars (Viera et al., 1998). The ability of 

Leishmania to regulate its volume has been studied. When L. donovani are challenged with 

an acute decrease in osmolarity, the parasites rapidly release amino acids of which Ala, the 

major osmolytes in cells, accounted for half of the total amino acid loss (Darling & Blum, 

1990). 
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Figure 3-23: Volume regulation in trypanosomatid parasites under hypotonic shock (taken 
from Viera et al., 1998). 

AAs, amino acids (neutral and negatively charged); N, nucleus; RVD, regulatory volume 
decrease. 

 

Here, I have shown the TbAATP1 transporter system not to be implicated in 

osmoregulation. However, other systems could be at play. It is entirely possible that the 

length of time needed for ∆TbAATP1-i induced cells to recover resting shape within 

hypotonic media is altered. Hence, no difference in swell shape is seen between both cell 

lines. 

The kinetics of release of amino acids from the intracellular pool can be explored much in 

the way it has been previously (Voorheis & Martin, 1980). Cells previously incubated with 

a metabolically inert amino acid (2-amino [1-14C] isobutyric acid) were then exposed to 

varying osmotic strengths, with the release of radioactivity measured over time. 

The amino acid analogue glycine chloromethyl ketone (1-amino 3-chloropropan-2-one) 

has been shown to act as a specific irreversible inhibitor of the neutral amino acid transport 

system (Owen & Voorheis, 1975). Pre-incubation of cells with the analogue and then 

subjecting them to hypotonic stress would be a way to ascertain if this transport system is 

involved in osmoregulation. 
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3.3.2 TbAATP6 & TbAATP12 

The RNAi technique was used to study the physiological role of two other genes 

(TbAATP6 and TbAATP12) in T. brucei PCF trypanosomes. Elimination of transcripts in 

cell lines transfected with the P2T7Ti vector carrying a fragment of the AATP gene was 

evaluated by Northern blot analysis. With TbAATP6 significant degradation of transcript 

was not seen in tetracycline induced cell lines up to 72 hours post induction. With 

TbAATP12 loss of mRNA was seen as early as 24 hours post induction. Lack of an 

effective RNAi mechanism at work in ∆TbAATP6-i cell lines could be as a result of 

sequence similarity to a related AATP gene. Tb11.01.7500 and Tb11.01.7520 (AAT16 and 

AAT17) are the closest related AATP and show a ~50% sequence identity to TbAATP6. 

That identity is spread throughout the gene sequence and not limited to a particular part of 

the open reading frame. It is possible that the RNAi mechanism, in this case is not 

operating in a gene specific manner. The RNAi construct created for TbAATP6 takes a 

gene fragment from the C-terminal end of the protein (3’ end of the open reading frame). 

With RNAi sometimes C-terminal RNAi targeting is ineffective (Dr. Alibu, personal 

communication) and most of the time, N-terminal targeting works out better. Hence, for 

efficient targeting of TbAATP6, a gene fragment towards the N-terminal of the gene and 

one that will provide less crosstalk between related gene products is needed in the design 

of future RNAi experiments. 

The fact that ∆TbAATP6-i cell lines showed reduced growth in normal medium and 

proline only medium suggested a possible role for the transporter associated with proline 

metabolism. Proline uptake in tetracycline induced cell lines showed no significant 

difference from uninduced cell lines. However, this experiment was performed after 72 

hours tetracycline induction; a time shown by Northern analysis to have no significant 

degradation of mRNA transcript. It is possible that cross-reaction of the RNAi mechanism 

to another related gene results in stable down-regulation of that transcript. However, with 

no reduction in proline uptake we must assume that neither TbAATP6 nor a related similar 

AATP acts as a proline transporter. Another possibility exists; one that involves another 

amino acid or group of amino acids that are under regulation by glucose. Proline regulation 

by glucose availability has been shown (Lamour et al., 2005; chapter 4). Increased reliance 

of other amino acids in the absence of glucose is a possibility that has yet to be explored. It 

is important to note that any suggested phenotype is inadmissible in the absence of a 

working RNAi mechanism. 
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TbAATP12 RNAi cell lines showed no growth defect with tetracycline induction 

regardless of primary carbon source in the growth medium, ruling out a role for 

TbAATP12 in cell growth. A transport phenotype still remains to be determined for this 

cell line. Uptake assays using all 20 radiolabelled amino acids will need to be performed in 

order to ascertain if uptake of any amino acid is effected. 
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4 Proline Transport Regulation as a Result of a 

Metabolic Shift Induced by N-Acetyl D-Glucosamine 
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4.1 Introduction 

The T. brucei lifecycle is complex, and the parasite adapts to life in both its insect host 

(tsetse fly) and in the mammalian hosts. These distinct environments require the parasite to 

remodel its metabolism to thrive within each (Besteiro et al., 2005). In the D-glucose-rich 

environment of the mammalian bloodstream the parasite relies solely on D-glucose to 

produce energy. D-glucose can be metabolised by either the glycolytic pathway or the 

pentose phosphate pathway (Barrett, 1997). The first seven steps of glycolysis occur 

sequestered in the peroxisome-like organelle, the glycosome (Opperdoes & Borst, 1977; 

Michels et al., 2006). 

In PCF trypanosomes, the mitochondrion has traditionally been held to produce the major 

proportion of the cell’s ATP (Bochud-Allemann & Schneider, 2002). This is largely due to 

the use of alternative carbon sources like L-proline as the input for mitochondrial 

metabolism (Besteiro et al., 2005). ATP can be generated by oxidative phosphorylation 

(electron transport chain), or by substrate-level phosphorylation, with an unusual reaction 

catalysed by succinyl-CoA synthase, and coupled to acetate formation being key (Bochud-

Allemann & Schneider, 2002; van Hellemond et al., 1998; Rivière et al., 2005). Recently, 

the exact contribution of the Kreb’s cycle to energy generation has been looked at in detail 

(Van Weelden et al., 2003; Van Weelden et al., 2005), and it appears that in spite of most 

Kreb’s cycle enzymes being present, the flux of substrates through these enzymes does not 

occur in the classical sense. However, these studies – as with many related to procyclic 

metabolism – were performed on trypanosomes grown in D-glucose-rich medium. D-

glucose apparently represses L-proline metabolism in procyclic trypanosomes (Lamour et 

al., 2005; Evans & Brown, 1972). In these conditions the parasite appears capable of 

fulfilling energy needs without using the Kreb’s cycle or electron transport chain and by 

producing ATP primarily by substrate level phosphorylation (oxidative phosphorylation is 

not essential). 

In the mammalian host, trypanosomes divide as long slender bloodstream forms, covered 

by a dense coat of variant surface glycoproteins (VSG) (Cross, 1975; Roditi, 1996). When 

ingested by the fly in the blood meal, the short stumpy bloodstream forms which are cell-

cycle arrested and are pre-adapted to life within the tsetse fly (Roditi et al., 1989), 

differentiate into procyclic form trypanosomes that are able to colonise the midgut of the 

fly (Roditi et al., 1989). Parasite differentiation is accompanied by the replacement of the 

VSG coat by an invariant coat of EP or GPEET procyclins (Roditi et al., 1989; Roditi et 
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al., 1998). EP expression continues throughout the fly stage of the procyclic form whereas 

GPEET expression is downregulated in late procyclics (Vassella et al., 2000; Acosta-

Serrano et al., 2001). In culture, however, GPEET expression can be modulated by 

glycerol or D-glucose (Vassella et al., 2000). RNAi silencing of the first step of glycolysis, 

hexokinase, caused a dramatic switch from EP-procyclins to GPEET-procyclin expressed 

on the outer coat (Morris et al., 2002); suggesting that removal of D-glucose enhances 

GPEET-procyclin expression. Regulation of expression of EP- and GPEET-procyclin 

isoforms appears to be controlled by mitochondrial enzymes of the acetate:succinate CoA-

transferase (ASCT) cycle (Vassella et al., 2004). Silencing of the hexose transporter and 

the phosphofructokinase enzyme also upregulated GPEET-procyclin expression, indicating 

that a reduction in glycolytic flux correlates with EP to GPEET switch.  

L-proline metabolism too is modulated by D-glucose availability (Lamour et al., 2005). 

Whether one or more metabolites act to trigger such a switch is not known. For instance, it 

was proposed that D-glucose (or its analogue 2-DOG) alone was capable of inducing the 

repression of L-proline metabolism (Lamour et al., 2005), since the presence of the non-

metabolisable analogue (2-DOG) is sufficient to block growth of parasites using proline as 

an energy source. It is possible that 2-DOG affects cells in a way that is independent of a 

down-regulation of proline metabolism when glucose is absent. However, it is also 

possible that glucose and 2-DOG act allosterically to bring about proline down-regulation. 

In addition to profound differences between BSF and PCF trypanosomes in glucose 

metabolism, uptake of this carbohydrate also differs in BSF and PCF Trypanosoma brucei 

brucei. Different transporter isoforms make the major contribution to uptake. The 

Trypanosome Hexose Transporter 1 (THT1) is expressed in bloodstream forms at a level 

40 times that of THT2, while procyclic form trypanosomes express only the THT2 isoform 

(Bringaud et al., 1992; Barrett et al., 1995). The C2 substituents of D-glucose, D-

glucosamine (GlcN) and N-acetyl D-glucosamine (GlcNAc) have previously been shown 

to interact with the hexose transporter of bloodstream form trypanosomes (Eisenthal et al., 

1989). D-glucose and GlcN uptake has been shown. However, in the case of GlcNAc there 

was no apparent uptake in bloodstream forms (Azema et al., 2004) although an interaction 

with the hexose transporter was noted, since GlcNAc inhibits uptake of 2-DOG and GlcN. 

The ability of PCF to accumulate GlcNAc has not been studied. 

Establishment of trypanosome infection is as complicated in the fly as it is in the 

mammalian system. The parasite must establish itself as a dividing procyclic population 

before development can progress. Natural infection rates are low and attributed to many 
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environmental and intrinsic fly factors (Welburn & Maudlin, 1999; Dale & Welburn, 2001; 

Welburn et al., 1993). Like other insects, the tsetse fly has an effective innate immune 

system and several components, including midgut lectins, have been implicated in 

trypanosome killing, playing a role in determining vector susceptibility (Welburn et al., 

1989; Welburn & Maudlin, 1990). Lectins, a class of proteins that bind certain 

carbohydrates noncovalently, found in the midgut of Glossina morsitans (Ibrahim et al., 

1984) mediate the lysis of trypanosomes and at the same time have been postulated to 

provide the signal for the parasites to mature (Welburn & Maudlin, 1989).  The role of 

lectins in preventing trypanosome infection was inferred from enhanced infection rates 

after feeding the lectin-inhibitory amino sugars GlcN and GlcNAc. The amino sugars GlcN 

and GlcNAc have multiple effects in establishing parasite midgut infection. Both sugars 

occur naturally in the gut of some flies through the action of chitinase produced by the 

non-obligatory endosymbiont Sodalis glossinidius (Dale & Welburn, 2001). The sugars 

block lectin-mediated trypanosome killing as well as inhibiting trypsin activity (Osir et al., 

1993, Abubakar et al., 2006). This is proposed to underlie the increase in infection rates 

(Mihok et al., 1992). Recently, it was proposed that these sugars may have anti-oxidant 

function that aids in establishing infection (Macleod et al., 2007). 

It has been shown that GlcNAc also stimulated trypanosome growth in vivo in the fly gut 

and also in vitro in the absence of fly derived factors (Peacock et al., 2006). We have 

investigated the underlying basis for this effect. Given that bloodstream form 

trypanosomes do not show any apparent uptake of GlcNAc (Azema et al., 2004), we aimed 

here to determine whether procyclic forms could accumulate GlcNAc, or whether its 

effects might be due to other mechanisms. For example, either as a simple direct growth 

factor or alternatively, through inhibition of D-glucose uptake leading to an induced 

metabolic shift that enhances growth. 

Repression of proline catabolism seems to be directed at both the transporter and the 

proline dehydrogenase enzyme (PRODH). Differential expression of amino acid 

transporters, as a result of the duality of the life cycle of these parasites, is expected and 

requires that changes in its surrounding environment be observed in the different life cycle 

stages. Within individual life cycle stages we also get differential expression of amino acid 

transporters as a result of differing extracellular conditions. Proline regulation as a function 

of glucose availability has been shown in PCF trypanosomes (Lamour et al., 2005). It is 

possible that regulation of other amino acid transporters occur as a result of glucose or 

other factors, whether in PCF or BSF trypanosomes; and this regulation might play a role 

in the development of the parasite. 
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4.2 Results 

4.2.1 GlcNAc Stimulates Growth of PCF Trypanosomes 

GlcNAc has previously been show to stimulate growth of procyclic form trypanosomes 

(strain J10) in vitro using Cunningham’s medium (CM) (Peacock et al., 2006). To 

determine whether a similar effect was seen using other T. brucei strains we investigated 

growth of T. brucei strain TREU 927. 
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Figure 4-1: Cell counts of PCF trypanosomes (strain TREU 927). 

A starting density of 5 x 105 cells per ml, grown in CM and CM supplemented with 60 mM 
GlcNAc (this represents data from 3 similar repeats, error bars = ±SEM). 

 

60 mM GlcNAc enhanced survival and increased final density, with an increase in growth 

rate after 2 days (Figure 4-1). GlcNAc enhancement of growth could be as a direct result of 

its usage as a potent energy source. To test whether GlcNAc itself was capable of 

supporting growth, we tested the ability of trypanosomes to grow in medium containing 

this amino sugar but no D-glucose or L-proline (SDM80, Appendix 8.2). 
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Figure 4-2: Cell counts of PCF trypanosomes (strain TREU 927) grown in SDM80 medium. 

A starting density of 5 x 105 cells per ml, grown in SDM80 (D-glucose- L-proline-depleted 
medium) supplemented independently with 60 mM GlcNAc, 10 mM L-Proline, 10 mM D-
Glucose or 10 mM L-Proline and 10 mM D-Glucose (this represents data from 3 similar 
repeats, error bars = ±SEM). 

 

While either L-proline or D-glucose supported robust growth, GlcNAc failed to do so, 

ruling out a role for GlcNAc as an energy source for these parasites (Figure 4-2). L-proline 

metabolism too is modulated by D-glucose availability (Lamour et al., 2005). Glucose is 

the preferred carbon source and down-regulates proline metabolism. It is possible that non-

internalised GlcNAc prevents glucose utilisation by blocking of the hexose transporter, 

thereby releasing proline from inhibition, resulting in a metabolic switch from glucose 

metabolism to proline metabolism. 
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Figure 4-3: Alamar Blue assay using PCF trypanosomes grown in SDM80. 

SDM80 medium supplemented with 10 mM of each of the 20 amino acids and D-glucose 
individually (n=3, error bars = ±SEM). 

 

The Alamar blue assay (Figure 4-3) shows that proline as principal carbon source yields a 

more significant growth of trypanosomes than glucose or any other amino acid (data not 

shown for the amino acids aspartate and glutamate). The apparent increase in fluorescence 

seen by the amino acids glutamate and aspartate is anomalous, as the non metabolised D-

isomers of these amino acids do not support growth as seen from the cell count data 

(Figure 4-4). It is possible that the acidic nature of these amino acids interferes with the 

resazurin giving a false positive. The Alamar Blue method is relatively insensitive when 

trying to assess the exact level of growth exhibited. To assess the exact nature of the 

increased growth stimulus provided by proline over glucose cell counts were done. 
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Figure 4-4: Cell counts of PCF trypanosomes (strain TREU 927) grown in SDM80. 

A starting density of 5 x 105 cells per ml, grown in SDM80 (D-glucose- L-proline-depleted 
medium) supplemented independently with D-glucose, L-proline, L-glutamate, L-
aspartate, D-glutamate, D-aspartate at 10 mM concentrations (this represents data from 3 
similar repeats, error bars = ±SEM). 

 

As previously reported, the D-glucose and L-proline-depleted medium (SDM80) fails to 

support robust growth of procyclic form trypanosomes (Lamour et al., 2005). 

Supplementation with L-proline or with D-glucose allows growth, while other amino acids 

do not. In fact, L-proline supports more robust growth than D-glucose (Figure 4-4). 

4.2.2 GlcNAc is not Internalised by PCF Trypanosomes 

To verify further its inability to act as a carbon source, we investigated GlcNAc as a 

possible substrate for the PCF hexose transporter. Interaction of GlcNAc with the hexose 

transporter without uptake has previously been reported in BSF trypanosomes (Azema et 

al., 2004) and we investigated whether this was also the case in PCF trypanosomes. The 

ability of the procyclic hexose transporter to recognise GlcNAc and GlcN was assessed by 

determining the ability of each to inhibit uptake of radiolabelled 2-DOG (2-DOG has 

previously been shown to be a suitable probe to study D-glucose uptake in procyclic form 

trypanosomes, Barrett et al., 1995). 
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Figure 4-5: 2-Deoxy-D-glucose inhibition. 

Inhibition of uptake of 10 µM [6-14C] 2-DOG with cold GlcNAc (open squares), GlcN 
(closed circles) and 2-DOG (open circles) over a range of concentrations (10 µM, 50 µM, 
100 µM, 500 µM, 1 mM, 5 mM, 10 mM). IC50 values were calculated for each inhibitor 
(n=3, error bars = ±SEM). 

 

IC50 values (Table 1) were calculated for each inhibitor (2-DOG = 16.5 µM ± 9.3, GlcNAc 

= 176.18 µM ± 65.28, GlcN = 443.96 µM ± 18.39). This suggests that GlcNAc and GlcN 

do exhibit interaction with the procyclic hexose transporter, although they show a 

relatively low affinity (10- and 30-fold lower than 2-DOG, respectively). 

Inhibitor IC50 (µM) SEM 

2-Deoxy-D-glucose 16.5 9.3 

Glucosamine 443.96 18.39 

N-Acetyl D-Glucosamine 176.18 65.28 

Table 4: Calculated IC50 values for analogue inhibitors. 

 

However, interaction with the transporter does not necessarily mean internalisation of the 

analogue, and accumulation of the analogues was tested using uptake assays of 

radiolabelled sugars (Figure 4-6). 
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Figure 4-6: Uptake of Glucose analogues. 

Uptake of 1 mM [6-14C] -2-DOG (open circles), [1-14C] GlcN and [3H] GlcNAc (n=3, error 
bars = ±SEM). 

 

As previously shown with the bloodstream form hexose transporter, there was no 

internalisation of GlcNAc into PCF trypanosomes. In comparison, the D-glucose analogues 

2-DOG and GlcN were both recognised and internalised by the parasite. Thus GlcNAc 

neither acts as a carbon source nor enters trypanosomes, although it does interact with the 

hexose transporter and thereby inhibits D-glucose uptake, by competing with the 

transporter. 

4.2.3 Presence of GlcNAc Causes a Switch to Proline Metabolism 

GlcNAc inhibits D-glucose uptake without itself being internalised by PCF trypanosomes. 

To address the question as to whether the effect of GlcNAc is related to its capacity to 

diminish D-glucose uptake and to induce a metabolic shift we analysed the D-glucose 

present in the medium after 24 hrs during log phase growth of trypanosomes (strain TREU 

927). Glucose is quantified spectrophotometrically using the Glucose (GO) Assay Kit 

(Sigma). The kit employs enzymatic reactions to produce a coloured end-product,  

proportional to the original glucose concentration, which can be measured at 540 nm. 

Briefly, D-glucose is oxidized to gluconic acid and hydrogen peroxide by glucose oxidase, 

with hydrogen peroxide reacting with o-dianisidine in the presence of peroxidase to form a 

coloured product. Oxidized o-dianisidine reacts with sulfuric acid to form the measurable 

end-product 
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Figure 4-7: Glucose utilisation in presence of GlcNAc. 

Residual D-glucose concentration in culture medium during log phase growth of procyclic 
form trypanosomes (strain 927) in the presence and absence of GlcNAc (n=3, error bars = 
±SEM). 

 

With GlcNAc present in the medium, D-glucose is consumed at a lower rate by the 

parasites (Figure 4-7). The quantity of L-proline consumed by the procyclic trypanosomes 

has previously been shown to be decreased when D-glucose is available as the principal 

carbon source (Lamour et al., 2005). To assess if GlcNAc supplemented in the medium 

can stimulate this switch to increase proline utilisation, PCF trypanosomes were grown in 

Cunningham’s medium (approx. 4 mM D-glucose and 60 mM L-proline; Appendix 8.4) 

plus or minus GlcNAc (60 mM), SDM80 supplemented with D-glucose (10 mM), or L-

proline (10 mM) and then assayed for L-proline uptake. 
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Figure 4-8: L-proline uptake. 

Procyclic form trypanosomes pre-adapted to different medium concentrations and then 
assayed for L-proline uptake. Uptake of [3H] L-proline into procyclic (strain TREU 927) 
trypanosomes grown in Cunningham’s medium (CM containing 4 mM D-glucose and 60 
mM L-proline) (white square), SDM80 supplemented with 10 mM D-glucose (black 
circles), SDM80 supplemented with 10 mM L-proline (white circles) and CM 
supplemented with 60 mM GlcNAc (black squares). Uptake was measured at a single 30 s 
time point over a range of concentrations (up to 200 µM) (n=3, error bars = ±SEM). 

 

Pre-adaptation to D-glucose deficient conditions (in SDM80 based medium) increased L-

proline uptake in procyclic form trypanosomes, to a rate twice that in cells grown in high 

D-glucose conditions (Figure 4-8). Cells grown in CM showed an even further reduction in 

L-proline uptake. However, addition of GlcNAc to the medium induced L-proline uptake 

to levels comparable to cells grown in high L-proline medium. It thus appears that the 

presence of GlcNAc induced increased L-proline consumption, probably as a consequence 

of its capacity to diminish uptake of D-glucose. 

4.2.4 Oligomycin Sensitivity 

Oligomycin is the most sensitive known inhibitor of the F0/F1 ATPase enzyme, which is 

critical in ATP generation using the mitochondrial respiratory chain, but not when cells 

produce ATP by substrate level phosphorylation. It has been reported that PCF 

trypanosomes growing in a D-glucose-rich media are over 1000 times less sensitive to 

oligomycin than parasites growing in D-glucose-depleted medium (Coustou et al., 2003; 

Lamour et al., 2005). Oligomycin at a concentration of 0.1 ng/ml has been shown to kill all 
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cells utilising proline as the principal carbon source whereas with glucose that value 

increases to 10 µg/ml. 

A modified Alamar Blue method was employed, where procyclic trypanosomes (strain 

TREU 927) were grown in the presence of oligomycin (0.1 ng/ml) and L-proline (5 mM) 

and the D-glucose concentration was titred in doubling dilutions (5 mM starting 

concentration). 
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Figure 4-9: Oligomycin sensitivity. 

Alamar Blue of PCF trypanosomes exposed to 0.1 ng/ml oligomycin in the presence of 5 
mM proline and decreasing concentrations of glucose (5 mM starting concentration), in the 
presence and absence of GlcNAc (n=3, error bars = ±SEM). 

 

The D-glucose IC50 value for oligomycin sensitivity significantly increases by more than 

ten fold from 48.6 µM to 674.5 µM in the presence of GlcNAc. The metabolic switch 

appears to be a graded response, with oligomycin sensitivity increasing as D-glucose levels 

decrease, indicating a tightly regulated balance. From this, it is evident that, the same link 

between D-glucose availability, L-proline consumption and oligomycin sensitivity is 

observed. 

4.2.5 GlcNAc Protects Against Death by 2-Deoxy D-glucose 

The non-metabolised glucose analogue 2-DOG has been shown to lead to the death of PCF 

trypanosomes using proline as the sole carbon source (Lamour et al., 2005; Kessler & 

Parsons, 2005). This killing effect was suggested to be related to the repression of proline 
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usage that glucose (and 2-DOG) exerts (Lamour et al., 2005). This effect of 2-DOG is 

ameliorated by increasing concentrations of glucose in the media (Kessler & Parsons, 

2005). Here we examine quantitatively how 2-DOG exerts an effect on proline utilisation, 

and whether GlcNAc offers any protection to the toxic effects of 2-DOG. 
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Figure 4-10: 2-Deoxy-D-glucose sensitivity. 

Alamar Blue of procyclic form trypanosomes grown in the presence of 5 mM L-proline 
and decreasing concentrations of 2-DOG (10 mM starting concentration), in the presence 
and absence of GlcNAc (n=3, error bars = ±SEM). 

 

The effects of 2-DOG are dependent on concentration. Limiting concentrations of 2-DOG 

give an IC50 of 93.9 µM. GlcNAc at a concentration of 60 mM is able to protect against the 

effect of 2-DOG, due to its capacity to diminish 2-DOG entering the cell, significantly 

increasing the IC50 to 953.2 µM. 

4.2.6 Proline Regulation as a Result of the Overall Metabolic 

Status of the Cell 

In PCF trypanosome proline consumption is tightly linked to glucose availability. Proline 

consumption as a function of glucose concentration shows a dose dependent response to 

glucose, indicating a gradual replacement of glucose metabolism by proline metabolism – 

rather than an “on-off” switch stimulated by glucose reaching a critical limiting 

concentration. 
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The ability of these parasites to adapt to glucose depleted conditions may be altered by 

long-term in vitro culturing in glucose rich medium (Bringaud et al., 2006). The general 

lab strains T. brucei PCF 427 and T. brucei PCF 927 have generally been cultured in 

standard high glucose medium (SDM79, Cunningham’s Medium). We posed the question 

as to how long is necessary for cells to be exposed to glucose for it to exert its repression 

on proline metabolism? Does glucose entering the cell exert repression directly? To answer 

this question cells were grown in high proline, no glucose and then assayed for proline 

uptake over a 6 hour period in the presence or absence of 10 mM glucose. 
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Figure 4-11: Proline uptake in presence of D-glucose. 

Uptake of 100 µM [3H] L-Proline in proline adapted cell lines in the absence (white 
circles) and presence (black circles) of 10 mM Glucose, over a 6 hour time period (n=1). 

 

There seems to be no difference in proline uptake between proline adapted cells in the 

presence and absence of 10 mM glucose. Proline uptake reaches a maximum point at 5 – 

10 mins, with apparent efflux after that. This suggests that glucose repression is not a result 

of glucose itself, but rather the adaptational processes that result from glucose availability. 

This also suggests that proline regulation is probably not regulated at the glucose 

transporter level. Because if simple entry of glucose into the cell was all that was required 

to reduce the uptake of proline we would expect to see reduced consumption of proline 

over time. This all gives more weight to glycolysis and glycolytic enzymes in control of 

metabolic adaptation. 
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However, this does not tell us how much time is needed for glucose to exert its effect, only 

that the glucose entering the cell is not immediately exerting its repression over proline. To 

answer the time dependency question, we adapted PCF trypanosomes to proline only 

conditions by growing in SDM80 plus 10 mM proline. At time zero we split cell cultures 

and added 10 mM glucose to one of the flasks and assayed for proline uptake, at a single 

30 second time point, over a 24 hour period. 
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Figure 4-12: Proline uptake after long term D-glucose exposure. 

Uptake of 100 µM [3H] L-Proline in PCF trypanosomes after a 24 hour period exposure to 
10 mM D-glucose (n=3, error bars = ±SEM). 

 

It is evident that after 24 hours in the presence of D-glucose proline uptake repression is 

beginning to take effect. Proline uptake shows a ~40% reduction after 24 hours in the 

presence of D-glucose. This, together with the previous experiment on proline uptake in 

the presence of D-glucose in the assay buffer shows that the repressive effects of D-

glucose on proline are not as a direct result of the entering glucose. Yet, it seems the entire 

metabolic status of the cell (i.e. glycolytic flux) is more likely to be the determinant for 

proline repression. 

4.3 Discussion 

It has been long established that GlcNAc enhances colonisation of tsetse by trypanosomes, 

which has been causally linked to GlcNAc inhibition of midgut trypanocidal lectins 

(Abubakar et al., 2006; Mihok et al., 1992; Osir et al., 1993; Welburn & Maudlin, 1999). 

The demonstration that GlcNAc also stimulates growth in vitro, in the absence of any fly-
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derived factors was surprising (Peacock et al., 2006). With the fact that GlcNAc is not 

internalised by BSF trypanosomes (Azema et al., 2004) and D-glucose exerts repressive 

effects on proline consumption we investigated the possibility that the in vitro effects of 

GlcNAc was brought about by the ability of the analogue to block glucose entry to the cell 

via the hexose transporter, thereby resulting in a switch to L-proline metabolism, which 

provides a better growth effect. 

We show here that the stimulation of growth is not as a direct result of GlcNAc utilisation 

as a carbon source, because GlcNAc is not internalised by the parasite and cannot replace 

D-glucose or L-proline as a carbon source for energy. However, there is interaction with 

the hexose transporter, demonstrated by GlcNAc inhibition of uptake of 2-DOG. 

We therefore propose that GlcNAc, through blocking of the procyclic hexose transporter, 

promotes a metabolic shift in procyclic form trypanosomes leading to an increased 

consumption of L-proline, as previously noted when procyclic form trypanosomes were 

grown in glucose-depleted media (Lamour et al., 2005). L-proline metabolism in PCF 

trypanosomes is more efficient than D-glucose metabolism. When D-glucose and L-proline 

are both present in the growth medium, however, the procyclic form trypanosome will 

preferentially use D-glucose as the main carbon source (Bringaud et al., 2006; Cross et al., 

1975). 

It appears, therefore, that the in vitro growth stimulatory effect of GlcNAc relates to the 

switch from D-glucose to L-proline catabolism, leading to an increase in L-proline 

consumption. This is correlated to increased oligomycin sensitivity. The switch is a graded 

response, rather than a binary distinction, since L-proline consumption is gradually 

reduced as D-glucose levels rise, and there is a corresponding gradual decrease in 

susceptibility to oligomycin. The repressive effect of D-glucose on L-proline metabolism 

seems to be related to the overall metabolic status of the cell rather than any allosteric 

action of D-glucose on its own, since cells adapted to growth without D-glucose retain 

high levels of L-proline uptake rates for many hours even when D-glucose is added. 

This up-regulation of proline consumption seems to be at the transporter and enzymatic 

level (PRODH enzyme; Lamour et al., 2005). Whether one or more metabolites act to 

trigger such a switch is not known, however, the switch is as a result of glucose 

metabolism (down stream metabolites). It is possible that D-glucose itself does not act 

allosterically to bring about the transporter repression, suggesting that a time factor for 
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adaptation exists. It is evident that the cell up-regulates proline transport. Whether this up-

regulation involves a single transporter or several transporters is still to be elucidated. 

In spite of the metabolic shift that accompanies growth in L-proline, procyclics using L-

proline as the main carbon source show no infectivity advantage to tsetse flies over control 

procyclics grown in normal D-glucose-rich medium (W.C. Gibson, personal 

communication). This suggests that the in vivo effects of GlcNAc are not a result of any 

metabolic advantage of the trypanosomes, but rather are a consequence of reduction in fly 

anti-microbial defences such as inhibition of lectins (Welburn & Maudlin, 1999). 

In addition to its impact on L-proline catabolism, D-glucose exerts an influence on other 

aspects of procyclic trypanosome biology, including procyclin expression as well as 

mitochondrial energy generation (Butikofer et al., 1997; Morris et al., 2002; Vassella et 

al., 2001). The reason for the negative regulation exerted by D-glucose on L-proline 

metabolism is far from clear, especially in the light of the fact that L-proline provides a 

markedly better growth stimulus than D-glucose. A possible explanation could be linked to 

the developmental cues associated with reduced D-glucose availability. When BSF 

trypanosomes are taken up by the tsetse vector, presumably glucose availability drops 

rapidly during digestion of the bloodmeal in the tsetse midgut. It is possible that D-glucose 

availability is one marker involved in life cycle progression of the parasite. It will therefore 

be of interest to determine whether the response of procyclics to D-glucose with regard to 

L-proline catabolism is linked to the response in expression of particular procyclin surface 

membrane protein isoforms or is related to processes leading to developmental 

differentiation of the parasite. 
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5 Metabolomics 
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5.1 Introduction 

It is evident that PCF trypanosomes exhibit metabolic adaptational processes (Lamour et 

al., 2005; chapter 4). We have shown that a switch to proline metabolism occurs (as 

indicated by oligomycin sensitivity and proline uptake) (chapter 4). This switch is a graded 

response to glucose availability and can be mimicked by blocking of the PCF hexose 

transporter by GlcNAc. However, what is not known is how far reaching this metabolic 

switch goes. It is our intent to investigate, through metabolic profiling, what other markers 

emerge as a result of this metabolic shift. 

Metabolic changes, as a result of differing primary carbon source usage detected in the 

Orbitrap visible metabolome will be particularly informative when comparing with 

previous studies using these targeted approaches to investigate parts of the metabolome. 

With this in mind, we decided to investigate the metabolome of PCF trypanosomes with 

regard to the metabolic adaptation as a result of differing carbon source usage. 

Systems biology is a rapidly emerging field. Technological advances have allowed 

metabolomics, the study of all metabolites within a given system, to emerge as a research 

area (Breitling et al., 2006). Individual metabolites, and their relative abundance within 

cells can be assessed by a range of techniques (Breitling et al., 2006; Goodacre, 2004; 

Dettmer et al., 2007), one of which involves Fourier transform ion cyclotron resonance 

mass spectrometry (FT-ICR-MS) (Brown et al., 2005; Hirai et al., 2004; Marshall et al., 

1998). Fourier transform mass spectrometry determines the mass-to-charge ratio (m/z) of 

ions based on the cyclotron frequency of the ions in a fixed magnetic field. The signal (free 

induction decay) detected as an image current is transformed to its mass spectrum using the 

Fourier equation. 

The recently introduced Orbitrap mass analyser (Hu et al., 2005) offers resolution and 

accuracy close to that of classical high field FT-ICR-MS or FTMS (Breitling et al., 2006). 

However, the Orbitrap operates using electrostatic rather than magnetic fields and hence 

by-passes the requirement of a large, super-cooled magnet. This allows it to be linked to 

chromatographic columns and thus avoids the risk of ion suppression effects which can 

occur with directly infused complex samples. This technique can resolve thousands of 

metabolites, in the molecular mass range of 100–1500, with extreme mass accuracy 

(routinely <2 ppm). This technique has been employed to build ab initio networks of 

metabolites whose masses can be linked by common biochemical transformations in 

trypanosomes (Breitling et al., 2006). Exact mass can also be used to predict likely 
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formulae for metabolites and tentatively to identify compounds based on comparison to 

databases of known metabolites. The fact that multiple formulae can yield masses within 2 

ppm (Kind & Fiehn, 2006) means that different approaches are also required to confirm 

identity. 

In FTMS (including Orbitrap analysis), ions, generated from soft ionisation methods (e.g. 

electrospray) are excited into cyclotron resonances that are a function of mass and charge. 

The frequency of gyration of these ions is detected in the mass spectrometer and then 

converted to high accuracy masses using the Fourier transform. The determined mass is as 

a result of several different physical principles within the analyser (Hu et al., 2005). The 

ionised metabolite mixture is trapped in an orbital trajectory of which the frequency of the 

orbit depends on mass/charge ratio. 

In the case of the orbitrap, the trapping is achieved without the need of a magnetic field, 

with ions trapped in a radial electric field between a central and outer cylindrical electrode. 

The ultra-high resolution enables simultaneous identification of ions that would not be 

resolved using less accurate mass determination approaches. The combined advantage of 

accurate mass determination and resoultion makes it possible to restrict the number of 

possible molecular formulae that represent an individual molecular mass (Hu et al., 2005; 

Breitling et al., 2006).  

The number of metabolites present in trypanosomes is sufficiently small to ensure very 

good resolution using high resolution, high mass accuracy mass spectrometry without the 

need for subcellular fractionation. Metabolomics requires special approaches for sample 

preparation, separation, and mass spectrometric analysis (Dettmer et al., 2007). The 

metabolome represents a vast number of components belonging to a wide variety of classes 

of compounds (amino acids, lipids, organic acids, nucleotides, etc). Such diversity of 

compounds have reflecting diversity in their physical and chemical properties and occur in 

a wide range of abundances. To this effect, a careful experimental design is needed for the 

success of metabolomic investigations (Dettmer et al., 2007). While processing samples, 

formation and degradation of metabolites due to remaining enzyme activity or oxidation 

processes is a possibility (Dettmer et al., 2007). Therefore, rapid quenching and 

metabolism inhibition is required. Rapid quenching of metabolism with hot HEPES-

buffered ethanol with subsequent freezing in liquid nitrogen has proven an effective 

method of identifying metabolites in our lab (D. Wildridge, personal communication). Any 

and every kind of preparation step will involve metabolite loss (Dettmer et al., 2007). For 
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example, aqueous extraction results in poor recovery of very polar compounds as well as 

the loss of volatile organic compounds (Dettmer et al., 2007). 

Within the field of metabolomics three distinct types of investigation exist; metabolic 

profiling, metabolic fingerprinting and metabolic footprinting (Dettmer et al., 2007). 

Profiling involves quantitative targeted metabolite analysis of metabolites of a specific 

class or related to a selected pathway. The disadvantage of profiling is the fact that targeted 

analysis is a hypothesis-driven approach rather than a hypothesis-generating one, and that 

the data generated is not a global view of occurrences within the metabolome. Metabolic 

fingerprinting involves an unbiased global screening approach. The intention is not to 

identify each observed metabolite but allows comparison of patterns or “fingerprints” as a 

result of cellular perturbations. Fingerprinting observes the true phenotype, however, the 

causal metabolites of the observed phenotype must be identified if any biochemical 

understanding is to be gained from the data. This means that assignment of chemical 

formulae to masses must be made. The high resolution, unique to the Orbitrap processor, 

allows the potential to indentify large numbers of metabolites. 

With this in mind, metabolomic fingerprinting can be used to classify or diagnose a 

particular perturbation. Metabolomic footprinting involves the analysis of extra-cellular 

metabolites in cell culture medium, which is a reflection of metabolites used or excreted by 

cellular processes. These three different metabolomic investigative methods shall be 

employed to address the question of metabolic adaptation in PCF trypanosomes. 

Exact mass, used to predict likely formulae for metabolites, can be used to tentatively  

identify compounds based on comparison to databases of known metabolites (Kyoto 

Encyclopaedia of Genes and Genomes, www.genome.jp/kegg). Metabolic changes, as a 

result of differing primary carbon source usage detected in the Orbitrap visible 

metabolome will be particularly informative when compared with previous studies using 

these targeted approaches to investigate parts of the metabolome. 

A complete representation of any cell, any organism, and any biosphere, which will enable 

computational prediction of higher-level complexity of cellular processes and organism 

behaviours from genomic and molecular information, is an area of research receiving much 

attention. Several widely-available databases have emerged to address this specific 

problem. KEGG is one of the most in-depth and comprehensive databases that exist for the 

identification of compounds and known metabolites. The KEGG pathway database is a 

collection of manually drawn pathway maps for metabolism and genetic information 



Charles E. Ebikeme, 2007   Chapter 5, 115 

(Kanehisa et al., 2006). However, it is presently impossible to view global networks. To 

this end, several software packages have been developed for modelling of biomolecular 

interactions. An example is Cytoscape, which is an open source software package that 

allows the modelling of thousands of cellular components and interactions 

(www.cytoscape.org), either actual (in vivo) or hypothetical (ab initio). Dynamic states on 

molecules and molecular interactions are handled as attributes on nodes and edges 

(respectively), whereas static hierarchical data, such as protein-functional ontologies, are 

supported by use of annotations (Shannon et al., 2003). 

“MettaNetter” is a software plug-in developed for Cytoscape that allows inference and 

visualisation of the kind of high-resolution mass spectrometry data obtained directly from 

the Orbitrap processing (Fabien Jourdan, University of Toulouse). Inference requires a list 

of potential biochemical transformations, which are generated from commonly available 

biochemistry data as well as data sets from a range of databases, such as KEGG. The data 

extracted from the Orbitrap process is a list of masses (metabolites) and their 

corresponding intensities (qualitative). Each metabolite can be theoretically linked to 

another metabolite via a hypothetical biochemical transformation, and in turn more and 

more metabolites can be linked together; resulting in a global ab initio metabolomic 

network to be built (Figure 5-2). The Cytoscape program represents metabolites and their 

biochemical transformations as nodes and edges, respectively (Figure 5-1). 

 

Figure 5-1: Nodes and edges. 

Cytoscape representation of metabolites and biochemical interactions as nodes and edges, 
respectively. Nodes represented as circles and edges represented as joining lines. 

 

The KEGG database contains approximately 488 trypanosome-specific metabolites and 

their resulting interactions (biochemical transformations). In collaboration with Fabien 

Jordan, their interactions and biochemical transformations were extracted to form a global 
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metabolomic network built using Cytoscape. The global network (Figure 5-2) is a 

representation of the different trypanosome pathways that exist within the KEGG database. 

 

Figure 5-2: KEGG Network of T. brucei metabolites. 

Cytoscape representation of trypanosomes specific metabolites from the KEGG database. 
Insert: shows particular metabolites and interactions in zoom. 

 

The KEGG database contains 488 trypanosome specific metabolites and their resulting 

interactions (biochemical transformations). The global network (Figure 5-2) represents the 

inherent complementarity of the metabolic pathway within trypanosomes, and does not 

take into account any enzymatic data. 

5.2 Results 

5.2.1 Global View of the Metabolome 

PCF trypanosomes were adapted to various conditions by growing in different medium for 

7 days; Cunningham’s medium (CM, Appendix 8.4), CM supplemented with 60 mM 

GlcNAc (NA), SDM80 medium (Appendix 8.2) supplemented with 10 mM D-glucose 

(GL), or 10 mM L-proline (PR). Parasites, at mid-log phase of growth, were harvested by 
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centrifugation (chapter 2.13) and resuspended in 1 ml of serum-free medium. Cell numbers 

attained were enough for 3 individual extractions. Cells were then incubated at room 

temperature for 30 mins. The intention being to allow metabolism to re-attain homeostasis 

but with a greatly concentrated cell density. Cells were separated from medium by 

spinning down at 6,000 rpm for 5 mins at 4ºC. 0.75 ml of 80% EtOH/20 mM HEPES (pH 

7.0) was quickly added to separated medium and cell pellet, cooled on ice for 5 mins, 

vortexed, and then the supernatant recovered by centrifugation at 13,000 rpm for 5 mins. 

Recovered supernatant was frozen in liquid nitrogen and stored at -80ºC for further 

analysis. 

Samples were processed using an Orbitrap MS (chapter 2.13). The Orbitrap mass 

spectrometry, employed here, is not quantitative (in the absence of an authenticated 

standard). However, the data generated is quantitative in a relative sense. The increase or 

decrease in size of a given peak is related to the changes in abundance of that metabolite 

across conditions. The exact masses derived from the Orbitrap mass spectrum are assigned 

putative formulae using an algorithm that sums all possible combinations of the elements 

C, H, O, P, N, S. Although for a given mass there may be many possible elemental 

combinations, in practice many of these can be eliminated as improbable. 

Results presented here are from one culture subjected to 3 separate ethanol extractions. The 

final list of masses obtained from the Orbitrap mass spectrum were masses found in at least 

two of the three ethanol extractions. 

The data extracted from the Orbitrap mass spectrum for each state was built into an ab 

initio metabolomic network. Metabolites, theoretically linked to other metabolites via a 

hypothetical biochemical transformation, using a list of common biochemical 

transformations (Appendix 8.16) within the mettanetter software allowed the global 

metabolome to be viewed for each metabolic state. 
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Figure 5-3: CM state network. 

Cytoscape representation of extracted metabolites and their relevant ab initio biochemical 
interactions. Metabolites that show no interactions with any other metabolites are shown as 
individual “orphans” at the bottom. 
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Figure 5-4: GlcNAc state network. 

Cytoscape representation of extracted metabolites and their relevant ab initio biochemical 
interactions. Metabolites that show no interactions with any other metabolites are shown as 
individual “orphans” at the bottom. 
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Figure 5-5: Glucose state network. 

Cytoscape representation of extracted metabolites and their relevant ab initio biochemical 
interactions. Metabolites that show no interactions with any other metabolites are shown as 
individual “orphans” at the bottom. 
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Figure 5-6: Proline state network. 

Cytoscape representation of extracted metabolites and their relevant ab initio biochemical 
interactions. Metabolites that show no interactions with any other metabolites are shown as 
individual “orphans” at the bottom. 

 

In comparing metabolic states (Table 5), the CM state showed 1085 nodes (metabolites) 

and 1711 edges (interactions) whereas the GlcNAc showed 1113 nodes and 1794 edges. 

The GL state showed 1011 nodes and 1386 edges whereas the PR state showed 1021 nodes 

and 1389 edges. In general, the global view of the metabolome constructed by Cytoscape 

has all linking metabolites forming a network and orphan metabolites (ones that show no 

interaction with any others) displayed individually. 

 Nodes Edges 

CM 1085 1711 

NA 1113 1794 

GL 1011 1386 

PR 1021 1389 

Table 5: Total nodes and edges across the metabolic states 
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Primary investigations took a metabolomic fingerprinting approach. An unbiased global 

network, built using filtered masses from the Orbitrap data set was then subjected to 

principal component analysis (M Kamleh, University of Strathclyde). The principal 

component analysis (PCA) allows representation of complex data in lower dimensional 

space, defined by the principal components (PCs) (Stoyanova & Brown, 2001). The focus 

of PCA is pattern recognition, identifying directions of large variations in the data via the 

principal components (Stoyanova & Brown, 2001). In the case of spectral data, the 

principal component is amplitude regardless of a lineshape, whereas the other PCs are 

indications of what other kind of variations are in the data. 

 

Figure 5-7: Principal Component Analysis. 

Principal component analysis scores of the filtered dataset. Cunningham’s medium grown 
samples (CM), Cunningham’s medium supplemented with GlcNAc grown samples (NA), 
proline only medium grown samples (PR), and glucose only medium grown samples (GL). 
Metabolites extracted from cell pellet (A) or supernatant (S). 

 

The thousands of discrete data points obtained from each sample examined represents the 

action of many known and unknown variables within the system (Kemsley et al., 2007). 

The PCA generated is a score plot, with the score a presumed value expressing how close 

one sample is to the others. Samples behaving in the same way will exhibit close scores. 
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PCA showed distinct grouping of metabolites derived from cells grown in specific 

medium, with CM and NA samples (CM based) grouping together and PR and GL samples 

(SDM80 based) grouping together. It was hypothesised that NA samples should mimic the 

PR state, considering addition of GlcNAc causes a switch to proline metabolism (chapter 

4). However, when viewing the global metabolome, many more factors are at play. And 

considering the subtle switches in metabolic adaptation which are evident (chapter 4), the 

full metabolite profile will never be a complete mimic of PR state. Moreover, differences 

in medium composition play a part, as they determine the resulting metabolic profile. 

Cunningham’s medium is much richer in component mix, exhibiting many more individual 

components, whereas SDM80 reflects a more restrictive and basic medium composition 

(Appendix 8.2). The greater the number of starting metabolites available mean the more 

metabolites as a result of metabolism we are likely to see. Indeed, when viewing the 

metabolome, more metabolites are seen within the CM network as compared to the 

network based upon SDM80 medium (GL and PR). With this in mind, the only two 

conditions which are directly comparable are the GL and PR growth states. The 

metabolites seen in these two states will reflect a much truer picture of the adaptational 

processes at play. 

5.2.2 Metabolic Fingerprint 

The next step was a direct comparison of the metabolites found in the CM state with the 

NA state as well as between GL and PR states. Comparing the PR and GL states should 

reveal differences in metabolites as a result of the usage of differing carbon sources. The 

metabolites that appear as a result of PR usage as compared with GL usage may provide 

insight into global metabolic state. Moreover, the appearance of metabolites seen in the 

GlcNAc state as compared with the CM state may reveal metabolites linked to the 

metabolic shift as seen in comparing the GL and PR state. Also, it is important to focus on 

appearing metabolites that form networks as that will highlight new pathways and patterns. 
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Figure 5-8: Metabolites unique to proline metabolism (comparing GL and PR states). 

Cytoscape representation of extracted metabolites and their relevant ab initio biochemical 
interactions. Metabolites that show no interactions with any other metabolites are shown as 
individual “orphans” at the bottom. 
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Figure 5-9: Metabolites unique to GlcNAc supplementation (comparing CM and NA states). 

Cytoscape representation of extracted metabolites and their relevant ab initio biochemical 
interactions. Metabolites that show no interactions with any other metabolites are shown as 
individual “orphans” at the bottom. 

 

Identified from the PR state were 166 metabolites unique to proline metabolism (Figure 5-

8). In comparison, GlcNAc supplementation of CM showed 277 metabolites unique to that 

particular growth condition (Figure 5-9). Of the 277 metabolites that appear as a result of 

GlcNAc supplementation, 28 (~10%) were common to PR state (Table 6), suggesting that 

these metabolites are associated with proline metabolism. 

Conversely, we wanted to apply the same characterisation to the GL and CM state 

respectively in comparison to the PR and NA state, showing metabolites unique to glucose 

metabolism. 
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Figure 5-10: Glucose specific metabolites (comparing PR and GL states). 

Cytoscape representation of extracted metabolites and their relevant ab initio biochemical 
interactions. Metabolites that show no interactions with any other metabolites are shown as 
individual “orphans” at the bottom. 
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Figure 5-11: Glucose specific metabolites (comparing NA and CM states). 

Cytoscape representation of extracted metabolites and their relevant ab initio biochemical 
interactions. Metabolites that show no interactions with any other metabolites are shown as 
individual “orphans” at the bottom. 

Identified from the GL state were 159 metabolites unique to glucose metabolism (Figure 6-

10). In comparison, the CM state showed 207 metabolites unique to that particular growth 

condition (Figure 6-11). Of the 159 metabolites associated with glucose metabolism, 37 

(~23%) were common to the CM state (Table 6). 

metabolites unique to 
proline metabolism 

metabolites unique to glucose 
metabolism 

115.190 221.089 681.356 114.079 237.670 298.036 545.392 

174.145 238.115 703.571 119.219 237.830 299.085 661.694 

174.212 238.529 728.555 140.951 238.117 299.085 761.310 

180.098 281.897 730.571 165.071 238.259 400.133 899.292 

200.692 287.282 751.499 165.316 238.528 412.258 1040.322 

200.694 317.233 753.515 174.118 239.101 412.258  

200.696 390.277 784.128 208.734 260.067 417.194  

200.776 415.665 1883.769 209.184 260.570 417.771  

200.793 488.165  209.204 281.272 419.097  

208.719 640.211  209.292 298.036 482.089  

Table 6: Carbon source specific metabolites (pellet). 
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The generated list of metabolites specific for glucose and proline associated metabolism 

represents, essentially, a list of biomarkers for metabolism. The exact masses derived from 

the pellet are assigned putative formulae using an algorithm that sums all possible 

combinations of the elements C, H, O, P, N, S, Cl, allowing possible putative compounds 

to be postulated. 

Pellet 

Proline State Glucose State 

Mass Formula Mass Formula 

174.212 C5H14O4N3 114.079 C5 H10 O1 N2 

221.089 C7H9O1N8 165.070 C5H15N2P2 

238.115 C6H16O5N5 238.117 C9H14O2N6 

281.897 C7H4O4CL1P1S2 239.101 C9H13O3N5 

287.282 C17H37O2N1 260.067 C4H16O4N5P2 

317.233 C17H33O5 281.272 C18H35O3N5 

390.277 C24H38O4 298.036 C7H14O6N3P2 

488.164 C24H35O4CL2P1 299.085 C9H17O10N1 

640.211 C27H38O4N8CL2S1 299.085 C9H17O10N1 

681.356 C29H53O14N4 400.133 C19H22N6CL1P1 

  412.258 C18H35O2N7P1 

  412.258 C18H35O2N7P1 

  417.194 C22H30O4N2P1 

  419.097 C7H20O7N10P1S1 

  482.089 C21H18O3N7CL1P1 

  545.392 C29H55O8N1 

  761.310 C29H48O13N9P1 

  899.292 C28H57O15N10P2S2 

Table 7: Putative formula generated from pellet metabolites. 

 

Not all metabolites could be assigned putative formula within an appropriate range of error 

(2 ppm). The range of error (in parts per million) refers to how far the detected mass 

deviates from the standard predicted mass. The metabolites that could be assigned putative 

formula could not be identified by PubChem. However, the biomarkers generated here can 

provide a phenotype for metabolic adaptation. 

5.2.3 Metabolic Footprint 

Metabolomic footprinting involves the analysis of extra-cellular metabolites in cell culture 

medium, which is a reflection of metabolites taken up or excreted by cellular processes. 

We further wanted to characterise each metabolic state by identifying metabolites that 

appear as a result of differing carbon source usage. A total of 175 metabolites were found 

to be unique to the PR state and 123 to the GL state (in comparison to the GL state and PR 

state, respectively). Whereas 223 metabolites were found to be unique to the NA state and 

191 to the CM state (in comparison to the CM state and NA state, respectively). 
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metabolites unique to proline 
metabolism 

metabolites unique 
to glucose 
metabolism 

73.026056 174.2125 417.1982 105.0426 650.3568 

83.037048 200.6972 419.0934 120.0706 878.3125 

83.952363 200.7767 473.8264 149.0477 910.2836 

114.92541 200.7824 498.157 151.0289  

115.00889 208.8514 589.4192 165.234  

115.20142 237.9377 748.2686 208.9397  

115.42682 238.082 782.2394 417.8282  

117.06744 238.1123 877.813 418.461  

150.05031 260.096  431.273  

165.07378 390.277  473.187  

Table 8: Carbon source specific metabolites (supernatant). 

 

This identified, as a product of glucose metabolism, 13 unique metabolites. Conversely, 

proline metabolism showed 28 unique metabolites. Of all the metabolites identified only 

one could be assigned chemical formula. The glucose-specific metabolite of mass 105.042 

corresponds to a chemical formula of C3H7NO3 (Serine). It is possible that there is a 

greater need for serine when proline is being used as the main carbon source, leading to a 

greater consumption of the metabolite from the surrounding medium. 

The exact masses derived are assigned putative formulae using an algorithm that sums all 

possible combinations of the elements C, H, O, P, N, S, Cl, allowing possible putative 

compounds to be postulated. 

Supernatant 

Proline Glucose 

Mass Formula Mass Formula 

83.037 C4H5O1N1 208.939 C2H1O5N3P2 

150.050 C9H10S1 431.273 C17H35O5N8 

165.073 C2H9O3N6 473.187 C17H27O9N7 

238.112 C13H19O2P1 650.356 C27H54O7N7P2 

260.095 C17H12O1N2   

390.277 C24H38O4   

417.198 C27H30O2P1   

498.156 C21H30O7N3P2   

589.419 C30H53O4N8   

748.268 C29H45O15N6P1   

Table 9: Putative formula generated from supernatant metabolites. 

 

Not all metabolites could be assigned putative formula within an appropriate range of error 

(2 ppm). The metabolites that could be assigned putative formula could not be identified 

by PubChem. However, the biomarkers generated here can provide a phenotype for 

metabolic adaptation. 
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5.2.4 Metabolic Profile 

Metabolites of the glycolytic pathway and key mitochondrial metabolites were searched 

for. This was relevant since previous work (chapter 4) had indicated differences in energy 

metabolism related to these pathways. It was important; first of all, to find out if we could 

view all the relevant metabolites (glycolysis and Kreb’s cycle intermediates) under the 

conditions used (extraction of metabolites and Orbitrap processing technique). The 

molecules with the same mass but distinct structures (dihydroxyacetone phosphate and 

glyceraldehyde-3-phosphate) can only be discriminated with additional information, and is 

beyond the scope of what is investigated here. Of all the glycolytic and mitochondrial 

intermediate metabolites only pyruvate (Figure 5-12) and the amino acids (proline, 

threonine, glutamine and glutamate) (Figure 5-13) could be identified within the dataset. 

Pyruvate is the ultimate end product when glucose is being used as the primary carbon 

source (Figure 1-4). However, when proline is being used, pyruvate is further metabolised 

within the mitochondrion. We would therefore expect to see a greater abundance of 

pyruvate in GL and CM states as compared to NA and PR states. 
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Figure 5-12: Pyruvate abundance within the cell pellet and supernatant. 

Relative intensity of pyruvate found in the cell pellet and supernatant from cells grown in 
differing conditions; Cunninghm’s medium (CM), CM supplemented with GlcNAc (NA), 
SDM80 plus Glucose (GL), SDM80 plus Proline (PR). 
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Within the cell pellet no pyruvate was identified, where as high amounts of pyruvate could 

be seen in the supernatant extract of the CM and NA conditions. SDM80 contains twice as 

much pyruvate as Cunningham’s medium (100 mg/L vs 200 mg/L; Appendix 8.2, 8.4) 

Here, comparing pyruvate abundances across the four states does not give any insight into 

the metabolic status of the cell. 

Continuing the metabolic profiling approach we wanted to investigate other branches of 

the metabolome. More specifically, the amino acid complement (as analysed by targeted 

metabolite analysis) of PCF trypanosomes with regard to the metabolic adaptation as a 

result of differing carbon source usage. Amino acid usage regulation has already been seen 

with proline (chapter 4). However it is not known if glucose exerts effects (whether 

repressive or not) on other amino acids, or if other amino acids become more essential in 

the absence of glucose. The full conventional 20 amino acid complement along with 

related compounds (taurine, ornithine homocysteine, and citrulline) was sought within the 

data generated from the Orbitrap process (Table 10). 

Pellet Supernatant 

 CM NA GL PR CM NA GL PR 

Glycine 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Alanine 7.434 6.641 7.384 7.390 6.573 7.186 7.321 7.311 

Serine 5.832 5.609 5.923 5.551 5.434 0.000 5.519 0.000 

Proline 8.627 8.647 7.761 8.332 8.630 8.658 7.311 8.319 

Threonine 7.063 7.132 7.399 7.439 7.063 6.950 7.345 7.364 

Cysteine 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Taurine 7.290 7.319 7.496 7.466 7.303 7.319 7.549 7.507 

Leucine 8.062 8.072 8.085 8.096 8.057 8.063 8.044 8.050 

Asparagine 6.439 6.996 5.556 5.628 6.512 6.869 0.000 0.000 

Ornithine 7.378 7.430 7.197 7.142 7.415 7.449 7.186 7.121 

Aspartic acid 6.230 6.531 0.000 0.000 5.863 6.242 0.000 0.000 

Homocysteine 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Glutamine 7.218 7.182 6.090 6.077 7.231 7.374 6.023 6.769 

Lysine 7.701 7.687 7.615 7.658 7.727 7.700 7.578 7.609 

Glutamate 6.991 7.060 6.660 6.806 6.981 7.046 6.650 6.681 

Methionine 7.940 7.985 8.021 8.039 7.967 7.991 8.020 8.012 

Histidine 8.115 8.105 7.907 7.976 8.134 8.116 7.886 7.926 

Phenylalanine 8.558 8.395 8.541 8.584 8.585 8.389 8.543 8.546 

Arginine 8.680 8.649 8.650 8.712 8.548 8.655 8.633 8.509 

Citrulline 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Tryptophan 7.214 7.305 6.679 6.673 7.210 7.314 6.618 6.626 

Tyrosine 8.043 8.054 8.205 8.143 8.083 8.075 8.219 8.159 

Valine 7.557 7.578 7.689 7.604 7.415 7.561 7.644 7.552 

Isoleucine 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 10: Targeted amino acid analysis. 

Relative intensities of amino acids found in cell pellet and supernatant of cells grown in 
differing conditions; Cunningham’s medium (CM), CM supplemented with GlcNAc (NA), 
SDM80 plus Glucose (GL), SDM80 plus Proline (PR). 
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Figure 5-13: Targeted amino acid analysis. 

Relative intensities of serine (top) and aspartate (bottom) as found in the cell pellet and 
supernatant of cells grown in differing conditions. 
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Of the 20 amino acids only glycine, cysteine and isoleucine could not be identified from 

the list of masses, and only serine and aspartate showed any significant differences (Figure 

5-13). Most amino acids showed no considerable changes across the differing growth 

conditions. Within the cell pellet no aspartate was found in either the GL or PR states in 

comparison to the CM and NA states (despite aspartate being a medium component in 

both). This was also mimicked in the profile seen from the supernatant. This could possibly 

be explained by the fact that CM contains 110 mg/L of aspartate whereas SDM80 contains 

only 13.3 mg/L, and the fact we do not see any aspartate in the GL and PR states is 

because the little aspartate that is present is quickly metabolised. 

Interestingly, serine was present only in the supernatant of the CM and GL states (absent in 

the NA and PR states). This variance was not mimicked in the profile seen from the cell 

pellet. It is possible that there is a greater need for serine when proline is being used as the 

main carbon source, leading to a greater consumption of the metabolite from the 

surrounding medium. The fact that a greater amount of serine within the cell pellet was not 

seen does not refute that possibility as an increase in serine metabolism could remove the 

metabolite from the profile seen, leaving us with an interior metabolite abundance similar 

to the GL state. 

5.3 Discussion 

Systems biology offers an attractive method of investigating cellular processes at a global 

level. The advantage of global metabolomic approaches is that it highlights various cellular 

processes that can be investigated further by classical biochemical targeted techniques. 

Indeed, that was our intention here. We aimed to use metabolomic approaches not only to 

visualise the metabolome of the trypanosome as a result of differing carbon source usage, 

but also identify biomarkers that appear as a result of the metabolic adaptations already 

characterised (Lamour et al., 2005; chapter 4). 

Metabolomics technologies are embryonic. Refinements are required, not only to the 

sample processing techniques (to allow more metabolites to be seen) but also to the data 

analysis. This study represents one of very few performed on any organism and it is the 

eventual goal to develop methodologies adapted to the investigation of the T. brucei 

metabolome. This preliminary data highlights areas that need further confirmation in terms 

of reproducibility and areas of methodology to troubleshoot. Whether metabolomics will 

prove an effective tool for the characterisation and analysis of cellular processes remains to 

be seen. 
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Our initial assumption was that the metabolic adaptations involved in differing carbon 

source usage would be an easy event to observe in trypanosomes when viewing the global 

metabolome. There is a switch from the glycosome to the mitochondrion as the major 

source of energy production that occurs with the metabolic adaptation. It was our 

assumption that we would observe more intermediates specific for each pathway 

depending on the carbon source in use. This was not the case. For example, proline was 

seen in equal amounts irrespective of primary carbon source. The same was true for 

glutamate, a key intermediate in proline metabolism. 

What global metabolomics offers is a snapshot of the processes ongoing. It has the 

disadvantage of not being able to show flux through a specific pathway. Varying and 

having more incubation time points might allow for metabolic flux to be seen. It is possible 

that the metabolites not seen from the data could be simply because they have been used up 

quickly. Moreover, metabolites not seen can be as a result the extraction process. The use 

of more than one extraction process will undoubtedly identify metabolites not common to 

another extraction process. For example, extraction of cells into boiling water is a method 

commoly employed as complementary to boiling ethanol. A greater portion of 

phospholipids might be precipitated in EtOH extraction as compared with water extraction 

(M Kamleh, personal communication). The methodology employed consists of a 

centrifugation step that separates cells from spent medium. This centrifugation step can be 

eliminated as it perturbs cellular metabolism by creating an anoxic (depleted oxygen) 

environment. Immediate addition of boiling EtOH will give a much truer snapshot of the 

metabolome. 

The orbitrap process can also be altered to allow more metabolites to be seen. During the 

process, metabolites are ionised by the addition of a proton. It is also possible to run the 

process in reverse by stripping away a proton. This means that metabolites that do not 

favour proton addition might be more amenable to subtraction (sugar phosphate 

compounds), allowing them to be identified (M Kamleh, personal communication). With 

all these improvements to the methodology in mind, it is still possible that targeted 

metabolic profiling will support the hypothesis already confirmed by traditional 

biochemical techniques. 

Targeted amino acid analysis highlighted serine as a metabolite that differs as a result of 

metabolic adaptation. Serine was absent from supernatant extracts in both the PR and NA 

state, suggesting that when cells are using proline as the principal carbon source there is a 
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greater metabolic requirement. This might translate into upregulation of transporter 

processes (e.g. TbAATP1; chapter 3) and/or target enzyme relevant to serine metabolism. 

Metabolic fingerprinting involves an unbiased global screening approach. The intention is 

not to identify each observed metabolite but allows comparison of patterns or 

“fingerprints” as a result of cellular perturbations. Fingerprinting observes the true 

phenotype, however, the causal metabolites of the observed phenotype must be identified if 

any biochemical understanding is to be gained from the data. Identified from metabolomic 

fingerprinting investigation was essentially a list of metbolites unique to either L-proline or 

D-glucose metabolism. Of the 159 metabolites associated with glucose metabolism 

(SDM80 plus glucose), 37 (~23%) were found in the CM state; whereas of the 277 

metabolites that appear as a result of GlcNAc supplementation, 28 (~10%) were common 

to PR state. These handful of metabolites represent biomarkers for metabolism. However, 

these biomarkers could not be assigned putative chemical formula, and hence, the 

metabolite could not be identified. This is possibly due to the fact that metabolites appear 

in a range of different forms. Some metabolites appear associated with sodium ions. Many 

others forms of adducts exist, K adduct, Ca adduct, CH3CN adduct, NH4 adduct, HCOOH 

adduct, clusters of 2 or more molecules, as well as triple and quadrable charged species. At 

present these cannot be easily be deciphered. What needs to be done is to extend the simple 

putative formula analysis to include all other permutations and combinations that might 

exist for any given mass. 

There is no doubt that metabolomics offers new areas of trypanosome biology to explore. 

With only half the genome annotated there is potential for new biochemical pathways to be 

identified, whether they are trypanosome-specific or not. Further investigations need to 

confirm these biomarkers as well as confirm if these metabolites appear as a result of other 

conditions that cause a metabolic shift. 
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6 Uptake and Effects of Trypanotoxic Amino Acid 

Analogues 
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6.1 Introduction 

The precedent set by work with the P2 transporter, with regards to targeting toxins to 

trypanosomes via nutrient transporters (chapter 1.11), inspired a search for several amino 

acid analogues with trypanocidal activity. Some amino acid transporters fulfil similar 

criteria to purine transporters with regard to their transport characteristics (Hasne & 

Barrett, 2000). In some cases, the transporters’ natural substrates are of low plasma 

abundance, so these transporters should have correspondingly high affinities for their 

substrate (and hence maybe also substrate analogues). A drug using such a carrier will also 

have relatively low competition from natural substrate. Several amino acid analogues that 

kill trypanosomes are known. Some thiazine-linked amino acids showed good in vitro 

activity against T. brucei and also led to temporary reduction of parasitaemia in mice 

(Vanbogaert et al., 1993). These compounds had been designed as putative inhibitors of 

trypanothione biosynthesis, although it appears that this was not their mode of action, 

which remains uncertain. Most recently, Acivicin and 6-diazo-5-oxo-l-norleucine (DON); 

which are glutamine analogues that can kill trypanosomes in vitro (Hofer et al., 2001). 

These glutamine analogues only arrest the proliferation of the parasites. A functional 

immune response is then required to eradicate the static trypanosomes (Fijolek et al., 

2007). Also, the methionine analogue buthionine sulphoxamine (BSO) has been identified 

as potential trypanocides (Huynh TT et al., 2003; Arrick et al., 1981) giving a 50 µM IC50 

against PCF trypanosomes. BSO mode of action seems to involve inhibition of γ-

Glutamylcysteine synthetase (γ-GCS) resulting in trypanolytic effects. However, γ-GCS 

inhibition was not conclusively shown to be the sole target for BSO. 

6.1.1 Azaserine 

Compounds affecting the utilisation of the amino acid L-glutamine have a comparatively 

long history in the field of cancer chemotherapy (Livingston et al., 1970). At one time the 

glutamine agonists were undergoing clinical trials, but lack of effectiveness has caused a 

decline in interest. Glutamine, in trypanosomes, is essential for several biosynthetic 

pathways as well as DNA replication. Azaserine is of similar structure to glutamine and is 

an irreversible inhibitor of glutamine amidotransferases (Livingston et al., 1970), which 

catalyze the ATP-dependent transfer of the amido nitrogen of glutamine to an acceptor – in 

this case GMP (Figure 6-1). 
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Figure 6-1: Schematic representation of DNA synthesis showing L-glutamine usage in T. 
brucei (A) and the specific chemical reaction (B). 

Enzymatic steps are represented by arrows with enzymes represented by red numbers (1, 
GMP synthase; 2, guanylate kinase; 3, nucleoside diphosphatase; 4, pyruvate kinase; 5, 
ribonucleotide-diphosphate reductase large chain; 6, nucleoside diphosphate kinase) 
Abbreviations: XMP, xanthosine monophosphate; GMP, guanosine monophosphate; GDP, 
guanosine diphosphate; GTP, guanosine triphosphate; dGDP, deoxyguanosine 
diphosphate; dGTP, deoxyguanosine triphosphate; PPi, diphosphate. 

 

Azaserine is the most thoroughly studied compound within the diazo-analogues of 

glutamine. In mammalian cells, it has been shown that azaserine interferes with several 

reactions that involve glutamine. The reaction most sensitive to inhibition by azaserine is 

the conversion of formyglycinamide ribotide (FGAR) to formylglycinamidine ribotide 

(FGAM), a reaction within the biosynthetic pathway of purines (Hartman et al., 1955). The 

mechanism of inhibition still remains unclear, but what is clear is the irreversibility of the 

azaserine effect. De novo inhibition of purine biosynthesis is not the only cellular affect of 

azaserine. There has also been evidence shown for inhibition of cytidine biosynthesis and 

binding to DNA to interferes with its template function (Livingston et al., 1970). 

Azaserine has been shown to have some antibiotic properties (Bennett et al., 1956). In 

prokaryotes, azaserine is transported by the aromatic transport system. In Salmonella 

typhimurium, resistance seems to be as a result of a mutation in a gene whose product 

transports general aromatic amino acids (Williams et al., 1980). Sensitivity is regained by 

another mutation in a gene involved in histidine transport, suggesting that the antibiotic 

may be transported by multiple transport systems. 
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Azaserine action on Escherichia coli is similar to that of mammalian cells. The aromatic 

amino acids are the most effective in blocking the inhibition by azaserine on growth of E. 

coli. However, the ability of the aromatic amino acids to antagonise azaserine action may 

be due to non-specific effects and is not related to the action of azaserine on the aromatic 

acid biosynthesis pathway (Kaplan et al., 1959). The results of their investigation suggest 

that the penetration of the antibiotic through the cell membrane is prevented by the 

aromatic amino acids. Hypotheses proposed have been supported by the fact that azaserine 

has been shown to be under the control of the amino acid transport system (Jacquez et al., 

1957). However, azaserine action on the utilisation of aromatic amino acids in E. coli has 

not been investigated and cannot be ruled out. 

Trypanosomes lack aromatic amino acid biosynthesis pathways as well as most of the 

enzymes of the classical pathways for aromatic amino acid oxidation. Conversion of 

phenylalanine to tyrosine by phenylalanine-4-hydroxylase does not occur in T. brucei. All 

trypanosome species have genes for transamination and reduction to the corresponding 

aromatic lactate derivative (Berriman et al., 2005). This suggests that action of azaserine 

does not involve aromatic amino acid pathways, leaving competition for glutamine in 

GMP and CTP synthesis as the key candidate for azaserine’s trypanocidal action, as de 

novo purine biosynthesis does not occur in trypanosomes. 

 

Figure 6-2: Schematic representation of CTP synthesis showing L-glutamine usage in T. 
brucei (A) and the specific chemical reaction (B). 

Enzymatic steps are represented by arrows with enzymes represented by red numbers (1, 
CTP synthase; 2, nucleoside diphosphate kinase; 3, ribonucleoside-diphosphate reductase 
large chain; 4, nucleoside diphosphate kinase. Abbreviations: UTP, uridine triphosphate; 
CTP, cytosine triphosphate; CDP, cytosine diphosphate; dCDP, deoxycytosine 
diphosphate; dCTP, deoxycytosine triphosphate; Pi, inorganic phosphate. 
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In early studies, azaserine was noted to have an effect on the incorporation of purines and 

pyrimidines in Trypanosoma equiperdum (Momparler & Jaffe, 1964). The amino acids 

glutamine, tryptophan, tyrosine and leucine partially prevented the inhibition produced by 

azaserine. Results presented by Momparler & Jaffe (1964) suggest that the effect of 

azaserine is to inhibit the conversion of UMP to CMP, resulting in a depletion of cytosine-

containing nucleotides (Figure 6-2). More recently, CTP synthetase has been shown to be a 

potential drug target in BSF trypanosomes (Hofer et al., 2001; Fijolek et al., 2007). With 

CTP levels in BSF trypanosomes controlled by synthesis rather than by degradation, and 

no apparent salvaging of cytidine or cytosine by the parasite, the inhibition of CTP 

synthesis has been shown to have a dramatic effect on CTP levels and cell growth. 

6.1.2 Levodopa 

Potential trypanocidal amino acid analogues may be hampered by size of the side chain to 

allow targeting via an amino acid transporter. Aromatic amino acid analogues provide a 

level of complexity that can be built into a molecule and still be targeted through an amino 

acid transporter. The tyrosine analogue L-Dopa, along with other catecholamines, have 

been shown to have high trypanocidal activity (Owolabi et al., 1989). Various 

catecholamines (dopamine and tryptamine analogues) were tested against trypanosomes 

using a feeder layer culture system (Microtus agrestis embryonic fibroblasts). 

Catecholamines are compounds derived from tyrosine containing the catechol and amine 

structure. In vitro tests showed as little as 1 µM cleared all trypanosomes at a starting 

density of 105 cells per ml after 24 hours. L-Dopa and other catecholamines are subject to 

auto-oxidation and are potent producers of hydrogen peroxides, quinones, and free 

radicals. 

The discovery of L-Dopa’s trypanocidal activity together with the fact that certain 

catecholamines have been shown to have high trypanocidal activity (Owolabi et al., 1989) 

lead the investigation into the possibility of metabolic activation. Two pathways exist in 

mammalian cells for the metabolism of aromatic amino acids. The tyrosine pathway 

converts tyrosine to noradrenalin via L-Dopa and dopamine (Figure 6-3), whereas 

tryptophan is converted to melatonin via serotonin (Figure 6-4). 

L-Dopa can cross the blood-brain barrier and is commonly used in the treatment of 

Parkinson’s disease (PD). PD is a chronic disease of the central nervous system caused by 

lowered levels of the inhibitory neurotransmitter dopamine. Symptoms include muscular 

tremors and weakness. First described over 200 years ago, Parkinson’s disease is one of the 
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most common human degenerative disorders (Schapira, 2005). L-Dopa is the drug most 

commonly used to address the dopaminergic features of the disease, leaving the long term 

progression unaffected. The use of dopaminergic drugs improves motor function, and 

significantly reduces both the morbidity and mortality in sufferers – leading to an overall 

improvement in quality of life. Progression of the disease is still ongoing, and because of 

that, the effects of L-Dopa are modified due to the fact that the dopaminergic cells required 

to store and release dopamine are still in decline. 

Two different types of dopamine receptors are found in the brain (D1-like and D2-like 

receptors) and mediate different actions when stimulated by dopamine. Both are G-protein-

coupled, D1-like receptors stimulate adenylyl cyclase whereas D2-like receptors inhibit 

adenylyl cyclase (Mercuri & Bernardi, 2005). Despite the fact that D2-like receptor 

agonists are more effective anti-parkinsonian drugs, the use of mixed D1 and D2 receptor 

agonists provide the best control over PD symptoms. 

 

Figure 6-3: Tyrosine pathway. 

Schematic representation of L-tyrosine metabolism in mammalian cells. Enzymatic steps 
are represented by arrows with enzymes represented by red numbers (1, tyrosine 
hydroxylase; 2, dopa decarboxylase; 3, dopamine beta-hydroxylase). 

 

In dopaminergic neurons, accumulated tyrosine in converted to L-Dopa by addition of an 

ortho-phenolic group by tyrosine hydroxylase. Removal of the carboxyl group by dopa 
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decarboxylase follows. Vesicles within the neuron store and release dopamine; and when a 

dopaminergic nerve is stimulated the vesicles fuse with the outer membrane of the nerve 

(Kostrzewa et al., 2005). Within the synaptic and extra-synaptic spaces dopamine is 

converted into inactive metabolites by the enzymes monoamine oxidase and catechol-O-

methyltransferase (Mercuri & Bernardi, 2005). Clearance is also controlled by the 

dopamine transporter. In PD there are fewer dopaminergic nerves, meaning that fewer 

dopamine molecules re-enter nerve cells. Treatment involves giving exogenous L-Dopa 

which generates a high intraneuronal L-Dopa content, thereby elevating levels of 

dopamine. Combination therapy is common with L-Dopa treatment. L-Dopa is typically 

administered in conjunction with a decarboxylase inhibitor that is unable to cross the 

blood-brain barrier. This allows the exogenous L-Dopa to avoid metabolism by body 

tissues, leaving the most of the L-Dopa to enter the brain to produce the therapeutic effect. 

 

Figure 6-4: Schematic representation of L-tryptophan metabolism in mammalian cells. 

Enzymatic steps are represented by arrows with enzymes represented by red numbers (1, 
tryptophan 2,3 dioxygenase; 2, arylformidase; 3, dopa decarboxylase; 4, tryptophan 
hydroxylase; 5, dopa decarboxylase; 6, alkalkytransferase; 7, methyl transferase; 8, 
acetylserotonin O-methyltransferase). 

 

Tryptophan is converted to 5-hydroxytryptophan via the enzymatic action of tryptophan 

hydroxylase (enzyme 4), with subsequent conversion to the neurotransmitter serotonin. 

Non-dopaminergic neurons do not normally synthesise dopamine due to the fact that they 
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lack the enzyme tyrosine hydroxylase. However, despite this fact, non-dopaminergic 

neurons can accumulate L-Dopa. In this case, the L-Dopa is converted dopamine by dopa 

decarboxylase. 

As highlighted earlier (chapter 1.19), the range of pathophysiological effects associated 

with the disease are linked to trypanosome involvement, possibly by reducing host levels 

of essential amino acids (El Sawalhy et al., 1995). Another possibility is the direct 

involvement of toxic or inhibitory actions of metabolites produced from aromatic amino 

acid metabolism in trypanosomes. The aromatic α-keto acids and indole-3-pyruvic acids 

have been shown to accumulate abnormally in the urine of infected mice (El Sawalhy et 

al., 1995). This pathological symptom has been likened to other inherited disorders of 

aromatic amino acid metabolism. Indeed, the correlation between the physiological 

manifestations of trypanosomiasis and other neurological disorders cannot be discounted. 

It is evident that the perturbations of host environment brought about by trypanosome 

amino acid metabolism result in pathogenesis and physiology of the disease. 

6.1.3 Cell Penetrating Peptides 

Cell penetrating peptides (CPPs) have a maximum length of ~30 amino acids, have a 

positive charge (Deshayes, 2005), and have the potential to be novel antimicrobials These 

peptides are able to translocate through cell membranes without causing damage to the 

cell. Most research has focused on their potential use as delivery agents for therapeutic 

“cargo” such as DNA, peptides, and proteins; while some research focuses on their 

antimicrobial properties. 

These peptides demonstrate an ability to translocate into cells without causing damage to 

the membrane (Deshayes et al., 2005; Zorko & Langel, 2005). Although the specific 

mechanism in which the peptides cross the lipid bilayer is currently unknown, such 

properties have lead to the idea of using these peptides to deliver therapeutic cargo, such as 

DNA, peptides, or even proteins, into cells to treat various conditions and diseases (Zorko 

& Langel, 2005). There are no naturally occurring CPPs, most are either derived from 

transduction domains of native proteins, or designed to mimic the structure and sequence 

of such domains. Two of the best characterized CPPs are pVEC and TP10, a deletion 

analogue of Transportan (Elmquist et al., 2001; Soomets et al., 2000). Apart from uptake 

by mammalian cells, both peptides can successfully translocate into insect cells, 

protoplasts and yeast cells (Palm et al., 2006; Mae et al., 2005; Parenteau et al., 2005). In 

addition to their native properties, pVEC and TP10 demonstrate antimicrobial activity at 
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very low concentrations (Nekhotiaeva et al., 2004). This led to investigations of CPP 

activity on the human malaria parasite and (as outlined in this chapter) BSF trypanosomes 

(Arrighi et al., in press). 

Peptides are emerging as attractive drug delivery tools (Brooks et al., 2005). The human 

immunodeficiency virus (HIV) encodes several trans-acting regulatory proteins not present 

in other retroviruses. One of these genes, designated tat, encodes a 14 kDa nuclear protein 

that acts to trans-stimulate virus gene expression and is localised predominantly in the 

nucleus. Recently, site-directed mutagenesis has been used to identify function domains 

within the tat protein (Rubens et al., 1989). Tat mutations centred on the stretch of 

positively charged amino acids showed a retained tat function although at diminished 

levels. Moreover, the basic residues seemed to function as a nuclear localisation signal, a 

feature common among other nuclear proteins. 

The tat-derived peptide is a small basic peptide that has been successfully shown to deliver 

a large variety of cargoes that differ in size from small particles to large nucleic acids and 

proteins (Brooks et al., 2005). The ‘transduction domain’ or region conveying cell 

penetrating properties appears to be confined to a small stretch of basic amino acids, with 

the sequence RKKKRRQRRR (Ruben et al., 1989). It has been shown by a structure-

activity relationship study investigating which feature within the tat peptide was 

responsible for the membrane translocating property, that the cationic cluster of amino 

acids is the main functional domain determining translocation (Vives et al., 1997). The 

common sequence determinant in most studies performed with the tat peptide is the 

GRKKRRQRRR sequence. 

The mechanism of cell entry by the tat peptide along with other CPPs is unknown, yet 

several theories have been postulated from simple diffusion to an inverted micelle 

formation where ionic interactions between the cationic charges of the peptide and the 

anionic charges of the phosphate groups of the phospholipid heads of the membrane 

initiate the membrane absorption of the peptide (Brooks et al., 2005). Membrane 

association occurs in an energy independent manner, although it seems energy is required 

for translocation across the membrane (Deshayes et al., 2005). 

6.1.4 Eflornithine 

The ornithine analogue eflornithine (diflouromethylornithine, DFMO) was synthesised in 

the 1970’s as a potential anticancer drug (Siimes et al., 1981; Jänne et al., 1981). This 
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inhibitor of polyamine biosynthesis acts as an irreversible inhibitor of ornithine 

decarboxylase (ODC), with a consequent impairment of cell division. It is thought that 

DFMO’s mode of inhibition of ODC is by the formation of covalent adducts within the 

active site of the target enzyme through specific amino acid residues (Poulin et al., 1992). 

Trypanosome cells are also sensitive to DFMO. However, the selective toxicity in 

treatment stems from the fact that trypanosomes are more sensitive, possibly because of the 

fact that polyamine depletion in trypanosomes has a greater effect than in mammalian 

cells. In conjunction to this, the protozoa have an ODC that is degraded and replenished 

much more slowly that its mammalian host (Phillips et al., 1987). A 36 amino acid C-

terminal region, rich in proline, glutamate, aspartate, serine and threonine residues is found 

in the amino acid sequence of mammalian but not T. brucei ODC. In eukaryotes, regions of 

protein with this amino acid composition is a marker for rapid intracellular degradation, 

meaning trypanosome ODC has a much longer half life than its mammalian counterpart 

(Phillips et al., 1987). This is proposed as a possible cause of the selective toxicity 

exhibited rather than increased uptake or greater affinity for the trypanosome enzyme. 

Indeed, T. brucei rhodesiense shows a greater turnover rate of ODC and this subspecies is 

consequently less sensitive to DFMO action (Bacchi et al., 1990; Iten et al., 1995). 

Uptake of this analogue of ornithine has been proposed to occur via passive diffusion 

although some evidence for energy dependent transport exists (Bacchi et al., 1983; Bitonti 

et al., 1987). Uptake of DFMO in T. brucei has previously been studied in some detail 

(Bitonti et al., 1985). The rate of accumulation of DFMO is strongly dependent on the 

extracellular concentration, which suggested simple passive diffusion at play. Saturation of 

the uptake process with extracellular DFMO concentrations between 5 µM and 10 mM 

could not be demonstrated. Apparent uptake did not show inhibition by any common 

analogues (ornithine, lysine and arginine). However, the data presented by Bitonti shows 

only accumulation of DFMO at a 60 min time point, a time point which is far too long to 

report exclusively upon transport processes, especially when a diffusion component could 

also be at play. Moreover, inhibition studies only used concentrations of competition 

barely 20 times that of DFMO (56 µM DFMO vs 1 mM analogue). Net internalisation of 

compounds comprises of transport as well as downstream effects related to metabolism and 

distribution. Therefore, at the longer time points these latter effects play a larger role on net 

uptake than initial transport. Temperature sensitivity of uptake gives the most evidence for 

transport processes at play. Indeed, in PCF trypanosomes uptake has been shown to be 

temperature sensitive and, moreover, follow Michaelis-Menten kinetics with an apparent 

Km of 244 µM (Phillips & Wang, 1987). 
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Certain biochemical changes to PCF trypanosomes associated with resistance to DFMO 

have been seen (Bellofatto et al., 1987). DFMO resistant cell lines were created and uptake 

of [3H]-DFMO was investigated in comparison to wild type cell lines. The rate of DFMO 

uptake and incorporation was found to be significantly less in resistant lines (2.5 fold less) 

with intracellular concentrations of DFMO calculated to be 47 µM in wild type cells and 

only 20 µM in resistant cell lines after 70 mins. They concluded that, in this case, the 

resistance phenotype was not a direct result of increased ODC activity, or a change to the 

inhibition profile of DFMO binding to ODC, or amplification of the ODC gene. However, 

increased levels of ODC mRNA were seen suggesting increased transcription resulting in 

the resistance phenotype seen. Although, this result seems dubious as protein extracts 

showed no increase in ODC levels. 

DFMO also shows a profound effect on morphology of trypanosomes as well as their 

biochemical characteristics; causing rapid depletion of intracellular polyamines with a 

compensatory increased uptake of exogenous polyamines (Alhonen-Hongisto et al., 1980), 

blocking of cytokinesis leading to multinucleated cells, alterations in macromolecular 

synthesis, and abnormal morphology including a broad appearance with a short free 

flagellum (Bacchi et al., 1983). DFMO exposure of trypanosomes results in increased 

arginine and polyamine uptake as well as increased AdoMet decarboxylase activity (Porter 

et al., 1987). Arginine is a precursor of ornithine and the increased exogenous polyamine 

uptake could be a compensatory switch for the fall in intracellular levels due to ODC 

inactivity. 

When trying to decipher a mechanism of drug resistance that doesn’t involve the target 

enzyme being modified or upregulated, transport defects frequently relate to resistance. In 

the case of DFMO, energy dependent and independent processes have both been 

implicated (transport versus simple passive diffusion). Assuming that both are relevant for 

getting DFMO into the cell only the loss of a transport system would lead to a resistance 

phenotype. Rapid drug efflux doesn’t seem to be a mechanism in play in terms of 

resistance to DFMO (Bellofatto et al., 1987). 
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Figure 6-5: General scheme for polyamine pathway in trypanosomes. 

Relevant enzymes are depicted in red. Enzymatic steps are represented by arrows. Blue 
arrows denote levels upon action of Eflornithine. Enzymes: ODC, ornithine 
decarborxylase; SAM DC, S-Adenosyl-methionine decarboxylase; spermidine synthase, 
spermine synthase. Abbreviations: MTA, methylthioadenosine; S-AdoMet, S-adenosyl 
methionine; d S-AdoMet, decarboxylated S-adenosyl methionine; Glu, L-glutamate; Cys, 
L-cysteine; GSH, glutathione; N-GSH-SPD, glutathionyl spermidine; T[SH]2, 
trypanothione (reduced); T[S]2, trypanothione (oxidised). 

 

Targeted metabolite analysis revealed that exposure of parasites to the drug leads to an 

increase in ornithine levels and decreases of spermidine, putrescine and trypanothione, 

while levels of decarboxylated S-adenosylmethionine, the aminopropyl group donor in the 

polyamine biosynthetic pathway, also increase (Fairlamb et al., 1987). One of the 

biochemical effects of DFMO treatment is complete elimination of putrescine and a 

significant reduction of spermidine (Bacchi et al., 1983). Fairlamb et al proposed that 

significant polyamine depletion upon DFMO treatment effects levels of trypanothione (N1, 

N8-bis(glutathionyl)spermidine). Studies performed investigated the levels of metabolites 

involved in the synthesis of trypanothione using HPLC methods to detect and analyse 

separated thiols. The effect of DFMO treatment was to rapidly reduce putrescine levels, 

spermidine reduction was more gradual over the 48 hour time period, and a consequent 

increase of intracellular levels of ornithine (18-fold increase over 12 hours), SAM (75-fold 
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increase after 72 hours) and dSAM (92-fold increase after 48 hours). The consequent drop 

in polyamine levels is what leads to the subsequent reduction in thiol levels. Decreased 

levels of trypanothione result in increased sensitivity to organic peroxides such as 

hydrogen peroxide. 

DFMO’s cytostatic action requires a host response for effective elimination of parasites 

(Bitonti et al., 1986). Indeed, parasite respiration decreases (Giffin et al., 1986), and DNA 

synthesis is arrested (Bacchi et al., 1983). Moreover, a number of morphological changes 

are associated with DFMO action. BSF trypanosomes after 36 hour DFMO treatment 

displayed characteristics similar to the stumpy form of the parasite, with multi-nucleated 

parasites seen (Bacchi et al., 1983). 

6.2 Results 

6.2.1 Amino Acid Analogue Screens 

The effect of a number of amino acid analogues on PCF trypanosomes as well as BSF 

trypanosomes was tested. Screening of 96 amino acid analogues have given several 

potential trypanocidal agents with varying degrees of efficacy (Table 10, Appendix 8.14). 

IC50 values of all were determined for both the PCF and BSF of the parasite. A 

comparative assay against the mammalian cell line (HEK 293T) was done as a preliminary 

for potential drug application. 

 

Figure 6-6: Structures of some of the relevant amino acid analogues used. 
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Lead candidate investigations proceeded to look at each in further detail by trying to follow 

the path into the cell starting at a route of uptake with respect to amino acid transporters. 

Furthermore, a possible cellular target involving amino acid usage was investigated. 

However, it is also important to note that, the action of certain amino acid analogues might 

be brought about by metabolic and/or extracellular activation. 

Amino Acid Analogue IC50 (µM) 

 PCF BSF HEK 

Azaserine 176.46 10.85 1.52 

L-Serine ß-naphthylamide 38.60 43.71 179.50 

Tryptophan Benzyl Ester 96.54 27.54 N/A 

Levodopa 58.58 31.58 112.21 

Cycloserine 116.15 308.00 176.42 

N-Benzoyl-L-Propyl-L-Tyrosine p-nitroanilide 46.20 17.40 110.00 

L-Leucine ß-Naphthyl Amide 69.66 52.70 N/A 

3,4 Dihydrophenylacetic acid 65.20 404.00 112.40 

Tryptamine 21.90 57.83 176.42 

Dopamine 63.25 275.00 87.00 

Tri-Iodothyronine (T3) 134.44 102.17 N/D 

L-Thyroxine N/A 56.17 N/D 

Melphalan N/A 102.24 N/D 

Table 11: Trypanocidal activities of lead candidate amino acid analogue. 

Mean IC50 values calculated for activity against the PCF, BSF trypanosome and the HEK 
cell line (N/A = no activity up to 200 µM, N/D = not determined) (n≥3). 

 

Lead candidates chosen were those that showed an IC50 value of less than 200 µM. The 

amino acid analogues show a wide range of activities; with azaserine being the most potent 

against the BSF of the parasite and tryptamine being the most effective against the 

procyclic form. The analogues azaserine and levodopa were chosen for further analysis. 

The protocol for the alamar blue assay used here is adapted from Raz et al. (1997), using a 

starting BSF cell density of 104 cells per well. However, some labs commonly employ cell 

numbers as low as 103 cells per well. There is some evidence that the difference in starting 

densities does result in a shift in IC50’s. This shift could be many orders of magnitude. 

With that in mind, it is possible that the moderate IC50’s shown here by some analogues 

could show higher activities under different conditions. 
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6.2.2 Trypanocidal Activities 

A killing phenotype was investigated with some of the trypanotoxic amino acid analogues. 

For this, PCF trypanosomes were incubated with 1 mM drug (azaserine, L-Dopa, serine ß-

napthylamide, tryptophan benzyl ester and tryptamine) and viewed periodically noting 

their morphology. 

With tryptophan benzyl ester and serine ß-napthylamide, PCF trypanosomes were killed 

overnight, with no dead intact parasites seen; just disintegrated cell debris. With L-Dopa 

killing occurred over 24 hours with dead whole cells visible leading to disintegration of 

cells. With L-Dopa, the medium colour changes to a heavy brown, almost black 

appearance. With azaserine, killing occurred much more slowly. After 48 hours some live 

parasites were still visible, suggesting that azaserine has a trypanostatic effect on cells 

rather than a trypanocidal one. 

This killing phenotype was repeated for BSF trypanosomes. With tryptophan benzyl ester 

and serine ß-napthylamide cells were all dead within 6 hours of drug exposure. For 

tryptophan benzyl ester cell debris and no intact parasites were seen. Serine ß-

napthylamide showed some intact dead cell (skeletons). Azaserine exposure showed a 

slower effect. Some cells were still alive after 6 hours and even 24 hours. Cell debris was 

seen as well as parasite skeleton. Killing due to levodopa was also within the first 6 hours 

of exposure. The killing phenotype was the most distinct of the amino acid analogues 

tested, with all dead cells still intact. 

In BSF trypanosomes we also wanted to distinguish between trypanostatic and 

trypanocidal drug actions for azaserine and L-Dopa. For this, BSF trypanosomes at a 

starting density of 7 x 104 cells/ml were incubated in the presence of drug at twice its IC50 

concentration. Cells were monitored by microscopy periodically and cell numbers were 

determined using an improved Neubauer haemocytometer (counting chamber; Weber 

Scientific). 
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Figure 6-7: Trypanocidal cell counts. 

BSF trypanosomes incubated at 1xIC50 and 2xIC50 of each drug (10 µM and 20 µM 
azaserine; 30 µM and 60 µM L-Dopa) over a 72 hour period (this experiment represents 3 
similar repeats). 

 

With L-Dopa at 2xIC50 concentration a trypanocidal effect was seen. Cells incubated at 

1xIC50 could overcome the initial drug exposure and were seen to proliferate after 24 

hours. With azaserine, a more trypanostatic effect was seen. Both concentrations of the 

drug used stopped trypanosomes from proliferating and only after day 3 was cell death 

seen. 

6.2.3 Mode of action 

With amino acid analogues showing high structural similarity to the naturally occurring 

amino acids, it is possible that a specific action involving amino acid usage is involved. 

Azaserine shows similarity with the amino acid glutamine and levodopa shows similarity 

to tyrosine. Here, we simply incubated bloodstream form trypanosomes with high 

concentrations of all the 20 amino acids at twice each drug’s IC50 to determine whether any 

amino acids, at high concentrations, could antagonise analogue activity. 
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Figure 6-8: Amino acid recovery of azaserine action. 

The action of 20 µM azaserine in the presence of 10 mM of each of the 20 amino acids 
(norvaline included), with no drug used as a control (n=3, Error bars = ±SEM). 
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Figure 6-9: Amino acid recovery of L-Dopa action. 

The action of 60 µM L-Dopa in the presence of 10 mM of each of the 20 amino acids 
(norvaline included), with no drug used as a control (n=3, Error bars = ±SEM). 
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Results showed no difference in toxicity with increased concentrations of amino acids, 

suggesting that the analogue’s mode of action does not involve amino acid usage by 

trypanosomes or, at the very least; the mode of action is not competitive with other amino 

acids. The apparent recovery by L-cysteine was anomalous as viewing of cells by 

microscopy showed no live parasites. 

It is possible that the high level of L-Dopa toxicity seen by Owolabi et al is simply as a 

result of metabolic activation. However, this possibility was investigated by testing all 

intermediates and ultimate products of the pathway for trypanocidal activity against 

trypanosomes. 

Amino Acid Analogue IC50 (µM) 

 PCF BSF HEK 

5' Hydroxy-L-Tryptophan N/A N/A N/A 

Serotonin 155 N/A N/A 

Tryptamine 21.90 57.83 176.42 

Dopamine 63.25 275.00 87.00 

Kynurenine N/A N/A N/A 

Noradrenaline N/A N/A N/A 

Table 12: Trypanocidal activities of metabolic downstream analogues. 

Mean IC50 values calculated for activity against the PCF, BSF trypanosome and the HEK 
cell line (N/A = no activity up to 100 µM, N/D = not determined) (n≥3). 

 

Dopamine, noradrenaline, kynurenine, 5’hydroxy-tryptophan and serotonin did not show 

any significantly higher toxicity against trypanosomes when compared to L-Dopa and 

Tryptamine (Table 12). A mode of action for L-Dopa involving the generation of reactive 

oxygen species has already been postulated (Olowabi et al., 1989). However, it was not 

clear if its action was due to internal or exterior activity of L-Dopa itself or one or more of 

its derivatives. In trypanosomes, protection against oxidative stress is controlled partly by 

super-oxide dismutase, a family of antioxidant metalloenzymes which detoxifies 

superoxide anions (Prathalingham et al., 2007). We also tested L-Dopa for activity against 

TbSOD mutants to see if increased L-Dopa activity was evident in TbSOD knock-out 

lines. No difference was found in L-Dopa activity as compared to controls. L-Dopa alamar 

blue assays against TbSOD knock-out lines were performed by Prof. John Kelly’s lab 

(LSHTM, London). 
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In order to try and select for resistance, BSF trypanosomes were passaged in medium 

containing incremental amounts of drug. However, the generation of resistant lines proved 

problematic. For azaserine, parasites showing only a 4-fold resistance were obtained, 

however, constant drug pressure reduced the doubling time of parasites and stable growth 

could not be obtained; with parasites usually dying after several passages. For levodopa, 

concentrations used caused progressive darkening of the medium, with turbidity 

developing from the production of quinolones and other reactive oxygen species. Resistant 

cell lines could not be generated due to the fact that trypanocidal activity may not 

necessarily be as a result of the analogue itself, but secondary products of the analogue. 

6.2.4 Azaserine & the L-glutamine Transport System 

Internalisation of amino acid analogues via amino acid transporters was an essential area 

we wanted to investigate. For this, we tested uptake of radiolabeled amino acids in the 

presence of excess concentrations of amino acid analogues. A possible route of entry was 

discovered by inhibition of glutamine uptake (based on structural similarity) as well as a 

possible route of entry through the aromatic amino acid transport system. 
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Figure 6-10: Glutamine uptake in PCF trypanosomes in the presence and absence of 
azaserine. 

Uptake of 10 µM L-[3H] Glutamine in PCF trypanosomes over a 1 hour time period, in the 
presence and absence of 10 mM azaserine (n=3, Error bars = ±SEM). 
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Glutamine uptake was studied in the presence of 10 mM azaserine over a 1 hour time 

period, showing a significant inhibition of uptake over a short period of time. This 

inhibition was never total (~50%) and beyond 5 minutes no inhibition was apparent. Since 

multiple routes of entry for azaserine had been postulated in other organisms (Williams et 

al., 1980; Kaplan et al., 1959; Jacquez et al., 1957), we investigated a possible alternative 

route of entry for azaserine. Screening of a number of radiolabelled amino acids lead us to 

find a common route of uptake via a phenylalanine transport system. 
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Figure 6-11: Phenylalanine uptake in PCF trypanosome in presence and absence of 
azaserine. 

Uptake of 10 µM L-[3H] Phenylalanine in PCF trypanosomes over a 1 hour time period, in 
the presence and absence of 10 mM azaserine (n=3, Error bars = ±SEM). 

 

Azaserine inhibition of phenylalanine uptake is more pronounced than the inhibition seen 

against glutamine. Again, this inhibition is lost over time, as at the 1 hour time point, 

incorporation of phenylalanine in the presence of azaserine shows no comparable 

difference. We also wanted to investigate if azaserine inhibition of glutamine and aromatic 

amino acids was also evident in BSF trypanosomes. 
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Figure 6-12: Glutamine uptake in BSF trypanosomes in presence and absence of azaserine. 

Uptake of 10 µM L-[3H] Glutamine in BSF trypanosomes over a 1 hour time period, in the 
presence and absence of 10 mM azaserine (n=1). 

 

Glutamine inhibition by high concentrations of azaserine is also seen in BSF. In this 

instance, glutamine inhibition seems to be to a greater degree than the inhibition exhibited 

by PCF trypanosomes, with 10 mM azaserine able to inhibit L-glutamine accumulation to 

completion. 

Time (mins)

0 20 40 60

U
p

ta
k
e

 (
n
a

n
o

m
o

le
s
/1

0
7
 c

e
lls

)

0

0.001

0.002

Tyr

+Azaserine

 

Figure 6-13: Tyrosine uptake in BSF trypanosomes in presence and absence of azaserine. 

Uptake of 10 µM L-[3H] Tyrosine in BSF trypanosomes over a 1 hour time period, in the 
presence and absence of 10 mM azaserine (n=3, Error bars = ±SEM). 
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Tyrosine uptake in BSF trypanosomes shows an almost linear characteristic over the 1 

hour time period. Internalisation of tyrosine can be inhibited by azaserine at high 

concentrations. Therefore, it seems evident that azaserine, at high concentrations, inhibits 

glutamine, phenylalanine and tyrosine internalisation by trypanosomes. We used this fact 

as a mode to investigate a glutamine specific transport system in PCF trypanosomes, 

hoping that more insight can be gained into the nature of the glutamine transport system. 

Firstly, to find amino acids that may be co-transported along with glutamine, inhibition of 

glutamine uptake was performed using all the 20 amino acids individually at a high 

concentration. 

Amino Acid Inhibitor (10 mM)

N
o

 i
n

h
ib

it
o

r

a
la

 

g
ly

c
y
s

a
s
n

s
e

r

th
r

a
s
p

g
lu

p
h

e

ty
r

tr
p

m
e

t

p
ro

g
ln

v
a

l

le
u

il
e

h
is

a
rg ly
s

%
 U

p
ta

k
e

0

20

40

60

80

100

120

140

160

180

 

Figure 6-14: Glutamine inhibition by 20 amino acids. 

Uptake of 10 µM L-[3H] Glutamine in the presence of all 20 amino acids at a concentration 
of 10 mM. Uptake shown as a percentage of control with no inhibitor (L-Tyrosine is not 
soluble at a concentration of 10 mM under the conditions required for this experiment. 
Consequently inhibition of uptake was not determined in the presence of tyrosine) (n=3, 
Error bars = ±SEM). 

 

Glutamine uptake shows high levels of competition with glutamate and methionine 

suggesting a shared route of entry for these three amino acids. Structural similarities 

proposed that this may be the case, although – functionally – glutamine shares amidic 
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properties with asparagine, which doesn’t seem to be transported along with it. Amino acid 

transporters often have a broad specificity range, which sometimes can be seen as “leaky” 

transport. In this case, uptake of glutamine is inhibited to high levels (>90%) by a few 

amino acids (glutamate and methionine) whereas tryptophan shows very weak inhibition 

(~40%). 

To determine the relative affinities of potential competitors for the transport system we 

used radiolabelled glutamine as the label in the presence of 0-10 mM of each of the other 

amino acids previously shown to inhibit glutamine uptake (Figure 6-15). Using a range of 

concentrations can distinguish between ‘weak’ and ‘partial’ inhibition, and can give an 

insight into the nature of the transport system. 
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Figure 6-15: Glutamine inhibition. 

Inhibition of 10 µM L-[3H] Glutamine in PCF trypanosomes by cold glutamine, 
methionine, glutamate, and azaserine over a range of concentrations (no inhibitor, 10 µM, 
50 µM, 100 µM, 500 µM, 1 mM, 2 mM, 4 mM, 5 mM, 8 mM, 10 mM) (n=3, Error bars = 
±SEM). 

 IC50 (µM) Standard Error 

Glutamine 16.03 1.1 

Methionine 1393.8 326.4 

Glutamate 6397.3 1938.7 

Azaserine 3723.1 324.4 

Table 13: Calculated IC50 values for inhibitors of L-glutamine uptake. 
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In each case these amino acids gave a progressive dose-dependent inhibition (although to 

different degrees), suggesting the order of affinity for a supposed transporter being 

glutamine>>methionine>>glutamate, with azaserine showing only partial inhibition.  

The calculated IC50 values refer to the amount of inhibitor required to inhibit uptake of a 

particular amino acid by 50%. Only glutamine shows an IC50 value in the micro molar 

range, with the others in the millimolar range, suggesting that this transporter has a higher 

affinity for glutamine as compared to all the others. 

6.2.5 Levodopa & the Aromatic Transport System 

Studies here on aromatic amino acid uptake in trypanosomes have been done in the context 

of the amino acids phenylalanine and tyrosine, along with the tyrosine analogue, 

Levodopa. None of the other aromatic amino acid analogues (noradrenalin, serotonin, 

tryptamine, or dopamine) showed any inhibition of phenylalanine uptake (Figure 6-16). 
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Figure 6-16: Phenylalanine inhibition by amino acid analogues. 

Uptake of 10 µM L-[3H] Phenylalanine in PCF trypanosomes in the presence of a range of 
analogues at a concentration of 10 mM (L-Dopa concentration at 1 mM) (n=1). 
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Levodopa’s high structural similarities to tyrosine lead us to investigate its internalisation 

through a tyrosine specific transport system. We investigated uptake of tyrosine in PCF 

trypanosomes over the course of 1 hour in the presence of 1 mM L-Dopa. 
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Figure 6-17: Tyrosine uptake in PCF trypanosomes in the presence and absence of L-Dopa. 

Uptake of 10 µM L-[3H] Tyrosine in PCF trypanosomes over a 1 hour time period, in the 
presence and absence of 1 mM L-Dopa (n=3, Error bars = ±SEM). 
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Figure 6-18: Tyrosine uptake in BSF trypanosomes in the presence and absence of L-Dopa. 

Uptake of 10 µM L-[3H] Tyrosine in BSF trypanosomes over a 1 hour time period, in the 
presence and absence of 1 mM L-Dopa (n=3, Error bars = ±SEM). 
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L-tyrosine uptake was inhibited to a large degree by 1 mM L-Dopa, with uptake almost 

non-existent over the 1 hour time period. This was evident in both the PCF and BSF stage 

of the parasite. Given the fact that aromatic amino acids have no significant metabolic 

function within the cells, accumulation of amino acids within the cell seems odd. As in the 

previously described work with L-glutamine, inhibitor studies might give insight into 

structural specificities of a tyrosine transporter in trypanosomes. 

Amino Acid Inhibitor (10 mM)

N
o

 I
n

h
ib

it
o

r

a
la

g
ly

c
y
s

a
s
n

s
e

r

th
r

a
s
p

g
lu

p
h

e

ty
r

tr
p

m
e

t

p
ro

g
ln

v
a

l

le
u

is
o

h
is

a
rg ly
s

%
 U

p
ta

k
e

0

20

40

60

80

100

120

140

160

180

 

Figure 6-19: Tyrosine inhibition by 20 amino acids. 

Uptake of 10 µM L-[3H] Tyrosine in PCF trypanosomes in the presence of all 20 amino 
acids at a concentration of 10 mM. Uptake is shown as a percentage of control with no 
inhibitor (L-Tyrosine is not soluble at a concentration of 10 mM under the conditions 
required for this experiment. Consequently inhibition of uptake was not determined in the 
presence of tyrosine) (n=3, Error bars = ±SEM). 

 

Tyrosine uptake is inhibited relatively poorly by the 20 amino acids at 10 mM, with 

phenylalanine and tryptophan the two amino acids that inhibit the most (~20-50% uptake), 

and methionine showing ~60% inhibition. It is possible that a common route of entry exists 

for the aromatic amino acids due to structural similarity, however since inhibition is never 

total it is possible multiple transporters play a role in uptake. Indeed, previous work 

investigating aromatic amino acid uptake in BSF trypanosomes suggested the existence of 
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several aromatic amino acid transporters (M.P. Hasne, thesis). Phenylalanine and 

tryptophan were found to use at least 2 routes of entry while a single high affinity 

transporter was identified for tyrosine. 
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Figure 6-20: Tyrosine inhibition. 

Inhibition of 10 µM L-[3H] Tyrosine in PCF trypanosomes by cold tyrosine, 
phenylalanine, tryptophan and L-Dopa over a range of concentrations (no inhibitor, 0.1 
mM, 1 mM, and 5mM). Uptake shown as a percentage of control with no inhibitor (n=3, 
Error bars = ±SEM). 

 

Inhibition of tyrosine under increasing amounts of cold tyrosine, phenylalanine, and 

tryptophan showed a dose dependent relationship, with tryptophan being the weakest of all 

the aromatic inhibitors. L-Dopa was only used at a highest concentration of 1 mM due to 

the limits of its solubility in water. Higher concentrations of L-Dopa can be achieved with 

dilution in HCl, however, the hydrogen ions alter the pH of the uptake buffer and 

subsequently alter uptake by trypanosomes. From this, it seems possible that a tyrosine-

specific transport system also shows some specificity for phenylalanine and tryptophan, 

and great specificity for L-Dopa. 
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Figure 6-21: Phenylalanine inhibition. 

Inhibition of 10 µM L-[3H] Phenylalanine in PCF trypanosomes by cold phenylalanine and 
L-Dopa over a range of concentrations (no inhibitor, 0.1 mM, 1 mM, and 5mM). Uptake 
shown as a percentage of control with no inhibitor (n=3, Error bars = ±SEM). 

 

Phenylalanine self-inhibition reaches completion at 5 mM. Inhibition of phenylalanine 

with L-Dopa at the 1 mM concentration used inhibits phenylalanine uptake by ~40%. In 

comparing the result here with that from the tyrosine inhibition experiment it seems that L-

Dopa does have specificity for both the tyrosine and phenylalanine transport systems, 

although to differing degrees. If one transport system for the aromatic amino acids was 

evident then L-Dopa inhibition of both tyrosine and phenylalanine would be to a similar 

degree. The fact that more inhibition of tyrosine uptake is seen suggests that different 

transport systems occur for the aromatic amino acids. 

6.2.6 Cell Penetrating Peptides 

 

Peptide Sequence Length 

pVEC LLIILRRRIRKQAHAHSK 18 

TP10 AGYLLGKINLKALAALAKKIL 21 

Tat GRKKRRQRRR 10 

Table 14: CPP amino acid sequence. 
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Peptides compromise short amino acid chains, and there has been some interest in the 

antimicrobial activity of some peptides. Here we test three CPPs (TP10, pVEC and tat-

derived peptide) for anti-trypanosomal activity and look at the internalisation of TP10 and 

tat-derived peptide. 

The TP10 and pVEC CPPs were from Dr Romanico Arrighi (University of Stockholm) 

whereas the tat-derived peptide was from Dr Catherine Berry (University of Glasgow). We 

investigated CPP activity, and monitored TP10, pVEC and tat peptide activity against 

blood stage trypanosomes in vitro. Here TP10 shows strong activity, with an IC50 value of 

2.7 µM. In contrast, pVEC was ineffective at reducing the parasite numbers up to 

concentrations of 25 µM. The tat-derived peptide failed to show any trypanocidal activity 

at concentrations up to 100 µM. In order to determine whether TP10 was lysing BSF 

trypanosomes, we monitored the parasites every hour up to six hours following the 

addition of TP10 (Figure 6-22). 
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Figure 6-22: CPP activity against BSF trypanosomes. 

Cell numbers viewed microscopically over a 6 hour time period (this experiment represent 
data from 3 similar repeats). 

 

The parasite numbers dropped by ~20% within one hour of treatment at the IC50 

concentration (2.7 µM). No further reductions were noted in the subsequent hours post-

treatment. However at 2xIC50 (5.4 µM), an initial drop in parasite numbers was followed 
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by a steady decline in the parasite population, with complete cell clearance after 6 hours. 

This data shows that TP10 is effective against blood stage trypanosomes. 

To shed light on the mechanism of TP10 trypanocidal activity we used FITC-conjugated 

TP10 (fluorescin isothiocyanate), and monitored potential uptake and localisation in the 

BSF trypanosome as compared with DAPI (4',6-diamidino-2-phenylindole, a fluorescent 

stain that binds strongly to DNA). BSF trypanosomes were exposed to either 10 µM or 50 

µM drug. Rapid cell death was seen at higher concentrations, and even at these 

concentrations cell death was evident. 

The compound was seen to enter dead cells. However, live cells did not show significant 

internalisation of the compound. And few showed co-localisation with the kinetoplast and 

the nucleus and others with just the kinetoplast. It is possible that greater concentrations of 

drug are needed to show any significant staining of the trypanosome cell interior. 

However, because of trypanocidal activity of the compound, it will be hard to achieve 

without cell death. 

The internalisation of the tat peptide into the interior of the trypanosome was also 

investigated. Internalisation of the peptide was not seen at concentrations of up to 60 µg/ml 

(~43 µM), with up to 3 hours incubation time. No staining of cell interior was seen, as 

compared to punctuate localisation with DAPI as a control. 

6.2.7 DFMO Mode of Uptake 

Here, we investigate further the mode of uptake of DFMO and its relation to other amino 

acids with respect to uptake via an amino acid transport system. Due to short supply of 3H-

DFMO (a gift from Dr S Thomas, London), only a preliminary study of DFMO uptake was 

possible. 
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Figure 6-23: DFMO uptake. 

Uptake of 10 µM 3H-DFMO in BSF trypanosomes over a 2 hour time period (n=1). 

Uptake of 10 µM 3H-DFMO over the 2 hour time period appears to be essentially linear, 

showing an approximate accumulation of drug at a rate of 10 picomoles per hour (per 107 

cells). 
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Figure 6-24: DFMO self-inhibition. 

Inhibition of 10 µM 3H-DFMO in BSF trypanosomes by cold DFMO over a range of 
concentrations (no inhibitor, 30 µM, 60 µM, 125 µM, 250 µM, 500 µM, 1 mM, 10 mM). 
Inset: 0 – 250 µM (n=1). 
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Next we wanted to determine if uptake of DFMO could be inhibited by increasing doses of 

unlabelled drug. Self-inhibition of DFMO never reaches a baseline level; with an apparent 

stimulation of uptake from 250 to 500 µM onwards. Increased DFMO concentrations seem 

to re-stimulate increased uptake of DFMO. An IC50 value was calculated (26.7 µM ± 4.6) 

based on the concentration which gave half of the maximal inhibition. If inhibition is 

incomplete, this could suggest more than one route of entry for a particular substrate. In 

this case, inhibition at its maximum is only 50% complete. 
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Figure 6-25: DFMO inhibition by 20 amino acids. 

Uptake of 1 µM 3H-DFMO in BSF trypanosomes in the presence of all 20 amino acids at a 
concentration of 500 µM. Uptake shown as a percentage of control with no inhibitor, with 
red line indicating inhibition level by cold DFMO (n=1). 

 

Inhibition of [3H]-DFMO (1 µM) by the 20 amino acids using a 500-fold excess of cold 

inhibitor shows that lysine, arginine, threonine, glutamate and the aromatic amino acids 

can inhibit DFMO uptake beyond 50%. Only a 500-fold excess was used as to avoid 

stimulation of another possible intake mechanism at high concentrations as noted by the 

data collected on DFMO self inhibition with cold DFMO. This information provides more 

preliminary evidence for multiple routes of entry via amino acid specific transport systems. 

Inhibition greater than the level of self-inhibition exhibited by DFMO on its own is shown 

by the amino acids threonine and glutamate, as well as two amino acid groups (the basic 
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and aromatic amino acids). These latter two groups were then used to study additive 

inhibition. 
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Figure 6-26: DFMO inhibition by basic and aromatic amino acids. 

Uptake of 1 µM 3H-DFMO in BSF trypanosomes in the presence of 500 µM amino acid 
inhibitors (histidine, arginine, lysine, tyrosine, phenylalanine, tryptophan, and 
combinations of both the basic (arginine, lysine and histidine) and aromatic 
(phenylalanine, tryptophan and tyrosine) amino acids at a concentration of 500 µM each) 
(n=1). 

 

The basic and aromatic groups of amino acids were used to study additive inhibition using 

the same inhibition concentrations as previously stated (500 µM inhibitor versus 1 µM 

DFMO). All amino acids used showed some level of inhibition, with lysine showing total 

inhibition of DFMO uptake. Interestingly, high concentrations of multiple amino acids did 

not completely reduce uptake of DFMO. DFMO uptake in the presence of all three basic 

amino acids showed levels comparable with histidine on its own. Similarly, high levels of 

the aromatic amino acids restore DFMO uptake. If a sole basic amino acid transporter was 

present we would expect to see total inhibition of DFMO uptake in the presence of all the 

basic amino acids. However, the fact that uptake is still seen in the presence of the basic 

amino acids points to a few possibilities. Firstly, that multiple transporters are present, the 

kinetics and capacity of which cannot be distinguished from these preliminary 
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experiments. And secondly, it is possible that some sort of trans-acceleration effect is 

occurring in the presence of high concentrations of the amino acids. Trans-acceleration 

refers to the increased capacity of a single transporter. Thirdly, the presence of high 

concentrations of certain amino acids might stimulate the opening of another related 

transporter. This might go some way to explaining the restored uptake of DFMO in the 

presence of the aromatic amino acids, and is consistent with the apparent re-stimulation of 

DFMO uptake (Figure 6-24). 

It seems possible that multiple routes of entry for DFMO are present. Lysine differs from 

DFMO by one CH2 unit on its side chain and an altered amino acid recognition motif, with 

the hydrogen replaced by a difluoromethyl unit (Figure 6-32). It is expected that DFMO’s 

high structural similarity to lysine will mean it shares a route of entry through a lysine 

specific transport system. We then went on to assess DFMO’s ability to inhibit tyrosine 

and lysine uptake, using radiolabeled amino acids and cold DFMO at high concentrations. 
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Figure 6-27: Lysine inhibition by DFMO and lysine. 

Uptake of 10 µM L-[3H] Lysine in BSF trypanosomes at a single 30 sec time point in the 
presence of cold lysine and DFMO over a range of concentrations (no inhibitor, 0.1 mM, 1 
mM, 5mM). Uptake shown as a percentage of control with no inhibitor (n=3, Error bars = 
±SEM). 

 

Lysine inhibition seems dose dependent with respect to cold lysine. From the curve an 

apparent IC50 of 39 µM ± 4 was calculated. In the presence of DFMO, inhibition is seen 
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but is never total (~60% inhibition of 10 µM lysine at a 10 mM DFMO concentration). 

Lysine uptake, unlike DFMO (Figure 6-24), is not re-stimulated at higher concentrations of 

DFMO. If DFMO is targeted through a lysine specific transporter, the nature of this 

transporter, in its capacity and kinetic behaviour, is still to be elucidated. DFMO uptake via 

another route was explored by inhibition of tyrosine uptake. 
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Figure 6-28: Tyrosine uptake in BSF trypanosomes in presence and absence of DFMO. 

Uptake of 10 µM L-[3H] Tyrosine in BSF trypanosomes in the presence and absence of 10 
mM DFMO over a 1 hour time period (n=3, Error bars = ±SEM). 
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Figure 6-29: Tyrosine inhibition by DFMO. 

Uptake of 10 µM L-[3H] Tyrosine in BSF trypanosomes in the presence of DFMO at a 
range of concentrations (no inhibitor, 0.1 mM, 1 mM, and 5 mM). Uptake shown as a 
percentage of control with no inhibitor (n=3, Error bars = ±SEM). 

 

Tyrosine uptake in the presence of high concentrations of DFMO (10 mM) shows no 

inhibition of accumulation by BSF trypanosomes over the 1 hour time period. This 

suggests that these two compounds do not share the same mode of uptake. Moreover, when 

inhibition of tyrosine was performed over a range of DFMO concentrations (up to 5 mM) 

we found no significant difference in tyrosine uptake. As previously shown tyrosine does 

inhibit DFMO uptake, however, the experiment was only carried out once. It is possible 

that with multiple repeats that inhibition seen becomes less significant. Another possibility 

is the fact that tyrosine itself interacts with a transporter of DFMO uptake without 

necessarily being a substrate for that carrier. 

6.3 Discussion 

Amino acid analogues have a great potential for chemotherapy of human African 

trypanosomiasis. The advantages include the fact that some trypanosome transporters have 

a high affinity for amino acids and a relatively low abundance of competing substrates. 

Moreover, amino acid analogues can allow us to assign functional characteristics to 

transporter systems and allow us to differentiate between a one transporter and multiple-

transporter system. 
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Differences in trypanocidal activity of certain amino acid analogues between PCF and BSF 

could be as a direct result of uptake or, simply the metabolic differences between parasite 

stages. The discovery of L-Dopa’s trypanocidal action led us to test other relevant 

compounds (e.g. thyroxine and tri-iodothyronine). These compounds did show some 

trypanocidal activity and it would be of interest to see if they are targeted through an amino 

acid transporter. Trypanosome induced hypothyroidism is a phenomenon that has been 

shown in vivo (Lomo et al., 1993). The development of anaemia coincides with the marked 

decrease in plasma concentration of both tri-iodothyronine and thyroxine, and it seems 

hormonal treatment enhanced survival of infected animals (Lomo et al., 1995). 

As well as multiple systemic features seen in the early acute stage, the late chronic stage of 

African sleeping sickness is associated with a wide range of neurological features. 

Neurological features which are common to other neurological disorders associated with 

monoamine neurotransmitter availability within the brain (Daniel et al., 1976; Kennedy, 

2006). These neurotransmitters are synthesized in the brain from aromatic amino acid 

precursors that have to be obtained from the circulating blood. Changes in the cerebral 

concentrations of one or more neurotransmitters are the cause of certain neuropsychiatric 

disorders (Fernstrom & Wurtman, 1971; Shoemaker & Wurtman, 1971; Bernheimer & 

Hornykiewicz, 1973). The formation of neurotransmitters is largely determined by how the 

CNS can acquire pre-cursor aromatic amino acids from the circulating blood (Coppen et 

al., 1963; Daniel et al., 1976). More specifically, elevating brain tyrosine concentrations 

stimulates catecholamine production (Fernstrom & Fernstrom, 2007). 

6.3.1 Azaserine & Glutamine Transport 

In this study, the glutamine analogue, azaserine, was found to have differing activities 

against the two forms of the parasite, with an IC50 of 176.46 µM, 10.85 µM, and 1.52 µM 

against the PCF, BSF, and HEK cell respectively. It could be argued that the toxicity 

shown by azaserine against the BSF of the parasite (10.85 µM) is moderate at best. For 

most compounds seeking therapeutic use, nanomolar IC50 values are more attractive. There 

is good evidence that the difference in starting trypanosome densities for these assays does 

result in a shift in IC50 values. This shift could be many orders of magnitude. With that in 

mind, it is possible that the moderate IC50 values shown here by some analogues including 

azaserine could show higher activities under different conditions. 

Previous investigations with other glutamine analogues like DON and acivicin showed that 

neither is totally active in vivo. T. brucei infected mice receiving doses of drugs showed no 
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trypanosomes in the blood (Hofer et al., 2001). However, with discontinuation of therapy 

trypanosomes reappeared. They concluded that the relapse of trypanosomes after drug 

removal was observed, suggesting that the glutamine analogues only block the 

proliferation of the parasites. A functional immune response is then required to eradicate 

the growth-arrested trypanosomes. 

High mammalian cell toxicity rules out any potential therapeutic use, however, the 

simplicity of the molecule allows chemical remodelling if a drug target can be found. For 

example, DON is another glutamine analogue similar in structure to azaserine and shows 

no toxic effects against the mammalian cells used (Appendix 8.14). It would be interesting 

to test how the small differences between molecules translate to cell toxicity and drug 

target. Also, even though azaserine is more active against mammalian cells it provides a 

tool for identification and characterisation of particular amino acid transporters involved in 

its uptake. 

 

Figure 6-30: Schematic representation of a possible L-glutamine transport system in PCF 
trypanosomes. 

 

Here, like with other organisms (Kaplan et al., 1959; Brock & Brock, 1960), we have 

shown azaserine to be transported into the cell by the amino acid transport system, with 

multiple routes of entry evident (azaserine showed inhibition of glutamine, phenylalanine 

and tyrosine in both forms of the parasite, although to differing degrees). In the PCF of the 

parasite we studied this mode of inhibition in more detail, using unlabelled glutamine, 

glutamate, methionine and azaserine over a range of concentrations (0-10 mM). In each 

case these amino acids gave a progressive dose-dependent inhibition, with azaserine 

showing only partial inhibition at the highest concentration used (10 mM). This partial 
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inhibition exhibited suggests more than one glutamine transporter with azaserine only 

entering the cell via one transporter. This, coupled to the fact that glutamate inhibition is 

weak (and at the same time complete) suggests that both glutamine transport systems are 

inhibited by glutamate but at different concentrations – one at a low glutamate 

concentration and the other at a high glutamate concentration. Complete inhibition of 

phenylalanine uptake shows entry via an aromatic amino acid transport system, a transport 

system which seems not to be shared by other aromatic amino acids. 

Previous work investigating the nature of methionine transport in trypanosomes (Hasne & 

Barrett, 2001) showed a single methionine transporter with high affinity for methionine 

(showing a Km value of 30.9 ± 7.6 µM and a Vmax value of 16.2 ± 0.2 nmol/min/108 cells 

for PCF trypanosomes). Hasne & Barrett (2001) reported the existence in PCF of a single 

methionine transporter based on the fact that competing amino acids showed weak rather 

than partial inhibition of methionine uptake. However, competing amino acids (e.g. 

phenylalanine) do not show any structural similarities to methionine and glutamine 

inhibition was only 60% at a 5 mM concentration. Here we report an L-glutamine transport 

system that has high affinity for glutamine (16 µM IC50) and shows weak inhibition by L-

methionine (1.39 mM IC50). It is possible that multiple glutamine transporters exist (Figure 

6-30), which show differing affinities for glutamate, methionine and azaserine. And that 

one of the glutamine transporters has a higher affinity for methionine than glutamine. This 

would be the methionine transporter previously characterised. Uptake of methionine would 

be poorly inhibited by glutamine as glutamine has another route of uptake. Glutamine 

uptake is inhibited by methionine, however the other glutamine transporters have a high 

capacity for glutamine. 

L-glutamine and L-tyrosine uptake is evident in BSF trypanosomes, indicating the 

existence of a similar transport system for these amino acids working in the mammalian 

stage of the parasite. Moreover, glutamine and tyrosine inhibition by azaserine is still 

evident. However, it is unknown as to the exact nature of the transport system. It is 

possible that glutamine internalisation shows a different specificity profile in BSF 

trypanosomes (different apparent Ki and/or a different inhibiting set of amino acids), which 

would indicate the expression of a different gene or set of genes specific for this stage of 

the parasite. This seems likely considering the plethora of amino acid transporter genes 

found in the genome, some of which show differential expression. Previous work 

investigating aromatic amino acid uptake in BSF trypanosomes suggested the existence of 

several aromatic amino acid transporters (M.P. Hasne, thesis). Phenylalanine and 
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tryptophan were found to use at least 2 routes of entry while a single high affinity 

transporter was identified for tyrosine 

Amino acid recovery of azaserine action is a phenomenon well documented in bacteria 

(Kaplan et al., 1959; Brock & Brock, 1960) and in T. equiperdum (Momparler & Jaffe, 

1964). Here no such recovery could be shown by the alamar blue method. This suggests 

two things; firstly that azaserine’s mode of action does not involve amino acid usage or 

that the effect on amino acid usage is irreversible; and secondly that azaserine penetration 

through the cell membrane could not be prevented by competing amino acids. 

Therapeutically, this would be an encouraging feature for a potential drug to have as 

competing amino acids in the blood plasma or cerebrospinal fluid would have little effect 

on drug efficacy. The fact that azaserine has multiple routes of entry into the trypanosome 

interior meant we could not antagonise azaserine action by simple transport competition. 

The multiple routes of entry also goes some way to explain why resistance through loss of 

transport could not be easily achieved. 

6.3.2 Levodopa & Aromatic Amino Acid Transport 

Here we show that Levodopa has toxicity against both forms of the parasite (58.58 µM 

against PCF and 31.58 µM against BSF). Owolabi et al (1989) showed trypanocidal 

activity of certain catecholamines (dopamine and tryptamine analogues). BSF 

trypanosomes (105 cells/ml) on a feeder layer culture system (Microtus agrestis embryonic 

fibroblasts) incubated with drug (1 µM) were completely cleared after 24 hours. It is 

possible that the high level of toxicity seen by Owolabi is simply as a result of metabolic 

activation. In vivo tests showed complete clearance of trypanosomes from the bloodstream 

of mice at a dose of 0.1 mg/kg. The possibility of metabolic activation was explored by 

testing other compounds of aromatic metabolism in mammalian cells. No other compound 

showed any significant higher toxicity against trypanosomes. However, an in vivo 

environment is a more complex setting and it is possible that a more complex dynamic 

between these biologically relevant aromatic analogues interact to bring about an, as yet 

unknown, trypanocidal effect. 

From previous studies (Owolabi et al., 1989), it was not clear if L-Dopa action was due to 

internal or exterior activity of L-Dopa itself or one or more of its derivatives. L-Dopa entry 

into the parasite seems to be mediated through an aromatic amino acid transport system, as 

shown by inhibition of tyrosine uptake. Phenylalanine and tryptophan also inhibited uptake 

of tyrosine (although to lesser degrees) suggesting a common route of uptake for these 
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amino acids. However, it seems that more than one transport system is evident. L-Dopa 

inhibited tyrosine and phenylalanine to different degrees, where if one transport system 

was apparent, L-Dopa inhibition of phenylalanine would be greater than phenylalanine 

self-inhibition. The data presented here seems to suggest that L-Dopa entry to the PCF 

trypanosome is mediated through a tyrosine-specific aromatic amino acid transporter, one 

which shows some affinity for phenylalanine and tryptophan. In BSF trypanosomes, this 

inhibition of tyrosine by L-Dopa is still seen, pointing to the existence of a similar 

transporter at work in that life cycle stage. However, it is unknown as to the exact nature of 

the transport system. It is possible that glutamine internalisation shows a different 

specificity profile in BSF trypanosomes (different apparent Ki and/or a different inhibiting 

set of amino acids), which would indicate the expression of a different gene or set of genes 

specific for this stage of the parasite. 

It is possible that separate transporters exist for the three different aromatic amino acids in 

PCF trypanosomes. Indeed, separate aromatic amino acid transporters have been postulated 

in BSF trypanosomes (M.P. Hasne, thesis). With that in mind, it would be wrong to rule 

out entry of the other aromatic analogues tested just because they showed no significant 

inhibition of phenylalanine. For example, the analogues 5’ hydroxyl-tryptophan and 

tryptamine, structurally similar to tryptophan are most likely targeted into the cell via a 

tryptophan specific aromatic amino acid transporter. 

L-Dopa toxicity could not be ablated by any of the 20 amino acids in high concentrations, 

suggesting that a mode of action involving amino acid usage is not at play or, at least, not 

significant. A possible mode of action involving the creation of reactive oxygen species 

has been postulated (Owolabi et al., 1989). Detoxification of reactive oxygen species 

involves the transfer of reducing equivalents to redox cascade pathways (Wilkinson et al., 

2003). However, we did not find any increased sensitivity in TbSOD knock-out cell lines. 

Trypanosome superoxide dismutase enzymes detoxify superoxide anions (O2
·-) by 

catalysing their disproportionation to hydrogen peroxide (McCord & Fridovich, 1969), 

whereas L-Dopa auto-oxidation produces highly unstable electrophilic Dopa-

(semi)quinones and reactive oxygen species such as H2O2, O2
- and OH (Shi et al., 2002). 

TbSOD would only protect against one class of reactive oxygen species produced by L-

Dopa auto-oxidation, which would explain why no difference in sensitivity was observed 

in mutant TbSOD cell lines.  

Growth of trypanosomes in incremental amounts of drug to generate resistant cell lines 

proved problematic. Progressive darkening of the medium was evident, with turbidity 
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developing from the production of quinolones and other reactive oxygen species. It seems 

probable that the trypanocidal activity of L-Dopa is as a result of secondary products of the 

analogue. Also, we have shown through inhibition of tyrosine uptake that L-Dopa can be 

transported into cells, suggesting that auto-oxidation can occur both extracellularly and 

intracellularly. This intracellular and extracellular damage caused by L-Dopa goes some 

way to explain why a resistance phenotype could not be generated. The non-enzymatic 

antioxidants L-ascorbic acid, glutathione, N-Acetyl-L-cysteine have been shown to protect 

mammalian cells in vitro against the cytotoxic effects induced by L-Dopa (Lai & Yu, 

1997). It would be interesting to see if this protective effect was evident with 

trypanosomes. 

6.3.3 Cell Penetrating Peptides 

Cell penetrating peptides as delivery agents for therapeutic compounds are an emerging 

field. Even with the plethora of recent publications in the field of CPP research, the 

mechanism for CPP translocation is still poorly understood. The majority of the work on 

CPPs has been carried out using mammalian cells. However, CPP intracellular 

accumulation has been observed in a variety of other cell systems, such as yeast (Parenteau 

et al., 2005), insect cells (Palm et al., 2006), bacteria, fungi (Nekhotiaeva et al., 2004), and 

tobacco protoplasts (Mae et al., 2005). It is evident from results shown here that the 

peptide TP10 also has toxic activity against BSF trypanosomes, with trypanocidal activity 

on cells occurring within 6 hours of drug exposure. CPP entry into the cell is confirmed, 

yet is highly variable within a given cell population. In some cases, there seems to be some 

co-localisation with nuclear and kinetoplast intracellular organelles. 

Quantum dots are having recent use as luminescent labels for biological systems (la Fuente 

et al., 2005), mainly because they possess several key advantages over conventional 

fluorescent dyes: they emit light at a variety of precise wavelengths depending on their size 

and have long fluorescent lifetimes. In this case, the quantum dot Cadmium sulphide (CdS) 

was linked to the un-natural amino acid tiopronin which was then functionalised with a Tat 

protein derived peptide sequence (GRKKRRQRRR). Tiopronin is a pharmaceutically 

important drug used for the treatment of cystinuria and rheumatoid arthritis (Denneberg et 

al., 1983). 
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Figure 6-31: Synthesis of CdS-tiopronin-Tat (taken from la Fuente et al., 2005). 

 

Previous studies have shown CdS-tiopronin-QDs coupled to Tat protein-derived peptide 

sequences were used to achieve nuclear targeting of the nanoparticles in hTERT-BJ1 

human fibroblasts (la Fuente et al., 2005). Even after 15 mins incubation fluorescence 

staining was observed around the cell nucleus, showing evident translocation of the CdS-

tiopronin-Tat conjugate to the nucleus. No fluorescence staining was observed when naked 

CdS-tiopronin was incubated with the cells. Other studies have shown the Tat Peptide to be 

an efficient molecule to translocate gold nanoparticles into the cell nucleus (la Fuente & 

Berry, 2005) at a 50 µg/ml concentration after just one hour. 

In the case of trypanosomes, along with no trypanocidal activity we have shown there to be 

no accumulation of the fluorescent conjugate within the cell interior. This suggests that 

with trypanosomes the tat protein-derived peptide does not have trypanosome cell 

penetrating properties. With no apparent membrane translocating properties of the tat-

derived peptide seen, we can rule out this particular compound as a way to introduce 

potential trypanocidal drugs into the cell. 

6.3.4 Eflornithine 

Uptake of 10 µM 3H-DFMO over the 2 hour time period appears to be linear, showing an 

approximate accumulation of drug at a rate of 10 picomoles per hour (per 107 cells). 

Uptake in PCF trypanosomes has been previously reported as linear with an accumulation 

of 2 nanomoles per 109 cells over a 70 min time period, using 0.1 mM DFMO. This is 

comparable to what is found here in bloodstream forms with 10 pmoles being accumulated 

over a one hour period using 10 times less DFMO and 100 times fewer cells. With only a 

single experiment performed in early studies, further work will need to be done to fully 

complete the preliminary insight gained here. The nature of this apparent linearity of 
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uptake will need to be explored in more detail. Is the apparent cumulative intake of DFMO 

as a result of simple diffusion or are transport processes at play? 

 

Figure 6-32: Structure of L-lysine and DFMO. 

 

DFMO is structurally similar to the basic amino acid lysine (Figure 6-32), so it is likely 

that if an active transport component is involved in uptake it would be a route of entry 

shared with at least one of these amino acids. Lysine differs from DFMO by one CH2 unit 

on its hydrophilic side chain and an altered amino acid recognition motif, with the 

hydrogen attached to the α-carbon replaced by a difluoro-unit. There is evidence to suggest 

that disruption of the amino acid recognition motif results in abolished uptake of the 

particular amino acid (Hasne & Barrett, 2001). With methionine transport, the core amino 

acid structure appears to be essential since analogues consisting of the side chain alone had 

no inhibitory effect. Fluorine substitution is a powerful tool in bioorganic and medicinal 

chemistry (Welch & Eswarakrishnan, 1991). Fluorine incorporation into biologically 

active compounds can alter drug metabolism, enzyme substrate recognition and even 

affinity for natural receptors (Biffinger et al., 2004). With DFMO the hydrophobic fluoro-

carbon group is likely to result in lipid solubility. 

In BSF trypanosomes there does possibly seem to be inhibition of DFMO uptake by 

aromatic amino acids (Figures 6-25, 6-26) although this does not seem to be reciprocal 

(Figures 6-28, 6-29). DFMO over a range of concentrations showed no inhibition of 

tyrosine uptake. However, other aromatic amino acids showed more significant inhibition 

of DFMO uptake (Figure 6-25). Interestingly, when we tried to inhibit DFMO to 
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completion using all three aromatic amino acids (500 µM concentration each), we still saw 

significant levels of DFMO uptake. It is possible that for individual aromatic amino acids 

there is some inhibition exhibited at lower concentrations which is lost at higher ones, 

either by increased capacity of a transporter or the transient opening of a secondary 

transporter. 

Preliminary studies here have also highlighted the fact that trypanosome amino acid 

transporters may have the capacity for trans-acceleration or, at least transient regulation. 

Inhibition of DFMO by aromatic amino acids individually showed some level of inhibition 

(~80% uptake with tyrosine and ~20% uptake with phenylalanine and tryptophan, Figure 

6-26). However, combining all three aromatic amino acids restored DFMO uptake. It is 

possible that increased concentrations of certain amino acids increases the capacity of a 

particular transporter of activates another transporter. Trans-acceleration and trans-

inhibition phenomenon are well documented in mammalian amino acid transporters 

(McDowell et al., 1995; Bracy et al., 1986; Fong et al., 1990; Volk et al., 2003; Pan et al., 

2002). 

More significantly, lysine uptake shows significant inhibition by increasing concentrations 

of DFMO (Figure 6-27) as well as a dose dependent self inhibition, giving an apparent IC50 

of 39 µM ± 4. From this, it seems evident that some transport-mediated process exists for 

the internalisation of the drug, possibly through a lysine specific transporter. 

Inhibition of DFMO uptake using amino acids has previously been looked at (Bitonti et al., 

1985). However, due to the methodology of the protocol no apparent inhibition was seen. 

DFMO inhibition was only studied at a single 60 min time point, a time point which is far 

too long to report exclusively upon transport processes, especially when a diffusion 

component could also be at play. Also, inhibition studies only used concentrations barely 

20 times that of DFMO (56 µM DFMO vs 1 mM analogue). Here, a number of amino 

acids have been shown to inhibit DFMO uptake to a significant extent. The fact that cold 

DFMO only inhibits [3H]-DFMO to a maximum of 50%, even in 500-fold excess, suggests 

that if a transport system is involved then affinity for DFMO is weak at best. It is possible 

the accumulation of DFMO observed here and with other studies is the net effect of 

transport and diffusion. 

What needs to be done now is to try and separate the components involved in the 

internalisation of DFMO as well as trying to decipher the specifics of the amino acid 

transport system involved. There is the aforementioned active transport versus simple 
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diffusion debate as well as an apparent stimulation of uptake at higher concentrations. 

Transport versus diffusion can be easily separated. Uptake studies at 4ºC would help 

eliminate the transport component. Also, with regards to BSF aromatic amino acid 

transporters, further investigation of individual uptake is necessary (tyrosine, 

phenylalanine, and tryptophan). Multiple aromatic amino acid transporters have already 

been postulated (M.P. Hasne, thesis). What needs to be determined if these transport 

systems have the capability of transinhibition, or what seems like a loss of inhibition at 

high concentrations of more than one inhibitor. 

It has often been mentioned that it is possible that the contribution of an active transport 

system to the therapeutic effects of DFMO would be insignificant (Bitonti et al., 1985). 

But in studies with resistant cell lines only uptake seems implicated in the resistance 

phenotype (Phillips & Wang, 1987). It is entirely possible that a simple increase in 

ornithine uptake is enough to compensate for the effects of DFMO, as it has been seen that 

ornithine uptake is significantly faster in resistant cell lines as well as wild type cells 

exposed to DFMO. The resistance phenotype could simply be a result of the establishment 

of sustained increase of ornithine uptake, due to increase in transporter activity. This, 

coupled with increase in polyamine and arginine intake, could lead to the apparent 

resistance phenotype seen. 
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7 Closing Discussion 
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The long-held beliefs on neglected disease drug development activity are no longer 

accurate (Moran, 2005). Neglected diseases, once thought of by pharmaceutical companies 

as non-profitable, are finding more research activity. This reflects the formation of more 

and more new pharmaceutical industry neglected-disease institutes, the creation of new 

drug development Public-private partnerships (PPPs), which now conduct three-quarters of 

all identified neglected disease drug development (Moran, 2005). 

There is a shifting landscape in drug discovery against neglected diseases. Safer and more 

affordable drugs are still needed for the tropical diseases of the developing world. Only 13 

new drugs have been developed for neglected tropical diseases since 1975 (Moran, 2005), 

and many have proved to be too expensive, too toxic or too difficult to administer in 

resource poor settings. While older front-line drugs are losing their efficacy due to the 

emergence of widespread drug resistance. To this effect, it is important to generate 

validated and druggable targets of the African trypanosome. The genome has opened up a 

vast library from which researchers can start from. Transporters themselves do not 

necessarily offer much of a viable drug targets, but it has been shown that transporters 

prove a viable gateway for potential trypanocides. The role of the P2 nucleoside transporter 

as a transporter for trypanocidal drugs and its role in resistance mechanisms has set 

precedents for features of transporters that make potential drug carriers. Amino acid 

transporters share the same characteristics (Hasne & Barrett, 2000). 

A family of 46 genes encoding amino acid transporters is present in the T. brucei genome 

making it the largest, and most diverse, family of transporters encoded in the trypanosome 

genome. It was one aim of this project to evaluate amino acid transporters as a mode of 

entry for potential trypanocidal drugs. Many compounds that have been given some 

attention as potential trypanocides (azaserine and eflornithine) do show targeting through 

amino acid transporters. Characterisation of amino acid transporters by molecular biology 

and biochemical techniques was performed allowing evaluation of targeting of amino acid 

analogues with trypanocidal activity through amino acid transporters. 

Targeting amino acid-like compounds through amino acid transporters proves a viable 

method for introducing trypanocidal compounds into the cell interior. In the mammalian 

system, there is potential for amino acid transporters as delivery systems for drugs and 

prodrugs. Recent studies have shown the potential of the human amino acid transporter 

ATB0,+, a transporter of neutral as well as cationic amino acids, as a drug delivery system 

(Ganapathy & Ganapathy, 2005). Certain antiviral drugs can be transported by the 

transporter when linked to the side chain of anionic amino acids. 
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Moreover, because the brain capillary endothelial cells comprising the BBB greatly 

prohibits transport of certain solutes from the blood, due to tight junctions, high brain 

capillary metabolism, low pinocytic vesicular trafficking, and efficient efflux mechanisms 

(Killian et al., 2007) it is important to utilise carrier-mediated transport processes into the 

brain. Amino acid analogues offer an attractive class of compounds that can take advantage 

of brain amino acid transporters for late stage sleeping sickness. 

With recent studies showing that a strategy comprising of covalent coupling of small 

molecules to L-cysteine achieves high affinity recognition for the specific, cerebrovascular 

large neutral amino acid transporter (LAT1) (Killian et al., 2007), it may be possible to 

attach an amino acid recognition motif to other potential trypanocides that might allow 

targeting through either mammalian or trypanosome amino acid transporters. 

One amino acid transporter, TbAATP1, was characterised. It was shown to be a carrier of 

small, neutral amino acids. Its substrate recognition profile will allow drug design of 

potential trypanocides that can be targeted through TbAATP1. Moreover, modes of 

resistance involving loss of the transporter can be investigated with the use of the RNAi 

cell line. 

Grouping of amino acid transporter genes based on gene sequence (rather than 

chromosomal location) aides down-stream functional genomic approaches to 

characterisation. The fact that most genes that group together by sequence usually tend to 

group together by genomic locus means that gene knock-out approaches offer an advantage 

over conventional RNAi based approaches. However, with some large arrays, sometimes 

stretching to more than 15 kb in size, means that large gene families will prove difficult to 

knock-out by homologous recombination. The limitations of RNAi means it will prove 

difficult to distinguish between most of the amino acid transporter genes in terms of 

functional significance. A further complication is functional redundancy in amino acid 

transporter repertoire. Further investigations into amino acid transporters needs to be a 

multi-faceted approach, with biochemical and gene knock-out techniques employed to 

allow assignment of functional phenotype to gene.  

Inhibition profiles play a major part of characterising transporters. It is important that the 

inhibition characteristics of transporters either with individual amino acids or multiple 

amino acids. This will allow predictions of in vivo settings and bioavailability within the 

trypanosome in the presence of changing extracellular amino acid concentrations (amino 

acid concentrations in the blood and/or cerebrospinal fluid as a function of disease state). 
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Differential regulation throughout the life cycle of amino acid transporters also needs to be 

investigated in more detail. This will not only allow functional redundancy of genes to be 

filtered out, but also highlight transporters that become essential in the mammalian host. 

Allowing, trypanocidal amino acid analogue to show greater efficacy. Moreover, 

differential regulation of amino acid transporters modulating uptake of trypanocides might 

result in changes in susceptibility. 

Characterising amino acid transporters offers a window into amino acid metabolism in 

these parasites. L-proline utilisation has been shown to be regulated by overrall glucose 

availability. D-glucose exerts an influence on other aspects of procyclic trypanosome 

biology, including procyclin expression as well as mitochondrial energy generation. It is 

possible that glucose usage has implications for tsetse fly biology and could be linked to 

developmental cues of the parasite. 

Our knowledge of the parasite and parsite-host interactions are forever evolving, aided by 

new tools and new collaborative efforts. Systems biology is such a field that brings 

together a multi-disciplinary approach to investigate the biochemistry of the parasite. 

Metabolomics offers a powerful technique to un-biasly follow the fate of metabolites 

within cells exposed to different conditions. Moreover, pertubations and adaptational 

processes can be seen. The greatest potential metabolomics holds for trypanosome biology 

is to build upon genome sequencing data. With only half of the genome annotated means 

the actual metabolome of African trypanosome is much larger than the in silico prediction. 

The field of metabolomics is in the early stages of development and it is important to 

follow up the changes seen with biochemical characterisation. Only then can metabolomics 

live up to its full potential. 
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8 Appendix 

8.1 Amino Acids 
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8.2 SDM80 

NaH2PO4   157 mg  
NaCl    6.8 g 
MgSO4   100 mg 
KCl    400 mg 
CaCl2    200 mg 
L-Arginine   100 mg 
L-Methionine   70 mg 
L-Phenylalanine  80 mg 
L-Threonine   350 mg 
L-Tyrosine   100 mg 
Taurine   160 mg 
L-Alanine   200 mg 
L-Asparagine   13.2 mg 
L-Aspartate   13.3 mg 
L-Glutamate   14.7 mg 
L-Glutamine   200 mg 
Glycine   7.5 mg 
L-Serine   60 mg 
HEPES   8 g 
MOPS    5 g 
NaHCO3   2.2 g 
Pyruvate   220 mg 
Mercaptoethanol (0.1 M) 2 ml 
Hypoxanthine   14 mg 
Thymidine   4 mg 
Vitamins (100 X)  10 ml 
Essential amino acids (50 X) 20 ml 
Phenol Red   4 ml 
Hemin (2.5 mg/ml)  2 ml 
Dialysed Foetal Calf Serum 10% 
 
For 1 litre. Filter sterilise. Store at 4ºC. 
 
 
 

8.3 CBSS Buffer 

HEPES   25 mM 
NaCl2    120 mM 
KCl    5.4 mM 
CaCl    0.55 mM 
MgSO4   0.4 mM   
Na2HPO4   5.6 mM 
D-glucose   11.1 mM 
 
For 1 litre. Adjust to pH 7.4 and store at –20 °C. 
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8.4 Cunningham’s Medium 

CaCl2    113 mg 
KCl    3000 mg 
MgSO4   1800 mg 
NaH2PO4.H2O   530 mg 
Glucose   700 mg 
Fructose   400 mg 
Sucrose   400 mg 
Phenol Red   21 mg 
HEPES   6000 mg 
Alanine   550 mg 
Beta alanine   2000 mg 
Arg.HCl   440 mg 
Asparagine   240 mg 
Aspartic acid   110 mg 
Cystine   110 mg 
Glutamic acid   250 mg 
Glutamine   1700 mg 
Glycine   120 mg 
Histidine.HCl.H2O  160 mg 
Isoleucine   90 mg 
Leucine   90 mg 
Lysine.HCl   187 mg 
Methionine   100 mg 
Phenylalanine   200 mg 
Proline    6900 mg 
Serine    100 mg 
Taurine   270 mg 
Threonine   50 mg 
Tryptophan   100 mg 
Tyrosine   200 mg 
Valine    100 mg 
Pyruvate   100 mg 
Hypoxanthine   116 mg 
FCS    20% 
 
For 1 litre. Filter sterilise and store at 4ºC. 
 
 
 

8.5 TELT Buffer 

Tris-HCl (pH 8)  50 mM 
EDTA (pH 9)   62.5 mM 
LiCl    2.5 M 
Triton X-100   4% v/v 
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8.6 TE Buffer 

Tris-HCl (pH 8)  10 mM 
EDTA (pH 8)   1 mM 
 
 
 

8.7 1X TAE Buffer 

Tris acetate (pH 8.5)  40 mM 
EDTA    1 mM 
 
 
 
 

8.8 LB Medium 

Bacto-tryptone  10 g 
Bacto-yeast extract  5 g 
NaCl    10 g 
 
For 1 litre. Sterilise by autoclaving. 
 
 
 
 

8.9 20X SSC 

Tri-sodium citrate  88.23 g 
NaCl    175.32 g 
 
For 1 litre. Adjust to pH 7. Store at room temperature. 
 
 
 
 

8.10  10X MOPS 

MOPS    0.2 M 
Sodium acetate  80 mM 
EDTA (pH 7)   10 mM 
 
Filter and store in the dark at 4ºC. 
 
 
 
 



190 

8.11  ZPFM Buffer 

NaCl    132 mM 
KCl    8 mM 
Na2H2PO3

2+   8 mM 
KH2PO3   1.5 mM 
Mg(C2H3O2)   1.5 mM 
C4H6CaO4   90 µM 
 
 
 
 

8.12  PBS 

Sodium phosphate  20 mM 
NaCl    150 mM 
 
 

8.13  100X Denhardt’s Solution 

Bovine serum albumin 2 g 
Ficoll    400.2 g 
Polyvinylpyrolidone  2 g 
 
For 100 ml. Store at -20ºC. 
 
 
 
 

8.14  Amino Acid Analogues 

Analogue     PCF BSF HEK 
Azaserine     176.46 10.85 1.52 
Glycine Hydroxamate    N/A N/A N/A 
L-Serine b-naphthylamide   38.60 43.70 179.60 
Serine Hydroxamate    N/A N/A N/A 
Serine Benzyl Ester    N/A N/A N/A 
Serine Methyl Ester    N/A N/A N/A 
N-acetyl D, L-serine    N/A N/A N/A 
Arginine Methyl Ester   N/A N/A N/A 
Acetyl Methionine    N/A N/A N/A 
N-formyl Methionine    N/A N/A N/A 
Alanine Ethyl Ester    N/A N/A N/A 
Seleno Methionine    N/A N/A N/A 
Lysine Methyl Ester    N/A N/A N/A 
Alanyl Glycine    N/A N/A N/A 
Adenosyl Homocysteine   N/A N/A N/A 
Seleno Ethionine    N/A N/A N/A 
Tyrosine Methyl Ester   N/A N/A N/A 
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N-Acetyl Tyrosine Ethyl Ester  N/A N/A N/A 
Tryptophan Benzyl Ester   79.21 27.54 N/A 
Fluoro Tryptophan    N/A N/A N/A 
Kynurenine     N/A N/A N/A 
Saccharopine     N/A N/A N/A 
Tryptophan Ethyl Ester   28.00 N/D N/D 
N-formyl Phenylalanine   N/A N/A N/A 
N3 Trimethyl Lysine    N/A N/A N/A 
N-formyl Tyrosine    N/A N/A N/A 
N-Acetyl Tyrosineamide   N/A N/A N/A 
N-Acetyl Tryptophanamide   N/A N/A N/A 
AS10      N/A N/A N/A 
CMC-20-1     N/A N/A N/A 
AJ222      N/A N/A N/A 
AS65      N/A N/A N/A 
KF38      N/A N/A N/A 
CMC-18-2     N/A N/A N/A 
AS66      N/A N/A N/A 
L-Alaninamide    N/A N/A N/A 
O-Phospho-L-Serine    N/A N/A N/A 
L-3,4-Dihydroxy Phenylalanine (L-DOPA) 58.60 31.58 112.21 
DL-Threo-B-Phenylserine   N/A N/A N/A 
L-Homocysteine Thiolactone   N/A N/A N/A 
Cycloserine     141.80 327.85 176.42 
N-Succinyl-L-Phenylalanine p-nitroanilide N/A N/A N/A 
Hippuryl-L-Arginine    N/A N/A N/A 
Diazoacetyle-dl-Norleucine Methyl Ester N/A N/A N/A 
N-Benzoyl-L-Propyl-L-Phenyalanyl-L-Arginine p-nitroanilide N/A N/A N/A 
N-Benzoyl-L-Propyl-L-Tyrosine p-nitroanilide 46.21 23.34 110.00 
L-Propyl Glycine    N/A N/A N/A 
S-Benzyl L-Cysteine p-nitroanilide  N/A N/A N/A 
L-Phenylalanyl L-Proline   N/A N/A N/A 
a-N-Benzoyl L-Arginine Amide  N/A N/A N/A 
Benzoyl L-Valyl-Glycyl L-Arginine p-Nitroanilide N/A N/A N/A 
N-Benzoyl L-Tyrosine Ethyl Ester  N/A N/A N/A 
Na-Acetyl-Glycyl-L-Lysine B-Naphthyl Ester 48.44 N/A N/D 
Glycyl-L-Leucine    N/A N/A N/A 
CycloLeucine     N/A N/A N/A 
N-(p-Aminobenzoyl)-L-Glutamic Acid N/A N/A N/A 
Glycine Benzyl Ester    N/A N/A N/A 
L-Leucine B-Naphthyl Amide  69.66 40.60 N/D 
DL-B-Hydroxy Norvaline   N/A N/A N/A 
Dihydrofolic Acid    N/A N/A N/A 
DL-Tetrahydrofolic Acid   N/A N/A N/A 
3,4 Dihydrophenylacetic acid   65.20 390.59 112.40 
5' Hydroxy-L-Tryptophan   N/A N/A N/A 
Serotonin     155.00 N/A N/A 
Tryptamine     21.90 57.83 176.42 
Dopamine     63.25 275.05 87.07 
N-Acetyl DL Tryptophan   N/A N/A N/A 
DL-a-Amino Adipic Acid   N/A N/A N/A 
m-Flouro-DL-Tyrosine   N/A N/A N/A 
5-Flouro-DL-Tryptophan   N/A N/A N/A 
5-methly DL Tryptophan   N/A N/A N/A 
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DL-p-Hydroxyphenyl-Lactic Acid  N/A N/A N/A 
5-Hydroxy L Tryptophan   N/A N/A N/A 
DL Indole-3-Lactic Acid   N/A N/A N/A 
Cyclophosamide    N/A N/A N/A 
L-Canavanine     N/A N/A N/A 
D-y-MethylLeucine    N/A N/A N/A 
O-Benzyl-L-Tyrosine    N/A N/A N/A 
Tri-Iodothyronine    134.44 102.17 N/A 
L-Thyroxine     N/A 56.17 N/A 
Melphalan     N/A 102.23 N/A 
Azetidine-2-Carboxylic Acid   N/A N/A N/A 
NorLeucine     N/A N/A N/A 
Methionine Sulfoximine   N/A N/A N/A 
Hydroxy Lysine    N/A N/A N/A 
Noradrenaline     N/A N/A 27.90 
Ureidosuccinic acid-N-carbomyl Aspartate N/A N/A N/A 
DON      N/D N/D N/A 
 
 
 
 

8.15  List of Metabolites 

Metabolite    Mass  Formula 
Acetaldehyde    44.026215 C2H4O 
Acetate    60.02113 C2H4O2 
Ethanolamine    61.052763 C2H7NO 
Pyruvaldehyde   72.02113 C3H4O2 
Glycine    75.03202841 C2H5NO2 
Pyruvate    87.00822 C3H3O3- 
Pyruvic Acid    88.016045 C3H4O3 
Putrescine    88.100048 C4H12N2 
Alanine    89.04767847 C3H7NO2 
sarcosine    89.04767847 C3H7NO2 
Dihydroxyacetone   90.03169406 C3H6O3 
glycerol    92.04734412 C3H8O3 
Ethanolamine HCl   97.02944159 C2H8ClNO 
L-a-Amino-n-butyric acid  103.0633285 C4H9NO2 
Serine     105.0425931 C3H7NO3 
D1-Pyrroline-5-carboxylic acid 113.0476785 C5H7NO2 
proline     115.0633285 C5H9NO2 
Succinate    116.01096 C4H4O4 
Amino oxobutyrate   117.042594 C4H7NO3 
valine     117.0789786 C5H11NO2 
Threonine    119.0582432 C4H9NO3 
L-homoserine    119.058244 C4H9NO3 
Cysteine    121.0197492 C3H7NO2S 
Taurine    125.0146638 C2H7NO3S 
Pyro-L-glutamic acid   129.0425931 C5H7NO3 
L-Pipecolic acid   129.0789786 C6H11NO2 
Hydroxyproline   131.0582432 C5H9NO3 
Glutamate γ-semialdehyde  131.058244 C5H9NO3 
Leucine    131.0946287 C6H13NO2 
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Malate     132.005875 C4H4O5 
Oxaloacetate    132.005875 C4H4O5 
Asparagine    132.0534921 C4H8N2O3 
Glycyl-glycine   132.0534921 C4H8N2O3 
Ornithine    132.089878 C5H12N2O2 
Aspartic acid    133.0375077 C4H7NO4 
L-Homocysteine   135.0353992 C4H9NO2S 
Adenine    135.0544952 C5H5N5 
Phosphoethanolamine   141.0190943 C2H8NO4P 
Spermidine    145.157897 C7H19N3 
2-ketoglutarate   146.021525 C5H6O5 
L-Glutamine    146.0691422 C5H10N2O3 
Lysine     146.1055277 C6H14N2O2 
L-Glutamic acid   147.053159 C5H9NO4 
O-acetyl-L-serine   147.053159 C5H9NO4 
Mevalonic acid   148.07356 C6H12O4  
Methionine    149.0510493 C5H11NO2S 
Histidine    155.0694765 C6H9N3O2 
Orotic acid    156.0171066 C5H4N2O4 
L-a-Aminoadipic acid   161.0688078 C6H11NO4 
O-acetyl-L-homoserine  161.068809 C6H11NO4 
Carnitine    161.1051934 C7H15NO3 
Hydroxylysine    162.1004423 C6H14N2O3 
N-Acetyl-L-cysteine   163.0303139 C5H9NO3S 
L-Methionine sulfoxide  165.0459639 C5H11NO3S 
Phenylalanine    165.0789786 C9H11NO2 
Phosphoenolpyruvate   167.982378 C3H5O6P 
L-Cysteic acid    169.004493 C3H7NO5S 
N3-Methyl-L-histidine  169.0851266 C7H11N3O2 
Dihydroxyacetone phosphate  169.9980245 C3H7O6P 
Glyceraldehyde 3 phosphate  169.998028 C3H7O6P 
Glycerol 3 phosphate   172.013678 C3H9O6P 
Glycyl-L-proline   172.0847923 C7H12N2O3 
N-Acetyl-L-hydroxyproline  173.0688078 C7H11NO4 
N-Acetyl-L-ornithine   174.1004423 C7H14N2O3 
Arginine    174.111676 C6H14N4O2 
L-Citrulline    175.0956913 C6H13N3O3 
Glucose    180.0633881 C6H12O6 
L-Methionine sulfone   181.0408785 C5H11NO4S 
Tyrosine    181.0738932 C9H11NO3 
DFMO     182.086684 C6H12F2N2O2 
L-Homocysteic acid   183.0201431 C4H9NO5S 
Glycerate 3-phosphate  185.9929391 C3H7O7P 
NE-Acetyl-L-lysine   188.1160924 C8H16N2O3 
L-Homocitrulline   189.1113414 C7H15N3O3 
gamma-Carboxyglutamate  191.042987 C6H9NO6 
Citrate     192.027005 C6H8O7 
L-3-(3,4-Dihydroxyphenyl)-alanine 197.0688078 C9H11NO4 
erythrose-4-phosphate   200.008593 C4H9O7P 
S-Sulfo-L-cysteine   200.9765637 C3H7NO5S2 
NG,NG-Dimethylarginine  202.1429758 C8H18N4O2 
Spermine    202.215746 C10H26N4 
Tryptophan    204.0898776 C11H12N2O2 
L-Kynurenine    208.0847923 C10H12N2O3 
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1-deoxy-D-xylulose 5-phosphate  214.024242 C5H11O7P  
2-C-methyl-D-erythritol 4-phosphate 216.039892 C5H13O7P 
O-succinyl-L-homoserine  219.074289 C8H13NO6 
5-Hydroxy-L-tryptophan  220.0847923 C11H12N2O3 
L-Cystathionine   222.0674276 C7H14N2O4S 
cystathionine    222.06743 C7H14N2O4S 
3-Hydroxy-L-kynurenine  224.0797069 C10H12N2O4 
Carnosine    226.1065903 C9H14N4O3 
phosphatidic acid   228.0035038 C5H9O8P 
Mevalonate-5-phosphate  228.039892 C6H13O7P  
Ribose-5-phosphate   230.019158 C5H11O8P 
Ribulose-5-phosphate   230.019158 C5H11O8P 
Xyulose-5-phosphate   230.019158 C5H11O8P 
L-Cystine    240.0238483 C6H12N2O4S2 
Anserine    240.1222404 C10H16N4O3 
Isopentenyl diphosphate  246.005831 C5H12O7P2  
Dimethylallyl diphosphate (DMAPP)246.005831 C5H12O7P2  
gamma-glutamylcysteine  250.062345 C8H14N2O5S 
L-Cysteine-L-homocysteine  254.0394983 C7H14N2O4S2 
palmitic acid    256.2402303 C16H32O2 
6-phosphogluconolactone  258.014073 C6H11O9P 
Fructose-6-phosphate   260.029723 C6H13O9P 
Glucose-6-phosphate   260.029723 C6H13O9P 
HMBDP    262.000746 C5H12O8P2  
1,3-Bisphosphoglycerate  265.9592695 C3H8O10P2 
Adenosine    267.096755 C10H13N5O4 
L-Homocystine   268.0551484 C8H16N2O4S2 
Inosine     268.0807695 C10H12N4O5 
6-phosphogluconate   276.024638 C6H13O10P 
L-Saccharopine   276.1321364 C11H20N2O6 
MEcPP     277.995661 C5H12O9P2  
linolenic acid    278.2245802 C18H30O2 
linoleic acid    280.2402303 C18H32O2 
Oleic acid    282.2558803 C18H34O2 
Melanostatin    284.1848407 C13H24N4O3 
Stearic acid    284.2715304 C18H36O2 
Orotidine    288.0593654 C10H12N2O8 
Sedoheptulose-7-phosphate  290.040288 C7H15O10P 
L-Argininosuccinic acid  290.1226343 C10H18N4O6 
Aspartame    294.1215717 C14H18N2O5 
Methylthioadenosine (MTA)  297.089562 C11H15N5O3S 
lysophosphatidylcholine  299.1133886 C10H22NO7P 
arachidonic acid   304.2402303 C20H32O2 
Glutathion (GSH)   306.099793 C10H18N4O5S 
glutathione    307.083806 C10H17N3O6S 
Mevalonate-5-pyrophosphate  308.006226 C6H14O10P2 
gondoic acid    310.2871805 C20H38O2 
Glorin     327.1794209 C15H25N3O5 
Docosahexaenoic acid   328.2402303 C22H32O2 
beta-Aspartylglucosamine  335.1328647 C12H21N3O8 
Kyotorphin    337.1750043 C15H23N5O4 
erucic acid    338.3184806 C22H42O2 
Fructose 1,6 bisphosphate  339.996056 C6H14O12P2  
AMP     347.063086 C10H14N5O7P 
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d S-adenosylmethionine (dSAM) 354.147411 C14H22N6O3S 
S-Adenosyl-L-homocysteine  384.1215885 C14H20N6O5S 
phosphatidylserine   385.1137825 C13H24NO10P 
cholesterol    386.3548661 C27H46O 
Ergosterol    396.339214 C28H44O 
S-adenosylmethionine (SAM) 398.1372385 C15H22N6O5S 
acylcarnitine    399.1450636 C15H23N6O5S+ 
S-adenosylmethionine   415.139981 C15H23N6O6S 
ADP     427.0294148 C10H15N5O10P2 
glutathionylspermidine  434.231141 C17H34N6O5S 
phosphatidyl glycerol   455.2046089 C19H36O10P- 
ATP (Oxidised)   504.980104 C10H14N5O13P3 
ATP     506.9957452 C10H16N5O13P3 
CDP-ME    521.081183 C14H25N3O14P2  
CDP-MEP    601.047516 C14H26N3O17P3  
Glutathione    612.1519619 C20H32N6O12S2 
sphingomyelin    647.5127996 C35H72N2O6P+ 
NAD     663.1091216 C21H27N7O14P2 
NAD (oxidised)   664.116954 C21H28N7O14P2+ 
phosphatidylglycerol   670.405714 C32H63O12P 
Trypanothione (oxidised)  721.288735 C27H47N9O10S2 
Trypanothione    722.2965552 C27H48N9O10S2 
Trypanothione (reduced)  723.304384 C27H49N9O10S2 
NADP     743.075458 C21H28N7O17P3 
NADP (oxidised)   744.0832771 C21H29N7O17P3+ 
NADPH    745.0911021 C21H30N7O17P3 
phosphatidylethanolamine  748.5856302 C41H83NO8P+ 
phosphatidylcholine   759.5778051 C42H82NO8P 
Acetyl-CoA    809.1257731 C23H38N7O17P3S 
Acetoacetyl-CoA   851.136349 C25H40N7O18P3S  
succinyl-CoA    867.131264 C25H40N7O19P3S 
HMG-CoA    911.157479 C27H44N7O20P3S  
phosphatidylinositol   1046.48979 C47H85O19P3 
cardiolipin    1150.800075 C58H120O17P2 
Galactose    180.06339 C6H12O6 
D-Galactono-1,4-lactone  178.04774 C6H10O6 
D-Galactonate    196.058305 C6H12O7 
2-Dehydro-3-deoxy-D-galactonate 178.04774 C6H10O6 
2-DD-galactonate 6-phosphate 258.014073 C6H11O9P 
 
 
 
 

8.16  Biochemical Transformations 

Alanine     C3H5NO 71.037113835 
Arginine     C6H12N4O 156.101111124 
Asparagine     C4H6N2O2 114.042927522 
Aspartic Acid     C4H5NO3 115.026943115 
Cysteine     C3H5NOS 103.009185635 
Cystine     C6H10N2O3S2 222.01328591 
Glutamic Acid     C5H7NO3 129.042593189 
Glutamine     C5H8N2O2 128.058577596 
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Glycine     C2H3NO 57.021463761 
Histidine     C6H7N3O 137.058911929 
Isoleucine     C6H11NO 113.084064057 
Leucine     C6H11NO 113.084064057 
Lysine      C6H12N2O 128.094963104 
Methionine     C5H9NOS 131.040485783 
Phenylalanine     C9H9NO 147.068413983 
Proline      C5H7NO 97.052763909 
Serine      C3H5NO2 87.032028475 
Threonine     C4H7NO2 101.047678549 
Tryptophan     C11H10N2O 186.07931303 
Tyrosine     C9H9NO2 163.063328623 
Valine      C5H9NO 99.068413983 
acetotacetate (-H2O)    C4H4O2 84.021129428 
acetone (-H)     C3H5O 57.034039825 
adenylate (-H2O)    C10H12N5O6P 329.052521734 
biotinyl (-H)     C10H15N2O3S 243.080339295 
biotinyl (-H2O)    C10H14N2O2S 226.077599618 
carbamoyl P transfer (-H2PO4)  CH2ON 44.013638724 
co-enzyme A (-H)    C21H34N7O16P3S 765.099565568 
co-enzyme A (-H2O)    C21H33N7O15P3S 748.096825891 
glutathione (-H2O)    C10H15N3O5S 289.073242585 
isoprene addition (-H)    C5H7 67.054775259 
malonyl group (-H2O)   C3H2O3 86.000393994 
palmitoylation (-H2O)   C16H30O 238.22966575 
pyridoxal phosphate (-H2O)   C8H8NO5P 229.014010906 
urea addition (-H)    CH3N2O 59.024537771 
adenine (-H)     C5H4N5 134.046670198 
adenosine (-H2O)    C10H11N5O3 249.086189377 
Adenosine 5'-diphosphate (-H2O)  C10H13N5O9P2 409.018854091 
Adenosine 5'monophosphate (-H2O)  C10H12N5O6P 329.052521734 
cytidine 5' diphosphate (-H2O)  C9H13N3O10P2 385.007620711 
cytidine 5' monophsophate (-H2O)  C9H12N3O7P 305.041288354 
cytosine (-H)     C4H4N3O 110.035436818 
Guanosine 5- diphosphate (-H2O)  C10H13N5O10P2 425.013768731 
Guanosine 5- monophosphate (-H2O) C10H12N5O7P 345.047436374 
guanine (-H)     C5H4N5O 150.041584838 
guanosine (-H2O)    C10H11N5O4 265.081104017 
deoxythymidine 5' diphosphate (-H2O) C10H14N2O10P2 384.012371738 
thymidine (-H2O)    C10H12N2O4 224.079707024 
thymine (-H)     C5H5N2O2 125.035102485 
thymidine 5' monophosphate (-H2O)  C10H13N2O7P 304.046039381 
uridine 5' diphosphate (-H2O)  C9H12N2O11P2 385.991636304 
uridine 5' monophosphate (-H2O)  C9H11N2O8P 306.025303947 
uracil (-H)     C4H3N2O2 111.019452411 
uridine (-H2O)    C9H10N2O5 226.05897159 
acetylation (-H)    C2H3O2 59.013304391 
acetylation (-H2O)    C2H2O 42.010564714 
C2H2      C2H2 26.015650074 
Carboxylation     CO2 43.98982928 
CHO2      CHO2 44.997654317 
condensation/dehydration   H2O 18.010564714 
diphosphate     H3O6P2 160.940489751 
ethyl addition (-H2O)    C2H4 28.031300148 
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Formic Acid (-H2O)    CO 27.99491464 
glyoxylate (-H2O)    C2O2 55.98982928 
hydrogenation/dehydrogenation  H2 2.015650074 
hydroxylation (-H)    O 15.99491464 
Inorganic Phosphate    P 30.9737634 
ketol group (-H2O)    C2H2O 42.010564714 
methanol (-H2O)    CH2 14.015650074 
phosphate     HPO3 79.966332357 
primary amine     NH2 16.018724084 
pyrophosphate     PP 61.9475268 
secondary amine    NH 15.010899047 
sulfate (-H2O)     SO3 79.95681572 
tertiary amine     N 14.00307401 
C6H10O5     C6H10O5 162.05282357 
C6H10O6     C6H10O6 178.04773821 
D-Ribose (-H2O) (ribosylation)  C5H8O4 132.042258856 
disaccharide (-H2O)    C12H20O11 340.10056178 
glucose-N-Phosphate (-H2O)   C6H11O8P 242.019155927 
Glucuronic Acid (-H2O)   C6H8O6 176.032088136 
monosaccharide (-H2O)   C6H10O5 162.05282357 
trisaccharide (-H2O)    C18H30O15 486.15847071 
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