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Abstract

Feline immunodeficiency virus (FIV) is a significant worldwide pathogen of the domestic
cat. The disease is characterised by early acute phase pyrexia 6-8 weeks post infection,
followed by an indefinite period of asymptomatic infection, which in many infected cats is
followed by progression to the immunodeficiency phase. The primary target of FIV is the
CD4+ T lymphocyte with depletion of this population characterising progression to the
acquired immunodeficiency syndrome like (AIDS-like) stage. To date, only limited
success has been achieved in the development of an effective vaccine, most success
occurring with laboratory-adapted isolates such as FIV-Petaluma (FIV-PET), whereas
primary isolates such as FIV-Glasgow8 (FIV-GL8) resist vaccine-induced protection.
Indeed, due to their ability to induce higher proviral DNA loads, higher viral RNA loads,
inversion of the CD4:CD8 T lymphocyte ratio and this resistance to vaccine protection has
led to the hypothesis that these isolates are more pathogenic. FIV, like HIV-1, uses the
chemokine CXCR4 as a coreceptor for infection of cells in vitro and studies using the
CXCR4 antagonist AMD3100 have demonstrated that laboratory-adapted isolates have a
greater affinity for CXCR4 than primary isolates. However, it is unknown whether FIV,
like HIV-1, changes phenotype and undergoes receptor switching as disease progresses.
These findings call into question the relevance of these laboratory-adapted isolates to
vaccine development. The virulence and phenotype of field isolates is poorly documented
and it is unclear whether isolates fall into two specific groups typified by the prototype
viruses FlV-GL8 and FIV-PET or whether a range of biological phenotypes exist.
Furthermore, it was unknown whether receptor usage and cell tropism in vitro could be
correlated with virulence in vivo.
The project had three aims, namely-

(i) to investigate the in vitro cell tropism of a range of field isolates from cats at
different stages of disease and compare their phenotype with the well-
characterised prototype viruses FIV-PET and FIV-GL8.

(ii) to study the pathogenicity of these viruses in vivo in order to examine any
correlation between virulence in vivo and tropism in vitro.

(iii) to look at the role of the env gene in the pathogenicity ofFIV.
In vitro studies of cell tropism revealed that isolates from cats in the terminal stage of
disease had a greater ability to utilise CXCR4 than isolates from cats displaying no clinical
signs. In vivo, these symptomatic isolates, with greater CXCR4-tropism in vitro, displayed
less virulence when compared with isolates from asymptomatic cats.
Chimaeras were made by inserting the env genes of an isolate from the asymptomatic or
terminal disease stages into a FIV-G8Mya backbone, allowing comparison of the cell
tropism and receptor usage of these genes and the study of their phenotype with regard to
virulence in vivo. The env genes from FIV-PET and the symptomatic isolate (F0827Hs)

had a greater affinity to utilise CXCR4 for cell entry in vitro and this correlated with
reduced virulence in vivo when compared to the asymptomatic isolate env and FIV-
G8Mya.

These studies highlight a trend where tropism in vitro can be correlated with virulence in
vivo. Furthermore, the study indicated that viruses from asymptomatic cats (with a lesser
ability to utilise CXCR4) have increased virulence. As these are the agents most likely to
be transmitted in the field by the apparently!healthy cat, vaccine development should focus
on this population of viruses. .. .
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Chapter One

INTRODUCTION

1.1. The discovery of feline immunodeficiency virus

Feline immunodeficiency virus (FIV), previously known as feline T-Iymphotropic

lentivirus (FTL V), was first isolated in 1986 from a specific pathogen free cat that had

been inoculated with either blood or plasma of a cat from a rescue colony in California

which was showing clinical signs of an illness that resembled acquired immunodeficiency

syndrome (AIDS) (Pedersen et al. 1987). This virus had the characteristics of a lentivirus.

FIV causes a lifelong infection in domestic cats which, after an indefinite period of

asymptomatic disease, may progress to an AIDS-like phase, similar to that seen with

human immunodeficiency virus (HIV).

Serological studies have been conducted by many groups and have shown FIV to be

distributed worldwide with the prevalence of infection varying from 1-15% in healthy cats

and 3-44% in sick cats, reviewed by Miyazawa and Mikami (Miyazawa and Mikami

1993). Differences in population density and varying husbandry conditions may contribute

to the large variations recorded amongst different studies. Although the virus was first

isolated in 1986 (Pedersen et al. 1987), examination of archival samples found evidence of

the virus as early as 1968 (Gruffyd-Jones et al. 1988) and phylogenetic studies indicate that

the virus is very ancient (Talbott et al. 1989; Shelton et al. 1990a; Olmsted et al. 1992).

1.2. The retroviruses

Lentiviruses are single stranded RNA viruses with a diploid genome, which is organised in

a way characteristic of all retroviruses with the gag, pol and env genes always occurring in

that order (see Figure l.a.). The gag gene encodes the internal structural proteins,

nucleocapsid (NC), capsid (CA or p24), the major core protein p24 and matrix (MA)

proteins (Yamamoto et al. 1988; Talbott et al. 1989). The pol gene encodes proteins with

enzymatic functions: protease (PR), reverse transcriptase (RT), integrase (IN) and

dUTPase. The RT is a DNA polymerase that has several functions including synthesis of

DNA from a mRNA template, synthesis of DNA from a DNA template and ribonuclease

activity. Like other lentiviruses, FIV RT depends on Mg2+ and operates at identical molar

concentrations to primate lentiviruses (Yamamoto et al. 1988). The IN is responsible for
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Figure 1.a. Schematic representation of the virion and genome

organisation.

5' LTR OrlA
3' LTR

env
pol

The gag gene encodes the following proteins, MA=matrix protein, CA=capsid, NC=nuc1ear capsid. The pol

gene, IN=integrase, DU=dUTPase, RT=reverse transcriptase, PR=protease. Env encodes SU=surface

glycoprotein, TM=transmembrane protein
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integrating the viral DNA at any point in the host genome (Madigan et al. 2000). Both the

gag and pol genes of FIV are highly conserved areas of the genome (Talbott et al. 1989).

The env gene encodes the envelope glycoprotein (Env), gp120. which comprises two parts.

the surface glycoprotein (SU) and the transmembrane (TM) protein. The two proteins have

masses of 95kD and 40kD respectively (Stephens et al. 1991). The env gene has several

variable regions and viral isolates can be classified into subtypes on the basis of the

nucleotide sequence of this region (Sodora et al. 1994). The sequence diversity of the env

gene is organised in clusters and nine hypervariable regions (VI-V9) have been defined

(Pancino et al. 1993b). The first two, VI and V2, are found in the leader sequence and do

not encode the mature Env protein due to proteolytic processing (Verschoor et al. 1993),

V3 to V6 are in the SU and V7 to V9 are in the TM. The Env protein has been shown to

be a principal determinant for virus/cell interactions, fusogenicity and cell tropism as well

as containing a major immunodominant domain (Lombardi et al. 1993; de Ronde et al.

1994; Pancino et al. 1995).

The FIV genome in its proviral form is flanked by long terminal repeats (LTR) of

approximately 350bp (Talbott et at. 1989; Olmsted et al. 1989b) that control and direct

DNA and RNA synthesis via two TATA boxes, which are promoter sites for transcription.

One of these is similar to that of 1IIV and the other identical to that of caprine encephalitis

virus (CAE V). visna-maedi virus (V-MV) and equine infectious anaemia virus (EIAV)

(Sparger et al. 1992). Enhancer/promoter binding sites are also present, namely AP-l, AP-

4, ATF-I and EBP20. AP-l has been shown to be required for T cell activation responses

mediated by protein kinase C and the ATF site is the target for c-AMP induced responses

by protein kinase A (Sparger et al. 1992).

Lentiviruses are more complex than the simple retroviruses like feline leukaemia virus

since they have accessory genes. The accessory genes of FIV are vif, which controls cell-

free infectivity (Tomanaga et al. 1992), and rev, which participates in the stabilisation and

transport of incompletely spliced viral RNA (Kiyomasu et al. 1991). Furthermore, rev has

been shown to be essential for productive infection of the virus (Phillips et al. 1992). A

further gene called OrlA or Orf2 which lies between vif and env is required for the

productive infection of T lymphocytes (Waters et al. 1996) and facilitates the

transactivation of FIV (de Parseval and Elder 1999).



4

1.3. Evolution and the phylogenetic analysis of FIV

Phylogenetic analysis of the env genes revealed five subtypes (Sodora et al. 1994;

Kakinuma et aI. 1995; Pecoraro et aI. 1996) and with evidence of recombination in the FIV

env gene occurring in natural infection there is the opportunity for great genetic diversity

(Carpenter et al. 1998).

FIV diverged early in the evolution of lentiviruses, shortly after the divergence of primate

and non-primate lentiviruses (Talbott et al. 1989), but is most closely related to the

ungulate lentiviruses EIAV, CAEV and particularly V-MY (Olmsted et al. 1989b). As

well as in domestic cats, FIV strains can be found in many other wild felid species

(nondomestic cat lentiviruses, NDCL) such as the puma (Puma concotor; FIV-Pco) and the

lion (Panthera leo; FIV -Pie) (Olmsted et aI. 1992; Brown et aI. 1993; Carpenter and

O'Brien 1995; Carpenter et aI. 1996). Similar to simian immunodeficiency virus (SIV),

infection of the natural host of NDCL in nondomestic felids with their natural strains of

NDCL does not appear to cause disease and seropositivity has not been correlated with the

occurrence of disease (Olmsted et aI. 1992). The degree of pol sequence diversity between

FIV-Pco, FIV-Ple and FIV is 20-30%, which suggests that these viruses have coexisted

with their respective feline hosts since the divergence of the felid species, allowing

attenuation of the virus due to immunological adaptation and host selection (Olmsted et aI.

1992; Carpenter and O'Brien 1995; Carpenter et al. 1996). Evidence of interspecies

transmission has been found in African lions and in Tsushima cats in Japan (Spencer et al.

1992; Nishimura et al. 1999; Bull et al. 2002). Previous studies have shown NDCLs to be

infectious for domestic cats (Olmsted et al. 1992; Carpenter et aI. 1996; Vandewoude et al.

1997).

1.4. Natural infection

The source of FIV is the persistently viraemic cat. Epidemiological studies have shown

that in-contact animals have an infection rate of 21-48% (Pedersen et at. 1987; Ishida et at.

1988; Hosie et al. 1989; Hopper et al. 1991). Since FIV is most prevalent in male, free

roaming cats and can be isolated from the saliva of FlY -infected cats (Yamamoto et al.

1989) it seems that biting is the most likely mode of transmission

FlY -infected cats reaching the later stages of infection can present with multiple infections,

both chronic and opportunistic. The commonest problems are vague signs of malaise
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including, lethargy, inappetance, weight loss, pyrexia and lymphadenopathy, and more

specifically gingivitis, diarrhoea, rhinitis, upper respiratory tract infections, ocular

discharge and neurological signs (Yamamoto et al. 1989). Opportunistic infections and

multiple simultaneous infections may occur. Haematological abnormalities also occur with

cats often having cytopenias (the most common being anaemia, neutropenia, lymphopenia)

and monocytosis although some cats may have lymphocytosis (Hopper 1989; Shelton et al.

1990b). Concurrent chronic infections are major factors in the haematological disorders,

summarised by Callanan (Callanan 1995).

1.5. Immunodeficiency

Immune system dysfunction occurs as the disease progresses, with a steady reduction in

CD4+ T lymphocytes and changes in the CD4+ and CD8+ T lymphocyte ratios. Reduction

of the CD4:CD8 ratio or inversion of the ratio has been documented (Novotney et al. 1990;

Hoffman-Fezer et al. 1992; Lawrence et al. 1992). Expansion of the CD8a+~low T

lymphocyte subset post infection has been documented (Lehmann et al. 1992; Willett et al.

1993) and is thought to contribute to the lymphocyte inversion seen. While the role of

these cells is still unclear they are thought to be activated T cells (Bucci et al. 1998b).

There is reduced responsiveness of peripheral blood mononuclear cells to mitogens such as

pokeweed mitogen (PWM), Concanavalin A (Con A), lipopolysaccharide (LPS) and to

stimulation by interleukin-2 (lL-2) (Lin et al. 1990; Siebelink et al. 1990; Barlough et al.

1991).

1.6. Clinical signs of FIV in experimental infection

Experimental infection may be achieved by many routes of inoculation including:

intraperitoneal (Pedersen et al. 1987; Yamamoto et al. 1988), intravenous (Yamamoto et al.

1988), intramuscular, subcutaneous (Siebelink et al. 1990) and intrathecal (Dow et al.

1990). In addition, cats can be infected by oral, nasal (Callanan 1995), vaginal and rectal

administration (Bishop et al. 1992). Successful infection has been achieved using whole

blood, plasma, cell-free virus and cell-associated virus (Pedersen 1993).

Within 6 weeks post infection (p.i.) generalised lymphadenopathy usually occurs, brought

about by follicular hyperplasia, paracortical activation and expansion, accompanied by

increased numbers of plasma cells due to initiation of the humoral response. Around this

time mantle zone attenuation and invagination occurs, follicles become irregular and some
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become markedly enlarged due to fusion with neighbouring follicles (Callanan et al. 1993).

There are also increased numbers of germinal centre CD8+ cells, sinus lymphocytosis and

B cell reactions (Callanan et al. 1993; Parodi et al. 1994). By 8-12 months p.i. involution

of the lymph nodes first becomes apparent, and hyalinised follicles appear (Callanan et al.

1993). Often coinciding with generalised lymphadenopathy are transient neutropenia,

lymphopenia, pyrexia, dullness and anorexia (Pedersen et al. 1987; Yamamoto et al. 1988;

Yamamoto et at. 1989; Moraillon et al. 1992; Mandell et at. 1992; Callanan et al. 1992b).

This is termed the acute phase of infection and cats generally recover, becoming free of

clinical signs but persistently viraemic. Healthy, persistently viraemic cats are said to be in

the asymptomatic phase, which may last for variable periods. During this time

haematological parameters are generally unremarkable but by eighteen months p.i. a

gradual decline in CD4+ T lymphocytes occurs (Ackley et al. 1990; Barlough et al. 1991;

Willett et al. 1993) sometimes with a concurrent increase in CD8+ T lymphocytes (Ackley

et al. 1990).

1.7. The clinical staging for FIV

It has been proposed that the disease conditions associated with FIV infection can be

classified into five recognisable clinical disease stages (Ishida and Tomoda 1990),

analogous to the clinical stages found in HIV infection.

1. The acute phase characterised by pyrexia and generalised lymphadenopathy 42-56

days post infection as reviewed by Pedersen (Pedersen 1993).

2. The asymptomatic phase (Yamamoto et al. 1988) which has been found to vary in

duration with age at infection (George et al. 1993).

3. Persistent generalised lymphadenopathy where cats are often presented to the

veterinary surgeon for unthriftiness and vague nonspecific clinical signs, reviewed

by Pedersen (Pedersen 1993).

4. AIDS-related complex - 50% of cats present with signs similar to HIV in humans

(Ishida and Tomoda 1990).

5. AIDS - less than 10% of FIV -infected cats are presented in the terminal AIDS-like

stage, as many are euthanased due to the very poor prognosis.
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6. Sometimes a sixth group is included which comprises miscellaneous diseases

associated with FIV (Pedersen 1993), e.g. neoplasia has been recorded in naturally

infected (Alexander et a1. 1989; Shelton et a1. 1990a; Rosenberg et a1. 1991; Hutson

et a1. 1991; Buracco et a1. 1992; Barr et a1. 1993) and experimentally infected FIV-

positive cats (Callanan et a1. I992a; Poli et a1. 1994). The mechanism whereby FlV

initiates malignancy is still unclear but one report describes a monoclonally

integrated FlV provirus within tumour DNA (Beatty et a1. 1998). However, viral

gene expression could not be detected which indicated that expression was not

required in order to maintain the transformed phenotype (Beatty et a1. 1998). There

is no doubt, however, that cats with FIV have an increased risk of developing

lymphoma (Hutson et a1. 1991; Poli et a1. 1994; English et a1. 1994; Callanan et a1.

1996).

1.8. Tropism in vivo

Upon infection, the principal target for FIV is the CD4+ T lymphocyte (English et a1. 1993;

Beebe et a1. 1994; Dean et a1. 1996) and this subpopulation decreases rapidly as the disease

progresses to the immune deficiency stage (Ackley et a1. 1990; Torten et a1. 1991;

Hoffman-Fezer et a1. 1992). Infection of macrophages occurs (Brunner and Pedersen

1989) and macrophage-tropic variants are thought to predominate during the asymptomatic

phase (Beebe et a1. 1994). The prevalence of macrophage-tropic variants was shown to

increase by 40-95% at the time of the early acute illness (Beebe et a1. 1994). possibly due

to the decreasing CD4+ T lymphocyte population forcing selection of macrophage-tropic

variants. Macrophage-tropic strains are thought to be necessary for the persistence of the

infection and also dissemination of the virus within the body. Macrophages may play an

important role in viral dissemination since viral infection is less cytopathic in macrophages

compared to CD4+ T cells (Beebe et a1. 1994). Circulating macrophages were found not to

express viral antigen until adherence occurred in vitro (Dow 1999), suggesting that

monocyte infection in the peripheral blood might occur at a level higher than previously

thought, since monocytes might express viral antigen only after maturation into tissue

macrophages, which occurs on adhering to a substrate, e.g. extracellular matrix (Dow

1999).

FlV infects CD8+ T cells (Brown et a1. 1991) and B cells (English et a1. 1993) as well as

CD4+ T cells. The virus is found increasingly in B cells during the progression from the



8

asymptomatic to chronic stage of infection (English et al. 1993; Dean et al. 1996). The

CD8+ T lymphocyte population is not depleted following infection and is sometimes

expanded, contributing to a decrease in the CD4+:CD8+ T cell ratio (Torten et al. 1991;

Hoffman-Fezer et al. 1992; Willett et al. 1993). The expanded CD8+ population expressed

lower amounts of the CDS protein on its surface and was designated CDS10w(Willett et al.

1993), later defined further as CDSu +plow(Shimojima et al. 1998a; Shimojima et al.

1995b).

Neuronal cells are also susceptible to FIV infection, with astrocytes being the most

susceptible to infection and syncytium formation. Microglia are also susceptible and can

remain persistently and productively infected (Dow et al. 1992).

1.9. Tropism in vitro

FIV isolates can be cultured in vitro, with isolates having different capacities for

replication in different cell lines. Laboratory-adapted isolates are defined as having been

passaged extensively in vitro, whereas primary isolates have been minimally passaged in

vitro, infection being limited to PBMCs or highly susceptible IL-2 dependent cell lines,

e.g. Mya-l cells. Primary isolates can be grown in mitogen-activated PBMCs,

macrophages, T-Iymphoblastoid cell lines such as thymocytes, the IL-2-dependent cell line

Mya-l, and the IL-2 independent cell line 3201 (Miyazawa et at. 1990; Tochikura et at.

1990). In these cells the virus causes cytopathic effects in the form of cell death and

syncytium formation, with or without cell lysis. Some isolates have been shown to have a

broader cell tropism, having the ability to infect also cells of the Crandell feline kidney

(CrFK) cell line. Clones of the FIV -Petaluma (FIV -PET) isolate, namely FIV-14 and FIV-

34TFIO, can infect CrFK cells (Olmsted et al. 19S9a) in which they can produce a

persistent, noncytopathic infection (unpublished data, Retrovirus Research Laboratory,

Glasgow University Veterinary School).

By inserting the env gene from variant clones into a FlV-PET backbone, the ability to

infect CrFK cell lines was shown to be associated with an increase in charge of the

hypervariable region 3 (V3) of SU (Verschoor et al. 1995). This difference in charge was

considered to be the result of a glutamate to lysine (E to K) mutation at position 407 or

409. A concurrent glycine to arginine (G to R) mutation at position 397 was found to

result in improved replication kinetics, similar to the original clone. Similarly, an increase

in charge that was related to changes in tropism has been described in HIV isolates (de
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Jong 1992). Several regions of the env gene other than V3 also contain determinants of

tropism. CrFK-tropism was the result of a methionine to threonine (M to T) mutation in

the TM of the envelope glycoprotein of FlV -UT113 (Vahlenkamp et al. 1997). Expanded

host cell tropism of a clone of FIV-PPR after passage in IL-2 independent T cells (MC1I5-

4DL) was shown to be associated with 3 mutations; glutamine to proline in the second

constant domain of SU, threonine to proline in the V4 hypervariable loop of SU, and a

premature stop codon in the cytoplasmic tail of the transmembrane protein which was

found to be responsible for syncytium formation (Lerner and Elder 2000) (see Figure I.b.

and I.c.).

Other lentiviruses, such as SIV, 1IIV-l, lIIV-2 and EIAV, have been found to expand host

cell tropism by truncation of the cytoplasmic domain of SU by a premature stop codon

(Lerner et al. 2000). These truncations have been shown to increase growth kinetics,

envelope fusogenicity and cytopathogenicity in vitro. Similarly, the FIV orfl gene

encodes a protein that allows infection of peripheral blood lymphocytes, as seen in the

clone FIV-PPR (Phillips et al. 1990). In contrast, the Petaluma clone 34TFIO, which has a

premature stop codon in this region, was severely restricted to adherent monolayer cell

lines and replicated poorly in vivo. Repair of the orfl allowed the 34TFI0 clone to

replicate in T lymphocytes (Waters et al. 1996). Hence the role of orj2 in tropism remains
unclear.

1.10. FIV infection of human cell lines

There is evidence that some FIV isolates may have the ability to infect human cells. For

example, FIV chimaeras with the Env protein of FIV-PET infected the human

lymphoblastoid cell line MOLT-4 and, although productive infection was not achieved.

provirus was detectable within the cells (Ikeda et al. 1996). Infectious virus was also

produced when an infectious molecular clone of the TMI strain was transfected into the

non-lymphoid human cell line HeLa (Miyazawa et al. 1992). More recently FIV isolates

VI-CSF and FIV-PET were reported to infect human PBMCs productively by cell-free

infection, although infection was inefficient (Johnston and Powers 1999). FIV has been

proffered as a useful tool in human gene therapy as an efficient retroviral vector (Poeschla

et al. 1998). Although no human has been reported as becoming infected with FIV

(Pedersen 1993; Butera et al. 2000) or even seroconverting, great caution should be

exercised in selecting vector strains owing to the great range in tropism and ability to adapt
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Figure 1.b. Schematic representation of the SU of the Env protein.
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Figure 1.c. Schematic representation of the TM of the Env protein.
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displayed by FIV. From this evidence it can be seen that isolates of FIV have evolved

many ways in which to broaden or improve their infective and replicative capacity within

numerous cell lines. The poor proof reading capabilities of RT leads to this high rate of

mutation and contributes to the virus having the ability to evade the immune system.

Primary isolates of FIV have broad resistance to antibody-mediated neutralisation, which is

thought to contribute to the persistence of these viruses and may cause failure of

experimental vaccines. Reversion to broad neutralisation resistance arose in cats

inoculated with a tissue culture-adapted strain (FIV -PET) and a lysine to asparagine or

glutamine change at position 481 was found to be a key determinant in reversion

(Bendinelli et al. 2001). Long-term viral revertants exhibited a serine to asparagine change

at 557 in the fifth variable region (V5), a mutation which is thought to collaborate with

other mutations in the maintenance of neutralisation resistance. However, neither of these

mutations was reported to cause a change in cell tropism (Bendinelli et al. 2001).

1.11. Cell Receptors

1.11.1. The CD4 molecule

CD4 is the principal receptor for entry of primate lentiviruses (Dalgleish et al. 1984;

Klatzmann et al. 1984) and CD4+ T lymphocytes are the principal target for FIV infection

(English et al. 1993; Beebe et al. 1994; Dean et al. 1996). These findings initially

suggested that CD4 might have an important role in entry of FIV. However, subsequently

CD4- cells were shown to become infected, e.g. CD8+ T lymphocytes (Brown et al. 1991),

IgO+ B cells (English et al. 1993; Beebe et al. 1994; Dean et al. 1996),

monocyte/macrophages (Brunner and Pedersen 1989) and neuronal cells (Dow et al. 1992).

In addition, monoclonal antibodies to various epitopes on feline CD4 did not inhibit

infection with FIV (Hosie et al. 1993; Willett et al. 1997b). Furthermore, expression of

feline CD4 on FIV resistant feline cells does not render them susceptible to infection with

lymphotropic isolates of FIV (Norimine et al. 1993). The possibility of a non-CD4

receptor was further highlighted when the anti-feline CD9 monoclonal antibody vpgl5,

blocked infection of FlV susceptible cells (Hosie et al. 1993), implicating CD9 as a

putative receptor for FIV entry. Subsequently, however, the blocking properties of vpg 15

were found to act at a post-entry stage (de Parseval et al. 1997; Willett et al. 1997b).
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1.11.2. The chemokine receptor CXCR4

The discovery of the seven transmembrane domain receptor "fusin" as a coreceptor for

BIV-1 entry (Feng et al. 1996) led to the investigation of its use by FIV. Fusin, or CXCR4

as it is now known, is a O-protein coupled receptor. The name CXC comes from the

positioning of the first two highly conserved cysteine residues of the amino acid sequence.

The CXCR4 receptor is essential for mammals (Ma et al. 1998; Zou et al. 1998) as the

deletion of this gene in embryos is lethal. CXCR4 is found on the surface of many cells

such as endothelial and epithelial cells. It plays a major role in haematopoiesis,

organogenesis, 8 cell maturation and T cell trafficking, and is also a potent

lymphocyte/monocyte chemoattractant (Murdoch 2000). The ligand for CXCR4 is the

chemokine, stromal cell derived factor-I (SDF-l), a relationship that is thought to be

monogamous (Ma et al. 1998).

Usage ofCXCR4 by FIV, was indicated in a similar fashion to HIV-l, by inhibition assays

against cell culture-adapted strains of FIV, conducted using the anti-human CXCR4

antibody 1205 (Willett et al. 1997a). Antibody 1205 led to a dose-dependent inhibition of

fusion between the human cell line Hel.a (expressing CXCR4) and persistently FIV-

infected CrFK cells (viral envelope glycoproteins protrude from the infected cells and fuse

with the CXCR4 of the Hel.a cells). SDF-lu, the natural ligand for CXCR4, was shown to

block infection of CrFK cells by a cell culture-adapted strain of FIV, but not the infection

of the IL-2 dependent T cell line Mya-I (Hosie et al. 1998a), which suggested not only that

CXCR4 mediated the entry of cell culture-adapted strains, but also that there might be an

alternative mode of viral entry in cell lines such as Mya-I. As well as a dose-dependent

inhibition, enhancement was observed in FIV infection of CrFK cells after prolonged

incubation with SDF-lu (Hosie et al. 1998a). This was considered to be due to

upregulation of CXCR4 expression on the cell surface leading to increased viral uptake.

Further studies, using the bicyclam derivative AMD3100 that binds CXCR4, demonstrated

that a dose-dependent inhibition of infection by laboratory-adapted strains of FIV could be

achieved. Blocking was achieved in CrFK cells and feline thymocytes at AMD3100

concentrations of 14ng/ml and 62 ng/ml respectively (Egberink et al. 1999). The same

studies demonstrated that primary isolates also used CXCR4, as infection of feline

thymocytes was blocked in a dose-dependent manner at inhibitory concentrations ranging

between 21 ng/ml to 68 ng/ml for the 6 primary isolates studied. Furthermore, it was
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shown that the blocking effect of AM031 00 acted at an envelope-mediated stage since

blocking of a pseudotyped virus expressing a primary isolate envelope glycoprotein was

inhibited, whereas there was no inhibition of infection by pseudotypes expressing the G-

protein of vesicular stomatitis virus (Richardson et al. 1999).

Feline CXCR4 was cloned from the mRNA of cells of the T lymphoblastoid cell line Mya-

1 (and of CrFK cells) and was shown to have 94.9% homology, at the amino acid level,

with human CXCR4 (Willett et al. 1997c). Ectopic expression of feline CXCR4 on the

human cell line U87 allowed fusion with CrFK cells infected with FIV-GLS. That neither

C04 nor C09 were receptors for FIV was confirmed when U87 cells expressing C04 or

CD9 did not support fusion (Willett et al. 1997c). A further study using ratlhuman

chimeras of CXCR4 demonstrated that the second extracellular loop (EC) loop of CXCR4

was the principle determinant for fusion, while the first and third loops were important for

conformational presentation of the second EC loop or were directly involved themselves

(Willett et al. 1998).

1.11.3. Involvement of another (co)receptor

HIV-1 isolates fall into two biological groups. They were first classified by their in vitro

growth properties as 'rapid-high' or 'slow-low' depending on their replication rates (Asjo

et al. 1986) or as syncytium-inducing (SI) or nonsyncytium-inducing (NSI) (Asjo et al.

1986; Tersmette et al. 1988) and also macrophage-tropic or T-Iymphotropic (Gartner et al.

1986). Studies on the usage of the chemokine receptor CCRS by macrophage-tropic

isolates of F1V have provided no evidence of a role for CCRS. Incubation of CrFK or

Mya-l cells with the p-chemokines, MIP-I u, MIP-I p and RANTES did not block

infection with FIV-PET (Hosie et al. 1998a). More recently, however, a study comparing

the isolates FIV-PPR and FlV-PPRglialdemonstrated the possibility of CC chemokine

receptor usage, as the p-chemokine RANTES inhibited infection of T cells by FIV-PPR by

20-40% (Lerner and Elder 2000). Therefore, FIV may use a CC chemokine as a method of

entry.

Further evidence of non-CXCR4 receptor usage by FIV was highlighted by a study using a

fusion protein consisting of the Fe domain of human immunoglobulin G1 with the variable

domain being represented by the SU (gp9S) of either FIV-PPR (primary isolate) or FIV-

34TFlO (laboratory-adapted isolate). It was shown that the SU of the gp9S of FlV-PPR

bound only to primary feline T lymphocyte cell lines whereas the SU of the gp9S of FIV-
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34TFIO bound to all cell lines tested. SDF-Ia, RANTES, MIP-l and heparin all failed to

inhibit binding of gp95 to primary T cells, implicating a non-CXCR4 receptor (Richardson

et al. 1999). Further studies to elucidate the receptor usage of FIV have found that a 43kD

non-CXCR4 molecule, as well as heparan sulphate proteoglycans (HSPG), is used but that

the receptor used is dependent on cell type (de Parseval and Elder 2001; Elder and de

ParsevaI2002). For example, FIV-PPR infection is restricted to cells expressing the 43kD

molecule, such as IL-2 dependent cells and PBMCs, whereas the FIV-PET clone 34TFIO

can use CXCR4, the 43kD molecule and HSPGs. On primary T cells, 34TFI0 was shown

to use the 43kD molecule but on non-primary T cells e.g. 3201 cells, the virus was shown

to bind directly to CXCR4. This strain was shown to have further diversity as it was able

to infect adherent cell lines by binding to HSPGs and then CXCR4 (Elder and de Parseval

2002). Further studies in the same report showed that similar to lIIV, DC-SIGN can

transmit FlV to other cells, again highlighting the usefulness of FIV as a model for IBV

infection and AIDS.

1.12. Immunopathogenesis

1.12.1. The lymphocyte subpopulations

Perturbation of the immune system is best examined in the experimentally infected cat, as

the duration of infection and the dose and characteristics of the inoculum are known. CD4+

T cell cytopenia is common to both natural and experimental infection but is generally seen

later in natural infection, concurrent with the AIDS-like stage, whereas it is recorded

earlier in experimental infection (Walker et al. 1994; Diehl et al. 1996; Walker et al. 1996).

However, this decrease in CD4+ T lymphocytes is not solely responsible for

immunodeficiency (Pedersen 1993). Although CD4 levels and plasma virus load were

thought to be inversely correlated (Diehl et al. 1995a), studies have shown that they may be

affected by route of infection and viral strain (Diehl et al. 1995b; Burkhard et al. 2002).

Indeed, studies of SIV infection have shown that receptor usage affects the CD4+ T cell

population, as inoculation of CCR5- or CXCR4-type viruses have quite different effects

(Harouse et al. 1999).

Early experimental infection is characterised by an expansion of the CD8+ T lymphocyte

population which coincides with reduced viral replication (Willett et al. 1993). This

population of cells expresses only low amounts of the CD8 p chain (CD8pIOW)(Willett et
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al. 1993; Shimojima et al. 1998a; Bucci et al. 1998b; Shimojima et al. 1998b; Gebhard et

al. 1999; Orandle et al. 2000). These cells have been shown to be noncytolytic CD8+ T

cells which produce soluble factors that suppress FIV replication (Jeng et al. 1996;

Hohdatsu et al. 1998; Flynn et al. 1999; Choi et al. 2000) and, in some cases suppression or

clearance of the virus occurs without seroconversion (Bucci et al. 1998a). The exact role

of CD81310wlymphocytes is unclear as there is evidence that they are not solely responsible

for the antiviral activity (Flynn et al. 1999; Crawford et al. 2001) and their numbers

increase as virulent FIV variants emerge (Gebhard et al. 1999; Hosie et al. 2000; Hosie et

al. 2002). This increase in CD8a +plowlymphocytes can be detected as early as one week

p.i. in the peripheral and mesenteric lymph nodes and the blood (Flynn et al. 2002) and has

been correlated to a reduction in viral detection (Crawford et al. 2001).

1.12.2. The cell mediated immune response

The cell mediated immune response is detectable before the humoral response (Song et al.

1992; Beatty et al. 1996; Flynn et al. 1996). Cell mediated immunity is seen as early as 2

weeks p.i. (Beatty et al. 1996) in peripheral blood (Song et al. 1995). The level of

cytotoxic T lymphocyte activity is lower in chronically infected cats (Li et al. 1995) than in

acutely infected cats (Beatty et al. 1996). Also the distribution of CTL changes, activity

being concentrated in the lymph nodes and spleen during the asymptomatic stages, Le. the

major sites for viral replication at this time (Beebe et al. 1994; Flynn et al. 1996). The

CTL response in naturally infected cats tends to be directed towards Gag proteins of the

virus (Flynn et al. 2002) whereas in cats vaccinated with whole inactivated virus (WIV)

that were protected from infection the CTL response has been shown to be predominantly

directed towards Env proteins (Flynn et al. 1996).

1.12.3. The humoral immune response

Seroconversion can be detected as early as 3-5 weeks p.i. (Yamamoto et al. 1988;

Rimmelzwaan et al. 1994; Callanan et al. 1996; Burkhard et al. 2002) and antibodies are

directed to both Gag and Env (Hosie and Jarrett 1990; Egberink et al. 1990). There are

conflicting reports of which antibodies appear first, perhaps reflecting strain differences or

the result of varying sensitivity of the assays used (Burkhard and Dean 2003). Virus

neutralising antibodies arise 6 weeks p.i. (Yamamoto 1999) and levels continue to increase

over the first 6-8 months (lnoshima et al. 1996). The third hypervariable region of the Env

is the principal immunodominant domain for neutralising antibody (Lombardi et al. 1993;
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de Ronde et al. 1994) but the V4 and V5 regions have also been implicated (Siebelink et al.

1993).

The extent to which these immune responses participate in protection against infection

with FIV is unknown, but it has been suggested that humoral immunity is less important

than cell mediated immunity and the noncytolytic immune response (Flynn et al. 2000).

1.13. Vaccination

1.13.1. Early vaccines

Since the discovery of HIV in 1983 (Barre-Sinoussi et al. 1983), efforts have been directed

toward the production of a vaccine. The discovery of FIV in 1987 (Pedersen et al. 1987),

with its many similarities to HIV, has led to its employment as a vaccine model for HIV.

The first successful vaccines against FIV were WIV or inactivated infected cell (lIC)

vaccines made from the FL-4 cell line, with over 90% protection being achieved against

homologous challenge with FIV-PET and the closely related FIV-DIXON (Yamamoto et

al. 1991). Similarly, protection was achieved using the same vaccine but challenge

inoculum was grown in an unrelated cell line. However, protection was not achieved

against the heterologous virus FIV-GL8 (Hosie et al. 1995). The resistance to vaccine-

induced protection demonstrated by the primary isolate FlV-GL8, along with induction of

the CD8a +p low T lymphocyte population (Willett et al. 1993) as well as higher proviral

DNA loads and greater reduction of the CD4:CD8 T lymphocyte ratio (Hosie et al. 2002),

led to the hypothesis that FIV-GL8 is a more virulent strain ofFIV compared to FlV-PET.

1.13.2. Subunit vaccines

Due to the inherent risks involved with WIV vaccines, particularly for HIV, much research

has been conducted in the field of subunit vaccines. lmmunogens that have been tested

include recombinant FIV proteins expressed in mammalian cells using vectors such as

baculovirus, vaccinia virus, and Ecoli in prokaryotic cell lines. The majority of subunit

vaccines have been based on the Env protein (Lutz et al. 1995; Siebelink et al. 1995c;

Hosie et al. 1996a). Smaller subunits using only the V3 region of the Env protein have

also been tested (Lombardi et al. 1994; Flynn et al. 1995), as well as the p24 protein (Hosie

et al. 1992), but little success has been achieved using these immunogens. At best,

suppression of viral load was achieved with affinity purified Env, although all the

vaccinates became infected (Hosie et al. 1996a). Furthermore, enhancement of infection,



18

where viral loads have been higher or the time to viral isolation shorter, has been reported

following immunisation with several of these subunit vaccines (Hosie et al. 1992;

Lombardi et al. 1994; Siebelink et al. 1995c).

1.13.3. DNA vaccines

The advent of DNA vaccination appeared promising as this system would allow the mass

production of vaccines, which would be economical and affordable for third world

countries where HIV is very prevalent. DNA vaccination presents further advantages:

vaccines may be produced for pathogens which are problematic to grow in culture; they

contain inherent immunostimulatory sequences, namely CpG motifs; they may induce both

humoral and cell mediated immune responses; and there is no evidence for integration into

the host genome (reviewed by Dunham (Dunham 2002)). DNA vaccination against FIV

infection has given some promising results to date. Vaccines have included proviral DNA

with various deletions within the genome, mostly in the integrase or reverse transcriptase

genes (Hosie et al. 1998b; Hosie et al. 2000; Dunham et al. 2002), the vif gene (Lockridge

et al. 2000) or the AP-l binding site (Kohmoto et al. 1998). Also an Env construct in a

minimalistic immunogenic defined gene expression (MIDGE) system has been tested

(Borretti et al. 2000; Leutenegger et al. 2000). Partial protection was reported in two trials

using the construct FIV-PPR-~vif(Leutenegger et al. 2000) or the surface protein plus part

of the transmembrane protein of FIV"Zurichz (FIV-Z2) (Borretti et al. 2000) when cats were

challenged with homologous virus strains. Similar to the subunit vaccines, enhancement of

infection was documented when either wild type env or env genes with mutations in the

principal immunodominant domain was used as vaccine immunogens (Richardson et al.

1997). In studies where cats were challenged with heterologous strains, no protection was

seen. Comparison of vaccine trials is difficult due to the great variation in vaccine

production, challenge strains, adjuvants employed and the routes of immunisation and

challenge.

The most success has been achieved with WIV vaccines derived from either the subtype A

FIV-PET (Yamamoto et al. 1991; Yamamoto et al. 1993; Hosie et al. 1995) or the subtype

B FlV-M2 (Matteucci et al. 2000a) but again these vaccines were only successful against

homologous challenge. A similar situation occurs in IIC vaccines where a degree of

success has been reported in trials investigating mucosal transmission, which is pertinent to

HIV infection (Stokes et al. 1999; Finerty et al. 2002).
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1.13.4. The future of vaccines

A successful FIV vaccine should protect against homologous and heterologous challenge.

To date, only a single vaccine has become commercially available (Fel-O-Vax FIV, Fort

Dodge). This vaccine is a WIV vaccine using subtype A FIV-PET and SUbtypeB FIV-

Shizuoka (FIV-SlII) and was shown to protect 100% of vaccinates challenged with FIV-

PET and 80% of vaccinates challenged with FIV-Bangston (FIV-BANG) (Pu et al. 2001).

These results are highly promising but the vaccine has yet to be tested under field

conditions where challenge will be in the form of virus populations or quasispecies that

arise during natural infection. Only one trial has been conducted under natural conditions

of challenge. Cats in a rescue shelter were vaccinated with an IIC vaccine based on the

subtype B strain M2 (Matteucci et al. 2000b), and all 12/12 immunised cats were protected

while 5/14 of control, unvaccinated cats became infected. Although these results were

promising, the duration of vaccine immunity using the same vaccine was reported to be

short (Matteucci et al. 1997), so that repeated immunisation may be necessary to conserve

immunity. Whether this vaccine would protect against challenge with virulent subtype A

viruses remains unknown. The vaccine was tested in Italy where subtype B viruses

predominate and it has been suggested that these viruses are more ancient than subtype A

strains and therefore more host adapted and less virulent (Bachmann et al. 1997; Pistello et

al. 1997).

1.14. Does tropism in vitro correlate with pathogenicity in vivo?

Since the discovery that chemokine receptors are essential for lIlV -I entry into cells and

may be involved in the evolution of disease, studies of receptor utilisation have led to a

greater understanding of the pathogenesis of HlV and AIDS. The error-prone RT leads

very quickly to the formation of a quasispecies population within the infected individual.

The development of viruses with broad genetic variability can lead to differing phenotypes,

of which cell tropism, replication rates and syncytium inducing (SI) capacities have been

studied (Cheng-Mayer et al. 1988; Tersmette et al. 1988; Tersmette et al. 1989a; Connor et

al. 1993a).

Tropism on MT-2 cells has been correlated with disease stage (Connor et al. 1993a) with

asymptomatic individuals having mostly macrophage-tropic, slowly replicating NSI IIIV-l

variants. During disease progression more T cell-tropic, rapidly replicating variants

appear, although only 50% of patients with disease progression have viruses of the SI
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phenotype. HIV-1 infection is established by macrophage-tropic isolates, most of which

use the chemokine receptor CCR5. Some isolates may have dual tropism for both CXCR4

and CCR5 and small numbers may be restricted to CXCR4 alone. With disease

progression, SI variants often emerge, which display broader coreceptor usage in vitro

(using CCR2b, CCR3, CCR8, STRL33 and V28 (de Roda Husman and Schuitemaker

1998). The reason for this selection of NSI macrophage-tropic variants is unclear.

However, the main receptors in vivo are still thought to be CXCR4 and CCR5 (Zhang and

Moore 1999).

It is thought that CXCR4 viruses are rarely transmitted for several reasons. For example,

CCR5 viruses predominate in most infected individuals, extensive SDF-l expression on

mucosal surfaces may act as a barrier (Agace et al. 2000) and there is down regulation of

CXCR4 within the gut associated lymphoid tissue (Harouse et al. 1999). The finding that

individuals homozygous for a 32bp deletion in the CCR5 gene (~32/~32 CCR5

homozygotes) which leads to a truncated CCR5 protein that fails to reach the cell surface,

are highly resistant to HIV-1 infection via sexual, blood contact or mother to child

transmission further support the hypothesis that CXCR4 viruses are rarely transmitted

(Clapham and McKnight 2002). Contrary to these findings, inoculation of predominantly

SI variants was reported to result in persistence of the SI virus population in the recipient

and inoculation of a predominantly NSI population into another recipient resulted In

amplification of SI viruses before seroconversion, followed by suppression at

seroconversion (Cornelissen et al. 1995). This suggested that SI variants were suppressed

by an immune mediated mechanism (Lathey et al. 1997).

The sequences associated with change in phenotype between SI and NSI viruses have been

mapped to the VIN2 and V3 regions of env (Groenik et al. 1993) and involve increases in

charge in the V3 region and length and charge of the V2 region (Fouchier et al. 1992;

Groenik et al. 1993; Fouchier et al. 1995). Similarly, the switch from CCR5 usage to

CXCR4 usage is accompanied by an increased positive charge in the V3 loop (de Jong et

al. 1992).

1.15. Relevance of receptor usage for vaccine studies

Most promising FIV vaccines tested to date have only been effective against homologous

or laboratory-adapted viruses. The commercially available vaccine, Fel-O-Vax (Fort

Dodge Animal Health) does not induce sterilising immunity against infection with the
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primary isolate FIV-GLS (Dunham, S.P., personal communication) although viral burdens

may be reduced following challenge. As yet, little is known about the potential impact of

these vaccines as the characteristics and nature of the population of viruses in the field is

not well defined.

Two prototypic FIV isolates have been extensively characterised in this laboratory;

namely, the laboratory-adapted FIV-PET and the primary isolate FIV-GLS. Unlike FIV-

PET, in vivo FIV-GLS establishes high viral loads, inversion of the CD4:CDS ratio and is

resistant to vaccine-induced protection. In vitro, FIV-GLS appears to require an additional

component to CXCR4 in order to enter host cells. It is unknown whether FIV-PET and

FIV-GLS represent two distinct phenotypes of FlV or whether isolates display a range of

biological behaviour. Furthermore, the relationship between tropism and chemokine

receptor usage in vitro and biological behaviour in vivo is still unclear as is whether FlV,

like lIIV, undergoes a switch in phenotype and receptor usage which correlates with

disease progression.

Most vaccines have to date targeted laboratory-adapted isolates like the CXCR4-tropic

FIV-PET. If such viruses are mostly isolated from cats in the terminal stage of disease,

then they are less likely to be transmitted, since terminally ill cats have a decreased

tendency to roam or display normal territorial behaviour. Therefore, the first aim of this

project was to establish the phenotype of primary FIV isolates made from field cats

compared at different stages of infection and compare them with FIV-PET and FIV-GLS to

determine whether the phenotype was different from cats at different stages of infection.

The human terminology "symptomatic" and "asymptomatic" was adopted for convenience

and to aid comparison with lIIV. The infected cats were classified as 1. terminally ill

(symptomatic), 2. responders that had displayed clinical signs but responded to treatment,

3. asymptomatic cats that had remained disease free since diagnosis (asymptomatic). The

isolates were examined in vitro to investigate the role of chemokine receptors and host cell

tropism in the asymptomatic and terminal phases of the disease. After thorough

characterisation in vitro, isolates were selected from groups 1 and 3 and were inoculated

into specific pathogen free kittens to examine their pathogenicity in vivo. Pathogenicity

was assessed by measuring plasma viral load and proviral loads in PBMCs and tissues.

Lymphocyte subpopulation changes were examined by fluorescent antibody cell sorting

(FACS). To elucidate the role of Env in the pathogenesis of FIV, chimaeric viruses were

constructed using a FIV-GLSMYAbackbone into which a selection of field isolates and



22

prototypic virus env genes were inserted. The resultant clones were subjected to similar in

vitro assays and in vivo study to determine whether different pathogenic behaviour could

be attributed to env.
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Chapter Two

MATERIALS AND METHODS

2.1. Animals

Specific pathogen free (SPF) kittens were obtained from Biolabs, Eire, at 10 weeks of age.

A two-week acclimatisation period was allowed for all kittens before the commencement

of each study. The cats were maintained in a facility that is exceptional in the provision of

environmental enrichment to ensure animal welfare of the highest standard.

2.2. Blood samples

Blood samples at each time point were collected into EDTA. Whole blood was used for

routine haematological analysis and fluorescent antibody cell sorting (FACS). Plasma was

harvested by centrifugation at 2000 rpm for 10 minutes. The plasma was aliquoted and

stored at -70°C. The blood cells were then resuspended in RPMI with no additives and

suspended over 3ml Ficoll-paque Plus (Amersham Biosciences, Buckinghamshire, U.K.) in

a 15ml Falcon tube (Becton and Dickinson, France), then centrifuged at 2000 rpm for 10

minutes with the centrifuge brake off. While erythrocytes and platelets sink below the

Ficoll, the mononuclear cells collect at the interface from where they may be harvested.

The harvested cells were washed twice in RPMI with no additives and counted using white

cell counting fluid (1% glacial acetic acid plus crystal violet to colour).

2.3. Collection of samples at post-mortem examination

Cats were anaesthetised using a premedicant, xylazine 2% solution (Rompun, Bayer, Bury

St. Edmonds, U.K.) at l.1mg/kg followed by ketamine (Ketaset, Fort Dodge Animal

Health, Southampton, U.K.) 20 minutes later at 22mg/kg. Both were administered by the

i.m. route.

Blood was collected under full anaesthesia by intracardiac puncture into 50ml Falcon tubes

(Becton and Dickinson, France) containing 25ml Alsever's solution (Scottish Diagnostics,

Edinburgh, U.K.), and lithium heparin and EDTA blood tubes were used for the collection

of plasma and whole blood for analysis by FACS. Mononuclear cells were harvested using

Ficoll-paque Plus as described. Before collection of tissues, the cats were euthanased by
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intracardiac injection of pentobarbitone sodium (Euthatal, Merial Animal Health Ltd.,

U.K.).

Lymph nodes, spleen, thymus and femur bones were colleted in 50ml Falcon tubes

containing 25ml culture medium (RPMJ supplemented with 100J.lg/ml streptomycin and

100 IUlml penicillin).

Cells were harvested from lymph nodes, thymus and spleen by dissecting the tissue

roughly in culture medium, using sterile scalpel blades. The medium was pipetted into a

50ml Falcon tube. This was repeated until the medium remained clear, indicating that most

cells had been harvested from the tissue. The cells were then washed twice in culture

medium. The cells were counted using white cell counting fluid, which lyses any

remaining red cells. Cell pellets containing at least 106 cells were washed twice in PBS

and then stored at -70°C until required.

2.4. Cell lines and culture media

The lymphoblastoid cell line Mya-l (Miyazawa et al. 1989) was grown in RPMI 1640

medium (Gibco Life Technologies, Paisley, UK) supplemented with 10% foetal bovine

serum (FBS), l Ouug/ml streptomycin, 100 IUlml penicillin, 5 x 10-5 M 2-mercapto-

ethanol, 2mM L-glutamine (complete RPMI medium) and 100 IUlml human recombinant
interleukin-2 (IL-2).

The CrFK(H06TI) (clone CrFK IDIO cells transfected with the ras gene by Dr. D.

Spandidos, National Hellenic Research Foundation, Athens, Greece) cells were grown in

Dulbecco's modification of Eagle's medium (DMEM) (Gibco Life Technologies, Paisley,

UK) supplemented with 10% FBS, 2mM L-glutamine, 100 ug/ml streptomycin and 100

IUlml penicillin (complete DMEM medium).

The feline fibroblast cell line AH927, transduced with a retroviral vector expressing

CXCR4 (AH927 FX4E) (Willett et al. 1998) was cultured in complete DMEM medium

and selected with 400J.lg/mlGencticin 418.

Peripheral blood monocyte/macrophages were isolated from blood from SPF cats into

EDTA. The mononuclear cell population was separated by Ficoll-paque Plus

centrifugation and then cultured in 48-well plates (Becton and Dickinson, France),

precoated with feline affinity purified JgG (Sigma-Aldrich, U.K.) at 106/well in SOOf.t1of
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DMEM containing 2mM glutamine, 10% FBS, 100 IU/ml penicillin, IOOJlglml

streptomycin and SOJlM2-ME (complete macrophage medium) and supplemented with

1000 IU/ml recombinant human granulocyte-macrophage-colony stimulating factor

(rhGM-CSF) (R and D systems Europe Ltd., Oxon, U.K.) and incubated at 37°C for 60

minutes. The plates were washed three times with phosphate buffered saline (PBS) to

remove nonadherent cells, fresh medium was added and the plates were incubated for 24-

48 hours. The cells were then washed in PBS before being incubated with the virus

overnight. The following day the virus was washed from the cells with PBS and fresh

medium added and then the cultures were incubated for three days before being tested for

viral replication using an RT activity assay (Cavidi Tech, Sweden).

All cell lines were incubated at 37°C in a 5% CO2 incubator.

2.5. Viruses

2.5.1. Viral stocks

Viruses were collected from samples submitted to the Feline Virus Unit at the University

of Glasgow. Mononuclear cells were separated from EDTA anti-coagulated blood by

Ficoll-paque Plus centrifugation. The cells were washed and then set up in cultures of 106

PBMC and 2 x 106 Mya-l cells in Sml of complete RPMI plus IL-2. Once a cytopathic

effect was evident, cultures were expanded by adding 107 Mya-I cells and suspended in 20

ml complete RPMI plus IL-2. The cultures were tested for p24 production by FIV antigen

ELISA (lDEXX, Portland ME) and once positive, supernatants were passed through a

0.45Jlm filter and cell pellets washed twice in PBS. Both were stored at -70°C until

required.

The four viruses used extensively throughout the studies came from cats F0425FI, F0556H,

F079SH and F0827H. Cat F042SH was a 12 year old male presenting with anorexia,

dullness and unilateral iritis and cat F0556H was a 10 year old female presenting with

severe gingivitis and oral ulceration. Both cats responded well to treatment and continued

to improve and remained free of clinical signs. Cat F0795H was a 15 year old male neuter

presenting with dysphagia, retching, gingivitis and weight loss and cat F0827H was an 11

year old female presenting with anorexia, weight loss, jaundice and an abdominal mass.

Both of these cats failed to respond to treatment and were euthanased due to their

deteriorating condition. The viruses from cats F0425H and F0556H wcre classified as
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asymptomatic isolates and the viruses from cats F0795H and F0827H were classified as

symptomatic or terminal isolates.

2.5.2. Viral titration

To titrate each viral stock, 2 x 105 Mya-I cells were suspended in 2501-11of complete RPMI

1640 medium with IL-2. Virus was diluted fivefold from 1:10 to 1:3,906,250. Virus (501-11

of each dilution) was added in triplicate and incubated in a humid incubator at 37°C for 60

minutes. The cells were then washed twice with RPMI 1640 medium supplemented with

5% FBS, resuspended in 5001-11of complete RPMI 1640 medium supplemented with IL-2

and incubated in 48-well plates at 37°C for 7 days.

The cultures were harvested after 7 days. The culture fluids were collected and p24

production was measured by the enzyme linked immunosorbent assay (ELISA), Petcheck

FIV antigen ELISA (lDEXX Corp., Portland, Maine, USA). Subsequently, 50% tissue

culture infectious doses (TCIDso) were calculated using the Karber formula:

-log the highest concentration - (sum proportion of wells positive - O.S).log dilution factor

= TCIDso

Once titrated, each virus stock was tested for CXCR4 receptor usage and affinity by

conducting a series of AMD31 00 blocking assays.

2.5.3. Virus isolation

At intervals during the in vivo studies, the presence of virus in PBMCs was detected by

culturing 106 PBMCs with 2 x 106 Mya-l cells in Sml of complete RPMI plus IL-2. The

cultures were tested for p24 production by FIV antigen ELISA (IDEXX). Once positive,

the cells were harvested, washed twice in PBS, pelleted and stored at -70°C. Supernatants

were passed through a 0.451-1msterile filter, aliquoted and also stored at -70°C.

2.5.4. Quantitative viral isolation

The infectious viral burden was measured post infection in both in vivo studies by the

method described by Meers (Meers et al. 1992). PBMCs were seeded into wells of a 96-

well plate in 3-fold decreasing numbers (1 x 10\ 3 X 103, 1 X 103,3 X 102, 1 X 102,30, 10,

3, 1, 0). 50f.l1of a suspension of Mya-I cells at 106 cells/ml were added to each of the

wells to a final volume of 2001-11.501-.11of complete RPMI medium supplemented with IL-2
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was added to each well on day 4 p.i. Samples were tested on day 7 or 10 post infection for

the presence of FIV p24 by ELISA (lDEXX, Portland, ME). Results were calculated using

the Reed and Muench formula (Reed and Muench 1937).

2.6. Preparation of virus for inoculation

Viruses for inoculation were diluted to the correct concentration in RPM! medium

containing 1% bovine serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO) and kept on

ice prior to use.

2.7. Preparation of DNA

DNA was harvested from PBMCs using a DNA kit (Qiagen, Hilden, Germany) following

the manufacturers instructions (based on the principle first described by Boom (Boom et a1.

1990», and stored at -20°C. DNA yield was measured by spectrophotometry at a

wavelength of 260nm (Sambrook et al. 1969) and calculated thus:

Concentration of DNA flg/,.il= optical density (260nm) x 50 x dilution factor/IOOO

2.8. Preparation of RNA

Cell-free plasma was treated with reagents from a QIAamp viral RNA mini kit (Quiagen),

following the manufacturers instructions, using the principle first described by Boom

(Boom et a1. 1990) (Qiagen, Hilden, Germany).

2.9. Statistical analysis

All results were analysed using the software packages SigmaPlot 200 I for windows

version 7.0 (Copyright'" 1986-2001 SPSS Inc.), and SigmaStat for Windows 2.03

(Copyrightf 1992-1997 SPSS Inc.). Student's t-test was used to compare two groups.

Variation between more than two groups was analysed using the analysis of variance

method (ANOVA). Where an effect was evident, the groups were then subjected to an All

Pairwise Multiple Comparison Procedure (Tukey test) and p values were used to indicate

where a statistical difference was present between groups. p values <0.05 were regarded as

statistically significant and <0.01 as highly significant.
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Chapter Three

IN VITRO TROPISM OF PRIMARY ISOLATES OF FIV

3.1. Introduction

As discussed in Chapter 1, the similarities to HIV make FlV a suitable and practical model

for vaccination trials. Protection following vaccination has been achieved using a WIV

vaccine derived from the Petaluma strain (FIV -PET), challenging with either the

homologous isolate or the closely related FIV-DIXON (Yamamoto et al. 1991; Yamamoto

et al. 1993) but not the virulent Glasgow-S (FIV-GLB) isolate (Hosie et al. 1995).

Likewise, protection was achieved with a DNA vaccine using a vif-deleted mutant of the

strain FlV-PPR, challenging with the homologous wild type virus FIV-PPR (Lockridge et

al. 2000). In an extension of the original studies (Yamamoto et al. 1991), a dual subtype

whole inactivated virus (WIV) vaccine has been shown to induce broad spectrum cellular

and humoral immunity leading to protection against FIV-BANG and FlV-PET (Pu et al.

2001). Each of these viruses establishes a relatively low viral load. Therefore, there are

some concerns that the efficacy of vaccines that have been studied and tested only under

laboratory conditions remains unknown in the field, as no protection has been achieved

against more virulent isolates such as FIV-GLB, which is considered a representative

primary field isolate. To date only one vaccine trial under field conditions has been

reported. This provided evidence for protection induced by a cell-associated FIV-M2 (FIV

subtype B) strain fixed with paraformaldehyde (Matteucci et al. 2000b).

The range of physiological and genetic properties possessed by isolates in the field is not

well understood. The isolates FIV-GLB and FlV-PET have been studied for many years

and possess markedly different properties when studied in vivo, under SPF conditions, and

in vitro. In vitro studies show that FIV-PET has a broader cell tropism, infecting PBMCs,

thymocytes, IL-2 dependent T lymphocytes and also the fibroblast cell line CrFK (Phillips

et al. 1990). Growth of the more virulent FIV-GLB, which has been minimally passaged in

vitro is restricted to PBMCs, thymocytes and IL-2 dependent T lymphocytes.

Consequently, FIV-GLB is regarded as a primary isolate. Infection ofCrFK cells by FIV-

GLB is only achieved after "adaptation" following cocultivation with infected Mya-l cells.

The ability to infect CrFK cells was shown to correlate with an E to K mutation in the third

hypervariable region of the envelope glycoprotein resulting in an increased charge of the
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V3 loop (Verschoor et al. 1995; Siebelink et al. 1995b). Having undergone this mutation.

isolates appear to have a greater affinity for the chemokine receptor CXCR4 (Willett et al.

1998). A similar mutation occurs in HIV during the progression to the AIDS stage that is

correlated with a switch in coreceptor usage from the chemokine receptor CCR5 to

CXCR4 (Callanan et al. 1996). Therefore, the analogous substitution in the FIV loop was

predicted to be involved in CXCR4 binding (Willett et al. 1997a).

In vivo, FIV-PET infection leads to the establishment of low viral and proviral loads in the

blood, and CD4:CD8 lymphocyte ratios are maintained. It has been proposed that this

relative lack of virulence is the reason why vaccine induced protection has been achieved

against challenge with this virus. In contrast, FIV-GL8 infection induces high viral and

proviral loads, inversion of the CD4:CD8 lymphocyte ratio (Hosie et al. 2000), and in

some cases expansion of the CD8 T lymphocyte population (Willett et al. 1993). This

isolate is resistant to vaccine-induced immunity. It is unknown whether F1V-PET and

FIV-GL8 represent distinct groups of FIV isolates or whether they fall within a population

possessing a wide range of physiological and genetic properties. The aim of the studies in

this chapter was to investigate the in vitro properties of a panel of isolates derived from

samples submitted to the Feline Virus Unit (F.V.U.) diagnostic virology laboratory at the

University of Glasgow Veterinary School.

A panel of 45 isolates was gathered from submissions to the FVU. Following a telephone

follow-up survey, the isolates were classified into three categories; 1. animals which were

euthanased due to terminal illness (symptomatic-s), 2. animals which responded to

treatment but had recurrent clinical signs (responders-r) and 3. animals which had

remained free of clinical signs since FIV was diagnosed (asymptomatic-as). Isolates were

subjected to a range of tropism studies: 1. AMD blocking assays (n=15), 2. tropism on

CrFK cells (n=17), 3. tropism on AH927 cells expressing CXCR4 (n=29). Using these

assays it was hoped that the isolates could be grouped according to their physiological

properties and to determine whether FIV-GL8 and FIV-PET are representative of these

groups or form outlying strains. Due to limited data for the responder group viruses,

studies of them were discontinued early in the course of the project.



30

3.2. Materials and Methods

3.2.1. Cell lines and culture conditions.

Culture conditions for the cell lines Mya-l, CrFK(H06TI), AH927 FX4E are described in

Chapter 2.

3.2.2. Assays

3.2.2.1. Viral titrations

Initially the viruses were titrated using the T-lymphoblastoid cell line Mya-l as described

in Section 2.5.2.

3.2.2.2. AMD3100 Blocking assays

2 x 105 cells were incubated in triplicate with 250JlI complete RPMI medium containing

fivefold dilutions of AMD3100 from lOug/ml to 16nglml. The cells were incubated at

37°C for 60 minutes. 50JlI of FIV (100 TCIDso) was added to each tube, and then

incubated for 60 minutes. The cells were then washed twice using RPM! with 5% FBS.

The cells were then resuspended in 500Jll of complete RPMI 1640 containing IL-2 and

incubated in a 48-well plate. On day 7 the p24 production was measured by ELISA (FIV

p24 antigen ELISA, IDEXX).

3.2.2.3. Tropism on CrFK(H06T1) cells

2 X 106 Mya-1 cells were incubated overnight with 1ml of each stock in a total volume of

5ml in T25 tissue culture flasks. The following day the cells were washed, resuspended in

fresh medium and cultured until syncytium formation was evident, when culture fluids

were tested for FIV p24 by ELISA.

When infected Mya cultures were established, CrFK(H06T1) cells were set up overnight

at 2 x 105 cells per T25 tissue culture flask (2 flasks per isolate). The following day the

CrFK(H06Tl) cells were incubated with 2ml cell-free culture fluid from infected Mya-1

cells or were cocultivated with 2ml of infected Mya-l cell culture and 3ml of complete

DMEM medium. The cultures were incubated for two days before washing and

subculturing the CrFK(H06Tl) cells. Following positive p24 ELISA results, cell pellets
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were frozen as a source of DNA for amplifying env, and the cultures were maintained and

tested weekly to determine if persistently infected cell lines could be generated.

3.2.2.4. CXCR4 usage AH927 FX4E assays

The feline fibroblast cell line AH927 is resistant to infection by FIV but when transduced

with a retroviral vector expressing CXCR4 (AH927 FX4E) the cells become susceptible to

infection with FIV-PET (Willett et al. 1998). Therefore, the AH927 FX4E cell line was

used to determine CXCR4 usage by the panel of field isolates.

104 AH927 FX4E cells were seeded per well of a 48-well plate SOOIlI of complete DMEM

medium and were incubated overnight in a 37°C humid incubator. The following day, the

medium was aspirated gently and 250lll of virus stock was added to each well and

incubated for one hour. Each well was then washed twice with phosphate buffered saline

(PBS). SOOIlI of fresh culture fluid was added and the cultures were incubated in a humid

incubator for 10 days, sampling 2S III of culture fluid on days 4, 7 and 10. Culture fluids

were stored at -70°C until assayed for RT activity using the Lenti-RT activity assay

(Cavidi Tech, Sweden).

3.2.2.5. AH927 FX4E assays

Cell pellets were harvested for DNA preparation 24 hours after viral infection of AH927

FX4E cells in order to determine the usage of CXCR4 for viral entry. Viral DNA was

detected by PCR using primers designed for the gag region of the FIV genome 5'-GGG

ATT AGA CAC TAG GCC ATC TA-3' and S' -OAC CAO OTT TTC CAC ATT TAT

TA-3' to amplify a 871bp fragment. A control cellular DNA fragment was amplified using

primers designed for the ~-actin gene S' -ATC TGG CAC CAC ACC TTC TAC AAT

OAO CTO CO-3' and 5'-COT CAT CCT GCT TOC TOA TCC ACA TCT GC-3'.

Reactions were denatured at 94°C for 3 minutes followed by 30 cycles of denaturation at

94°C for 30 seconds, annealing at 50°C for 1 minute and extension at 72°C for 1 minute

with a final extension of 10 minutes at 72°C. HiFidelity reaction mix (Roche) was used as

per manufacturers instructions, on a GeneAmp 9700 thermo-cycler (Perkin Elmer). The

PCR product was identified following resolution on a 1% agarose electrophoresis gel

containing ethidium bromide.
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3.3. Statistical Analysis

Results were analysed as described in Section 2.9. Highly significant results with p<O.OI

are denoted by (**) and results which are significant, p<0.05, denoted by (*).

3.4. Results

3.4.1. A proportion of FIV isolates can infect CrFK cells.

It is known that some isolates may become adapted for growth in the CrFK cell line

(Phillips et al. 1990). Therefore, we tested our panel of field isolates from asymptomatic

and symptomatic cats to determine whether isolates from either of these categories more

readily adapted for growth in CrFK cells. None of 8 isolates from asymptomatic and 2/9

isolates from symptomatic cats were shown to replicate in CrFK(H06TI) cells following

cell-free infection. These proportions were not significantly different (see Figure 3.a. and

Table 3.a.). Similarly, although higher proportions of isolates (5/8 asymptomatic and 618

symptomatic) replicated in CrFK(H06Tl)s following cocultivation with infected Mya-l

cells, no significant differences were observed. Three asymptomatic isolates (F0291Has,

F0513Has, F1412Has) and two symptomatic isolates (F559Hs and F1128s) failed to produce

a persistent infection. F0835Hs, although consistently positive throughout the study,

always gave low positive readings,just above the assay cut-off when measured by p24 FIV

antigen ELISA (see Figure 3.b. and Table 3.b.). In conclusion, the CrFK(H06Tl)-tropism

demonstrated by our isolates from different stages of disease are not significantly different.

3.4.2. Cell-free infection of the CrFK cell line CrFK(H06T1) cells

was observed with only 2/17 isolates tested.

Productive infection of CRFK(H06Tl) cells was observed following cell-free infection

with two isolates from symptomatic cats. F0795Hs produced a positive FIVp24 ELISA

reading on day 17 post infection (p.i.) (Table 3.a.) but did not result in a persistent

infection. F0827Hs was positive for FIVp24 by ELISA from day 31 onwards (see Figure

3.a., Table 3.a.), suggesting that adaptation had occurred in this isolate. Mya cell infection

with the latter isolate was not significantly blocked by 400ng/ml AMD3100 (see Table

3.c.), indicating that perhaps F0827Hs bound to the coreceptor with a higher affinity

compared to F0795Hs•



33

Table 3.a. Cell-free infection of H06T1 cells.

7 14 17 21 24 28 31 35
Isolate days days days days days days days days

p.i. p.i. p.i. p.i. p.i. p.i. p.i. p.i.

Recurrent clinical signs

F0135Hr 0.24 0.13 nd 0.1 nd 0.23 nd 0.23

Asymptomatic isolates

F0291Has 0.2 0.14 nd 0.09 nd 0.21 nd 0.21

F0359Has 0.3 0.13 nd 0.1 nd 0.23 nd 0.23

F0418Has 0.16 0.15 nd 0.28 nd 0.20 nd 0.18

F0425Has 0.19 0.14 nd 0.28 nd 0.20 nd 0.19

F0513Has 0.14 0.18 nd 0.27 nd 0.23 nd 0.23

F0556Has 0.17 0.14 nd 0.32 nd 0.21 nd 0.18

F1412Has 0.29 0.13 nd 0.08 nd 0.25 nd 0.20

Symptomatic isolates

F0559Hs 0.18 0.1 nd 0.08 nd 0.25 nd 0.25

F0795Hs 1.21 0.15 1.04 0.13 0.1 0.11 0.13 0.22

F0827Hs 0.78 0.14 0.13 0.23 0.21 0.22 1.46 2.59

F0835Hs 0.11 0.05 0.1 0.1 0.07 0.1 0.11 0.21

F0894Hs 0.86 0.12 0.16 0.17 0.09 0.13 0.12 0.22

F0973Hs 0.05 0.05 0.14 0.11 0.06 0.15 0.2 0.18

F1029Hs 0.23 0.12 nd 0.11 nd 0.24 nd 0.24

F1115Hs 0.19 0.11 nd 0.1 nd 0.27 nd 0.27

F1128Hs 0.18 0.09 nd 0.18 nd 0.25 nd 0.25

FIV p24 read at optical density A650nm.

nd = not done.
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Table 3.b. Cocultivation of H06T1 cells with infected Mya-1 cells.

7 14 17 21 24 28 31 35
Isolate days days days days days days days days

p.i. p.i. p.i. p.i. p.i. p.i. p.i. p.i.

Recurrent clinical signs

F0135Hr 1.49 0.65 nd 4.68 nd 6 nd 4.54

Asymptomatic isolates

F0291 Has 2.2 0.17 nd 0.1 nd 0.18 nd 0.24

F0359Has 2.05 0.3 nd 1.36 nd 5.59 nd 4.98

F0418Has 4.07 6 nd 5.58 nd nd nd 0.24

F0425Has 1.85 6 nd 5.58 nd nd nd nd
F0513Has 3.1 0.31 nd 0.37 nd nd nd nd
F0556Has 1.2 4.09 nd 6 nd nd nd nd
F1412Has 1.59 0.2 nd 0.24 nd 0.17 nd nd

Symptomatic isolates

F0559Hs 0.94 0.2 nd 0.1 nd 0.25 nd 0.25

F0795Hs 6 4.79 nd 4.64 nd nd nd nd
F0827Hs 6 2.43 nd 6 nd nd nd nd
F0835Hs 6 0.68 nd 0.46 nd nd nd nd
F0894Hs 6 1.71 nd 3.45 nd nd nd nd
F0973Hs 6 6 nd 5.24 nd nd nd nd
F1029Hs 0.83 0.12 nd 0.18 nd 0.16 nd 0.23

F1115Hs 1.13 0.3 nd 6 nd 6 nd 6

F1128Hs 0.98 0.14 nd 0.13 nd 0.18 nd 0.71

FIV p24 read at optical density A650nm.

nd = not done.



35

Figure 3.a. Cell-free infection of CrFK(H06T1 ) cells.
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Cell-free viral supernatant was incubated with CrFK(H06TI) cells for 12 hours. The cultures were washed

and incubated with fresh medium at 37°C in a CO2 incubator, subculturing twice weekly. p24 production

was measured by FlY p24 antigen ELISA (Idexx). None of the asymptomatic, but 2 of the symptomatic

isolates (F0795Hs (not shown) and F0827Hs) resulted in productive infection.
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Figure 3.b. Cocultivationof CrFK(H06T1) cellswith infected Mya-1

cells.
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was measured by FlY p24 antigen ELISA (Idexx). No significant difference between groups was noted with

respect to the ability to infect CrFK(H06T1)s by cocultivation.
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Table 3.c. AMD blocking assays for isolates from cats in terminal

stage of disease.

AMD concentration ng/ml

Isolate TCID50 10000 2000 400 80 16
F0795Hs 4680 ** ** **

F0827Hs 8130 ** **

F0835Hs 40 ** ** **

F0894Hs 4790 ** ** **

F0973Hs 70 ** ** *

Table 3.d. AMD blocking assays for isolates from cats with recurrence

of clinical signs after treatment.

AMD concentration ng/ml

Isolate TCID50 10000 2000 400 80 16
F0135Hr 40 ** ** *

F0667Hr 110 ** ** **

F1844Hr 1620 ** ** **

Table 3.e. AMD blocking assays for isolates from cats free of clinical

signs after treatment.

AMD concentration ng/ml
Isolate TCID50 10000 2000 400 80 16
F0418Has 330 ** ** **

F0425Has 23440 ** ** **

F0513Has 110 ** ** **

F0556Has 4680 ** **

F0669Has 190 ** **

Mya-I cells were infected with field isolate viral supernatants and incubated in the presence of AMD3100.

The asterisks demonstrate the concentration of AMD31 00, which resulted in significant blocking of Mya-I

cell infection by AMD3100 .•• = p<O.OI,· = p<O.OS.



38

3.4.3. Increased use of CXCR4 by symptomatic isolates.

Since infection of CrFK cells is CXCR4-dependent, the ability of our isolates to utilise

CXCR4 was tested. AH927 cells, which are not naturally susceptible to FIV, were

transduced with a retroviral vector expressing feline CXCR4 to generate the cell line

AH927 FX4E, which is susceptible to infection with laboratory-adapted isolates of FIV

(Willett et a1. 1998). The results of a screening assay illustrate the varying degrees to

which the field isolates can utilise the chemokine receptor CXCR4 (Figure 3.e.). The field

isolates were compared to the primary isolates FIV-GL8 and FIV-K 1(19K 1), which are not

CXCR4-tropic along with the laboratory-adapted FIV-PET and chimaerie clone FIV-

Klpb(19Klpbam6e) (a Kl backbone with a CrFK-tropie env of FIV-AM6c) which are

known to be CXCR4-tropic (Phillips et al. 1990; Siebel ink et al. 1995b). A trend was

evident, with a higher proportion (9/14) of the symptomatic isolates utilising CXCR4 and

inducing higher levels of RT activity than the asymptomatic isolates (5/11). The primary

isolate FIV -GL8 and the majority of the isolates from asymptomatic cats did not establish

infection. Of the symptomatic isolates that were able to infect AH927 FX4E cells, only

F0795Hs and F0827Hs were able to infect CrFK cells by cell-free infection, confirming that

cell-free infection ofCrFK cells is mediated by the chemokine receptor CXCR4.

Semi-quantitative AH927 FX4E entry assays using PCR to detect viral Gag proteins

confirmed the efficiency with which FIV-PET uses CXCR4 (see Figure 3.d.). The progeny

virus F0795Hs which was harvested following cocultivation of infected Mya-l cells with

CrFK(II06Tl) cells, also efficiently used CXCR4. Faint product bands were evident in

lanes 2, 3, 4, 5, 7, 8, and 9. However, these may have been attributable to either virus

particles remaining adherent to the cells after washing or to very small amounts of virus

that successfully infected these cells.

3.4.4. Inhibition of infection by AMD 3100 varied between the

isolates

The bicyclam AMD3100, a CXCR4 antagonist, has been used to demonstrate CXCR4

usage by different isolates (Egberink et al. 1999; Richardson et a1. 1999). AMD3100

blocking assays demonstrate marked differences in CXCR4 affinity between the isolates

FlV-GL8 and FlV-PET (see Figure 3.e.). FlV-PET infection of Mya-I cells was only

inhibited significantly (p~O.OI) by very high concentrations of the selective CXCR4

antagonist AMD3100 (IOug/ml). In contrast, infection of Mya-I cells by FIV-GL8 was



Figure 3.e. Cell-free infection of AH927 FX4E cells.
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250~1 of virus stock was incubated with AH927FX4E for 1 hour at 37°C. The cells were then washed and

incubated at 37°C before testing for viral replication by RT activity assay.
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Figure 3.d. AH927 FX4E entry assay.
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AH927 FX4E cells were incubated for 60 minutes with virus supernatant or mock infected witb DMEM as a

control. After washing twice with PBS, the cells were incubated at 37°C in a CO, incubator for 24 hours.

The cells were harvested for DNA preparation and analysis for viral DNA by PCR using primers for the gag

region of the provirus and the cellular gene ~-actin .. Product was visualised on a 1% agarose gel containing

ethidium bromide. Top: gag PCR products, bottom: ~-actin PCR product. Lanes: I. 1 Kb ladder (Gibco,

U.K.), 2. F0425H., 3. F0556H., 4. F0795H. 5. F0827H" 6.795B, 7. 827A, 8. 827B, 9. FlV-GL8414, 10. FIV-

PET,II. CONTROL 12. IKb ladder. In the top section of the gel 795B and FIV-PET have positive bands.

"A" and "B" isolates are derived from cell-free infection and cocultivation of CiFK(H06Tl) cells,

respectively.
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Figure 3.e. AMD blocking assays for prototype viruses.
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inhibited significantly (pSO.O1) by very low concentrations of AMD3100 (400ng/ml),

consistent with the latter isolate having a lower affinity for CXCR4.

The panel of field isolates demonstrated a range of abilities to utilise CXCR4 alone (see

Tables 3.c. - 3.e.) with 8/13 (60%) behaving in a manner similar to FIV-GL8. Figure 3.f.

illustrates the effect of AMD3100 on infection of Mya-l cells with two isolates from

asymptomatic cats and two isolates from symptomatic cats. Infection of Mya-l cells by all

four isolates was significantly blocked by 2mglml AMD3100 and it was concluded that

asymptomatic isolates could not be differentiated from symptomatic isolates only on the

basis of the ability of AMD3100 to inhibit infection of Mya-l cells.

3.5. Discussion

It is unknown whether FlV-GL8 and FIV-PET represent distinct groups of FIV viral

isolates into which field isolates fall, or whether a range of biological phenotypes exist.

Furthermore, it is unknown whether the correlation between in vitro and in vivo

characteristics possessed by these well-characterised isolates may be extrapolated to

studies of field isolates. Infection with the more virulent FIV-GL8 isolate induces high

viral loads, an inversion of the CD4:CD8 T lymphocyte ratio and FIV-GL8 is resistant to

vaccine-induced immunity in vivo. This is paralleled by restricted tropism in vitro

(infecting PBMCs, thymocytes and IL-2 dependent Mya-l cells) and a high degree of

susceptibility to the CXCR4 antagonist, AMD3100. In contrast, infection with FIV-PET

leads to lower viral loads and no reduction in the CD4:CD8 T lymphocyte ratio; FIV-PET

is susceptible to vaccine-induced protection and in vitro displays broader tropism and

greater resistance to AMD3100. The knowledge gathered from studies of these two

isolates led to the hypothesis that the greater ability to utilise CXCR4 in vitro may correlate

with reduced virulence in vivo. The evolution of the clone FIV-PET FI4 to a more virulent

clone in two cats 135 weeks p.i, was found to correlate with reduced affinity for CXCR4 in

vitro (Hosie et al. 2002). However, it is unknown whether chemokine receptor usage and

viral phenotype evolve with FIV disease progression, as has been documented in HIV-

infected individuals (Schuitemaker et al. 1992; Connor and Ho 1994; Cornelissen et al.

1995).

AMD blocking assays conducted on the panel of field isolates revealed a varied pattern of

CXCR4 affinity. This variation may reflect different tropisms between isolates because of

mixed virus populations. It is known that the viral phenotype within HIV infected
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Figure 3.f. AMD blocking assays for field isolates.
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individuals is dynamic throughout the course of infection. Lymphotropic VIruS

predominates early in infection before seroconversion and during the decline to the AIDS-

phase but monocytotropic forms predominate from the acute stage and through the

asymptomatic phase (Cornelissen et al. 1995). However, some individuals are infected

with a predominance of one phenotype over another regardless of stage (Cornelissen et al.

1995). FIV shows similar tropism during each stage of infection, the principal target on

infection being the CD4+ T lymphocyte subpopulation which decreases rapidly as the

disease progresses to the immune deficiency stage (Ackley et al. 1990; Torten et al. 1991;

Hoffman-Fezer et al. 1992; Schuitemaker et al. 1992; Connor and Ho 1994; Cornelissen et

al. 1995). The prevalence of monocyte/macrophage variants was shown to increase by 40-

95% at the time of the acute illness (Beebe et al. 1994), and through the asymptomatic

stage to the chronic stages FIV can be detected increasingly in the CD8+ T lymphocytes

and IgG+ B cells (English et al. 1993; Beebe et al. 1994; Dean et al. 1996). The varied

pattern of blocking by AMD3100 may be accounted for by the selected isolates having

different tropisms and therefore variable efficiency of infection of Mya-l cells.

Infection of CrFK(H06T1) cells is reliant on the ability of the isolate to utilise CXCR4

alone, for viral entry (Hosie et al. 1998a). FIV -PET can infect CrFK(H06TI) cells, an

infection which can be completely blocked by AMD3100 or SDF-la, whereas FlV-PET

infection of Mya-l cells is only blocked partially by incubation with AMD3100. This

suggests that Mya-l cells express a second as yet unidentified, receptor for FIV, as well as

CXCR4 (Hosie et al. 1998b; de Parseval and Elder 2001). Laboratory adaptation can result

in virus that has acquired the ability to utilise CXCR4 alone for infection. The laboratory-

adapted isolate FIV -PET was found to contain a glutamate to lysine mutation in the third

variable region of the env gene when infecting CrFK(H06TI) cells. Laboratory-adaptation

was found to occur in two other isolates FIV-UT113 and FIV-PBAM6c, which were able

to infect CrFKs following a glutamate to lysine mutation at amino acid position 407 or 409

respectively (Verschoor et aJ. 1995; Siebel ink et al. 1995b). Hence, tropism on

CrFK(H06TI) cells further defines the ability of an isolate to use CXCR4. Of great

interest in this study were the positive FIVp24 readings recorded for isolate F0795Hs on

day 17 (see Table 3.a.) and isolate F0827Hs which produced a persistent infection from day

31 onwards (see Table 3.a.). This suggests that these isolates may have acquired the ability

to use CXCR4 during a period of laboratory adaptation, similar to that documented for

FlV -PET (Phillips et al. 1990).
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Using the AH927 FX4E infection assays, a panel of field isolates was screened for the

ability to utilise CXCR4. A greater proportion of the symptomatic isolates demonstrated

the ability to utilise CXCR4. Undiluted virus stock was used as only the ability to infect

these cells was investigated. It would be interesting to investigate the role of virus

concentration on efficiency of infection. F0795Hs and F0827Hs (both isolated from

terminally ill cats) were able to use CXCR4 to infect AH927 FX4E cells and infected

CrFK(H06Tl) cells without cocultivation with infected Mya-I cells, at days 17 and 31 p.i,

suggesting the existence of virus within each of the virus populations with the fitness to

infect CrFK cells leading to expanded host cell tropism. In contrast to the CrFK(H06Tl)

and AH927 FX4E-tropism studies, only F079511s (cocultivated) was able to enter AH927

FX4E cells in 24 hours and replicate similarly to FlV-PET, suggesting that this virus had

adapted to use CXCR4 efficiently alone. Virus from cell free infection of CrFK(H06T 1)

cells by F0795Hs was not available. Faint bands of PCR product were detected in other

samples but it is not known if these were due to only very small amounts of virus

penetrating the cells or if residual virus remained adherent to the cell membrane after

washing. These results suggest that infection of AH927 FX4E cells by field isolates is

inefficient compared to laboratory-adapted strains such as FlY -PET. The successful

infection of Al1927 cells by several isolates, both asymptomatic and symptomatic, may

have arisen due to mixed populations of phenotypes occurring within each isolate, as has

been described previously for lilY.

The field isolates displayed a broad range of biological behaviour in vitro. Isolates

F0795Hs and F0827Hs infected CrFK(1I06Tl)s without cocultivation with infected Mya-I

cells and also infected AH927 FX4E cells using CXCR4 alone. Interestingly, both of these

isolates originated from cats with AIDS-like stage disease, suggesting that the CXCR4

phenotype may predominate in FIV infection as disease progresses to feline AIDS.

In these studies viruses utilising CXCR4 alone for viral entry (i.e. FlV -PET like) were

isolated predominantly from terminally ill cats, whereas isolates from asymptomatic cats

had a lesser ability to utilise CXCR4 alone (i.e. FIV-GL8 like). Viruses in the field are

most likely to be transmitted from asymptomatic cats, which are still able to behave and

interact with other cats normally. Therefore, the virus phenotype in the field with the

highest transmission rate is likely to be that of the FIV-GL8 type. This has implications for

future vaccines studies, as FIV-GL8 remains resistant to vaccine-induced immunity.
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Chapter Four

STUDIES ON THE PATHOGENESIS OF FIELD ISOLATES

OF FIV

4.1. Introduction

The experiments described in Chapter 3 indicated that viruses isolated from cats in the

terminal stages of infection may be more likely to infect cells via CXCR4 alone than

isolates from cats in the asymptomatic phase. During HIV infection, a similar pattern has

been observed in a proportion of patients, in whom CXCR4 and T lymphocyte-tropic, SI

viruses appear at the time when AIDS develops (Tersmette et al. 1989a; Schuitemaker et

al. 1992; Koot et al. 1993; Connor et al. 1997). SI viruses infect T cell lines and induce

syncytia in MT -2 cells (Asjo et al. 1986; Cheng-Mayer et al. 1988; Tersmette et al. 1989a;

Tersmette et al. 1989b; Koot et al. 1992). From these observations it has been suggested

that SI, CXCR4-tropic viruses are more pathogenic than the CCR5-tropic viruses that

predominate in the early stages of 1I1V infection (Schuitemaker et al. 1992; Zhu et al.

1993; Connor et al. 1993b), and may cause the rapid progression of disease in the patients

from whom they were isolated. However, an alternative reason for the appearance of the

CXCR4-tropic viruses is that they are a consequence of the developing immunodeficiency

rather than its cause. Clearly it is not possible to distinguish between these alternatives by

direct experimentation in man.

J laving established that CrFK-tropic FIV isolates were present in cats in the terminal stages

of infection, it was possible to test whether these viruses were more pathogenic for cats

than isolates from asymptomatic cats that were not solely CXCR4-tropic. The results of

these experiments might help to resolve the issue of the relevance of the CXCR4-tropic

viruses in the development of both human and feline AIDS.

In this chapter, experiments are described in which cats were inoculated with four

representative FlY isolates from either terminally ill cats or cats with no clinical signs in

order to compare directly their pathogenicity. These were named as asymptomatic isolates

or symptomatic isolates in common with human terminology. In addition, for comparison,

control cats were inoculated with matched doses of the well-characterised FIY-GL8414.

The extent of virus replication of each isolate was determined by the measurement of viral
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burden by three methods: proviral DNA in PBMCs, infectious virus released from PBMC

and plasma viral RNA. At the end of the experiment, at post-mortem examination 15

weeks after infection, the proportions of cells with proviral DNA in lymph nodes, bone

marrow and thymus were also determined.

4.2. Materials and Methods

4.2.1. Inoculation of cats

Ten 13 week old specific pathogen free kittens were assigned at random to five groups of

two kittens. Four groups were inoculated with the field isolates and one group received the

molecular clone FIV-GL8414• Isolates F0425Has and F0556Has were from asymptomatic

cats and F0795Hs and F0827Hs were from terminally ill (symptomatic) cats (see Table

4.a.). Each cat was inoculated with 250 tissue culture infectious doses (TCIDso) by the

intra-muscular (i.m.) route (as determined by titration on Myas - see Section 2.5.2.).

4.2.2. Collection of samples

4.2.2.1. Blood samples

Blood samples were collected into EDTA on the day of inoculation and then at three-week

intervals until 15 weeks post inoculation when post-mortem examinations were conducted.

Routine haematological examinations were carried out on each sample. The plasma was

removed and PBMCs were isolated following Ficoll-Ilypaque centrifugation as described

in Section 2.2. 106 PBMCs were washed twice in PBS, pelleted, snap-frozen in dry ice and

stored at -70°C until required for proviral load analysis. The remaining PBMCs were

stored frozen in liquid nitrogen for QVI.

4.2.2.2. Tissue samples

Mesenteric and peripheral lymph nodes (retropharyngeal, submandibular, axillary and

popliteal) and thymus were collected post-mortem as described in Section 2.3. Pellets of

106 cells were washed twice in PBS and snap-frozen in dry ice and stored at -70°C until

further analysed by real time PCR.
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Table 4.a. Cat numbers and viral isolate received.

Cat number Virus inoculum

A701 F0425Has
A702 F0425Has

A703 F0556Has
A704 F0556Has

A705 F0795Hs
A706 F0795Hs

A707 F0827Hs
A708 F0827Hs

A709 GL8414
A710 GL8414

as = asymptomatic isolate. s = symptomatic isolate.
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4.2.2.3. Collection of bone marrow cells

A femur from each animal was collected post-mortem into a 50ml Falcon tube (Becton and

Dickinson, France) containing RPMI supplemented with antibiotics (see Chapter 2). The

ends of each femur were removed and the marrow pulp was removed by washing through

with medium. The pulp was then washed twice with RPMI and pellets of approximately

106 cells were washed twice in PBS and snap-frozen in dry ice and stored at -70°C until

required.

4.2.3. Real time RT-PCR and PCR

4.2.3.1. Detection of mismatches in the primer and probe sites

A region of the gag gene of each field isolate was amplified by polymerase chain reaction

(PCR) using primers GAG660f (5' -GGC CAT TAA GAG ATG (CT)AG TAA-3') and

GAG1837r (5'-GAC CAG GTT TTC CAC ATT TAT TA-3') and sequenced to determine

the sequences in the Taqman primer and probe binding sites. The reaction was performed

on a Perkin Elmer GeneAmp PCR system 9700 peR machine. After the initial

denaturation of 94°C for 3 minutes, amplification was achieved by 30 cycles of

denaturation at 94°C for 30 seconds, annealing at 500e for 60 seconds, elongation at 72°C

for 60 seconds and a final elongation stage at 72°C for 10 minutes. The PCR product was

checked on a 1% agarose gel before cloning into pCR®BluntII-TOPO® vector (Invitrogen,

U.K.) following the manufacturer's instructions and sequenced on an ABI capillary

sequencer with Big Dye Terminator 2, using the methods described by Sanger and

Rosenblum (Sanger et al. 1977; Rosenblum et al. 1997) and primers Ml3f(5'-GTC GTG

ACT GGG AAA AC-3') and M13r (5'-GTC CTT TGT CGA TAC TG-3'). Analysis of

results was carried out using the Wisconsin GCG sequence analysis package. Sequence

data were analysed using Seqed and BESTFIT (Smith and Waterman 1981) and sequences

were compared using BLAST (Lipman and Pearson 1988) (National Centre for
Biotechnology Information).

4.2.3.2. Measurement of proviral load

The proviral load of PBMCs was measured by real-time peR. The primers used were

FIV077lf (5'- AGA ACC TGG TGA TAT ACC AGA GAC-3') and FIVlO8lr (5'-TTG

GGT CAA GTG CTA CAT ATT G-3 '). The probe used with this combination was
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FIVlOIOp (5'-FAM-TAT GCC TGT GGA GGG CCT TCC T-TAMRA-3'). The

accumulation of PCR product was measured through the dual labelled Taqman probe (Heid

et al. 1996). Primers FIV0771 f and FIV1010p have been shown previously to detect

several subtype-A viruses, namely FIV-PET, FIV-GLS and FIV -AM6 (Klein et al. 1999).

The reaction mixture contained 10mM Tris (pH S.3), 50mM KCI, 3mM MgClz, 200 nM

dATP, dCTP, dGTP, and 400 nM dOTP, 300nM of each primer, 200nM of the fluorogenic

probe and 2.5 units of Taq DNA polymerase. The PCR cycle employed an initial

denaturation step of 95°C for 2 minutes followed by amplification for 45 cycles of 15

seconds at 95°C and 60 seconds at 60°C. The emission of fluorescence from the probe was

measured on-line on the sequence detector system ABI 7700 (Perkin Elmer, Foster City,

California). Standards prepared from FIV-GLS in fourfold dilutions (copy numbers ranged

from 9.5 to IS5,S33 copy numbers/Sill) were used in each run.

The DNA content per PCR reaction was assessed by amplifying I8S rONA genes for each

reaction using primers rDNA343f (5'-CCA TCG AAC GTC TGC CCT A-3'), rDNA409r

(5'-TCA CCC GTG GTC ACC ATG-3') and probe rDNA370p (5'-FAM-CGA TGG TGG

TCG CCG TGC CTA-TAMRA-3') (Klein et al. 2000). Each reaction was carried out in

duplicate.

4.2.3.3. Measurement of viral RNA load

The viral load in plasma was quantified by real-time reverse transcriptase PCR (RT-PCR)

using the same primers as described in proviral load section and then repeated with the

1416p system (1360f 5'-GCA GAA GCA AGA TIT GCA CCA-3', 1416p 5'FAM-TGC

AGT GTA GAG CAT GOT ATC TrO AGO CA-TAMRA-3', 1437r 5'-AOO AAA All

GGC CGC CAT A-3'). The 25111 samples contained 12.51l1of2 x Thermoscript Reaction

Mix (Platinum quantitative RT-PCRKit; Life Technologies, Karlsruhe, Germany), a

300nM concentration of each primer, a 200nM concentration of the fluorogenic probe,

O.SIlI of the Thermoscript PlusIPlatinum Taq Enzyme mix, 20U of RNaseOUT (Life

Technologies), and 5111of the sample. A reverse transcription step of 30 minutes at 60°C

was followed by a denaturation step, 5 minutes at 95°C and 60 seconds at 60°C for 45

cycles.
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4.3. Results

4.3.1. Proviral loads

4.3.1.1. Investigation of primer mismatches

Our aim was to compare the viral and proviral loads in cats infected with the field isolates

using the primers FIV0771 f and FIV 1081r that were designed to be 100% homologous to

the FIV subtype A isolates FIV PET (Gene bank accession number M25381), FIV PPR

(M36968), FIV ZURICH 1 (X57002), FIV UTRECHT 1 (X68019). Firstly, the sequences

of the gag gene of each field isolate were determined so that any mismatches of sequence

in the regions of the primers and the probe binding sites could be identified. Only F0795Hs

had a mismatch in the forward primer at position 13. In the probe region only one isolate

(F055611as) had a mismatch at position 21. In the reverse primer region isolates F0556Has

and F0795Hs had mismatches at positions 3 and 14 respectively (see Figure 4.a.).

Within the 1416p system numerous primer mismatches were found in the field isolate

sequences. Isolate F082711s has two mismatches in the forward and reverse primers at

three and seven and seven and thirteen respectively. F0795Hs has one mismatch in the

forward primer at nucleotide seven and one in the reverse primer at nucleotide seven.

Lastly, isolates F0425Has has one mismatch in the forward primer at nucleotide one and

two mismatches in the reverse primer at nucleotides seven and ten and a further mismatch

in the probe at nucleotide fourteen (see Figure 4.a.). The 1010p system was thought the

more reliable due to the smaller number of mismatches present within the field isolate

sequences.

4.3.1.2. PBMC proviral loads

When the proviral loads were compared, it was evident that there was a trend for higher

proviral loads to be recorded in the recipients of the asymptomatic isolate, with peak

proviral loads ranging from 5.2% (A704) to 26.7% (A703) of cells infected (Figure 4.b.).

In contrast, cats receiving symptomatic isolates recorded peak proviral loads of only 0.78%

(A705) to 4.3% (A707). Proviral loads continued to increase until the end of the study at

15 weeks p.i. in 3/4 of asymptomatic recipients whereas the proviral load of cat A703

peaked at 9 weeks p.i. (see Figure 4.c.). The proviral loads of two cats inoculated with
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Figure 4.a. Primer mismatches.

Primer

FIV0771f
FIV-GL8
425
556
795
827

FIV1081r
FIV-GL8
425
556
795
827

FIV1010p
FIV-GL8
425
556
795
827

FIV1360f
FIV-GL8
F0425H
F0556H
F0795H
F0827H

FIV1437r
FIY-OL8
F0425H
F0556H
F0795H
F0827H

Sequence

5'-AGA ACC TGG TGA TAT ACC AGA GAC-3'
5'-AGAACC TGGTGA TAT ACCAGAGAC-3'
5'-AGA ACC TGG TGA TAT ACC AGA GAC-3'
5'-AGA ACC TGG TGA IAT ACC AGA GAC-3'
5'-AGA ACC TGG TGA TAT ACC AGA GAC-3'

5'-TTG GGT CAA GTG CTA CAT ATT G-3'
5'-TTG GGT CAA GTG CTA CAT ATT G-3'
5'-TTG GGT CAA GTG CTA CAT AIr G-3'
5'-TTG GGT cIA GTG CTA CAT ATT G-3'
5'-TTG GGT CAA GTG CTA CAT ATT G-3'

5'-FAM-TAT GCC TGT GGA GGG CCT TCC T-TAMRA-3'
5'-FAM-TAT GCC TGT GGA GGG CCT TCC T-TAMRA-3'
5'-FAM-TAT GCC TGT GGA GGG CCT TC T-TAMRA-3'
5'-FAM-TAT GCC TGT GGA GGG CCT TCC T-TAMRA-3'
5'-FAM-TAT GCC TGT GGA GGG CCT TCC T-TAMRA-3'

5'-GCA GAA GCA AGA TIT GCA CCA-3'
5'-IcA GAA GCA AGA TTT GCA CCA-3'
5'-GCA GAA GCA AGA TIT GCA CCA-3'
5'-GCA GAA CA AGA TTT GCA CCA-3'
5'-GC GAA AAGA TITGCACCA-3'

5'-AGG AAA ATT GOC CGC CAT A-3'
5'-AGG AAA ATT lac lac CAT A-3'
5'-AGG AAA ATT GGC CGC CAT A-3'
5'-AGG AAA ATT GGclac CAT A-3'
5'-AGG AAA lIT GGC lac CAT A-3'

Probe 1416p
FIV-GL8 5'-FAM-TGC AGT GTA GAG CAT GGT ATC TTG AGG CA-TAMRA-3'
F0425H 5'-FAM-TGC AGT GTA GAG cIT GGT ATC TTG AGG CA-TAMRA-3'
F0556H 5'-FAM-TGC AGT GTA GAG CAT GGT ATC TTG AGG CA-TAMRA-3'
F0795H 5'-FAM-TGC AGT GTA GAG CAT GOT ATC TTG AGO CA-TAMRA-3'
F0827H 5'-FAM-TGC AGT GTA GAG CAT GGT ATC TTG AGG CA-TAMRA-3'

Reverse primer and probe are read from the composite strand for clarity. Mismatches between primer/probe

and primary isolate sequence are highlighted in red.



Figure 4.b. Peak proviral loads in PBMCs.
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Figure 4.c. PBMC proviral loads 0-15 weeks post infection.
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symptomatic isolates (A 706 and A707) peaked at 12 weeks while those of the remaining

two cats (A705 and A708) continued to increase until the end of the study (see Figure 4.c.).

The two control cats (inoculated with the clone FIV -GLS414) displayed markedly different

peak proviral loads and rates of increase in proviral burden throughout the 15 week study

(see Figure 4.c.). Cat A710 showed a marked rise in proviral burden between 3 and 9

weeks p.i. (0.7% to S%), whereas the peak proviral load of cat A709 was only 3.06%. This

pair of cats demonstrated the greatest variability between final proviral loads (see Figure

4.c.).

Following infection with isolate F0425Has, cats A70I and A702 demonstrated peak

proviral loads greater than 9% and the kinetics of infection were similar to each other

(Figure 4.c.). Cats A703 and A704 were inoculated with isolate F0556Has and displayed

similar proviral burdens until 9 weeks p.i. when A703 showed a peak proviral burden of

26.7% of cells infected (see Figure 4.c.). This cat had suffered an intestinal

intussusception between 3 and 6 weeks p.i, which was corrected surgically and the cat

subsequently made a full recovery. It is unknown if stress factors of this kind may have

influenced the proviral kinetics. By 15 weeks post infection their proviral burdens were

similar (2.S5% and 4.35%). Cats A705 and A706 were inoculated with isolate F0795Hs

and showed the lowest peak proviral loads, both cats having less than 2% of PBMCs

infected. The two cats receiving isolate FOS27Hs (A707 and 70S) also showed similar low

proviral loads, peaking at 4.3% and 3% respectively. The peak proviral load of A703 at

26.7% was considered unreliable and was not included in the statistical analysis. The

difference between the two groups was still significant even when data from cat A703 were

excluded (p=0.032, Student's t-test).

4.3.1.3. Tissue proviral burdens

Proviral burdens of tissues at 15 weeks p.i, are presented in Figure 4.d. The proviral DNA

burdens in the tissues were variable. However, cat A705 had the lowest proviral burdens

in all of the tissues examined (see Figure 4.d.). There were no statistically significant

differences among the proviral burdens of the groups.



Figure 4.d. Tissue proviral burdens.
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4.3.1.4. Lymph nodes

Proviral burden was lower within the lymph nodes compared to other tissues examined. all

cats having less than 2% infected cells in both mesenteric and peripheral lymph nodes (see

Figure 4.d.). Variation within the pairs of cats in each group was much smaller than other

tissues sampled (mesenteric lymph node mean = 0.9% ± 0.18 SE; peripheral lymph node

mean = 0.97% ± 0.17 SE).

4.3.1.5. Bone marrow

Three groups showed small variations between the pairs (F0425Has• F0556Has and

F0827Hs). The levels of infection between the two groups of cats receiving asymptomatic

isolates were different. A701 and A702 both having over 10% of bone marrow cells

infected compared to A703 and A704 where the proviral burden was below 6%. Both

groups receiving symptomatic isolates showed similar mean proviral burdens within the

bone marrow but there was a marked degree of variation between A705 and A706 (0.8%

and 8.7% respectively)(see Figure 4.d.).

4.3.1.6. Thymus

Proviral burdens within the thymus were very variable between the ten cats (mean 4.2% ±

0.65 SE). A705 records the lowest burden at less than 1.5% and A707 had the highest

proviral burden within the thymus (8.5%). Both of these cats received symptomatic isolates

(see Figure 4.d.).

4.3.2. Viral RNA loads in the peripheral circulation

In contrast to the proviral DNA loads in PBMCs, the plasma viral RNA loads of all cats

receiving field isolates were remarkably low throughout the 15 week study period (see

Figure 4.e.). Small increases in viral load occurred in cat A702 at 9 weeks p.i. and cat

A708 at 3 weeks p.i. with viral loads of approximately 25 000 and 31 000 virus/ml plasma

respectively. Within pairs of cats inoculated with each isolate, variation was marked in the

peak viral loads as well as the periods of time that elapsed before the peak burden was

reached. Seven of eight cats receiving field isolates had no detectable viral RNA by 15

weeks p.i., (A707 had a viral burden of approximately 2400 virus/ml plasma at 15 weeks

p.i.). The two cats receiving the clone FIV-GL8414 had the highest viral burdens in plasma

with A710 reaching a peak at approximately 190 000 virus/ml plasma at 3 weeks p.i. and
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A709 reaching peak burden at 3 weeks p.i. (22 000 virus/ml plasma). Whereas proviral

load tended to increase steadily throughout the period of study, viral burden would

fluctuate, often being below the assay detection limit (see Figure 4.c. and Figure 4.e.).

4.3.3. Quantitative viral isolation

The levels of infectious virus at 6 weeks p.i. were measured by in vitro cultivation of

PBMCs with Mya-l cells (see Figure 4.f.). When asymptomatic isolate recipients were

compared with symptomatic isolate recipients, the differences in infectious virus burden

were significant (p=0.023, Student's t-test), with higher burdens in the asymptomatic

isolate recipients.

4.3.4. Correlation between proviral load and viral loads

The proviral loads recorded throughout the study were markedly higher than the viral loads

for the cats inoculated with field isolates and there was no correlation between the two

parameters. Cat A710 developed the higher peak viral load (3 weeks p.i.) and proviral load

of the pair of cats receiving FIV-GL8414. Interestingly, the proviral loads were similar in

cats A709 and A710 for the first two time points before the load of cat A710 increased

dramatically. At 3 weeks p.i. a peak viral load of 19 000 virus/ml plasma was detected in

the plasma of cat A710 but this high viral burden did not coincide with an increased

proviral load in PBMCs or any tissue examined post-mortem. Ilowever, a high infectious

viral load was detected in cat A710 by QVI at 6 weeks p.i.

4.3.5. Confirmation of viral loads using 1416p system

The viral RNA burden in the plasma was then measured using the 1416p system to confirm

the levels recorded by the 10IOp system. The differences between the peak viral loads

recorded using each set of probe and primer were not significant (p=O.l86, Student's t-test)

however, the final viral loads were significantly greater using 1416p system (p=0.031,

Student's t-test). This system also recorded higher results for the group infected with FIV-

GL8414 with cats A709 and A710 recording peak viral burdens of 73 000 and 530 000

virus/ml of plasma respectively. The peak viral burden recorded in the cats infected with

field isolates was 41 000 virus/ml of plasma using the 1416p system whereas the highest

viral burden recorded by the 101Op system was 24 700 virus/ml of plasma. The peak viral

burdens between the asymptomatic and symptomatic groups were not significantly

different when measured by either system (data not shown).
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Figure 4.e. Plasma viral RNA load measured by real time RT-peR.
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Figure 4.f. Quantitative viral isolation at 6 weeks post infection .
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The viral RNA loads at 6 weeks p.i. were compared with the QVls which were also carried

out at 6 weeks p.i, The infectious viral burdens in asymptomatic isolate recipients

measured by QVI were significantly greater than the burdens in symptomatic recipients

(see Figure 4.f.). However, the viral loads at 6 weeks p.i., measured by real-time RT-PCR,

were quite different. Whereas the infectious viral burden in the symptomatic recipients

was very similar with 50% endpoints under 30, the range of viral RNA loads between the

groups receiving isolates F0795Hs and F0827Hs was marked (500-26800). The viral

burdens in cats infected with asymptomatic isolates was less variable and ranged between

1800 and 7700 virus/ml of plasma.

Each reaction was carried out in duplicate and the coefficient of variation (CV) calculated

in order to quantify the reliability of the viral load data. The CVs were then grouped into

three groups, <10%, 10-30% and >30%. The 1010p system produced the most reliable

results with 63% of the data having CVs <10% whereas only 47% of the data in the 1416p

system had CVs <10%.

4.4. Discussion

The aim of this study was to investigate field isolates of FlY from cats at different stages of

disease, ranging from terminal illness to resolution of clinical signs. Groups of two cats

were infected with each isolate; two groups inoculated with asymptomatic isolates, two

groups inoculated with symptomatic isolates and the fifth group inoculated with the clone

FIY-GL8414• Viral loads were measured by real-time RT- PCR using a standardised assay

with primers which are known to recognise four FlV strains of subtype A (Klein et al.

1999). Primer mismatches may have a considerable impact on peR reaction efficiency

(Klein et al. 1999) and from the field isolate sequences investigated, it was noted that

isolate F0556Has, received by A703 and A704, had two mismatches. one in the probe and

one in the reverse primer while isolate F079511s had one mismatch in each of the forward

and reverse primers which may have reduced the PCR reaction efficiency, potentially

leading to reduced values of proviral burden. However, a comparison of proviral burden

found in the PBMCs is interesting as the results indicate that the rate of viral replication

was greater in the cats that received asymptomatic isolates. The group sizes were small

and hence caution must be exercised when analysing results statistically, but when

asymptomatic and symptomatic recipients were compared, the difference in mean peak
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proviral burden of the PBMes between the two groups was significant (p=O.03, Student's

t-test).

The role of HIV-1 proviral burden in PBMCs as a prognostic indicator is not clear and

contradicting evidence has been reported so far (Aleman et al. 1999; Tetali et al. 1999;

Russell et al. 2001). Pathogenic simian-human immunodeficiency viruses (SHIV) that lead

to rapid depletion of eD4+ T cell count and progression to an AIDS-like disease (SHIV-

89.6P and SHIV-KB9) have been reported to induce higher proviral DNA loads in PBMes

during early infection of rhesus monkeys (Reimann et al. 1999), whereas nonpathogenic

SHIVs were shown to induce lower proviral DNA loads. In our present study we

examined only the acute phase of infection, up to 15 weeks after exposure to the virus, and

therefore progression to disease was unknown. The differences between the proviral DNA

burdens of cats A709 and A710 were surprising given that these cats were inoculated with

the cloned virus F1V-GL8414;in contrast, the other groups were inoculated with biological

isolates and large differences between cats could be explained by the presence of mixed

populations of viruses in the inocula. However, differences may be explained also by

variable individual host responses to infection.

In this study, high proviral loads in PBMCs did not correlate with high proviral loads in the

tissues examined 15 weeks p.i. Proviral burdens in lymph nodes were less than 2% in all

cats. Contrary to the findings in our study, other workers have reported similar proviral

burdens between lymph nodes and PBMes 12-16 weeks p.i. (Dean et at. 1996). Tissue

proviral burdens have also been reported to be virus strain dependent (Burkhard et al.
2002).

The viral RNA loads of cats receiving the field isolates were remarkably low, in contrast to

the proviral burdens measured in the PBMCs. In studies of HIV-1 infection any

correlation between proviral and viral RNA loads is still unclear and reports are

contradictory (Cone et al. 1998; Aleman et al. 1999).

A possible explanation for the low viral loads detected is low primer binding efficiency.

However, since the primers and probe that were used in the real-time RT-PCR (sequence

mismatch in the forward primer binding site of isolate F0795Hs and isolate F0556Has had

one mismatched nucleotide in the probe binding site) performed with adequate efficiency

in proviral measurements, we confirmed their efficiency for usc in detecting the isolates
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used in this study. Nucleotide mismatches were more frequent in the 1416p system. The

effect of primer mismatches is not fully quantified and is thought to depend on several

factors including differences in length of the amplicon. The effect of mismatches is greater

when they occur nearer the 3' -end of the oligonucleotide and depend on the number of

nucleotide changes. Thus two mismatches in a primer may decrease the reaction efficiency

and decrease the viral load detected by up to 4 orders of magnitude (Klein et al. 200 I). All

of these factors would have some bearing on the detection of virus by both of the systems.

The viral RNA loads measured by the two real-time RT-PCR systems detect viral burdens,

which are not significantly different. The 1416p system detects slightly higher levels but

has the disadvantage of higher CVs.

Trends are evident when analysing the proviral DNA burden and the infectious viral

burden. The cats infected with viruses from the asymptomatic stage of disease had

significantly higher proviral DNA burdens in the PBMCs and significantly higher

infectious virus burdens as measured by QVI. The viral RNA load measurements are less

clear and although the cats infected with symptomatic isolates appear to have higher viral

RNA loads in the PBMCs, this difference is not significant and the levels are still low by

the two systems utilised.

The QVI results reflected the proviral burdens of the PBMCs, suggesting that cats

inoculated with asymptomatic stage isolates developed infections with higher rates of viral

replication and infectivity compared to cats inoculated with isolates from the terminal

disease stage which developed significantly lower proviral burdens in the PBMCs and

lower infectious virus titres by QVI.

Few studies have been conducted to study viral dynamics after i.m. inoculation of FIV.

although one study determined that even when 10 to 100 fold greater amounts of live virus

were inoculated by the i.m. route, viral loads in peripheral blood were lower than when

virus was inoculated by the i.p. route (Rigby et al. 1997). In addition, seroconversion was

found to occur sooner after i.m, compared to i.p, inoculation (Rigby et al. 1997). Another

study of two well-characterised isolates demonstrated that the route of inoculation affected

levels of CD4 t cytopenia, and both virus type and route of infection influenced plasma

viraemia as well as tissue and PBMC proviral burdens (Burkhard et al. 2002). The i.m.

route of inoculation may have affected the extent of plasma viraemia by stimulating the

immune system to a greater degree compared to that by other routes of inoculation, leading
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to greater suppression of viral production and release into the circulation. Interestingly, the

two cats inoculated with clone FIV-GL8414 developed greater viral RNA loads in plasma

and it may be that inoculation of a heterogeneous population of virus with potentially

greater antigenicity, such as isolates from cats in the field, may stimulate the immune

system to a greater degree compared to a homogeneous population in the clone inoculum.

Itwould be necessary to study the humoral and cell mediated immune responses of each of

the cats to ascertain whether virus type can affect immune response after i.m, inoculation.

In conclusion, this study has revealed that cats inoculated with asymptomatic isolates

developed higher peak proviral loads in PBMCs and by 15 weeks p.i. 3/4 developed

proviral loads higher than 3%. In contrast, only 1/4 symptomatic isolates developed a final

proviral load greater than 3%. The differences in PBMC proviral load between cats A709

and A710 suggested that host factors also play a role in the pathogenesis of the disease.

QVIs supported the findings in the PBMC proviral burdens. Ilowever, further study of the

immune system status of these animals may reveal possible explanations for the low and

sometimes undetectable viral RNA loads throughout the study. The relationship between

viral RNA load, proviral DNA load and infectious viral burden remains unclear. There are

inherent problems with the measurement of field isolates by Taqman methods due to

differences in sequence at the primer and probe binding sites. Furthermore, the real-time

PCR measurement of virus in this fashion does not measure replication-competent virus.

Further work is required to investigate the relationship between each of these

measurements.
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Chapter Five

THE ROLE OF THE env GENE IN THE PATHOGENESIS

OF FIV

5.1. Introduction

The envelope glycoprotein of FIV contains the principal determinants of virus/cell

interactions, tropism and fusogenicity (Pancino et al. 1995) as well as the principal

immunodominant domain (Lombardi et al. 1993; de Ronde et al. 1994). Laboratory-

adapted isolates of FIV that have proven susceptible to vaccine protection have expanded

host cell tropism in vitro, which has been shown to correlate with an increased positive

charge in the V3 loop (Verschoor et al. 1995; Siebelink et al. 1995b) similar to findings in

IIIV (de Jong et al. 1992). This expanded tropism has also been correlated with the sole

usage of the chemokine receptor CXCR4 for viral entry into cells. In vivo these

laboratory-adapted isolates produce lower viral and proviral loads, less disruption of the

lymphocyte populations and no inversion of the CD4:CD8 ratio. Interestingly, studies

from field isolates documented in this thesis have revealed that isolates from cats with

terminal disease more readily use CXCR4 for viral entry than isolates from cats with

asymptomatic disease. These results were paralleled with the findings of lower proviral

loads and less perturbation of the lymphocyte subsets and no inversion of the CD4:CDS T

lymphocyte ratio in naive cats that were infected with isolates from terminal cases. Taken

together, these findings led to the hypothesis that Env may be a determinant of

pathogenicity in vivo and that tropism and receptor usage in vitro may predict the

pathogenicity of an isolate in vivo.

This study examines the in vitro tropism of five isolates: the original prototype viruses

derived from molecular clones, FIV-GLSMYA(GSMyA)and FIV-PETFI4(PETFI4),and three

chimaeras consisting of an GSMYAbackbone containing the env genes of the two field

isolates F0425Has, F0827fls as well as PETFI4. The G8MYAbackbone was isolated from the

molecular clone CP3 in the low copy number plasmid pBR328 following the excision of

PET env. The chimaeras were designated G8M(425), GSM(S27) and GSM(F14.7). By

subjecting the clones and chimaeras to a panel of assays in vitro, their ability to use

CXCR4 was characterised. Their behaviour in vivo was then examined, to determine the

relationship between receptor usage and tropism in vitro to pathogenicity in vivo. Thus the
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insertion of various env genes from well-characterised prototype clones and field isolates

into the same viral backbone to create a range of similar clones, differing only in the env

gene region, enabled the elucidation of the role of env in determining the pathogenicity of

an isolate.

5.2. Materials and methods

5.2.1. Production of chimaeras

5.2.1.1. Preparation of DNA

DNA was prepared from cell pellets of infected Mya-l cells (described in Section 2.7.)

using a blood kit (Qiagen, Hilden, Germany) following the manufacturer's instructions,

and was stored at -20°C until required.

5.2.1.2. Amplification of the env gene

The full length of the envelope glycoprotein (env) gene was amplified using the

polymerase chain reaction (Pf'R]. DNA samples were titrated in two-fold dilutions from

400ng to 50ng and then aliquoted. IliFidelity (Roche) PCR master mix was used in the

peR reaction and the primers corresponded to the 5' cleavage site of the L-SU (S'-TAG

ACG CGT AAG ATT TIT AAG GTA TTC-3') and the Nde I site 3' of the Rev

responsive element rr-ccc TTT GAG GAA GAT GTG TeA TAT GAA Tee ATT-S'),

a segment which incorporates the MluI and NdeI restriction sites. The amplified products

were separated by agarose gel electrophoresis, excised and purified using Qiaquiek gel

extraction kit, following the manufacturer's instructions. The products were then digested

with Mlul and NdeI, re-purified to remove the restriction enzymes and then ligated into the

pre-digested GL8MYA vector.

5.2.1.3. Transformation of competent cells

The ligations were then transformed into the E.coli competent cells ONE SHOT® Inva'F

(Invitrogen, U.K.). Vials of competent cells were defrosted on icc before adding I IIIof the

ligation reaction. The mixture was incubated on ice for a further 30 minutes, before the

competent cells were heat shocked at 42°C for 30 seconds and then placed on ice for 2

minutes before 4S0f.11of SOC medium (see Appendix A.3.) was added. The mixture was
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incubated for 90 minutes at 30°C in a water bath before plating on L-agar plates containing

ampicillin (50Jlg/ml), which were then incubated for 24 hours in a 30°C incubator.

5.2.1.4. Amplification and purification of plasmid DNA

Colonies were selected from the agar plates (see Appendix A.3.) and cultured in 3ml of L-

broth (see Appendix A.3.) supplemented with ampicillin (50Jlg/ml) overnight at 30°C in an

orbital incubator. Plasmid DNA was collected using a Qiagen MiniPrep Plasmid DNA kit

(Qiagen) (using the principle first described by Vogelstein (Vogelstein and Gillespie

1979» following the manufacturer's instructions. Confirmation of successful insertion of

the env gene was achieved by digestion of the product with Mlu 1 and Nde 1 restriction

enzymes for 60 minutes and examining the product on a 1% agarose gel containing

ethidium bromide. Inserts of 2.5Kb represented the full-length env product.

5.2.1.5. Identification of the env insert

To confirm that the env detected following MlulNde digestion represented the novel env,

and not a residual env from the parent molecular clone, each plasmid was digested with the

restriction enzyme Kpn I for 60 minutes at 37°C. The products were separated on a 1%

agarose gel and could be seen at 1659bp and 10967bp. Alternatively, if the FlV-PET env

from the parent vector CP3 had been reinserted, then only one product band would have

been detectable at 12626bp since FlV-PET has a single Kpn 1 site. A further digest with

the restriction enzyme Aft II was conducted to confirm that the gene was distinct from FIV-

GL8My A env. Digestion of the field isolate env was carried out in parallel with that of FIV-

GL8MYA and FIV-PETFI4• FIV-PETFl4 has eight Aft II restriction sites whereas FIV-

GL8414 has seven (sec Table 5.a.).

5.2.1.6. Amplification of positive clones

Cultures of clones with the env gene successfully inserted were expanded overnight in

200ml of L-broth supplemented with ampicillin (50Jlg/ml) at 30°C in an orbital incubator.

Plasmid DNA was then purified using a Qiagen MaxiPrep Endofree Plasmid DNA kit

(Qiagen), following the manufacturer's instructions. This is a procedure based on the

alkaline lysis of bacterial cells (Birnboim and Doly 1979).
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Table 5.a. Restriction sites and fragment sizes within the FIV

genomes FIV-PETF14 and FIV-GL8Mya with Aflll.

FIV-PETF14

restriction
site 1621 3440 3558 4466 5018 7972 8257 9474(nucleotide

position)

fragment
length 1621 1819 118 908 552 2954 285 1217
(bp)

FIV-GL8Mya

restriction
site 1620 3439 4465 6618 7968 8253 9467(nucleotide

position)

fragment
length 1620 1819 1026 2153 1350 285 1214
(bp)

Digestion of primal)' isolate env alongside PETFI4 and G8Mya confirmed successful insertion of the primal)'
isolate env,
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5.2.1.7. Transfection of clones in 293T cells

Poly-L-Iysine plates were set up overnight with 1.5 x 105293T cells per well in 3 ml of

10% DMEM and incubated in a humid incubator at 37°C. The following morning 2.Sllg of

each plasmid was diluted with DMEM to 100111and 12.5111of Superfect (3mglml)

(Qiagen), mixing by pipetting up and down five times. The mixture was incubated at room

temperature to allow complex formation. The medium was removed from the plates which

were then washed once with serum free DMEM. 600111 of complete medium was added to

the Superfect mixture and then transferred gently to the plates. After three hours,

incubation at 37°C the medium was aspirated and the cells were washed twice in serum-

free DMEM. Three ml of complete medium were added and the plates were incubated at

37°C in a CO2 incubator. Three days after transfection the supernatant was harvested and

passed through a O.4Sllm filter. 200111was tested by p24 antigen ELISA. lml of

supernatant from positive wells was stored at -70°C and 1.5ml was added to 106 Mya-I

cells in a T2S culture flask and made up to Sml with complete RPMI containing IL-2. The

cultures were tested by p24 antigen ELISA every 3 days until positive when culture fluids

were harvested, filtered through a 0.451lm filter, aliquoted and stored at -70°C.

5.2.2. In vitro tropism of the clones

The clones were subjected to a panel of in vitro assays. Tropism studies on (H06Tl)CrFK

cells and AH927 FX4E cells were carried out as described in Chapter 3.

5.2.3. Infection of kittens

5.2.3.1. Virus inoculum

The cloned viruses were titrated as described in Chapter 2. Inocula were prepared in RPMI

medium containing 1% BSA. Five groups of three kittens received 250 TCIDso of virus

(see Table 5.b.) by i.m. inoculation.

5.2.3.2. Collection of samples

Blood samples were collected in EDTA on 0, 3, 6, 12, and 15 weeks p.i. After the final

sampling, post-mortem examinations were carried out. Proviral DNA loads of the PBMCs

and plasma viral RNA loads were measured at each time point (method described in

Chapter 4) and FACS analysis was carried out at 0, 3, 6, 12 and 15 weeks p.i. (see Chapter
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6). At post-mortem examination, peripheral and mesenteric lymph nodes were harvested

and processed. Virus isolation was carried out on PBMCs from the samples taken at each

time point except at 15 weeks p.i. when QVls were carried out (all methods described in

Chapter 2).

5.2.3.3. Tissue samples

Mesenteric and peripheral lymph nodes were collected at post-mortem examination and

processed for measurement of proviral DNA load. QVls were carried out on each of the

mesenteric lymph node samples in cats receiving either clone G8Myaor PET F14, as described

in Chapter 2.

5.2.4. Viral RNA and proviral DNA

Viral RNA and proviral DNA measurements were conducted as described in Chapter 4.

5.2.5. Virus isolation and quantitative virus isolation

The methodology for virus isolation and quantitative virus isolation is described in sections

2.5.3. and 2.5.4.

5.3. Results

5.3.1. In vitro tropism

5.3.1.1. Tropism on CrFK(H06T1) cells

The cloned virus containing the env gene from the symptomatic cat F0827Hs, namely

G8M(827), successfully infected CrFK(II06Tl) cells by both cell-free infection and

cocultivation. In contrast, the clone containing env from the asymptomatic isolate

F0425Ha~, G8M(425), only achieved a short period of infection of CrFK(1I06Tl) cells

following cocultivation until 7 days p.i. The clone G8M(FI4.7) and the parental clone

PETFI4 both achieved productive and persistent infection of the cells by cell-free infection

and cocultivation. Each clone produced a transient cytopathic effect by both methods of

infection (cell-free infection or cocultivation) at 21 days and 28 days p.i. respectively. As

a result, these cultures were not subcultured at these time points, however fresh medium

was added to each flask and the remaining cells continued to grow. The parental FIV-

G8MYAclone produced only a transient productive infection on cocultivation with infected

Mya-I cells and by 14 days p.i. p24 could no longer be detected (sec Figure S.a.).



Figure S.a. Tropism on CrFK(H06T1) cells.
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A: cultures - cell-free infection, B: cultures - cocultivation with infected Mya-I cells.

Virus was incubated overnight in cultures of CrFK (H06T I) cells. The cells were washed the next day and

fresh medium added with subculturing twice per week. p24 production was measured by FIVp24 antigen
ELISA (IDEXX) at 7 day intervals.

7 days 14 days 21 days 28 days 35 days

Days post infection
G8M(425)_ 425CP

3
A

c:::::J 425CP 3B
c:::::J 827CP3A
_ 827CP

3
B

_G8MA
_G8MB
_ F14A

_F14B

G8M-F14A
c::::J G8M-F14B

G8M(827)

FIV-PETF14

G8M(F14.7)
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5.3.1.2. Tropism on AH927 FX4E cells

Only the FIV-PETFI4 clone induced any cytopathic effect in AH927 FX4E cells. RT

activity was highest in the laboratory-adapted FIV-PETFI4 but both chimaeras containing

field isolate env genes did infect the cells. Interestingly, greater p24 readings were

obtained from the culture with the asymptomatic env clone GSM(425) when compared to

the culture with the symptomatic env clone GSM(S27). The GSMYAclone, as predicted,

was unable to infect these cells whereas the PETFI4 conferred the ability to use CXCR4

when inserted into the GSMYAbackbone (see Figure 5.b.).

5.3.2. In vivo studies of the env chimaeras

5.3.2.1. Virus isolation

Virus isolation was carried out at each time of sampling. No virus could be isolated from

cats receiving the chimaera GSM(F 14.7) consistently throughout the IS week study period.

Virus was isolated from 1/3 of the cats receiving the FIV-GSMYAclone by three weeks p.i.

and all three cats by six weeks p.i, Cultures of PBMC established from all other cats had

detectable levels of p24 by three weeks p.i. Virus was undetectable in two cats receiving

PETFI4 (A750 and A755) at 9 and 15 weeks p.i. as well as cat A747 at 15 weeks p.i. (see

Table 5.b.).

5.3.2.2. Quantitative virus isolations

To establish the infectious virus burdens of the cats, QVIs were carried out at 6, 12 and 15

weeks p.i. At 6 weeks p.i, all virus levels were very low, such that the infectious virus

burden in the PBMCs (using 50% end points) could not be calculated for any of the cats.

By 12 weeks p.i., four cats A74I and A754 (GSMyA), A753 (GSM(425» and A746

(GSM(827» had infectious viral burdens that were sufficiently high to calculate 50% end

points. By 15 weeks p.i, this number had increased to six cats (A741 and A754 (GSMyA),

A743, A744 and A753 (G8M(425» and A746 (G8M(827». Three cats had undetectable

virus, consistent with the virus isolation assays (A747, A750 and A755) (see Tables S.c.).

5.3.2.3. Detection of viral RNA loads by RT-peR

The 1416p system was used to detect viral RNA. The highest viral RNA loads recorded in

the plasma were from the group receiving G8MYA at 9 weeks p.i. but there was not a

significant difference between the groups at this time point. However, G8M(425) had
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Figure S.b. Infection of the cell line AH927 transfected with feline

CXCR4.
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Virus stocks were incubated with AH927 FX4E cells for I hour at 37°C. Cultures were washed and fresh

medium added and then incubated for 10 days when virus replication was measured using RT activity assays

(Cavidi Tech).
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Table S.b. Virus isolation in Mya-1 cells.

Cat Virus Week Week Week Week Week
3 6 9 12 15

A741 - + + + +
A742 GSMya - + + + +
A754 + + + + +

A744 + + + + +
A743 G8M(425) + + + + +
A753 + + + + +

A745 + + + + +
A746 G8M(827) + + + + +
A747 + + + + -

A74S - - - - -
A749 GSM(F14.7) - - - - -
A751 - - - - -

A750 + + - + -
A752 PET + + + + +
A755 + + - + -

10
6
PBMCs were cultured with 2 x 106 Mya-l cells in 5rnl RPMI and IL-2.

Cultures were tested for p24 production (FIV p24 ELISA. IDEXX).
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Figure S.c. The infectious viral burden within the PBMCs 15 weeks p.i.
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Positive cultures were detected using p24 FIV antigen ELISA. Infectious viral burdens were calculated using

the 50% end point method as described by Reed and Muench, 1937.
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Table S.c. 1Sweek QVI assays (PBMCs).

Proportion of cells infected at:

104 3x 103 1x 103 3x 102 30 10 Virus
inoculum

A741 8/8 2/8 4/8 0/8 0/8

A742 2/8 0/8 0/8 G8Mya

A754 7/8 3/8 1/8 0/8 0/8

A743 6/8 2/8 0/8 0/8

A744 7/8 0/8 0/8 G8M(425)

A753 8/8 7/8 4/8 1/8 0/8 0/8

A745 2/8 0/8 0/8

A746 8/8 8/8 5/8 2/8 0/8 0/8 G8M(827)

A747 0/8 0/8

A748 1/8 0/8 0/8

A749 2/8 0/8 0/8 G8M(F14.7)

A751 1/8 0/8 0/8

A750 0/8 0/8

A752 1/8 0/8 PET

A755 0/8 0/8

Each dilution of PBMCs was tested in groups of eight. An FlY p24 antigen ELISA was used to detect

positive cultures 7 days p.i. The Reed and Meunch method (Reed and Meunch 1937) was used to calculate

the infectious viral burden within the cells.
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Figure S.d. Mean viral RNA load measurements in the plasma of

each group at 0-15 weeks p.i.
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RNA viral loads in plasma were measured by real-time RT-PCR using the 1416p system (Klein, 1999).

*= p<O.039, FIV-PETF14 and p<O.042, G8M(F14.7).

The cats are grouped by inoculate received. The group mean and SE shown.
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significantly greater loads at 6 weeks p.i. (see Figure S.d.) when compared to the clone

PETFI4 and the chimaera G8M(F14.7) (p<0.039 and p<0.042 respectively, Tukey test).

The greatest viral RNA load was recorded in the group receiving G8MYA (6794 virus/ml

plasma (SE ± 5988)) with the viral load in cat A741 reaching a level of 18 700 virus/ml

plasma. However, there was a large variation within this group, reflected in the large

standard error. The cats infected with clone PETF14 and the chimaera G8M(FI4.7)

developed only low viral RNA loads within the plasma with a slight peak at 3 weeks p.i,

(440 ± 250 SE and 380 ± 231 SE). Generally, the chimaera with the env gene from

terminal isolate F0827H induced viral loads intermediate from G8My A, G8M(425) and

PETFI4 and G8M(FI4.7).

5.3.2.4. Proviral DNA loads from PBMCs and tissues

There was evidence of contamination in the proviral load assays and the results were

considered unreliable.

5.4. Discussion

From the studies described in Chapter 3 of this thesis it was found that isolates from cats in

the asymptomatic stage of the disease were less able to utilise the chemokine receptor

CXCR4 in vitro and induced greater proviral DNA loads in infected cats, whereas isolates

from cats in the terminal stages of the disease had a greater affinity for CXCR4 and

induced lower proviral loads in vivo. By comparing the env genes of these viruses in a

common viral backbone, it was hoped to clarify the role of the env gene in the pathogenesis

of FIV infection.

Interestingly, the ability to utilise CXCR4 by a clone or chimaera was not consistent

throughout all the in vitro studies. The chimaera G8M(827) and GSM(F14.7) were able to

infect the CrFK(H06Tl) cells efficiently by cell-free infection and cocultivation,

demonstrating the ability to utilise CXCR4 alone. However. the same viruses were much

less efficient at infecting the AH927 FX4E cells (transduced so as to express the CXCR4

receptor). an assay that is also designed to identify viruses with the ability to use CXCR4

alone. The reason for this difference is unknown. Possibly the presentation of CXCR4 in

each cell varies. as CXCR4 may have different conformations and molecular weights

depending on the cell line (Baribaud et al. 200 I; Lapham et al. 2002) or perhaps an

additional molecule is involved in FIV entry. The ability of laboratory-adapted isolates
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such as PETFI4 to infect many CXCR4-expressing cell lines with great efficiency may be

due to an expansion of CXCR4-tropism or some determinant outwith the env.

The virus with the env gene from the asymptomatic cat F0425Has and the pathogenic clone

G8MYA both induced greater plasma viral RNA loads, although a significant difference was

seen only at 6 weeks p.i. (see Figure 5.d.). The ability to induce high viral loads and high

infectious viral burdens appears to be inversely correlated with the ability to utilise CXCR4

in vitro. Both G8M(425) and G8MYA have a reduced ability to utilise CXCR4 in vitro but

produce higher viral loads in the plasma, Interestingly, the chimaera containing the env

gene from the terminal field isolate produced viral RNA loads which, in general, were

intermediate. This isolate demonstrated a greater ability to utilise CXCR4 than the

chimaera containing the env gene from an asymptomatic isolate. The inverse correlation

between CXCR4-tropism and viral RNA loads suggests that viruses which readily utilise

CXCR4 in vitro may display decreased pathogenicity in vivo.

Unfortunately, the proviral load data from the PBMCs and the tissues collected post-

mortem was unreliable. There was evidence of contamination within the assay and the

proportion of the coefficients of variation >30% undermined the validity of the data;

therefore, these data could not be included. However, the infectious viral burdens achieved

in this study by the chimaeras G8M(425), G8M(827) and the clone G8MYA were lower than

those recorded in the earlier study described in Chapter 4. The dose of inoculum and route

of inoculation was identical to the previous study so this phenomenon may be due to the

nature of cloned chimaeras. Inserting a novel env within the G8MYA viral backbone may

result in suboptimal functioning of the virus, as proteins derived from the novel gene may

be less compatible with the parental viral structural proteins e.g. MA. Nevertheless, the

isolation of the env genes from different isolates and the construction of chimaeras with the

same viral backbone permitted a comparison of the biological behaviour attributable to

each env. The results presented in this chapter are consistent with the env gene having a

role in determining the pathogenicity of an isolate as well as its cell tropism in vitro.
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Chapter Six

ANALYSIS OF LYMPHOCYTE POPULATIONS

6.1. Introduction

The principal target for FIV, like HIV, is the CD4+ T lymphocyte (Dalgleish et al. 19S4),

although CD4 is not used by FlV as a receptor or coreceptor (Hosie et aI. 1993; Norimine

et al. 1993; Willett and Hosie 1999) and infection with both viruses leads to depletion of

the CD4+ subpopulation (Ackley et al. 1990; Novotney et al. 1990; Hoffman-Fezer et aI.

1992). The degree of immune impairment that is characteristic of FlY infection is

associated with the decline in CD4+ T lymphocyte numbers (Torten et aI. 1991). CDS+T

lymphocytes are also targets for FIV infection (Brown et al. 1991) but their numbers tend

to increase (Willett et al. 1993) resulting in an inversion of the CD4:CDS T lymphocyte

ratio. This expanded cell population was found to express lower levels of CDS (CDS low)

(Lehmann et aI. 1992; Willett et aI. 1993) and increased levels of major histocompatibility

complex II (MHC II) (Willett et al. 1993). The CD8+ T lymphocyte population has been

further defined in that the CDS marker on the cell surface exists as either a homodimer

molecule CD8uu or the heterodimer CDSup (Shimojima et al. 1998a; Shimojima et aI.

1998b). In FIV infection an expansion of the CD8up population has been demonstrated

but the p-chain has been shown to have much lower expression, therefore, the

subpopulations have been designated C08u +plowor C08u +p-. Studies in humans receiving

highly active antiretroviral therapy (BAART) have been shown to express increased levels

of the C08 lymphocyte heterodimer C08up, which is correlated with increased expression

of molecules for lymphocyte activation, adhesion and cytotoxic T cell activity, leading to

the possibility that this subpopulation of cells may be used to analyse the immune status of

HIV infected individuals (Schmitz et al. 1995). FlY-infected cats have an increased

CD8u +pIOWpopulation and these cells have been shown to have anti-FlY activity and also

to lack the L-selectin marker (C062L-) (Bucci et al. 1998b; Gebhard et al. 1999). Studies

of the pathogenicity of two FlY isolates revealed that the more pathogenic isolate, FlY-

GLS, caused rapid expansion of the C08u +plowsubpopulation in the early stages of

infection (Hosie et al. 2002), accompanied by lower C04+ T lymphocyte numbers and

higher proviral burdens in the PBMCs (Hosie et aI. 2002). In contrast, the clone FlY -PET

produced lower proviral burdens in the PBMCs and had no effect on CD4 or CD8 T
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lymphocyte populations. Therefore, it was suggested that more pathogenic isolates may

induce greater perturbation of the lymphocyte populations.

Using the above criteria, we studied the dynamics of the lymphocyte subpopulations of

five groups of two SPF cats described in Chapter 4 that were infected with either field

isolates or the infectious molecular clone F1V-GL8414. Viral isolates from cats in the

asymptomatic stages of infection induced greater CDS+T lymphocyte expansion compared

to isolates from cats in the terminal stages of disease. In Chapter 5, CXCR4 usage in vitro

was shown to correlate with low infectious viral burden, demonstrated by QVI and low

proviral loads in the PBMCs. Figure 6.a. summarises the viral origins of the isolates used

in the two studies. In this chapter we examine the correlation of disease stage and

lymphocyte activation. Furthermore, we examine the role of Env in this process by

isolating env genes from viruses collected from cats at different stages of infection and

then inserting these env genes into a GLSMYA viral backbone and comparing the dynamics

of lymphocyte activation with that of the prototype clones PETF14and GL8MyA.

6.2. Materials and methods

6.2.1. Antibodies

Antibodies were used either unconjugated or conjugated to phyco-erythrin (PE) or

fluorescein isothiocyanate (FITC). Anti-feline CD4-FITC (vpg34) and CD8ap-PE (vpg9)

originated in the Retrovirus Research Laboratory and were produced by Serotec Ltd.,

Oxford, United Kingdom; anti-feline CD8a (12A3) was obtained from Y. Nishimura,

University of Tokyo, Tokyo, Japan; and anti-feline CD8P-FITC and -PE (FT2) was

obtained from Southern Biotechnology Ltd., Birmingham, Alabama. FITC-conjugated

anti-feline CD8a (l2A3) was prepared using FITC coupling reagent (Pierce Chemical

company Rockford, Illinois) according to the manufacturer's instructions. Unconjugated

primary antibodies were detected using a FITC- or PE-coupled F(ab'h fragment of sheep

anti-mouse immunoglobulin G whole molecule (Sigma).

PBMCs were isolated from blood samples collected into EDTA following whole blood

lysis in 0.88% ammonium chloride/O.OlM Tris-HCI pll7.4 and resuspended in 200lli of

phosphate buffered saline supplemented with 0.1% sodium azide (PBA) and 1% bovine

serum albumin. A volume of 30111of cells from each sample was then incubated for 30
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Figure 6.a. Schematic representation of primary isolates used in the

study and the provenance of chimaeras used in study 2.
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minutes on ice with primary antibodies recognising feline CD4, feline CDS, feline CDSa

and feline CDSp. The cells were then washed twice with PBA by centrifugation before the

addition of PE-conjugated f(ab')rfragment of sheep anti-mouse IgG, incubated on ice for

30 minutes and washed. Following the final incubation with FITC-conjugated secondary

antibody, the cells were washed twice with PBA before analysis on an EPICS Elite flow

cytometer using the EXPO analysis software package. Lymphocytes were live-gated on

the basis of size and granularity with 10 000 events being collected for each sample. In

addition, whole blood collected in EDTA was used for routine haematological analysis.

6.3. Results

6.3.1. The field isolates

6.3.1.1. Routine haematology of cats A701 to A710

A study of healthy experimental juvenile cats showed marked variation in haematological

parameters (Anderson et a1. 1971). In this I5-week study all cats had mildly lowered

haematocrits at least once, but only cats A70 I and A703 had markedly lowered levels at IS

and 6 weeks p.i. respectively, however haemoglobin levels were generally nearer or within

the reference range (10-15 g/dl). At 6 weeks p.i, cat A703 had a haemoglobin level of7.07

g/dl, possibly attributable to the intussusception and corrective surgery; cat A70 I had a

level of 7.S5 gldl at 15 weeks p.i. Neutropenia was recorded in six cats A702. A705 and

A706 at IS weeks p.i., A709 at 15 weeks p.i. and A704 and A710 at 6, 12 and 15 weeks

p.i. Cat A703 had toxic changes at 6 weeks p.i. presumed due to the intussusception.

There was no correlation or trend observed between the groups and the haematological

parameters studied. I Iaematology records are tabulated in Appendix A I.

6.3.1.2. Summary of lymphocyte population dynamics

Figure 6.b. demonstrates the relative numbers of the three subpopulations examined

throughout the study. The greatest changes in the lymphocyte population of infected cats

occurred around 6 to 12 weeks p.i. In all four asymptomatic virus recipients, the CD4 +T

lymphocyte counts fell below the CD8+ T lymphocyte counts at least once during the

study. In three of four cats the CD8a +plowcell population was also greater than the CD4+

population at least once during the study. Of the symptomatic isolate recipients, only
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Figure 6.b. Lymphocyte dynamics throughout the course of the study.
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A706 showed a similar trend but a more marked expansion of the CD8+ T lymphocyte

population was observed in this cat.

6.3.1.3. C04+ T lymphocytes

The numbers of CD4+ T lymphocytes decreased in 3/4 asymptomatic recipients. The

remaining cat, A702, demonstrated an overall 52% increase in CD4+ T lymphocytes. In

contrast, 3/4 symptomatic recipients showed a small overall increase in CD4+ T

lymphocyte numbers with only A706 showing a small decrease (28%) over the 15 week

study period (see Figure 6.b.). The two cats receiving the clone FIV-GL8414showed

variable results; an overall increase in CD4+ T lymphocyte numbers was observed in cat

A709 with an increase in CD4+ T lymphocyte numbers at 12 weeks p.i. of over 300%,

whereas an overall decrease in CD4+T lymphocyte numbers of 60% was observed in cat

A710.

6.3.1.4. COB T+ lymphocytes

As shown in Figure 6.b., the CD8+ T lymphocyte counts increased in all 10 cats during the

study. Peak levels were reached between 6 and 12 weeks p.i, but then decreased by 15

weeks p.i, Only cat A707 continued to show increased CD8+ T lymphocyte numbers

throughout the course of the study.

6.3.1.5. C04:CDB ratios

As shown in Figure 6.c., the CD4:CD8 T lymphocyte ratio decreased in all 10 cats, with

the most dramatic decrease occurring at 6 weeks p.i, All of the asymptomatic recipients

and 1/4 symptomatic recipients (A706) group displayed a ratio below 1. In the groups

receiving asymptomatic isolates the nadir was recorded at 12 weeks p.i. although the

lowest ratio in cat A706 was recorded at 6 weeks p.i. Both FIV-GL8414 infected cats

showed moderate reductions in CD4:CD8 ratio but neither developed a ratio lower than

1.5.

6.3.1.6. COBa +~IOW T lymphocyte population

The CD8a.+~lowsubpopulation of T lymphocytes was examined as previous studies

indicated that an expansion of this subset contributed to the inversion of the CD4:CD8

ratio and may characterise more pathogenic viruses (Hosie et at. 2002). In general, the cats
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Figure S.c. CD4+:CD8+lymphocyte ratios in PBMCs throughout the

study.
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receiving the asymptomatic isolates had a higher percentage of their CD8+ lymphocyte

population represented by CD8a +~Iowlymphocytes when compared to the cats receiving

isolates from terminal cases. Although these findings were not statistically significant, a

trend was clearly evident (see Figure 6.d.). Cat A706 displayed a dramatic change in

lymphocyte numbers and the CD8a~ lymphocyte count of this individual was the highest

of all 10 cats at 6 and 12 weeks p.i., consistent with a total increase of the CD8+ T

lymphocyte population (see Figure 6.e.).

6.3.1.7. The COSaJ3 population

The CD8a~ population was greater than the CD8a +~Iowpopulation throughout the study

except in cat A703 at 6 weeks p.i. and cat A705 where the CD8a +~lowpopulation was

markedly higher prior to infection and cat A706 where the CD8a +~Iowpopulation was 2.5

times greater than the CD8a~ population at 15 weeks p.i. (see Figure 6.c.). Overall. the

relative proportions of the two subpopulations of CD8+ T cells were similar to previously

reported findings in which the CD8a+~low population increased with FIV infection

although the CD8a~ subpopulation was still predominant in the early stages (Gebhard et

a1. 1999). It is noteworthy that the CD8a+~lowpopulation was high prior to infection in cat

A705 as this population was thought to be FIV-specific and neither proviral nor viral loads

were detected prior to infection.

6.3.2. The role of Env in COS+ T lymphocyte activation

6.3.2.1. Routine haematological analysis of cats A741 to A755

Of the cats inoculated with chimaeric viruses containing env from field isolates in the G8M

backbone, three cats (A741, A748, A750) had low haematocrits accompanied by low

haemoglobin levels at the time of infection. However. these increased to near the reference

range by 3 weeks p.i. Six cats were neutropenic at some time during the study, four (A742.

A743, A745, and A750) at 15 weeks p.i. A754 at 0 and 15 weeks p.i. and A755 at 12

weeks p.i. Moderate neutrophilia was recorded in two A746 and A751 at 3 and 6 weeks

p.i, Full haematological results were unavailable for the following cats at week 0 - A744.

A745, A746, A747, A753 and A755.
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6.3.2.2. The CD4:CD8 T lymphocyte ratio

In general, among the cats, there was a mild decline in the CD4:CDS T lymphocyte ratio

following infection with only cat A74S showing an increased ratio during the time course

of the study. The CD4:CDS T lymphocyte ratio did not fall below 1 in any of the cats at

any time during the 15week study period (see Figure 6.f.).

6.3.2.3. The activated T lymphocyte subset: COSo.+f3low T

Iymphocytes

The chimaera G8M(425) and the clone FIV-G8MYAinduced significant expansion of the

percentage of CD8a+~low subpopulation. The G8M(425) chimaera induced a rapid

expansion from a mean of 6.53% (± 0.61 SE) at 3 weeks p.i. to 9.9% (± 0.35 SE) at 15

weeks p.i. (see Figure 6.g.). GSMYAinduced a gradual expansion of the CDSa+~low

population within the infected cats. The mean maximum population was 7.53% (± 0.5 SE)

at 15 weeks p.i. There was a statistically significant greater expansion of the CDSa+~low

lymphocyte subset following infection with FIV-GSM(425) compared to GSM(FI4.7)

from 3 weeks p.i. until post-mortem examination at 15 weeks p.i. (p<0.05 at 3-12 weeks

p.i. and p<O.OIby 15weeks p.i., Tukey test). Similarly, G8M(425) induced a significantly

greater expansion of this lymphocyte subset compared to PETFI4and GSM(S27) at 15

weeks p.i. (p<O.OOIand p<0.007, respectively). The prototype clone GSMYAalso induced

a statistically significant increase of the CDSa +~Iowsubset compared to GSM(F14.7) and

PETF14(p<O.OIand p<0.02, respectively) at 15weeks p.i.

6.4. Discussion

When the lymphocyte subpopulations were examined following infection with four field

isolates, the greatest changes were observed in cats infected with the asymptomatic isolates.
F0425Has and F0556Has, with the CD4:CDS ratios of all four recipients falling to less than

1 during the 15 week study. In contrast, cats inoculated with the symptomatic isolates

maintained higher CD4:CDS ratios with a decrease below 1.0 being observed only in a

single cat. Interestingly, the cats inoculated with the virus derived from the FIV-GLS414

molecular clone did not develop ratios below 1.5. FIV-GLS is a well-described isolate

known to be pathogenic and resistant to vaccine induced protection (Hosie et al. 1995;

Hosie and Flynn 1996b; Hosie et al. 1995b; Hosie et al. 2000) and inducing high proviral

loads post infection (Hosie et al. 2002). Therefore the maintenance of CD4:CDS
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Figure 6.e. CDBap and CDBa +pIOW absolute numbers.
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Figure 6.f. CD4:CD8 T lymphocyte ratio.
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Figure 6.g. CD8a~T lymphocyte populations.
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ratios in the FIV-GLS4l4infected cats in the present study was unexpected. However, in

previous studies where inversion of the CD4:CDS ratio was observed, cats were inoculated

with FIV-GLS by the i.p, route, (Hosie et al. 2000). The route of infection has been

reported to influence the kinetics exhibited by individual isolates (Burkhard et al. 2002)

and therefore the i.m, route used in the present study may account for the lack of inversion

of the CD4:CDS ratio. Furthermore, the nature of an infectious molecular clone (Le. a

homogeneous virus population) may not stimulate the immune system to the same degree

as the biological isolate which may contain a swarm of quasispecies. Little is known about

the dynamics of infection following i.m, inoculation but one study reported reduced

viraemia even when 10 to 100 fold greater amounts of virus were inoculated compared to

the i.p. route and furthermore the rate of seroconversion was found to be much faster by

the i.m. route (Rigby et al. 1997). In the present study the CDS+T lymphocyte count was

highest in cat A706, which showed marked deviations in both CD4+ and CDS+ T

lymphocyte populations, illustrating the phenomenon whereby some cats exhibit

exaggerated reactions to infection with FIV. In contrast, the remaining 3/4 recipients of

symptomatic isolates developed lower levels of CDS+ T lymphocytes than the

asymptomatic recipients, consistent with the symptomatic isolates being less pathogenic

than viruses isolated from animals in the asymptomatic phase of infection.

An increase in the CD8a +~IOWT lymphocyte population has been shown to be associated

with antiviral activity in vitro (Bucci et al. 1998a) and a strong response was shown to

correlate with reduced cell-associated viraemia in kittens (Crawford et a1.200 I). However,

in the present study we found that asymptomatic isolates stimulated the greatest CD8a +~low

expansion in the recipients but this did not correlate with decreased levels of ceU-

associated virus. Indeed, the proviral loads of the asymptomatic isolate recipients were

stable or continued to increase to the end of the 15 week study (see Figure 4.c.).

Interestingly, the cats inoculated with FIV-GLS4l4developed lower CD8a+~IOwlymphocyte

levels than the asymptomatic recipients, in contrast to previous studies. However, it may

be postulated that a cloned population of a single virus rather than a swarm may stimulate

the immune system to a lesser degree or that the route of infection altered the outcome as

discussed above.

In HIV-1 infection, patients in the terminal stages of disease tend to be infected with SI, T-

lymphotropic viruses that have been shown to have greater sequence heterogeneity than
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(NS!) monocytotropic variants, which are generally found in the asymptomatic stage of the

disease (Chesebro et al. 1992), during which time the virus replicates most rapidly (Connor

and Ho 1994). We postulate that asymptomatic FIV variants may stimulate the CDSu+plow

population if a similarly high rate of replication and concurrent production of variant

viruses occurs. However the present study was too short to test whether increased

CDSu+plownumbers correlated with decreased cell-associated virus. Also the sample size

was very small so caution must be exercised in interpreting the results. However, the

results of this study suggest that further investigations are merited, to examine more

viruses isolated from the different stages of infection in larger groups of cats, which may

highlight differences in replication rate and immunogenicity between isolates from

asymptomatic and terminal stages of disease.

Recently it was reported that viruses with increased virulence evolved in cats infected with

an FlV-PET strain of low pathogenicity (Hosie et al. 2002). Infection with FIV-PET is

characterised by low viral loads and no expansion of the CDS+T lymphocyte population

while the variant viruses induced higher viral loads and expansion of the CDS+ T

lymphocyte population when inoculated into nalve cats (Hosie et al. 2002). Since this

evolution was correlated with a reduced ability to utilise CXCR4, it was suggested that a

mutation that was found in the V3 loop of the variants, associated with CXCR4-tropism,

led to reversion to virulence in vivo. In Chapters 3 and 4, we demonstrated that isolates

from early stages of infection had a lesser ability to utilise CXCR4 and subsequently that

this phenotype correlated with the induction of higher proviral loads, inversion of the

CD4:CDS T lymphocyte ratio and significantly greater infectious viral burdens following

in vivo infection of cats. Although the degree of lymphocyte activation in cats inoculated

with asymptomatic isolates was not statistically significantly greater in cats inoculated with

isolates from the terminal stages of disease, a trend was identified which prompted us to

examine the degree of lymphocyte activation induced by the Env proteins from the field

isolates already examined. The proportion of the CDS+T lymphocyte population in vivo

represented by the activated phenotype CDSu+pIOWwas significantly higher in cats

following infection with the chimaera containing the asymptomatic env (GSM(425)) and

the prototype clone FIV-GSMYAcompared to the symptomatic isolate (GSM(S27)) and the

FIV-PETFI4clone and chimaera (GSM(FI4.7)). These results suggest that isolates which

use CXCR4 more readily in vitro induce less activation of the CD8+ T lymphocyte



95

population in vivo and support the hypothesis of Hosie et a1. (Hosie et a1.2002) indicating

that CXCR4-tropism may correlate with the degree of CDS+T lymphocyte activation.

Cats inoculated with the clones FIV-GSMyA, FIV-PETFI4 or the chimaeras GSM(42S),

GSM(S27) and GSM(F14.7) did not display inversion of the CD4:CDS T lymphocyte ratio

even though they received matched doses of virus compared to the biological field isolate

trial. This may be attributable to lower infectious viral burdens, as demonstrated by the

QVIs (see Figures 4.f. and S.c.), suggesting that the rate of replication of these cloned

viruses may be slower than the biological isolates. Furthermore, the degree of lymphocyte

activation demonstrated by the cloned and chimaeric viruses was markedly less than that of

the biological isolates suggesting that, as previously discussed, a homogeneous population

of virus does not stimulate the expansion of the CDS+T lymphocyte subpopulation to the

same degree as a mixed population of viral quasispecies.

In conclusion, the results presented in this chapter demonstrate that Env is a major

determinant influencing activation of the lymphocyte populations and that the Env proteins

from the asymptomatic isolate and the clone FIV-GSMYA induce significantly greater

activation of the CDSa+rJlowcell population compared with the FlV-PET or symptomatic

virus Env proteins. It appears that the Env proteins mediate their effect on

virulence/immune activation via the interaction with CXCR4 and therefore further work

will be required to clarify the role of CXCR4-tropism in lymphocyte activation.
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Chapter Seven

THE ENVELOPE GLYCOPROTEIN OF FIV IN ISOLATES

FROM ASYMPTOMATIC AND SYMPTOMATIC CATS

7.1. Introduction
Primary isolates of HIV-1 have distinct biological characteristics in vitro and can be

distinguished by replication rate, cell tropism and syncytium inducing capacity (Cheng-

Mayer et al. 1988; Schuitemaker et al. 1992; Connor and Ho 1994). Isolates may be

classified as syncytium-inducing (SI) or nonsyncytium-inducing (NSI) based on their

ability to form syncytia upon infection of the T lymphocyte cell line MT-2 (Koot et al.

1992). Monocytotropic, NSI isolates are thought to be transmitted and furthermore have

found to be the phenotype that is isolated most readily in early infection (Schuitemaker et

al. 1992; Zhu et al. 1993; Connor et al. 1993a). In contrast, SI isolates appear later in

infection in about 50% of patients (Tersmette et al. 1989b; Koot et al. 1993) and this has

been shown to correlate with disease progression, coinciding with a marked reduction in

CD4+T lymphocyte count in vivo and expanded cell tropism in vitro (Connor et al. 1997) .

HIV-1 has been shown to employ cofactors, G-protein coupled receptors, for the infection

of cells. The o-chemokine receptor CXCR4 is required for entry of T cell-adapted, SI

strains (Broder and Berger 1995; Bleul et al. 1996; Feng et al. 1996; Oberlin et al. 1996),

and monocytotropic, NSI strains have been shown to use the p-chemokine receptor CCR5

(Alkhatib et al. 1996; Deng et al. 1996; Dragic 1996). However, some viruses are capable

of using more than one molecule as a coreceptor, for example, use of the chemokine

receptors CCR3 and CCR2b has been documented (Choe et al. 1996; Doranz et al. 1996).

The major determinant of the cell tropism of HIV is the envelope glycoprotein with

receptor usage being closely associated with cell tropism and biological phenotype

(Bjomdal et al. 1997). Conflicting reports have been published regarding the determinants

of cell tropism within Env, highlighting the adaptability of lentiviruses to overcome blocks

to cell infection. The determinants of macrophage-tropism lie between the V1 and V3

regions of the Env and have ranged from a single amino acid mutation to a combination of

mutations spanning the region (Cordonnier et al. 1989; O'Brien et al. 1990; Hwang et al.



97

1991; Shioda et al. 1991; Shioda et al. 1992; Westervelt et al. 1992; Koito et al. 1994;

Koito et al. 1995).

T cell-tropism and SI phenotype determinants also lie within the V2 and V3 loops where

an increase in length of V2 has been associated with the time of conversion from NSI to SI

(Fouchier et al. 1995). Further, an increase in positive charge of the V3 loop has been

reported to coincide with the SI phenotype (de long et al. 1992; Fouchier et al. 1992) and

this phenomenon was further characterised by the 11125Krule whereby a basic residue at

either of these positions within the V3 loop had a high prediction rate for the SI phenotype

(Hoffman et al. 2002). A hypervariable locus on the V2 loop has been reported to be

predictive for NSI to SI phenotype conversion (Groenik et al. 1993).

The envelope glycoprotein of FIV has a similar structure to that of the primate lentiviruses.

It consists of two subunits, the surface glycoprotein (SU or gpI20), and the transmembrane

(TM or gp41) protein. Within the SU and TM are a number of variable regions. Selection

pressure enforced upon the virus by the host immune response leads to the acquisition of

mutations within these regions. The error-prone nature of the viral reverse transcriptase

results in the accumulation of mutations in the env sequence while the host immune

response applies a selective pressure resulting in resistant viruses. The variation in the

amino acid sequence is clustered in the nine hypervariable regions of FIV - six of which

occur in the SU with the remaining three in the TM (Pancino et al. 1993b). The changes in

the amino acid sequence of Env are thought to occur at a ten-fold greater rate of change

than that in the gag or pol genes (Greene et al. 1993), suggesting that they may be driven

by the host immune response.

The envelope glycoprotein of FIV, like lIIV, has several important regions. The principal

neutralising domain is located in the V3 region (Lombardi et al. 1993), as are determinants

of cell fusogenicity (Pancino et al. 1995) and cell tropism (Verschoor et al. 1995; Siebelink

et al. 1995b). The V3-V4 region of the SU and TM contain determinants of macrophage-

tropism (Vahlenkamp et al. 1997; Vahlenkamp et al. 1999) and also four amino acids

between the fusion protein and the membrane spanning region of TM have been shown to

inhibit CrFK-tropism (Lombardi et al. 1996).

The first aim of this study was to compare the env gene sequences of four field isolates,

two asymptomatic (F0425Has and F0556Has) and two symptomatic isolates, (F0795Hs and
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F0827Hs), to identify amino acid sequences which might correlate with receptor utilisation,

cell tropism, the ability to adapt to in vitro culture and virulence in vivo. The second part

of the study evaluated env sequence changes which led to infection ofCrFK(H06TI) cells

with two symptomatic isolates (F0795Hs and F0827Hs), by either (a) cell-free infection or

by (b) cocultivation.

7.2. Materials and Methods

7.2.1. Preparation of DNA

The envelope gene was sequenced from plasmid DNA prepared as described in Chapter 5.

7.2.2. Sequencing the env genes

The env gene was sequenced using a panel of primers which spans the entire length of the

env gene (see Figure 7.a.), FIVenv6190f (5'-GGC AGT TGC AAT CTA CAT TA-3'),

FIVenv6353f (5'-ATG AAA AAG GGC CAC TAA ATC-3'), FIVenv6490f (5'-

GAAGAAGGAAATGCAGGTAAG-3'), FIVenv7223f (5'-GTA CAG ACC CAT TAC

AAA TCC-3'), FIVenv8274f (5'-GCA TCA AGT ACT AGT AAT AGG-3'),

FIVenv8294r (5'-CCT ATT ACT AGT ACT TGA TGC TC-3'), FIVenv8461r (5'CCC

CCA AAG TTA TAT TTC C-3') and sequencing was carried out on an ABI 3100 capillary

sequencer using Big Dye terminator 2 by the methods described by Rosenblum

(Rosenblum et al. 1997) and Sanger (Sanger et al. 1977). The numbering of the primers

corresponds to their location in the FIV-GL8MYA molecular clone. Statistical analysis of

results was carried out using the Wisconsin sequence analysis package (Devereux et al.

1984) (Genetics Computer Group, Inc., Wisconsin, Madison). Sequence data was analysed

using Seqed and BESTFIT (Smith and Waterman 1981) and sequences were compared

with published sequence data using BLAST (Lipman and Pearson 1988) (National Centre

for Biotechnology Information).

7.3. Field isolate sequences

7.3.1. Results

7.3.1.1. Comparison of env sequences

The full-length env genes of the four field isolates used in the in vivo study described in

Chapter 4 were sequenced in order to identify sequence motifs that might be associated
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Figure 7.a. Primer map on the envelope gene of FIV.
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with virulence and cell tropism. Variations in the env sequence occur throughout the gene

but localise largely to the variable regions that form the external loops of the Env protein

(see Figure 7.b.). This phenomenon is well documented for FIV (Phillips et al. 1990;

Morikawa et al. 1991; Pancino et al. 1993b), HIV (Starcich et al. 1986) and SIV (Almond

et al. 1992) and is thought to be the result of selective pressure from the host immune

system. The most variable regions in the field isolates are the N-terminus and V5 regions

and considerable length polymorphism is evident within the V5 region. The isolates in this

study show greater homology to the U.K. isolate FIV-GL8 (see Table 7.a.) than to the U.S.

isolate FIV-PET although all are subtype A viruses. All cysteine residues were conserved

throughout the six sequences with the exception of F0556Has where an arginine residue

(C248R) was present (see Figure 7.b.). Similarly, all four field isolates possessed a

cysteine residue at 111 that is absent from FIV-PETFl4 and FIV-GL8MyA. Potential sites

for N-linked glycosylation are more variable, however; there are 20 glycosylation sites

common to all six isolates (see Figure 7.b.). FlV-PET lacks potential Ndinked

glycosylation sites at positions 481 and 518 compared to FIV-GL8. Field isolate F0556Has

lacks a glycosylation site at position 448 but has an additional site at position 372 in the V3

loop and isolate F0827Hs also has an additional potential glycosylation site at 489 (V4

region).

7.3.1.2. Changes in the N-terminus of Env

The V1 and V2 regions occur in the putative leader sequence of env but do not occur on

the mature Env protein and therefore are not included in Figure 7.b. (Morikawa et al. 1991;

Verschoor et al. 1993; Pancino et al. 1993b). However, notable differences occur in the

sequences of the N-termini (see Figure 7.b. and Table 7.b.). At amino acid 111 all four

primary isolates possess a cysteine residue, while this is absent from FIV-PETFI4and FIV-

GL8MYA. Notable variation clusters occur where acidic residues have been gained by some

of the primary isolates, F0425Has at SI34D,F0556Has at SmE and F0827Hs at S134D. At

amino acid 138 all four field isolates have a positive residue lysine, resulting in a cluster of

highly charged residues in this region among the field isolates. A further cluster of

changes is present at sites 255 and 256 (see Figure 7.b.) where F0556Has has gained a

positive charge (R256K),F0795Hs has lost +1 (K255R)and F0827Hs has a shift in positive

charges (K255Rand R256K). Similarly, three of the isolates possess negative charges or a

polar charge at 313 (Y313D/Q, see Figure 7.b.).
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Table 7.a. Field isolate nucleotide sequence comparison against the

prototype viruses FIV-GLB and FIV-PET.

Isolate FIV-GL8 (%) FIV-PET (0/0)

F0425H 93.69 92.33

F0556H 93.41 91.33

F0795H 95.44 92.16

F0827H 93.93 92.69

The field isolate env nucleotide sequence compared to the prototype viruses FIV-PETFI4 and FlV-GL8

using SeqEd (Smith et al. 198)).
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Figure 7.b. The amino acid sequence of the envelope glycoproteins.

1
GLB414 MAEGFAANRQ WIGPEEAEEL LDFDIATQMN EEGPLNPGIN PFRVPGITET
PETFl4 MAEGFAANRQ WIGLEEAEEL LDFDIATQMS EEGPLNPGVN PFRVPGITEK
F0425H MAEGFAANRQ WIGPEEAEEL LDFDIATQMN EKGPLNPGIN PFRVPGITEK
F0556H MAEGFAANRQ WIGPEEAEEL LDFDIATQMN EKGPLNPGIN PFRVPGITEK
F0795H MAEGFAANRQ WIGPEEAEEL LDFDIATQMN EKGPLNPGIN PFRVPGITEK
FOB27H MAEGFAANRQ WIGPEEAEEL LDFDIATQMN EKGPLNPGIN PFRVPGITEK

51 ~su
EKQDYCNMLQ PKLQALRNEI QEVKLEEGNA GKFRRARFLR YSDETILSLI
EKQNYCNILQ PKLQDLRNEI QEVKLEEGNA GKFRRARFLR YSDESVLSLV
EKQNYCNILQ PKLQDLRNEI QEVKLEEGNA GKFRRVRFLR YSDETILSLI
EKQNYCNILQ PKLQDLRNEI QEVKLEEGNA GKFRRVRFLR YSDETVLSLI
EKQNYCNILQ PKLQDLRNEI QEVKLEEGNA GKFRRVRFLR YSDETILSLI
EKQNYCNILQ PKLQDLRNEI QEVKLEEGNA GKFRRVRFLR YSDEIi!LSLI

101
HLFIGYCTYL LNRKELGSLR HDIDIEAPQE ECYSSREQGI TDNIKYGKRC
HAFIGYCIYL GNRNKLGSLR HDIDIEAPQE ECYNNREKGT TDNIKYGRRC
NLF'YGYCTYL ~ELGIfLR HDIDIE\I'PQEECYINREKGI TDNIKYGRRC
HLFIGYCTYL (lNRNtJLGSLRHDIDIEAPQE ECYN.EKGI TDNIKYGRRC
YLFIGYCTYA ¢NRNILGSLR HDIDIEAPQE ECYNNREKGT TI!NIKYG!.IRC
HLFIGYCTYL E!N"KLGSLR HDIDIEAPQE ECYI'NJlCEKGTTJNIKYGRRC

151
FIGTAGLYLL LFIGVGIYLG TAKAQVVWRL PPLVVPVEES Ell FWDCWAP
CLGTVTLYLI LFIGIIIYSQ TTNAQVVWRL PPLVVPVEES EIIFWDCWAP
UGTATLYLL LFIGIIIY •• TTIAQVVWRL PPLVVPVEES EIIFWDCWAP
FIGTAYLYLI LFIGII~LQ TT$AQVVWRL PPLVVPVEES EIIFWDCWAP
FIGTAGLYLL LFIGVGIYLG TTKAQVVWRL PPLVVPVEES EIIFWDCWAP
%IGTAALYLI LFTGIIIY'Q TANAQVVWRL PPLVVPVIES EIIFWDCWAP

201 •
EEPACQDFLG AMIHLKASTN ISIQEGPTLG NWAKEIWGTL FKKATRQCRR
EEPACQDFLG AMIHLKAKTN ISIREGPTLG NWAREIWATL FKKATRQCRR
EEPACQDFLG AMIHLKASTN ISIQEGPTLG NWAREIWGTL FKKATRQCRR
EEPACQDFLG AMIHLKASTN ISIQEGPTLG NWAREIWGTL FKKATRotRR
EEPACQDFLG AMIHLKASTN ISIQEGPTLG NWAKEIWGTL FKKATRQCRR
EEPACQDFLG AMIHLKASTN ISIQEGPTLG NWAREIWGTL FKKATRQCRR

251 • • • •GRIWKRWNET ITGPLGCANN TCYNISVIVP DYQCYLDRVD TWLQGKV!i,{~
GRIWKRWNET ITGPSGCAN~CYNVSVIVP DYQCYLDRVD TWLQGKI!!IS
GRIWKRWNET ITGPIGCANN TCYNISVIVP DYQCYLDRVD TWLQGKV.ti_IS
GRIWKIWNET ITGPLGCANN TCYNISVllp DYQCYLDRVD TWLQGKVNIS
GRIWIRWNET ITGPLGCANN TCYNISVIVP DYQCYLDRVD TWLQGKVNIS
GRIW.WNE'r' ITGPLGCA~N TCY~ISV~P DYQCYLDRVD TWLQGKVNI~

301 • • •LCLTGGKMLY NKYTKQLSYC TDPLQIPLIN YTFGPNQTCM WNTSQIQDPE
LCLTGGKMLY NKVTKQLSYC TDPLQIPLI~TFGP!iQ!CM WNTSQIQDPE
LCLTGGKMLY NKITKQLSYC TDPLQIPLIN YTFGP~I!CM WNTSQIQDPE
LCLTGGKMLY NKYTKQLSYC TDPLQIPLIN YTFGPNQTCI WNTsQloIPE
LCLTGGKMLY NKITKQLSYC TDPLQIPLIN YTFGPNQTCM WNTSQIQDPE
LCLTGGKMLY NKITKQLSYC TDPLQIPLIN Y!FGP~Q!CM W.ti_!~QIQDPE

v3 •
IPKCGWWNQM AYYNSCKWEE AKVKFHCQRT QSQPGSWFRA ISSWKQRNRW
IPKCGWWNoi AYYNSCRWEI TDVKFHCQRT QSQPGSwJRA ISSWlQRNRW
IPKCGWWNO! AYYNSCRWES TI'{IFHCQRI QSQPGSWIRA ISsWlQRNRW
IPKCGWWNQI AYYNSCRWES TDVKFHCQRI QSQPGSWIRA ISSWKQRNRW
IPKCGWWNQI AYYNSCRWEI TDVKFlcQRT QSQPGswlRi ISSWKQlNRW

401 • • •
1l~;\.'I.~_?"KNLTFAMRSS GDYGEVTGAW IEFGCHRNKS
EWRPDFESKK VKISLQCNST KNLTFAMRSS GDYGEVTGAW IEFGCHRNKS
EWRPDFESEK VKVSLQCNST KNLTFAMRSS GDYGEVTGAW IEFGCH~KS
EWRPDFESEK VKVSLQCNS~ K~LTFlMRSS GDYGE\lIGAW IEFGCHRKKS
EWRPDFESEK VKISLQCNST KNLTFAMRSS IDYGEV!GAW IEFGCHRNKS
EWRPDFESEK VKISLQCNST KNLTFAMRSS GDYGDITGAW IEFGCHRNKS
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GL8414
PETF14
F0425H
F0556H
F0795H
F0827H

451 V4
KLHTEARFRI
KLRAEARFRI
RRH$EARFRI
KLHPEARFRI
RLHTEARFRI
KLHTEARFRI

• • • •
RCRWNVGDNT SLIDTCGETQ NVSGANPVDC TMYANRMYNC
RCRWNVGSNT SLIDTCGNTQ KVSGANPVDC TMYSNKMYNC
RCRWNIGDNT SLIDTCGNTQ NVSGANPVDC TMYtilNKMYNC
RCRWNmGDNA SLIDTCGKTQ ~GANPVDC TMYANRMYNC
RCRWNVGDNT SLIDTCGKTQ NVSGANPVDC TMY'l'NRMYNC
RCRWNIGDNT SLIDTCGKTQ NV'l'GANPVNCTMYAN!MYNC

501 • • VS •SLQNGFTMKV DDLIMHFNMT KAVEMYNIAG NWSCTSDLPP TWG~C'l'
SLQNGFTMKV DDLIMHFNMK KAVEMYNIAG NWSCTSDLPS SWGYMNCNCT
SLQNGFTMKV DDLIMHFNMT KAVGMYNIAG NWSCTSDLPP TWGYMNCNCT
SLQSGFTMKV DDLIMHFNMT KAVELYNIAG NWSCTSDLPI\ IWGYMNCNCT
SLQNGFTMKI DDLIMHFNMT KAVEMYNIAG NWSCTSDLPP TWGYMNCNCT
SLQNGFTMKV DDLIMHFNMT KAVEMYNIAG !:!WSCISDLPPTWGYMNCNCT

.551
NSSST ••N.S VKMACPKNQG ILRNWYNPVA
NSSSS ..YSG TKMACPSNRG ILRNWYNPVA
Nss!:)3 .. SND J(KMtilCPG$lQGILRNWYNPVA
NGSDT ..".'J' TKMACPGi(QG ILRNWYNPVA
Nsi~s~.s ~KMACPJNQG ILRNWYNPVA
NSTSS@fiji{SVQMACPSHQG ILRNWYNPVA

V6
GLRQSLEK¥Q ~QPDYLVV
GLRQSLEQYQ VVKQPDYLVV
GLRQSLEKYQ VVKQPDYLVV
GLRQSLEIYQ VVKQPDYLVV
GLRQSLEKYQ VVKQPDYLVV
GLRQSLEKYQ VVKQPDYLVV

601 SU~TM
PGEVM1IWKPRRKRAAIHVML ALATVLSMAG AGTGATAIGM VTQYHQVLAT
PEEVMEYKPR RKRAAIHVML ALAAVLSIAG AGTGATAIGM VTQYHQVLAT
PEEVMEYKPR KKRAAIHVML ALATVLSMAG AGTGATAIGM VTQYIQVLAT
PEEVMEYKPR RKRAAIHVML ALATVLSMAG AGTGATAIGM VTQYHQVLAT
PGEVMEYKPR RKRAAIHVML ALATVLSMAG AGTGATAIGM VTQYHQVLAT
PGEVMEYKPR RKRAAIHVML ALATVLSMAG AGTGATAIGM VTQYHQVLAT

651
HQETIEKVTE ALKINNLRLV TLEHQVLVIG LKVEAMEKFL YTAFAMQELG
HQEAVEKVTE ALKINNLRLV TLEHQVLVIG LKVEAMEKFL YTAFAMQELG
HltEAI1'!IKVTEALKINNLRLV TLEHQVLVIG LKVEAMEKFL YTAFAMQELG
HQEAltlKVTE ALKINNLRLV TLEHQVLVIG LKVEAMEKFL YTAFAMQELG
HQEAIEKVTE ALKINNLRLV TLEHQVLVIG LKVEAMEKFL ITAFAMQELG
HQEAIEKVTE ALKINNLRLV TLEHQVLVIG LKVEAMEKFL YTAFAMQEL,Q

701
CNQNQFFCKV
CNQNQFFCKI
CNQNQFFCKV
CNQNQFFCKV
CNQNQFFCKI
QJ.QNQFFCKV

• • • •PPELWKRYNM TINQTIWNHG NITLGEWYNQ TKELQQKFYE
PPELWTRYNM TI~IWNHG NITLGEWYNQ TKDLQQKFYE
PIfjELWKRYNMTINQTIWNHG NITLGEWYNQ T!<ILQQKFYE
PPELWIRYNM TINQTIWNHG NITLGEWYNQ TKlLoIIFYE
PIELWIIYNM TINQTIWNHG NITLGEWYNQ TKDLQQKFYE
P~ILW'RYNM TINQT~NHG NITLGEWYNQ TKDLQQKFYE

751
IIMNIEQNNV QGRKGLQQLQ EWEDWVGWIG NIPQYLKGLL GGILGIGLGI
IIMDIEQNNV QGKRGIQQLQ KWEDWVGWIG NIPQYLKGLL GGILGIGLGV
IIMDIEQNNV QGKIGLQQLQ KWEDWVGWIG NIPIYLKGLL GGILGIGLGV
IIMDIEQNNV QGRKGLQQLQ EWEIWVGWII NIPQYLKGLI GGILGIGLGV
IIMDIEINNV QGKKGLQQLQ EWEDWVGWIG NIPQyFlGLL GGILGIGLGV
IIMDIEQNNV QGKKGLQQLQ EWEDWVGWIG NIPQYLKGLL GGILGIGLGV

SOl 851
LLLILCLPTL VDCIRNCISK VLGYTVIAMP EIDDEEETVQ MELRKNGRQC GMS EKEEE
LLLILCLPTL VDCIRNCIHK ILGYTVIAMP EVEGEEIQPQ MELRRNGRQC GMS EREEE
LLLILCLPTL VDCIRNCIHK ILGYTVIAMP EVEIEIIQPQ MELRRNGRQC GMS EKEEE
LLLILCLPTL VDCIRNCIHK ILGYTVIAMP EvDlEEIQPQ MELRRNGRQC IMs EKEEE
LLLILCLPTL VDCIRNCFHK ILGYTVIAMP EVEIEEIQPQ MELRRNGRQI Gis EREEE
LLLILCLPTL VDCIRNCIHK ILGYIVIAMP EIEGEEIOIQ MELRRNGRQC Gis EKEEE

Comparison of the primary isolates with FlV-GL8 and FIV-PET. Unique sequences are highlighted in blue

and residues different from FIV-GL8 but the same as FlV-PET are highlighted in green. Variable regions are

highlighted in grey.• highlights glycosylation sites and isolates involved are underlined. ,j.. represents the

start of the SU and TM subunits
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7.3.1.3. The V3 region
At amino acids 360 and 388 all four primary isolates display unique residues and at

residues 386 all four isolates possess a serine, similar to FIV-PET (see Figure 7.b. and

Table 7.b.). Compared to FIV-GL8, F0425Has possesses a positively charged residue at

positions 360 and 370 (l36oKand S360K),isolate F0556Has possesses a positive charge at

380 and 388 (T38oKand L388R),and also possesses a potential glycosylation site at residue

372 (D372N).Both of these isolates have a decreased positive charge at residue 395 (K39SR,

a loss of +1). Isolate F0795Hs possesses a positive charge at residues 360 and 380 (h60K

and T38oK)and isolate F0827Hs has a positive charge at residue 360 (h60K),and at residue

388 (L388H),but possesses the polar residues glutamine at 370 and 376 (S370Qand Ih76Q)

and lastly has less positive charge at residue 397 (R397S)by possessing a serine residue.

7.3.1.4. The V4 region

Many unique changes have occurred in the V4 region (see Figure 7.b.). F0425Has

possesses differences in charge compared to FIV-GL8 at residues 451 and 452 (~sIR and

L452R). F0556Has has negative charges at residues 454 and 466 (T454Dand V466E)and

possesses a positive charge at residue 478 (E478K)as do F0795Hs and F0827Hs (see Table

7.b.). Only the isolate F0827Hs possesses a potential glycosylation site at residue 489

(D489N).However, all the isolates except FIV-PETFI4 possess a potential glycosylation site

at residue 481.

7.3.1.5. The V5 region
Length polymorphism is the mam feature of the V5 region (see Figure 7.b.). In

comparison to FIV-GL8, F0425Has has one insertion, F0556Has has one deletion, whereas

F0795Hs has two insertions and F0827Hs has three insertions. The two asymptomatic

isolates, F0425Has and F0556Has, have more charged residues in this region than the

symptomatic isolates (see Figure 7.b.).

7.3.2. Discussion
The biological behaviour and molecular properties of field isolates of FIV are unknown,

hence this study examined four isolates, two from asymptomatic cats and two from

terminally ill cats, which had displayed quite different properties during in vitro tropism

studies. The env sequences were analysed as this gene has previously been shown to
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contain determinants of host cell tropism and fusogenicity (Phillips et a1. 1990; Pancino et

a1. 1995) as well as the principal immunodominant domain (Lombardi et a1. 1993). The

four field isolates show greatest homology to the FIV-GL8 prototype virus which is the

more virulent of the two prototypic viruses used in this study, but there was no correlation

with stage of disease and env sequence homology to either the more virulent FIV-GL8 or

the laboratory-adapted FlV-PET. The greatest differences amongst the six viruses

compared were located in the N-terminal and V5 regions as may be predicted since the

hypervariable regions are thought to arise due to selective pressure from the host immune

response (Siebelink et a1. 1993; Pancino et a1. 1993a). Surprisingly, however, the V3 loop,

the site of specific amino acid mutations which are associated with cell tropism and the

ability to form syncytia for both FIV and HIV (Chesebro et a1. 1992; Shioda et a1. 1992;

Shioda et a1. 1994), is not the region of greatest divergence. Virus cu1tured in vitro would

not experience immunological pressure, which would explain the lack of changes within

the V3 neutralising domain. In HIV, the VIN2 region has been shown to be a determinant

of macrophage-tropism (Westervelt et a1. 1992; Koito et a1. 1994) and the V2 region was

shown to modulate the conformation of the required V3 region (Koito et al. 1995).

However, no correlation to clinical staging was evident among V1N2 sequences in HIV-l

from asymptomatic and symptomatic patients (Hughes et a1. 1997). The relevance of the

large degree of variation in the VI and V2 region ofFIV is unclear as the differences occur

in the putative leader sequence and are not present in the mature Env protein (Verschoor et

a1. 1993) although the first coding region for the rev gene is found in this site (Phillips et

a1. 1992). A further area of interest was the cluster of charge changes occurring in the C2

region. In HIV-l the binding sites for CD4, CCR5 and CXCR4 occur within the N-

terminal region of SU, more specifically the VIN2 stem and bridging sheet, V3 and

conserved regions of the constant region C4 (Rizzuto et a1. 1998; Kwong et al. 1998;

Basmaciogullari et a1.2002). VI or V2 variable loops have not been assigned for FIV SU,

however, the region N-terminal to the FIV V3 loop requires investigation for similar

determinants of cell tropism which may constitute the receptor binding domain of FIV SU.

As previously reported (Sodora et a1. 1994) V5 was the only region where length

polymorphisms occurred. Mutations in this region were shown to play a role in evading

the immune response (Siebelink et a1. 1993) and broad neutralisation resistance in the

laboratory-adapted strain FIV-PET in long-term viral revertants was attributed to an S557N
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mutation in V5 (Bendinelli et aI. 2001). These findings suggest that the immune response

exerts selective pressure on the V5 region.

The viruses in this study came from cats infected in the field and will thus contain a range

of virus types, or quasispecies within each population. The sequences shown here may

represent the most common or average viruses in the population, or may represent virus

types that are more conducive to PCR amplification. Incomplete primer extension and

template switching during PCR has been documented and so these sequences may even

represent a hybrid sequence of viruses within the population (Odelberg et aI. 1995).

Biological cloning as described by Connor (Connor et al. 1993b) would allow further

investigation of the quasispecies contained within each isolate and the identification of

viruses with different tropism properties which may offer greater information about

sequence variation within an infected individual. Such information may clarify the

correlation of sequence variation and biological behaviour in vivo and the relationship with

tropism and chemokine receptor usage in vitro.

Finally, linear sequence analysis may render little information about gene motifs and

possible correlations of receptor usage and virulence whereas 3-dimensional analysis

(Yamaguchi-Kabata and Gojobori 2000) may reveal more information about sites which

are structurally related but distant in linear sequence.

7.4. Sequences changes that permit growth in CrFK(H06T1) cells

7.4.1. Results

7.4.1.1. Analysis of sequence changes

Two isolates from cats in the terminal stage of disease, F0795Hs and F0827Hs achieved

limited and persistent infection of CrFK(H06TI) cells by cell-free infection, respectively

and both achieved persistent infection following cocultivation with infected Mya-l cells

(see Chapter 3). The env genes from the virus cultures were sequenced to identify any

common nucleic acid sequence which correlated with CrFK(H06Tl )-tropism.

F0795Hs achieved only transient infection of CrFK(H06TI) cells by cell-free infection at

17 days post infection. Comparison between the A (cell-free infection) and B

(cocultivation) cultures 795A and 795B respectively, revealed that identical mutations

occurred within the variable loops at residues 396, 413 and 451 (Q396H, 1413V and RmK)
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(see Figure 7.c. and Table 7.c.). Within the variable loops charge changes occurred in 3/4

of the variable regions in both cultures. The constant regions of each F0795Hs culture also

revealed matching mutations, S4320,M438Kand Rt96K, notably the latter two mutations

resulted in acquisition of further positive charge within this region (see Figure 7.c.).

Further mutations common to both isolates occurred within the transmembrane protein,

A600E,T6osA,S642Y,E717Kand F787Lbut only two of the mutations in the transmembrane

protein (at residues 600 and 717) result in a charge change (see Figure 7.c.). All cysteine

residues were conserved. The virus sequenced from the A culture lost a potential

glycosylation site at site 448. However, all other potential glycosylation sites were

conserved (see Figure 7.c. and Table 7.c.).

F0827Hs achieved persistent infection of CrFK(H06Tl) cells from 31 days post infection.

Six matching mutations occurred throughout the gene, A172T and L26SSoccurring in the N-

terminus, K360N,~88E within the variable loops and a further two occurring within the

TM protein, L712Pand V726I(see Figure 7.d. and Table 7.c.). Charge changes occurred at

only two of these residues, 360 and 488, however, the mutation at residue 712 resulted in

an additional proline residue and might therefore induce significant structural changes.

Virus from culture B displayed minor changes at residues 265 and 313 (K26SRand Q3J3H).

Further, changes occurred in 2/4 of the variable loops in culture A and 3/4 of the variable

loops in culture B. In the V5 region, sequence 827B lost five amino acid residues and

several mutations occurred (Vs6JD,QS62K,MS63L,and HS68R)resulting in a gain of positive

charge (+4) in that region of Env. The virus from culture B lost a potential glycosylation

site at 481, similar to FIV-PET. All cysteine residues were conserved.

7.4.1.2. Common motif changes between cocultivated and cell-

free infection of H06T1 cells.

There were no universal motif changes within all four isolates, however, two residues were

identified where a mutation was common to several isolates. K360N occurred in 795B,

827A and 827B while 795A displayed a K3601mutation (see Table 7.d.). Residue 496 in

the V4 variable region gained a positive charge in all isolates except 827A, where a small

nonpolar amino acid was acquired.
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Figure 7.c. The envelope glycoprotein sequences of the parental

virus F0795Hs and viruses from cell-free infection and cocultivation of

CrFK(H06T1) cells respectively.

1
F0795H MAEGFAANRQ WIGPEEAEEL LDFDIATQMN EKGPLNPGIN PFRVPGITEK
F0795HA MAEGFAANRQ WIGPEEAEEL LDFDIATQMN EKGPLNPGIN PFRVPGITEK
F0795HB MAEGFAANRQ WIGPEEAEEL LDFDIATQMN EKGPLNPGIN PFRVPGITEK

51 L-l-SU V1
EKQNYCNILQ PKLQDLRNEI QEVKLEEGNA GKFRRVRFLR YSDETILSLI
EKQNYCNILQ PKLQDLRNEI QEVKLEEGNA GKFRRVRFLR YSDE ILSLI
EKQNYCNILQ PKLQDLRNEI QEVKLEEGNA GKFRRVRFLR YSDETILSLI

101 V2
YLFIGYCTYA CNRNRLGSLR HDIDIEAPQE ECYNNREKGT TENIKYGGRC
LFIGYCTY CNRNRLGSLR HDIDIEAPQE ECYNNREKGT TENIKYG~RC

YLFIGYCTYA CNRNRLGSLR H IDIEAPQE ECYNNREKGT TENIKYGGRC

151
FIGTAGLYLL
FIGTAGLYLL
FIGTAGLYLL

LFIGVGIYLG TTKAQVVWRL PPLVVPVEES EIIFWDCWAP
LFIGVGIYLG TTKAQVVWRL PPLVVPVEES EIIFWDCWAP
LFIGVGI LG TTKAQVVWRL PPLVVPVEES EIIFWDCWAP

•201
EEPACQDFLG AMIHLKASTN ISIQEGPTLG NWAKEIWGTL FKKATRQCRR
EEPACQDFLG AMIHLKASTN ISIQEGPTLG WAKEIWGTL FKKATRQCRR
EEPACQDFLG AMIHLKASTN ISIQEGPTLG NWAKEIWGTL FKKATRQCRR

251
GRIWRRWNET
GRIWRRWNET
GRIWRRWNET

301
LCLTGGKMLY
LCLTGGKMLY
LCLTGGKMLY

351
IPKCGWWNQ
IPKCGWWNQ
IPKCGWWNQ

ITGPLGCANN TCYNISVIVP DYQCYLDRVD TWLQGKVNIS
ITGPLGCANN TCYNISVIVP DYQCYLDRVD TWLQGKVNIS
ITGPLGCANN TCYNISVIVP DYQCYLDRVD TWLQGKVNIS

• • •
NKDTKQLSYC TDPLQIPLIN YTFGPNQTCM WNTSQIQDPE
NKDTKQLSYC TDPLQIPLIN YTFGPNQTCM WNTSQIQDPE
NKDTKQLSYC TDPLQTPLIN YTFGPNQTCM WNTSQIQDPE

V3
AYYNSCRWES TDVKFHCQRK QSQPGSWSRA ISSWKQRNRW
AYYNSCRWES TDVKFHCQRK QSQPGSW RA ISSW RNRW
AYYNSCRWE TDVKFHCQ QSQPGSWS ISSW RNRW

401 • • •EWRPDFESEK VKISLQCNST)rnLTFAMRS SSDYGEVMGAW IEFGCHRNKS
EWRPDFESEK V SLQCNST KNLTFAMRS S DYGE GAW IEFGCH KS

RPDFESEK V SLQCNST LTFAMRS S DYGE GAW IEFGCHRNKS

451 V4
RLHTEARFRI
LH EARFRI
LHTEARFRI

• • •
RCRWNVGDNT SLIDTCGKTQ NVSGANPVDC TMYTNRMYNC
RCRWNVGDNT SLIDTCGKTQ NVSGANPVDC YNC
RCRWNVGDNT SLIDTCGKTQ NVSGANPVDC YNC
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501 • • VS •
F0795H ~LQNGFTMKI DDLIMHFNMT KAVEMYNIAG NWSCTSDLPP TWGYMNCNCT
F0795HA ~LQNGFTMKI DDLIMHFNMT KAVEMYNIAG NWSCTSDLPP TWGYMNCNCT
F0795HB ~LQNGFTMKI DDLIMHFNMT KAVEMYNIAG NWSCTSDLPP TWGYMNCNCT

N

V6
SNKMACPNNQ GILRNWYNPV AGLRQSLEKY QVVKQPDYLV
SNKMACPNNQ GILRNWYNPV AGLRQSLEKY QVVKQPDYLV

KMACPNNQ GILRNWYNPV AGLRQSLEKY QVVKQPDYLV

601 -I,..

VPGEVMEYKP RRKRAAIHVM LALATVLSMA GAGTGATAIG MVTQYHQVLA
VPGEVMEYKP RRKRAAIHVM LALATVLS GAGTGATAIG MVTQYHQVL
VPGEVMEYKP RRKRAAIHVM LALATVLSMA GAGTGATAIG MVTQYHQVL

651
THQETIEKVT EALKINNLRL VTLEHQVLVI GLKVEAMEKF LSTAFAMQEL
THQE IEKV EALKINNLRL VTLEHQVLVI GLKVEAMEKF LYTAFAMQEL
THQE IEKVT QALKINNLRL VTLEHQVLVI GLKVEAMEKF LYTAFAMQEL

701
GCNQNQFFCK
GCNQNQFFCK
GCNQNQFFCK

• • •
IPLELWEGYN MTINQTIWNH GNITLGEWYN QTKDLQQKFY
IPL LW GYN MTINQTIWNH GNITLGEWYN QTKDLQ KFY
IPLELW YN MTINQTIWNH GNITLGEWYN QTKDLQQKFY

751
EIIMDIERNN
EIIMDIERNN
EIIMDIERNN

VQGKKGLQQL QEWEDWVGWI GNIPQYFRGL LGGILGIGLG
VQGKKGLQQL QEWEDWVGWI GNIPQY GL LGGILGIGLG
VQGKKGLQQL QEWEDWVGWI GNIPQY RGL LGGILGIGLG

801
VLLLILCLPT
VLLLILCLPT
VLLLILCLPT

LVDCIRNCFH KILGYTVIAM PEVEEEEIQP QMELRRNGRQ
LVDCIRNCIH KILGYTVIAM PEVEEEEIQP QMELRRNGRQ
LVDCIRNCFH KILGYTVIAM PEVEEEEI V QMELRRNGRQ

851
RGISEEEEE*
RGISE EEE*
RGISE EEE*

The variable loops are highlighted in grey, potential glycosylation sites are marked by • and affected

sequences underlined for clarity, the start of the SU and the TM are marked by -1,... Unique mutations are

highlighted in blue and residues identical to FIV-PET are highlighted in green.
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Figure 7.d. The envelope glycoprotein sequences of F0827Hs and
viruses from cell-free infection and cocultivationwith CrFK(H06T1)

cells respectively.

1
F0827H MAEGFAANRQ W1GPEEAEEL LDFD1ATQMN EKGPLNPG1N PFRVPG1TEK
F0827HA MAEGFAANRQ W1GPEEAEEL LDFD1ATQMN EKGPLNPG1N PFRVPG1TEK
F0827HB MAEGFAANRQ W1GPEEAEEL LDFD1ATQMN EKGPLNPG1N PFRVPG1TEK

51 L~SU
EKQNYCN1LQ PKLQDLRNE1 QEVKLEEGNA GKFRRVRFLR YSDEHVLSL1
EKQNYCN1LQ PKLQDLRNE1 QEVKLEEGNA GKFRRVRFLR YSDEHVLSL1
EKQNYCN1LQ PKLQDLRNE1 QEVKLEEGNA GKFRRVRFLR YSDEN LSL1

101 V1 V2
HLF1GYCTYL CNSRKLGSLR HD1D1EAPQE ECYDNKEKGT TAN1KYGRRC
HLF1GYCTYL CNSRKLGSLR HD1D1EAPQE ECYDNKEKGT TAN1KYGRRC
HLF1GYCTYL CNSRKLGS R HD1D1EAPQE ECYDNKEKGT TAN1KYGRRC

151
IIGTAALYL1 LFTG111YTQ TANAQVVWRL PPLVVPVDES E11FWDCWAP
11GTAALYL1 LFTG111YTQ T AQVVWRL PPLVVP DES E11FWDCWAP
11GTAALYLL LFTG111Y1Q T AQVVWRL PPLVVPVDES E11FWDCWAP

201 •
EEPACQDFLG AM1HLKASTN 1S1QEGPTLG NWARE1WGTL FKKATRQCRR
EEPACQDFLG AM1HLKASTN 1S1QEGPTLG NWARE1WGTL FKKATRQCRR
EEPACQDFLG AM1HLKASTN 1S1QEGPTLG NWARE1WGTL FKKATRQCRR

251 •
GR1WRKWNET
GR1WRKWNET
GR1W NET

• • •
1TGPLGCANN TCYN1SVV1P DYQCYLDRVD TWLQGKVN1S
1TGP GCANN TCYN1SVV1P DYQCYLDRVD TWLQGKVN1S
1TGP GCANN TCYN1SVV1P DYQCYLDRVD TWLQGKVN1S

301
LCLTGGKMLY
LCLTGGKMLY
LCLTGGKMLY

• • •
NKQTKQLSYC TDPLQ1PL1N YTFGPNQTCM WNTSQ1QDPE
NKQTKQLSYC TDPLQ1PL1N YTFGPNQTCM WNTSQ1QDPE
N TKQLSYC TDPLQ1PL1N YTFGPNQTCM WNTSQ1QDPE

351
1PKCGWWNQ
1PKCGWWNQ
1PKCGWWNQ

V3
AYYNSCRWEQ TDVKFQCQRT QSQPGSWHRT ISSWKQSNRW'
YY SCRW Q TDVKFQCQRT QSQPGSWHRT 1SSWKQSNRW
YYNSCRWEQ TDVKFQCQRT Q QPGSWHRT 1SSWKQ RW

401 • • •EWRPDFESEK VK1SLQCNST KNLTFAMRSS GDYGD1TGAW 1EFGCHRNKS
EWRPDFESEK VKISLQCNST KNLTFAMRSS GDYGD1TGAW 1EFGCHRNKS
EWRPDFESEK VK1SLQCNST KNLTFAMRSS GDYGD T W 1EFGCHRNKS

451 V4 • •• •KLHTEARFRI RCRWNIGDNT SLIDTCGKTQ NVTGANPVNC TMYANSMYNC
KLHTEARFR1 RCRWN1GDNT SL1DTCG TQ NVTGANPVNC TMYAN YNC
KLHTEARFR1 RCRWN1GDNT SL1DTCG TQ NVAGANPVNC TMYAN YNC
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501 • • VS •
F0827H ~LQNGFTMKV DDLIMHFNMT KAVEMYNIAG NWSCKSDLPP TWGYMNCNCT
F0827HA ~LQNGFTMKV DDLIMHFNMT KAVEMYNIAG NWSCKSDLPP TWGYMNCNCT
F0827HB ~LQNGFTMKV DDLIMHFNMT KAVEMYNIAG NWSCKSDLPP TWGYMNCNCT

.551 V6
STSSVSTSS VQMACPSHQG ILRNWYNPVA GLRQSLEKYQ VVKQPDYLVV

VQMACPSHQG ILRNWYNPVA GLRQSLEKYQ VVKQPDYLVV
CPS QG ILRNWY PVA GLRQSLEKYQ VVKQPDYLVV

601 J,TM
PGEVMEYKPR RKRAAIHVML ALATVLSMAG AGTGATAIGM VTQYHQVLAT
PGEVMEYKPR RKRAAIHVML ALATVLSMAG AGTGATAIGM VTQYHQVLAT
PGEVMEYKPR RKRAAIHVML ALATVLSMAG AGTGATAIGM VTQYHQVLAT

651
HQEAIEKVTE ALKINNLRLV TLEHQVLVIG LKVEAMEKFL YTAFAMQELG
HQEAIEKVTE ALKINNLRLV TLEHQVLVIG LKVEAMEKFL YTAFAMQELG
HQEAIEKVTE ALKINNLRLV TLEHQVLVIG LKVEAMEKFL YTAFAMQELG

701 • • • •
CNQNQFFCKV PLILWQRYNM TINQTVWNHG NITLGEWYNQ TKDLQQKFYE
CNQNQFFCKV P ILWQRYNM TINQTOOwNHG NITLGEWYNQ TKDLQQKFYE
CNQNQFFCKV P ILWQRYNM TINQTOOwNHG NITLGEWYNQ TKDLQQKFYE

751
IIMDIEQNNV QGKKGLQQLQ EWEDWVGWIG NIPQYLKGLL GGILGIGLGV
IIMDIEQNNV QGKKGLQQLQ EWEDWVGWIG NIPQYLKGLL GGILGIGLGV
IIMDIEQNNV QGKKGLQQLQ EWEDWVGWIG NIPQYLKGLL GGILGIGLGV

801
LLLILCLPTL VDCIRNCIHK ILGYSVIAMP EIEGEEIQSQ MELRRNGRQC
LLLILCLPTL VDCIRNCIHK ILGYSVIAMP EIEGEEIQSQ MELRRNGRQC
LLLILCLPTL VDCIRNCIHK ILGYSVIAMP EIEGEEIQSQ MELRRNGRQC

851
GISEKEEE*
GISEKEEE*
GISEKEEE*

Variable loops are highlighted in grey, potential glycosylation sites are marked by • and the affected

sequences underlined. J, represents the start of the SU and the TM subunits. Unique mutations are

highlighted in blue and mutations identical to FIV-PET are highlighted in green.
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7.4.2. Discussion
The ability of some FIV isolates to infect CrFK(H06Tl) cells is CXCR4-dependent (Hosie

et al. 1998a; Egberink et al. 1999) and correlates with an increase in charge of the third

variable region (Verschoor et al. 1995; Siebelink et al. 1995b) brought about by an E to K

mutation at either position 407 or 409. In this part of the study, we aimed to compare

sequences of two isolates from terminally ill cats which infected CrFK(H06Tl) cells by

both cell-free infection and cocultivation in order to explore sequence changes which may

correlate with this expansion in tropism.

An E to K mutation did not occur in any of the four virus sequences examined and, in

contrast to previous studies, no increase in positive charge in the V3 loop was found.

Interestingly, all viruses which achieved persistent infection ofCrFK(H06TI) cells (795B,

827A and 827B) had a K360Nmutation in the V3 loop, resulting in a decrease in charge.

The significance of mutations outside the variable loops, common to both A and B isolates,

is unknown but nonvariable regions have been found to influence phenotype in HIV

(Hoffman et al. 2002). Greater numbers of mutations were observed in viruses sequenced

from cultures infected by cocultivation compared to those obtained following cell-free

infection. It is conceivable that further mutations may have been introduced during the

further passage ofCRFK(H06Tl) supernatants in Mya-l cells prior to amplification of the

env gene by PCR, however, previous studies have indicated that Mya-I cells do not apply a

selective pressure (data not shown). The PCR process itself has the inherent potential to

introduce errors, although proofreading enzymes were used in these studies to minimise

such errors.

A lysine to asparagine or glutamine mutation at site 481 in the V4 loop has previously been

reported in cats inoculated with laboratory-adapted isolates which reverted to more

pathogenic, neutralisation-resistant isolates (Bendinelli et a1. 2001). It is interesting that

the B culture of isolate F0827Hs lost a glycosylation site, also at position 481, suggesting

that this residue may be a determinant of broad neutralisation resistance, consistent with

the results of Siebelink et al. (Siebelink et al. 1995a).

In order to characterise further the role of each mutation in CrFK(H06Tl )-tropism, it will

be necessary to examine each mutation within the context of the original env as was done

previously for HIV -1 (Boyd et al. 1993). This would require isolating each motif change
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and inserting this into the parent envelope by site-directed mutagenesis. By subsequently

cloning the mutated env into the GL8MYA viral backbone, the function of each mutation

that was identified in this chapter could be investigated.
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Chapter Eight

GENERAL DISCUSSION

8.1. Introduction
The first aim of this study was to investigate the in vitro tropism of a range of primary

isolates from cats at different stages of the disease and compare their phenotypes with the

well-characterised prototype viruses, FIV-GL8 and FIV-PET, both of which have been the

subject of many vaccine trials. The second aim of the study was to investigate the

biological behaviour of primary isolates from different stages of the disease in vivo, in

order to examine the relationship between pathogenicity in vivo and tropism in vitro. The

third aim of the study was to examine the role of the env gene in the pathogenicity ofFIV.

8.2. Isolates from the terminal stage of disease are more CXCR4-

tropic
FIV-GL8 and FIV-PET are two isolates that have been well-characterised in vitro and in

vivo, as discussed in Chapter 3. The characteristics displayed by these two isolates led to

the hypothesis that the pathogenicity of an isolate may be characterised by in vitro tropism,

particularly the ability to utilise CXCR4. In vitro assays were employed to examine a

panel of field isolates and it was found that isolates from cats in the terminal, symptomatic

stages of the disease had a greater ability to utilise CXCR4. Interestingly, this ability was

not consistent throughout all of the assays used. The assays based on AH927 cells

demonstrated that many isolates from different stages of infection may use CXCR4 for

entry, however a greater proportion of symptomatic isolates infected these cells compared

to CXCR4-expressing CrFK cells.

CrFK-tropism was less common with only 2 isolates from terminally ill cats (F0795Hs and

F0827Hs) achieving infection using cell-free virus. Viral stocks from these infected CrFK

cultures were subsequently unable to infect the cell line AH927 FX4E. Furthermore, the

FIV-GSM chimaeras containing the CrFK-tropic env genes, G8M(827) and GSM(F14.7),

(Chapter 5) infected CrFK cells efficiently, but only achieved limited infection of AH927

FX4E cells. Although no blocking assays were conducted in this study to confirm the use

of CXCR4 in the cell lines, previous reports document CXCR4-dependent infection of

these cell lines (Willett et al. 1997c; Hosie et al. 1995a). The chimaeras G8M(S27) and
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G8M(FI4.7) demonstrated CrFK-tropism but infected AH927 FX4E cells less efficiently.

This suggested that some viral component other than Env may be required by FIV-PET

and F0827Hs for efficient replication within these cells. The variation in tropism shown by

the chimaeras may be due to (a) variation in CXCR4 conformation or presentation within

the cell membrane environment or (b) some regions of genomes besides env imparts the

ability to grow in AH927 FX4E cells. In general, the in vitro tropism studies suggest that

isolates from more advanced disease stages have a greater affinity for CXCR4.

Different conformations have been described for the human homologue of CXCR4

(Baribaud et al. 2001; Lapham et a1. 2002), a phenomenon that may exist with feline

CXCR4 but has not yet been investigated. However, de Parseval and Elder have suggested

that cofactors such as HSPGs may be involved in virus binding and have also identified a

40kD protein from primary feline T cells by coprecipitation with a gp95-Fc

immunoadhesin molecule which is thought to participate in virus binding (de Parseval and

Elder 200 I). The ability to use different cofactors depended on the cell line and the viral

isolate. The recent identification of the 40kD molecule CD 134 as a primary receptor for

cell entry has clarified receptor usage and tropism. CD134 has been shown to be the

principal receptor for FIV cell entry. productive infection and syncytium formation.

However, CDl34-dependent entry requires the coreceptor CXCR4, shown by the dose-

dependent inhibition of HeLa cells expressing feline CD 134 by the CXCR4 antagonist

AMD3100 (Shimojima et al. 2004).

8.3. CXCR4-tropism correlated with reduced virulence in vivo

The emergence of T-tropic, SI forming isolates in HIV-I coincides with disease

progression and marked decreases in CD4+ T lymphocyte numbers, which has led to the

hypothesis that these isolates are more pathogenic (Tersmette et a1. 1989a; Schellekens et

a1. 1992; Koot et al. 1993). Similar findings have been reported in FlV where the

progression to feline AIDS coincides with reduction in CD4+ T lymphocytes (Ackley et al.

1990; Torten et al. 1991; Hoffman-Fezer et al. 1992). Contrary to this popular hypothesis.

infection of SPF cats with isolates from asymptomatic cats induced higher proviral loads,

higher infectious viral burdens, as measured by QVl, and inversion of the CD4:CD8 T

lymphocyte ratio when compared to infections of cats inoculated with isolates derived

from cats in the AIDS-like phase of the disease. The asymptomatic isolates exhibited FIV-

GL8 like characteristics in vivo as well as in vitro.
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8.4. The use of proviral DNA loads as a measurement of

pathogenicity

As in HIV-1 infection, the predictive value of proviral DNA load in disease progression of

FIV is still unknown. From the numerous studies in 1I1V-1 infection that have compared

the two parameters, proviral load would appear to be most useful in the measurement of

successful HAART, where non-responders have consistently high proviral DNA loads

(Russell et al. 2001). The use of proviral load as a prognostic indicator in lIlV -1 infection

of infants was championed by Di Rossi and colleagues as rapid increases in proviral DNA

loads within the PBMCs to very high levels correlated with early onset AIDS (de Rossi et

al. 1996). However, other workers reported no correlation between proviral DNA load and

disease progression (Cone et al. 1998). Reimann et al. reported higher proviral DNA loads

in macaques infected with pathogenic SHIVs, which produced a marked decrease in the

CD4+ T cell population, but the same clones also achieved higher viral loads than the less

pathogenic SHIVs. Therefore, the use of proviral DNA in SIV infection as a prognostic

indicator also remains unclear (Reimann et al. 1999).

The measurement of proviral load has received some scrutiny over recent years and the

expression of proviral load as a fraction of 106 cells has been criticised because cell

populations are not constant throughout the disease, as some cell populations have a

tendency to decrease with disease progression. Therefore, the proposition that proviral

load should be measured against blood volume (per ml of blood) has been made (Cone et

al. 1998; Aleman et al. 1999) as this is a constant denominator throughout the disease.

However, in the studies described in this thesis, proviral loads are expressed as a fraction

of 106 cells.

Although retrovirus proviral DNA exists in many forms, only full-length integrated

proviral DNA is replication-competent. In lIlV -1 the majority of proviral DNA is found as

the unintegrated form within the cytoplasm (Chun et al. 1997) or as defective genomes

with deletions in the provirus (Sanchez et al. 1997). Therefore, the method of

measurement may affect the levels detected. In the present study samples were not

analysed for deletions within the provirus or the amount of unintegrated proviral DNA.

However, QVI assays measuring the infectious viral burden in the PBMCs demonstrated a

similar trend to that demonstrated by the proviral measurements from PCR, indicating that

the proviral loads represent replication-competent proviral DNA rather than unintegrated
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or defective DNA. An additional consideration is that virus type and route of infection

have been shown to influence the dynamics of provirus in the PBMes during experimental

infection (Burkhard et al. 2002). The proportion of proviral load data with coefficients of

variation> 30%, particularly using the 1416p system, warrants caution when interpreting

the results in isolation. As this system did not give an indication of the levels of

replication-competent virus in vivo, the in vitro measurement of infectious viral load by

means of QVI was a useful adjunct when assessing viral titres calculated by molecular

methods.

8.5. Could route of infection affect viral RNA load in plasma?

The reasons for the low plasma viral RNA loads in this study are unclear. Some real-time

peR primers and probe mismatches were identified and the effect of different mismatches

is unknown but several factors are known to influence the overall efficiency (sec Chapter

4). However, the proviral measurements demonstrated that the same primers and probes

were adequate for measurement of the field viruses, and therefore the cause of the low viral

RNA loads remains unclear. If the route of infection influences viral dynamics then this is

significant when testing vaccines and it will be important to establish challenge systems

that mimic closely the natural route of transmission.

Detailed studies of the immune responses induced following infection with the field

isolates may clarify the reasons behind this low virus release into plasma. Detailed

examination of both eTL and noncytolytic responses (Flynn et at. 1995; Bucci et al.

1998b; Flynn et al. 2002), as well as the humoral immune response (Hosie and Jarrett

1990), would be important to investigate the possibility that immune responses arc

suppressing viral production.

8.S. Expansion of the CD8n +~IOW population by asymptomatic

isolates

An expansion of the CD8a+~lowT lymphocyte subset coinciding with the in vivo evolution

of an FIV -PET isolate to a more virulent state has been documented. This expansion was

accompanied by increased plasma viral RNA and PBMC proviral DNA burden in vivo
(Hosie et al. 2002).
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In this study, FACS analysis revealed that isolates from cats in the asymptomatic stage of

disease induce greater activation of the CD8u +~IOWsubpopulation in naive SPF cats

compared to symptomatic isolates. The phenomenon of noncytolytic CDS+ cell anti-FIV

activity awaits further clarification. This population of cells was found to expand during

acute FIV infection (Lehmann et al. 1992; Willett et al. 1993) and was later shown to

suppress cell-associated and plasma viral expression (Jeng et al. 1996). Indeed total

clearance, by noncytolytic mechanisms, of virus from intravaginally infected kittens was

attributed to these cells (Bucci et al. 1995a). However, other reports demonstrate that the

CDSu +~Iowphenotype is not solely responsible for viral suppression (Crawford et al. 2001)

and indeed the CDSu+~hi population has been shown to exhibit similar antiviral activity

(Flynn et al. 2002). The ability to induce a suppressor response in FIV -infected cats is

variable. Some cats may demonstrate no inducible anti-FIV suppressor activity (Bucci et

al. 1998a; Bucci et al. 1995b; Choi et al. 2000). Furthermore, the properties exhibited by

the suppressor cells vary greatly: there was neither any correlation between the percentage

of CDSu +~Iowcells in the population and the extent of antiviral activity exhibited (Bucci et

al. 1995b), nor between the extent of CD8u +~Iowexpansion and clinical disease (Jeng et al.

1996).

In this study, the asymptomatic stage isolates induced greater expansion of the CD8u +~IOW

T lymphocyte population. The findings that these isolates induced greater proviral DNA

burdens, greater infectious viral burdens and greater inversion of the CD4:CD8 T

lymphocyte ratio in vivo, led to the conclusion that these asymptomatic stage isolates are

more pathogenic. Furthermore, the results depicted in Figure 6.g. indicate that env is a

major determinant involved in the expansion of this lymphocyte population. Further work

is required to further define the function of this cell population.

Major limitations of this project were a) the small number of viruses investigated and b)

the small number of animals in each group, with the result that any statistical analyses must

be interpreted cautiously. The results have, nevertheless, demonstrated trends that will

prompt further investigation of field isolates using similar methods. By selecting two

viruses from terminally ill cats, which were both CrFK-tropic, it is possible that more FlV-

PET like viruses were selected, thus influencing the polarity of the results, The

symptomatic viruses showed a range of tropism properties, from being able to infect CrFK

cells and AH927 cells to infecting only IL-2 dependent cells Mya-l , Hence, it would be
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interesting to examme more isolates in detail to determine the relationship between

pathogenicity in vivo and cell tropism in vitro.

The viral populations within these primary isolates are poorly defined. Analysis of the

quasispecies isolated from each individual by heteroduplex mobility assay (Delwart et a1.

1993; Bachmann et al. 1997) and biological cloning (Connor et al. 1993b) may reveal

further useful information regarding phenotypes. The replication rates, tropism and

receptor usage of viruses within the quasispecies may reveal correlations with stage of

infection. By further categorising the quasispecies within each isolate, it may be possible

to identify common amino acid motifs responsible for each phenotype. In addition,

analysis of the viral populations in each of the cats infected with primary isolates (A70 l-

A708) throughout the 15 week study period would be worthwhile in order to examine the

dynamics of the quasispecies in vivo.

8.7. Are terminal isolates the cause or the consequence of
disease?

In HIV-l infection, progression to disease coincides with the emergence of SI CXCR4 T-

tropic isolates in about 50% of infected individuals. However it has been debated whether

these isolates arise as a cause or a consequence of CD4+ T cell depletion (Cheng-Mayer et

a1. 1988; Fenyo et a1. 1989; Tersmette et al. 1989a; Von Gegerfelt et a1. 1991; Koot et a1.

1992). SI isolates are typically found to occur in patients with moderately reduced CD4+ T

cell counts, suggesting that they replicate following the onset of immune system

dysfunction (Miedema et a1. 1990). However, once SI isolates appear, a threefold decrease

in CD4+T cell numbers occurs. This outcome contrasts to that observed in people infected

with only NSI viruses where, in general, a more prolonged, gradual decrease in CD4 t T

cell numbers is seen. Therefore, the hypothesis that SI variants are more pathogenic and

the cause of CD4+ T cell depletion has become popular. Reports of rapidly progressing

disease in individuals infected from people with only SI variants support this hypothesis

(Cheng-Mayer et al. 1988; Fenyo et al. 1989; Tersmette et a1. 1989a; Koot et a1. 1992;

Schuitemaker et a1. 1992; Roos et a1. 1992; Groenik et a1. 1993). Evidence from infection

of pig-tailed macaques with late stage SI T-tropic SlY isolates that develop early onset

simian AIDS suggests that SI viruses do indeed drive the progression to AIDS (Kimata ct
a1. 1999).
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However, if SI variants were more pathogenic, one would expect these viruses to

predominate in individuals infected with a mixed population of viruses, which is not the

case. The "division rate" theory suggests that SI CXCR4-tropic isolates are restricted due

to their ability to infect only naive T cells, which divide at a very low rate in contrast to

memory cells, which are targets for NSI CCR5-tropic isolates and replicate at a much

higher rate. The replication of the SI infected naive T cells is only stimulated when the

memory T cell count decreases (Davenport et al. 2002).

The pathogenesis of HIV/AIDS remains to be clearly defined. However, the trends evident

from this study suggest that isolates from the asymptomatic stage of FIV infection produce

higher proviral loads, greater perturbation of the lymphocyte populations and higher

infectious viral burdens, and may therefore be classified as more pathogenic than the

viruses isolated from the terminal stage of disease. While further work with additional

primary isolates is required to confirm the generality of these findings, the trends reported

here indicate the need to direct future FIV vaccine studies against primary isolates,

particularly those from the asymptomatic stage of the disease, as these viruses arc the most

likely to be transmitted in nature.
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Appendix A.3. Media used in cloning experiments

LB-broth

1Og tryptone

59 yeast

10g NaCI

Dissolve in 1 litre of dH20 and then autoclave. For LB agar, add 1.2-1.5% agarose

prior to autoclaving.

SOC medium

20g tryptone

59 yeast

0.5g NaCI

Dissolve in 1 litre of dH20 and then autoclave. After autoclavinq, add 1rnl sterile

MgCI2,1ml sterile 250mM KCI and 2.78 ml sterile 2M (36%) glucose/100m!.
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