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Abstract 

IL-33 and IL-17 family cytokines (IL-17A – IL-17F) have been shown to play roles 

in the pathogenesis of chronic inflammatory diseases such as rheumatoid 

arthritis and inflammatory bowel disease. However knowledge of their role in 

periodontal disease pathogenesis is limited. The aim of this study was therefore 

to determine clinical associations between IL-33 and IL-17 family cytokines and 

chronic periodontitis. In addition, to begin to investigate the biological 

significance of these associations using in vitro model systems. 

97 patients with chronic periodontitis and 77 healthy volunteers were recruited 

in Glasgow and Newcastle. Serum, gingival crevicular fluid (GCF) and saliva were 

analysed for levels of IL-33 and IL-17 family cytokines by ELISA. Periodontal 

tissues from 17 chronic periodontitis patients and 10 healthy subjects from 

Glasgow were also investigated for IL-33 and IL-17 family cytokines mRNA 

expression by real time PCR. Immunohistochemical analysis was also performed 

on tissue to investigate expression of IL-33 and IL-17E at the protein level. In 

vitro experiments were performed using the OKF6/TERT-2 oral keratinocyte cell 

line and primary human gingival epithelial (PHGE) cells. The cells were 

stimulated with either a live Porphyromonas gingivalis monospecies biofilm or 

recombinant cytokines and changes in expression of cytokines, chemokines and 

their receptors evaluated by real-time PCR, immunocytochemical analysis or 

ELISA. In addition, transcriptional activity was monitored by analysis of changes 

in the phosphorylation (activation) of the NF-κB p65 subunit transcription factor 

using serum, GCF and saliva. IL-17A and IL-17A/F levels were higher in chronic 

periodontitis patients, but serum IL-17E was lower.  IL-17A, IL-17A/F and the 

serum IL-17A:IL-17E ratio correlated positively with clinical parameters. IL-33, 

and IL-17 family cytokine (except IL-17B) gene transcripts were higher in tissue 

of chronic periodontitis patients. In addition, IL-33, ST2, IL-17E and IL-17RB 

proteins are expressed in periodontal tissues. Furthermore, IL-33 protein 

expression is upregulated in tissue of chronic periodontitis patients. In vitro 

models showed that IL-33 and its receptors (ST2 and ST2L) are expressed by oral 

keratinocytes (OKF6/TERT-2 cells and PHGE cells) and IL-33 expression up-

regulated in response to P. gingivalis. However, IL-33 failed to induce expression 

of a range of inflammatory mediators and receptors in OKF6/TERT-2 cells.  In 

vitro, IL-17E inhibited P. gingivalis monospecies biofilm and IL-17A induced 
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expression of chemokines (IL-8 and/or CXCL5) by OKF6/TERT-2 cells at the 

transcriptional level by blocking the phosphorylation (activation) of the NF-κB 

p65 subunit. 

This study demonstrates clinical associations between IL-33 and IL-17 family 

cytokines and chronic periodontitis. The expression of IL-33 by oral keratinocytes 

and its up regulation upon exposure to P. gingivalis suggest it plays a role in the 

innate immune response to pathogens within the periodontium. However, the 

role of IL-33 in the periodontal inflammatory response remains to be elucidated. 

The negative correlations between serum levels of IL-17A and IL-17E and 

correlations with disease parameters, combined with their differing effects on 

the induction of expression of key neutrophil chemoattractants (CXCL5 and 

CXCL8), suggest opposing roles in periodontal immunity. Indeed, it can be 

hypothesised that the differential regulation of chemokine expression is due to 

IL-17A having pro- and IL-17E having anti-inflammatory properties. Indeed, as 

neutrophils play a key role in the early events associated with periodontal 

disease progression, the data suggests IL-17E is a rational target for therapeutic 

intervention. 
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1.1 Periodontal disease 

The periodontium is a term that refers to the specialised periodontal tissues that 

support the teeth in their positions in the upper and lower jaws. The 

periodontium consists of four major tissues: alveolar bone, cementum, 

periodontal ligament and gingiva. Since the main function of periodontium is to 

support the teeth, maintaining a healthy periodontium is very important in 

ensuring masticatory function. However, there are many diseases and conditions 

the pathogenesis of which are known to precipitate damage to the periodontium 

and may eventually lead to tooth loss (Armitage, 1999). 

Plaque induced gingivitis is the most common form of periodontal disease 

(Ababneh et al., 2012; Albandar & Kingman, 1999; Page, 1985). It is 

characterised by inflammation of the gingiva and is associated with the presence 

of bacterial plaque at the gingival margin. However, this results in no observable 

loss of bone and no loss of tooth attachment. Indeed, the inflammation that is 

characteristic of gingivitis is reversible upon removal of gingival plaque 

(Mariotti, 1999).  

Without proper oral health care, plaque induced gingivitis can progress to 

chronic periodontitis. Chronic periodontitis is characterised by destruction of the 

alveolar bone, cementum, periodontal ligament and gingiva, which results 

clinically in the formation of a periodontal pocket and/or gingival recession. 

Periodontal disease affects 60 - 90 % of the population (Bartold et al., 2010). In 

addition, The World Health Organisation (WHO) reported severe chronic 

periodontitis in 5 – 20 % of the adult population worldwide (Jin et al., 2011). In 

the UK, advanced chronic periodontal disease was found to affect 8 – 15 % of the 

population (Kelly et al., 1998). Furthermore, periodontal disease represents a 

significant cost burden to the National Health Service; with treatment and its 

sequelae costing the National Health Service in Scotland alone at least £20 

million annually ("Scottish dental practice board: annual report," 2009). In 

addition, evidence suggests that bi-directional links occur between periodontal 

disease and other chronic inflammatory conditions such as rheumatoid arthritis, 

diabetes and cardiovascular disease (Kaur et al., 2013; Pizzo et al., 2010). 

Therefore, it can be hypothesised that treatment of periodontal disease and 



 24

associated conditions places an even larger cost burden on limited National 

Health Service resources than previously described. 

Although gingivitis and chronic periodontitis are initiated and sustained by 

bacterial plaque, the host defence mechanisms are believed to play an 

important role in their pathogenesis (Lindhe et al., 1999). In an attempt to 

remove the plaque microflora the periodontium mounts an immune response. In 

susceptible individuals this can result in dysregulated production of immuno-

modulatory mediators (cytokines, chemokines, prostanoids, and enzymes); which 

actually fail to clear the pathogens and cause bystander damage (Graves, 2008). 

In addition, evidence is now emerging that suggests elevated levels of these 

immune system mediators migrate into the peripheral circulation and influence 

the aetiology of other diseases or conditions such as rheumatoid arthritis, 

diabetes and cardiovascular disease (Kaur, et al., 2013; Pihlstrom et al., 2005; 

Williams et al., 2008). The prominent role of the inflammatory response in the 

pathogenesis of periodontal disease and associated conditions therefore suggests 

that host response modulation may provide novel therapeutic interventions 

(Preshaw, 2008). 

 

1.2 Dental biofilm 

Dental biofilm (also known as dental plaque) has similar properties with biofilms 

found in other parts of body and the environment. Dental biofilm is a complex 

multi-species biofilm with over 800 bacterial species being isolated by culture 

methods (Aas et al., 2005; Becker et al., 2002; Paster et al., 2001; Preza et al., 

2008). However, this figure is now known to be a gross underestimate as 

advancements in microbial sequencing technologies have identified numerous 

un-culturable species in dental biofilm (Dethlefsen et al., 2007; Keijser et al., 

2008). The constituent species of dental biofilm varies between individuals and 

is determined by the oral environment. The oral environment, in turn, is 

determined by factors such as genetics, age, diet, smoking, alcohol intake and 

individual oral hygiene practices (Marsh, 1991). These factors have profound 

effects on the microbial composition of dental biofilm and therefore the onset of 

oral pathologies such as dental caries and periodontal disease (Baehni & 

Takeuchi, 2003). 
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Dental biofilm accumulation on tooth surfaces has long been known to associate 

with inflammation and destruction of the periodontium (Lovdal et al., 1958; 

Ramfjord et al., 1968; Waerhaug, 1956, 1967). Initially, the biofilm bacteria 

themselves were thought to play the major role in the pathogenesis of 

periodontal disease. Loe and colleagues (1965) were amongst the earliest groups 

to describe the involvement of specific bacteria in periodontal disease 

progression. Their studies demonstrated that the composition of dental biofilm 

associated with a healthy gingiva tissue consists predominantly of Gram-positive 

bacteria with very few Gram-negative species. In contrast, there was up to a 40 

% increase in the number of Gram-negative bacteria in dental biofilm associated 

with an inflamed gingiva. Therefore, these authors introduced the specific 

plaque hypothesis (Loesche, 1976). The introduction of this hypothesis led to the 

quest to find specific pathogenic organisms that may be responsible for the 

aetiology of periodontal disease. This led in the coming years to the 

identification of around 20 culturable bacterial species which had associations 

with periodontal disease (Paster, et al., 2001). Of these species, only a few are 

well-studied; for example Porphyromonas (P.) gingivalis, Tannerella (T.) 

forsythus, Aggregatibacter (A.) actinomycetemcomitans, Campylobacter (C.) 

rectus, Streptococcus (S.) constellatus, Fusobacterium (F.) nucleatum, and 

Treponema (T.) denticola (Estrela et al., 2010; Komiya Ito et al., 2010; Paster, 

et al., 2001; Slots & Ting, 1999; Socransky et al., 1998; Socransky et al., 1988). 

However, sequence-based mapping of the oral microbiota has identified the 

presence of around 1179 taxa in dental biofilm and showed that 68 % of the 

phylotypes present were known un-culturables (Dewhirst et al., 2010). This 

therefore raises the possibility that some of those bacterial species we are yet to 

culture have important roles in the pathogenesis of periodontal disease. 

The formation of dental biofilm starts with the establishment of the salivary 

pellicle on enamel surfaces immediately after tooth brushing. The early 

colonisers attach to this salivary pellicle. Early colonising species are 

predominantly (60 – 90 %) Streptococci, with the remainder made up of a variety 

of other species including Capnocytophaga, Actinomyces, Eikenella, 

Haemophilus, Prevotella, Propionibacterium and Veillonella (Kolenbrander et 

al., 2010; Nyvad & Kilian, 1987). The early colonising species grow laterally and 

co-aggregate to form a niche environment which propagates their growth and 
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survival. This leads to an increase in the thickness of the biofilm (vertical 

growing) (Filoche et al., 2010; Socransky & Haffajee, 2005). Co-aggregation 

between bacterial species has been demonstrated to be important for bacterial 

colonisation, metabolic communication, genetic exchange (Hojo et al., 2009) 

and therefore survival during early biofilm formation (Bradshaw et al., 1998). 

Without mechanical disruption of early dental biofilm, the colonising species 

continue to grow and proliferate causing changes in biofilm physiology. The 

metabolic activity of the aerobic species reduces the oxygen concentration and 

pH within the biofilm promoting colonisation of the intermediate and subsequent 

late species (Hojo, et al., 2009). F. nucleatum is a prominent intermediate 

species and has been isolated from dental biofilm associated with periodontal 

health and disease. Importantly, F. nucleatum was demonstrated to co-

aggregate with both early and late colonising species in dental biofilm and 

therefore this species is an important bridging organism that promotes 

pathogenic biofilm formation (Kolenbrander et al., 2002). The presence of F. 

nucleatum, as well as physiological changes in the biofilm micro-environment, 

thus provide the perfect conditions for the late colonising pathogenic Gram-

negative anaerobes, such as the Actinobacillus, Prevotella, Porphyromonas and 

Treponema species (Kolenbrander, et al., 2002). 

P. gingivalis is a Gram-negative oral anaerobe and is one of the most studied 

bacterial species in relation to the pathogenesis of periodontal disease (Estrela, 

et al., 2010). P. gingivalis is present in 85.7 % of biofilm samples from patients 

with periodontal disease, compared to only 23.1 % of samples from healthy 

subjects (Yang et al., 2004). The presence of P. gingivalis has also been shown 

to positively correlate with clinical parameters such as the clinical probing depth 

of the periodontal pocket (Kawada et al., 2004). Furthermore, treatment and 

healing outcomes have also been shown to associate with decreasing presence of 

P. gingivalis within the subgingival biofilm (Haffajee et al., 1997; Kawada, et 

al., 2004). Indeed, the importance of this organism in disease pathogenesis has 

been eloquently demonstrated in vivo as oral inoculation of P. gingivalis in mice 

caused significant inflammation, induced bone loss and periodontal tissue 

destruction (Hajishengallis et al., 2011; Wang et al., 2007a). 

Although the presence of P. gingivalis in subgingival biofilm has long been 

associated with periodontal diseases (Curtis et al., 2001; Lamont & Jenkinson, 
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1998; Van Dyke, 2007); studies have shown that P. gingivalis can also present in 

the biofilm of healthy subjects; and in fact in patients with periodontal disease 

P. gingivalis is actually present at low levels (Kumar et al., 2006) compared to 

many other species. Therefore in recent years questions have been raised as to 

whether P. gingivalis alone is the sole aetiological agent for periodontal disease. 

In fact, oral inoculation of P. gingivalis into specific pathogen free mice, but not 

the germ free mice, was shown to induce periodontal bone loss (Hajishengallis, 

et al., 2011). This therefore demonstrated the contributing role of commensal 

bacteria in P. gingivalis-induced bone loss. In addition, P. gingivalis inoculation 

into specific pathogen free mice led to the increase in bacterial load compared 

to the sham control. Therefore P. gingivalis was found to be important in 

promoting biofilm formation which was in agreement with previous findings in a 

rabbit periodontitis model (Hasturk et al., 2007). These studies led to a change 

in researcher’s attitude toward the role of P. gingivalis in periodontal disease 

pathogenesis. Previously, it was thought periodontal diseases were associated 

with an increased dental biofilm biomass (Loe, et al., 1965; Loesche & Syed, 

1978; Moore et al., 1982; Theilade et al., 1966; Zee et al., 1996). However, 

studies on subgingival biofilm stability showed that a healthy periodontium was 

associated with 75.5 % conservation of biofilm microbiota whilst diseased or 

deteriorating periodontal conditions were often associated with < 50 % 

conservation (Kumar, et al., 2006). In addition, health-associated dental biofilm 

was shown to be inhabited by a rich diversity of bacterial flora and this diversity 

was reduced in biofilm associated with periodontal diseases; with putative 

periodontal pathogens becoming the prominent species (Kistler et al., 2013). 

Therefore, it is now apparent that the constituent species of dental biofilms is a 

more important factor than bacterial load. In addition, P. gingivalis, even at low 

levels, can alter the composition of biofilm flora therefore  the current concept 

implicates P. gingivalis as being a keystone pathogen shaping the dental biofilm 

community and disease pathogenesis (Darveau et al., 2012). 

Despite P. gingivalis having been shown to be associated with the onset and 

progression of periodontal diseases (Curtis, et al., 2001; Lamont & Jenkinson, 

1998; Van Dyke, 2007), the fact still remains that P. gingivalis has been reported 

to be present in biofilm of periodontally healthy individuals (Bik et al., 2010; 

Ximenez-Fyvie et al., 2000) and subjects are not equally susceptible to P. 
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gingivalis exposure (Johnson et al., 1988; Savitt & Socransky, 1984). This 

therefore points to a far more complex pathogenesis for periodontal diseases 

involving not just oral pathogens but other factors such as the host immune 

response.  

 

1.3 Host immune response and periodontal disease 

The host immune response is important in maintaining the health of periodontal 

tissues. This is particularly highlighted in patients with immunodeficiencies. 

Patients with functional leukocyte disorders such as Chediak-Higashi syndrome 

and chronic granulomatous disease, which manifest as compromised neutrophil 

responses, have been demonstrated to be at greater risk of periodontal disease 

(Deas et al., 2003; Kinane, 1999; Tempel et al., 1972). In addition, patients with 

neutropenias (chronic neutropenia, chronic benign neutropenia and cyclic 

neutropenia), which are granulocyte disorders characterized by an abnormally 

low number of neutrophils have also been shown to have increased periodontal 

inflammation and bone loss (Baehni et al., 1983; Deas, et al., 2003; Deasy et al., 

1980; Stabholz et al., 1990). Furthermore, patients with human 

immunodeficiency virus (HIV) infection, which is characterised by decreased 

numbers of peripheral  CD4+ T cells, were found to be susceptible to periodontal 

disease (Lucht et al., 1991). 

The presence of pathogens in periodontal pockets will activate innate and 

adaptive immune responses in an attempt to clear the pathogenic threat as well 

as promote tissue homeostasis. However, the persistent presence of pathogens 

can cause the continuous activation of innate and adaptive immune responses; 

which in turn causes inappropriate inflammatory mediator (cytokine, chemokine, 

antimicrobial proteins and enzymes) synthesis and secretion that directly or 

indirectly lead to periodontal tissue destruction (Monack et al., 2004; Preshaw & 

Taylor, 2011). These inflammatory mediators, which can be produced by 

periodontal host cells in response to pathogen, are known to cause degradation 

of extracellular matrix of periodontal tissue (Liu et al., 2010). In addition, they 

can play important roles in driving  osteoclast activity and therefore promoting 

loss of alveolar bone (Bartold, et al., 2010).  
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1.3.1 Innate immunity and periodontal disease 

The formation of a dental biofilm usually occurs on tooth surfaces at the occlusal 

area and gingival margin. Without mechanical disruption, the biofilm will grow 

into a thick mature biofilm extending into the subgingival area (subgingival 

biofilm). The subgingival biofilms are comprised of mostly Gram-negative, 

anaerobic bacteria which lead to the deposition of virulence factors into the 

gingival crevicular fluid (GCF). These substances can cause injury to host cells 

directly. However, the host is equipped with an innate defence system which is 

designed to recognise these substances and protect the tissue from microbial 

attack. 

Cytokines and chemokines play important roles in initiating immune responses 

through activation of innate immunity (Medzhitov, 2010). In the periodontium, 

host cells such as epithelial cells, fibroblasts, macrophages and dendritic cells 

play a key role in the initial sensing of microbial presence through an array of 

pattern recognition receptors (PRRs) expressed on their surfaces (Andrukhov et 

al., 2013; Beklen et al., 2008; Jotwani et al., 2010; Mahanonda et al., 2009; 

Shimada et al., 2012). In health the presence of commensal bacteria in a dental 

biofilm activate a low level innate immune response. This low level response is 

important in priming host tissue cells and promoting tissue homeostasis. A shift 

in the composition of the dental biofilm and the presence of pathogenic 

organisms however cause an amplification of this immune response by localised 

cells (Handfield et al., 2008; Taylor, 2010). The greater presence of pathogenic 

organisms leads to an increase in the number of microbe associated molecular 

patterns (MAMPs) derived from pathogens which drive tissue inflammation 

(Hajishengallis, 2009). Activation of PRRs (e.g., Toll-like receptor-2 (TLR-2), 

TLR-3, TLR-4 and TLR-5) by respective MAMPs induce increased expression of 

cytokines and chemokines such as interleukin-8 (IL-8), IL-6, IL-1β, interferon 

gamma (IFN-γ), IL-4, IL-12, tumor necrosis factor alpha (TNF-α), granulocyte-

macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating 

factor (G-CSF), macrophage colony-stimulating factor (M-CSF), C-X-C motif 

chemokine-10 (CXCL10), macrophage inflammatory protein-1α (MIP-1α), MIP-1β, 

chemokine (C-C motif) ligand-20 (CCL20), eotaxin and eotaxin-2 (Andrukhov, et 

al., 2013; Beklen, et al., 2008; Eskan et al., 2007; Hosokawa et al., 2013; 
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Jotwani, et al., 2010; Kocgozlu et al., 2009; Luo et al., 2012; Mahanonda, et al., 

2009; Milward et al., 2013; Shimada, et al., 2012). 

Many of the pathogenic organisms found in dental biofilm possess a host of 

virulence factors. Many of these virulence factors are termed MAMPs. MAMPs are 

highly conserved structures of microorganisms such as lipopolysaccharide (LPS), 

peptidoglycan, lipoprotein, bacterial DNA and double stranded RNA (Mahanonda 

& Pichyangkul, 2007). MAMPs interact with PRRs, such as TLRs, and initiate 

innate immune responses. Numerous resident and recruited host cells of 

periodontal tissues express surface TLRs. These include neutrophils, langerhans 

cells, monocytes/macrophages, osteoblasts, periodontal ligament fibroblasts, 

gingival fibroblasts and gingival epithelial cells (Mahanonda & Pichyangkul, 

2007). Interactions between MAMPs and TLRs leads to information transmission 

through intracellular signalling pathways that in turn leads to the expression of 

inflammatory mediators and antimicrobial agents as well as the promotion of 

immune cell differentiation and activation. Therefore TLRs play a major role in 

initiating defence mechanisms aimed to eradicate pathogenic threats. 

P. gingivalis possesses several inherent MAMPs such as LPS, fimbriae and 

bacterial DNA, which are capable of invoking innate immune responses (Bostanci 

& Belibasakis, 2012). LPS is a major component of the outer membrane of Gram-

negative bacteria. The main function of LPS is to provide structural integrity and 

protection to the bacteria. P. gingivalis LPS is recognised by TLR-2 and -4 

(Darveau et al., 2004). P. gingivalis LPS activation of TLR-2 and TLR-4 has been 

shown to induce monocytes and macrophages to produce pro-inflammatory 

cytokines and chemokines such as TNF-α, IL-12, IL-1β, IL-7, IL-8, IL-17A, CXCL2, 

CXCL10, CCL5 and IFN-γ, as well as vascular factors such as vascular cell 

adhesion molecule 1 (VCAM-1) and vascular endothelial growth factor (Bostanci 

et al., 2007; Hirschfeld et al., 2001; Zhou et al., 2005). In oral epithelial cells, 

LPS of P. gingivalis, via TLR-2, was also shown to induce increased expression of 

IL-6, IL-8, IL-1β, IL-1α, TNF-α, GM-CSF, eotaxin, eotaxin 2, CXCL10, MIP-1α and 

MIP-1β (Kocgozlu, et al., 2009; Luo, et al., 2012; Milward, et al., 2013). 

Therefore the evidence suggests that TLR-2 plays a key role in driving the oral 

innate immune response against P. gingivalis. Indeed, the persistent activation 

of TLR-2 by P. gingivalis may therefore play a role in periodontal disease 

pathogenesis. This was elucidated further in vivo as TLR-2-deficient mice were 
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shown resistant to bone loss following oral infection with P. gingivalis (Burns et 

al., 2006). 

The fimbriae of P. gingivalis is a thin, filamentous, cell surface appendage that 

is involved in facilitating cellular adherence, and also contributes to host 

virulence. Through these fimbriae, P. gingivalis can adhere to early colonizing 

bacteria and therefore play a prominent role in the formation of dental biofilms 

(Bostanci, et al., 2007). Fimbriae of P. gingivalis has also been shown to induce 

production of pro-inflammatory cytokines and chemokines, such as IL-1β, IL-8, 

IL-6 and TNF-α, from host cells like dendritic cells, macrophages and endothelial 

cells via TLR-2 and TLR-4 (Aoki et al., 2010; Davey et al., 2008; Jotwani & 

Cutler, 2004; Pollreisz et al., 2010; Takahashi et al., 2006; Zhou, et al., 2005). 

In addition, the fimbriae of P. gingivalis has also shown to induce production of 

IL-1β, IL-6 and IL-8 by gingival epithelial cells; again via TLR-2 (Asai et al., 2001; 

Gao et al., 2012). 

The deoxyribonucleic acid (DNA) of bacteria is known to be involved in 

activation of immune responses. The un-methylated CpG (-C-phosphate-G-) 

dinucleotide component of bacterial DNA is known to be recognised by host cells 

via TLR-9 (Dalpke et al., 2006). In monocytes, DNA of P. gingivalis was shown to 

induce increased expression of IL-1β, IL-6, IL-8 and TNF-α via TLR-9 (Sahingur et 

al., 2010; Sahingur et al., 2012). In addition, P. gingivalis and A. 

actinomycetemcomitans DNA induced increased expression of TNF-α and IL-6 in 

macrophages, gingival fibroblasts and HEK293 cells (human embryonic kidney 

293 cell line) which had been transfected with TLR-9 (Nonnenmacher et al., 

2003). However, study also showed immunosuppression effect of bacterial DNA. 

For example, DNA of P. gingivalis was shown to upregulate the expression of the 

suppressor of cytokine signalling (SOCS), including SOCS1 and SOCS5 and 

downregulate the expression of IL-10 by cultured splenocytes (Taubman et al., 

2007). 

As well as inducing the release of cytokines and chemokines, activation of TLRs 

can also induce the increased expression and release of host antimicrobial 

agents. Once such family of molecules are the antimicrobial peptides (AMPs); 

which includes the α-defensins, -defensins, cathelicidins (LL-37) and 

calprotectin. AMPs are also defined as host defense peptides because of their 
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essential role in innate immunity. AMPs are generally comprised of less than 50 

amino acids and characterized by their cationic and amphipathic properties. In 

general, when AMPs are folded in membrane mimetic environments, one side of 

the AMP is positively charged (mainly due to lysine and arginine residues) and 

the other side contains a considerable proportion of hydrophobic residues (Shai, 

1999). The microbiocidal activity of AMPs is related to this hydrophobic and 

cationic structure. These properties facilitate their attraction and attachment to 

the anionic membranes of bacteria, viruses and fungi. This amphipathic 

structure leads to the creation of pores in microbial membranes which increase 

membrane permeability and ultimately leads to disruptions in ion gradients and 

energy dissipation and hence cell lysis (Izadpanah & Gallo, 2005). In addition to 

their microbiocidal function many AMPs also play a role in dictating immune 

responses in a cytokine/chemokine-like fashion. For example, cathelicidin (LL-

37) is a chemoattractant of neutrophils, monocytes and T cells through the 

formyl peptide receptor-like 1 (FPRL1) (De et al., 2000). In addition, human -

defensin-2 was shown to induce mast cells to release histamine and produce 

prostaglandin D2 (Befus et al., 1999).  

The complement system consists of small protein networks which are involved in 

innate and adaptive immune responses to microorganisms (Dunkelberger & Song, 

2010). The complement system consists of three different converging pathways: 

the classical pathway, the lectin pathway and the alternative pathway. 

Activation of the classical pathway and lectin pathway require binding of 

antibody and its antigen, and binding of mannose binding lectin (MBL) to a 

pathogen’s carbohydrate moieties respectively. The activation of the alternative 

pathway depends on the spontaneous formation of C3b (from C3) which binds to 

carbohydrates, lipids and proteins on the surface of foreign objects; including  

bacteria (Sarma & Ward, 2011). Activation of the complement system leads to 

the production of anaphylatoxins C3a and C5a and vasoactive amines. Vasoactive 

amines cause an increase in vascular permeability, an important stage in the 

acute inflammatory response. In addition, C3a and C5a activate resident mast 

cells inducing the release of cytokines such as TNF-α, which increases the 

expression of adhesion molecules that further promote migration of 

polymorphonuclear leukocytes to sites of inflammation (Ohlrich et al., 2009). In 

vitro and in vivo, C3a and especially C5a are also found to be powerful 



 33

chemoattractants that attract neutrophils, monocytes and macrophages to the 

site of inflammation upon activation (Ohlrich, et al., 2009; Toews & Vial, 1984; 

Toews et al., 1985; van Lookeren Campagne et al., 2007). Activation of C5a 

promotes inflammation through C5a-induced vasodilation, increased vascular 

permeability and flow of inflammatory exudate that encourage migration of 

polymorphonuclear leukocytes and monocytes/macrophages to the site of 

inflammation (Krauss et al., 2010; Snyderman, 1972). The bacterial killing by the 

complement system is achieved by promotion of phagocytosis (e.g., through the 

3b opsonin), and also by direct killing of bacteria through the C5b-9 membrane 

attack complex (Ricklin et al., 2010). Levels of cleaved C3 have been shown to 

be higher in the GCF of the gingivitis patients (Attstrom et al., 1975; Niekrash & 

Patters, 1986; Patters et al., 1989). In addition, even higher levels of cleaved C3 

are found in the GCF of patients with chronic periodontitis (Monefeldt et al., 

1995; Niekrash & Patters, 1985; Niekrash et al., 1984). Similarly, GCF levels of 

C5 were shown to be higher in chronic periodontitis (Attstrom, et al., 1975) and 

C5 was highly expressed in gingival tissue explant cultures from chronic 

periodontitis patients (Lally et al., 1982). 

The resident cells of periodontal tissues include epithelial cells, gingival and 

periodontal ligament fibroblasts, endothelial cells, dendritic cells, osteoblasts, 

osteoclasts and cementoblasts (Hans & Hans, 2011). In the presence of 

pathogens, chemokines such as IL-8 and CXCL10 are released by these resident 

cells and function to induce  the migration of other immune cells such as 

polymorphonuclear leukocytes, monocytes and T lymphocytes into tissues 

(Larsen et al., 1989; Modi et al., 1990; Taub et al., 1993). The migrating 

immune cells, in conjunction with resident cells, serve to regulate periodontal 

innate immunity. GCF contains approximately 95 % polymorphonuclear 

leukocytes, 1-3 % monocytes/macrophages and 1-2 % lymphocytes (Ebersole, 

2003); and activation of these cells, especially polymorphonuclear leukocytes 

and monocytes/macrophages plays a key role in the early defence of periodontal 

tissues by recognising, engulfing and killing microorganisms. Complement 

activation by periodontal pathogens, such as P. gingivalis, induces an acute 

inflammatory response which is characterised by vasodilation, increased vascular 

permeability and increased flow of inflammatory exudate to the site of 

inflammation. Cell migration is aided by the increased expression of a number of 
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chemokines (e.g., IL-8, CXCL10 and CCL20) by oral keratinocytes in response to 

P. gingivalis (Dommisch et al., 2010; Eskan et al., 2008b; Kinane et al., 2006). 

IL-8 is a known chemoattractant for polymorphonuclear leukocytes and T 

lymphocytes (Larsen, et al., 1989; Modi, et al., 1990) and CXCL10 is known as a 

chemoattractant for monocytes and T lymphocytes (Taub, et al., 1993). At sites 

of infection/inflammation, polymorphonuclear leukocytes identify bacteria 

through opsonins (e.g., IgG and C3b); host-derived molecules that adhere to  

bacterial surfaces and target the organisms for engulfment and phagocytosis 

(Nussbaum & Shapira, 2011). Polymorphonuclear leukocytes also kill bacteria 

directly through the release of oxidative and enzymatic molecules (Nussbaum & 

Shapira, 2011; Scott & Krauss, 2012). Like polymorphonuclear leukocytes, 

macrophages also identify bacteria through opsonins (e.g., IgG and C3b) and also 

destroy them by phagocytosis (Stuart & Ezekowitz, 2005; van Lookeren 

Campagne, et al., 2007). Through surface receptors such as TLRs, cluster of 

differentiation 14 (CD14) and CD36 macrophages can recognise microbial 

pathogens by their MAMPs. Activation of macrophage TLRs then promote their 

antimicrobial action, leading to phagocytosis and the further expression of 

cytokines and chemokines, which in turn promote further migration and 

activation of phagocytes and therefore propagate the inflammatory response 

(Taylor et al., 2005).  

Dendritic cells are the most important antigen presenting cells (Steinman, 1991). 

Langerhans cells, a unique epithelial subset of dendritic cells were found in high 

number in the sulcular epithelium, and their presence was found to be positively 

associated with dental biofilm formation (Wilensky et al., 2013). Dendritic cells 

are known for their capability to phagocytose and endocytose pathogens or 

antigens. Once internally processed, dendritic cells generate a major 

histocompatibility complex (MHC)-peptide complex and migrate to secondary 

lymphoid organs to interact with and activate T lymphocytes (Thery & 

Amigorena, 2001). Although not as competent as dendritic cells, macrophages 

have also been shown to have the capacity to act as an antigen presenting cells 

(Barker et al., 2002; Unanue, 1984). Therefore dendritic cells and macrophages 

act as important cells that link innate and adaptive immunity within the 

periodontium.   
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1.3.2 Adaptive immunity and periodontal disease 

There have been numerous studies which indicate an important role for adaptive 

immunity in the pathogenesis of periodontal disease. Anti P. gingivalis 

antibodies were found in serum of patients with chronic periodontitis but not in 

healthy subjects (Kojima et al., 1997; Maeda et al., 1994; Tabeta et al., 2000; 

Whitney et al., 1992). In addition, the antibody levels were found to be 

positively associated with the levels of P. gingivalis in dental biofilm (Kojima, et 

al., 1997). The anti P. gingivalis antibody titre was also found to be elevated in 

GCF of patients with periodontal disease (Mooney & Kinane, 1997; Reinhardt et 

al., 1989; Tew et al., 1985) and the levels in GCF were found to be higher 

compared to the levels in serum (Reinhardt, et al., 1989; Tew, et al., 1985). 

These indicate the involvement of antibody producing cells and therefore 

adaptive immunity in periodontal disease. 

The number of T cells and B cells is elevated in gingival tissue of patients with 

periodontal disease. For example, immunohistochemistry and flow cytometry 

showed increased numbers of T cells and B cells were present in gingival biopsies 

from advanced chronic periodontitis patients compared to healthy subjects 

(Berglundh et al., 1998). Lappin and colleagues (1999) showed 

immunohistochemically that numbers of B cells and T cell were increased in 

periodontal tissue samples compared to healthy subjects and that there were 

more  B cells than T cells in the diseased periodontal tissue. Furthermore T 

helper type 17 (Th17) cells have been found within the periodontium in 

periodontal disease patients and are implicated to play an important 

osteoclastogenic role (Sato et al., 2006). Berglundh and Donati (2005) reviewed 

studies investigating the presence of immune cells in periodontal samples 

(biopsies, GCF and blood) and found that plasma cells are the most common 

cells (50 %), followed by B cells (about 18 %) and that total T cells combined 

contributed only 10 % of the total immune cell population. 

Animal models have shown that lymphocytes are involved either directly or 

indirectly in periodontal disease pathogenesis. For example, Baker and 

colleagues (1999) studied the severe combined immunodeficient (SCID) mice, 

which are lacking in B and T lymphocytes. SCID mice challenged with P. 

gingivalis exhibited less bone loss compared to their immune-competent wild 
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type counterparts, suggesting that the B and T lymphocytes are involved in bone 

resorption. In addition, studies using non-obese diabetic (NOD)/SCID mice, 

engrafted with human peripheral blood lymphocytes (CD4+ T cells) from a 

patient with localized juvenile periodontitis, then challenged with A. 

actinomycetemcomitans, exhibited greater bone loss than wild type control mice 

(Teng et al., 2000). Furthermore, adoptive transfer of A. 

actinomycetemcomitans-responsive B cells to athymic (without thymus) rats 

caused an increase in bone resorption when the rats were challenged with A. 

actinomycetemcomitans compared to rats immunized with non-antigen specific 

cells (Han et al., 2006). Collectively these studies demonstrate that lymphocytes 

have a contributing role in periodontal disease pathogenesis.  

In vitro, oral pathogens were shown to induce cytokine release from oral 

epithelial cells, which in turn induced human monocyte-derived dendritic cells 

(MDDCs) to mediate polarisation of T helper type 2 (Th2) cells from CD4+ T cells 

(Rimoldi et al., 2005). Conversely, oral pathogens could also directly induce 

MDDCs to mediate polarization of T helper type 1 (Th1) cells from CD4+ T cells. 

Human MDDCs in response to the periodontal pathogen P. gingivalis were shown 

to induce maturation and polarization of CD4+ T cells towards both Th1 and Th2 

cells (Jotwani et al., 2003). In addition, the importance of T cells in protecting 

periodontal tissues was shown in vivo as T cell deficient rats were found to 

suffer greater periodontal bone loss compared to control wild type rats (Yoshie 

et al., 1985). Additionally, temporarily B lymphocyte deficient rats inoculated 

with a mixture of periodontal pathogens were also shown to present with greater 

periodontal bone loss compared to controls (Klausen et al., 1989). Together, in 

vivo evidence indicates a potential role for adaptive immunity in the 

pathogenesis of periodontal disease. However, to date, our understanding of this 

role is still limited. 

 

1.3.3 The role of the host immune response in soft tissue 
destruction  

One of the major clinical hallmarks of periodontal disease is the destruction of 

the soft tissues which support the teeth. The destruction of periodontal soft 

tissues can be mediated both by bacterially derived factors as well as host 

response molecules. 
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P. gingivalis possesses several inherent virulence factors which are capable of 

invoking damaging effects on host cells (Bostanci & Belibasakis, 2012). 

Gingipains are a group of cysteine proteinases secreted by P. gingivalis. Up to 85 

% of the total proteolytic activity of P. gingivalis is mediated by gingipains 

(Potempa et al., 1997). Gingipains have various effects on the immune system. 

They have been shown to be capable of disrupting the function of T cells by 

cleaving surface receptors such as CD2, CD4 and CD8 (Kitamura et al., 2002).  

They are also capable of inactivating cytokines such as IL-4, IL-5 and IL-12 by 

their proteolytic activity (Tam et al., 2009; Yun et al., 2001) and therefore 

disrupting immune regulation. In addition, gingipains are also known to 

encourage adhesion of P. gingivalis to host epithelial cells and fibroblasts 

(Andrian et al., 2004; Chen et al., 2001) and directly degrade extracellular 

matrix components such as laminin, fibronectin, collagen type III, IV and V 

(Potempa et al., 2000). 

In addition to gingipains, P. gingivalis secrete enzymes such as chondroitinase 

and heparitinase, which are capable of degrading the proteoglycans within the 

human gingiva (Smith et al., 1997). In addition, P. gingivalis is also known to 

produce proteases such as collagenase, fibrinolysin and phospholipase A, which 

directly degrade periodontal tissues (Schenkein et al., 1999). The activity of 

these enzymes promotes the permeation of P. gingivalis into the gingival 

epithelium and can provide a gateway for other organisms to invade. In addition, 

these enzymes play a direct role in localised tissue destruction.  

Under normal physiological conditions, periodontal tissues achieve homeostasis 

by continuous remodelling of connective tissues. This is achieved by the 

degradation of the old, injured or infected extracellular matrix (ECM). The ECM 

is comprised of interstitial and basement membrane which in turn are held 

together by a variety of proteins: collagen, fibronectin, laminin and 

proteoglycans. These proteins can be degraded by endopeptidases, for example, 

the matrix metalloproteinases (MMPs); metal-dependant endopeptidases which 

play important roles in remodelling by degradation of the ECM (Birkedal-Hansen, 

1993). Fibroblasts play a very important role in restoring the degraded ECM by 

synthesising and secreting  collagen (Midwood et al., 2004). The processes of 

ECM synthesis and degradation occurs throughout life and are finely balanced in 

order to maintain tissue homeostasis. However, in diseases such as arthritis and 
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cancer  degradation of the ECM is not balanced by synthesis, which in part is due 

to inappropriate regulation of endopeptidase activity (Reynolds et al., 1994). 

There are four major groups of MMPs; collagenases (MMP-1, MMP-8 and MMP-13), 

gelatinases (MMP-2 and MMP-9), stromelysins (MMP-3, MMP-10 and MMP-11) and 

membrane-type (MMP-14, MMP-15, MMP-16, MMP- 17)  (Sorsa et al., 2004). 

Collectively, members of the MMP family are able to degrade most of the ECM 

macromolecules (Birkedal-Hansen, 1993). MMPs are secreted in the form of a 

pro-enzyme by host cells such as fibroblasts, keratinocytes, endothelial cells and 

monocytes/macrophages. The release of MMPs by these cells is regulated by 

cytokines and growth factors such as IL-1, TNF-α, platelet-derived growth factor 

(PDGF), transforming growth factor alpha (TGF- α) and epidermal growth factor 

(EGF) which are mostly released by host cells after tissue injury or during 

inflammation (Birkedal-Hansen, 1993; Reynolds, et al., 1994). The activities of 

MMPs are controlled by tissue inhibitors of metalloproteinases (TIMPs) whose 

expression is also regulated by host cells such as keratinocytes, fibroblasts and 

monocytes/macrophages (Birkedal-Hansen, 1993; Reynolds, et al., 1994). The 

balanced activity between MMPs and TIMPs plays an important role in tissue 

homeostasis. Therefore, conditions which lead to increased MMP activity over 

TIMP activity are characterized by tissue destruction (Birkedal-Hansen, 1993; 

Reynolds, et al., 1994). 

Like other diseases that involve soft tissue destruction, such as arthritis and 

cancer, periodontal disease is associated with increased MPP activity (Reynolds, 

et al., 1994). Among all MMPs, MMP-8, MMP-9 and MMP13 were identified as 

potential important contributors in pathologic soft tissue destruction in 

periodontal disease (Sorsa, et al., 2004). Immunohistochemical analysis of 

periodontal tissue samples showed that MMP-1, MMP-3, MMP-8 and MMP-13 were 

highly expressed in gingival samples from periodontal disease patients; but not 

expressed in healthy subjects (Hernandez et al., 2006; Ingman et al., 1994; 

Sorsa et al., 2011; Tervahartiala et al., 2000). In addition, MMP evaluation of 

GCF samples showed elevated levels of MMP-2, MMP-8, MMP-9 and MMP-13 in 

periodontal disease patients compared to healthy subjects (Hernandez et al., 

2010; Hernandez Rios et al., 2009; Sorsa et al., 2010; Sorsa, et al., 2011). 

Additionally, periodontal treatment was also shown to reduce the GCF level of 

MMP-8 (Hernandez, et al., 2010; Mantyla et al., 2006) as well as the plasma 
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level of MMP-9, and a reduction in levels was associated with periodontal healing 

(Marcaccini et al., 2009). The pathologic soft tissue destruction in periodontal 

disease was also seen to associate with increased expression of MMPs over TIMPs 

(Bildt et al., 2008; Garlet et al., 2006; Hernandez Rios, et al., 2009; Pozo et al., 

2005).  

At the cellular level, MMPs such as MMP-1, MMP-3, MMP-8 and MMP-9 were found 

to be expressed by oral keratinocytes, fibroblasts, endothelial cells, 

macrophages and polymorphonuclear leukocytes (Birkedal-Hansen, 1993; Hannas 

et al., 2007; Ingman, et al., 1994). Periodontal pathogens and cytokines were 

shown to regulate expression and release of the MMPs. For instance, P. gingivalis 

and A. actinomycetemcomitans were shown to induce gingival epithelial cells 

and periodontal fibroblasts to express MMP-1, MMP-2, MMP-3 and MMP-9 (Andrian 

et al., 2007; Chang et al., 2002; DeCarlo et al., 1997). In addition, IL-1α, IL-1β, 

TNF-α and IL-17A were shown to induce periodontal fibroblasts to express MMP-

1, MMP-2, MMP-3, MMP-8, MMP-10, MMP-13 and MMP-14 (Ahn et al., 2013; Beklen 

et al., 2007; Chang, et al., 2002; Cox et al., 2006). Immunohistochemical 

analysis revealed immune cells in the periodontium such as neutrophils and 

macrophages, also express MMPs; such as MMP-7, MMP-8 and MMP-13 (Kiili et al., 

2002; Tervahartiala, et al., 2000). Once released, MMPs are capable of 

mediating the degradation of the extracellular matrix, including the interstitial 

and basement membranes of the periodontium (Birkedal-Hansen, 1993). In 

addition, MMPs are also capable of processing the degradation of the bioactive 

substrates such cytokines, chemokines, growth factors, and immune modulators 

thereby mediating the inflammatory response that contributes to the 

pathogenesis of periodontal disease (Kuula et al., 2009; Sorsa et al., 2006). 

 

1.3.4 The role of the host immune response in hard tissue 
destruction  

Like the soft tissues, hard tissue (bone) undergoes life-long remodelling to 

maintain homeostasis. In bone remodelling, the matured and injured bone tissue 

is removed and replaced with new bone tissue. Bone remodelling occurs in 

response to a functional demand such as mechanical loading, where the bone 

tissue is removed when not required and added to in response to an increased 

load. There are two cell types that are directly responsible for bone tissue 
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remodelling: osteoblasts and osteoclasts. Osteoblast cells are responsible for 

bone tissue deposition while osteoclast cells are responsible for resorption of old 

or injured bone tissue. The imbalance of osteoclast cell activity over osteoblast 

cell activity leads to increased osteoclastogenesis (bone destruction) over 

osteblastogenesis (bone formation) and therefore bone resorption. This 

phenomenon is seen in chronic inflammatory diseases such as arthritis and 

periodontal disease (Figure 1-1). 

 
 
 
 
 
 

 
Figure 1-1: Bone remodelling during chronic inflammation 

In health, bone resorption by osteoclasts and bone deposition by osteoblasts 
occurs in balance to maintain alveolar bone homeostasis. Homeostasis is 
controlled by balanced expression of RANKL and OPG within the extracellular 
area. However, chronic inflammation leads to an increase in RANKL production 
by host cells such as fibroblasts, osteoblasts, macrophages and lymphocytes. 
This overproduction of RANKL increases the RANKL:OPG ratio allowing increased 
RANKL to bind to RANK on pre-osteoclast cells surfaces. The RANKL/RANK 
binding complex signals osteoclast formation and leads to increased bone 
resorption. RANKL = receptor activator of nuclear factor-κB ligand; RANK = 
receptor activator of nuclear factor-κB; OPG = osteoprotegerin; and M-CSF = 
macrophage colony-stimulating factor. 
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Osteoclasts are multinucleated cells that are derived from the 

monocyte/macrophage lineage (Boyle et al., 2003; Lerner, 2000). Osteoclast 

cells require cytokines to regulate proliferation and activation. One of the 

earliest cytokines identified in mediating their activation is M-CSF, which is 

produced by many cell types including osteoblasts, fibroblasts, endothelial cells, 

macrophages and lymphocytes (Rajavashisth et al., 1990; Rambaldi et al., 1987; 

Sieff et al., 1988; Yamashita et al., 2012). The role of M-CSF is to promote the 

proliferation and survival of pre-osteoclasts as well as mature osteoclasts 

(Chambers, 2000). Binding of M-CSF to macrophage colony-stimulating factor 

receptor (M-CSFR; a member of the tyrosine kinase receptor superfamily) results 

in activation of several transcription factors including c-Fos (a part of a bigger 

Fos family of transcription factors such as c-Fos and FosB), which leads to the 

initiation of osteoclastogenesis (Bartold, et al., 2010). M-CSF is also involved in 

inducing expression of receptor activator of nuclear factor kappa-B 

ligand (RANKL), another important mediator for osteoclast formation (Ji et al., 

2009). This membrane bound protein is expressed by a variety of cells, including 

activated T cells, B cells, osteoblasts, fibroblasts and bone marrow stromal cells 

(Bartold, et al., 2010; Collin-Osdoby et al., 2001; Katagiri & Takahashi, 2002; 

Quinn & Saleh, 2009). The binding of RANKL to its receptor (RANK) on pre-

osteoclast cells results in osteoclast formation (Bartold, et al., 2010). Therefore, 

in vivo, RANKL has been demonstrated to play a crucial role in bone resorption 

(Lacey et al., 1998; Pettit et al., 2001). The activity of RANKL is however 

mediated by osteoprotegerin (OPG), a soluble tumour necrosis factor receptor-

like molecule that acts as decoy and blocks the RANKL–RANK binding and thus 

prevents osteoclastogenesis (Bartold, et al., 2010). OPG is produced by 

endothelial cells, smooth muscle cells, osteoblasts and bone marrow stromal 

cells (Venuraju et al., 2010). The expression of OPG is also regulated by 

inflammatory cytokines. For instance, an in vitro study showed that IL-1β, and 

TNF-α were capable of inducing OPG release from human umbilical vein 

endothelial cells (HUVECs) (Zannettino et al., 2005).  

The ratio of RANKL/OPG is an important and decisive factor in mediating 

inflammation induced bone destruction. The role of the host immune response in 

modulating osteoclastogenesis has been well defined. Lymphocytes, especially T 

cells, can exert both stimulatory and inhibitory effect on osteoclasts through 
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expression of mediators such as RANKL and M-CSF that are directly involved in 

osteoclastogenesis. In addition, lymphocytes produce pro-inflammatory 

cytokines such as IL-1, IL-6, TNF-α and IL-17A that induce local cells to produce 

RANKL (Quinn & Saleh, 2009). In contrast, lymphocytes also produce OPG, GM-

CSF, IFN-γ, IFN-β, IL-4, IL-10 and IL-13 that can inhibit osteoclastogenesis (Quinn 

& Saleh, 2009). 

In periodontal disease, bone tissue destruction has been associated with an 

elevated RANKL/OPG ratio. Semi quantitative real-time polymerase chain 

reaction analysis showed that gingival tissue sample of chronic periodontitis 

patients expressed high levels of RANKL but low levels of OPG compared to 

samples of healthy gingival tissue (Liu et al., 2003). Indeed, 

immunohistochemical analysis confirmed these findings at the protein level 

(Crotti et al., 2003). The serum and GCF RANKL/OPG ratios are also elevated in 

patients with chronic periodontitis compared with healthy subjects (Baltacioglu 

et al., 2014; Mogi et al., 2004). 

At the cellular level, RANKL was found to be highly expressed by lymphocytes 

and macrophages within diseased gingival tissue (Crotti, et al., 2003; Kawai et 

al., 2006; Liu, et al., 2003). In contrast, OPG was found to be equally expressed 

by endothelial cells in tissues of both chronic periodontitis patients and healthy 

subjects (Crotti, et al., 2003). In addition, in vitro analysis has showed that 

RANKL and OPG can also be expressed by cells of mesenchymal origin such as 

gingival fibroblasts and periodontal ligament cells (Kajiya et al., 2010). In vitro, 

activated T cells and B cells have also been found to express high levels of 

RANKL. However, the expression of OPG by these cells was either below the 

level of detection or at most in moderate levels (Choi et al., 2001; Kawai, et al., 

2006). The periodontal pathogen, A. actinomycetemcomitans, was shown to 

activate polarization of peripheral blood lymphocytes to become RANKL 

producing T cells and B cells (Kawai, et al., 2006). In addition, co-culture of 

RANKL-producing activated CD8+ T cells with osteoclast cells showed that 

blockage of OPG by a monoclonal antibody lead to increased osteoclastic activity 

(Choi, et al., 2001). In vitro, connective tissue cells such as gingival fibroblasts 

and periodontal ligament fibroblasts were also found to express RANKL and OPG 

upon stimulation with either cytokines or pathogens. For instance, IL-1α 

stimulation was shown to induce increased expression of OPG (Hormdee et al., 
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2005). In addition, P. gingivalis was shown to induce increased expression of 

RANKL and decreased expression of OPG from gingival fibroblasts and 

periodontal ligament fibroblasts (Belibasakis et al., 2007). Therefore, the 

evidence suggests that periodontal pathogens can modulate the RANKL/OPG 

ratio and drive the hard tissue destruction associated with periodontal disease. 

 

1.4 IL-17 family cytokines 

 

1.4.1 Introduction 

The IL-17 family cytokines is one of the most recently described. To date, the 

family consists of six members (IL-17A - IL-17F) (Iwakura et al., 2011). IL-17 

family cytokines signal through complexes of five known receptors (IL-17RA - IL-

17RE) (Zhang et al., 2011b). IL-17A, which is also known as IL-17, is the founding 

member of the IL-17 family cytokines. This cytokine was discovered in 1995 by 

Yao and colleagues as being expressed by a specific subset of CD4+ T cells, 

termed Th17 cells (Yao et al., 1995a; Yao et al., 1995b). Since its discovery, 

Th17 cells have been found to play central roles in the defence of mucosal 

surfaces against extracellular pathogens and contribute to human and 

experimental autoimmunity (Gaffen, 2009a). The discovery of IL-17A and Th17 

cells stimulated great interest among immunologists which eventually led to the 

discovery of additional members of the IL-17 family; IL-17B, IL-17C, IL-17D, IL-

17E and IL-17F by a sequence homology search of IL-17A (Iwakura, et al., 2011). 

At present our knowledge with regard to the role of the IL-17 family cytokines 

play in health and disease, how these cytokines can interact to co-ordinate 

immune responses and the exact signalling mechanisms of some family members 

is lacking. 

 

1.4.2 IL-17A, IL-17F and IL-17A/F 

The human IL-17A cytokine is a glycoprotein expressed as a 155 amino acid 

precursor protein, which is released as a mature 136 amino acid protein after 

cleavage to remove the signal peptide (Fossiez et al., 1996). Human IL-17A is 

secreted as a 35 kDa homodimer which can either be glycosylated or 

unglycosylated (Fossiez, et al., 1996; Yao, et al., 1995b). The IL-17F protein 
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consists of 163 amino acids and shares 40 % homology with IL-17A and 26 % 

homology with IL-17C (Starnes et al., 2001). Like IL-17A, IL-17F is expressed as a 

disulphide-linked homodimer glycoprotein containing a cysteine-knot motif 

(Fossiez, et al., 1996; Hymowitz et al., 2001). In addition to the formation of IL-

17A and IL-17F homodimers, in vitro a heterodimeric IL-17A/F molecule has 

been shown to be produced by HEK293 cells (a human embryonic kidney cell 

line) and activated human CD4+ T cells (Wright et al., 2007). 

IL-17A, IL-17F and IL-17A/F are known to be produced by immune (innate and 

adaptive) cells such as Th17 cells, CD8+ T cells, γδ T cells, natural killer (NK) 

cells, natural killer T (NKT) cells, macrophages, neutrophils and mast cells; as 

well as stromal cells (Table 1-1). Interestingly, studies have shown that IL-17A 

and IL-17F are not always co-expressed. For example, evaluation of colonic 

epithelial cell lines (CMT93 and Colon26) revealed expression of the messenger 

ribonucleic acid (mRNA) encoding IL-17F and not IL-17A (Ishigame et al., 2009).  

Studies have demonstrated that IL-23 is important in promoting Th17 cell 

development from memory and naïve CD4+ T cells (Aggarwal et al., 2003; 

Harrington et al., 2005; Oppmann et al., 2000). In addition, stimulation of Th17 

cells with IL-23 alone or in combination with phorbol 12-myristate 13-acetate 

(PMA) and ionomycin has been shown to increase or augment the expression of 

IL-17A and IL-17F (Aggarwal, et al., 2003; Harrington, et al., 2005; Park et al., 

2005). Similarly, γδ T cells, IL-17A and IL-17F were found constitutively 

expressed but expression was increased in response to either IL-23, PMA, 

ionomycin or pathogens (Do et al., 2010; Haas et al., 2009; Lockhart et al., 

2006; Martin et al., 2009; Sutton et al., 2009). In addition, purified mouse γδ T 

cells stimulated with heat-killed Mycobacterium tuberculosis, heat-killed 

Escherichia (E.) coli and LPS from Salmonella minnesota showed increased 

expression of IL-17A in vitro. Furthermore, addition of IL-23 to the stimulating 

culture led to further augmented expression of IL-17A (Martin, et al., 2009). 

Table 1-1 details further the variety of stimulants which induce IL-17A, IL-17F 

and IL-17A/F expression in a variety of cell types.  
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Cell type 
 

 
Cytokine 
expressed 

 
Stimulators or conditions 

 
References 

Th17 cells 
IL-17A  
IL-17F 
IL-17A/F 

MOG peptide, IL-23, combinations of PMA & ionomycin, anti-CD3, anti-CD28 & 
rhIL-2 

(Aggarwal, et al., 2003; Chang & Dong, 
2007; Harrington, et al., 2005; Liang et al., 
2007; Park, et al., 2005; Wright, et al., 
2007) 

γδ  T cells 
IL-17A 
IL-17F 

Combinations of PMA & ionomycin, heat-killed Mycobacterium tuberculosis, E. 
coli (heat-killed), Candida (C.) albicans (live), IL-23 and IL-1β 

(Do, et al., 2010; Haas, et al., 2009; 
Lockhart, et al., 2006; Martin, et al., 2009; 
Sutton, et al., 2009) 

CD8+ T cells IL-17A Cells derived from lesional psoriatic skin (unstimulated) (Teunissen et al., 1998) 

NK cells IL-17A Combinations of PMA & ionomycin, and soluble toxoplasma antigen (STAg) (Luci et al., 2009; Passos et al., 2010) 
NKT cells IL-17A Combinations of IL-23 & anti-CD3 antibody (Rachitskaya et al., 2008) 

Monocytes/ 
macrophages 

IL-17A 
IL-17F 

LPS (E. coli), chitin, Bordetella pertussis toxin, macrophages isolated from 
BALF of asthmatic patients and macrophages isolated from colon of IBD 
patients 

(Andreasen et al., 2009; Bosmann et al., 
2013; Da Silva et al., 2008; Fujino et al., 
2003; Michel et al., 2007; Song et al., 2008; 
Starnes, et al., 2001) 

Mast cells 
 

IL-17A 
IL-17F 

TNF-α, IgG complexes, C5a, LPS (not specify), combinations of LTA (not 
specify) & MALP-2, IgE cross-linking and mast cells from synovial tissue of RA 
patients 

(Hueber et al., 2010; Ikeda et al., 2003; 
Mrabet-Dahbi et al., 2009) 

Neutrophils IL-17A 
Bordetella pertussis (live), Neutrophils from kidney following acute kidney 
ischaemic-reperfusion injury 

(Andreasen, et al., 2009; Li et al., 2010) 

Epithelial 
cells 

IL-17A 
IL-17F 

Citrobacter rodentium, lung epithelial cells in response to I.P ovalbumin 
injection  

(Ishigame, et al., 2009; Suzuki et al., 2007) 

Table 1-1: Cellular distribution of IL-17A, IL-17F and IL-17A/F 

MOG = myelin oligodendrocyte glycoprotein; PMA = phorbol 12-myristate 13-acetate; LTA = lipoteichoic acid; MALP-2 = macrophage-
activated lipopeptide 2 ; Ig = immunoglobulin (e.g., IgG, IgE and IgE); NK cells = natural killer cells; NKT cells = natural killer T cells; RA 
= rheumatoid arthritis; IBD = inflammatory bowel disease; BALF = bronchoalveolar lavage fluid; and I.P = intraperitoneal.  
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1.4.3 Receptors for IL-17A, IL-17F and IL-17A/F 

IL-17F and IL-17A have the highest homology among members of IL-17 family 

cytokines and they are known to bind to the same receptor. IL-17A receptor (IL-

17RA) was found to be a pivotal receptor for IL-17A signalling as stimulation of 

fibroblast cells isolated from IL-17RA deficient mice showed no expression of the 

IL-17A induced chemokine CXCL1 (Toy et al., 2006). Although IL-17RA also binds 

IL-17F and IL-17A/F, studies have shown that IL-17RA binds with high affinity to 

IL-17A, medium affinity to IL-17A/F and low affinity to IL-17F (Kuestner et al., 

2007; Wright, et al., 2007). In addition, studies have shown that IL-17RC is also 

required for IL-17A signalling. This was demonstrated using small interfering RNA 

(siRNA) knockout of IL-17RA and IL-17RC in synoviocytes isolated from 

rheumatoid arthritis patients where  deficiency of either receptor failed to 

induce IL-17A mediated expression of IL-6 and IL-8 (Zrioual et al., 2008). In 

addition, IL-17RC has been shown to have similar affinities for IL-17A, IL-17F and 

IL-17A/F (Kuestner, et al., 2007; Wright, et al., 2007). Furthermore, 

immunoprecipitation studies also showed that IL-17RA and IL-17RC are capable 

of assembling in vitro, supporting a model in which IL-17A, IL-17F and IL-17A/F 

signalling are mediated by a heterodimeric receptor complex containing at least 

one IL-17RA and IL-17RC protein (Toy, et al., 2006). Since IL-17A, IL-17F and IL-

17A/F showed different binding affinity to IL-17RA it was hypothesised that they 

induce differential intracellular signalling strength. This was confirmed in an in 

vitro study that showed IL-17A had the greatest capability of inducing mouse 

lung epithelial cells to produce CXCL1, followed by IL-17A/F and IL-17F (Liang, 

et al., 2007).     

Numerous cell types, such as T cells, B cells, macrophages, dendritic cells, and 

colonic mucosal epithelial cells have been shown to co-express IL-17RA and IL-

17RC (Ishigame, et al., 2009). In addition, human foreskin fibroblast, synovial 

fibroblasts, brain endothelial cells and bronchial epithelial cells have been 

shown to be responsive to IL-17A, IL-17F and IL-17A/F stimulation. This therefore 

suggests a variety of cell types are capable of responding to IL-17 signalling. 

 



 

 
 

47

1.4.4 Effect of IL-17A, IL-17F and IL-17A/F on target cells 

IL-17A, IL-17F and IL-17A/F are known to be involved in inflammation and host 

defence against infection. Activation of signalling pathways through IL-17RA by 

IL-17A, IL-17F or IL-17A/F induces the release of pro-inflammatory and 

antimicrobial proteins, which play a major role in recruiting neutrophils, fighting 

pathogens and if expressed in an unbalanced fashion promote tissue destruction. 

IL-17A, IL-17F and IL-17A/F are known to induce expression of cytokines (e.g., 

IL-6, G-CSF and GM-CSF), chemokines (e.g., CXCL1, CXCL2 and CXCL8), matrix 

metalloproteinases (e.g., MMP1, MMP3 and MMP9), and antimicrobial peptides 

(e.g., β defensin-2, S100A7 and S100A8) from a variety of cells (Table 1-2). 

Indeed, despite being originally identified as a T cell associated cytokine the 

majority of IL-17A released during an inflammatory response is now known to be 

produced by, and act upon, innate immune cells (Cua & Tato, 2010).  
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Stimulant 
 

 
Target cells 

 
Effects 

 
References 

IL-17A Macrophages Increase expression of IL-1β, IL-3, 
IL-6, IL-9, TNF-α, CCL5, MMP-3 and 
PGE3 

(Barin et al., 2012; 
Ishigame, et al., 2009; 
Jovanovic et al., 1998) 
 

IL-17A Neutrophils Increase expression of MMP-9 and 
myeloperoxidase 
 

(Zelante et al., 2007) 

IL-17A Dendritic cells Promotes development of dendritic 
cells from bone marrow-derived 
cells and increases expression of 
CD11c, CD40, CD80, CD86, MHC 
class II 
 

(Antonysamy et al., 
1999; Schnyder-
Candrian et al., 2006) 

IL-17A  
IL-17F 
IL-17A/F 

Keratinocytes Increase expression of antimicrobial 
peptides (B-defensins, S100A7, 
S100A8 and S100A9), ICAM-1, IL-6, 
IL-8, CXCL1 and GM-CSF. 

(Albanesi et al., 1999; 
Albanesi et al., 2000; 
Kawaguchi et al., 2006; 
Liang, et al., 2007; 
Liang et al., 2006; 
Teunissen, et al., 1998; 
Wright, et al., 2007) 
 

IL-17A  
IL-17F 
IL-17A/F 

Fibroblasts Increase cells proliferation and 
migration; and Increase expression 
for IL-8, IL-6, PGE2, G-CSF, ICAM-1, 
MMP-1, MMP-3, MMP-13, CCL2, 
CCL7, CXCL1 and CXCL20 
 

(Chang & Dong, 2007; 
Fossiez, et al., 1996; Hu 
et al., 2010; Park, et 
al., 2005; Valente et 
al., 2012; Yagi et al., 
2007; Yao, et al., 
1995b) 
 

IL-17A 
IL-17F 

Endothelial 
cells 

Increase expression of  IL-6, G-CSF 
GM-CSF, TGF-B1, TGF-B2, MCP-1, 
Lymphotoxin-B and IL-2 
 

(Fossiez, et al., 1996; 
Numasaki et al., 2004a; 
Numasaki et al., 2004b) 

IL-17A 
IL-17F 

Synoviocytes Increased expression of IL-6, IL-8, 
G-CSF, GM-CSF, CXCL1, CXCL2, 
CXCL5, CCL20, VEGF and PGE2 

 

(Chabaud et al., 1998; 
Zrioual, et al., 2008) 

IL-17A Osteoblasts Increased expression of CXCL1, 
CXCL2, CXCL5, CCL2, PGE2, and 
RANKL 

(Ruddy et al., 2004; 
Shen et al., 2005) 

Table 1-2: Effect of IL-17A, IL-17F and IL-17A/F on target cells   
 

 



 

 
 

49

1.4.5 Role of IL-17A, IL-17F and IL-17A/F in inflammation and 
infection 

IL-17A, IL-17F and IL-17A/F play a number of immuno-regulatory roles during 

inflammation and infection. In a rheumatoid arthritis model, IL-17A was found 

localised to the T cell infiltrate in rheumatoid synovium samples (Chabaud et 

al., 1999), indicating the possible role of IL-17A in the pathogenesis of 

rheumatoid arthritis. In addition, supernatants from synovial tissue of 

rheumatoid arthritis patients, cultured ex vivo, was found to contain biologically 

active IL-17A that induced in vitro synoviocyte cultures to produce IL-6 and 

leukaemia inhibitory factor (LIF) (Chabaud, et al., 1998). 

In a collagen induced arthritis (CIA) model, the contribution of IL-17A in the 

pathogenesis of arthritis was determined when the disease was found to be 

markedly suppressed in IL-17-deficient mice (Nakae et al., 2003a). The authors 

also showed that IL-17A was responsible for the priming of collagen-specific T 

cells as well as increasing production of collagen-specific IgG2a, which suggest 

that IL-17A plays role in the development of CIA by activating autoantigen 

specific cellular and humoral responses. In addition, IL-1 receptor antagonist (IL-

1RA) deficient mice showed spontaneous arthritis development; which was 

hypothesised to be due to unopposed activity of IL-1. However, the spontaneous 

development of arthritis was not observed in IL-1RA deficient mice which were 

also deficient in IL-17A (Nakae et al., 2003b); suggesting that IL-17A plays a 

pivotal role in disease pathogenesis. Furthermore, elevated IL-17A expression 

was shown in T cells isolated from the lymph nodes of IL-1RA deficient mice.  

The role of IL17F in the pathogenesis of rheumatoid arthritis is not as well 

characterised as IL-17A. Using the IL-1 receptor antagonist-deficient mice, the 

spontaneous development of arthritis was found to be only partially suppressed 

in mice that were also IL-17F deficient (Ishigame, et al., 2009). The contribution 

of the IL-17A/F heterodimer to the pathogenesis of arthritis remains to be 

determined. 

In an experimental autoimmune encephalomyelitis (EAE) study, IL-17A deficient 

mice exhibited significantly delayed onset and progression of disease compared 

to wild type mice. In addition, IL-17F deficient mice only showed a slight delay 
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in disease onset and progression compared to wild type mice (Yang et al., 2008). 

This study also showed that CD4+ T cell infiltration into the central nervous 

system tissues was greatly reduced in IL-17A deficient and IL-17F deficient mice. 

However, mRNA expression of the chemokines, CCL2 and CCL7 were reduced in 

the central nervous system of IL-17F deficient mice; but this reduction in 

expression was more profound in IL-17A deficient mice. In addition, CXCL1 

expression in the central nervous system was severely impaired in IL-17A 

deficient mice but not in IL-17F deficient. This suggested that IL-17A is playing a 

more pivotal role than IL-17F in the initiation of inflammation in EAE. Indeed 

intraperitoneal injection of an anti-IL17A antibody was shown to delay the 

development of EAE when compared to injection with control IgG (Park, et al., 

2005). Furthermore, mice administered with recombinant human IL-17A (rhIL-

17A) developed signs of EAE (Park, et al., 2005). Similarly to arthritis, the 

contribution of the IL-17A/F heterodimer to the pathogenesis of EAE remain to 

be determined. 

The roles of IL-17A and IL-17F have also been studied in inflammatory bowel 

diseases; such as ulcerative colitis and Crohn’s disease. Immunohistochemical 

analysis showed that IL-17A was expressed in colonic samples of patients with 

ulcerative colitis and Crohn’s disease, but not in healthy subjects. In addition, 

double-staining with anti-CD3 and anti-CD86 antibodies showed that those IL-

17A+ cells in the colonic samples were T cells and monocytes/macrophages 

(Fujino, et al., 2003). IL-17A mRNA expression was also found to be significantly 

increased in tissue of patients with ulcerative colitis and Crohn’s disease which 

also co-incided with increased circulating levels of IL-17A (Fujino, et al., 2003). 

As for IL-17F, mRNA expression was found to be significantly increased in 

inflamed colonic lesions (Seiderer et al., 2008). In an acute 

trinitrobenzenesulfonic acid-induced colitis mouse model, IL-17A was found to 

be increased in colonic tissue samples and accompanied with colonic 

inflammation and increased expression of IL-6 and MIP-2. However, the 

trinitrobenzenesulfonic acid-induced colitis was  found to be suppressed in IL-

17R deficient mice (Zhang et al., 2006). Furthermore, in a dextran sulphate 

sodium (DSS) acute colitis model, symptoms such as diarrhoea, bloody faeces 

and increased weight loss were found to be more severe in IL-17A deficient 

mice, whereas milder symptoms were observed in IL-17F deficient mice as 
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compared to the wild type controls (Yang, et al., 2008). Similarly to arthritis and 

EAE the contribution of the IL-17A/F heterodimer to the pathogenesis of 

inflammatory bowel diseases remain to be determined. 

IL-17A, IL-17F and IL-17A/F were found to play important roles in infection. In 

vivo, mice intraperitoneally injected with E. coli LPS were shown to have 

increased serum levels of IL-17A, IL-17F and IL-17A/F (Bosmann, et al., 2013). In 

a Pneumocystis carinii mouse infection model, IL-17A expression was found to be 

increased in the lung of the infected mice. In addition, if the mice were intra-

nasally administered with an anti-IL17A neutralising antibody, the Pneumocystis 

carinii burden was found to increase 10,000-fold at four weeks post-infection 

when compared to the control mice (Rudner et al., 2007). In the Klebsiella 

pneumonia lung infection model, the lung production of IL-17A and IL-17F was 

found to be significantly reduced in the IL-23 p19 deficient mice and these mice 

exhibited substantial mortality from a sub-lethal dose of Klebsiella pneumonia 

(103 CFU). In contrast, administration of IL-17A was shown to restore the 

bacterial control in the lung (Happel et al., 2005). IL-17R deficient mice infected 

with the Klebsiella pneumonia also showed a 100 % mortality rate after 48 h, 

compared with only a 40 % mortality rate in the controls. The IL-17R deficient 

mice also presented with delayed neutrophil migration and greater 

dissemination of Klebsiella pneumonia compared with control mice (Ye et al., 

2001). The role of IL-17A, IL-17F and IL-17A/F in the recruitment of neutrophils 

was therefore investigated in vivo. In mice which were intranasally challenged 

with IL-17A, IL-17F and IL-17A/F, the IL-17A/F challenged mice demonstrated a 

significant increase in bronchoalveolar lavage fluid neutrophils, CXCL1 and 

CXCL5 (Liang, et al., 2007). Although the induction of neutrophil recruitment 

was similar in mice challenged with IL-17A and IL-17A/F, the bronchoalveolar 

lavage fluid expression of CXCL1 and CXCL5 was significantly less in mice treated 

with IL-17A/F compared to those challenged with IL-17A. In addition, mice 

treated with IL-17F were shown to have lower levels of neutrophil recruitment 

and expression of CXCL1 and CXCL5. These data indicate that IL-17A, IL-17F and 

IL-17A/F were required in the protection against infection. However, 

overproduction of IL-17A, IL-17F and IL-17A/F could induce increased migration 

of neutrophils to the site of inflammation. 
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1.4.6 IL-17B, IL-17C and IL-17D 

IL-17B, IL-17C and IL-17D remain poorly characterized. Homology sequence 

analysis showed that IL-17A, IL-17B and IL-17C shared 26 – 28 % amino acid 

identity (Li et al., 2000a). The predicted precursor proteins of IL-17B and IL-17C 

were found to be 180 and 197 amino acids respectively (Li, et al., 2000a). IL-

17D, shares 27 %  homology with IL-17B and is 202 amino acids in length, making 

IL-17D the largest member of the IL-17 family (Starnes et al., 2002). IL-17B, but 

not IL-17C, was found to be expressed in the human spinal cord, pancreas, small 

intestine and stomach (Li, et al., 2000a; Shi et al., 2000). IL-17B was also found 

to be expressed in chondrocytes of normal bovine articular cartilage (Moseley et 

al., 2003) and in inflamed cartilage from collagen induced arthritis mice 

(Yamaguchi et al., 2007). IL-17B was also found to be expressed in the neuron 

cell body and axons (Moore et al., 2002). IL-17C was found to expressed in the 

broad range of cells such as CD4+ T cells, CD11b+ MHC class II+ macrophages, and 

CD11c+ MHC class II+ dendritic cells (Yamaguchi, et al., 2007).  

Of all the IL-17 family cytokines IL-17D is the least well studied. IL-17D has been 

found to be highly expressed in skeletal muscle, brain, adipose tissue, heart, 

lung and pancreas and lowly expressed in bone marrow, the fetal liver and 

kidney (Starnes, et al., 2002). IL-17D was also found to be lowly expressed in 

resting CD4+ T cells and resting CD19+ B cells, and even lower expression was 

found in activated CD4+ T cells, resting and activated CD8+ T cells, resting and 

activated CD14+ monocytes and activated CD19+ B cells (Starnes, et al., 2002). 

 

1.4.7 Receptors for IL-17B, IL-17C and IL-17D 

In comparison to IL-17A, IL-17F and IL-17A/F our knowledge of the receptor 

complexes for IL-17B, IL-17C and IL-17D is not as complete. Kinetic binding 

analysis showed that IL-17B binds to IL-17RB with relatively high affinity, which 

was confirmed in vitro by co-immunoprecipitation (Shi, et al., 2000). IL-17RB 

has been shown to be expressed in the brain, skeletal muscle, lung, stomach, 

pancreas, liver, colon, small intestine, kidney and testis (Lee et al., 2001; Shi, 

et al., 2000). IL-17RB has also been shown to be expressed by a number of cell 

lines such as WRL-68 human embryonic liver cells, Colo587 pancreas 
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adenocarcinoma-mesothelioma cells, PANC-1 pancreatic epithelioid carcinoma 

cells, HeLa cancer cells, K562 leukemia cells, Raji Burkitts lymphoma cells and 

colorectal adenocarcinoma cell lines (Shi, et al., 2000). Despite its affinity for 

IL-17RB, to date there is no conclusive proof that binding initiates IL-17B 

signalling and therefore the role of IL-17B in the immune system is not presently 

understood (Chang & Dong, 2011). Recently, it has been found that IL-17C is a 

ligand for the orphan receptor IL-17RE, and the IL-17C/IL-17RE signalling 

complex mediates host defence and autoimmune inflammation (Chang et al., 

2011; Ramirez-Carrozzi et al., 2011; Song et al., 2011). However, the 

receptor(s) for IL-17D at present remain unknown.  

 

1.4.8 Role of IL-17B, IL-17C and IL-17D in inflammation and 
infection 

The role of IL-17B, IL-17C and IL-17D in both health and disease remain poorly 

characterised. However, initial findings suggest that IL-17B, IL-17C and IL-17D 

have pro-inflammatory functions and play a role in the pathogenesis of chronic 

inflammatory diseases. For instance, in the collagen induced arthritis mouse 

model, levels of IL-17B and IL-17C were found to be highly elevated in the 

arthritic paws of mice (Yamaguchi, et al., 2007). In addition, IL-17B and IL-17C 

bone marrow chimeric mice, prepared by intravenous injection of bone marrow 

precursor cells that had been retrovirally transduced with IL-17B and IL-17C, 

were clearly shown to exacerbate arthritis, which was accompanied with 

increased serum level of TNF-α (Yamaguchi, et al., 2007). Intraperitoneal 

injection of rhIL-17B was also shown to cause a dose-dependent influx of 

polymorphonuclear leukocytes into the peritoneal cavity within 4 h (Shi, et al., 

2000). In addition, intranasal administration of adenovirus expressed IL-17C was 

shown to cause bronchoalveolar lavage neutrophilia (Hurst et al., 2002). 

Additionally, in vitro analysis showed that IL-17B and IL-17C were capable of 

inducing increased expression of IL-1β from a mouse fibroblast cell line (3T3), 

and both IL-17B and IL-17C were also shown to induce increased expression of IL-

1β, IL-6 and IL-23 from mouse macrophages (Yamaguchi, et al., 2007). 

Furthermore, Mycoplasma pneumoniae and a TLR-5 agonist (flagellin) were also 

shown to induce IL-17C expression in lung and gut tissues (Van Maele et al., 

2010; Wu et al., 2007).  
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IL-17D mRNA expression has been detected in rheumatoid nodules (Stamp et al., 

2008) indicating a role in joint inflammation. However, the role of IL-17D in 

disease pathogenesis is little studied in vivo.  In vitro, IL-17D has been shown to 

have an inhibitory effect on myeloid progenitor cell populations (Starnes, et al., 

2002) and also inhibits hematopoietic progenitor colony formation (Broxmeyer et 

al., 2006). In addition, IL-17D was also reported to induce endothelial cells to 

produce IL-6, IL-8 and GM-CSF via NF-kB (nuclear factor kappa-light-chain-

enhancer of activated B cells) dependent pathways (Starnes, et al., 2002).  

 

1.4.9 IL-17E 

IL-17E is a 177 amino acid protein with 16 – 20 % homology to IL-17A, IL-17B and 

IL-17C (Lee, et al., 2001). IL-17E mRNA has been detected in brain, spinal cord, 

skeletal muscle, heart, lung, salivary gland, thymus, thyroid gland, trachea, 

liver, spleen, small intestine, stomach, colon, uterus, placenta, kidney, prostate 

and testis tissue (Fort et al., 2001; Kim et al., 2002; Lee, et al., 2001; Pan et 

al., 2001). Studies have also shown that a number of cells are capable of 

expressing IL-17E including; polarized Th2 cells (Fort, et al., 2001), primary bone 

marrow-derived mast cells (Ikeda, et al., 2003), alveolar macrophages (Kang et 

al., 2005), eosinophils (Dolgachev et al., 2009), basophils (Wang et al., 2007b), 

lung epithelial cells (Angkasekwinai et al., 2007), intestinal epithelial cells (Zaph 

et al., 2008) and brain capillary endothelial cells (Sonobe et al., 2009). 

IL-17RB is the known receptor for IL-17E (Lee, et al., 2001; Shi, et al., 2000). In 

addition, although in vitro binding assays showed IL-17E does not bind to IL-17RA 

directly, IL-17RA forms a complex with IL-17RB for effective IL-17E signalling (Ely 

et al., 2009; Hymowitz, et al., 2001). In vitro, naïve T cells isolated from wild 

type mice cultured in the presence of IL-17E, TGF-β and IL-4 exhibited 

significantly enhanced IL-9 secretion. However, no similar effect was observed 

with naïve T cells isolated from IL-17RA-deficient mice (Angkasekwinai et al., 

2010). Furthermore, splenocytes isolated from either IL-17RB knockout or IL-

17RA knockout mice did not release IL-5 or IL-13 in response to IL-17E 

stimulation (Rickel et al., 2008). In addition, in vivo, both IL-17RB and IL-17RA 

knockout mice did not respond to intranasal administration of IL-17E compared 

to wild type mice which exhibited increased bronchoalveolar lavage fluid 
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cellularity, increased bronchoalveolar lavage fluid IL-5 and IL-13 levels and also 

increased expression of lung CCL2, CCL11, IL-5, IL-13, IL-9 and IL-10 mRNA 

(Rickel, et al., 2008). These studies therefore confirmed that both IL-17RA and 

IL-17RB are required for effective IL-17E signalling. 

 

1.4.10 Effect of IL-17E on target cells 

IL-17E is a unique member of the IL-17 family cytokines. It differs from other IL-

17 family members in its ability to promote a Th2-biased inflammatory response. 

In addition, IL-17E is a ‘double edged sword’ as it also has the ability to down 

regulate localised destructive inflammatory responses; including the ability to 

inactivate the function of Th17 cells. As stated above, a number of cells express 

IL-17RB such as Th2 cells, mast cells, macrophages, eosinophils, basophils, 

epithelial cells and endothelial cells thus make those cells possible targets for 

IL-17E signalling. 

IL-17E is known to regulate Th2 cell differentiation, which is associated with 

sustained expression of transcription factors JunB (Jun B proto-oncogene) and 

GATA-3 (GATA binding protein 3) (Angkasekwinai, et al., 2007; Wang, et al., 

2007b).  In vitro studies showed that IL-17E treatment of Th2 cells resulted in 

increased expression of the prototypic Th2 cytokine, IL-4 (Angkasekwinai, et al., 

2007; Wang, et al., 2007b). In addition, IL-17E regulates IL-4 expression through 

induction of the NFATc1 (nuclear factor of activated T cells, cytoplasmic 1) and 

JunB transcription factors, which in turn leads to the IL-4-dependent 

upregulation of GATA-3 expression (Angkasekwinai, et al., 2007). Interestingly, 

IL-17E can regulate Th2 memory cell differentiation and the production of IL-5 

and IL-13 in an IL-4-independent manner, by sustained expression of 

transcription factors MAF, JunB and GATA-3 (Wang, et al., 2007b). IL-17E was 

also demonstrated to promote the differentiation of the recently discovered 

innate cell populations; such as natural helper cells (NHCs), multipotent 

progenitor type2 (MMPtype2) cells, nuocytes, and innate type 2 helper (Ih2) cells 

(Moro et al., 2010; Neill et al., 2010; Price et al., 2010; Saenz et al., 2010b). In 

addition, stimulation of these cells with IL-17E has been shown to induce 

expression of Th2 related cytokines such IL-4, IL-5 and IL-13 (Saenz, et al., 
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2010b). These finding suggest that IL-17E could also induce a Th2-biased 

immunity through interactions with innate immune cell populations. 

IL-17E has been found to have a key role in negatively regulating potentially 

damaging inflammatory responses. IL-17E has been demonstrated to block the 

function of Th17 cells. It is known that the differentiation of Th17 cells is 

promoted by IL-6 and TGF-β1, whereas IL-23 is required for the subsequent 

expansion or survival of Th17 cells (Weaver et al., 2007). In vitro, addition of IL-

23 to a culture of naïve CD4+ T cells and LPS-activated CD11c+ dendritic cells, in 

the presence of neutralizing antibodies against IFN-γ and IL-4, had been shown 

to induce IL-17-producing cells (Kleinschek et al., 2007). Interestingly, addition 

of IL-17E to the culture caused the population of Th17 cells induced by IL-23 to 

reduce by half, accompanied by reduced expression of IL-17A and increased 

expression of IL-13. Furthermore, this study also showed that addition of an anti-

IL-13 antibody to the co-culture caused an increase in the population of Th17 

cells accompanied by increased expression of IL-17A (Kleinschek, et al., 2007). 

IL-17E is known to be capable of inducing IL-13 release from immune cells such 

as Th2 cells, mast cells and macrophages (Angkasekwinai, et al., 2010; Ikeda, et 

al., 2003; Kang, et al., 2005). It has therefore been hypothesised that IL-17E 

induced expression of IL-13 is the mechanism by which it regulates Th17 

responses. In addition to IL-13, IL-4 has also been shown to inhibit proliferation 

and activation of Th17 cells by a mechanism which is dependent on STAT6 (signal 

transducer and activator of transcription 6) (Cooney et al., 2011; Harrington, et 

al., 2005; Park, et al., 2005). Since IL-17E was also shown to induce Th2 cells to 

produce IL-4 (Angkasekwinai, et al., 2007; Wang, et al., 2007b) it has also been 

hypothesised that IL-17E inhibits Th17 cell proliferation via IL-4. 

IL-17E can inhibit cytokine and chemokine production from cells stimulated with 

pathogenic bacteria. IL-17E, together with other cytokines such as IL-4, IL-13 

and IL-10, has been shown to inhibit production of chemokines (e.g., CCL2, 

CCL3, IL-8 and CXCL9) by naive CD4+ T cells stimulated with LPS or IFN-γ (Stolfi 

et al., 2011). In addition, IL-17E was also shown to inhibit production of IL-23 

and TNF-α by Th1 cells stimulated by bacterial LPS or PNG (Caruso et al., 2009a; 

Caruso et al., 2009b). Furthermore, IL-17E has been shown to directly inhibit 
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LPS-induced IL-23 expression by macrophages, independent of the pathway 

related to IL-4, IL-13 and STAT6 (Zaph, et al., 2008). 

Contrary to the studies demonstrating an anti-inflammatory role for IL-17E there 

are also some in vitro studies that support the role of IL-17E as a pro-

inflammatory cytokine. An in vitro study on a human renal cell line (TK-10) 

showed that stimulation with IL-17E increased expression of NF-kB-responsive 

luciferase reporter gene activity in addition to inducing release of IL-8 (Lee, et 

al., 2001). In addition, studies on an embryonic fibroblast cell line (NIH-3T3) 

(Pan, et al., 2001) and primary human lung fibroblasts (Letuve et al., 2006) 

found that IL-17E could induce the expression of CCL5, CCL11, CXCL8 (IL-8), GM-

CSF and G-CSF. 

 

1.4.11 Role of IL-17E in inflammation and infection 

IL-17E is known to play a major role in Th2 driven pathologies. Elevated 

expression of IL-17E and IL-17RB was observed in asthmatic lung tissues, atopic 

dermatitis skin lesions, as well as in the parasite infected lung and gut (Hurst, et 

al., 2002; Wang, et al., 2007b). Transgenic overexpression of IL-17E in wild type 

mice has been shown to cause a Th2 driven inflammatory response, 

characterised by a mixed infiltration of neutrophils, eosinophils, lymphocytes, 

plasma cells and macrophages, in multiple tissues such as the liver, heart, lung, 

lymph nodes, kidney, spleen, and urinary bladder (Pan, et al., 2001). In 

addition, IL-17E overexpression in lung epithelial cells was shown to associate 

with increased inflammation, mucus production and airway infiltration by 

macrophages and eosinophils (Angkasekwinai, et al., 2007).  Studies suggested 

that the IL-17E induced inflammation in vivo is caused by a Th2-biased response, 

characterised by increased expression of Th2 cytokines such as IL-4, IL-5 and IL-

13. For instance, mice injected with IL-17E show signs of splenomegaly and 

spleen eosinophilia, which is accompanied by increased level of serum 

immunoglobulin (IgE and IgG1), as well as increased mRNA expression of IL-4, IL-

5 and IL-13 in various organ tissues such as the spleen, stomach, small intestine, 

kidney, liver, lung and colon (Fort, et al., 2001; Pan, et al., 2001). Intranasal 

administration of IL-17E into naïve mice was shown to induce inflammation 

similar to that seen in asthmatic patients, which included increased levels of 
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eosinophils, increased IL-5 and IL-13 levels in BAF, goblet cell hyperplasia, and 

increased airway hyperresponsiveness. (Rickel, et al., 2008). In addition, in an 

allergen induced experimental asthma model, mice which were intranasally 

sensitized with allergen from Aspergillus (A.) oryzae and chicken ovalbumin 

protein were shown to develop a Th2-biased response with increased 

eosinophilia as well as increased bronchoalveolar lavage fluid IL-4, IL-5 and IL-13 

levels. However, blockage of IL-17E by intraperitoneal injection of an anti-IL-17E 

antibody was shown to reduce these responses (Angkasekwinai, et al., 2007). 

IL-17E is known in vitro to inhibit the Th17 cell response. Th17 cells are 

characterised by the production of IL-17A, IL-17F, IL-21 and IL-22 (Ouyang et al., 

2008). Th17 cells and their effector cytokines are involved in regulating the 

expression of various other cytokines and chemokines by keratinocytes and 

fibroblast to mediate host defence against pathogens, as well as to mediate 

pathogenesis of many autoimmune diseases such as rheumatoid arthritis and 

encephalomyelitis (Kurebayashi et al., 2013; Ouyang, et al., 2008). The ability 

of IL-17E to inhibit Th17 cells suggests it may play an important role in 

regulating potentially destructive localised inflammatory responses. Indeed, in 

vivo, IL-17E deficient mice were found to be susceptible to EAE; which was 

associated with increased peripheral expression of IL-23 as well as increased 

recruitment of Th17 cells into the central nervous system. The role of IL-17A in 

driving EAE was demonstrated by the fact that neutralisation of IL-17A with an 

anti-IL-17A monoclonal antibody prevented the development of disease. In 

addition, treatment of mice with recombinant IL-17E prevented development of 

EAE demonstrating the importance of this cytokine in regulating the IL-17A/Th17 

response (Kleinschek, et al., 2007). IL-17E deficient mice, chronically infected 

with the parasite Trichuris (T.) muris were also shown to develop severe 

intestinal inflammation characterised by lymphocyte infiltration, crypt 

elongation and an absence of goblet cells.  This observation was found to be 

associated with increased level of pro-inflammatory cytokines such as IL-17A and 

IFN-γ in the mesenteric lymph node and caecum, which is consistent with the 

hypothesis that IL-17E could act to limit localised inflammation (Owyang et al., 

2006). 
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The role of IL-17E in microbial immunity has been a subject of study over the 

last 10 years. Evaluation of the large intestine of germ free mice found 

increased expression of IL-23, as well as an increase in the population of Th17 

cells, compared to the conventionally reared mice (Zaph, et al., 2008). 

However, the presence of commensal bacteria in the gut induced increased 

expression of IL-17E by intestinal epithelial cells and intraperitoneal 

administration of IL-17E to germ free mice reduced expression of IL-23 and the 

population of Th17 cells in the large intestine (Zaph, et al., 2008). Consistent 

with a role for IL-17E in limiting IL-23 and Th17 cells in the large intestine, 

neutralization of IL-23 also resulted in a decreased Th17 cell response. In line 

with this data, IL-17E mRNA expression was found to be decreased in the ileum 

of germ free mice compared to the specific pathogen free mice, and expression 

of IL-17E mRNA in specific pathogen free mice continued to increase with age 

(Sawa et al., 2011) indicating a possible association with microbial colonisation 

of the intestine. IL-17E also repressed the RORγt+ (RAR-related orphan receptor 

gamma, thymus) innate lymphoid cell production of IL-22 which was 

demonstrated to be important for bacterial clearance in vivo (Aujla et al., 2008; 

Rubino et al., 2012; Zheng et al., 2008). In addition, mice fed by parental 

nutrition (intravenous feeding, bypassing the usual process of eating and 

digestion) showed decreased luminal levels of molecules of innate immunity; the 

Paneth cell antimicrobial molecule secretory phospholipase - A2 (sPLA2) and the 

goblet cell glycoprotein mucin – 2 (MUC-2). However, addition of exogenous IL-

17E into diet was shown to increase luminal levels of sPLA2 and MUC-2 

(Heneghan et al., 2013). Additionally, the authors showed that ex vivo 

incubation of intestinal tissue segments isolated from parental feeding mice with 

combinations of E. coli and exogenous IL-17E was shown to increase tissue levels 

of sPLA2 and decrease E. coli entero-invasion. This study suggests that IL-17E 

could induce increased expression of MUC-2 and sPLA2 by Paneth cells which is 

important in clearance of pathogenic bacteria in digestive system. 

In the endotoxemia mouse model, where mice were intraperitoneally injected 

with LPS and peptidoglycan, mice pre-treated with IL-17E (intraperitoneal 

injection) exhibit decreased serum levels of pro-inflammatory cytokines 

including IL-12/p70, TNF-α and IL-6; and this finding was found to coincide with 

decreased survival rate of LPS injected mice pre-treated with IL-17E (Caruso, et 



 

 
 

60

al., 2009b). In addition, in the peptidoglycan-induced colitis mouse model, 

where mice were intravenously administered with peptidoglycan, mice pre-

treated with IL-17E (intraperitoneal injection) were shown to have lesser 

severity of the colitis as shown by: the absence of diarrhoea and less weight loss; 

and lesser histopathological evidence of colonic inflammation, which was found 

to associate with decreased colonic protein levels of IL-12 and INF-γ (Caruso, et 

al., 2009a).    

 

1.4.12 IL-17 family cytokines and periodontal disease 

The role of the IL-17 family cytokines in the pathogenesis of periodontal disease 

is poorly understood. In human studies, IL-17A has been shown to be associated 

with periodontal disease pathogenesis. There are Th17 cells within the 

periodontium (Adibrad et al., 2012; Cardoso et al., 2009) and IL-17A levels are 

elevated in solubilized tissue (Behfarnia et al., 2013; Honda et al., 2008; 

Ohyama et al., 2009; Takahashi et al., 2005), serum (Duarte et al., 2010; 

Schenkein et al., 2010) and GCF (Buduneli et al., 2009; Vernal et al., 2005) of 

chronic periodontitis patients.  

Serum levels of IL-17A and IL-17A/F correlate with clinical parameters of 

periodontal disease such as clinical probing depth (CPD) and clinical attachment 

loss (CAL) (Ozcaka et al., 2013; Schenkein, et al., 2010). In addition, GCF levels 

of IL-17A in patients with chronic periodontitis (Buduneli, et al., 2009) and 

serum levels of IL-17A in patients with aggressive periodontitis (Duarte, et al., 

2010) are reduced after non-surgical therapies. Additionally, in an ex vivo study, 

IL-17A levels in the bathing supernatant of gingival tissues from periodontal 

disease patients were found to be significantly higher compared to tissue from 

healthy sites (Vernal, et al., 2005). The levels of IL-17A (serum and GCF) in 

periodontal disease patients with rheumatoid arthritis were also found to be 

higher compared to systemically healthy chronic periodontitis patients and 

patients with only rheumatoid arthritis  (Gumus et al., 2013), indicating a 

possible contributing  link between periodontal disease and rheumatoid arthritis. 

Polymorphisms in the IL-17A gene have been shown to have an association with 

periodontal disease. Studies of peripheral blood showed that a single nucleotide 
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polymorphism (rs10484879) correlated with incidences of chronic periodontitis 

and peri-implantitis (Kadkhodazadeh et al., 2013). In addition, Correa and 

colleagues (2012) reported a higher distribution of a single nucleotide 

polymorphism (rs2275913) in chronic periodontitis patients compared to healthy 

subjects. Furthermore, carriers of this single nucleotide polymorphism 

(rs2275913) were shown to have higher serum levels of IL-17A, which was 

accompanied by increased myeloperoxidase activity and IL-8 expression in 

periodontal tissues (Correa, et al., 2012) 

In vivo models have suggested that IL-17A plays a protective role in periodontal 

disease. Indeed, IL-17RA deficient mice show exacerbated bone loss in a P. 

gingivalis induced model (Yu et al., 2007). In this IL-17R deficient animal model, 

IL-17 conferred protection by promoting neutrophil migration into the gingival 

tissues. The absence of IL-17R signalling significantly compromised the 

antimicrobial effects of infiltrating neutrophils, rendering the animals more 

susceptible to periodontal disease. However, IL-17A has been implicated in the 

pathogenesis of many chronic inflammatory diseases, such as rheumatoid 

arthritis, psoriasis, Crohn’s disease and multiple sclerosis (Korn et al., 2009). 

Numerous studies of models of arthritis, a diseases process with notable parallels 

to periodontal disease, demonstrated that IL-17A may contribute to initiation 

and perpetuation of chronic destructive inflammation (Miossec et al., 2009). In 

addition, neutralising IL-17A is therapeutically beneficial and a neutralising anti-

IL17A monoclonal antibody has demonstrated promise as a treatment for 

rheumatoid arthritis in human trials (Genovese et al., 2010). In this respect, 

Liang and colleagues (2010) demonstrated that old mice had significantly 

increased spontaneous periodontal bone loss compared to young mice, which 

was associated with increased expression of IL-17A. In addition, young Del-1 (an 

endogenous leukocyte-endothelial adhesion inhibitor) deficient mice were found 

to develop spontaneous periodontal disease, which was characterised by 

excessive neutrophil migration into periodontal tissues and increased expression 

of IL-17A (Eskan et al., 2012). Interestingly, the authors also demonstrated that 

Del-1 expression in periodontal tissues diminished with age. Furthermore, Eskan 

and colleagues (2012) showed periodontal disease was prevented if the Del-1 

deficient mice were crossed with IL-17A receptor deficient mice. Additionally, 

the IL-17A deficient mice which were orally infected with P. gingivalis exhibited 
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significant bone loss which was accompanied with a decrease in neutrophil 

migration into the gingivae (Yu, et al., 2007). Together these in vivo studies 

suggest IL-17A plays a potentially double-edged role in periodontal disease, with 

the ability to both protect against infection and perpetuate inflammation. 

Therefore, an effective and balanced IL-17A response is required for the 

protection of the oral mucosa against pathogens. 

The effect of IL-17A on periodontal cells has also been evaluated in vitro. The 

rhIL-17A was shown to induce human gingival fibroblast cells to produce IL-6 

(Takahashi, et al., 2005). IL-17A was also shown to inhibit the expression of Del-

1 by endothelial cells which could contribute to the continuous and excessive 

migration of neutrophils into inflamed periodontal tissues (Eskan, et al., 2012). 

Apart from IL-17A, the role of other IL-17 family members in periodontal disease 

is less well studied. Knowledge of the role of IL-17F in periodontal disease has 

not been explored in detail. Analysis of peripheral blood samples showed that 

there was no difference in IL-17F gene expression between healthy subjects and 

chronic periodontitis patients (Jain et al., 2013). Furthermore, mRNA evaluation 

of periodontal tissue samples also showed no difference in IL-17F expression 

between tissues from healthy subjects and chronic periodontitis patients 

(Honda, et al., 2008). In contrast, levels of IL-17F were found to be significantly 

increased in serum, GCF and saliva samples of patients who suffer both 

polycystic ovarian syndrome and gingivitis, as compared to systemically healthy 

individuals (Ozcaka, et al., 2013). Similarly, studies on the association between 

IL-17E and chronic periodontitis are limited. However, IL-17E was detected in 

GCF and serum of periodontal disease patients and levels negatively correlated 

with periodontal clinical probing depth (Ozcaka, et al., 2013). To date there are 

no studies investigating the role of IL-17B, IL-17C and IL-17D in the pathogenesis 

of periodontal disease. 



 

 
 

63

1.5 IL-10 

 

1.5.1 Introduction 

Interelukin-10 (IL-10) is the founding member of the IL-10 family cytokines, 

which also includes IL-19, IL-20, IL-22, IL-24, IL-26 and also more distantly 

related members such as IL-28A, IL-28B, and IL-29 (Ouyang et al., 2011). IL-10, 

was originally found to be secreted by Th2 cells upon stimulation with mitogen 

or antigen (Fiorentino et al., 1989). In fact, IL-10 was originally  termed cytokine 

synthesis inhibitory factor (CSIF) as it was shown to inhibit production of IL-2, IL-

3, lymphotoxin, IFN-γ and granulocyte macrophage colony-stimulating factor 

(GM-CSF) by Th1 clone cells stimulated with a combination of antigen and 

antigen presenting cells (Fiorentino, et al., 1989). Since then, many studies have 

followed investigating the anti-inflammatory effect of IL-10 and it is now well 

characterised as an anti-inflammatory cytokine (Moore et al., 2001; Sabat et al., 

2010).  

IL-10 is a 178 amino acid polypeptide (Vieira et al., 1991) and formation of a 

homodimer has been shown to be required to produce the active IL-10 cytokine 

(Tan et al., 1993; Zdanov et al., 1995). IL-10 has been shown to be expressed by 

various immune cells such as Th2 cells, Th1 cells, B cells, dendritic cells, 

macrophages, mast cells, eosinophils, neutrophils, CD4+ T cells and CD8+ T cells 

(Couper et al., 2008; Sabat, et al., 2010). In vitro, the release of IL-10 by these 

cells was found to be elicited by exposure to various endogenous and exogenous 

mediators such as LPS and catecholamines (Sabat, et al., 2010). IL-10 requires 

two receptor subunits (IL-10R1 and IL-10R2) to mediate effective intracellular 

signalling. The human IL-10R1 was identified by expression cloning from a human 

Burkitt’s lymphoma cell line and was found to have 70 % genetic sequence 

homology and 60 % amino acid sequence homology  to the previously identified 

mouse IL-10R1 (Ho et al., 1993; Liu et al., 1994). The structure of human IL-

10R1 was found to be similar to those of the class II cytokine receptor family 

which includes the interferon receptor (IFNR) (Liu, et al., 1994). Indeed, IL-10 

exhibits structural similarities with IFN-γ (Zdanov, et al., 1995) and hence it has 

been demonstrated that both these cytokines share the same class II cytokine 

receptors (Zdanov, et al., 1995). IL-10R2 was previously known as CRFB4, and is 
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a transmembrane protein of unknown function belonging to the class II cytokine 

receptor family. In vitro studies have shown that IL-10 did not induce signal 

transduction in cells which only express IL-10R1. Furthermore, IL-10R1 and 

IL10R2 can be co-precipitated in the presence of IL-10 (Kotenko et al., 1997). 

Additionally macrophages and splenocytes isolated from IL-10R2 deficient mice 

did not respond to exogenous IL-10 stimulation in vivo (Spencer et al., 1998). 

These studies therefore indicate the importance of IL-10R2 for functional IL-10 

signalling. 

 

1.5.2 Effect of IL-10 on target cells 

IL-10 is known for its ability to act as an anti-inflammatory and 

immunosuppressive cytokine. It is well established that monocytes/macrophages 

are a key target for IL-10. In studies of primary human monocytes stimulated 

with IFN-γ, LPS, and combinations of IFN-γ and LPS, IL-10 was shown to strongly 

inhibit the expression of pro-inflammatory cytokines such as IL-1α, IL-1β, IL-6, 

IL-8, TNF-α, GM-CSF, and G-CSF (de Waal Malefyt et al., 1991). A similar pattern 

of inhibition was also observed in studies using a macrophage cell line 

(Fiorentino et al., 1991). In addition, IL-10 was also shown to induce increased 

IL-1RA mRNA expression by LPS-stimulated monocytes (Jenkins et al., 1994). IL-

1RA is known for its role in antagonising the pro-inflammatory effect of IL-1α 

and IL-1β (Perrier et al., 2006). Furthermore, bone marrow derived macrophages 

isolated from IL-10 deficient mice were found to secrete significantly lower 

amounts of IL-23 compared to wild type controls (Schuetze et al., 2005). Since 

most of the pro-inflammatory action of IL-23 is mediated through IL-17A, TNF-α 

and IL-6; inhibition of IL-23 by IL-10 could down regulate Th17 driven responses 

(Stetsko & Sauder, 2008). IL-10 was also found to inhibit the production of IL-12 

by LPS-activated monocytes (D'Andrea et al., 1993). As IL-12 is important for Th1 

cell proliferation it was concluded that IL-10 can also inhibit the Th1 response 

(Stetsko & Sauder, 2008). A direct effect of IL-10 on T cell responses has also 

been demonstrated. Human IL-10 was shown to inhibit the antigen and 

phytohemagglutinin (PHA) proliferative responses of Th1 and Th2 cells (Del Prete 

et al., 1993). Furthermore, IL-10 inhibits the release of IFN-γ by Th1 cells and 

the release of IL-4 and IL-5 by Th2 cells in response to antigen-specific 
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stimulation. Together these data indicate that IL-10 could directly or indirectly 

inhibit the response of Th1, Th2 and Th17 cells to various inflammatory stimuli.  

IL-10 was also shown to have an inhibitory effect on polymorphonuclear 

leukocyte function. Studies have shown that IL-10 inhibits the production of pro-

inflammatory cytokines such as TNF-α and IL-1β by polymorphonuclear 

leukocytes stimulated with LPS (Cassatella et al., 1993). In addition, IL-10 was 

also shown to inhibit LPS-stimulated polymorphonuclear leukocytes production 

of chemokines such as MIP-1α, MIP-1β and IL-8 as well as the production of PGE2 

(Kasama et al., 1994; Niiro et al., 1997). Cytokine and chemokine production by 

other immune cells in response to antigen such as eosinophils and mast cells 

were also shown to be inhibited by IL-10 (Arock et al., 1996; Takanaski et al., 

1994). 

The anti-inflammatory effect of IL-10 on epithelial cells has also been 

investigated. Denning and colleagues (2000) showed that both receptors for IL-

10, IL-10R1 and IL-10R2 were expressed by colonic epithelial cells, and IL-10 was 

shown to block the IFN-γ-induced expression of Class II MHC molecules on 

cultured intestinal epithelial cells. IL-10 was also shown to inhibit the Chlamydia 

trachomatis induced expression of IL-6, IL-8 and TNF-α from Hela cells (cervical 

cancer cell line). In addition, IL-10 was also shown to inhibit the release of TNF-

α and IL-6 from primary human keratinocytes (isolated from neonate foreskins) 

stimulated with combinations of LPS and IFN-γ (Becherel et al., 1995). 

 

1.5.3 Role of IL-10 in inflammation and infection 

Elevated expression of IL-10 has been found in tissues derived from studies of 

numerous chronic inflammatory diseases such as inflammatory bowel diseases, 

atopic dermatitis and rheumatoid arthritis (Asadullah et al., 1998; Katsikis et 

al., 1994). IL-10 levels were elevated in serum and synovial fluid samples from 

patients with rheumatoid arthritis (al-Janadi et al., 1996; Cush et al., 1995). In 

line with the above data, monocytes purified from the synovial fluid of 

rheumatoid arthritis patients were found to express higher levels of IL-10 than 

monocytes derived from healthy subjects (Alanara et al., 2010). In addition, 
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serum IL-10 was also increased in patients with active ulcerative colitis 

(Mitsuyama et al., 2006). 

In vivo, the role of IL-10 as an anti-inflammatory cytokine has been eloquently 

demonstrated. In a collagen induced arthritis mouse model, IL-10 deficient mice 

were found to be prone to higher incidence and increased severity of arthritis 

(Finnegan et al., 2003; Johansson et al., 2001), which was found to associate 

with decreased serum levels of anti-collagen antibodies (IgG1 and IgG2a) as well 

as increased proliferation of macrophages (Finnegan, et al., 2003). In addition, 

intraperitoneal injection of recombinant IL-10 into the collagen induced arthritis 

mouse model supressed the severity of symptoms (Tanaka et al., 1996). 

Similarly, in an EAE mouse model, where encephalomyelitic mice were induced 

by flank injection of encephalitogenic peptide, IL-10 deficient mice were shown 

to develop a more severe EAE compared to sham controls (Bettelli et al., 1998). 

In addition, mice injected with IL-10 transgenic T cells, which had been 

engineered to secrete IL-10 were more resistant to EAE. IL-10 has also been 

shown to have anti-inflammatory properties in colitis disease models. Dextran 

sulphate sodium-induced colitis mice exhibited increased expression of TNF-α 

and IL-1β in colonic tissue of IL-10 deficient mice compared to sham controls 

(Tomoyose et al., 1998), In addition, IL-10 deficient mice were shown to develop 

spontaneous bowel inflammation showing an important immuno-regulatory 

function of IL-10 within the gastrointestinal tract (Kuhn et al., 1993; Murai et 

al., 2009). 

Studies have shown that IL-10 plays a role in fungal and bacterial induced 

pathologies. In a mouse model of C. albicans infection,  IL-10 deficient mice 

were shown to be resistant to renal candidiasis when compared to the wild type 

mice (Vazquez-Torres et al., 1999). This resistance was thought to be achieved 

through neutrophil activity as neutrophils isolated from the peritoneum of IL-10 

deficient mice were found to have greater ability to kill C. albicans 

blastoconidia and hyphae when compared to those isolated from wild type mice 

(Vazquez-Torres, et al., 1999). This finding is in line with other studies that 

showed IL-10 plays a role in negatively regulating neutrophil function. Similarly, 

intraperitoneal injection of E. coli into IL-10 deficient mice resulted in reduced 

recovery (CFU/ml) of E. coli from peritoneal fluid, blood and lung when 
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compared to wild type mice. This indicates endogenous IL-10 impaired bacterial 

clearance. However, although IL-10 impairs the clearance of E. coli and can 

facilitate the outgrowth and dissemination of bacteria during peritonitis, it in 

turn was shown to protect mice from lethality by attenuating the development 

of a systemic inflammatory response syndrome by a mechanism that involves 

inhibition of TNF-α (Sewnath et al., 2001). 

In summary, IL-10 was found to be elevated in tissue samples as well as in 

clinical samples of patients with chronic inflammatory diseases such as 

rheumatoid arthritis and ulcerative colitis. These findings were in agreement 

with the in vivo findings that demonstrated disease severity in animal models 

(EAE, arthritis and colitis) was greater in IL-10 deficient mice. However, in 

microbial infection models, IL-10 was found to negatively impact on microbial 

clearance from tissues/organs. However, despite hindering clearance of 

pathogenic organisms, IL-10 was found to protect mice from associated excessive 

inflammation induced pathologies. Therefore these studies clearly demonstrate 

a role for IL-10 in negatively regulating immune responses. 

 

1.5.4 IL-10 and periodontal disease 

The role of IL-10 in the pathogenesis of periodontal disease has been studied 

previously. Using quantitative real-time polymerase chain reaction (real-time 

PCR) and enzyme-linked immunosorbent assay (ELISA), IL-10 (mRNA and protein) 

expression were found to increase in gingival tissue samples of chronic 

periodontitis patients when compared to healthy subjects (Napimoga et al., 

2011). Furthermore, analysis of GCF has shown that IL-10 is only detected in 

samples of chronic periodontitis patients but not healthy subjects (Gamonal et 

al., 2000). In contrast, IL-10 levels in saliva and serum were found to be greater 

in healthy subjects compared to chronic periodontitis patients (Gumus et al., 

2014). Furthermore, Gumus and colleagues (2014) showed that IL-10 levels in 

saliva and serum negatively correlated with clinical parameters such as 

periodontal probing depth, clinical attachment loss and bleeding index. 

In vivo, IL-10 deficient mice orally inoculated with P. gingivalis were shown to 

suffer severe alveolar bone loss compared to wild type controls (Sasaki et al., 
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2004). In addition, IL-10 deficient mice also exhibited accelerated spontaneous 

bone loss compared to wild type controls (Al-Rasheed et al., 2003). In vitro, 

primary human gingival fibroblasts were found  to upregulate expression of IL-10 

in response to P. gingivalis (LPS) (Almasri et al., 2007). In addition, gingival 

mononuclear cells isolated from P. gingivalis infected mice showed increased 

spontaneous production of IL-10 compared to mononuclear cells  isolated from 

sham infected mice (Kobayashi et al., 2011). These studies therefore suggest 

that IL-10 plays an anti-inflammatory role in the oral cavity and can inhibit the 

pathogenesis of periodontal disease. 

 

1.6 IL-33 

 

1.6.1 Introduction 

The discovery of IL-33 has an interesting history. It was previously reported in 

1991 as DVS27 and its expression was found to be highly upregulated in canine 

vasospastic cerebral arteries (Onda et al., 1999). Later in 2003 it was discovered 

as a nuclear factor from high endothelial venules (NF-HEV) (Baekkevold et al., 

2003). Even though the cytokine properties of this molecule were not apparent 

at the time, these studies reported at least two important features: (a) nuclear 

localization and (b) a molecular structure that contained a structural homology 

with DNA-binding domains. Therefore it was initially thought to play a role as a 

transcription factor. In 2005, however, it was discovered as the latest IL-1 family 

member and shown to bind to the orphan IL-1 receptor, ST2 (also known as IL-

1RL1, interleukin 1 receptor-like 1), hence it was renamed IL-33 (Schmitz et al., 

2005). IL-33 is the eleventh member of the IL-1 family cytokines that also 

includes IL-1α, IL-1β, IL-1RA, IL-18, IL-1F5, IL-1F6, IL-1F7, IL-1F8, IL-1F9 and IL-

1F10 (Barksby et al., 2007; Sims et al., 2001). Like other members of the IL-1 

family, IL-33 was found to be involved in regulating inflammatory and immune 

processes. Indeed, in its role as a cytokine, IL-33 was found to induce Th2 

associated cytokine production both in vitro and in vivo.   
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1.6.2 Molecular structure 

The human IL-33 gene was found to be located on the short arm of chromosome 

9 at location 9p24.1 (Baekkevold, et al., 2003; Schmitz, et al., 2005), while its 

mouse counterpart was found located on the syntenic chromosome region 19qC1 

(Schmitz, et al., 2005). Human and mouse IL-33 share 55 % amino acid sequence 

homology. Analyses of the cDNA (complementary deoxyribonucleic acid) 

sequences of the human and mouse IL-33 gene showed they encoded a 270 and 

266 amino acids protein respectively, with reported molecular weights of 30 kDa 

for human IL-33 and 29.9 kDa for mouse IL-33 (Schmitz, et al., 2005). Schmitz 

and colleagues (2005) reported that IL-33 was produced as a 30 kDa propeptide 

that required cleavage by caspase-1 for generation of the mature form. Caspase-

1 was shown to cleave IL-33 at Ser111, transforming the propeptide into the 18 

kDa mature form (amino acids 112 – 270). This post-translational processing is 

common for other IL-1 family members such as IL-1α, IL-1β and IL-18. For 

instance, pro-IL-1 and pro-IL-18 were found to require peptide cleavage by 

caspase-1 and/or caspase-8 for maturation (Arend et al., 2008; Dinarello, 1998) 

and calpain was reported as a required factor for the processing of mature IL-1 

(Arend, et al., 2008; Dinarello, 1997). 

Despite these findings more recent data has found caspase-1 may have 

contradictory effects on the biological activity of IL-33. Cayrol and Girard (2009) 

reported that the full length IL-33 protein is itself biologically active and that 

processing by caspase-1 results in IL-33 inactivation. They further demonstrated 

that caspase-1 cleavage does not occur at the site initially proposed (Ser111), but 

after residue Asp178 (aspartic acid 178) between the fourth and fifth predicted 

beta-strands of the IL-1-like domain. In addition, they also found that caspase-3, 

the prototypic apoptotic caspase shares a similar cleavage site with caspase-1 

which is at DGVD178G, and both caspase-1 and caspase-3 activation leads to the 

production of an inactive 20 – 22 kDa fragment of IL-33. Therefore the authors 

concluded that IL-33 is inactivated by endogenous caspases during cell apoptosis. 

Alignment of IL-33 protein sequences revealed two evolutionarily conserved 

regions: the predicted homeodomain-like helix–turn–helix (HTH) motif (amino 

acids 1 – 65) within the N-terminal portion (Baekkevold, et al., 2003) and the C-
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terminal IL-1-like domain (amino acids 112 – 270) (Schmitz, et al., 2005). The 

cytokine activity is expected to reside in the carboxyl (c-) terminal of IL-33, 

which is predicted to form a -trefoil structure, similar to IL-1 and IL-18. These 

similar conserved features likely reflect common evolutionary roots (Arend, et 

al., 2008). 

 

1.6.3 Functions of IL-33 

Schmitz and colleagues (2005) were the first to report the cytokine activity of IL-

33 when they observed that the protein mediates its biological effects via the 

ST2 receptor to activate NF-B and MAP (mitogen activated protein) kinases. 

They also observed that IL-33 was able to drive the production of Th2-associated 

cytokines (i.e., IL-5 and IL-13) from in vitro polarized Th2 cells. In addition, in 

vivo, they found IL-33 was capable of inducing the expression of IL-4, IL-5, and 

IL-13 and promoting severe pathological changes in mucosal organs. Studies have 

shown positive associations between IL-33 expression and inflammatory disease 

activity in tissues such as the synovial membrane, lung and colon. This indicated 

a direct or indirect role of IL-33 as a cytokine driving disease pathogenesis. For 

example, IL-33 was abundantly expressed in the synovial membrane from 

patients with rheumatoid arthritis (Xu et al., 2008). IL-33 was also abundantly 

expressed in the lungs of mice that were exposed to pulmonary challenge with 

either LPS or house dust mite extracts (Hammad et al., 2009). In addition, IL-33 

mRNA levels were markedly increased in the colon of mice that were infected 

with the nematode parasite T. muris (Humphreys et al., 2008). 

Even though the evidence for the function of IL-33 as a cytokine is clear, 

researchers are still in debate as to how IL-33 is released from cells. Some 

studies report that cells do not release IL-33 unless they become injured or 

undergo necrosis (Cayrol & Girard, 2009; Nile et al., 2010). For example, Cayrol 

and Girard (2009) showed that mechanical endothelial cell damage induced the 

release of full-length IL-33 and high-mobility group box protein 1 (HMGB1) from 

endothelial cells. However, neither IL-33 nor HMGB1 were found in the 

supernatants of undamaged control cells. In addition Carol and Girard (2009) 

also showed both IL-33 and HMGB1 were released from cells subjected to 

necrosis by exposure to several cycles of freeze/thawing. In addition, IL-33 has 
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been detected in the culture supernatants from damaged fibroblast-like 

synoviocytes but not activated peripheral blood mononuclear cells (PBMC) and 

non-damaged fibroblast-like synoviocytes (Matsuyama et al., 2010). These 

findings demonstrated that IL-33 had similarity with the ‘alarmin’ family of 

proteins which are also only released in response to cell damage. This family 

includes HMGB1, defensins, heat shock proteins, lactoferrin, cathelicidin and IL-

1α (Cayrol & Girard, 2009; de la Rosa et al., 2008; Haraldsen et al., 2009; 

Moussion et al., 2008; Oppenheim et al., 2007). However, despite being 

characterised as an ‘alarmin’, studies have found that under certain conditions 

IL-33 is released by viable cells such as monocytes, macrophages, fibroblasts and 

glial cells (Hudson et al., 2008; Li et al., 2008; Sanada et al., 2007; Talabot-Ayer 

et al., 2009). In vitro, THP-1 cells (human monocyte cell line) forced to express 

pro-IL-33 and subjected to LPS or PMA stimulation did secrete pro-IL-33 

(Talabot-Ayer, et al., 2009). In addition, IL-33 was reported to be secreted from 

PMA-stimulated rat cardiac fibroblasts (Sanada, et al., 2007) and from adenosine 

triphosphate (ATP) stimulated mixed glial cell cultures and astrocyte-enriched 

cultures (Hudson, et al., 2008). A combination of LPS and aluminium hydroxide 

adjuvant (alum) treated human macrophages were also shown to secrete pro-IL-

33 which was found to be dependent on NLRP3 (nucleotide-binding domain and 

leucine rich repeat containing pyrin domain 3) and its adaptor molecule ASC 

(apoptosis-associated speck-like protein containing CARD) (Li, et al., 2008).  

Immunohistochemical studies revealed that IL-33 is predominantly localized to 

the nucleus in numerous cells, indicative of a role for IL-33 as a nuclear protein 

(Baekkevold, et al., 2003; Carriere et al., 2007; Kuchler et al., 2008; Moussion, 

et al., 2008; Onda, et al., 1999). Database searches revealed significant 

structural homology  between the first 65 amino N-terminal residues of IL-33 and 

the DNA-binding homeodomains of several drosophila and vertebrate 

transcription factors, indicating that IL-33 may function as a transcription factor 

(Baekkevold, et al., 2003). Furthermore, Carriere and colleagues (2007) showed 

that the evolutionarily conserved homeodomain-like helix-turn-helix motif of IL-

33 mediated nuclear localization, heterochromatin-association, and targeting of 

IL-33 to mitotic chromosomes. In addition, IL-33 was found to have 

transcriptional repressor properties which were mediated by the homeodomain-

like helix-turn-helix motif. Furthermore, Roussel and colleagues (2008) showed 
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that IL-33 binds to chromatin by docking into the acidic pocket formed by the 

histone H2A–H2B dimer at the surface of the nucleosome. Based on the current 

understanding, IL-33 has similarity to IL-1 and HMGB1 which also have been 

shown to have transcriptional regulatory properties (Lotze & Tracey, 2005; Maier 

et al., 1994; Scaffidi et al., 2002; Werman et al., 2004). Therefore, like IL-1α 

and HMGB1, IL-33 is a dual function protein acting as a pro-inflammatory 

cytokine extracellularly and as nuclear factor with transcriptional regulatory 

properties intracellularly. 

 

1.6.4 IL-33 expression in cells and tissues 

IL-33 is constitutively expressed in a variety of cells and expression increased in 

response to pro-inflammatory mediators. The following cells have been 

described to constitutively express IL-33: High endothelial venules (HEV) and 

endothelial cells (HEV ECs) from human tonsils, (Baekkevold, et al., 2003; 

Carriere, et al., 2007), endothelial cells of large and small blood vessel (Matsuda 

et al., 2009; Moussion, et al., 2008), fibroblastic reticular cells of lymphoid 

tissues (Moussion, et al., 2008), smooth muscle cells of bronchial, pulmonary and 

coronary arteries (Prefontaine et al., 2009; Schmitz, et al., 2005), epithelial 

cells of skin (keratinocytes), stomach, colonic mucosa, tonsillar crypts and 

salivary gland (Beltran et al., 2010; Moussion, et al., 2008; Schmitz, et al., 2005) 

and glial cells of the central nervous system (Hudson, et al., 2008). In addition, 

IL-33 expression studies showed that skin, gut, lung, brain and spinal cord are 

prominent sites of IL-33 expression (Hudson, et al., 2008; Moussion, et al., 2008; 

Schmitz, et al., 2005). 

IL-33 was found to be highly expressed in inflamed or diseased tissues (Beltran, 

et al., 2010; Matsuda, et al., 2009; Matsuyama, et al., 2010; Xu, et al., 2008). 

However, IL-33 expression was not detected in resting immune cells such as 

monocytes, monocyte-derived dendritic cells, natural killer (NK) cells, B cells 

and T cells (Schmitz, et al., 2005). However, Schmitz and colleagues (2005) did 

report a modest amount of IL-33 expression in monocytes and dendritic cells 

upon stimulation with LPS. In addition, a later study showed that IL-33 was 

modestly expressed in resting monocytes but this expression was significantly 

upregulated upon LPS stimulation (Nile, et al., 2010). In fact, a further study 
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showed that the IL-33 expression in murine bone marrow derived macrophages is 

increased by up to 300 fold when stimulated with LPS (Goh et al., 2009). 

Mouse primary macrophages stimulated with TLR-3 (Poly I:C) and TLR-4 (LPS) 

agonists exhibited upregulated IL-33 mRNA expression and using a LPS-

stimulated TANK-binding kinase 1 (TBK-1)-/- MEF (mouse embryonic fribroblasts) 

IL-33 expression was found to be TBK-1-dependent (Polumuri et al., 2012). In 

addition, human corneal epithelial cells required stimulation by TLR-3 (Polyl:C) 

and TLR-5 (Flagelin) agonists to express IL-33, and this IL-33 expression was 

found to be suppressed after blocking nuclear translocation of the NF-κB p65 

subunit by a IκBα (inhibitor of kappa B, alpha) inhibitor (BAY11-7082) and NF-κB 

inhibitor (quinazoline) (Zhang et al., 2011a). Cytokines such as IL-1β, TNF-α, 

IFN-γ and IL-17A were shown to induce IL-33 expression by keratinocytes, 

fibroblasts, macrophages and endothelial cells (Kamekura et al., 2012; 

Meephansan et al., 2012; Nomura et al., 2012; Palmer et al., 2009; Savinko et 

al., 2012; Xu, et al., 2008). Nomura and colleagues (2012) showed that TNF-α 

induced expression of IL-33 by nasal fibroblasts was mediated by 

phosphoinositide 3–kinase (PI3K), c–Jun N–Terminal (JNK) and NF-κB pathways. In 

addition, EGFR, ERK (extracellular-signal-regulated kinase), p38 and JAK (Janus 

kinase)/STAT1 pathway were found to mediate the IL-17A induced expression of 

IL-33 by normal human epidermal keratinocytes (Meephansan, et al., 2012). 

 

1.6.5 IL-33 receptors 

ST2 was originally discovered by Yanagisawa and colleagues (1993) as an orphan 

receptor. The specific ligand for ST2 was demonstrated to be IL-33 in 2005 

(Schmitz, et al., 2005). ST2 belongs to the IL-1 receptor family, which is a 

subfamily of the IL-1R/TLR superfamily and therefore ST2 is also known as IL-1 

receptor-like-1 (IL1RL-1). The other members of this subfamily are interleukin-1 

receptor accessory protein (IL-1RAcP), IL-18R, IL-18RAcP, IL-1Rrp2 and IL-1RAPL 

(Dunne & O'Neill, 2003; O'Neill & Dinarello, 2000; Schmitz, et al., 2005). 

Similarly to other family members, ST2 has an extracellular three-

immunoglobulin (Ig) domain (IL-33 binding domain) and also an intracellular TIR 

(toll/interleukin-1 receptor) domain that functions to activate intracellular 

signalling pathways (O'Neill & Dinarello, 2000; Schmitz, et al., 2005). There are 
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three variants of the IL-33 receptor described by researchers: a longer 

transmembrane form of the receptor (ST2L), a shorter soluble receptor (sST2) 

and a variant soluble receptor (ST2V) (Iwahana et al., 2004; Iwahana et al., 

1999; Schmitz, et al., 2005; Turnquist et al., 2008; Yanagisawa, et al., 1993). 

Analysis of the exon-intron structure of the ST2 gene family revealed that the 

ST2L, sST2 and ST2V are generated by alternative splicing which is controlled by 

two distinct promoters, a proximal promoter and a distal promoter (Bergers et 

al., 1994; Iwahana, et al., 1999; Li et al., 2000b; Tominaga et al., 1999). 

IL-33 has been shown to specifically bind to ST2 (Palmer et al., 2008; Schmitz, 

et al., 2005). However, for active signal transduction to occur IL-1RAcP is 

required. Therefore the active IL-33 receptor (IL-33R) is a heterodimeric 

molecule consisting of ST2 and IL-1RAcP (Ali et al., 2007; Chackerian et al., 

2007). The importance of this heterodimer was demonstrated by Palmer and 

colleagues (2008) who showed that IL-1RAcP increased the affinity of murine IL-

33 for ST2 four fold. Even though sST2 has the same affinity for IL-33 as ST2, it 

does not possess the intracellular component and therefore the binding complex 

formed between sST2, IL-33 and IL-1RAcP does not lead to active signal 

transduction. Therefore, sST2 merely functions as a decoy that competes with 

ST2 for IL-33 (Hayakawa et al., 2007; O'Neill, 2008; Schmitz, et al., 2005). 

ST2 is constitutively expressed by immune cells such as mature mast cells and 

mast cell precursors, dendritic cells, macrophages, B cells and Th2 cells but not 

Th1 cells (Allakhverdi et al., 2007; Espinassous et al., 2009; Joshi et al., 2010; 

Komai-Koma et al., 2011; Lecart et al., 2002; Matsuda, et al., 2009; Moritz et 

al., 1998; Turnquist, et al., 2008; Xu et al., 1998; Yanagisawa et al., 1997). ST2 

has also found to be abundantly expressed by epithelial cells in the colonic 

mucosa, cornea and lung (Beltran, et al., 2010; Lin et al., 2013; Yagami et al., 

2010) as well as keratinocytes of skin (Hueber et al., 2011).   

 

1.6.6 Effects of IL-33 on target cells 

Mast cells were found to constitutively express ST2 (Allakhverdi, et al., 2007; 

Matsuda, et al., 2009; Moritz, et al., 1998; Schmitz, et al., 2005), which make 

them a target cell for IL-33. In vitro, mast cells directly respond to IL-33 and 
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activate protein kinase signalling cascades involving NF-κB, ERK1/2 and p38 

(Matsuda, et al., 2009; Schmitz, et al., 2005). In the case of p38, this was found 

to be inactivated by the presence of sST2 (Matsuda, et al., 2009). Activation of 

protein kinase signalling cascades have been shown in mast cells to result in the 

expression of inflammatory mediators such as IL-1, IL-5, IL-6, IL-10, IL-13, TNF- 

α, GM-CSF, CXCL8/IL-8, CCL1, monocyte chemotactic protein 1 (MCP-1) and MIP-

1 (Allakhverdi, et al., 2007; Ho et al., 2007; Palmer, et al., 2008; Xu, et al., 

2008).  

ST2 was also abundantly expressed by Th2 cells, but not any other T lymphocyte 

subsets, such as naïve CD4+ T cells, Th1 cells, Th17 cells and regulatory T cells 

(Lecart, et al., 2002; Lohning et al., 1998; Nakae et al., 2007; Xu, et al., 1998), 

Therefore IL-33 plays a role in regulating Th2 responses. Naïve CD4+ T cells 

stimulated with PHA or Staphylococcal enterotoxin B (SEB) were shown to 

differentiate into effector Th2 cells in the presence of IL-33 (Komai-Koma et al., 

2007; Kurowska-Stolarska et al., 2008). IL-33 was also shown to enhance the 

production of Th2 mediators such as IL-5 and IL-13 (Guo et al., 2009; Kurowska-

Stolarska, et al., 2008; Schmitz, et al., 2005). In fact, IL-33 was also shown to 

induce Th2 cells to express IL-33 (Guo, et al., 2009). In vitro, Komai-koma and 

colleagues (2007) showed that IL-33 acts as a chemoattractant for Th2 cells that 

have high levels of ST2 expression. In addition, the authors showed injection of 

recombinant IL-33 into the footpad of ST2-knockout mice, which had been 

adoptively transferred with polarized Th2 cells, led to the localised 

accumulation of transferred Th2 cells at the injection site. 

Macrophages have been shown to express ST2 indicating that these cells could 

respond to IL-33 signalling (Espinassous, et al., 2009; Joshi, et al., 2010). 

Indeed, Espionassous and colleagues (2009) showed that the release of TNF-α by 

murine peritoneal macrophages cells in response to LPS was increased in the 

presence of IL-33. Furthermore, the authors showed the potentiating effect of 

IL-33 was abolished when macrophages are treated with an anti-ST2 antibody. 

IL-33 also stimulated mouse bone marrow derived macrophages to express the 

Th2 cytokines: IL-5 and IL-13 (Yang et al., 2013). In addition, IL-33 also 

stimulated IL-13-primed peripheral blood derived macrophages to express CCL17 

and CCL24 (Kurowska-Stolarska et al., 2009). IL-33 stimulation also increased the 
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expression of MD-2 (myeloid differentiation protein 2) and TLR-4 in 

macrophages, therefore increasing their sensitivity to bacterial LPS (Espinassous, 

et al., 2009). IL-33 was also shown to induce naïve macrophage to express CCL3, 

a marker for classically activated macrophages (M1). However, when IL-33 was 

added to polarised M1 macrophages, an increase in expression of CCL18, a 

marker for alternatively activated macrophages (M2) was observed (Joshi, et al., 

2010). This indicates that IL-33 stimulation of naïve macrophages favours M1 

chemokine generation whilst addition to polarised macrophages promotes and 

amplifies M2 chemokine expression. Interestingly, Mun and colleagues (2010) 

observed that IL-33 also stimulates the formation of tartrate-resistance acid 

phosphate (TRAP)+ osteoclasts from human monocytes via activation of signalling 

molecules that are critical for osteoclast cell development such as Syk (spleen 

tyrosine kinase), phospholipase Cγ2, Gab2, MAP kinases, MAP3K7 (mitogen-

activated protein kinase kinase kinase 7), and NF-κB. Furthermore, using an 

osteogenic disk model, IL-33 was able to induce bone resorption by CD14+ 

monocyte-derived osteoclasts. However, in contrast, ST2 deficient mice 

presented with normal bone formation but increased bone resorption and IL-33 

abolished the generation of tartrate-resistance acid phosphate (TRAP)+ 

osteoclasts even in the presence of RANKL and M-CSF (Schulze et al., 2010). 

B cells have been demonstrated to express ST2 (Komai-Koma, et al., 2011; 

Yanagisawa, et al., 1997) and IL-33 demonstrated to activate B1 cell 

proliferation and induce production of IgM, IL-5 and IL-13 (Komai-Koma, et al., 

2011). In addition, IL-33 was shown to require IL-4 to induce B cells proliferation 

and production of IgE (Komai-Koma et al., 2012). Thus these studies indicate a 

role for IL-33 in modulating B cell function in a Th2 dependant manner. IL-33 

was also shown to augment dendritic cells expansion from mouse bone marrow 

in a time and dose dependent manner (Mayuzumi et al., 2009). This role was 

found to be dependent on GM-CSF as IL-33-induced expression of dendritic cells 

was completely blocked by an anti-GM-CSF antibody. IL-33 was also found to 

induce dendritic cells to express IL-6, IL-1β, TNF-α and CCL17 (Besnard et al., 

2011). IL-33 was also shown to activate mouse bone marrow derived dendritic 

cells to express high level of MHC class II molecules and CD86 (Rank et al., 

2009). This study also showed that IL-33-activated dendritic cells were capable 

of priming naïve CD4+ T cells to produce IL-5 and IL-13. The capability of IL-33-
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activated dendritic cells in priming naïve CD4+ T cells to produce IL-5 and IL-13 

was also confirmed by Besnard and colleagues (2011). Therefore, IL-33 can 

influence dendritic cells function and promote Th2 responses. 

In terms of granulocytes, IL-33 has been shown to induce the production of IL-

13, CCL17 and TGF-β from eosinophils (Stolarski et al., 2010). In addition, IL-33 

exacerbated eosinophil-mediated airway inflammation by increasing the 

numbers of eosinophils, macrophages, lymphocytes and levels of IL-13, TGF-β, 

CCL3, CCL17, and CCL24 in the lung. Schneider and colleagues (2009) also 

showed that basophils produce pro-inflammatory mediators, such as histamine, 

IL-4 and IL-6 upon treatment with IL-33. In addition, IL-33 activation of 

neutrophils was shown to increase expression of the surface complement 

receptor 3 (CR3) which in turn increased phagocytosis of opsonised C. albicans 

(Le et al., 2012).   

Numerous epithelial cells express ST2L and are therefore a key target for IL-33. 

Yagami and colleagues (2010) evaluated the effect of IL-33 on normal human 

bronchial epithelial cells and found that  IL-33 increased the expression of  IL-8 

in a dose and time dependant manner. The IL-33 induced expression of IL-8 was 

found to be mediated by an ST2 dependant pathway. IL-33 stimulation led to the 

increased phosphorylation of the MAPK, ERK but not p38. In addition, in the 

presence of an ERK inhibitor (PD98059), a significant reduction in IL-33 mediated 

IL-8 expression by normal human bronchial epithelial cells was observed. In 

contrast, the authors showed that IL-33 had no effect on the expression of IL-1β, 

IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, TNF-α, MCP-1 and CXCL10. Furthermore, 

Fujita and colleagues (2012) demonstrated that IL-33 induced the expression of 

IL-17F by bronchial epithelial cells in a dose dependant manner.  In agreement 

with previous studies (Yagami, et al., 2010), the authors showed that IL-33 

signalling led to the increased phosphorylation of ERK but not p38 and JNK. 

However, the authors also demonstrated the induction of increased 

phosphorylation of mitogen and stress-activated protein kinase 1 (MSK1). MSK1 

has been shown to involved in the phosphorylation of NF-κB in vitro and in vivo 

(Vermeulen et al., 2003). Although IL-17A shares high homology with IL-17F, the 

authors also found that even though there is basal release of IL-17A from 



 

 
 

78

bronchial epithelial cells, IL-33 stimulation did not induce increased expression 

(Fujita, et al., 2012).  

Kamekura and colleagues (2012) evaluated the effect of IL-33 on human nasal 

epithelial cells (HNEC). Stimulation of HNECs with IL-33 (100 ng/ml) for 6 h 

induced expression of IL-8 and GM-CSF. The expression of IL-8 and GM-CSF were 

found to be significantly decreased if the HNECs were pre-incubated with an 

anti-IL-33 or anti-ST2 antibody, indicating the direct role of IL-33 signalling. In 

analysing signalling pathways involved in the IL-33 mediated inflammatory 

response in HNECs, cells were pre-treated with inhibitors of ERK, p38, JNK, NF-

κB and EGFR prior to treatment with IL-33. The authors found that IL-33-

mediated expression of IL-8 was dose-dependently reduced by inhibitors of ERK 

(PD98059) and EGFR (AG1478), which is consistent with other studies (Fujita, et 

al., 2012; Yagami, et al., 2010). In addition, they also found that IL-33-mediated 

expression of GM-CSF was dose-dependently reduced by treatment with the 

inhibitor of JNK (SP600125), NF-κB (IMD-0354) and EGFR (AG1478). 

Meephanson and colleagues (2012) studied the effect of IL-33 on normal human 

epidermal keratinocytes. The authors found that after 48 h of stimulation with 

IL-33 (100 ng/ml) a significant increase in IL-8 expression was observed from 

normal human epidermal keratinocytes. On the other hand, Balato and 

colleagues (2012) demonstrated that IL-33 alone could not induce the expression 

of IL-6, VEGF, MCP-1 and IL-20 by normal human epidermal keratinocytes. 

However, IL-33 could increase the TNF-α induced expression of IL-6, VEGF, MCP-

1 and IL-20. Parallel results were also found using the immortalised human 

keratinocyte cell line (HaCaT). In addition, HaCaT cells require co-stimulation 

with IL-33 for IL-17A to induce expression of IL-20 and VEGF. Interestingly, 

however, intracellular IL-33 has been found to actually suppress NF-κB (Ali et 

al., 2011). Therefore, as intracellular IL-33 suppresses NF-κB function, it was 

hypothesised that IL-33 knockdown would enhance the TNF-α-induced expression 

of IL-8. Indeed, as expected, knock down of IL-33 with small interfering RNA 

(siRNA) enhanced the TNF-α-mediated expression of IL-8 (Oliveira et al., 1994).   

Studies on human and mouse fibroblasts isolated from the heart (Zhu & Carver, 

2012), skin (Wong et al., 2012) lung (Kurokawa et al., 2011) and embryo 
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(Funakoshi-Tago et al., 2008) showed that IL-33 could induce expression of 

various cytokines and chemokines such as IL-6, IL-13, MCP-1, MCP-3, CXCL1, 

CXCL10, CCL2 and CCL11, as well as TGF-β. While IL-33 could induce increased 

expression of CCL11 by mouse lung fibroblasts, co-stimulation with IL-33 and IL-

13 has been shown to synergistically augment CCL11 expression (Kurokawa, et 

al., 2011). In rat cardiac fibroblasts, IL-33 stimulation could induce translocation 

of the phosphorylated p65 subunit of NF-kB into the nucleus in a dose dependent 

manner. In addition, in murine embryonic fibroblasts of TRAF6-deficient mice, 

IL-33 failed to induce MCP-1, MCP-3 and IL-6 expression; indicating that TRAF6 is 

important for IL-33-induced signal transduction (Funakoshi-Tago, et al., 2008). 

The study also showed that IL-33-induced activation of p38 and JNK was 

completely impaired in TRAF6-deficient murine embryonic fibroblasts. In 

addition, IL-33 has also been shown to induce phosphorylation of STAT3 by 

primary human dermal fibroblasts (Wong, et al., 2012). In human fibroblasts 

isolated from rheumatoid arthritis synovial tissue, Kunisch and colleagues (2012) 

showed that stimulation with IL-33 did not significantly induce increased 

expression of IL-6, MCP-1, MMP-1 and MMP-3 and no significant increases in the 

phosphorylation of p38, ERK or JNK were observed. However, using a lentiviral 

expression system, fibroblasts that were induced to overexpress intracellular IL-

33 and stimulated with TNF-α exhibited increased expression of IL-6, IL-8, MCP-1 

and increased PGE2 secretion.   

 

1.6.7 Role of IL-33 in inflammation and infection 

IL-33 and ST2 expression was found to be elevated in the synovial tissue, 

synovial fluid and serum of rheumatoid arthritis patients (Carriere, et al., 2007; 

Matsuyama, et al., 2010; Palmer, et al., 2009; Xu, et al., 2008). This therefore 

implicated a role for IL-33 in the pathogenesis of rheumatoid arthritis. Numerous 

in vivo studies have investigated the role of IL-33 in the pathogenesis of 

rheumatoid arthritis using a collagen induced arthritis mouse model. In collagen 

induced arthritis mice, an increase in IL-33 expression was detected during the 

early phases of inflammation in the joint. Furthermore, intraperitoneal injection 

with a monoclonal anti-ST2 antibody decreased the severity of disease (Palmer, 

et al., 2009). Intraperitoneal injection with sST2-Fc (engineered fusion protein) 

into collagen induced arthritis mice was also shown to attenuate the mean 
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arthritic index and significantly lower the serum levels of IL-12, TNF- and IFN-γ  

(Leung et al., 2004). In addition, when CIA was attempted in ST2-knock out mice 

there was markedly attenuated levels of IL-17, IFN-γ, and TNF-α in the draining 

lymph nodes and lower infiltration of mononuclear and polymorphonuclear 

leukocytes cells into synovial tissues (Xu, et al., 2008). Furthermore, collagen 

induced arthritis mice intraperitoneally injected with recombinant IL-33 

exhibited increased disease severity and significantly increased levels of IL-5, IL-

17, IL-12, IFN-γ and TNF-α in the draining lymph nodes (Xu, et al., 2008). 

In inflammatory bowel diseases, IL-33 was found to be highly expressed in 

diseased tissue samples (Beltran, et al., 2010; Carriere, et al., 2007; Sponheim 

et al., 2010). Carriere and colleagues (2007) also showed that serum levels of IL-

33 were significantly increased in inflammatory bowel diseases patients 

compared to healthy subjects. This indicated a possible role for IL-33 in the 

pathogenesis of inflammatory bowel diseases. Wild type mice intraperitoneally 

injected with recombinant IL-33 presented with marked epithelial cell 

hyperplasia in the gastrointestinal tract (GIT), accompanied with GIT 

eosinophilia and mononuclear cell infiltration (Schmitz, et al., 2005). However, 

IL-33 deficient mice exhibited increased severity of symptoms, inflammation and 

myeloperoxidase activity in a dextran induce colitis mouse model (Oboki et al., 

2010). In contrast, in a trinitrobenzene sulfonic acid-induced experimental 

colitis model, induction of colitis in mice treated with recombinant IL-33 

resulted in reduced inflammatory cell migration and weight loss compared to the 

mice treatment with saline or control IgG. In addition, mice treated with 

recombinant IL-33 exhibited decreased serum levels of IFN-γ and increased 

serum level of Th2 cytokines (IL-5 and IL-13) (Duan et al., 2012). These 

therefore suggested that IL-33 had a protective role in inflammatory bowel 

diseases. 

IL-33 has been demonstrated to play a role in airway inflammation. IL-33 was 

highly expressed in smooth muscle and epithelial cells of bronchial tissue from 

asthma patients (Prefontaine, et al., 2009; Prefontaine et al., 2010). In an 

ovalbumin-induced airway inflammation mouse model, the expression of IL-33 

and ST2 in lungs was increased (Hayakawa, et al., 2007; Louten et al., 2011). In 

addition, when the ovalbumin-induced airway inflammation model was run in 



 

 
 

81

ST2 deficient mice, decreased severity of airway inflammation was observed 

which was characterised by a reduction in inflammatory cell numbers 

(eosinophils and macrophages) and reduced levels of IL-5 in the bronchoalveolar 

lavage fluid (Kurowska-Stolarska, et al., 2008). In addition, IL-33 deficient mice 

also showed decreased pulmonary inflammation characterised by decreased cell 

migration (eosinophils and lymphocytes) as well as decreased Th2 cytokines (IL-5 

and IL-13) in the bronchoalveolar lavage fluid (Louten, et al., 2011; Oboki, et 

al., 2010). Intranasal administration of recombinant IL-33 was also shown to 

induce immediate allergic responses as evidenced by increased mucous 

production by the airway epithelium and increased levels of IL-5 and IL-13 in 

lung tissue as well as in bronchoalveolar lavage fluid  (Louten, et al., 2011). 

A role for IL-33 in infection was first suggested when levels of the soluble 

receptor for IL-33 (sST2) were found to be elevated in patients with sepsis and 

trauma (Brunner et al., 2004). Indeed, IL-33 has been demonstrated to play a 

role in infection in a number of mouse models. In a Pseudomonas aeruginosa 

keratitis mouse model, sub-conjunctival injection with recombinant IL-33 was 

shown to induce decreased severity of inflammation and decreased bacterial 

load as well as a decrease in polymorphonuclear leukocytes infiltration. This was 

accompanied by decreased expression of TNF-α and MIP-2, and increased 

expression of Th2 cytokines (IL-4 and IL-5) (Hazlett et al., 2010). In a mouse 

model of sepsis, where the systemic inflammation was induced by cecal ligation 

and puncture (CLP), intravenous injection of IL-33 was shown to reduce 

mortality rate and this was associated with increased neutrophil influx into the 

peritoneal cavity and increased bacterial clearance (Alves-Filho et al., 2010). 

Furthermore, IL-33 plays a role in protection against fungal pathogens as in an 

acute C. albicans peritoneal infection model. Pre-treatment with IL-33 

(intraperitoneal injection) prior to C. albicans infection (intraperitoneal 

injection) was shown to induce rapid fungal clearance and reduced C. albicans 

associated mortality rate. This was associated with a rapid recruitment of 

neutrophils to the site of infection site in the IL-33 pre-treated mice (Le, et al., 

2012). 
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1.6.8 IL-33 and periodontal diseases 

IL-1 family cytokines have been shown to have important roles in periodontal 

disease (Kinane et al., 1992; Masada et al., 1990; Orozco et al., 2006; Pradeep 

et al., 2009). Since IL-33 is a member of the IL-1 family, a role in periodontal 

disease pathogenesis is anticipated. However, although the role of IL-33 has 

been massively studied in other chronic inflammatory diseases, little is known 

about its role in periodontal disease. 

There is tentative evidence that IL-33 may play a role in periodontal disease. 

Nile and colleagues (2010) have shown that LPS from the periodontal pathogen 

P. gingivalis can induce upregulated IL-33 expression in human monocytes (THP-

1 cell line and primary monocytes). In addition, primary human gingival 

fibroblasts were shown to secrete IL-33 after stimulation with TNF-α (Beklen & 

Tsaous Memet, 2014).  However, reports are varied with regard to the 

association between levels of IL-33 in biological samples and periodontal 

disease. IL-33 was found to be below detection levels in GCF samples of chronic 

periodontitis and healthy subjects when evaluated using a multiplex bead 

immunoassay (Papathanasiou et al., 2014). However, Buduneli and colleagues 

(2012) showed that IL-33 levels in GCF were lower in chronic periodontitis 

patients compared to healthy samples, whilst no difference in IL-33 levels was 

observed in saliva and serum levels between the two groups. 

 

1.7 Background and aims of study  

Chronic periodontitis is a chronic inflammatory disease initiated by periodontal 

pathogens (e.g., P. gingivalis) that exist in dental biofilms (Armitage, 1999). 

Although initiated by pathogens the real damage to periodontal tissues is caused 

by an excessive host immune response to these pathogens (Lindhe, et al., 1999). 

Therefore a greater understanding of the host oral immune response is required 

for us to fully delineate the pathogenesis of periodontal disease. 

Cytokines play an important role in mediating the host immune response. IL-1 

family cytokines such as IL-1α, IL-1β and IL-18 have been shown to have 

important roles in periodontal diseases (Jandinski et al., 1991; Kinane, et al., 
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1992; Masada, et al., 1990; Orozco, et al., 2006). However, the role of IL-33, 

another member of the IL-1 family of cytokines, in periodontal disease has yet to 

be fully investigated. IL-33 has been shown to be expressed in many tissues such 

as skin, gut, lung, brain and spinal cord (Hudson, et al., 2008; Moussion, et al., 

2008; Schmitz, et al., 2005) and expression found to be higher in inflammatory 

conditions (Beltran, et al., 2010; Matsuda, et al., 2009; Matsuyama, et al., 2010; 

Xu, et al., 2008). This pattern of IL-33 expression in tissues exposed to the 

environment indicates that IL-33 may be expressed in the oral epithelium. 

Furthermore, periodontal pathogens such as P. gingivalis have been 

demonstrated to stimulate upregulated expression of IL-33 in human monocytes 

(THP-1 cell line and primary monocytes) (Nile, et al., 2010). Therefore it can be 

hypothesised that similar regulatory events may occur in oral epithelial cells.  

The cytokine IL-17A has received considerable attention since the discovery of 

the Th17 cell subset (Aggarwal, et al., 2003). Th17 cells have been 

demonstrated to be present in the periodontium (Schenkein, et al., 2010), 

however analysis of diseased tissue suggests there is limited association of Th17 

cells with periodontal disease progression (Culshaw et al, unpublished). In fact, 

it is now known that despite IL-17A being described as a T cell-secreted 

cytokine, much of the IL-17A released during an inflammatory response is 

produced by innate immune cells (Cua & Tato, 2010). Indeed, IL-17A has been 

shown to be associated with periodontal disease pathogenesis (Behfarnia, et al., 

2013; Honda, et al., 2008; Ohyama, et al., 2009; Takahashi, et al., 2005). 

However, since the discovery of IL-17A, genomic sequencing efforts have led to 

the discovery of several putative IL-17(A) homologues; IL-17B - IL-17F. To date, 

little research has been conducted investigating the association of these other 

IL-17 family members with periodontal disease. In addition, evidence suggests 

that unlike other IL-17 family members, which have pro-inflammatory functions, 

IL-17E can down regulate localized destructive inflammatory responses in 

conditions including rheumatoid arthritis (Gaffen, 2009a). Therefore, it is 

interesting to speculate that IL-17E plays differing roles to IL-17A in the 

pathogenesis of periodontal disease. However, to date this hypothesis has not 

been investigated. 

Based on these proposed hypotheses the aims of this study therefore were: 
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1. To evaluate levels of IL-10, IL-33 and IL-17 family cytokines in serum, saliva 

and GCF from patients with chronic periodontitis and healthy subjects.  

2. To evaluate the expression of IL-33 and its receptors (ST2L and sST2) in 

periodontal tissue samples from patients with chronic periodontitis and 

healthy subjects. 

3. To evaluate the mRNA expression of IL-10 and IL-17 family cytokines in 

periodontal tissue samples from patients with chronic periodontitis and 

healthy subjects. 

4. To evaluate the expression of IL-33 and its receptors (ST2L and sST2) in oral 

keratinocyte cells using an in vitro live P. gingivalis monospecies biofilm 

model. 

5. To evaluate the effect of IL-33 on the expression of inflammatory mediators 

by oral keratinocyte cells in vitro. 

6. To evaluate the expression of IL-17E and its receptor (IL-17RB) in periodontal 

tissue samples from patients with chronic periodontitis and healthy subjects. 

7. To evaluate the role of IL-17E in modulating the expression of chemokines 

(IL-8 and CXCL5) by oral keratinocytes in response to stimulation with P. 

gingivalis and IL-17A. 
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2.1 Study samples 

Serum, gingival crevicular fluid (GCF) and saliva samples from healthy and 

chronic periodontitis patients were used in this study. Samples were selected 

from independent studies conducted at Glasgow Dental Hospital and School and 

Newcastle School of Dental Sciences and were from subjects that were 

systemically healthy non smokers. The sample collection and ethical approvals 

for the Glasgow sample cohort were as previously described (Lappin et al., 2009; 

Pathiyal et al., 2005). The sample collection and ethical approvals for the 

Newcastle cohort are as previously described (Davies et al., 2011; Jaedicke et 

al., 2012; Preshaw & Heasman, 2002). 

The age range of the subjects in this study was 22 – 55 years. To be included in 

the study subjects had to be systemically healthy with a minimum of 16 teeth 

and at least four molars in different quadrants. Subjects were excluded if they 

previously had surgical periodontal therapy and if they were currently taking or 

had previously taken antibiotics or any other medication during the past six 

months. In addition, all smokers or former smokers and females who were 

pregnant at the time of the study or within the previous year were also 

excluded.  

All subjects had a clinical periodontal examination carried out by a single 

calibrated clinician (Kappa scores for clinical probing depths and clinical 

attachment levels were 0.63 (p < 0.001) and 0.59 (p < 0.001) respectively). The 

following data were obtained: age, gender and clinical parameters for 

periodontal conditions (clinical probing depth (CPD), clinical attachment loss 

(CAL) and bleeding on probing (BOP)). 

Full mouth periodontal chartings were recorded using a University of North 

Carolina PCP 15 manual probe at six sites around every tooth: mesiobuccal, 

distobuccal, mesiolingual, distolingual, midlingual and midbuccal. The gingival 

recession was recorded, which is the distance between the cemento-enamel 

junction and the gingival margin. A negative value was recorded if the gingival 

margin was coronal to the cemento-enamel junction. The probe was gently 

inserted into the gingival crevice or pocket along the long axis of the tooth until 
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resistance was felt. CPD was defined as the distance between the gingival 

margin and the base of the crevice or pocket. The CAL is a combined value of 

gingival recession and CPD. BOP was also recorded 30 seconds after placing the 

probe into the crevice or pocket. 

Subjects were grouped as chronic periodontitis patients if they demonstrated a 

minimum of two sites with a CPD and CAL of ≥ 5 mm. The healthy subjects had 

no history of chronic periodontitis and no sites with a CPD or CAL of ≥ 2 mm.  

 

2.2 Serum, gingival crevicular fluid and saliva samples 

 

2.2.1 Serum samples 

Blood was collected between 0900 and 1100 h (to minimize diurnal variations in 

biochemical parameters) from a peripheral vein in a coagulant tube. After 

clotting the sample was centrifuged (200 x g) and the serum isolated, snap 

frozen in aliquots and stored at –80 oC. 

 

2.2.2 Gingival crevicular fluid samples 

Gingival crevicular fluid (GCF) samples were obtained from the buccal aspects of 

two interproximal sites in single rooted teeth from each individual participating 

in the study. Except for the controls, GCF samples were obtained from sites with 

obvious dental biofilm accumulation and visible signs of inflammation such as 

hyperaemia. GCF samples were collected with filter paper strips (Oraflow Inc, 

New York). Prior to GCF sampling, supragingival biofilm was removed carefully 

by sterile curettes and the surfaces were dried and isolated by cotton rolls. 

Filter paper strips were placed in the gingival sulcus/pocket for 30 seconds. Care 

was taken to avoid mechanical trauma and strips visually contaminated with 

blood were discarded. Two strips from each patient were placed into one 

polypropylene tube before freezing at -80 oC. The strips were eluted prior to 

assay by the following method.  The strips were placed into a microcentrifuge 

tube containing 50 µl of phosphate buffered saline (PBS) containing 0.05 % 

Tween® 20 (PBST) and centrifuged at 13,000 x g for 2 min. The supernatant (50 
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µl) was collected and transferred to a new microcentrifuge tube. The 

centrifugation was repeated three times with new PBST to give a total volume of 

150 µl.  

 

2.2.3 Saliva samples 

Saliva was collected according to a modification of the method described by 

Navazesh and Christensen (1982). Prior to saliva sample collection, the subject 

was instructed to refrain from intake of any food or beverage for 1 h. Smoking, 

chewing gum and intake of coffee were prohibited during this hour. The subject 

was instructed to minimise all facial movements, particularly movements of the 

mouth. To begin saliva collection the subject was asked to void the mouth of 

saliva by swallowing. The subject was then asked to lean slightly forward over 

the tube and funnel. The subject was then instructed to keep his/her mouth 

slightly open and to allow saliva to drain into the funnel. At the end of the 5 min 

collection period, the subject was asked to collect any remaining saliva in 

his/her mouth and expectorate into the funnel. The saliva volume was measured 

using micropipettes (Finnipipette, Lab systems). Saliva samples were aliquoted 

and stored at -80 oC. 

 

2.3 Tissue samples 

Periodontal tissue samples were obtained from 26 subjects: 9 healthy and 17 

chronic periodontitis. Healthy tissue samples were taken from patients 

undergoing non-periodontal disease related procedures such as crown 

lengthening and tooth extraction. Disease tissue samples were taken from 

patients suffering from chronic periodontitis, who required surgical periodontal 

therapy as part of their periodontal treatment regime. Gingival tissues were 

obtained from subjects with written consent, undergoing open flap debridement 

in the Unit of Periodontics at Glasgow Dental Hospital. Ethical review and 

approval was provided by the West of Scotland Research Ethics Committee. 

Patients undergoing open flap debridement had clinical probing depths of ≥ 5.0 

mm with clinical attachment loss of ≥ 5.0 mm, which persisted after non-surgical 

treatment. Subject age ranged from 38 - 64 years with a mean age of 47 years. 
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The tissue samples were immediately submerged in RNAlater (Qiagen, UK) and 

stored at -80 oC. 

 

2.4 Cell culture 

 

2.4.1 OKF6/TERT-2 cells 

OKF6/TERT-2 cells were a kind gift from the Rheinwald laboratory (Brigham and 

Women’s Hospital, Boston). The cells were originated from keratinocyte cells of 

the oral mucosa, which have been immortalized by forced ectopic expression of 

the telomerase catalytic subunit, hTERT (Dickson et al., 2000). The cells 

resemble primary oral keratinocyte cells and are regarded as a valuable and 

reproducible model for normal oral epithelial cell studies (Dongari-Bagtzoglou & 

Kashleva, 2006). 

OKF6/TERT-2 cells were grown in keratinocyte serum-free medium (KSFM) 

(Invitrogen, UK) supplemented with 25 µg/ml bovine pituitary extract 

(Invitrogen, UK), 0.2 ng/ml epidermal growth factor (Invitrogen, UK), 2 mM L-

glutamine (Sigma-Aldrich, UK), 100 IU/ml penicillin (Sigma-Aldrich, UK), 100 

mg/ml streptomycin (Sigma-Aldrich, UK), and 0.4 mM calcium chloride. The 

OKF6/TERT-2 cells were allowed to grow in vented tissue culture flasks (Corning, 

UK) in a humidified atmosphere with 5 % CO2 at 37 oC. The growth media was 

changed at two or three day intervals until the cells reach 70 % confluence at 

which point they were subcultured. 

To subculture, the spent media was removed from the flask and cells were 

washed with pre-warmed PBS (Invitrogen, UK). Appropriate volumes (e.g., 4 ml 

for a 75 cm2 flask) of 0.05 % trypsin/EDTA (ethylenediaminetetraacetic acid) 

(Invitrogen, UK) were then added to the flask and incubated at 37 oC until the 

cells detached (2 to 5 min). The trypsin was then inactivated by adding double 

the volume of dulbecco's modified eagle medium (DMEM) with 10 % (v/v) fetal 

bovine serum (Invitrogen, UK) to the flask. The cell suspension was then 

removed from the flask and placed in a sterile 25 ml centrifuge tube and 

centrifuged at 1000 rpm for 5 min. The supernatant was again removed and cells 



 

 
 

90

were resuspended in 4 ml Hank’s solution (Sigma-Aldrich®, UK) and then 

centrifuged at 1000 rpm for 5 min. The cells were finally resuspended in 4 ml 

KSFM, and viable cell counts were performed using a haemocytometer. A 1-2 x 

105 cell suspension was then prepared in KSFM and cells seeded into a vented 75 

cm2 cell culture flask (Corning, UK). The cells were then incubated in a 

humidified atmosphere with 5 % CO2 at 37 oC. 

 

2.4.2 Primary human gingival epithelial cells 

Commercially available primary human gingival epithelial (PHGE) cells were 

bought from CELLnTEC advanced cell systems (Switzerland). This is a pooled 

suspension of primary cells isolated from healthy adult gingival tissues of three 

or more donors. The PHGE cells were grown and subcultured as described for the 

OKF6/TERT-2 cells (Section 2.4.1). Only cells at passage two to five were used 

experimentally.  

 

2.4.3 Cryopreservation of cells 

Cryopreservation of cells (OKF6/TERT-2 cells and PHGE cells) was carried out 

using dimethyl sulfoxide (DMSO) (Sigma-Aldrich, UK) as a freezing medium. DMSO 

(20 %) was prepared by adding 4 ml of DMSO to 16 ml fetal bovine serum 

(Invitrogen, UK) and the solution was filter-sterilized (0.22 µm). For the purpose 

of cryopreservation, the cells were harvested during exponential growth. The 

cells were pelleted and suspended in a KSFM (Invitrogen, UK) at a concentration 

of 2 x 106 cells/ml in a sterile universal tube. In a dropwise manner, an equal 

volume of cold 20 % DMSO was then added to the cell suspension and 1 ml of the 

cell solution was transferred to a labelled cryovial. The cryovial was then chilled 

on ice for 30 min, and then placed in a pre-chilled insulation box to be kept at -

80 oC for 6 to 16 h. The cryovial was finally transferred into liquid nitrogen for 

long term preservation. 
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2.4.4 Thawing of cryopreserved cells 

The cryopreserved cells (OKF6/TERT-2 cells and PHGE cells) were removed from 

liquid nitrogen and quickly thawed at 37 oC. The cryovial outer surface was 

disinfected with 70 % ethanol, and carefully the cells were transferred into a 25 

cm2 cell culture flask (Corning, UK) pre-filled with 9 ml warm KSFM (Invitrogen, 

UK). The cells were then incubated overnight in a humidified atmosphere with 5 

% CO2 at 37 oC. The media were changed the next day. Growth and subculture 

was performed as described previously (Section 2.4.1 and Section 2.4.2). 

 

2.5 Porphyromonas gingivalis monospecies biofilm 

 

2.5.1 Bacterial growth conditions 

The monospecies biofilms were prepared using P. gingivalis ATCC 33277, which 

was obtained from the American Type Culture Collection (ATCC, USA). The 

bacteria were maintained at 37 oC on fastidious anaerobic agar (Oxoid, 

Cambridge, UK) with 5 % defibrinated horse blood (E&O laboratories, UK) in an 

anaerobic chamber (Don Whitley Scientific Limited, UK) for 3 days. The chamber 

was set at 85 % N2, 10 % CO2 and 5 % H2. Prior to biofilm preparations, the 

bacteria were grown at 37 oC in schaedler anaerobe broth (Oxoid, UK) for 2 days. 

After 2 days the broth was centrifuged at 3000 rpm for 5 min to obtain a pellet 

of bacteria, which was then washed three times with PBS (pH 7.4). The bacteria 

were then resuspended in PBS and standardized at 0.2 OD550 in a colorimeter 

(Fisher Scientific, UK) to obtain approximately 1  108 CFU (colony forming 

unit)/ml. Live bacterial counts were confirmed as described in Section 2.5.2. 

 

2.5.2 Standard plate counting method 

The method was adapted from the Miles and Misra method (1938) and was used 

to determine the number of colony forming units (CFU) in a bacterial suspension. 

The bacterial suspension was serially diluted (1:10 dilutions) up to 10-5 with PBS. 

Fastidious anaerobic agar (Oxoid, UK) plates with 5 % defibrinated horse blood (E 

& O laboratories, UK) were prepared in advance. 
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The surfaces of the fastidious anaerobic agar plates were first sufficiently dried 

to allow a 20 µl drop of dilution to be absorbed onto the plate in 15 - 20 min. 

Each plate was then divided into four equal sectors. In each sector, three drops 

of the appropriate dilution were placed onto the surface of the agar and the 

drops were allowed to spread naturally over an area of 1.5 to 2.0 cm. The plates 

were left upright to dry on the bench before inversion and incubation in an 

anaerobic chamber (Don Whitley Scientific Limited, UK) for 24 to 48 h with 

continuous observation. The chamber setting was 85 % N2, 10 % CO2 and 5 % H2. 

Colonies were then counted by eye. The following equation was used to 

calculate the number of CFU per ml from the original sample dilution: CFU/ml = 

Average number of colonies for a dilution x 50 x dilution factor. 

 

2.5.3 Artificial saliva 

Artificial saliva was used to prepare a P. gingivalis monospecies biofilms. The 

use of artificial saliva was to simulate the biofilm growth conditions of the oral 

cavity. Artificial saliva base was prepared by mixing the following substances in 

distilled water: 0.25 % (w/v) porcine stomach mucin (Sigma-Aldrich, UK), 0.35 % 

(w/v) sodium chloride (VWR International, Belgium), 0.02 % (w/v) potassium 

chloride (VWR International, Belgium), 0.02 % (w/v) calcium chloride dihydrate 

(VWR International, Belgium), 0.2 % (w/v) yeast extracts (Sigma-Aldrich, UK), 

0.1 % (w/v) lab lemco powder (Oxoid, UK) and 0.5 % (w/v) proteose peptone 

(Sigma-Aldrich, UK). The artificial saliva base was autoclaved at 121 oC for 15 

min and left to cool. Finally, an autoclaved solution of 0.05 % (v/v) urea (Oxoid, 

UK) was added to the base to produce the final artificial saliva solution which 

was kept at 4 oC prior to use. 

 

2.5.4 Preparation of Porphyromonas gingivalis monospecies 
biofilms 

P. gingivalis cultures (Section 2.5.1) were standardized to 1  107 CFU/ml in 

artificial saliva (Section 2.5.3). Next, 500 l of the standardized P. gingivalis 

solution was cultured onto 13 mm diameter cell culture treated Thermanox® 

plastic coverslips (Nalge Nunc International, UK) placed in 24-well cell culture 

plates (Corning, UK). The cultures were incubated at 37 oC in an anaerobic 
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chamber (Don Whitley Scientific Limited, UK) for 4 days. The chamber setting 

was at 85 % N2, 10 % CO2 and 5 % H2. Daily, the spent artificial saliva was 

replaced with 500 l new artificial saliva. After the final incubation, the 

artificial saliva was removed and the biofilms were kept at -80 oC prior to use for 

cell stimulation experiments. 

 

2.5.5 Validation of the Porphyromonas gingivalis monospecies 
biofilms 

2.5.5.1 Viability test 

The P. gingivalis monospecies biofilms were revived by thawing in 500 µl 

artificial saliva and incubating overnight in an anaerobic chamber. The biofilms 

were removed from the artificial saliva the next day and washed in PBS. The 

excess PBS was removed by wiping the coverslip (biofilm free side) on sterile 

paper. Each biofilm was then placed in 1 ml PBS in a 5 ml universal tube. To re-

suspend the P. gingivalis, the universal tube was subjected to sonication at 35 

kHz for 5 min in an ultrasonic bath (Fisherbrand® FB 11021; Fisher Scientific, 

UK). The CFU of the P. gingivalis suspension was determined using a standard 

plate counting method (Section 2.5.2). 

2.5.5.2 Gram staining 

Gram staining is a bacteriological laboratory technique used to differentiate 

Gram-positive and Gram-negative bacterial species based on the biochemical 

properties of their cell walls. The P. gingivalis monospecies biofilms were 

revived by thawing in 500 µl artificial saliva and incubating overnight in an 

anaerobic chamber. The biofilms (coverslip) were removed from the artificial 

saliva the next day and washed in PBS. The excess PBS was removed by wiping 

the coverslip (biofilm free side) on sterile paper, then the biofilms were left to 

dry. The biofilms were subjected to Gram staining procedure, using a Gram 

staining kit (Pro-Lab Diagnostics Inc., UK) which involved the following steps. 

The primary stain (crystal violet) were added to the coverslip (biofilm) and 

incubated for 1 min. The coverslip was rinsed with a gentle stream of water for 

a maximum of five seconds to remove unbound crystal violet. Then the Gram’s 

iodine (an agent that fixes crystal violet to bacterial cell walls) was added for 1 
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min, followed by a gentle rinse with acetone for about three seconds and a rinse 

with a gentle stream of water. Then safranin, a secondary stain was added to 

the coverslip for 1 min, followed by rinsing with a gentle stream of water for a 

maximum of five seconds. The coverslip was then placed on a glass slide for 

viewing under a microscope. The Gram-positive bacteria will retain the primary 

stain (crystal violet) and not uptake the secondary stain (safranin) causing it to 

look purple under a microscope. While Gram-negative bacteria will lose the 

primary stain and uptake the secondary stain causing it to appear red under a 

microscope. The gram stain process was used to confirm visually the presence of 

an abundant monospecies biofilm of the Gram-negative organism (P. gingivalis) 

had grown on the coverslips.   

 

2.6 Cell stimulation studies 

 

2.6.1 Stimulation of cells with a live Porphyromonas gingivalis 
monospecies biofilm 

A day prior to the stimulation experiments, OKF6/TERT-2 cells (Section 2.4.1) or 

PHGE cells (Section 2.4.2) were seeded in duplicate at 2 x 105 cells/ml in 24-well 

cell culture plates (Corning, UK), and incubated overnight in a humidified 

atmosphere at 37 oC with 5 % CO2. At the same time, the P. gingivalis 

monospecies biofilm (Section 2.5.4) were thawed in 500 µl artificial saliva and 

incubated overnight in an anaerobic chamber. 

After an overnight incubation, the spent media was removed from the cell 

monolayer which was subsequently washed once with pre-warmed PBS 

(Invitrogen, UK). The cells were then placed in 1 ml of defined keratinocyte 

serum-free medium (DKSFM) (Invitrogen, UK).  

The P. gingivalis monospecies biofilms were taken out of artificial saliva and 

washed by dipping three times in PBS. The excess PBS was removed by wiping 

the coverslip (on the biofilm-free side) on sterile paper. Each biofilm was then 

attached to a 24-well Millicell® cell culture insert (Millipore, UK) using sterile 

commercially available Vaseline®. The biofilm was then suspended above the 

cell monolayer in the wells of a 24-well plate as shown in Figure 2-1. 
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Figure 2-1: Diagrammatic representation of the P. gingivalis monospecies 
biofilm model 

A live P. gingivalis monospecies biofilm is cultured on cell culture treated 
Thermanox® plastic coverslips which is then secured to the base of a hanging 
basket with sterile Vaseline® (Sherry et al., 2013). The biofilm is then suspended 
0.5 mm above a monolayer of cultured oral keratinocytes. The 0.5 mm is a 
physiologically relevant space representing the gap between the tooth surface 
and gum tissue. 
 

The experimental protocols used in this thesis are summarised in Table 2-1. The 

co-cultures were incubated for between 3, 6, 9 and 24 h in a humidified 

atmosphere with 5 % CO2 at 37 oC. A duplicate unstimulated control for each 

incubation time point was also performed. After completion of the respective 

incubation period, the culture supernatant was removed and stored at -20 oC for 

analysis by ELISA. The remaining adherent cells were lysed with 350 µl of RLT 

lysis buffer (Qiagen, UK) with 1 % β-Mercaptoethanol. The lysate was stored at -

80 oC for future RNA isolation. 
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Experiment design Stimulation conditions 
Incubation  
Hour (h) 

Evaluation 

Effect of P. gingivalis 
biofilm stimulation on 
OKF6/TERT-2 cells or PHGE 
cells 

(a) Control; and (b) Biofilma 3, 6, 9 & 24 h 
 
 
 
 
 
9 h 

a) IL-8 protein release (ELISA) 
b) mRNA expression and protein release of IL-33 and its 

receptors (real-time PCR and ELISA respectively) 
c) mRNA expression of IL-17 family (real-time PCR; 

OKF6/TERT-2 cells only) 
 
a) IL-8 protein release (ELISA) 
b) IL-33 and ST2 protein expression 

(immunocytochemistry) 
Effect of IL-17E on 
OKF6/TERT-2 cells 
stimulated by a P. 
gingivalis biofilm 

(a) Control; (b) rhIL-17E (50 ng/ml); (c) Biofilma ; 
and (d)Treat with rhIL-17E (50 ng/ml) for 30 min, 
followed by biofilma 
 

4 & 24 h a) mRNA expression and protein release of IL-8 and 
CXCL5 (real-time PCR and ELISA respectively) 

 
 

Effect of IL-17E on 
OKF6/TERT-2 cells 
stimulated by IL-17A 

(a) Control; (b) rhIL-17E (400 ng/ml); (c) rhIL-17A 
(10 ng/ml); (d) Treat with combination of rhIL-17A 
(10 ng/ml) and rhIL-17E (10, 50, 100, 200 or 400 
ng/ml); and (e) Treat with rhIL-17E (10, 50, 100, 
200 or 400 ng/ml) for 30 min, followed rhIL-17A (10 
ng/ml) 
 

24 h a) mRNA expression and protein release of IL-8 (real-
time PCR and ELISA) 

 

Effect of IL-33 on 
OKF6/TERT-2 cells 

(a) Control; (b) PMA (10 ng/ml); and (c) rhIL-33 (10, 
50 or 100 ng/ml) 

4, 24 & 48 h a) mRNA expression of IL-8, IL-1RA, G-CSF, TLR-2 and 
TLR-4 (real-time PCR) 

b) Protein release of IL-8, IL-1RA and G-CSF (ELISA) 
c) Proteome profiler analysis (24 h only) 
 

Table 2-1: Oral keratinocyte stimulation experimental protocols 

See Section 2.5.4 for biofilm preparation (a). Detail descriptions of the materials used are as follow: rhIL-17A = recombinant human IL-
17A (Cell Signalling, USA); rhIL-17E = recombinant human IL-17E (PeproTech, USA); PMA = phorbol 12-myristate 13-acetate (PMA) 
(Sigma-Aldrich®, UK); and rhIL-33 = recombinant human IL-33 (PeproTech®, UK).   
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2.6.2 Effect of IL-17E on OKF6/TERT-2 cells stimulated by 
Porphyromonas gingivalis monospecies biofilm 

OKF6/TERT-2 cells were prepared for stimulation experiments as described 

previously (Section 2.4.1). P. gingivalis monospecies biofilms were prepared for 

stimulation experiment as described previously (Section 2.5.4). The 

experimental protocol is summarised in Table 2-1. Briefly, the cells were either 

stimulated with rhIL-17E (50 ng/ml) alone, biofilm alone or 30 min pre-

incubation with rhIL-17E (50 ng/ml) followed by biofilm stimulation. The 

stimulations were carried out in DKSFM (Invitrogen, UK). The cultures were 

incubated for 4 and 24 h in humidified atmosphere at 37 oC and 5 % CO2. 

Duplicate unstimulated controls for each incubation time point was also included 

in the experiment. After completion of the respective incubation period, the 

culture supernatant was removed and stored at -20 oC for analysis by ELISA. The 

remaining adherent cells were lysed with 350 µl of RLT lysis buffer (Qiagen, UK) 

with 1 % β-Mercaptoethanol. The lysate was stored at -80 oC for future RNA 

isolation.  

 

2.6.3 Effect of IL-17E on OKF6/TERT-2 cells stimulated by IL-
17A 

OKF6/TERT-2 cells were prepared for stimulation experiments as described 

previously (Section 2.4.1). The experimental protocol is summarised in Table 2-

1. Briefly, the cells were either incubated with rhIL-17E (400 ng/ml) alone, 

stimulated with rhIL-17A (10 ng/ml) alone, stimulated with combination of rhIL-

17A (10 ng/ml) and rhIL-17E (10, 50, 100, 200 or 400 ng/ml) or 30 min pre-

incubation with rhIL-17E (10, 50, 100, 200 or 400 ng/ml) followed by stimulation 

with rhIL-17A (10 ng/ml). The stimulations were carried out in DKSFM 

(Invitrogen, UK). The cultures were then incubated for 24 h in a humidified 

atmosphere with 5 % CO2 at 37 oC. A duplicate of unstimulated control for each 

incubation time point was also included in the experiment. After completion of 

the respective incubation period, the culture supernatant was removed and 

stored at -20 oC for analysis by ELISA. The remaining adherent cells were lysed 

with 350 µl of RLT lysis buffer (Qiagen, UK) with 1 % β-Mercaptoethanol. The 

lysate was stored at -80 oC for future RNA isolation.  
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2.6.4 Effect of IL-33 on OKF6/TERT-2 cells 

OKF6/TERT-2 cells were prepared for stimulation experiments as described 

previously (Section 2.4.1). The experimental protocol is summarised in Table 2-

1. Briefly, the cells were incubated in duplicate with either PMA (10 ng/ml) 

(Sigma-Aldrich®, UK) as a positive control or rhIL-33 (10, 50 or 100 ng/ml) 

(PeproTech®, UK). The culture was then incubated for 4, 24 and 48 h in a 

humidified atmosphere with 5 % CO2 at 37 oC. A duplicate unstimulated control 

for each incubation time point was also included in the experiment. After 

completion of the respective incubation period, the culture supernatant was 

removed and stored at -20 oC for analysis by ELISA. The remaining adherent cells 

were lysed with 350 µl of RLT lysis buffer (Qiagen, UK) with 1 % β-

Mercaptoethanol. The lysate was stored at -80 oC for future RNA isolation. 

 

2.6.5 Validating the bioactivity of recombinant human IL-33 

Naïve CD4+ T cells isolated from cord blood produced enhanced levels of IL-5 

when cultured with an anti-CD3 antibody and IL-33, compared with anti-CD3 

antibody alone (Kurowska-Stolarska, et al., 2008). Since peripheral blood 

mononuclear cells (PBMCs) were also known to compose naïve CD4+ T cells 

(Pflanz et al., 2002), we used easily accessible PBMCs instead of cord blood cells 

for validation of the bioactivity of rhIL-33 (PeproTech®, UK) prior to the IL-33 

stimulation study (Section 2.6.4). The study was carried out using PBMCs isolated 

from human venous blood. Based on the finding by Kurowska-Stolarska and 

colleagues (2008), the bioactivity of rhIL-33 in this study was evaluated by 

comparing levels of IL-5 produced by PBMCs when cultured with an anti-CD3 

antibody and rhIL-33, and anti-CD3 antibody alone. 

Human venous blood was collected in an EDTA tube (final concentration of 1.5 – 

2.0 mM) and used within 2 h of drawing. PBMCs were isolated from venous whole 

blood using PolymorphprepTM (Axis-Shield, UK) as previously devised by Boyum 

(1968). Briefly, a Pasteur pipette was used to layer 5 ml blood over 5 ml 

PolymorphprepTM in 15 ml centrifuge tubes. The tubes were centrifuged at 500 x 

g for 30 – 35 min at room temperature (20 oC). The rotor was allowed to 

decelerate without the brake. Using a Pasteur pipette, the upper plasma layer 

was then drawn off, leaving the PBMC layer. The PBMC layer was aspirated using 
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a Pasteur pipette, and transferred into a fresh 15 ml centrifuge tube containing 

10 ml RPMI (Roswell Park Memorial Institution) media (Sigma-Aldrich, UK). The 

RPMI was supplemented with 10 % fetal bovine serum (Sigma-Aldrich®, UK), 2 mM 

L-glutamine (Sigma-Aldrich®, UK) and 1 % penicillin/streptomycin solution 

(Sigma-Aldrich®, UK). The tube was then centrifuged at 400 x g to pellet the 

cells. The cells were then washed twice in 10 ml PBS by centrifugation at 400 x g 

for 10 min. Cells were finally resuspended in 5 – 10 ml RPMI and counted. 

For the bioactivity assay, the cells were seeded in 6-well plates at 1 x 106 

cells/ml (3 ml in each well) and stimulated in duplicate with combinations as 

follow: anti-CD3 (3 µg/ml) alone; anti-CD3 (3 µg/ml) and rhIL-33 (50 ng/ml); 

anti-CD3 (3 µg/ml) and rhIL-33 (100 ng/ml). The cells were incubated for 3 days 

in a humidified atmosphere at 37 oC and 5 % CO2. The supernatants were 

collected and centrifuged at 10000 x g for 15 min at 4 oC. The supernatants were 

transferred into a new centrifuge tubes and stored at -20 oC prior to analysis for 

IL-5 by ELISA (PeproTech®, UK). The experiment was repeated with three 

separate donors. 

 

2.7 Protein analyses 

 

2.7.1 Enzyme-linked Immunosorbent Assay  

Cytokine concentrations in biological fluids and cell culture supernatants were 

measured by enzyme-linked immunosorbent assay (ELISA). Although various kits 

from various sources were used in this study (Table 2-2), the general assay 

principal was mainly the same. The general ELISA procedure is described as 

below. 

Nunc-Immuno® MaxiSorp® 96-well Plates (Nalge Nunc International, UK) were 

coated with coating antibody diluted in coating buffer, and incubated overnight 

(12 – 18 h). The plate was washed between 1 and 5 times with wash buffer PBS 

with 0.05 % Tween® 20 (Sigma-Aldrich, UK). The plate was then blocked with 

blocking buffer for 2 h at room temperature. The plate was washed again 

between 1 and 5 times with wash buffer. Subsequently, duplicates of sample or 

pre-prepared standards were added to the wells of the 96-well plate and the 
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plate incubated for 2 h at room temperature. The plate was washed between 1 

and 5 times with wash buffer. After washing, the detection antibody was added 

to each well and the plate incubated for 1 h at room temperature. The plate 

was washed again between 1 and 5 times with wash buffer. The plate was then 

incubated with Streptavidin-HRP for 30 min at room temperature. Finally, 

substrate solution e.g., 3,3,5,5’-tetra-methylbenzidine (TMB) substrate (KPL, 

Gaithersburg, USA) was added to each well and the plate incubated for 5 – 30 

min to allow colour development.  Colour development was then stopped using 1 

M HCl and the absorbance was measured at 450 nm with wavelength correction 

set at 650 nm using a microplate reader (FLUOstar Omega; BMG Labtech, 

Germany). For some assays 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic 

acid) or ABTS (Sigma-Aldrich, UK) was used as a substitute substrate solution. On 

these occasions colour development was measured directly without addition of a 

stop solution at 405 nm with wavelength correction set at 650 nm. The plate was 

monitored at 5-min intervals for approximately 30 min. Data analysis was 

performed using Labtech data analysis software (BMG Labtech, Germany). In all 

cases, data was analysed using a log-log or 4-parameter curve fit.  

Although the general assay principal was the same; there were some subtle 

differences in assay procedure depending on assay source. These are detailed in 

Table 2-2. For each individual ELISA the assay was optimized and validated prior 

to use. Table 2-3 shows the concentration of each antibody used in each assay. 

In addition, the sensitivity limits of each assay were determined as two mean 

standard deviations higher than the mean baseline from 6 replicates standard 

curves (Table 2-3) (Chaloner-Larsson et al., 1997). 
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Manufacturer 
Coating antibody 
(ab) 

Blocking Detection antibody (ab) Peroxidase Substrate Solutions 

Invitrogen, UK 
 

Dilute in coating 
buffer, incubate 
overnight (4oC) 
 

Use diluent, block 
for 1hr (RT) 

Dilute in diluent, 
incubate with samples for 
2 h (RT) 
 

Streptavidin-HRP 
30 min (RT) 

TMB Coating buffer: 0.1 M NaHCO3 
(pH 8.2) 
Diluent: PBS + 0.5% BSA + 0.1% + 
Tween® 20 (pH 7.4) 

PeproTech, USA Dilute in PBS, 
incubate overnight 
(RT) 

Use diluent, block 
for 1hr (RT) 

Dilute in diluent, 
incubate for 2 hr (RT) 

Streptavidin-HRP 
30 min (RT) 

ABTS Diluent: 0.1% BSA, 0.05% Tween® 
20 in PBS 

R&D System, UK  
(DuoSet®) 

Dilute in PBS, 
incubate overnight 
(RT) 

Use diluent, block 
for 1hr (RT) 

Dilute in diluent, 
incubate for 2hr (RT) 

Streptavidin-HRP 
30 min (RT) 

TMB Diluent: 1% BSA in PBS (0.2 µm 
filtered) 

R&D System, UK 
(Quantikine® ST2) 

Ab-coated plate is 
supplied  

Use diluent, 
incubate with 
sample for 2hr (RT) 

Use as supplied, incubate 
for 2 hr (RT) 

HRP conjugated 
to detection ab 

TMB Diluent & detection Ab: supplied 
by manufacturer 

Life Science, UK 
 

Dilute in PBS, 
incubate overnight 
(4oC) 

Use diluent, block 
for 2hr (RT) 

Dilute in diluent, 
incubate for 1hr (RT) 

Streptavidin-HRP 
30 min (RT) 

TMB Diluent: 2% BSA in PBS (0.2 µm 
filtered) 

Table 2-2: Manufacturer variations in ELISA procedure  

BSA = Bovine serum albumin; TMB = 3, 3, 5, 5’-tetra-methylbenzidine substrate (KPL, Gaithersburg, USA); ABTS = 2, 2'-azino-bis (3-
ethylbenzothiazoline-6-sulphonic acid) (Sigma-Aldrich, UK)); NaHCO3 = sodium hydrogen carbonate; PBS = phosphate-buffered saline; RT 
= room temperature; HRP = horseradish peroxidase; and Ab = antibody. 
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ELISA Suppliers 

Capture 
antibody 
(μg/ml) 

Detection 
antibody 
(μg/ml) 

Sensitivity 
limit 

(pg/ml) 
Range 

(pg/ml) 
 
Human IL-1RA 

 
PeproTech®, USA 

 
0.5 

 
0.5 

 
15.1 

 
7.8 – 1000 

 
Human IL-5 

 
PeproTech®, USA 

 
0.25 

 
0.5 

 
64 

 
31.2 - 2000 

 
Human CXCL5 

 
R&D Systems, UK 

 
2.0 

 
0.10 

 
7.8 

 
7.8 -1000 

 
Human IL-8 

 
Invitrogen, UK 

 
1.0 

 
0.04 

 
12.5 

 
12.5 – 800 

 
Human IL-10 

 
PeproTech®, USA 

 
1.0 

 
0.5 

 
39 

 
7.8 - 1000 

 
Human IL-33 

 
Life Science, UK  

 
5 

 
1 

 
15.5 

 
3.9 - 500 

 
Human ST2 

 
R&D Systems, UK 

 
UN 

 
UN 

 
5.6 

 
3.9 - 1000 

 
Human G-CSF 

 
PeproTech®, USA 

 
1 

 
0.25 

 
16 

 
7.8 - 1000 

 
Human IL-17A 

 
PeproTech®, USA 

 
0.5 

 
0.25 

 
1.9 

 
3.9 – 1000 

 
Human IL-17B 

 
R&D System, UK 

 
2.0 

 
2.00 

 
>7.8 – <15.6 

 
15.6 – 2000 

 
Human IL-17C 

 
R&D Systems, UK 

 
2.0 

 
0.20 

 
>7.8 – <15.6 

 
15.6 – 2000 

 
Human IL-17D 

 
PeproTech®, USA 

 
1.0 

 
0.50 

 
>19.6 – <39 

 
39.1 – 5000 

 
Human IL-17E 

 
PeproTech®, USA 

 
1.0 

 
0.25 

 
>2 – <3.9 

 
3.9 – 1000 

 
Human IL-17F 

 
PeproTech®, USA 

 
1.0 

 
1.00 

 
>2 – <3.9 

 
3.9 – 1000 

 
Human IL-17A/F 

 
R&D Systems, UK 

 
0.8 

 
4.00 

 
>4.9 – <9.8 

 
9.8 – 2500 

Table 2-3: ELISA antibody concentrations and sensitivities 

The sensitivity limits of each assay were determined as two mean standard 
deviations higher than the mean baseline from six replicate standard curves 
(Chaloner-Larsson, et al., 1997). UN = undisclosed concentration (readily 
prepared by manufacturer). 
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2.7.2 Immunocytochemistry  

OKF6/TERT-2 cells (Section 2.4.1) were seeded at 2 x 105 cells/ml on top of glass 

disc (13 mm2) in 24-well cell culture plates (Corning, UK) and incubated 

overnight in a humidified atmosphere at 37 oC and 5 % CO2. After overnight 

incubation, the cells were stimulated with P. gingivalis monospecies biofilm 

(Section 2.5.4) for 9 h. After completion of the incubation period, the culture 

supernatant was removed and IL-8 release analysed by ELISA to confirm cells had 

been stimulated before further analysis was undertaken.  

Immunocytochemical analyses of IL-33 and ST2 expression by OKF6/TERT-2 cells 

were performed using the ImmPRESSTM detection system kit (Vector 

Laboratories, USA). After the cell supernatants were removed, the cells on discs 

were washed twice for 10 min each with Tris-buffered saline (with 0.05 % 

Tween®) (TBST). The cells were then fixed in cold methanol (-20 oC) for 15 min. 

After aspiration of the methanol the discs were air dried for 10 min. The cells 

were then permeabilized for 10 min at room temperature using 0.2 % Triton X-

100 (Sigma-Aldrich, UK) diluted in PBS. The discs were then washed twice for 10 

min each with TBST. To avoid non-specific binding, the discs were blocked for 30 

min at room temperature with 2.5 % normal horse serum. The serum was then 

aspirated and replaced with the appropriate primary antibody, pre-absorbed 

primary antibody or isotype control diluted in 2.5 % horse serum in TBST (Table 

2-4). The discs were then incubated overnight on a shaker at 4 oC. The discs 

were brought up to room temperature the next day and antibody solutions were 

aspirated from the wells prior to washing twice for 10 min each with TBST. The 

discs were then incubated for 30 min at room temperature with the appropriate 

ready to use secondary antibody (ImmPRESSTM kit; Vector, USA) (Table 2-4). 

Then the discs were washed twice for 10 min each with TBST. Finally, the 

peroxidase activity was visualised by addition of ImmPACTTM DAB (3, 3’-

diaminobenzidine) peroxidase substrate (Vector Laboratories, USA). Discs were 

incubated with DAB peroxidase substrate until the desired stain intensity 

developed. The discs were then rinsed with tap water for 5 min. The discs were 

then counter stained with filtered Harris Haematoxylin (Sigma-Aldrich, UK), and 

the excess washed off with running tap water. The discs were mounted on glass 

slides using mounting medium (Dako, UK). Photomicrographs were obtained 

using the Olympus® BX40 microscope system and CellB Olympus® Soft Imaging 
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software. The number of IL-33 and ST2 expressing cells were determined by 

counting the protein immunoreactive cells on photomicrographs obtained from 

at least five random high-power microscopic fields (400 x magnifications) as 

described in Section 2.7.4. 

Pre-absorbing antibody experiments were only carried out on the mouse 

monoclonal anti-IL-33 antibody (Enzo® Life Science, UK). Pre-absorption was 

carried out by adding 5 µg/ml mouse monoclonal anti-IL-33 antibody to a double 

concentration of rhIL-33 (PeproTech®, UK) in 2.5 % horse serum in TBST and 

incubating for 1 h on a shaker at 37 oC. For control purposes, the antibody alone 

was subjected to the same protocol prior to use.   
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Primary antibody Isotype control 

Secondary antibody 
ImmPRESSTM detection system  
(Vector Laboratories, USA) 

IL-33 
 

Mouse monoclonal anti-IL-33 antibody (5 µg/ml) 
(Nessy-1, Enzo® Life Science, UK) 

Mouse monoclonal IgG1 (5 µg/ml) 
(Thermo Scientific, UK) 

 anti-mouse IgG  
 

ST2 
Rabbit anti-IL1RL1 antibody (0.2 µg/ml)  
(Sigma-Aldrich®, UK) 

Rabbit IgG (0.2 µg/ml)  
(Abcam®, UK) 

 anti-rabbit IgG 
 

IL-17E 
Mouse monoclonal anti-IL-17E antibody (1 µg/ml) 
(Abcam®, UK) 

Mouse monoclonal IgG1 (1 µg/ml) 
(Thermo Scientific, UK) 

 anti-mouse IgG 
 

IL-17RB 
Rabbit anti-IL17RB antibody (0.2 µg/ml)  
(Sigma-Aldrich®, UK) 

Rabbit IgG (0.2 µg/ml)  
(Abcam®, UK) 

 anti-rabbit IgG 
 

Table 2-4: Antibodies used for immunocyto- and immunohisto- chemistry    
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2.7.3 Immunohistochemistry  

Diseased tissue samples were taken from patients suffering from chronic 

periodontitis, who required surgical periodontal therapy as part of their 

periodontal treatment regime. Whereas, healthy tissue samples were taken from 

patients undergoing non-periodontal disease related procedures such as crown 

lengthening and tooth extraction (Section 2.3). 

Tissue samples were fixed with 4 % formaldehyde and embedded in paraffin. The 

immunohistochemistry for IL-33, ST2, IL-17E and IL-17RB was performed on 5 µm 

thick paraffin embedded sections from periodontal tissues and from tonsil (used 

as a positive control). The immunohistochemistry was performed using the 

ImmPRESSTM detection system kit (Vector Laboratories, USA).  

Briefly, 5 mm paraffin sections were deparaffinised by heating in an oven at 60 
oC for 35 min, and rehydrated in graded alcohol. The sections were incubated 

with 0.5 % hydrogen peroxidase in methanol to block any endogenous peroxidase 

activity. For antigen retrieval, sections were pre-treated by boiling in 0.1 M 

citrate buffer (pH 6.0) in a microwave (700 W, 5 min). Nonspecific reactions 

were blocked for 30 min at room temperature using ready to use 2.5 % normal 

horse serum. Then, specimens were incubated overnight in a humidified 

chamber at 4 oC with the appropriate concentrations of primary antibodies 

diluted in 2.5 % horse serum in TBST (Table 2-4). Next day, the specimens were 

washed twice for 5 min in TBST and the sections incubated for 30 min at room 

temperature with the appropriate secondary antibody (Table 2-4). After washing 

twice for 5 min in TBST, the peroxidase activity was visualised using ImmPACTTM 

DAB (3, 3’-diaminobenzidine) peroxidase substrate solution (Vector Laboratories, 

USA). The sections were then lightly counterstained with Harris Haematoxylin 

(Sigma-Aldrich®, UK). The sections were mounted on glass slides using glycerol 

mounting medium (Dako, UK). 

Photomicrographs were obtained using the Olympus® BX40 microscope system 

and CellB Olympus® Soft Imaging software. The number of IL-33, ST2 and IL-17RB 

expressing cells were determined by counting the protein immunoreactive cells 

on photomicrographs obtained from at least five random high-power microscopic 

fields (400 x magnifications) as described in Section 2.7.4. 
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2.7.4 Quantification of immunostained cells 

Quantification of immunostained cells in the immunohistochemical or 

immunocytochemical analysis was performed using a manual cell counting grid 

as described by Bologna-Molina and colleagues (2011). This method uses only a 

digital camera adapted to a microscope and a personal computer. Briefly, 

photomicrographs of 400 x magnification were captured using the Olympus® BX40 

microscope system, and stored as jpeg files. At least five random 

photomicrographs were captured for each sample. This equates to between 300 – 

500 cells for immunocytochemical analysis, and a range of 300 – 1000 cells for 

immunohistochemical analysis. Each jpeg file was opened using Microsoft Office 

PowerPointTM (Microsoft Corporation,USA). The 6 x 6 grid (Figure 2-2) was placed 

over the entire image completely. For immunohistochemical analysis, areas not 

containing the tissue of interest were visually excluded. For each image, cell 

counting was started in the top left corner and finished in the top right corner 

(Figure 2-2). The number of both negative and positive stained cells was counted 

manually in each image. This image counting procedure was carried out by three 

independent individuals, and the average percentage of positive stained cells 

calculated by all individuals was used. The percentage of positive stained cells 

was calculated as follows: Percentage of positive cells = (positive cells / total 

cells) x 100. 

 

                 
Figure 2-2: Schematic figure of the grid used 

The counting starts at box 1, and continuous as shown by arrows until box 36. 
Numbers of positive and negative cells were counted for each box.  
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2.7.5 FACETM NF-κB p65 profiler assay 

Fast Activated Cell-based ELISA (FACETM) kits are highly sensitive 96-well assays 

designed for detecting activated protein within mammalian cells without the 

requirement for preparation of cell extracts, electrophoresis or membrane 

blotting. FACETM NFκB p65 profiler kits are designed to quantify levels of 

activated (phosphorylated) forms of NFκB p65 subunits and/or total NFκB p65. 

The antibodies used in this FACETM kit were specific for total (regardless of 

phosphorylation state) NF-κB p65 subunit, Serine 468 phosphorylated NF-κB p65 

subunit and the Serine 536 phosphorylated NF-κB p65 subunit. The kit can be 

used to determine the levels of the different forms of the NF-κB p65 subunit 

relative to cell number or it can also be used to determine NF-κB p65 subunit 

phosphorylation relative to total NF-κB p65 subunit levels found in the cells. 

OKF6/TERT-2 cells were seeded into 96 well plates at a density of 1 x 105 

cells/ml and left to adhere overnight in a humidified atmosphere with 5 % CO2 at 

37 oC. The following day, cells were stimulated for 30 min with either rhIL-17E 

(50 ng/ml) alone, rhIL-17A (10 ng/ml) alone, or 30 min pre-incubation with rhIL-

17E (50 ng/ml) followed by stimulation with rhIL-17A (10 ng/ml). Supernatants 

were then removed and the cells were fixed with 100 μl of 4 % formaldehyde in 

PBS for 20 min. The cells were then washed 3 times with 200 μl wash buffer (0.1 

% Triton X-100 in PBS), followed by a 20 min incubation with 100 μl quenching 

buffer (wash buffer with addition of 1 % hydrogen peroxide and 0.1 % Azide) at 

room temperature. After quenching, cells were again washed twice and 100 μl 

antibody blocking buffer (supplied by the manufacturer) was added to each well 

and the plate incubated for 1 h at room temperature. Cells were then washed 

twice as previous and 40 μl of diluted primary antibody was added to the cells. 

The primary antibodies used in the study were Phospho-NF-κB p65 antibodies 

(Serine 468 and Serine 536) and Total-NF-κB p65 antibody, which were diluted 

1/500 in antibody dilution buffer. Antibody dilution buffer only was used as a 

negative control (All antibodies and antibody dilution buffers were supplied by 

manufacturer).  The plates were then sealed and left overnight at 4 oC. The 

following day, the cells were again washed 3 times and incubated for 1 h with 

100 μl of diluted secondary antibody (horseradish peroxidase (HRP)-conjugated 

anti-rabbit IgG, diluted 1/2000 in antibody dilution buffer). Cells were then 

washed with wash buffer 3 times and 200 μl of PBS twice, followed by the 
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addition of 100 μl of developing solution (supplied by the manufacturer) for 2 - 

20 min. The absorbance of each well was then measured at 450 nm with a 

reference wavelength of 655 nm using a Fluostar Omega® microplate reader 

(BMG Labtech, Germany). Data analysis was done using BMG Analysis Software 

(BMG Labtech, Germany).  

To determine whether any differences observed in activated NF-κB p65 or total 

NF-κB p65 were due to differences in cell number; after the plate was read a 

crystal violet assay was performed. The cells were washed twice with wash 

buffer and then twice with PBS and then 100 μl of crystal violet solution was 

added to each well and the plate incubated for 30 min. After incubation the 

cells were washed again 3 times with PBS and then 100 μl of 1 % sodium dodecyl 

sulphate solution was added to each well and the plate  incubated  for 1 h at 

room temperature. Finally, the absorbance was read again at 595 nm. The 

measured OD450 readings are corrected for cell number by dividing the OD450 for 

a given well by the OD595 reading for that well. Then the percentage of the total 

NF-κB p65 subunit phosphorylated at a certain residue was calculated as follows: 

Percentage of phosphorylation at a specific residue =  

100   x   Phospho-NF-κB p65 subunit levels 

            Total NF-κB p65 subunit levels 

 

 

2.7.6 Proteome profiler array 

A human cytokine array (panel A) (Proteome ProfilerTM Array; R&D Systems, UK) 

was used to quantify the cytokines released by OKF6/TERT-2 cells in response to 

24 h stimulation with 100 ng/ml rhIL-33 (PeproTech®, UK) and 10 ng/ml PMA 

(Sigma-Aldrich®, UK) as described in Section 2.6.4.  

The kit contains a nitrocellulose membrane which has been blotted with 36 

selected capture antibodies (Figure 2-3). Cell culture supernatants are mixed 

with a cocktail of biotinylated detection antibodies and incubated with the 

nitrocellulose membrane. Any cytokine/detection antibody complex present is 

bound by its cognate immobilized capture antibody on the membrane. Following 
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a wash to remove unbound material, the bound cytokine/detection antibody 

complex was labelled with streptavidin-HRP, an enzyme reporter. Then 

chemiluminescent substrate was applied to the membrane. Luminol is oxidized 

in the presence of HRP and hydrogen peroxide to form an exited state product 

that emits light. The light produced at each spot is in proportion to the amount 

of cytokine bound. 

The kit was used in accordance with the manufacturer’s instructions and all 

incubations performed at room temperature (20 oC). All buffers were supplied by 

the manufacturer (formulation undisclosed). Briefly, the membranes were 

blocked in 2 ml array buffer 4 for 1 h on a rocking platform. Supernatants were 

centrifuged at 10000 rpm for 10 min to remove particulates. Then 1 ml of each 

sample was added to 0.5 ml of Array Buffer 4 and 15 µl of detection antibody 

cocktail and incubated for 1 h. After removal of the buffer from the membranes, 

the sample/antibody mixtures were added to the membranes and incubated 

overnight at 4 oC on a rocking platform. The next day, the membranes were 

washed 3 times for 10 min in 20 ml wash buffer. Next, 2 ml of streptavidin-HRP 

(1/2000 dilution) was added to the membranes and incubated for 30 min on a 

rocking platform. This was followed by three 10 min washes in 20 ml wash 

buffer. Finally, 1000 ml chemiluminescent detection reagent, Chemi Reagent 1 

and 2 (R&D Systems, UK) was placed onto the membrane, carefully covering the 

whole surface, and incubated for 1 min. Excess solution was drained off the 

membrane which was then wrapped in cling film and placed in an 

autoradiography film cassette with identification numbers facing up. The 

membranes were exposed to X-ray film (Fujifilm Super RX, UK) for 20 min. The 

films were then developed using the KODAK MIN-R Mammography processor 

(Kodak, UK). Digital images were taken of the developed films using a Gel DocTM 

XR Imaging System (Bio-Rad Laboratories, UK) and Quantity One® Software 

Version 4.6.7 (Bio-Rad Laboratories, UK).  

Cytokine array data on digital images were then quantified using Quantity One® 

Software Version 4.6.7 (Bio-Rad Laboratories, UK). First, digital image data were 

inverted prior to analysis procedure. This has to be done as the original digital 

images has light spots on the dark background (i.e., the signal intensity of the 

background is greater than the signal intensity of the sample spots). Then spot 

intensity (INT/mm2) was measured for all visible spots on cytokine array images. 
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The designated circular area (mm2) for intensity measurement was maintained 

unchanged for each spot measured (6.37 mm2). At every spot, the intensity was 

measured at least three times and the highest intensity value was recorded. The 

background signal (signal from the media only control) was subtracted from each 

spot. The average intensity from duplicate spots was calculated for each 

cytokine or chemokine.  

 

 
Figure 2-3: Cytokine array membrane of proteome profiler system 

A, represents a schematic membrane layout and B, represents example of 
processed membrane. RS = reference spot and NC = negative control. 
 



 

 112

2.8 Molecular biology 

 

2.8.1 RNA extraction and purification from periodontal tissue 
samples 

Extraction and purification of total RNA from periodontal tissues samples was 

carried out using the RNeasy® fibrous tissue kit (Qiagen, UK). In brief, a 

maximum of 30 mg of periodontal tissue was placed in an eppendorf tube 

containing 300 µl of 1 % ß-Mercaptoethanol in Buffer RLT (Qiagen, UK). The 

mixture was then homogenized using a disposable rotor-stator tissue 

homogenizer for 20 – 40 seconds. Then, 590 µl of RNase-free water and 10 µl of 

Proteinase K (Qiagen, UK) were added to the homogenous lysate and the mixture 

was incubated for 10 min at 55 oC in a heat block. The homogenate was then 

centrifuged at 10000 rpm for 3 min at room temperature to remove the tissue 

remnant. Next, the supernatant (700 – 900 µl) was transferred into a 1.5 ml 

microcentrifuge tube, followed by addition of an equal volume of ethanol (96 – 

100 %). The mixture was gently mixed by pipetting up and down before being 

transferred onto an RNeasy spin column (Qiagen, UK) placed in a 2 ml collection 

tube and centrifuged for 15 seconds at 10,000 rpm. The flow through was then 

discarded and the membrane was washed with 350 µl Buffer RW1 (Qiagen, UK) 

and centrifuged for 15 seconds at 10000 rpm. The flow through was again 

discarded and on column DNase (deoxyribonuclease) digestion was performed by 

incubating the membrane for 15 min at room temperature with a mixture of 10 

μl DNase I stock solution (Qiagen, UK) and 70 μl Buffer RDD (Qiagen, UK). 

Afterwards, the column was washed again using Buffer RW1 (Qiagen, UK). Next, 

the column was washed twice with 500 µl Buffer RPE (Qiagen, UK). Finally, 

RNase-free water (30 µl) was used to elute the RNA from the column by 

centrifugation at 10,000 rpm for 1 min. This final procedure was repeated to get 

a final elution volume of 60 µl. A NanoDrop 1000 spectrophotometer (Thermo 

Scientific, UK) was used to assess the quantity and quality of the extracted total 

RNA. 
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2.8.2 RNA extraction and purification from in vitro cultured 
cells 

Total RNA was extracted from cell cultures using the RNeasy kit (Qiagen, UK) 

according to the manufacturer’s instructions. Firstly, cells in a 24-well plate 

were lysed using 350 µl Buffer RLT (Qiagen, UK) containing 1 % ß-

Mercaptoethanol. The lysate was homogenized by passing at least 5 times 

through a blunt 20-gauge needle (0.9 mm diameter) fitted to a RNase-free 

syringe. Then, an equal volume of ethanol (96 – 100 %) was added to the 

homogenised lysate. The mixture was gently mixed by pipetting up and down 

before being transferred onto an RNeasy spin column (Qiagen, UK) placed in a 2 

ml collection tube. The tube was then centrifuged for 15 seconds at 10,000 rpm. 

The flow through was then discarded and the membrane was washed with 350 µl 

Buffer RW1 (Qiagen, UK) and centrifuged for 15 seconds at 10,000 rpm. The flow 

through was again discarded and on column DNase digestion was performed by 

incubating the membrane for 15 min at room temperature with a mixture of 10 

μl DNase I stock solution (Qiagen, UK) and 70 μl Buffer RDD (Qiagen, UK). 

Afterwards, the column was washed again using Buffer RW1 (Qiagen, UK). Next, 

the column was washed twice with 500 µl Buffer RPE (Qiagen, UK). Finally, 

RNase-free water (30 µl) was used to elute the RNA from the column by 

centrifugation at 10,000 rpm for 1 min. This final procedure was repeated to get 

a final elution volume of 60 µl. A NanoDrop 1000 spectrophotometer (Thermo 

Scientific, UK) was used to assess the quantity and quality of the extracted total 

RNA. 

 

2.8.3 Reverse transcription 

High Capacity RNA-to-cDNA Master Mix (Applied Biosystems®, UK) was used to 

reverse transcribe mRNA into cDNA. The master mix contains manufacturer 

optimised concentration of MgCl2, dNTPs (dATP, dCTP, dGTP and dTTP), 

recombinant RNase inhibitor protein, reverse transcriptase, random primers, 

oligo-dT (deoxythymine nucleotides) primer and stabilizers. The 20 µl reverse 

transcription reactions were prepared by mixing total RNA prepared in 16 µl of 

RNase free water (500 – 1000 ng) with 4 µl of master mix. For no-RT (reverse 

transcriptase) control, similar 20 µl reverse transcription reactions were 

prepared but without the enzyme component, reverse transcriptase. The tubes 
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were sealed and air bubbles were eliminated by brief centrifugation. The tubes 

were loaded into a thermal cycler (MyCyclerTM Thermal Cycler; Bio-Rad 

Laboratories, UK), and reverse transcription performed under the following 

conditions: 5 min at 25 oC, 30 min at 42 oC, 5 min at 85 oC and held at 4 oC. The 

cDNA was stored at -20 oC prior to use. 

 

2.8.4 Polymerase chain reaction 

Polymerase chain reaction (PCR) was carried out using the ReddyMixTM PCR 

Master Mix (Thermo Scientific, UK). A ready-to-use master mix comes in 1.1 x 

concentration. The final 1 x concentration of master mix contains: 0.625 units 

ThermoPrime Taq DNA polymerase, 75 mM Tris-HCL (pH 8.8 at 25 oC), 20 mM 

ammonium sulphate ((NH4)2SO4), 1.5 mM MgCl2, 0.01 % (v/v) Tween® 20, 0.2 mM 

each of dATP, dCTP, dGTP and dTTP, and also a precipitant and red dye for 

electrophoresis. Amplification reactions were performed in a 25 µl reaction 

volume which consisted of 22.5 µl master mix, 0.5 µM of each primer (forward 

and reverse), 0.5 – 125 ng of cDNA and PCR grade water. The PCR reactions were 

performed under the following conditions: 95 oC for 2 min, followed by 35 to 45 

cycles of 95 oC for 25 seconds, 48 - 63 oC (depending on primer annealing 

temperature) for 35 seconds and 72 oC for 65 seconds and finally 72 oC for 5 min. 

The primers and annealing temperatures used in this study are listed in Table 2-

5. 

PCR products were analysed using agarose gel electrophoresis. The agarose gel 

was prepared by adding 2 % agarose (w/v) (Invitrogen, UK) and 0.5 µg/ml 

ethidium bromide to 0.5 x Tris-Borate-EDTA buffer (Sigma-Aldrich®, UK) and 

heating gently before pouring into a pre-made cast and allowing to set . The 

ladder loading was prepared by mixing 1 µl of 100 base pair DNA Ladder (New 

England Biolabs, UK) with 1 µl 6 x Blue Loading Dye (New England Biolabs, UK) 

and 4 µl of distilled water. As most reactions were performed using ReddyMixTM 

PCR Master Mix, there was no requirement to add a loading dye. The samples 

and ladder were loaded onto the agarose gel which was then ran at 95 volts for 

45 min. Images of electrophoresis gels were captured under ultraviolet lighting 

using the Gel DocTM XR Imaging System (Bio-Rad Laboratories, UK) and Quantity 

One® Software, version 4.6.7 (Bio-Rad Laboratories, UK). 
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Gene 
 

Primer 
 

Forward (F) and Reverse (R) primer 5’ 3’ 
 

Ta (
oC) 

 
bp 
 

     

IL-33 F TGTCAACAGCAGTCTACTGTGG 63 158 

 R GCAAAAGTAATGGATTGATCATTGTATGTGCT    

ST2 (total) F TAGTGTGACGGCGACCAGG 60 151 

 R GCCTTTTCCAAAACAAGCAG   

IL-17A F GGAATCTCCACCGCAATGAG 60 201 

 R ACACCAGTATCTTCTCCAGCC   

IL-17B F CTGGGGCTACAGCATCAACC 60 231 

 R GTGCAGCCCACAGCGATGGT    

IL-17C F CCGTTCAGTGTGACCGCCGA 60 339 

 R GTTGGGAAGAGGCAGCCTGC   

IL-17D F GCCAAAGAGATAGGGACGCA 60 288 

 R TTCATCAGTCAGCCATCGGT   

IL-17E F CCAGGTGGTTGCATTCTTGG 62 78 

 R TGGCTGTAGGTGTGGGTTCC   

IL-17F F TGAAGCTTGACATTGGCATC 60 174 

 R TTCCTTGAGCATTGATGCAG   

IL-17RA F GTCATCCTGCTCATCGTCTG 60 74 

 R TTGGTGTCATCACTGTATTTTTCAC   

IL-17RB F CCATCCCTCCAGATGACAAC 60 168 

 R TGCTCCTTCCTTGCCTCCAAGTTA   

IL-17RC F ACCAGAACCTCTGGCAAGC 60 232 

 R GAGCTGTTCACCTGAACACA   

IL-17RD F AAGTCAGGCCGGTCCCTATAC  60 66 

 R GTCGGGCTCCTCGTCAATAA   

IL-17RE F GCTGGAAGCTGCCCTCTGCC 60 74 

 R CTCGAGCTGTGGCATTCGGG   

Table 2-5: Primers used in basic PCR 

All PCR primers were obtained from Invitrogen, UK. Ta = annealing temperature; 
and bp = base pair. 
 

2.8.5 Taqman® real-time PCR 

Taqman® real-time PCR was carried out using 2 x TaqMan® Gene Expression 

Master Mix (Applied Biosystems®, UK), and most of the primers and fluorescent 

probe assays were obtained from Applied Biosystems®, UK (Table 2-6). The 20 x 

TaqMan® Gene Expression Assay master mix contains 5 µM TaqMan® MGB (minor 
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groove binder) probes and 18 µM of each forward and reverse primer. The 20 µl 

real-time PCR reactions were prepared in a 96-well plate format, and each 

reaction contained 10 µl of master mix, 1 µl of gene expression assay mix, 7 µl of 

RNase-free water and 2 µl of cDNA (1 to 100 ng is recommended for each 20 μl). 

The plate was briefly centrifuged to remove any air bubbles. Gene amplification 

steps were carried out using a MX3000PTM real-time PCR instrument 

(Stratagene®, UK). Running conditions were as follows: 50 oC for 2 min, 95 oC for 

10 min, and 40 cycles of 95 oC for 15 seconds and 60 oC for 1 min. The data was 

analysed using MxPro-Mx3000P software, version 4.10 (Stratagene®, UK). 

Real-time PCR data for the periodontal tissue study was analysed using the 2-CT 

method (Schmittgen & Livak, 2008), whereas real-time PCR data for cell culture 

studies was analysed using the 2-CT method (Livak & Schmittgen, 2001). 
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Gene 
 

Species 
 

Primers and fluorescent probes 
(Assay ID / primer sequence) 

Supplier 
 

 
IL-33 

 
Human 

 
Hs00369211_m1 

 
AB 

 
ST2 (total) 

 
Human 

 
Hs00545033_m1 AB 

 
IL-1RA 

 
Human 

 
Hs00174099_m1 AB 

 
IL-10 

 
Human 

 
Hs00961622_m1 AB 

 
G-CSF 

 
Human 

 
Hs00236884_m1 AB 

 
IL-17A 

 
Human 

 
Hs00174383_m1 AB 

 
IL-17B 

 
Human 

 
Hs00975262_m1 AB 

 
IL-17C 

 
Human 

 
Hs00171163_m1 AB 

 
IL-17D 

 
Human 

 
Hs00370528_m1 AB 

 
IL-17E 

 
Human 

 
Hs00224471_m1 AB 

 
IL-17F 

 
Human 

 
Hs00369400_m1 AB 

 
IL-17RA 

 
Human 

 
Hs01064648_m1 AB 

 
IL-17RB 

 
Human 

 
Hs00218889_m1 AB 

 
POLR2A 

 
Human 

 
Hs00172187_m1 AB 

 
ST2L 

 
Human 

 
Forward: 5’-GCACTTTGTTCACCAGATTCT-3’ 
Reverse:  5’-CCAGGTAGCATATCTCTCCCA-3’ 

 
PD 

sST2  
Human 

 
Forward:  5’-TTGTTTGCTGTCTGATCTTTGTAG-3’ 
Reverse:   5’-ACCAACGATAGGAGGGAGTG-3’ 

 
PD 

Table 2-6: Primer and fluorescent probes used in Taqman® real-time PCR 

POLR2A = RNA polymerase II; AB = Applied Biosystems®, UK; and PD = 
Primerdesign Ltd, UK. 
 

2.8.6 SYBR® Green real-time PCR 

SYBR® Green real-time PCR was carried out using a ready to use 2 x 

concentration of SYBR® GreenERTM PCR master mix (Invitrogen, UK). The master 

mix contains hot-start Taq DNA polymerase, SYBR® GreenERTM fluorescent dye, 

MgCl2, dNTPs (with dUTP instead of dTTP), UDG, and stabilizers. The forward 

and reverse primers were used at final concentration of 200 nM (Table 2-7). The 

25 µl real-time PCR reactions were prepared in a 96-well plate format and each 



 

 118

reaction contained 12.5 µl of master mix, 0.5 µl of each forward and reverse 

primer, and up to 5 µl cDNA template (cDNA was generated from up to 1 μg of 

total RNA and used at a maximum of 10 % (v/v) of the real-time PCR reaction 

volume). The RNase free water was used to complete the 25 µl reaction volume. 

The 96-well plate was briefly centrifuged to remove any air bubbles. 

Amplification of target gene sequence was carried out using a MX3000PTM real-

time PCR instrument (Stratagene®, UK). Running conditions were as follows: 50 
oC for 2 min, 95 oC for 10 min, followed by 40 cycles of 95 oC for 15 seconds and 

60 oC for 1 min. For melt curve analysis, all products generated during the PCR 

amplification reaction are melted at 95 oC for 60 seconds and then annealed by 

gradual increases in temperature every 30 seconds from 55 oC to 95 oC. The data 

was analysed using MxPro-Mx3000P software, version 4.10 (Stratagene®, UK). 

Real-time PCR data for the periodontal tissue study was analysed using the 2-CT 

method (Schmittgen & Livak, 2008), whereas real-time PCR data for cell culture 

studies was analysed using the 2-CT method (Livak & Schmittgen, 2001).  

 

Gene Species Primer  (5’ 3’) Supplier 

    

MMP-2 Human Forward: TGATCTTGACCAGAATACCATCGA 
Reverse: GGCTTGCGAGGGAAGAAGTT 

Invitrogen, 
UK 

MMP-9 Human Forward: CCCTGGAGACCTGAGAACCA 
Reverse: CCCGAGTGTAACCATAGCGG 

Invitrogen, 
UK 

CXCL5 Human Forward: CCCTGGGTTCAGAGACCTCCA 
Reverse: CCAGAAAATTTTGGACGGTGGAAACA 

Invitrogen, 
UK 

IL-8 Human Forward: CAGAGACAGGAGAGCACACAA 
Reverse: TTAGCACTCCTTGGCAAAAC 

Invitrogen, 
UK 

TLR-2 Human Forward: TGCTTTCCTGCTGGAGATTT 
Reverse: TGTAACGCAACAGCTTCAGG 

Invitrogen, 
UK 

TLR-4 Human Forward: TTCAAGACCAAGCCTTTCAG 
Reverse: CATAGTCCT TCCATGATAGA  

Invitrogen, 
UK 

GAPDH Human Forward: CAAGGCTGAGAACGGGAAG 
Reverse: GGTGGTGAAGACGCCAGT 

Invitrogen, 
UK 

Table 2-7: Primers used in SYBR® Green real-time PCR 
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2.9 Statistical analysis 

In the case of comparing more than two categorical data (e.g., gender), 

statistical analysis was carried out using the Chi-square test. 

As for numerical data, Q-Q plot analysis was carried out to check normality of 

distribution. In certain circumstances, natural log transformation was used to 

facilitate representation of normally distributed data. On the other hand, for 

proportional data (e.g., %s), the data was first angular transformed prior to 

analysis for normal distribution. 

When comparing two numerical variables, statistical analysis for the normally 

distributed data was carried out using the independent t-test. However, when 

comparing more than two numerical variables, statistical analysis for the 

normally distributed data was analysed using the ANOVA with a Bonferroni 

correction. Whereas, when data were not normally distributed, statistical 

analysis for comparing two numerical variables was carried out using the Mann-

Whitney test; and a Bonferroni correction was carried out if more than two 

variables were compared. 

When measuring correlations between two variables, data were first analysed 

for the bivariate distribution. Natural log transformations of the data were used 

to facilitate representation of linear and normally distributed data. When data 

were linear and normally distributed, the statistical analysis was carried out 

using the Pearson correlation coefficient test. Whenever necessary, adjustment 

for possible confounding factors was carried out using the Partial correlation 

test. 

The significance level for all statistical analyses were set at p = 0.05. All 

statistical analyses were carried out using SPSS (Version 18). 
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Chapter 3: IL-33 and periodontal disease 
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3.1 Introduction 

Depending on the disease model, IL-33 has been shown to have both 

exacerbatory and protective roles. IL-33 is known to aggravate inflammation in 

many chronic inflammatory conditions such as rheumatoid arthritis and allergy 

(Beltran, et al., 2010; Louten, et al., 2011; Xu, et al., 2008). However, in 

conditions such as atherosclerosis and Type 2 diabetes it has been shown to have 

a protective role and can promote the resolution of potentially damaging 

inflammatory responses (Miller, 2011). To date the role of IL-33 in chronic 

periodontitis is not known. IL-33 levels in plasma, GCF and saliva were found not 

to differentiate between healthy and diseased individuals (Buduneli, et al., 

2012). However, there are studies which implicate this cytokine in pathogenesis 

of the disease. LPS derived from the periodontal pathogen (P. gingivalis) has 

been shown to induce increased expression of IL-33 by human monocytes (Nile, 

et al., 2010). In addition, TNF-α induces IL-33 expression in human gingival 

fibroblasts (Beklen & Tsaous Memet, 2014).  

At present, the expression of IL-33 and its regulation has yet to be investigated 

in oral keratinocytes. Oral keratinocytes are known to express an array of TLRs 

and release a variety of inflammatory mediators in response to stimuli, and in 

vivo occupy the space adjacent to the dental biofilm on the tooth surface. Due 

to their proximity, oral keratinocytes will therefore be one of the first cells to 

encounter periodontal pathogens and co-ordinate host defence mechanisms 

accordingly. It is therefore interesting to speculate that oral keratinocytes 

express IL-33 and that expression is upregulated in response to periodontal 

pathogens. Epithelial cells (intestinal, bronchial and corneal) have been shown 

to express IL-33 (Beltran, et al., 2010; Schmitz, et al., 2005). Indeed, signalling 

through TLR-3 and TLR-5 induces increased IL-33 expression in human corneal 

epithelial cells (Zhang, et al., 2011a). Likewise, TLR-4 signalling in bronchial 

epithelial cells and TLR-9 signalling in sinonasal epithelial cells has also been 

found to induce the expression of IL-33 (Reh et al., 2010; Willart et al., 2012).  

Despite studies reporting increased expression of IL-33 by a variety of cells in 

response to bacteria, the mechanisms which promote its extracellular release 

are still a matter of debate. However, a variety of studies have demonstrated 

that epithelial cells express the ST2 receptor and can respond to IL-33 signalling. 
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Indeed, IL-33 has been shown to induce increased release a variety of cytokines 

and chemokines from bronchial epithelial cells, nasal epithelial cells and 

epidermal keratinocytes (Balato, et al., 2012; Fujita, et al., 2012; Kamekura, et 

al., 2012; Meephansan, et al., 2012; Yagami, et al., 2010). However, whether 

oral keratinocytes express the ST2 receptor and can respond to IL-33 signalling is 

to date unknown. 

The aim of this study was to investigate the role of IL-33 in periodontal disease 

pathogenesis in further detail. Firstly, to determine associations between levels 

of IL-33 in biological fluids and clinical parameters of periodontal disease. 

Secondly, using in vitro model systems, to determine the role IL-33 plays in the 

oral epithelial immune response to periodontal pathogens. Based on the previous 

literature it was hypothesised that: 

1. IL-33 levels in serum, GCF and saliva in periodontal tissue cannot be 

correlated with periodontal disease. 

2. IL-33 and its receptors are expressed by periodontal epithelial cells and its 

expression is modulated by the periodontal pathogen; P. gingivalis. 

3. Periodontal epithelial cells express the membrane bound form of the IL-33 

receptor (ST2L) and can respond to IL-33 signalling by initiating the 

expression of inflammatory mediators 

In order to investigate these hypotheses; the specific aims of the study were as 

follows: 

1. To evaluate IL-33 levels in serum, GCF and saliva of chronic periodontitis 

patients and healthy subjects. This was to be achieved using samples 

collected as part of previous studies at Glasgow University Dental School 

(Lappin, et al., 2009; Pathiyal, et al., 2005) and Newcastle University School 

of Dental Sciences (Davies, et al., 2011; Jaedicke, et al., 2012; Preshaw & 

Heasman, 2002) 
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2. To evaluate the expression of IL-33 and its receptors (ST2L and sST2) in 

periodontal tissue samples from chronic periodontitis patients and healthy 

subjects. 

3. To evaluate the expression of IL-33 and its receptors (ST2L and sST2) in 

OKF6/TERT-2 cells and PHGE cells using an in vitro live P. gingivalis 

monospecies biofilm model. 

4. To evaluate the effect of rhIL-33 on the expression of inflammatory 

mediators by OKF6/TERT-2 cells in vitro. 
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3.2 Results 

 

3.2.1 Analysis of IL-33 levels in clinical samples 

3.2.1.1 Clinical and demographic parameters of subject participants 

Serum, GCF and saliva samples from 77 healthy subjects and 97 chronic 

periodontitis patients were used in this study. Samples were selected from 

independent studies conducted at Glasgow Dental Hospital and School and 

Newcastle School of Dental Sciences and were from subjects/patients that were 

systemically healthy non smokers. The sample collection and ethical approvals 

for the Glasgow sample cohort were as previously described (Lappin, et al., 

2009; Pathiyal, et al., 2005). The sample collection and ethical approvals for the 

Newcastle cohort are as previously described (Davies, et al., 2011; Jaedicke, et 

al., 2012; Preshaw & Heasman, 2002) 

Table 3-1 describes comparisons of demographic (gender and age) and clinical 

parameters between the healthy and chronic periodontitis cohort. There was no 

significant difference in the incidence of chronic periodontitis between males 

and females (p > 0.05). However, the median age of the chronic periodontitis 

patients was significantly higher than the healthy subjects (p < 0.001). In 

addition, as expected, all the clinical parameters measured were significantly 

higher in the chronic periodontitis patients in comparison to the healthy subjects 

(p < 0.001). 
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Healthy 
(n = 77) 

CP 
(n = 97) p value 

Gender Male, n (%) 43 (55.84) 39 (40.20) 
0.082a 

 Female, n (%) 34 (44.16) 58 (59.80) 
Age (years)  28 (27.00 – 49.00) 47.00 (42.00 – 53.00) <0.001b 
Clinical parameters    
 CPD (mm) 1.48 (1.21 – 1.69) 2.87 (2.69 – 3.27) <0.001b 
 CAL (mm) 1.40 (1.10 – 1.85) 3.33 (3.03 – 3.94) <0.001b 
 BOP (%) 2.70 (0.00 – 9.00) 36.00 (25.00 – 48.80) <0.001b 

Table 3-1: Patient demographics and clinical periodontal measurements of study 
groups 

The demographic variable of gender was presented as number of subjects (n) 
and percentage (%); and the demographic variable of age and clinical 
parameters were presented as medians (interquartile range). Statistical analyses 
were carried out using the Chi-square test (a) and the Mann-Whitney test with a 
Bonferroni correction (b) (IBM SPSS Statistics, version 19). The significance level 
was set at p = 0.05. CP = chronic periodontitis, n = number of subjects, CPD = 
clinical probing depth, CAL = clinical attachment loss and BOP = bleeding on 
probing. 
 

3.2.1.2 Serum, gingival crevicular fluid and saliva levels of IL-33  

Serum, GCF and saliva levels of IL-33 were measured by a commercially available 

ELISA (Life Science, UK). Table 3-2 shows levels of IL-33 were below the 

detection limit of the assay in serum, GCF and saliva samples of healthy subjects 

and chronic periodontitis patients (Limit of sensitivity = 15.5 pg/ml; determined 

as two mean standard deviations higher than the mean baseline from 6 replicate 

standard curves (Chaloner-Larsson, et al., 1997)). 

 
  

 
Status 

 
 
n 

 
Median  
(pg/ml) 

 
 
IQR 

 
 
Z statistic 

 
 
p value 

Serum IL-33 Healthy 17 1.90 1.30 – 2.25 
-0.466 0.641 

 CP 23 1.40 1.00 – 2.60 

GCF IL-33 Healthy 17 0.00 - 
- - 

 CP 23 0.00 - 

Saliva IL-33 Healthy 7 0.00 - 
- - 

 CP 23 0.00 - 

Table 3-2: Levels of IL-33 in serum, gingival crevicular fluid and saliva  

IL-33 was measured in biological samples using the human IL-33 Elisa Kit (Life 
Science, UK). The table represents median levels of IL-33 in serum, GCF and 
saliva samples of the healthy and chronic periodontitis (CP) cohort. Statistical 
analyses were carried out using the Mann-Whitney test (IBM SPSS Statistics, 
version 19). Significance level was set at p = 0.05. n = number of subjects. 
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3.2.1.3 Expression of IL-33 mRNA in periodontal tissues 

The failure to detect any IL-33 in serum, GCF or saliva was hypothesised to be 

due to the ELISA used in this study. Therefore expression of IL-33 mRNA in 

periodontal tissues was investigated; firstly by basic PCR and then quantitatively 

by real-time PCR. 

Periodontal tissue samples were obtained from 27 subjects. Healthy tissue 

samples were taken from 10 patients undergoing non-periodontitis related 

procedures such as crown lengthening and tooth extraction. Seventeen tissue 

samples were taken from patients suffering from chronic periodontitis, who 

required surgical periodontal therapy as part of their periodontal treatment 

regime. Patients undergoing surgical periodontal therapy had clinical probing 

depths of ≥ 5.0 mm, with clinical attachment loss of ≥ 5.0 mm, which persisted 

after non-surgical treatment.  

Figure 3-1 shows that mRNA for IL-33 was detected in periodontal tissue samples 

from 3 healthy individuals and 3 chronic periodontitis patients. 

 

                                                
Figure 3-1: IL-33 mRNA expression in healthy and diseased periodontal tissue  

Expression of IL-33 mRNA in periodontal tissues was investigated by basic PCR. 
IL-33 mRNA is expressed in healthy (Lanes 1, 2 and 3) and diseased (Lanes 4, 5 
and 6) periodontal tissue samples. No-RT (reverse transcriptase) reactions and 
RNase free water (Lanes 7 and 8 respectively) were used as controls. The 100 
base pair DNA ladder was used as reference. The expected band size for IL-33 
was 158 base pairs (bp).    
 

Real-time PCR was employed to quantitate levels of IL-33 mRNA in healthy and 

diseased periodontal tissue. Figure 3-2 shows that IL-33 mRNA was significantly 

upregulated in diseased periodontal tissue samples when compared to healthy 

control tissues (p < 0.05). 
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Figure 3-2: Real-time PCR analysis of IL-33 mRNA expression in healthy and 
diseased periodontal tissues 

Quantification of IL-33 mRNA expression in periodontal tissues was performed by 
real-time PCR. RNA polymerase II was used as a reference gene. The box-and-
whiskers plot represents the median relative expression (2-CT) of IL-33 mRNA 
from tissues of healthy subjects and chronic periodontitis (CP) patients. 
Statistical analysis was carried out using the Mann-Whitney test (IBM SPSS 

Statistics, version 19). * = p < 0.05. Whiskers were determined by the Tukey 
method.   
 

3.2.1.4 Expression of IL-33 protein in periodontal tissues 

Since IL-33 mRNA was upregulated in diseased periodontal tissue (Figure 3-2), 

levels of IL-33 protein in periodontal tissue samples was evaluated using 

immunohistochemistry.   

IL-33 was found to be expressed in the epithelial layer (Figure 3-3) and 

connective tissue (Figure 3-4) of healthy periodontal tissue and visually 

expression seemed to be elevated in tissue of chronic periodontitis patients. IL-

33 expression in periodontal tissue samples was quantified by calculating the 

number of IL-33 positive cells in the epithelial and connective tissue layers 

(Bologna-Molina, et al., 2011). Elevated expression was confirmed as the 

percentage of IL-33 positive cells was significantly higher in the epithelial and 

connective tissue layers of diseased periodontal tissue in comparison to healthy 

periodontal tissue (Figure 3-5).       



 

 

128

 
 
 
 

  
Figure 3-3: IL-33 expression in the epithelial layer of healthy and diseased periodontal tissue  

Expression of IL-33 in periodontal tissues was determined by immunohistochemical analysis using a mouse monoclonal anti-IL-33 
antibody (Nessy -1, Enzo® Life Science, UK). The panels show representative photomicrographs of 5 μm-thick paraffin-embedded 
sections of periodontal tissue specimens obtained from healthy subjects (A - F) and chronic periodontitis patients (G - L). An isotype 
control antibody was used to estimate non-specific binding. Tonsil tissue specimens were stained for IL-33 as a positive control (M-N). 
Original magnification x 400. 
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Figure 3-4: IL-33 expression in the connective tissue of healthy and diseased periodontal tissue  

Expression of IL-33 in periodontal tissues was determined by immunohistochemical analysis using a mouse monoclonal anti-IL-33 
antibody (Nessy -1, Enzo® Life Science, UK). The panels show representative photomicrographs of 5 μm-thick paraffin-embedded 
sections of periodontal tissue specimens obtained from healthy subjects (A - F) and chronic periodontitis patients (G - L). An isotype 
control antibody was used to estimate non-specific binding. Original magnification x 400.         
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Figure 3-5: Percentage of IL-33 positive cells in the epithelial layer and 
connective tissue of healthy and diseased periodontal tissues 

The % of IL-33 positive cells was determined from photomicrographs using the 
methodology described by Bologna-Molina and colleagues (2011). Bars show the 
percentage of IL-33 positive cells in the epithelial layer (epithelium) and 
connective tissue (CT) of healthy and chronic periodontitis (CP) tissue. Data was 
derived from 5 micrographs depicting different fields from 3 different tissue 
samples. Prior to statistical analyses the % data was angular transformed. 
Statistical analysis was carried out using the independent t-test (IBM SPSS 

Statistics, version 19). * = p < 0.05. Error bars indicate the standard error of the 
mean (SEM).   
 

3.2.1.5 Expression of ST2 mRNA in periodontal tissues 

The expression of the IL-33 receptor (ST2) in periodontal tissue was first 

investigated by basic PCR and then quantitatively by real-time PCR. 

Figure 3-6 shows that mRNA for ST2 was detected in periodontal tissue samples 

from 3 healthy subjects and 3 chronic periodontitis patients.  

 

                                           
Figure 3-6: ST2 mRNA expression in healthy and diseased periodontal tissue.  

Expression of ST2 mRNA in periodontal tissues was investigated by basic PCR. ST2 
mRNA is expressed in healthy (Lanes 1, 2 and 3) and diseased (Lanes 4, 5 and 6) 
periodontal tissue samples. No-RT (reverse transcriptase) reactions and RNase 
free water (Lanes 7 and 8 respectively) were used as controls. The 100 base pair 
DNA ladder was used as reference. The expected band size for ST2 was 151 base 
pairs (bp). 
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Real-time PCR was employed to quantitate levels of ST2 mRNA in healthy and 

diseased periodontal tissue. Figure 3-7 shows that there was statistically 

significant increase in ST2 mRNA levels in diseased periodontal tissue samples 

compared to healthy control (p < 0.05). 

 

                  
Figure 3-7: Real-time PCR analysis of ST2 mRNA expression in healthy and 
diseased periodontal tissues 

Quantification of ST2 mRNA expression in periodontal tissues was performed by 
real-time PCR. RNA polymerase II was used as a reference gene. The box-and-
whiskers plot represents the median relative expression (2-CT) of ST2 mRNA from 
tissues of healthy subjects and chronic periodontitis (CP) patients. Statistical 
analyses were carried out using the Mann-Whitney test (IBM SPSS Statistics, 
version 19). * = p < 0.05. Whiskers were determined by the Tukey method and a 
value of 1.5 x IQR (interquartile range) was set as a demarcation line for outliers 
(·) 
 

Although the data showed that ST2 was expressed in periodontal tissues the 

primer/probe sets used in the PCR analysis could not differentiate between 

mRNA encoding the membrane bound IL-33 receptor (ST2L) and the soluble 

decoy receptor (sST2). Therefore, the study was repeated using custom designed 

primer/probe sets for real-time PCR to specifically quantify levels of ST2L and 

sST2 mRNA in healthy and diseased periodontal tissue. Figure 3-8 shows that 

mRNA for sST2, not ST2L was significantly upregulated in diseased periodontal 

tissue samples when compared to healthy control tissues (p < 0.05). 
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Figure 3-8: Real-time PCR analysis of ST2L and sST2 mRNA expression in healthy 
and diseased periodontal tissues 

Quantification of ST2L and sST2 mRNA expression in periodontal tissues was 
performed by real-time PCR. RNA polymerase II was used as a reference gene. 
The box-and-whiskers plot represents the median relative expression (2-CT) of 
ST2L and sST2 mRNA from tissues of healthy subjects and chronic periodontitis 
(CP) patients. Statistical analyses were carried out using the Mann-Whitney test 
with a Bonferroni correction (IBM SPSS Statistics, version 19). * = p < 0.05. 
Whiskers were determined by the Tukey method and a value of 1.5 x IQR 
(interquartile range) was set as a demarcation line for outliers (∙). 
  

3.2.1.6 Expression of ST2 protein in periodontal tissues 

Since ST2 mRNA was upregulated in diseased periodontal tissue (Figure 3-7), 

levels of ST2 protein in periodontal tissue samples were evaluated using 

immunohistochemistry. At present, no antibodies are commercially available 

which can distinguish between the two different ST2 isoforms, therefore analysis 

of only total ST2 protein is reported.  

ST2 was found to be expressed in the epithelial layer (Figure 3-9) and connective 

tissue (Figure 3-10) of healthy periodontal tissue. However no elevated 

expression in diseased periodontal tissue could be observed. In addition, when 

the number of ST2 positive cells in the epithelial layer and connective tissue 

were quantified no significant difference between healthy and diseased 

periodontal tissue was determined (Figure 3-11).      
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Figure 3-9: ST2 expression in the epithelial layer of healthy and diseased periodontal tissue  

Expression of ST2 in periodontal tissues was determined by immunohistochemical analysis using a rabbit anti-IL1RL1 antibody (Sigma-
Aldrich®, UK).  The panels show representative photomicrographs of 5 μm-thick paraffin-embedded sections of periodontal tissue 
specimens obtained from healthy subjects (A - D) and chronic periodontitis patients (E - J). An isotype control antibody was used to 
estimate non-specific binding. Tonsil tissue specimens were stained for ST2 as a positive control (K-L). Original magnification x 400.  
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Figure 3-10: ST2 expression in the connective tissue of healthy and diseased periodontal tissue  

Expression of ST2 in periodontal tissues was determined by immunohistochemical analysis using a rabbit anti-IL1RL1 antibody (Sigma-
Aldrich®, UK).  The panels show representative photomicrographs of 5 μm-thick paraffin-embedded sections of periodontal tissue 
specimens obtained from healthy subjects (A - D) and chronic periodontitis patients (E - J). An isotype control antibody was used to 
estimate non-specific binding. Original magnification x 400.         
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Figure 3-11: Percentage of ST2 positive cells in the epithelial layer and 
connective tissue of healthy and diseased periodontal tissues 

The % of ST2 positive cells was determined from photomicrographs using the 
methodology described by Bologna-Molina and colleagues (2011). Bars show the 
percentage of ST2 positive cells in the epithelial layer (epithelium) and 
connective tissue (CT) of healthy and chronic periodontitis (CP) tissue. Data was 
derived from 5 micrographs depicting different fields from 3 different tissue 
samples. Prior to statistical analyses the % data was angular transformed. 
Statistical analysis was carried out using the independent t-test (IBM SPSS 

Statistics, version 19). NS = not significant (p > 0.05). Error bars indicate the 
standard error of the mean (SEM). 
 

3.2.2 Expression of IL-33 by oral epithelial cells in response to 
Porphyromonas gingivalis 

3.2.2.1 Validation of the in vitro live Porphyromonas gingivalis 
monospecies biofilm model 

To investigate whether oral epithelial cells express IL-33 and if expression was 

modulated by the periodontal pathogen (P. gingivalis); a live biofilm model 

system was employed. This model had been previously developed by colleagues 

in our laboratory (Sherry, et al., 2013) and is designed to be more in vivo 

relevant. In this in vitro model, the live P. gingivalis monospecies biofilm is 

separated from the oral keratinocytes by a 0.5 mm space. This space represents 

the distance between dental biofilm and epithelial cells in the gingival sulcus. 

For this model system, a live P. gingivalis monospecies biofilm is cultured on 

ThermanoxTM coverslips (Nunc Nalgene, UK). These biofilms are made in batches 

and can be used immediately or stored at –70 oC long term for later use. 

However, before the biofilms were used in the investigations reported in this 

thesis, it was important to determine whether there was any batch to batch 
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variability in biofilms which may affect the results of further investigations. In 

addition, it was important to ensure that storage at -70 oC had no significant 

effects on biofilm viability.  

Figure 3-12 shows there were no significant differences in viability (CFU/ml) 

between batches of P. gingivalis monospecies biofilms cultured on ThermanoxTM 

coverslips before and after storage at –70 oC for 14 days.  

 

              
Figure 3-12: The effect of freezing on P. gingivalis monospecies biofilms 

Bars show colony forming unit (CFU)/ml of P. gingivalis recovered from 
monospecies biofilms. Initial inoculums = CFU/ml of P. gingivalis used to seed 
onto ThermanoxTM coverslips to prepare biofilms; before freezing = CFU/ml 
recovered from ThermanoxTM coverslips 4 days after seeding; and after freezing 
= CFU/ml recovered from ThermanoxTM coverslips after storage at –70 oC for 14 
days. The data was generated from duplicate wells of three independent 
experiments. Statistical analysis of the data was performed on the natural log 
transformed CFU/ml values using the ANOVA with a Bonferroni correction. * = p 
< 0.05; NS = not significant. Error bars indicate the standard error of the mean 
(SEM). 
 

In addition to determining CFUs, the viability of the biofilms was assessed 

visually using a simple Gram stain. Figure 3-13 shows representative images of 

biofilms from the 3 batches both before and after freezing. Visually, no 

differences in biofilm structure were observed. 
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Figure 3-13: Gram stained P. gingivalis monospecies biofilms before and after 
freezing  

Figure shows images of three batches of Gram stained P. gingivalis monospecies 
biofilms before and after freezing at –70 oC for 14 days. P. gingivalis 
monospecies biofilms appear pink-red in colour after staining. Each panel is a 
representative image from one of three independent experiments carried out in 
triplicate. Original magnification x 400. 
 

These data showed that there was no significant variability between batches of 

live P. gingivalis monospecies biofilms. In addition, there was no significant loss 

of viability when biofilms were frozen for long term storage and revived 24 h 

prior to use in the in vitro model system. 

 

3.2.2.2 IL-33 expression by OKF6/TERT-2 cells in response to 
Porphyromonas gingivalis 

Previously, immunohistochemical analysis revealed that IL-33 was expressed in 

the epithelial layer of periodontal tissues. Therefore we investigated whether 

oral keratinocytes express IL-33 and whether expression was modulated by the 

periodontal pathogen; P. gingivalis.      
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For the initial studies an oral keratinocyte cell line, OKF6/TERT-2, was used. 

OKF6/TERT-2 cells were cultured in vitro and exposed to a live P. gingivalis 

monospecies biofilms for 3, 6, 9 and 24 h as previously described (Section 2.6.1). 

Unstimulated cells acted as controls at each time point. To confirm the cells had 

been stimulated, the release of the chemokine IL-8 (CXCL8) into the bathing 

supernatant was measured by ELISA. Figure 3-14 shows that there was a 

significant increase in IL-8 release from OKF6/TERT-2 cells in response to P. 

gingivalis stimulation at all time points.           

 

       
Figure 3-14: Release of IL-8 (CXCL8) from OKF6/TERT-2 cells in response to a 
live P. gingivalis monospecies biofilm 

IL-8 release into bathing supernatants was measured by ELISA. The bars 
represent the mean supernatant concentrations of IL-8 in unstimulated (Control) 
and a live P. gingivalis monospecies biofilm (Biofilm) stimulated OKF6/TERT-2 
cells at 3, 6, 9 and 24 h. The data was generated from duplicate wells of three 
independent experiments. Statistical analyses were carried out using the 
independent t-test (IBM SPSS Statistics, version 19) on the natural log 
transformed IL-8 levels (pg/ml). * = p < 0.05, ** = p < 0.01 and *** = p < 0.001. 
Error bars indicate the standard error of the mean (SEM).  
 

Once stimulation of the cells had been confirmed, the expression of IL-33 mRNA 

was investigated by real-time PCR. Figure 3-15 shows that IL-33 mRNA was 

expressed by OKF6/TERT-2 cells and levels were significantly upregulated in 

response to P. gingivalis. 
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Figure 3-15: The effect of a live P. gingivalis monospecies biofilm on IL-33 
mRNA expression by OKF6/TERT-2 cells 

Quantification of IL-33 mRNA expression in OKF6/TERT-2 cells was performed by 
real-time PCR. The bars represent mean relative expression (2-CT) of IL-33 
mRNA in unstimulated (Control) and a live P. gingivalis monospecies biofilm 
(Biofilm) stimulated OKF6/TERT-2 cells at 3, 6, 9 and 24 h. RNA polymerase II 
was used as a reference gene. The data was generated from duplicate wells of 
three independent experiments. Statistical analyses were carried out using the 
independent t-test (IBM SPSS Statistics, version 19) on the natural log 
transformed IL-33 mRNA relative expression (2-CT) values. * = p < 0.05 and *** = 
p < 0.001. Error bars indicate the standard error of the mean (SEM). 
 

Having established that IL-33 mRNA expression is upregulated in response to 

stimulation with P. gingivalis, we next investigated whether IL-33 protein was 

released from stimulated OKF6/TERT-2 cells. Figure 3-16 shows that using a 

commercially available ELISA kit (Enzo® Life Science, USA) no IL-33 release was 

detected in the bathing supernatants of unstimulated or P. gingivalis 

monospecies biofilm stimulated OKF6/TERT-2 cells.  
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Figure 3-16: Release of IL-33 from OKF6/TERT-2 cells in response to a live P. 
gingivalis monospecies biofilm 

IL-33 release into bathing supernatants was measured by ELISA. No IL-33 was 
detected in any of the bathing supernatants analysed from unstimulated 
(Control) and live P. gingivalis monospecies biofilm (Biofilm) stimulated 
OKF6/TERT-2 cells at 3, 6, 9 and 24 h. The data was generated from duplicate 
wells of three independent experiments. 

 
In monocytes, IL-33 is not released from cells in response to P. gingivalis LPS. 

However, increased protein expression can be observed intracellularly (Nile, et 

al., 2010). To determine if similar responses occurred in OKF6/TERT-2 cells; 

immunocytochemical analysis was employed. OKF6/TERT-2 cells were cultured 

on glass coverslips in the presence and absence of a live P. gingivalis 

monospecies biofilm for 9 h. Prior to immunocytochemistry, stimulation was 

confirmed by measurement of IL-8 release (Figure 3-17).  

 
 
 
 
 
 
 
 



 

 141

                    
Figure 3-17: Release of IL-8 (CXCL8) from OKF6/TERT-2 cells cultured on glass 
coverslips and stimulated with a live P. gingivalis monospecies biofilm for 9 h 

IL-8 release into bathing supernatants was measured by ELISA. The bars 
represent the mean supernatant concentrations of IL-8 in unstimulated (Control) 
and a live P. gingivalis monospecies biofilm (Biofilm) stimulated OKF6/TERT-2 
cells at 9 h. The data was generated from duplicate wells of three independent 
experiments. Statistical analyses were carried out using the independent t-test 
(IBM SPSS Statistics, version 19) on the natural log transformed IL-8 levels 
(pg/ml). ** = p < 0.01. Error bars indicate the standard error of the mean (SEM)  
 

Once stimulation had been confirmed, immunohistochemistry analysis of fixed 

cells was conducted using a mouse monoclonal anti-IL-33 antibody (Nessy -1, 

Enzo® Life Science, UK). IL-33 was found to be expressed in OKF6/TERT-2 cells 

and an increase in intracellular expression could be observed after stimulation 

for 9 h with a live P. gingivalis monospecies biofilm (Figure 3-18). To confirm the 

specificity of the antibody, HUVECs (which are known to be positive for IL-33) 

were used as a positive control (Baekkevold, et al., 2003; Moussion, et al., 

2008). In addition, for negative control purposes, stimulated OKF6/TERT-2 cells 

were also exposed to a mouse monoclonal anti-IL-33 antibody (Nessy -1, Enzo® 

Life Science, UK) which had previously been pre-absorbed with an excess of rhIL-

33 (PeproTech®, UK) (Figure 3-18).  
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Figure 3-18: Intracellular IL-33 expression by OKF6/TERT-2 cells cultured on glass coverslips and stimulated with a P. gingivalis 
monospecies biofilm for 9 h 

Intracellular expression of IL-33 was determined using a mouse monoclonal anti-IL-33 antibody (Nessy-1, Enzo® Life Science, UK). The 
panels show representative photomicrographs of methanol fixed OKF6/TERT-2 cells on glass coverslips after 9 h incubation either with 
media only as a control (A, C and E) or a live P. gingivalis monospecies biofilm (B, D and F). An isotype control antibody was used to 
determine non-specific binding (G). Specificity of the IL-33 antibody was confirmed by pre-absorption of the mouse monoclonal anti-IL-
33 antibody with an excess of rhIL-33 (PeproTech®, UK) (H). HUVEC cells were also exposed to a mouse monoclonal anti-IL-33 antibody 
(Nessy-1, Enzo® Life Science, UK) (I) and an isotype control (J) to further confirm antibody specificity. Original magnification x 400.     
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The use of an isotype control, pre-absorption studies and a cell line known to 

express IL-33 confirmed the specificity of the mouse monoclonal anti-IL-33 

antibody (Nessy-1, Enzo® Life Science, UK). Therefore, to quantify increases in 

intracellular IL-33 expression the counting method described by Bologna-Molina 

and colleagues (2011) was employed. Figure 3-19 shows that the % of IL-33 

positive OKF6/TERT-2 cells was significantly higher after stimulation with a live 

P. gingivalis monospecies biofilm for 9 h.  

 

                     
Figure 3-19: Percentage of IL-33 positive OKF6/TERT-2 cells on glass coverslips 
after incubation with media alone or a live P. gingivalis monospecies biofilm for 
9 h 
The % of IL-33 positive cells was determined from photomicrographs using the 
methodology described by Bologna-Molina and colleagues (2011). Bars show the 
percentage of IL-33 positive OKF6/TERT-2 cells after 9 h incubation with media 
alone (Control) or with a live P. gingivalis monospecies biofilm (Biofilm). Data 
was derived from 5 micrographs depicting different fields from 3 different 
coverslips. Prior to statistical analyses the % data was angular transformed. 
Statistical analysis was carried out using the independent t-test (IBM SPSS 

Statistics, version 19). * = p < 0.05. Error bars indicate the standard error of the 
mean (SEM).  
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3.2.2.3 ST2 expression by OKF6/TERT-2 cells in response to 
Porphyromonas gingivalis 

Previous data established that IL-33 expression by OKF6/TERT-2 cells is 

modulated by a live P. gingivalis monospecies biofilm. Therefore, the effect of a 

live P. gingivalis monospecies biofilm on expression of both sST2 and ST2L was 

also investigated.    

Real-time PCR analysis showed that levels of sST2 mRNA, but not ST2L mRNA 

were significantly upregulated in P. gingivalis monospecies biofilm stimulated 

OKF6/TERT-2 cells after 6, 9 and 24 h (Figure 3-20).  

 

 

 

 

 

 

 

 

 

 

     
 
 
 
 
 
 
 

Figure 3-20: The effect of a live P. gingivalis monospecies biofilm on sST2 and 
ST2L mRNA expression by OKF6/TERT-2 cells 

Quantification of ST2L (A) and sST2 (B) mRNA expression in OKF6/TERT-2 cells 
was performed by real-time PCR. The bars represent mean relative expression 
(2-CT) of ST2L and sST2 mRNA in unstimulated (Control) and a live P. gingivalis 
monospecies biofilm (Biofilm) stimulated OKF6/TERT-2 cells at 3, 6, 9 and 24 h. 
RNA polymerase II was used as a reference gene. The data was generated from 
duplicate wells of three independent experiments. Statistical analyses were 
carried out using the independent t-test (IBM SPSS Statistics, version 19) on the 
natural log transformed sST2 and ST2L mRNA relative expression (2-CT) values. 
** = p < 0.01; *** = p < 0.001.* = p < 0.05 and NS = not significant. Error bars 
indicate the standard error of the mean (SEM). 
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Having established that sST2 mRNA expression is upregulated in response to 

stimulation with P. gingivalis we next investigated whether sST2 protein was also 

released from stimulated OKF6/TERT-2 cells. Figure 3-21 shows that using a 

commercially available ELISA kit (Quantikine® ST2; R&D System, UK), sST2 

protein was detected at low levels in the cell supernatant and there was no 

difference in sST2 levels between P. gingivalis monospecies biofilm stimulated 

OKF6/TERT-2 cells and non stimulated controls at all the time points 

investigated.    

 
Figure 3-21: Release of sST2 from OKF6/TERT-2 cells in response to stimulation 
with a live P. gingivalis monospecies biofilm 

sST2 release into bathing supernatants was measured by ELISA. The bars 
represent the mean supernatant concentrations of sST2 in unstimulated 
(Control) and a live P. gingivalis monospecies biofilm (Biofilm) stimulated 
OKF6/TERT-2 cells at 3, 9 and 24 h. The data was generated from duplicate 
wells of three independent experiments. Statistical analyses were carried out 
using the independent t-test (IBM SPSS Statistics, version 19) on the natural log 
transformed sST2 levels (pg/ml). NS = not significant (p > 0.05). Error bars 
indicate the standard error of the mean (SEM). 
 

The ELISA analysis revealed there was no significant change in sST2 levels in 

bathing supernatants from P. gingivalis stimulated OKF6/TERT-2 cells. We 

therefore used immunocytochemistry to confirm there was no change in 

intracellular or membrane bound (ST2L) levels under the same conditions. 

OKF6/TERT-2 cells were cultured on glass coverslips in the presence and absence 

of a live P. gingivalis monospecies biofilm for 9 h. Prior to 

immunocytochemistry, stimulation was again confirmed by measurement of IL-8 

release. As investigations were conducted alongside IL-33 immunocytochemistry 
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investigations, the data confirming that all cells cultured on coverslips were in 

fact stimulated by a live P. gingivalis monospecies biofilm is shown Figure 3-17. 

Immunocytochemistry investigations of ST2 expression were performed using a 

rabbit anti-IL1RL1 antibody (Sigma-Aldrich®, UK). This antibody was not specific 

for any of the ST2 isoforms (sST2 or ST2L) and stained only total ST2. Figure 3-22 

shows that ST2 was detected in/on the majority of OKF6/TERT-2 cells exposed 

to fresh media only (control) and a live P. gingivalis monospecies biofilm for 9 h. 
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Figure 3-22: ST2 expression by OKF6/TERT-2 cells cultured on glass coverslips 
and stimulated with a live P. gingivalis monospecies biofilm for 9 h 

Expression of ST2 protein was determined by immunocytochemical analysis using 
a rabbit anti-IL1RL1 antibody (Sigma-Aldrich®, UK). The panels show 
representative photomicrographs of methanol fixed OKF6/TERT-2 cells on glass 
coverslips after 9 h incubation either with media only as a control (A, C and E) 
or a live P. gingivalis monospecies biofilm (B, D and F). An isotype control 
antibody was used to determine non-specific binding (G). Original magnification 
x 400. 
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Despite the abundance of staining, the % of ST2 positive OKF6/TERT-2 cells was 

still quantified by the counting method described by Bologna-Molina and 

colleagues (2011). Figure 3-23 shows that, as expected, there was no significant 

difference in the % of ST2 positive cells after stimulation with a live P. gingivalis 

monospecies biofilm for 9 h.  

 

                       
Figure 3-23: Percentage of ST2 positive OKF6/TERT-2 cells on glass coverslips 
after incubation with media alone or a live P. gingivalis monospecies biofilm for 
9 h 
The % of ST2 positive cells was determined from photomicrographs using the 
methodology described by Bologna-Molina and colleagues (2011). Bars show the 
percentage of ST2 positive OKF6/TERT-2 cells after 9 h incubation with media 
alone (Control) or with a live P. gingivalis monospecies biofilm (Biofilm). Data 
was derived from 5 micrographs depicting different fields from 3 different 
coverslips. Prior to statistical analyses the % data was angular transformed. 
Statistical analysis was carried out using the independent t-test (IBM SPSS 

Statistics, version 19). * = p < 0.05. Error bars indicate the standard error of the 
mean (SEM).     
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3.2.2.4 IL-33 expression by primary human gingival epithelial cells in 
response to Porphyromonas gingivalis 

Previously the data demonstrated that IL-33 is expressed by the OKF6/TERT-2 

oral keratinocyte cell line and expression was upregulated in response to a live 

P. gingivalis monospecies biofilm. However, in order to determine the in vivo 

relevance of these findings, the studies were repeated using primary human 

gingival epithelial (PHGE) cells (CELLnTEC advanced cell systems, Switzerland). 

PHGE cells were cultured in vitro and exposed to a live P. gingivalis monospecies 

biofilm for 3, 9 and 24 h as previously described (Section 2.6.1). Unstimulated 

cells acted as controls at each time point. Stimulation was once again confirmed 

by measurement of IL-8 release into bathing supernatants. Figure 3-24 shows 

that there was a significant increase in IL-8 release from PHGE cells in response 

to P. gingivalis stimulation at all time points.  

 

     
Figure 3-24: Release of IL-8 (CXCL8) from primary human gingival epithelial 
cells in response to a live P. gingivalis monospecies biofilm 

IL-8 release into bathing supernatants was measured by ELISA. The bars 
represent the mean supernatant concentrations of IL-8 in unstimulated (Control) 
and a live P. gingivalis monospecies biofilm (Biofilm) stimulated PHGE cells at 3, 
9 and 24 h. The data was generated from duplicate wells of three independent 
experiments. Statistical analyses were carried out using the independent t-test 
(IBM SPSS Statistics, version 19) on the natural log transformed IL-8 levels 
(pg/ml). * = p < 0.05, ** = p < 0.01 and *** = p < 0.001. Error bars indicate the 
standard error of the mean (SEM). 
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Once stimulation of the PHGE cells had been confirmed, real-time PCR was 

employed to quantitate levels of IL-33 mRNA. Figure 3-25 shows that levels of IL-

33 mRNA were significantly upregulated in P. gingivalis stimulated PHGE cells 

after 9 h stimulation. However, expression returned to basal levels after 24 h 

stimulation. 

 

                  
Figure 3-25: Effect of a live P. gingivalis monospecies biofilm on IL-33 mRNA 
expression by primary human gingival epithelial cells 

Quantification of IL-33 mRNA expression in PHGE cells was performed by real-
time PCR. The bars represent mean relative expression (2-CT) of IL-33 mRNA in 
non stimulated (Control) and a live P. gingivalis monospecies biofilm (Biofilm) 
stimulated PHGE cells at 3, 9 and 24 h. RNA polymerase II was used as a 
reference gene. The data was generated from duplicate wells of three 
independent experiments. Statistical analyses were carried out using the 
independent t-test (IBM SPSS Statistics, version 19) on the natural log 
transformed IL-33 mRNA relative expression (2-CT) values. * = p < 0.05 and Ns= 
not significant. Error bars indicate the standard error of the mean (SEM).  
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Having established that IL-33 mRNA expression is upregulated in PHGE cells in 

response to stimulation with P. gingivalis; we next investigated whether IL-33 

protein was released from stimulated cells. Figure 3-26 shows that using a 

commercially available ELISA kit (Enzo® Life Science, USA) no IL-33 release was 

detected in the bathing supernatants of unstimulated or P. gingivalis 

monospecies biofilm stimulated PHGE cells. 

 

                  
Figure 3-26: Release of IL-33 from primary human gingival epithelial cells in 
response to a live P. gingivalis monospecies biofilm 

IL-33 release into bathing supernatants was measured by ELISA. No IL-33 was 
detected in any of the bathing supernatants analysed in unstimulated (Control) 
and a live P. gingivalis monospecies biofilm (Biofilm) stimulated PHGE cells at 3, 
9 and 24 h. The data was generated from duplicate wells of three independent 
experiments. 
 

The ELISA failed to demonstrate the release of IL-33 from P. gingivalis 

stimulated PHGE cells. Therefore, immunocytochemistry analysis was employed 

to detect intracellular levels of IL-33. PHGE cells were cultured on glass 

coverslips in the presence and absence of a live P. gingivalis monospecies 

biofilm for 9 h. Prior to immunocytochemistry, stimulation was confirmed by 

measurement of IL-8 release (Figure 3-27). 
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Figure 3-27: Release of IL-8 (CXCL8) from primary human gingival epithelial 
cells cultured on glass coverslips and stimulated with a P. gingivalis monospecies 
biofilm for 9 h 

IL-8 release into bathing supernatants was measured by ELISA. The bars 
represent the mean supernatant concentrations of IL-8 in unstimulated (Control) 
and a live P. gingivalis monospecies biofilm (Biofilm) stimulated at 9 h. The data 
was generated from duplicate wells of three independent experiments. 
Statistical analyses were carried out using the independent t-test (IBM SPSS 

Statistics, version 19) on the natural log transformed IL-8 levels (pg/ml). ** = p < 
0.01. Error bars indicate the standard error of the mean (SEM).  
 

Once stimulation had been confirmed, immunocytochemistry analysis of fixed 

cells was conducted using a mouse monoclonal anti-IL-33 antibody (Nessy-1, 

Enzo® Life Science, UK). The specificity of this antibody had been determined 

previously (Figure 3-18). IL-33 was found to be expressed in PHGE cells and an 

increase in intracellular expression could be observed after stimulation for 9 h 

with a live P. gingivalis monospecies biofilm (Figure 3-28).  
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Figure 3-28: Intracellular IL-33 expression by primary human gingival epithelial 
cells cultured on glass coverslips and stimulated with a live P. gingivalis 
monospecies biofilm for 9 h 

Intracellular expression of IL-33 was determined using a mouse monoclonal anti-
IL-33 antibody (Nessy-1, Enzo® Life Science, UK). The panels show representative 
photomicrographs of methanol fixed PHGE cells on glass coverslips after 9 h 
incubation either with media only as a control (A, C and E) or a live P. gingivalis 
monospecies biofilm (B, D and F). An isotype control antibody was used to 
determine non-specific binding (G). Original magnification x 400. 
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To quantify increases in intracellular IL-33 expression, the counting method 

described by Bologna-Molina et al  (2011) was employed. Figure 3-29 shows that 

the % of IL-33 positive PHGE cells was significantly higher after stimulation with 

a live P. gingivalis monospecies biofilm for 9 h.  

 

 
Figure 3-29: Percentage of IL-33 positive primary human gingival epithelial cells 
on glass coverslips after incubation with media alone or a live P. gingivalis 
monospecies biofilm for 9 h 

The % of IL-33 positive cells was determined from photomicrographs using the 
methodology described by Bologna-Molina and colleagues (2011). Bars show the 
percentage of IL-33 positive PHGE cells after 9 h incubation with media alone 
(Control) or with a live P. gingivalis monospecies biofilm (Biofilm). Data was 
derived from 5 micrographs depicting different fields from 3 different coverslips. 
Prior to statistical analyses the % data was angular transformed. Statistical 
analysis was carried out using the independent t-test (IBM SPSS Statistics, version 
19). * = p < 0.05. Error bars indicate the standard error of the mean (SEM).  
 

3.2.2.5 ST2 expression by primary human gingival epithelial cell in 
response to Porphyromonas gingivalis 

Having established that IL-33 is expressed by PHGE cells; and demonstrating that 

its expression is upregulated in response to a live P. gingivalis monospecies 

biofilm; it was logical to also investigate whether there were similar effects on 

ST2 expression.  

Real-time PCR was employed to quantitate levels of ST2L and sST2 mRNA in non 

stimulated and P. gingivalis monospecies biofilm stimulated PHGE cells. Figure 

3-30 shows that neither sST2 nor ST2L mRNA was significantly upregulated by 

PHGE cells after P. gingivalis monospecies biofilm stimulation.  
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Figure 3-30: Effect of a live P. gingivalis monospecies biofilm on sST2 and ST2L 
mRNA expression by primary human gingival epithelial cells 

Quantification of ST2L (A) and sST2 (B) mRNA expression in PHGE cells was 
performed by real-time PCR. The bars represent mean relative expression (2-

CT) of ST2L and sST2 mRNA in non stimulated (Control) and a live P. gingivalis 
monospecies biofilm (Biofilm) stimulated PHGE cells at 3, 9 and 24 h. RNA 
polymerase II was used as a reference gene. The data was generated from 
duplicate wells of three independent experiments. Statistical analyses were 
carried out using the independent t-test (IBM SPSS Statistics, version 19) on the 
natural log transformed sST2 and ST2L mRNA relative expression (2-CT) values. 
NS = not significant (p > 0.05). Error bars indicate the standard error of the 
mean (SEM). 
 

Having established that sST2 mRNA is expressed by PHGE cells but not regulated 

by a live P. gingivalis monospecies biofilm; we next confirmed this finding at the 

protein level by investigating the release of sST2 protein from these cells. Figure 

3-31 shows that using a commercially available ELISA kit (Quantikine® ST2; R&D 

System, UK) sST2 protein was detected at low levels in the cell supernatant and 

there was no difference in sST2 levels between P. gingivalis monospecies biofilm 

stimulated PHGE cells and unstimulated controls. 
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Figure 3-31: Release of sST2 from primary human gingival epithelial cells in 
response to stimulation with a live P. gingivalis monospecies biofilm 

sST2 release into bathing supernatants was measured by ELISA. The bars 
represent the mean supernatant concentrations of sST2 in unstimulated 
(Control) and a live P. gingivalis monospecies biofilm (Biofilm) stimulated PHGE 
cells at 3, 9 and 24 h. The data was generated from duplicate wells of three 
independent experiments. Statistical analyses were carried out using the 
independent t-test (IBM SPSS Statistics, version 19) on the natural log 
transformed sST2 levels (pg/ml). NS = not significant. Error bars indicate the 
standard error of the mean (SEM)  
 

The data shown in Figure 3-31 confirmed at the protein level the findings of the 

mRNA for sST2 shown in Figure 3-30. To confirm the findings of Figure 3-31 at 

the protein level for ST2L however, immunocytochemistry analysis was 

employed. PHGE cells were cultured on glass coverslips in the presence and 

absence of a live P. gingivalis monospecies biofilm for 9 h. Prior to 

immunocytochemistry, stimulation was again confirmed by measurement of IL-8 

release. As investigations were conducted alongside IL-33 immunocytochemistry 

investigations, the data confirming that all cells cultured on coverslips were in 

fact stimulated by a live P. gingivalis monospecies biofilm is shown in Figure 3-

27. 

Once stimulation had been confirmed, immunocytochemistry analysis of fixed 

cells was conducted using a rabbit anti-IL1RL1 (anti-ST2) antibody (Sigma-

Aldrich®, UK). This antibody was not specific for any of the ST2 isoforms (sST2 or 

ST2L) and stained only total ST2. Figure 3-32 shows that protein for ST2 was 

found expressed in unstimulated PHGE cells and no visual increase in surface 

receptor ST2L protein expression was observed in P. gingivalis monospecies 

biofilm stimulated cells.  
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Figure 3-32: ST2 expression by primary human gingival epithelial cells cultured 
on glass coverslips and stimulated with a live P. gingivalis monospecies biofilm 
for 9 h 

Expression of ST2 protein was determined by immunocytochemical analysis using 
a rabbit anti-IL1RL1 antibody (Sigma-Aldrich®, UK). The panels show 
representative photomicrographs of methanol fixed from PHGE cells on glass 
coverslips after 9 h incubation either with media only as a control (A, C and E) 
or a live P. gingivalis monospecies biofilm (B, D and F). An isotype control 
antibody was used to determine non-specific binding (G). Original magnification 
x 400. 
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Despite the abundance of staining, the % of ST2 positive from PHGE cells was 

still quantified by the counting method described by Bologna-Molina and 

colleagues (2011). Figure 3-33 shows that, as expected, there was no significant 

difference in the % of ST2 positive cells after stimulation with a live P. gingivalis 

monospecies biofilm for 9 h.  

 

                     
Figure 3-33: Percentage of ST2 positive primary human gingival epithelial cells 
on glass coverslips after incubation with media alone or a live P. gingivalis 
monospecies biofilm for 9 h 

The % of ST2 positive cells was determined from photomicrographs using the 
methodology described by Bologna-Molina and colleagues (2011). Bars show the 
percentage of ST2 positive PHGE cells after 9 h incubation with media alone 
(Control) or with a live P. gingivalis monospecies biofilm (Biofilm). Data was 
derived from 5 micrographs depicting different fields from 3 different coverslips. 
Prior to statistical analyses the % data was angular transformed. Statistical 
analysis was carried out using the independent t-test (IBM SPSS Statistics, version 
19). * = p < 0.05. Error bars indicate the standard error of the mean (SEM). 
  

3.2.2.6 Effect of IL-33 on OKF6/TERT-2 cells 

The previous data confirmed that oral keratinocytes express the membrane 

bound form of the IL-33 receptor (ST2L). Therefore, it is rational to assume that 

these cells can mediate IL-33 signalling. Therefore, the effect of rhIL-33 on the 

innate immune response of OKF6/TERT-2 cells was investigated in vitro.  

Prior to investigations the bioactivity of the commercially obtained rhIL-33 

(PeproTech®, UK) was confirmed. This was achieved using the methodology of 

Kurowska-Stolarska and colleagues (2008). The authors showed that IL-33 

enhanced production of IL-5 by anti-CD3 antibody activated naïve CD4+ T cells 

isolated from cord blood. As cord blood cells are difficult to obtain; PBMCs, 
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which are known to contain naïve CD4+ T cells (Pflanz, et al., 2002), were used 

instead.  

Figure 3-34 shows that recombinant human IL-33 significantly augmented IL-5 

release from anti-CD3 antibody activated PBMCs in a dose dependant manner. 

 

               
Figure 3-34: Effect of recombinant human IL-33 on IL-5 release from anti-CD3 
antibody activated PBMCs  

IL-5 release into bathing supernatants was measured by ELISA. The figure 
represents mean relative levels (relative to control) of IL-5 in bathing 
supernatant of peripheral blood mononuclear cells (PBMCs) after 3 days. The 
data is derived from three independent experiments, carried out in duplicate on 
PBMCs isolated from three separate donors. Statistical analyses were carried out 
using the ANOVA with a Bonferroni correction (IBM SPSS Statistics, version 19) on 
the natural log transformed IL-5 relative levels. * = p < 0.05. Error bars indicate 
the standard error of the mean (SEM).  
 

Once the bioactivity of the rhIL-33 had been confirmed, OKF6/TERT-2 cells were 

stimulated in vitro with 10, 50 and 100 ng/ml rhIL-33 for 4, 24 and 48 h; as 

described in Section 2.6.4. For control purposes, cells were either stimulated 

with 10 ng/ml PMA or left unstimulated.  

Initial investigations were performed to determine the effect of rhIL-33 on the 

release of IL-8 (CXCL8) from OKF6/TERT-2 cells. Figure 3-35 shows that PMA (10 

ng/ml) induced a significant increase in IL-8 release from OKF6/TERT-2 cells at 

all time points when compared to unstimulated cells. However, no effect on IL-8 

release was observed when cells were stimulated with various concentrations of 

rhIL-33 at any of the time points investigated.  
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Figure 3-35: The effect of phorbol 12-myristate 13-acetate and recombinant 
human IL-33 on IL-8 expression by OKF6/TERT-2 cells  

IL-8 released into bathing supernatants was measured by ELISA. The figure 
represents mean supernatant levels of IL-8 in PMA and rhIL-33 stimulated 
OKF6/TERT-2 cells. Unstimulated cells acted as controls. Figure represents three 
independent experiments, carried out in duplicate. Incubation periods were 4, 
24 and 48 h. Statistical analysis was performed on the natural log transformed 
IL-8 levels (pg/ml) using the ANOVA with a Bonferroni correction (IBM SPSS 

Statistics, version 19). ** = p < 0.01. Error bars indicate the standard error of the 
mean (SEM). 
 

The failure of IL-33 to induce IL-8 expression from OKF6/TERT-2 cells was 

confirmed at the mRNA level. Figure 3-36 shows that PMA significantly 

upregulated the expression of IL-8 mRNA in OKF6/TERT-2 cells. However, no 

significant changes in IL-8 mRNA expression were observed in cells stimulated 

with 100 ng/ml rhIL-33.            
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Figure 3- 36: Effect of phorbol 12-myristate 13-acetate and recombinant human 
IL-33 on IL-8 mRNA expression by OKF6/TERT-2 cells 

Quantification of IL-8 mRNA expression in OKF6/TERT-2 cells was performed by 
real-time PCR. The figure represents mean relative expression (2-CT) of IL-8 
mRNA in PMA and rhIL-33 stimulated OKF6/TERT-2 cells. Unstimulated cells 
acted as controls. Incubation periods were 4 and 24 h. GAPDH was used as a 
reference gene. Figure represents three independent experiments carried out in 
duplicate. Statistical analysis was performed on the natural log transformed IL-8 
mRNA relative expression (2-CT) values using the ANOVA with a Bonferroni 
correction (IBM SPSS Statistics, version 19). ** = p < 0.01 and *** = p < 0.001. 
Error bars indicate the standard error of the mean (SEM).  
 

To further investigate whether rhIL-33 had any effect on the innate immune 

responses of OKF6/TERT-2 cells a holistic approach was undertaken. The use of 

the Proteome ProfilerTM Array (R&D Systems, UK) allowed us to rapidly and 

economically detect changes in expression of 36 different cytokines and 

chemokines without performing numerous immunoassays. Therefore the 

supernatants collected from OKF6/TERT-2 cells stimulated with PMA and rhIL-33 

(Section 2.6.4) were exposed to the array (Section 2.7.6).  

Figure 3-37 visually suggested that PMA (10 ng/ml) induced upregulated release 

of CD40L, G-CSF, GM-CSF, CXCL1, IL-1RA, IL-6 and IL-8 from OKF6/TERT-2 cells. 

However, no changes in release of any cytokines and chemokines could be 

observed from OKF6/TERT-2 cells stimulated by rhIL-33. 
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Figure 3-37: Proteome profiler analysis of phorbol 12-myristate 13-acetate and 
recombinant human IL-33 stimulated OKF6/TERT-2 cells 

Cytokines and chemokines released into bathing supernatants were measured 
using the Proteome ProfilerTM Array (R&D Systems, UK). Images show membranes 
incubated with culture media only (A), supernatants from unstimulated cells (B), 
rhIL-33 (100 ng/ml) stimulated cells (C), and PMA (10 ng/ml) stimulated cells 
(D). Panel (E) shows the key for the membranes. For membranes incubated with 
bathing supernatants; these were pooled samples derived from 24 h time points 
of three independent experiments. The X-ray films were exposed for 20 min 
prior to imaging.  
 

The membranes only give a visual indication to changes in cytokine and 

chemokine release from stimulated cells. Therefore, in order to quantify these 

changes the pixel densities on the developed X-ray film were analyzed using a 

Gel DocTM XR Imaging System (Bio-Rad Laboratories, UK) and Quantity One® 

Software Version 4.6.7 (Bio-Rad Laboratories, UK). 

Pixel density analysis (Figure 3-38) showed that PMA (10 ng/ml) induced 

upregulated release of CD40L, G-CSF, GM-CSF, CXCL1, IL-1α, IL-1RA, IL-6, IL-8 

E 
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and RANTES from OKF6/TERT-2 cells. However, no changes in release of any 

cytokines and chemokines could be observed from OKF6/TERT-2 cells stimulated 

by rhIL-33. 

 

           
Figure 3-38: Pixel density analysis to determine changes in cytokine and 
chemokine expression by OKF6/TER-2 cells stimulated by recombinant human IL-
33 and phorbol 12-myristate 13-acetate 

Pixel densities for each cytokine and chemokine were measured on the 
membranes shown in Figure 3-37 using a Gel DocTM XR Imaging System (Bio-Rad 
Laboratories, UK) and Quantity One® Software Version 4.6.7 (Bio-Rad 
Laboratories, UK). Each bar represents the average intensity on membranes 
which were probed with supernatants from unstimulated cells (Control), cells 
stimulated with rhIL-33 (100 ng/ml) and cells stimulated with PMA (10 ng/ml). 
The pixel intensity was corrected for the media control. Error bars indicate the 
standard error of the mean (SEM). 
 

To confirm the findings of the Proteome ProfilerTM Array (R&D Systems, UK), 

expression of selected genes (G-CSF and IL-1RA) was investigated further using 

standard real-time PCR and ELISA technologies. 

Figure 3-39A shows there were significant increase in G-CSF mRNA by 

OKF6/TERT-2 cells after PMA (10 ng/ml) stimulation at 4 h (p < 0.001) and 24 h 

(p < 0.01); when compared to the unstimulated control. However, no change in 

expression of G-CSF mRNA expression could be observed from OKF6/TERT-2 cells 

stimulated by rhIL-33 after either 4 or 24 h. Figure 3-39B shows no changes in IL-

1RA mRNA expression by OKF6/TERT-2 cells after PMA (10 ng/ml) stimulation at 

4 h when compared to unstimulated control (p > 0.05). However, IL-1RA mRNA 



 

 164

expression was significantly decreased 24 h after stimulation (p < 0.01). Once 

again, no changes in expression of IL-1RA mRNA could be observed from 

OKF6/TERT-2 cells stimulated by rhIL-33 after either 4 or 24 h. Figure 3-39C 

shows there was significant increase in G-CSF protein levels in supernatants of 

OKF6/TERT-2 cells stimulated by PMA (10 ng/ml) after 24 h stimulation (p < 

0.01); when compared to the unstimulated control. However, there was no 

change in levels of G-CSF after stimulation with rhIL-33 (p > 0.05). Figure 3-39D 

shows no changes in supernatant levels of IL-1RA protein observed from 

OKF6/TERT-2 cells stimulated for 24 h by either PMA (10 ng/ml) or rhIL-33 when 

compared to the unstimulated control (p > 0.05). 

 

 
Figure 3-39: The effect of phorbol 12-myristate 13-acetate and recombinant 
human IL-33 on G-CSF and IL-1RA expression by OKF6/TERT-2 cells  

Quantification of mRNA expression and supernatant protein levels were 
performed by real-time PCR and ELISA respectively. The bars represent mean 
relative mRNA expression (2-CT) of G-CSF and IL-1RA (A and B), as well as mean 
supernatant levels of G-CSF and IL-1RA (C and D) by OKF6/TERT-2 cells 
stimulated by either PMA (10 ng/nl) or rhIL-33 (100 ng/ml). Unstimulated cells 
acted as controls. For real-time PCR analysis, RNA polymerase II was used as a 
reference gene. The data was generated from duplicate wells of three 
independent experiments. Statistical analysis of real-time PCR and ELISA data 
was performed on the natural log transformed values using the ANOVA with a 
Bonferroni correction (IBM SPSS Statistics, version 19). ** = p < 0.01; *** = p < 
0.001 and NS = not significant (p > 0.05). Error bars indicate the standard error 
of the mean (SEM).  
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The data suggested that rhIL-33 had no direct effect on the innate immune 

responses of OKF6/TERT-2 cells. However, IL-33 has been suggested to augment 

bacterially induced innate immune responses by promoting increased expression 

of TLRs (Joshi, et al., 2010). Therefore, changes in expression of TLR-2 and TLR-

4 mRNA in OKF6/TERT-2 cells after stimulation with PMA (10 ng/ml) and rhIL-33 

(100 ng/ml) were investigated by real-time PCR. 

Figure 3-40A shows significant increase in TLR-2 mRNA by OKF6/TERT-2 cells 

after PMA (10 ng/ml) stimulation at 4 h and 24 h (p < 0.01) when compared to 

the unstimulated control. However, no change in expression of TLR-2 mRNA 

expression could be observed from OKF6/TERT-2 cells stimulated with rhIL-33 

(100 ng/ml) at both time points. Figure 3-40B shows significant increase in TLR-4 

mRNA by OKF6/TERT-2 cells after PMA (10 ng/ml) stimulation at 4 h (p < 0.01), 

but not at 24 h (p > 0.05) when compared to the unstimulated control. However, 

no change in expression of TLR-4 mRNA could be observed from OKF6/TERT-2 

cells stimulated by rhIL-33 at both time points. 
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Figure 3-40: The effect of phorbol 12-myristate 13-acetate and recombinant 
human IL-33 on TLR-2 and TLR-4 mRNA expression by OKF6/TERT-2 cells 

Quantification of TLR-2 and TLR-4 mRNA expression by OKF6/TERT-2 cells was 
performed by real-time PCR. The bars represent mean relative expression (2-

CT) of TLR-2 (A) and TLR-4 (B) in unstimulated (Control), PMA (10 ng/ml) and 
rhIL-33 (100 ng/ml) stimulated cells. The data was generated from duplicate 
wells of three independent experiments. RNA polymerase II was used as a 
reference gene. Statistical analysis was performed on the natural log 
transformed 2-CT values using the ANOVA with a Bonferroni correction (IBM SPSS 

Statistics, version 19). ** = p < 0.01; NS = not significant (p > 0.05). Error bars 
indicate the standard error of the mean (SEM). 
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3.3 Discussion 

The data, for the first time, showed that IL-33 (mRNA and protein) was 

expressed in periodontal tissues. Furthermore, expression was significantly 

elevated in tissue of patients with chronic periodontitis. These findings are in 

agreement with previous data. IL-33 has been shown to be expressed in 

numerous epithelial tissues; including bronchial, colonic, nasal, skin and giant 

papillae (Kamekura, et al., 2012; Manetti et al., 2010; Matsuda, et al., 2009; 

Prefontaine, et al., 2009; Seidelin et al., 2010). In addition, in various chronic 

inflammatory disease models, pathogenesis has been associated with elevated 

expression of IL-33 (Miller, 2011). Furthermore, levels of IL-33 have been found 

to be upregulated within the chronically inflamed tissue of patients with 

rheumatoid arthritis, inflammatory bowel diseases, asthma and chronic allergic 

conjunctivitis (Beltran, et al., 2010; Matsuda, et al., 2009; Matsuyama, et al., 

2010; Prefontaine, et al., 2009; Xu, et al., 2008). In agreement with these 

findings, our data demonstrate that elevated epithelial expression of IL-33 is 

associated with periodontal disease. This therefore was suggestive of a role for 

IL-33 in periodontal disease pathogenesis.  

The data presented in this thesis also showed that both the soluble form (sST2) 

and membrane bound form (ST2L) of the IL-33 receptor (ST2 or IL-1RL1) were 

expressed in periodontal tissue. Interestingly, at the mRNA level, expression of 

total ST2 was significantly increased in tissue of patients with chronic 

periodontitis. Furthermore, using primers to distinguish between ST2L and sST2 

mRNA, it was found that expression of sST2, but not ST2L mRNA was elevated in 

tissue from patients with chronic periodontitis. These data are similar to findings 

in other chronic inflammatory diseases. mRNA expression of total ST2 and sST2, 

not ST2L were found to be increased in colonic tissue samples of patients with 

ulcerative colitis as compared to healthy subjects (Beltran, et al., 2010; 

Pastorelli et al., 2010). Similarly, total ST2 mRNA was also found to be increased 

in human nasal mucosa samples of patients with allergic rhinitis when compared 

to healthy subjects (Kamekura, et al., 2012). In addition, no difference in ST2L 

mRNA expression was also reported between synovial tissue samples of 

rheumatoid arthritis and osteoarthritis patients (Talabot-Ayer et al., 2012). 
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Despite these interesting findings at the mRNA level, confirmation at the protein 

level proved problematic in our studies. For IL-33, attempts to quantify levels in 

clinical samples (serum, GCF and saliva) from healthy volunteers and patients 

with periodontal disease proved unsuccessful. The ELISA analyses showed that in 

all samples IL-33 levels were below the detection limits of the ELISA kit used 

(Human IL-33 ELISA; Life Science, UK). The lowest standard for the Human IL-33 

ELISA from Enzo Life sciences was 3.9 pg/ml. However, the actual limits of 

sensitivity in our hands was calculated as 15.5 pg/ml based on the concept of 

determining  two mean standard deviations higher than the mean baseline from 

6 replicate standard curves (Chaloner-Larsson, et al., 1997).  

In our investigations, serum IL-33 levels ranged from between 4.4 - 12.6 pg/ml; 

below the limits of detection. In addition, no IL-33 was detected in any of the 

saliva or GCF samples. This was found to be in contrast to some previous findings 

(Table 3-3). For analysis of levels of IL-33 in saliva and GCF only a few studies 

are reported (Table 3-3). However, these studies highlight the problems faced 

when using commercially available ELISA kits from different sources. Using an IL-

33 ELISA assay from GenWay Biotech (USA), with reported detection limits of 

between 700 – 500000 pg/ml, Nizam et al (2014) and Buduneli et al (2012) 

reported high IL-33 levels in saliva and GCF (>1000 pg/ml) in healthy subjects 

ranging from 1100 – 14000 pg/ml (Table 3-3). Conclusions from these findings 

must however be drawn with care. Indeed, the literature consistently shows that 

the most abundant cytokines and chemokines in  GCF such as IL-1β, IL-6, IL-8, 

CXCL10 are reported to be presented in ranges of between 5 - 400 pg/ml using 

multiplex immunoassays as well as commercially available ELISA kits (Becerik et 

al., 2012; de Lima Oliveira et al., 2012; Shimada et al., 2013). Similarly, the 

most abundant cytokines present in saliva, such as IL-1β, IL-6 and TNF-α, were 

reported to be presented at ranges between 2 -700 pg/ml as measured by 

multiplex immunoassays as well as commercially available ELISA kits. Indeed, 

only levels of IL-8 in saliva have been reported to be higher (1800 – 2400 pg/ml) 

(Gursoy et al., 2009; Teles et al., 2009; Tobon-Arroyave et al., 2008). 

Therefore, it is hard to believe that IL-33 levels in these fluids can be in the 

multiple thousand pg/ml ranges. Indeed, Papathanasiou and colleagues (2014) 

using a multiplex immunoassay (Millipore Corporation, USA) which has a 

sensitivity of between 0.4 – 55.8 pg/ml (company statement) reported that IL-33 
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was below the detection limit in the GCF of healthy subjects and chronic 

periodontitis patients. These were more in agreement with the findings reported 

in this thesis. 

 
 

Biological 
Fluid 

 

 
Disease 

 
Healthy 

IL-33 (pg/ml) 

 
Disease 

IL-33 (pg/ml) 

 
LDL 

 
ELISA 
source 

 
Reference 

Serum RA 42.8 
(±3.0) 

138.6* 
(±16.5) 

23.0 A1 Xiangyang et 
al (2012) 

Serum pSS 24.1 
(13.4-31.6) 

54.5* 
(26.2-169.5) 

23.0 A1 Zhao et al 
(2013) 

Serum AS 146 
(63-167) 

450#* 
(217-730) 

32.0 A2 Han et al 
(2011) 

Serum RA Below 
detection 

392.0* 
(±889.4) 

23.0 A1 Mu et al 
(2010) 

Saliva CP 7700 
(1100-14000) 

13300#* 
(2200-27700) 

700 A3 Nizam et al 
(2014) 

Saliva CP 1100 
(±500) 

1200 
(±600) 

700 A3 Buduneli et al 
(2012) 

GCF CP 3823 
(±1970) 

8300* 
(±4857) 

700 A3 Buduneli et al 
(2012) 

GCF CP Below 
detection 

Below 
detection 

0.4 
 

A4 Papathanasiou 
et al (2014) 

Table 3-3: Comparison of published studies measuring levels of IL-33 by ELISA in 
biological fluids of healthy subjects and patients with chronic inflammatory 
disease 

RA = rheumatoid arthritis, pSS = primary Sjogren’s Syndrome, AS = ankylosing 
spondylitis, CP = chronic periodontitis, A1 = ELISA (R&D System, USA), A2 = ELISA 
(Peprotech®, USA), A3 = ELISA (GenAway Biotech, USA), A4 = Multiplex 
immunoassay (Millipore Corporation, USA), LDL = lower detection limit, # = 
estimation of values from figures, and * = significant difference between health 
and disease (p < 0.05).  
 

Based on our data and the available literature, it seems that evaluation of IL-33 

levels in biological fluids can be variable depending upon the source of the ELISA 

used in the study. Therefore, perhaps a different approach could have been 

taken in our investigations; for example the use of western blot analysis or 

immunoprecipitation analysis to evaluate levels of IL-33 in biological fluids. The 

reasons for the problems encountered in our studies using ELISA are unknown. 

However, it is possible that in biological fluids there may be other mediators 

which bind to IL-33 and mask the epitope on the protein to which the capture 

antibody in the commercially available ELISA binds. Indeed, one such molecule 

may be sST2 which is well known to act as a decoy receptor and bind to IL-33 
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(Hayakawa, et al., 2007; O'Neill, 2008; Schmitz, et al., 2005). In addition, the 

lack of success with this ELISA kit could be due to numerous other factors 

including; sensitivity of the assay, sample preparation and long term storage and 

repeated freeze/thawing of samples. The shortcoming in our study was we did 

not have a suitable positive control sample to assess the efficiency of the ELISA 

kit used. Due to the problems that arose during the investigations into levels of 

IL-33 in biological fluids and sample limitations we therefore did not evaluate 

serum levels of sST2 in these samples.  

Despite the failure to detect IL-33 at the protein level in biological fluids; using 

an immunohistochemical approach IL-33 protein was detected in periodontal 

tissue. Sections of periodontal tissue were stained using a mouse monoclonal 

anti-IL-33 antibody (Nessy-1, Enzo® Life Science, UK). This antibody was used 

extensively throughout this thesis for both the immunohistochemistry and 

immunocytochemistry. Although this antibody had routinely been used by other 

researchers in the field of IL-33 biology (Kamekura, et al., 2012; Manetti, et al., 

2010); it was important that its specificity was determined in our hands before 

any inferences from results could be made. In this thesis we have confirmed 

specificity in a number of ways. Firstly, an appropriate isotype control (mouse 

monoclonal IgG1; Thermo Scientific, UK) was used to exclude non-specific 

binding. Secondly, staining of human tonsil tissue (Figure 3-3) which is known to 

contain IL-33 expressing immune cells (Baekkevold, et al., 2003; Moussion, et 

al., 2008) was performed as a positive control. Thirdly, staining of HUVEC cells, 

which are also known to express IL-33 (Baekkevold, et al., 2003; Hayakawa et 

al., 2009; Savinko, et al., 2012) was also performed (Figure 3-18). Finally, pre-

absorption studies using an excess of rhIL-33 (PeproTech®, UK) (Section 2.7.2) 

were also conducted (Figure 3-18). In isolation, these steps do not confirm 

specificity. However, when the evidence is combined we can be fairly sure that 

the antibody used in our investigations is specific for IL-33. In addition, our 

methodological approach for determining specificity is in agreement with the 

literature which suggests:  (1) the use of appropriate diluent control, isotype 

control and pre-absorbed antibody in replace of primary antibody, (2) the use of 

sections of tissue with cells that are known to express the protein of interest and 

(3) the use of several antibodies that are directed against the same protein 
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(Burry, 2000, 2011). However, due to budget restriction, we only used one type 

of primary antibody in our study. 

A specific and reliable IL-33 antibody was important to our immunohistocehmical 

analysis as it allowed us to quantify expression of IL-33 in tissues using the 

methodology of Bologna-Molina and colleagues (2011). This is a highly 

reproducible cell/nuclei counting technique that can be applied to both 

immunohistochemistry and immunocytochemistry, which uses only a digital 

camera attached to a microscope and a personal computer (Bologna-Molina et 

al., 2008; Bologna-Molina et al., 2009; Gonzalez-Ramirez et al., 2011; Ramirez-

Amador et al., 2009). This quantification technique was employed as it is easy, 

cheap and highly reproducible. As an alternative, quantification can also be 

conducted using an advanced image scanner and image analysis software 

specifically designed for cell counting. However, we did not have access to the 

necessary equipment and in addition this automated method has been associated 

with issues of specificity and reproducibility (Persohn et al., 2007).      

The immunohistochemical analysis of periodontal tissues confirmed the findings 

at the mRNA level, showing that IL-33 protein levels are elevated in the 

epithelial and connective tissue layer of periodontal tissue from patients with 

chronic periodontitis. The tissue for this study was derived from patients 

undergoing surgery for chronic periodontitis and had clinical probing depths of ≥ 

5.0 mm and clinical attachment loss of ≥ 5.0 mm. These data are similar to 

findings in other chronic inflammatory diseases, where upregulation of IL-33 was 

observed in tissues of patients with rheumatoid arthritis, inflammatory bowel 

diseases and chronic allergic conjunctivitis (Beltran, et al., 2010; Matsuda, et 

al., 2009; Xu, et al., 2008). In addition, IL-33 levels were found to be 

upregulated in nasal epithelium of chronic allergic rhinitis patients, bronchial 

epithelium of asthma patients, colonocytes of ulcerative colitis patients, skin of 

systemic sclerosis patients and giant papillae of allergic conjunctivitis patients 

(Kamekura, et al., 2012; Manetti, et al., 2010; Matsuda, et al., 2009; 

Prefontaine, et al., 2009; Seidelin, et al., 2010).  

To confirm the findings for ST2 at the mRNA level a similar approach to that 

undertook for IL-33 was taken. In this instance immunohistochemical analysis of 

tissues was conducted using a rabbit anti-IL1RL1 (ST2) antibody (Sigma-Aldrich®, 
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UK). However, this antibody is only able to detect total ST2 and can not 

distinguish between sST2 and ST2L. In addition, the specificity of this antibody 

was not investigated in as greater detail as the IL-33 antibody. Firstly, an 

appropriate isotype control (rabbit IgG; Abcam®, UK) was used to exclude non-

specific binding. Then, the tonsil tissues, which were known to contain ST2 

expressing cells (Ciccia et al., 2013) were used as a positive control. However, 

due to budget and time restrictions, we were unable to do pre-absorption 

studies. Therefore, in future studies, further steps to determine the specificity 

of this antibody in line with measures reported in the literature (Burry, 2000, 

2011) need to be performed to confirm fully specificity. Therefore, we can only 

conclude that the specificity of this antibody had been partially confirmed. 

Nonetheless, the pattern of ST2 staining in periodontal tissue was comparable 

with ST2 expression in other epithelial tissues such as skin and corneal 

epithelium ("The human protein atlas (ST2)," 2013). The human protein atlas is a 

publicly available database of comprehensive antibody-based protein expression 

profiles of various normal and cancer tissues developed by certified pathologists 

(Uhlen et al., 2005; Uhlen et al., 2010). Interestingly, ST2 staining was abundant 

throughout periodontal tissue in both health and disease. This however made 

quantification by the methodology of Bologna-Molina and colleagues (2011) 

difficult. This abundance in staining may again be due to issues of antibody 

specificity. However, this abundance of ST2 staining has been observed in other 

epithelial tissues. For example, immunohistochemical analysis revealed an 

abundance of ST2 staining in epithelial tissue of skin, oral mucosa and cornea 

(Hueber, et al., 2011; "The human protein atlas (ST2)," 2013; Lin, et al., 2013; 

Meephansan et al., 2013). 

Despite the proposed abundance of ST2 staining in epithelial tissues, there are 

studies that report increased ST2 immunostaining in cells from the skin of 

psoriatic disease and colonic epithelial cells of ulcerative colitis (Manetti, et al., 

2010; Pastorelli, et al., 2010). To our knowledge there are no antibodies 

commercially available to distinguish between the two isoforms of ST2 protein 

(ST2L and sST2). Since many studies, including our own, report that at the mRNA 

level; sST2 and not ST2L is upregulated in diseased tissue samples compared to 

healthy control, the availability of an antibody that can differentiate the two 

ST2 isoforms would benefit immunohistochemical investigations. 
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Our analysis of gingival tissue samples confirmed that IL-33 levels are 

upregulated in tissues of patients with chronic periodontitis.  In addition, our 

mRNA data suggests that tissue levels of sST2, but not ST2L are upregulated in 

periodontal disease. IL-33 is well known to promote cellular immune responses 

by signalling through its membrane receptor ST2L. Formation of the IL-33/ST2L 

complex induces a conformational change in the extracellular domain of the 

ST2L that facilitates recruitment of IL-1RAcP (Schmitz, et al., 2005). Together; 

IL-33, ST2 and IL-1RAcP form an active receptor complex and the TIR 

(toll/interleukin-1 receptor) domain of the receptor rapidly assembles the 

adaptor and kinase signaling proteins such as myeloid differentiation primary‑

response protein 88 (myD88), IL‑1R‑associated kinase 1 (IRAK1), IRAK4 and (TNF 

receptor-associated factor 6) (TRAF6) (Ali, et al., 2007; Chackerian, et al., 2007; 

Palmer, et al., 2008). Studies have shown that IL-33 induced protein-kinase 

cascades can activate NF-κB, ERK1/2, p38 and JNK1 (Funakoshi-Tago, et al., 

2008; Iikura et al., 2007; Kurowska-Stolarska, et al., 2008; Pushparaj et al., 

2009; Schmitz, et al., 2005) and eventually lead to the induction of expression 

of numerous inflammatory mediators. This IL-33 signalling was shown to be 

inhibited by the decoy receptor sST2 that competes with ST2L for IL-33 binding. 

In vitro, soluble ST2 directly bound to IL-33 and suppressed activation of NF-κB 

in a thymoma cell line stably expressing ST2L, suggesting that the complex of 

soluble ST2 and IL-33 fails to bind to ST2L (Hayakawa, et al., 2007). In vivo, 

mice administered an intra-articular irritant (bovine serum albumin) exhibited 

dose dependent hypernociception, which was found to be IL-33 mediated. The 

response was inhibited by administration of sST2 (Verri et al., 2008). 

Additionally, in a murine model of asthma, pre-treatment with sST2 reduced the 

expression of IL-4, IL-5, and IL-13 from IL-33-stimulated splenocytes (Hayakawa, 

et al., 2007). These studies demonstrate the inhibitory effect of sST2 on IL-33 

signalling. Hence, dysregulation of IL-33 and sST2 expression could contribute to 

pathogenesis of chronic inflammatory diseases. Indeed, IL-33 and sST2 were 

shown to be involved in the pathogenesis of chronic inflammatory diseases such 

as asthma, rheumatoid arthritis and inflammatory bowel diseases (Kakkar & Lee, 

2008; Miller, 2011). 

Since IL-33 and sST2 were suggested to be upregulated in the gingival tissue of 

chronic periodontitis patients, we needed to further explore the cell types 
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within the periodontium that contribute to their expression. In addition, we 

aimed to determine if initiating factors of periodontal disease, such as the 

periodontal pathogen P. gingivalis, could regulate expression of this cytokine 

and its receptors. The immunohistochemical analysis suggested that both IL-33 

and ST2 (total) were expressed in the epithelial layer of the periodontium 

(Figure 3-3 and Figure 3-9). Epithelial cells, particularly within the 

sulcular/pocket epithelium, are located adjacent to the tooth surface which 

harbours the dental biofilm and represent the first line of defence against 

periodontal pathogens. It was therefore interesting to investigate whether these 

cells express IL-33 and ST2, and whether expression was modulated by the 

periodontal pathogen; P. gingivalis.  

In this study we originally chose to use the OKF6/TERT-2 cell line. OKF6/TERT-2 

cells were a kind gift from the Rheinwald laboratory (Brigham and Women’s 

Hospital, Boston). The cells were originated from keratinocyte cells of the oral 

mucosa, which have been immortalized by forced ectopic expression of the 

telomerase catalytic subunit, hTERT (Dickson, et al., 2000). The cells resemble 

primary oral keratinocyte cells and are regarded as a valuable and reproducible 

model for normal oral epithelial cell studies (Dongari-Bagtzoglou & Kashleva, 

2006). We chose to use a cell line in the first instance due to the fact that the 

OKF6/TERT-2 cells were readily available at the time. In addition, these cells 

are easy to maintain in vitro and are well characterised. The fact that these 

cells were immortal was advantageous as it provided a constant supply of cells 

which was required for method optimisation at the beginning of the study. 

However, after initial studies using a cell line we confirmed our findings using 

commercially available primary human gingival epithelial cells (PHGE) (CELLnTEC 

advanced cell systems, Switzerland). These cells were isolated from healthy 

gingiva and are pooled from at least 3 healthy donors.  

For stimulation studies we used the periodontal pathogen P. gingivalis (ATTCC 

33277 strain). P. gingivalis was chosen as this species was shown to highly 

associate with periodontal diseases (Bostanci & Belibasakis, 2012). In addition, 

P. gingivalis is also known for one of the most studied periodontal pathogens 

(Wang et al., 2013). The ATTCC 33277 strain was used in this study as it has 

been widely used by other laboratories and associates with periodontal diseases 

(Guyodo et al., 2012; Naito et al., 2008). P. gingivalis has been used extensively 
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for in vitro cell stimulation studies. However, researchers use a variety of 

different strains, live or dead forms, planktonic or biofilm cultured forms and a 

plethora of specific antigens such as LPS, fimbriae and bacterial DNA. Research 

has shown that these variables can have differential effects on cell responses in 

vitro. Indeed, human and mouse macrophages stimulated with different forms of 

P. gingivalis including the live organism, LPS or fimbriae were found to exhibit 

differential patterns of gene expression (Yu et al., 2010; Zhou & Amar, 2006; 

Zhou, et al., 2005). The findings indicate host immune cells sense live P. 

gingivalis and its components differently, which translate into the expression of 

different inflammatory cytokine profiles. In vitro, P. gingivalis exists in a biofilm 

containing both live and dead bacteria as well as a plethora of specific antigens 

(LPS, fimbriae and bacteria DNA). Therefore, to model the in vivo situation in 

vitro, culturing organisms as a biofilm for stimulation studies may be more 

appropriate. Indeed, in chronic inflammatory conditions such as chronic wound 

infection, dermatitis and periodontal disease the majority of organisms are 

found present in biofilm form (Bjarnsholt et al., 2008; Pihlstrom, et al., 2005; 

Vlassova et al., 2011). Furthermore, gene expression profile analysis has showed 

difference in the gene expression profiles of bacteria grown planktonically and 

bacteria grown as a biofilm; including genes encoding antigens known to activate 

immune responses (Southey-Pillig et al., 2005; Waite et al., 2005). In addition, 

studies on the acellular filtrate of planktonic verses biofilm cultured 

Staphylococcus aureus showed that the acellular filtrate from the biofilm 

cultured organisms had stronger cytokine stimulatory activity on leukocytes than 

that from planktonic cultured organisms (Sadowska et al., 2013). Monospecies 

biofilms of F. nucleatum, P. gingivalis and Actinomyces naeslundii also induced 

distinct patterns of cytokine expression in oral keratinocytes when compared to 

their respective planktonic bacteria species (Peyyala et al., 2012). Therefore it 

was decided in our studies that in order to mimic the in vivo situation more 

accurately a live P. gingivalis monospecies biofilm was to be used in stimulation 

studies. In addition, to further mimic the in vivo situation we used a live P. 

gingivalis monospecies biofilm model in which  oral epithelial cells were 

stimulated with the biofilm attached to a cell culture insert suspended 0.5 mm 

above the cells (Sherry, et al., 2013). This mimics the relationship between the 

dental biofilm and epithelium of the gingival crevice/pocket which is separated 

by GCF. In this model, some of the bacteria were observed to detach and fall 
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from the biofilm to directly contact the oral epithelial cells, which further 

resembles the events in the gingival sulcus/pocket epithelium in vivo. 

The data presented in this manuscript shows for the first time that IL-33 is 

expressed by oral epithelial cells at both the mRNA and protein level. This is in 

line with literature that shows IL-33 is expressed by various other epithelial cells 

of the body, including bronchial, colon, nasal, skin and giant papillae 

(Kamekura, et al., 2012; Manetti, et al., 2010; Matsuda, et al., 2009; 

Prefontaine, et al., 2009; Seidelin, et al., 2010). In addition, the data 

demonstrates for the first time significant upregulation of IL-33 mRNA expression 

by oral epithelial cells in response to the periodontal pathogen; P. gingivalis. 

This is in agreement with literature that shows stimulation of TLRs such as TLR-

2, TLR-3, TLR-4 and TLR-5 by their respective agonist increases expression of IL-

33 in corneal epithelial cells, bronchial epithelial cells and sinunasal epithelial 

cells, as well as monocytes (Reh, et al., 2010; Willart, et al., 2012; Zhang, et 

al., 2011a). In addition, it has specifically been shown that LPS of P. gingivalis 

can induce upregulated IL-33 expression in human monocytes (Nile, et al., 

2010). 

Although P. gingivalis induced increased expression of IL-33 mRNA in oral 

epithelial cells we found that IL-33 was not released into bathing supernatants 

using the in vitro model system. As the same ELISA kit was used in this 

investigation as was used for analysis of clinical samples this finding could be 

explained by the inability of the commercial kit to accurately measure IL-33 

levels as discussed previously. However, a similar phenomenon has been 

reported in the literature. In monocytes, P. gingivalis induced elevated 

intracellular expression of IL-33, however the protein was not released from 

cells unless subjected to necrosis (Nile, et al., 2010). In addition, cells isolated 

from rheumatoid arthritis patients, including fibroblast-like synoviocytes and 

PBMCs were found not to release IL-33 after stimulation with combinations of IL-

1β, TNF-α, and anti-CD3/CD28 respectively (Matsuyama, et al., 2010). Likewise, 

TNF-α stimulated intestinal epithelial cells showed increased intracellular IL-33 

expression but no extracellular release was detected (Pastorelli, et al., 2010). In 

contrast to these findings, however, in vitro studies using rat cardiac fibroblasts, 

mixed glial cell and astrocyte-enriched cultures and human macrophages have 

been shown to secrete IL-33 upon stimulation with combinations of LPS and PMA, 
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PMA only, ATP, and combinations of LPS and aluminium hydroxide adjuvant 

(alum) (Hudson, et al., 2008; Li, et al., 2008; Sanada, et al., 2007; Talabot-

Ayer, et al., 2009). Literature also shows that IL-33 is released by cells into the 

extracellular environment when physically injured or subjected to mechanical 

stress (Cayrol & Girard, 2009; Kakkar et al., 2012). In addition, IL-33 release was 

found to be ATP dependant in bronchial epithelial cells and corneal epithelial 

cells (Kakkar, et al., 2012; Kouzaki et al., 2011; Zhang, et al., 2011a). Based on 

these findings, therefore, a limitation of our study was that potential 

mechanisms of IL-33 release from oral epithelial cells were not investigated 

further.  

To determine if IL-33 protein mirrored mRNA and was upregulated intracellularly 

by stimulated oral epithelial cells; an immunocytochemical approach was 

undertaken. This once again employed the specific mouse monoclonal anti-IL-33 

antibody (Nessy-1, Enzo® Life Science, UK) and the quantitative approach of 

Bologna-Molina and colleagues (2011). This analysis confirmed the findings at the 

mRNA level and showed that elevated IL-33 protein expression occurs 

intracellularly in oral epithelial cells stimulated with P. gingivalis. This finding 

casts doubts on the hypothesis that IL-33 is released from epithelial cells in 

response simply to stimulation with whole pathogens or associated antigens. 

However, further research investigating IL-33 release mechansisms by oral 

epithelial cells is required to confirm this. 

In addition to IL-33, expression of ST2 by oral epithelial cells was also 

investigated in vitro. Oral epithelial cells were found to express mRNA encoding 

both ST2L and sST2. This is unsurprising given the fact that numerous other 

epithelial cells of the colonic mucosa, cornea and lung (Beltran, et al., 2010; 

Lin, et al., 2013; Yagami, et al., 2010) as well as keratinocytes of skin (Hueber, 

et al., 2011) have all been demonstrated to express these receptors. These 

studies also demonstrate that expression of sST2 and not ST2L mRNA is 

upregulated in OKF6/TERT-2 cells that come into contact with the periodontal 

pathogen; P. gingivalis. Indeed, in other cell types expression of sST2 has been 

found to be inducible whilst ST2L is found to be constitutively expressed. In 

murine alveolar macrophages, stimulation with LPS or pro-inflammatory 

cytokines (IL-1β, IL-6 and TNF-α) has been shown to induce increased expression 

of sST2 mRNA but not ST2L mRNA (Oshikawa et al., 2002). In addition, 
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stimulation of alveolar epithelial cells with a combination of IL-1β, TNF-α and IL-

4 and stimulation of intestinal epithelial cells with TNF-α upregulated sST2 

protein release with no effect on ST2L  (Pastorelli, et al., 2010; Tajima et al., 

2007). 

Although we showed increased expression of sST2 mRNA in oral keratinocytes in 

response to P. gingivalis, we found that P. gingivalis does not induce increased 

release of sST2 into bathing supernatant as measured by ELISA. Interestingly, 

Mildner and colleagues (2010) showed LPS did not induce increased expression of 

sST2 by PBMCs. This was despite the fact that in response to LPS, PBMCs 

expressed pro-inflammatory cytokines including IL-1α, IL-1β, IL-6 and TNF-α 

which were expected to act in an autocrine manner and subsequently induce 

sST2 expression. It is therefore possible that P. gingivalis does not induce 

increased release of sST2 by oral keratinocytes. Again, this would be despite the 

fact that P. gingivalis can induce release of IL-1α, IL-1β and TNF-α from oral 

keratinocytes (Eskan et al., 2008a; Kraus et al., 2012; Peyyala et al., 2013). 

However, at present the reason for these sST2 ELISA results in our study are not 

known. sST2 was measured in bathing supernatants at levels of between 10 – 80 

pg/ml; which is above the lowest detection limit (5.6 pg/ml) of the ELISA. This is 

in line with previous finding that show spontaneous sST2 secretion occurs in lung 

epithelial cells (Mildner, et al., 2010). However, no upregulation of sST2 protein 

release was measured in samples stimulated by P. gingivalis despite the findings 

at the mRNA level. There is also possibility that sST2 is bound to IL-33, hence 

masking the sST2 epitopes and hindering ELISA analysis of bathing supernatants 

as  previous for the analysis of biological samples. The shortcoming in our study 

was that we did not use suitable positive control samples to assess the efficiency 

of the ELISA kit used. Hence, if given time and budget our plan was to confirm 

the findings by evaluating the efficiency of ELISA further or by measuring sST2 

levels in bathing supernatants by alternative means such as western blot. 

Instead, we investigated expression of ST2 (total) in oral keratinocytes by 

immunohistochemical analysis. This revealed no observable differences in total 

ST2 expression between unstimulated and P. gingivalis stimulated OKF6/TERT-2 

cells and PHGE cells.  

Interestingly, although levels of sST2 mRNA were upregulated by OKF6/TERT-2 

cells in response to P. gingivalis, a similar phenomenon was not observed in 
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PHGE cells. In addition, in contrast to OKF6/TERT-2 cells, IL-33 mRNA levels did 

not remain significantly upregulated after 24 h stimulation with P. gingivalis in 

PHGE cells. The difference in expression pattern may relate to differences 

between the use of a cell line and primary cells. Indeed, studies have shown 

there is both a qualitative and quantitative expression profile differences 

between cell lines and primary cells (Pan et al., 2009). In addition, the basal 

layer of the oral epithelium is known to consist of a heterogeneous mixture of 

primary cells with varying proliferation capacity (Jones & Klein, 2013). This in 

vitro phenotypic-distinct subpopulation of primary cells was also observed in 

retina pigment epithelium (Chaloner-Larsson, et al., 1997). Therefore, there 

could be phenotypical differences between the epithelial cell population from 

which OKF6/TERT-2 cells are derived and the population of epithelial cells that 

predominate the PHGE cells (CELLnTEC advanced cell systems, Switzerland). 

This therefore may explain the differences in regulation of IL-33 expression. 

Evidence from our in vitro studies thus far suggested that oral keratinocytes 

express the transmembrane form of the IL-33 receptor (ST2L) and therefore can 

respond to IL-33 signalling. Therefore, this was investigated further in vitro 

using rhIL-33 (PeproTech®, UK). However, in our investigations rhIL-33 did not 

induce OKF6/TERT-2 cells to upregulate the expression of a panel of cytokines 

and chemokines as well as TLR-2 and TLR-4. This was in contrast to literature 

describing studies performed on other epithelial cells as well as macrophages 

(Table 3-4).  
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Cells 

 
Stimulation 
(Concentration) 

 
Stimulation 
time 
 

 
Increased 
expression 

 
References 

NHBE IL-33  
(10 & 50ng/ml) 

24h IL-8 Yagami et al (2010) 

NHBE 
BEAS-2A 

IL-33 
(100ng/ml) 

12, 24 & 48h IL-17F Fujita et al (2012) 

HNEC 
 

IL-33 
(100ng/ml) 

6h IL-8 & GM-CSF Kamekura et al 
(2012) 

NHEK 
 

IL-33 
(100ng/ml) 

48h IL-8 Meephanson et al 
(2012) 

HaCaT 
 

IL-33 (100ng/ml) &  
TNF-α (20ng/ml) 

24h IL-6, VEGF, 
MCP-1 & IL-20 

Balato et al (2012) 

HaCaT IL-33 (100ng/ml) &  
IL-17A (10ng/ml) 

24h IL-20 & VEGF Balato et al (2012) 

HMVEC IL-33 
10 & 50ng/ml 

24h IL-6, IL-8 & 
MCP-1 

Yagami et al (2010) 

HMC-1 IL-33 
(100ng/ml) 

24h VEGF & MCP-1 Balato et al (2012) 

Macrophages 
 

IL-33 (50ng/ml) 6, 8 & 10h MD-2 & TLR-4  Espinassous et al 
(2009) 

Macrophages IL-33 (20ng/ml) &
IL-13 (10ng/ml) 

48h CCL17 & CCL24 Kurowska-Stolarska 
et al (2009) 

Table 3-4: Effect of IL-33 on cells 

NHBE = normal human bronchial epithelial, BEAS-2A = bronchial epithelial cell 
line, HNEC = human nasal epithelial cells, NHEK = normal human epidermal 
keratinocytes, HaCaT = immortal human keratinocyte cell line, HMVEC = human 
microvascular endothelial cells, TNF-α = tumour necrosis factors-α, GM-CSF = 
granulocyte-macrophage colony-stimulating factor, VEGF = vascular endothelial 
growth factor, MCP-1 = monocyte chemoattractant protein-1, MD-2 = myeloid 
differentiation protein 2, and TLR-4 = toll-like receptor 4. 
 

One explanation for the findings in this thesis may have been the concentration 

of rhIL-33 used in our studies. The rhIL-33 (PeproTech®, UK) exhibited bioactivity 

at 50 and 100 ng/ml in a T cell stimulation assay; where IL-5 was measured as an 

output. However, we observed no response of OKF6/TERT-2 cells to 10, 50 and 

100 ng/ml rhIL-33, despite the fact that studies showed the membrane bound 

receptor (ST2L) is expressed by these cells. Studies have shown that expression 

of ST2L is most prevalent in hematopoietic cells, such as T cells and mast cell, 

compared to other cell types such as epithelial cells and fibroblasts (Bergers, et 

al., 1994; Gachter et al., 1996). Therefore, although 100 ng/ml is an effective 

concentration for activating T-cells, it may not be sufficient to elicit a response 

in cells where active membrane associated ST2L is less abundant such as 
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OKF6/TERT-2 cells. Therefore, it may be pertinent to repeat these experiments 

using a higher concentration of rhIL-33. The literature shows that in vitro studies 

with IL-33 have utilised a variety of concentrations and stimulation times to 

induce expression of mediators in a variety of cell types (Table 3-4). This 

variation could be due to the cell type and culture conditions, the source of 

rhIL-33 and the sample preparation for analysis of phenotypic changes. In our 

studies we explored a limited number of concentrations of rhIL-33 and 

stimulation times. Therefore, it may be pertinent to repeat these experiments 

using different concentrations and sources of rhIL-33 as well as variations in 

simulation time and culture conditions. Indeed, the proteome profiler analysis 

was only performed on the 24h stimulated samples (100 ng/ml only), which 

means earlier events may have been missed. Furthermore, although the profiler 

analyses a variety of mediators, it is possible that the right panel of cytokines 

and chemokines were not investigated in our studies. Finally, the recruitment of 

the IL-1RAcP to the IL-33/ST2L is important for mediation of IL-133 signalling 

(Ali, et al., 2007; Chackerian, et al., 2007; Palmer, et al., 2008; Schmitz, et al., 

2005). Although, IL-1RAcP was found to be constitutively expressed in epithelial 

cells such as the A549 cell line and primary bronchial epithelial cells (Coulter et 

al., 1999) there is no evidence to confirm its expression in oral keratinocytes. 

Therefore we should have investigated IL-1RAcP expression in oral keratinocytes 

as this may explain why in our in vitro system we saw no genotypic or 

phenotypic changes in oral keratinocytes stimulated with rhIL-33. 

In conclusion, the data in this chapter support a role for IL-33 in the 

pathogenesis of periodontal disease. In addition, it shows that oral keratinocytes 

express IL-33 and that the periodontal pathogen, P. gingivalis, can induce 

increased intracellular expression of this cytokine. Furthermore, oral 

keratinocytes also express the receptor for IL-33 suggesting that mechanisms of 

autocrine and paracrine IL-33 signalling occur within the periodontium. 

However, at present the exact means by which IL-33 is released from cells, its 

intracellular role in oral keratinocytes and its overall contribution to the early 

oral mucosal immune responses to periodontal pathogens remain to be 

elucidated.  
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Chapter 4: IL-17 family cytokines and periodontal 
disease 
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4.1 Introduction 

The IL-17 family cytokines consists of six members (IL-17A - IL-17F) (Gaffen, 

2009b). IL-17A is the founding member and has been associated with periodontal 

disease pathogenesis (Buduneli, et al., 2009; Correa, et al., 2012; Duarte, et al., 

2010; Gumus, et al., 2013; Honda, et al., 2008; Kadkhodazadeh, et al., 2013; 

Lester et al., 2007; Ozcaka, et al., 2013; Ozcaka et al., 2011; Saraiva et al., 

2013; Schenkein, et al., 2010; Silva et al., 2012; Vernal, et al., 2005). In vivo 

models have suggested that IL-17A plays a protective role in periodontal disease. 

Indeed, IL-17RA deficient mice show exacerbated bone loss in a P. gingivalis 

induced model of periodontal disease (Yu, et al., 2007). However, an excessive 

IL-17A response promotes inflammatory alveolar bone loss in an ageing mouse 

model of periodontal disease (Eskan, et al., 2012). Indeed, IL-17A signalling 

activates NF-κB which in turn induces expression of a variety of pro-

inflammatory mediators (Koenders et al., 2005). Furthermore, IL-17A can act in 

synergy with TNF-α and IL-1β and augment the expression of pro-inflammatory 

mediators from keratinocytes and fibroblasts (Iyoda et al., 2010; Koenders et 

al., 2011). In addition, IL-17A can modulate bone remodelling through induction 

of RANKL both in vivo and in vitro (Kotake et al., 1999; Kotake et al., 2012). 

Like IL-17A, IL-17F can be secreted as a homodimer. However a heterodimeric 

species consisting of a disulphide linked IL-17A and IL-17F molecule can also be 

formed (Wright, et al., 2007). Similarly to IL-17A, both the IL-17F homodimer 

and IL-17A/F heterodimer have pro-inflammatory properties (Fujie et al., 2012; 

Liang, et al., 2006). Indeed, elevated levels of IL-17F and IL-17A/F have been 

associated with chronic inflammatory diseases such as rheumatoid arthritis 

(Kotake, et al., 1999). However, the role of IL-17F and IL-17A/F in the 

pathogenesis of periodontal disease is currently unknown. 

In contrast to IL-17A and IL-17F, the biology of IL-17B, IL-17C and IL-17D are 

poorly understood at present and their cellular sources have still to be fully 

elucidated. Levels of IL-17B, IL-17C and IL-17D are elevated in inflammation 

driven pathologies such as rheumatoid arthritis; and in vivo IL-17B, IL-17C and 

IL-17D can induce pro-inflammatory cytokine release from a variety of epithelial 

and myeloid cells (Pappu et al., 2010). In relation to the periodontium, IL-17C 

has been demonstrated to be expressed by oral epithelial cells and is known to 
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upregulate expression of a number of pro-inflammatory mediators (Ramirez-

Carrozzi, et al., 2011). However, little is known about the expression and 

functions of IL-17B, and IL-17D. Indeed, in terms of periodontal disease 

pathogenesis the roles of IL-17B, IL-17C and IL-17D remain to be elucidated. 

IL-17E has been described as a ‘double edged sword’ and has been shown to 

down-regulate localised destructive inflammation and promote Th2 driven 

pathologies (Monteleone et al., 2010). Indeed, IL-17E plays a major role in the 

clearance of parasitic infections (Fallon et al., 2006) and the pathogenesis of 

allergic disease (Angkasekwinai, et al., 2007; Ballantyne et al., 2007). IL-17E 

induces activation and differentiation of Th2 cells and regulates their 

recruitment to sites of inflammation (Tamachi et al., 2006; Wang, et al., 

2007b). IL-17E also regulates Th9 cells (Angkasekwinai, et al., 2010) and 

activates multi-potent progenitor type 2 cells (MPPtype2) (Saenz, et al., 2010b), 

innate type 2 helper cells (Ih2) (Price, et al., 2010), natural helper cells (NHCs) 

(Moro, et al., 2010) and neuocytes (Neill, et al., 2010). In contrast, IL-17E down-

regulates Th1/Th17 and IL-17A responses (Emamaullee et al., 2009; Kleinschek, 

et al., 2007; Owyang, et al., 2006) and can directly inhibit toll-like receptor 

ligand driven expression of pro-inflammatory cytokines via p38 MAP kinase-

driven SOCS3 activation in human blood monocytes and intestinal CD14+ cells 

(Caruso, et al., 2009a; Caruso, et al., 2009b). However, despite extensive 

literature on the immunological functions of IL-17E, to date very little research 

has been undertaken to determine whether it plays a role in the pathogenesis of 

periodontal disease. 

IL-10 is a prototypic anti-inflammatory cytokine. In periodontal disease IL-10 was 

shown to play an anti-inflammatory role as evidenced by the data from in vitro, 

in vivo and clinical studies (Al-Rasheed, et al., 2003; Sasaki, et al., 2004). In 

other chronic inflammatory diseases such as rheumatoid arthritis and 

inflammatory bowel disease the role of IL-10 as an anti-inflammatory cytokine 

has been confirmed (Finnegan, et al., 2003; Kuhn, et al., 1993; Murai, et al., 

2009; Tanaka, et al., 1996). As IL-10 is a well characterised anti-inflammatory 

cytokine, the relationship between fluid levels of IL-17A and IL-10 was 

investigated and similarities between the IL-17A and IL-17E relationship 

determined to provide more evidence for an anti-inflammatory role of IL-17E in 

periodontitis pathogenesis. 
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The specific aims of this study were to: 

1. Determine levels of IL-17 family cytokines and IL-10 in clinical samples and 

correlate levels with both clinical and demographic parameters. 

2. Determine levels of IL-17 family cytokines and IL-10 mRNA expression in 

gingival tissue of patients with chronic periodontitis and healthy volunteer 

control.  
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4.2 Results 

 

4.2.1 Clinical and demographic parameters of subject 
participants 

Serum, gingival crevicular fluid (GCF) and saliva samples from 77 healthy 

subjects and 97 chronic periodontitis patients were used in this study. The 

clinical and demographic parameters of the subjects/patients cohort are 

described in Section 3.2.1.1. 

 

4.2.2 Serum levels of IL-17 family cytokines 

Serum levels of IL-17 family cytokines were measured by ELISA. Table 4-1 shows 

serum levels of IL-17A and IL-17A/F were significantly increased (p < 0.001) in 

the patients with chronic periodontitis (47.5 and 31.4 pg/ml respectively), 

compared to healthy subjects (15.5 and 8.0 pg/ml respectively). In contrast, the 

serum level of IL-17E was significantly decreased (p = 0.007) in the chronic 

periodontitis patients (17.2 pg/ml) compared to healthy subjects (35.3 pg/ml). 

Serum levels of the other members of IL-17 family cytokines: IL-17B, IL-17C, IL-

17D and IL-17F were not significantly different between the two groups. The 

serum IL-17A:IL-17E ratio was also significantly increased (P < 0.001) in patients 

with chronic periodontitis compared to healthy subjects. 
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Status 

 
n 

Median 
(pg/ml) 

 
IQR 

 
Z 
statistic 

 
p value 

IL-17A Healthy 77 15.5 5.3 – 30.1 
-7.568 < 0.001* 

 CP 97 47.5 38.7 – 98.0 

IL-17B Healthy 40 38.8 30.8 – 48.1 
-0.257  0.798 

 CP 55 33.8 18.2 – 59.3 

IL-17C Healthy 40 40.9 2.9 – 49.8 
-1.581   0.114 

 CP 55 31.6 12.0 – 51.7 

IL-17D Healthy 38 22.1 20.1 – 30.6 
-0.785   0.432 

 CP 41 23.8 21.0 – 28.8 

IL-17E Healthy 77 35.3 23.1 – 44.0 
-2.676   0.007* 

 CP 97 17.2 15.9 – 50.3 

IL-17F Healthy 77 14.3 4.0 – 32.2 
-0.106   0.916 

 CP 97 14.2 7.2 – 20.0 

IL-17A/F Healthy 77 8.0 0.0 – 26.0 
-6.950 < 0.001* 

 CP 97 31.4 24.8 – 53.7 

IL-17A: IL-17E Healthy 77 0.5# 0.1 – 1.0 
-6.867 < 0.001* 

 CP 97 2.6# 0.8 – 4.5 

Table 4-1: Levels of IL-17 family cytokines and the IL-17A:IL-17E ratio in serum 

IL-17 family cytokines were measured in serum samples using the appropriate 
ELISA kit (Table 2-3). The table represents median levels of IL-17 family 
cytokines and the IL-17A:IL-17E ratio in serum of the healthy subjects and 
chronic periodontitis (CP) patients. Statistical analyses were carried out using 
the Mann-Whitney test with a Bonferroni correction (IBM SPSS Statistics, version 
19). Significance = p<0.05 (*). n = number of subjects; IQR = interquartile range; 
IL-17A:IL-17E = the serum ratio of IL-17A to IL-17E and # = ratio (no units).  
 

4.2.3 Correlations between serum levels of IL-17 family 
cytokines and clinical parameters 

The serum IL-17 family data was seen to approximate a normal distribution 

following natural log transformations. Therefore, correlations were carried out 

using bivariate analysis using the Pearson correlation coefficient test (IBM SPSS 

Statistics, version 19). 

Table 4-2 shows the serum level of IL-17A significantly positively correlated with 

all clinical parameters measured: CPD (r = +0.429, p < 0.001), CAL (r = +0.464, p 

< 0.001) and BOP (r = +0.331, p < 0.001). Serum level of IL-17A/F also 

significantly positively correlated with all clinical parameters measured: CPD (r = 

+0.544, p < 0.001), CAL (r = +0.436, p < 0.001) and BOP (r = +0.375, p < 0.001). 

In contrast, the serum level of IL-17E was found to significantly negatively 
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correlate with CPD (r = -0.265, p < 0.001) and CAL (r = -0.291, p < 0.001). Serum 

levels of the other members of the IL-17 family (IL-17B, IL-17C, IL-17D and IL-

17F) were found not to significantly correlate with any of the clinical 

parameters. As expected, all the clinical parameters measured significantly 

positively correlated to each other (r > +0.700, p < 0.001).      

 

  
 
CPD 

 
CAL 

 
BOP 

IL-17A n 174 174 174 
 r  +0.429 +0.464 +0.331 
 p <0.001* <0.001* <0.001* 
IL-17B n 97 97 97 
 r -0.005 -0.048 -0.002 
 p 0.958 0.641 0.986 
IL-17C n 97 97 97 
 r -0.024 -0.054 +0.135 
 p 0.817 0.598 0.237 
IL-17D n 79 79 79 
 r  +0.135 +0.117 +0.168 
 p 0.237 0.307 0.139 
IL-17E n 174 174 174 
 r  -0.265 -0.291 -0.060 
 p <0.001* <0.001* 0.433 
IL-17F n 169 169 169 
 r  -0.025 -0.002 +0.024 
 p 0.746 0.978 0.753 
IL-17A/F n 169 169 169 
 r  +0.544 +0.436 +0.375 
 p <0.001* <0.001* <0.001* 
BOP n 203 203  
 r +0.796 +0.743  
 p <0.001* <0.001*  
CAL n 203   
 r  +0.876   
 p <0.001*   

Table 4-2: Correlation between serum levels of IL-17 family cytokines and 
clinical parameters 

The table represents the correlations between serum levels of IL-17 family 
cytokines and clinical parameters for periodontal disease (CPD, CAL and BOP). 
The serum level values were subjected to a natural log transformation. The 
correlations were analysed using the Pearson correlation coefficient test (IBM 
SPSS Statistics, version 19). Significance = p<0.05 (*). n = number of subjects; r = 
the Pearson correlation coefficient; CPD = clinical probing depth; CAL = clinical 
attachment loss and BOP = bleeding on probing. 
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4.2.4 Correlations between serum levels of IL-17 cytokine 
family members 

In addition to associations between circulating levels of IL-17 family cytokines 

and clinical parameters; associations between IL-17 family members were also 

determined. Once again these associations were determined using the Pearson 

correlation coefficient test (IBM SPSS Statistics, version 19). 

Table 4-3 shows that serum level of IL-17A positively correlated with serum level 

of IL-17A/F (r = +0.600, p < 0.001). The serum level of IL-17A was also found to 

positively correlate with the serum level of IL-17F (r = +0.172, p = 0.026) 

although this correlation was weak. The serum level of IL-17C was positively 

correlated with the serum levels of IL-17A (r = +0.201, p = 0.048) and IL-17F (r = 

+0.326, p = 0.001). In addition, a weak but significant positive correlation was 

also found between serum levels of IL-17A/F and IL-17B (r = +0.201, p = 0.049). 

Interestingly, the serum level of IL-17A significantly negatively correlated with 

the serum level of IL-17E (r = -0.227, p = 0.003). There was no correlation 

between serum levels of IL-17F and IL-17A/F. 
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IL-17A/F 

 
IL-17F 

 
IL-17E 

 
IL-17D 

 
IL-17C 

 
IL-17B 

IL-17A n 168 168 173 79 97 97 
 r  +0.600 +0.172 -0.227 +0.092 +0.201 +0.152 
 p <0.001* 0.026* 0.003* 0.419 0.048* 0.128 
IL-17B n 96 96 97 79 97  
 r  +0.201 +0.089 -0.031 +0.012 +0.167  
 p 0.049* 0.387 0.767 0.912 0.107  
IL-17C n 96 96 97 79   
 r +0.008 +0.326 +0.036 -0.050   
 p 0.936 0.001* 0.725 0.660   
IL-17D n 79 79 79    
 r +0.031 +0.138 +0.045    
 p 0.789 0.226 0.693    
IL-17E n 169 169     
 r  +0.131 -0.062     
 p 0.090 0.420     
IL-17F n 169      
 r  +0.057      
 p 0.464      

Table 4-3: Correlations between serum levels of IL-17 family cytokines  

The table represents correlations between serum levels of each IL-17 family 
cytokine. The serum level values were subjected to a natural log transformation. 
The correlations were analysed using the Pearson correlation coefficient test 
(IBM SPSS Statistics, version 19). Significance = p<0.05 (*). n = number of 
subjects and r = the Pearson correlation coefficient. 
 

4.2.5 Correlations between serum IL-17A:IL-17E ratio and 
clinical parameters 

The literature suggests that IL-17A and IL-17E have opposing roles in the 

inflammatory response. The serum analysis demonstrated a significant negative 

correlation between circulating levels of IL-17A and IL-17E in peridontitis (table 

4-3). Therefore it was hypothesised that the circulating ratio of IL-17A:IL-17E 

could be a determinant of periodontal disease. Therefore, associations between 

individuals serum IL-17A:IL-17E ratio and clinical parameters were determined. 

Associations were determined using the Pearson correlation coefficient test (IBM 

SPSS Statistics, version 19). Serum IL-17A:IL-17E ratios were subjected to natural 

log transformations to facilitate graphical representation.  
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Figure 4-1 shows that the serum IL-17A:IL-17E ratio has a weak but significant 

positive correlation with CPD (r = +0.335, p < 0.001) and BOP (r = +0.286, p < 

0.001). In addition, the serum IL-17A:IL-17E ratio has a significant moderate 

positive correlation with CAL (r = +0.480, p < 0.001).  

                          
Figure 4-1: Correlations between the serum IL-17A:IL17E ratio and clinical 
parameters 

The serum IL-17A:IL-17E ratio of all subjects (regardless of disease state) was 
calculated. To facilitate graphical representation the IL-17A:IL-17E ratio’s were 
subjected to a natural log transformation (Ln). Correlation analysis against CPD 
(A), CAL (B) and BOP (C) was then performed using the Pearson correlation 
coefficient test (IBM SPSS Statistics, version 19). Significance = p<0.05. r = the 
Pearson correlation coefficient. 
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4.2.6 Correlations between serum levels of IL-17 family 
cytokines and age 

Immunosenescence is a term that refers to the gradual deterioration of 

the immune system due to increase in age. Development and maintenance of 

peripheral immune responses are postulated to be affected by aging (Miller, 

1991). Evidence also shows that immunosenescence could play a role in the 

pathogenesis of periodontal disease (Rajendran et al., 2013).   

Since there was a large spread of subjects in terms of age enrolled in our study 

(22 – 55 years) we determined the association between serum levels of IL-17 

family cytokines and age. Once again, correlations were determined using the 

Pearson correlation coefficient test (IBM SPSS Statistics, version 19). 

Table 4-4 shows serum levels of IL-17A and IL-17A/F positively correlated with 

age (r = +0.338, p < 0.001; and r = +0.598, p < 0.001 respectively) regardless of 

disease state. Interestingly, although the serum IL-17A:IL-17E ratio was also 

found to significantly positively correlate with age (r = +0.259, p = 0.001), the 

correlations are found not significant after correction for disease (clinical 

probing depth). 

 

   
IL-17A 

 
IL-17B 

 
IL-17C 

 
IL-17D 

 
IL-17E 

 
IL-17F 

 
IL-17A/F 

 
IL-17A: 
IL-17E 

          

Age n 174 97 97 79 174 169 169 172 
          

 r  +0.338 +0.157 -0.092 +0.107 +0.031 -0.080 +0.598 +0.259 
 p <0.001*   0.124   0.372   0.347   0.684   0.303 <0.001*   0.001* 
          

 rpartial  +0.160 +0.173 +0.179 -0.142 +0.001 +0.109 +0.381 +0.142 
 p   0.036*   0.092   0.081   0.217   0.994   0.085 <0.001*   0.064 

Table 4-4: Correlations between serum levels of IL-17 family cytokines and age 

The table represents correlations between levels of IL-17 family cytokines and 
age. The values were subjected to a natural log transformation. The correlations 
were analysed using the Pearson correlation coefficient test (IBM SPSS Statistics, 
version 19). Adjustment for disease severity was carried out using the Partial 
correlation test controlling for clinical probing depth (CPD) (IBM SPSS Statistics, 
version 19). Significance = p<0.05 (*). n = number of subjects; r = the Pearson 
correlation coefficient; rpartial = the Partial correlation and IL-17A:IL-17E = the 
serum ratio of IL-17A to IL-17E. 



 

 193

4.2.7 Relationship between serum levels of IL-17 family 
cytokines and gender 

Incidence of humoral and cell mediated autoimmune diseases such as multiple 

sclerosis, rheumatoid arthritis and systemic erythematosus were found to be 

higher in females compared to males (Beeson, 1994; Whitacre et al., 1999), 

indicating possible differences in immune regulation between genders. However, 

epidemiological studies have demonstrated a higher prevalence and severity of 

periodontal disease in men than women (Shiau & Reynolds, 2010). 

Since our study involved both male and female subjects, we compared the serum 

levels of IL-17 family cytokines between genders. Our Q-Q plot analysis showed 

the data was not normally distributed, and hence statistical analysis was carried 

out using the Mann-Whitney test with a Bonferroni correction (IBM SPSS 

Statistics, version 19).  

Table 4-5 shows analysis demonstrating that serum levels of IL-17 family 

cytokines were found not to be significantly different between males and 

females. 
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Gender 

 
n 

Median 
(pg/ml) 

 
IQR 

 
Z statistic 

 
p value 

IL-17A Male 72 42.20 13.40 – 50.30 
-2.354 0.133 

Female 102 37.65 14.53 – 47.15 
IL-17B Male 42 39.70 25.00 – 57.10 

-2.141 0.224 
Female 55 31.00 16.83 – 42.93 

IL-17C Male 42 31.70 9.80 – 50.90 
-0.284 1.000 

Female 55 39.05 16.20 – 50.75 
IL-17D Male 35 24.30 20.40 – 31.10 

-1.032 1.000 
Female 44 23.05 20.55 – 25.15 

IL-17E Male 73 16.90 15.90 – 21.10 
-0.994 1.000 

Female 101 17.00 16.00 – 34.43 
IL-17F Male 69 14.80 13.20 – 20.10 

-0.383 1.000 
Female 100 15.60 13.75 – 26.70 

IL-17A/F Male 69 23.10 0.00 – 26.50 
-0.210 1.000 

Female 100 23.00 8.00 – 25.50 

Table 4-5: Comparison of serum levels of IL-17 family cytokines between males 
and females 

The table represents median levels of IL-17 family cytokines in the serum of 
male and female subjects. Statistical analyses were carried out using the Mann-
Whitney test with a Bonferroni correction (IBM SPSS Statistics, version 19). 
Significance = p<0.05 (*). n = number of subjects; and IQR = interquartile range.  
 

4.2.8 Gingival crevicular fluid levels of IL-17A, IL-17E, IL-17F 
and IL-17A/F 

GCF levels of IL-17 family cytokines were measured by ELISA. Due to sample 

limitations, only GCF levels of IL-17A, IL-17E, IL-17F and IL-17A/F were 

measured. Table 4-6 shows GCF levels of IL-17A, IL-17F and IL-17A/F were 

significantly increased in the patients with chronic periodontitis (94.9 pg/ml, 6.4 

pg/ml and 19.0 pg/ml respectively) as compared to healthy subjects (44.4 

pg/ml, 3.9 pg/ml and 5.5 pg/ml respectively). GCF levels of IL-17E were not 

significantly different between the two groups. The GCF IL-17A:IL-17E ratio was 

also not significantly different between the two groups. 
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Status 

 
n 

Median 
(pg/ml) 

 
IQR 

 
Z statistic 

 
p value 

IL-17A Healthy 37 44.4 5.0 – 117.2 
-3.585 <0.001* 

 CP 41 94.9 76.6 – 119.6 

IL-17E Healthy 37 86.6 2.0 – 127.0 
-0.996 0.319 

 CP 41 70.6 40.6 – 145.3 

IL-17F Healthy 21 3.9 1.9 – 7.8 
-2.138 0.023* 

 CP 13 6.4 5.8 – 12.5 

IL-17A/F Healthy 21 5.5 4.9 – 15.0 
-4.235 <0.001* 

 CP 13 19.0 15.0 – 35.0 

IL-17A: IL-
17E 

Healthy 37 0.5# 0.2 – 2.4 
-0.980 0.320 

 CP 41 0.6# 0.2 – 1.5 

Table 4-6: Levels of IL-17A, IL-17E, IL-17F, IL-17A/F and the IL-17A:IL-17E ratio 
in gingival crevicular fluid 

The table represents median levels of IL-17A, IL-17E, IL-17F, IL-17A/F and IL-
17:IL-17E ratio in GCF of the healthy subjects and chronic periodontitis (CP) 
patients. Statistical analyses were carried out using the Mann-Whitney test with 
a Bonferroni correction (IBM SPSS Statistics, version 19). Significance = p<0.05 
(*). n = number of subjects; IQR = interquartile range; IL-17A:IL-17E = the serum 
ratio of IL-17A to IL-17E and # = ratio value (no units).  
 

4.2.9 Correlations between gingival crevicular fluid levels of 
IL-17A, IL-17E, IL-17F, IL-17A/F and clinical parameters 

To determine any associations between GCF levels of IL-17 family cytokines and 

clinical parameters, as the data was not normally distributed natural log 

transformation were performed prior to analysis. The correlations were carried 

out using the Pearson correlation coefficient test (IBM SPSS Statistics, version 

19).  

Table 4-7 shows the GCF level of IL-17A positively correlated with all clinical 

parameters measured: CPD (r = +0.611, p < 0.001), CAL (r = +0.543, p < 0.001) 

and BOP (r = +0.273, p = 0.016). As did GCF levels of IL-17E: CPD (r = +0.415, p = 

0.001), CAL (r = +0.463, p < 0.001) and BOP (r = +0.355, p = 0.002). In addition, 

the GCF level of IL-17F positively correlated with CPD (r = +0.481, p = 0.008), 

CAL (r = +0.449, p = 0.005) and BOP (r = +0.349, p = 0.043). Furthermore, the 

GCF level of IL-17A/F positively correlated with CPD (r = +0.435, p = 0.010), CAL 

(r = +0.444, p = 0.008) and BOP (r = +0.368, p = 0.032). 
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CPD 

 
CAL 

 
BOP 

IL-17A n 77 77 77 
 r +0.611 +0.543 +0.273 
 p <0.001* <0.001* 0.016* 
IL-17E n 77 77 77 
 r +0.415 +0.463 +0.355 
 p 0.001* <0.001* 0.002* 
IL-17F n 34 34 34 
 r  +0.481 +0.449 +0.349 
 p 0.008* 0.005* 0.043* 
IL-17A/F n 34 34 34 
 r +0.435 +0.444 +0.368 
 p  0.010*  0.008*  0.032* 

Table 4-7: Correlation between gingival crevicular fluid levels of IL-17A, IL-17E, 
IL-17F, IL-17A/F and clinical parameters 

The table represents the correlations between GCF levels of IL-17A, IL-17E, IL-
17F, IL-17A/F and clinical parameters for periodontal disease (CPD, CAL and 
BOP). The serum level values were subjected to a natural log transformation. 
The correlations were analysed using the Pearson correlation coefficient test 
(IBM SPSS Statistics, version 19). Significance= p<0.05 (*). n = number of 
subjects; r = the Pearson correlation coefficient; CPD = clinical probing depth; 
CAL = clinical attachment loss and BOP = bleeding on probing. 
 

4.2.10 Correlations between gingival crevicular fluid levels of 
IL-17A, IL-17E, IL-17F and IL-17A/F 

In addition to associations between GCF levels of IL-17 family cytokines and 

clinical parameters; associations between each IL-17 family member were also 

determined. Once again these associations were determined using the Pearson 

correlation coefficient test (IBM SPSS Statistics, version 19). 

Table 4-8 shows that the GCF level of IL-17A positively correlated with the GCF 

level of IL-17E (r = +0.384, p = 0.001), IL-17F (r = +0.638, p < 0.001) and IL-

17A/F (r = +0.867, p < 0.001). In addition, the GCF level of IL-17E positively 

correlated with the GCF levels of IL-17F (r = +0.422, p = 0.013) and IL-17A/F (r = 

+0.684, p < 0.001). Furthermore, the GCF level of IL-17F positively correlated 

with the GCF level of IL-17A/F (r = +0.677, p < 0.001).     
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IL-17A/F 

 
IL-17F 

 
IL-17E 

IL-17A n 34 34 78 
 r  +0.867 +0.638 +0.384 
 p <0.001* <0.001* 0.001* 
IL-17E n 34 34  
 r  +0.684 +0.422  
 p <0.001* 0.013*  
IL-17F n 34   
 r +0.677   
 p <0.001*   

Table 4-8: Correlations between gingival crevicular fluid levels of IL-17A, IL-17E, 
IL-17F and IL-17A/F  

The table represents correlations between levels of each IL-17A, IL-17E, IL-17F 
and IL-17A/F. The serum level values were subjected to a natural log 
transformation. The correlations were analysed using the Pearson correlation 
coefficient test (IBM SPSS Statistics, version 19). Significance = p<0.05 (*). n = 
number of subjects and r = the Pearson correlation coefficient. 
 

4.2.11 Correlations between gingival crevicular fluid levels of 
IL-17A:IL-17E ratio and clinical parameters 

As was performed for serum (Section 4.2.5), the associations between individuals 

GCF IL-17A:IL-17E ratio and clinical parameters were determined. Associations 

were determined using the Pearson correlation coefficient test (IBM SPSS 

Statistics, version 19). GCF IL-17A:IL-17E ratios were subjected to natural log 

transformations to facilitate graphical representation.  

Figure 4-2 shows that the GCF IL-17A:IL-17E ratio showed a weak but significant 

positive correlation with CPD (r = +0.344, p = 0.002) and CAL (r = +0.250, p = 

0.029), but no significant correlation with BOP (r = +0.116, p = 0.318).  
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Figure 4-2: Correlations between the GCF IL-17A:IL17E ratio and clinical 
parameters 

The GCF IL-17A:IL-17E ratio of all subjects (regardless of disease state) was 
calculated. To facilitate graphical representation the IL-17A:IL-17E ratio’s were 
subjected to a natural log transformation (Ln). Correlation analysis against CPD 
(A), CAL (B) and BOP (C) was then performed using the Pearson correlation 
coefficient test (IBM SPSS Statistics, version 19). Significance = p<0.05. r = the 
Pearson correlation coefficient. 
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4.2.12 Correlations between gingival crevicular fluid levels of 
IL-17A, IL-17E, IL-17F, IL-17A/F and age 

Correlations between GCF levels of IL-17 family cytokines and age were 

determined using the Pearson correlation coefficient test (IBM SPSS Statistics, 

version 19). 

Table 4-9 shows GCF levels of IL-17A, IL-17E, IL-17F and IL-17A/F positively 

correlated with age (r = +0.498, p < 0.001; r = +0.357, p = 0.001; r = +0.481, p = 

0.004; and r = +0.531, p = 0.001 respectively). However, only GCF levels of IL-

17A, IL-17E and IL-17F show significant positive correlation after corrected for 

disease severity parameter (clinical probing depth). In addition, no correlation 

was determined between the GCF IL-17A:IL-17E ratio and age after correction 

for disease state (CPD). 

 

  
 
IL-17A 

 
IL-17E 

 
IL-17F 

 
IL-17A/F 

 
IL-17A: IL-17E 

       

Age n 78 78 34 34 77 
       

 r  +0.498 +0.357 +0.481 +0.531 +0.202 
 p <0.001* 0.001* 0.004* 0.001* 0.078 
       

 rpartial  +0.474 +0.303 +0.405 +0.236 +0.144 
 p <0.001* 0.008* 0.019* 0.186 0.218 

Table 4-9: Correlations between gingival crevicular fluid levels of IL-17A, IL-17E, 
IL-17F, IL-17A/F, IL-17A:IL-17E ratio and age 

The table represents correlations between levels of IL-17A, IL-17E, IL-17F, IL-
17A/F, IL-17A:IL-17E ratio and age. The GCF level values were subjected to a 
natural log transformation. The correlations were analysed using the Pearson 
correlation coefficient test (IBM SPSS Statistics, version 19). Adjustment for 
disease severity was carried out using the Partial correlation test controlling for 
clinical probing depth (CPD) (IBM SPSS Statistics, version 19). Significance = 
p<0.05 (*). n = number of subjects; r = the Pearson correlation coefficient; rpartial 
= the Partial correlation and IL-17A:IL-17E = the serum ratio of IL-17A to IL-17E. 
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4.2.13 Relationship between gingival crevicular fluid levels of 
IL-17A, IL-17E, IL-17F, IL-17A/F and gender 

Statistical comparisons of GCF levels of IL-17 family cytokines between male and 

female subjects were carried out using the Mann-Whitney test with a Bonferroni 

correction (IBM SPSS Statistics, version 19). 

Table 4-10 shows the GCF levels of IL-17 family cytokines were not significantly 

different between males and females. 

 

  
Gender 

 
n 

 
Median 

 
IQR 

 
Z statistic 

 
p value 

IL-17A Male 35 89.70 69.07 – 118.90 
-2.365 0.072 

Female 42 69.83 5.00 – 119.83 
IL-17E Male 35 89.20 54.50 – 161.77 

-2.144 0.128 
Female 42 56.70 5.38 – 126.20 

IL-17F Male 13 7.20 6.10 – 11.38 
-2.116 0.136 

Female 21 3.90 1.90 – 7.20 
IL-17A/F Male 13 13.56 9.45 – 29.05 

-2.428 0.060 
Female 21 6.48 3.56 – 13.71 

Table 4-10: Comparison of gingival crevicular fluid levels of IL-17A, IL-17E, IL-
17F and IL-17A/F between males and females 

The table represents median levels of IL-17A, IL-17E, IL-17F and IL-17A/F in the 
GCF of male and female subjects. Statistical analyses were carried out using the 
Mann-Whitney test with a Bonferroni correction (IBM SPSS Statistics, version 19). 
Significance = p<0.05 (*). n = number of subjects; and IQR = interquartile range. 
 

4.2.14 Saliva levels of IL-17A, IL-17E, IL-17F and IL-17A/F 

Saliva levels of IL-17 family cytokines were measured by ELISA. Due to sample 

limitation, only saliva levels of IL-17A, IL-17E, IL-17F and IL-17A/F were 

measured. Table 4-11 shows saliva levels of IL-17A, IL-17E and IL-17F were 

significantly increased in patients with chronic periodontitis (21.8 pg/ml, 56.3 

pg/ml and 30.7 pg/ml respectively) as compared to healthy subjects (12.7 

pg/ml, 22.4 pg/ml and 9.6 pg/ml respectively). The saliva levels of IL-17A/F 

were not significantly different between the two groups. Also, the saliva IL-

17A:IL-17E ratio was not significantly different between the two groups. 
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Status 

 
n 

Median 
(pg/ml) 

 
IQR 

 
Z statistic 

 
p value 

IL-17A Healthy 37 12.73 8.13 – 21.16 
-3.337 0.001* 

 CP 65 21.84 13.14 – 51.37 

IL-17E Healthy 37 22.40 4.00 – 60.60 
-3.655 <0.001* 

 CP 65 56.63 27.56 – 112.55 

IL-17F Healthy 37 9.60 8.00 – 19.02 
-6.219 <0.001* 

 CP 65 30.70 19.91 – 55.37 

IL-17A/F Healthy 37 9.40 1.90 – 17.60 
-1.438 0.151 

 CP 65 11.02 7.46 – 37.17 

IL-17A: IL-17E Healthy 37 0.8# 0.3 – 1.28 
-0.867 0.386 

 CP 65 0.8# 0.5 – 1.1 

Table 4-11: Levels of IL-17A, IL-17E, IL-17F, IL-17A/F and the IL-17A:IL-17E ratio 
in saliva 

The table represents median levels of IL-17A, IL-17E, IL-17F, IL-17A/F and the IL-
17A:IL-17E ratio in saliva of the healthy subjects and chronic periodontitis (CP) 
patients. Statistical analyses were carried out using the Mann-Whitney test with 
a Bonferroni correction (IBM SPSS Statistics, version 19). Significance = p<0.05 
(*). n = number of subjects; IQR = interquartile range; IL-17A:IL-17E = the serum 
ratio of IL-17A to IL-17E and # = ratio value (no unit).  
 

4.2.15 Correlations between saliva levels of IL-17A, IL-17E, IL-
17F, IL-17A/F and clinical parameters 

To determine any associations between saliva levels of IL-17 family cytokines 

and clinical parameters, as the data was not normally distributed natural log 

transformation were performed prior to analysis. Once again, the correlations 

were carried out using the Pearson correlation coefficient test (IBM SPSS 

Statistics, version 19).  

Table 4-12 shows the saliva level of IL-17A positively correlated with CPD (r = 

+0.585, p = 0.001) and CAL (r = +0.520, p = 0.002). The saliva level of IL-17E 

positively correlated with all clinical parameters measured: CPD (r = +0.673, p < 

0.001), CAL (r = +0.761, p < 0.001) and BOP (r = +0.480, p = 0.004). The Saliva 

level of IL-17F also positively correlated with CPD (r = +0.462, p < 0.001) and 

CAL (r = +0.404, p = 0.020). The Saliva level of IL-17A/F did not correlate with 

any of the clinical parameters. 
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CPD 

 
CAL 

 
BOP 

IL-17A n 102 102 102 
 r +0.585 +0.520 +0.275 
 p 0.001* 0.002* 0.115 
IL-17E n 102 102 102 
 r  +0.673 +0.761 +0.480 
 p <0.001* <0.001* 0.004* 
IL-17F n 102 102 102 
 r  +0.462 +0.404 +0.254 
 p <0.001*  0.020*  0.167 
IL-17A/F n 102 102 102 
 r +0.199 +0.212 +0.050 
 p 0.555 0.457 0.856 

Table 4-12: Correlations between saliva levels of IL-17A, IL-17E, IL-17F, IL-
17A/F and clinical parameters 

The table represents the correlations between saliva levels of IL-17 family 
cytokines and clinical parameters for periodontal disease (CPD, CAL and BOP). 
The serum level values were subjected to a natural log transformation. The 
correlations were analysed using the Pearson correlation coefficient test (IBM 
SPSS Statistics, version 19). Significance = p<0.05 (*). n = number of subjects; r = 
the Pearson correlation coefficient; CPD = clinical probing depth; CAL = clinical 
attachment loss and BOP = bleeding on probing. 
 

4.2.16 Correlations between saliva levels of IL-17A, IL-17E, IL-
17F and IL-17A/F 

In addition to associations between saliva levels of IL-17 family cytokines and 

clinical parameters; associations between each IL-17 family member were also 

determined. Once again these associations were determined using the Pearson 

correlation coefficient test (IBM SPSS Statistics, version 19). 

Table 4-13 shows that the saliva level of IL-17A positively correlated with the 

saliva levels of IL-17E (r = +0.267, p = 0.001), IL-17F (r = +0.408, p < 0.001) and 

IL-17A/F (r = +0.442, p < 0.001). The saliva level of IL-17E positively correlated 

with the saliva levels of IL-17F (r = +0.411, p < 0.001) and IL-17A/F (r = +0.360, p 

< 0.001). The Saliva level of IL-17F positively correlated with the saliva level of 

IL-17A/F (r = +0.338, p = 0.001). 
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IL-17A/F 

 
IL-17F 

 
IL-17E 

IL-17A n 102 102 102 
 r  +0.442 +0.408 +0.267 
 p <0.001* <0.001* 0.001* 
IL-17E n 102 102  
 r  +0.360 +0.411  
 p <0.001* <0.001*  
IL-17F n 102   
 r  +0.338   
 p 0.001*   

Table 4-13: Correlations between saliva levels of IL-17A, IL-17E, IL-17F and IL-
17A/F  

IL-17A, IL-17E, IL-17F and IL-17A/F were measured in saliva samples using the 
appropriate ELISA kit (Table 2-3). The table represents correlations between 
levels of each IL-17 family cytokine. The serum level values were subjected to a 
natural log transformation. The correlations were analysed using the Pearson 
correlation coefficient test (IBM SPSS Statistics, version 19). Significance = 
p<0.05 (*). n = number of subjects and r = the Pearson correlation coefficient. 
 

4.2.17 Correlations between saliva levels of IL-17A:IL-17E ratio 
and clinical parameters 

As was performed for serum and GCF (4.2.5 and 4.2.11), the associations 

between individuals saliva IL-17A:IL-17E ratio and clinical parameters were 

determined. Associations were determined using the Pearson correlation 

coefficient test (IBM SPSS Statistics, version 19). Saliva IL-17A:IL-17E ratios were 

subjected to natural log transformations to facilitate graphical representation.  

Figure 4-3 shows that the saliva IL-17A:IL-17E ratio did not to significantly 

correlate with any of the clinical parameters. 
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Figure 4-3: Correlations between the saliva IL-17A:IL17E ratio and clinical 
parameters 

The saliva IL-17A:IL-17E ratio of all subjects (regardless of disease state) was 
calculated. To facilitate graphical representation the IL-17A:IL-17E ratio’s were 
subjected to a natural log transformation (Ln). Correlation analysis against CPD 
(A), CAL (B) and BOP (C) was then performed using the Pearson correlation 
coefficient test (IBM SPSS Statistics, version 19). Significance = p<0.05. r = the 
Pearson correlation coefficient. 
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4.2.18 Correlations between saliva levels of IL-17A, IL-17E, IL-
17F, IL-17A/F and age 

Correlations between saliva levels of IL-17 family cytokines and age were 

determined using the Pearson correlation coefficient test (IBM SPSS Statistics, 

version 19). 

Table 4-14 shows saliva levels of IL-17E, IL-17F and IL-17A/F positively 

correlated with age (r = +0.495, p < 0.001; r = +0.525, p < 0.001; and r = +0.356, 

p < 0.001 respectively), regardless of disease state. Although saliva levels of IL-

17A also show significant positive correlation with age (r = +0.235, p = 0.017), 

this correlation is found not to significant after correction for disease severity 

(clinical probing depth). In addition, the saliva IL-17A:IL-17E ratio did not 

significantly correlate with age after correction for disease state.  

 

  
 
IL-17A 

 
IL-17E 

 
IL-17F 

 
IL-17A/F 

 
IL-17A: IL-17E 

       

Age n 102 102 102 102 102 
       

 r  +0.235 +0.495 +0.525 +0.356 -0.117 
 p 0.017* <0.001* <0.001* <0.001* 0.243 
       

 rpartial +0.168 +0.389 +0.415 +0.343 -0.120 
 p 0.092 <0.001* <0.001* <0.001* 0.032 

Table 4-14: Correlations between saliva levels of IL-17A, IL-17E, IL-17F, IL-
17A/F, IL-17A:IL-17E ratio and age 

The table represents correlations between levels of IL-17 family cytokines and 
age. The saliva level values were subjected to a natural log transformation. The 
correlations were analysed using the Pearson correlation coefficient test (IBM 
SPSS Statistics, version 19). Adjustment for disease severity was carried out using 
the Partial correlation test controlling for clinical probing depth (CPD) (IBM SPSS 

Statistics, version 19). Significance = p<0.05 (*). n = number of subjects; r = the 
Pearson correlation coefficient; rpartial = the Partial correlation and IL-17A:IL-17E 
= the serum ratio of IL-17A to IL-17E. 
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4.2.19 Relationship between saliva levels of IL-17A, IL-17E, IL-
17F, IL-17A/F and gender 

Statistical comparisons of saliva levels of IL-17 family cytokines between male 

and female participants were carried out using the Mann-Whitney test with a 

Bonferroni correction (IBM SPSS Statistics, version 19). 

Table 4-15 shows saliva levels of IL-17 family cytokines were not significantly 

different between males and females. 

 

  
Gender 

 
n 

 
Median 

 
IQR 

 
Z statistic 

 
p value 

IL-17A Male 48 21.72 11.32 – 51.00 
-1.552 0.484 

Female 54 15.01 9.60 – 34.08 
IL-17E Male 48 52.22 25.39 – 108.77 

-2.371 0.072 
Female 54 32.39 5.33 – 75.30 

IL-17F Male 48 24.12 17.57 – 36.18 
-0.727 1.000 

Female 54 23.50 9.70 – 41.08 
IL-17A/F Male 48 9.45 5.51 – 32.59 

-0.443 1.000 
Female 54 11.03 7.18 – 21.07 

Table 4-15: Comparison of saliva levels of IL-17A, IL-17E, IL-17F and IL-17A/F 
between males and females 

The table represents median levels of IL-17A, IL-17E, IL-17F and IL-17A/F in the 
saliva of male and female subjects. Statistical analyses were carried out using 
the Mann-Whitney test with a Bonferroni correction (IBM SPSS Statistics, version 
19). Significance = p<0.05 (*). n = number of subjects; and IQR = interquartile 
range. 
 

4.2.20 mRNA expression of IL-17 family cytokines in periodontal 
tissues 

Analyses of IL-17 family cytokine expression in clinical samples (serum, GCF and 

saliva) indicated a possible association between IL-17A, IL-17E, IL-17F, IL-17A/F 

and chronic periodontitis. To further confirm this finding, quantitative real-time 

PCR was used to investigate expression of these cytokines at the mRNA level in 

periodontal tissue samples from chronic periodontitis patients and healthy 

subjects undergoing non-periodontal related surgery.  

Figure 4-4 shows that mRNA for IL-17 family cytokines (IL-17A, IL-17B, IL-17C, IL-

17D, IL-17E and IL-17F) were all expressed in periodontal tissue samples. In 

addition, apart from IL-17B, mRNA species for the remaining IL-17 family 
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cytokines were significantly upregulated in tissue from patients with chronic 

periodontitis compared to healthy subjects (all p < 0.05). 

 

      
Figure 4-4: Real-time PCR analysis of IL-17 family cytokines mRNA expression in 
healthy and diseased periodontal tissues 

Quantification of IL-17 family cytokine mRNA expression in periodontal tissues 
was performed by real-time PCR. Box-and-whiskers plot represent the median 
relative expression (2-CT) IL-17 family mRNA levels in tissues from healthy 
subjects and chronic periodontitis (CP) patients. RNA polymerase II was used as a 
reference gene. Statistical analyses were carried out using the Mann-Whitney 
test with a Bonferroni correction (IBM SPSS Statistics, version 19). * = p < 0.05, ** 
= p < 0.01, and NS = p > 0.05. Whiskers were determined by the Tukey method. 
Outliers were determined as 1.5 x IQR (interquartile range) above or below the 
median value and shown as black circles. 



 

 208

4.2.21 Serum levels of IL-10 

The opposing associations between the clinical parameters of periodontal 

disease and serum levels of IL-17E suggested that IL-17E may play a role as a 

negative regulator of periodontal immunity. Therefore, we investigated whether 

the relationship between biological levels of IL-17E and clinical parameters was 

similar to that of the archetypical anti-inflammatory cytokine IL-10. 

The serum level of IL-10 was measured by ELISA. Table 4-16 shows that the 

serum level of IL-10 was significantly decreased in patients with chronic 

periodontitis (69.6 pg/ml) compared to healthy subjects (107.8 pg/ml). 

 

 
 
Status 

 
n 

Median 
(pg/ml) 

 
IQR 

 
Z statistic 

 
p value 

IL-10 Healthy 45 107.80 30.50 – 200.40 
-2.209 0.027* 

 CP 57 69.60 52.15 – 90.40 

Table 4-16: Levels of IL-10 in serum 

IL-10 were measured in serum samples using the appropriate ELISA kit (Table 2-
3). The table represents median levels of IL-10 in serum of the healthy and 
chronic periodontitis (CP) patients. Statistical analyses were carried out using 
the Mann-Whitney test (IBM SPSS Statistics, version 19). Significance = p<0.05 (*). 
n = number of subjects and IQR = interquartile range. 
 

4.2.22 Correlations between serum levels of IL-10 and clinical 
parameters 

To determine any associations between the serum level of IL-10 and clinical 

parameters, as the data was not normally distributed natural log transformation 

were performed prior to analysis. The correlations were carried out using the 

Pearson correlation coefficient test (IBM SPSS Statistics, version 19).  

Table 4-17 shows that the serum level of IL-10 negatively correlated with all 

clinical parameters but only statistically significantly with CPD (r = -0.208, p = 

0.036) and BOP (r = -0.204, p < 0.040). 
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CPD 

 
CAL 

 
BOP 

IL-10 n 102 102 102 
 r  -0.208 -0.141 -0.204 
 p 0.036* 0.157 0.040* 

Table 4-17: Correlation between serum levels of IL-10 and clinical parameters 

The table represents the correlations between IL-10 and clinical parameters for 
periodontal disease (CPD, CAL and BOP). The serum level value was subjected to 
a natural log transformation. The correlations were analysed using the Pearson 
correlation coefficient test (IBM SPSS Statistics, version 19). Significance = 
p<0.05 (*). n = number of subjects; r = the Pearson correlation coefficient; CPD = 
clinical probing depth; CAL = clinical attachment loss and BOP = bleeding on 
probing. 
 

4.2.23 Correlations between serum levels of IL-10 and IL-17 
family cytokines 

The association between circulating levels of IL-10 and IL-17 family cytokines 

was determined using the Pearson correlation coefficient test (IBM SPSS 

Statistics, version 19). 

Table 4-18 shows that the serum level of IL-10 positively correlated with the 

serum levels of IL-17C (r = +0.240, p = 0.025), IL-17E (r = +0.212, p = 0.033) and 

IL-17F (r = +0.250, p = 0.011). There is no correlation between IL-10 and other 

members of the IL-17 family cytokines (IL-17A, IL-17B, IL-17D and IL-17A/F). 

 

  
 
IL-17A 

 
IL-17B 

 
IL-17C 

 
IL-17D 

 
IL-17E 

 
IL-17F 

 
IL-17A/F 

IL-10 n 102 88 87 74 102 102 102 
 r -0.187 -0.140 +0.240 -0.120 +0.212 +0.250 -0.149 
 p 0.060 0.194 0.025* 0.310 0.033* 0.011* 0.134 

Table 4-18: Correlations between serum levels of IL-10 and IL-17 family 
cytokines  

The table represents correlations between levels of each cytokine. The serum 
level values were subjected to a natural log transformation. The correlations 
were analysed using the Pearson correlation coefficient test (IBM SPSS Statistics, 
version 19). Significance = p<0.05 (*). n = number of subjects and r = the Pearson 
correlation coefficient. 
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4.2.24 Correlations between serum IL-17A:IL-10 ratio and 
clinical parameters 

The literature suggests that IL-17A and IL-10 have opposing roles in the 

inflammatory response. Therefore, as was previously performed for IL-17E, the 

circulating IL-17A:IL-10 ratio for each individual subject was calculated. 

Associations between the IL-17A:IL-10 ratio and clinical parameters were then 

determined using the Pearson correlation coefficient test (IBM SPSS Statistics, 

version 19). 

Figure 4-5 shows that the serum IL-17A:IL-10 had strong significant positive 

correlations with all clinical parameters measured: CPD (r = +0.559, p < 0.001), 

CAL (r = +0.536, p < 0.001) and BOP (r = +0.455, p < 0.001). 
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Figure 4-5: Correlations between the serum IL-17A:IL10 ratio and clinical 
parameters 

The serum IL-17A:IL-17E ratio of all subjects (regardless of disease state) was 
calculated. To facilitate graphical representation the IL-17A:IL-10 ratio’s were 
subjected to a natural log transformation (Ln). Correlation analysis against CPD 
(A), CAL (B) and BOP (C) was then performed using the Pearson correlation 
coefficient test (IBM SPSS Statistics, version 19). Significance = p<0.05. r = the 
Pearson correlation coefficient. 
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4.2.25 Correlations between serum levels of IL-10 and age 

Correlations between the serum level of IL-10 and age were determined using 

the Pearson correlation coefficient test (IBM SPSS Statistics, version 19). 

Table 4-19 shows serum levels of IL-10 was found not to significantly correlate 

with age regardless of disease state. Although, the serum IL-17A:IL-10 ratio was 

found to significantly positively correlate with age (r = +0.402, p < 0.001), the 

correlations are found not significant after correction for the disease severity 

(clinical probing depth). 

 

  
 
IL-10 

 
IL-17A:IL-10 

    

Age n 102 102 
    

 r -0.167 +0.402 

 p 0.093 <0.001* 
    

 rpartial -0.153 0.154 

 p 0.106 0.125 

Table 4-19: Correlations between serum levels of IL-10, IL-17A:IL-10 ratio and 
age 

The table represents correlations between serum levels of IL-10 and IL-17A:IL-10 
ratio and age. The serum level values were subjected to a natural log 
transformation. The correlations were analysed using the Pearson correlation 
coefficient test (IBM SPSS Statistics, version 19). Adjustment for disease severity 
was carried out using the Partial correlation test controlling for clinical probing 
depth (CPD) (IBM SPSS Statistics, version 19). Significance = p<0.05 (*). n = 
number of subjects; r = the Pearson correlation coefficient; rpartial = the Partial 
correlation and IL-17A:IL-10 = the serum ratio of IL-17A to IL-10. 
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4.2.26 Relationship between serum levels of IL-10 and gender 

Statistical comparisons of the serum IL-10 level between male and female 

subjects were carried out using the Mann-Whitney test (IBM SPSS Statistics, 

version 19). 

Table 4-20 shows the serum level of IL-10 was not significantly different 

between males and females.   

  
Gender 

 
n 

 
Median 

 
IQR 

 
Z statistic 

 
p value 

IL-10 Male 42 69.60 31.75 – 106.00 
-1.823 0.068 

Female 60 83.85 57.15 – 164.68 

Table 4-20: Comparison of serum levels of IL-10 between males and females 

The table represents median levels IL-10 in serum of male and female subjects. 
Statistical analyses were carried out using the Mann-Whitney test (IBM SPSS 

Statistics, version 19). Significance = p<0.05 (*). n = number of subjects; and IQR 
= interquartile range. 
 

4.2.27 mRNA expression of IL-10 cytokine in periodontal tissues 

Previous data has shown that IL-10 levels are significantly elevated in 

periodontal tissue of patients with periodontal disease (Napimoga, et al., 2011). 

To confirm this finding quantitative real-time PCR method was used to evaluate 

expression of IL-10 mRNA in periodontal tissue samples from chronic 

periodontitis patients and healthy subjects undergoing non-periodontal related 

surgery.  

Figure 4-6 shows that mRNA for IL-10 was found expressed in healthy periodontal 

tissue samples and expression was significantly upregulated in tissue isolated 

from chronic periodontitis patients (p < 0.05). 
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Figure 4-6: Real-time PCR analysis of IL-10 mRNA expression in healthy and 
diseased periodontal tissues 

Quantification of IL-10 mRNA expression in periodontal tissues was performed by 
real-time PCR. Box-and-whiskers plot represent the median relative expression 
(2-CT) of IL-10 mRNA in tissue from healthy subjects and chronic periodontitis 
(CP) patients. RNA polymerase II was used as a reference gene. Statistical 
analyses were carried out using the Mann-Whitney test (IBM SPSS Statistics, 
version 19). * = p < 0.05. Whiskers were determined by the Tukey method. 
Outliers were determined as 1.5 x IQR (interquartile range) above or below the 
median and shown as black circles. 
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4.3 Discussion 

In agreement with previous studies these findings confirm that serum, GCF, and 

saliva levels of IL-17A are elevated in chronic periodontitis patients and 

correlate with clinical parameters (Buduneli, et al., 2009; Duarte, et al., 2010; 

Ozcaka, et al., 2011; Schenkein, et al., 2010; Vernal, et al., 2005). Our real-

time PCR analysis also confirmed that the IL-17A mRNA levels are upregulated in 

the gingival tissue of chronic periodontitis patients compared to healthy subjects 

(Behfarnia, et al., 2013; Honda, et al., 2008; Ohyama, et al., 2009). 

In addition to confirming previous findings; this study further advances our 

understanding of the associations between IL-17F and the IL-17A/F heterodimer 

and chronic periodontitis. This study demonstrated significant increased serum 

levels of the IL-17A/F heterodimer in chronic periodontitis patients that 

correlated with clinical parameters (Table 4-1 and 4-2). However, serum levels 

of IL-17F were not significantly different between the 2 groups and did not 

correlate with clinical parameters (Table 4-1 and 4-2). The serum levels of IL-

17A, IL-17F and IL-17A/F did positively correlate to one another (Table 4-3). 

Additionally, significant increases in GCF levels of IL-17F and the IL-17A/F 

heterodimer were demonstrated in chronic periodontitis patients and these 

correlated with clinical parameters (Table 4-6 and 4-7). In saliva, significant 

differences in IL-17F levels were observed between chronic periodontitis 

patients and healthy subjects; which correlated with clinical parameters (Table 

4-11 and 4-12). In contrast, saliva levels of IL-17A/F were found not to 

significantly differ and did not correlate with any clinical parameters (Table 4-11 

and 4-12). The GCF and saliva levels of IL-17A, IL-17F and IL-17A/F are found to 

positively correlate to one and other. 

Associations between serum levels of IL-17A and IL-17A/F and chronic 

inflammatory diseases has been observed previously. Serum levels of IL-17A and 

IL-17A/F were elevated in patients with rheumatoid arthritis, 

lymphoproliferation syndrome (autoimmune syndrome), systemic sclerosis, 

systemic lupus erythematous and polycystic ovarian syndrome (Boggio et al., 

2014; Nakashima et al., 2012; Ozcaka, et al., 2013; Shimamoto et al., 2013; 

Tanasescu et al., 2010). However, serum levels of IL-17F were also found to be 

elevated in chronic inflammatory disease such as rheumatoid arthritis and 
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systemic lupus erythematous (Shimamoto, et al., 2013; Tanasescu, et al., 2010). 

This is in contrast to our findings which showed no difference in serum IL-17F 

levels (Table 4-1). However, the literature on IL-17F is contradictory with some 

studies on systemic sclerosis and rheumatoid arthritis reporting no differences in 

serum IL-17F levels between health and disease (Gumus, et al., 2013; 

Nakashima, et al., 2012). In fact, serum levels of IL-17F were reported to be 

lower in patients with chronic hepatitis C virus infection as well as severe 

helminthic infection (Echinococcus multilocularis) compared to healthy subjects 

(Lechner et al., 2012; Sousa et al., 2012). These data suggest that the role of IL-

17F in pathogenesis is disease specific. 

Apart from investigating IL-17A, few studies have evaluated the levels of other 

IL-17 family members in GCF. In line with our findings (Table 4-6), Gumus and 

colleagues (2013) showed increased GCF levels of IL-17A and IL-17F in chronic 

periodontitis patients with rheumatoid arthritis compared to chronic 

periodontitis patients who are systemically healthy. In addition, GCF levels of 

17A, IL-17F and IL-17A/F were positively correlated to one and other (Table 4-

7). In contrast to our findings (Table 4-6), however, Gumus and colleagues 

(2013) showed no difference in the GCF levels of IL-17A/F between both groups. 

Also in line with our data, Ozcaka and colleagues (2013) showed that GCF levels 

of IL-17A and IL-17F were increased in gingivitis patients who suffered polycystic 

ovarian syndrome compared to healthy subjects. However, they found that GCF 

levels of IL-17A and IL-17F were not correlated with any clinical parameters for 

periodontal disease (CPD and BOP). 

Similar to GCF, there are not many studies that evaluated the levels of IL-17 

family cytokines in saliva, with the exception of IL-17A. In line with our findings 

(Table 4-11), Ozcaka and colleagues (2013) showed increased saliva levels of IL-

17A and IL-17F in gingivitis patients who suffered polycystic ovarian syndrome 

compared to healthy subjects. In addition, saliva levels of IL-17A positively 

correlated with clinical parameters such as CPD and CAL (Table 4-12). However, 

saliva levels of IL-17A/F did not correlate with any clinical parameters and no 

difference in saliva levels of IL-17A/F was determined between the two groups 

(Table 4-11 and 4-12).  



 

 217

Real-time PCR analyses revealed for the first time that mRNA expression of IL-

17F is elevated in gingival tissue samples of chronic periodontitis patients 

compared to healthy subjects (Figure 4-4). This is in line with studies on other 

inflammatory diseases such ulcerative colitis, psoriasis and lichen planus which 

also demonstrated elevated IL-17F mRNA levels in diseased mucosa/epithelia 

(Fujino, et al., 2003; Im et al., 2012; Johansen et al., 2009; Johnston et al., 

2013; Piccinni et al., 2014; Seiderer, et al., 2008). 

This study is first to investigate associations between serum levels of IL-17B, IL-

17C and IL-17D and chronic periodontitis. However, no significant differences 

between serum levels of these family members were observed between chronic 

periodontitis patients and healthy subjects (Table 4-1). Furthermore, serum 

levels of IL-17B, IL-17C and IL-17D did not significantly correlate with clinical 

parameters (Table 4-2). Due to sample limitation, levels of IL-17B, IL-17C and IL-

17D were not evaluated in GCF and saliva. The Literature revealed a limited 

number of studies evaluating associations between serum levels of IL-17B, IL-17C 

and IL-17D with disease. Serum levels of IL-17B were shown to be elevated in 

patients with severe helminthic infection (Echinococcus multilocularis) and 

systemic lupus erythematous (Lechner, et al., 2012; Robak et al., 2013). Serum 

levels of IL-17C did not differ between healthy subjects and patients with 

hepatitis B (He et al., 2013). In addition, serum levels of IL-17B, IL-17C and IL-

17D were actually shown to be lower in patients with acute exacerbated chronic 

pulmonary heart disease compared to healthy subjects (Chen et al., 2012). 

Therefore, although research is at an early stage, the roles of IL-17B, IL-17C and 

IL-17D in pathogenesis may also be disease specific. 

Real-time PCR analyses demonstrated for the first time increased mRNA 

expression of IL-17C and IL-17D in the gingival tissue samples of chronic 

periodontitis patients compared to healthy subjects (Figure 4-4). However, no 

difference in IL-17B mRNA expression was observed. In line with literature, IL-

17C mRNA levels were also shown to be increased in psoriatic skin as well as in 

the colonic mucosa of ulcerative colitis patients (Im, et al., 2012; Johansen, et 

al., 2009; Johnston, et al., 2013). In contrast, Im and colleagues (2012) showed 

no difference in the mRNA expression of IL-17B and IL-17D in colonic mucosal 

tissue of ulcerative colitis patients and IL-17B and IL-17D mRNA levels were also 
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found to be decreased in the skin of psoriasis patients (Johansen, et al., 2009; 

Johnston, et al., 2013). 

The major novel finding of interest in this study is the association between IL-

17E and chronic periodontitis. Chronic periodontitis patients presented with 

decreased serum levels of IL-17E, which negatively correlated with CPD and CAL 

(Table 4-1 and 4-2). Serum levels of IL-17E also negatively correlated with IL-17A 

(Table 4-3). In GCF and saliva, however, the findings were slightly different. GCF 

levels of IL-17E were not significantly different between chronic periodontitis 

patients and healthy subjects; however levels did positively correlate with all 

clinical parameters (Table 4-6 and 4-7). Furthermore, saliva levels of IL-17E 

were significantly higher in chronic periodontitis patients and levels again 

correlated with all clinical parameters (Table 4-11 and 4-12). The decreased 

serum level of IL-17E in chronic periodontitis patients has been suggested 

previously as serum levels of IL-17E were shown to be lower in patients with a 

combination of gingivitis and polycystic ovarian syndrome (Ozcaka, et al., 2013). 

In addition, in patients with inflammatory bowel diseases, serum levels of IL-17E 

are also lower compared to their respective healthy subjects (Ozcaka, et al., 

2013; Su et al., 2013). In contrast, studies of IL-17E levels in GCF and saliva are 

limited for comparison. In line with our findings Gumus and colleagues (2013) 

showed no difference in GCF levels of IL-17E in chronic periodontitis patients 

who suffered rheumatoid arthritis compared to chronic periodontitis patients 

who are systemically healthy. In addition, Ozcaka and colleagues (2013) also 

showed that GCF levels of IL-17E in gingivitis patients who suffered polycystic 

ovarian syndrome were no different to healthy subjects. Additionally, Ozcaka 

and colleagues (2013) showed that GCF levels of IL-17E positively correlated 

with CPD and BOP. GCF levels of IL-17E were also shown to have positive 

correlations with IL-17A, IL-17F and IL-17A/F (Gumus, et al., 2013). In addition, 

in line with our data, saliva levels of IL-17E were found to be increased in 

gingivitis patients who suffered polycystic ovarian syndrome compared to 

healthy subjects, and these were found to positively correlate with clinical 

parameters (Ozcaka, et al., 2013). At the tissue level, real-time PCR analyses 

demonstrated increased mRNA expression of IL-17E in gingival tissue samples of 

chronic periodontitis patients compared to healthy subjects (Figure 4-4). In line 

with our findings, IL-17E mRNA expression was shown to be increased in sinus 
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mucosal tissue samples of chronic rhinosinusitis patients (Lam et al., 2013). In 

addition, IL-17E mRNA levels were also found to be increased in the sputum of 

patients with chronic rhinitis and asthma (Kwon et al., 2012; Seys et al., 2013). 

Furthermore, in a mouse model, IL-17E mRNA expression was elevated in lung 

tissues of ovalbumin induced lung inflammation (Kawashima et al., 2013) as well 

as in the skin of formaldehyde induced atopic dermatitis (Kim et al., 2013b). 

Chronic periodontitis patients presented with decreased serum levels of IL-17E, 

which negatively correlate with CPD and CAL, and serum levels of IL-17E are also 

negatively correlated with IL-17A (Table 4-1, 4-2 and 4-3). These findings 

suggest that the circulating IL-17A:IL-17E ratio may be a predictive marker of 

disease. Indeed, our data show serum IL-17A:IL-17E ratios are significantly higher 

in chronic periodontitis patients compared to healthy subjects (Table 4-1) and 

the serum IL-17A:IL-17E ratios have positive moderate correlations with both 

CAL and CPD (Figure 4-1). In contrast to the serum analysis, however, the GCF 

and saliva IL-17A:IL-17E ratio are not significantly increased in chronic 

periodontitis patients (Table 4-6 and 4-11); possibly because GCF and saliva 

levels of IL-17E tended to be greater. However, the GCF IL-17A:IL-17E ratio had 

a weak but positive correlation with CPD and CAL (Figure 4-2). No correlations 

were observed between the saliva IL-17A:IL-17E ratio and clinical parameters 

(Figure 4-3). Differences in levels of IL-17 family cytokines in serum, saliva and 

GCF could possibly be explained by the anatomical location from which these 

biological fluids are derived (Buduneli & Kinane, 2011). However, this is a matter 

of conjecture until we have a complete picture of IL-17 family cytokine biology. 

In line with these findings, serum levels of IL-17A and IL-17E were shown to be 

negatively correlated in patients with gingivitis and polycystic ovarian syndrome 

(Ozcaka, et al., 2013). Furthermore the serum IL-17A:IL-17E ratio was shown to 

be higher in patients with rheumatoid arthritis than healthy subjects (Gumus, et 

al., 2013). There were few studies that describe the associations between serum 

levels of IL-17A and IL-17E and chronic inflammatory disease. The GCF IL-17A:IL-

17E ratio was compared in chronic periodontitis patients who suffered from 

rheumatoid arthritis to chronic periodontitis patients who were systemically 

healthy and no significant differences found (Gumus, et al., 2013).  

Interestingly, our data show that serum levels of IL-17A and IL-17A/F have 

significant positive correlations with age regardless of disease state (Table 4-4). 
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However, although serum ratio of IL-17A:IL-17E and IL-17A:IL10 also have 

significant positive correlations with age, the correlations are found not 

significant after correction for disease severity (clinical probing depth) (Table 4-

4 and Table 4-19). In addition GCF levels of IL-17A, IL-17E, IL-17F and IL-17A/F 

have significant positive correlations with age, however only GCF levels of IL-

17A, IL-17E and IL-17F shows significant positive correlation after correction for 

disease severity (clinical probing depth) (Table 4-9). Additionally, saliva levels of 

IL-17E, IL-17F and IL-17A/F have significant positive correlation with age 

regardless of disease severity (Table 4-14). Although saliva levels of IL-17A also 

show significant positive correlation with age, this correlation is found not 

significant after correction for disease severity (clinical probing depth) (Table 4-

14).  

Studies show gradual deterioration of immune system occurs with aging 

(immunosenescence). For instance, although peripheral neutrophils numbers 

were found to increase with age, the migration ability of the aged neutrophils 

upon GM-CSF stimulation in vitro was found to be defective (Butcher et al., 

2000). In addition, age related products such as advanced glycation end products 

(AGE), were shown to induce increased expression of pro-inflammatory cytokines 

by phagocytic cells such as monocytes and macrophages (Thornalley, 1998). The 

population of T lymphocytes are also found to be altered by age, with age being 

associated with a decreased population of naïve T cells in healthy adults due to 

increase in apoptotic activity (Chakravarti & Abraham, 1999; Herndon et al., 

1997). These studies show aging can alter the balance of the immune system, 

which can lead to disturbances in tissue homeostasis as well as responses to 

infection. Clinical data has demonstrated that aging patients have a reduced 

capacity for fighting infection compared to young patients (Schneider, 1983). In 

periodontal disease, age has also been shown to associate with disease severity 

(Brown et al., 1996; Haas et al., 2014; Loe et al., 1992). In addition, 

autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and 

Weagner’s granulomatosis have been shown to have some features of 

immunosenescence (Peters et al., 2009). 

In line with our data, serum levels of IL-17A from chronic periodontitis patients 

have been found to associate with age (Schenkein, et al., 2010). However, 

serum levels of IL-17A were found not to correlate with age of patients with 
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psoriasis and rheumatoid arthritis (Arican et al., 2005; Metawi et al., 2011; Oh 

et al., 2011). In addition, serum levels of IL-10 did not correlate with age in 

patients with hepatitis C virus infection and Plasmodium falciparum infection 

(malaria) (Lyke et al., 2004; Reiser et al., 1997). Serum levels of IL-17A and IL-

10 in healthy subjects were also found not to correlate with age (Kim et al., 

2011; Sivro et al., 2013).  

In this study, we show that serum levels of all members of IL-17 family cytokines 

as well as IL-10 are not significantly different between males and females (Table 

4-5). In addition, GCF and saliva levels of IL-17A, IL-17E, IL-17F and IL-17A/F are 

also not significantly different between males and females (Table 4-10 and 4-

15). Epidemiological studies showed the prevalence of chronic periodontitis is 

greater in males than females (Shiau & Reynolds, 2010). However, this finding is 

probably due to differences in lifestyle choices between males and females; for 

example alcohol consumption, smoking, oral hygiene practices and frequency of 

dental visit (Burt, 2005). Although, gender-specific biological factors cannot be 

ruled out. Indeed, IL-17RA deficient male mice were found to be much more 

susceptible to periodontal disease than male mice (Yu et al., 2008). However, in 

agreement with our findings, serum levels of IL-17A were found not to differ 

between genders in systemically healthy subjects (Gourh et al., 2009). In 

addition, although serum levels of IL-17A were found to positively associate with 

chronic diseases such as psoriasis, systemic lupus erythematous and chronic liver 

disease, no difference between males and females was observed (Arican, et al., 

2005; Kakumu et al., 1997; Vincent et al., 2013). Similarly, although serum 

levels of IL-10 were found to be increased in chronic liver disease and traumatic 

injury, the serum levels in these subjects were not different between males and 

females (Kakumu, et al., 1997; Sperry et al., 2008). 

IL-17A, IL-17F and IL-17A/F have been implicated to play roles in various chronic 

inflammatory disease including rheumatoid arthritis, multiple sclerosis, psoriasis 

and inflammatory bowel diseases (Chabaud, et al., 1999) (Fujino, et al., 2003; 

Ishigame, et al., 2009; Malakouti et al., 2014; Pappu et al., 2011; Seiderer, et 

al., 2008). Structurally, the IL-17A, IL-17F and IL-17A/F heterodimer are closely 

related. The IL-17A and IL-17F monomers have a high degree of homology (40 %) 

(Starnes, et al., 2001), and they both present with a conserved structure of four 

cysteines that form a knot motif in their tertiary structure (Fossiez, et al., 1996; 
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Hymowitz, et al., 2001). In addition, IL-17A and IL-17F monomers can be linked 

at the cysteine knot motif to form the IL-17A/IL-17F heterodimer (Wright, et al., 

2007). IL-17A, IL-17F and IL-17A/F are known to require similar receptors to 

mediate cellular responses; IL-17RA and IL-17RC (Kuestner, et al., 2007; Wright, 

et al., 2007). The similarities in structure and function between these 3 family 

members may explain why they have similar roles in the pathogenesis of chronic 

inflammatory diseases.  

IL-17A is a known pro-inflammatory cytokine involved in the pathogenesis of 

periodontal disease (Behfarnia, et al., 2013; Buduneli, et al., 2009; Liang, et 

al., 2010; Takahashi, et al., 2005). However, studies on the roles of IL-17F and 

IL-17A/F in periodontal disease are limited. In this study we confirmed the 

association of IL-17A in the pathogenesis of periodontal disease. In addition, we 

show elevated levels of IL-17F and IL-17A/F protein in clinical samples (serum, 

GCF and saliva) as well as elevated levels of mRNA expression in diseased 

periodontal tissue. These data indicate that IL-17F and IL-17A/F may have a role 

in pathogenesis of periodontal disease. Since IL-17F and IL-17A/F are known to 

be produced by Th17 cells (Wright, et al., 2007) and Th17 cells are known to be 

present in the tissue of periodontal disease (Adibrad, et al., 2012; Cardoso, et 

al., 2009) the findings in our study are perhaps unsurprising. However, we 

cannot be sure of the cellular source of these cytokines within the oral cavity at 

present. Studies have shown that epithelial cells derived from the bronchus and 

lung activated by IL-17A, IL-17F and IL-17A/F increase expression of GRO-α, IL-8 

and CXCL1 (Kawaguchi, et al., 2006; Liang, et al., 2007; Wright, et al., 2007). 

Hence, similar to other types of tissue, IL-17F and IL-17A/F probably play an 

important role as part of cytokine network in regulating immune responses in 

periodontal tissues. However, more studies are required to confirm the role of 

IL-17A, IL-17F and IL-17A/F in the pathogenesis of periodontal disease. 

IL-17E is described as an anti-inflammatory cytokine with functions opposing to 

those of IL-17A (Monteleone, et al., 2010; Tosello Boari et al., 2012). IL-17E 

inhibits Th17 cell proliferation via IL-4 and IL-13 (Cooney, et al., 2011; 

Kleinschek, et al., 2007). IL-17E induces expression of IL-4 and IL-13 by many 

cell types including; Th2 cells, mast cells and macrophages (Angkasekwinai, et 

al., 2010; Angkasekwinai, et al., 2007; Ikeda, et al., 2003; Kang, et al., 2005; 

Wang, et al., 2007b). In vitro, IL-17E was shown to inhibit IL-17A release from 
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CD4+ T cells isolated from the colon of patients with inflammatory bowel 

diseases (Su, et al., 2013). In addition, the ability of IL-17E to supress the 

Th17/IL-17A inflammatory response in EAE was also shown in vivo (Kleinschek, et 

al., 2007). Since IL-17A and IL-17E have opposing functions, it is interesting to 

speculate that the ratio between these family members could become an 

important determinant for chronic periodontitis. However, further studies into 

the biology of these cytokines in relation to periodontal disease are required 

before this can be confirmed.  

To determine whether the relationship between IL-17A and IL-17E was similar to 

that of a prototypic anti-inflammatory cytokine; levels of IL-10 in biological 

samples were also investigated. Th17 cells express the receptor for IL-10 (IL-

10R1) and stimulation with IL-10 directly inhibits Th17 cell proliferation and 

secretion of IL-17A (Heo et al., 2010; Huber et al., 2011). IL-10 is also known to 

indirectly down regulate Th17 driven responses (through IL-17A, TNF- α and IL-6) 

via inhibition of IL-23  (Stetsko & Sauder, 2008). In addition, IL-10 was shown to 

suppress the proliferation of Th17 cells in mice with established colitis (Huber, 

et al., 2011). These studies suggest that IL-10 may play an important role in IL-

17A biology. In addition, IL-17E was also shown to inhibit CD4+ T cells isolated 

from colon of inflammatory bowel diseases patients in an IL-10 dependent 

manner (Su, et al., 2013), suggesting a further complexity in the relationship 

between IL-17A and IL-17E. This study (Table 4-16 and 4-17) suggests a similar 

complexity occurs in patients with chronic periodontitis as serum levels of IL-10 

were significantly elevated and that this increase correlated with clinical 

parameters (Andrukhov et al., 2011; Enwonwu et al., 2005; Havemose-Poulsen 

et al., 2005). This study also shows week positive correlations between serum 

levels of IL-10 and IL-17C, IL-17E and IL-17F, and quite interestingly IL-10 also 

showed a negative correlation with serum IL-17A (Table 4-18). However, this 

correlation did not quite reach significance (r = -0.187, p = 0.060). However, the 

serum IL-17A:IL-10 ratio did have a positive moderate correlation with CPD, CAL 

and BOP (Figure 4-5). 

Real-time PCR analysis (Figure 4-6) confirmed previous findings demonstrating 

elevated levels of IL-10 mRNA expression from tissues from chronic periodontitis 

patients compared to healthy subjects (Garlet et al., 2004; Napimoga, et al., 

2011). This is in line with the findings in the other chronic inflammatory diseases 



 

 224

such as rheumatoid arthritis, ulcerative colitis and atopic dermatitis that show 

increased IL-10 expression in diseased compared to healthy control tissue 

(Furuzawa-Carballeda & Alcocer-Varela, 1999; Gambichler et al., 2008; Olsen et 

al., 2007). 

In chronically inflamed periodontal tissue, inflammatory mediators including 

cytokines and chemokines are produced by innate and adaptive immune cells. 

Some of these chemical mediators leave the tissue and enter the circulatory 

system and have endocrine-like effects (Engleberg et al., 2012). In addition, 

these mediators accumulate in the GCF found in the gingival sulcus/pockets and 

can also enter the oral cavity to become part of mixed saliva (whole saliva) 

(Kaufman & Lamster, 2002). Although the mediators in serum, GCF and saliva 

are derived from the same source, in different biological mediums they are 

subjected to diluting processes and protein degradation. Thus, it is not surprising 

that quantification of these mediators in the clinical samples is varied. Hence, 

differences in levels of IL-17 family cytokines in serum, GCF and saliva in our 

study could possibly be explained by the anatomical location from which these 

biological fluids are derived (Buduneli & Kinane, 2011).  

GCF collection can be performed in three ways: absorbent paper strips or paper 

points; capillary tubes and gingival crevicular washes. The use of a capillary tube 

is necessary when large amounts of GCF are required (Skaleric et al., 1987). 

However, this method can cause irritation to the gingival sulcus. Gingival 

crevicular washes are beneficial for collection of cellular components of GCF 

(Adonogianaki et al., 1993).  However, this method requires a trained and 

experienced investigator. In our study, we used the paper strip collection 

method as this is probably the most commonly used methodology (Adonogianaki 

et al., 1994; Guentsch et al., 2011; Ozkavaf et al., 2001). The GCF volume from 

a paper strip can be quantify using a Periotron® (Tozum et al., 2004). However, 

the measurement is only accurate over a limited volume range (Griffiths, 2003). 

This can be problematic as minimal inaccuracies in GCF volume measurement 

can have profound effects on calculated concentrations of protein mediators.  

Therefore, in our study we presented data as total amounts in GCF and did not 

correct for volume. 
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For isolation of serum, the method used is well established. However, variations 

in the sample collection process could have an impact on the analytical 

outcome. These variations may include: types of additive used in the collection 

tube; sample processing time and temperature; sample storage conditions; 

hemolysis of the sample; and the number of freeze-thaw cycles prior to analysis 

(Tuck et al., 2009). It is difficult, if not impossible, to make sure all studies 

carried out in exactly similar conditions. Hence variation in findings could occur 

in serum sample analysis between studies.  

Whole saliva is actually a mixture of oral fluids; including major and minor 

salivary gland secretions, as well as other additional components derived from 

GCF, expectorated bronchial secretions, serum and blood cells from oral wounds 

(Kaufman & Lamster, 2000). The use of whole saliva for evaluating markers for 

soft tissue inflammation and hard tissue destruction in periodontal disease has 

been the subject of considerable research activity (Giannobile et al., 2009). 

Since inflammatory mediators in GCF can make their way into saliva, the use of 

saliva as a diagnostic marker has advantages over serum and GCF as collection is 

non-invasive and only requires minimal training. In our study, we used whole 

unstimulated saliva collected by the method of Navazesh and Christensen 

(1982). The use of unstimulated saliva in investigating cytokine levels has been 

previously reported (Javed et al., 2013; Liu et al., 2014). However, there are 

draw backs in the use of saliva to evaluate levels of protein markers. Bacteria 

derived from dental biofilm, including anaerobic species, can survive in the 

saliva medium (Bowden, 1997; de Jong et al., 1984; De Jong et al., 1986). These 

bacteria can then produce proteolytic enzymes that in combination with 

proteolytic enzymes derived from the host which are also present can break 

down proteinacious markers which will effect analysis  (Chauncey, 1961). In our 

study, the serum, GCF and saliva samples were collected as part of previous 

studies (Davies, et al., 2011; Jaedicke, et al., 2012; Pathiyal, et al., 2005; 

Preshaw & Heasman, 2002). The samples had been subjected to long term 

storage and had possibly undergone multiple freeze-thaw episodes. Therefore, it 

is impossible to discount the fact that these factors may have affected the 

results of our protein analysis. 

Our findings indicate that IL-10 and IL-17 family cytokines; especially IL-17A, IL-

17E, IL-17F and IL-17A/F could have a potential role in the pathogenesis of 
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periodontal disease. Of greatest interest was the relationship between IL-17A 

and IL-17E, which may play opposing roles. The negative correlations between 

IL-17A and IL-17E were similar to that of the prototypic anti-inflammatory 

cytokine; IL-10. Indeed, the serum ratio of IL-17A:IL-17E and IL-17A:IL-10 both 

negatively associated with clinical parameters of periodontal disease. However, 

the biological significance of these relationships require further investigation. 
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Chapter 5: IL-17E and periodontal disease 
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5.1 Introduction 

Although our understanding of the IL-17E biology is increasing, how IL-17E 

expression is regulated and its target cell populations are still poorly 

understood. The evidence to date however suggests that even though IL-17E and 

IL-17A are characterised as being members of the same cytokine family, they 

play vastly opposing roles in the pathogenesis of inflammatory diseases. This 

therefore makes dissemination of the role IL-17E plays in the pathogenesis of 

periodontal disease an exciting target for further investigation.  

IL-17E has been detected in GCF and serum of periodontal patients and levels 

negatively correlated with periodontal clinical probing depth (CPD) (Ozcaka, et 

al., 2013). In the previous chapter, the data confirmed that IL-17E can be 

detected in serum and GCF of patients with chronic periodontitis. In addition, IL-

17E can also be detected in saliva. Interestingly, serum levels of IL-17E 

negatively correlated with CAL and CPD. However, levels in GCF were actually 

elevated in chronic periodontitis patients and furthermore at the mRNA level IL-

17E expression was elevated in tissue of chronic periodontitis patients. The 

biological significance of these findings are at present unknown; but may be 

related to the functional role IL-17E plays in the pathogenesis of periodontal 

disease. Therefore, in this chapter the expression of IL-17E in periodontal tissues 

was investigated further and its potential role in pathogenesis of periodontal 

disease evaluated using in vitro model systems. 

Based on the previous literature and the findings in Chapter 4, IL-17E was 

hypothesised to act as an anti-inflammatory cytokine down regulating 

potentially damaging localised pro-inflammatory responses in the periodontium; 

including those driven by IL-17A 

In order to investigate this hypothesis; the specific aims of this chapter were as 

follows: 

1. To further evaluate the expression of IL-17E and its receptors in periodontal 

tissue samples from patients with chronic periodontitis patients and healthy 

subjects. 
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2. To evaluate the role of IL-17E in modulating the expression of cytokine 

expression by oral keratinocytes in response to stimulation with P. gingivalis 

and IL-17A. 
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5.2 Results 

 

5.2.1 Analysis of IL-17E expression in periodontal tissues 

5.2.1.1 Expression of IL-17E in periodontal tissues 

Previously, the expression of IL-17E mRNA in periodontal tissues was confirmed. 

In addition, expression levels were found to be elevated in chronic periodontitis 

patients (Figure 4-4). However, the cell types responsible for IL-17E expression 

had not been determined. Therefore, immunohistochemical analysis using a 

mouse monoclonal anti-IL-17E antibody (Abcam® UK) was employed to 

investigate further.  

Figure 5-1 shows IL-17E expression associated with blood vessels as well as 

invading leukocytes in tissues derived from chronic periodontitis patients. There 

was no evidence of IL-17E staining in the epithelium or connective tissue layers. 

This suggested that IL-17E is not expressed by oral keratinocytes or fibroblasts.  
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Figure 5-1: IL-17E expression associated with blood vessels and inflammatory 
cell infiltrates in diseased periodontal tissues  

Expression of IL-17E was determined by immunohistochemical analysis using a 
mouse monoclonal anti-IL-17E antibody (Abcam® UK). The panels show 
representative photomicrographs of 5-μm-thick paraffin-embedded sections of 
periodontal tissue specimens obtained from chronic periodontitis patients. 
Positive staining was associated with blood vessels in tissue derived from 3 
individual donors (white arrows) (A – C), as well as in invading leukocytes (black 
arrows) (D) (a representative image of findings observed in all 3 diseased tissue 
samples). An isotype control antibody was used to estimate non-specific binding 
(E and F). Original magnification x 100.  
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5.2.1.2 Expression of IL-17RB in periodontal tissues 

Figure 5-1 showed that IL-17E was expressed in diseased periodontal tissues. 

Therefore to determine its target cell populations; the expression of its known 

receptor, IL-17RB, was also investigated. Again, immunohistochemical analysis a 

using a rabbit anti-IL-17RB antibody (Sigma-Aldrich®, UK) was employed.  

Faint expression of IL-17RB was found in the epithelial layer of diseased 

periodontal tissue (Figure 5-2). In addition, strong IL-17RB staining was 

associated with immune cells found in diseased periodontal tissue (Figure 5-3).  

 

                         
Figure 5-2: IL-17RB expression in the epithelial layer of diseased periodontal 
tissues  

Expression of IL-17RB in periodontal tissues was determined by 
immunohistochemical analysis using a rabbit anti-IL-17RB antibody (Sigma-
Aldrich®, UK). The panels show representative photomicrographs of 5 μm-thick 
paraffin-embedded sections of periodontal tissue specimens obtained from 
chronic periodontitis patients. Positive staining was associated with epithelial 
cells (A, C and E). An isotype control antibody was used to estimate non-specific 
binding (B, D and F). Original magnification x 400. 
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Figure 5-3: IL-17RB expression associated with immune cells in diseased 
periodontal tissues  

Expression of IL-17RB in periodontal tissues was determined by 
immunohistochemical analysis using a rabbit anti-IL-17RB antibody (Sigma-
Aldrich®, UK). Panels show representative photomicrographs of 5 μm-thick 
paraffin-embedded sections of periodontal tissue specimens obtained from 
chronic periodontitis patients. Positive staining was associated with invading 
leukocytes (A, C and E). An isotype control antibody was used to estimate non-
specific binding (B, D and F). Original magnification x 400. 
 

5.2.2 Analysis of IL-17 family cytokines in oral keratinocytes 

5.2.2.1 Expression of IL-17 family cytokines mRNA in oral keratinocytes 

The proposed expression of IL-17RB in the epithelial cell layer was indicative of 

oral keratinocytes being a target cell population for this cytokine. Therefore the 

role of oral keratinocytes in IL-17 family cytokine biology was investigated 

further. Basic PCR analysis investigating the expression of IL-17 family cytokine 

receptors in OKF6-TERT-2 cells (an oral keratinocyte cell line) revealed that all 

known IL-17 family receptors; including those purported to mediate IL-17E 

signalling; IL-17RB are expressed (Figure 5-4A). Interestingly, basic PCR analysis 

also indicated that oral keratinocytes may express IL-17B, C and D but do not 

express IL-17A, IL-17E and IL-17F (Figure 5-4B). 
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Figure 5-4: Expression of mRNA for IL-17 family cytokines and their receptors in 
OKF6/TERT-2 cells  

Expression of IL-17 family cytokines and their receptors mRNA in OKF6/TERT-2 
cells was investigated by basic PCR. The figures represent mRNA expression of 
IL-17 cytokine receptor family (A) and mRNA expression of IL-17 family cytokines 
(B). The 100 base pair DNA ladder was used as reference. All bands ran at 
reported sizes for genes of interest (Table 2-5). M = lane containing 100 base 
pair DNA ladder; + = PCR samples with cDNA; - = PCR samples with water in 
place of cDNA; and N = PCR with samples from no-RT (reverse transcriptase) 
controls. 
 

Figure 5-4B showed that IL-17E mRNA was not expressed by OKF6/TERT-2 oral 

keratinocytes. However, these cells were unstimulated. Therefore to determine 

whether bacterial challenge with a known periodontal pathogen would induce 

expression of IL-17E and other IL-17 family cytokines the in vitro model of P. 

gingivalis infection described previously was employed.  

Figure 5-5 shows that IL-17A, IL-17E and IL-17F mRNA are not expressed by 

OKF6/TERT-2 oral keratinocytes; even after stimulation with a live P. gingivalis 

monospecies biofilm. In addition, the real-time analysis confirmed that IL-17B, 

IL-17C and IL-17D are expressed by OKF6/TERT-2 oral keratinocytes. However, 

expression of none of these cytokines was upregulated in response to stimulation 

by a live P. gingivalis monospecies biofilm. 



 

 235

       
Figure 5-5: The effect of a live P. gingivalis monospecies biofilm on IL-17 family 
cytokine mRNA expression by OKF6/TERT-2 cells 

Quantification of IL-17 family cytokines mRNA expression (A – F) in OKF6/TERT-2 
cells was performed by real-time PCR. The bars represent mean relative 
expression (2-CT) of IL-17 family cytokine mRNA in unstimulated (Control) and a 
live P. gingivalis monospecies biofilm (Biofilm) stimulated OKF6/TERT-2 cells at 
3 and 24 h. RNA polymerase II was used as a reference gene. The data was 
generated from duplicate wells of three independent experiments.  Statistical 
analyses were carried out using the independent t-test (IBM SPSS Statistics, 
version 19) on the natural log transformed IL-17 family cytokines mRNA relative 
expression (2-CT) values. NS = not significant (p > 0.05). Error bars indicate the 
standard error of the mean (SEM).  
 

As the basic PCR analysis suggested that oral keratinocytes express both IL-17RA 

and IL-17RB (reported to be required for IL-17E signalling) we also investigated if 

P. gingivalis induced elevated expression of these receptors. Figure 5-6 shows 

that OKF6/TERT-2 cells constitutively express both IL-17RA and IL-17RB mRNA 

and P. gingivalis does not induce changes in mRNA expression.  
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Figure 5-6: The effect of a live P. gingivalis monospecies biofilm on IL-17RA and 
IL-17RB mRNA expression by OKF6/TERT-2 cells 

Quantification of IL-17RA and IL-17B mRNA expression in OKF6/TERT-2 cells was 
performed by real-time PCR. The bars represent mean relative expression (2-

CT) of IL-17RA (A) and IL-17RB (B) mRNAs in unstimulated (Control) and a live P. 
gingivalis monospecies biofilm (Biofilm) stimulated OKF6/TERT-2 cells at 3 and 
24 h. RNA polymerase II was used as a reference gene. The data was generated 
from duplicate wells of three independent experiments. Statistical analyses 
were carried out using the independent t-test (IBM SPSS Statistics, version 19) on 
the natural log transformed IL-17 family cytokines mRNA relative expression (2-

CT) values. NS = not significant (p > 0.05). Error bars indicate the standard 
error of the mean (SEM). 
 

5.2.2.2 IL-17E negatively regulates P. gingivalis induced chemokine 
expression by oral keratinocytes 

The fact that oral keratinocytes express IL-17RA and IL-17RB indicated that 

these cells were a target for IL-17E signalling. Literature suggests that IL-17E can 

act as a negative regulator of bacterially induced inflammatory mediator 

expression by numerous cell types including CD4+ T cells and macrophages 

(Stolfi, et al., 2011; Zaph, et al., 2008). Therefore, the effect of IL-17E on P. 

gingivalis induced expression of chemokines by oral keratinocytes was 

investigated in vitro.  
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Figure 5-7 showed that rhIL-17E alone had no effect on OKF6/TERT-2 cells 

expression of IL-8 and CXCL5. In contrast, stimulation with a live P. gingivalis 

monospecies biofilm induced increased expression of both chemokines at the 

mRNA and protein level. Interestingly, however, exposure of OKF6/TERT-2 cells 

to rhIL-17E 30 min prior to stimulation with a live P. gingivalis monospecies 

biofilm led to a significant decrease in the P. gingivalis induced expression of 

both chemokines. 

 

     
Figure 5-7: Effect of IL-17E on P. gingivalis induced expression of CXCL8 (IL-8) 
and CXCL5 by OKF6/TERT-2 cells 

Quantification of IL-8 and CXCL5 mRNA expression and supernatant protein 
levels were performed by real-time PCR and ELISA respectively. The bars 
represent mean relative mRNA expression (2-CT) of IL-8 (A) and CXCL5 (C), and 
mean supernatant level of IL-8 (B) and CXCL5 (D) in three stimulation conditions 
of OKF6/TERT-2 cells at 4 and 24 h: rhIL-17E (50 ng/ml), biofilm, or combination 
of rhIL-17E (50 ng/ml) and biofilm. Unstimulated wells acted as a control. For 
real-time PCR analysis GAPDH was used as a reference gene. The data was 
generated from duplicate wells of three independent experiments. Statistical 
analysis of ELISA and real- time PCR data were performed on the natural log 
transformed values using the ANOVA with a Bonferroni correction (IBM SPSS 

Statistics, version 19). * = compare to control (p < 0.05); # = compare to biofilm 
only (p < 0.05); and NS = not significant. Error bars indicate the standard error of 
the mean (SEM). 
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5.2.2.3 IL-17E negatively regulates IL-17A induced IL-8 expression by oral 
keratinocytes 

Previous studies from our laboratory have demonstrated that IL-17A induces a 

pro-inflammatory expression profile in OKF6/TERT-2 cells; including promotion 

of IL-8 and CXCL5 expression (Culshaw et al, unpublished). The negative 

correlations between levels of IL-17A and IL-17E and clinical parameters of 

periodontal disease described previously along with the findings in Figure 5-7 led 

to the hypothesis that IL-17E may also negatively regulate the IL-17A induced 

expression of chemokines by oral keratinocytes. This was therefore investigated 

in vitro.  

In the first instance OKF6/TERT-2 cells were stimulated concurrently with rhIL-

17A and rhIL-17E. Figure 5-8A shows stimulation of OKF6/TERT-2 cells with rhIL-

17A alone for 24 h induced significant release of IL-8 (p < 0.01). In contrast, 

stimulation with rhIL-17E alone had no significant effect on IL-8 release.  A 

linear analysis showed there was a dose-dependent decrease in rhIL-17A-induced 

IL-8 release from OKF6/TERT-2 cells when stimulated concomitantly with varying 

concentrations of rhIL-17E. However, post-test analysis revealed a significant 

inhibitory effect only with 400 ng/ml rhIL-17E (p < 0.01).  

In the second instance OKF6-TERT-2 cells were stimulated with varying 

concentrations of rhIL-17E for 30 min prior to stimulation with rhIL-17A.  Figure 

5-8B shows stimulation with rhIL-17A alone for 24 h induced significant release 

of IL-8 (p < 0.01). The ANOVA analysis showed there was a dose-dependent 

decrease in rhIL-17A-induced IL-8 release from OKF6/TERT-2 cells when 

stimulated with varying concentrations of rhIL-17E 30 min prior to rhIL-17A (p < 

0.01). On this occasion, a significant inhibition of rhIL-17A induced IL-8 release 

was observed with all concentrations of rhIL-17E. Real-time PCR analysis was 

employed to determine whether the inhibitory effect of IL-17E was mediated at 

the transcriptional level. Figure 5-8C shows that stimulation of OKF6/TERT-2 

cells with rhIL-17A alone induced a significant increase in IL-8 mRNA expression 

in comparison to control unstimulated cells. Furthermore, 30 min pre-

stimulation with 10 and 50 ng/ml rhIL-17E reduced the rhIL-17A induced 

upregulation of IL-8 mRNA expression. However, this reduction was only 

significant when cells were pre-stimulated for 30 min with 50 ng/ml rhIL-17E.
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Figure 5-8: Effect of IL-17E on IL-17A induced expression of CXCL8 (IL-8) by 
OKF6/TERT-2 cells 

Quantification of IL-8 mRNA expression and IL-8 bathing supernatant protein 
levels were performed by real-time PCR and ELISA respectively. (A) The bars 
represent mean supernatant level of IL-8 release from OKF6/TERT-2 cells 
stimulated concomitantly with combination of rhIL-17A and rhIL-17E (see x axis 
for concentration). (B) The bars represent mean supernatant level of IL-8 release 
from OKF6/TERT-2 cells pre-incubated with rhIL-17E for 30 min prior to 
stimulation with rhIL-17A (see x axis for concentrations). (C) The bars represent 
mean relative mRNA expression (2-CT) of IL-8 from OKF6/TERT-2 cells pre-
incubated with rhIL-17E for 30 min prior to stimulation with rhIL-17A (see x axis 
for concentrations). Unstimulated wells acted as a control. The data was 
generated from duplicate wells of three independent experiments. For real-time 
PCR analysis GAPDH was used as a reference gene. Statistical analysis of ELISA 
and real-time PCR data were performed on the natural log transformed values 
using the ANOVA with a Bonferroni correction (IBM SPSS Statistics, version 19). * 
= compare to control (* = p < 0.05, ** = p < 0.01); and # = compare to IL-17A (10 
ng/ml) only (# = p < 0.05, ##= p < 0.01). Error bars indicate the standard error of 
the mean (SEM).  
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5.2.2.4 IL-17E negatively regulates the IL-17A induced response of oral 
keratinocytes through NF-κB mediated pathways 

Previous research has demonstrated that IL-17E negatively regulates expression 

of cytokines (i.e., IL-1β, IL-6, IL-12 and TNF-α) by LPS and peptidoglycan 

stimulated CD4+ T cells. This inhibition of expression occurs through induction of 

SOCS3 (Suppressor of cytokine signalling 3) via p38 MAP kinase activation 

(Caruso, et al., 2009b). Evidence suggests that SOCS3 expression limits the 

activation of NF-κB in granulocytes (Chhabra et al., 2014). We therefore 

investigated the effect of IL-17A/IL-17E on intracellular levels of two 

phosphorylated forms of the NF-κB p65 subunit implicated in the process of 

nuclear translocation, and therefore NF-κB p65 subunit activation, using the 

FACETM NF-κB p65 Profiler (Active Motif, UK).  

Figure 5-9A shows stimulation of OKF6/TERT-2 cells with 10 ng/ml rhIL-17A 

caused significantly elevated phosphorylation of the NF-κB p65 subunit at serine 

468 (p < 0.05). Furthermore, there was a significant decrease in rhIL-17A 

induced NF-κB P65 serine 468 subunit phosphorylation when 50 ng/ml rhIL-17E 

was added to the cultures 30 min prior (p < 0.05). Likewise, stimulation of 

OKF6/TERT-2 cells with 10 ng/ml rhIL-17A caused significantly elevated 

phosphorylation of the NF-κB p65 subunit at serine 536 (p < 0.05) (Figure 5-9B). 

In addition, there was a significant decrease in rhIL-17A induced NF-κB P65 

serine 536 subunit phosphorylation when 50 ng/ml rhIL-17E was added to the 

cultures 30 min prior (p < 0.05) (Figure 5-9B).  
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Figure 5-9: Effect of IL-17E on IL-17A induced phosphorylation of the NF-κB p65 
subunit at serine 468 and serine 536 by OKF6/TERT-2 cells 

Quantification of NF-κB p65 subunit phosphorylation was carried out using the 
FACETM NF-κB p65 Profiler (Active Motif, UK). (A) The bars represent the mean 
angular transformed % of NF-κB p65 subunit phosphorylated at serine 468 pre-
incubated with IL-17E for 30 min prior to stimulation with IL-17A (see x axis for 
concentrations). (B) The bar represent mean angular transformed % of NF-κB p65 
subunit phosphorylated at serine 536 pre-incubated with IL-17E for 30 min prior 
to stimulation with IL-17A (see x axis for concentrations). Unstimulated wells 
acted as a control. The data was generated from duplicate wells of three 
independent experiments. Statistical analysis was performed on angular 
transformed data using the ANOVA with a Bonferroni correction (IBM SPSS 

Statistics, version 19). * = compare to control (* = p < 0.05); and # = compare to 
IL-17A (10 ng/ml) only (# = p < 0.05). Error bars indicate the standard error of 
the mean (SEM). 
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5.3 Discussion 

Immunohistochemical analysis revealed for the first time expression of IL-17E 

and IL-17RB in gingival tissue samples of chronic periodontitis patients (Figure 5-

1 and 5-2). These IL-17E positive stained cells were found to associate with 

blood vessels as well as invading leukocytes, but not epithelial cells. In contrast, 

IL-17RB was observed to be expressed by invading leukocytes in gingival tissue 

samples of chronic periodontitis patients and at lower levels in epithelial cells. 

The expression of IL-17E in the periodontium was confirmed at the mRNA level in 

gingival tissue samples (Figure 4-4). In addition, both real-time and basic PCR 

analysis, using different primer sets, demonstrated a lack of IL-17E mRNA 

expression by oral keratinocytes (Figure 5-4 and 5-5), which was in agreement 

with the immunohistochemical findings (Figure 5-1). In contrast, both real-time 

and basic PCR analysis, again using different primer sets, showed that IL-17RB 

mRNA was expressed by oral keratinocytes (Figure 5-4 and 5-6); which was in 

agreement with the immunohistochemical findings (Figure 5-2).  The findings 

presented in this thesis are in line with previous findings that showed 

immunochemical staining of IL-17E in endothelial cells and invading 

inflammatory cells in chronic inflammatory disease tissue samples from the 

cerebrum of multiple sclerosis patients, bronchus of asthma patients, coronary 

artery of atherosclerosis patients, skin of atopic dermatitis patients and colon of 

ulcerative colitis patients   (Corrigan et al., 2011; de Boer et al., 2010; Hvid et 

al., 2011; Letuve, et al., 2006; Sonobe, et al., 2009). However, in contrast to 

our findings, immunohistochemical staining of IL-17E was observed in epithelial 

cells of atopic dermatitis patients and colon of ulcerative colitis patients 

(Caruso, et al., 2009b; Hvid, et al., 2011). Immunohistochemical staining of IL-

17RB has also been observed in endothelial cells,  inflammatory cells and 

epithelial cells in tissue from the artery of atherosclerosis patients, skin of 

atopic dermatitis patients and skin of psoriasis patients (Corrigan, et al., 2011; 

de Boer, et al., 2010; Hvid, et al., 2011; Kim et al., 2013a). 

In this study IL-17E and IL-17RB protein was detected immunohistochemically 

using a mouse monoclonal anti-IL-17E antibody (Abcam®, UK) and a rabbit anti-

IL17RB antibody (Sigma-Aldrich®, UK), respectively. Use of the mouse 

monoclonal anti-IL-17E antibody (Abcam®, UK) has not been previously reported 

in the literature. In contrast, use of the rabbit anti-IL17RB antibody (Sigma-
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Aldrich®, UK) has been reported in a previous immunohistochemical study (de 

Boer, et al., 2010). Due to the limited number of publications using these 

antibodies, a limitation of this study is that specificity was not investigated in as 

greater detail as the IL-33 antibody (Section 3.3). An appropriate isotype control 

for each antibody was used to exclude the non-specific binding. However, we did 

not have appropriate tissue samples to use as a positive control in this study. In 

addition, due to budget and time restrictions, we were also unable to undertake 

pre-absorption studies. Therefore, the specificity of these antibodies has only 

been partially confirmed. Further studies using a suitable positive control, pre-

absorption with recombinant protein and use of several antibodies against IL-17E 

are required to confirm fully specificity (Burry, 2000, 2011). Nonetheless, the 

pattern of IL-17E staining in periodontal tissue samples is comparable with IL-17E 

staining in other diseased tissue samples (Corrigan, et al., 2011; de Boer, et al., 

2010; Letuve, et al., 2006). In addition, the pattern of IL-17RB cell staining in 

epithelium and connective tissue layer of periodontal tissue samples is 

comparable with the archived staining in normal oral mucosa catalogued in the 

human protein atlas ("The human protein atlas (IL17RB)," 2013). The human 

protein atlas is a publicly available database of comprehensive antibody-based 

protein expression profiles in normal and cancer tissues certified by pathologists 

(Uhlen, et al., 2005; Uhlen, et al., 2010). In this study, we observed IL-17E 

staining in invading leukocytes (determined morphologically). At present, the 

subset(s) of lymphocytes which express IL-17E in diseased periodontal tissue 

remain undetermined. Future studies are required to delineate in detail the 

lymphocyte populations that express IL-17E using double staining with known 

markers of lymphocyte subsets; e.g., CD3 (T cell marker) and CD20 (B cell 

marker) (Batran et al., 2013). 

Our data show increased mRNA expression of IL-17 family cytokines (except IL-

17B) in tissue derived from patients with chronic periodontitis (Section 4.2.2). 

For many of these cytokines the cell types responsible for expression have yet to 

be delineated. As oral keratinocytes are one of the first cell types within the 

periodontium to encounter periodontal pathogens, expression of these cytokines 

by these cells was investigated further. Our basic PCR analysis shows the pattern 

of mRNA expression of IL-17 family receptors and cytokines by unstimulated 

OKF6/TERT-2 cells. mRNA encoding all IL-17 family receptors were found to be 
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expressed by unstimulated OKF6/TERT-2 cells. However only mRNA encoding IL-

17B, IL-17C and IL-17D was expressed by unstimulated OKF6/TERT-2 cells. These 

findings were confirmed by real-time PCR analysis. However, expression of IL-

17B, IL-17C, IL-17D, IL-17RA and IL-17RB mRNA was not upregulated in response 

to P. gingivalis stimulation. In line with our findings, IL-17A mRNA was found not 

to be expressed by human oral keratinocytes (Al-Samadi et al., 2014). However, 

IL-17A, IL-17E and IL-17F were found to be expressed in other epithelial cells, 

including corneal epithelial cells, lung epithelial cells and intestinal/colonic 

epithelial cells (Angkasekwinai, et al., 2007; Arranz-Valsero et al., 2013; 

Ishigame, et al., 2009; Suzuki, et al., 2007; Zaph, et al., 2008). In agreement 

with our findings, IL-17B and IL-17C are also expressed in other epithelial cells, 

including mammary epithelial cells and intestinal epithelial cells (Huang et al., 

2013; Song et al., 2014). However, no studies have previously reported 

expression of IL-17D in any epithelial cell type. As for the IL-17 receptor family, 

our findings are in line with literature that showed expression of IL-17RA, IL-

17RB, IL-17RC and IL-17E in various types of epithelial cells, including gingival 

epithelial cells, oral keratinocytes, mammary epithelial cells, corneal epithelial 

cells, and intestinal epithelial cells (Al-Samadi, et al., 2014; Arranz-Valsero, et 

al., 2013; Huang, et al., 2013; Song, et al., 2014; Takahashi et al., 2011). In 

contrast, no specific reference was found on the expression of IL-17RD on 

epithelial cells.  

Our study shows IL-17E is present in gingival tissue samples of chronic 

periodontitis patients. Although oral keratinocytes were found not to express IL-

17E, they do express IL-17RA and IL-17RB, the receptors required for IL-17E 

signalling (Ely, et al., 2009; Hymowitz, et al., 2001; Lee, et al., 2001; Shi, et 

al., 2000). This indicates that oral keratinocytes are a target for IL-17E 

signalling. Therefore, the role of IL-17E in oral keratinocyte mediated innate 

immune responses was investigated in vitro. Previous literature had 

demonstrated that IL-17E could regulate the innate immune response of 

bacterial LPS stimulated myeloid cells (Caruso, et al., 2009b). Therefore, similar 

in vitro studies were replicated using the OKF6/TERT-2 cell line.  In our 

investigations P. gingivalis upregulated the expression of IL-8 and CXCL5 in 

accordance with previous studies (Barksby et al., 2009; Huang et al., 1998). In 

contrast, IL-17E alone had no effect on IL-8 expression. However, IL-17E 
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inhibited the P. gingivalis induced expression of both these chemokines and this 

inhibition was evident at the transcriptional level (Figure 5-7). In addition, IL-

17E also inhibited IL-17A-induced expression of IL-8 by oral keratinocytes, which 

was again mediated at the transcriptional level (Figure 5-8). This therefore 

implies that IL-17E can directly negatively regulate the pro-inflammatory 

functions of IL-17A. 

IL-17A promotes recruitment of neutrophils and monocytes by inducing 

chemokine expression from a variety of epithelial cells (Shahrara et al., 2009). 

Commensurate with these findings IL-17A induced oral keratinocytes to express 

IL-8. However, the notable inhibition of IL-17A and P gingivalis induced 

expression of IL-8 by IL-17E suggests that IL-17E can regulate neutrophil 

responses in early inflammation. It is known that effective neutrophil responses 

are important for periodontal health (Kinane et al., 2011). Although the 

principle role of neutrophils is protection, these cells can also release a variety 

of factors that can cause tissue damage, including reactive oxygen species, 

collagenases and other proteases (Nathan, 2006; Scott & Krauss, 2012). Chronic 

and persistent activation of neutrophils by a microbial biofilm in the 

periodontium can therefore lead to gingival tissue damage and periodontal 

disease (Nussbaum & Shapira, 2011). Therefore it is important the neutrophil 

migration and activation are tightly controlled. The literature shows increased 

activities of neutrophils are associated with periodontal disease (Kinane, et al., 

2011; Liu et al., 2001). It is known that IL-8 is important chemoattractant for 

neutrophils and IL-8 expression by host cells, such as oral keratinocytes and 

fibroblasts is induced by IL-17A and P. gingivalis (Luo, et al., 2012; Macpherson 

et al., 2014; Mahanonda et al., 2008; Wang & Ohura, 2002). Since our data 

shows IL-17E could negatively regulate the expression of IL-8 by oral 

keratinocytes in response to stimulation with IL-17A and P. gingivalis, the 

presence of IL-17E in periodontal tissue may be important in regulating 

neutrophil migration and therefore be an important immunoregulatory control 

mechanism during early inflammation.   

In our studies we further investigated the potential mechanism by which IL-17E 

can inhibit IL-17A induced expression of IL-8 by oral keratinocytes. IL-17A was 

shown to promote IL-8 expression via intracellular signalling pathways leading to 

the phosphorylation of the NF-κB p65 subunit at serine 536 and serine 468 
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(Figure 5-9). Phosphorylation of serine 536 of the NF-κB p65 subunit has been 

demonstrated to be important in transcription of the IL-8 gene (Buss et al., 

2004), while phosphorylation at serine 468 has been shown to have an important 

role for NF-κB ubiquitination and degradation (Geng et al., 2009). However, 

despite their opposing functions, phosphorylation at serine 536 and 468 occurs 

simultaneously (Mattioli et al., 2004). 

NF-κB is a complex of proteins responsible for cytokine production and cell 

survival through control over DNA transcription (Memet, 2006). The NF-κB family 

of proteins has 5 members including; p50, p52, RelA (p65), c-Rel and RelB 

(Hoffmann et al., 2006; Moynagh, 2005). These proteins exist in homo- or 

hetero-dimeric forms and remain inactive in the cell cytoplasm by binding to 

IκBs. IκBs are inhibitory molecules that prevent translocation of NF-κB into the 

nucleus (Memet, 2006). Activation of either the classical or alternative pathway 

leads to ubiquitination and degradation of IκBs through phosphorylation events 

that free NF-κB for nuclear translocation (Lawrence, 2009; Memet, 2006). It is 

known that the classical pathway is stimulated by microorganisms and cytokines 

(including IL-17A) which results in activation of the NF-κB p65 subunit (RelA) 

complex (Karin & Ben-Neriah, 2000; Olsson Akefeldt et al., 2013; Xie et al., 

2010). In contrast, proteins such as CD40 ligand, RANKL and BAFF (B-cell 

activating factor) are known to stimulate the alternative pathway which results 

in activation of the NF-κB RelB complex (Lawrence, 2009). 

In line with literature, our study shows increased phosphorylation of the NF-κB 

p65 subunit at serine 536 and serine 468 by oral keratinocytes occurs upon 

stimulation with IL-17A (Figure 5-9). Interestingly, the data shows that when oral 

keratinocytes are primed with IL-17E prior to IL-17A stimulation, the 

phosphorylation of the NF-κB p65 subunit at serine 536 and serine 468 is 

decreased. There is no evidence in the literature demonstrating that IL-17E can 

directly inhibit NF-κB phosphorylation. The mechanism by which IL-17E promotes 

this inhibitory effect is currently unknown. It could be due to the result of 

competing for the same receptor as both IL-17A and IL-17E require IL-17RA for 

intracellular signalling (Ely, et al., 2009; Hymowitz, et al., 2001; Toy, et al., 

2006). However, this remains a matter of conjecture and further study is 

required to understand in detail the pathway(s) involved. 
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Based on the findings in this study, and the current literature, it could be argued 

that increased expression of IL-17E in periodontal tissue occurs as an attempt to 

down-regulate the damaging localised periodontal inflammatory response. 

Th17/IL-17A responses have been shown to be associated with inflammatory 

tissue damage in chronic inflammatory diseases, including periodontal disease, 

rheumatoid arthritis and inflammatory bowel diseases (Adibrad, et al., 2012; 

Feng et al., 2011; Leipe et al., 2010). Since in vitro data show that IL-17E is 

capable of inhibiting Th17 responses via IL-4 and IL-13 (Angkasekwinai, et al., 

2007; Cooney, et al., 2011; Harrington, et al., 2005; Kleinschek, et al., 2007; 

Park, et al., 2005; Wang, et al., 2007b), it is possible that one role of IL-17E in 

inflammatory disease pathogenesis is to inhibit Th17/IL-17A pro-inflammatory 

responses. In addition, in vivo studies using a collagen-induced arthritis model 

showed that increased expression of IL-17A occurs during early stage disease, 

whereas increased expression of IL-17E occurs during the later stages and is 

associated with enhanced production of IL-4 (Kaiwen et al., 2012). Additionally, 

in vivo, using a Chlamydia muridarum lung infection mouse model, elevated IL-

17E expression in the lung was shown to occur during the latter stages of 

infection, whilst IL-17A expression occurred during the early stages (Mosolygo et 

al., 2013). These studies add weight to the hypothesis that IL-17E expression 

occurs as a mechanism to regulate Th17/IL-17A responses.  

In summary, our data show expression of IL-17E and it receptors (IL-17RA and IL-

17RB) in periodontal tissues. This indicates possible involvement of IL-17E in 

pathogenesis of periodontal disease. In vitro analysis shows that IL-17E is 

capable of negatively regulating the IL-17A and P. gingivalis induced expression 

of chemokines (i.e., IL-8 and CXCL5) by oral keratinocytes. In addition, this 

negative regulation occurs at the transcriptional level and is mediated by 

inhibition of phosphorylation and therefore activation of the NF-κB p65 subunit. 

The finding that IL-17E acts as an anti-inflammatory cytokine in periodontal 

tissues may be of major importance for studies into IL-17A/Th17 induced 

pathologies. However, further studies are required to look in detail at the 

mechanisms by which IL-17E perpetrates its anti-inflammatory effects.  
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Chapter 6: General discussion 
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The major findings of this study are as follows: 

1. IL-33 and its receptors (ST2L and sST2) are expressed in gingival tissue 

samples and the expression of IL-33 (mRNA and protein), as well as sST2 

(mRNA) is up-regulated in gingival tissue samples of chronic periodontitis 

patients.  

2. IL-33 and its receptors (ST2L and sST2) are expressed in oral 

keratinocytes. In addition, the periodontal pathogen, P. gingivalis, is 

capable of inducing oral keratinocytes to upregulate the expression of IL-

33.  

3. There are associations between serum, GCF and saliva levels of IL-17 

family cytokines and IL-10 with clinical outcomes of chronic periodontitis. 

4. The clinical association studies suggest that IL-17A, IL-17F and the IL-

17A/F heterodimer may have pro-inflammatory functions, whilst IL-17E 

may have anti-inflammatory functions in pathogenesis of chronic 

periodontitis. 

5. IL-17E is capable of negatively regulating the IL-17A and P. gingivalis 

induced expression of chemokines (i.e., IL-8 and CXCL5) by oral 

keratinocytes. 

6. IL-17E mediates its anti-inflammatory function at the transcriptional level 

by inhibiting activation and therefore nuclear translocation of the NF-κB 

p65 subunit in oral keratinocytes. 

Cytokines are known to play an important role in maintaining tissue homeostasis. 

They are also shown to play roles in defence against pathogens by co-ordinating 

both innate and adaptive immune mechanisms. For examples, cytokines can 

induce increased expression of pattern recognition receptors (e.g., TLR’s); 

promote chemotaxis of phagocytes (polymorphonuclear leukocytes and 

macrophages) and also promote activation and proliferation of T cell populations 

and antibody producing B lymphocytes (Espinassous, et al., 2009; Modi, et al., 

1990; Takatsu, 1997; Taub, et al., 1993). In addition, cytokines also play 
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important roles in regulating tissue repair. Indeed, cytokines can co-ordinate 

tissue re-modelling by mechanisms such as inducing extracellular matrix 

production by fibroblasts (Appleton, 1994).  

Despite the important role cytokines play in tissue homeostasis and protection 

against pathogens, it is important that their activity occurs in a controlled 

‘balanced’ manner. Cytokines are known to interact and function in networks 

(Balkwill & Burke, 1989; Nathan & Sporn, 1991). In simplistic terms, cytokines 

can be grouped into two classes: pro-inflammatory and anti-inflammatory. The 

biological activity of these two classes plays an important role in regulating 

cytokine networks and ensuring a ‘balanced’ response. The balanced activities 

between the two groups of cytokines are important in initiating the appropriate 

immune response against pathogenic threats whilst also maintaining the integrity 

of host tissues. However, numerous chronic inflammatory pathologies such as 

periodontal disease and rheumatoid arthritis are characterised by an excessive 

inflammatory responses. This dysregulated chronic inflammation is characterised 

by an unbalanced cytokine response (Graves, 2008; Kinane, et al., 2011; McInnes 

& Liew, 2005; McInnes & Schett, 2007). In periodontal tissue, pro-inflammatory 

cytokines such as IL-1 and TNF-α have been shown to drive soft tissue 

destruction via promotion of MMP expression and activation by host cells 

(Birkedal-Hansen, 1993; Reynolds, et al., 1994). In addition, cytokines such as 

IL-1, IL-6, IL-17A and TNF-α have also been shown to drive destruction of hard 

tissues by promoting excessive production of RANKL and inhibiting production of 

OPG, and thus promoting osteoclastogenesis (Quinn & Saleh, 2009). Therefore, 

long standing uncontrolled activity of pro-inflammatory cytokines leads to the 

excessive tissue destruction that manifests clinically in periodontal disease. 

Therefore, a dysregulated cytokine response plays an important role in the 

pathogenesis of periodontal disease.  

The pathogenesis of periodontal disease is characterised by an excessive 

inflammatory response to pathogenic bacteria within dental plaque. This 

inflammation is coordinated by cytokines and chemokines. Indeed, dysregulated 

expression of cytokines is associated with inflammation of periodontal tissue. 

Periodontal pathogens such as P. gingivalis induce expression of numerous 

cytokines and chemokines by cells of the periodontium (Kinane, et al., 2011). 
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The presence of P. gingivalis in dental plaque has been demonstrated to induce 

increased expression of IL-1α, IL-1β, IL-8, IL-17A and TNF-α by various cell types 

such as epithelial cells and macrophages (Bostanci, et al., 2007; Hirschfeld, et 

al., 2001; Kocgozlu, et al., 2009; Luo, et al., 2012; Milward, et al., 2013; Zhou, 

et al., 2005). Furthermore, elevated levels of IL-1α, IL-1β, IL-6, IL-8, IL-17A and 

TNF-α are associated with periodontal disease (Graves, 2008). Hence excessive 

levels of pro-inflammatory cytokines and chemokines are associated with disease 

outcome. However, the biological role of many of these mediators in the 

pathogenesis of periodontal disease remains unclear. Furthermore, it is now 

known that anti-inflammatory cytokines can act to regulate the inflammatory 

response within tissues and therefore it is now hypothesised that cytokines and 

chemokines act in ‘networks’ to ensure an appropriate and coordinated immune 

response. In terms of periodontal tissue we do not fully understand the 

complexity of these networks, how they are regulated in health and the factors 

that lead to a dysregulated response as observed in periodontal disease (Figure 

6-1). Therefore, key cytokine networks still remain to be studied which will aid 

our understanding of the pathogenesis of periodontal diseases. 
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Figure 6-1: Proposed cytokine networks involved in co-ordinating the innate and 
adaptive arms of the periodontal immune response and their role in transition 
from periodontal health to disease 

The presence of periodontal pathogens in the subgingiva activates innate and 
adaptive immune responses. These immune responses are regulated by networks 
of cytokines and chemokines and are tightly regulated. In certain individuals 
however, these networks are pushed toward pro-inflammatory pathways that are 
over-excessive for the perceived threat. Therefore, periodontal tissue 
destruction and bone resorption occur. The figure is taken from the Journal of 
Clinical Periodontology (Kinane, et al., 2011). Permission to reproduce this 
figure has been granted by John Wiley & Sons, Inc.  
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As mentioned previously, the role of numerous individual cytokines in the 

pathogenesis of periodontal disease is still a matter of debate. Since IL-33 was 

shown to play a role in pathogenesis of chronic inflammatory diseases such as 

rheumatoid arthritis, inflammatory bowel disease and atopic dermatitis (Miller, 

2011), we anticipated that IL-33 would play a role in periodontal disease 

pathogenesis. In our study, we found that IL-33 and its receptors (ST2L and sST2) 

are expressed in periodontal tissue. In addition, the expression of IL-33 (mRNA 

and protein) and sST2 (mRNA) are increased in diseased tissue. Furthermore, in 

vitro we showed that oral keratinocytes express IL-33, ST2L and sST2; and 

expression of IL-33 (protein and mRNA) is increased in these cells after 

stimulation with a live P. gingivalis monospecies biofilm. These findings 

suggested that IL-33 may have a pro-inflammatory role in periodontal disease. 

Indeed, previous studies have demonstrated that IL-33 can mediate tissue 

destruction and bone loss. For example, IL-33 was shown to promote bone 

resorption in a collagen induced arthritis mouse model (Palmer, et al., 2009). In 

addition, serum levels of IL-33 and MMP-3 were positively correlated in 

rheumatoid arthritis patients, and the serum levels of IL-33 was found to 

associate with arthritic bone resorption (Xiangyang, et al., 2012). However, 

whether IL-33 plays a similar role in destruction of periodontal tissues and 

alveolar bone remains to be elucidated. Indeed, despite evidence suggesting IL-

33 mediates tissue destruction and bone loss in rheumatoid arthritis (Beltran, et 

al., 2010; Louten, et al., 2011; Xu, et al., 2008), studies have also demonstrated 

that IL-33 may actually play a protective anti-inflammatory role in 

atherosclerosis, hepatitis, obesity and type 2 diabetes (Miller, 2011; Miller et 

al., 2010; Miller et al., 2008; Sanada, et al., 2007; Volarevic et al., 2012). The 

differences in the role of IL-33 in varying pathologies are currently unknown. 

However, it could be due to differential regulation in tissues. Furthermore, as 

cytokines operate in ‘networks’ the function of IL-33 may not also be dependent 

on the tissue in which it is expressed but also its interactions with other 

cytokines and chemokines. Therefore, an understanding of the role of a cytokine 

in a ‘network’ may be more important than understanding their roles in 

isolation. 

The importance of investigating the relationship between networks of cytokines 

and disease was emphasised by our IL-17 family cytokine study. This study 
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showed that levels of IL-17A, IL-17F and IL-17A/F heterodimer are found 

increased in clinical samples (i.e., serum, GCF and saliva) of chronic 

periodontitis patients compared to healthy subjects, and levels of these 

cytokines were positively associated with clinical parameters for periodontal 

disease (CPD, CAL and BOP). In addition, levels of these cytokines positively 

correlated to each other. These findings suggested that IL-17A, IL-17F and the 

IL-17A/F heterodimer play a pro-inflammatory role in periodontal disease 

pathogenesis as has been demonstrated for other chronic inflammatory diseases 

(Iwakura, et al., 2011; Kolls & Linden, 2004). For example, IL-17A and IL-17F 

were shown to induce increased expression of MMPs (e.g., MMP-1, MMP-3, MMP-8 

and MMP-13) by chondrocytes and synovial cells (Tanigawa et al., 2011; Toh et 

al., 2010). MMPs are known to associate with destruction of soft tissue and 

cartilage in inflammatory conditions. Ex vivo, IL-17A was shown to induce 

released of MMP-1 and increased collagenase activity by synovium explant of 

rheumatoid arthritis (Chabaud et al., 2000). In addition, injection of murine IL-

17A into mouse knee joint was shown to degrade the joint cartilage (Chabaud et 

al., 2001). IL-17A, via RANKL was also shown to stimulate osteoclastogenesis and 

bone erosion in arthritis mouse model (Lubberts et al., 2003). 

Interestingly, the study shows serum levels of IL-17E and IL-10 are decreased in 

patients with chronic periodontitis, and serum levels negatively correlate with 

clinical parameters (CPD, CAL and BOP). Furthermore, the study shows serum 

levels of IL-17E and IL-10 are negatively correlated with serum levels of IL-17A. 

Indeed, the serum IL-17A:IL-17E and IL-17A:IL-10 ratio both negatively 

correlated with all clinical parameters (CPD, CAL and BOP). These findings 

indicate that IL-17E and IL-10 play opposing roles to IL-17A in periodontal 

immunity. Indeed, it could be hypothesised that IL-17E and IL-10 act as anti-

inflammatory cytokines as suggested by the literature (Caruso et al., 2011; 

Moore, et al., 2001; Sabat, et al., 2010). Therefore, as IL-17A is a pro-

inflammatory cytokine, it could be said that periodontal disease is characterised 

by increased levels of pro-inflammatory cytokines in conjunction with decreased 

levels of anti-inflammatory cytokines. The role of IL-10 as an anti-inflammatory 

cytokine in periodontal disease is well established (Al-Rasheed, et al., 2003; 

Sasaki, et al., 2004). The literature on IL-17E and periodontal disease is however 
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in its infancy. However, studies in other disease models have suggested an anti-

inflammatory role for IL-17E (Caruso, et al., 2011).  

Studies investigating clinical associations between levels of mediators in 

biological fluids and disease state are useful for determining a role in disease 

pathogenesis. However, in order to fully understand the biological significance 

of such findings more detailed studies are required (i.e., in vitro and in vivo). 

Among the interesting findings in our clinical association study was the positive 

correlation between the serum IL-17A:IL-17E ratio and clinical parameters (CPD, 

CAL and BOP). Further investigations began to delineate the biological 

significance of this finding and in vitro it was shown that IL-17E negatively 

regulates NF-κB p65 mediated increased expression of IL-8 by oral keratinocytes 

stimulated with IL-17A. Furthermore, IL-17E also negatively regulated the P. 

gingivalis induced expression of IL-8 by oral keratinocytes. These findings 

indicate that IL-17A and IL-17E are true pro- and anti-inflammatory cytokines 

respectively. Previous studies similarly demonstrated that IL-17A induces 

increased release of IL-8 via activation of the NF-κB transcription factor in 

fibroblast-like synoviocytes (Hwang et al., 2004). However, how IL-17E 

negatively regulates NF-κB p65 activation is not known. It is possible that IL-17E 

may have an indirect effect on NF-κB p65 activation as IL-17A and IL-17E share 

the same receptor (IL-17RA). Therefore, inhibition of activation could be simply 

due to the fact that IL-17E competes with IL-17A for the same receptor. 

However, further studies are required to delineate the mechanisms involved in 

more detail. Indeed, competition for receptors suggests that there is even more 

complex interplay between IL-17 family cytokines which we are yet to discover. 

Studies suggest that although IL-17A, IL-17F and IL-17A/F all have pro-

inflammatory cytokine activity (Hu et al., 2011), their ability to activate an 

innate immune response varies subtly due to differential affinities for IL-17RA 

(Kuestner, et al., 2007; Liang, et al., 2007; Wright, et al., 2007). Hence, 

competition for the same receptor and differential binding affinities may be a 

further mechanism by which activity of IL-17 family cytokines are regulated. 

However, there is still a lot more to understand about individual members of the 

IL-17 family of cytokines and their receptors before we can begin to speculate 

how this family operates in a network to co-ordinate immune responses. 
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Recently a link between IL-33 and IL-17E has been discovered. Both IL-17E and 

IL-33 are known to induce a Th2 immune response (Eiwegger & Akdis, 2011). In 

addition, it was shown that elevated expression of IL-33 in the lung tissues of 

house dust mite allergy is IL-17E dependent (Gregory et al., 2013). IL-17E and/or 

IL-33 are known to be capable of activating innate immune cells including 

natural helper cells (NHCs), multi-potent progenitor type 2 (MPPtype2) cells, 

nuocytes, and innate type 2 helper (Ih2) cells, and also promote a Th2 response 

by stimulating the release of IL-4, IL-5 and IL-13 (Saenz et al., 2010a; Saenz, et 

al., 2010b; Salimi et al., 2013). Since IL-4 and IL-13 are known to inhibit Th17 

cells response (Cooney, et al., 2011; Harrington, et al., 2005; Park, et al., 

2005), there is also a possibility that IL-33 and IL-17E can also inhibit the Th17 

response. These findings suggest that the association between IL-17A, IL-17E and 

IL-33 in periodontal disease pathogenesis is an exciting area for further study. 

Indeed, in vivo studies using a mouse model of periodontal disease would be 

beneficial in determining the role of these cytokines individually and collectively 

in the pathogenesis of periodontal disease.  

The Immune system is in dynamic equilibrium, regulated by networks of 

cytokines. Under normal physiologic conditions, the activities of these cytokine 

networks are balanced between activities of pro- and anti-inflammatory 

cytokines. However in chronic inflammatory diseases such as chronic 

periodontitis and rheumatoid arthritis, the balance of these cytokine network 

activities are found to tip towards pro-inflammatory (Preshaw & Taylor, 2011; Xu 

et al., 2013). A complete understanding of this un-balanced cytokine network 

activity in periodontal disease is important if immune modulation therapy is to 

be considered for treatment of the disease. Immune modulation therapy could 

be used to potentially restore the balance between the pro- and anti-

inflammatory network activities. Usually, immune modulators in the form of 

either recombinant, synthetic or natural preparations of protein mediator are 

used. There are already many immune modulators that are licenced for human 

use, for example: anakinra, recombinant IL-1RA (Kineret, Amgen Inc., CA) and 

infliximab, a chimeric monoclonal antibody against TNF-α (Remicade, Centocor, 

Inc., Malvem, PA). Immune modulation therapy has been used in the treatment 

of a variety of chronic inflammatory diseases. For example immune modulation 

targeting pro-inflammatory cytokines has been used in treating rheumatoid 
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arthritis. Anakinra (Kineret, Amgen Inc., CA) which is recombinant IL-1RA blocks 

the activity of IL-1 cytokines. In clinical trials Anakinra has been successful in 

treating rheumatoid arthritis and acute gout (Fleischmann et al., 2006; So et al., 

2007). In addition, the TNFRp75-Fc fusion protein (Enbrel®, Enbrel, Immunex, 

Seattle), which is a fusion of soluble TNFRp75 (TNF receptor p75) and Fc portion 

of IgG1, and targets TNF-α has been developed. In clinical trial, subcutaneous 

injection of TNFRp75-Fc was shown to significantly reduce the severity of 

rheumatoid arthritis (Moreland et al., 1997). However, using immune modulators 

to treat periodontal disease has not been as successful as other chronic 

inflammatory disease. In terms of periodontal disease studies looking at patients 

with both arthritis and periodontal disease seemed to show potential for 

immunomodulation therapies. Indeed, for rheumatoid arthritis patients who also 

had chronic periodontitis, intravenous infusion treatment with infliximab (anti-

TNF-α) (Remicade, Centocor, Inc., Malvem, PA) reduced GCF levels of TNF-α and 

improved periodontal status (CPD, CAL and BOP) (Mayer et al., 2009). Similarly, 

Kobayashi and colleagues (2014) showed tocilizumab (a monoclonal anti-IL-6 

receptor antibody) treatment of patients with a combination of rheumatoid 

arthritis and chronic periodontitis also showed an improvement in periodontal 

disease status (CPD, CAL and BOP). However, it could be argued that these were 

indirect effects due to treatment of rheumatoid arthritis and not direct 

therapeutic effects on periodontal disease. 

Treatment of periodontal disease in isolation using immunomodulation therapies 

has been a subject of investigation. In animal studies, anti-cytokine modulators 

were investigated using the Macaca fascicularis primate model of experimental 

periodontitis. Functional-blocking soluble receptors for IL-1 and TNF were 

injected to sites of periodontal destruction and revealed that injection of these 

anti-cytokine modulators reduced periodontitis related alveolar bone loss by 50 – 

60 % (Assuma et al., 1998; Delima et al., 2001). In another studies, OPG (a 

soluble decoy receptor for RANKL) was used as an anti-cytokine modulator. A 

preparation of OPG-Fc fusion protein was intraperitoneally injected to the A. 

actinomycetemcomitans induced (oral inoculation) periodontitis mouse model. 

These studies showed treatment with OPG significantly inhibit the RANKL 

associated alveolar bone loss (Mahamed et al., 2005; Teng, et al., 2000). A study 

was also performed using a C-C motif chemokine receptor 2 (CCR2) antagonist to 
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treat periodontitis using a P. gingivalis-induced periodontitis mouse model. The 

study found that mice treated with CCR2 antagonist exhibited reduced alveolar 

bone loss compared to control mice (Barros et al., 2011). 

Despite successful studies investigating immune modulation therapies for 

periodontal disease in animal model, very few have advanced to human clinical 

trials. Doxycycline, a synthetic non-specific MMP inhibitor, has been investigated 

in human cohorts. Emingil and colleagues (2004) showed 6-month treatment with 

a sub-antimicrobial dose of doxycycline (SDD) (20 mg, twice a day) plus scaling 

and root planing resulted in significant improvement in clinical outcomes and 

this was associated with a reduction of MMP-8 levels in GCF. Similarly, Caton and 

colleagues (2000) showed significant improvement in clinical outcomes (CPD and 

CAL) of chronic periodontitis in patients treated for 9 months with SDD (20 mg, 

twice a day) plus scaling and root planing compared to a parallel placebo group. 

In addition to SDD, therapies targeting arachidonic acid metabolites (e.g., 

thromboxane, prostacyclins and prostaglandins) for treatment of periodontal 

disease have been investigated in human cohorts. Arachidonic acid metabolites  

are pro-inflammatory mediators known to associate with bone resorptive activity 

in periodontal disease (Williams et al., 1989). Non-steroidal anti-inflammatory 

drugs (NSAIDs) such as ibuprofen and aspirin are cyclooxygenase inhibitors that 

block the formation of arachidonic acid metabolites. Chronic periodontitis 

patients treated for 6 months with flurbiprofen (NSAID) (50 mg, twice a day) plus 

dental prophylaxis (teeth cleaning) every three months presented with 

significant less alveolar bone loss compared to the parallel placebo group 

(Jeffcoat et al., 1995). However the use of NSAIDs is associated with increased 

bleeding time, incidence of peptic ulcers and gastrointestinal bleeding (Lanza et 

al., 2009). Hence, the use of these drugs to treat periodontitis has to be 

approached with care. 

Immune modulation therapies may offer therapeutic strategies for treatment of 

periodontal diseases. However, at present our understanding of the role of 

cytokines in periodontal immunity and disease pathogenesis is still lacking 

compared to other diseases. Therefore, before anti-cytokine therapies can begin 

to be considered, studies, such as described in this thesis, are required to 

advance our basic knowledge of periodontal cytokine biology and provide a 
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platform for further research to identify rational targets for therapeutic 

interventions.  
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