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Abstract

This thesis is concerned with the existence and properties of primitive free elements of finite

(Galois) fields.

The key result linking the additive and multiplicative structure of a finite field is the Primi-

tive Normal Basis Theorem; this was established by Lenstra and Schoof in 1987 in a proof which

was heavily computational in nature. In this thesis, a new, theoretical proof of the theorem is

given, and new estimates (in some cases, exact values) are given for the number of primitive

free elements.

A natural extension of the Primitive Normal Basis Theorem is to impose additional condi-

tions on the primitive free elements; in particular, we may wish to specify the norm and trace

of a primitive free element. The existence of at least one primitive free element of GF(qn) with

specified norm and trace was established for n 2: 5 by Cohen in 2000; in this thesis, the result is

proved for the most delicate cases, n = 4 and n = 3, thereby completing the general existence

theorem.



III

Statement

This thesis is submitted in accordance with the regulations for the degree of Doctor of Philosophy

in the University of Glasgow. It is the record of research carried out at the University of Glasgow

between October 1999 and October 2002. No part of it has been previously submitted by me

for a degree at any university.

The ideas for the main results of this thesis have arisen out of my collaboration with my

supervisor, Professor S.D.Cohen; in particular, much of Chapters 3, 5 and 6 is joint work. The

material of Chapters 3, 5 and 6 has been accepted for publication in [8], [9] and [18], respectively.



iv

Acknowledgements

I should like to express my gratitude to my supervisor, Professor S.D. Cohen, for his guidance

and encouragement throughout the period of research. I would also like to acknowledge the

contribution of the late Professor R. W. K. Odoni, who supervised me during the first year of

my PhD. I am grateful to the E.P.S.R.C. for funding my research, and to the Department of

Mathematics of Glasgow University for providing additional financial support during the final

months.

On a personal note, I would like to thank Mum, Dad, Gregory and Tom for their constant

support and encouragement, without which I would have found it much harder to deal with the

highs and lows of PhD life. I would like to thank all my friends, both in Glasgow and beyond,

for listening to my problems, distracting me from work, and helping me to increase my caffeine

intake - there are far too many people in this category to name individually, but special thanks

must go to Ji-Hyang and Michael. Finally, thanks to everyone in the Glasgow University Maths

Department, for making my time here so rewarding and enjoyable.



Contents

1 Introduction

1.0.1 Finite fields and primitive normal bases

1.0.2 Underlying philosophy .

3

3
5

2 Basic results

2.1 The Normal Basis Theorem

2.2 Primitive and free elements over finite fields

2.3 Extension of "primitivity" and "freeness" to divisors

9

9

12

14

3 A new proof of the primitive normal basis theorem

3.1 Introduction.

3.2 Reductions .

3.3 An expression for N(m, g)

3.4 A sieving inequality and some applications.

3.5 Key strategy .

3.6 The key strategy in action.

3.7 The factorisation of 9

22

22

23

26
31

33
35

39

4 Counting generators: further estimates

4.1 Exact values in special cases ...

4.2 Better Bounds for N (Q, xn - 1) .

4.2.1 Better bounds using Stickelberger's theorem.

4.2.2 Better bounds using Davenport-Hasse theorem

4.2.3 Sieving in action . . . . . . . . . .

4.3 How many free elements are non-squares?

45

45
46

47
52
54

56

5 Primitive free quartics with specified norm and trace

5.1 Introduction .

60

60

1



CONTENTS 2

5.2 Preliminaries 62

66

72

74
77

82
82
83

84

84

85
86
88

5.3 Estimates for linear polynomial factors.

5.4 Estimates for integer factors . . . . .

5.5 The proof for general prime powers.

5.5.1 Sieving with atomic divisors.

5.6 The proof for some special prime powers

5.6.1 The case when ~(q2 + 1) is prime.

5.6.2 The case when 151m .....

5.6.3 The use of the Cohen bound

5.6.4 The case when q = 9 . . . . .

5.6.5 The case when direct computation is required.

5.7 The non-zero PNT problem for fields of even order

5.7.1 Computational strategy for remaining cases

6 Primitive free cubics with specified norm and trace

6.1 Introduction.

6.2 Preliminaries

6.3 Estimates for integer factors .

6.4 The (non-zero) PNT problem

6.5 The PFNT problem .....

6.6 Computational strategy for remaining cases

6.7 Concluding remarks .

89
89
90

92

92
95

102

104

A Brief discussion of computational strategy 106

References 109



Chapter 1

Introduction

The purpose of this chapter is to provide sufficient background material to set the main body

of work in context, and to motivate the work of the subsequent chapters. For further details

about the background material, the reader may wish to consult a general reference work such

as [23J.

1.0.1 Finite fields and primitive normal bases

A finite field (also called a Galois field) is a field which contains a finite number of elements. It

is customary to denote by lFq or GF(q) a finite field of q elements (q EN). Clearly a finite field

cannot have characteristic zero, so char IFq = p for some prime p. Then IFq has prime subfield

lFp, and is a (finite dimensional) vector space over IFp. Hence q = pi where p is the characteristic

of the field IFq and f is the degree of IFq over IFp.

Theorem 1.0.1 (Existence and Uniqueness of Finite Fields). For every prime p and

every positive integer i. there exists a finite field with pI elements. Any two finite fields of equal

order are isomorphic.

Thus by the second part of the theorem we are justified in referring to the finite field of

order q. Every subfield of lFq (q = pi) has order pd, where dEN is a divisor of f; conversely,

for any dEN dividing f there exists precisely one subfield of IFq of order pd.

As with all fields, the set of non-zero elements of a finite field IFq (written IFq *) forms an

abelian group with respect to multiplication.

Theorem 1.0.2. For every finite field IFq, the multiplicative group IFq * of non-zero elements of

IFq is cyclic.

A generator of the cyclic group IFq * is called a primitive element of lFq•

3



CHAPTER 1. INTRODUCTION 4

Given a finite field Fq and its degree n extension (n EN), a normal basis of Fqn over Fq

is a basis of Fqn over Fq which consists of all the conjugates (with respect to Fqn jFq) of some

element a in Fqn. Such an a, an additive generator of Fqn, is called a free element of Fqn.

Theorem (Normal Basis Theorem). For any prime power q and n E N, there exists a

normal basis of Fqn over Wq, i. e. there exists an a E Fqn such that {a, aq, aq2 , ... , aqn-1} is a

basis of Fqn over Fq.

The terms primitive and free are correspondingly applied to the minimal polynomials of

primitive and free elements. A manic irreducible polynomial M of degree n over Fq is said to

be primitive if its multiplicative order (necessarily a divisor of q" - 1) is q" - 1 itself. The

polynomial M is said to be free over Fq if and only if its roots constitute an Fq-basis of Wqn;

equivalently, if and only if the additive Fq-order of M (necessarily a divisor of xn - 1) is xn - 1

itself.

The core result linking additive and multiplicative structure is that there exists a E Fqn,

simultaneously primitive and free over lFq,Le. there exists a primitive normal basis of Wqn over

Fq.

Theorem (Primitive Normal Basis Theorem (PNBT». For any prime power q and

n E N, there exists a primitive normal basis of Fqn over IFq, i.e. there exists a primitive element

a E IFqn such that {a, aq, aq2 , ... , aqn-1} is a basis of IFqn over IFq.

In 1952, Carlitz ( [2], [3]) proved the PNBT for "sufficiently large" prime powers q, while

in 1968, Davenport [11] established the result for all n E N when q is prime. The PNBT was

finally proved in its entirety in 1987 by Lenstra and Schoof [22].

As evidenced by its publication in Mathematics of Computation, aspects of the proof of the

PNBT by Lenstra and Schoof were heavily computational, indeed computer-dependent. The

results were presented in the form of tables. Yet, for such an important conceptual result, a

computation-free proof is highly desirable. In Chapter 1, we will develop the number-theoretical

side of the counting argument, thus yielding a proof that does not rely on a computer ( [18]).

Another advantage of our approach is that it enables us to obtain new estimates for the number

of primitive free elements of Fqn (in some special cases, exact evaluation of this quantity is

possible); these results are developed in Chapter 2.

It is natural to ask whether the result of the Primitive Normal Basis Theorem can be

extended by imposing additional conditions on the primitive free element. In particular, we

may wish to prescribe the norm or trace of a primitive free element, equivalent to specifying

the constant term or the coefficient of xn-1 of the corresponding primitive free polynomial.
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In [6], Cohen and Hachenberger showed that, given an arbitrary non-zero element a E lFq, there

exists a primitive element w of lFqn, free over lFq, such that w has (lFqn, lFq)-trace a in lFq, i.e.

Trrqnlrq (w) := 2::~==olwqi = a. Further, in [7] it was shown that, given an arbitrary primitive

element b of lFq, there exists a primitive element w of lFqn, free over IFq,with (lFqn,lFq)-norm b in
, qn_l

lFq, i.e. Nrqn Irq (w) := n~==-olwq
' = w q-l = b.

In [7], Cohen and Hachenberger posed the following question, known as the PFNT-problem

(existence of primitive free elements with prescribed norm and trace). (A similar description

of the above problems would be as PFT, PFN respectively, and later we refer to the analogous

PNT problem.)

Problem 1.0.3. Given a finite extension IFqn/lFq of Galois fields, a primitive element b in lFq

and a non-zero element a in lFq, does there exist a primitive element W E IFqn, free over IFq,

whose (lFqn, IFq)-norm and trace equal b and a respectively? Equivalently, amongst all polynomials

2::7=0 Cixi (Ci E IFq) of degree n over lFq, does there exist one which is primitive and free, with

Cn-l = -a and Co = (-I)nb? If so for each pair (a,b), then the pair (q,n) corresponding to

lFqn/lFq is called a PFNT-pair.

Observe that the problem is meaningful only for n ~ 3. Clearly the strongest results (and

correspondingly those most challenging to prove) occur for small n since the corresponding

polynomials have fewest "degrees of freedom". The PFNT problem was resolved for all n ~ 5

in [5] (Theorem 1.1); it was observed that the n = 4 case was extremely delicate while the n = 3

case might prove entirely intractable. In Chapters 3 and 4, we solve the PFNT problem in the

affirmative for n = 4 and n = 3; this work has been submitted for publication in [9] and [18].

1.0.2 Underlying philosophy

In attacking the problems which are dealt with in the subsequent chapters, we adopt a consistent

basic approach. In this section, the philosophy underlying this approach will be explained, while

at the same time, we highlight how the treatment of each problem differs according to the nature

of the problem.

In order to establish the existence of (at least) one element of lFqn with certain desired

properties, we derive an expression for the cardinality of the subset of IFqn consisting of elements

possessing these properties; we then demonstrate that this expression must evaluate to a positive

number in every case. Hence, although our problems are stated in terms of finite field elements,

their solutions are reached through the manipulation of inequalities in the rational numbers.

This reformulation of the problem has the advantage of allowing us to draw upon results and

techniques of elementary number theory.
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In the early stages, we follow the approach taken by Davenport and Lenstra and Schoof in

their attempts to prove the PNBT ( [11], [22]). The basic technique is to express the number

of elements of lFqn, both primitive and free over lFq, in terms of character sums over lFq; this

yields estimates which depend on the numbers of the prime factors of qn - 1 and of the irre-

ducible factors of x" - 1. While these quantities can be bounded with enough accuracy for a

"« sufficiently large" argument, it transpires that it is difficult to estimate them with sufficient

precision to establish the result for smaller q and n. This is an inevitable consequence of the

"unpredictability" of factorisation, particularly over the integers; Le. a reflection of the fact

that the behaviour of arithmetic functions such as wand T is somewhat irregular in the small.

The factorisation of the polynomial part is easier to predict than that of the integer part, since

the structure of finite fields forces certain constraints and gives rise to checkable conditions (e.g.

the number of linear factors of xn - 1 is given by (n, q - 1)), while the factorisation of q" - 1 is

entirely idiosyncratic.

In order to overcome these difficulties, we turn our attention to the divisors of qn - 1 and

xn - 1. For given q and n, the properties of qn - 1 and xn - 1 are of course fixed, but divisors

may be selected with specific desirable properties; in particular we may choose divisors whose

factorisation into primes/irreducibles is explicitly known or can be estimated with particular

precision. Thus considering the factors of qn - 1 and z" - 1 gives us more control over the

problem. Another immediate advantage of working with proper divisors of qn - 1 and xn - 1 is

that they are smaller and less complex than the original quantities, thus simplifying calculations.

It transpires that it is helpful to extend the concepts of "primitivity" and "freeness" to the

divisors of qn - 1 and xn - 1. To this end, we make new definitions, so that an element W E lFqn

may be "m-free" for any divisor m of qn - 1 (where "qn - I-free" is equivalent to "primitive"),

and "g-free" for any divisor 9 of xn -1 (where "xn -I-free" is equivalent to "free over lFq"). For

any ml qn -1, gl xn -1, we shall denote by N(m, g) the number of non-zero elements of lFqn that

are both m-free and g-free in lFqn, and fulfil any extra conditions (for example, prescribed norm

and/ or trace) imposed in the statement of the relevant problem. Hence in order to establish a

result about primitive, free elements, it suffices to show that N(qn - 1, xn - 1) is positive, for

every pair (q, n).

Attacking the problem by considering proper divisors of qn - 1 and xn - 1 clearly requires

some theory which enables us to derive results about the original quantities in terms of (results

about) their component factors. Specifically, we require a lower bound for N (qn - 1,z" - 1)

which can be written in terms of N(m, g) for some rnl qn -1, gl xn -1. For this purpose, we use

a sieving technique, on both the additive and multiplicative parts. An additional advantage of
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sieving is that, whereas without the sieve we obtain a contribution from each divisor of qn - 1

and x" - 1, using the sieve means contributions from fewer divisors (which to some extent can

be selected). Application of the sieve depends on a "division" of the factors of qn - 1 and xn - 1

into so-called complementary divisors. To deal with arbitrary q, n E N, we require a uniform

choice of complementary divisors (and corresponding estimates) which allows the sieve to be

both easy to apply and effective "across the board" for the generality of pairs (q, n). A main

part of Chapter 1 is the development of just such a "key strategy" to prove the PNBT. Due

to the unpredictability of integer factorisation mentioned earlier, we make the decision to sieve

exclusively on the additive (z" - 1) part. This is noteworthy since, in previous work on this

area, sieving has been applied to the multiplicative structure; this is the first where the analysis

depends solely on additive sieving.

While this uniform approach is effective in the general case, it inevitably means that we

do not obtain the "best possible" estimates in individual situations, and so for some delicate

cases in Chapter 1, and in Chapter 2, we consider classes of q and n for which more is known

about the quantity and form of the factors of qn - 1 and xn - 1. This allows us to choose

our complementary divisors to get most out of the sieve, and we are rewarded by particularly

precise estimates, and in some cases exact values, for N(m, g) (mlqn - 1, glxn - 1).

In Chapters 3 and 4, the value of n is fixed, and so we know in advance the quantity and

type of the divisors of xn - 1. Hence with these problems the emphasis shifts from seeking

the optimal general solution, to exploiting the idiosyncrasies of the particular case. Since the

n = 4 and n = 3 cases are particularly delicate, it is important here to take into account the

multiplicative part. Whereas in the "general n" situation, a trivial estimate for the number of

square-free divisors of a divisor of q" - 1 suffices, here we use bounds for N{m, I) (mlqn - 1)

which arise from some deep results about Soto-Andrade sums [21]. Further, knowledge of the

factors of x4 - 1 and x3 - 1 allows us to specialise when deriving the estimates from the initial

Gauss sum formulation, leading to increased precision.

A theme which occurs throughout the different problems is that of reduction and simplifica-

tion wherever possible. For example, it transpires that qn_l can be replaced by Q := (q-f~~,~-l)

in most situations (this was in fact noted by Lenstra and Schoof). Such reductions not only

increase the efficiency of our calculations, but are vital in establishing the result in the more

delicate cases.

Despite our best efforts, there are a few values of q and n for which theoretical arguments

remain insufficient, and for these cases we use a computer to search explicitly for elements with

the required properties. Although optimizing the efficiency of our programs is not a major
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priority, in each case we employ a computational strategy specially tailored to the situation, in

order to reduce the number of calculations required and hence the time taken.



Chapter 2

Basic results

In this chapter, we summarise material which will be drawn upon throughout the thesis. Part

of this material consists of well-established number theoretical results, which in general will be

stated without proof; further details may be found in references such as [16], [19], [23], [27]

and [29]. The remainder of the chapter consists of original definitions, results and techniques

which are relevant to each of the problems explored in the thesis, and hence merit a common

treatment at the outset.

2.1 The Normal Basis Theorem

Let F be a field, and let E be an extension field of F, i.e. E is a field which contains F as a

subfield. Clearly E has a natural structure as a vector space over F (where vector addition is

addition in E, and scalar multiplication of ). E F on e E E is just ).e E E). The F-dimension

of E is called the degree of E over F, and is written [E : F]. If [E : F] is finite, E is said to be

a finite extension of F.

An element w of E is algebraic over F if w is the root of some (non-zero) polynomial with

coefficients in F. Equivalently, w is algebraic over F if there exists some integer d (dependent

on w) such that Pd(W) := {I, w, ... ,wd} is linearly dependent over F. If d is minimal with this

property, then there exists a unique polynomial qw(x) = r.f=o Jixi in F[x] such that fd = 1 and

qw(w) = 'L-f=o /iwi = o. This polynomial qw is the monic polynomial in F[x] of least degree

having w as a root, and is irreducible over F; it is called the minimal polynomial of waver

F. An extension E / F is called algebraic if every element of E is algebraic over F. A finite

extension is automatically algebraic.

Consider, for wEE, the "evaluation at w" mapping

¢w : F[x] -t E, a t--t a(w)

9



CHAPTER 2. BASIC RESULTS 10

This is a ring homomorphism. Since F[x] is a P.I.D., the kernel of <Pwequals qwF[x] (the ideal

generated by qw)i qwF[x] is a maximal ideal, since qw is irreducible over F. So the image of

¢1J) is a field. This field is the smallest field which contains both F and Wi it is called "the field

obtained by adjoining W to F" and is denoted by F(w). Considered as a vector space over F,

F(w) has dimension d (= degqw), and clearly P:= {l,w, ... ,wd-1} is an F-basis of F(w). A

basis of this form is called a polynomial basis of F(w) over F.

Henceforth, we shall assume that [E: F] is finite, say [E : F] = n, nE N.

Let G := Gal(E IF) be the set of all field automorphisms , of E which fix F pointwise (i.e.

for all f E F, "tU) = f). Then G is a group, called the Galois group of El F; E is a Galois

extension over F if the cardinality of G equals the degree of E over F. If ElF is Galois, there

exists an element w of E such that E = F(w). So, from above, there exists a polynomial basis

of E over F.

For any element w of E, the conjugates of w (with respect to ElF) are the members of the

set

C(w) := b(w) : , E G}.

Let qw be the minimal polynomial of waver F; its degree d is a divisor of n. Then gw(x) :=

qw(x);i E F[x] is called the characteristic polynomial of waver F, and the roots of gw in E are

the conjugates of w with respect to F.

We may define two mappings from E to F, as follows.

Definition 2.1.1. 1. For wEE, the trace TrE/F(w) of w over F is defined to be the sum

of the conjugates of w with respect to F, i. e.

TrE/F(w) = 2: ,(w).
-rEG

If F is the prime subfield of E, then TrE/F(w) is called the absolute trace of w.

2. For wEE, the norm NE/F{W) ofw over F is defined to be the product of the conjugates

of w with respect to F, i. e.

NE/F(W) = II,(w).
-rEG

Observe that the characteristic polynomial gw(x) = z" + gn_lxn-1 + ... + go of wEE has

the form

gw(w) = II(x - ,(w))
-rEG

and a comparison of coefficients shows that TrE/F(w) = -gn-l and NE/F(W) = (-1)n90i in

particular, the trace and norm functions always take values in F.

The following properties of norm and trace are immediate from the definitions.
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Theorem 2.1.2. • 1. TrE/F(a + (3) = TrE/F(a) + TrE/F((3) for all a, (3 E E,

2. TrE/F(ca) = cTrE/F(a) for all c E F, a E E,

3. Tr E/F is a linear transformation from E onto F, where both E and F are viewed as

vector spaces over F.

2. NE/F maps E onto F and E* onto F*.

Definition 2.1.3. Let wEE. If C(w) := b(w) : 'Y E G} is a basis of E over F, then it is

called a normal basis of E over F, and the normal basis generator w is called a free (normal)

element of E over F.

Example 2.1.4. Let F = lF2 and let E = lFa. Let wEE be a root of the irreducible polynomial

x3 + x2 + 1 in F[x]. Then {w, w2, 1+ w + w2} is a basis of E over F, and it is a normal basis

since 1+w + w2 = w4.

The following theorem asserts that a normal basis exists for every finite dimensional Galois

extension.

Theorem 2.1.5. Let E be a finite dimensional Galois extension over F with Galois group G.

Then there exists wEE suc]i that b(w) : 'Y E G} is a basis for E over F.

Observe that the additive group (E, +) of E can be viewed as a module over the group

algebra FG, where the scalar multiplication is defined by

(~=a-y'Y) * w :=L a-y'Y(w).
-yEG -yEG

Then the Normal Basis Theorem is equivalent to the assertion that there exists wEE such

that

E = {g * w : g E FG},

i.e. (E, +) as an FG-module is cyclic and is isomorphic to FG. The generators of E as an

FG-module are precisely the free elements of E over F. (For more on this representation theory

approach, see the work of Noether [25] and Deuring [12] .)

In what follows, we shall be concerned only with the case when E and F are finite fields.

The Normal Basis Theorem for finite fields was stated without proof by G. Eisenstein [13] in

1850. For the case when !Fp, p prime, a proof was given by T.Schonemann [28], also in 1850.

The case when F is an arbitrary finite field was first proved by K. Hensel [17] in 1888; further,

Hensel was able to calculate the exact number of free elements in extensions over finite fields.
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2.2 Primitive and free elements over finite fields

Suppose henceforth that E and F are finite fields. More precisely, let E be a field of order q";

where q> 1 is a prime power and n 2:: 1 is an integer, and let F be its unique subfield of order

q. Let F be an algebraic closure of F. Denote by p the characteristic of F and E. Then E is a

cyclic Galois extension of degree n over F; a canonical generator of the Galois group of E over

F is the mapping

which is called the Frobenius automorphism of E over F. So we may write G = Gal(Ej F) in

the form G = {id, a, ... ,an-I} where a is the Frobenius automorphism. We may consider a as

an F-linear mapping on E. Then we observe that E carries the structure of a module over the

polynomial ring F[x] (with respect to a) if we define a scalar multiplication

n

f 0u w := fU(w) := Lfwi(w),
i=O

where f = 2:~=oJixi E F[x] and wEE. To see that this viewpoint is natural, observe that for

every 9 E FG, there exists a unique polynomial c = 2:f,;ol Cixi E F[x] of degree at most n - 1

such that, for wEE,

9 * w = CU(w),

and conversely, for each C E F[x] with degc < n, we have CU(w) = 9 * w for some 9 E FG. It

transpires that many well-known properties of the multiplicative group of E have analogues for

the additive group when considered as an F[x]-module.

The multiplicative order of an element 0 E F*, denoted ord( 0), is the smallest positive

integer k such that ok = 1. For n E N and a E F*,

Hence, for 0 E F*, ordto) is finite. Moreover, 0 E E* if and only if ordto) divides qn -1. From

Theorem 1.0.2, E* is cyclic, i.e. for some 0 E E*,

E* = {ok : k E Z}.

Such a multiplicative generator is called a primitive element of E. Clearly 0 E E* is primitive

if and only if there is no kEN strictly less than qn - 1 such that ok = 1, Le. if and only if

ordto) = qn - 1.

Next, we discuss the additive analogue. For 0 E F,
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Hence the annihilator of a in F[xl is non-zero. Define the F-order of a, denoted Ord(a), to be

the unique monic polynomial in F[xl generating this annihilator as an ideal, i.e. the polynomial

f E F[x] of least degree such that j"(a) = O. Clearly a E E if and only if Ord(a) divides

z" - 1. For a E E, C(a) = {a, aq, ... , aqn-1} is a basis of E over F if and only if there is no

non-zero f E F[x] of degree less than n with J"(a) = O. Hence a is a free element if and only

if Ord(a) = xn - 1, i.e. if and only if the F[x]-submodule generated by a equals E.

We next consider how many primitive and free elements of F exist. For any kEN relatively

prime to q, the number of a E F* with ord(a) = k equals ¢(k), where ¢ denotes the Euler

function. (Recall that ¢(k) is defined to be the number of integers between 1 and k relatively

prime to k; alternatively ¢(k) = I{ZlkZ)*I, the cardinality of the group of units of ZlkZ.) To

see this, observe that for any finite cyclic group H =< '" > of order h, it is obvious that ",i has

order hid (where d = (i,h)) for any dlh. In particular, since (m,q) = 1 for any divisor m of

q" _ 1 and ¢(k) is positive for all kEN, it is clear that elements exist of each order dividing

qn _ l.

We now derive the additive analogue. For a monic f E F[xl, let

4?(f) := I(F[xJl f F[x])*I·

Setting

N(f) := IF[xll f F[xll = qdeg(J),

we obtain the following properties of 4?, analogous to those of Euler's ¢ function.

L 4>(g) = N(f),
gil

(2.2.1 )

<fJ(f) = NU) . II
gl/

g irreducible

(2.2.2)

where the product is taken over all monic irreducible factors 9 of f in F[xl.

For a polynomial f = L:?=o fixi E F[xl, the number of a E P with Ord(a) dividing f equals

the number of distinct zeros of fa- in P, where J"{x) := L:~=o/ixqi E F[x]. Now, if we assume

gcdU, x) = 1, then dfrT [d» = fa f. 0, and hence r has only simple zeros. (To see this, note

that if a (monic) polynomial 9 has a repeated root a, then (x - 0')2 must divide g(x), i.e. 9 and

g' have common factor (x - a); consequently, 9 has simple roots precisely when gcd(g, g') = 1.

In this instance, frT and fa-I = fa may be assumed coprime unless fa = 0; however fa t= 0 since

f and x are coprime.) Then there are deg(r) = qdegf = NU) elements of P whose F-order

divides t, i.e.

L I{O' E P :Ordlo) = g}1 = NU)·
gil
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Comparison with (2.2.1) and induction on deg(f) leads to the following result, due to Ore [26]:

suppose f E F[x] is monic and relatively prime to x; then the number of a E P with Ordfo ) = f
equals <I! (f). In particular, there are <I! (z" - 1) free elements of E, so normal bases exist (in

fact there are ~<I!(xn - 1) different normal bases).

To complete the analogy between the multiplicative group of E and the additive group

considered as an F[x]-module, observe that our observations about the existence of normal

bases may be expressed in the form

E ~ F[x]/(xn - l)F[x] as F[x]-modules,

(consider the mapping 'Trw : F[x] -+ E, f f---t r(w), where w is free in E over F). This is

analogous to

E* ~ 7L./(qn - 1)7L.as 7L.-modules.

2.3 Extension of "primitivity" and "freeness" to divisors

We have now established the existence of primitive and free elements. Recall that it was observed

in the summary that the terms "primitive" and "free" can be applied to the minimal polynomials

of primitive and free elements. A polynomial P(x) E F[x] is said to have multiplicative order

d if d is minimal such that P(x) divides xd - 1. A monic irreducible polynomial M of degree

n over F is said to be primitive if and only if its multiplicative order (necessarily a divisor of

qn _ 1) is qn - 1 itself. The additive F-order of P(x) is defined to be the monic divisor 9 (over

F) of x" - 1 of minimal degree such that P divides g17. The manic irreducible polynomial M

is said to be free over F if and only if its roots constitute an F-basis of E; equivalently, if and

only if the additive F-order of M (necessarily a divisor of xn - 1) is xn - 1 itself. Note that, in

the additive case, we refer to the field F in the name "additive F-order", whereas in the case

of multiplicative order, the field is not specified. This reflects the fact that the field is relevant

in the additive case, whereas the multiplicative order of P is the same even if P is regarded as

a polynomial over an extension field.

We extend the concepts of "primitivity" and "freeness" to the divisors of qn - 1 and xn - 1,

by making the following new definitions.

Recall that an element wEE is primitive if and only if w has multiplicative order qn - 1,

i.e. w = vd (v E E) implies (d, q" - 1) = 1.

Definition 2.3.1. For any divisor m of q" - 1, we shall define wEE to be m-free if w = vd

(where vEE and dim) implies d = 1. Clearly, wEE is primitive precisely when w is qn-1-free.



CHAPTER 2. BASIC RESULTS 15

The following result provides a helpful simplification.

Lemma 2.3.2. Let m be a divisor of qn - 1, and let mo be the square-free part of m, i.e., the

product of its distinct prime factors. Let wEE. Then w is m-free if and only if w is mo-free.

Proof Let wEE be mo-free, and suppose that w = vd for some vEE, where dim. If m = 1,

the result is trivial, so we may assume that m > 1 (and hence mo > 1). Set d = d1d2,

where dl := gcd(d, mo) , i.e. dl is the product of the distinct primes which divide d. Then

w = vd = (vd2)d1 and, since w is mo-free and dilmo, we must have d1 = 1. By the definition of

d1, this means that d = 1, and the result follows.

Since an element wEE is free precisely if its n conjugates {w, wq, wq2
, .•• , wqn

-
1
} are

linearly independent over F, w is free if and only if its F -order is xn - 1. If wEE has F -order

g, then w = hO"{v) for some vEE, where h = xng-I.

Definition 2.3.3. Let M be an F-divisor of xn - 1. If w = hO"(v) (where vEE and h is an

F -divisor of M) implies h = 1, we say that w is M -free in E. Clearly, wEE is free precisely

when w is xn - I-free.

Analogously to the multiplicative case, we have the following simplifying result.

Lemma 2.3.4. Let M be an F-divisor of xn - 1, and let Mo be the square-free part of M, i.e.

the product of its distinct monic irreducible factors. Let wEE. Then w is M -free if and only

if it is Mo-free.

Proof Let wEE be Mo-free. The case when M = 1 is trivial, so we may assume that

deg M ~ 1 (and hence deg Mo ~ 1). Let w = hO"(v), where vEE and hiM. If h = hlh2 where

hI := gcd(h, Mo), then w = h'[(h2{v)), and hI = 1 since h2"{v) E E and w is Mo-free. But

hI = (h, Mo) is defined to be the product of all monic irreducible factors of M which occur in

h, and deg M ~ 1, So we must have h = 1, and the result follows.

Observe that, if we write n in the form n = n*pb, where p f n", then, significantly, w is

xn = l-free if and only if it is xn" -v l-free. We shall exploit this fact in the chapters which follow.

Our first step is to express the characteristic functions of the sets of m-free and g-free

elements of E (where mlqn - 1 and glxn - 1) in terms of characters on E or F.

Definition 2.3.5. Let G be a finite abelian group, with identity element IG. A character X

of G is a group homomorphism from G into the multiplicative group U of complex numbers of

absolute value 1.
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By the definition, X(1c) = 1, and the values of X are the IGlth roots of unity. For all 9 E G,

X(g-l) = X(g)-l = X(g), where the bar denotes complex conjugation. The trivial character XO

of G is defined to be Xo(g) = 1 for all 9 E G; all other characters of G are said to be nontrivial.

For each character X, its conjugate character X is defined by X(g) = X(g) for all 9 E G. The

product character of a finite number n of characters Xl, ... ,Xn of G may be formed by setting

Xl'" Xn(g) = Xl(g) ... Xn(g) for all 9 E G. Under this multiplication, the set G of characters of

G forms a (finite) abelian group, called the dual of G; G and its dual have the same cardinality,

and G is cyclic if G is cyclic.

Let G be a finite cyclic group of order IGI, written multiplicatively. Generalising Definitions

2.3.1 and 2.3.3 to our arbitrary finite cyclic group G, for any divisor m of IGI, we define w E G

to be m-free if w = vd (where v E G and dim) implies d = 1 (so that w EGis IGI-free if and

only if w generates G). Recall that the Mobius function is an arithmetic function defined as

follows: for nE N, J.l(1) = 1, J.l(n) = 0 ifn is not square-free, and J.l(Pl·P2··· Pt) = (_1)1, where

the Pi are distinct positive primes. Then we have the following result.

Lemma 2.3.6. For any divisor k of IGI, define the function Vk as follows:

'"' J.l(d) '"'Vk(w) = L ¢(d) L X(w), Jor all wE G,
dlk xEG,

ord(x)=d

where J.l denotes the Mobius Junction and ord(x) the order oj X in the group C. Then

(2.3.1 )

if w is not k-free ,

iJ w is k-free,

where ¢ is Euler's Junction. In particular, when k = IGI, then Vlcl(w) t- 0 iJ and only iJw is a

generator of G.

Proof For wEE, we may write Vk{W) as the product

(1)II 1- - . '"' X(w)l-1 L
Ilk, I prime XEG,ord(x)=1

(
1 1 L )II ---. X(w).

l-1 l-1
llk,lprime XEG,X'=l

=

If w is not k-free, then w = vi for some v E G and some prime I dividing k. Then, for those

X E G with Xl = 1, X(w) = Xl(v) = 1, so LXEG,x'
=l X(w) = l and hence the Ith factor in the

product vanishes. If w is k-free, then LXEG,x'=1 X{w) = 0 for each prime l.

Define O{k) := ¢>~); then O(k)Vk is a characteristic function for the subset of k-free elements

of G (where klIGI). This is a variation on a formula of Vinogradov (see [20] and [4]).
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With Lemma 2.3.6 in mind, observe that a finite field lFq possesses two finite abelian groups

of interest - its additive group (lFq, +) and its multiplicative group (lFq* , *). We consider first

the additive group. Denote by Tr : lFq ----t lFp the absolute trace function from lFq to its prime

subfield lFp, where p = char(lFq). Then the function A defined by

21riTr(c)

A(C) := e-p- for all c E lFq

is a character of the additive group of Fq (to see this, note that A(CI + C2) = A(cdA(C2) for

all Cl, c2 E lFq, by the linearity of Tr). For simplicity, a character of the additive group of lFq

is referred to as an additive character of lFq. The character A is called the canonical additive

character of lFq, and it transpires that all additive characters of Fq may be expressed in terms

of A.

Lemma 2.3.7. For b E lFq, the function Ab with Ab(C) = A(bc) for all C E lFq is an additive

character of lFq, and every additive character is obtainable in this way.

Given a finite extension field E of lFq, let X be the canonical additive character of E; then A

and X are connected by the relation

X({3) = A (TrE/'fq ({3)) for all {3 E E.

In fact, any additive character Xl of lFq can be "lifted" to E in this way by setting Xl' ({3) :=

xi (TrE/Fq ({3)) for {3 E E.

Consider next the multiplicative group lFq* of lFq. Its characters are particularly easy to

determine due to the cyclic structure of the group lFq". For simplicity, we refer to the characters

of Fq * as the multiplicative characters of Fq.

Lemma 2.3.8. Let 9 be a fixed primitive element oflFq. For each j = 0, 1, ... , q-2, the function

'ljJj with
k 21r;jk

'ljJj(g )=eq-I fork=0,1, ... ,q-2

defines a multiplicative character of lFq, and every multiplicative character of lFq is obtainable

in this way.

As in the case of additive characters, any multiplicative character "pI of lFq can be "lifted"

to the finite extension field E of lFq by setting "pI' ({3) := "pt{N E/Fq ({3)) for {3 E E*.

The following identities will be useful.

Lemma 2.3.9. • Let A denote the canonical additive character of IFq. Then, for d E IFq,

if d", °
if d = o.
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• Let IF'q * denote the group of multiplicative characters of IF'q *. Then, for C E IF'q * ,

L x(c) = { 0,
XElF~' q - 1,

if c f. 1
if c = 1.

Our next step is to use Lemma 2.3.6 to derive characteristic functions for the subsets of E

comprising the m-free and g-free elements (mlqn - 1, glxn - 1).

First, set G = E*, so that G and G are both cyclic of order IGI = qn - 1.

Lemma 2.3.10. For klqn - 1, define Vk : E* -+ C by

1J(W), for all wE E*. (2.3.2)

Then 8(k) Vk is the characteristic function for the subset of E* consisting of k-free elements of

E*, where, for kEN, 8(k) := ¢~) = TIllk,lprime(1- t).
Next, we derive an additive analogue for Lemma 2.3.10. Let E be the dual of the additive

group of E; we will write E multiplicatively. Then E can be made into an F[x]-module by

defining

(A/)(a) = A(flT(a)) for A E E, f E F[x], a E E.

Define the F-order Ord(A) of an element A E E to be the monic polynomial generating

the annihilator of A in F[x], i.e. the monic polynomial f>. E F[x] of minimal degree such that

AI>'(a) = 1 for all a E E. Clearly Ord(A) is a divisor of xn-1.

Given a monic divisor f of xn - 1 in F[x], it transpires that there are ~(f) characters A E E
with Ord(A) = f. To prove this, it is sufficient (as previously) to show that

L I{A : Ordtx) = g}1 = N(f).
gil

Now, the left-hand side equals the order of the subgroup {A : AI = I} of E, and this may be

identified with the dual of El r(E), which has cardinality N(f) as required.

Let M denote the analogue of the Mobius function for F[x]. We define it in the natural way,

setting M(f) = (-IY if f is the product of r distinct monic irreducible factors, and M(f) = 0

if f is divisible by the square of such a factor. Set 8(f) := !tj~for f E F[x]. Then we have

the following analogue of Lemma 2.3.10:

Lemma 2.3.11. For glxn - 1, define Vg : E -+ C by

'" M(f) '"Vg(w) = Z:: ~(f) . ~
Ilg XEE,Ord(x)=1

x(w), wEE. (2.3.3)
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Then 8(g) Vg is the characteristic function for the subset of E consisting of g-free elements of

E, where, for 9 E F[x],
cll(g) 1

8(g) := N(g) = TI (1 - N(l))'

where I runs through all monic irreducible divisors of g.

In subsequent chapters, we will need to combine the characteristic functions defined above,

and hence we require the concept of exponential sums. Exponential sums are formed by summing

the values of one or more characters, possibly combined with weights or other function values. A

character sum is an exponential sum in which only the values of a single character are summed.

For finite fields, the most important exponential sums are Gaussian sums and Jacobi sums.

H TJ is a multiplicative character of IFqn, then 'T1is defined for all non-zero elements of lFqn .

For convenience, we adopt the convention that 'T1l(O} = 1 {where 'T1l is the trivial character} but

'T1(0)= 0 for 'T1-I 'T1l·

Definition 2.3.12. Let 'T1be a multiplicative and X an additive character of IFqn• Then the

Gaussian sum Gn('T1,X) is defined by

Gn(TJ, X):= L X(w}TJ(w}.
wElFqn

In general we take X to be the canonical additive character of lFqn, in which case we denote

Clearly, the absolute value of Gn(TJ, X} can be at most q" - 1, but in general it turns out to

be much smaller.

'I'heor-em 2.3.13. Let 1] be a multiplicative and X an additive character of IFqn• Denote by 1]1

the trivial multiplicative character of IFqn, and by Xl the trivial additive character of lFqn. Then

the Gaussian sum Gn('T1,X) satisfies

Gn(~,X) ~ (

q" -1, for'T1 = 'T1l,X= Xl,

-1, for 1] = 1]l,X i:Xl,
0, [or t; -I 'T1l,X= Xl,

If'T1 -I TJl and X -I Xl, then

Note that the Gauss sum over IFq corresponding to v E rq is denoted by Gl(v), and for

v -lvI, IG1(v)1 = ..;q.
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It was observed earlier that, if 7] is a multiplicative and X an additive character of lFq, and E is

a finite extension field of lFq, then 7] and X can be lifted to multiplicative and additive characters

(respectively) 7]' and X' of E. The following theorem establishes a relationship between the

Gauss sum G(7], X) in lFq and the Gauss sum G(7]', X') in E.

Theorem 2.3.14 (Davenport-Hasse Theorem). Let 7] be a multiplicative and X an additive

character of lFq, not both of them trivial. Suppose 7] and X are lifted to characters 7]' and X'

(respectively) of the finite extension field E of lFq, with [E : lFq] = s. Then

I I IG(7] ,X) = (_1)8- G(7], xy.

In certain circumstances, explicit evaluation of Gaussian sums is possible.

Theorem 2.3.15 (Stickelberger's Theorem). Let q be a prime power, let 7] be a nontrivial

multiplicative character of lFq2 of order m dividing q + 1, and let Xl be the canonical additive

character of lFq2. Then

{

q,
G(7],Xd =

-q,

if m odd or q!I even,

if m even and ~ odd.

Next, we introduce Jacobi sums.

Definition 2.3.16. Let >\1, ... ,Ak be k multiplicative characters of lFq, and let a E lFq be fixed.

We define the sum

(2.3.4)

where the summation is extended over all k-tuples (Cl, ... , Ck) of elements of IF'q with Cl + ... +
Ck= a. The sum JI is called a Jacobi sum in IFq, and is often denoted simply by J.

Since the sums Ja(>\l, ... , Ak) (a E IF'q, a i- 0) obey the relationship Ja(Al, ... , Ak) =
(Al··· Ak)(a)Jt{Al' ... ' Ak), it suffices to consider the cases when a = 0 and a = 1.

Lemma 2.3.17. Let Al, ... , Ak be multiplicative characters of lFq.

(i) If AI,· .. ,Ak are trivial, then

If some, but not all, of AI, ... ,Ak are trivial, then
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(ii) Assume that Ak is nontrivial. Then

if Al Ak is nontrivial,

if Al Ak is trivial.

(iii) Assume that Al, ... ,Ak are non-trivial. Then

if Al Ak is nontrivial,

if Al Ak is trivial.



Chapter 3

A new proof of the primitive normal

basis theorem

3.1 Introduction

The Primitive Normal Basis Theorem is a very important result in finite field theory since it

provides the key link between the additive and multiplicative structures of a finite field. The

theorem asserts the existence, for every finite field E = IFqn, of an element a E E, simultaneously

primitive and free over F = IFq; this yields a primitive normal basis over F, all of whose members

are primitive and free.

Theorem 3.1.1 (Primitive normal basis theorem, PNBT). For every prime power q and

positive integer n, there exists a primitive normal basis of IFqn over IFq.

In addition to its theoretical significance, this result is useful to mathematicians in a practical

sense since, by guaranteeing the existence of a generating element whose properties are known

and easy to work with, it increases ease of computations involving finite field arithmetic. For

example, the existence of a primitive free basis leads to improvements in systems of tabulating

finite fields, such as the system of Conway [10] which motivated the work of Davenport [11]. As

mentioned in the introduction, existence of such a basis for every extension was demonstrated by

Lenstra and Schoof [22], in a proof with heavily computational aspects. For such an important

conceptual result, the desirability of a computation-free proof is obvious, and in this chapter we

develop the number-theoretical side of the counting argument to obtain a proof that does not

rely on a computer. Because of the challenge of devising a uniform approach that is effective

across the whole range of values of q and n, it is unlikely that all calculation could be eliminated;

however, in this proof, all calculations which remain can be checked with a pocket calculator.

22
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In particular, the factorisation of all but a few (small) integers is avoided.

In the introduction, we noted that the traditional technique ( [11], [22]) for expressing

the number of primitive, free elements of E in terms of Gauss sums over E, yields estimates

dependent on the number of prime and irreducible factors of qn -1 and xn -1 respectively, and

we discussed the advantages to be gained from dealing instead with the divisors of qn - 1 and

z" - 1. In Chapter 2, the concepts of primitivity and freeness were extended to these divisors,

in order to facilitate our new approach. Further, it was noted in the introduction that the

factorisation of z" -1 is more regular and predictable than that of qn -1,and consequently it is

advisable to concentrate on the former. We therefore operate a sieve mechanism on the additive

part, i.e., that relating to xn - 1 (Proposition 3.4.1). In previous work in this area, sieving has

been applied to the multiplicative structure (and in [5] additivelyas well); this is the first case

in which the analysis depends solely on additive sieving. Application of the sieve depends on a

"division" of the factors of xn - 1. The key strategy is a uniform choice of division that involves

a factor 9 of xn - 1 (Proposition 3.5.1), together with an estimate of the number of irreducible

factors of 9 that is both easy to apply and effective over the generality of pairs (q, n) (Proposition

3.5.3, proved in Section 3.7). The multiplicative counterpart is a trivial estimate (Lemma 3.3.4)

for the number of square-free divisors of a divisor of q" - 1. The proof is accomplished through

a series of examples based on the appropriate theory - Examples 3.2.4,3.3.7,3.4.2, 3.5.2, 3.6.1,

3.6.2, 3.6.4 and 3.6.5. It is within them that a calculator may be helpful.

Throughout we write n* for the largest divisor of n indivisible by p, i.e., n = pbn*, say, where

Pt n*.

3.2 Reductions

We begin by performing some reductions to the problem, in order to lessen the number of error

terms in subsequent expressions, and to simplify calculations.

Evidently, if n = 2 and w E E* is primitive, then it cannot have F-order x ± 1 and so is free

over F. Henceforth, we assume n 2: 3.

For any ml q" - 1, 91 xn - 1, denote by N(m, g) the number of non-zero elements of E that

are both m-free and g-free in E. As already licensed in Chapter 2, we shall freely replace m or

9 by their square-free parts at any time.

In order to establish the PNBT, we must prove that N(qn - 1, xn - 1) is positive, for every

pair (q, n). However, it turns out to be beneficial to refine this requirement. For a given pair

(q, n), define Q := Q(q, n) to be (the square-free part of) (q-f)(:.~-l)' We shall show that it is

in fact sufficient to show that N(Q,xn - 1) is positive.
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Proposition 3.2.1. Let q be a prime power, and let n*(~ 3) E N. Denote by Q the quantity

(q-0~~,~-1)' Then (q, n) is a PNBT-pair whenever N(Q, xn - 1) > O.

Proof As usual, let E = lFqn and F = lFq. For ease of reference, we denote by A the set of free

elements of E, and by B the set of primitive elements of E, i.e. A := {a E E : Ord(a) = x" - I}

and B := {a E E* : ord(a) = q" - I}. So IAI = cp(xn - 1), IBI = ¢(qn - 1) and lA n BI is the

quantity N (qn - 1, xn - 1). Proving the PNBT is then equivalent to establishing that An B i= 0.

Consider the subgroup C c E* defined by

C = b E E* : 'Yq-1 E F} = bE E* : ,(q_l)2 = I}.

An alternative, equivalent definition is

C := bE E* : deg(Ord("f)) = I}.

Since z" - 1 has (n, q - 1) linear factors over F, it is clear that ICI = L:/lxn-l,deg/=l cpU) =

(n, q - l)(q - 1). Then the index IE*/CI of C in E* is equal to the quantity Q = (n,q!."l)(~-I)

defined above.

We find that, to establish that An B =1= 0, it is enough to prove that A n BC =1= 0, where

BC = {lh : f3 E B, 'Y E Cl. To see this, observe firstly that the F[x]-submodules of E are

permuted by C. Let M be an F[x]-submodule of E and let 'Y E C. Then the F-vector space

,M = {rJ.L : J.L E M} is an F[x]-module since xU("fJ.L) = ("f/lV = " ,q-1XU(J.L) and ,q-l E F*.

In particular, since A consists of those elements of E not contained in any proper submodule,

we have CA = A (where CA = {,a: , E C, a E A}). Using this fact, AnB is non-empty if and

only if A nBC is non-empty: for, if a E A, {3 E Band, E C are such that Cl! = {3, E A nBC,

then {3 = ,-la E CAnB = AnB.

To understand the structure of the set BC, consider the quotient map E* -+ E* /C given

by a t-+ aC. This is a surjective group homomorphism of finite cyclic groups, which con-

sequently induces a surjective map on the sets of generators. Hence BC = {f3 E E* :

f3C generates the group E*/C} = {a, E E* : ord(a) = Q,'Y E Cl. Clearly IBCI = ¢(Q)'

(n,q - l}(q - 1). Then, in fact, BC is precisely the set of Q-free elements of E*. To see this,

apply Theorem 2.3.6 to the finite group G = E* /C (with IGI = Q) to obtain the characteristic

function for the generators of E* / C.

Hence, by Proposition 3.2.1, we are licensed to replace N(qn -1,xn -1) by N(Q,xn -1).

The following result, which follows from the argument in the proof of Proposition 3.2.1, gives a

precise relationship between the two quantities.
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Lemma 3.2.2. For any pair (q,n),

N(Q, x" - 1) = ¢~) N(qn - 1, z" - 1),

where ¢ denotes Euler's function, and R is the greatest divisor of qn - 1 co-prime to Q.

Sometimes, in N(Q,xn - 1), Q or xn -1 may be replaced by "smaller" values.

Lemma 3.2.3. Suppose a prime I divides n and set la = (l, qk - 1), where k := nfl. Suppose

also that P:= loZ;k-_!l) is prime. Then N(Q,xn -1) = N(QfP,xn - 1)

Proof Suppose a E E is both QfP-free and xn -I-free, but a = (JP. Then alo E K:= GF(qk),

whence aqk = 'Ya, where ,lo = 1, 'Y E K. If 'Y = 1 (e.g., whenever 10=1), then the F-additive

order of a divides xk - 1, a proper divisor of xn - 1, which is a contradiction. Otherwise, la = I

and ry is a primitive lth root of unity (in K). Hence, TrE/K{a) = {I + 'Y + ... + 'Yl-1)a = 0,

whence the F-additive order of a divides 1+ xk + ... + x(l-l)k, again a contradiction.

Example 3.2.4. Some useful applications of Lemma 3.2.3 for the pairs (q, n) shown.

• (2,6): I = la = 3; N{21, x3 - 1) = N(3, x3 - 1).

• (2,n), where n = 3,5 or 7: l = n, la = 1; N(2T1 -1,xTl -1) = N(l,xTl -1).

• (3,3): l = 3, la = 1; N(13, x3 - 1) = N(l, x3 - 1).

• (3,4): l = la = 2; N{10, x4 - 1) = N(2, x4 - 1).

• (3,8): l = la = 2; N(410, x8 - 1) = N(lO, x8 - 1).

• (4,3): l = la = 3; N(7, x3 - 1) = N(1, x3 - 1).

• (5,4): l = la = 2; N(39, x4 - 1) = N(3, x4 - 1).

• (5,8): l = io = 2; N(2· 3 ·13· 313,x8 - 1) = N(78,x8 -1).

Lemma 3.2.5. • Assume n = 4 and q = 3 (mod 4). Then N(Q, x4 -1) = N(Q, x2 - 1).

• Assume n = 3 and q = 2 (mod 3). Then N(Q,x3 -1) = N(Q,x -1).

Proof First, consider the case with n = 4, so that x2 + 1 is irreducible over F. Suppose that

a is both Q-free and x2 - l-free, but not x4 - l-free, Then a = /3q2 + /3, and hence aq2 = a,

i.e., aq2
-1 = 1. This implies that a = 'Yq2+1, an evident contradiction (because a is Q-free).

The argument when n = 3 is exactly similar: suppose that a is Q-free and x - l-free, but not

x3 - l-free, (Here x2 + x + 1 is irreducible over F.) Then a = /3q2 + /3q + /3, and hence aq = a,

i.e. aq-1 = 1. Thus a = 'YQ, contradicting the fact that a is Q-free.
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3.3 An expression for N(m, g)

We suppose throughout that m iQ, 9 ixn - 1, where, if desired, these can be assumed to be

square-free. In Chapter 2, we obtained expressions for the characteristic functions of those

subsets of E comprising elements that are m-free or g-free in terms of characters on E or F.

Consistent with previous work such as [5], henceforth we will adopt the following notation.

As defined in Chapter 2, let A be the canonical additive character of F, and let X be the

canonical additive character on E (recall that it is just the lift of A to E, ie. X{w) = A{Tr(w)),

WEE). For any (monic) F-divisor D of xn -1, let t::..D be the subset of 8 EE such that XeS has

F-order D if and only if 15E t::..D, where Xo(w) = X(ow), wEE. So we may also write XeSv for

XD, where 8D E t::..D; moreover {Xov : OD E t::..D} is the set of all characters of order D. Observe

that, if D = 1, then 81 = 0 and XD = XO, the trivial character.

The following result shows that t::..D is invariant under multiplication by F*.

Lemma 3.3.1. Let t::..D be as defined above. Then F* t::..D = t::..D.

Proof Let 8 E t::..D. SO XeS is an additive character of E of order D, i.e.

XeS(D(1(a)) = 1 for all a E E,

and D is the monic polynomial of minimal degree with this property. Now let f E F*, and

consider f 8.

since ri = f for all i E N. Then f3 := fa runs through all elements of E as a does; so

XJc5(DO"(a)) = 1 for all a E E, and D is of minimal degree with this property. Thus ftS E t::..D,

and so F* t::..D = t::..D.

I. The set of w E E* that are m-free.

For any di Q, we write 'f}d for a typical character in 13* of order d. Thus 'f}1 is the trivial

character. Notice that, since d I;~11, the restriction of 'f}d to F* is the trivial character VI of

F*.
We shall use a handy "integral" notation for weighted sums; namely, for mi Q, set

! ~JL(d) ~
'f}d := L.J ¢(d) L.J 'f}d,

dim dim (d)

where ¢ and JL denote the functions of Euler and Mobius respectively and the inner sum runs

over all ¢(d) characters of order d. (Observe that, due to the properties of the Mobius function,
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only square-free divisors d have any influence.) Then, rewriting the result of Theorem 2.3.10,

in this new notation, the characteristic function for the subset of m-free elements of E* is

O(m) ( "ld(W), wE E*,i;
where O( m) := <P<:::) =

11m, I prime
IT (1 _[-1). This function depends solely on the distinct primes

which divide m.

II. The set of wEE that are g-free over F.

In analogy to I, for glxn - 1, define

/
" J.L(D) "XOD := ~ <P(D) ~ XoD,

Dig Dig OD

where J.L is the Mobius function on F[x] and the inner sum runs over all <p(D) elements fJD of

D.D (again, only square-free D matter). By Theorem 2.3.11, the characteristic function of the

set of g- free elements of E correspondingly takes the form

8(g) I XoD(w), WEE,

Dig

where 8(g) = !t~~.
Using these characteristic functions, we derive an expression for N(m, g) in terms of Gauss

sums on E and F.

Proposition 3.3.2. Assume m and 9 are divisors of Q and xn - 1, respectively. Then

N(m,g) = O(m)8(g){qn - fg + /
d(;i:1)1 m D(;i:1)1 g

where Eg = 1 if 9 = 1 and is zero otherwise, and the bar indicates complex conjugation.

Proof The result is evident when m = 1 or 9 = 1 (one of the integrals features an "empty"

sum). Hence we may assume that neither m = 1 nor 9 = 1; thus fg = O.

Using the characteristic functions derived above, we have

N(m, g) = L (o(m) I "ld(W)) (8(9) I XOD (W)) .
wEE dim Dig

(3.3.1)

Note that, by the conventions for "ld(O) and because 9 "I: 1, the product of the characteristic

functions at W = ° yields 0, as required.
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If d = 1 or D = 1, the only non-zero contribution to the right side of (3.3.1) occurs when

both d = D = 1 and is B(m)8(g)qn. Hence, we may write

N(m,g) = B(m)8(g){qn + J J L "7d(w)X(w8D)}.
d("tl)1 m D("tl)1 9 wEE

Replacing w by wj8D (which we may do safely since D i= 1, i.e., 6D i= 0), yields

N(m,g) = B(m)8(g){qn +! ! L "7d(W)X(W)1fd(6D)}
d("t1)1 m D(#1)1 9 wEE

and the result follows.

From Proposition 3.3.2 and the size of the Gauss sum, we may immediately derive a lower

bound for N(m,g). Write W{m) = 2w(m) for the number of square-free divisors of m, where w

counts the number of distinct primes in m, and similarly define W{g) = 2w(g) to be the number

of square-free divisors of g, where w counts the number of distinct monic irreducibles in g.

Corollary 3.3.3. Under the conditions of Proposition 3.3.2,

N{m,g) ~ (}{m)8(g) (qn - f.g - (W{m) -1)(W(g) - l)qn/2) . (3.3.2)

The approach taken by Lenstra and Schoof in [22] is to show that N(Q, xn - 1) is positive,

except for a few pairs (q, n), using Corollary 3.3.3 directly, i.e., with m = Q, 9 = xn - 1. This

involves detailed consideration of the maximum theoretical number of primes in m and further

calculations based on the actual prime decomposition in many particular cases. Consistent with

our focus on the additive part, we estimate W{m) in (3.3.2) mainly through a bound of the

following kind (for simplicity of application).

Lemma 3.3.4. For any positive integer m,

(3.3.3)

where Cm = ( 2
8

)1/4' and P1, ... .p, are the distinct primes less than 16 which divide m.
PI· ..Ps

In particular, for all mEN, Cm < 4.9, and for all odd m, Cm < 2.9.

Proof Write m in the form m = pr1 •• ·P~·P~+-r ... pft, where Ps+I,'" ,Pt are distinct primes

strictly greater than 16. Then clearly m ~ Pl'" Ps·16t-s. Since W(m) = 2t, we have W{m)4 ~
16'm
Pl·"P •.

It is obvious that this result can be generalised: for any positive integer m,

(3.3.4)
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where Cm = ( 2
s
ll/a' and PI, ... ,Ps are the distinct primes less than 2a (a E N) which divide

Pl···Ps

m. To prove the PNBT, it transpires that taking a = 4 simplifies calculations and is sufficient

for our purposes; however in later chapters we will take other values of a.

For m = Q, we may sometimes use (3.3.3) with a bound < 4.9, e.g., when P t Q or other

primes < 16 are trivially ruled out as divisors by Corollary 3.3.6, below. Specifically, the next

results yield information on the primes in Q and will also be useful later (Section 3.7). The

notation [k II m is used to indicate the largest power [k of a prime l which divides m.

Lemma 3.3.5. Assume that l is a prime dividing q - 1 {where q == 1 (mod 4), if l = 2). Then,

for any non-negative integer k, Zk II q~k_-;.I . If q == 3 (mod 4), then 2k II q2;:~~1.
Proof In the main case, for k = 1, we have

ql - 1 = (1 + (q - 1))1 - 1 == l + (q _ 1) [([ - 1) (mod [2)
q-1 q-l 2

lk 1q -
and the result follows. Then, write 1

q-
lk-lthe case k = 1, with q replaced by q .

lk-l lk

q -1 q -1 d . ducti k d
q
_ 1 lk-l ,an use III uction on an

q - 1
For the final part, apply the first part with 1= 2 and

q2 for q.

Corollary 3.3.6. Assume l is a prime with Zh II q - 1, h ~ 1 {where q == 1 (mod 4), if Z = 2).

Then II Q(q, n) if and only if lh+II n. Further, if q == 3 (mod 4), then Q{q, n) is even if and only

if n is even.

When n* is small, it is possible to establish the PNBT for certain classes of q, by combining

explicit factorisation of xn• - 1with the reduction lemmas of Section 3,and applying the crude

inequality of Corollary 3.3.3.

Example 3.3.7. Pairs (q, n), where n* ~ 4, with q == 2 (mod 3) if ri" = 3, and q == 3 (mod 4)

if n* = 4.

Observe that under these conditions we have Q(q, n) < qn j[(q - 1) gcd{n, q - 1)], where

{
I, if n* = 1 or 3,

gcd{n, q - 1) =
2, if n* = 2 or 4.

Moreover, N(Q,xn -1) = N(Q,g(x)), where g factorises into F-irreducibles as

g(x) =

x-I, if n* = 1 or n* = n = 3,

(x - 1)(x + 1), if n* = 2 or n* = n = 4,

(x - l)(x2 + x + 1), if n* = 3 < n,

(x - l)(x + l)(x2 + 1), if n* = 4 < n,
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using Lemma 3.2.5 when n = 3 or 4. It follows from Corollary 3.3.3 that N := N(Q, z" - 1) is

positive when

(W(Q) - 1)(W(xn - 1) - 1) < q~; (3.3.5)

by Lemma 3.3.4 this occurs whenever

(qn(q _ 1}}1/4 > (W(g) - 1:) cQ = ACQ, say.
(n,q -1}4

There are four possible values for A, depending on the value of n";

(3.3.6)

1, if n* = 1 or n* = n = 3,
I

3/24, if n* = 2 or n* = n = 4,
A=

3, if ri" = 3 < n,

7/2~ if n" = 4 < n.

We now consider when (3.3.6) holds for each of the values of A, using an appropriate bound for

cQ. Clearly the left side of (3.3.6) is an increasing function in both q and n, so if (3.3.6) holds

for the pair (qO,no), it will hold for all pairs (q, n) with q ~ qo and n ~ no. We use notation like

(qo+, no+) to signify any pair (q, n) with q ~ qo, n ~ no. We note, in passing, the following

subtle point: when dealing with general (q, n), by listing (qo+, no+) we will usually mean that

no is the smallest positive integer n for which (3.3.6) holds numerically when q = qo, despite

the fact that no may not actually fulfil the stated conditions on n* when q = qo. For example,

in the A = 1 case below, (3+,6+) is listed but A = ;1- when q = 3 and n = 6. This is clearly

necessary to cover all possible pairs (for example, when q = 3, the smallest n ~ 6 for which

A = 1 is n = 9, but the pair (4,6) does fulfil the "A = I" condition); however the notation

should not be interpreted as giving any information about the properties of the pair (qO,no).

• Assume that A = 1. Then (3.3.6) holds withcQ < 4.9 for (3+,6+), (4+,4+) and (7+,3+).

Further, (3.3.6) holds with co < 2.9 for (2,8+) (Q is odd when q = 2), and with cQ < 3.2

for (5,3) (when 3 t Q). This leaves only the pairs (2,3), (2,4) or (3,3). For the pairs (2,3)

and (3,3), Example 3.2.4 allows us to replace N(Q, x3 - 1) by N(l, x3 - 1), and Proposition

3.3.2 then yields N(I,x3 -1) = 8(x3 - l)q3, which is clearly positive in both cases. Finally,

for (2,4), Corollary 3.3.3 gives a lower bound for N(Q, xn - 1) of N(15, x - 1) ~ 9(15)8(x -

1)24 - (W(15) - 1)(W{x -1) - 1)22= 16/15.

• Assume that A = 3/2~. Then (3.3.6) holds with cQ < 4.9 for (9+, 4+), (5+,6+); and

with cQ < 4 for (7,4) (clearly 7 t Q). This leaves the pairs (3,4) and (3,6). For (3,4),

N(Q,x4 - 1) = N(2,x4 -1) by Example 3.2.4 and N(2,x4 -1) ~ O(2)8(x4 -1)(34 - (W(2)-

1)(W(x4 - 1) -1}32) = 32/9 by Corollary 3.3.3, while for (3,6), N(182,x2 -1) > 28, again by

Corollary 3.3.3.
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• Next assume that A = 3. Then (3.3.6) holds with cQ < 4.9 for (5+,6+) and with cQ < 2.9

for (2,13+); for (2,12) we take cQ < 2.64 (since Q = 3·5·7· 13) and (3.3.6) holds (narrowly)

since 23 > 3· (2.64). This leaves only (2,6), when N(Q, x3 - 1) = N(3, x3 - 1) ~ O(3)8(x3 -

1)(26 - (W(3) - 1)(W(x3 -1) - 1)23) = 10, by Example 3.2.4 and (3.3.2).

• Finally, if A = 7/2t., then (3.3.6) holds with cQ < 4.9 for (3+,12+), covering all cases.

3.4 A sieving inequality and some applications

In general, for n* > 3 or 4 and q arbitrary, it is not practical to work with xn• - 1 in such

an explicit way as in Example 3.3.7, nor to consider q on a case-by-case basis modulo n".

Consequently, as mentioned in the introduction, it is not practical simply to consider Q and

z" - l. In order to obtain results about N(Q, xn - 1) from information about the divisors of Q

and x" -1, we shall use the following sieving technique. Although the sieve here will be applied

to the additive part of this problem only, it is described in such a way that it may be used on

the multiplicative part also if necessary (see subsequent chapters).

For a given pair (q, n), let m be a divisor of Q(q, n): usually, m will be Q itself. Also let f
be an F-factor of xn - 1 and il, ... , fr be factors of f, for some r ~ 1. Usually f = z" - 1,

but we do not distinguish polynomial divisors of z" - 1 that have the same square-free part,

i.e., the same distinct irreducible factors over F. (Observe that this is all consistent with the

earlier observations made in Section 2.3.) In this context xn• -1means the same as z" -l. Call

{il, ... , fr} a set of complementary divisors of f with common divisor fa if lcm{il,··· ,fr} = f

and, for any distinct pair (i,j), gcd(fi,fj) = fo.

Proposition 3.4.1 (Sieving inequality). For divisors m of Q and f of xn - 1 (as above),

let {il, ... ,fr} be complementary divisors of f with common divisor fa. Then

N(m,f) ~ (t,N(m,J,)) - (r - l)N(m, 10)' (3.4.1)

Proof When r = 1, the result is trivial. For r = 2, denote the set of elements of E* that are both

m-free and J-free by Sf, etc. Clearly Sh USh = Sh +Sh - (Sh nSh)' Then Sh USh ~ s.;
while Sh nStz = Sf, and the inequality holds by consideration of cardinalities. For r ~ 2, use

induction on r. Write f' = h ...i-. apply the result for r = 2 to il, f' and then the induction

hypothesis.

In order to apply the sieve effectively, we clearly require information about the factorisation

of xn• - 1 over F. One case in which we know this factorisation explicitly is if n* divides q -1;
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then all n*th roots of unity lie in F and so xn• - 1 splits into distinct linear factors over F. We

begin by considering the special case in which ti" = q - 1.

Example 3.4.2. Pairs (q, n) for which n" = q - 1 > 2.

(Qn_l) n cQQn/4
Here Q(q, n) = ~ < (q~1)2; thus W(Q) < Jq=I' by Lemma 3.3.4.

• Assume first that q is odd and so n* = q - 1 is even: set k := (q - 1)/2. Apply the sieving

inequality with co-prime complementary divisors h = xk -1,h = xk +1 of f = xn• -1 (though

any pair of co-prime factors of degree k would be as effective). By Corollary 3.3.3,

N(Q,xn• -1) 2': fJ(Q) [2(1- ~)k (qn - (2k -l)(W(Q) _1)qn/2) _ qn].

Hence N is positive, whenever

n/2 2(2k - l)(W(Q) - 1)
q > 2 _ (1 _ 1)-k (3.4.2)

q

Now, log {1-i)q-1 = -1+ 2~+~ + ... = -1+2::=1 m(m~l)qm decreases to -1 as q increases;

thus {1- i)2k decreases to l/e and so 2/(2 - (1- ~)-k) increases to 2/(2 - Je) < 5.7 as q ---t 00.

From (3.4.2) and Lemma 3.3.4, N > 0 whenever

qn/4 5.7cQ
2(q-1)/2 > JQ=l' (3.4.3)

Evidently, (3.4.3) holds for (5+,10+), using ea < 4.9; and for (9,8), using cQ < 2 (since

(Q(9,8),6) = 1). This leaves pairs (7,6), (5,4). Now, Q(7,6) = k(72 + 7 + 1)(72 -7 + 1) =
2 . 19. 43; hence the RS of (3.4.2) < 238 < 73, as required. For (5,4), by Example 3.2.4, we

have N(Q, x4 - 1) = N(3, x4 - 1), and the latter is positive because, in this situation, the RS

of (3.4.2) (with Q replaced by 3) = 96/7 < 52.

• Now assume that q is even so that n* = q - 1 is odd, and keep k = (q - 1)/2. Take as

complementary divisors of xn• - 1 any pair of co-prime factors h, h of degrees k + ~,k - ~

respectively. By Proposition 3.4.1,

N 2': (1- ~) h:.:}! (qn/2_(2h:.:}! -1)(W( Q) -1))+(1-~ )k;l (qn/2_(2 k;l -l)(W (Q) -1) )_qn/2.
O( Q)qn/2 q q

Hence, certainly N is positive whenever

qn/2 (2(1 - ~))1/2+ (2(1 _ ~))-1/2
2k(W(Q) -1) > (1_1)1/2 + (1- 1)-1/2 - (1- l)-k'q q q

(3.4.4)

As before, (1 - 1 )-k increases with q to ..;e. Inserting this value on the RS of (3.4.4), we findq

that this fraction itself increases as (1 - ~) increases (i.e., as q increases) to Jii,(23_,;e) < 6.04. It

follows (again using Lemma 3.3.4) that N is positive whenever

(3.4.5)
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which holds for (4+,12+), with cQ < 4.9. This leaves the pairs (8,7), (4,6), (4,3). Now, Q(8, 7)

has no prime factors Zless than 16 (otherwise, ordl2 would be divisible by 7). Hence, cQ = 1 and

(3.4.5) is satisfied. For (4,6), N(455,x3-1) = O(5·7·13)8(x3-1)(46-(W(5·7·13)-1)(W(x3-

1)-1)43) > 256, by Corollary 3.3.3. Finally, for (4,3), N( Q, x3 -1) = N(l, x3 -1) = 8(x3 -1)43

by Example 3.2.4, and this quantity is clearly positive.

3.5 Key strategy

Our aim in this section is to develop a strategy which will apply across the generality of pairs

(q, n).

Define s = s(q, n) := ordn.q; thus, n*l(qS - 1) with s(> 0) minimal. So IFq• is the smallest

extension of F which contains all n*th roots of unity. Clearly, s must divide ¢(n*) and every

irreducible factor of (the square-free polynomial) xn* -lover F has degree a divisor of s. Write

xn• - 1 as g(x)G(x), where G is the product of those irreducible factors of xn* - 1 of degree s,

and 9 is the product of those of degree less than s (with 9 = 1, if s = 1). Define r := r(q, n)

to be the number of (distinct) irreducible factors of Gover F with G = n~=lGi, say, and set

m = m(q,n) := degg.

Our strategy will be to work with {gl,' .. ,gr}, where we define gi := 9Gi' Working with

the {gi} reduces the number of divisors of xn' - 1 which must be considered, while at the same

time, although the cardinality of this set is not very regular, we can estimate its size reasonably

well.

Proposition 3.5.1. Assume the notation defined above. Then N(Q,xn -1) > 0 whenever

qn/2 > (W(Q) _ 1){W(g) (n* - m)(q8 -1) + 1) - I} .
sq" - (n* -m)

(3.5.1)

Proof In Proposition 3.4.1, take {gl,'" ,gr} (where gi := gGi) to be complementary divisors of

xn' - 1 with common divisor g. Then, by (3.4.1) and Proposition 3.3.2, we have

N ,= N(Q,xn - I) ~ (tN(Q,g;)) - (r - I)N(Q,g)

> O(Q)8(g){(r(1 - ;8) - (r - 1)) (qn +! ! Gn("1d)rfd(OD))
d(;i:l)1 m D(;i:l)lg

(3.5.2)

Now, using the same estimates as in Corollary 3.3.3, and the evident fact that W(gi) =
2W(g), so W(gi) - W(g) = W(g), we deduce from (3.5.2) that
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N ~ (1- ~) (qn/2 _ (W(Q) - l)(W(g) - 1))- r (1 - _!__) (W(Q) - I)W(g).qn/2(}(Q)8(g) qS qS
(3.5.3)

From (3.5.3) it follows that N is positive provided

qn/2> (W(Q) - 1){W(g) (r~~S ~ r1) + 1) - I} ,
and the result follows since r = (n * - m) / s.

Example 3.5.2. Pairs (q, n) for which (2 <) n* Iq - 1 but n* #- q - 1 (thus s = 1).

In this situation, Q(q, n) = n?(q-="\)' G(x) = xn• - 1 and g(x) = 1. Thus m = 0 and

Proposition 3.5.1 yields a positive value for N whenever

qn/2 > (W(Q) _ 1) (n*(q - 1)) .
q - n*

(3.5.4)

By Lemma 3.3.4, inequality (3.5.4) holds, certainly, whenever

(nH}/4 > cQ(n*(q - 1))3/4
q 1- n·

q
(3.5.5)

Under the prescribed circumstances, we may set q = 1 + n*k, where k ~ 2. Hence, nq• < q~l =
i :::;~,which yields 1 - ~. :2: ~. From (3.5.5), N is positive whenever

(nH}/4
q > 2c (n*)3/4.
(q _ 1)3/4 Q

(3.5.6)

Now (3.5.6) holds, with cQ < 4.9, for (11+,5+); with co < 2.9, for (9+,4), (13+,3) (Q is odd

for n = 4, q == 1 (mod 4) and n = 3, q == 1 (mod 3)); and, with cQ = 1, for (7,3) (Q = 19).

Note that all cases of the PNBT with n* :::;4 are settled by Examples 3.3.7, 3.4.2, and 3.5.2:

henceforth we assume n* > 4. Also, by Examples 3.4.2 and 3.5.2, we can suppose 8 > 1.

Then, to work with the RS of (3.5.1), we require to calculate or bound W(g), the number of

square-free divisors of g, with a measure of generality. (For W(Q) we usually use Lemma 3.3.4.)

To describe a suitable result, we introduce some further notation. For the common divisor 9 of

the complementary divisors of xn - 1 used in Proposition 3.5.1, define w = w(q, n) to be the

number of (distinct) irreducible factors of 9 over F with p = p(q, n) as the ratio w(q, n)/nj thus

W(g) = 2W. Note that w = w(q,n*), whence it suffices to provide bounds for the case in which

Pt n. Further, for any divisor d of s(q, n), set nd := gcd(qd - 1, n) (thus ns = n").
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Proposition 3.5.3. Assume that n > 4 (p t n). Then the following bounds hold.

• For n = 2nl (q odd), p = 1/2;

for n = 4nl (q == l(mod 4)), p = 3/8;

for n = 6nl (q == l(mod 6)), p = 13/36;

otherwise, p(q, n) ~ 1/3.

• p(4,9) = 1/3, p(4,45) = 11/45; otherwise, p(4,n) ~ 1/5.

• p(3,16) = 5/16; otherwise, p(3, n) ~ 1/4.

• p(2,5) = 1/5, p(2,9) = 2/9, p(2,21) = 4/21; otherwise, p(2, n) ~ 1/6.

In order to keep fluid the development of the key strategy, the proof of Proposition 3.5.3

is deferred until Section 3.7. For the moment it suffices to observe that, if p t nand 80

is any divisor of s, then the number of irreducible factors of xn - 1 of degree so over F is

given by sloL:dlSo Jl.(so/d)nd. For example, for the pair (4,45), we have 8(4,45) = 6; nl =
3, n2 = 15, n3 = 9, n6 = 45. Thus over F = GF(4), x45 - 1 has nl = 3 linear factors,

n2;n! = 6 quadratic factors, n3"3n! = 2 cubic factors and n6-n3"6n2+n! = 4 factors of degree 6.

In particular, p( 4,45) = 11/45, as stated.

3.6 The key strategy in action

We complete the proof of the PNBT, by establishing that N (Q, xn - 1) is positive for all the

remaining pairs (q, n). Hence, in the established notation, assume n*(> 4) t q - 1, s > 1.

In order to apply Proposition 3.5.1, we shall generally replace the RS of (3.5.1) by a larger,

more manageable, quantity. Then, in a few cases, we use a more accurate version of (3.5.1).

Hence write the RS of (3.5.1) as (W(Q) -1).B(q, n), where

(3(q, n) := 2w ((n* - m)(qS - 1)+ 1) _ 1 ~ 2w ( n* - m _ + 1) _ 1.
sq" - (n* - m) s - (n* - m)q s

(Recall that w is defined to be the number of (distinct) irreducible factors of 9 over F.) In

(3.6.1)

Examples 3.6.1 and 3.6.2, we chieflyuse (3.6.1) and the bound (from Lemma 3.3.4)

(3.6.2)

In some cases, the properties of the number n* cause the factorisation of xn• - 1 into 9 and

G to occur in a particularly nice way.

Example 3.6.1. Pairs (q, n) with n* = I ~ 5, where either 1 is prime or 1 = q + 1, q even.
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Under the given conditions (since we can now assume S > 1),it transpires that xn' -1 factorizes

into a single linear factor (x - 1), and n's-l r> 1) factors of degree s. To see this, observe that

when ri" = l is prime, (n", qk - 1) (k E 1'1') may take only the values 1 or n*, and the smallest

k for which (n*, qk - 1) = ri" is k = S; while when n* = q + 1 with q even, S = 2. Hence

in both cases, m = w = 1, n1 = 1, and Q = ql-l + ql-2 + ... + q + 1 is odd. Moreover,

l :::;(qS - 1)/(q - 1) < qS /(q - 1). Hence, for (3.5.1) to hold it suffices that

(qn(q _ 1))1/4 > cQ {~(~ ~ + 1} .
q-l

(3.6.3)

Now, considering the difference between the left and right sides of (3.6.3), and noting that the

result certainly holds for n if it holds with l or pel (c < b) in place of n = pbl, we require

(concentrating on the "worst-case scenario" when ri" = l)

I 1 (2(l- 1) )~(q,l):= q"4(q -1)"4 - cQ S __ 1_ + 1 > O.
q-l

(3.6.4)

We have

8~ = (log q) qt (q _ 1r~_( 2cQ1 ),

al 4 s -- q-1

which is clearly an increasing function as l -+ 00 and q,s are fixed. Also,
1

a~ l l-4 1 ( ql ) "4 CQ(2l + S - 2)
8q = 4: (q (q - 1)) 4 + 4(q _ 1)3 - (s (q - 1) - 1)2 '

which is an increasing function as q -+ 00 and t.e are fixed. If the result holds (with fixed s) for

(qo, lo), then it holds for all (qO, l) with l ~ lo, and if it holds for (qO,no) where no > no* = lo,

then it holds for all (qO,n) with n ~ no, n* ~ lo. Further, if the result holds for (qO,l), for some

l as above, then it will hold for any (q, l) where q ~ qo; similarly if it holds for (qO, n), where n

fulfils the conditions above, then it will hold for any pair (q, n) where q ~ qo. 'Hence it suffices

to establish the result in the "(qO, no)" case. Note that here we are considering discrete values of

q and n rather than allowing them to run through lIt Clearly, if the result holds with s = So, it

also holds with s > So, so in order to obtain the most general results we begin by taking B = 2.

Now, with cQ < 2.9, (3.6.3) holds for (4+,10+), (5+,7+), (7+,5+) (s = 2); for (4,7) (s = 3);

and for (2,28+) (s = 3) and (2,20+) (s ~ 4). With s ~ 2, it also holds for (3,13+) (cQ < 2)

and (4,5) (cQ < 1.1). (Observe that showing that (4+,10+) and (4,5) hold with s ~ 2 has

established the complete "l = q + I" case.) For q ::; 3, note that It ¢(j) for any "small" prime j

(i.e., j < 16) unless l = 5, j = 11. For q = 3, (3.6.3) holds for n = 11 (cQ = 1); and for n = 7 or

n = 5 (s = 4, cQ < 1.1). For q = 2, (3.6.3) holds with s ~ 8, cQ < 1.1 for 11 ::; n = l ::; 19. For

n = 7 or 5, Example 3.2.4 applies to give N(Q, xn - 1) = N(I, xn -1), which is clearly positive

for both n. For n = 14, (3.6.3) holds with s = 3 and cQ < 1.52 (only 3 can be a small prime
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divisor of Q). The pair (2,10) alone remains. Now, Q(2, 10) = (25 -1)(25 + 1) = 3·11· 31, with

s(2,1O) = 4, [3(2,10) = 3. Thus, in this case, the right side of (3.5.1) = 21 < 25, and the result

is established.

Example 3.6.2. Pairs (q, n) with n" = 2l 2: 6, where either l is prime or l = ~(q + 1) and

q == 3 (mod 4).

Under the conditions prescribed, xn' - 1 factorises into two linear factors, and n's-2 factors of

degree s. Now, s 2: 2 and q ¢. l(mod 2l). Since q must be odd, (n*, q - 1) = 2. Then, for l

prime, (n*, qk -1) = 2 for all kls, k < s (since 2 divides (ri", qk -1), and if l is also a divisor then

so is ri" = 2l). For l = ~(q + 1) with q == 3 (mod 4), s = 2. Hence in both cases, m = w = 2.

Since l < /s 2d~1)' where /s = 1 if s is even and /s = 2 if s is odd (this holds both for odd

primes land l = (q;l)), it is now sufficient that

(3.6.5)

Now, (3.6.5) holds, using cQ < 4.9, for (11+,6+), (7+,8+), (5+,12+) and (3,22+) (with s = 2);

and for (3,14) (with s = 6). There remain the pairs (3,10) and (5,6) for which Q = 2· 11 ·61

and Q = 3·7·31 respectively. When (W(Q) - 1) = 7 is used instead of (3.6.2), the required

inequality (3.5.1) holds in both cases.

As a consequence of Examples 3.6.1 and 3.6.2, we now assume that n* 2: 8. For Examples

3.6.4 and 3.6.5, below, we mainly use (3.6.2) and the following simpler bound for f3(q, n).

Lemma 3.6.3. Suppose p(q,n*)(= wln*) ~ Po, where Po ~ t. Then

(3.6.6)

Proof Since m 2: wand n* ~ qS - 1, we have

pn' ( (l-p}n* )
f3(q, n) < 2 s _ (1 _ p) + 1 ,

which increases with p.

Example 3.6.4. Pairs (q, n) with q 2: 5, n* 2: 8.

Proof Note that, for the exceptional pairs (q, n) in Proposition 3.5.3 with n* = 2nl, p = ~, we
have nl 2: 2 and s = 2; then since m 2: wand n* < 2q, it suffices that

(3.6.7)
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Moreover, it is evident that, for the other exceptional pairs (q, n) with p > 1/3 in Proposition

3.5.3 (for these 8 :::::4), (3.6.7) also suffices. Next, for the general case of pairs for which p ~ 1/3,

we have from Lemma 3.6.3 the sufficient condition

(qnnl(q - 1))1/4 (2n* )
2n• /3 > cQ 38 _ 2 + 1 ,

Because (~ + 1)/ (~ + 1) < 2 < 2n/6, n :::::8, it is clear that (3.6.7) with n1 = 2 is more demanding

than (3.6.8), even with 8 = 2. Thus (3.6.7) with n1 = 2 would be sufficient for any pair (q, n).

(3.6.8)

Indeed, with co < 4.9, (3.6.7) holds for (11+,8+); for (8+,15+); and, provided n* ~ nip, for

(5,40+) or (7,40+). With Examples 3.4.2 (for (9,8)), 3.6.1 (for (9,11), (9,13), (8,9), (8,11),

(8,13)) and 3.6.2 (for (9,14)), this covers all pairs with q :::::8 or n* < ~.
Now suppose q = 7. Then (3.6.8) holds for n :::::15. This leaves only the pairs (7,12) and

(7,9). For n = 12, then nl = 6 and (Q,21) = 1: whence (3.6.7) holds with cQ < 2.7. For n = 9,

8 = 3, (3.6.8) holds with cQ < 4.

Finally, suppose q = 5. Then ea < 3.64 and (3.6.8), s = 2, nl = 1, holds for n :::::21, and

for even n :::::18, because nl :::::2. This leaves the possibilities that n = 16, 12, 9 or 8. When

n = 16, then nl = 4, w = 6, m = 8 and s = 4. None of 5, 7 and 11 is a divisor of Q(5, 16};

hence co < 2.7. From (3.6.1), f3(5,16} < 192 and Proposition 3.5.1 holds using (3.6.2). When

n = 12, then nl = 4, 8 = 2 and when n = 9, then n1 = 1, s = 6. In each case (3.6.8) holds

with co < 2, since gcd(Q, 2·5·11) = 1. When n = 8, replace Q by 78 (using Example 3.2.4).

Then, from (3.6.1), (W(2· 3 . 13) - 1)f3(5, 8) < 339 < 54, as required.

Example 3.6.5. Pairs (q, n) with q = 2, 3 or 4, n* :::::8.

First suppose q = 4, so that Q is odd. If n* ~ n/2, then (since w(q, n) = w(q, n*))

p(4,n) ~ !p(4,n*); so by Proposition 3.5.3, p(4,n) ~ 1/6. Hence p(4,n) < 1/5 for all n except

in the case when n = n* = 9 or 45. Thus for n =I=- 9, 45, by (3.6.6) and Proposition 3.5.3, it

suffices that

(3.6.9)

With cQ < 2.9, this holds for n :::::18 (using nl = 1) and for n = 15 (nl = 3). When n = 45,

then nl = 3, w = 11 and, using (3.6.6) with Po = i,we require inequality (3.6.9) but with 2n/4

in place of 23n/10 and ~ in place of 2;. This inequality is easily satisfied. Finally, when n = 9,

then w = s = nl = 3 and Q = 3·7·19·73. Thus, by (3.6.1), (W(Q) - 1)f3(4,9) < 349 < 49/2,

i.e., (3.5.1) holds.

Next, suppose q = 3. For s < 4, the result is covered by previous examples, except when

ri" = 8 (Example 3.6.1 established n* = 13 and Example 3.6.2 dealt with n* = 26); so we assume

s :::::4. Further, 3 f Q and, by Corollary 3.3.6, Q is odd if and only if n is odd. Note that p ~ 1/4
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unless n = 16. If ti" S n/3 (the smallest case remaining is n = 24), then, by Proposition 3.5.3,

p(3, n) :S ip(3, n*) S 5/48, whereupon it suffices that 21j43nj4/25n/48 > cQU~ + 1), which is

satisfied for n ~ 24. Otherwise n = n* and it suffices that

(3.6.10)

Now, with cQ < 3.2, (3.6.10) holds with s ~ 6 for n ~ 25, and with s > 4 for n ~ 40.

Example 3.6.1 establishes n = 11, and Example 3.6.2 deals with n = 10 and 22; this leaves

n = 8 (s = 2) and n = 16, 20 (s = 4). For n = 20, W = 3, and the required inequality,

35/25/2 > cQ(73/13), easily holds. For n = 16, W = 5, Q = 2·5·17·41·193 and, by (3.6.1),

/3(3,16) < 97 < 38/(W(Q) - 1) = 211.6 ... , as required. Finally, for n = 8, by Example 3.2.4,

it suffices to replace Q by 10. Further, by (3.6.1), (W(2 . 5) - 1),8(3,8) = 57 < 34, as required.

Finally, take q = 2, in which case Q = 2n - 1. Except for n* = 15 (s = 4), or n* =

9, 21, 63 (s = 6), we can suppose s ~ 8 (Example 3.6.1 established ri" = 31 and 127). If n is

even k 18), then p(2, n) :S 1/9. Hence, setting n* S n/2, p(2, n*) :S 2/9 in Lemma 3.6.3 yields

/3(2, n) < 2n/9. 2(9~n_7) and the corresponding sufficient condition 25n/36 > ea (2{9~":_7) + 1) holds

for n ~ 30, using s = 4, cQ < 2.9, and for n = 18, using s = 6, cQ < 1.9 (only small primes 3

and 7 divide Q).

Hence, we may assume n(~ 9) is odd, i.e. n = ti": The only odd prime l < 16 for

which ordl2 is odd is 7. Thus, co < 1.23. From Proposition 3.5.3, with (3.6.2) and (3.6.6)

comes the sufficient inequality 2n/12 > cQ{6~~5 + 1) if n ¢ {9,21}. This holds for n ~ 25,

provided s ~ 10, and for n ~ 39, provided s ~ 6. This leaves only n = 9, 21 (s = 6) and

n = 15 (s = 4). If n = 21, then by Lemma 3.3.5 (applied to 87 - 1), we have that 491Q; indeed

Q = 49 . 127·337, while x21 - 1 factorises over lF2 into one linear factor, one quadratic factor,

two cubics and two factors of degree 6. Hence W(Q) - 1 = 7, W(x21 - 1) - 1 = 63, and thus

N(Q, x21 - 1) is positive by (3.3.2). If n = 15, then Q = 7·31 . 151 and W = 2, m = 3, whence

(W(Q) - 1)/3 < 1533/13 < 118 < 215/2, as required for Proposition 3.5.1. Similarly, for n = 9,

Q = 7·73, W = 2, m = 3; whence (W(Q) - 1),8 = 21 < 29/2 = 22.6 ....

3.7 The factorisation of 9

In this final section we analyse the factorisation of the polynomial 9 occurring in Proposition

3.5.1 with the goal of verifying Proposition 3.5.3. Hence we assume that the pair (q, n) is

given with P f n, s(q, n) > 1, and n > 4, and use the notation of Section 3.5. Furthermore,

for any divisor, d of n, set s« := s(q, d): thus, Sn = S = s(q, n). For any divisor d of s, set

nd := gcd(qd - 1, n) (as in Section 3.5) and td := n/nd: thus ns = n. Also, for dl s, let Xd
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denote the polynomial xnd - 1: thus Xs = xn - 1. Define a = aiq, n) such that o iq, n)n is the

number of irreducible factors of Xs.

As defined earlier, w = pn is the number of irreducible factors of X; of degree < s, i.e. the

number of irreducible factors of g, where the roots of 9 are precisely those nth roots of unity

which lie in proper subfields of IFqs. Say s = lfl ... ((;)) (where the li are distinct primes), then

g(x) = lcm{XsIIl"" Xsllw(s)}' Amongst all the distinct prime divisors of s, there is clearly a

minimal set A = {ll, ... , Zh} of cardinality h (which we shall call the index of s(q, n), denoted

by inds) such that g(x) = lcm{Xs/1p'" ,Xs/1h} (1 :S h :S w(s)). If s = Zk (say), then evidently

ind s = 1 with g(x) = Xtk-l; note, however, that the converse need not hold since, for example,

s(2,9) = 6, yet inds(2, 9) = 1, with 9 = X2 = x3 - 1. If inds > 1, then, whenever Z1 ¥= Z2 EA,

neither of nslh, ns/12 divides the other. The following is the route taken to estimate p(q, n).

Lemma 3.7.1. If ind s(q, n) = 1 with A= {l}, then

( )
a(q, ns/l)

p q,n = .
tsll

(3.7.1)

More generally, if l E A and L := [kll s, then

( )< a(q,nsll) +p(qL,n)
p q,n - L .

tsll

Proof Since, in the first case, aiq, nsll)nsll = w(q, n), (3.7.1) is obvious. So we may suppose

(3.7.2)

inds > 1 and lEA. In this case, the roots of g that are not roots of Xsil must have order

divisible by L and so are roots of irreducible factors of 9 of degree of the form Lso, where

sol (si L) but So < si L. Each such factor splits into L irreducible factors over GF(qL), each of

which is an irreducible factor of the polynomial corresponding to 9 for the pair (qL, n) (since

s(qL, n) = si L).

From Lemma 3.7.1, the estimation of p involves a which is easier to treat.

Lemma 3.7.2. Suppose n'ln. Then a(q, n) S aiq, n').

Proof We may suppose n = in', 1 prime. We must show that 1 . w(xn/I - 1) 2: w(xn - 1). The

mapping r :a I--t al (on the algebraic closure of F) is an 1 -t 1 map from the set of n-th roots to

the set of n'-th roots. The result follows, since the degree of the extension F(r(a)) is a divisor

of the degree of the extension F(a).

Lemma 3.7.3. (i) Suppose n has the form n = lkn1' where Z is a prime divisor of nl and

q == 1 (mod 4) if 1 = 2. Then

k k(l-1)+1
a(q, 1 nd = lHI
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(ii) Suppose n has the form n = [h+knl' where l (i- p) is a prime such that l f q - 1, and

[h II s" - 1, where St := s(q, [) > 1. Then

( Zh+k )_~{~( k(l-l)) (l-l/SI)}
(J q, nl - [k SI 1 + l + [h .

(iii) Suppose q == 3 (mod 4), 2h+1 II q2 -1, and n has the form n = 2h+kn1. Then

( 2h+k ) _ k + 2 + 21-h
(J q, nl - 2k+2

Proof

Ji .

(i) By Lemma 3.3.5, [illqq~l for i E N since [Iq -1. Then (n,qll -1) = [inl for i = 0, ... ,k.

In particular, S = Zk (by the minimality of s, silk, but S i- li for i < k). Hence xn - 1 has

n 1 linear factors and n1(1 - t) factors of each degree [in l, i = 1, ... , k. So

and the result follows. Note that this case is a special case of part (ii), with SI = 1.

(ii) By Lemma 3.3.5, [all q~:;~~l for a E Ni since lhllqsl - 1 and S is minimal such that

[h+kllqS _ 1, we have that s = [kSI• So all divisors of s, Le. all possible degrees of

factors of xn - 1, are of the form liSt (i = 0, ... ,k). Further, writing qSI - 1 in the form

(q;;~~l) (qSI _ 1) and applying Lemma 3.3.5 again, it is clear that niisl = [Hhnl' i =
0, ... , k. Hence xn-1 possesses n1linear factors, ([h -l)nt/sl irreducible factors of degree

SI, and, for each i = 1, ... ,k -1,

irreducible factors of degree liSl. Thus

and the result follows.

(iii) By Lemma 3.3.5, 2illq2;;~11 (i E N), and since 211q-1 and 2hllq+1, we have (n,q2i+l_1) =

2h+inl, i = 0, ... ,k. In particular, S = 2k+l. Then xn -1 has nl linear factors, !(2h -l)nl

quadratic factors, and ~(n2i - n2i-1) = (2h+i-1nl - 2h+i-2nt) = 2h-2nl factors of each

degree 2i, i = 2, ... , k + 1. Thus

and the result follows.
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Typically, we bound a(q, n) by writing n = tini = clknl' 1 f e, for a selected prime divisor

1 of ti. Then a(q, n) ::; a(q, lknl) (Lemma 3.7.2) and we can apply Lemma 3.7.3. Thus, for

tl > 1, a ::;3/4 (with equality only when tl = 2). If tl is odd, the largest values of a are

2/3 (attained when tl = 3 and q == 2 (mod 3)); 3/5 (attained when tl = 5 and q == 4 (mod 5));

5/9 (attained when tl = 3 and q == 1 (mod 3}), etc. (It is clear from the formulae of Lemma

3.7.2 that the largest values of a(q,lknr) occur for the smallest values of l, k, hand sd A final

preliminary will be used in Lemma 3.7.1 to bound tsll below in terms of l,

Lemma 3.1.4. Assume L = lklls (k ~ 1) and A is a prime divisor of q~;-;-~I' Then either A = 1

or A == 1 (mod L), in which case, A> L; indeed, for I odd, A> 2L.

Proof Assume that A i-l. It must be that s>. divides s but not silo Hence LI s>. lA - 1.

The proof of Proposition 3.5.3 is by induction on s = s(q, n), i.e., at the induction stage, all

the claims of Proposition 3.5.3 will be assumed to hold for smaller values of s, for any pair (q, n).

The result is trivial for s = 1, in which case p(q,n) = 0; so, assume s > 1. In Lemma 3.7.1 we

shall abbreviate p(q, n) to p, aiq, nsld to aD, ts/l to t and p(qL, n) to PL. Observe that p f t

(since tl n) and Lemma 3.7.4 can be applied to (any prime divisor of) t. A vital consequence of

Lemma 3.3.5 is that, if lklls and II t, (e.g., if l = t), then li ns/lk and, if k > 1, then II nn./
p

, for
_/1'+1

each i = 1 ... k - 1 (for the second part, note that lins/lA: means sd F for i = 0, ... , k, and so

i qs/li -1 ._
1 /1'+1 for each z - 1, ... ,k - 1 by Lemma 3.3.5).q8 -1

I. Assume inds = 1 with A = {l}.

S . w(xn./I-l) ns/l d I I b L• uppose q ~ 5. Under our assumption, p = n::; n an so p ::; ts/l ::; T y emma

3.7.4. Clearly the general bound of Proposition 3.5.3 holds if 1 ~ 3, or if 1= 2 and t ~ 3, so we

need consider only the case when 1 = t = 2 (but ni-2nd; i.e. n = 2ns/2 = 2cnl, say (c > 1).

By Lemma 3.7.1, p = (T(q,;/2) = (T(q,;n1). If an odd prime divides tl then, by Lemma 3.7.3,

aD ::; ~ and p ::; i-, as required. Otherwise, if n = 4nl,then eTo = eT(q,2nd = i and p = i. If
n = Snl, then p = O'(q'td = h and hence p ::; i for all n with 8ltl.

• Suppose q = 4. As above, p ::; t, so the general result holds for t ~ 5; since n is odd, t is

odd, and so we may assume that t = 3. By Lemma 3.7.4, either t = l = 3 or 3 == 1 (mod L), Le.

L = 1= 2. However, if L = 1= 2, then q~;;-~l= qS/2 + 1 == 2 (mod 3), a contradiction since this

quantity is divisible by t = 3. Hence 1= 3 and n = 3ns/3; in fact (since t = nl = 3), n = ge (e

odd), where we can suppose e > 1. If 31c, eTo ::; eT(4, 9) = ~ (since x9 - 1 factorises into 3 linear

and 2 cubic factors over IF4), and so by Lemma 3.7.3, p ::; 257; while ao ::; 3/5, p ::; 1/5, if an

odd prime (> 3) divides c.
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• Suppose q = 3. The general result holds for t 2:: 4; since p = 3 t n and tin, we have 3 f t.
Hence we can suppose that t = 1= 2, i.e. n = 2ns/2' Since ni = 2, 41n, and we can assume that

n i- 4 or B, i.e. S > 2. Since s(3, 4) = 2 < s, the primitive 4-th roots of unity are roots of 9 and

so of Xs/2. Accordingly, 413s/2 - 1 and so 41s; hence n = 16c. If c is even, then by the last part

of Lemma 3.7.3, 0'0 = a(q, Se) ::; a(q, Bnd = 7/16, P::; 7/32. If c is divisible by an odd prime,

then 0'0 ::; 0'(3,40) = 13/40, P::; 13/BO.

• Suppose q = 2. The general result clearly holds for t 2:: 6; since P f t, we may assume

that t = 5 or 3. If t = 5, then 41s. Moreover, using Lemma 3.7.3, 0'0 ::; 2/3 and so P ::; 2/15,

unless n = 5. Now, assume t = 3, i.e. n = 3ns/ll in which event 1 = 3 or 2, and s is even. If

1 = 3, then 61s; so 3lns/1 and hence n = 9c (c odd), where we may suppose c> 1. If 31c, then

ao = a(2,3c) ::; a(2,9) = 1/3 (since x9 - 1 factorises into one linear, one quadratic and one

degree 6 factor over lF2), and so P ::; 1/9. Otherwise, s = 6so, 3 t So and s(2, 3c)12so, whence

7 t c. Hence, s(2,..\) 2:: 4 for any prime divisor ..\ of c. Thus, since the largest possible number

of factors of x>' - lover lF2 is 1+ (..\- 1)/4, ao ::; 0'(2,..\) ::; >'413 ::; 2/5 and p ::; 2/15. Suppose,

finally, 1 = 2, in which case L = 2, i.e 211s. Then n = 3c, c > 1, 3 t c and s = 2so, So > 1, So

odd. As before, if ..\ i- 7 is a prime divisor of c, then p ::; 2/15; otherwise 71c, 31So and the

primitive cube roots of unity would have to be roots of g, a divisor of x2'O-1 - 1, which is not

so.

II. Assume ind s > 1. As noted already, for any pair 11, 12 E A, neither of ns/h' ns/12 divides the

other: in particular, both exceed ni. Given 1 E A, apply (3.7.2). Now, 1 < s [L = s(qL,n) < s.

Hence, by induction (even though a different value of q is involved), we may replace PL = p(qL, n)

by the appropriate bound described in Proposition 3.5.3. Indeed, always PL ::; 1/2; often,

PL ::; 1/3 (for example, whenever q is even). Moreover, from above, (J'(q, ns/l) ::; 3/4. In specific

cases, we may have better bounds. Always we begin by selecting 1 as the maximal prime in A;

thus 1 2:: 3. We may later take 1 = 2. The arguments used are similar to those employed in the

"ind s = 1" case.

• Suppose q ;:::=: 5. If (the maximal prime) 1 ;:::=: 5, then, in (3.7.2)' L ;:::=: 5, t ;:::=: 5, PL ::; 1/2

and accordingly P ::; 1/3. Hence, we can suppose 1 = 3 (thus q is odd) and A = {2, 3}. If

t i= 3, then t 2:: 7 (Lemma 3.7.4), in which case P ::; ~ + ~< ~. If 1 = t = 3 and L 2:: 9, then

0'0 ::; a(q, 3nt) = 2/3 and P ::; ~ + ls = 15S' Hence, we can suppose L = t = 3, s = 3· 2a (a;:::=: 1),

n = 3u+lcnl, where 3Ullq+ l(u;:::=: 0), c > 1, 3 t c and s(q,3ucnt} = 2a. If q == 2(mod3), then

again ao::; a(q,3nl) = j and now p(q3,n)::; t by Proposition 3.5.3 (since inds(q3,n) = 1 and

q3 == 2(mod3)); it follows from (3.7.2) that P::; ~ + ~= i. Thus, we may assume q == 1(mod3)
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(u = 0). Apply (3.7.2) with l = 2, L = 2a and ts/2 = t' , say, where t' f. t = 3. Then

P2a = 1/3 (induction not being needed here). If t' f. 2, then, by Lemma 3.7.4, t' ~ 5; thus

P :s 2
3
0 + i = ~6·Hence t' = 2. Suppose a ~ 2 and write A = 2a-2. If 2ill q + 1, then 2i+l AI c

and 0"0 :s a(q,3A2i . nd :s a(qA,3A . 2ind. Except when a = 2, i > 1 and q == 3 (mod 4),

this last quantity can be regarded as a(q,6nt} (where q takes the place of qA) and so has the
1+1+£+£ 5value 2 63 6 = ]52, (In the exceptional case, it is smaller, namely, 18 (1 + -].) .) It follows

from (3.7.2) that P :s 254 + l2 = 274' Finally, suppose a = 1, i.e., s = 6. Then, necessarily,

q == 1 (mod 3) (otherwise n3 = nl) and n = 6001, where s(q,2bnt} = 2 and we can assume

b> 1. Hence
1 + 2

i
b-l + £ 6b + 7 19_ 2 3< __ <_

P - 3. 2ib - 36b - 72' b? 2.

• Suppose q = 4. By Lemma 3.7.3, the largest possible values of a(4, n) (with s > 1) are

3/5 and 5/9. Let I be the maximal prime in A. By the above, 0"0 :s 3/5. If (t ?)l ~ 5, then

(3.7.2) and induction yields p :s i5 + ls = ~~< !. Assume, therefore, that 1 = 3. If t ::f. 3, then
(Lemma 3.7.4) t ? 7 and p ~ 15 + ~= 36125' Hence, we can suppose t = 1 = 3 and n = 3Le,

where 3{ c. Indeed, c> 1 (otherwise inds = 1) and s(4,c) = 2a = s/L, a? 1. Suppose a? 2.

Then, in (3.7.2) with 1 = 2, L = 2a, we have 0"0 ~ 0"(4,9) = 5/9 and hence p:S !+ /2 = ;6'

Now take a = 1, so n = 15L. Suppose L ~ 9. Reverting to the choice of 1 = 3 in (3.7.2), we

have 0"0 ~ 0"(4,45) = 1/3, whence p ~ ~ + 217= 2~' Only the excepted case (4,45) is left.

• Suppose q = 3. Take l maximal in (3.7.2). If 1 ? 5, then P ~ 2
3
0 + 110 = !. Hence, 1 = 3,

whence t ? 7, since 3 { t. If t > 7, then t ~ 13 and p ~ 532 + i= ]3556, If t = 7, we may assume

L = 3 and, by induction, PL ~ 1/3 (since 71n but 7 { (33 - 1), the exceptional cases of the first

part of Proposition 3.5.3 do not apply). Hence P ~ 238 + ~= 25552'

• Suppose q = 2. From Lemma 3.7.3 the largest values of 0"(2, n) are 2/3 (n = 3), 2/5 (n =

5), 2/7 (n = 7) and 1/3 (n = 15). Take 1 maximal in (3.7.2). If 1 ~ 5 and t ~ 7, then

p ~ il + ]15 = ld5 < i· If t = 1 = 5, then 251n and aD ~ 0"(2,5) = 2/5, whence p ~ 225 + ]15 = ~~.

Hence, we can assume 1 = 3. If t > 7, then t ? 13 and P :s 3
2
9 + ~ = N7' If t = 7, then

n = 7e (c > 1): here, unless c = 3 or 5, 0"0 :s 1/3 and P ~ 2\ + ~= ~g.Further, n = 21 (e = 3)

is an exception, and if n = 35 (c = 5), then p = 4/35. Thus, we may assume t = 1 = 3 and

n = 3Lc, where e > 1,3 { e and 8(2, e) = 2a = s] L, a ~ 2 (otherwise c = 1). Then, in (3.7.2)

with l = 2, L = 2a, we have ao ~ 0"{2,9) = 1/3 and hence P ~ 1\ + l2 = 230' The proof is

complete.



Chapter 4

Counting generators: further

estimates

4.1 Exact values in special cases

The estimates for N(m, g) (mIQ, glxn - 1) used in the previous chapter were by no means

the "best possible" in all cases. For certain values of q and n, more precise estimates can be

obtained, and in some special cases exact evaluation of N(m,g) (in particular of N(Q,xn -1))

can be achieved. Throughout this chapter we seek to obtain expressions for N(Q, z" -1) which

can be computed as directly as possible from the values of q and n. We may then invoke Lemma

3.2.2, which enables us to express N(qn -l,xn -1) in terms of N(Q,xn -1), to convert these

expressions into results about numbers of primitive free elements.

L L '1 qn_l hemma 4.1.1. Suppose n is a prime, nip. et s = ordnq. I (q-l)(n,q-l) is prime, t en all

free elements of GF(qn) are primitive, and

n-l

N(Q,xn -1) = qn(l_~) (1 - :8)-' (4.1.1)

In particular,

• ifnlq-1, thenN(Q,xn-1)=(q-1)n.

• if s = ¢(n), then N(Q,xn - 1) = (q _l)(qn-l -1).

• in general, (q - L)" ~ N( Q, xn - 1) ~ (q - l)(qn-l - 1).

Proof: Apply Lemma 3.2.3 of Chapter 3.

Example 4.1.2. Pairs (2,n), where Q = 2n - 1 is a Mersenne prime.

45
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For n = 3, 5, 7, 13 and 19, s = ¢(n), so N(Q, z" - 1) = 3, 15,63,4095 and 262143 respectively.

For n = 17, s = 8 and N(Q,xn-l) = (28-1)2; for n = 31, s = 10 and N(Q,xn-l) = (21°_1)3.
n-l

For all other such n (;:::61), N( Q, xn - 1) = (2S - 1) =z: with s ;:::7.

Example 4.1.3. Pairs (q,3) with q < 16, 3 t q

All prime powers q < 16 (3 t q) satisfy the conditions of Lemma 4.1.1; since s = 1 or 2 for all

such q, exact values of N( Q, x3 - 1) are obtainable in every case.

For use in sieving, the following adaptation of Lemma 4.1.1 is useful.

Lemma 4.1.4. Suppose lin, where l = 1 or l is prime (l i= p). Let SI = ordql. Then

1 1 1-1
N(1,xl -1) = qn(1_ -)(1- -)~

q qSI (4.1.2)

In particular,

1. N(I, x - 1) = qn-1(q - 1)

2. If q is odd and n is even, then N(1, x2 - 1) = qn-2(q - 1)2

{

qn-3(q _ 1)3,
3. If 3 t n, then N(1,x3 - 1) =

qn-3(q _ 1)(q2 - 1),

if q :: 1 (mod 3),

ifq::2(mod3}.

4.2 Better Bounds for N(Q, xn - 1)

Our starting point for the results which follow is the expression for N(m, g) obtained in Propo-

sition 3.3.2 of Chapter 3.

N(m,g) = O(m)8(g){qn - tOg +! J Gn(1Jd)1J"d(dD)}
dim Dig
#1D:f.l

where mlQ, glxn - 1 and tOg = 1 if 9 = 1, 0 otherwise.

(4.2.1)

In Chapter 3, fairly crude estimates were used to approximate the "double integral" term in

equation (4.2.1). However, under certain conditions it is possible to obtain exact values for the

Gauss sum Gn(1Jd) and multiplicative character "1d(dD), which allow us to obtain more precise

estimates for f f Gn ("1d}r}d (8D). The corresponding improvement in the estimates for N(m,g)

may be exploited in two ways: explicit values of N( Q, xn - 1} can be calculated for classes

of pairs (q, n) which fulfil the given conditions, while for general (q, n) the lower bound for

N (Q, x" - 1) obtained from the sieving inequality can be improved by choosing complementary

divisors which allow us to make use of the new estimates.
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4.2.1 Better bounds using Stickelberger's theorem

Throughout this section we assume that q is odd and n is even.

Let D be a (monic) F-divisor of z" - 1. Recall from earlier the definition of 6D. i::1D is

defined to be the subset of 6 E E such that XO has F-order D if and only if 15 E i::1D, where

X,,(w) = Xl(6w), wEE. Denote by OD any element of i::1D (there will be ¢(D) of these). Recall

that JD = 0 when D = 1.

Lemma 4.2.1. (i) If Dlxn/k -1 (kin), then 6D is a root of (xn/k - 1)0", ie. 6D E GF(qn/k).

(ii) If Dlxn1k + 1 (kin), then OD is a root of (xn/k + 1)0", ie. JDqn/
k-1 = -1. In particular,

when n is even, suppose that k = 2 and either q == 1 (mod 4), or q == 3 (mod 4) and 41n.
Then 15D is a non-square.

Proof

21rix

(i) Set R = qn/k. So Xl(W) = A{TRk/p(W)) (w E E), where A{X) = e-p-. Let X(w) = X,,(w) =

A{TRk/p{OW)) and suppose 15 E GF{R), so oR = O. Then

x(WR) = A(TRk/p{JWR)) (4.2.2)
A(TR/p {TRk /R(6RWR))) (4.2.3)

= >..{TR/p{TRk / R{ow))) (4.2.4)
>"(TRk/p{JW)) (4.2.5)
X{w) (4.2.6)

Hence X{wR - w) = 1for all wEE. So for any Dlxn/k -1, ie. DO"lxR - x, X,,{DlT{w)) = 1.

Thus 0 = OD for some Dlxn/k - 1. Letting 0 vary in GF{R) accounts for all R characters

of order dividing xn/k - 1.

(ii) Suppose 0 is a root of xqn/k + x, so OR = -15. Proceed as in part (i). For the lat-

ter part, suppose 6D = "'12 for some, E GF{qn). ,2(qn/2_1l = -1 while 1= ,qn_l =

(r2(qn/2_1l)(qn/2+1l/2 and this yields a contradiction if either q == 1 (mod 4), or q =

3 (mod 4) and 41n.'

We will be mainly interested in the special case "k = 2" of Lemma 4.2.1, part (i); namely

the result that 6D E GF{qn/2) if Dlxn/2 - 1. Note that if Dlxn/2 - 1 then, since GF{qn/2) =

bqn/
2+1 : , E GF{qn)}, 'TJd{OD)= 1 if dlqn/2 + 1.

Define Q+ :=(square-free part of) (Q,qn/2 + 1). Now Q+ = {(q f~~,~1),qn/2 + 1) =

{ (qn/2+y n/2 1) / /2 n/2 1 n/2+1
q - qn 2 + 1) Clearly Q+ = qn + 1 if (n q - 1)1~' otherwise Q+ = q"'-+l(q-1) n,q-l) ,. 'q-l ' 2a=l>
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b n/2 1 n/2 1 /2where 2all(n, q - 1) and 2 IIq q_~ , a ~ b. Since (nI, q q_~ ) = (nI, ~), Q+ = qn + 1 precisely

when 2hlln implies 2h t q -1. If211n, Q+ = qn/;+l; Q+ is even when q == 3(mod 4) and odd

when q == 1 (mod 4). Otherwise, 41n; if q == 3 (mod 4) then clearly Q+ = qn/2 + 1, Q+ == 2(4).

If q == 1 (mod 4) then 2h-lllgn:~~1 where 2hlln; so ifnll~, Q+ = qn/2 + 1 (Q+ == 2(4)), while if

nl t ~, Q+ = qn/~+l (Q+ odd).

Recall, from Chapter 2, the following theorem (Theorem 2.3.15):

Theorem (Stickelberger's theorem). Let q be a prime power, and let TJdbe a non-trivial

multiplicative character of GF (qn) of order d dividing qn/2 + 1.

{
_qn/2, if d is even and gn/;+l is odd,

Then Gn(TJd) =
qn/2, otherwise.

{

-I, if d is even and gn/;+l is odd,
Define ET/d :=

1, otherwise.

Then Theorem 2.3.15 asserts that Gn(TJd) = ET/dqn/2.

For even d, qn/;+l is necessarily odd except when q == 3 (mod 4) and ~ is odd. For q == 3 (mod 4)

and ~ odd, dIQ+IQ, so dl(gn:~~1)((::q2~)) and the first factor is odd while 211(n,q - 1). So if

2hllqn/2 + 1, 2h-11lQ and hence it is not possible for gn/;+l to be odd. Thus

if d odd or q == 3(4), 211n,
(4.2.7)

otherwise.

Theorem 4.2.2. Suppose q is odd and n is even. Let m(of 1)IQ+ and g = g(x)(of 1)lxn - 1.

Set g- = (g, xn/2 - 1) and define am :=max{ 4>~) - 1,1}.

(i) If m = 2, and either q == 1 (mod 4) or q == 3 (mod 4) and 41n, then

N(2,g) ~ ~O(g){qn - qn/2[1 + (W(g) - W(g-))]}

with equality if 9 = g- .

(ii) Otherwise,

(where Oy- = 1 if o: of 1, 0 if g- = 1), with equality if 9 = g-.

Proof Equation (4.2.1) can be rewritten in the form

N(m,g) = O(m)8(g){qn + I I E(TJd)qn/2+ I I E(TJd)qn/21Jd(c5D)}
dim Dlg- dim Dig
#1 D;.!:l #1 Dlg-
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= 8(m)8(g){qn + qn/2[ J J EC'ld) + J J E(1Jd)1Jd(JD)]}
dim Dlg- dim Dig
#1 D:f1 #1Dlg-

Firstly, suppose ETJd = 1 for all dim. (This certainly occurs unless 41n and either q

3 (mod 4) or q == 1 (mod 4) and n1 t ~.) Then

N(m,g) = O(m)8(g){qn + qn/2[ J J 1+ J J rJd(OD)]}
dim Dlg- dim Dig
#1 D:fl #1Dlg-

(4.2.8)

Unless g- = 1, in which case the sum is empty, we have

J J 1 = J (~dlm,#IJ.t(d)) = (-1) J 1 = (_1)2 = 1.
dim Dlg- Dlg- Dlg-
#1 D:f1 D:f1 D:f1

For the second term in square brackets, rJd may be replaced by 1Jd, since 1Jd runs through

the characters of order d as rJd does. For JD fixed, set S(d) := ~1jEE,ord1j=d1J(OD) and set

s(m) := ~dlm ~~~lS(d). Then S, and hence s, is multiplicative, and so

s(m) = II (1 _ S(l))
1- 1

llm,lprime
(4.2.9)

(4.2.10)

If JD is m-free, then for each prime 11m, L1JEE,1J1=1 1J{OD) = 0 since the values of 1J(OD) are the

distinct lth roots of unity. Then

II l m
s(m) = 1 _ 1 = ¢(m) .

Ilm,lprime

(4.2.11)

Otherwise, OD = el for some prime 11m, some e E E, and so s(m) = O. Thus

J 1Jd{OD) = s{m) -1= {
dim
d:fl

tP~) - 1, OD m-free,

-1, otherwise.
(4.2.12)

Hence

N(m,g) = 8(m)8(g){qn + qn/2[{3g- + J (s{m) -I)]}
Dig
Dlg-

(4.2.13)

(where (3g- = 0 if g- = 1, 1 otherwise). So

(4.2.14)

Now suppose E1Jd =1= 1 for all dim, ie. f.1jd = +1 if d is odd, -1 if d is even.
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Unless g- = 1,

(4.2.15)

and so

m=2

m t= 2.
(4.2.16)

Unless 9 = g-, when we have an empty sum,

(4.2.17)

where

q,(:!J2) - 1,

-1,

OD If-free,

otherwise.
(4.2.18)

and

aD square and ';-free,

aD non-square and If-free,

otherwise.

(4.2.19)

Hence

!f.1Jdrld{OD) = {
dim
#;1

Since 211m, cJ>{m) = cJ>(!~.).

Then

q,(:::/2) - 1,

-1,

aD square and If-free,

otherwise.
(4.2.20)

N(m, g) = O(m)8(g){qn + qn/2[{3m + I !f.lIdrld{OD)]}
Dig dim
Dlg- #1

(where f3m = -1 ifm = 2, +1 ifm > 2). So we again obtain the lower bound

(4.2.21)

(4.2.22)

unless m = 2, in which case

(4.2.23)

Corollary 4.2.3. Suppose q is a Mersenne prime (ie. q = 2k - 1 for some k E Z, k ~ 2), and

suppose n = 4. Then

(4.2.24)
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whence the number of primitive free elements of E is given by

= {}(Q(q - 1) )(q _ 1)2(q2 + 1)
2

= {}(q4 _ 1)(q - 1)2(q2 + 1).

(4.2.25)

(4.2.26)

In particular,

(i) If q2;t is a prime power, say IT, r E N, then

(ii) If q2il = PI ... Ps for s distinct primes, then

N(Q, x4 - 1) = (PI - 1) ... (Ps - l)(q - 1)2

Proof In this case q == 3 (mod 4) and so, by Lemma 3.2.5, N(Q,x4 - 1) = N(Q,x2 -1). Q is

the square-free part of 2k-I (q2 + 1) and hence divides q2+ 1. Thus Theorem 4.2.2 applies (with

9 = g-) to give

The expression for N(q4 - 1, x4 - 1) follows by applying Lemma 3.2.2, since the greatest divisor

Rof q4 - 1which is coprime to Q must be ~. For part (i), Q = 2l and {}(Q) = l-;;} j for part

(ii), Q = 2pI ... Ps and O(Q) = (pl-~:i+(i·-l).

Example 4.2.4. Pairs (q,4) where q is a Mersenne prime .

• q = 3: I = 5, r = 1, R = 1,

N(Q,x4 - 1) = N(q4 - l,x4 -1) = 16.

• q = 7: I = 5, r = 2, R = 3,

N(Q,x4 - 1) = 720 and N(q4 - l,x4 -1) = 480.

• q = 31: s = 2, PI = 13, P2 = 27, R = 15,

N(Q, x4 - 1) = 388,800 and N(q4 -1, x4 - 1) = 207,360.

• q = 127: s = 2, PI = 5, P2 = 1613, R = 63,

N(Q,x4 -1) = 102,368,448 and N(q4 -1,x4 -1) = 58,496,256.

If m(# 1) is a divisor of Q+ and g(# 1) is a divisor of xn -1, then an estimate for N(m, g) may

be obtained by applying the sieving inequality with complementary divisors g- := (g, xn/2 - 1)

and g+ := (g, xn/2 + 1):

N(m,g) ~ N(m,g-) + N(m,g+) - N(m, 1) (4.2.27)
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Using Theorem 4.2.2 to obtain an exact value for N(m, g-) and a lower bound for N(m, g+),

we obtain (for m -I- 2)

If nlq - 1, this becomes

(4.2.29)

4.2.2 Better bounds using Davenport-Hasse theorem

In this section we assume that q is odd and 41n.

Recall, from Chapter 2, the following theorem (Theorem 2.3.14):

Theorem (Davenport-Hasse theorem). Let <p be a non-trivial multiplicative character of

GF(q) and let ¢' be the lift of ¢ to GF(qn) (q a prime power, n EN). Then

Using the Davenport-Hasse theorem, we obtain the followingresult.

Lemma 4.2.5. Suppose q is odd and 41n. Let TJdbe a non-trivial multiplicative character of

GF(qn) of order d dividing qn/4 + 1. Then Gn(TJd) = -e«
Proof Since dlqn/2 - 1 (d> 1), TJdis the lift of a character (call it T7d)of order d on GF(qn/2).

By Theorem 2.3.14, Gn(TJd) = -[Gn/z(T7d)]2. Since dlqn/4 + 1, applying Lemma 2.3.15 yields

Gn/Z(rld) = +qn/4 or _qn/4, and hence Gn('fld) = _qn/2.

By Lemma 4.2.1, if Dlxn/4 - 1 then 'fld(8d) = 1 for dlqn/4 + 1.

Theorem 4.2.6. Suppose q is odd and 41n. Define Q' := (Q, qn/4 + 1) and let m(# 1) be a

divisor of Q'. Let g( -I- 1) be a divisor of xn - 1 and define 9' := (9, xn/4 - 1). Then

(4.2.30)

(where 13g' = 1 if g' =f 1, 0 if g' = 1), with equality if 9 = g'.

Proof By Lemmas 4.2.5 and 4.2.1,

N(m,g) = O(m)6(g){qn - qn/2[ J J 1+ J J 1}d(dD)]}.
dim Dig' dim Dig
#1D#1 #1Dig'

(4.2.31)



CHAPTER 4. COUNTING GENERATORS: FURTHER ESTIMATES 53

Theorem 4.2.7. Suppose q is odd and 41n, and let m(¥: 1) be a divisor of Q. Then

N(m, x-I) ~ (1- ~)O(m){qn - qn/2(W(m) - W((m, qn/2 + 1)) - W«(m, qn/4 + 1))+ I'm))}
q

(4.2.32)

where I'm = 3 if m even, 2 if m odd.

Note More precise inequalities are easily obtainable wbich depend on the properties of

(m, qn/2 + 1) and (m, qn/4 + 1).

Proof
1N(m,x - 1) = O(m)(l- _){qn + A + B + C},
q

(4.2.33)

where

A = I J Gn(r'd)i[d(t5d),
dim Dlx-1

dlqn/4+1 D;i1
#1

B = I I Gn( l]d)i[d( t5d),
dim Dlx-1

dlqn/2+1 D;i1
dfqn/4+1

C = I I o; (l]d)i[d (t5d).
dim Dlx-1

dtqn/2+1 D;i1
dfqn/4+1

(4.2.34)

(4.2.35)

(4.2.36)

Unless (m, qn/4 + 1) = 1 (when A = 0),

A = (_qn/2) I I 1= _qn/2.
dim Dlx-1

dlqn/4+1 D;i1
#1

(4.2.37)

Now,

B = qn/2 I I f.TJd•

dim Dlx-1
dlqn/2+1 D;i1
dfqn/4+l

Ifm is odd, ie. f.l1d = 1 for all dim,

B = qn/2(1 _ L J.L(d)) = { 0, (m, qn/2 + 1) = 1,
dl(m,qn/2+1) qn/2, (m,qn/2 + 1) > 1.

(4.2.38)

If m is even,

(m, qn/2 + 1) = 2,

(m,qn/2 + 1) > 2.
(4.2.39)
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So
1N(m, x-I) = B(m)(l - - ){qn + Eqn/2 + C}
q

(4.2.40)

where E = -1, ° or 1, depending on the properties of (m, qn/2 + 1) and (m, qn/4 + 1). For

example, if m is odd and both gcd's are strictly greater than 1, then E = 0.

For C, observe that the number of divisors d of m such that d f qn/2 + 1 and d f qn/4 + 1 is

W(m) - W((m, qn/2 + 1)) - W((m, qn/4 + 1)) + W((m, (qn/2 + 1,qn/4 + 1))). Thus

N(m,x -1) 2: B(m)(l - ~){qn - qn/2(W(m) - W((m,qn/2 + 1)) - W((m,qn/4 + 1)) + J - E)}
q

(4.2.41)

where J = 1 if m odd, 2 if m even.

Taking the "worst case" version of the right-hand side of inequality (4.2.41) yields the stated

result.

4.2.3 Sieving in action

To demonstrate how the results just proved may be used in practice, we apply them to the

problem of obtaining a lower bound for N( Q, xn - 1) for the pair (q, n) = (13,4). In this case,

Q = 5.7.17, Q+ = 5.17 and Q' = 7.

Example 4.2.8. We apply the sieve in several forms.

(i)

N(Q, x4 - 1) 2': N(85, x2 - 1) + N(7, x2 + 1) - N(l, 1) (4.2.42)

Using Theorem 4.2.2 to obtain an exact value (of g~n~)2(134 + 132) = 18,432) for

N(85, x2 -1) and Theorem 4.2.6 to obtain a lowerbound (of ~n;)2(134 -3.132) > 20,489)

for N(7, x2 + 1) yields

N(Q,x4 -1) 2': 10,361

(ii)

N(Q,x4 -1) 2': N(85,x4 -1) + N(7,x -1) - N(1,x -1) (4.2.43)

Using Theorem 4.2.2 to obtain a lowerbound (of 14,596) for N(85, x4 -1), Theorem 4.2.6

to obtain an exact value (of 22,464) for N(7, x-I) and Lemma 4.1.4 to obtain an exact

value (of 26, 364) for N(l, x-I) yields

N(Q,x4 -1) 2': 10,696
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(iii)

N(Q, x4 - 1) ~ N(85, x4 - 1) + N(7,x2 - 1) - N(I, x2 - 1) (4.2.44)

Using Theorem 4.2.2 to obtain a lower bound (of 14,596) for N(85, x4 -1), Theorem 4.2.6

to obtain a lower bound (of 20,489) for N(7,x2 -1) and Lemma 4.1.4 to obtain an exact

value (of 24, 336) for N(l, x2 - 1) yields

N(Q,x4 -1) ~ 10,749

Comparing these results with those obtainable from the previous chapter, we find that Corollary

3.3.3 gives N(Q, x4 -1) ~ 5067, while the approach of Section 6 tells us merely that N(Q, x4-

1) > O.

Lemma 4.2.9. Let rl(q - 1) and let w E GF(q) be an rth root of unity. Let miQ. Then

N(m,x - w) = N(m,x - 1) (4.2.45)

qn_l ~
Proof Since ui" = 1, w = I r for some I E GF(qn). Set c5:= /,(q-l) (E GF(qn)), so that

w = 8q-1. Then c5(q-l)(n,q-l) = (,qn_l) (n.~-l) = 1, since rl(n, q - I).

Since (x - 1) and (x - w) are irreducible, a E GF(qn) is (x -1}-free precisely if a i= f3q - (3 for

any f3 E GF(qn), and (x - w)-free precisely if a i= (3q - wf3 for any f3 E GF(qn).

Observe that, for a, f3 E GF(qn),

a = f3q - f3 {:} c5wa = (c5f3)q - w(c5f3) (4.2.46)

It suffices to prove that a is m-free exactly when c5wa is m-free.

Suppose a is m-free but c5wa is not m-free; say c5wa = pi, 11m, 1 prime, p E GF(qn). Then

(
qn_l n 1 qn_l qn_l

Owa) I = 1. Since llQ, (q -1)(n, q -1)19; so c5 I = 1, from above, and w I = 1since

I( )( qn_l qn_l I ( )r q-l n,q-l}. Thus (owa) I =a I =1,andhencea=( forsome(EGFqn. This

is a contradiction since a is m-free. The reverse implication is similar.

In the case when nlq - 1, the Sieving Inequality may be re-written (using Lemma 4.2.9) in

the form

N(Q, z" - I} ~ nN(Q, x-I) - (n - I)N(Q, I). (4.2.47)

If q is odd and 41n, Theorem 4.2.7 may then be applied to obtain

(Note that this lower bound may be improved, for individual q and n, by replacing IQ by a

more exact value obtainable from Theorem 4.2.7.)
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Example 4.2.10. For the pair (q, n) = (13,4), the sieve may be applied as in inequality (4.2.47).

Recall that Q = 5.7.17. Since Q is odd and both Q+ and Q' are greater than 0, E = ° and 8 = 1

in inequality (4.2.41), and hence

1N( Q, xn - 1) ~ nO(Q)(l - - )(qn - 3qn/2) - (n - l)O(Q)qn
q (4.2.49)

This yields the numerical result

N(Q, x4 - 1) ~ 11,552

Note that this gives a better bound for N(Q,x4 - 1) than any of the earlier estimates.

4.3 How many free elements are non-squares?

If Q is even, it is natural to ask how many free elements of E are squares and how many are

non-squares. Since "non-square" is equivalent to "2-free", this question may be answered by

considering the quantity N(2,g). (Note that Q is odd if either q is even; or if q == 1 (mod 4)

with n odd or 211n;or if q == 3 (mod 4) with n odd, so we need consider only those (q, n) where

q == 1 (mod 4) and 41n, or q == 3 (mod 4) and n even.)

Theorem 4.3.1. Suppose q is odd, n is even and Q is even. Let g(=I= 1) be a divisor of z" - 1;

set g- := (g, xn/2 - 1) and g+ := (g, xn/2 + 1).

(i) Suppose that either q == 1 (mod 4), or q == 3 (mod 4) and 41n. Then

(4.3.1)

If either 9 = g- or 9 = s", then

(4.3.2)

where E = +1 if 9 = s", -1 if 9 = q>.

(ii) Suppose q == 3 (mod 4) and 211n. Then,

(4.3.3)

If 9 = g- or 9 = g+ ,

(4.3.4)

Proof
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(i)

N(2,g) = B(2)8(g){qn + A + B + C} (4.3.5)

where

A!! Gn(17d)rJd(5d),
dl2 Dlg-
#=1 D,e1

B = J !Gn(17d)rJd(5d),
dl2 Dlg+
#=lD#

C = J !Gn(17d)rJd(5d).
dl2 Dig
#=1 Df9-

Df9+

(4.3.6)

(4.3.7)

(4.3.8)

Now

A = (_qn/2)! !1,

d12,DIy-
#lD#

so A = _qn/2 if 9 =1= g+, and 0 if 9 = g+.

B = (_qn/2)! !rJd(8d),

d12, Dlg+
#lD#

and, since 5D is a non-square when Dlxn/2 + 1, l::1I,ordl1=21](8D) = -1. So B = qn/2 if

9 =1= g-, and 0 if 9 = g-. Thus

where

I-1€ = +1:
0,

if 9 = g-,

if 9 = «:
if 9 =1= g-, 9 =1= g+.

(4.3.9)

Clearly C = 0 if 9 = g- or 9 = g+, in which case an exact value is obtained for N(2, g)j

otherwise

(4.3.10)

(ii) Observe that, in this case, 5D is a square. The proof is similar to part(i), but in this case

B = _qn/2 if 9 =1= g-, 0 if 9 = g-.
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To estimate the number of free elements which are non-squares, namely N(2, z" - 1), The-

orem 4.3.1 may be applied directly or used in the sieving inequality.

Applying Theorem 4.3.1 directly yields

N(2,xn -1) ~ ~e(xn _1){qn - qn/2(W(xn -1) - W(xn/2 -1) - W(xn/2 + 1) + I)} (4.3.11)

In the case when nlq - 1,

N(2,xn -1) ~ ~(1- t)n{qn - qn/2(2n - 2nj2+1 + I)}

For example, for the pair (13,4),

(4.:U2)

Observe that, making the crude assumption that approximately half of the free elements are

squares, the "expected value" of N(2, xn - 1) would be ~(1 - i )nqn (for the pair (1:l,4), we

"expect" N(2, xn - 1) ~ 10,368).

Application of the sieve yields the following results.

Theorem 4.3.2.

Proof Use the Sieving Inequality of Chapter 3 with complementary divisors g+ and g-:

N(2, g) ~ N(2,g+) + N(2, g-) - N(2, 1), (4.3.14)

then apply Theorem 4.3.1 to obtain exact values for N(2,g+) and N(2,g-).

Corollary 4.3.3. Suppose that nlq -1; then under the conditions of part (i) of Theorem 4.:U,

(4.3.15)

Alternatively, under the conditions of part (ii) of Theorem 4.3.1,

N(2,xn -1) ~ qn/2((q _1)n/2 _ ~qnj2) - (q - It/2.

For the pair (13,4), Corollary 4.3.3 gives:

N(2,x4 -1) ~ 132(122- ~132) > 10,055

(4.3.16)

(an improvement on the previous estimate).

Observe that Corollary 4.3.3 allows N(2, xn -1) to be estimated (when nlq - 1) by a simple

arithmetic formula in terms of q and n. How does this formula, (( 1 - ~)n/2 - ~)qn, compare

with the "expected value", HI - ~)nqn?
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E di th . . ((1 1)n/2 1) _ 1 n n(n:?) n(n-:.!)(n-4)xpan mg ese expreSSlOns as senes, - Ii - 2" - 2" - 2q + 8q - :36q3 + ... ,
while ~(1 - i)n = ~- ~ + n(:q21) - n(n~;~~n-2) + . ... The series agree up to second order

in n, implying that the lower bound of Corollary 4.3.3 provides a good approximation t.o the

"expected value", although the bound may be less good if n ~ q (eg. n = q - 1). (Indeed

if n = q - 1, ((1 - i)n/2 - ~)qn decreases to Je - ~ (~ 0.107) for large q while ~(1 - ~rlqn

decreases to 21e (~ 0.184); in this case it may be preferable to apply Theorem 4.3.1 directly.)

However, in general (when n =1= q - 1), Corollary 4.3.3 is both less cumbersome than Theorem

4.3.1 and gives a better bound.

Example 4.3.4. Consider the pair (q, n) = (49,4) .

• By Corollary 4.3.3, N(2,x4 -1) ~ 492(482 - ~492) > 2,649,503.

• "Expected value", N(2, x4 - 1) ~ ~484 = 2,654,208.



Chapter 5

Primitive free quartics with specified

norm and trace

5.1 Introduction

We have seen in Chapter 3 that, for every finite field E = IFq'" the existence of an element

wEE, simultaneously primitive and free over F = IFq, is guaranteed by the Primitive Nor-

mal Basis Theorem. It is natural to ask whether the result of the PNBT can be extended by

imposing additional conditions on the primitive free element. In particular, we may wish to

prescribe the norm or trace of a primitive free element, equivalent to specifying the constant

term or the coefficientof xn-I of the corresponding primitive free polynomial. In [6],Cohen and

Hachenberger showed that, given an arbitrary non-zero element a E F, there exists a primitive

element W of E, free over F, such that W has (E,F)-trace a in F, and in [7] it was shown that,

given an arbitrary primitive element b of F, there exists a primitive element w of E, free over

F, with (E, F)-norm b in F.

The following question (known as the PFNT-problem for obvious reasons) was posed by

Cohen and Hachenberger in [7];it combines the two conditions mentioned above.

Problem 5.1.1. Given a finite extension ElF oj Galois fields, a primitive element b in F

and a non-zero element a in F, does there exist a primitive element wEE, Jree over F,

whose (E, F)-norm and trace equal b and a respectively'! Equivalently, amongst all polynomial.'l

L~o CiXi (Ci E F) oj degree n over F, does there exist one which is primitive and free, with

Cn-I = -a and Co = (-1) nb? If so for each pair (a,b), then the pair (q, n) corresponding to

ElF is called a PFNT-pair.

60
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In [5], Cohen showed (Theorem 1.1) that, for n ~ 5, every pair (q, n) is a PFNT-pair.

Note that, since w is effectively specified by its trace and norm for ri :S 2, the problem is

meaningful only for ti 2: 3. Since resolving the PFNT problem in the affirmative is equivalent

to demonstrating the existence of a primitive free polynomial of degree Tt with two coefficients

fixed, the cases with n small (i.e. n = 3,4) are dearly the most challenging to tackle since the

corresponding polynomials have fewest "degrees of freedom". In [5], it was suggested that the

n = 4 case was soluble in principle by the methods outlined in the paper, whereas it might be

impractical to expect any progress on the n = 3 case.

In this chapter, we solve the PFNT problem in the affirmative for n = 4, by identifying

sets of elements whose cardinalities can be estimated with particular accuracy and using a

sieving technique (on both the additive and multiplicative parts) designed to exploit these new

estimates.

Theorem 5.1.2. Let q be a prime power. Then (q,4) is a PFNT-pair·. Expressing the result in

terms of polynomials: for any prime power q, given a, bE F* (b primitive), at least one of the

q2 quartic polynomials x4 - ax3 + cx2 - dx + b (c, d E F) is primitive and free.

We have therefore extended the general existence result of Theorem 1.1 in [5]:

Theorem 5.1.3. Let q be a prime power and Tt ~ 4 an integer. Then (q, n) is a PPNT-pair·.

The basic technique ( [7]) of expressing the number of clements with the desired properties

in terms of Gauss sums over E yields, if applied directly, estimates in terms of the numbers of

prime factors of q" - 1 and irreducible factors of z" - 1. This establishes the result for large n

but is inadequate when n is sma.ll. In [5], use of a sieve on both the additive and multiplicative

parts produces an expression in terms of the numbers of prime (irreducible) factors of divisors

of qn - 1 (z" -1), which are estimated as previously; this approach is more successful in dealing

with small n but remains inappropriate for n < 5.

As with the proof of the PNBT, we choose to work with the divisors of q" - 1 and z" - 1 in

preference to the original quantities, and we apply a sieving mechanism, this time to both the

additive and multiplicative parts of the problem. In broad terms, this is similar to the approach

of [5], which in turn is an improvement on the traditional method used in the solution of the

PFN problem [7]. However, in [5], the expression involving Gauss sums over E is bounded

using the "worst-case" absolute values of the exponential sums; and a sufficient condition is

then derived in terms of the numbers of prime (irreducible) factors of divisors of q" - 1 (x" - 1),

whose theoretical estimation is entirely avoided. While the use of divisors and sieving means
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that the approach of [5] is more successful than the basic technique of [7] in dealing with small

n, there is still sufficient imprecision that it remains inappropriate for n < 5. The novel aspects

of the approach to the PFNT problem which we take in this chapter are our exploitation of

the idiosyncrasies of the situation when ti = 4, and the use of "external" results to estimate

appropriate quantities (i.e. we no longer depend exclusively on the estimates derived from the

initial Gauss sum formulation).

It transpires that when applying the sieve in the n = 4 case, it is sufficient to consider

only linear factors of z" - 1; specialising to the linear case when deriving the estimates allows

improved precision (an extra Cl term can be extracted and properties of additive characters with

linear F-order can be used). Results from [21]provide estimates for the multiplicative quantities
1

in the sieve which show an improvement, by a factor of order q'i, on the estimates from Gauss

sums obtained from [5]. The structure of the problem and the nature of our estimates then

determine the optimal sieving approach, which is to treat the additive and multiplicative parts

separately within the sieve, and to take the linear factors of xn - 1 individually. Applying this

general strategy with a degree of flexibility (varying the choice of multiplicative divisors in the

sieve and using some simplifying approximations which are once again specific to the n = 4 case)

establishes the result for all odd q, with three exceptions. Finally, the exceptions are dealt with

using the computer package MAPLE. For q a power of 2, the PFNT follows from a solution of

the non-zero PNT problem (in the sense of non-zero trace). This is treated in the final section:

here there are two further values of q which must be dealt with numerically.

5.2 Preliminaries

We begin by making some reductions to the problem, and formulating the basic theory. The

following result, from [5], deals with some small values of q.

Proposition 5.2.1 (Lemma 3.4, [5]). Let q be a prime power and n a positive integer. Assume

that q -1 divides n. Then (q, n) is a PFNT-pair. In particular, (2, n) is a PFNT pair for all n.

Proof In Theorem 1.1 of [7], the PFN problem is solved in the affirmative for all prime powers

s > 1 and n E N. Hence it is enough to show that, when q - 1 divides n, (q, n) is a PFNT-pair

if and only if (q, n) is a PFN-pair (see Proposition 4.1 of [7]).

Let b E F* be primitive, and let a E F be nonzero. Suppose that (q, n) is a PFN-pair; so there

exists a primitive element y of E which is free over F, with NE/F(Y) = b. Set x := TrE/F(y}-lay.

Since xqi = TrE/F(y}-layqi for all i E N, x satisfies precisely the same q-polynomials as y; thus
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x E E is free over F and TrE/F(x) = a. Furthermore, by Lemma 2.5 and Proposition 2.6 of [6],

x is primitive (this uses the fact that the square-free part of q - 1 divides n). Finally, since by

assumption q - 1 divides n, we have that q - 1 divides q;~/= (q - 1)n-l +n( q - 1)n-2 + ... +n.

Therefore, NE/F(X) = (TrE/p(y)-la)9;--/.b = b, completing the proof.

In the n = 4 case, this lemma establishes the result for q = 2, 3 and 5; so with the exception

of q = 4 we may assume q 2:: 7.

From now on, suppose that a,b E F, with a i- 0 and b a primitive element, are given.

Let m = m(q, n) be the greatest divisor of qn - 1 that is relatively prime to q - 1 (so in

particular ml (q-f~~,~-l))' Observe that m is not always equal to Q as defined in Chapter 3,

although it is always a divisor of Q. We may make the following simplification to the PFNT

problem (noted in [5]). Although this result is clearly related to Proposition 3.2.1, here we give

a proof which emphasises the role of the prescribed norm in this case.

Lemma 5.2.2. Let w be an element of E, with NE/P{w) a primitive element of F. Suppose

that w is m-free in E, i.e. that w = vd, where vEE and dim, implies d = 1. Then w is a

primitive element of E.

Proof If q = 2, the result is trivial, since m = s" - 1. Assume that q > 2, and that w is m-frce.

Suppose that w = vd, where dlqn - 1; then w.l.o.g. we may assume that dlqn~l. (To see this,

observe that if d = Jdl, where dllm and gcd(J,m) = 1, then w = vOd1 = (vO)d1 and since w is

m-free, dl = 1.) So any prime divisor of d is a prime divisor of q - 1, and consequently, since

q> 2, gcd{d,q -1) = 1 if and only if d = 1. Now, NE/P{w) = NE/P{Vd) = NE/P{v)d, and so

we must have (d, q - 1) = 1 since NE /F (w) is primitive and all primes in d divide q - 1. Thus

d = 1, and the result follows.

Analogously for the additive part: let M = M{q, n) be the manic divisor of x" - 1 (over F)

of maximal degree that is prime to x -1. So M = ~ where n = nw', p = charF and p f no.
xP -1

We may show that, if wEE has (non-zero) (E, F)-trace a, then to guarantee that w is free

over F it suffices to show that w is M-free in E. Again, we give a proof which emphasises the

role of the prescribed trace.

Lemma 5.2.3. Let w be an element of E, with TrE/p(w) a non-zero element of F. Suppose

that w is M -free in E, i.e. that w = hCT(v), where vEE and h is an F -divisor of M, implies

h = 1. Then w is free over F.

Proof Assume that w is M-free. Suppose that w = 9C1{V),for some vEE and some F-divisor 9

ofxn-I. Write 9 = 9192, where 911M and (g2,M) = 1; then w = 9lCT(92CT{V)), and sincew is M-

free, we have 91 = 1. So we may assume that (9, M) = 1, i.e. either 9 = 1or 9 = {x-l)k for some
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kEN. Suppose that x - 1 divides g, i.e. 9 = (x - l)h, say; then w = gO"(v) = (x - l)O"(hO"(v)).

So (~~ll)0" (w) = (xn - l)O"(hO"(v)) = 0, since hO"(v) E E. However, this contradicts the fact

that TT"E/F(W) = (xn-1 + xn-2 + ... + x)O"(w) = (xxn~/) 0" (w) is a non-zero element of E, and

so we must have 9 = 1.

In the context of the PFNT problem, we define N(t, T) to be the number of elements of E

which

(i) are t-free (t E Z, tim),

(ii) are T-free (T(x) E F[x], Tlxn - 1),

(iii) have norm b,

(iv) have trace a.

Write 7r(t, T) for q(q - l)N(t, T). In order to simplify calculations, we will generally work with

7r(t, T) rather than N(t, T) when dealing with the PFNT problem.

We begin by expressing the characteristic functions of the four subsets of E (or E*) defined

by the conditions (i)-(iv) in terms of characters on E or F.

We suppose throughout that t Im, T [z" - 1.

I. The set of wE E* with NE/F(W) = b.

The characteristic function of the subset of E* comprising elements with norm b is

_1_ ~ v{N(w)b-1),
q-1 ~

liEF"

where F* denotes the group of multiplicative characters of F*, and NE/ F is abbreviated to N.

To see this, observe that N{w)b-1 = 1 for precisely those w E E* with N(w) = b, and apply

Lemma 2.3.9.

II. The set of wE E* with TrE/F{w) = a.

The characteristic function of the subset of E comprising elements with trace a is

1-L A{c(Tr{w) - a)),
q cEF

where A is the canonical additive character of F, p is the characteristic of F and TT"E/F is

abbreviated to TT". To see this, observe that Tr(w) - a = 0 for precisely those wEE with

Tr(w) = a, and apply Lemma 2.3.9.

III. The set of w E E* that are t-free.
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From Chapter 3, the characteristic function for the subset of t-free elements (tim) of E* is

O(t) r 77d(W), wE E*,
Jdlt

where O(t) = Pip, rJd denotes a character of order d (dim) in E* and, using the notation

introduced in Chapter 3, the integral notation is shorthand for a weighted sum.

IV. The set of wEE that are T-free over F.

Similarly, from Chapter 3, the characteristic function of the set of T-free elements of E takes

the form

8(T) f Xc5v(W), wEE.
DIT

where 8(T) = ~?'),X is the canonical additive character on E and, as defined earlier, {Xc5v:

OD E .6.D} (where Xo(w) := X(ow), wEE) is the set of all additive characters of E of F-order

D (Dlxn - 1). Again, the integral notation represents a weighted sum.

Using these characteristic functions, we derive the followingexpression for 7r(t, T).

Proposition 5.2.4. Suppose that t Im and T Ixn - 1, and denote by 7r(t, T) the quantity q(q-
1)N(t, T). Then

7r(t, T) = (}(t)8{T) 11 L L i/{b)5.(ac) L (rJdV)(W)X((OD + c)w)
dlt DIT vEt. cEF wEE

(5.2.1)

where v(w) = lI(N(w)) and X(cw) = .\(cTr(w)).

Proof By the definition, clearly

N(t, T) = L (q ~ 1 ~ 1I(N(W)b-1)) (~L.\(c(Tr{w) - a)))
wEE vEF' cEF

X (9(t) 1
1
,~d(W)) (9(T)LX'D (W)) .

(5.2.2)

(5.2.3)

The result follows after simplification and scaling by q( q - 1).

We shall now specialise to the case when n = 4. Observe that, if pin, then q = 2k where

k ~ 2; in which case M = 1 and the PFNT problem reduces to the PNT problem (where the

specified trace is non-zero). This takes a simpler form than the PFNT problem due to the

absence of an additive component; we shall consider the p = 2 case in the final section. Hence

in the main part of this chapter (in particular in those sections dealing with the additive part

of the problem) we may assume that p = charF f n, Le. q is odd. With n equal to 4 and q

odd, ml (q+1)~q2+1) and M= ~4~r More precisely, if q == 1(mod 4), then m = (~)(q2il) and
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M = (x + 1)(x - i)(x + i) (where i E F is such that i2 = -1); while if q == 3 (mod 4), then

ml(~)(q\il) and M = (x + 1)(x2 + 1). Note that in both cases q2;Hlm. Our strategy for

proving the PFNT problem for n = 4 is to apply a sieving technique which treats the additive

and multiplicative parts separately. In the next two sections, we establish estimates for rr(1, L)
(L a linear factor of M) and rr(t, 1) (tim).

5.3 Estimates for linear polynomial factors

In this section, we derive estimates for the number N(1, L) of L-free elements of E with pre-

scribed norm and trace, where L is a linear divisor of M. (We assume that q is an odd prime

power).

For economy of calculation, it is desirable to consider the difference between rr( 1, L) and

0(L)rr(1,1) (in some sense the "error term"). We will prove the following lemma, whose bounds

will playa key role in our sieve. As will be shown later, it is sufficient to obtain bounds for

only those factors of x4 -1which are linear over F. In fact, the quality of the results which we

obtain is dependent on the factors' being linear.

Lemma 5.3.1. (i) When q == 1 (mod 4),

Irr(1,x + 1) + 7r(1,x +i) + rr(1,x - i) - 3 (1 -~) 7r(1, 1}1< q3 (3 - Iq1) (1 + ~).
(5.3.1)

(ii) When q == 3 (mod 4),

Irr(1, x + 1) - (1 - ~) rr(1, 1) I S q3 (1 - ~) (1 + ~). (5.3.2)

1
These bounds represent an improvement by a factor of order q 2' over those derivable from

Theorem 2.1 of [5].

Denote by L a linear factor of M; L may take the value x + 1 or, in the case when q ==

1 (mod 4), the values x ± i.

First, we require some results about ~L' For a polynomial f(x), denote by r' the polynomial

obtained from f by replacing xi by xqi. In Lemma 4.2.1 of Chapter 4, we established that

• If Dlxn/k - 1 (kin), then ~D is a root of (xn/k -1}0',

i.e. 8D E GF(qn/k).
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• If Dlxn/k + 1 (kin), then JD is a root of (xn/k + l )",
. r qn/k ri.e. OD = =o ii-

In the special case when n = 4, the following result will be found useful.

Lemma 5.3.2. Suppose q == 1 (mod 4), and let i E GF(q) be such that i2 = -1.

Proof

(i) Suppose 5q = iJ. Define X(w) = Xl(JW) = A(Trq4/p(JW)), wEE = lFq4. Then

X(wq + iw) = A(Trq/p[Trq4/q(J(wq + iw))])

= A(Trq/p[Trq4/q( -i((8w)q - 8w))]

= A(Trq/p[-iTrq4/q((l5w)q - 8w)])

1

since Trq4/q((l5w)q - I5w) == O. So the F-order of X is x + i. This accounts for all q - 1

characters with F-order x + i.

(ii) Replace i by -i in (i).

We are now ready to prove Lemma 5.3.1. Throughout this discussion, Gn(v) (where V is

a multiplicative character on Pqn) will denote a Gauss sum in ~n. We will use the notation

Ja(Vl, ... , Vk) (where a E F, Vl, ... , Vk are multiplicative characters of F, kEN) to denote the

Jacobi sum

L vdct} ... Vk(Ck)'

ct+"'+Ck=a

Proof of Lemma 5.3.1 By Proposition 5.2.4, since 8(L) = (1 - ~),

71"(1,L) - 8(L)7I"(1, 1) = 8(L) ( - q ~ 1) 2: 2: 2: ii(b)5.(ac) 2: v(w)X((I5L + c)w), (5.3.3)
VEP· cEF (OL) wEE

where I5L runs through all <P(L) elements of 6.L (Le. Xh runs through all additive characters

of E of order L). Separating the term for which c = 0, we have

71"(1,L) - 8(L)1I"(1, 1)
1

= --( 2: L ii(b) L v(w)x(hw)
q vEP· (od wEE

+ L L L v(b)5.(ac) L v(w)X((I5L + c)w)).
vEP· cEF· (h) wEE

(5.3.4)
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For the first term on the right side of (5.3.4), using the fact that 6L =j 0, replace 71J by Ji to
obtain

L v( t)G4(ii) Lv(od.
IIEl"· (od

By Lemma 3.3.1, F* 6.L = 6.L; so

and the inner sum equals 0 unless v*(:= iilF) is trivial, when it equals q - 1. Note that, for

kEF, v*(k) = i/(k) = v(N(k)) = v(k4), i.e. t/" = v4• So the first term of (5.3.4) can be

simplified to

L L 1/( t)G4(ii)v(6d.
vEF· (od
114=111

For the second term on the right side of (5.3.4) (i.e. the part for which c =j 0), replace 8L

by ch (again using Lemma 3.3.1), then replace w by c(6~+1) to get

L v( t)G4(ii) Lv(h + 1) L X(ac)v(c).
liEF. (OL) cEF·

Consider the inner sum LCEF. X(ac)v(c). In the case when v4 = VI, this reduces to a sum over

additive characters of F, while for v4 =j 1/1, a Gauss sum over F is obtained. Thus the second

term of (5.3.4) may be expanded as

- L v(!)G4(ii) Lv(8L + 1) + L v*(a)V{t)G4(ii)GI(V*) Lv(8L + 1).
liEF. b (h) liEF. (h)
0=~ 0#~

Hence,

11"(1, £) - 8{£}11"{1, 1} 1 ~ a4 _ ~-
= --( L..J v( b )G4(ii)Gl(v*)(L..J i/(h + 1))

q liEF· (h)
114:;t:1I1

+ L v(t}G4(ii) 2)v(8d - V(c5L + 1)))
liEF· (h)
114=111
0#111

1 a4 -= -( L LV(b)i/(N(8L + l))G1(V4)G1
4(V)

q liEF· (OL)
114:;t:1I1

1+ L v(b)G14(V) L[v(N(h)) - iJ(N(OL+ 1))]) (5.3.5)
liEF· (oLl
114=111
11#111

since G4(ii) = -Gi(v) by Theorem 2.3.14.
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We shall consider the various specific values that may be taken by L in (5.3.5); we begin by

assuming that L = x+1. By Lemma 4.2.1, 8L q = -8 L. Hence 8L 2 = c, where c is a non-square in

F. Indeed, {od = {±yIc, c a non-square in F}, a set of cardinality q -1 as required. Moreover,

{ 0"d = Cf-}· Hence N (od = c2, while N (1 + h) = (1 + h) (1 + h q) (1 + 0L q~ )( 1 + isL q3) =
To

(1+ 8£)2(1 - h)2 = (1 - c)2.

Writing 1/2 for the quadratic character on F, we have

1L l/(b)G14(1/) L (1 -1/2(C))(V(c2) - v((l - c)2)))
liEF" cEF"
114=111
11:;6111

1= -{81 + 82}, say.
q

+

The quadratic character satisfies the condition "1/4 = 1/1, 1/ =f 1/1'" but contributes zero to

S2, since (1/2(C2) -1/2((1- C)2)) = 0 for all c E F*. In particular, when q == 3 (mod 4), there are

no further contributions, whence 82 = o.
In the case when q == 1 (mod 4), there are also two characters of degree 4, which (may) give

non-zero contributions. Thus

82 = - L 1/(~)GI4(1/)( L (1 - 1/2(c))(1 + I/l(1 - c))),
liEF" cEF"
ordll=4

since only non-square c E F* contribute to the inner sum. The latter has the form

cEF"

= (q -1) - 0+ (0-1) - JdI/2,1/2)

= (q - 1) - 1 - (-1)

= q-1.

Thus

(5.3.6)

i.e. 1821S 2q2(q - I} and hence ~1821S 2q(q - 1) when q == 1 (mod 4).

Next, consider 81.

4

S1 = L 1/(: )G1(1/4)GI4(1/) L (1-1/2(c})iJ(1- c)2.
liEF. cEF"
114:;6111

(5.3.7)
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The inner sum of (5.3.7) has the following form (note that i/2 i= Vl,V2)

cEF' cEF'

Since the Jacobi sum has absolute value -fii, the inner sum has absolute value at most 1+-fii.
Hence

~1811< ~«q -1) - e)yqq2(1 + yq) = q3 (1 _ e + 1) (1 + _1 ) ,
q q q .;q

where e = gcd(q - 1,4).

In conclusion, in the case q == 3 (mod 4),

(5.3.8)

while in the case q == 1 (mod 4),

17r(1'X+1)-(1-~)7r(1,1)1 < (q3+q~)(1-~)+2q(q-l)

= q3 (1 - ~- :2) + q~ (1 - ~)
(5.3.9)

(5.3.10)

In particular, this establishes part (ii) of Lemma 5.3.1, i.e. the case when q == 3 (mod 4).

In the case when q == 1 (mod 4), there are two more linear factors to he considered, namely
2

L = x + i and L = x-i. Since these L are divisors of x2 + 1, (hq = -~L by Lemma

4.2.1; thus 6L2 E IFq2* but 6L2 ¢ IFq ", and so 6L4 = c, where c is a non-square in F. In fact,

{6x-d U {6x+d = {4th roots of c, c a non-square in F}, a set of cardinality 2(q - 1).
2 3In the case when L = x + i in (5.3.5), using Lemma 5.3.2, N(6L) = h6Lqhq 6Lq =

c5L(ih)(-~L)(-ih) = -s.: = -c and N(1 + h) = (1- 6L2)(1 + 6L2) = 1- h4 = 1- c. The

same values are obtained when L = x-i. Denote x + i and x - i by L1 and L2 respectively.

Then (5.3.5) yields

where

(5.3.11)

and

82:= L V(~)G14(v) L [v(-c) - i/(1- c)](1 - V2(C)).
vEF' cEF'
V4=Vl
V:;t:Vl

(5.3.12)
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Consider SI. It may be written in the form

where 0'1 := 'LCEF' (1 - v2(c))iI(1 - c). Then

0'1 L iI(1 - c) - L V2(c)D(1 - c)

As before, the Jacobi sum has absolute value ..;g. Thus

where e = gcd(q - 1,4), i.e.

Now consider 82 in (5.3.12). For a given V with v4 = VI, V # VI, the inner sum 0'2 satisfies

= 0 - (-1) - JO(V2' v) + J1(V2, D)

1- JO(V2' iI) + Jl (V2' v).

If V = V2, then

1 - (q - 1)+ (-1)

-(q - 1),

(using the fact that v2(-1) = 1). If v2 = V2 (write V = V4, since V must be one of the two

characters of order 4), then

Once again, 10'21 ~ 1+ y7j. Hence

82 = V2( ~ )G14(1I2H -(q - 1)]+ L 1I(~ )G14(V)(1 + Jr(V2, D))
vEF'
ordv=4

= q2(q - 1) + L v( ~)G14(V)(1 + J1 (V2' D)),
vEF'
ordv=4

(5.3.13)

(5.3.14)
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since b is primitive and hence a non-square, and G1(1.12)4 = q2. Thus

I821 ~ q2 (q _ 1) + 2q2 (1 + JQ) = q3 (1 + ~) 2

and so ~1821 ~ 2q2(1 + }q)2. Hence,

(5.3.15)

(5.3.16)

Combining inequalities (5.3.9) and (5.3.16) proves part (i) of Lemma 5.3.1 as follows.

17r(I,x + 1) + 7r(l,x + i) + 7r(I,x - i) - 3 (1 -~) 7r(I, 1)1

< (q3 + q ~) (1 - ~) + 2q( q - 1) + 2q3 (1 - ~ + :2) + 2q ~ (1 - ~)

(q3 + q ~) (3 _ lql )

= q3 (3 _ lql) (1+ ~).

5.4 Estimates for integer factors

In this section we obtain new estimates for the number N(t, 1) of t-free elements of E with

prescribed norm and trace, where tEN is a divisor of m. We improve upon the estimates of [5]

by applying some deep results of Katz arising from the study of Soto-Andrade sums [21].

These results apply to multiplicative characters only - the author is not aware of comparable

estimates for "mixed" character sums - and so we observe that the sieve is essential in allowing

us to apply them to the PFNT problem, since it allows a separate treatment of the multiplicative

and additive components.

Lemma 5.4.1. ([21), Theorem 4} Suppose that n ~ 2. Then

I
qn - 1 I n-2

N(I, 1) - q(q _ 1) ~ nq-2 (5.4.1)

z. e.

( 1)!!H.171"(1,1) - (qn - 1)1 ~ n 1 - q q 2 (5.4.2)

Next, we estimate N(t, 1) where tim, t > 1.

Lemma 5.4.2. ([21j, Corollary of Theorem 3 bis) Let." be a character of E of order d, where

dim, d > 1. Set

M(.,,) = L 17(X).
xEE

N(x}=b
T(x}=a
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In the special cases when ryq-l is trivial; or when n is odd, n is prime to p, ryq-l has exact order'

n, the characters rl-1 are all distinct for i = 0, ... , n - 1 and J!l = nnb,

n-I n-2
IM(ry) - q-2 I::;; nq-2 .

Otherwise, in the general case,
n-2

IM(ry)1 ::; nq-2 .

Corollary 5.4.3. Let tim, t > 1 and tolt, to 2: 1. Suppose that neither of the special cases

described in Lemma 5.4.2 apply. Then

17r(t, 1) - :(~t~)7r(to, 1)1 ::; O(t)n(W(t) - W(to)) (1 - ~) qT (5.4.3)

Proof By definition,

N(t, 1) = O(t) L r ryd(W) = O(t)1M(1']d),
wEE Jdlt dlt

N(w)=b
T(w)=a

and so
O(t) r

N(t, 1) - O(t ) N(to, 1) = O(t) J ~It M(1']d)'
o dfto

By Lemma 5.4.2,

I
O(t) I n-2N(t, 1) - O(to) N(to, 1) ::; O(t)(W(t) - W(to))nq-2

and hence

1

7r(t, 1) - O(t)) 7r(to, 1)1 < O(t)n(W(t) - W(to)) (1 - ~) q~.
O(to - q

Hence, in the case when n = 4, we obtain the following results.

Proposition 5.4.4. (i) 17r(l, 1) - (q4 - 1)1 :5 4 (1 - ~) q3.

(ii) Let tim, t > 1 and to It, to 2: 1. Then

1

O(t) 1 ( 1) 37r(t, 1) - O(to) 7r(to, 1) ::; 40(t)(W(t) - W(to)) 1 - qq. (5.4.4)

Proof(i) Apply Lemma 5.4.1 with n = 4.

(ii) It is clear that the general case of Lemma 5.4.2 is applicable when n = 4 to all ryd E P*
(dim), since (d, q -1) = 1 for all such d by the definition of m. Apply Lemma 5.4.3 with n = 4.

In order to appreciate the benefits of these bounds over the technique of [5], compare Propo-

sition 5.4.4 with the following result, giving the equivalent estimates from [5].

Proposition 5.4.5. (i) 17r(1, 1) - q41 ::; (1 - (e;1)) qL
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(ii) Let tim, t > 1 and tolt, to ~ 1. Then

I
(J(t) I ( e + 1 e) 71f(t, 1) - (J(to) 7I"(to, 1) ~ (J(t)(W(t) - W(to)) 1 - -q- + q~ q'i. (5.4.5)

where e = gcd(4, q - 1).

Proof (i) By Corollary 2.2 of [5], for tim and Tlx4 - 1 we have

7I"(t, T) 2: (J(t)8(T)(q4 - (q - 1- e)W(t)W(T)q~ - (eW(t) - l)(2W{T) - 1)q2,

where e = gcd(4, q -1). The result follows when we consider the situation with t = 1 and T = 1.

(ii) By Theorem 2.1 of [5],

1f(t, 1) ~ (J(t)(q4 + A - C)

where

and

The expression for 1f(to, 1) is completely analogous. After scaling and subtracting, we obtain

(5.4.6)

and taking absolute values yields the result.

Observe that parts (i) and (ii) of Proposition 5.4.4 give an improvement, by a factor of

approximately 4, on the estimates of Proposition 5.4.5.

5.5 The proof for general prime powers

Having established bounds for 1f(1, L) (LIM, L linear) and 1f(t, 1) (tim), as the next step, we

develop a sieving technique.

We shall use the basic sieving inequality introduced in Proposition 3.4.1. Let dim and

flxn - 1. Recall that (di' Ii) (i = 1, ... , r for r E N) are called complementary divisor pairs

with common divisor pair (do, fo) if the primes in lcm{d1, ••. ,dr} are precisely those in d, the

irreducibles in km{II, ... , ir} are precisely those in i, and for any distinct pair (i, j), the primes
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and irreducibles in gcd( di, dj) and gcd(fi, fj) are precisely those in do and fo respectively. Then,

by Proposition 3.4.1,

n(d,1) '" (tn(d;, [;)) - (r - l)n(do, 10)

In the proof of the PNBT, the sieve was applied only to the additive part, i.e. the divisor pairs

(5.5.1)

took the form (m, fd. However, since the n = 4 case of the PFNT problem is so delicate, we

will need the added precision which will result from sieving on the multiplicative part also.

The following lemma allows us to make a simplification in the case when q == 3 (mod 4).

Lemma 5.5.1. For q == 3 (mod 4), N(m, xx4~n = N(m,x + 1).

Proof Suppose that a is both m-free and x + I-free, but not xx4~l-free. (Note that in this case

x2 +1 is irreducible over F). Then 01= fJq2 + fJ, and hence aq2 = a, i.e., aq2-1 = 1. This implies

that a = ,q2
+l for some, E E, an evident contradiction since a is m-free. Observe that the

norm/trace restrictions do not affect the argument here.

The following are sufficient conditions for (q,4) to be a PFNT-pair.

Lemma 5.5.2. (i) When q == 1 (mod 4), (q,4) is a PFNT-pair if

11"(1,1) (8(m)-~) >48(m)(W(m)-1) (1_~)q3+ (3_
1
q
1
)q3+ (3_1ql)q~.

(5.5.2)

(ii) When q == 3 (mod 4), (q,4) is a PFNT-pair if

11"(I,I)(e(m)-~) ~40(m)(W(m)-I)(I-~)q3+(1+ ~) (1_~)q3. (5.5.3)

Proof (i) Apply the sieve in the following form:

7r(m, M) ~ 11"(m,1) + 11"(1,x + 1) + 11"(1,x - i) + 7r(I, x + i) - 37r(1, 1). (5.5.4)

Using the lower bounds for 11"(m,1) and the 11"(1,Ld (i = 1,2,3) from inequalities (5.4.4) and

(5.3.1), we see that 11"(m,M) > 0 whenever the stated condition holds.

(ii) Apply the sieve in the form:

11"(m,M) ~ 11"(m,1) + 11"(1,x + 1) - 7r(1, 1). (5.5.5)

As in the proof of part (i), the result follows using the lower bounds for 11"(m, 1) and 11"(1,x + 1)

given by inequalities (5.4.4) and (5.3.2).
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The following lemma provides an easy, but useful, lower bound for O(m). For a lower bound

for W(m), we will use Lemma 3.3.4.

Lemma 5.5.3. (i) For all odd r E N (=1= 1, 3, 9, 15, 21, 105),

1
O(r) > -1 •rs

(ii) Let q be an odd prime power, and let m be the greatest divisor of q4 - 1 coprime to q - 1.

Then
1

O(m) > ..;q'

Proof (i) Exploit the multiplicativity of the function r~ O(r) by breaking r (not one of the

exceptions) into coprime factors p of the following types and applying the result to each factor.

• p = pk (p ~ 5, k ~ 1). Since x - x ~ - 1 > 0 for x ~ 5, it follows that

O(p) = O(p) = 1 - 1> --\-~ --\-.
P p1'i p1'i

• p = 3k (k ~ 3). Then

O(p) = 0(3) = ~> _1 = ~ ~ 1.3 VS 271'i ;r
• P = 9pk (k ~ 1) or p = 3pk (k ~ 2), with p ~ 5. Then

O(p) = j(1 - ~) ~ 185 > ~ ~ -+.
45~ pt

• p = 3p (p > 11). Then
O(p) = ~(1- ~) ~ ~g> ~ ~ -+.

331'i p1'i

(ii) Since 4m < qq4~11 < (q + 1)3, q> 41/3m1/3 - 1 and so q ~ (m) ~ for all q. Hence, ..;q ~ mt,

i.e . .ft ~ ;;J-' From part (i), O{m) > ;;J- ;:::.ft. {Observe that, because q2:j'1Im, then m is not

one of the exceptional values in (i).)

As a "first attempt" , the PFNT problem may be reduced to more manageable levels by direct

application of Lemma 5.5.2 (combined with estimates such as that of Lemma 5.5.3), without

the use of multiplicative sieving.

Proposition 5.5.4. Let q == 1 (mod 4) be a prime power. Then (q,4) is a PFNT-pair for all

prime powers q ~ 6217.

Proof By Lemma 5.5.2,

71'(1,1) (o(m) - ~) > 40{m)(W(m) -1) (1-~) q3 + (3_ 1:) q3 + (3_ 1q1) q~. (5.5.6)

Then by part (i) of Proposition 5.4.4, 71'(m,M) > 0 if

{ (
4 (1) 3 ) 3 ( 1 12) 1 ( 11) 3Om) q - 4W (m) 1 - q q - 1 > q 6 + q - q2 + q 2 3 - q - q (5.5.7)
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By Lemma 3.3.4, W(m) ~ 1 cmq I' where Cm < 2.9 since m is odd. Set d := 4~Cm; then
4l(q-l) .

4W(m) ~ ~ and so 4W(m)(~)q3 ~ d(q _1)~q3. Using this result and the second part
(q-l)t

of Lemma 5.5.3, 7r(m, M) > 0 certainly if

1 4 3 3 3 ( 1 12) 5 ( 11) 3-{q -d(q-1)"4q -l}>q 6+--- +q2 3-- +-,v'ii q q2 q q
(5.5.8)

i.e. if

3 (1 12) ( 11) 1s > d(q - 1)"4+ Jq 6+ - - - + 3 - - +-.q q2 q q3 (5.5.9)

Take Cm = 2.9 and set d = 8.20 in inequality (5.5.9). Then inequality (5.5.9) holds for all

q 2: 6217; the largest prime power q == 1 (mod 4) for which the inequality fails is q = 6197.

Proposition 5.5.5. Let q == 3 (mod 4) be a prime power. Then (q,4) is a PFNT-pair for all

q 2: 2659.

Proof By Lemma 5.5.2, 7r(m, M} > 0 if

{5.5.10}

Then by part (i) of Proposition 5.4.4, 7r(m, M} > 0 if

4 (1) 3 3 ( 7 4) ( 3) 1O{m){ q - 4W (m) 1 - q q - 1} 2: q 2 - q + q2 + 1 - q - q' {5.5.11}

i.e. certainly if

3 (7 4) ( 3) 1q 2: d( q - 1}"4+..;q 2 - q + q2 + 1 - q + q3' (5.5.12)

where in this case d:= 4icm, since 81(q + 1)(q2 + 1} and so W(m} ~ t cmq t. Take Cm = 2.90
8 (q-l)

and d = 6.90 in (5.5.12). Then inequality {5.5.12} holds for q 2: 2659; the largest prime power

q == 3 (mod 4) for which the inequality fails is q = 2647.

5.5.1 Sieving with atomic divisors

In order to establish the result for smaller prime powers q, we will use the following sufficient

conditions, which arise from the application of the sieve with atomic divisors.

In order to simplify notation, from this point onwards we shall adopt the convention that

all unmarked summation signs have index i running from i = 1 to s.

Lemma 5.5.6. Let s denote the number of distinct prime factors of m. Then the following are

sufficient conditions for (q,4) to be a PFNT-pair.
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(i) When q == 1 (mod 4),

(3+4s)_(11+4s)_4(1_1)L:~+_L(3_11) ( 1) 1
q ~ q L: 1 q 3 p,..;q q + 4 1 - - +"""3

1- u :» q q
(5.5.13)

(ii) When q == 3 (mod 4),

(1+4s)-(3+4s)-4(1-1)L:~+_L(1-;!) ( 1) 1
q ~ q L: 1 q 1 p,..;q q + 4 1 - - +"""3

1- u :: q q
(5.5.14)

Proof (i) Let m = p~l ... p~8, where PI, ... ,Ps are distinct primes and 8 E N (recall that the

values of the ai will be irrelevant here). Apply the sieve in the form:

Using the results of inequalities (5.3.1) and (5.4.4), 7I"(m, M) > 0 if

i.e. if
3((3 +4s) - (11+4s) - 4(1-1) L:~) +q~(3 _11)

71"(11) > q q q p, q
, - 1-"1..-~

L...J Pi q

and so, using part (i) of Proposition 5.4.4, certainly if

(5.5.17)

(5.5.18)

(ii) Let m = p~l ... p~'. Then, applying the sieve with atomic divisors,

7I"(m, x + 1) ~ 7I"(pI, 1) + ... + 7I"(ps, 1) + 71"(1,x + 1) - 871"(1,1). (5.5.19)

Using the results of inequalities (5.3.2) and (5.4.4), 7I"(m, M) > 0 if

71"(1,1)(1 - L _!_ - !) - q3 (1 - ~) (1 + _!_) - 4q3 (1 - !)L (1 - _!_) ~ 0 (5.5.20)
Pi q q..;q q Pi

i.e. if
q3((1 + 48) - (3+4s) - 4(1- 1)E~) + q~(l- ~)

71"(11) > q q p, q
, - 1-"1.._1

L...J Pi q

and so, using part (i) of Proposition 5.4.4, certainly if

(5.5.21)

(1+4s)-(3+4s)-4(1-1)E~+ ~(1-;!) 1 1
> q q p, v« q + 4(1 - -) + -« e: El 1 3·1- --- q q

Pi q

(5.5.22)

This completes the proof.
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Observe that the inequalities of Lemma 5.5.6 are meaningful only when the denominator

1- L:: ~ - ~ > 0; in particular it is necessary to have 2: ii < 1. Note that, taking {Pl, P2, P3, ... }

to be the odd primes {3, 5,7, ... }, we have 2::==1ii > 1 for 8 ~ 9. Hence this approach is

practical only for those q for which m has fewer than 9 distinct prime factors. All prime powers

q which are congruent to 1 modulo 4 and less than 6217 have 8 < 9; in fact with the exception

of q = 2309 and q = 5813 (8 = 7) and q = 4217 and q = 6089 (8 = 8), all have 8 ~ 6. Note that

8 ~ 2 for all relevant q in this case. All prime powers q == 3 (mod 4) such that q ~ 2683 have

8 ~ 6. There are 2 values of q with s = 1, q = 3 and q = 7; however the q = 3 case has already

been dealt with.

Proposition 5.5.7. Let q == 1 (mod 4), q ~ 6197, q f/. {9, 13, 17, 29}. Then (q,4) is a PFNT-

pair.

P f F' b h ~ 1 2· ~ 1 > 2 + 2 - 2(1 + q-1 ) U' thiroo irst, 0 serve t at L.J Pi ~ Ii' smce L.J Pi _ q+1 q2+1 - Ii q(q+1)(q2+1)' sing 1S

lower bound in Lemma 5.5.6, the desired result holds if

( ) (19+4s) 8 3 11
3 + 48 - q + qr + ..;q - ;f ( 1) 1

q ~ 1 3 + 4 1- - + 3'1-~--- q q
wPi q

(5.5.23)

An upper bound is required for E i;, say 2: ~ ~ K(q) for some function K. In general, to

simplify calculations, the crude estimate

sIs 1I:-< I:-:----:-
i==l Pi - j==l p[j + 1]

(5.5.24)

will be used, where p[n] is the nth prime (n E N). (More precise values may be taken in specific

cases).

Observe that the desired result certainly holds when

(3+ 48) + ~ + q\ 1
q ~ ~ 1 3 + 4+ 3'

1-L.JPTiJ-q q
(5.5.25)

and, for fixed s, the function of q on the right side of (5.5.25) clearly decreases as q increases.

Hence to prove for a given s that the result is true for q ~ qo, some qo E N, it is sufficient to

show that inequality (5.5.25) holds for q = qo. (Observe that for individual q, the more precise

inequality (5.5.23) is to be preferred.)

The smallest prime power q == 1 (mod 4) with s = 6 is q = 853. Using the basic estimate

(5.5.24),
1111111" - < - + - + - + - + - + - < 0.90285'c: Pi - 3 5 7 11 13 17 '
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inequality (5.5.25) holds for q = 853 (right-hand side of inequality (5.5.25)= 293.46) and hence

for all q 2: 853. In the s = 5 case, the smallest relevant q is q = 173; taking

1 1 1 1 1 1L Pi ~ "3 + 5" + "7 + 11+ 13 < 0.84403,

the result holds for q = 173 (173 > 171.56) and thus for all q ~ 173. The first values of q for

which s = 4 are q = 73, 89, 109, 113, ... ; however the smallest of these q for which inequality

(5.5.25) holds using
1 1 1 1 1

"" - < - + - + - + - < 0.76710~ Pi - 3 5 7 11

is q = 109 (109 > 97.92). Clearly a more precise estimate is required for L #; than that of

equation (5.5.24). For q = 73, the prime factors ofm are {5, 13,37,41}; using the exact value

1 1 1 1 1L Pi = 5" + 13 + 37 + 41 < 0.32835,

inequality (5.5.23) holds (with the right side equal to 33.85). For q = 89, m has prime factors

{3,5, 17,233} and, using the exact value of I:#;' the right side of inequality (5.5.23) has value

55.10. So the result holds in all cases when 8 = 4.

When s = 3, inequality (5.5.25) holds with approximation (5.5.24) for q 2: 61; i.e. for all

prime powers q == 1 (mod 4) with the exception of q E {13,17,29,37,41, 53}. The use of exact

values of I:#; in (5.5.23) proves the result for q = 53 (primes {3,5, 281} divide m), q = 41

(primes {3,7,29}) and q = 37 (primes {5,19,137}). For the remaining 3 values of q, even the

use of exact values in inequality (5.5.13) fails; clearly another approach is required here.

For s = 2, inequality (5.5.25) with estimate (5.5.24) holds for all q ~ 35, leaving only the

exceptions q = {9, 25}. Use of the exact value L: i;= 1~+ 3~3 < 0.08012 establishes the result

for q = 25. However, for q = 9 (primes {5,41}), even the use of exact values in inequality

(5.5.13) fails (9 < 22.30).

Lastly, consider the 4 values of q less than 6217with 8 > 6. When s = 7, use of the estimate

11111111
"" - < - + - + - + - + - + - + - < 0.95548~ Pi - 3 5 7 11 13 17 19

in inequality (5.5.25) shows that the result holds for q = 2309 (right side of inequality has value

722.69) and hence for q = 5813 also. For 8 = 8, exact values are required. For q = 4217 (prime

factors of m are {3,5, 13,19,29,37,53, 89}), I:t < 0.75451, and the right side of inequality

(5.5.23) takes value 147.12< 4217. For q = 6089 (primes {3,5, 7,13,29,61,97,241}), use of the

exact value I:t: < 0.81845 yields the result (right side < 194).

Hence the desired result has been established for all q == 1(mod 4) with the exception of

q E {9,13,17,29}.
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Proposition 5.5.S. Let q = 3 (mod 4), q ~ 2659, q ti. {7, 11,23,47, 83}. Then (q,4) is a

PFNT-pair.

Proof First observe that, except in the case when s = 1 (q = 7) (which will be treated sepa-

rately), I:t > ~- ~, since I:t ~q2~1+ q!l = ~- ~ + !r( (q~:)(g:11))' So 4(1 - i) I:k
may be replaced by (16 - ~ + !); then dearly 7r(m, M) > 0 wheneverq q q

( )
(19+4s) 24 1 3

1 + 48 - q + qr + .fl - ;f ( 1) 1
q ~ 1 1 + 4 1 - - + 3"1-2:Pi-q q q

(5.5.26)

A sufficient condition with an obviously decreasing function on the right-hand side is given by:

7r(m,M) > 0 whenever
(1 + 48) + Jq + ~ 1

q~ I: 1 1 +4+3"1- --- qPi q
(5.5.27)

As in the proof of Proposition 5.5.7, the 2: ~ term in the denominator will usually be

replaced by the upper bound given by inequality (5.5.24). Once again, to prove for a given s

that the result is true for q ~ qo, it is sufficient to prove that inequality (5.5.27) holds for q = qo·

When s = 6, the smallest relevant q is 659. Use of the estimate

" _!_ < ~ + ~ + ~ + 2_ + _!_ + _!_ < 0.90285
~ Pi - 3 5 7 11 13 17

in inequality (5.5.27) proves the desired result for q = 659 (659 > 286.74) and thus for all

q ~ 659.

The smallest prime powers q = 3 (mod 4) with s = 5 are {83, 307, 419, ... }; however the

first such q for which inequality (5.5.27) holds with approximation (5.5.24) is q = 307. To deal

with q = 83, more precise estimates are required. The prime factors of m when q = 83 are

{3, 5, 7,13, 53}; however, even using the exact value

1 1 1 1 1 1
" - = - + - + - + - + - < 0.77198
~ Pi 3 5 7 13 53

in inequality (5.5.14) is insufficient to prove the result (83 < 86.27).

For s = 4, the first few q = 3 (mod 4) are {47, 167, 179, ... }; inequality (5.5.27) holds with

the approximation
1 1 1 1 1" - < - + - + - + - < 0.76710~ Pi - 3 5 7 11

for all such q except for q = 47 (47 < 81.42). For q = 47 (primes dividing m={3, 5,13, 17}), use

of the exact value

" _!_ = ~+ ~ + _!_ + 2_ < 0.66908
~ Pi 3 5 13 17

in inequality (5.5.14) just fails (47 < 49.49).
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When s = 3, inequality (5.5.26) holds with approximation (5.5.24) for values of q 2: 48; since

the first few q with s = 3 are {23,27,43,59, ... }, this leaves q = {23,27,43} still to be dealt

with. Use of exact values of I:: ih in inequality (5.5.26) proves the result for q = 43 (primes

{5, 11, 37} divide m) and q = 27 (primes {5, 7, 73}). However, for q = 23 (primes {3, 5, 53}),

even use of the exact value
1 1 1 1"" - = - + - + - < 0.55221c: Pi 3 5 53

in inequality (5.5.14) fails (23 < 29.59).

When s = 2 the first few values of q are {II, 19,31, 71, ... }; inequality (5.5.27) with estimate

(5.5.24) holds for all except q = {11, 19}. For q = 19 (primes {5, 181}), use of the exact value

!+ 1~1 < 0.20553 in (5.5.26) establishes the result; however for q = 11 (primes {3,61}), even

use of exact values in (5.5.14) fails (11 < 16.06).

Returning to the s = 1 case mentioned earlier, the only prime power q == 3 (mod 4), q > 3,

with s = 1 is q = 7 (m = 25). Setting ~ = ! in inequality (5.5.14), the inequality fails

(7 < 8.86), suggesting that another approach is appropriate in this casco

Thus the result has been established for all prime powers q == 3 (mod 4) with the exception

of q E {7, 11,23,47, 83}.

5.6 The proof for some special prime powers

Although only a handful of q-values remain, in this section we employ various devices to prove

the result for odd q by theoretical means in as many cases as possible.

5.6.1 The case when ~(q2 + 1) is prime

The following simplification applies for odd q whenever q2;-1 is prime.

Lemma 5.6.1. Let q be an odd prime power. Suppose that ma := q2il is prime. Then

N(m, x4 - 1) = N(!!!..., x4 - 1).
ma

In particular, N(m,x4 -1) = N(~,x4 -1) if q == 1 (mod 4).

Proof Suppose a E E is both .m...-freeand x4 -I-free, but a = j3rno. Then a2 E GF(q2), whencerno
aq2 = ,a, where ,2 = 1, , E GF(q2). However, this means that either (x2 - l)O'(a) = 0 or

(x2 + l)O'(a) = 0, in both cases contradicting the fact that a is x4 - 1-free.

Applying Lemma 5.6.1 establishes the result for q = 29 (primes {3, 5, 421}); using inequality

(5.5.13), 29 > 28.01. Note incidentally that in the case q = 9, we may replace N(5 . 41, M) by

N(5,M).
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5.6.2 The case when 151m

In this section, we increase the precision of the sieve in a special case, namely when 151m.

In the original derivation of the sieving inequality (see [5] for details), the following (fairly

crude) estimate is used: if PI and P2 are primes dividing m, then the number of elements of E

which are "either PI-free or P2-free" is bounded above by N(I, 1). However, it is clear that this

upper bound can be replaced by N(I, 1) - R(PIP2) where R(PIP2) is the set of PIP2th powers

in E. Thus the sieving inequality may be adjusted by the addition of a R(PIP2) term to the

right-hand side. This approach may of course be generalised to more than one pair of primes;

however for our purposes it suffices to consider the pair of primes PI = 3, P2 = 5.

Lemma 5.6.2. Let q == 3 (mod 4) be a prime power such that 151m. Then (q, 4) is a PFNT-pair

if
( 3) (48+1) ( 1) ",,8 1 1 (1 3)48 - - - ~ - 4 1 - - L..J-3 ~ + - - - 1 1> 5 q q ,- p, ,;q q + 4(1 __ ) + _

q - JL _""~ 1.. _ 1 q q3
15 L..J,=3 Pi q

(5.6.1)

Proof Denote by R(r) the set of rth powers in E (r E N), and here set p(r) := q(q - I)R(r). A

more precise sieving inequality than that of Lemma 3.4.1 is given by the following.

s

1I"(m, M) > 11"(3,1) + 11"(5,1) +L 1I"(pi' 1) + p(15) + 1I"(x + 1) - 811"(1,1)
i=3

1 8 s 1 1
[p(15) - -11"(1,1)] + [11"(1,x + 1) - O(x + 1)11"(1,1)] + [15 - L - - -]11"(1,1)

15 i=3 Pi q

Using the bounds of Katz, each character sum involving a cubic character occurs with coefficient

- ~+1~= -1~ in the above, and so the contribution to the total from cubic characters is bounded

absolutely by 185 • 4q(q - 1), rather than j .4q(q - 1) as previously. Similarly, the contribution

from quintic sums is also bounded by 185 . 4q(q - 1), and sums involving character of order 15

contribute another 185 • 4q(q - 10) term. Hence the bounds contributed by

1
111"(3,1) - 0(3)11"(1, 1)1 + 111"(5,1) - O(5)7r(1, 1)1 + Ip(15) - 1511"(1,1)1

are ~~. 4q(q - 1)q3, instead of ~~. 4q(q _1)q3. Then we may replace inequality (5.5.14) by

(48 - 2) - (48+K) - 4( 1 - 1) ~:=3 1.. + ~ (1 - 2) 1 1
q ~ 5 q 8 E

S
q lIP, q q + 4(1 - -) + 3'

15 - i=3 Pi - q q q
(5.6.2)

By means of this lemma, the result is established for q = 83 (83 > 68.44) and q = 47

(47) 42.80).
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5.6.3 The use of the Cohen bound

When q is small, it is preferable in some cases to use the bounds of Cohen ( [5]) to estimate integer

factors rather than those of Katz. Specifically, we use those bounds derived from Corollary 2.2

and Theorem 2.1 of [5] which were given in Proposition 5.4.5. In particular, in the case when

q == 3 (mod 4), these bounds take the form

4 7 3171"(1,1) - q I::; q2(1 - -)
q

and

17I"(t, 1) - OO«t))7I"(to, 1)1 ::; O(t)(W(t) - W(to))(1 _ ~ + 2;!)q~.
to q s»

Lemma 5.6.3. Let q == 3 (mod 4) be a prime power. Then (q,4) is a PFNT-pair if

(1 + (2s-3)) + 17i( _ (38-1) _ 3) _ 'q(" 1..)(1 _ ;! + 2 )
q Y q S q qr y'1 L.. Pi q;T ;;:;( 3 )

q? 1 ,,1 1 +yql--
- L.. Pi - Ii q

Proof Analogous to the proof of Lemma 5.5.6, but with the bounds of Proposition 5.4.4 replaced

(5.6.3)

by those of Proposition 5.4.5 to estimate integer factors.

Through this lemma, the result is established for q = 7 (7) 3.39) and q = 11 (11 > 5.46).

5.6.4 The case when q = 9

In order to establish the result in the case when q = 9, we derive more precise versions of

the bounds in sections 3 and 4 for this special case. Write q = q5, so that qo = 3. Consider

the expression for 82 given by equation (5.3.6). Since, for v E F· occurring in the sum,

ordv = 4 = qo + 1, Stickelberger's Theorem applies to give G1(V4)(= G1(V4))= -3 (where V4

denotes one of the two characters of order 4) . Hence

82 = -8· 81 (V4(~) + V4(~)) = 0,

since b is a non-square and so V4( i) = ±i. Thus the bound of inequality (5.3.9) may be replaced,

for q = 9, by

(5.6.4)

(5.6.5)

since Gl (V4) = Gl (V4) = -3, as before. So

82 = q2(q-l)+4.81(V4(~)+V4(~))

= q2(q _ 1).
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Hence

(5.6.6)

For the multiplicative part of the sieve, we employ the Cohen bound in preference to the

Katz bound; then

(5.6.7)

and

(5.6.8)

Applying the sieve in the form (5.5.4) with the bounds derived above yields the following (recall

that, by Lemma (5.6.1), we may take m = 5).

5.6.5 The case when direct computation is required

To deal with the remaining cases (q = 13, 17 and 23), we use the computer package MAPLE

(version 6). The field E is searched explicitly for elements satisfying the PFNT -problem; in all

cases, the desired result holds without exception.

As an illustration, we display the relevant quartic polynomials for the smallest case, i.e.

when q = 13. The following simplification shows that 12 polynomials will suffice (compared to

the expected 12 . </>(12)= 48).

Lemma 5.6.4. Let q = 13. Suppose that there exist free, primitive a E E such that TrE/F(a) =

a and NE/F{a) = b, for all pairs (a, b) where a E {1,2,4} and b E {2,6, 7, ll}. Then there exist

free, primitive a E E such that TrE/p{a) = a and NE/p(a) = b, for all pairs (a, b) where a is

a non-zero element of F and b is a primitive element of F.

Proof The result follows upon observing that F* = {j, 2j, 4j j E F, j4 = 1}, and that

TrE/pU'Y) = jTrE/p("(), NU,) = j4NE/P("() for all, E E, j E F.

The following table lists twelve quartic polynomials over F = GF(13) whose roots a E E =

GF(134) are primitive and free with norm and trace equal to b and a respectively.
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(a, b) Relevant PFNT quartic

(1,2) x4 - x3 + 3x2 + 2

(1,6) X4 - x3 + 8x2 + 6

(1,7) x4 - x3 + 2x2 - 3x + 7

(1,11) x4 - x3 + 6x2 - 8x + 11

(2,2) x4 - 2x3 + 2x2 - 2x + 2

(2,6) x4 - 2x3 - 8x + 6

(2,7) x4 - 2x3 + 2X2 - 5x + 7

(2,11) x4 - 2x3 + 4x2 - 11x + 11

(4,2) x4 - 4x3 + llx2 + 2

(4,6) x4 - 4x3 + 2x2 - x + 6

(4,7) x4 - 4x3 + 5x2 - 5x + 7

(4,11) x4 - 4x3 + 6x2 - 9x + 11

5.7 The non-zero PNT problem for fields of even order

Recall that, in the case when charF = 2, the PFNT problem reduces to the non-zero PNT

problem. Hence, to establish the result, it suffices to show that 7r(m, 1) > 0.

The following simplification applies in the case when q2 + 1 is prime.

Lemma 5.7.1. Let q = 2k, kEN. Suppose that q2 + 1 is prime. Then

N{m,l) = N(q + 1,1),

where N(t, 1) (tim) is the number of t-free elements of E with trace and norm equal to a and b

respectively (a, s « F, a # 0, b primitive).

Proof In this case, m = (q + 1)(q2 + 1). Suppose that a E E is q + l-free, with Tr(a) = a,

N(a) = b, but a = f3q2+1. Then a E GF(q2), i.e. aq2 = a. Hence, TrE/F(a) = a + aq + aq2 +
3o:q = 2(0: + o:q), which equals 0 since charF = 2- a contradiction as a i= O.

Proposition 5.7.2. Suppose q = 2k, (k EN, k i= 3, 5). Then (q,4) is a PFNT-pair.

Proof The q = 2 case is resolved trivially since 2 - lin. So we may assume that either k = 2,

k = 4 or k ~ 6.

As a first step, apply the bounds of Proposition 5.4.4 directly, without sieving. Then

1l' (m, 1) ~ 0(m){ (q4 - 1) - 4 (1 - ~) q3} - 40(m)( W (m) - 1) (1 _ ~) q3,
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and so 7r(m, 1) > 0 whenever

q> 4W(m) (1 - ~) + 2_.q q3

Using the approximation of Lemma 3.3.4 for W(m), (q,4) is a PFNT-pair whenever

(5.7.1)

3 1
q > 4em (q - 1)"4 + 3"'

q
(5.7.2)

where Cm = 2.9. This inequality holds for integers q ~ 18106, and so establishes the result for

q = 2k, k ~ 15.

To deal with the smaller powers, apply the sieve with atomic divisors. Let m = p~l ... p~'.

For all q = 2k with 2 ::; k ::; 14, s ::; 6. Using the results of part{ii) of Proposition 5.4.4,

7r(m, 1) > 0 whenever

By part (i) of Proposition 5.4.4, 7r(m,1) > 0 if

( 1) ( L:(1 - t.)) 1
q>4 1-q 1+ 1-L:t + q3' (5.7.3)

The desired result certainly holds when

where

( S-l) 1
C, := 4 2 + _ "'.1 + 64'

1 L..J p[I+1)

Clearly Cs is a constant for fixed s, and increases as s increases (1 ::; s ::; 9). Since C6 <

213.9 < 28, the result holds for q = 2k, k ~ 8. The result is established for k = 7 (s = 5) since

27 > 110.6 > C5; for k = 6 (s = 4) since 26 > 59.6 > C4; and for k = 4 (s = 2) using exact

values in inequality (5.7.3) (m = 17·257, 24 > 11.51).

By Lemma 5.7.1, when q = 4 we may replace N(5 ·17,1) by N(5, 1). Using the bounds of

Cohen, we find that generally

7r(m, I)
7 2 1> 8(m)7r(I,I) - q2 (1 - - + 3" )O(m)(W(m) - 1}

q q2

> 8(m)(q4 - q~(1- ~) - q~(1- ~ + -';')(W(m) -1)).
q q q"2

Hence, in the case when q = 4, 7r(5, 1) > ~(44 - 4~(1-~) - 4~(1- ~+ -\-))= 2; (2 -~) > 0,
- 42

and this establishes the desired result.



CHAPTER 5. PRIMITIVE FREE QUARTICS WITH SPECIFIED NORM AND TRACE 88

5.7.1 Computational strategy for remaining cases

To deal with the remaining cases (q = 8 and 32), we use the computer package MAPLE (version

6) to search the field E for m-free elements with norms and traces equal to the required values.

The following lemma allows us to simplify our computational strategy.

Lemma 5.7.3. Let q = 2k be such that q - 1 is a Mersenne prime. Let a, bE F be given, with

a ¥= 0 and b primitive (equivalently, b ¥= 0 or 1). Denote by ZQ,/3(m) the number of elements

wEE which are m-free and have TrE/F(w) = a, NE/F(w) = {3 (a,{3 E F). Suppose

Zl,b(m) > 0 'VbE F*.

Then (q,4) is a PNT pair.

Proof To prove that (q,4) is a PNT pair, we must show that N(m, 1) > 0, Le. that Za,b(m) > 0

for all a, bE F, a ¥= 0, b ¥= 0, 1. We prove the (stronger) result

Za,b(m) > 0 'Va, s e F*.

If a = 1, there is nothing to prove. Otherwise, set b* := -!.r E F*. Since Zl,b' (m) > 0, there

exists an element ( E E such that ( is m-free, TE/F(() = 1, and NE/F(() = b", Then a := a(

is also m-free, and has TE/F(a) = a and NE/F(a) = b.

Use of Lemma 5.7.3 reduces the number of necessary tests from (q - 1)(q - 2) (testing each

pair (a, b), b primitive) to q - 1 (testing each pair (1, b), b non-zero). This improves economy

and speed of computation. In both cases, the desired result holds without exception.



Chapter 6

Primitive free cubics with specified

norm and trace

6.1 Introduction

In Chapter 5, we introduced the PFNT-problem (solved for n ~ 5 by Cohen in [5]), and we

solved the n = 4 case. Although the n = 3 case was thought in [5] to be intractable, in what

follows,we resolve the cubic PFNT problem in the affirmative. Expressing the result in terms

of polynomials, we show that: for any prime power q, given a, bE F* (b primitive), at least one

of the q cubic polynomials x3 - ax2 + ex - b (c E F) is primitive and free. Perhaps surprisingly,

there are no exceptions.

We have therefore completed the final stage in solving the general PFNT problem, i.e. we

have established the existence of a primitive free element with prescribed norm and trace for

every extension. The result is summarised in the followingtheorem.

Theorem 6.1.1. Let q be a prime power and n ~ 3 an integer. Then (q, n) is a PFNT-pair.

Observe that n = 3 is the smallest n for which the problem is meaningful. Clearly the n = 3

case is the strongest case of the PFNT problem (and hence the most challenging to prove) since

there is only one coefficient which may be varied in the polynomial corresponding to the pair

(a, b).

In the introductory section of Chapter 5, we discussed how the basic technique of [7]estab-

lishes the result for large n but is inadequate when n is small, and how the approach of [5] is

more successful in dealing with small n but remains inappropriate for n < 5. The result was

successfully established for the case when n = 4 in Chapter 5, using a modified version of the

approach of [5]which utilised "external" results to estimate quantities used in the sieve, and

89
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was tailored specifically to the structure of the quartic problem.

In this chapter, we take an analogous approach in order to resolve the n = 3 case. We

exploit the idiosyncrasies of the situation when n = 3 (allowing us to reduce the PFNT prob-

lem to the simpler PNT problem in some cases) and we no longer depend exclusively on the

estimates derived from the initial Gauss sum formulation. However, since the structure of the

situation is quite different when we are dealing with cubic polynomials and extensions of degree

3 rather than quartic polynomials and degree 4 extensions, we cannot merely rewrite the results

of Chapter 5 with 4 replaced by 3. In particular, the extreme delicacy of the n = 3 case means

that the reductions and improvements which we apply to the basic technique are not merely

conveniences, but are vital in establishing the result. As in the quartic case, after employing

our theoretic results in as many cases as possible, we are left with a number of values of q which

require to be checked computationally. Since the n = 3 case of the PFNT problem is the case

whose conditions are most demanding, we would intuitively expect more "potentially excep-

tional" q to check in this case, and indeed 34 values of q ::; 256 require checking by computer.

It is perhaps surprising that, despite the stringency of the conditions for (q,3) to be a PFNT

pair, there are no exceptions; however it transpires that there is at least one q for which the

PFNT cubic is unique.

6.2 Preliminaries

As usual, we begin by making some reductions to the problem. The basic theory is the same as

that for the quartic case.

By Lemma 5.2.1 of Chapter 5, (q, n) is a PFNT-pair whenever q - 1 divides n, so we may

assume that q =/: 2, 4, in the case when n = 3.

From now on, suppose that a,b E F, with a=/:O and b a primitive element, are given.

Denoting by m = m(q, n) the greatest divisor of qn - 1 that is relatively prime to q - 1, and by

M = M(q, n) the monic divisor of xn -1 (over F) of maximal degree that is prime to x - 1,we

have (exactly as in Chapter 5) that to guarantee that w is primitive it suffices to show that w

is m-free in E (Lemma 5.2.2), and to guarantee that w is free over F it suffices to show that w

is M-free in E (Lemma 5.2.3).

Once again, define N(t, T) to be the number of elements of E which

(i) are t-free (t E Z, tim),

(ii) are T-free (T{x) E F[x], Tlxn - 1),
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(iii) have norm b,

(iv) have trace a.

Wewrite 7r(t, T) for q(q - 1)N(t, T). Then, for t Im and T Ixn - 1, by Proposition 5.2.4,

7r(t, T) = 8(t)8(T) 1! L L i/(b).(ac) L (1]dV) (w)x((6D + c)w).
dlt DIT vEF' cEF wEE

(6.2.1)

where v(w) = v(N(w)) and X(cw) = A(cT(w)).

We shall now specialise to the case when n = 3. Observe that, if pin (i.e. if q = 3k for

some kEN), then M = 1 and the PFNT problem reduces to the (non-zero) PNT problem. If

q == 2 (mod 3), then M = x2 + X + 1 is irreducible over F; by Lemma 3.5 of [5], 7r(m, M) > 0

if and only if 7r(m, 1) > 0, and so the PFNT problem reduces to the (non-zero) PNT problem

in this case also. Hence only in the case when q == 1(mod 3) need the full PFNT problem be

considered. When q == 1(mod 3), M = (x - ,)(x - ,2) (where, E F is such that ,3 = 1,

, =/; 1).

With regard to the multiplicative part of the problem, we note that all prime divisors of m

must be congruent to 1 modulo 6. For, since ml(q2 + q + 1), an odd number, then m is odd.

Further, suppose that for some prime 1, 11m. Then llq3 - 1 but 1 f q - 1; hence ordlq = 3. By

Fermat's Little Theorem, ql-l == 1 (mod l) since l f q. So 31l - 1, i.e. 1 == 1(mod 3). Thus all

prime divisors of m lie in the set {7, 13,19,31,37, ... }. This simple observation is of considerable

significancecomputationally.

Our strategy for proving the PFNT problem for n = 3 is to apply a sieving technique. We

shall use the basic sieving inequality introduced in Proposition 3.4.1, Le. for divisors d of m

and f of xn - 1, let

{(d1, II), ... , (dr, fr)} be complementary divisor pairs of (d,1) with common divisor (do,fo).

Then

,,(d, f) ~(t"(d;'!;)) - (r - 1)",(do'/o).

In the PNT case, where there is no additive component, the sieve will clearly take the

(6.2.2)

followingsimpler form. For divisors d of m, let d1, ... ,dr be divisors of d (with common divisor

do) such that the primes in lcm{dl' ... , dr} are precisely those in d and, for any distinct pair

(i, j), the primes in gcd{di,dj) are precisely those in do. Then

,,(d, 1) ~ (t ,,(<1;, 1)) - (r - 1)",(do, 1). (6.2.3)

In the next section, we establish estimates for 7r(t, 1) (tim).
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6.3 Estimates for integer factors

In this section we obtain estimates for the number N(t, 1) oft-free elements of E with prescribed

norm and trace, where tEN is a divisor of m. In Chapter 5, we were able to improve upon the

estimates of [5] by applying some deep results of Katz arising from the study of Soto-Andrade

sums [21]. In the context of the cubic problem, we obtain the following proposition (analogous

to Proposition 5.4.4).

Proposition 6.3.1. (i) 11f(1,1) - (q3 - 1)1~ 3 (1 - ~) q~.

(ii) Let tim, t > 1 and tolt, to 2: 1. Then

11f(t,1) - :(~t~)1f(to,1) I ~ 30(t)(W(t) - W(to)) (1 - ~) q~. (6.3.1)

Proof (i) Apply Lemma 5.4.1 with n = 3.

(ii) It is clear that the general case of Lemma 5.4.2 is applicable when n = 3 to all f/d E F*
(dim, d » 1). For, consider some", E F* of order d, where dim and d » 1. Clearly f/q-l cannot

be trivial or have order 3, since (d, q - 1) = 1 and (d,3) = 1. Apply Lemma 5.4.3 with n = 3.

Note that part (i) of Proposition 6.3.1 is an improvement, by a factor of approximately 4,
on the estimate

11f(1,1) _ q31 ~ (1- (e: 1)) q3,

(e := gcd(3, q - 1)) obtainable from Corollary 2.2 of [5]but useless as a lower bound. It is such

increases in accuracy which allow us to solve the n = 3 case where the method of [5J fails.

6.4 The (non-zero) PNT problem

Recall from Section 2 that, if q is a power of 3 or if q == 2 (mod 3), then the PFNT problem

reduces to the (non-zero) PNT problem ("non-zero" refers to the fact that the prescribed trace

a is non-zero). Hence, to establish the result in these cases, it suffices to show that 1f(m, 1) > o.
In order to simplify notation, from this point onwards we shall adopt the convention that

all unmarked summation signs have index i running from i = 1 to s (where s is the number of

distinct primes dividing m), and that p[i] denotes the ith prime congruent to 1 modulo 6, i.e.

the ith element of the set {7, 13, 19, 31, 37, ... }.

The following lemma provides a useful upper bound for W(t).

Lemma 6.4.1. For any positive integer t,

(6.4.1)
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h _ 2rwere Ct - ( )1/6' and Pi, ... ,Pr are the distinct primes less than 64 which divide t. In
Pl···Pr

particular, if Pi == 1 (mod 6) for all i = 1, ... .r , then et < 3.08.

Proof The proof is exactly analogous to that of Lemma 3.3.4; equation (6.4.1) is simply the

bound of equation (3.3.4) with a = 6.

Observe that it is advantageous, in this situation, to take a = 6 rather than a = 4 in equation

(3.3.4). Using a higher value of a gives a better bound, and we do not sacrifice ease-of-use since

in general we will be concerned only with primes congruent to 1 modulo 6, of which there are

merely 8 less than 64.

Proposition 6.4.2. Suppose q is a prime power, q t 1 (mod 3). Then (q,3) is a PNT-pair for

all q ~ 622,346. In particular, (3k, 3) is a PNT pair for all kEN, k > 12.

Proof Apply the bounds of Proposition 6.3.1 directly, without sieving. Then

7r(m, 1) ~ O(m){(q3 - 1) - 3 (1 - t) q~} - 30(m)(W(m) - 1) (1 - t) q~,

and so 7r(m, 1) > 0 whenever

1 (1) 1q2 > 3W(m) 1- - +~.
q q2

(6.4.2)

Using the approximation of Lemma 6.4.1 for W(m), we conclude that (q,3) is a PNT-pair

whenever
5 1

q > 3em (q - 1) 6 + 2"'q

where Cm = 3.08. This inequality holds for integers q ;:::622,346, and so establishes the result.

(6.4.3)

The following simplification applies in the case when 31q and m is prime.

Lemma 6.4.3. Let q = 3k, kEN, so that m = q2 + q + l. Suppose that m is prime. Then

N(m, 1) = N(l, 1),

where N(t, 1) (tim) is the number of t-free elements of E with trace and norm equal to a and b

respectively (a, s « F, a =1= 0, b primitive).

Proof Suppose a E E (i.e. trivially l-free) with Tr(a) = a, N(a) = b, but a = (Y"". Then

aq
-
i = 1, i.e. a E GF(q). Hence, TrE/F(O:) = 30:, which equals 0 since charF = 3; a contra-

diction as a =1= o.
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Proposition 6.4.4. Suppose q is a prime power, q;f. 1 (mod 3), and let m = prl ... p~'. Then

(q,3) is a PNT-pair whenever

(6.4.4)

and so certainly whenever
1

q"2 > Cs (6.4.5)

where

c, := 3 (2 + _~~ 1 1) + 1~,
1 i=l P[iJ 32

where p[iJ is the ith prime congruent to 1 modulo 6.

Proof Apply the sieve with atomic divisors. Using part (ii) of Proposition 6.3.1, 7r(m, I) > 0

whenever

7r(I, 1){1 - L ;i} - 3 (1 - ~) q~L(1- ;J > O.

By part (i) of Proposition 6.3.1, 7r(m, 1) > 0 if

q~ > 3 (1- ~) (1+ 2:(1~ ~)) + 1~.
q 1- Pi s»

Replacing the right-hand side of (6.4.6) by a larger quantity depending solely on s, the desired

(6.4.6)

result certainly holds when
1

q2 > c, (6.4.7)

where

c. := 3 (2 + sE 1
1 ) + 1~.

1- P[iJ 32

Observe that, since C, is a constant for fixed s and increases as s increases (for all s such

that 2::=1 PhI < 1), q~ > CS1 for some SI implies that q~ > C, for all s :$ SI·

Proposition 6.4.5. (i) Suppose q = 3k, (k E N, k ~ 5 or k = 3). Then (q,3) is a PFNT-

pair.

(ii) Suppose q == 2 (mod 3) and q :$ 622,346 but q fI- {5, 8,11,17,23,29,32,47,53,

107,137,149,191}. Then (q,3) is a PNT-pair.

Proof (i) Lemma 6.4.2 has established the result for k :» 12, so we need consider only k ~ 12.

Let m = pfl ... p~'. We apply Proposition 6.4.4. For all q = 3k with k :$ 12, s :$ 5. Since

C52 < 577 < 36, the result holds for q = 3k, k ~ 6. The result is established for k = 5 (s = 2)

since 35 > 71 > C22. When k = 3, m{= 757) is prime; hence by Lemma 6.4.3, m may be
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replaced by 1. Inequality (6.4.2) is then satisfied, since v'27 > 2.8892.

(ii) For q > 2, let m = pfl ... p~'. Since m ~ q2 + q + 1, then s ::; 8 for q < 622,346 (merely

by size considerations). As in part (i), we apply Proposition 6.4.4.

Since inequality (6.4.5) holds for all relevant q > 1622, the result is established for prime

powers q 2 1637. For q < 1622, we find that s ::; 4, with s = 4 when q = 809, 1283, 1451,

1493 and 1511; then the desired result holds for q > 361, i.e. for all q 2 367. Since the smallest

q == 2 (mod 3) with s = 4 is q = 809, use of inequality (6.4.5) with s = 3 then establishes the

result for q > 204, i.e. q 2 227. However, even use of exact values fails for those q < 204 with

s = 3, namely {107, 137, 149, 191}. Similarly, (6.4.5) holds with s = 2 for q > 98, and thus

establishes the result for all q ~ 101 (apart from the preceding exceptions). Use of exact values

in inequality (6.4.6) yields the result for q = 83 (m = 19·367, y'83 > 9.110 > 9.065 >right side of

(6.4.6)). Values of q with s = 2 for which exact values are insufficient are {11, 23, 29, 32,47,53}.

Finally, q~ > Cl for all q > 36, i.e. q 2 41, which establishes all remaining cases with the

exception of {5, 8, 17}.

6.5 The PFNT problem

In this section, the full PFNT problem will be solved, for the case when q == 1 (mod 3).

Denote by L a linear factor of M (= x2 +x + 1); L may take the values x - "( or x - "(2, where

"( E F is such that "(3 = 1, "( i= 1. We begin by deriving estimates for the number N (I, L) of

L-free elements of E with prescribed norm and trace. For economy of calculation, it is in fact

desirable to consider the difference between 1I"(1,L) and O(L)1I"{1, 1) (in some sense the "error

term"). We will prove the following lemma.

Lemma 6.5.1. Let q == 1 (mod 3). Then

I ( 1) I 5 3 2 2 311" (1, x - "()+ 11" (1, x - "(2) - 2 1 - q 11"(1, 1) ~ 2q"2 (1 - q - q2) + 2q (1 - q). (6.5.1)

First, we establish some results about h (defined in Section 3.3 of Chapter 3). For a

polynomial f(x), we denote by fU the polynomial obtained from f by replacing xi by xqi. In

Lemma 4.2.1 of Chapter 4, we saw that

• If Dlxn/k - 1 (where kin), then rSD is a root of (xn/k - l)U,

Le. DD E GF(qn/k).
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Lemma 6.5.2. Suppose q := 1 (mod 3), and let, E GF(q) be such that,3 = 1, 'Y i- 1.

Proof We use an analogous argument to that of Lemma 4.2.1.

(i) Suppose oq = ,20. Define X(w) = Xl(OW) = A(Trq3jp(ow)), wEE = IF'q3. Then

X(wq - ,w) = A (Trq/p [Trq3(q (J(wq - ,w))})

A (Trq(p [Trq3jq (roqwq - 'Yow)]

= A(Trqjp[rTrq3jq((tSW)q - tSw)])

= 1

since Trq3jq((6w)q - 6w) := O. So the F-order of X is x -,. Thus AD certainly contains

the set of {o : oq-l = ,2}, and since this set has cardinality q - 1, this accounts for all

<P(x - ,) characters with F-order x -,.

(ii) Replace, by ,2 in (i).

We are now ready to prove Lemma 6.5.1. Throughout the discussion, we will use the notation

for Gauss and Jacobi sums introduced in Chapter 2.

Proof of Lemma 6.5.1 By Proposition 5.2.4, since 8(L) = (1 - ~),

7r(1, L) - 8(L)7r(1, 1) = 8(L) (- ~ 1) 2: 2: 2: D(b)~(ac) E ii(w)X((6L + c)w), (6.5.2)
q liEF" cEF (5L) wEE

where OL runs through all <P(L) elements of AL (Le. X5L runs through all additive characters

of E of order L). Separating the term for which c = 0, we have

7r(1, L) - 8(L)7I'(1, 1) = -~{ 2: 2: D(b) 2: ii(w)X(6Lw)
q liEF" (5L) wEE

+ 2: L L D(b)~(ac) E ii(w)x((h + c)w)}
liEF" cEF" (h) wEE

(6.5.3)

For the first term on the right side of (6.5.3), using the fact that h # 0, replace w by f to

obtain

2: 1I( t )G3(ii) Ev(6d·
liEF" (5L)

Since F*AD = AD,
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and the inner sum equals 0 unless 1.1*(:= iilF) is trivial, when it equals q - l.

Note that, for kEF, v*(k) = ii(k) = v(N(k)) = v(k3), i.e. 1.1*= 1.13.So the first term of

(6.5.3) can be simplified to

~ I::v( t )G3(ii)v(t5L)'
liEF' (h)
113=111

For the second term on the right side of (6.5.3) (i.e. the part for which e :I0), replace OL by

ch, then w by c(.5;:+l) to get

~ v( t)G3(ii) I::V(OL + 1)L 5.(ae)v(e).
liEF' (h) cEF'

(6.5.4)

Consider the inner sum EcEF' 5.(ae)v(c) of (6.5.4); in the case when 1.13= 1.11,this reduces to

a sum over additive characters of F, while for 1.13=1= VI, a Gauss sum over F is obtained. Thus

the second term of (6.5.3) may be expanded as

- I:: v( !)G3(ii) I::V(t5L + 1) + L v*(a)v( t)G3(ii)G}(v*) Lv(h + 1)
liEF' b (6L) liEF- (6d
~=~ ~#~

Hence,

71"(1,L) - 8(L)7I"(1, 1) = -!( I:: v(a
b

3
)Ga(ii)Gdll*)(Lv(h + 1))

q liEF' (6L)
113#111

+ L v( t)G3(ii) L:(v(od - v(rh + 1)))
liEF' (6L)
113=111

V#111

1 '"' 1 '"'= -( L.J v(b)GI3(V) L.J[ii(N(h + 1)) - ii(N(h))]
q liEF- (h)

113=111
11#111

since Ga(ii) = G~(v) by Theorem 2.3.14.

Consider the specific values that may be taken by L, namely L = x - 'Y and L = x - "(2. By

Lemma 4.2.1, since these L are divisors of x3 - 1, hq3 = t5L. Using Lemma 4.2.1 and Lemma

6.5.2, we find that dL a E lFq * but h ¢ IFq *, and so h 3 = e, where c is a non-cube in F. In fact,

g~-'Y}U {dx_'Y2} = {e E E: e3(q-l) = 1, e(q-l) =1= 1} = {cube roots of e, c a non-cube in F}, a

set of cardinality 2(q - 1).

In the case when L = x - ,,(, using Lemma 6.5.2, N(dL) = dLdLqdLq2 = h(-y2t5d(-yt5d =

dL3 = e and N(1 + t5d = (1 +, + ,2)(h + 15£2) = (1 + h3) = 1 + c. The same values are
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obtained when L = x - "(2.

Denote x - "(and x- "(2 by L1 and L2 respectively. Let 1/3 E F* be an arbitrary character

of degree 3. Then

where

(6.5.5)

and
1 1

S2:= L l/(b)GI3(1/) L [1- 2(1/3(C) + 1/32(c))](D(1 + c) - D(c)).
vEF. cEF·
V3=V1

ViV1

Consider SI (as given by (6.5.5)). It may be written in the form
3~ a - 3 3SI = L, 1/(b }G1 (V }G1 (1/}0"1, say,

vEF·
v3iv1

(6.5.6)

where 0"1 := L:cEF. (1 - ~(1/3(C) + 1/32(c}})D(1 + c). Then

0"1 = L i/(1 + c) - ~1/3( -1)L 1/3(c}D(1 - c) - ~1/32( -I} L 1/32(C}D(1 - c)
cEF· CEF· cEF·

1
-1- 2(Jt{1/3,D) + Jt{V32,D)}.

Since each Jacobi sum has absolute value ..jq,
3

lSI I ~ (q - 4)y'qq2 (1+ y'q),

r.e.

~ISll~ 2q~ (1-~) (1+ ~). (6.5.7)

Now consider S2 (as given by (6.5.6}). For a given V with 1/3 = VI, 1/ =P VI, the inner sum 0"2

has the form
1

0"2 := L (1 - 2(1/3(C) + v32(c)})(D(1 + c} - D(c}}
cEF·

where 1/3 is an arbitrary character of order 3. Without loss of generality, we may set 1/3 := 1/ in

our expression for 0"2.

0"2 = L i/(1 + c) - L D(c}
cEF· cEF·

1
-2(L v(c}D(1 + c) - L l/(c}D(c) + L v2(c)i/(1 + c) - L 1/2(c)D(c))

cEp· cEF· cEF· cEF·
1= (-I) - 0 - 2(Jt{I/, D) - (q - 1) + Jt{1/2, D} - O}

1 1 2
- 2(q - 2) - 2J1(1/ ,i/},
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Thus la21 ~ ~(q - 2) + ~y'q. Hence,

i.e.

~IS21 ~ 2q~ (1-~)+2q.
Combining inequalities (6.5.7) and (6.5.8),

(6.5.8)

171"(1, L1) + 71"(1,L2) - 28(L)7I"(1, 1)1 < 2q~ (1 - ~) (1 + ~) + 2q~ (1 - ~) + 2q

= 2q~ (1 - ~ - :2) + 2q2 (1 - ~) ,
which completes the proof of Lemma 6.5.1.

The following is a sufficient condition for (q,3) to be a PFNT-pair.

Lemma 6.5.3. Suppose q == 1 (mod 3). Then (q,3) is a PFNT-pair whenever

71"(1,1) (o(m) - ~) > 30(m)(W(m) -1) (1 - ~) q~ + 2q~ (1 - ~ - :2) +2q2(1- ~). (6.5.9)

Proof Apply the sieve in the following form:

7I"(m, M) ~ 7I"(m, 1) + 7I"{I,x -,) + 71"(1,x - ,2) - 271"(1,1).

Using the lower bounds for 7I"(m, 1) and the 71"(1,Li) (i = 1,2) from Proposition 6.3.1 and Lemma

6.5.1, we see that 7I"(m,M) > 0 whenever (6.5.9) holds.

Lemma 6.5.4. Let q == 1 (mod 3) be a prime power, and let m be the greatest divisor of q3 - 1

co-prime to q - 1. Then
1

O(m) > -1
q'6

Proof Observe firstly that, if I is a prime divisor of m, then I is congruent to 1 modulo 6 and

hence I ~ 7. Since x - xM - 1 > 0 holds for x ~ 7, it follows that O(pk) = O{p) = ~ >
+~~ where p ~ 7 is prime and kENo Thus by multiplicativity, O{m) > ~. Since
pfi (pk)n mn
3m ~ ~~11 < (q + 1)2, then q > 31/2m1/2 - 1 and so q ~ mt for all q. Hence ~ ~ ~, and so

O(m) > mf 2:: -;r'
Proposition 6.5.5. Let q == 1 (mod 3) be a prime power. Then (q,3) is a PFNT-pair for all

q ~ 252,950.
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Proof By Lemma 6.5.3, 7r(m, M) > 0 if

7r(1,1) (O(m) -~) > 30{m){W(m)-1) (1- t) q~+2q~ (1- ~ - :2 )+2q2(1-~). (6.5.10)

Then by part (i) of Proposition 6.3.1, 7r(m, M) > 0 if

8(m) (q3 - 3W (m) (1 - t) q~ - 1) > 2q~ (1 - ~+ q12) + 2l (2 - ~) - ~. (6.5.11)

By Lemma 6.4.1, W(m) ~ {mq~ i' where Cm < 3.08. Set d := 3~Cm; then 3W(m) :S ~
3 (q-l) (q-l)~

andso3W(m)(~)q~ ~ d(q-l)~q2. Using this result and Lemma6.5.4, 7r(m,M) > Ocertainly

if

1 3 5 2 5 ( 6 1) 2 ( 3) 2-{q -d(q-1}Iiq -1}>2q2 1--+- +2q 2-- --
q~ q q2 q q

(6.5.12)

i.e. if

5 2 ( 6 1) 1 ( 3) 1q>d(q-l}Ii+2q3 1-q+ q2 +2qIi 2-q + q2· (6.5.13)

Take Cm = 3.08 so that d = 7.70 in inequality (6.5.13). Then inequality (6.5.13) holds for all

q 2 252,950.

In order to establish the result for smaller prime powers q, we will use the following sufficient

condition, which arises from the application of the sieve with atomic divisors.

Once again we shall adopt the convention that all unmarked summation signs have index i

running from i = 1 to s.

Lemma 6.5.6. The following is a sufficient condition for (q,3) to be a PFNT-pair.

When q == 1 (mod 3),

(3s+2)-(3s+6)-4-3(1-1)L~+~(I-!!) 1 1..;q > q q I ~ p, vq q + 3(1 - -} + -5

1 - L Pi - q q q2
(6.5.14)

(where m = pfl ... p~.).

Proof Let m = pfl ... p~', where PI, ... ,Ps are distinct primes and sEN (recall that the values

of the O!i will be irrelevant here). Apply the sieve in the form:

7r{m,M) ~ 7r(pl, 1) + ... + 7r(ps, 1) + 7r{1,x - ')')+ 7r{I, x - ')'2} - (8 + 1}1I"(1, 1). (6.5.15)

Using the results of Lemma 6.5.1 and part (ii) of Proposition 6.3.1, 7r(m, M) > 0 if

7r(1, 1) (1 - L;i -~)- 2q~ (1 - ~ - :2) - 2q2 (1 - ~) - 3q~ (1 - ~) L (1 - ;J > 0

(6.5.16)
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i.e. if
q~((3s + 2) - (38+6) - 4 - 3(1- 1) 2: l) + 2q2(1-~)

IT( 1, 1) > q q 1 2 q P. q
1-"---L..J Pi q

(6.5.17)

and so, using part (i) of Proposition 6.3.1, certainly if

JQ({3s + 2) - (3s+6) - 4) - 3JQ(I-1) E .L + 2{1-~) 1 1
q> q q 1 2 q P. q +3Jq(1--)+2' (6.5.18)

l-Ep;-q q q

Observe that the inequalities of Lemma 6.5.6 are non-trivial only when the denominator

1 - 2: ~ - ~ > OJ in particular it is necessary to have E #; < 1. However since all prime

powers q which are congruent to 1 modulo 3 and less than 252,950 have s :::;7 (by a simple size

argument), and all prime divisors of m are congruent to 1 modulo 6, the denominator is always

positive in this case.

Proposition 6.5.7. Suppose q == 1 (mod 3) and q ::;252,950, but q ~ {7, 13, 16, 19,25,31,37,43,

49,61,64,67,79, 109,121, 163,211,256}. Then (q,3) is a PFNT-pair.

Proof For q > 4, observe that E #; ~ ~ - ~, since 2: ;i ~ q2+
3
q+l = ~(1 - ~ + q(q2~q+l))'

Using this lower bound in Lemma 6.5.6, the desired result holds if

(38+2)_(3s+6)_y+~+_1_(1_;!) ( 1) 1In> q q q ..;q q +3 1-- +-V'f 2:1 2 5'1- - - - q q2'Pi q
(6.5.19)

An upper bound is required for L~' say 2: ~ :$ K(q) for some function K. In general, to

simplify calculations, the crude estimate

s 1 s 1L:-::;L:-.
i=l Pi i=l p[z]

{6.5.20}

will be used, where p[i] is the ith prime congruent to 1 modulo 6, as in Section 4. (More precise

values may be taken in specific cases).

Observe that the desired result certainly holds when

(38 + 2) + ~ + , 1
y'q > 1 _ " .L _ ~ + 3 + q~ ,

L..J Pi q

(6.5.21)

and, for fixed 8, the function of q on the right side of (6.5.21) clearly decreases as q increases.

Hence to prove for a given 8 that the result is true for q ~ qo (some qo E N), it is sufficient to

show that inequality (6.5.21) holds for q = qo.

For q :$ 252,950, 8 ::; 7. Using the basic estimate

(6.5.22)
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inequality (6.5.21) holds with s = 7 for relevant q > 1580, hence for all q 2: 1597. Now, for

prime powers q == 1 (mod 3) less than 1580, it happens that s ::; 4; in fact, except for the two

values q = 919 and q = 1369, s ::; 3. Using the estimate

1 1 1 1 1L Pi ::; ;:;+ 13 + 19 + 31 < 0.3047; (6.5.23)

inequality (6.5.21) holds with s = 4 for q > 546 and hence for all q 2: 547. For s = 3, use

of inequality (6.5.20) in (6.5.21) establishes the result for q > 339, i.e. q 2: 343. For q = 277

(m = 7· 19· 193) and q = 289 (m = 7· 13·307), use of exact values in Lemma 6.5.6 establish

the result. However, this approach is insufficient for {121,163,211,256}. In the s = 2 case,

inequality (6.5.21) establishes the result for q > 185, i.e. q 2: 193, when applied with the

approximation of (6.5.20), and for q = 169 (m = 61 . 157) and q = 181 (m = 79· 139) when

exact values are used in (6.5.21) (respectively, 181 > 153.49 and 169 > 148.80). Use of Lemma

6.5.6 suffices for q = 139 (m = 13·499) since 139 > 137.14. Outstanding exceptions in the s = 2

case are {16, 25, 37,49,61,64,67,79, 109}. When s = 1, replacing PI by 7 in inequality (6.5.21)

establishes the result for q > 86, i.e. q 2: 97; use of exact PI (= m) deals with the case q = 73

(m = 1801). The remaining exceptions with s = 1 are {7, 13, 19,31, 43}.

6.6 Computational strategy for remaining cases

To deal with the 34 cases remaining after Propositions 6.4.5 and 6.5.7, we usc the com-

puter package MAPLE (version 6) to search the field E for m-free elements with norms and

traces equal to the required values. {For reference, the set of exceptional q is as follows:

{3,5, 7,8,9,11,13,16, 17,19,23,25,29,31,32,37,43,47,49,53,61,64,67, 79,81,107,109,121,137,

149,163,191,211,256}).

The following lemma allows us to simplify our computational strategy in some cases for

which the PFNT problem reduces to the PNT.

Lemma 6.6.1. Let q be a prime power, q 1= 1 (mod 3). Denote by ZQ,.a(m) the number of

elements wEE which are m-free and have TrE/F{w) = a, NE/F(W) = {3 (a, (3 E F). Suppose

ZI,b(m) > 0 'Vb E F"'.

Then (q,3) is a PNT pair.

Proof To prove that (q,3) is a PNT pair, we must show that N(m, 1) > 0, i.e. that Za,b(m) > 0

for all a, bE F, a i= 0, b primitive. We prove the (stronger) result

Za,b(m) > 0 'Va, s « F"'.
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If a = 1, there is nothing to prove. Otherwise, set b* := ~ E F*. Since Zl,b. (m) > 0, there

exists an element ( E E such that ( is m-free, TrE/F(O = 1, and NE/F(O = b*. Then a := a(

is also m-free, and has TrE/F(a) = a and NE/F(a) = b.

Use of Lemma 6.6.1 reduces the number of necessary tests from (q -1)¢(q -1) (testing each

pair (a, b), b primitive) to q-l (testing each pair (1, b), b non-zero). Since the condition involved

is stronger than the PNT condition, this simplification is only of practical use in those cases

when q - 1is prime, or ¢(q -1) is not too much smaller than q - 1. However, it is successful in

dealing with all q :f:. 1 (mod 3) up to q = 32. For larger values of q, we must search E explicitly.

In the PNT case, the desired result holds without exception for all q :f:. 1 (mod 3) remaining

from the previous sections.

As an illustration, we display the relevant cubic polynomials for the case when q = 5. The

following table lists eight cubic polynomials over F = GF(5) whose roots a E E = GF(53) are

primitive and free with norm and trace equal to b and a respectively.

(a, b) Relevant PFNT cubic

(1,2) x3 + 4x2 + 3

(1,3) x3 +4x2 +x +2

(2,2) x3 + 3x2 + 2x + 3

(2,3) x3 + 3x2 + 2

(3,2) x3 + 2x2 + 3

(3,3) x3 + 2x2 + 2x + 2

(4,2) x3 +x2 +x +3

(4,3) x3 + x2 + 2

The cubic polynomials given in the table for (a,b) = (1,2) and (4,3) are in fact unique.

Thus, when q = 5 and n = 3, we observe that in some sense the PFNT property "only just"

holds.

In the case when q == 1 (mod 3), we search through E explicitly for elements possessing the

required properties. The following lemma allows us to reduce the number of pairs (a, b) which

must be tested, from (q - 1)4>(q - 1) to ~(q - l)4>(q - 1).

Lemma 6.6.2. Let q = 1 (mod 3), and set k := 9. Su.ppose that there exist [ree, primitive

a E E such that TrE/F(a) = a and NE/F(a) = b, for all pairs (a, b) where b is a primitive

element of F and a E {1,,B,,B2, ... ,,Bk-l: f3 a fixed primitive element of F}. Then there exist

free, primitive a E E such that TrE/F(a) = a and NE/F(a) = b, for all pairs (a, b) where a is

a non-zero element of F and b is a primitive element of F.
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Proof Fix a primitive element (3 of F. Observe that F* may be partitioned into k cosets of the

subgroup H := {I, (3k, (32k} of cube roots of unity; namely H, (3H, ... , (32H, ... , (3k-l H. The

result follows since TrE/p(h,) = hTrE/p(r), N(h,) = h3NE/P(r) for all, E E, hE F.

Without exception, for all q == 1 (mod 3) remaining from the previous section, (q,3) is found

to be a PFNT pair.

In closing we remark that, for each of the larger values of q amongst the set of exceptions,

the computations to check all the possibilities took several hours to run, vindicating the efforts

we have made to solve the problem theoretically in as many cases as possible.

6.7 Concl uding remarks

In the preceding chapters, we have developed a new method (involving the use of a sieving

technique combined with new estimates for character sums) for dealing with problems about

primitive free elements of Galois fields. Using this method, we have been able to give a computer-

free proof of the primitive normal basis theorem (PNBT), and our approach has allowed us not

only to establish the existence of primitive free elements for every finite field, but also to obtain

information about the number of such elements. Further, we have succeeded in establishing the

two most delicate cases of the PFNT problem, and in so doing we have successfully laid to rest

a general existence result.

However, this is not the end of the story, and there remain several problems which are

suitable for attack using the methods of this thesis. In Chapters 5 and 6, we refer to the

"non-zero PNT problem", where "non-zero" refers to the fact that the primitive element with

prescribed norm must have prescribed non-zero trace. One natural candidate for our approach

is the "zero trace PNT problem" (observe in passing that we cannot meaningfully define a "zero

trace PFNT problem" since, if an element wEE has TrE,p(w) = 0, then it is automatically

the root of a q-polynomial of degree less than (xn - I)", and hence cannot be free over F). In

the case when the trace is prescribed to be zero, some of the relationships which we used in the

non-zero case will no longer hold, and so it will be necessary to use a slightly different approach

from that of the non-zero case. This zero-trace PNT problem has still to be tackled for any

n EN; it is not covered by existing results such as those of [6] or [7].

Another area to which our technique could usefully be applied is that of PFNT -type problems

generalised to towers of field extensions, i.e. problems in which we consider not only a ground

field F = GF(q) and an extension field E = GF(qn), but also intermediate fields of E over F

(corresponding to divisors of n). An element a E E is said be be completely free in E over F
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if a simultaneously generates a normal basis over every intermediate field of E over F. It was

shown in 1986 by Blessenohl and Johnsen ( [ID, in their "strengthening of the normal basis

theorem", that such elements exist for all finite fields. It is natural to ask whether the PNBT

can similarly be strengthened to the "completely free" case, i.e., given F and E as before, does

there exist a primitive element of E which is completely free over F? This has been conjectured

to be true for all prime powers q 2: 2 and n E N by Morgan and Mullen ( [24D, and is widely

believed to hold; however it has not yet been proved in full generality.

The conditions on norm and trace may also be considered in the context of towers of exten-

sions. In papers such as [14] and [15], Hachenberger has introduced the following notation. The

set T is defined to consist of all triples (q, k, e) (where q > 1 is a prime power and k, e E N*) such

that the following condition holds for the corresponding tower (lFq, IFqk , IFqke) of Galois fields:

for every a E IFqk which is free over IFq, there exists a primitive element Wa E IFqke which is

free over IFq and whose {IFqke,IFqk)-trace is equal to a. Further, a quadruple (q,k,l,n) (where

k, I, n E N* with k and 1 dividing n) is called universal, providing the following condition holds

for the quadruple (IFq, IFqk, IFql ,lFqn) of Galois fields: given any a E IFqlc which is free over IFq,

and any b E IFql which is primitive, there exists a primitive element Wa,b E IFqn which is free

over IFq, whose {IFqn, lFqk )-trace is equal to a and whose {IFqn, lFql )-norm is equal to b. The set of

all universal quadruples is denoted by Q. Hachenberger has provided sufficient conditions for

membership of T and Q in various cases. For example, in the case when k, l, e and n are powers

of a prime r, we have (from Theorem 5.1 of [14] and Theorem 2.3 of [15]),

• (q, ra, rb) E T for all a ~ 0 and all b 2: 1 provided r 2: 5 or r = p,

(q, s-, 3b) ET for all a 2: 0 and all b 2: 2,

(q, 8 . 2a, 2b) E T for all a 2: 0 and all b ~ 2.

• (q,ra,rb,rc) E Q for all a,b ~ 0 and all c > max(a,b) provided r ~ 7,

where p = char IFq•

Using the approach developed in this thesis, it may be possible to improve these results, for

example by replacing r ~ 5 by r ~ 3 and r ~ 7 by r ~ 5.



Appendix A

Brief discussion of computational

strategy

In this Appendix, we discuss briefly the computational strategy used in proving the quartic and

cubic cases of the PFNT problem for small q, as mentioned in Chapters 5 and 6.

For the quartic problem of Chapter 5, all but 5 values of q are dealt with analytically. The

remaining values are q = 8, 13, 17, 23 and 32; for q = 8 and 32, the PFNT problem reduces to

the PNT problem.

Given the small number of q which require checking in the quartic PFNT case, and the

small size of these q, we establish the result using the most straightforward approach. For a

given q, we (randomly) select a primitive element {3 of E, then for each of the (q - l)l/>{q - 1)

pairs (a, b), we test (3i for each 1 ~ i ~q4 - 1 with gcd(i, q4 - 1) = 1, until we reach a value

of i such that Tr({3i) = a, N{{3i) = b and the free-ness condition holds. Using Lemma 5.6.4,

we note that, in the case when q == 1(mod 4), only ~ values of a need be checked, thereby

quartering the number of pairs (a, b) involved. Given a fixed primitive {3, for each pair (a, b) it

is clear that the smallest value of i sufficient to make the condition (a, b) = (Tr({3i), N{{3i)) hold

varies considerably. To give an idea of the actual number of elements which must be examined,

when the q = 17 program is run using the primitive element {3 := 8T3 + 15T2 + 14T + 6, the

smallest value of i sufficient to establish a pair (a, b) is i = 1 {for (a, b) = (10,10)), and the

largest required is i = 3427 (for (a, b) = (3, 14)); note that the upper bound for i is 83,521.

For q = 8 and 32, observe firstly that since q - 1 is prime in both cases, all non-identity

elements ofF are primitive. By Lemma 5.7.3, we can reduce the number of calculations required

by proving the followingstronger (but simpler) result where we do not exclude b = 1. The PNT

result follows if we can demonstrate that there exist m-free elements with norm b and trace

1 for all q - 1 values of b E F*. We implement this through the following approach. For a

106
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given q, we choose a primitive element f3 of E (observe that N(f3) is a primitive element of F

and so N(f3)j runs through all elements of F* as j runs through j = 0, ... , q - 2). For each

j = 0, ... ,q - 2, we search those i from ° to m -1such that gcd((q - l)i +j, m) = 1. Given such

an i, we set a := f3(q-l)i+j; the element a is automatically m-free and N(a) = N(f3)j. We test

to see if T(a) = 1: if not, we proceed to the next i; if so, we proceed to the next j. Since this

is a stronger result than the PNT property, it is theoretically possible that the tested condition

could fail but the PNT property hold; hence in the case of failure for some i, we would test to

see if there is also a failure for the PNT property. In practice, this situation does not arise in

either case.

For the cubic problem of Chapter 6, there are 34 values of q for which the result must be

established computationally. When q ¢. 1 (mod 3), the PFNT problem reduces to the PNT

problem.

In the case when q == 1 (mod 3), we are dealing with some fairly large numbers (e.g. q = 211,

256) and, while we may use Lemma 6.6.2 to reduce the number of a-values from q - 1 to ~,

even with this reduction the number of pairs to be checked remains considerable for larger q

(3360 pairs when q = 211, and 10,880 pairs when q = 256). The straightforward approach used

in the quartic case still yields results in an acceptable time for small q. For larger q it is clear

that it is not efficient to search through all the primitive elements of E from the start, each

time we have a new pair (a, b). Instead, we take the following approach. For a given q, we begin

with the set S of pairs (a, b) empty; we choose a fixed primitive element f3 of E, and for each

1 ::; i ::;q3 - 1 with gcd(i, q3 - 1) = 1, we calculate the trace and norm of the primitive element

f3i. If the pair (Tr(f3i), N(f3i)) is not currently held in S, we check that Tr(f3i) is non-zero,

and that f3i is a free element; if these conditions are fulfilled, we add the pair (Tr(f3i), N(f3i))

to S. The program tests all </;(q3 - 1) values of i, and reports the final cardinality of Sand

the smallest value io of i at which all lSI elements have been found. This approach implicitly

makes a check on the correctness of the program, since lSI has a theoretical upper bound of

(q -l)</;(q - 1), and so if a higher cardinality were to be obtained it would show that not all the

conditions were being checked properly. While we are not using the reduction of Lemma 6.6.2

here, the increased efficiency of running through the f3i only once, more than compensates for

having to deal with all (q -l)</;(q - 1) pairs.

We may obtain some intuitive feeling about how "close" or "comfortable" our results are, by

considering some values of io (recall that, for a fixed f3, io is the smallest value of i such that all

pairs (a, b) occur, at least once, for some primitive free f3k with k ::; i). As an example, running

the q = 7 program 20 consecutive times with different (randomly generated) values of f3 yielded
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values for io of 193,187,145,143,193,187,193,187,187,187,143, 187,181,293,293,187,187,293,187,145.

Observe that i must be strictly less than 343, and so the fact that io = 293 in some cases in-

dicates that the result is (in some sense) fairly "close" when q = 7. For larger values of q, the

typical value of io is considerably smaller than the maximum possible value of i. For example,

running the q = 67 program, a typical value of io is 38,747, compared to a maximum possible

value of 300, 763; while for q = 109, a typical value of io is 146,873 compared to a maximum

possible value of 1,295,029.

In the case when q ¢ 1 (mod 3), we use the same strategy as in the q == 1 (mod 3) case above,

but with the additive component removed. (Alternatively, the simplification of Lemma 6.6.1 is

successful in establishing the result for q = 3, 5, 8, 9, 11, 17, 23, 29 and 32.) Again, we may

get a feel for the "closeness" of the result by considering values of io. When q = 5, running the

program with f3 := 3T2 + T yields io = 99, which is very close to the maximum possible value

of 125. It is interesting to note that, in this case, the last pair to be found by the computer is

(a, b) = (4,3); this pair was noted in Chapter 6 as corresponding to a unique polynomial, and so

we would intuitively expect it to be the hardest to find. As in the q == 1 (mod 3) case, for larger

values of q the average values of io become considerably less than the maximum possible value.

For example, when the q = 47 program is run with f3 := llT2+17T+17, io = 15,357 < 103,823.
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