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Abstract

Abstract

The potential of particulate mechanics was explored with the purpose of developing a

single software modelling framework in which to model multi-physics geomechanical

problems. Individual particulate models were developed for solid, fluid and granular

material phases, building onto the existing Distinct Element Modelling (DEM)

environment Particle Flow Code in Three Dimensions (PFC3D), with the intention that

they could be combined to represent a geomechanical problem of any configuration.

Advantages of utilising PFC3D were firstly, its inbuilt feature allowing inter-particle

bonding so that, in the limiting case, solid material could be represented and secondly,

its embedded coding language, FISH, which allows the creation of user defined

variables and functions which may be used to manipulate and modify the basic DEM

code.

The Particle Solid Model (PSM) employed a bonded particle assembly with the

concept of constructing a determinate lattice to replace a continuum material. Basic

particle interactions were handled by the DEM behaviour inherent to PFC3D and

complex behaviour, such as fracturing, was realised through additional code written in

FISH. The Particle Fluid Model (PFM) was created with the concept of developing a

macroscopic particle representation of a fluid where the particles moved freely with the

flow. Fluid behaviour was implemented by preventing physical contact of the DEM

particles through force-separation laws representative of pressure and viscosity fields.

These were again realised via FISH code. The Particle Proppant Model (PPM) would

be implemented simply through the inherent capabilities of the PFC3D DEM code and

would be used to represent granular material on a grain for grain basis.

After initial development of the individual models, benchmark tests were carried

out to evaluate their basic capabilities. Tests conducted with the PSM showed that,

when calibrated through strain energy equivalence, it very accurately reproduced the

expected deformation of an equivalent continuum elastic material. Tests conducted

with the PFM showed that while it was capable of reproducing static and dynamic fluid

behaviour correctly, it proved difficult to calibrate for specific fluid properties.
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Nonetheless, accurate static behaviour was shown, and reasonable dynamic solid/fluid

interaction behaviour was implied, when the PFM was combined with the PSM in an

integrated solid/fluid benchmark model. However, it is accepted that further

development work is required, particularly for the PFM.

Following the analysis of its basic behaviour, work continued to expand the

capabilities of the PSM to include fracturing behaviour. The progressive development

of five failure criteria was undertaken. From examination of the results of benchmark

tests carried out on the failure criteria, it was found that the PSM generally dealt well

with fracturing behaviour. However, it was also concluded that an elastic-softening

plasticity criterion was required in order to ensure mesh (lattice) size objectivity.

Furthermore, it was found that for macro-scale PSM meshes, failure criteria based on

continuum principles were required in order to develop expected equivalent continuum

failure behaviour. However, difficulties were encountered with the implementation of

softening behaviour in the models based on continuum principles.

In order to evaluate the overall capabilities and potential of the particulate

mechanics framework, parametric studies were conducted on combined solid/fluid

models in pseudo-realistic representations of hydraulically driven fractures. Results of

these studies showed good behaviour in comparison to theory and to the results of

previous studies carried out by other researchers. Furthermore, qualitative results

showed excellent promise for the application of the particulate framework to the

development of multi-phase models combining solid, fluid and granular material phases.

In conclusion, it was found that the particulate modelling framework shows

excellent potential as a simple modelling environment for multi-phase geomechanical

problems, in which solid, fluid and granular material phases can be treated

simultaneously without the need for separate codes or staggered or iterative techniques.

It was further concluded that, provided appropriate principles are applied, this type of

framework has potential for modelling in almost any field where computational

analyses can be employed and for problems of any size from large-scale (macroscopic)

to atomistic (nano-scale) structures. While it is acknowledged that current modelling

capacity may be limited by computational requirements, it is noted that considerable

possibilities for future research and development are available in this field.
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alp)

[B]

c
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d

!P..
dx

E

E(beam)

E(/attiee)

ei

E.

F

- area

- cross-sectional area of a bar element

- cross-sectional area of a beam element

- material constant originally defined as a = _1_ (Herrmann et al. [34])
EA

- apparent cross-sectional area of an inter-particle link element in a PSM

mesh

- acceleration of a particle

- is the strain matrix for a finite element

- material constant originally defined as b = _1_ (Herrmann et al. [34])
GA

- inter-particle cohesion

- material constant originally defined as c = I: (Herrmann et al. [34])
El

- is the elasticity matrix fro a finite element

- separation between two particles

- pressure gradient

- Young's Modulus

- refers to any inter-particle link element in a PSM mesh

- apparent Young's Modulus

- Young's Modulus ofa lattice beam element

- overall Young's Modulus for a lattice of beam elements

- unit vector between the centres of particles in contact pair

- Softening Modulus

- apparent Soften Modulus

- force acting on a particle
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FeD, - corrective forces applied to particle pair to redistribute relaxation stress in

Mark 3 and Mark 4 fracture criteria

FD - drag force acting on a 'fluid particle' pair

FF - 'fluid' forces acting on a particle, combining repulsion, drag and external

pressure forces

F;(beam) - axial force in a lattice beam element

F}c) - component of contact force acting on a particle

Fn - normal force acting on a particle

Fpcx' - force applied to a particle in representation of externally applied pressure

FR - repulsive force acting between a 'fluid particle' pair

F, - shear force acting on a particle

It -material tensile strength

G - shear modulus

gl - unit vector lying 900 clockwise to el

G, - specific fracture energy release rate

G[C - strain energy release rate - equivalent to fracture energy release rate

G(lattiee) - overall shear modulus for a lattice of beam elements

h - lattice element length/characteristic length

h(beam) - height of a lattice beam element

bmax - maximum lattice element length/characteristic length for Mark 3 criterion

elastic-softening constitutive model

I

I(beam)

[K]
Ko

K[c
KO
ko

KS

ks

L

I

10

- moment of inertia

- moment of inertia of a lattice beam element

- stiffness matrix for a finite element

- initial lattice element stiffness

- fracture toughness

- contact normal secant stiffness

- normal contact spring stiffness

- contact shear tangent stiffness

- shear contact spring stiffness

- ratio of overall mesh length to element length in a lattice type model

-Iength

- original length of a material sample
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[(bar)

[(beam)

M

m

- original length of inter-particle link element in PSM mesh

- length of a bar element

- length of a lattice beam element

- fracture length

- length of inter-particle link element in PSM mesh

- moment acting on a particle

- mass of a particle

MiJ(beam) - bending moment in a lattice beam element

m(link) - unit vector in the direction an inter-particle link element in PSM mesh

Dl(/ink)

Put

Q

Q

- unit vector in the direction of the maximum principal stress in an inter-

particle link element in PSM mesh

- number of contacts on a particle

- maximum tensile load capacity of a material sample

- preset maximum number of failed inter-particle link elements

- unit vector in the direction from a particle centroid towards a contact

- unit, outward normal to a surface

- number of broken inter-particle link elements in a PSM mesh

- number of particles in a volume

- applied normal load

- external pressure on a thick walled cylinder

- external pressure

- fracture fluid pressure

- internal pressure on a thick walled cylinder

- flow rate

- applied shear load

- shear force in a lattice beam element

- particle radius

- radius of influence of drag

- external radius of a thick walled cylinder

- internal radius of a thick walled cylinder

- radius at which measurement is taken on a thick walled cylinder

- radius of influence of repulsion

- the set of all inter-particle link elements in a PSM mesh
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S:ff - the set of inter-particle links considered as candidates for failure

S~e - the set of inter-particle links considered as softening elements

sP) - particle surface

[T] - matrix of coefficients (for calculation of strain tensor from strain gauges)

Tij - any Cartesian tensor

t~p) - surface traction vector

tip/ate) - plate thickness

u - total displacement

", - fluid velocity

"iJ - horizontal nodal displacement of a lattice beam element

V - volume

v - velocity of two particles

V, - fracture volume

ViJ - vertical nodal displacement of a lattice beam element

Vn - normal component of closing velocity of two particles

Vo - strain energy density

JM') - volume of a particle

vip) - actual velocity of an individual particle

V, - relative velocity of 'fluid particle' pair

Vs - shear component of closing velocity of two particles

w,ot - total stored strain energy

Xi - location coordinates

x~c) -location of a contact

x~p) - location of a particle centroid

Y - separation ofparaUel plates

y - distance to the point of measurement (lubrication flow)

a -angle between line joining centroids of particle pair and the global x-axis

aD - coefficient of drag

a(/,})G-C _ granular-continuum stress conversion factors (general notation)
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a(y,x)G-C - granular-continuum stress conversion factor for ;'x component of tensor

a(y,y)G-C - granular-continuum stress conversion factor for OjJycomponent of tensor

aR - coefficient of repulsion

f3 - average nodal rotation

yxy - shear strain

AI - equivalent out of balance nodal forces for a finite element

Mn - increment of normal force on a particle

Ms - increment of shear force on a particle

oij - Kronecker delta

{ OIl} - nodal displacements for a finite element

Ox,y - change in length of a material sample in x and y-directions respectively

An - relative normal displacement of particles in contact pair

As - relative shear displacement of particles in contact pair

Ilt - length of the time step

AUl - relaxation stress - in terms of maximum principal stress

AU;(lInk) - component of relaxation stress acting in direction of the inter-particle link
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{&} - nodal strains for a finite element

El(link) - maximum principal strain in an inter-particle link element

E2(link) - minimum principal strain in an inter-particle link element
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u(p)
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Oi)
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-(p)
uiJ

U,

- overall bulk modulus for a lattice of beam elements

- dynamic viscosity

- Poisson's ratio

- overall Poisson's ratio for a lattice of beam elements

- coefficient of damping

- stress

- nodal stresses for a finite element

- maximum principal stress in an inter-particle link element in PSM mesh

- uniaxial stress in an inter-particle link element in PSM mesh

- maximum principal stress in a particle .

- elastic predictor stress a.k.a. effective stress a.k.a. elastic response stress
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- local stress tensor throughout a volume
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Chapter 1: Introduction

Chapter 1:

Introduction

1.1. Introduction

Geomechanical problems are usually associated with ground works in civil engineering,

mining engineering or petroleum engineering and concern mechanical processes

naturally occurring or deliberately instigated in geomaterials. Common examples of

geomechanical problems include slope stability, wellbore or tunnel stability, fluid flow

in the ground and the construction geotechnical structures such as retaining walls,

foundation footings and piling.

In analysing geomechanical problems, extensive use is made of numerical

modelling. This firstly allows complex and repetitive parametric analyses to be carried

out in the design phase of a particular structure, in order to determine, for example,

conditions of stability. Secondly, numerical modelling also allows predictions to be

made of developing conditions during the construction phase, in a subterranean

environment where observations cannot readily be made. In some cases, predictive

modelling of this kind may be applied in real time (Hopkins [35]).

Numerical modelling is also applied in researching geomechanical behaviour

and related engineering techniques in order to improve understanding and

implementation. Particularly in the petroleum industry, this kind of research tends to be

driven by a desire to improve efficiency and hence the economy of the techniques

employed to aid the commercial extraction of hydrocarbons, the execution of which

may account for a significant portion of the overall cost of extraction and processing.

Whatever its purpose, numerical modelling of geomechanical problems can

encounter many difficulties. Firstly, the problems themselves are often complex and

secondly, they may involve complicated combinations of various material phases. In
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their natural situation in the ground, it is common for fluids such as water, oil and gases,

occurring naturally or as a result of the actions of man, to be present within a

geomaterial. Thus, for a specific problem it may be necessary to employ a coupled

multi-physics model that can handle the interactions of solid, liquid and gaseous

material phases.

Furthermore, it can be difficult to determine the most appropriate type of model

for a specific problem. While for large-scale problems, where the overall material

behaviour is of concern, continuum mechanics models may seem appropriate, it can be

difficult to justify the description of a geomaterial as a continuous material. Firstly, on

a micro-scale, geomaterials generally consist of granular or particulate matter, which

may be loose, as in the case of soils, or cemented, as in the case of concrete and rock,

and secondly, on a meso- or even macro-scale, cemented geomaterials are usually

divided, by sets of joints and fractures, into larger blocks. While continuum mechanics

models can represent the properties of granular and fractured material through a

smeared approach and similarly allow the introduction of propagating fracture

behaviour, such models generally consider localised stress concentrations and strain

energy dissipation, for example around a fracture tip, whereas this behaviour tends to be

more widely distributed in a granular material (Bruno et al. [11D. Hence, for cases in

which micro-scale granular behaviour is of interest or where the representation of meso-

and macro-scale fractures as discrete features is important, as, for example, may be the

case where the action of a fluid phase must be accounted for, a discrete model may be

more suitable. However, a drawback of discrete models is that a large number of

individual elements may be required, especially when considering grain-scale

phenomena, and this can lead to extensive computational overheads, thereby making it

less feasible to model large-scale problems.

As can be seen, finding a numerical method that can represent the contradicting

requirements of the processes acting in a given geomechanical problem can be difficult

and often a compromise is required that typically results in one or more processes being

treated less accurately than others and less accurately than would be ideally desired.

These difficulties are further illustrated by the test case described in the following

Section.
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1.2. Geomechanical Test Case

A typical example of a geomechanical problem, which illustrates the various difficulties

discussed above, is the modelling of hydraulically driven fractures. Hydraulically

driven fractures are very common and have enormous significance in many

geomechanical fields where they can be created both naturally and artificially.

Examples of spontaneously occurring hydraulically driven fractures are, the exploitation

of pre-existing joint sets by high-pressure ground water, magma intrusions, welling up

from deep in the Earth's crust and, in or around man made hydraulic structures, such as

unlined, subterranean aqueducts, mass concrete dams (Visser and van Mier [94]) and

offshore structures. Instances of deliberately created hydraulic fractures can be found in

many fields of engineering. For example, in geotechnical engineering, for soil

reinforcement, in environmental engineering, where the injection of chemical and

radioactive waste has been investigated (Wilcock [96]), in energy generation, where

applications for geothermal reservoirs have been found (Mendelsohn [56]), and in

petroleum engineering, for the stimulation of hydrocarbon reservoirs, the re-injection of

drilling cuttings from wellbores (Papanastasiou [69, 72]) and for the prevention of

sanding and formation failure around wellbores.

By way of an example, the modelling of Hydraulic Fracture Treatments, as

employed extensively by the petroleum industry in order to stimulate production from

old and low permeability hydrocarbon reservoirs, is examined in more detail. The

treatments involve the development of hydraulically driven fractures initiated from a

wellbore, through the pumping of high pressure fluid, and propagated into the

hydrocarbon reservoir. Once in place, the fractures provide high permeability pathways

through the rock, increasing the effective permeability of the reservoir and subsequently

increasing the potential fluid extraction rate, thereby improving the economics and

extending the life of the well. In order to maintain the high permeability pathways

when extraction of the hydrocarbons begins, proppant material, similar to sand but often

synthetic, is packed into the fractures to hold them open.
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The modelling of hydraulically driven fracturing in porous materials is

considered one of the most complex problems in fracture mechanics (Visser and van

Mier [94]) and requires the coupling of fracture mechanics, fluid mechanics and

thermodynamics (Clifford [16], Noorishad [66]). Ignoring the additional difficulties of

thermodynamics, it can be summarised that there are five coupled processes to be

accounted for when modelling a Hydraulic Fracture Treatment. These processes are;

deformation of the reservoir rock matrix, propagation of the fracture, viscous fluid flow

in the fracture, leak-off of fluid into the porous reservoir rock, and propp ant transport in

the fracture (Hopkins [35]) (See Fig. 1.1.).

§I$ ~. :>i Viscous Fluid Flow
• !-L i

I
i :::>. Leak-offI

Width 1 Rock Deformation

1
I Growth at TIp , Fracture Propagation

Proppant Transport

Fig. 1.1. Five Main Processes to be Considered by Hydraulic Fracture Simulators

(After Hopkins [35])

A typical hydraulic fracture, developed during a Hydraulic Fracture Treatment, may be

hundreds of metres in length and tens of metres in height and, when considering these

dimensions, the five, coupled issues, listed above, may be reasonably described as

continuous processes. However, the width of such a fracture is typically only a few

millimetres and, in consideration of this scale, it may be more accurate to describe the

proppant material as the particulate matter that it is. Furthermore, if the fracture, which

must itself be considered as a discrete feature, is propagating in a strong, continuous

material, then a continuum mechanics approach may be reasonable, however, if the

reservoir material is weak or largely discontinuous, a discrete approach may be required

in order to accurately capture the distributed strain energy dissipation behaviour. It can

thus be seen that reconciling the behaviour of the five, coupled processes along with
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these various considerations of scale and model type can prove very difficult in what is

considered a fully three-dimensional problem (Clifford [16]).

The obvious complexities involved in modelling the various material phases

involved in Hydraulic Fracture Treatments and the wide ranging significance of the

hydraulically driven fracture problem in general, made this a useful geomechanical test

case for the work carried out for this thesis. Consequently, while it is hoped that the

results of the research presented in this thesis will be generally applicable in modelling

geomechanical problems, discussions and benchmark testing focus primarily on the

processes involved in hydraulic fracturing.

1.3. Project Aims and Objectives

The aim of the work carried out for this thesis was to investigate the potential for

developing models for solid, fluid and granular material phases in a particulate

mechanics framework, with the larger purpose of implementing coupled, multi-phase

models of geomechanical problems. The ultimate goal for this research was to develop

a versatile, single software, multi-physics modelling framework, that could handle both

continuous and discrete processes simultaneously, for problems of any scale, without

the need for complex coupling or staggered analyses and without the need for

compromise in terms of the accuracy or detail with which each separate material phase

or process was considered.

The advantages of a particulate mechanics framework such as this, can be

argued from the standpoint of providing a highly flexible environment in which

complex, coupled phase behaviour could be captured for geomaterials ranging from

strong, continuous materials of low ductility, to weak, poorly consolidated, highly

deformable materials. Such a framework would naturally handle large deformations

and discrete or discontinuous processes commonly encountered in geomechanical

problems, such as micro-cracking, propagation of complex fracture patterns,

disaggregation and grain movement, without a requirement for remeshing or a loss of

numerical accuracy. Furthermore, since the solid, fluid and granular material phases
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would be modelled within a single framework, coupling could be achieved without the

need for separate meshes, or for staggered or iterative solutions.

1.4. Numerical Work

The computational part of this work involves the creation of several numerical models

that represented firstly, the structure and behaviour of solid phase geomaterials,

secondly, the behaviour of fluid phase material and finally, the behaviour of granular

material. As discussed previously, these models were developed with the intention of

combining the individual phase models in any configuration as required in order to

investigate multi-physics geomechanical problems.

The models were created using the modelling environment Particle Flow Code

in Three Dimensions (PFC3~. This is an existing distinct element modelling (DEM)

environment that also allows further development through the addition of user defined

routines implemented via a built-in programming language called FISH (See Chapter 3,

Section 3.3.). The models representing the structure and behaviour of solid

geomaterials were created with the concept of constructing a lattice to replace a

continuum material. This was similar to the method created by Hrennikoff [36] and

more recently explored by Herrmann et al. [34, 19], Schlangen and Garboczi [79],

Schlangen and van Mier [80,81,82], Tzschichholz et al. [87, 88, 89], van Mier [58,59]

and van Vliet [95]. The models representing the behaviour of fluid phase material were

created with the concept of developing a particle representation of a fluid where the

particles are free to move with the flow. This was conceived of similar techniques such

as Molecular Dynamics (Ercolessi [27, 28]) and Smooth Particle Hydrodynamics

(Bonet et al. [10], CSIRO [17], Libersky et al. [49], Lowenstein and Mathews [52],

Monaghan [61, 62], Randles et al. [75], SPH at GMU [83]) as well as previously

developed discrete particle fluid representations (Harlow and Meixner (1961): cited by

Johnson [43]), Zhang et al. [98]). For the modelling of granular material, no additional

development work was required beyond the inherent capabilities of the PFC3D DEM

code.
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1.5. Outline of Thesis

This thesis consists of seven Chapters through which the development of the research

work carried out for this project is presented. The content of the Chapters is

summarised below.

In Chapter 2 the histories of research of four fields of computational modelling

that were considered during the course of these studies, namely modelling of hydraulic

fracturing, lattice modelling, modelling of fluid and modelling of proppant material, are

discussed in detail along with reference to their relationships to the work carried out for

this thesis.

Chapter 3 begins with a statement of the research proposal for this thesis before

discussion is made of the theory underlying the DEM modelling environment Particle

Flow Code in Three Dimensions (PFC3~, which was chosen as the basis of the multi-

physics particulate modelling framework. Specific proposals are then laid out for the

implementation of individual models, within PFC3D,for each of the various material

phases to be considered.

In Chapter 4 the development of the individual models for each of the material

phases, the particle solid model (PSM), the particle fluid model (PFM) and a combined

solid/fluid model (PSM + PFM), are described in detail. Also described are benchmark

tests developed in order to investigate the capacity of each of the models to reproduce

basic behaviour for their respective material phases. The results of these benchmark

tests are presented and discussed in detail along with the conclusions drawn.

In Chapter 5 work carried out in order to extend the behaviour of the PSM to

include fracturing is described. The evolving development of five failure criteria is

discussed in conjunction with the results of tests carried out on a simple benchmark

model in which the failure criteria were tested. Results of the tests are discussed in

detail and comparisons are drawn both with theoretical results and with the results of

similar studies carried out by other researchers. Again, conclusions reached through

examination of these results are presented in full.
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Chapter 6 contains descriptions of parametric studies carried out with two

hydraulic fracture benchmark models. The first of these benchmark models considered

a reproduction of a finite element model developed for a previous study of hydraulic

fracture propagation behaviour (Papanastasiou [69, 70, 71, 72]). The studies carried out

with this model were designed to test the capabilities of the particulate modelling

framework to capture the interaction of solid, fluid and fracture propagation behaviour

in a pseudo-realistic multi-phase representation of a geomechanical problem. The

second benchmark model was of a qualitative nature and the parametric study was

designed to evaluate the ultimate potential of the particulate modelling framework. The

results of both of these studies are reported and discussed in detail and the conclusions

arrive at are presented in full.

In the final Chapter, a statement is given of the findings and conclusions reached

after examination of the results of the studies presented in the preceding Chapters. This

is accompanied by suggestions for the desired progression of this work, beyond that

which has been achieved in the course of these studies. A summary of the overall

performance of the multi-physics particulate modelling framework is then presented and

comparisons are made with possible alternative modelling schemes in order to highlight

the advantages and disadvantages of the particulate framework. In the final section of

the thesis, a discussion is made of the implications of this work for the overall study and

future development of the fields of lattice type modelling and particulate mechanics

modelling frameworks.

8



Chapter 2: Review ofModelling Frameworks

Chapter 2:

Review of Modelling Frameworks

2.1. Introduction

This chapter presents a summary of modelling methods developed, by various other

research groups, for previous investigations into geomechanical problems, with

particular reference to the growth behaviour of hydraulically driven fractures and other

related research topics. Firstly, the discussion will focus on the general trend in

hydraulic fracture model development before moving on to look at the histories of

research in three areas of specific interest to the work carried out for this thesis; lattice

modelling, modelling of fluid and models concerning proppant transport.

In addition to the presentation of the research histories, discussion will be made

of the techniques and findings of these investigations and of the their relevance to the

work to be undertaken in this project. It may be noted that, for clarity, discussion of this

kind appears in italicised text.

2.2. History of Hydraulic Fracturing Research

The mechanisms and growth behaviour of hydraulically driven fractures have been

under investigation for some 40 years. Research has been driven primarily by the oil

industry and the goal of designing the most economical fracture treatments possible in

order to reduce the high costs involved in stimulating hydrocarbon reservoirs (See

Chapter 1, Section 1.2.). In order to do this, the best possible understanding of the

mechanisms involved in the growth of hydraulically driven fractures is required. With a

complete knowledge of this behaviour, it should be possible to optimise the fracture

length, the fracture width, the fracturing fluid type and the pumping schedule

(Economides and Nolte [26]) so that fracturing is limited to precisely the rock layers in
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which it is required, i.e. the reservoir payzone. Precise fracture placement is also

critical in other applications such as toxic waste injection where it is highly desirable

that the waste does not contaminate aquifers that may be used for drinking water

supplies. Furthermore, in civil engineering a complete understanding of hydraulically

driven fracture behaviour may lead to more economical designs for hydraulic structures,

such as dams, unlined tunnels and offshore structures, where undesired fractures of this

kind can significantly reduce stability. Other applications, not necessarily driven by

economic motives include the study of magma driven fractures (Lister [50, 51]).

In the field, during the application of hydraulic fracture treatments to reservoir

formations the only pieces of feedback information available at the wellhead are,

typically, the pump rate and the downhole pressure. In some instances, it has been

possible to acquire extra data, either from tilt metres on the surface or by measuring

acoustic emissions as the fracture propagates. However, these techniques add to the

cost of the treatment and in the field they are often impractical, especially in the

offshore environment (Tzschichholz and Herrmann [88]). It is for these reasons that it

has become the practice to carry out a numerical simulation of a fracture treatment

before it is implemented in the field. As could be expected a great deal of importance

has been placed in the development of the fracture simulators and research is focused on

modelling the processes associated with hydraulic fracture growth as accurately as

possible.

As mentioned in Chapter 1, Section 1.2. it is understood that hydraulically

driven fracturing of porous materials is one of the most complex problems in fracture

mechanics (Visser & van Mier [94]) and that it is strongly influenced by the interaction

of solid and fluid mechanics and by thermodynamic effects (Clifford [16], Noorishad et

al. [66]). While the role of solid and fluid mechanics is reasonably obvious, the

significance of thermal effects is illustrated by the fact that a 3000m deep reservoir will

have a temperature of around 100°C whereas the fracture fluid may be at only 25°C

(Clifford [16]). This differential will induce a large thermal stress that may

considerably affect the fracture behaviour. Although thermal effects may not be very

significant for the relatively fast process of hydraulic fracturing, they become significant

when techniques such as waterflooding are employed in order to improve hydrocarbon

recovery. While much of the previous numerical modelling research has focused on the
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development of a model that coupled these three mechanisms, the complexities of

thermodynamics has meant that thermal effects have been ignored by Some hydraulic

fracture models. This exclusion is probably acceptable in two situations, firstly, if the

object of a certain model is to research a specific aspect of hydraulically driven fracture

growth behaviour, in which case complex thermal considerations may obscure the

results of the study and secondly, if the hydraulically driven fractures develop in a

situation where temperature may not be so important, e.g. fractures in structural

engineering applications or in shallow, geotechnical applications. However, the

significance of thermodynamic effects in stimulating deep hydrocarbon reservoirs,

illustrated above, implies that thermal effects should not be left out of a model that

attempts to simulate enhanced hydrocarbon recovery operations in this area.

Furthermore, thermal effects cannot be ignored in applications such as magma driven

fractures and geothermal energy exploitation.

A fundamental assumption of most models, with or without thermal effects, is

that the state of stress in a deep reservoir is such that the maximum principal stress is

vertical and the minimum principal stress is, therefore, horizontal. The fractures are

assumed to open in the direction of least resistance and consequently, are in the form of

large vertical, planar structures (Advani et al. [1, 2, 3], Clifford [16], Hopkins [35],

Mendelsohn [56, 57], Ouyang et al. [67], Papanastasiou [69, 70, 71, 72]). This is a

simplification that allowed earlier models, limited by computational power, to consider

just one or two dimensions but can be justified in that for most cases the fractures will

indeed be generally vertical and due to the large ratio of fracture length to width any

variation across the width has negligible effect on behaviour. In reality, hydraulic

fracture propagation is a fully three-dimensional problem. Despite this, early simulators

considered only a one-dimensional analysis of fluid flow coupled with a two-

dimensional plane strain fracture model. While perhaps giving a general idea of

fracture growth in a simple medium, these models were clearly not sufficient to

optimise a hydraulic fracture treatment. More recently, the problem has been modelled

in two dimensions and indeed, it was two-dimensional models that were most

commonly used in industry from the 1960s through to the 1980s. Some of these two-

dimensional models still form the basis of more complex models in use today and are

still, themselves, used in certain research investigations (Gu and Leung [33], Unwin and

Hammond [90]).
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Many of the two-dimensional models use the Christianovic, Geertsma, De Klerk

& Daneshy (CGDD) Model (Mendelsohn [56]), coupled with fluid flow models of

varying complexity. The solid mechanics part of the CGDD model assumes the fracture

to be initiated within an infinitely continuous, homogeneous, isotropic, elastic solid that

experiences plane strain behaviour in the horizontal planes. These assumptions are

obviously limited in terms of a realistic problem. Natural rock formations are certainly

not homogeneous or isotropic and such properties have been shown to have a significant

effect on hydraulically driven fracture growth behaviour (Advani et al [2, 3], Clifford

[16], Gu & Leung [33], Ouyang et al. [67]). Furthermore, reservoir formations are very

likely to contain joints, faults and other discontinuities that may cause the rock not to

behave as an infinitely continuous material. However, it has been shown that fractures

will cross discontinuities without much change in orientation (Lamont and Jessen

(1963), Daneshy (1974), Hanson (1975), Zoback et al. (1977): all cited by Mendelsohn

[56, 57]) and given the high confining pressures associated with deep hydrocarbon

reservoirs, it is unlikely that the discontinuities will be open. The assumption of an

infinitely continuous material can therefore be considered reasonable. Additionally,

recent work (Papanastasiou [69, 70, 71, 72]) has shown the assumption of purely elastic

behaviour to be inadequate. The studies found that elasto-plastic deformation had a

significant effect on fracture shape and growth and is therefore a factor that should be

considered by hydraulic fracture simulators, particularly when investigating fracture

treatments in weak, poorly consolidated rocks.

In terms of realistic hydraulic fracture problems, the assumption of plane strain

in horizontal planes by the CGDD model is very inaccurate. Horizontal plane strain

implies that the fracture has rectangular vertical cross-sections in both the xz and yz-
planes (See Fig. 2.1 below). This is analogous to the assumption that the fracture does

not spread vertically beyond the layer in which it was initiated. While this is a very

desirable outcome for a fracture treatment, it has been shown and is now generally

accepted that, this is not the case given that the boundaries between rock strata behave

as any other discontinuity (See above).
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z

Fig. 2.1. Geometry of CGDD Model Showing Rectangular Cross-Section of Fracture.

(After Mendelsohn [56])

However, although the assumption of horizontal plane strain behaviour may be

inaccurate with regard to fractures that have a high length to height ratio, as was typical

of fracture treatments until recently, the same assumption can be accepted as reasonable

for fractures of low length to height ratio (Mendelsohn [56, 57], Papanastasiou [69,

70]). With the current trend away from long, narrow fractures to short, wide fractures

(Papanastasiou [70]) the CGDD model may well be applicable for simulation of new

fracture treatments. Furthermore, this type of model can be applicable in certain

research applications, where a relatively simple model can be constructed to examine,

for example, local behaviour at the fracture tip rather than the overall fracture shape.

This is an approach taken by Papanastasiou [69, 70, 72J and, as discussed in

Chapter 6, Section 6.2., it is the simplification applied in the work carried out for this

thesis.

The common alternative to the CGDD model is the Perkins & Kern Model,

latterly known as the Perkins, Kern and Nordgren (PKN) Model. This also assumes

rectangular fractures of constant height but with plane strain behaviour in vertical planes
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rather than horizontal. The main difference this produces is that the vertical cross-

sections of the fracture in the yz-plane are elliptical (See Fig. 2.2 below).

z

Fig. 2.2. Geometry of PKN Model Showing Elliptical Cross-Sections

(After Mendelsohn [56])

The size of the ellipses varies in time.This approach is far more accurate than the

CGnn method in representing the shape and processes involved in hydraulically driven

fractures with a high length to width ratio, as discussed above. Geertsma and Haafkens

(1976): cited by Mendelsohn [56] suggest that fractures with a length to height ratio

above unity should be modelled by vertical plane strain rather than horizontal plain

strain. This certainly applies to many hydraulic fracturing treatments designed today.

As with the conn Model, the assumption of rectangular vertical cross-sections in the

xz-plane, implying that the fracture remains within the rock strata in which it was

initiated, is a limiting simplification to the modelling of realistic fracture treatments.

However, the growing, elliptical nature of the fractures described by the PKN Model

would be more easily adapted to multi-layer propagation and so it is a preferable model

to the COnD Model as the basis of a fracture simulator. As mentioned before, the PKN

Model still has its place in research where a simplified approach may be sufficient for

the investigation of a specific process (Ou and Leung [33], Unwin and Hammond [90]).
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The two basic solid phase models, discussed above, have been coupled with

various fluid models accounting for fluid flow in one or two dimensions. One-

dimensional fluid models consider simple fluid flow along the length of a fracture while

two-dimensional models usually consider fluid flow along the length and varying over

the height of the fracture. Two-dimensional flow is of more concern in the elliptical

PKN fractures than in the CGDD fractures of constant width and it was Nordgren's

work (discussed by Mendelsohn [56]) to extended the Perkins and Kern model to

include changes in flow behaviour with changing fracture width, that gave the PKN

Model its final name. Fluid flow in the third dimension, across the width of the

fracture, is usually assumed to have a negligible effect due to the very high length to

width and height to width ratios. This assumption may be acceptable for long, narrow

fractures, however, in short, wide fractures the width dimension may become more

significant. This may be especially true when the short, wide fractures are associated

with formation stability and prevention of sanding where fluid pressure gradients are

important (See Section 2.4.). Lateral fluid flow and turbulence may also be significant

in applications such as proppant transport (Unwin and Hammond [90]) (See also

Section 2.5.).

For a full fracture simulation, it is highly desirable to model fluid flow in at least

two-dimensions. It is now understood that a fracture will grow beyond the layer in

which it is initiated and that this vertical growth, through multiple rock layers with

differing properties, results in variation of the width and hence permeability of the

fracture over its height. These variations will subsequently cause significant variations

in the flow rate and pressure profile over the height of a fracture that cannot reasonably

be dealt with by anything less than a two-dimensional flow model.

In addition to the flow regime in the fracture, the fracturing fluid has to be

considered and models of simple fluids, obeying Darcy's law and Navier-Stokes law,

and complex non-Newtonian fluids have been coupled, in one and two dimensions, with

the PKN Model. Fracturing fluids used in practice are often, although not always

(Clifford [16]), non-Newtonian, power-law fluids that exhibit complex behaviour such

as shear-thinning, where the viscosity decreases with increasing shear-strain rate

(Papanastasiou [69]) and viscoelasticity with high normal stresses (Unwin and

Hammond [90]). Various studies have considered the inclusion of non-Newtonian fluid
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behaviour to be important in fracture growth (Advani et al. [2,3]), fracture tip processes

(Desroches et al. [22], Lenoach [47]) and proppant transport (Ouyang et al [67]. Unwin

and Hammond [90]), where it was particularly noted that proppant concentration and

migration and fluid power-law behaviour were interdependent. It therefore seems

reasonable that a fracture simulator should be able to emulate this type of fluid

behaviour since it will dramatically affect the development of fluid flow and pressure

gradients in a propagating fracture. However, it is understood that this kind of

behaviour is complex to describe mathematically and requires sophisticated algorithms

that are computationally expensive. As with previous processes, discussed above, it is

considered that it may not be necessary to include complex fluid behaviour in every

instance, particularly in research concerned with processes not specifically dependent

on the fluid flow behaviour or change of pressure.

It was not an objective of the work carried out for this thesis to model complex

fluid behaviour in a fracture and so simplifications have been adopted that are

consistent with those made by Advani et al. [I} and Papanastasiou [69}. These are

discussed in detail in Chapter 6, Section 6.2. and modelling offluid flow in thefracture

isfurther discussed in Section 2.4..

Several other studies have made additions to the basic PKN and CGDD Models

and these include the introduction of heat transfer between the fracture and reservoir

fluids, proppant transport (See Section 2.5.) and leak-off of fracture fluid into the porous

reservoir rock. Several of these models have been shown to produce good results for

their specific purposes (Mendelsohn [56, 57]). Of particular note is the addition ofleak-

off, a process whereby fluid is lost from the fracture to the porous reservoir rock. Fluid

leak-off is considered by some to be a very important factor in hydraulically driven

fracture growth behaviour (Bale et al. [6]). Gu and Leung [33], in fact suggest that an

accurate estimate of leak-off during a fracture treatment is critical to its success.

Furthermore, Leonach [47] found that, depending on the reservoir permeability, a zone

exists, near the fluid front, in which behaviour is dominated by fluid loss. Visser and

van Mier [93] also found that parameters describing the interaction of a poroelastic

medium with reservoir and fracture fluids strongly affected the initiation and

propagation behaviour of hydraulically driven fractures. In a separate study, Visser &

van Mier [94] also note that leak-off can affect the efficiency of a fracture treatment by
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increasing the pore pressure in the rock, which acts to resist deformation of the material

and can counteract the fracture pressure itself. Papanastasiou [72] similarly notes that

leak-off can change the effective stress in the reservoir formation and hence change the

size of the plastic zones around a propagating fracture tip. However, Papanastasiou also

points out that the study in question focuses on the effect of plasticity and not the effect

ofleak-off, on fracture behaviour.

Once again, from the evidence cited above, it would seem that in order to

accurately model a hydraulic fracture treatment, the parameter in question, in this case

leak-off of the fracture fluid to the reservoir formation, should be included in a

hydraulic fracture simulator. However, when researching specific hydraulic fracturing

processes in isolation, it is not necessary, and indeed reduces the clarity of the results of

the study, to include leak-off. Several investigations, including Papanastasiou's [72],

ignore the effects of leak-off on the grounds that it can be minimised in the field by the

inclusion of additives with the fracture fluid that will deposit a filtercake on the fracture

boundaries, thereby blocking the flow of fluid from the fracture to the reservoir rock.

Given this argument and the evidence presented above, it is perhaps not just leak-off

that should be modelled by hydraulic fracture simulators but also the inclusion of

additives, their effectiveness in depositing filtercake and the subsequent change in leak-

off rate with time. This is the approach originally considered by Carter (1957): cited by

Mendelsohn [56]. It should be noted that in order to successfully build up filtercake or,

similarly, pack propp ant into a fracture (See Section 2.5.) it is necessary that there is a

through flow in the fracture. For this to happen leak-off must take place. Therefore, in

order to model these processes some account of leak-off must also be made.

The work in this project looks only at simplified hydraulic fracturing situations,

mostly based around the work of Papanastasiou, and so it was considered unnecessary

to account for leak-off. It is argued that in the case of the hydraulically driven fracture

models developed in this work, either filtercake builds up quickly enough to make the

effects of leak-off negligible, as proposed above, or that the solid media is of low

porosity. which, although not realistic for fracture of hydrocarbon reservoirs, may be

applicable to fractures in engineering structures. It is understood, however, that in the

case of proppant transport models some account of leak-off will need to be made.
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It is now generally accepted that, although desirable, the assumption, by both the

PKN and CGnD Models, of a rectangular fracture, fully contained within the layer in

which it is initiated, is not correct. If a fracture leaves its original strata then its growth

behaviour will be dependent on the material properties of the different layers into which

it intrudes and it has been realised that this then becomes a fully three-dimensional
problem.

The first step from two-dimensional models towards modelling in three

dimensions was the development of models known as pseudo-three-dimensional models

(See Fig. 2.3.). These models mostly use the PKN Model as their basis and are a

combination of two two-dimensional models, usually coupled iteratively (Mendelsohn

[57]). One of these calculates crack growth and fluid flow along the fracture length and

the other calculates crack growth and perhaps fluid flow in the vertical direction. The

models are coupled at the mid-point cross-section of the fracture both vertically and

horizontally so that the maximum height and length are calculated. Despite this, no

estimate is made of the overall shape of the fracture between these maxima.

Fig.2.3. Various Fracture Shapes Assumed by Pseudo-Three-Dimensional Models.

(After Mendelsohn [57]).

Some pseudo-three-dimensional models treat the fracture as rectangular, which would

be very similar to the two-dimensional models discussed above, and others assume

elliptical shapes. However, the true shape of the fracture may be entirely different and
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probably the best estimate by pseudo-three-dimensional models is made by those that

are coupled at more than one cross-section in vertical and horizontal directions, thereby

calculating several points along the fracture front (See Fig. 2.3. above).

Although these models are an improvement over the two-dimensional models,

they still make simplifications that are thought to detract from their ability to simulate

and facilitate the optimisation of hydraulic fracture treatments. For example, as with the

CGDD and PKN Models, on which they are based, pseudo-three-dimensional models

assume the fractures are vertical and planar, i.e. the fractures only propagate in the

direction in which they are initiated. This is a limitation, as fracture in the ground will

tend to deviate around inhomogeneities in the rock. Furthermore, hydraulic fractures

are known to turn, shortly after initiation, from opening in the direction of least

resistance in the near wellbore stress regime to opening in the direction of least

resistance in the far field stress regime. If a model such as this is to be used in the

simulation of hydraulic fracture treatments it must be considered to model only the

length of fracture beyond any realignment. The planar representation may then be an

acceptable approximation of a fracture treatment however, it should be noted that the

boundary conditions at the open end of the fracture may not be the same those that

prevail in the wellbore. It is, however, doubtful that a pseudo-three-dimensional model

would provide the best optimisation possible. It is also hard to see how pseudo-three-

dimensional assumptions of fracture shape could really benefit specific aspects of

research.

As with the two-dimensional models various assumptions may be made about

the fluid behaviour in the fracture. In the case of pseudo-three-dimensional models,

these assumptions depend on the assumed fracture shape. Some models assume no

pressure variation over the height of the fracture while others use solutions that are more

complex. A review of several of these models, based on the PKN and COOO Models,

is given by Mendelsohn [57].

The limitations of the two-dimensional and pseudo-three-dimensional models,

described above, and the desire to simulate hydraulic fracture treatments as accurately

as possible led to the development of planar-three-dimensional models in the 1980s, in

which three-dimensional fracture growth behaviour is considered but in which the
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fracture is not considered to turn or rotate out of its initial orientation. More recently,

fully-three-dimensional models, in which a single fracture is allowed grow with almost

complete freedom, have also been developed. These models have only become of

practical use in the field as powerful personal computers have become readily available.

As would be expected, these models take into account the elastic response of the solid

phase in all directions, but vary in the way that fluid behaviour is dealt with. Three-

dimensional fluid behaviour is very complicated and various simplifications, such as

laminar fluid flow along the length and possible varying over the height of the fracture,

are assumed in order reduce the complexity of the models. This is discussed in more

detail in Section 2.4. The simplification of fluid flow in the fracture is probably

acceptable for simulation of hydraulic fracture treatments given the typically narrow

opening of a fracture and it is probably of more importance to consider an accurate

representation of the fracture fluid itself, as discussed previously.

Some three-dimensional models still use the CaDD or PKN Models as their

basis. Initially, these models simulated penny-shaped fractures with a radial fluid flow

and various developments were made to include the effects of complex processes, such

as thermal considerations and fluid leak-off. As the fracture propagated it was assumed

to maintain its penny-shape (See Fig. 2.4. below).

Fig. 2.4. Example of Three-Dimensional Finite Element Mesh Representing Half length of

Penny-Shaped Fracture (After Advani et al. [2])
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As with the rectangular fractures simulated by the two-dimensional models it was

realised that the simplified penny-shaped fracture was not realistic for the simulation of

a full fracture treatment, although it may be suitable for modelling of fractures in their

early development, before they leave the bounds of their original rock strata. This is

confirmed by Ouyang et al. [67] who found that while the fractures grew within

material of uniform properties, they expanded radially and remained penny-shaped (See

Fig.2.5.).
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Fig. 2.5. Diagram Showing Radial, Penny-Shaped Expansion while Fracture remains within

Initial Fracturing Layer

For this reason the penny-shape may also be suitable for certain research applications

and this was the approach taken be Clifford [16] where coupling of thermal effects with

solid and fluid mechanics was the specific focus of the research and not the developing

shape of the propagating fracture. Several variations of the penny-shape were explored

such as the elliptical fractures investigated by Advani et al. [2, 3]. These however,

remained symmetrical about the horizontal centreline and although closer
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approximations of real hydraulic fractures they were still over simplified for the

purposes of optimisation.

The height of a fracture in the field is usually governed by the rock strata

bounding the payzone, where the in situ stresses and material properties may vary from

those of the initial fracturing layer. As the fracture intersects these bounding layers, its

penny-shape will be lost and it may develop an essentially arbitrary shape (See Fig.

2.6.).
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Fig. 2.6. Diagram Showing Variation of Fracture Shape as Fracture Enters Bounding Strata

with Material Properties and In Situ Stresses Different from those in Initial Layer

In order to accurately simulate a fracture treatment this arbitrary shape must be

reproducible within the model. More complex models such as those developed by

Advani et al. [2, 3] and Ouyang et al. [67] deal with these arbitrary shapes quite well

and their results illustrate the effects of the differing properties and confining stresses

associated with different rock layers. A disadvantage of these finite element (FE)

schemes is that they still assume the propagation of the fracture to be linear which, as

discussed previously, may not be the case. Furthermore, due to the movement of the

propagating fracture front these models must employ a remeshing scheme or, in the case
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of Ouyang et al. [67], an adaptive remeshing scheme each time there is a change in the

fracture geometry. These schemes can be computationally very expensive, especially

for complex fracture shapes. Moreover, a major disadvantage of these models is that

they give very poor results when large contrasts exist between the properties of the

various rock strata.

A further computational problem commonly noted within three-dimensional

models is the presence of a singularity at the fracture tip. In order to deal with this

special measures are required. Advani et al. [2, 3] applied special shape functions to

elements at the fracture front and Ouyang et al. [67] and Clifford [16] both applied a

line of quadrilateral elements at the fracture front that handled the problem better than

the triangular elements used for the rest of the mesh. While these techniques were

successful, they only added to the complexity of the models.

Clifford [16], in a study involving the coupling of a finite difference

fluid/temperature model with a boundary element fracture mechanics model, notes

computational difficulties, arising firstly, from the differing modelling histories of

fracturing and fluid flow and secondly, from the differing requirements of the solid and

fluid phases. Reservoir fluids have usually been modelled by finite difference schemes

while stress and fracture calculations have been typically carried out with boundary

element or finite element schemes and it is difficult to combine these methods. When

they are brought together to model the complex three-dimensional behaviour of

hydraulic fractures, further problems arise due to the different meshing requirements for

the two phases. Stress would be concentrated at the fracture tip, requiring a fine mesh

in this area, while temperature and fluid fronts may be situated elsewhere in the rock

medium. The obviously complex mesh involved in catering for all three phases would

certainly be computationally expensive to deal with.

Due to the computational effort required it has been felt that pseudo-three-

dimensional models are more suited for industry use in the field, as the errors made are

acceptable when viewed against their economy. However, three-dimensional models

are more accurate and can show the errors made by pseudo- counterparts and

furthermore, if computing power continues to increase at present speeds, the three-

dimensional modelling will be economic for industrial use very soon. Indeed, Hopkins
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[35] mentions the development of pseudo- and planar-three-dimensional simulators that

are capable of using real-time feedback from wells during fracture treatments in order to

adjust the pumping schedule as fracturing progresses. This kind of analysis must be the

ultimate goal in fracture treatment simulation tools although, given that some of these

models are still dealing with pseudo-three-dimensional approximations, as discussed

above, there clearly remains room for advancement.

While the models discussed above make various reasonable assumptions and

approximations of hydraulically driven fracture growth behaviour and have progressed

towards solutions capable of facilitating the optimisation of fracture treatments, they

have several common disadvantages. Firstly, all of the models described above

consider a single, essentially straight fracture, where the model mesh defines the

fracture itself while the reservoir is not modelled other than to define the conditions for

fracture expansion. With the exception of the models developed by Advani et al. [2,3]

and Ouyang et al. [67] that look at multi-layer formations, none of these models

consider the reservoir material as anything but homogeneous and isotropic, leading to a

single, straight fracture. However, in reality a fracture may deviate around a harder area

of rock, shift latterly as it crosses a discontinuity or develop branching and sub-

fractures. Furthermore, as mentioned previously, fractures are known to change

direction when going from the near well stress regime to the far field stress regime, but

the models discussed would not allow for this. Perhaps a better approach would be to

firstly, model a region of reservoir around the wellbore that is to have a fracture

treatment applied and then model the treatment itself. It is appreciated that, to use this

approach and cater of all of these factors, the models would need to become very

complex, certainly fully-three-dimensional and would require greater and greater

computing power and time to run. As mentioned above, this not acceptable to

companies who are looking to optimise the economics of fracture treatments by

modelling. There is no advantage for them in spending more time modelling than

actually applying the fracture treatments. For the purposes of researching this subject

and developing the understanding of hydraulically driven fracture growth behaviour it

seems reasonable to make use of simplified models that are concerned with specific

processes rather than using complex models, that take into consideration all of the issues

described above.
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This is the approach takenfor the numerical work in this project, although it is

hoped that, in the future, the developed modelling framework could be applied to

problems that are more complex.

2.3. History of Lattice Modelling
(with Particular Reference to Hydraulically Driven Fractures)

2.3.1. Background and Development of Lattice Models

In the early 1940s, the framework method was developed by Hrennikoff [36] as a

technique to overcome the mathematical complexities in the solution of differential

elasticity equations applied to the analysis of continuous mechanics problems. The

underlying principle of this technique is the substitution of the continuum with a lattice

of bar elements such that the framework behaves, mechanically, exactly as the

continuum would. The equations developed for the framework elements, describing the

resolution of forces as for a planar truss, are relatively simple and, unlike the differential

equations of elasticity theory, can always be solved.

The models developed by Hrennikoff [36] consisted of regular arrangements of

simple truss elements that were capable of carrying only axial loads. To calibrate the

properties of the truss members, in order to reproduce the behaviour of the continuum

material to be represented, Hrennikoff developed various formulations, for various

lattice configurations, by rearrangement of the equations of elasticity. These

formulations calculated the required cross-sectional area for the truss elements.

Hrennikoff concluded that, in order to arrive at a regular, plane stress lattice, Poisson's

ratio, v, had to be fixed at Ylfor a triangular lattice configuration. He found the value of

v = Ylwas also required for square and oblong lattice arrangements with diagonal

bracing and, finally, that a complex arrangement of concentric squares braced by

diagonal members was required in order to reproduce an arbitrary value for v (See Fig.

2.7. below). (NB - given that Hrennikoff was dealing with frameworks of pin-jointed

bar elements, diagonal bracing members would have been required in square type

formations in order to ensure stability of the structural configuration).
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a)

b)

c)

Fig.2.7. Examples of a) Triangular lattice Arrangement, b) Square lattice Arrangement, c)
Hrennikoff's lattice Arrangement for Arbitrary Poisson's Ratio

Hrennikoff successfully applied the framework method to problems of two- and three-

dimensional stress and of bending of plates and cylindrical shells, and notes that the

fixed value of v = Ylis reasonably close to that of the metals in which he was interested.

This value is also reasonable for certain rock types and so the simple trusses may be an

acceptable approximation for some problems.

In the 1980s, the framework method came back into fashion and found a new

application in statistical physics where networks of springs were investigated (Feng et

al. [29]). In addition to this, several groups began to look into Hrennikoff's original use

for the framework method and applied the technique to various heterogeneous materials,
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for example, concrete and rock (Schlangen and Garboczi [79], Schlangen and van Mier

[80, 81, 82], Tzschichholz et al. [88, 89], van Vliet [95]). Lattice models were chosen

as a new approach to modelling of these materials because of the ease with which

material heterogeneity can be reproduced, simply by applying different properties to

individual elements or groups of elements during the calibration process. It was also

argued that, if the lattice elements are of suitable size, it is possible to pick up even the

high degree of heterogeneity associated with concrete at the aggregate scale (Schlangen

and van Mier [82]).

Recent studies have tended to use regular, simple lattices, in either triangular or

square configurations, consisting of beam elements, although the use of random lattice

configurations is also discussed (van Mier [59], van Vliet [95]). Beam elements of three

types have been studied, particularly by Schlangen and Garboczi [79], that are capable

of transferring, firstly, only axial forces, secondly, normal and shear force and thirdly,

normal and shear forces as well as bending moments. The first type of element forms a

lattice that is analogous to a simple truss as described by Hrennikoff, or a central force

spring network as discussed by Feng et al. [29], and has an overall Poisson's ratio fixed

at Y3. The second type of lattice is similar to a spring network consisting of linear and

shear springs and has a variable value the of overall Poisson's ratio up to a maximum of

'l3, when the shear capacity reaches zero and the lattice becomes identical to the first

type described. This is clearly a more suitable and desirable model for materials with a

range of values for the Poisson's ratio. Lattices consisting of either of these two

element types can be considered as a discretisation of a linear elastic continuum. The

third element type produces a lattice with a variable Poisson's ratio, up to a maximum

value of 'l3, similar to the two force element, but can be considered as a discretisation of

a higher order, Cosserat continuum. Although these multi force elements are capable of

representing more complex materials than the simple truss elements discussed by

Hrennikoff [36], they are still limited by the maximum value of Poisson's ratio. As

mentioned before, the maximum value of Y3is acceptable for many of the rocks under

investigation in connection with hydraulic fracturing and so in most cases a lattice

model can be a useful tool. In the event that a material with a higher Poisson's ratio is

to be modelled then a lattice will not be sufficient unless the complex configurations

mentioned above are adopted.
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As mentioned above, the beam lattices must be calibrated in a similar fashion to

the truss models developed by Hrennikoff, so that the overall behaviour of the lattice

reproduces that of the continuum material that is to be approximated. Two distinct

approaches to calibration have been taken by different research groups. The first

method (Herrmann et al. [34], Tzschichholz [87], Tzschichholz and Herrmann [88])

defines the equations of elasticity for a beam element as shown below. The assumption

is made that, as with any structural beams, they can transmit, axial and shear loading

and bending moments (See Eq. 2.1. to Eq. 2.6.). (It can be noted that, unlike

Hrennikoffs frameworks, the assumption of structural beam elements with the capacity

to transmit bending moments allows the use of frameworks in open configurations such

as the square lattice adopted by the researches mentioned above).

Eq.2.1.

Eq.2.2.

Eq.2.3.

Eq.2.4.

b - l(heam)
(H) -

G (beam)~beam)
Eq.2.5.

Eq.2.6.
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where, Fl(beam), Q;(beam) and M;(beam) are, respectively, the normal force, shear force and

bending moment in a beam element, U1J and ViJ are horizontal and vertical nodal

displacements of a beam element and tPtJ are rotational displacements at the ends of a

beam element. a(H), b(H) and c(H) are defined as material dependent constants where

1(beam)' A(beam), E(beam), G(beam) and I(beam) are, respectively, the length, cross-sectional

area, Young's Modulus, shear Modulus and moment of inertia of a beam element. NB-

for convenience and consistency in this thesis some of the notation in Eq. 2.1. to Eq.

2.6. has been altered from the original text (Herrmann et al. [34D.

Values for the material constants, a(ll), b(H) and c(H) were then chosen arbitrarily

to define the behaviour of the lattice. This implies that in order to represent a specific

continuum material a trial and error approach would have to be adopted, using a

benchmark model, altering the material properties of the beam element until the

response of the lattice matched that of expected for an equivalent continuum. This

process would probably be lengthy and there would seem to be an opportunity for errors

to be included given that there are several variables to set for a given material. A better

approach would perhaps be to follow the method applied by Hrennikoff and, assuming

the properties of the individual lattice elements to be the same as those of the equivalent

continuum material that is to be approximated, rearrange the equations described above

in terms of the cross-sectional area of the elements.

The second method for calibrating the properties of lattice beam elements looks

in to the elastic energy of a unit cell of the lattice under a uniform strain, from which it

is possible to derived formulae for the elastic moduli of the lattice beam elements

(Schlangen and Garboczi [79], Feng et al. [29]). The equations for a regular, triangular

lattice are shown in Eq. 2.7. to Eq. 2.10. below.

J3 E(beam)~beam)
1('(/al/iee) =2 I

(beam)
Eq.2.7

G . = J3 E(beam )~beam) (1+ 12I(beam) )
(/awee) 4 1 ,,*, 12

(beam) ',beam) (beam)
Eq.2.8.
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(
1- 12I(beam) .)

_ K(lattice) - G (lattice) _ ~beam Y(~eam)

V(lattice) - G - ( J
K(lattice) + (Ialliee) 3 + 12I(be;m)

A(beam Y(beam)

1
-1< V(lattice) < '3 Eq.2.9.

For a rectangular beam element, Eq. 2.9. becomes (Schlangen and Garboczi [79]),

(1-(~J2)I(beam)

V(lallice) = (( J2)
3+ h(beam)

I(beam)

Eq.2.10.

where, K(lattiee), G(/attiee) and ltlatt/ee) are, respectively, the overall bulk modulus, shear

modulus and Poisson's ratio of a lattice of beam elements and h(beam) is the height of a

single lattice element.

From the equations above it can be seen that Young's modulus, for the lattice as a

whole, E(lattiee) can be derived as in Eq. 2.11. (van Vliet [95]),

E . = 2 '3 E(beam )~heam)
(Ialllee) "" " 1

(beam)

1+ (h(beam) J2
l(beam)

Eq.2.11.

3+ (h(heam) J2
I(beam)

NB - for convenience and consistency in this thesis some of the notation in Eq. 2.7. to
Eq. 2.11. has been altered from the original texts (Schlangen and Garboczi [79], van

Vliet [95]).

30



Chapter 2: Review of Modelling Frameworks

The equations above provide a quick and easy way of calibrating a triangular

lattice to represent any continuous material with a given Poisson's ratio and Young's

modulus. It is noted by van Vliet [95], however, that these expressions refer to an

infinite continuum in which there are no boundary effects. A study carried out by van

Vliet, conducting simple uniaxial load tests with lattice models, showed that, provided

the ratio of lattice width to element length is high enough (~20), boundary effects are

negligible and the expressions above can be considered an acceptable approximation.

As mentioned before, with a calibration technique available, it is easy to model

heterogeneous material by applying different material properties to the lattice elements

in different areas of the lattice. Schlangen and van Mier [81, 82] implement this idea,

using the calibration technique above, by overlaying the lattice with a randomly

generated, idealised structure of concrete (See Fig. 2.8. a) ).

o

o o 0

a)

b)

Fig. 2.8. Diagram Showing a) Triangular Lattice Overlaid with Idealised Structure of Concrete

Aggregate (After Schlangen and van Mier [82]) b) Detail of Lattice Elements Overlapping Areas

of Aggregate and Concrete Paste (After van Vliet [95])
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Lattice elements that fall within an aggregate grain are given aggregate properties,

different to those given to elements that that fall within the concrete paste. This proves

to be a very efficient scheme although there are limitations. For example, in applying

circular areas, representative of aggregate grains, to a triangular lattice, a perfect match

is not possible and some elements will lie between two regions (See Fig. 2.B. b) ).

However, various approximations could be developed to overcome this and the problem

disappears as the discretisation of the lattice increases. Schlangen and van Mier [81,82]

chose to apply a third material type to elements that overlapped aggregate and concrete

paste and define it as an interface layer material.

Obviously, for this differential calibration to be effective the element size has to

be sufficiently small in comparison with the material heterogeneities. Following a

sensitivity study on lattice element size, Schlangen and van Mier [82] recommend that

the lattice beam elements should be at most YJ the size of the smallest grain for an

accurate concrete model. This is partially confirmed by van Vliet [95] but it is noted

that, although the accuracy of modelling heterogeneities will depend on the chosen ratio

of beam length to aggregate size, no optimum value was found. It is concluded that

reasonable accuracy will be achieved as long as the lattice elements are smaller than the

smallest grain size and it is further implied that for a homogeneous model the element

size is not important. This is reasonable, given that the formulation of the considered,

higher order, Cosserat type media, takes account of element size.

As discussed above, the lattice models in use today are more than capable of

reproducing the elastic deformation problems that were investigated by Hrennikoff [36].

In addition to this, most recent studies have taken lattice modelling a step further to look

at fracturing of materials. As when Hrennikoff first used the framework method this

has been done to overcome difficulties with analytical solutions in continuum models.

It is considered that Linear Elastic Fracture Mechanics (LEFM) is not truly capable of

analytically describing the processes associated with fracturing of heterogeneous

materials (Schlangen and Garboczi [79]). For example, as with the hydraulic fracture

models discussed in Section 2.2., only one fracture is considered by the LEFM model

although a heterogeneous material, such as concrete, is likely to experience multiple

fractures as branches form, leading away from the main fracture. There is also thought
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to be a damaged zone around a fracture caused by micro-crack formation ahead of the

main fracture tip that would not be capture by LEFM.

When considering fracturing in a lattice model, the lattice beam elements are

still considered in the same way a structural beam would be. Pre-failure they are treated

elastically according to the material properties assigned to them. In addition to the

elastic properties, the elements are also given a failure criterion. This can be chosen

depending on the type of behaviour to be modelled, however lattice models are not

generally considered to fail in compression. Most recent studies have used a criterion

similar to that shown in Eq. 2.12 where a lattice element is considered to have failed if a

combination of axial and bending loads exceed the tensile strength of the beam

(Herrmann et al. [34], Schlangen and van Mier [82]). Simpler axial load criteria have

also been applied such as that shown in Eq. 2.13 (Schlangen and Garboczi [79]).

Eq.2.12.

< F;(heam)
Ut

~heam)
Eq.2.13.

where, Ut is the tensile stress capacity of a lattice element.

Whichever failure criteria is applied, once an element is determined to have

failed it is removed from the lattice and plays no further part in the analysis. This is

consistent with a fully brittle failure. The forces that were transferred through the

broken element have to be re-routed through other members in the lattice and this

redistribution, and the associated relaxation, is usually assumed to happen fast enough

to be complete by the beginning of the next time step (Herrmann et al. [34]). The fully

brittle failure criteria and the assumption of an instant stress redistribution take no

account of dynamics or of fracture energy distribution. These would seem to be severe

limitations for a model of an inherently dynamic problem. However, given the micro-

scale of the lattice elements in these investigations (-lmm) and the limitation of
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breakage to one element per time step, the small energy release rate could be considered

negligible. It is noted by van Vliet [95] that allowing the removal of more than one

element per time step reduces computational time significantly but also reduces the

realistic possibility of stress redistribution before the beginning of the next time step. It

is furthermore argued by van Mier that quasi-brittle materials, such as concrete and

rock, exhibit elastic-brittle behaviour at the grain level, while showing overall

elastoplastic behaviour, making the lattice model a very accurate representation. In

confirmation of this, studies of fracture in concrete and sandstone (Schlangen and van

Mier [80, 82]) have shown overall non-linear responses with the application of fully

brittle fracture criteria (See Fig. 2.9. a) ).
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Fig. 2.9. a) Load-Displacement Curves Showing Non-Linear Behaviour for Experimental

Studies and Lattice Simulations of a Felser SEN Beam Test b) Crack Patterns in Lattice

Simulations of a Felser SEN Beam Test (After Schlangen and van Mier [80])
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This was a result also reported by Herrmann et al. [34]. Furthermore, as can be seen in

Fig. 2.9. b), the fracture patterns in Schlangen and van Mier's models matched very

closely the behaviour of experimental samples and phenomena such as multi-cracking,

crack bridging and micro-fracture development were all noted.

It was hoped to be able to reproduce this kind of behaviour in the numerical

work carried out for this project. However, differences in the configurations of the

lattice models and the scale of the elements meant that more complex failure criteria

were required. Furthermore, it was considered appropriate in this work to consider the

dynamics of the fracturing process and the fully brittle failure criteria were no longer

sufficient. This is discussed in detail in Chapter 5. The scale effect is noted by Chang

et al. [14] who suggest that, in order to avoid the use of a very fine mesh, a

phenomenological softening criterion could be applied to the lattice beam elements in a

courser mesh.

In studies on regular, triangular lattice models, similar to those used by

Schlangen and van Mier [80, 82], as discussed above, van Vliet [95], found that, for a

lattice with varying element strength, fracture behaviour is dependent on the ratio

between stronger and weaker elements. He also found that this produced more realistic

fracture shapes than homogeneous, regular lattices where straight fractures were

formed. As an alternative to strength variation in a lattice, varying element stiffness can

be employed, however, it should be noted that while strength variations do not influence

the stress distribution in the lattice, varying stiffnesses would. The concrete and

sandstone models used by Schlangen and van Mier were models of a heterogeneous

material and as such were given varying strengths and material properties, depending on

their location in the mesh, as would seem realistic for a model of this kind. As noted

previously, these models produced, qualitatively, very realistic results.

Due to constraints within the modelling environment usedfor construction of the

lattice models in this work, heterogeneity could only be introduced via variation of

strength on an individual element basis. It would, however, be possible to vary the

stiffness of particular regions of the mesh, for example, in order to model aggregate

grains, although with the macro-scale models used in this work, grain scale

heterogeneity would not be appropriate. The ability to vary the stiffnesses of lattice
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elements is even more applicable when using a non-linear failure criterion where the

secant stiffness changes in time. Given that this is not feasible for the models in this

work,plasticity must beformulated using initial element stiffness, Ko.

The finding by van Vliet [95], mentioned above, that homogeneous lattices

produce straight fractures rather than the realistic fracture patterns produced by lattices

with strength or stiffness variation, has been further considered by other researchers in

the field. It is argued by Schlangen and van Mier [82] that the triangular lattice gives

the least opportunity for a preferential fracture direction and subsequently straight

fractures and for this reason triangular lattices are preferred for the work carried out for

this thesis. However, an extensive study of homogeneous lattices with different

configurations (Schlangen and Garboczi [79]) found that while triangular. lattices

showed fewer tendencies than square lattices for a preferential fracture direction and

showed a more realistic fracture pattern, different orientations of triangular lattice

produced different results, thus showing that some directional preference exists. In

addition, they found that the fracture patterns were also heavily affected by the element

type. Single force, truss elements produced the least realistic patterns while the three

force, Cosserat type, elements produced a good representation of fracture patterns seen

in experimental work. However, all types of element were affected, to some extent, by

the lattice configuration. The most realistic fracture patterns were seen in a model

employing a random lattice configuration with elements of different lengths and

orientations. It is commented, however, that, given a fine enough discretisation, a

regular, triangular lattice with random element properties or strengths could be expected

to produce similar results to the random configuration. On the micro-scale, dealt with

by Schlangen and van Mier [1,3] and Schlangen and Garboczi [79], this would seem the

most practical approach to a realistic model, given the added difficulties in setting up

the mesh and calibrating the properties for a random lattice. Although this is not the

main focus of the work in this thesis, the progression to random lattice properties, in a

random configuration is a logical one in order to model, as accurately as possible,

heterogeneous materials such as concrete and rock. This may be more appropriate for

rock than concrete due to the macro-scale of the models employed in comparison with

the scale of heterogeneities in the materials.
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As mentioned before, the work in this project deals exclusively with triangular

lattices of constant stiffness and material properties. However, a rudimentary attempt

is made to show the effects of random strength in comparison to complete homogeneity

in the lattice (See Chapter 6, Section 6.2.3.3.5.).

Schlangen and Garboczi [79] also note that a directional bias is present in the

triangular lattice configuration under uniaxial strain, whereby some elements will carry

more load than others will. When the lattice was strained in the y-direction (See Fig.

2.10 below), it was found that a 33% higher stress was reported at fracture than when

the lattice was strained in the x-direction. Furthermore, when the lattice was strained in

the x-direction, the bonds aligned directly with the x-direction failed, while those at an

angle remained intact.
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Fig. 2.10. Diagram of Triangular Lattice as Studied by Schlangen and Garboczi [79] Showing:

a) the Intact Lattice and Directions of Applied Strain, b) and c} Directional Bias in Fracturing

An inherent lattice anisotropy is also noted by Chang et al. [14] who report that the

tensile strength of the modelled concrete is influenced by the underlying lattice
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structure. Upon examination of the general deformation and failure processes involved

with a triangular lattice, as shown in Fig. 2.10 above, it is obvious that this directional

bias would exist. Similar behaviour was noted in the work carried out for this thesis,

where, under prescribed loading, the strain at failure was far greater in the y-direction

than it was in the x-direction, consistent with the excess stresses reported by Schlangen

and Garboczi [79].

Schlangen and Garboczi overcome the directional bias by implementing what

they refer to as the 'node stress' for the failure criterion. The 'node stress' is calculated

from the maximum principal force at a node over the combined cross-sectional area of

the beams that lie across the principal direction associated with the force (See Fig.

2.11.).
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Fig. 2.11. Diagram Showing Procedure for Calculation of 'Node Stress' in a Lattice. a) Forces in

Lattice Elements b) Resultant Normal and Shear Force Perpendicular to Nodal Cut c) Principal

Normal Force d) Cross-Sectional Area of Lattice Elements in Principal Direction e) Nodal Stress

(After Schlangen and Garboczi [79])

Applying this homogenisation technique resulted in a clearly defined fracture, at the

same level of stress, under strain in either direction, as would be expected for a

homogeneous continuum material. However, since the 'node stress' defines the stress

state at a point, it is no longer possible to implement the more complex failure criteria

associated with a structural beam element (See Eq. 2.12 , above), This was considered a

limitation of what should otherwise be seen as a positive advancement of the lattice-

continuum equivalence in terms of fracturing and work, discussed in Chapter 5 of this

thesis, concentrates on the development of more complex, continuum type fracture
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criteria for a lattice model based on a stress and strain homogenisation schemes with

similarities to the 'node stress' method.

The results of various studies presented above indicate that although lattice

modelling is a very versatile technique, that can accurately model complex global

behaviour using simple local mechanical models, it has some limitations and inherent

inaccuracies relating to mesh dependency. By making use of fine meshes, random

variation of material properties and stress homogenisation schemes these dependencies

can be overcome to produce apparently realistic fracture behaviour, but care must be

taken to ensure that the results represent material behaviour and not model behaviour.

As mentioned. various methods are investigated in this thesis to overcome the

problems described above by applying continuum principles to the failure criteria used

in the lattice models. These are examined in detail in Chapter 5.

2.3.2. Lattice Models for Hydraulic Fracturing

From the work on fracture of quasi-brittle material, discussed above, it is a simple step

to apply forces to a fractured lattice in such a way that they represent the loading that

would be experienced by rock during a hydraulic fracturing treatment. Tzschichholz et

al. [88, 89] have done exactly this. Their models involved a square lattice from which

one element was removed from near its centre. The removed element was replaced with

equal and opposite forces acting in directions parallel to the long axis of the removed

element (See Fig. 2.12. below).

I'
F

if

Fig. 2.12. Diagram of Square Lattice with Force Dipole Representing Hydraulic Fracture Fluid

Pressure as Used by Tzschichholz et al. [88, 89]
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The forces, representing fluid pressure, were increased with time until the strength

capacity of one of the adjacent bonds was reached. Fracture behaviour was dealt with

as for the lattice models previously discussed and the failed bond was removed. For the

purposes of the hydraulic fracture model, it was replaced with a force dipole similar to

the original one. This process was then repeated. It was found that in a homogeneous

lattice, linear fractures developed and this is consistent with Schlangen and Garboczi's

[79] finding that square lattices fail with a strong preferential fracture direction. In

contrast to this and again in agreement with the findings of Schlangen and Garboczi,

Tzschichholz and Herrmann [88] found that, in a heterogeneous lattice, more realistic

fracture patterns developed. The fracture shapes were in fact found to be fractal in

nature (See Fig. 2.13. below).

Fig. 2.13. Example of Fractal Fracture Pattern in a Heterogeneous Square Lattice (After

Tzschichholz and Herrmann [88])

The hydraulic fracture models developed for this project and discussed in Chapter 6

drew heavily on the work by Tzschichholz et al. and it was hoped to be able to

reproduce similar free fracture shapes.
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2.3.3. Bonded Particle Assemblies

In a parallel development to the typical lattice models already discussed in this section,

several research groups (Bazant et al. [7], Beranek and Hobbelman [8], Chang et al.

[14], Bruno et al. [11], Jirasek and Bazant [40, 41], Morikawa and Sawamoto [63]), also

realising the difficulties encountered by classical continuum material models and linear

elastic fracture mechanics in dealing with fracture of quasi-brittle, heterogeneous

materials, such as concrete and rock, have turned to modelling fracture with DEM. In

general, the models used in these studies consist of a collection of particles bonded

together, thereby producing a structure similar to a lattice model (See Fig. 2.14 below).

Discrete

Element

Particles

Fig. 2.14. Diagram of Particle-Lattice Assembly

Rather than calibrating the material properties of beam elements in order to reproduce

the overall behaviour of an equivalent continuum, here the links between the particles

must be given suitable properties. The calibration and the type of material modelled

depend on the characteristics of the links. Generally, these links take the form of

various combinations of contact springs (See Fig. 2.15. below) and these can be related

to the different lattice elements, as described previously (See Section 2.3.1.).
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Inter-Particle Link Element Lattice Element

Axial Load Only

Simple Truss
Element

Axial and Shear
Loads

Two Force
Element

Axial and Shear
Loads as well as

Bending
Moments

Beam Element

Fig. 2.15. Diagram Showing Various Types of Inter-Particle Links and their

Equivalent Lattice Elements

For example, Bazant et al. [7] used a random arrangement of particles bonded together

by links that were only capable of transferring axial loads. This resulted in a model that

corresponds to a simple truss model or the single force model described by Schlangen

and Garboczi [79]. Alternatively, the links in the model developed by Chang et al. [14]

consisted of normal, shear and rotational springs. When the stiffness matrix for this

kind of link is derived, it is found that, if appropriate spring stiffnesses are chosen, the

behaviour will match that of a lattice beam element, as used by Schlangen and van Mier

[80, 81], Tzschichholz [87], Tzschichholz and Herrmann [88] and Tzschichholz et al.

[89]. Therefore, such a particle model reproduces a Cosserat type continuum.

The calibration of the link properties often follows a similar method to those

described by Schlangen and Garboczi [79] and Feng et al. [29], and implemented by

Schlangen and van Mier [80, 81, 82] and van Vliet [95], which consider the strain

energy equivalence in a typical unit of the lattice. This technique was first proposed for

a bonded particle assembly by Morikawa and Sawamoto [63] who developed models

with a triangular lattice-type configuration for modelling concrete under impact loading.

Their model was similar to the two force lattice, as referred to by Schlangen and
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Garboczi [79], where the links consisted of normal and shear contact springs. Jirasek

and Bazant [40, 41] followed these principles to calibrate their particle-lattice, which

had a more complex configuration, consisting of squares with cross bracing diagonals.

Since the diagonal links were longer than the links forming the squares, they required

different properties in order to maintain the isotropy of the mesh. Despite the relatively

complex construction of the lattice, it was found that calibration was only possible for a

value of Poisson's ratio equal to Yl. This has been the finding for nearly all regular,

plane strain, two-dimensional lattice models since Hrennikoff [36] first proposed the

framework method. Bazant [7] further confirms that v tends to Yleven for a random

particle assembly with a very large number of particles.

In addition to the contact spring stiffnesses, the inter-particle links are given a

failure criterion, in much the same way as lattice elements. Again, this can take a

variety of forms, which can be related to those discussed in Section 2.3.1., for lattice

beam elements. Morikawa and Sawamoto [63] used three elastic-perfectly-plastic

fracture criteria, for tension, shear and compression, based on the Mohr-Coulomb

criteria with a tension cut-off. Failure was assumed to occur at a maximum strain equal

to twice the strain at the elastic limit. The Mohr-Coulomb law is a good approximation

for concrete and rock behaviour. However, the assumption of elastic-perfectly-plastic

behaviour is an obvious simplification of reality. While this may be easier to implement

it does not account for the energy dissipation before eventual fracture. Although,

Morikawa and Sawamoto [63] reported good results for their model it is felt that a

softening model would better represent concrete or rock behaviour. It should also be

noted that Morikawa and Sawamoto [63] allow failure of their model in compression.

Although this is unusual for a lattice type model however, it is a well known failure

mechanism for concrete and so it would seem very desirable to include it. It is not

clear, however, how realistic this will be in a particle assembly constructed in a OEM.

While the inter-particle links may fail in compression and be removed, the two

separated particles, if in contact, will presumably be able to transfer a load in

compression.
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The models developed for the work carried out for this thesis will not be

considered to fail in compression. Simple failure criteria will be applied and tensile

fracture will be assumed as the governingfailure mechanism.

Bazant et al [7] also applied a plasticity model to the links in their model. In

contrast to the model used by Morikawa and Sawamoto, this was an elastic-softening

model in which the softening modulus was altered in order to maintain constant fracture

energy, Gj (where Gj is the area under the stress-strain diagram multiplied by the inter-

particle link length). This is also similar to the constitutive model used by Jirasek and

Bazant [40, 41] who note that the parameter having the strongest influence on the

overall ductility of the lattice is the fracture energy of the inter-particle links, Gj*.
Given this assertion, it is therefore important that any failure criterion considers the

fracture energy. However, Jirasek and Bazant further note that for the fracture energy in

a link to be constant the assumption must be made that only one crack forms over its

length. Although typical lattice models use fully brittle fracture criteria, they all

consider the lattice elements to be either fully intact or completely failed. This is

equivalent to the assumption of single crackformation and this will be the approached

used in this work.

There are several advantages in the use of lattice or bonded particle assembly

models for fracture analyses. Firstly, the model mesh represents the rock matrix rather

than the fracture as is the case for the finite element models discussed in Section 2.2.

(See Fig. 2.16. below). As illustrated in the figure below, this gives the model the

freedom to fracture in any direction and open multiple cracks, as determined by the

prevailing conditions. There is no need to make assumptions of fracture shape or of

propagation direction. Jirasek and Bazant [40, 41] and Bruno et al. [11] also mention

the convenience of bonded particle models, especially for the fracture of weak materials

where a large fracture process zone develops ahead of the fracture tip and non-local

strain-softening damage is inherent in the system. The effects of these processes would

be difficult to pick up with the type of continuum models discussed in Section 2.2.,

however, they are dealt with naturally in a lattice-type model.
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c) d)

Fig. 2.16. Diagrams Showing Various Model Representations of Hydraulic Fracturing a) Lattice

Model (repeated from Fig. 2.13.) b) Bonded Particle Assembly (after Davie [21J) c) Finite

Element Mesh of Penny-Shaped Fracture (repeated from Fig. 2.4.) d) Geometry of PKN Model

(repeated from Fig. 2.2.)

It is Jor these reasons that lattice type models were chosen as the basis Jor the

numerical work in this thesis. It is recognised however, that the models discussed here

and dealt with in this thesis are all oj a two-dimensionalJormat. As such, they can only

represent a simple model oj hydraulic fracturing, with an assumption oj plane strain

behaviour in the horizontal plane. As discussed in Section 2.2., this is a simplification

oj a realistic hydraulic Jracture treatment but is adequate for the study oj various
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specific problems. It is further argued that it should, eventually, be possible to apply all

the work carried in this thesis in a fully-three-dimensional version of the considered

modelling environment. Although this is well beyond the scope of this project, it is seen

as a highly desirable goal.

2.4. Alternative Fluid Modelling Techniques

2.4.1. Current Fracture Fluid Models

As discussed previously, the nature of the problem of hydraulically driven fractures is

that of a highly complex coupled process. Therefore, in order to model hydraulic

fracture treatments as accurately as possible, it is necessary to employ a model in which

the fluid flow in the fracture is, to some extent, coupled with the solid mechanics phase.

Various combinations of solid and fluid model types ranging from one-dimensional to

fully three-dimensional are discussed in detail in Section 2.2. above. In general, the

complexity of the fluid flow model is less than that of the solid mechanics model. Even

in models that consider the solid mechanics in three dimensions, the fluid model may

only consider simple fluid flow along the length of the fracture with simple variation

over the height of the fracture. Fluid flow across the width of the fracture is rarely

accounted for, on the assumption that the dimensions of the fracture width are

insignificant in comparison with the dimensions of the fracture length and height.

A common assumption for hydraulic fracture models is a lubrication flow

regime. Lubrication flow describes steady state, uniform laminar, one-dimensional,

flow of an incompressible Newtonian fluid, as would occur between two parallel plates

(Douglas et al. [23]). The fluid viscosity is assumed constant and the velocity profile is

parabolic with a shear rate of zero at the centre of the flow and increasing towards the

edges (Papanastasiou [69]). Although this is accepted as an adequate representation for

simple fracture models due to the narrow fracture width and the approximately planar

shape of the fracture, studies have shown flow in natural fractures to vary considerably

from the parallel plate analogy (Amadei and Illangasekare [4]). This is due to the

roughness of the fracture walls and the natural deviation of a fracture through a

heterogeneous material, as discussed in Section 2.2. Furthermore, fracturing gels are
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often, non-Newtonian, power-law fluids that exhibit complex behaviour such as shear-

thinning, where the viscosity decreases with increasing shear-strain rate (Papanastasiou

[69]) and viscoelasticity with high normal stresses (Unwin and Hammond [90]). The

assumed parabolic velocity profile associated with the lubrication flow model will

almost certainly not be an adequate description for a fluid of this type. This kind of

fluid may also produce turbulent flow behaviour and this is only examined by a few

models specifically designed to test the effects of complex fluids and complex flow

regimes. It should be noted that turbulent flow is not a fully understood phenomenon

and is an area of concentrated research within the fluid dynamics field. It is by no

means simplistic to include its behaviour in a coupled fracturing model. Therefore, a

simplified fluid model, such as lubrication flow, is used by fracture treatment simulators

in order to reduce the computational effort. Given the difficulties associated with

complex fluid models in the context of a coupled hydraulic fracture model and the

limitations of the simplified fluid models employed, it may be desirable to look into

alternative approaches that may be able to handle complex fluid models more easily.

In addition to the field of hydraulic fracturing, fluid flow in fractures is

considered in conjunction with aquifer flow regimes and geothermal applications.

Given the assertion, in Section 2.2., that it may be preferable to model hydraulic

fractures by modelling a section of a reservoir rather than the fractures themselves it

may be appropriate to apply fluid modelling techniques that are currently in use in these

fields. Fluid models for this kind of application have typically been of the finite

difference type and it is only more recently that they have been combined with finite

element methods (Clifford [16]). In this kind of model, flow in the fractures has been

dealt with in several different ways. Swenson and Hardeman [84] assume lubrication

flow for the fractures in a geothermal reservoir in much the same way as in many

hydraulic fracture models, however, Kafritsas [44] assumes the fractures in a rock mass

to be a network of line segments, through which, the flow is determined, purely by the

fluid head at the nodes of the network. In a third variation, Rouainia et al. [78] assume

Darcian flow for the whole rock mass and assign very high values of porosity and

permeability to the fractures in contrast to the values for the rock matrix. These models

all have some disadvantages. Those assuming lubrication flow or flow through a

network of channels, suffer similar limitations to those, discussed above, for hydraulic

fracture models. Alternative techniques, such as that used by Rouainia et al., in addition
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to applying only a very basic flow model, suffer from the computational expense of

recalculating values of porosity and permeability as displacement takes place. This is a

similar problem to the remeshing required for FE models when the fluid filled zone

changes as is highly feasible in hydraulic fracturing (See Section 2.2.), (Clifford [16]).

While these methods are all valid, it seems unlikely that any significant gain would be

achieved by applying them to a model for hydraulically driven fracturing. It is therefore

considered appropriate to look for a fluid model from an entirely separate field of study.

In contrast to the finite element and finite difference schemes, described above,

for fluid flow in fractures and reservoirs, various alternative methods of modelling fluid

flow exist and some of these have potential in the field of hydraulic fracturing. These

will be discussed in the following Section. Some of these techniques have already been

applied to geomechanical problems such as flow through porous media (Jankovic et aI.

[39]) and debris flows (Rodriguez-Paz et al. [76]) as well as classical hydrodynamic

problems such as dam break and hydraulic step problems (Zhang et aI. [98]). It is an

aim of this project to examine the possibilities of these alternative methods as a more

versatile alternative to the continuum methods that are the norm for hydraulic fracturing

models.

2.4.2. Particle Fluid Methods

Over the last 45 years, various attempts have been made to solve fluid problems by

particle representations. These can take many forms but in general, fluid properties

such as density and velocity are carried by the particles and properties such as pressure

and viscosity are calculated from the interactions between the particles or by integrating

over the region of fluid influence. The advantages of the discrete particle approach are

that large movements are dealt with naturally and there is no requirement for remeshing

schemes due meshes becoming distorted. While there are other forms of meshless fluid

method that do not employ free particles these still require a background grid for the

integration of the fluid equations (Bonet et aI. [10]).
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One of the first particle fluid models was the Particle-in-Cell (PIC) method,

which was developed in 1957. This was an Eulerian method that used a combination of

particles on a uniform mesh whereby several particles carried mass and position

information in each mesh element (Johnson [43]). Field variable could then be

calculated by integrating between the particles in each cell. Obviously, this was a very

basic code and the background mesh would restrict the model to a predefined region.

To avoid this, an adaptive remeshing scheme could be employed but this would

obviously revive the problems associated with continuum methods. Nonetheless, the

style of this model was still potentially more versatile than a continuum model.

The Marker-and-Cell (MAC) method followed the PIC method in 1965 and is

regarded as the first successful technique for modelling incompressible flows (Johnson

[43]). The 'marker' refers to particles that are used to locate the material in the mesh

and to define the free surface, while the finite difference method is used to solve the

hydrodynamic equations. The ability to model free-surface flow is a great advantage

and Monaghan [62], writing in 1992, still regards this method as a very flexible and

robust model for free surface applications. As with the PIC method, the underlying grid

has potential to limit the region of modelling. Furthermore, the MAC method can be

difficult to program and, as with the PIC method, can require significant computational

effort.

Although the two, early, particle methods described above can accurately and

robustly reproduce fluid behaviour the restrictions of the associated background meshes,

present in both models, limits their usefulness for a problem such as hydraulic fracturing

where the fluid filled domain is likely to vary. For this kind of problem it would

desirable to apply a completely mesh free model. The Particle-and-Force (PAF)

method, developed in 1961, was one of the first of this type. It followed similar

principles to the PIC method but implemented a Lagrangian scheme and did not require

an associated background mesh. The computational points (the particles) were

completely free to move. The particles were considered as point masses, of constant

magnitude, and interacted with forces that represented fluid like behaviour such as

viscous effects. Particles were limited to interact with only their neighbours and their

motion was based on the solution of Newtonian equations (Johnson [43]). It can be

noted that this scheme is reminiscent of a DEM code and Johnson suggests that it can
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also be considered a macroscopic version of Molecular Dynamics (See below). A

disadvantage of this type of model is that noise is inherent in flow solutions. For this

reason the development team (Harlow and Meixner (1961): cited by Johnson [43])

abandoned the method in favour of more stable techniques.

As mentioned above, Molecular Dynamics (MD) is another mesh less method

that deals with particle interactions though the application of forces, calculated by

means of a certain law, that define the overall behaviour. For atomistic models, this is

commonly simplified as a sinusoidal force-separation distribution (van Mier [59]) (See

below). In classical molecular dynamics, as with the PAF method, the solution is based

on Newton's Second law. Typically, the particle interactions are treated only over a

short range, beyond which two particles will not interact.
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x Separation

Fig. 2.17. Diagram Showing Typical Force-Separation Law for Atomistic Model with Simplified

Sinusoidal Approximation (After van Mier [59])

As with other particle methods, variables associated with the fluid state and

thermodynamic variables such as pressure and temperature can be defined and carried

by the particles. As the name suggests this method deals with materials at the atomic

level and is therefore a micro-scale model in contrast to the macro-scale PAF method.

The specific laws describing the particle interaction are therefore associated with

behaviour at this scale and are unlikely to be directly appropriate for a larger scale
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model. The technique is usually applied in fields such as the study of condensed matter

physics, materials science and chemistry (Ercolessi [27,28]).

One of the most versatile and robust free particle techniques is Smooth Particle

Hydrodynamics (SPH). It is a Lagrangian method that was originally designed to study

astrophysical phenomena, such as galaxy formation, that involve heat and mass flows

(CSIRO [17], Monaghan [61], SPH Group, GMU [83]). Subsequently, it has been

extended to model incompressible fluids and free surface flows (Monaghan [62]) as

well as mechanical engineering applications such as impact testing (Libersky et al. [49])

and metal forming (Bonet et al. [10]). SPH shares the advantages of other free particles

codes in that large movements, complex free surfaces and flow break-up are handled

naturally but it has the added advantage of being relatively simple to program.

As with other particle codes, fluid properties such as density, pressure gradients

and velocity are based on information carried by the particles. However, rather than

looking at the interaction between the particles properties are calculated via

interpolation of continuum equations of fluid dynamics over a range of neighbouring

particles up to a finite radius beyond which particles are deemed to have no effect on the

current volume of interest. The interpolation is carried out according to a kernel

function that weights the contribution of particles depending on their distance from the

current point of interest. The kernel function can take any form, but a function similar

to a Gaussian distribution function is quite common. Spline functions are generally

preferred, as they tend to zero at a finite distance. It can be noted that, although any

shape of kernel can be used, if the points were fixed in position, the equations would be

identical to the finite difference equations.

Given the freedom and versatility of SPH to model free surfaces it may well be

suitable for a problem such as the fluid flow in a fracture. However, some technique

would have to developed by which SPH could be coupled to a solid phase model

representing the reservoir rock. It may be possible to develop a version of SPH that can

itself reproduce solid behaviour, but it is not clear if this will ever be achievable.

Alternatively, it may be possible to use SPH to represent solid material as an extremely

viscous fluid. However, it is unclear whether fracturing of this type of material would

be able to reproduce quasi-brittle material behaviour accurately.
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As an alternative kind of Lagrangian particle scheme, Zhang et al. [98] have

developed a particle fluid model based on DEM concepts. This is a natural extension of

existing DEM models for particle flows and debris slides. Circular two-dimensional

discrete element particles were given a mass representative of a square with sides equal

in length to the diameter of the element. Fluid behaviour was brought about through

particle interaction via contact spring stiffnesses. Although Zhang et al. [98] present a

method of relating the DEM dynamic equilibrium equations to Navier-Stokes equation,

for the fluid continuum, as the most desirable method of calibrating the particle spring

stiffnesses, they calibrate their model with empirical data. Despite this, the DEM

contact model would seem to be a reasonable method for fluid modelling and the results

of benchmark tests carried out by Zhang et al. [98] look promising. However, it is

questionable whether this type of model would be able to deal with a high degree of

shear as may be experienced by non-Newtonian, power-law fluids. It is also difficult to

imagine this type of contact model successfully dealing with a highly compressible

fluid, although this is not likely to be a consideration in a hydraulic fracture model.

Furthermore, it is not clear that the model would naturally reproduce a uniform pressure

field as would be expected in a near static body of fluid. In the model by Zhang et al.,

the particles are packed in a regular, square formation and therefore, when a group of

these particles is allowed to settle under gravity, they overlap to find an equilibrium

position and thus, reproduce a hydrostatic pressure distribution over the depth of the

stack. However, in order to develop a hydrostatic pressure distribution in the horizontal

direction it is necessary to also overlap the particles in the horizontal direction (See Fig.

2.1S. below).

Pressure
Distribution

Fig. 2.18. Diagram Showing Overlapping Configuration of DEM Particles Required for

Hydrostatic Pressure Distribution (After Zhang et al. [98])
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This is not a naturally occurring phenomenon in the model and must be set at the

initiation of a problem. Given that the pressure increases with depth, the horizontal

overlap must also increase with depth. This results in a stack that is narrower at the

bottom than at the top, which may be acceptable for simple benchmark tests but it is

difficult to see how the pressure could be transferred to a vertical boundary, as may

occur in a coupled problem. Although, in a horizontal plane strain model as used in this

work, hydrostatic distributions will not be a consideration, overlaps will need to exist in

all directions for a uniform pressure field to be formed. A triangular packing of the

particle rather than the square packing used may naturally produce uniform pressure,

however, this may affect the behaviour of the model. If these problems proved to be

surmountable then, as with the SPH method discussed above, this type of model could

be successfully applied to the problem of fluid flow in a fracture. However, again as

with the SPH method, a technique would have to be found of coupling the DEM fluid to

the solid phase model.

A further variation of the particle fluid method has seen a return to a mesh based

method. The Lattice Gas Automata (LGA) method is a statistical model for fluid flow,

in which particles move from site to site on a triangular lattice, propagating and

colliding with each other according to certain collision rules. The specific rules depend

on the type of lattice in use. Although, as with the background meshes associated with

other particle methods discussed previously, the lattice would be restrictive in terms of

modelling a moving fluid zone, it is possible to rest solid particles on the lattice in

addition to the fluid particles and it may be possible to represent the reservoir rock

material in this way. The rules for solid-fluid particle collisions would be different to

those for fluid-fluid collisions. Furthermore, Jankovic et al. [39 below], in an

investigation that applied the LGA technique to the study of moisture transport in

concrete, have shown that the LGA method can be used to model flow through porous

material. Therefore, the LGA method could equally be applied to the modelling of fluid

flow in a reservoir. It may be possible to apply different rules for particle propagation

and collision in areas of the lattice where the coupled solid phase model determines

fractures to have opened. This would be a similar technique to that used by Rouainia et

al. [78] in modelling flow through a porous blocky material (See Section 2.4.1. above).

A further advantage of the LGA technique is its stability and robustness. By restricting
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particle movements to a lattice the inherent noise associated with methods such as the

PAF method is eliminated (Johnson [43]).

In summary it seems that the particle fluid methods described above, and in

particular the meshless methods, have significant potential in modelling an advancing

fluid front as is consistent with flow in hydraulically driven fractures. While the

freedom of these methods would allow fluid flow in multiple fractures in three

dimensions simultaneously there are still potential problems with numerical stability

and noise in the solutions. Furthermore, a suitable method must be found of coupling

the fluid model with whatever model is in place for the solid phase.

2.5. Modelling Techniques for Propp ant Transport, Propp ant Stability

and Sand Production

As mentioned in Chapter I, Section 1.2. and Section 2.2. above, when a hydraulic

fracture treatment is complete, the fracture is often packed with fine grained proppant

material in order to prevent the walls of the fracture from closing on each other and to

maintain the high permeability pathway through the reservoir to the wellbore. In terms

of the success of a fracture treatment in stimulating a hydrocarbon reservoir and

increasing the extraction rates, the proppant packing phase is critical and so, as with

fracture growth behaviour, significant research has been conducted on the subject. Due

to the inaccessible nature of hydraulic fractures in the field, as discussed previously,

numerical investigation has formed a large part of the research work.

The proppant material is placed in the fracture by mixing it with the fracture

fluid to form a slurry. As the slurry is pumped into the fracture, the fluid phase is lost to

the reservoir rock by leak-off (See Section 2.2. above) and the granular proppant

material remains in the facture. When the fracture has been fully packed the pumping

process is begun, firstly to remove the fracturing fluid and secondly to begin the

extraction of the hydrocarbons.
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Two main issues arise at this stage. Firstly, it must be ensured that the proppant

material reaches all parts of the fracture and packs it evenly to ensure the most

economical use of the fracture. This becomes more important as the fracturing process

approaches optimisation, as is the purpose of the research into hydraulic fracture

treatment simulation (See Section 2.2.). Secondly, the stability of the proppant after

placement is important. When the extraction of the hydrocarbons begins, there is a

tendency for proppant material to be dislodged and to travel back up the wellbore with

the fluid and as much as 10 - 20% of proppant can be back produced (Asgian et al. [5]).

This can cause problems with loss of fracture conductivity, damage to the pumping

machinery and downtime, as well as the difficulties associated with separating the

granular material from the hydrocarbons (Asgian et al. [5]). There are some wells,

however, that despite producing as much as 20% of their proppant do not show

significant loss in production. This is thought to be the result of channels forming in

certain sections of the fracture, while the fracture remains open due to the stiffness of

the rock (Asgian et al. [5]).

Despite the application of various techniques to the prevention of proppant

flowback, such as the use of resin coated proppants that bond together in the fracture

and the inclusion of fibreglass strands and thermoplastic film strips designed to

reinforce the proppant pack, there is still no clear understanding of when to expect

flowback or the proppant characteristics that prevent it. There is some evidence,

however, that it can be a result of increasing the extraction rate too quickly (Nguyen et

al. [65]). Once it starts, proppant flow back can be stopped by reducing production rates

or introducing sand control screens downhole. These techniques are undesirable, as

they affect the economics of a well. Therefore, a better understanding of the

mechanisms associated with proppant flow back is sought in order that other means of

preventing it might be found.

A similar problem that can occur in addition to the back production of proppant,

especially in low strength reservoir formations, is sand production. This is the out flow

of material dislodged from the reservoir rock itself due to tensile or shear failure of the

formation, often around the uncased perforations, as the effective stresses change during

draw down. As with proppant production this material can damage machinery and

needs to be separated from the hydrocarbons. Reducing the draw down in a formation
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delays, but cannot prevent its eventual shear failure as reservoir is depleted. As an

alternative, it is possible to install screens and gravel packs down hole as in the

prevention of propp ant flowback. The disadvantage of these screens is that they cause a

downhole pressure loss and subsequently affect extraction rates. Both of the discussed

measures are economically detrimental to the well and it is therefore important to be

able to predict sanding in order to maximise the production rates from the well. Once

sanding starts it is often impossible to stop so producers often act conservatively and

install sand control mechanisms in wells that may not actually need them. This is

obviously not efficient. (General background information on sand production from

various referenced sources including Bale et a1. [6], Papamichos [68], Papanastasiou

[70], Preece et a1. [73] and Thallak et a1. [85]).

While the three problems described above have separate causes, they are similar

in that they all relate to a granular material suspended in a fluid flowing in a fracture.

Although the mechanisms resulting in the presence of the granular material are very

different, it is argued that the type of model applicable is essentially the same.

The modelling of proppant flow into fractures is often dealt with by continuum

based hydraulic fracture models that attempt to simulate the whole course of a fracture

treatment in the field (See Section 2.2.). The proppant laden fluid is introduced at some

time after fracturing has been initiated and it is essentially modelled as a single phase

fluid with smeared properties equivalent to fine grained material suspended in a viscous

fluid. The propp ant material is not specifically modelled.

Ouyang et a1. [67] include propp ant transport within their adaptive finite element

model with which they have examined the behaviour of fracture growth in layered

reservoir formations (See Section 2.2. above). In addition to the propagated shape of

the fracture, they look into the distribution of propp ant as it penetrates the fracture. This

was done by keeping track of the change in the concentration of proppant particles in a

unit volume of the slurry based on an initial concentration and depending on various

factors such as the change in fracture width, loss of fluid through leak-off and

convection flow. A similar technique is applied by Unwin and Hammond [90]. They

specifically examined the effects on propp ant placement of gravity and convection flow

driven by large scale concentration and density differences in different regions of the
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fracture and found that proppant settling and convection occur under practical

conditions as would be found in the field. Given the critical nature of proppant packing,

as discussed above, it is therefore important that the mechanisms of proppant transport

and perhaps more importantly fluid flow in the fracture are understood. Although both

Ouyang et a1. [67] and Unwin and Hammond [90] assume complex, non-Newtonian

fluid behaviour (See Section 2.4.1.), they both assume the fracture width effects to be

negligible and treat the fluid flow in the fracture, and therefore the proppant transport, in

only two dimensions. This could be seen as a limitation given that Unwin and

Hammond [90] note the effects of shale layers, where the fracture width will be

narrower, as being potential restrictions to even distribution of proppant throughout a

fracture in a layered reservoir.

Similarly, Milton-Taylor et a1.[60] applied a two-dimensional boundary element

method to the study of proppant stability and flowback. In defence of the two-

dimensional model, their findings, that channels develop in the fracture pack where

proppant flows back leaving bridged, unpropped sections of fracture, matched the

findings of experimental tests carried out in the same study. However, in the situation

of a packed fracture under in situ confining pressure, in contrast to proppant placement,

there is little opportunity for proppant movement across the fracture width, especially

given the dominant fluid flow along the length of the fracture as hydrocarbons are

extracted to the wellbore.

An alternative method to the continuum techniques described above, is applied

by Bruno et a1. [11] to look into problems of slurry injection. The slurry particles

themselves, along with the reservoir material, are modelled by a DEM model while the

fluid, or rather a background pressure field, is modelled by a coupled a FE fluid model.

The pressure field, resulting from the updated geometry of the DEM, is converted to

drag forces, according to Darcian flow, which then act on the DEM particles in the next

time step. A similar technique of applying drag forces to particle based on a pressure

gradient is looked at by Asgian et al [5] and by Vangelsten [92], although not for the

same application. In addition, a similar, but very basic model, in terms of the fluid

behaviour, was developed by Davie [21], initially for the purposes of hydraulic fracture

modelling. It is clear that, with the use of a background pressure field and drag forces,
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similar to those described above, this model could easily be applied to the modelling of

processes such as gravel packing.

Although the model developed by Bruno et al. [11] is not specifically a proppant

transport model, the problem is essentially the same and this type of model has

applications in many other similar areas of geomechanics, such as sand production

problems, gravel packing around wellbores in weak formations, reinjection of

contaminated drill cuttings and waste injection. Furthermore, as discussed previously

(See Section 2.3.3.), the application of DEM methods to this type of problem is

advantageous because, unlike continuum models, they can easily capture processes,

which particularly affect weak formations, such as micro-cracking, disaggregation and

grain movement. These are all discontinuous failure processes that are distributed over

a large area and consequently, continuum methods, which focus on stress singularities

and strain energy dissipation at a fracture tip, are not well suited to finding them

(Schlangen and Garboczi [79]).

As with the continuum models described previously, the model, applied by

Bruno et al. [11], is two-dimensional, although in the horizontal rather than the vertical

plane. Despite this, it is obviously capable of capturing particle transport across the

width of a fracture and in several fracturing directions at once. The continuum models,

discussed above, look at two-dimensional fluid flow in only one fracture (See Section

2.2.) and therefore cannot describe these processes, although these processes may be

more significant in problems relating to weak formations and low confining pressures as

may be found at shallow depths in the ground. Additionally, it is felt that this kind of

coupled DEM model has potential to be applied in three-dimensions in which case it

would have the versatility to naturally model the behaviour appropriate for slurry

injection under any confining pressure without the need for simplifications.

In addition to the work carried out by Bruno et al. [11], several researchers have

chosen DEM techniques for the purposes of specifically modelling proppant stability

and sand production, with a view to improving the understanding of the mechanisms

that cause these phenomena.
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Asgian et al. [5] applied a OEM model to a study of the conditions that would

lead to propp ant flowback. They modelled a small section of a proppant pack in

fracture and, as mentioned above, applied drag forces, based on a background pressure

field, to the discrete particles representing both the propp ant particles and the reservoir

formation. The model was effectively three-dimensional but implemented periodic

boundary conditions in order to limit the number of discrete particles required. As with

other OEM representations, this was a very adaptable model that naturally captured the

dynamic behaviour of a propp ant pack, for example, the changing width of the fracture

as propp ant material was dislodged and the equilibrium of the in situ pressure was re-

established.

The model showed reasonable qualitative results and showed behaviour such as

arching of the particles and progressive failure of the proppant pack under different

draw down rates. However, the results were not entirely consistent with field data that

shows proppant packs to be stable under higher pressure gradients than the model

results suggested. The differences may come from the effects of capillary forces

between the particles or the bonding action of residual fracture gel. Neither of these

phenomena would be naturally reproduced by this model but could easily be included.

Furthermore, several authors have noted the formation of channels at specific levels in

proppant packs, from which almost all proppant flows back, while other sections of the

pack are unaffected (Milton-Taylor et al. [60], Goel and Shah [31]). This kind of

behaviour could only be captured by a model that considered two-dimensional

behaviour in the vertical direction or fully three-dimensional behaviour. For aDEM

such as the one used by Asgian et al. [5] a fully three-dimensional model would be

required. A difficulty with this would be the computational effort required in dealing

with the very large number of particles required to model a fracture several metres in

height. This may become reasonable as computational power increases and highly

optimised OEM codes are developed.

As discussed above, sand production, as a consequence of formation failure,

causes similar problems to propp ant flowback. The mechanisms involved in sand

production are complex and involve rock and fluid mechanics as well as the coupled

interaction of fluid flow and particle motion. It is for these reasons that DEM can be

considered the natural choice for modelling sanding (Preece et al. [73]).
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To study sand production, Preece et al. used a coupled two-dimensional

DEMlfluid model in a similar fashion to the slurry injection model developed by Bruno

et al. [11] and discussed above. The sand particles were produced in an existing code,

MIMES, and a fixed fluid pressure field was established in the background with a

gradient similar to that which would be found in a reservoir under draw down. The

fluid effect on the particles was calculated by integrating the pressure field over the

particle surface. This resulted in an unbalance force, because of the pressure differential

between one side of the particle and the other, which caused the particle to move

towards the wellbore perforation. While this is a simple but very effective model, the

study in question only deals with the motion of free particles from what would be a void

or fracture in the reservoir to the wellbore where they are removed. There is no attempt

to model the reservoir material or the production of the sand material from it. Given

this simplification, the value of the model is limited in terms of modelling a realistic

situation or predicting sanding in a specific well. Having said this, the model shows

great potential and if it is possible to apply it to a more complex situation, it could prove

to be a very powerful tool indeed.

Thallack et al. [85] have also extensively researched the phenomenon of sanding

and provide a comprehensive study of sand production behaviour. As with the other

studies discussed above they applied a coupled DEM/fluid model. Their approach to

the flow of fluid between the sand particles was based on an equivalent flow network

that takes into consideration the particle arrangement. This method has also been

applied by Zhai et al. [97] in a study of pore pressure in a DEM model and the

technique was originally developed by Hakuno and Tarumi (1988): cited by Thallak et

al. [85] and Zhai et al. [97]. Each separate pore space, between the particles, is

discretised as a polygon, formed by joining the centroids of the particles surrounding the

pore space. Fluid is then assumed to flow in all directions, perpendicular to the polygon

edges depending on the calculated pressure gradients. The critical pressure gradient

required to dislodge a given particle is then calculated and if the flow passed that

particle, from one pore to the next, is sufficient then the particle is disaggregated.

The accuracy of the assumed flow paths from pore to pore is not immediately

apparent. However, given the small scale of the material grains in question it is likely to

be an acceptable approximation. For a regular packed particle mesh, this question
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would not arise, as the flow path would always pass directly through a contact between

two particles. This method may then be a practical technique, in the case of bonded

particle assemblies applied to hydraulic fracturing (See Section 2.3.3.), in order to take

account of reservoir fluids, fluid leak-off and poroelastic effects. Although considered,

this application is beyond the scope of this project.

From the studies presented above it seems clear that the DEM would be the

preferred choice for modelling the problems of proppant transport, proppant stability

and sand production. It was noted however, that the number of particles required to

model a full fracture would be unfeasible in terms of computation effort. For this

reason these models are probably least appropriate for modelling proppant transport, as

this would require a full fracture model. The two other problems could be dealt with, as

shown in the previous studies, by models of small sections of a fracture or wellbore

perforation. It was, however, also noted that for a complete behavioural accuracy, even

in these two problems, a fully three dimensional model should be used and this again

may be restrictive due to the number of particles required. However, for modelling in

two dimensions in horizontal planes, as is dealt with in the numerical work for this

project, the DEM representations can be considered a very useful approach. For these

reasons, a similar technique is the most appropriate for application in this project.

It should also be noted that once developed for a proppant stability or sand

production problem, a model of this kind could easily be adapted and applied to

modelling other related geomechanical processes such as gravel packing, waste

injection and perhaps even grouting.

2.6. Summary

In this review, a general history of research in the field of hydraulically driven fractures

has been presented along with the discussion of several processes that are fundamentally

associated with hydraulic fracture treatments in the field. The discussion has

particularly focussed on the numerical methods developed for modelling these processes

and their various shortcomings, along with some reference to their relevance to the work
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in this project. Also presented were similar reviews of alternative modelling methods,

some of which have been applied to the study of hydraulic fracturing and others that

may have potential applications in this field.

After consideration of the previous investigations and numerical work described

and discussed above, decisions were made as to the appropriate aims and objectives for

the research in this project. A detailed description of the proposed aims and their

planned implementation in the chosen modelling environment is presented in the

following Chapter. Also presented is a detailed description of the components and

capabilities of the modelling environment, along with a discussion of the numerical

theory upon which it is based.
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Chapter 3:

Research Proposal and Model

Implementation

3.1. Introduction

This Chapter will set out the research work proposed for this project with reference to

its relationship to previous investigation work as discussed in Chapter 2. After

presenting the evolution of a general proposal and initial direction for the research,

discussion will move on to the specific implementation of the various modelling

concepts within an existing modelling environment, chosen for its ability to deal with all

of the physical processes to be considered, within one, multi-physics modelling

framework. A full description will also be given of the modelling environment,

including its capabilities and the theory on which it is based.

3.2. Research Proposal

The initial brief of this thesis was to investigate the numerical modelling of

geomechanical problems. As discussed in Chapter 1, by way of a geomechanical test

case, the work carried out for this thesis was focussed on the processes associated with

Hydraulic Fracture Treatments, as employed by the petroleum industry for the

stimulation of hydrocarbon reservoirs.

After considering work previously carried out in the field of hydraulically driven

fracturing it became clear that complex, continuum based, coupled fracture simulators

are already in use in the petroleum industry (See Chapter 2, Section 2.2.). It was felt

however that even the most complex of these simulators make assumptions about

fracture behaviour that, firstly, limit their accuracy in terms of simulating a specific
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hydraulic fracture treatment and secondly, limit them to modelling a very specific,

single fracture problem in deep hydrocarbon reservoirs.

As discussed in Chapter 2, Section 2.2., an alternative, more general, approach

would be to model a reservoir and allow it to fracture rather than modelling a specific

fracture itself. In this way, the overall behaviour and processes at work in the reservoir

could be taken into account in the simulation of a fracture treatment. Furthermore, the

same model would be generally applicable to other problems in the field of

geomechanics.

While a model such as this would seem to provide more flexibility for the

problem under consideration, it would obviously be complex and require significant

computational effort, particularly when dealing with propagating fractures.

Furthermore, in a continuum framework such as finite element analysis, discrete

fracture pathways would either have to be predefined by interface elements, which

would limit the generality of the model, or would require adaptive remeshing to be

carried out in order to maintain the numerical stability of the model. This, again, would

be computationally expensive.

It is further noted that, as with existing hydraulic fracture simulators, a model

such as this would be based on analytical fracture mechanics methods. These fracturing

criteria focus on stress singularities and strain energy dissipation at a fracture tip as are

characteristic of a low ductility, continuous material. This type of model is therefore

not suitable for modelling the essentially discontinuous processes, such as micro-

cracking, disaggregation, fracture branching and grain movement, that are especially

associated with weaker or unconsolidated formations, as may be found in shallow

reservoirs or other situations outside petroleum engineering.

Given the evidence cited above, it would appear that this alternative approach to

hydraulic fracture modelling, while requiring even more computational effort than

existing fracture models, would be no more generally applicable. However, after

considering various other modelling approaches it was found that one possible solution

would be the application of lattice models. As seen in Chapter 2, Section 2.3.1., lattice

models are capable of dealing with the deformation and fracture of a wide range of
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materials, from low ductility, quasi-brittle materials, such as concrete, to low strength,

unconsolidated materials, such as weakly cemented sandstones. In a similar fashion to

the suggested modelling technique, discussed above, lattice models can be made to

represent the continuum material, which is subsequently allowed to fracture. This is in

contrast to existing fracture models described, in Chapter 2, Section 2.2., which

represent the fracture itself. Lattice models are therefore naturally capable of dealing

with the development of multiple fractures and furthermore, do not require predefinition

of fracture growth or remeshing.

Extensive studies of fracture in concrete and sandstone have been carried out

using lattice modelling techniques (See Chapter 2, Section 2.3.1.) and the numerical

results of these have been shown to match well with results of concurrent experimental

studies. In addition, some work has been carried out to apply lattice modelling to

hydraulic fracturing problems (Tzschichholz and Herrmann [88], Tzschichholz et aI.

[89]) and, although the studies have been very basic, the results show promise.

A lattice model would therefore seem to be a good choice for a modelling

framework with which to advance the study of hydraulically driven fracture growth

behaviour and consequently is adopted for the numerical work carried out for this thesis.

It should be noted that the lattice models discussed above were two-dimensional, planar

representations. It is also proposed to adopt this simplification here, although the

ultimate goal of the alternative modelling environment for hydraulic fracture simulators,

would be a fully three-dimensional model. The plane strain simplification of hydraulic

fracture simulators has been discussed in Chapter 2, Section 2.2., and its limitations are

well understood. It is further considered that advances made in two-dimensional plane

strain lattice models will be transferable to three-dimensional lattice models in the

future.

It must also be reiterated that hydraulic fracturing is a complex problem

involving the coupling of several processes. As discussed in Chapter 1, Section 1.2.,

there are five main aspects to hydraulic fracture treatments that must be addressed by a

fracture simulator. These are: viscous fluid flow in the fracture, leak-off of the fluid to

the reservoir, deformation of the reservoir formation, fracture propagation and proppant

transport. In particular, the interaction between the solid and fluid phases is very
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complex since the fracture shape is dependent on the fluid pressure profile and the fluid

pressure profile is dependent on the fracture shape. In order to find an equilibrium

solution staggered or iterative techniques are often employed. Furthermore, as

discussed in Chapter 2, Sections 2.2. & 2.4., the fluid behaviour itself is usually

simplified, particularly in commercial fracture simulators.

While the solid phase processes of deformation and fracture could be easily

handled by a lattice model, a method would have to be found of coupling it to the fluid

flow and proppant transport processes.

After reviewing the numerical study of proppant transport, and other related

problems concerning the movement of granular material, it was concluded that discrete

element modelling (DEM) was the most appropriate technique and consequently the

natural choice for modelling these processes.

In addition to this, it was realised that bonded particle assembly models,

discussed in Chapter 2, Section 2.3.3., which can be used to create models that are

equivalent to lattice models, are also suited to the DEM framework.

This provided the means to apply a lattice type model to the solid phase, as

discussed above, and to implement the modelling of processes such as proppant

transport within the same framework. While this might prove very efficient, it was still

necessary to find a method of coupling fluid behaviour to both of these DEM models.

A study of fluid modelling techniques showed that it is possible to develop a

particle representation of a fluid and that several approaches to this had been

investigated in the past (See Chapter 2, Section 2.4.2.). Conveniently, these models are

particularly suited to modelling problems of free surfaces flow and flow break up as

may occur in a fluid zone of changing size and geometry, such as can be found in a

propagating hydraulic fracture. Although, as discussed in Chapter 2, Section 2.4.2.,

particle fluid models usually work on different principles, it has been shown that it is

possible to implement this kind of model within a DEM framework.
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By applying this in conjunction with the bonded particle assembly model and

the discrete proppant model it was therefore possible to consider all five of the main

issues associated with hydraulic fracture treatments within a discrete framework, as

shown in Table 3.1. below.

Process Model Type Implementation
Model Designation

in this Thesis

Viscous Fluid Particle Fluid Discrete Element Particle Fluid Model
Flow Representation Model (DEM) (PFM)

Leak-off of Particle Fluid Considered in PFMFluid Representation Fluid Behaviour

Deformation Bonded Particle DEM Particle Solid Model
of Rock Assembly (PSM)

Fracture Bonded Particle Separation of

Propagation Assembly Inter-particle PSM
Links

Proppant Discrete Particle Proppant ModelGranular DEMTransport Material (PPM)

Table 3.1. Summary of OEM Implementation of Hydraulic Fracture Processes

If all of these processes could be implemented within one all encompassing, multi-

physics, DEM framework, then a coupled model would be automatically created. A

framework of this kind would be extremely versatile and could be applied to many

geomechanical problems, such as wellbore stability, gravel packing, grouting, slurry

injection, sand production, proppant stability and hydraulic fracturing, without

significant changes to the underlying modelling framework. Furthermore, unlike single

software frameworks (SSF) based on continuum methods, there would be no necessity

formapping between different meshes for different material phases.

Rather than starting with the development of a new DEM code it was decided to

implement the overall modelling framework discussed above in an existing DEM

package. The chosen program is a commercial geotechnical DEM code, Particle Flow
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Code in Three Dimensions (PFC3D
). This was a natural choice for this project as the

features of the program included the vital ability to bond discrete particles together, as is

required for the Particle Solid Model, and furthermore, includes an embedded coding

language, FISH, in which additional code can be written to manipulate and alter the

basic behaviour of the discrete elements. A full description of the theory and

capabilities of PFC3D and the intended implementation of the modelling processes is

given in the following Sections.

In summary, it is proposed to develop a two-dimensional, multi-physics, single

software modelling framework within a pre-existing discrete element modelling

environment, in order to implement coupled models of geomechanical problems such as

those related to hydraulic fracture treatments.

The advantages of this framework will be that it can handle complex material

behaviour over a wide range of material types and can naturally deal with large

deformations and discrete or distributed fracturing behaviour, without the need for

remeshing or loss of numerical accuracy. Furthermore, coupling of solid, fluid and

particle phases will be achieved without the need for consistency and mapping between

separate meshes, or for staggered or iterative solutions, as all of the models will be

constructed within the same DEM environment and will solved simultaneously by the

existing dynamic relaxation solver.

Given the relative simplicity of the proppant type model it can be implemented

without significant additions to the basic behaviour of the PFC3D DEM code. It is

therefore proposed that the work in this project will focus on the development of the

solid and fluid phase models and their coupling, in the assumption that the proppant

model could be included at any stage.

3.3. An Introduction to Particle Flow Code in Three Dimensions

As mentioned previously (See Section 3.2), the numerical analyses carried out as part of

this project will use models formulated in the existing, commercially available, distinct
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element modelling (DEM) environment, Particle Flow Code in Three Dimensions

(PFC3~ (Itasca Consulting Group [37]).

PFC3D was designed as a geotechnical modelling environment and nominally

deals with transient dynamics of particulate media. The basic components of PFC3D

models are rigid spherical particles, known simply as 'balls', which interact, when in

contact, by way of normal and shear contact springs. The behaviour of these particles is

determined by a Cundall and Strack type distinct element method that involves an

explicit time stepping scheme during which Newton's Second Law is integrated twice in

each time step (See Section 3.4.1. and Cundall and Strack [18]).

In order to create a model, particles can be generated, individually or in groups,

at precise co-ordinates or randomly positioned within three-dimensional volumes. The

volumes can be defined with boundaries created by rigid, laminar objects known simply

as 'walls'. 'Walls' can be generated by defining the co-ordinates of their comers and

can be defined as planar or concave. Interactions with 'walls' are dealt with similarly to

'balls', by way of normal and shear contact springs, however 'walls' are generally

considered to be fixed and will not move when acted on by a force resulting from a

'wall' - 'ball' contact.

The particles can be assigned basic properties such as size and density and these

properties may be given to individual 'balls' or to discrete regions defined within the

overall model. Furthermore, properties concerning interaction may also be assigned to

particles in the same way. These include damping and friction coefficients and the

contact spring stiffnesses mentioned previously. The particles are considered rigid but

are allowed to overlap and interaction between them is dealt with by assuming a

constitutive model at any contact that develops. In its simplest form, this represents

linear elastic spring behaviour. 'Walls' are also considered rigid and are similarly

assigned stiffnesses and a friction coefficient. The creation of particles and 'walls', in

the way described above, allows great freedom for the modelling off non-cohesive

granular material such as soil.

Although PFC3D calculates a full dynamic solution at each time step, it allows

the calculation of static solutions through the implementation of a dynamic relaxation
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solver. Dynamic relaxation is based on the principle that the static solution is the

limiting case of a dynamic solution. PFC3D achieves a steady state by applying a local

damping coefficient to the contact springs between particles in contact. Over time, this

causes the oscillating velocities associated with the dynamic solution for a mass

attached to a spring, to reach a steady state. The shorter the time and the fewer the

oscillations, the closer the solution is to a static solution. PFC3D uses a default value for

the damping coefficient that is as high as possible without compromising the numerical

stability of its models. However, by optimally scaling the inertial masses of the

particles, a quasi-static solution can be produced after each time step. Although a

steady state might be reached eventually in a fully dynamic case, as energy is lost

through friction, for example, depending on the specific configuration of a particular

model, the process is accelerated considerably by dynamic relaxation.

PFC3D also deals with bonded particulate media by the application of bonds

between particles. There are two types of bond available within PFC3D• The first are

'contact bonds' which, as the name suggests, form only where a physical contact exists

between particles. These bonds are considered to exist as point contacts. They are

assigned values of tensile and shear strength only and therefore have no resistance to

bending moments and cannot be failed in compression. The strengths are assigned in

terms of the force that a particular bond is able to resist rather than by a general stress

capacity.

The second type of bond is known as a 'parallel bond'. They may be applied in

addition to the 'contact bonds' and take the form of elastic cylinders that are assigned

individual properties of stiffness and strength that act in addition to the properties of the

particles. In contrast to the 'contact bond' strength, the tensile and shear strengths of

the 'parallel bond' are assigned in terms maximum stress capacities. It may be further

noted that, they are also capable of resisting bending and can be used to bond particles

that are not in direct contact.

A group of spheres bonded with one or both types of bond will essentially

behave as an elastic solid and PFC3D contains extensive built-in logic to deal with this

concept. In addition, these 'solids' are capable of fracturing behaviour, as the bonds

will cease to act if their strengths are exceeded, i.e. the bonds will 'break'. This means
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that there is as much freedom to model solids as there is to model granular materials.

PFC3D is therefore ideally suited to model materials such as rock, which consist of

cemented grains. Extensive use of these bonded particle 'meshes' will be made during

the course of the work carried out for this thesis.

Other features of PFC3D allow various external conditions to be applied to

meshes, created as described above. Boundary conditions can be applied in terms of

either displacements or forces. In the case of displacement boundaries, 'walls' or 'balls'

are given a velocity or rotation that converts to a prescribed incremental displacement

over time. In the case of force boundaries, 'balls' are directly assigned externally

applied forces.

When a model is 'cycled', the reaction of each particle and 'wall' to the

conditions it is subject to is calculated after each time step. This reaction is governed by

the constitutive model assumed for each contact that forms during the time stepping

process. Although external conditions may also be applied to certain particles or

'walls', their influence will also be transferred through the model according to the

constitutive law. The constitutive model consists of three parts, a stiffness model, a slip

model and a bonding model. If the particles are bonded, with either of the bond types

described above, the slip model is superseded. Although models that are more complex

are available, this project will use only the simple linear contact model, which is defined

by the contact stiffnesses discussed above. If 'balls' or 'walls' with different properties

meet then the average values of properties such as friction and damping are taken. For

the linear contact model, spring stiffnesses are treated in series, according to Eq. 3.1.

and Eq. 3.2. below (Itasca Consulting Group [37]), and this has consequences for this

work that are discussed further in Chapter 4.

Eq.3.1.

Eq.3.2.
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where, KO is the contact normal secant stiffness, KI is the contact shear tangent stiffness,

k, is a normal spring stiffness, k, is a shear spring stiffness and the superscripts (A) and

(B) denote the particles or particle and 'wall' in contact. (It may be noted that the

normal stiffness is a secant stiffness, since it relates the total normal force to the total

normal displacement, while the shear stiffness is a tangent stiffness, since it relates the

increment of shear force to the increment of shear displacement).

These three parts of the constitutive model are applied within the distinct

element method, which is described in more detail below (See Section 3.4.1..).

Due to its time stepping nature, PFC3D is capable of allowing various parameters

to be monitored as desired. These include the forces on 'walls', the position or velocity

of any 'ball', the diagnostic unbalanced force which is averaged for forces over the

whole mesh, the porosity of the mesh and the stresses (See Section 3.4.2. below) and

energies present in the mesh. These properties can be logged and plotted against time

steps or each other at the end of a run.

A further advantage of PFC3D is that it includes a programming language,

known as FISH, which allows code to be written so that a model can be manipulated in

almost any conceivable way. Furthermore, most of the properties that can be monitored

during cycling can have their values called by a FISH function and so can be included in

calculations. Furthermore, modelling features such as logic to describe whether a bond

is broken or intact can also be called and altered by FISH functions. These facilities

proved very useful in the course of developing our own routines and functions for use in

this project (See Chapter 4, Section 4.3.3. and Chapter 5, Section 5.3.).

3.4. Theory of the Particulate Mechanics Modelling Framework

3.4.1. Cundall & Strack Type Distinct Element Method

The distinct element method, as described by Cundall and Strack [18], numerically

models the dynamic behaviour of discrete, circular discs with a time stepping algorithm

in which the velocities and accelerations of the discs are assumed constant over each
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time step. A fundamental assumption of the distinct element method is that the time

steps can be so small, that disturbances affecting any disc do not propagate beyond its

immediate neighbours. It should be noted that although the distinct element method

was originally a two-dimensional method it can easily be applied in three dimensions

and this is the case in PFC3D where the two-dimensional discs are exchanged for three-

dimensional spherical particles.

The actual calculations for spherical particles in contact consist of an alternation

between the application of Newton's Second Law, Eq. 3.3., and a force-displacement

law, Eq. 3.4.

F=m.a Eq.3.3.

Eq.3.4.

where, F is the force acting on a particle, m is the mass of the particle and a is the

acceleration of the particle. AFn is the increment of normal force on the particle, kn is

the normal contact stiffness, An is the relative displacement of the particles in contact, v

is the closing velocity of the two particles in contact and At is the length of the time

step. The subscript ti, associated with the displacement, indicates that it refers to time

step tl = to +At, where to is the start time.

NB - for convenience and consistency in this thesis, some of the notation in this Section

has been altered from the original text (Cundall and Strack [18]).

The motion of a particular contacting pair of particles, in a particular time step,

is calculated, from the forces applied to them, through Newton's Second Law. The

force-displacement law is then used to calculate the forces acting on the pair in the next

time step from the motion just calculated. This cycle is repeated for sequential time
steps.
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Although the particles are considered rigid, they are allowed to overlap at

contact points. This overlapping takes the place of deformation of the particles and

therefore deformation of the whole mesh. The magnitude of the overlap directly relates

to the reaction force between two particles or a particle and a 'wall' in the case of

PFC3D
.

to tl

Fig. 3.1. Diagram Showing Particle Pair Moving into Contact

After each time step, the program first determines which particles are in contact. This is

done by calculating whether the distance between all pairs of neighbouring particles is

less than the sum of their two radii. If a pair of particles is found to be in contact, the

overlap is then calculated. This is equivalent to the relative displacement, Sn (See Fig.

3.1.). For each contacting pair, the sum of forces is then calculated from the force-

displacement law, Eq. 3.4., so that,

F(B) = -k Sn
x n 'I

Eq.3.5.

Eq.3.6.

where, in the case of PFC3D models, the sign convention applies to the Cartesian co-

ordinate system used during the generation of the particle assembly.
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The resultant forces calculated are then substituted into Newton's Second Law,

Eq. 3.3., which is reorganised to determine the new accelerations on each particle as

shown in Fig. 3.8. and Fig. 3.9. below. Obviously, for the example shown in Fig. 3.1.,

no y-component of force develops between the particles.

Eq.3.7.

Eq.3.B.

As mentioned previously, the accelerations calculated are assumed constant over the

time step (in this case 11 = to + Ilt to tz = to + 21lt). Eq. 3.7. and Eq. 3.8. are then

integrated to find the velocities, v, for the next time step so that,

Eq.3.9.

Eq.3.10.

The new value of relative displacement can then be calculated from these velocities as

shown below,

Eq.3.11.

Eq.3.12.

([
F(A)] [F(B)])

:. !1n'l = ~A) 8t - ";(B) !1t 8t Eq.3.13.

75



Chapter 3:Research Proposal and Model Implementation

where, the relative displacement, An, is taken as positive in compression.

The formulae above give only the relative displacement between two particles in

a contacting pair, as shown in Fig. 3.1. above. If either or both of the particles are in

contact with another neighbour then the total relative displacement has to account for

these overlaps as well. The vector sum of all the contact forces relating to these

displacements gives the resultant force acting on a particle.

Although the calculation process described above is sufficient to model the basic

motion of particles, it is desirable to also take into account the rotation of the particles

and furthermore the shear forces acting between contacting pairs. This is done by

considering the general case of a contacting particle pair (See Fig. 3.2.) and developing

equations for both normal and shear relative displacements (See Eq. 3.14. and Eq. 3.15.

below).

Lx

Fig.3.2. Diagram Showing General Case of a Contacting Particle Pair

Eq.3.14.

Eq.3.15.
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where, e, is the unit vector between the centres of the two contacting particles (See Eq.

3.16.), g, is the unit vector lying 90° clockwise to e, (See Eq. 3.17.), a is the angular

velocity of a particle and r is the particle radius.

Eq.3.16.

[ ey] [Sin ex ]g/= =
-ex -cosex

£q.3.17.

where, X, is the location of a particle centroid, d is the separation between the particle

centroids, a is the angle between the line joining the particle centroids and the global x-
axis and ex,y are the components of the vector e, parallel to the global axes.

As before, the relative displacements, defined by Eq. 3.14. and Eq. 3.15., are

substituted into the force-displacement law, Eq. 3.4., to produce Eq. 3.18. and Eq. 3.19.,

from which the increments of normal and shear force can be calculated.

£q.3.18.

Eq.3.19.

where, k. is the shear stiffness.

At the end of each time step, these force increments are added to the total of all

normal and shear force increments, Fn and F" calculated in previous time steps (See Eq.

3.20. andEq. 3.21.).
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Eq.3.20.

Eq.3.21.

At this point, the particle contacts are also checked for frictional slip. This is done by

comparing the total shear force from Eq. 3.21. above with the maximum shear capacity

as defined by a Coulomb type frictional law (See Eq. 3.22.).

Eq.3.22.

where, ',II is the smaller of the inter-particle friction angles of the particle pair under

consideration and c is the smaller of the inter-particle cohesion values.

Thus, the actual shear force at a particle contact will be the minimum of the

forces calculated by Eq. 3.21. and Eq. 3.22. This can be written as in Eq. 3.23. below",

Eq.3.23.

Finally, before the particle motion can be determined, the moments acting on the

particles are also calculated, from the forces calculated above, according to Eq. 3.24.

and Eq. 3.25. below.

t It should be noted that if a particle contact pair are bonded together, as described in the previous

Section, the shear strength of the bond overrides the frictional slip law shown in Eq. 3.22. and the shear

force at the contact will be determined by Eq. 3.21. However, if the shear strength of the bonds is

exceeded the slip law will be invoked.
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Eq.3.24.

Eq.3.25.

where, M is the moment acting on a particle.

From the forces and moments calculated as shown above, the resulting motion

of the particles can be calculated. As before Newton's Second Law is rearranged to find

the normal and angular accelerations as shown below. Eq. 3.26. and Eq. 3.27. are

shown in the general form.

Eq.3.26.

Eq.3.27.

where, I is the moment of inertia of the particle, OJ is the angular acceleration of the

particle and the superscript (P) refers to any particle.

Again assuming the accelerations constant over a time step, !:J from tN-V! to tN+V!,

the velocities are found from Eq. 3.28. and Eq. 3.29. below.

Eq.3.28.

Eq.3.29.
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Again as discussed above, these velocities can then be used to update the displacements

and rotations of the particles, as shown in Eq. 3.30. and Eq. 3.31. below, assuming the

velocities constant over At from tN to ts-«.

Eq.3.30.

Eq.3.31.

where, {}is the angle of rotation of a particle relative to the global coordinate system.

It should be noted that in PFC3D when the calculation concerns a 'ball'-'wall'

contact, calculations are made exactly as described above for a 'ball' - 'ball' contact,

however the effect of the forces would only be felt by the 'ball'. 'Walls' are either fixed

or moving at an assigned velocity. Their velocity cannot be altered by the action of

forces resulting from contacts.

It should be further noted that the distinct element model employed by PFC3D is

a simplified DEM as it deals only with rigid, spherical particles. Programs such as

UDEC (Itasca Consulting Group [38]), MIMES (Preece et al. [73]) and DDA (Rouainia

et al. [78]) employ DEM that are capable of dealing with arbitrarily shaped, deformable

polygons. However, these programs would not be suitable for the lattice modelling

proposed for this work.

The calculation sequence for the Distinct Element Method, as applied to PFC3D

models and set out above, can be summarised as shown in the flow chart presented in

Fig. 3.3. below.

80



Chapter 3: Research Proposal and Model Implementation

Force-Displacement Law

_ X!B) _ X!A) _ [cos a]
el- -d sin o

[ ey] [sina]
gl = -e" = -cosa

Relative Velocities
and Displacements

Contact Force Increments

Equationsof~otion

Displacements
and Rotations

Location of Translational Angular

Particle Centroid Velocity Velocity

V(A) OA)

V(B) OB)

(F,), = (F,), +11F,
N N-l

joE--x}pl-+j
IE- 'V(P)~

IE- a(P)~ r At ,I I ... time
tN-I IN IN+I IN+2

Fig. 3.3. Flow Chart Summarising the Calculation Sequence for the Distinct Element Method as

Described by Cundall and Strack [18] (Adapted from Trent [86])
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3.4.2. Calculation of Granular Stress State in Particle Models

There are various situations in the modelling and analysis of any mechanical process, in

which it is desirable to know the stress field throughout the region of interest. In the

case of a continuous body of material the stress state anywhere in that body can be

calculated according to the principle laid out by Euler and Cauchy. This says that, on

any chosen, closed surface within the body, there exists a stress vector field resulting

from the action of the material outside the surface on the material inside the surface. In

the limit, as the area of the surface tends to zero, the stress vector is defined as the force

acting per unit area of the surface (Fung [30]). This principle is, however, valid only in

a continuum where closed surfaces can be defined anywhere. In the case of a

particulate material, the medium is discrete, surfaces cannot be defined everywhere and

plainly, stress vectors do not exist everywhere. Therefore, in order to calculate stress in

a discrete model, such as those considered by PFC3D, it is necessary to apply averaging

procedures in order to move from the discrete, micro-scale quantities of particle

displacements and contact forces (See Sections 3.4.1. above), to a continuum

description. This principle of the homogenisation of a discrete property to a continuum

measurement can, in fact, be applied to any quantity on the basis that it is first applied to

individual particles, which in turn provide a proportional contribution to a larger

averaging volume (Luding et a1. [54]). Various strategies have been employed in the

application of this procedure to the calculation of stress and while they have subtle

differences, they all follow the same general principles in that they take into account the

effect of contact forces acting over the volume of individual particles to calculate the

average formation stress (Chang and Liao [12], Chang and Ma [13], Christoffersen et a1.

[15], Cundall & Strack [19], Drescher and de Josselin de Jong [24], Liao et a1. [48],

Luding et a1. [54], Masson and Martinez [55], Rothenburg and Selvadurai [77]).

PFC3D employs a technique that is typical of the methods discussed above where

the average stress tensor in a specific volume of particulate material can be calculated

according to Eq. 3.32.,

Eq.3.32.
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where, Oi) is the averaged stress tensor in the volume and 0';) is the local stress tensor

throughout the volume, V.

As mentioned previously, stresses in a discrete medium can only exist in the

particles themselves rather than everywhere in the volume. Therefore, the integral in

Eq. 3.32. can be replaced with a sum over the total number of particles, Np, in the

volume under consideration, so that,

Eq.3.33.

where, CT~P) is the averaged stress tensor in a particle of volume Jh) and the superscript

(P) refers to any particle.

Again, as discussed above, the technique of homogenisation is firstly applied to

the individual particles before contributions are made to the whole volume and so, in a

similar manner to Eq. 3.32., the average stress in a particle can be calculated according

to Eq. 3.34.

Eq.3.34.

By applying the tensor identity set out in Eq. 3.35., where, TI) is any Cartesian tensor, ~)

is the Kronecker delta and the notation,i denotes differentiation with respect to XI, Eq.

3.34. can be rewritten as in Eq. 3.36.

Eq.3.35.
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a (p) = _1_ I~(x.(1'(P») - xa(p) ]dV(P)
II V(p) ~ I kJ ,k I kJ,k

v(p)
Eq.3.36.

Noting that the stresses in a particle are averaged over the volume of the particle and are

therefore assumed continuous and in equilibrium throughout that particle, it can be seen

that, if there are no body forces present O';j.l = O. Eq. 3.36. then becomes,

(1'~p) = _1_ I~(x(]'(p») ]dV(P)
lJ V(p) ~ I /g ,k

V(P)

Eq.3.37.

By applying Gauss's Divergence Theorem the volume integral in Eq. 3.37. can then be

rewritten as the surface integral in Eq. 3.38.

Eq.3.38.

where, nk is the unit, outward normal to the surface and SP) is the particle surface.

Eq. 3.38. can be rewritten in terms of a surface traction vector, t)p) , as in Eq. 3.39.

a(p) =_1_ IxiP)dS(P)
IJ V(p) I J

s(p)

Eq.3.39.

Once again, due to the discrete nature of the medium, the integral above can be replaced

with a summation. In this case, the sum is over Ne contact positions where discrete

contact forces act on the surface particle rather than a distributed traction field. Eq.

3.39. can then be rewritten as,
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Eq.3.40.

where, x~c) is the contact location and Ft> is the magnitude of the contact force acting

at any contact (c). The sign convention applied in this equation produces compression-

negative, tension-positive averaged stresses.

From Fig. 3.4. below it can be seen that the contact location, x~c), can be

rewritten according to Eq. 3.41.

Contact, (c)

y Particle, (P)

x

Fig. 3.4. Diagram Illustrating Position Vectors of Particle Centroid and Contact Coordinates

XI(C) = x(p) + Ix(C) - x(p)ln(C,p), , , , Eq.3.41.
Branch Vector

where, x~p) is the location of the particle centroid and n~c,p) is the unit vector in the

direction from the particle centroid towards the contact. NB - For reference, it can be

noted that the second term on the right hand side of the Eq. 3.41. (labelled) is known as

the branch vector in several of the homogenisation methods referenced above.
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Substituting Eq. 3.41. into Eq. 3.40. gives the expression below for the averaged

stress tensor in a particle.

(J".(p) = __ l_~lx(C) _ x(p)ln(c,p) F(c)
y v(p) £..J I I I J

N.
Eq.3.42.

It should be noted that for a particle in equilibrium,

Eq.3.43.

The average stress tensor in a volume containing Np particles can now be calculated by

substituting Eq. 3.42. into Eq. 3.33. However, certain complications arise in this

calculation. Firstly, pore spaces exist within a volume of particulate material that do not

contribute to the stress in the volume and secondly some particles may lie only partially

within the volume under consideration. PFC3D deals with this by applying a correction

factor based on the porosity of the volume. This correction is not required for the

analyses carried out in this project as only average stress tensors for individual particles

are considered (See Chapter 4, Section 4.2.3.2.2. and Chapter 5, Section 5.6.).

Therefore, the key equation of interest is Eq. 3.42.

When considering the stress tensors produced by Eq. 3.42. there are several

points that should be borne in mind. Firstly, since the equation takes into account the

contributions of contact forces acting on a particle at any given time, it calculates

Cauchy stress tensors. Secondly, it should be remembered that the stress tensors are

averaged over the volume of a spherical particle and for this reason the values of the

stresses tend to a true continuum value only as the particle radius tends to zero and the

pore space vanishes, i.e. as the granular material tends to a continuum. This issue is

addressed in detail, in the context of the work carried out for this thesis, in Chapter 5,

Section 5.6.3.
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3.4.3. Granular - Continuum Stress Conversion Factors

As discussed in the previous Section, an average stress tensor is calculated internally by

PFC3D
, for each particle in a model, from the contributions of contact forces acting on

the particle (See Eq. 3.42.). These tensors are averaged over the spherical volume of a

particle and as such, are a representation of stress in a discrete granular material. Stress

throughout each particle is considered uniform and continuous, however, the stress field

in a collection of particles representing a granular material cannot be considered

continuous, as it would be in a continuum material.

As discussed in Section 3.2. above, it is an aim of this project to develop a two-

dimensional representation of a continuum material with a bonded particle assembly.

While the average stress tensor will be available for each particle in the assembly, this

will be a granular representation, as discussed above, and as such will not be an accurate

representation of the stress in an equivalent continuum material.

In order to use the granular stress tensors associated with the particles to

describe a two-dimensional, continuum stress field it is first necessary to convert them

to continuum stress tensors, as would be found at points, in the same locations as the

particle centroids, in an equivalent continuum material, of unit thickness.

This can be achieved by applying simple, controlled load conditions to a two-

dimensional particle assembly and determining the ratio between the components of the

granular stress tensors, 0';, z-~, z-! and O'~, and the components of a continuum

stress tensor that would be expected in an equivalent continuum material under the same

loading conditions. It is understood that a certain amount of subjectivity is involved in

determining the nature of the equivalent continuum represented by the particle assembly

and hence in determining the stress state that would be expected under certain

conditions. However, as will be seen below, for any interpretation, as long as

consistency is maintained throughout the analysis, a set of reasonably accurate results

can be obtained.
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Once an equivalent continuum interpretation has been made, then it is possible

to determine the ratios between the components of granular stress tensor and the

components of the expected continuum stress tensor analytically. This can be done by

equating the formula for granular stress (See Eq. 3.42.), via a coefficient, to the equation

for continuum stress, which is dependent on the interpretation of the equivalent

continuum. Clearly, the coefficient is the ratio between the two values of granular and

continuum stress. Once determined, these ratios can subsequently be applied as

conversion factors to the components of the granular stress tensor in order to produce an

equivalent continuum stress tensor under any loading conditions for the same particle

assemble. However, it should be noted that, as will be shown below, the conversion

factors are dependent on the configuration of the particles assembly and in particular on

the position of the inter-particle contacts. Therefore, in a random particle assembly the

conversion factors will be unique to the particles themselves.

The process of determining the granular-continuum stress conversion factors for

a bonded particle assembly is illustrated with the simple example shown below.

Spherical
Particles Applied

Load

\
2r

p

L"..·..···
x

Fig. 3.5. Diagram of Simple, Bonded Particle Assembly

As can be seen above, the simple assembly consists of four particles bonded together.

One end of the assembly is fixed and to the other a load, P is applied. The particle
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assembly can be considered to represent an equivalent continuum bar of unit thickness,

as indicated by the dotted line around the perimeter of the particles.

For the purposes of calculating the granular-continuum stress conversion factors,

a typical particle 'p' can be considered. As discussed previously, the granular stress

tensor in 'pt can be calculated according to Eq. 3.42. The continuum stress state in the

x-direction at the centre of 'p., or in fact, anywhere, in the equivalent continuum bar

could be calculated according to Eq. 3.44. It can also be noted that similar expressions

could be constructed for the other components of the continuum stress tensor, although,

obviously, under the loading conditions shown above, all other stress components are

zero.

p
(J' =_x

x A
x

Eq.3.44.

where, o"x is the continuum stress in the x-direction and Ax is the equivalent continuum

cross-sectional area perpendicular to the x-axis.

Equating Eq. 3.42., written in terms of the x-component of the granular stress

tensor, to Eq. 3.44. as described above, gives,

_ 1 I I Pa(x x)G C __ ~ x(e) _ x(p) n(e,p) F(c) = _x
• • v(p) £..J I I x x A

~ x
Eq.3.45.

where, a(x,x)G-C is the granular-continuum stress conversion factor for the normal

stress component in the x-direction.

Rearranging Eq. 3.45. in terms of the conversion factor gives,

pv(p)
G-C x

a(x, x) = IA ~ Ix (e) - x(p) n(e,p) F(c)x£..J I I X x
N.

Eq.3.46.
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From the model problem shown in Fig. 3.5. it can be seen that the contact forces on the

particle 'p', resulting from the external applied load, P, are developed as follows (See

Fig.3.6.).

Position of -: Particle 'p'con:ct\
a)

p---..----

\/Reactive
contact force I External

i Applied Load

t
~
I

b) P P

L x(c) -x(p) !
I I I

t Total contact
forces acting

x i on particle

Fig.3.6. Diagram of Development of Contact Forces on the Particle 'p' Experiencing Normal

Stress in the x-direction Showing a) the reaction to external loading and b) the total resulting

contact forces on the particle

By examining the components of the reactive contact forces that develop on the particle

'p', in the direction under consideration, and by considering their locations, it is

possible to determine the appropriate values of the variables for substitution into Eq.
3.46. For a particle, 'p', in the middle of the assembly, at some distance from the

externally applied load, the resulting contact forces, the distance from the particle

centroid to the contact positions and the component of the unit vector in the direction

under consideration are shown in Fig. 3.6. b). Thus, the following values can be
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substituted into Eq. 3.46. in relation to the calculation of the granular continuum stress

conversion factor for the normal stress component in the x-direction, a(x, x)c-c .

The volume of the spherical particle, 'p', is,

v(p) = j_:rr3
3 Eq.3.47.

The distance between the particle centroid and the contact points, assummg small

deformations t, is,

Eq.3.48.

The component of the unit normal from the particle centroid to the contact point, in the

x-direction is,

Eq.3.49.

The component of the contact forces in the x-direction is,

Fx=±P Eq.3.50.

t Although the initial distance between the centroid of a particle and a contact on the surface of that

particle will be equal to the particle radius, this distance will change when the particle assembly deforms,
In order to maintain a constant value for the conversion factor it can be assumed that only small

deformations occur and that, consequently, the separation between the particle centroid and the contacts

remains approximately equal to the particle radius.
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The last remaining variable is the equivalent continuum area, Ax. From the equivalent

continuum bar that the particle assembly is considered to represent (See Eq. 3.2.) it is

clear that the implied width, associated with the applied load, P, is equal to twice the

particle radius. Thus, for a bar of unit thickness, the equivalent continuum cross-

sectional area in the x-direction is,

Ax = 2r.1 Eq.3.51.

Substituting these values into Eq. 3.46. for the two contact forces acting on the particle,

as shown in Fig. 3.6. b), gives the following solution for the granular-continuum

conversion factor for the component of normal stress in the x-direction,

_p~1D'3
a(x,x)o-c = 3

2r.((r.-1.P)+ (r.1.- p)) Eq.3.52.

which simplifies to give,

o-c 1D'
a(x, x) =3" Eq.3.53.

If, by way of example, a compressive load, P, of 1.0N is applied to the particle

assembly, as illustrated in Fig. 3.5., in which a particle radius of O.Srnis chosen, then

the granular stress tensor in particle 'p', developed by Eq. 3.42., will be as shown below

(SeeEq. 3.54.).

a(p) = [0'xx txy] = [-1.9099 o.O]N/m 2

II ry.t 0'yy 0.0 0.0
Eq.3.54.
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Under the same loading conditions the expected equivalent continuum stress in the x-

direction, according to Eq. 3.44., would be,

P -1.0 2CYx=_x = =-l.ON/m
Ax 2xO.Sxl

Eq.3.55.

Applying the conversion factor, shown in Eq. 3.53., to the x-component of the granular

stress tensor shown in Eq. 3.54. gives,

a = cy(p)x 1lr = -1.9099 x Jr x 0.5 = -1.0000 Q.E.D.
xx xx 3 3 Eq.3.56.

As can be seen above, the conversion factor accurately produces the value of stress that

would be expected for an equivalent continuum material. This conversion factor can

now be applied for any applied load, P, and for particles of any radius, r.

However, as discussed above, the granular-continuum stress conversion factors

are dependent on the interpretation of an equivalent continuum material. This can be

further illustrated by considering an alternative interpretation for the continuous bar

represented by the particle assembly (See Fig. 3.5. above and Fig. 3.7. below).

y

p

x

Fig. 3.7. Diagram Showing Alternative Interpretation of Equivalent Continuum Represented by

Simple Bonded Particle Assembly
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As can be seen, the equivalent continuum area, Ax, previously given by Eq. 3.51., is

now given as,

Ax = r.l Eq.3.57.

Following through the process given above in Eq. 3.46. to Eq. 3.53. it can be shown that

the conversion factor is now given as,

G-C 2trr
a(x,x) =-3- Eq.3.58.

While the granular stress tensor remains constant, as given in Eq. 3.54., the expected

continuum stress, as previously written in Eq. 3.55., is given as,

P -1.0 2
(J' =_x =-- = -2.0N/m
x Ax 0.5xl Eq.3.59.

Applying the new conversion factor (See Eq. 3.58.), it can be seen that the predicted

continuum stress, previously given in Eq. 3.56., can now be written as,

(J'xx = (J'~) x 2m- = -1.9099 x 2x 1l' x 0.5 = -2.0000 Q.E.D.
3 3

Eq.3.60.

Again, it can be seen that, for the chosen interpretation of the equivalent continuum

represented by the bonded particle assembly, the expected continuum stress is very

accurately predicted by the granular-continuum conversion factor, as shown above.

94



Chapter 3: Research Proposal and Model Implementation

Obviously, the continuous bar represented by a four particle assembly is a very

simple example and the continuum interpretation for the particle assembly is almost

arbitrary. However, the example serves to emphasise the point that as long as

consistency is maintained, accurate predictions can be made for the stress state in the

equivalent continuum material. In a larger, two-dimensional particle assembly, the

interpretation of the equivalent continuum area will be more restricted, usually to an

equal division of the length of a side of the assembly, projected in the axis under

consideration. Determining the equivalent continuum area would become more difficult

if the overall shape of the assembly is not regular or if the assembly itself consists of

randomly distributed particles.

As mentioned previously, the granular-continuum stress conversion factors are

dependent on the geometry of the particle assembly, which defines the locations at

which the contact forces act. Consequently, they are unique to each particle in an

assembly and will vary as the mesh deforms. However, for the purposes of the work

carried out for this thesis, it is likely that, for simplicity, a regular configuration will be

applied to the bonded particle assembly. If it is further assumed that only small

deformations take place (See t on page 91), then the conversion factors will be the same

for all particles in the assembly and will remain constant at all times.

For a completely general and accurate set of conversion factors, it would be

necessary to calculated them individually for each particle in an assembly, at every time

step, in order to account for changes in geometry. Obviously, an automatic calculation

would be best, however, as can be seen from the description of the technique, shown

above, this may be very difficult to code. While the assumption of small deformations

would then be unnecessary, consideration would have to be made of the assumed

equivalent continuum areas associated with each particle, which are also dependent on

the geometry of the assembly. Extending this theory, it should also be possible to apply

the development of conversion factors to random particle assemblies, however the

determination of an equivalent continuum area would certainly be a difficulty. It may

be possible to apply the conversion factors for an equivalent regular assembly to a

random assembly, however, this would again involve an approximation and testing

would need to be carried out in order to determine the feasibility of this proposal. This

was not attempted in the course of this thesis.
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3.5. Proposed Implementation of Particle Solid Model (PSM)

The first part of this project will require the development of a model that will represent

the solid phase of the problem, i.e. the reservoir rock formation. As discussed

previously this will be developed within the DEM environment PFC3D and will be

constructed in a lattice-type configuration.

Rather than the framework of beam or truss elements associated with a typical

lattice model, a framework of linked particles will be used. This is similar to bonded

particle assembly models as discussed in detail in Section 2.3.3. of Chapter 2. This will

be constructed as a two-dimensional sheet of particles packed together in a hexagonal

pattern, this being the closest packing possible. The particles will be bonded together,

where they touch, using the 'contact bonds' available in PFC3D (See Section 3.3.),

thereby producing a system analogous to a triangular lattice (See Fig. 3.B.).

a)

b)

Fig. 3.B. Diagram Showing a) Typical Configuration of Bonded Particle Sheet for PSM and b) a

Typical Triangular Lattice Model for Comparison
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In a typical lattice model, the beam elements are given material properties, such as

Young's Modulus, E, and Poisson's ratio, v, so that the overall response of the lattice is

the same as the continuum material that is to be represented. In the PSM, the lattice

elements are not beams or trusses but consist of two rigid segments, the particles,

connected by normal and shear contact springs that are considered to exist over a

vanishingly small area (See Fig. 3.9.).

Contact Bonds,
(PSM 'Lattice' Elements)

PFC3D Particles

Contact Springs,
kn & k,

Fig. 3.9. Detail of Typical Three-Particle Unit of PSM Framework Showing Construction of

'Lattice' Elements

It is not, therefore, possible to assign values of E and v to the 'contact bonds' in the

PSM. Instead, continuum equivalence will be established through the normal and shear

contact spring stiffnesses, kn and ks. This will be done by applying the formulations

developed by Morikawa and Sawamoto [63] and Griffiths and Mustoe [32] to the PSM,

and will be discussed in detail in Chapter 4, Section 4.2.2.

In addition to the continuum equivalence, the PSM will be required to model

fracturing behaviour. To accomplish this a fracturing law must be assigned to the

'contact bonds'. The failure criterion in a typical lattice element is usually based on a

combination of critical tensile, shear and bending stresses depending on the exact model

in use. Due to the lack of cross-sectional area in the' contact bonds', it is not possible to

directly allocate a maximum stress capacity to the elements of the PSM. Instead,
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fracture criteria will be developed by several other means, individually appropriate to

the contexts of lattice elements, granular materials and continuum principles. These

will be discussed in detail in Chapter 5, and will be implemented by extra code written

in the FISH language associated with PFC3D
•

3.6. Proposed Implementation of the Particle Fluid Model (PFM)

The second phase of this project is the development of a model for the fluid phase. As

discussed above (See Section 3.2.), it is the aim of this work to develop a multi-physics

model that can deal with all aspects of the hydraulic fracturing technique within one

framework and so, as with the PSM discussed in the previous Section, the fluid model

will be developed in the DEM environment PFC3D• The discrete nature of the PFC3D

code requires that the fluid model is a particle representation.

Previous particle fluid modelling techniques fall between two extremes (See

Chapter 2, Section 2.4.2.). Models, such as the one developed by Zhang et al. [98], are

based on contact interactions of the particles. Essentially, they are models of a granular

material given properties such that it demonstrates fluid behaviour. At the other

extreme, techniques such as Smooth Particle Hydrodynamics (SPH) do not involve

particle interactions at all. Instead, particles are regarded as moving points at which

values of various fluid properties are known. Field quantities are then found by

integrating over all points that lie within a kernel of finite radius around each particle.

The PFM will fall between these two extremes. Although it will not be a contact

model, it is proposed that the fluid flow behaviour will still be determined by

interactions of particles, rather than integration of properties at the particle locations.

This will be done by applying repulsive and attractive forces to the discrete particles,

representing pressure and viscosity fields, which will maintain a separation between

them, disallowing mechanical interaction while causing them to interact with an overall

fluid like behaviour. These forces will be a function of the distance between particles

within certain radii of influence of each other. Particles out with the radii of influence

of a certain particle will have no effect on that particle (See Fig. 3.10. below).
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Zone of
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and viscosity fields

Fig. 3.10. Schematic Diagram of Particle Interaction in PFM

(Particles 1 & 2 interact but particle 3 has no particles within its zone of influence)

This kind of model has similarities to Molecular Dynamics models but is probably most

comparable to the Particle and Force (PAF) model (See Chapter 2, Section 2.4.2.). The

forces representing the pressure and viscosity fields will be calculated and applied via

code written in the FISH language associated with PFC3D• The development of the

PFM will be discussed in detail in Chapter 4, Section 4.3.

3.7. Proposed Implementation of the Coupled Solid/Fluid Model (PSM

+PFM)

As discussed above a main aim of this work is to develop a coupled solid/fluid model

within one modelling framework. While the solid phase will be dealt with by the PSM,

as described above, two separate approaches will be taken to the fluid modelling.

In the first approach, the PSM will be coupled with a simple fluid model in

which forces, representing fluid pressure, will be applied to the discrete particles that

represent the walls of the fracture. In the simplest version of this model, the fluid forces

will be constant over the full length of the fracture but may vary in time as the volume

of the fracture changes resulting in a drop of pressure. The purpose of this model will

be to provide a simple framework that is easy to implement and control for the purposes

of studying phenomena such as elastoplastic deformation and fracture propagation. In

addition to this, it may also be possible to implement a more complex version of this
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model in which the fluid pressure forces are varied along the length of the fracture

according to an assumed pressure profiles taken from one of several, available hydraulic

fracture models.

The second approach to the coupled fluid model is intended to utilise the

potential of the single framework, multi-physics model and will combine the PSM with

the PFM. The PFM will represent a fracturing fluid and will be allowed to infiltrate a

fracture developed within the PSM mesh (See Fig. 3.11. below). Interaction between

the two modelling phases will be completely automatic and the PFM will apply pressure

to the fracture walls consistent with the fluid it represents, subsequently causing

deformation of the solid phase and propagation of the fracture as dictated by the

constitutive models. This model will not require independent, iterative or staggered

calculation of the fracture shape or of the pressure distributions along the fracture walls.

PSM Particle
Assembly

Fig. 3.11. Diagram of Proposed Interactionbetween PSM and PFM

3.8. Proposed Implementation of Particle Propp ant Model (PPM)

Although this model is referred to as the Particle Propp ant Model (PPM), as discussed

in Section 2.5. of Chapter 2, all processes associated with the movement of a granular

material within a fracture, for example, propp ant transport, propp ant stability, sand

production and gravel packing, are considered similar enough that they necessitate the

same modelling concepts. The PPM is therefore designed to handle all of these

processes.
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The PPM will consist of discrete particles given properties such that they

represent the granular material on a grain for grain basis. This will be a simple

implementation using the only the standard facilities available in the PFC3D DEM

environment and depending on the process being modelled the particles will be

generated as free entities or in a closely packed group. Bonding may also be applied

between particles in a closely packed group in order to represent the adhesive action of

capillary forces or resin.

In addition to the basic particle components, a background pressure field will be

implemented in which a gradient will be present (See Fig. 3.12. below). Drag forces,

representing the action of fluid flowing passed the particles in a similar fashion to those

used by Asgian et al. [5], Bruno et al. [11] and Preece et al. [73], will be applied to the

particles on the basis of their position in the pressure field. The pressure field and the

drag forces will be implemented and applied to the particles via routines developed in

the FISH coding language associated with PFC3D.

Low Pressure

Drag Forces Background
Pressure Field

PPM Proppant
Particles

Fig. 3.12. Diagram of PPM Implementation
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3.9. Proposed Implementation of the Fully Coupled Multi-Physics

Framework (PSM + PFM + PPM)

As the ultimate aim of this project it is proposed to implement a conceptual fully

coupled model that will show the full potential of the single framework, multi-physics

model by combining the PSM, the PFM and the PPM to model fluid flow and proppant

transport within a freely propagating hydraulically driven fracture.

A mesh will be constructed with the PSM to represent the solid phase reservoir

formation. As in the coupled solid Ifluid model (PSM + PFM), described above, the

PFM will be used to represent a fracturing fluid that will be allowed to infiltrate a

fracture in the PSM mesh and cause it to further propagate. In addition to the PFM, two

approaches will be taken to the inclusion of proppant material within the fracture fluid.

In the first approach, once the fracture has reached the desired length, the

infiltration of the PFM fluid will be halted. The particles of the PFM will then be

converted to represent proppant material. This will be done by removing the forces

implementing fluid behaviour between the PFM particles and increasing the size of

these particles to that of proppant grains. With the fluid behaviour removed, the

pressure applied to the walls of the fracture will disappear and the fracture will tend to

close under the action of the in situ stresses. The closure of the fracture onto the

proppant material now present will result in the formation of a propp ant packed fracture,

forming a high permeability pathway through the reservoir rock, as is desirable for a

hydraulic fracture treatment in the field.

The second, alternative and possibly more realistic, approach to the inclusion of

the PPM will be to generate, propp ant particles within the PFM as it infiltrates the

fracture in the PSM mesh. These particles will then be carried along in the fracture as it

propagates. Along the fracture walls, particles of the PFM will be removed to simulate

the loss of fluid though the process of leak-off and to allow the continued infiltration of

the PPM into the fracture. As the proppant particles continue to enter the fracture they

will begin to fill it. When the packing process is complete, the remaining PFM particles

will be removed. As in the previous approach, the fluid pressure will then disappear
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and the walls of the fracture will tend to close, under the in situ stress, onto the proppant

pack, leave the high permeability pathway through the reservoir formation (See Fig.

3.13. below).

PPM
Particles

PSM
Particles

Fig. 3.13. Diagram of Final Stage of Proposed Fully Combined Model

3.10. Summary

In this Chapter, the overall proposal for the research to be conducted in this project has

been presented. This outlined a single software framework (SSF), to be constructed

within an existing DEM code, for the purposes of modelling multi-phase,

geomechanical problems that can be encountered in fields such as civil and petroleum

engineering. A particular focus of the research would be the modelling of hydraulic

fracture treatments.

Following discussion of the capabilities and theory behind the proposed

modelling environment, details have then been presented of the proposed

implementations of individual models for each of the solid, fluid and granular

components of the framework within the commercial, geotechnical DEM code, Particle

Flow Code in Three Dimensions. Also presented were proposed implementations of

coupled models consisting of these individual parts.
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The following Chapter will discuss the actual development of the solid and fluid

phase models and a coupled solid/fluid model created by simple combination of these

two single phase models. Evidence for the accuracy of these models in reproducing

certain material responses will also be presented through several benchmark studies, the

results of which will be discussed in detail. From the results, conclusions will be drawn

as to the capabilities of the models and the evolving progress of the project.
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Chapter4:

Numerical Model Development

4.1. Introduction

In this Chapter a full discussion will be made of the development of each of the PSM,

PFM and coupled PSM + PFM models as discussed in the previous Chapter. For each

of the models a description of the development process and physical interpretation will

be given. This will be followed by a description of the methods applied in order to

achieve continuum equivalence with the materials that the models are intended to

represent. The discussion will then move on to describe benchmark problems with

which the validity of each model was tested. The results of these tests are presented and

discussed, along with any conclusions. Discussion is also made of the evolution of the

research work in this project as it developed from the findings of these model tests.

4.2. The Particle Solid Model (PSM)

4.2.1. Development of the PSM

As proposed in Chapter 3, Section 3.2., the PSM was constructed within the DEM

modelling environment PFC3D
• The initial purpose of the model was to represent the

elastic behaviour of solid materials and, given the nature of the problem under

investigation, particularly the behaviour of concrete and rock.

In general, the PSM consists of a two-dimensional bonded particle assembly

constructed, in a lattice type configuration, to the appropriate dimensions of the specific

problem. In all cases considered in this project, the assembly consisted of a mesh of

spherical particles of uniform radius, arranged in triangular formation, in a planar sheet,

such that they were packed as closely as possible (See Fig. 4.1.).
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Fig. 4.1. Typical Example of Two-Dimensional Bonded Particle Assembly Constructed for PSM

It should be noted that the triangular mesh is 60° symmetrical and that, therefore, its

structure in the x and y-directions not the same. Although the exact orientation of the

mesh is arbitrary, the arrangement shown above is applied to all PSM meshes studied in

this project. Furthermore, although PFC3D is a fully three-dimensional modelling

environment, the particles in a mesh are fixed against displacement in the z-direction

and against rotation about the x and y-axes. In this way, only two-dimensional, planar

behaviour is considered.

Particle interaction is governed by linear, normal and shear spring stiffnesses

that come into effect at each inter-particle contact and the assembly can therefore be

visualised as a single layer network of springs (See Fig. 4.2. below). This consequently

allows the particle assembly to be regarded as having a unit thickness, no matter what

the actual thickness is, as defined by the particle radius (See Fig. 4.3. below).
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Shear Contact Spring
Network Nodes
Representative of
ParticlesNormal Contact Spring

Fig. 4.2. Visualisation of PSM Bonded Particle Assembly as Spring Network

\
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Larger Diameter
x Particle Assembly

Smaller Diameter
Particle Assembly

Concurrent
Contact Springs for
All Particle Sizes

Fig. 4.3. End Elevation of Particle Assembly Showing Contact Spring Position

Independent of Particle Size

The actual radius of the particles is, therefore, arbitrary and can be varied as desired in

order to ensure an adequate discretisation of the model in question. Model sensitivity to

mesh discretisation is studied as part of the benchmark problems discussed in Section

4.2.3. In fact, it should be noted that the mesh dimension of most significance is the

inter-particle link length but, obviously, this is directly related to the particle radius.

The inter-particle links are implemented by the inclusion of 'contact bonds' (See

Chapter 3, Section 3.3.) that connect particles together where they are in contact in the

initial mesh configuration. The 'contact bonds' provide no extra stiffness to the inter-

particle contacts and simply allow tensile forces to be transmitted, up to a predefined
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maximum, in the same way as compressive forces. The inter-particle links are not

regarded as having any length or cross-sectional area of their own. Instead, they can be

thought of as joining together two rigid segments of an equivalent lattice element with a

length equal to the distance between the centroids of two linked particles, i.e. initially

twice the particle radius in a uniform mesh (See Chapter 3, Section 3.5. and Fig. 4.4.
below).

Normal and Shear
Contact Springs

Particle Pair
in Contact Particle Centroid

Rigid Segment of
Equivalent Lattice
Element

Fig. 4.4. Diagram of Bonded Particle Pair Showing Equivalent Lattice Element Overlaid

Through the visualisation of the PSM mesh as a spring network (as shown in Fig. 4.2.

above) it can be seen that the model is comparable to a two force lattice model as

described by Schlangen and Garboczi [79] and discussed in Chapter 2, Section 2.3.1.

The inter-particle contacts of the PSM are able to transmit normal and shear forces but

are not able to support a bending moment. Therefore, in contrast to the lattice models of

other researchers (Schlangen and Garboczi [79], Schlangen and van Mier [80, 81, 82],

Tzschichholz and Herrmann [88], Tzschichholz et al. [89], van Vliet [95]) that, as

discussed in Chapter 2, Section 2.3.1., employed beam elements, the PSM does not

reproduce the behaviour of a Cosserat type medium. The exact construction and

properties of the inter-particle links is examined in more detail in the following

Sections.

It should be also noted that the models developed for this project are considered

to be on a macro-scale, with link lengths on the order of metres, as opposed to the

micro-scale lattice models of the researchers mentioned above where element lengths

were on the order of millimetres.
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4.2.2. PSM - Continuum Equivalence

As explored in Chapter 2, Section 2.3.1., the elements of a lattice type model must be

given properties such that the overall response of the lattice accurately reproduces the

behaviour of the continuum material that it represents. There are various calibration

techniques that can be employed in order to develop continuum equivalence and several

approaches were investigated in this work. The equivalence techniques applicable to a

particular model and the actual properties calibrated depend on the structure of the

lattice elements in that model. For a typical lattice model (Schlangen and Garboczi

[79], Schlangen and van Mier [80, 81, 82], Tzschichholz and Herrmann [88],

Tzschichholz et al. [89], van Vliet [95]), the elements consist of elastic beams and are

consequently calibrated by applying dimensions of height and width, and material

properties of Young's Modulus and Poisson's ratio. This is explored in detail in

Chapter 2, Section 2.3.1. As discussed in Chapter 3, Section 3.5., and in the previous

Section of this Chapter, the equivalent lattice elements in the PSM model consist of two

rigid segments (the particles) joined where they meet by normal and shear contact

springs. Therefore, the only properties that can be varied are the spring stiffnesses and

it is through these that continuum equivalence must be found for the PSM.

4.2.2.1. Hrennikoff's Formulations

The first method of element calibration investigated for application to the PSM mesh

was the technique originally developed by Hrennikoff [36] (See Chapter 2, Section

2.3.1.), to determine the required properties of bar elements in open frameworks.

Hrennikoff developed formulations for the calibration of various framework

configurations, one of which was a triangular construction as is equivalent to the PSM

mesh and it was hoped that this could be directly applied in this work.

Hrennikoffs original formulations were based on the comparison of various

configurations of frameworks with a continuous plate, subject to plane stress conditions.

For a particular framework geometry, Hrennikoff calculated the normal strains that it

would experience, under an arbitrary external load of P in the x-direction and vP in the
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j-direction, and the shear strains it would experience under a uniform shear loading of

P.l(bar), where l(bar) is the length of the framework elements. Clearly, for calculation of

the normal strains, the value of vP is deliberately chosen in order to produce zero y-

strain. These strains were then expressed in terms of parameters specific to the

framework, such as the bar element length, the cross-sectional area of the bar elements,

the stress in the bar elements and the Poisson's ratio and Young's modulus of the

continuum plate material. The expressions derived for the strains in a particular

framework were equated to the expressions, shown below, for strain in a plate subject to

the same loading.

Eq.4.1.

& =0y Eq.4.2.

2(1+v)P
Y =
xy Et(plale)

Eq.4.3.

where, &x,y are strains in the x and y-directions respectively, yxy is shear strain and tIP/ate)

is the thickness of the continuous plate.

These equalities were then rearranged to solve for the cross-sectional areas of

the bar elements. For a framework consisting of isosceles triangles, Hrennikoff found

that, due to the symmetry of the framework, the equations were only valid for an

equilateral triangular arrangement with a Poisson's ratio fixed at Yl. Hence, the required

cross-sectional area was shown to be:

.J3
~bar) =2i(barY(plale ) Eq.4.4.

where, A(bar) is the cross-sectional area of the bar elements.
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NB - for convenience and consistency in this thesis some of the notation in Eq. 4.1. to

Eq. 4.4. has been altered from the original text (Hrennikoff [36]).

As mentioned before, the 'contact bonds', forming the inter-particle links of the

PSM are considered point contacts, existing over a vanishingly small area. From Eq.

4.4. it can be seen that a required cross-sectional area is calculated for the framework

elements, depending on the framework discretisation and the thickness of the continuum

to be replaced. Given that the PSM links have no physical cross-sectional area to alter,

a method had to be found of applying properties equivalent to a change in cross-

sectional area. As mentioned above this had to be in terms of the normal and shear

contact spring stiffnesses. In order to do this the following elastic behaviour

relationships were assumed (See Eq. 4.5. to Eq. 4.7.).

k = ~bar)
n l(bar)

Eq.4.5.

k = G~bar)

S l(bar)
Eq.4.6.

Eq.4.7.

where, G is the material shear modulus.

This method was first applied by Davie [21] for a test involving a uniaxially

loaded mesh. A parametric study showed that a value of element cross-sectional area

approaching twice that calculated by Hrennikoff' s formulation was required in order for

the model to reproduce displacements similar to those expected in an equivalent

continuum. It was noted at the time that this might have been a systematic difference

between the hand calculation applied in the study and the internal calculation of the

PFC3D program. Subsequently, this factor of two has been shown to result from
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PFC3D,S method of assuming contact spring stiffnesses to act in series (See Eq. 3.1. and

Eq. 3.2. repeated below and Chapter 3, Section 3.3.), which produces internal stiffnesses

that are half the value of those input to the model via Eq. 4.5. and Eq. 4.6.

Eq.3.1.

Eq.3.2.

It could therefore be argued that, if PFC3D,S internal method of calculation were taken

into account, Hrennikoff's formulation would give reasonable results when applied

directly to a PSM mesh via the assumed elastic relationships shown above (See Eq. 4.5.,

Eq. 4.6. andEq. 4.7.).

However, the study carried out by Davie [21] also showed that the value of v
calculated for the test mesh varied considerably from Hrennikoff's fixed value of Yl.

When the actual calculated value of v was applied in the parametric study, the

calculated value of required cross-sectional area moved away from that produced by

Hrennikoff's formulation. It has been observed by van Mier [59] that, in fact, the value

of v for a lattice type model mesh will depend on both shear stiffness and the normal

stiffness of the mesh elements. Hrennikoff's formulation was based only on the

contributions of axial loads as transferred by pin-jointed truss elements. Therefore,

while the method may be appropriate for the calibration of a PSM mesh consisting of

inter-particle links with shear stiffnesses set to zero, it will not be suitable for a mesh

with non-zero shear stiffnesses. The presence of shear stiffnesses in the test mesh was

thought to account for the discrepancies found in the study discussed above and, for this

reason, Hrennikoff's method was abandoned in conjunction with the calibration of

continuum equivalence for the PSM.
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4.2.2.2. Trial and Error Approaches

An alternative method for establishing continuum equivalence is through a trial and

error approach. This technique involves the construction of a suitable benchmark mesh,

which represents a continuum problem for which the elastic behaviour is well

understood. The model properties, the contact spring stiffnesses in the case of the PSM,

are adjusted iteratively until the model response is considered to reproduce the

behaviour of an equivalent continuum, with the desired material properties, to a

sufficient accuracy.

An example of this approach is the work conducted by Davie [21] in order to

establish continuum equivalence for a PSM like mesh, designed to study wellbore

stability problems. An example of a bonded particle assembly mesh employed in this

numerical study is shown below (See Fig. 4.5.).

E
LOco
~

5.8m

Fig. 4.5. Example of Bonded Particle Assembly Mesh Used for Well bore Stability Studies

(After Davie [21])

In the search for an appropriate calibration technique, it was noted that the model

meshes, as seen above, resembled a thick walled cylinder. Thick walled cylinder

behaviour is well understood and can be described by the equations shown below

(Dugdale [25]).
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Eq.4.8.

1
[ (

2 2) ( 2)]Ii Ii Ii
a, = (2) PI -2 --2 -Pe 1--2

1- !L re r: r:
r2
e

Eq.4.9.

where, u is the total displacement of a point, fJ, is the radial stress, r, and re are

respectively the internal and external radii of the thick walled cylinder, P, and P, are

respectively the internal and external applied pressures and rm is the radius between rt

and re at which measurement is taken.

For a particular mesh, similar to that shown in Fig. 4.5., values of internal and

external radii were approximated, and internal and external pressures were applied. For

given values of Young's modulus and Poisson's ratio, the displacement of the mesh was

checked against the displacement predicted by Eq. 4.8. The contact stiffnesses, k, and

ks, were then varied iteratively, choosing firstly a value for k, and then varying ks, until

the displacements were considered to be sufficiently close to those expected for a mesh

with the current material properties. In the study in question, this was achieved to a

level of accuracy of ±1mm.

By way of confirming the displacement results, the radial stress profile over a

radius of the mesh was also checked against the profile produced by Eq. 4.9. This

showed good consistency with the displacements of the mesh for the same conditions.

However, it should be noted that the radial stress is only a function of the cylinder size

and the pressures applied. It is not a function of material property but is a condition of

equilibrium. It is not therefore a good confirmation of the accuracy of the mesh

displacement results. Furthermore, it is now thought that an accuracy of±lmm may not

be sufficient for the determination of the relatively large contact stiffnesses on the order
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of 108N/m. The stiffnesses were only calculated to an accuracy of ± 1x 1O~/m and it is

likely that a wide range and combination of normal and shear stiffnesses will result in

the same displacements when measured to this level.

Various alterations could be made in order to improve this calibration technique,

for example, the accuracy to which displacements are measured could be increased.

However, it is felt that in order to reach a sufficient level of accuracy the time required

to calibrate a mesh would also increase excessively. Furthermore, inaccuracies

associated with the assumed dimensions of the cylinder, particularly when estimating

the radius of a cylinder in a square mesh, would remain. Although a more simple

and general benchmark model, such as a uniaxial compression test, could be applied in

this technique, the example described above serves to illustrate the inherent difficulties

and inaccuracies of the trial and error method. While the results of the study described

were considered acceptable for the work for which it was carried out, it is now felt that

this particular method is not accurate enough to be pursued in the course of the work

carried out for this thesis.

4.2.2.3. Application of Strain Energy Equivalence Technique to PSM

Another method for establishing continuum equivalence for a lattice type model is to

look into the strain energy equivalence. This involves the calculation of the stored

strain energy in a continuum area equivalent to a typical lattice unit and deriving,

analytically, equations relating it to the variables associated with the lattice elements in

that unit.

As shown in Chapter 2, Section 2.3.1., this is the approach used by Schlangen

and Garboczi [79], Schlangen and van Mier [81] and van Vliet [95], in order to calibrate

lattices of beam elements. The general equations derived in order to calculate the two-

dimensional elastic moduli for a regular triangular lattice of beam elements can be

found in Chapter 2, Section 2.3.1. (See Eq. 2.7. to Eq. 2.9.). These equations can be

rearranged and rewritten specifically for a lattice of rectangular beam elements (See Eq.

2.10. and Eq. 2.11.) and, for convenience, these are repeated below.
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(
1- (h(beam»)2)

[(beam)
Eq.2.10.

V(lallice) = ( (h )2)
3 + (beam)

[(beam)

E . = 2 '3 E(beam )~heam)
(Ialllce) V'" I

(beam)

1+ (h(beam»)2
[(beam)

Eq.2.11.

As can be seen from Eq. 2.10., Poisson's ratio for the lattice is dependent on only the

height and length of the lattice elements. It is noted by van Vliet [95] that it is not at all

dependent on the thickness of the elements and so the lattice can be considered to have

any thickness. For a representation of a continuum model, this is usually taken as unit

thickness. The element length is usually chosen in order to achieve an adequate

discretisation of the mesh. For the models developed by Schlangen and van Mier [80,

81, 82] and van Vliet [95], the element length was on the order of lrnm in order to

capture the heterogeneity of concrete. Since the element length is effectively

predetermined by the requirements of the model it is only necessary to adjust the height

of the elements to achieve a desired value of Poisson's ratio for the lattice mesh.

Rearranging Eq. 2.10. in terms of element height gives:

1- 3V(lallice) 1
1 (beam)+ v(/allice)

Eq.4.10.

With the height of the beam elements available, it is then possible, from a

rearrangement of Eq. 2.11. , to calculate a value for the Young's modulus of the beams,

in order to reproduce a desired overall Young's modulus for the lattice (See Eq. 4.11.).
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E - E(ral/iceY(beam)
(beam) - 2 '3A,

V s, ,beam)

3+ (h(beam)J

2

I(beam)

1+ (h(heam) J2
I(heam)

Eq.4.11.

The beam properties given by the equations shown above are derived from the stored

strain energy in an equivalent continuum and as such, they reflect the properties of an

infinite continuum. It is possible to develop a lattice model with periodic boundary

conditions that will hence reproduce an infinite continuum, however, this is not of much

practical use as in practice, a model will usually represent a finite domain. A study by

van Vliet [95] examined the effect of the boundary conditions, present in a finite model,

on the overall material properties of a lattice. This was done by developing simple,

square benchmark lattice models in which the properties of the beam elements were

calculated as described above. The overall material properties of the lattice models was

checked by applying Hooke's Law to the overall mesh deformations under uniaxial

loading. The findings of the study showed that if the ratio of overall lattice length to

element length was ~20 then this calibration technique was sufficiently accurate. Itwas

also found that the overall Poisson's ratio of the lattice was more sensitive to this ratio

than the Young's Modulus.

The strain energy equivalence method has been shown to work well for lattice

models consisting of beam elements (See Schlangen and Garboczi [79], Schlangen and

van Mier [80,81,82], van Vliet [95]) and it was hoped to be able to transfer this method

of developing continuum equivalence to the PSM. As with Hrennikoff's method (See

Section 4.2.2.1. above) the formulae derived from the stored strain energy required an

element cross-sectional area. As explained previously, the inter-particle links of the

PSM do not have a physical cross-sectional area and so it would be necessary to find a

method by which the material property of Young's modulus related to elements of a

certain cross-sectional area could be expressed in terms of the contact stiffnesses, kn and

ks• This should have been possible through the assumed elastic relationship expressed

above in Eq. 4.5. to Eq. 4.7., however, it should be remembered that the beam elements
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employed in these lattice models are capable of supporting bending moments as well as

the normal and shear forces.

Rather than apply this complex, two stage, calibration procedure to the PSM an

alternative method was considered, that directly derives formulae from strain energy

equivalence for a bonded particle assembly, consisting of a lattice of contact spring

elements, rather than of beam elements. The formulae express the normal and shear

contact stiffnesses in terms of the Young's modulus and Poisson's ratio of the

continuum material to be represented. These formulations were initially developed by

Morikawa and Sawamoto [63] for application in a bonded particle assembly and were

further developed by Griffiths and Mustoe [32]. Both of these studies examined a

triangularly packed bonded particle assembly very similar to the PSM.

The derivation of these formulae is explained in detail by Griffiths and Mustoe

[32] but the principle is based on the calculation of the total strain energy, Wtot, stored in

a typical, triangular, equivalent lattice unit of the particle assembly, as shown below

(See Fig. 4.6.), and the relationship between strain energy density and the stress-strain

behaviour of a deformed elastic body.

Equivalent Lattice --....;::~IC ___
Elements

Discrete Particles

(Normal and Shear
Contact Springs)

Fig. 4.6. Diagram Showing Typical Triangular Unit of Bonded Particle Used for Strain Energy

Equivalence Calculation
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It can be shown that the stored strain energy, Wtot, in a typical triangular lattice unit, as

shown above, can be expressed as Eq. 4.12. and is invariant for any value of the angle 9:

Eq.4.12.

where, r is the particle radius, Exx,xy,yx,yy are the components of the strain tensor and Pis

the average nodal rotation.

In order to calculate the strain energy density, an associated volume is assigned

to the typical triangular unit, as shown below (See Fig. 4.7.).

Area Associated with
Individual Element

Discrete
Particles

Total Area Associated
with Typical Triangular
Lattice Unit

Fig. 4.7. Diagram Showing Volume Associated with Typical Triangular Lattice Unit for

Calculation of Strain Energy Density

Each element in the triangular unit is assigned an associated area equal to one third of

the triangle on each side of it. Therefore, a typical triangular unit of elements has a total

associated hexagonal area equal to twice the enclosed triangular area. As with the PSM,
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the particle assembly is assumed to have unit thickness (See Section 4.2.1.) and

therefore the volume, V,associated with the lattice unit is equal to:

Eq.4.13.

The strain energy density in a typical triangular lattice unit can then be expressed as:

v = w,ot
o V Eq.4.14.

By deriving the strain energy density with respect to each of the components of the

strain tensor, it is possible to develop the corresponding stress tensor (See Eq. 4.15. to

Eq.4.17.).

Eq.4.15.

Eq.4.16.

Eq.4.17.

where O'xx,xy.yx,yy are components of the stress tensor and 'rxy is the conventional shear

stress.

When Eq. 4.12. is substituted into equation Eq. 4.14. and the derivations

described in Eq. 4.15. to Eq. 4.17. are applied, the following equalities are produced.
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Eq.4.18.

Eq.4.19.

Eq.4.20.

where, yxy is the 'engineering' shear strain, (described as "engineer's" shear strain by

Griffiths and Mustoe).

With the components of the stress tensor available, it is then possible to equate

the contact spring formulations in Eq. 4.18., Eq. 4.19. and Eq. 4.20. directly to solid

mechanics formulations, in terms of Young's modulus and Poisson's ratio, for both

plane stress (See Eq. 4.21. to Eq. 4.23.) and plane strain (See Eq. 4.24. to Eq. 4.26.)

conditions.

Plane Stress Conditions:

Eq.4.21.

Eq.4.22.

E
l' - r
xy - 2(1 +v) xy Eq.4.23.
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Plane Strain Conditions:

E(l-v) Eva = e + s
xx (1+vXl-2v) xx (1+vXl-2v) yy

Eq.4.24.

Ev E(l-v)
a = C + C

yy (1+vXl-2v) xx (1+vXl-2v) yy
Eq.4.25.

Eq.4.26.

In both case these can then be rearranged to solve for k, and k, (See Eq. 4.27. & Eq.

4.28. and Eq. 4.29. & Eq. 4.30.).

Plane Stress Condition:

k = E
n .J3(I-v) Eq.4.27.

Eq.4.28.

Plane Strain Conditions:

k = E
n .J3(1-2vXl+v) Eq.4.29.

k = E(1-4v)
s .J3(1-2vXl+v) Eq.4.30.
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A number of points can be noted from the equations shown above. Firstly, as

mentioned previously, the contact spring stiffnesses are defined only in terms of the

Young's modulus and Poisson's ratio of the continuum material that is to be

represented. Unlike the properties of the lattice beam elements, defined in Eq. 2.10. and

Eq. 2.11. above, the contact stiffnesses do not depend on the element length. This is

because the springs acting at particle contacts, which have no length of their own, are

independent of the particle radii.

Secondly, it can be seen from these equations that both the plane stress and

plane strain formulations are valid only over a limited range of Poisson's ratio, above

which the shear stiffness becomes negative; a meaningless result. In the case of the

plane stress formulation this range is between v = 0 and v = Yl. This is a well known

limitation of triangular lattice models (See Chapter 2, Section 2.3.1.). Similarly, the

valid range for the plane strain formulation is between v = 0 and v = v... In both

formulations, when Poisson's ratio is at the maximum value, k, becomes zero and the

bonded particle assembly becomes an axial force lattice, equivalent to a simple pin-

jointed truss. When the Poisson's ratio is less than its maximum the assembly behaves

as a two force lattice, as described by Schlangen and Garboczi [79] (See Chapter 2,

Section 2.3.1.). The limit of this behaviour is when Poisson's ratio reaches zero and kn
and k, become equal.

Although Morikawa and Sawamoto [63] developed these continuum equivalence

equations for a two-dimensional model consisting of cylindrical discrete elements, they

can be directly applied to the spherical particles of the PSM. As discussed in Section

4.2.1. above, the fixing of the PSM in the z-direction induces two-dimensional

behaviour and both the PSM and Morikawa and Sawamoto's model can be thought of as

planar networks of normal and shear contact springs (See Fig. 4.2. repeated below).
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Shear Contact Spring
Network Nodes
Representative of
ParticlesNormal Contact Spring

Fig. 4.2. Visualisation of PSM Bonded Particle Assembly as Spring Network

(Repeated from page 107)

The following Sections concern benchmark problems used to verify the behaviour of the

PSM with continuum equivalence developed by the equations described here.

4.2.3. PSM Benchmark Problems

The method of finding lattice-continuum equivalence through strain energy equivalence

described in the Section 4.2.2.3. above, is easily applicable to the PSM. Furthermore, a

similar technique employed by Schlangen and van Mier [80, 81, 82] and van Vliet [95]

is seen to produce highly satisfactory results in lattice models consisting of beam

elements even with the inclusion of complex heterogeneity. Despite this, it was

necessary to assess the validity of the approach in the PSM.

In order to do this several benchmark models were constructed for which the

elastic behaviour is well understood and for which the expected response of an

equivalent continuum material could be easily calculated. Various benchmark models

were suitable for this purpose and the problems used by Griffiths and Mustoe [32] in a

validation of the same continuum equivalence technique were adopted. The first of

these problems considered the deformation of an almost square mesh under uniaxial

loading. The second problem considered the tip displacement of a long, narrow mesh

loaded as a cantilever. The construction and testing of these benchmark models is

described in the following Sections, along with discussion of the presented results.
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4.2.3.1. Application of Linear Contact Model in PFC3D

It should be noted that when these benchmark problems were initially implemented, a

common problem was experienced in which the displacements of the PSM meshes

tended towards a value twice that of the predicted, theoretical displacements. As

discussed in Section 4.2.2.2., a similar problem was encountered by Davie [21] when

attempting to calibrate a bonded particle assembly, similar to the PSM, by way of

Hrennikoff's formulations.

After examination of the linear contact model employed by PFC3D, it was found

that the discrepancy in the deformations was due to the assumption, made within PFC3D,

that when two particles meet, their contact springs act in series. This assumption leads

to the contact normal secant stiffness, given by Eq. 3.1., and the contact shear tangent

stiffness, given by Eq. 3.2. (See Chapter 3, Section 3.3. and equations repeated below

for convenience) (See also Itasca Consulting Group [37]).

Eq.3.1.

Eq.3.2.

As can be seen from these formulae, given uniform stiffness in the mesh, as is the case

in the PSM, this formulation results in contact stiffnesses equal to half that of the input

values. This factor had not been accounted for in the initial implementations of the

benchmark problems and consequently the mesh deformations were twice those

expected. In order to allow for this the input stiffnesses, calculated from the

formulations of Morikawa and Sawamoto [63] (See Eq. 4.27. to Eq. 4.30.) were simply

doubled. The results of the studies conducted after this correction can be seen in the

following Sections.
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4.2.3.2. Uniaxial Benchmark Model

4.2.3.2.1. Elastic Deformation Tests

This benchmark study looks into the elastic deformation of an almost square PSM mesh

and compares the findings with the deformations predicted by simple elastic plane strain

theory for an equivalent continuum. The test was carried out in order to check the

validity of the strain energy equivalence formulations, developed by Morikawa and

Sawamoto [63] and further derived by Griffiths and Mustoe [32], when applied to the

PSM.

For the purposes of this study, a regular, PSM mesh was constructed, as shown

in Fig. 4.8. below, to approximately square dimensions, with two force boundaries and

two boundaries fixed to produce a double symmetry condition. The particle radius was

O.5m and the equivalent lattice element length was therefore 1.Om. The construction of

this model followed as closely as possible the construction of a benchmark model

developed by Griffiths and Mustoe [32]. As in the original test the mesh was assumed

to experience plane strain behaviour and the contact spring stiffnesses were calculated

from the appropriate formulae, as developed by Morikawa and Sawamoto [63] (See Eq.

4.29. and Eq. 4.30. repeated below).

y

x

Fig. 4.8. Diagram of PSM Mesh for Uniaxial Benchmark Test
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k = E
n .J3(1-2vXl+v) Eq.4.29.

k = E(I-4v)
s .J3(I- 2vXl +v) Eq.4.30.

Several studies were conducted, loading the mesh in both the x and y-directions, in both

tension and compression. In each case, a load of 1.ON was applied to each particle on

the force boundary under consideration, however, in order to maintain symmetry

conditions, half loads were applied to the particles at the edges of the mesh. Thus, a

total load of 17.ONwas applied in the y-direction and 20.0N in the x-direction.

The deformations measured in the mesh and their implications for the material

properties of the model were compared with those expected of an equivalent continuum

material. The values chosen for the Young's modulus and Poisson's ratio of the model

were equivalent to those used by Griffiths and Mustoe and corresponded to certain

ratios of kn to ks (See Table 4.1. below).

E v kn ks kn

()(lo1 ()(lo1 ()(lO6) k.

1.732 0.00 1.0 1.0 1.0

1.460 0.13 1.0 0.5 2.0

1.076 0.25 1.0 0.0 00

Table 4.1. Uniaxial Benchmark Model Input Values for Young's Modulus and Poisson's Ratio

and Corresponding Contact Stiffnesses

The equivalent continuum deformations were also calculated by the same method

applied by Griffiths and Mustoe [32], who showed that the Young's modulus and
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Poisson's ratio of a material can be related to deformations under certain loading

through rearrangements of the plane strain equations given in Section 4.2.2.3. (See Eq.

4.24. to Eq. 4.26. above) such that:

E = 0" (1- y2 ,- = 0" (1- y2)io(x,y)
X,Y jG'x,y X,y 0

x.y
Eq.4.31.

Eq.4.32.

where, O"x,y is the stress, 10(x,y) is the original length of the material sample, Ox,y is the

change in length of the material sample and x,y indicates the self perpendicular axes in

which the relevant measurement is taken.

These equations were applied in two ways. Firstly, using the Young's modulus

and Poisson's ratio of the continuum material, the expected displacements in the x and

y-directions were calculated. Secondly, the equations were used in reverse by entering

the actual model displacements to return values of Young's modulus and Poisson's ratio

for the model mesh.

The results of these tests are shown below in Table 4.2. As can be seen from the

table, the deformations of the model mesh in the y-direction, under both compressive

and tensile loading, are in very good agreement with the predicted deformations

according to Eq. 4.31. and Eq. 4.32. above, and the maximum difference is only -0.31 %.

Consequently, the inferred material properties for the mesh also match very well with

the input values and the maximum variation between input and implied Young's

modulus is again only -0.31 %. In addition, the lateral deformation and hence the

Poisson's ratio, of the PSM mesh show excellent agreement with the continuum values

in all cases. It can be further noted that the mesh behaved identically in tension and

compression.
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Predicted Measured Implied
Loading Dir.

Continuum Deformations of Properties of

E v Deformations PSMMesh PSMMesh
+ Tens.

y x y x E v
- Compo

(xlO6) (xlO~ (xlO~ (xlO-6) (xlO-,) (xlO')

-y 1.732 0.00 -10.00 0.00 -10_00 0.00 1.732 0.00

-y 1.460 0.13 -11.66 1.71 -11.66 1.75 1.460 0.13

-y 1.076 0.25 -15.09 4.94 -15.14 5.16 1.073 0.26

+y 1.732 0.00 10.00 0.00 10.00 0.00 1.732 0.00

+y 1.460 0.13 11.66 -1.71 11.66 -1.75 1.460 0.13

+y 1.076 0.25 15.09 -4.94 15.14 -5.16 1.073 0.26

-x 1.732 0.00 0.00 11.33 0.00 11.16 1.760 0.00

-x 1.460 0.13 -1.94 13.22 -1.99 13.06 1.478 0.13

-x 1.076 0.25 -5.60 17.10 -5.78 17.18 1.071 0.25

Table 4.2. Results of Deformation Analysis for PSM Uniaxial Benchmark Problem

Under loading in the x-direction, it can be seen that the discrepancy between the input

and implied properties is slightly larger than that for the y-direction. However, the

maximum difference between predicted and actual deformation is 1.57% and the

maximum difference between input Young's modulus and implied Young's modulus is

1.59%. These discrepancies are considered acceptable. Furthermore, as with tests that

applied load to the mesh in the y-direction, the lateral deformation, and hence the

Poisson's ratio, of the PSM mesh are in good agreement with the continuum values for

all cases.

It can also be noted that, when loaded in the y-direction, although the model

shows only small deviations from theoretical results, the differences between predicted

and model values, and in particular of lateral deformations, increase with increasing

Poisson's ratio. The sensitivity of the overall Poisson's ratio of a lattice model to the

discretisation of the mesh was also noted by van Vliet [95] and this is discussed in more

detail below.
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The results of the studies discussed above were further confirmed by the results

of an additional, brief, study that was carried out on a mesh with the same dimensions as

the one shown above (See Fig. 4.8.) but with an equivalent lattice element length of

only 0.5m (See Fig. 4.9. below).

Lx

Fig. 4.9. Diagram of Finer Mesh PSM for Uniaxial Benchmark Test

In this, finer mesh, study measurements were taken as in the previous study and the

results are shown in Table 4.3. below. As for the coarse mesh, a load of 1.0N was

applied to each particle on the force boundary, resulting in a total applied load of 34.0N

in the y-direction and 40.0N in the x-direction.

As can be seen from the table below, the results of deformation in the finer mesh

model showed even closer agreement with the continuum values than in the previous

study. The maximum percentage difference between predicted and actual extension of

the mesh is less than 0.19% under loading in the y-direction and 1.00% under loading in

the x-direction. This improvement was as would be expected for a mesh of higher

discretisation and it was not deemed necessary to repeat all of the tests from the first

study. Again, the discrepancy between predicted and actual mesh extension in the y-

direction increased with increasing Poisson's ratio.
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Predicted Measured Implied
Loading Dir.

Continuum Deformations of Properties of

E v Deformations PSMMesh PSMMesh
+Tens.

y x y x E v
- Compo

(xlO~ (xlO"1 (xlO"1 (xlO"1 (xlO"1 (xlO6)

+y 1.732 0 20.00 0.00 20.00 0.00 1.732 0.00

+y 1.076 0.25 30.18 -9.87 30.24 -10.09 1.074 0.25

+x 1.732 0 0.00 22.67 0.00 22.44 1.750 0.00

+x 1.076 0.25 -11.19 34.21 -11.58 34.22 1.076 0.25

Table 4.3. Results of Deformation Analysis for PSM Finer Mesh Uniaxial Benchmark Problem

The results of these studies show that a lattice type model calibrated through strain

energy equivalence can accurately reproduce the elastic behaviour of a continuous

material and these findings agree with those of Griffiths and Mustoe [32] and of van

Vliet [95]. As mentioned previously, van Vliet [95] found that the ratio of mesh length

to element length, L, should be 2:20in order for the properties, calibrated through strain

energy equivalence, to be accurately reproduced by a lattice model. The ratio, L, in the

first study is approximately 17 in both directions. Obviously, this discretisation is a

little coarser than van Vliet would suggest is sufficient and, as illustrated above, there

are small differences between the theoretically predicted deformations and those

actually produced by the mesh. However, these are considered acceptable for the

purposes of this study and to confirm the suitability of the strain energy equivalence

formulations, developed by Morikawa and Sawamoto [63], for calibrating the PSM.

The ratio, L, of the finer mesh, used in the second study, is approximately 34 and, as

implicit in van Vliet's findings, the accuracy of the mesh reproduction of continuum

behaviour is increased over that of the first study.

The study conducted by van Vliet also showed that the difference between the

input value of Poisson's ratio and that implied by the deformation of the mesh was very

sensitive to the discretisation of the mesh and hence, to the ratio L, especially when

loading the mesh in the x-direction in order to establish Poisson's ratio of the y-

direction. Furthermore, van Vliet found that for a given mesh the lateral responses, and
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hence the implied Poisson's ratios, would be different in the x and y-directions.

Essentially the lattice mesh was showing a degree of anisotropy.

As can be seen from the results in Table 4.2. and Table 4.3., the PSM mesh does

not show significant anisotropy in this way, although it is realised that, as discussed

above, the meshes used in these studies were of reasonably fine discretisation. A

coarser mesh may show similar results to those found by van Vliet. Furthermore, it can

be noted in the results of the PSM benchmarks that the agreement between predicted

and actual deformations, and consequently between input and implied material

properties, decreases with increasing Poisson's ratio. This is particularly noticeable in

the case of lateral deformations were the difference between the predicted, theoretical

values for lateral deformation and the actual lateral deformations of the mesh range

from 0.00% with a Poisson's ratio of 0.0 to 4.58% with a Poisson's ratio of 0.25.

Despite the reasonably high percentage differences, the physical differences between

the predicted and actual values of deformation are very small and the consequent

variations between implied values of Poisson's ratio and input values are almost

insignificant when measured to two decimal places (See Table 4.2. and Table 4.3.).

However, this phenomenon may be associated with the sensitivity also noticed by van

Vliet. The explanation presented by van Vliet concerns the boundary conditions and the

fixity of the triangularly configured lattice mesh and this may well be the cause of the

similar results in the PSM. As with van Vliet's lattice, the fixed boundaries of the PSM

are different in the x and y-directions due to the triangular configuration of the mesh.

As can be seen from Fig. 4.8. and Fig. 4.9. above, the bottom boundary of the mesh,

fixed against displacement in the y-direction, consists of a smooth row of particles.

However, the left-hand boundary, fixed against displacement in the x-direction, consists

of a staggered row of particles. In fact, only the outermost particles, marked in the

figures, are fixed and the inner particles of the boundary remain free. Obviously, as the

discretisation becomes finer the staggered boundary becomes a closer approximation on

a smooth boundary. However, in coarser discretisations the staggered boundary

becomes very different to the smooth bottom boundary and this may produce a

discrepancy between the x and y deformation of the lattice in comparison with those

expected form an equivalent continuum material. A test was conducted with the inner

and outer particles of the left-hand boundary fixed against displacement in the x-

direction, but it was found that this significantly altered the overall stiffness of the mesh
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and the results moved away from those predicted by the theory. It is considered by van

Vliet that, given a mesh discretisation ratio, L:::20, the inaccuracy associated with

Poisson's ratio under y extension becomes small enough that it is well within the limits

of experimental measurement on real materials. This is the argument adopted in the

work carried out for this thesis and, provided that model meshes are suitably discretised,

the discrepancy in lateral behaviour of the PSM is considered to be acceptable.

4.2.3.2.2. Equivalent Continuum Stress Tests

In addition to the studies of mesh deformation carried out in the previous Section,

studies were also carried out in order to test the ability of the granular-continuum stress

conversion factors (See Chapter 3, Section 3.4.3.) to accurately predict the expected

stress state for an equivalent continuum material, as represented by the PSM mesh,

under various loading conditions. To do this the components of the granular stress

tensor in a particle near to the centre of a PSM mesh, where it was considered that

boundary effects would be minimised, were recorded under various loading conditions.

These granular stress components were then multiplied by the stress conversion factors,

as calculated for the hexagonal PSM mesh configuration according to the method set

out in Section 3.4.3. of Chapter 3. The resulting continuum stresses were compared to

the values of stress that would be expected in an equivalent continuum material under

the same loading conditions.

The tests were carried out during a representative sample of the numerical

studies carried out in the previous Section, under loading in both the x and y-directions,

with varying Poisson's ratio and in both the coarse and fine meshes. Four additional

runs were also carried out, firstly in order to load the PSM mesh in both the x and y-

directions simultaneously and secondly, in order to load the PSM mesh under pure shear

conditions. The details of the numerical studies are given in Table 4.4. below.
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Table 4.4. Results of Analysis of Equivalent Continuum Stresses for PSM Uniaxial

Benchmark Problem
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As mentioned above, the recorded components of the granular stress tensor were

multiplied by the granular-continuum stress conversion factors as shown below (See Eq.

4.33.).

[

2m- 2m- 1GC G-C ----
au, j)G-C = [a(x, x) - a(x, y) .] = 3J3 3J3

a( x)G-C a( )G-C Tnr Znry, y,y -- --
3J3 3J3

Eq.4.33.

where, a(/,j)G-C is a matrix of the scalar granular-continuum stress conversion factors

for multiplication with the granular stress tensor.

As can be seen, the conversion factors for the hexagonal mesh configuration

were found to be the same for all components of the granular stress tensor. The

conversion factors were calculated according to the methods detailed in Section 3.4.3.

of Chapter 3 and a full derivation can be found in Appendix II.

From the results shown in Table 4.4 above, it can be seen that, in general, the

expected stress state for an equivalent continuum material is very accurately predicted.

Detailed examination of the results shows that when the PSM mesh is loaded in the y-

direction the predicted y-component of normal stress is accurate to within 1% of the

expected values for an equivalent continuum material. However, under loading in the x-
direction the predicted x-component of normal stress is slightly less accurately predicted

with an error in the region of 1 to 2%. This discrepancy is possibly a result of the

assumptions made in conjunction with the distribution of contact forces, in determining

the conversion factor for this component of the stress tensor (See Appendix Il),

However, this seems unlikely given that the conversion factor found using these

assumptions is the same as for all the other components of the stress tensor. A more

likely explanation is that round off errors lead to a slightly different physical

distribution of contact forces in the mesh to that which would be suggested analytically

and this consequently leads to a small error in the construction of the stress tensor. For

the purposes of the work carried out for this thesis, the measured results are considered

sufficiently accurate.
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It can further be seen that the results of the predicted normal continuum stress

components, under loading in both the x and y-directions, increase in accuracy when a

finer mesh is employed. This finding is as would be expected from the elastic

displacement results discussed in the previous Section.

As mentioned above, four additional tests were carried out with alternative

loading conditions. In the first set of two tests the mesh was loaded in both the x and y-

directions at the same time as is likely to occur in a realistic situation. Examination of

the results presented in Table 4.4 shows that both the components of normal stress are

predicted with an accuracy of 1 - 1.5% in comparison to the expected values for an

equivalent continuum material. Again, this is considered reasonable for the purposes of

this work. In the second set of two tests, loads were applied laterally to the edges of the

PSM mesh in order to apply conditions of pure shear and evaluate the predicted

continuum shear stress components. As can be seen from the results above, these were

predicted with a very high degree of accuracy and an error of less than 0.01%.

Each of the tests described above was developed in order to evaluate a particular

component of the predicted continuum stress tensor. Under the loading conditions

applied, the remaining stress components should have shown zero stress. Again

examining the results shown in Table 4.4 it can be seen that this is largely the case.

Although some non-zero values of stress are predicted, it can be seen that, in all cases,

they are very small. These minor inaccuracies can again be attributed to round off

errors in the basic PFC3D DEM code.

A further point of note was that, although the predicted continuum stresses under

all conditions showed reasonable accuracy, they were generally more accurate when

Poisson's ratio was zero than when it was set to 0.25. Although varying Poisson's ratio

alters the ratio of the normal and shear spring stiffnesses in the PSM mesh (See Section

4.2.2.3.), and therefore alters the composition of the contact forces reacting to a specific

applied load on a particle, the component of the contact forces in the direction of the

applied load must always be the same in order to reach equilibrium. Therefore, the

granular stress tensor in a particle is only dependent on the externally applied load.

Thus, any variation in the predicted stress results between meshes with different

material properties can once again be attributed to numerical round off in the OEM.
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As discussed above, the values of the equivalent continuum stresses predicted by

the granular-continuum stress conversion factors are seen to be reasonably accurate

under aU the applied loading conditions. However, as discussed in Chapter 3, Section

3.4.3., the constant conversion factors applied in this work are based on the inherent

assumption that the configuration of the PSM remains constant at all times and that

therefore, only small deformations occur. Given the results reported above, this can be

considered an acceptable assumption, however, it is noted that under larger deformation

or if the mesh configuration changes, the results may not be so accurate.

4.2.3.3. Cantilever Beam Benchmark Model

This benchmark study considers the ability of the PSM, calibrated with the strain energy

equivalence formulations developed by Morikawa and Sawamoto [63] and further

derived by Griffiths and Mustoe [32], to model a problem in bending. As with the

Uniaxial Benchmark Test, considered in the previous Section, this test is a reproduction

of a similar problem considered by Griffiths and Mustoe [32]. The elastic deformation

at the tip of a cantilever, constructed of a PSM mesh, is compared with the deformations

predicted by slender beam theory. As with the previous benchmark problem, this test

was carried out in order to check the validity of the strain energy equivalence

formulations, when applied to the PSM.

For the purposes of this study, a regular PSM mesh was constructed, as shown in

Fig. 4.10. below. One end of the cantilever was fixed against displacement in both the x
and j-directions, as shown below. The particle radius was 0.0833m (1/12) and the

equivalent lattice element length was therefore 0.167m (1/6). The particle radius was

chosen in order to reproduce the dimensions of the model employed by Griffiths and

Mustoe [32] while decreasing the discretisation of the mesh in order to reduce the

computational effort required in running the model. Although this is a coarser mesh

than the original, the ratio of mesh length to equivalent element length, L, is well above

the value of 20 suggested by van Vliet [95] (See Section 4.2.3.2.1.). As in the original

test, conducted by Griffiths and Mustoe [32], the cantilever was considered as a plane
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stress problem and the contact spring stiffnesses were calculated from the appropriate

formulae, as developed by Morikawa and Sawamoto [63] (See Eq. 4.27. and Eq. 4.28.

repeated below).

Applied Load

1.0m

8.66m

Fig. 4.10. Diagram of PSM Mesh for Cantilever Benchmark Problem

k = E
n ~(l-v) Eq.4.27.

Eq.4.28.

Several studies were conducted, during which a unit point load was applied to the tip of

the cantilever, as shown in Fig. 4.10. above. In a repeat of the procedure followed by

Griffiths and Mustoe [32] the final tip displacement of the cantilever was measured and

compared with the tip displacement predicted by the slender beam theory. This was

calculated according to Eq. 4.34. below.

PI38 =-
.t 3EI

Eq.4.34 .

where, P is the applied load at the tip of the cantilever, I is the length of the cantilever

and I in the inertial moment of the cantilever.
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As in the Uniaxial Benchmark Model, discussed in the previous Section, the values

chosen for the Young's modulus and Poisson's ratio of the model were equivalent to

those used by Griffiths and Mustoe and corresponded to certain ratios of k, to k, (See

Table 4.5. below).

E v kn ks ~
(XIO') (xlO') (xlO6) k.

1.732 0.00 1.0 1.0 1.0

1.485 0.14 1.0 0.5 2.0

1.155 0.33 1.0 0.0 00

Table 4.5. Cantilever Benchmark Model Input Values for Young's Modulus and Poisson's Ratio

and Corresponding Contact Stiffnesses

The results of these studies are shown below in Table 4.6. along with the results of

Griffiths and Mustoe's study for comparison.

Predicted Measured Measured

E v Slender Beam Deformations Deformations

Deformations ofPSMMesh from Griffiths and

(xlO') (XlO-l) (xlO-3) Mustoe [32]

1.732 0.00 1.500 1.522 1.441

1.485 0.14 1.750 1.791 1.859

1.155 0.33 2.249 2.470 2.346

Table 4.6. Results of Cantilever Benchmark Problem for PSM

As can be seen from the table above, the deformations produced by the PSM mesh were

in very good agreement with those predicted by slender beam theory. In the first two
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tests, the results produced by the PSM were in fact better than those produced by

Griffith and Mustoe's model. However, this situation reversed in the case of the third

test, where the results of the PSM showed a 9.83% deviation from the predicted

deformation.

It can be noted, in fact, that in all cases the PSM over predicts the cantilever tip

displacement. It is considered probable that this excess displacement is due to shear

deformation that is not accounted for by the slender beam theory. Consequently the

deformation predicted by Eq. 4.34. is less than the actual deformation of the model

mesh. This hypothesis is further substantiated by the fact that the excess displacement

increases as the shear stiffness of the inter-particle links decreases. As can be seen from

Eq. 4.28. this occurs as a consequence of increasing Poisson's ratio. The largest over

estimation of displacement by the PSM cantilever model, cited above, occurs when

Poisson's ratio is set to the maximum possible value for under plane stress conditions, v

= K In this situation, the shear stiffness of the inter-particle links is set to zero.

This behaviour may be an indication that the PSM becomes less efficient at

capturing shear behaviour as the Poisson's ratio of the material increases and the mesh

tends from a two force lattice to a truss representation. However, similar results were

reported for the uniaxial benchmark model described in the previous Section, where the

accuracy of mesh deformations in comparison to predicted, theoretical deformations

decreased with increasing Poisson's ratio. This was attributed to the sensitivity of

lateral deformations in lattice type models to boundary effects, particularly at coarser

discretisations. As suggested by van Vliet [95], it was considered that this effect would

diminish with increasing ratio of overall mesh length to lattice element length, L. It can

be seen that although the ratio, L, for the cantilever mesh is >50 in the y-direction, it is

only 6 in the x-direction and this is well below the value of 20 suggested by van Vliet

[95]. This may also contribute to the discrepancy between the slender beam theory and

the actual displacements of the PSM cantilever.

Despite the relatively large inaccuracy between the predicted and actual

deformation of the PSM cantilever with larger values of Poisson's ratio, the results of

this study can be considered acceptable for work in this thesis given two qualifying
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conditions. Firstly, deformation of a primarily bending nature, as seen in this model, is

unlikely to occur in a hydraulic fracture model and secondly, it can be ensured that the

PSM meshes applied to hydraulic fracture modelling have a ratio, I>20 in both the x

andy-directions.

4.2.4. PSM Conclusions

From the results of the studies shown above, it can be concluded that, when continuum

equivalence is applied through the strain energy equivalence formulations developed by

Morikawa and Sawamoto [63], the PSM can be used to accurately model the elastic

deformation of continuum materials. The findings of the benchmark problems are in

agreement with the findings of benchmark studies conducted by Griffiths and Mustoe

[32] and in some instances the PSM produces better results than the original Griffiths

and Mustoe model.

A phenomenon of particular note, that was common to all of the benchmark

studies discussed in the preceding Sections, was the tendency for the PSM to reproduce

predicted theoretical deformations less accurately with increasing values of Poisson's

ratio. As the Poisson's ratio increases the PSM tends from a two force lattice, with

equal normal and shear stiffnesses at a Poisson's ratio of zero, to an axial force, simple

truss representation, with a shear stiffness of zero at the maximum value for Poisson's

ratio (v = YJ in plane stress conditions and v = y.. in plane strain conditions).

Two possible causes were suggested for this loss of accuracy. Firstly, it may be

related to the sensitivity of lattice type models, and in particular, their lateral

displacements, to mesh discretisation. This effect would be similar to behaviour

reported by van Vliet [95]. Secondly, it may be that, as a consequence of the reduction

in shear stiffness, the model is less able to capture the effects of shear behaviour in

materials with higher values of Poisson's ratio.

However, lateral deformation would have been more significant under the

loading regime in the Uniaxial Benchmark Model than in the cantilever Benchmark
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Model. Conversely, even a small amount of shear deformation in the Cantilever

Benchmark Model would have been significant since no account is made of it by

slender beam theory. Therefore, it can be concluded that the loss of accuracy associated

with increasing Poisson's ratio may be partially due to both of the causes suggested
above.

The numerical models in this project consist of mesh configurations more

closely resembling that employed in the Uniaxial Benchmark Model than that used in

the Cantilever Benchmark Model. Furthermore, the mechanism of deformation in the

hydraulic fracture models developed in this work is more likely to approximate uniaxial

loading than the bending or shear experienced by a cantilever. As shown in Section

4.2.3.2.1., the inaccuracies developed by the Uniaxial Benchmark Model mesh are

smaller than those developed by the Cantilever Benchmark Model mesh and,

additionally, work by van Vliet [95] suggests that these can be reduced further, by

increasing the discretisation of the mesh. The findings of the Uniaxial Benchmark

Model study conducted with a finer mesh agreed with this suggestion.

A further point of note is that the model employed by Griffiths and Mustoe did

not show a decrease in accuracy, in either of the benchmark models, that could be

connected to an increase in Poisson's ratio. It is not clear why their model results

should differ from those of PSM.

4.3. The Particle Fluid Model (PFM)

4.3.1. Development History

As discussed in Chapter 3, in order to create fully coupled hydraulic fracture models

without the need for complex techniques working between multiple codes, it was

proposed to develop a fluid phase model within the same modelling framework as the

solid phase model (PSM), discussed in the previous Sections. Preliminary work in this

area was previously carried out by Davie [21] and two distinct approaches were

developed during the course of that research. In the first, largely qualitative approach,
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mainly applied in a Wellbore Stability Model (See Fig. 4.11. below), forces,

representing fluid pressures, were applied to particles forming the walls of fractures.

a) b)

Fig. 4.11. Plots of Typical Wellbore Stability Model Meshes a) Before and b) After Fracturing

(After Davie [21])

The model shown above represented a horizontal cross-section through a wellbore.

'Fluid forces' were initially applied in a radial pattern to the wall of the wellbore at the

centre of the mesh (marked as dark particles) and were increased linearly so that

fractures were initiated. As the fractures propagated and lattice elements were removed,

'fluid force' dipoles were applied in their place to represent the flow of fluid into the

newly opened fracture. This technique is similar to the method applied by Tzschichholz

and Herrmann [88] and Tzschichholz et al. [89] and discussed in Chapter 2, Section

2.3.2.

In terms of modelling fluid behaviour, this was a very simple representation, as a

constant pressure profile was assumed over the length of the fractures and furthermore,

the fluid was assumed to flow instantly along the propagating fracture. In reality, fluid

would take a finite time to flow into newly opened sections of a fracture and the

pressure would generally decrease with increasing distance from the wellbore. Both of

these phenomena would depend on the flow regime and the fluid properties. While it
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would be possible to improve this model in order to account for more realistic fluid flow

behaviour and pressure distributions this would probably require a separate, dedicated

fluid code to accurately compute the pressure field underlying the solid phase material,

especially in the case of complex fracture shapes as shown in the model above (See Fig.

4. J J .). This would not therefore fulfil the proposal of a single software, multi-physics

framework, as discussed previously. An approach of this kind has been developed by

Bruno et al. [11].

Although this type of 'fluid force' model may feature in the numerical work

within this project, it is likely that it will only be used in order to apply an easily

controllable pressure distribution in benchmark problems. It is not likely to be

developed as a fully coupled model.

The second approach applied by Davie [21] was to represent the fracture fluid in

a hydraulic fracture model with fine grained discrete particles (See Fig. 4.12. below).

Fine Grained
'Fluid Particles'
in Wellbore

Solid Phase -
Rock Mesh
Particles

Piston

Fig. 4.12. Plots of Hydraulic Fracture Model Meshes a) Before and b) After Fracturing

(After Davie [21])

The hydraulic fracture model, shown above, represented a vertical cross-section through

a wellbore. The particles representing the fracturing fluid were pushed down the

wellbore by a piston and as the pressure increased, they were forced through a

perforation, into the rock matrix. The results above are typical of those produced by the

model. The particles were simple, discrete element particles, as are fundamental to the
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PFC3D DEM environment. Although their relatively small diameter gave them some

tendency to fluid like behaviour when moving en masse, the particles interacted on a

purely mechanical basis and consequently the model was more representative of gravel

particles being forced into a rock matrix than of a fluid. While this in itself, may have

applications in the modelling of geomechanical problems such as gravel packing

operations, associated with prevention of sanding and stabilisation of weak formations

around wellbores (See Chapter 2, Section 2.5.), it did not represent the behaviour of a

pressurised fluid with sufficient accuracy to be used directly in this work. DEM fluid

models have been developed, for example by Zhang et at. [98], where the particles are

given contact properties such that they more closely represent fluid behaviour for

certain benchmark problems and these models show some promise. However, potential

difficulties with these DEM contact fluid models are discussed in Chapter 2, Section

2.4.2., and attention is turned to the possibility of representing fluid behaviour with

particles that interact at a distance via fluid field properties rather than mechanical

properties. This type of model is also discussed in Section 2.4.2. of Chapter 2. It was

considered that if this kind of non-contact particle fluid representation was implemented

within PFC3D and applied instead of the mechanical, particle representation of fracture

fluid used previously, it would allow the model shown above (See Fig. 4.12.) to more

accuratelymodel hydraulic fracture growth.

A particle fluid representation, of the non-contact type, is therefore developed

within the PFC3D in order to create the proposed coupled solid/fluid models within a

single software multi-physics framework. The basic DEM particles would be used only

to carry information and would interact remotely to reproduce fluid behaviour.

Mechanical contact interaction would be prevented. The proposed implementation of

such a model within the PFC3D framework is discussed in detail Chapter 3, Section 3.6.

and its development and verification is discussed in the following Sections.

4.3.2. Development of the PFM

As discussed in the previous Section, the PFM was constructed within the DEM

modelling environment PFC3D• The principle behind the model was to represent fluid
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material with a cloud of discrete particles that interacted remotely by way of forces

calculated from interaction laws describing the fluid field properties. It was necessary

to maintain a separation between particles at all times in order to prevent contact and

mechanical interaction of the particles that would lead to erroneous behaviour.

Two force fields were developed, firstly, to represent a pressure field in the fluid

and secondly to represent viscous effects. These fields were implemented by forces that

were applied to the PFC3D particles as they came within certain radii of influence

assigned to each particle. These radii of influence were associated with the separation

laws and corresponded to a maximum separation, beyond which a particle would have

no influence on another (See Fig. 4.13.). When a particle was within the radii of

influence of another then forces were developed, according the separation laws, and

applied to the particles by means of code written in the FISH programming language

associated with PFC3D
. Although particles interacted such that forces were calculated

for pairs of particles, the effect of all particles within another's radii of influence were

taken into consideration by superposition.

Forces applied
between particle
pairs to develop
field properties

Radii of Influence
,' ....:::::' ..">, ---', .. ~~ for Pressure andr > "', \ / --',.:~ ./ Viscosity Fields

" " ....-~t- ....., I I' "
I,' ,,.; \ "\<,, " " \ \
" " »r " -+...... " , , \
I I I~.. I I' 'I f , I
\ \ I ,'"\. " f', t, I I f
, " ,f' I, , f f

,\" )b' "" ", ,I " " ' , ,,,, _,' 'J' I \. " " I

" ~-- ,;' " [>; ' ......._-_........ "
'"--\---' I I '.... ,.

\, "'" ,../ / ..,,--_.... PFC30 Particle
" .... _-_.... ;11'

............ _-_ ..."

Fig. 4.13. Diagram Showing Radii of Influence Associated with Separation Laws for Fluid Field

Properties between dense PFC30 Particles

The pressure field was developed through repulsive forces that were calculated

according to the inverse square separation law shown below in Eq. 4.35.

Eq.4.35.
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where, FR is the repulsive force, aR is a coefficient of repulsion, d is the separation

between two particles and RR is the radius of influence of repulsion.

These repulsive forces were applied as an equal and opposite force dipole and

acted to maintain the separation between two particles and, under zero external pressure,

keep them at the maximum radius of influence (See Fig. 4.14.).

Opposite and Equal
Repulsion Forces, FR

'J!!Ir17,~1 i,
1 d

Fig, 4.14. Diagram Showing Repulsive Forces Applied to Particle Pair

The viscosity field was developed through drag forces that were calculated according to

the separation law shown below in Eq. 4.36. As with the repulsive, pressure forces,

these forces were inversely proportional to the square of the separation between

particles. However, they were also directly related to the relative velocity of the two

particles.

Eq.4.36.

Eq.4.37.

where, FD is the drag force, aD is a coefficient of drag, Vr is the relative velocity of a

particle pair with individual velocities, v(P)and RD is the radius of influence of drag.

These drag forces were also applied as an equal and opposite force dipole and

acted to bring a pair of particles to the same velocity (See Fig. 4.15.).
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Drag Force, Fo

\
Drag Force, Fo

d

Fig. 4.15. Diagram Showing Drag Forces Applied to Particle Pair

It should be noted that to ensure that viscous effects were developed even under

conditions of zero pressure, the radius of influence for the viscosity field was always

larger than that for the pressure field, i.e. RD > RR.

Furthermore, when the particles encountered an object that was not a 'fluid

particle', for example a wall or PSM particle, forces were applied as described above for

a 'fluid particle' pair, in order to transfer the fluid pressure and viscous drag forces to

the solid material. However, in the case of a wall the forces were only calculated on the

basis of the perpendicular separation of 'fluid particle' and wall rather than the distance

between the centroids of the objects (See Fig. 4.16.).

Centroid of 'Wall' -, 'Wall'

~ Particle - 'Wall'
:~ ~ Interactions Based

Perpendicular
Separation

'Fluid' Particle

'Fluid' Particle Particle - Particle
Interactions Based on
Separation of Centroids

Fig. 4.16. Diagram Illustrating Basis of Calculations for Particle - Particle Interactions and for

Particle - 'Wall' Interactions in PFM
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In the case of a fluid interacting with a PSM mesh, the 'fluid particles' only interacted

with the PSM particles on the surface of the mesh. This is discussed in detail in Section

4.4.1. below.

The discrete PFC3D particles at the centre of the PFM particles were given very

small radii in order to facilitate the separation of the particles and the prevention of

inter-particle mechanical contact. The particle density was relatively high and set so

that the mass of the particles represented a cylinder of fluid with radius equal to half the

radius of influence of the pressure field and with a unit height. As can be seen from

Fig. 4.17. below, this was considered to be the volume of fluid associated with each

particle when at rest under zero pressure.

Volume of Fluid
Associated with
Particle

PFC3D Particle

Fig. 4.17. Diagram Showing Volume of Fluid Associated with Discrete Particles

As with the PSM, the PFM particles were limited to two-dimensional behaviour by

fixity against displacement in the a-direction. Rotations of the particles in any plane

were irrelevant since this had no effect on particles where separation was maintained.

From the separation laws described above, it can be seen that there are four main

parameters associated with the fluid properties of the PFM. These are the coefficients

of repulsion and drag, aR & ao, and the radii of influence over which the separation

laws are effective, RR & RD. The values of these variables were initially chosen

arbitrarily, but, after preliminary trials of the PFM, these values were then tuned by trial

and error in order to allow the model to develop fluid behaviour. It was hoped to be

able to further tune these variables as required to reproduce the behaviour of fluids with

specific properties. This is further discussed in the following Sections. A fifth
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parameter, that can be associated with the loss of energy in a fluid through the friction

associated with viscosity, is the coefficient of mechanical damping, ~, which is a basic

component of the PFC3D DEM code. This was also varied by trial and error in

conjunction with the coefficient of drag so that, while the viscosity of the modelled fluid

was altered, the overall fluid behaviour was controlled. Again, this is further discussed

in the following Sections.

This method of applying interaction laws based on the separation of particles is

similar to the approach of Molecular Dynamics, as discussed in Chapter 2, Section

2.4.2. If applied on a small enough scale the PFM could represent molecular

interactions, however the separation laws for molecular scale problems would not be the

same as for those in the macro-scale problems to which the PFM is applied in this work

(van Mier [59]). In this way, the PFM is also similar to the Particle-and-Force (PAF)

method, as discussed in Chapter 2, Section 2.4.2., although a significant difference

between the methods is that in the PAF particles interact with only their direct

neighbours whereas in the PFM particles interact with all particles within their radii of

influence.

4.3.3. Implementation of the PFM

As mentioned above, the fluid behaviour of the PFM was largely implemented

through code written in the FISH language associated with PFC3D• In order to compute

the repulsion and drag forces acting between particles that came within the relevant

radii of influence of each other, as discussed in the previous Section, the FISH routine

examined each particle in turn. While considering a particular particle, all particles

were again examined in turn and their effect on the particle under consideration was

calculated. The effect on the particle in question from any walls in a model was also

taken into consideration. The repulsion and drag forces were superimposed for each

particle and added to any forces applied in order to represent external fluid pressures.

The combined 'fluid forces', FF, were then added to the total force acting on a particle,

FP), and thus, subsequently affected the particle's acceleration, as defined by Eq. 3.26.

Therefore, in consideration of the PFM, Eq. 3.26. (repeated below) can be rewritten as
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in Eq. 4.38. and Eq. 4.39. below. Itmay be noted that all other equations of the distinct

element calculation remained unaltered.

Eq.3.26.

a(p) _ LF(p) + (LFR +LFD +LFpext)

- m(p) Eq.4.38.

Eq.4.39.

where, Fpext are forces applied to particles in order to represent external fluid pressure

and FF are the combine repulsion, drag and external 'fluid forces' acting on a particle.

The PFM FISH routine was executed in every time step of the model analyses,

just before the motion calculation of the basic distinct element method calculation cycle

employed in PFC3D (See Chapter 3, Section 3.4.1.). The amendments made to the basic

calculation cycle by the PFM FISH routine are illustrated in Fig. 4.18. below (in

comparison to Fig. 3.3.) and the additional steps in the process are highlighted for

clarity. As mentioned above, where 'fluid forces' were applied to a particle, they

affected the particle's acceleration, as defined by Eq. 3.26., which is also highlighted in
Fig. 4.18. below.

The PFM FISH routine itself can be summarised as shown in Fig. 4.19., Fig.

4.20. and Fig. 4.21. Detailed examination can also be made of the actual FISH code,

which is presented in Section AID.4. of Appendix ID. Where possible, variable names

employed in the code, are shown beside the relevant processes in the flow charts

presented below.
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Ms=ks~

See Detailed Discussion in Previous
Sections and FISH Code in Appendix III
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Fig. 4.18. Flow Chart Summarising the Calculation Sequence for the Distinct Element Method

Modified For Inclusion of the PFM Implemented via FISH Code (expanded Fig. 3.3.) (Dashed

Outlines Indicate Where Changes were Implemented in the Basic DEM Algorithm)

Force-Displacement Law

Relative Velocities
and Displacements

Contact Force Increments

...o
u..

I
I
I
I
I,
I
I
I
I
I
I

I '"I CO
10: '~

I:l...

Sum Drag, Repulsion and
External 'Fluid' Forces

Equations of Motion

Displacements
and Rotations

152



Chapter 4: Numerical Model Development

From Force-Displacement
Law._

~
.1 Loop Over Particles I- L

No Is Particle (A) a- 'Fluid' Particle?

Yes

I Determine Coordinates and Velocity of Particle (A) I
-~-

..J Loop Over Particles I- L
~

'"(,).~
Determine Interactions between Particle (B) and Particle (A)

Q..

><Q) Calculate Repulsive Forces and Update SummationZ-.... Calculate Drag Forces and Update Summation

See Fig. 4.20. below for Detail of Nested Particle Loop

\Ii
J Loop Over Walls I- L

\Ii- Determine Interactions between Particle (B) and Particle (A)'a
~
>< Calculate Repulsive Forces inx-direction and Update SummationQ)

Z
Calculate Repulsive Forces iny-direction and Update Summation

~ Calculate Drag Forces in x-direction and Update Summation

Calculate Drag Forces iny-direction and Update Summation

See Fig. 4.21. below for Detail of Nested Wall Loop

'"Update External Pressure Fields I
W xdrag

- Sum and Apply all Drag, Repulsion and xrep
External Forces Acting on Particle (A) upstrm

dwnstrm

'" xwdrag
To Equations xwrep
of Motion ydrag

yrep- ywrep
ywdrag

Fig.4.19. Flow Chart Summarising FISH Code for Implementation of PFM
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From Fig. 4.19. above
Determine Coordinates and

Velocity of Particle (A)

No

Detennine Coordinates and Velocity or Particle (B)

Calculate Separation between (A) and (B) resdist

repulsive
Calculate Repulsive Force and Update Summation xrepyrep

Calculate Relative Velocity orCA) and (B) trel ve12

Loop Over Walls
Return to Fig. 4.19. above

Calculate Drag Force and Update Summation drag
xdrag
ydrag

Fig. 4.20. Flow Chart Summarising FISH Code for Nested Particle loop Sub-Block of Flow

Chart Summarising PFM Code in Fig. 4. 19.
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From Fig. 4.19. above
Calculate Drag Force and

Update Summation

Determine Coordinates and Velocity of Wall

No

Calculate Separation between (A) and Wall in x-direction wxdist

Calculate Repulsive Force and Update wxrepulsive
xwrep

Calculate Separation between (A) and Wall iny-direction wydist

wyrepulsive
ywrep

trelwvelx2 ]Calculate Relative Velocity of (A) and Wall

wdragx
xwdrag
ywdrag

Calculate Relative Velocity of (A) and Wall trelwvely2

wdragy
xwdrag
ywdrag

Calculate Drag Force and Update Summation I
Update External Pressure

Fields
Return to Fig. 4.19. above

Fig.4.21. Flow Chart Summarising FISH Code for Nested Wall Loop Sub-Block of Flow Chart

Summarising PFM Code in Fig. 4.19.
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It may also be noted that, while the PFM FISH code worked as required, it was

inefficient in its execution due to limitations of the language. For example, it was

necessary to search through all 'fluid particles' in order to check whether or not they

were within a certain particle's radii of influence and hence whether or not they needed

to be considered further. Despite the visibly slow running of the code, this method was

acceptable for a limited number of PFM particles as utilised within these studies.

However, if a model was to be applied to a problem with a large number of particles, as

would be required in a hydraulic fracture simulation, then the code would become too

slow for practical purposes. Many, more efficient, schemes can implemented for

searching through particles in DEM codes and while some of these may be realised

within FISH it was not thought to be worthwhile for the purposes of this project.

4.3.4. PFM Benchmark Problems

As with the PSM it was necessary to conduct benchmark studies with the PFM in order

to verify that it could reproduce the desired fluid behaviour. As mentioned previously

the calibration of this model was essentially by trail and error variation of the main

model parameters; the coefficients of repulsion and drag, the radii of influence over

which repulsion and drag were effective and the mechanical damping of the system.

The benchmark studies described below were useful in determining the basic behaviour

of the model and allowing controlled alterations to be made to these variables.

The first study was concerned with the development of a uniform pressure field

in the PFM when confined under a constant external pressure. The second benchmark

study looked into the dynamic behaviour of the PFM and its ability to reproduce simple

fluid flow regimes that are often assumed for flow in hydraulic fractures. The

construction and testing of these benchmark models is described in the following

Sections, along with discussion of the presented results.
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4.3.4.1. Pressurised Cylinder Benchmark Model

This benchmark test looks at the static pressure distribution along the walls of a

pressurised cylinder filled with PFM particles. The problem was set up as shown below

in Fig. 4.22.

Initial Positions of
'Fluid Particles' Walls of Cylinder

External Pressure Zone

Fig. 4.22. Diagram Showing Initial Set-up of the Pressurised Cylinder Benchmark

Problem for the PFM

PFM particles were initially positioned as shown above. Forces were applied to the

particles within the external pressure zone such that the total force applied to all

particles within the zone was equivalent to a certain predefined external pressure, Pexh

for the open end of the cylinder. As the particles moved out of the external pressure

zone and into the cylinder, more particles were positioned in their place and were

subjected to the same external pressure. This continued until the cylinder filled with

particles such that they could no longer move out of the external pressure zone. At this

point, the PFM had found a steady state equilibrium. Typical example plots of this

process are shown below (See Fig. 4.23.).
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a) b)

Fig. 4.23. Plots of Typical Pressurised Cylinder Benchmark Model at a) an Intermediate Stage

of Filling and b) Final Steady State Equilibrium (arrows indicate particle velocities)

Several studies were conducted with varying external pressure. When the cylinder was

full and the PFM particles were in equilibrium the total force on each of the cylinder

walls was calculated. This was done simply by calculating the repulsive forces,

according to the pressure separation law, for all particles for which a wall of the

cylinder was within their radius of influence of repulsion. The total force on each wall

was divided by the length of that wall in order to calculate the applied pressure. The

results of these studies are shown in Table 4.7. below and additionally, plots of the final

equilibrium stages of the three studies listed are shown in Fig. 4.24. below.

Total Total Total Av. Pressure

Pext aR Pressure Pressure Pressure on Cylinder

Wall 1* Wallf *Wall3 Walls
(kPa) (kPa) (kPa) (kPa) (kPa)

100 1x104 105 98 109 104
200 1x104 209 199 199 202
2000 1xl0~ 2098 2006 1968 2024

Walls labelled accordmg to Fig. 4.22.

Table 4.7. Results of Pressurised Cylinder Study for the PFM
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As can be seen from the table above, in general the pressures acting on the walls of the

cylinder due to the PFM correlate very well with the external applied pressure. In all

cases, the pressure on Wall 2, the wall opposite the open end of the cylinder, matches

the external pressure most closely. The pressures on the two side walls, Wall 1 and

Wall 3, also match very well but tend to show a slightly larger discrepancy. However,

as can be seen from the pressures averaged over all of the walls, despite small, local

variations, the overall difference between external applied pressure and reported

pressure is never more than 4%. It can be further noticed that the largest error occurs

under the lowest external pressure. An explanation for this may be found upon

examination of the plots shown in Fig. 4.24. below.

a)

b)

c)

Paxt = 100kPa
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Fig. 4.24. Plots of the Final Equilibrium Stages of PFM Pressurised Cylinder Tests under

Varying External Pressures of a) 100kPa, b) 200kPa and c) 2000kPa
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It can be seen that the particles pack into the cylinder to a reasonably uniform spacing

under any external pressure and that the higher the pressure, the closer the particle

spacing. This is as would be expected for the pressure separation law as described in

the previous Section. Since relatively few particles are packed into the cylinder in the

case of the lowest external pressure (See Fig. 4.24. a) ), the discretisation of points, at

which the force applied on the walls of the cylinder is measured, is quite coarse. This

may be responsible for the discrepancy between the reported pressure on the walls and

the applied external pressure. Consequently, the accuracy of the results improves under

higher pressures although it can be noticed that the plot for an external pressure of

200kPa is very similar to that for 2000kPa. This is because the coefficient of repulsion,

aR, was increased from 1x 104 to 1x io' in order to ensure that particle separation was

maintained. The level of accuracy of these two studies is, therefore, very similar. To

reiterate, in order to maintain the properties of the real fluid represented by the PFM

under conditions of increasing pressure in the model, it is necessary to increase the

coefficient of repulsion and vice versa. In fact, it may be possible to find a direct

relationship between the externally applied pressure and the coefficient of repulsion.

Consequently, it may then be possible to constantly vary the coefficient such that the

PFM behaviour could be optimised for both, sufficient discretisation for the accurate

measurement of boundary properties, such as the pressure applied to the walls of the

cylinder, and maintenance of particle separation, under any external pressure. This was

not attempted in this study as the errors reported above were considered to be within

acceptable limits for the work in this project.

In addition to the coefficient of repulsion, values had to be chosen for the other

model parameters, as discussed previously. After some trial and error, a value of 1.S

was chosen for the radius of influence of repulsion as this was found to work well in

preliminary trials of the PFM. Furthermore, given that the pressure separation law

varies with the inverse square of the particle separation (Eq. 4.35.) a plot of the applied

force tends to zero with increasing separation. For the values of the repulsion

coefficient used in the study above, it was considered that the applied repulsive force

developed beyond a separation of 1.S was insignificant (See Fig. 4.25.).
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Fig. 4.25. Plot of Pressure Separation Law for Coefficients of Repulsion of 1)(104 and 1)(105

Due to the static nature of the pressurised cylinder problem, the viscosity of the fluid

was not important and an arbitrary value of 1x 103 was therefore chosen for the

coefficient of drag, ao. Similarly, an arbitrary value was chosen for the radius of

influence of drag. As mentioned previously this had to be larger than the radius of

influence of repulsion so that, in a dynamic problem, viscous effects could be modelled

even at zero pressure. A value of 2.2 was chosen since this is approximately 50% larger

than the radius of influence of repulsion and furthermore, this allowed a particle in the

initially square arrangement used in PFM trials (See Fig. 4.26. below) to 'see' all eight

of its direct neighbours in terms of drag.

Discrete PFC3D

Particles at Centre
of PFM Particles Radius of Influence

of Drag

Radius of Influence

of Repulsion

Fig. 4.26. Diagram Showing Overlap of Radii of Influence Around PFM Particles
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An additional potential problem with the PFM, especially in a model such as the

Pressurised Cylinder Problem, occurs when the configuration of particles entering the

model remains planar, and a steady state equilibrium is found through repulsive forces,

without the particles moving from their original plane (See Fig. 4.27.). When this

happens the model consists of what can be considered separate, parallel, one-

dimensional models and does not produce a uniform pressure field.

• · · · • • ·
• • • · • • •

• · · · • • ·
.-.... • • · · •

7z~ro~e~1 Forces

· . . 1'4--- Reactive Forces
Individually Resisting
External Pressure for

· • . 1'4--- Each Row of Particles

· . . 14---

'" Typical Inter-particle Repulsive Forces

Fig.4.27. Example Plot of Pressurised Cylinder Model for PFM with 'Fluid Particles' at

Equilibrium in 1D lines, without Lateral Displacement

In most cases a numerical instability or rounding error will ensure that the particles are

perturbed and move laterally, filling the cylinder and reaching equilibrium with a

uniform pressure field as shown in the examples above (See Fig. 4.24.). In some

instances however, this does not happen and it is necessary to induce the desired

behaviour. Where this occurred in models applied in these studies, a relatively small

'stirring' force was temporarily applied, in the y-direction, to particles in the External

Pressure Zone. Once the process had begun, model behaviour was as expected for a
fluid.

It should also be noted that the density of the particles in this benchmark model

was set in order to represent water. While this is not in fact relevant to the results of this

static problem, it will have consequences in the following benchmark study.
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4.3.4.2. Lubrication Flow Benchmark Model

This benchmark problem looks into the development of a lubrication flow regime with

the PFM. Lubrication flow, as described by Eq. 4.40. and Eq. 4.41., represents

incompressible, one-dimensional, steady, uniform, laminar flow between two parallel

plates and is often the assumed flow behaviour in hydraulic fracture models. This is

further discussed in Chapter 2, Section 2.4.

y3 dp
Q=--

12,u dx
Eq.4.40.

1 dp ( 2)U =--- yy-y
f -2J.l dx Eq.4.41.

where, Q is the fluid flow rate between the plates, Y is the separation of the plates, ,u is

the dynamic viscosity of the fluid, t is the pressure gradient, "/ is the fluid velocity

and y is the distance to the point of measurement from the plate considered to be the

origin (Y = 0).

NB - for convenience and consistency in this thesis some of the notation in Eq. 4.41. has

been altered from the original text (Douglas et al. [23]).

In order to verify the behaviour developed by the PFM, the velocities of the

'fluid particles' in the benchmark model were compared to the fluid velocity profile

predicted by lubrication flow theory. The PFM model was set up, as shown in Fig.

4.28. below.
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Initial 'Fluid Particle' Positions
Parallel Plates

E
E
io,...:

Upstream Pressure Field

Fig. 4.28. Diagram Showing Initial Set-up of the Lubrication Flow Benchmark

Problem for the PFM

The initial configuration of this problem was very similar to that of the Pressurised

Cylinder Benchmark Problem, discussed in the previous Section. PFM particles were

initially positioned as shown above and forces were applied to represent an external

pressure. As the particles moved out of the Upstream Pressure Field, new particles were

created in their place. In contrast to the Pressurised Cylinder Model, the downstream

end of this model was open. As particles moved through the model and out of the

downstream end, they were deleted. In this way, a continuous flow of particles was

maintained between the plates. A typical example of steady state flow conditions in the

Lubrication Flow Model is shown below in Fig. 4.29.

Fig. 4.29. Typical Plot of Lubrication Flow Model under Established Steady State Flow

Conditions (arrows indicate particle velocities)
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Although the actual dimensions of this model are not important, as long as the

consistency of the units is maintained, it may be noticed that the width of this model

was considered to be on a millimetre scale rather than the metre scale of the PSM

discussed earlier in this Chapter. This scale was chosen for two reasons. Firstly,

lubrication flow theory can only be considered realistic for flow between parallel plates

at a relatively close spacing and secondly, these dimensions reflect the realistic scale of

a hydraulic fracture as it might exist in the field. The length of the model is not of

concern as long as enough flow length is available for a steady state flow regime to

develop. The pressure gradient over the length of the model is of more significance

and, as required for lubrication flow, this was assumed constant throughout the model.

In order to assess the behaviour of the PFM in this benchmark model and the

effects of the five main variables, previously discussed above, several studies were

carried out with variation of these parameters and the model boundary conditions.

However, before the tests could be run, consideration had to be made of the initial

values assigned to the model parameters. As mentioned in Section 4.3.4.1., a value for

the radius of influence of repulsion of 1.S (mm in this case) had previously worked well.

As can be seen from Fig. 4.25., increasing this value had little effect on interacting

particles due to the relatively small forces invoked at greater separations. Reducing the

radius of influence of repulsion by only a small amount resulted in mechanical contact

between particles, which was an unacceptable occurrence for the PFM. For these

reasons the value used in the Pressurised Cylinder Problem (See Section 4.3.4.1.) was

preserved for these studies. The value of the coefficient of repulsion applied in the

Pressurised Cylinder Problem was also kept since, as discussed previously, suitable

values were directly related to the external applied pressure. The three remaining

variables, the coefficient of drag, the radius of influence of drag and the damping

coefficient were all related to the viscosity of the fluid. Since the radius of influence of

drag was related to the radius of influence of repulsion, its value of 2.2 (mm) was also

preserved from the Pressurised Cylinder Model. Less was known about the effects of

the coefficient of drag, aD, and the coefficient of damping,~. In summary, it was

therefore decided that while the other parameters would be held constant the effects of

these coefficients would investigated as part of a general study carried out to verify the

ability of the PFM to reproduce a lubrication flow regime.
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As mentioned before, in order to compare the behaviour of the PFM to the

theoretical description of lubrication flow (See Eq. 4.40. and Eq. 4.41.) the average

steady state velocities of the particles were assessed as they passed through the model.

These values were then plotted against their y-position, across the flow between the

plates. A comparison plot was also made of the theoretical, parabolic velocity profile

defined by Eq. 4.41. The only unknown for the model in this equation was the dynamic

viscosity of the fluid, u. By varying this, it was possible to find a 'best fit' theoretical

velocity profile for the results produced by the model.

The numerical results of the studies can be seen in Table 4.8. and graphical

representations of the velocity profiles, as discussed above, can be found further below,

along with discussion of the results (SeeFig. 4.30. to Fig. 4.34.).

Run Coefficient of Applied Pressure Implied Dynamic Max. Velocity,

No. Damping, Gradient, : Viscosity, p UJ{max)

(from Eq. 4.41.)

aD (N/m2/m) (Nsm·2) (m/s)

001 0.0 -1.0 0.0747 0.0000941

002 0.0 -2.0 0.0705 0.0001994

003 0.7 -1.0 0.242 0.0000291

004 0.7 -2.0 0.461 0.0000305

Table 4.8. Results of Lubrication Flow Study for the PFM

As can be seen from the results of Run 001, given above, for a pressure gradient, t =

1.0, the 'best fit' line, shown in Fig. 4.30. below, was found for an implied dynamic

viscosity of 0.0747Nsm-2, This value is consistent with a reasonably high viscosity

fluid such as an oil". For comparison, it may be noted that the dynamic viscosity for

water is approximately 0.0010Nsm-2 (Douglas et a1.[23]) and Papanastasiou [69] quotes

t It is understood that the fluid property of dynamic viscosity varies with temperature. For simplicity, it is

assumed that all numerical studies conducted with the PFM in this work are carried out at a constant

temperature of approximately 20°C.
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a value of 0.100 Nsm? for a hydraulic fracture gel. The results shown below were

considered to be very promising and clearly showed that the PFM was capable of

accurately reproducing lubrication flow behaviour.

0.0020

...... Lubrication Flow Theory
-PFM Model

0.0070

0.0060

o.ooso

0.0040
Y

0.0030

0.0010

0.0000 .j..«:'!:::'::'_~-~-~--,~---,,-~---'----'------r-~
o 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008 0.00009 0.0001

Velocity (m/s)

Fig. 4.30. Plot of Lubrication Flow Velocity Profiles from PFM and Theory - Run 001

(~= 0.0, Y = 0.0075m, : = -1.0, ~J.1 = 0.0747)

As discussed, it was hoped that by tuning the PFM parameters, it would be possible to

model a fluid of any viscosity. Ideally, especially given the quality of the results, the

Lubrication Flow Model would become a useful tool in determining a precise

understanding of the behaviour of the PFM and allow calibration to take place before

the PFM was applied to a model simulation.

For Run 002 the parameters of the PFM were kept as they had been for Run 001,

however the pressure gradient over the model was increased from -1.0 to -2.0. As can

be seen from the results shown in Table 4.8. the maximum fluid velocity, predicted by

Eq. 4.41. for the centre of the flow, is approximately double that predicted for Run 001,

while the implied dynamic viscosity is approximately the same. This is as would be

expected for the described increase in pressure gradient and again confirms the ability

of the PFM to accurately model fluid behaviour. The slight under prediction of

dynamic viscosity and consequent over prediction of velocity can be understood on

examination of the velocity profiles plotted in Fig. 4.31. below.
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Fig. 4.31. Plot of Lubrication Flow Velocity Profiles from PFM and Theory - Run 002

(; = 0.0, y= 0.0075m, : = -2.0, ~.u = 0.0705)

As can be seen, the velocity profile produced by the model was no longer parabolic.

The centre of the flow is moving faster than Lubrication Flow Theory would suggest

and consequently, the 'best fit' line is no longer an accurate prediction of the actual

behaviour. This effect is clearly seen in Fig. 4.32. where the theoretical velocity profile

is plotted for a dynamic viscosity ofO.D747Nsm-2, as predicted by Run 001.
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..... 'lubrication Flow Theory
-PFMModel
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. .
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o 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012 0.00014 0.00016 0.00016 0.0002
Velocity (m/s)

Fig. 4.32. Plot of Lubrication Flow Velocity Profiles from PFM and Theory - Run 002

tu= 0.0747, as predicted by Run 001)
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The velocity profile produced above by the PFM is indicative that the coefficient of

drag in the model was not large enough to control the flow. This was confirmed by

inspection of the model, which showed that the particles in the centre of the flow were

at a steady state condition such that their separation from the particles in front and

behind was greater than either of the radii of influence. While the particles were still

experiencing drag forces from the outer parts of the flow it is difficult to argue that the

behaviour along the centre was that of an incompressible liquid since the particles were

moving separately and essentially, gaps existed in the fluid.

The conclusion, drawn from the results discussed above, was that, as the

required value for the coefficient of repulsion was directly related to the external

pressure on the fluid, so the required value for the coefficient of drag was directly

related to the velocity of the fluid. In order to maintain the properties of the real fluid

represented by the PFM under conditions of increasing velocity in the model, the

coefficient of drag would have to be increased. As with the coefficient of repulsion,

discussed in Section 4.3.4.1., it may be possible to find a relationship between the fluid

velocity and coefficient of drag such that it can be constantly varied for optimised

behaviour. This was not pursued further in the course of this thesis.

Additionally, although this was not the intended behaviour of this model, the

result above does hint at the possibility of developing complex fluid behaviour such as

shear-thinning as would can be observed in a non-Newtonian fluid. However, some

method of accounting for the spacing of mass in the flow would have to be found.

Again, this was not the intention of the work carried out for this thesis and further

investigation was not undertaken.

For the third Run (See Fig. 4.33.) the pressure gradient was returned to -1.0 but

the damping coefficient was increased from zero to 0.7 (the default value for PFC3D).

The coefficient of drag was not altered. The results, given in Table 4.8., show that the

implied viscosity of the fluid was -3.24 times more viscous than the fluid modelled in

Run 001 and, hence, the maximum predicted velocity was -3.24 times slower. Again,

this was the expected modification as the increased damping coefficient increases the

rate of energy loss in the model fluid, which, in a real fluid is related to its viscosity.

The actual implied value is obviously quite high for a realistic fluid, however, it is
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understood that the value of 0.7 for the coefficient of damping was also very high and

this Run was intended to be qualitative rather than quantitative .
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...... LubricationFlowTheory
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Fig. 4.33. Plot of Lubrication Flow Velocity Profiles from PFM and Theory - Run 003

(s: = 0.7, Y = 0.0075m, * = 1.0, ~J-t = 0.242)

It was hoped that further model runs with the non-zero values for the damping

coefficient would show a pattern relating it to the implied dynamic viscosity of the

fluid. However, the final run in this study did not show the expected results. As can be

seen in Table 4.8., the damping coefficient was again set to 0.7 and the pressure

gradient was increased to -2.0. It was expected to see a change in results similar to

those shown between Run 001 and Run 002 where the implied viscosity would remain

constant while the predicted maximum velocity would double. In fact, it can be seen

that the velocity barely increased and the velocity profile plots, shown in Fig. 4.34. are

almost identical to those in Fig. 4.33. A consequence of this is that the dynamic

viscosity predicted by Eq. 4.41. was almost double the expected value. This is an

anomalous result but it also shows that the damping coefficient is by far the most

dominant parameter governing the fluid behaviour modelled by the PFM and care

should be taken in its application.
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Fig. 4.34. Plot of Lubrication Flow Velocity Profiles from PFM and Theory - Run 004

(';=0.7, Y=0.0075m,! =2.0,~f.l=0.4610)

Additionally, the difference between the velocity profiles of Run 002 (Fig. 4.31. and

Fig. 4.32.) and Run 004 (Fig. 4.34.) also shows the favourable effect that the damping

coefficient has on the model fluid viscosity. The velocity profile from Run 004 is very

close to parabolic, as predicted by lubrication flow theory, and there is no evidence of

the shearing in the centre of the flow that was present in Run 002.

As discussed previously, the PFM follows similar principles to the PAF method

developed at Los Alamos National Laboratory in the 1960s (Johnson [43]). After some

investigation, this method was abandoned by the developers due to inherent noise in the

model flow, which was put down to particles interacting with different particles as their

direct neighbours changed in time. Although the PFM interacts with all particles within

its radii of influence, and consequently may interact with more or less particles at any

one time than the PAF particles, the solution also shows a lot of noise. This can

particularly be seen in a plot of particle velocity in time (See Fig. 4.35. below).

171



Chapter 4: Numerical Model Development

Time Steps

Fig. 4.35. Example of a VelocityfTime Plot for a PFM Particle as it Travels Through the

Lubrication Flow Model

It was found that the oscillations of the velocity/time plot were consistent with

compression waves that travelled up and down the Lubrication Flow Model as the flow

progressed. This was the result of each particle oscillating between the repulsion of a

particle downstream of itself and a particle upstream of itself and this process can be

likened to the neighbour connection process discussed above for the PAF. It is felt that

this effect could be minimised through optimisation of the five main variables and in

particular, the coefficients of repulsion and damping however this would have a knock

on effect to the fluid behaviour represented by the model. A benefit of the noise in the

flow was the confirmation that the 'fluid particles' were interacting through the

repulsive and drag forces and that the spacing effects observed in the high velocity

flows were not present. As this suggests, less noise was noticed in velocity/time plots

from runs featuring flow shear effects. An alternative method of minimising the noise

would be to increase the discretisation of the PFM, which should reduce the relative

motion of the particles.
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Despite the noise in the flow, the overall behaviour produced by the PFM in the

Lubrication Flow Problem was considered satisfactory for the initial development of the

model.

A further point of note is that, as with the Pressurised Cylinder Model, the

density of the particles in all of the Lubrication Flow Runs was set in order to represent

water. Given that the fluid properties were determined from the results of the

simulations, it was clear that the assumed fluid density was not always appropriate and

it would be desirable to repeat these simulations with values of fluid density more

appropriate to fluids with the implied dynamic viscosities. However, altering the

density of the fluid may have altered the implied properties, which would subsequently

require further alteration of the fluid density. While a consistent set of parameters may

be found by repetition of the simulation with iterative alteration of the fluid density, it

would certainly be time consuming and an analytical solution would be preferable. This

is discussed further in the following Section.

4.3.5. PFM Conclusions

From the results of the benchmark studies presented above, it can be concluded that the

PFM can accurately reproduce both static fluid behaviour, such as a uniform pressure

field, as well as dynamic behaviour, such as the parabolic velocity profile associated

with lubrication flow. It is also clear, however, that there are complex relationships

governing the effects of the five main model parameters, the coefficients of repulsion

and drag, the radii of influence of repulsion and drag and the damping coefficient, on

the behaviour of the PFM. These relationships are far from fully understood and while,

as shown above, the properties of the fluid represented by the PFM can be determined

by comparison with theory, more investigation will be required before the model

parameters can be set prior to simulation.

Even given further study it may not be possible to find empirical relationships

for these variables and it may be desirable to find an analytical method of calculating

them. While the PSM was calibrated through a strain energy equivalence technique
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(See Section 4.2.2.3.), no comparable equivalence strategy is apparent for the PFM,

however, it may be possible to derive a relationship between the model separation laws

and the Navier-Stokes equations for a fluid, as suggested by Zhang et al. [98] for their

DEM fluid model. Account would also have to be made of the mechanical damping of

the system, since, as noted above, this was found to have a very significant effect on the

fluid behaviour of the PFM. Furthermore, it was also noted in the previous Sections,

that in order to maintain the properties of the real fluid represented by the PFM as

conditions in the model varied, it was necessary to alter the coefficients of repulsion and

drag in correspondence to changes in the fluid pressure and velocity fields respectively.

As suggested, it may be desirable to develop an automatically varying algorithm for

these parameters and, ideally, this would also be related to the Navier-Stokes equation.

Additionally, it may desirable to vary the mass associated with a particle.

Currently, in an approach consistent with that employed in the PAF method, the mass

associated with the PFM particles is constant and represents a volume of fluid enclosed

by a cylinder half the diameter of its radius of influence of repulsion (See Fig. 4.17.).

However, it would seem that, when particles move closer together under pressure or

dynamic effects, the mass per unit area increases and thus the overall fluid density

increases. While this may be representative of a compressible fluid, it cannot be

accepted for incompressible or near incompressible fluids such as should be considered

in hydraulic fracture problems. In general, this is not thought to significantly affect the

results of the benchmark models, discussed in the previous Sections, as the particles do

not become highly packed. However, as discussed for Run 002 of the Lubrication Flow

Problem, there are instances where particle spacing can increase beyond the radius of

influence of repulsion and hence reduce the overall density. A method of varying the

density of a particle in relation to the proximity of its neighbours would resolve this

problem and allow a constant fluid density to be maintained. This was not attempted

during the course of the work carried out for this thesis as it was considered overly

complex to implement within the current code.

Also mentioned in Section 4.3.4.2., above was the possibility that the PFM could

be applied to the simulation of complex, non-Newtonian fluids. If this were to be

possible, it would certainly require the constant variation of the model parameters since,

by definition, the dynamic viscosity of a non-Newtonian fluid is not constant. While
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this would ultimately be desirable for the purposes of modelling hydraulic fracture

treatments where the fracture gels are often non-Newtonian (See Chapter 2, Section

2.4.1.), it is well beyond the current scope of this work. However, given an analytical

relationship between the model parameters and the Navier-Stokes equations it should be

possible to implement constant variation of the parameters.

It may also be noted from the results of the Lubrication Flow benchmark study,

discussed in the previous Section, that the PFM was only seen to model fluids of

relatively high viscosity. In fact, although not documented in detail, further trials of the

Lubrication Flow Problem had shown great difficulty in reducing the viscosity while

maintaining reasonable fluid behaviour. It was felt that these difficulties might have

been due to the discretisation of the PFM model. With more particles and therefore

more information per unit area, it might be possible to capture fluid behaviour over a

larger range of properties. This would probably also be required in order to capture

complex flow behaviour such as turbulence, especially in a model of a fracture with a

width of only a few millimetres. As stated previously, a finer discretisation may also

minimise certain effects such as noise in the flow. A disadvantage of a finer

discretisation would be the increased computational effort required to run what is

already a slow code.

Despite the problems discussed above, it is felt that the results shown in the

previous Sections were very promising and that, with further study, the PFM could be

developed into a rigorous fluid modelling tool. However, the aim of this work was to

develop a coupled modelling framework and hence, the existing capabilities of the PFM

were considered sufficient and further study was temporarily discontinued in order to

allow the development of a coupled model (as discussed in the following Section) and

the study of fracturing behaviour in the PSM (See Chapter 5).
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4.4. The Coupled Solid/Fluid Model (PSM + PFM)

4.4.1. Development of the Coupled Solid/Fluid Model

As discussed previously, an ultimate aim for this work was to create a coupled

solid/fluid model within a single software DEM framework. The development of the

separate solid and fluid phase models, the PSM and PFM, is described and discussed in

detail in Sections 4.2. and 4.3. above. It was the principle of the proposed coupled

modelling framework that these models could be very simply integrated to create a

coupled solid/fluid model without the need for further modification or other procedures

usually associated with coupled models, such as mapping and consistency between

different meshes. The benchmark model, described in the following Section, was an

initial attempt to do this, however, some minor modifications were required before the

coupled benchmark model could be run.

In order for the PFM particles to be able to interact with the PSM mesh it was

necessary for them to be able to 'see' PSM particles within their radii of influence.

Obviously, since the PFM represents a fluid phase entirely separate from the solid phase

material only the surface of the solid material should interact with the fluid in terms of

the repulsion and drag forces associated with pressure and viscosity. To implement this,

the PSM particles, on the outside of the mesh, that were likely to encounter the fluid

were assigned a flag, making them 'visible' to the PFM (This is illustrated in Fig. 4.36.

below). Thus, as the PFM particles passed by the PSM mesh they would experience

drag and repulsion from the solid. Equal and opposite forces would also be applied

back to the PSM particles. In this way fluid pressure could be applied to a solid surface

and although it is unlikely that a large solid body would be dragged along by viscous

effects, smaller bodies, as might be present with the future development of the Particle

Proppant Model (PPM), could be dragged along in a fluid flow.

For a real fluid interacting with a real solid, the drag effect of the solid would be

different to the drag effects internal to the fluid. Although it would have been quite

possible to set the model interaction such that the drag effect of the 'solid particles' on a

'fluid particle' was different to the drag effect of another 'fluid particle', for simplicity

in this work drag effects were kept the same throughout.
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Initial tests on the coupled PSM + PFM showed that despite only the surface of

the solid mesh being 'visible' to the PFM, the 'fluid particles' experienced far more

drag than was expected. Obviously, this severely altered the behaviour of the fluid.

The effect was found to be due to each PFM particle encountering several of the PSM

surface particles within its radius of influence of drag as the PFM particle approached

the PSM mesh (See Fig. 4.36.).

PFM Particle's Radius I

of Influence of Drag " \
--, ... .,_ +,:_+ .,_ ...--!....._ ...Drag Forces from

Y r>- Each PFM and
" ~ 'Visible' PSM

~ Particle within
PFM 'Fluid Particles' --~~ ~ ...'" Radius of....

...... - _ ......... Influence of Drag

PSM Mesh

PSM Particles
'Visible' to PFM

Fig. 4.36. Diagram Showing Excess Drag Effect of Multiple PSM Particles on

Single PFM Particle

To combat this, a simple normalisation function was introduced whereby the total drag

on a PFM particle was divided by the number of PSM particles within its radius of

influence of drag. It was, however, understood that this was an over simplification.

Firstly, the total drag force derived from the interaction with the PSM particles would

not have an equal contribution from each one due to the differing separations and,

secondly, the function did not make a distinction between PSM and other PFM particles

within the first particles radius of influence of drag (See Fig. 4.37. below).
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Fig. 4.37. Diagram Showing Varying Separations of 'Visible' Particles within

Radius of Influence of Drag

While the normalisation function could be improved upon, this approximation allowed

the PFM model to produce behaviour very similar to that which could be expected from

the results of the benchmark models discussed in the previous Sections. For this reason

the development of the normalisation function was not pursued further in the work

carried out for this thesis.

Furthermore, this excess force effect was not noticed in the case of repulsive

forces. This was probably a chance occurrence that the discretisation of the PSM was

such that only one or two particles fell within a PFM particles radius of influence of

repulsion at one time. If the discretisation of the PSM was to increase then it is likely

that a normalisation function similar to that employed for the drag forces would also be

required for the repulsive forces. Similarly, if discretisation of the PSM were to

decrease then normalisation may not be required for either of the force fields. However,

if discretisation were to decrease to such an extent that the radius of the PSM particles

was greater than the radii of influence of the PFM particles, then a situation is

conceivable, whereby 'fluid particles' could fall between the 'visible' PSM particles at

the surface of a mesh, without feeling the effects of repulsion or drag (See Fig. 4.38.).
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If this were to be the case then some kind of normalisation factor less than one, might be

required. Again, this was not pursued further in the course of this thesis.

\

Radiusof~'
Influence '" '".... ...'
of Drag .... - _ ......

Large PSM
Particles

Fig. 4.38. Diagram Showing Situation Where PFM Particles May Fail to 'See' the PSM Mesh

4.4.2. Pressurised Notch Coupled Benchmark Problem

This benchmark problem looks into the elastic deformation of a solid, represented by a

PSM mesh under loading from 'fluid particles' of the PFM to which an external

pressure is applied. Although, as will be seen, the problem involved very simple

interaction it was intended to be representative of the type of interaction that is likely to

occur in a hydraulic fracture treatment. The notched PSM mesh can be considered to

represent rock reservoir material at the end of an existing fracture or perforation in the

wall of a wellbore. The PFM particles can be considered to represent a fracture fluid

that infiltrates the notch and applies pressure to the rock. The coupled model was set-up

as shown below (See Fig. 4.39.).
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Fig. 4.39. Diagram Showing Initial Set-up of the Coupled Benchmark Model for PSM + PFM

As with the Pressurised Cylinder Benchmark Model, discussed in Section 4.3.4.1.,

'fluid particles' were created within an External Pressure Zone where forces were

applied such that the particles moved into the notch. As before, when particles left the

External Pressure Zone, more particles were created in their place. This process

continued until the notch was filled and static equilibrium was reached between the

walls of the notch and the externally applied pressure (See Fig. 4.40. and Fig. 4.41.

below). Obviously, in contrast to the fixed boundaries of the Pressurised Cylinder

Model the notch boundaries formed by the PSM mesh were deformable. In order to the

resist the applied pressure, stress would have to develop within the solid mesh. A

discussion of the mechanism by which this occurs can be found in Section 4.2.1. of this

Chapter. It should be remembered that, at no time would the PFM 'fluid particles'

come into mechanical contact with the PSM particles.
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a) b)

Fig. 4.40. Plots of Coupled Benchmark Model for PSM + PFM during Fluid Flow into Notched

PSM Mesh a) after 4000 time steps and b) after 8000 time steps
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Fig. 4.41. Plot of Coupled Benchmark Model for PSM + PFM at Steady State Equilibrium
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By way of verifying the interaction behaviour of the solid and fluid phases, two studies

were made. Firstly, a qualitative examination of the dynamic interaction of the solid

and fluid phases was carried out as the 'fluid particles' flowed into the notch in the PSM

mesh. Secondly, a quantitative study was made of the static equilibrium state, reached

when the notch was full of fluid, such that the external applied fluid pressure was

compared to the total reactive force experienced by the fixed boundaries of the PSM

mesh. Clearly, for equilibrium, all of the fluid pressure should be transferred to the

PSMmesh.

As can be seen from Fig. 4.40. a) above, the PFM was observed to develop a

parabolic velocity profile, where the centre of the flow moved faster than the

extremities, much as it had done when entering the Pressurised Cylinder Model and

when flowing between the plates of the Lubrication Flow Model (See Section 4.3.4.1.

and Section 4.3.4.2. above). As discussed in the previous Sections, this dynamic

behaviour was found to accurately reproduce the parabolic velocity profile predicted by

Lubrication Flow theory. It was therefore considered that the flow behaviour of the

PFM particles into the notch in the PSM mesh was sufficiently representative of fluid

behaviour to be of continued use in this project.

Of more interest in this benchmark model was the transfer of fluid pressure to

the solid mesh, and the consequent build up of stress in reaction to it, when the notch

was full and a static equilibrium state reached. Given the observed dynamic behaviour,

discussed above, it was felt that if the transfer of load to the mesh was accurately

achieved under static conditions, then it was likely that it was also accurately transferred

under dynamic conditions.

As can be seen in Fig. 4.41. above, the PFM particles reached a state of relatively

even distribution throughout the notch in the PSM mesh. This was similar to the

behaviour observed in the Pressurised Cylinder Model, discussed in Section 4.3.4.1.

above and, given the results of that study, where an even pressure distribution on the

cylinder walls was recorded, was suggestive of successful static interaction between the

PFM and PSM models. Indeed, when a plot of the forces in the inter-particle links of

the PSM mesh is examined (See Fig. 4.42. below) it can be seen that an evenly

distributed and symmetrical stress field was built up in the PSM mesh.
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Dark lines between
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compression forces

Grey lines indicate
tensile forces

The width of the line is
indicative of the
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Fig.4.42. Plot of Coupled Benchmark Model for PSM + PFM at Equilibrium Showing

Forces in Inter-Particle Links

As can be seen above, a tensile stress regime dominates at the tip of the notch and at the

fixed boundaries, in reaction to the applied external pressure, while compressive

stresses dominate in the region near the walls of the notch, where pressure forces are

transferred from the PFM to the PSM. Qualitatively, this is precisely the behaviour that

would be predicted.

Additionally, as mentioned previously, the transfer of pressure was measured

quantitatively. The external pressure applied to the PFM during this benchmark test

was 20kPa, which, given the dimensions of the notch, resulted in a total applied force of

ISON in the x-direction. When measured at the fixed boundaries of the mesh, the total

reactive force was found to be I46.46N in the x-direction. No y-force could be

supported by the mesh boundaries. This result was considered acceptable and the small

discrepancy between the applied force and the reaction was thought to be the result of

some residual movement of the PFM particles. Essentially, they were not quite at

steady state equilibrium. However, after the particles had reached their approximate

equilibrium locations quite quickly, there was a long period of 'settlement', during

which they oscillated about these positions, and it had taken a considerable length of
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time for the model to reach the state at which it was stopped. Given the obviously

accurate interaction behaviour of the solid and fluid models, it was not considered

necessary to continue. It seemed apparent that with more time, the particles would

eventually have come to complete rest and the reaction load would have matched even

more closely with the applied pressure. Tests showed that increasing the value of the

overall mechanical damping coefficient, ;, would have reduced the time taken to reach

precise static equilibrium, however, this would obviously have affected the fluid

properties represented by the PFM (See Section 4.3.4.2. above). Furthermore, a very

high value for the damping coefficient would have been required in order to

significantly shorten the time taken to reach static equilibrium. The use of a damping

coefficient greater than the default value of 0.7 is not recommended by the developers

of the PFC3D code (Itasca Consulting Group [37]) as it may result in a loss of numerical

stability in the solution. While this may not have been a problem in this benchmark

model, it may prove to be in more complex models where dynamic interactions of the

PFM and PSM are specifically of interest.

4.4.3. PSM + PFM Conclusions

It can be concluded from the results of the benchmark study described in the previous

Section that it was possible to successfully integrate the PFM and PSM to create a

coupled solid/fluid model without significant additional complications.

It was found that the PFM successfully interacted with the PSM mesh to reach a

coupled state of static equilibrium with reasonable accuracy and it can therefore be said

that the PSM and PFM display correct coupled behaviour. Furthermore, while the

dynamic behaviour was not specifically measured, the PFM 'fluid particles' were

observed to flow, under an external pressure gradient, in a fluid like manner, passed a

PSM mesh. It can therefore be concluded that the model also showed qualitatively

accurate, coupled dynamic behaviour and, given the quantitative accuracy of the static

equilibrium state, it seems likely that the dynamic interactions were also quantitatively

accurate.
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While the results produced by the benchmark model discussed above were

considered to show an acceptable level of accuracy for this initial attempt at coupling

the solid, PSM, and the fluid, PFM, models, it was clear that a number of areas could be

improved on. Firstly, as discussed in Section 4.4.1. above, problems were encountered

with the pressure and viscosity interactions of the solid and fluid models whereby

excessive forces were applied to 'fluid particles' encountering a solid body. These were

overcome with the introduction of a normalisation function. However, this function was

considered an over simplification and a more rigorous method of accounting for these

excessive forces would be required for complete accuracy. Secondly, again as

discussed above, in order for the PFM to interact with the PSM mesh it was required to

make the PSM particles at the surface of the mesh 'visible' to the PFM. The method by

which this was achieved was essentially a brute force, fixed coding method and as such

was entirely model specific. A more efficient, perhaps automatic method of

implementing the solid/fluid interaction would be sought for a completely general code.

A further consideration for the coupled PSM + PFM model is the discretisation

of the two phases. This is partially dependent on the scale of the problem to be

modelled. As discussed in the previous Section, the coupled benchmark model

considered an area of material only a few millimetres wide. However, for hydraulic

fracture simulations it would be required to model a fracture at least lOs of metres in

length. This combination of metre scale length with millimetre scale width is a well

known problem in the field of hydraulic fracture modelling (See Chapter 2, Section

2.2.).

To model a sample of solid material metres in length with the PSM would

require millions of particles if the discretisation applied in the Pressurised Notch

Coupled Benchmark Model were to be used. The obvious solution is to use PSM

particles that are very much larger, as were considered in the PSM benchmark models,

discussed in Section 4.2.3.2. of this Chapter. However, in order for the accuracy of the

fluid model to be maintained in a fracture only a few millimetres wide it would be

necessary for the PFM particles to have radii perhaps 1000s or 10000s of times smaller

than PSM particles. While this is possible, it would result in a number of problems.

Specifically, it would cause problems with the interaction of the PFM and PSM,

however, it is felt that these could be overcome. More generally, it would obviously

185



Chapter 4: Numerical Model Development

again lead to a requirement for a large number of particles and this is not considered

practical with the computational facilities currently available. However, it is

conceivable that a purpose written, optimised code, run on a powerful, perhaps parallel,

machine could execute a model of this kind. Certainly, if computing technology

continues to advance at current rates than it will not be long before this kind of model is

practical for all users.

4.5. Summary

In this Chapter has been presented the development of the solid phase Particle Solid

Model and the fluid phase Particle Fluid Model. The implementation of both these

models was described in detail along with discussion of the mechanics involved in

developing the desired solid and fluid behaviours. Discussion was also made of

techniques through which the model parameters could be calibrated in order to

reproduce the behaviour of a material with specific properties.

In order to verify the behaviour of these models benchmark problems were

carried out. The construction of these problems was discussed in detail, together with

presentation of the results. From these results, conclusions were drawn as to the

accuracy of the model behaviour and the desired evolution and advancement of the

work.

In addition to the work discussed above, presentation was also made of a

coupled model constructed, as proposed in Chapter 3, by integrating the PSM and PFM

within one modelling framework. As with the separate models the development of this

coupled model was described in detail before a verification of behaviour was made

through the application of a benchmark problem. Once again, the results of this

problemwere presented and discussed in detail before conclusions were drawn.

In general, it was concluded that both the PSM and PFM were able to adequately

reproduce the desired behaviours of solid and fluid materials respectively. However,

difficulty was found in calibrating the PFM for a specific fluid of given properties.
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Despite this, it was also concluded that these models could be successfully coupled,

without significant additional complications, and that they interacted to accurately

reproduce expected behaviour.

In the following Chapter, the advancement of the Particle Solid Model to

develop fracturing behaviour will be described. Methods, by which fracture criteria can

be implemented in lattice type models, will be presented along with discussion of their

relationships to fracturing in the PSM. Further presentation will then be made of five

failure criteria specifically developed for the PSM along with results of a benchmark

model used to test the behaviour of these criteria. From these results, conclusions will

be drawn as to proficiency of the criteria and the implications for the project as a whole.
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Chapter 5:

Failure Criteria for the Particle

Solid Model (PSM)

5.1. Introduction

This Chapter continues the discussion concerning the development of the Particle Solid

Model (PSM) that was begun in the last Chapter. Discussion in Section 4.2. of Chapter

4 centred on the initial development of the PSM and its ability to model the elastic

behaviour of a solid material. The following Sections deal with the further development

of the PSM and its capacity to model more complex behaviour with particular attention

to fracture development within the bonded particle assembly.

After discussing the requirements for fracture criteria in a lattice type model,

presentation will be made of five failure criteria that were developed for the PSM. The

discussion will follow the evolution of these criteria, which was based on the

conclusions drawn from the results of a benchmark model in which each consecutive

fracture criterion was tested. For each test, the results are presented and discussion is

made. Comparison is also made to similar work by other researchers.

5.2. Failure Criteria for Lattice Type Models

As discussed in Chapter 2, many studies have been carried out, by various

researchers, into the fracture of quasi-brittle material using typical lattice models

(Schlangen and Garboczi [79], Schlangen and van Mier [80, 81, 82], Tzschichholz and

Herrmann [88], Tzschichholz et al. [89], van Vliet [95]) or bonded particle assemblies

(BaZant et al. [7], Beranek and Hobbelman [8], Chang et al. [14], Bruno et al. [11],

Jirasek and Bazant [40, 41], Morikawa and Sawamoto [63]). Obviously, for the parts of
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this work concerned with the propagation of hydraulically. driven fractures, it is

necessary to follow the work of these researchers in order to develop fracturing

behaviour for the PSM.

The common representation, in all of the studies cited above, of fracture

propagation in a lattice type model is by the sequential removal of lattice elements or

inter-particle links, when a predefined element failure criterion is exceeded due to the

action of externally applied loads or displacements. The breakage of elements or links

is irreversible and once removed they are never allowed to return or reconnect. It is also

generally assumed that a lattice element is either completely undamaged or completely

failed. Fracture propagation is not considered below the individual element level.

Detailed discussion of this subject is presented in Chapter 2, Section 2.3.1.

It is suggested by van Mier [59] that the ideal for a lattice representation is to

model a material at the atomic level and employ stress-separation laws to describe its

deformation and fracture. However, it is accepted that a model of this kind is

computationally unfeasible with current technologies and instead, it is necessary to

develop micro- and meso-scale lattice models, with elements of the order of a few

millimetres in length, and employ phenomenological models such as Rankine, von

Mises or Mohr-Coulomb criteria to determine failure of the elements.

For a typical lattice model, consisting of beam or truss elements that can be

considered in the same way as a structural members and consequently have a cross-

sectional area, these phenomenological models are often implemented through values of

critical tensile stress assigned to each lattice element. Common examples of these

criteria take into account simple axial loads and, when available, the bending capacity

of the elements (See Eq. 2.12. and Eq. 2.13. repeated below).

F;(beam) ~M I(beam)1, 1Mj(beam)I)max~t< +~----~----~=-
~beam) I(beam)

Eq.2.12.

< F;(beam)at
~beam)

Eq.2.13.
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It is noticeable that another commonality of lattice type models is that they tend not to

consider failure of the elements in compression. Some work has been carried out with

compressive failure in lattice type models (Morikawa and Sawamoto [63]) but this has

usually been with bonded particle assemblies rather than beam or truss frameworks.

The implementation of failure criteria for bonded particle assemblies is

dependent on the composition of the inter-particle links (See Chapter 2, Section 2.3.3.)

but is often similar to the methods applied in typical lattice models, as discussed above.

For example, Beranek and Hobbelman [8] developed a bonded particle assembly in

which the bonds consisted of discs of extra material between the particles that were

assigned maximum stress capacities in a similar fashion to a lattice beam element.

Beranek and Hobbelman's model in fact considered the normal and shear stresses in the

bonds for a Mohr-Coulomb failure criterion.

If, however, the inter-particle links are not of suitable configuration and do not

have a determinable cross-sectional area, then the application of a critical stress

criterion is not possible. This was the case in a previous attempt to model fracturing

with a bonded particle assembly similar to the PSM (Davie [21D. As with the PSM this

particle assembly was constructed within the DEM code PFC3D and consisted of

particles linked together with 'contact bonds', which are a basic component of PFC3D

(See Chapter 3, Section 3.3.). These bonds are considered to act over a point contact

and consequently have no physical cross-sectional area. Instead of maximum stress

capacities, they are assigned maximum tensile and shear strength capacities, expressed

in units of force. When the tensile or shear force in the bond exceeds these defined

maxima, the bond is removed. The previous work, cited above, attempted to model

fracturing by making use of this inbuilt criterion but found great difficulty in calibrating

the strength of the 'contact bonds' for a given material strength.

Since the PSM is constructed using the same 'contact bonds' for inter-particle

links, it was hoped to apply this method and find a reliable technique with which to

calibrate the 'contact bond' strength. Given the difficulties encountered in attempts to

calibrate the material properties of such an assembly via trial and error techniques (See

Chapter 4, Section 4.2.2.2.), it was felt that a more rigorous approach would be

appropriate for application in this work.

190



Chapter 5: Failure Criteria for the Particle Solid Model (PSM)

5.3. Development and Implementation of Failure Criteria for PSM

As discussed in the previous Section, although typical lattice models assign material

strengths to their elements in terms of maximum stress capacities, it was not possible to

employ this approach in the PSM due to the lack of physical cross-sectional area

associated with the inter-particle links (See Chapter 4, Section 4.2.l.). Furthermore,

previous investigation had encountered difficulties in calibrating the existing, force

based 'contact bond' failure criterion, built in to PFC3D, for a given material strength.

Consequently, it was necessary to look for alternative methods of implementing

failure criteria for the PSM. The evolving development of five failure criteria, based on

various lattice and continuum principles, is detailed in the following Sections. As with

previous models detailed in this work, that extended the model beyond the basic DEM

behaviour of PFC3D, these failure criteria were realised through code written in the

associated FISH language.

The failure criteria were generally implemented in the PSM by examining each

'contact bond' in turn, and testing for yield and failure conditions, where 'yield' refers

to the elastic limit and 'failure' refers to the ultimate limit, as appropriate to the

particular failure criterion in use. Obviously, in cases where elastic-brittle behaviour

was considered, conditions of yield and failure were coincident. All of the inter-particle

link elements in which failure conditions were found to have been exceeded were

marked as candidates Jar Jailure. Link elements in which failure conditions had not

been reached but in which yield conditions had been exceeded were marked as softening

elements. Having examined all of the inter-particle link elements within the PSM mesh,

self-equilibrating, out of balance forces were applied to all of the softening elements in

order to simulate the redistribution of stress. Furthermore, from the candidates for

Jailure, the 'worst case' link element was removed. This process was repeated during

each model time step.

What constituted the 'worst case' link element from all of the candidates for

Jailure, differed from criterion to criterion and the precise determination is discussed in

detail in the following Sections. However, it can be noted that in this way, only one link
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was removed from the PSM mesh per time step. This is the approach adopted by

various other researchers such as Schlangen and Garboczi [79], Schlangen and van Mier

[80, 81, 82], Tzschichholz and Herrmann [88], Tzschichholz et al. [89] and van Vliet

[95]. As discussed in Section 2.3.1. of Chapter 2, it is suggested that this restriction

allows stress redistribution to take place between time steps. However, it is noted that

the typical lattice models, employed by all the authors cited above, are subjected to a

series of static analyses whereas the PSM is constructed within PFC3D, which employs a

dynamic relaxation solution scheme. Consequently the assumption of stress relaxation

between time steps may be a natural effect in typical lattice models, however, unless

care is taken to ensure that dynamic effects in the PSM meshes are minimised, complete

stress relaxation may not take place between time steps. It is arguable that fracturing is

in fact a dynamic process and therefore stress relaxation should not be assumed to take

place between fracture propagation events and, therefore, multiple instances of element

failure per time step should be allowed in lattice type models. However, to realistically

account for dynamic effects, very precise control of the boundary conditions and

material properties would be required and so, for practical purposes in this work, the

analyses were treated as quasi-static problems and consideration of failure was limited

to one element per time step.

The FISH routines, through which the failure criteria were developed, were

executed in every time step of the model analyses, just before the motion calculation of

the basic distinct element method calculation cycle employed in PFC3D (See Chapter 3,

Section 3.4.1.). The amendments made to the basic calculation cycle are illustrated in

Fig. 5.1. below (in comparison to Fig. 3.3.) and the additional steps in the process are

highlighted for clarity. Where out of balance forces were applied to account for

softening behaviour, they supplemented the total forces acting on a particle, and

subsequently affected the acceleration of the particle, as defined by Eq. 3.26., which is

also highlighted in Fig. 5.1. below. The precise details of this process will be discussed

in relation to the relevant failure criteria in the following Sections.
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Fig. 5.1. Flow Chart Summarising the Calculation Sequence for the Distinct Element Method

Modified For Inclusion of Failure Criteria Implemented via FISH Code (expanded Fig. 3.3.)

(Dashed Outlines Indicate Where Changes were Implemented in the Basic OEM Algorithm)
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5.4. Two-Dimensional Uniaxial Benchmark Model

In order to test the behaviour of the failure criteria developed for the link elements of

the PSM it was necessary to construct a benchmark model. For this purpose, a simple

uniaxial model is considered, similar to the one based on the benchmark model used by

Griffiths and Mustoe [32] and discussed in Section 4.2.3.2. of Chapter 4 in association

with the elastic deformation of the PSM. However, it was found that, due to the

complexity and inefficiencies of the FISH code through which the fracture criteria were

implemented, this model took an excessively long time to run to failure, especially

when finer meshes were employed. Therefore, for practical purposes, it was required to

create smaller model meshes in a similar fashion to the original. These are shown

below in Fig. 5.2. and it can be seen that two benchmark model configurations were

created for which there were three discretisations of regular, PSM mesh, ranging from

coarse, through medium, to fine. The dimensions of the two configurations were as

similar as possible given the triangular arrangement of the inter-particle links. The

dimensions of the coarse, medium and fine mesh discretisations of each model

configuration are identical when measured from the nodes of the equivalent lattice at the

particle centres. Particle material lying beyond these dimensions does not affect the

behaviour of the model. Each of the meshes was fixed with symmetry boundaries in

such a way as to represent a quarter of a material sample. The meshes were considered

to experience plane strain conditions, as had been assumed for the Uniaxial Benchmark

Model for elastic deformation of the PSM (See Chapter 4, Section 4.2.3.2.1.).

The behaviour of the failure criteria was verified by subjecting the benchmark

PSM meshes, with the relevant failure criterion assigned, to prescribed displacements.

The three meshes of the first configuration (Fig. 5.2. a), b) & c) ) were applied

prescribed displacement in the x-direction and those of the second configuration (Fig.

5.2. d), e) & f) ), prescribed displacement in the y-direction. In fact, as is required for a

model constructed in PFC3D, rather than prescribed displacements the meshes were

subjected to a prescribed velocity per time step. This was continued until a fracture had

propagated completely through the mesh. As discussed above, care was taken that the

applied velocity was sufficiently slow that dynamic effects were minimised in the

models. Additionally, PFC3D,s internal function of differential density scaling was

employed to develop quasi-static analysis.
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The material properties applied in all of the tests carried out with this benchmark model

were taken from finite element studies of hydraulic fracture propagation in a poorly

consolidated sandstone (Papanastasiou [69, 70, 71, 72]) and are listed in Table 5.1.

below.

Property Symbol Value

Young's Modulus E 1785.0MPa

Poisson's Ratio v 0.25

Tensile Strength /i 0.5N/mm~ / 0.4875N/mm~

Fracture Energy Release Rate G, 200N/m

Table 5.1. Material Properties Applied to Two-Dimensional Uniaxial Benchmark Model

The value of Young's modulus, E, was adopted directly from the FE studies listed

above, as was the material tensile strength, /i, of 0.5MPa. However, in order to induce

localised failure of the mesh, a row of link elements, near the middle of each mesh,

marked with a double line (~) in Fig. 5.2. above, were given a material strength of

0.4875MPa, 2.5% lower than the rest of the link elements. When all of these had been

removed, due to the applied failure criterion being exceeded, the tests were considered

complete. The value of Poisson's ratio, v, was specified in the FE studies as OJ,

however, given the assumption of plane strain conditions, the maximum applicable

value in the PSM, according to Morikawa and Sawamoto's equations, was 0.25 (See

Chapter 4, Section 4.2.2.3.) and so this value was taken.

In addition to these properties, a material fracture energy release rate, G" was

also required for several of the failure criteria discussed in the following Sections.

Although the FE model developed by Papanastasiou was formulated in terms of fracture

toughness, KIC, it was possible to calculate the equivalent value of fracture energy

release rate through the relationship shown below (See Eq. 5.1.) (Kanninen and Popelar

(1985): cited in Papanastasiou [69]).
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K2 = G/cE
IC 1 2-v

£q.5.1.

where, K[c is the fracture toughness and G[C is the strain energy release rate and is

directly equivalent to the fracture energy release rate, G.f

When this was done, it was found that a value of 51ON/m would be required to

reproduce the material properties of the FE model. For reasons of practicality,

associated with the time required to run numerical studies with the Two-Dimensional

Uniaxial Benchmark Model, as will be seen in the following Sections, this value was

considered to be too large and the material too ductile for the purposes of this work. A

value of 100N/m was then chosen as being representative of a quasi-brittle material

such as concrete. However, initial tests found this value to be too brittle and impractical

due to the very slow loading rate required in the Two-Dimensional Uniaxial Benchmark

Model, particularly for the coarse mesh, in order to capture the true behaviour of the

failure criteria. In order to reduce the required load rate a more ductile model material

was sought and a value of 200N/m was considered a reasonable compromise.

During each test, overall load-displacement data for the mesh was recorded.

Plots of this data are given in the flowing Sections in order that comparison can be made

between the behaviours of the failure criteria.

5.5. Mark 1 - Failure Criterion

(Brittle, Uniaxial Total Strain Criterion)

5.5.1. Theory of the Mark 1 Failure Criterion

The first failure criterion to be developed for the PSM was a very simple uniaxial total

strain model. This compared the uniaxial total strain in each inter-particle link element,

&t(link), to a simple linear elastic constitutive model as shown in Fig. 5.3. below.
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Of/ink)

f,

Eu S'(/Ink)

Fig. 5.3. Diagram Showing Simple linear Elastic Constitutive Model for Mark 1 - Uniaxial Total

Strain Failure Criterion for the PSM

The uniaxial total strain in each inter-particle link of the PSM mesh was calculated,

according to Eq. 5.2. below, by comparing of the updated overall element length, taken

as the distance between the centroids of the particles at each end of the element, with

the original length of the element, which was equal to twice the particle radius (See

Chapter4, Section 4.2.1.).

_ I(link) -/o(l;nk)
s,(link) - 1

O(link)
Eq.5.2.

The link elements were considered as candidates for failure when the uniaxial total

strain exceeded a critical value such that, through Young's modulus, E, for the

equivalent continuum material, the equivalent continuum material strength, ft, was

exceeded. From the set of all the candidatesfor failure, the link with the highest strain

was removed. This can be stated as shown below (See Eq. 5.3. and Eq. 5.4.).

max &~link) for e E {S~ff} Eq.5.3.

Eq.5.4.

where, e is any inter-particle link element, Su is the ultimate strain capacity, ft is the

tensile strength of an equivalent continuum material, S· is the set of all inter-particle

links elements within the PSM mesh under consideration and S:.u is the set of inter-

particle links considered as candidatesfor failure.
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For a homogeneous lattice, this was equivalent to the criterion applied by

Schlangen and van Mier [80, 81, 82] who removed the beam element with the highest

stress to strength ratio. Furthermore, it resembles a Rankine criterion, as noted by van

Mier [59], (See Eq. 5.5.), although in terms of total strain rather than stress.

E F;(beam) ~ r
O'(link) = s, = ,;:,J,

~beam)

Eq.5.5.

where, O(link) is the uniaxial stress in an inter-particle link element.

As discussed above, it would not be possible to directly implement a Rankine

stress criterion in the PSM due to the lack of physical cross-sectional area associated

with the inter-particle links. Furthermore, it should be noted that this comparison is

only in consideration of an element itself and not the equivalent continuum material as a

whole.

5.5.2. Implementation of the Mark 1 Failure Criterion

Implementation of the Mark 1 failure criterion, within the basic OEM calculation cycle

employed by PFC3D (See Section 5.3. above), required only a simple FISH routine

designed to check each link element of the PSM mesh in turn and determine if its

uniaxial total strain exceeded its ultimate strain. Each time an element was found to

have exceeded its ultimate strain, as determined by the simple constitutive model (See

Fig. 5.3.), its strain was compared to that of the stored current 'worst case' element. If

its strain was found to exceed that of the current 'worst case' element, it was labelled as

the new 'worst case' element. After examination of all the inter-particle link elements,

the final stored 'worst case' element was considered to have failed and was removed

from the PSM mesh.

The FISH routine for the Mark 1 failure criterion can be summarised as shown

in Fig. 5.4. Inspection can also be made of the actual FISH code, which is presented in

Section Am.S. of Appendix m and, where possible, variable names employed in the

code, are shown beside the relevant process in the flow chart below.
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From Force-
Displacement

Law

No

Determine Coordinates of Particles at
Ends of Current Link Element

Determine Variation in Element Strength,f,
(zero unless random strengths employed)

Calculate Current Element Length ubond

,--C_al_cu_l_at_e_S_tr_a_in_in_C"Tu_rr_e_n_t_L_ink_E_I_em_en_t__,~

Calculate Ultimate Strain for Current Link Element
(Depends on Assigned Strength,/,) elasmax

Record Current Element as New
'Worst Case'

Delete 'Worst Case' Element

To Equations
of Motion

Fig. 5.4. Flow Chart Summarising FISH Code for Mark 1 Failure Criterion

200



Chapter 5: Failure Criteria for the Particle Solid Model (PSM)

5.5.3. Mark 1 Failure Criterion Benchmark Study

The Mark 1 failure criterion was applied to the Two-Dimensional Uniaxial Benchmark

Model, discussed in Section 5.4. above, and the following numerical studies, detailed in

Table 5.2. below, were carried out.

Element Young's Poisson's Material Prescribed

Displ. Length Modulus Ratio Strength Velocity

h E v fi
(m) (MPa) (N/mm2) (m/s)

X 0.50 1785 0.25 0.48750 5 x 10'~

X 0.25 1785 0.25 0.48750 5 x 1O·~

X 0.l0 1785 0.25 0.48750 5 x 10'~

y 0.50 1785 0.25 0.48750 5 x 10'~

y 0.25 1785 0.25 0.48750 5 x 10'~

y 0.10 1785 0.25 0.48750 5 x 10'~

Table 5.2. Details of Two-Dimensional Uniaxial Model Studies with Mark 1 Failure Criterion

From the studies listed above, the load-displacement curves shown below, in Fig. 5.5.

and Fig. 5.6., were produced.

As can be seen from the plots below, the Mark 1 fracture criterion produced

load-displacement curves generally similar to those that would be expected for an

elastic-brittle criterion of this kind. There are, however, several points of note.

Firstly, the N,lines, shown on the load-displacement curves, in both Fig. 5.5.

and Fig. 5.6., represent the applied loads at which the maximum tensile strength, fi, of
an equivalent continuum material, with properties as shown in Table 5.2. and

dimensions as shown in Fig. 5.2., would be reached. As can be seen from the plots, all

six of the load-displacement curves show yielding of the material well above this line.

Therefore, while the link elements were individually failed when It was reached, the

Mark 1 failure criterion over predicted the strength of the material as a whole.
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Fig. 5.5. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark Model with the

Mark 1 Failure Criterion and Prescribed Displacement in the x-direction
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Fig. 5.6. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark Model with the

Mark 1 Failure Criterion and Prescribed Displacement in the y-direction
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Additionally, for an equivalent continuum material, the displacements at which failure

was expected to occur were calculated from Eq. 5.6. below, which is a rearrangement of

components of Eq. 5.2. and Eq. 5.4.

I I J, ./O(link)
U = (link) - O(tink) = E Eq.5.6.

Again, for a material with properties as shown in Table 5.2. and dimensions as shown in

Fig. 5.2., these were found to be approximately 0.000410m for the mesh displaced in

the x-direction and 0.000473m for the mesh displaced in the y-direction. It can

therefore be seen that the models generally over predicted the extension of the mesh as

well as the strength, in comparison to the expected results for an equivalent continuum.

These effects can be explained when the Mark 1 failure criterion is examined in

conjunction with the triangular configuration of the PSM mesh. As can be seen in Fig.

5.2., some of the inter-particle link elements are aligned with the direction of prescribed

displacement, whereas other elements lie at an angle to it. These elements will

subsequently be referred to as 'diagonal' elements. As described above, the Mark 1

failure criterion looks into the updated length of the link element in order to calculate

the total uniaxial strain, which is then used to determine whether failure conditions have

been reached. Therefore, it can be seen that, when the model mesh is extended in a

particular direction, the elements that lie in direct alignment with the direction of

displacement will reach their maximum length, as defined by the ultimate strain, cu,
before the 'diagonal' elements do. In other words, the mesh must be extended further

than would be expected for an equivalent continuum material in order for the 'diagonal'

elements to reach the length at which failure occurs.

A similar effect was observed by Schlangen and Garboczi [79] (See Chapter 2,

Section 2.3.1.) who noted that in a regular, triangular lattice model, of similar

configuration to the PSM mesh, under uniaxial strain, elements lying in one direction

carried more load than the others and therefore, these elements would be the first to fail.

They also reported that a strain in the y-direction results in 33% higher stress at fracture
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than a strain in the x-direction. This is very close to the behaviour shown above for the

Mark I criterion where, the effect in the PSM can be seen, as would be expected, to

reduce as the mesh discretisation increases and the difference between a 'diagonal'

element and an in-line element diminishes. However, in agreement with the findings of

Schlangen and Garboczi, it can also be seen to be a more significant effect in the mesh

displaced in the y-direction, where there are only 'diagonal' elements, than in the mesh

displaced in the x-direction, where a mixture of elements are present. In fact, it can be

seen that the curves for the medium and, in particular, the fine meshes, displaced in the

x-direction, are quite close to the yield and displacement predicted for an equivalent

continuum.

In addition to the over predictions of length and yield strength, it can be seen in

the load-displacement plot for prescribed displacement in the x-direction (Fig. 5.5.) that

the loading slopes and consequently the elastic responses of the model are different in

each of the three mesh discretisations. As discussed above, the accuracy of the results,

in comparison to those that would be expected for an equivalent continuum material,

improve with increasing discretisation. An explanation for this can be found in the

studies conducted by van Vliet [95]. As discussed previously (See Chapter 2, Section

2.3.1. and Chapter 4, Section 4.2.3.2.), van Vliet [95] found that a mesh length to

element length ratio, L ~ 20, was required in order for boundary effects to diminish

sufficiently to allow a lattice model to accurately reproduce the behaviour of its nominal

material properties. The ratio L for the coarse, medium and fine mesh discretisations of

the Two-Dimensional Uniaxial Benchmark Model for prescribed x-displacement were,

respectively 3, 6 and 15, in the x-direction. The lack of accuracy could therefore be

expected and it can clearly be seen that the precision of the results would improve with

increasing mesh discretisation. In fact, the benchmark studies conducted in Section

4.2.3.2. of Chapter 4, showed that a PSM mesh with a L ratio of 17 very accurately

reproduced expected results. This would suggest that the fine mesh discretisation

applied in the Two-Dimensional Uniaxial Benchmark Model would show reasonably

accurate behaviour and this is indeed shown in the results. The low values of L for the

Two-Dimensional Uniaxial Benchmark Model and the consequent loss of accuracy

were accepted in trade off with the practicalities of required computational effort

involved in running finer mesh models (See Section 5.4. above).
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Similar mesh-size dependency of results, obtained from one and two force lattice

models employing brittle fracture laws, were also noted by van Mier [59]. It can also be

noted, however, that the load-displacement curves for prescribed displacement in the y-

direction (Fig. 5.6.) did not show the same evidence of mesh-size dependency despite

the fact that the ratio L for the coarse, medium and fine meshes were approximately 3.5,

6.9 and 17.3, respectively. While it might have been expected, as mentioned above, that

the fine mesh model would have shown accurate behaviour, the results from the x-

displacement model suggest that the results from the coarse and medium meshes would

have shown more evidence of mesh-size dependency. This unexpected result is thought

to be due to the 'diagonal' elements discussed previously and is probably also related to

the cause of the stepped events visible in the post-peak sections of the load-

displacement curves shown above. These intermittent drops in supported load, which

are particularly noticeable in the coarse mesh curve in Fig. 5.5., can be shown to be

associated with the failure of individual link elements (See Fig. 5.7. below).
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Fig. 5.7. Load-Displacement Plot for Two-Dimensional Uniaxial Benchmark Model Coarse

Mesh with the Mark 1 Criterion and Prescribed Displacement in the x-direction, Overlaid with

Plot of Number of Failed Elements-Displacement

Following the failure of each element the load on the mesh continues to increase but, as

would be expected, the overall response is less stiff. Predictably, it is the 'diagonal'
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bonds that are last to fail, when the mesh is extended well beyond the displacement

expected for an equivalent continuum material.

It is considered that these events are a consequence of the fracture localisation in

the PSM meshes, which is induced by the introduction of a zone of weaker elements

(See Section 5.4. and Fig. 5.2. above). As it can be seen, the triangular configuration of

the mesh requires this weak zone to follow a zigzag path in the meshes to which

displacement is applied in the x-direction. The coarser the mesh the more pronounced

this zigzag is and in the coarsest mesh the width of the weak zone is such that the effects

of strain vary along its length and consequently some elements fail before others. As

would be expected, the effect and the steps in the post-peak response of the load-

displacement curves reduce as the width of the weak zone reduces and more closely

approximates a straight line. Similar stepped load-displacement plots to those shown

above are discussed by Beranek and Hobbelman [8] and van Vliet [95] and presented by

Schlangen and van Mier [80] (See Fig. 5.B. below) who were employing an elastic-

brittle failure criterion similar to the Mark 1 criterion described here.
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Fig. 5.8. Load-Displacement Curves for Experimental Studies and Lattice Simulations of a

Felser SEN Beam Test (After Schlangen and van Mier [80])

In contrast, and again because of the mesh configuration, the zone of weak elements in

the meshes to which y-displacements are applied always follows a straight path.
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Consequently, the effects of strain are uniform throughout it, irrespective of the mesh

discretisation. As can be seen from Fig. 5.6. failure occurs almost simultaneously in all

of the weak zone elements, thus representing the brittle failure behaviour that would be

expected.

5.5.4. Mark 1 - Conclusions

In summary, it can be said that the Mark 1 failure criterion generally produces results as

would be expected for an elastic-brittle criterion. However, it displayed a clear

tendency to over predict the strength and maximum extension that would be expected

for an equivalent continuum material. Despite this, it was also shown capable of

reasonably accurate results when given a sufficiently fine mesh discretisation and

loaded in the x-direction. However, this was not the case when the mesh was loaded in

the y-direction and it became clear that the Mark 1 criterion has a directional bias.

Furthermore, the criterion was shown to produce results that were dependent on the size

of the inter-particle link elements.

As discussed in the previous Section, these findings were all explainable when

consideration was made of the fact that the criterion looked into uniaxial behaviour

along the length of individual inter-particle link elements in a PSM mesh. It was

therefore felt that if a failure criterion were to treat failure of a PSM mesh on the basis

of piecewise continuum principles rather than on an individual element basis the

problems of the over prediction and the directionality, described above, could be

resolved. The development of such a criterion is discussed in the following Section.

5.6. Mark 2 - Failure Criterion

(Brittle, Rankine - Principal Stress Criterion)

5.6.1. Theory of the Mark 2 Failure Criterion

The Mark 2 criterion considers failure in the PSM from continuum principles rather

than on an individual element basis. To do this, it was desirable to consider the stress

field that developed in the particle assembly under prescribed displacement.
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As described fully in Section 3.4.2. of Chapter 3, it is possible to calculate the

average stress tensor in a DEM particle from the sum of the contributions of the contact

forces acting on it, according to Eq. 3.42. repeated below.

a.(p) = __ 1_"Ix(C) _ x(p)ln(C,p) F(c)
IJ v(p) L.J I I I j

N.
Eq.3.42.

PFC3D automatically calculates the averaged stress tensor in each particle in a model

and this data was therefore available for each particle in the PSM meshes at every time

step. As discussed in Chapter 3, Section 3.4.2., the stress tensors that are produced by

the method shown above are representative of the stress state in a granular material.

Therefore, before applying these stress tensors to a failure criterion, they were

converted, via the granular-continuum stress conversion factors, discussed in Chapter 3,

Section 3.4.3. and Chapter 4, Section 4.2.3.2.2., to continuum stress tensors as would be

expected at points coinciding with the particle centroids in an equivalent continuum

material.

The components of these stress tensors could be easily adjusted with code

written in the FISH language associated with PFC3D and therefore, they could

theoretically be employed in the implementation of any stress based failure criterion for

the PSM. For the Mark 2 criterion, a simple Rankine Principal stress criterion was

developed where it was necessary to calculate the maximum principal stress in an inter-

particle link element.

Two approaches were developed in order to do this. The first of these methods

initially calculated the maximum principal stresses and directions in each particle pair

from the continuum stress tensors developed as described above. It was then assumed

that the maximum principal stress in the link between a particle pair, O'i(llnk), was simply

the average of those in the particles, in both magnitude and direction (See Eq. 5.7. to

Eq. 5.9. and Fig. 5.9. below),
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Eq.5.7.

Eq.5.B.

Eq.5.9.

Fig. 5.9. Diagram Showing Development of Principal Stresses in the Inter-Particle Link

Elements of a PSM Mesh from the Principal Stresses in Particles

The second, alternative method, developed according to a scheme suggested by Mustoe

[64], assumed that the average stress tensor in an inter-particle link element, U;}(lInk), was

simply the average of the continuum stress tensors in the particles that it lay between.

It was then a simple matter to calculate the magnitude and direction of the maximum

principal stress in the link element (See Eq. 5.10. and Fig. 5. JO.below).

-(A.B) _ I (-(A) -(B))
0' ij(link) - -2\0' ij + 0' ij Eq.5.10.
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Fig. 5.10. Diagram Showing Development of Principal Stresses in the Inter-Particle Link

Elements of a PSM Mesh from a Average Stress Tensor in the Link Element

It was in fact found that these two methods of calculating the maximum principal stress

in an inter-particle link element produced almost identical results, unless large shear

stresses were involved, in which case a small difference between the results was

observed. This difference arose from the fact that the principal stresses, as described by

Eq. 5.11. below, are non-linear functions of the stress tensor components and

consequently, under certain circumstances, the alternative averaging approaches,

produced different results.

Eq.5.11.

However, it is felt that the small differences between the values produced by the two

methods would not cause a significant difference in the overall fracturing behaviour of a

PSM mesh. Nonetheless, in future applications it would be desirable to employ the

second method since, in a number of ways, it is more versatile than the first. Firstly, it

would easily allow the implementation of alternative stress based failure criteria and

secondly, it can easily be modified to include a weighting function in order to calculate

the stress state in a link element between particles of different volumes, as would occur

in an irregular PSM mesh.

Whichever method was applied, the maximum principal stress in the link

element was compared directly with the material strength, ft, and link elements were
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considered as candidates for failure if the maximum principal stress exceeded the

material strength. The direction of the maximum principal stress, in each of the

candidates for failure, was then considered and compared with the direction of the

candidate inter-particle link itself. From the set of all the candidates for failure, the link

in which the maximum principal stress was most closely aligned with the orientation of

the link itself was removed (See Fig. 5.9. and Fig. 5.10.). The Mark 2 failure criterion

can thus be stated as shown below (See Eq. 5.12. to Eq. 5.13.).

(eT e )max n1(link) .m(/ink) for e e {S~ff} Eq.5.12.

Eq.5.13.

where, Dl(/ink) is a unit vector in the direction of the maximum principal stress in an

inter-particle link element, m(/ink) is a unit vector in the direction of the inter-particle link

element itself and O'l(/ink) is the maximum principal stress in an inter-particle link

element.

As with the Mark 1 fracture criterion the Mark 2 criterion resembles a simple

Rankine, Principal Stress Criterion (See Eq. 5.5.). However, in contrast to the Mark 1

criterion, which examined the uniaxial stress in an individual link element, the Mark 2

criterion considers a continuum stress state. In determining the 'worst case' link

element for removal, it was considered appropriate to account for the direction of the

principal stress, rather than the magnitude by which it exceeded the material strength.

This was to acknowledge that, although this fracture criterion is based on continuum

properties, the mesh itself is of a lattice type configuration and as such, consists of a

discrete distribution of material.
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5.6.2. Implementation of the Mark 2 Failure Criterion

As with the Mark 1 failure criterion the FISH function through which the Mark 2 failure

criterion was implemented, examined each inter-particle link element in turn. In a

similar fashion to the Mark 1 failure criterion, the Mark 2 criterion considered simple

elastic-brittle behaviour, but was based on the equivalent continuum stress state in a an

element rather than the uniaxial total strain. This required a more complex FISH code

than for the Mark 1 criterion, since manipulation of the components of the internally

computed granular stress tensors was necessary for each pair of particles associated with

an inter-particle link element. Once the tensors components had been retrieved, it was

required to calculate the magnitude and direction of the maximum principal stress in the

link element under consideration. As discussed in the previous Section two separate

approaches were adopted for this purpose.

Whichever technique was applied, for each element in which the magnitude of

the computed maximum principal stress was found to have exceeded the predefined

element strength, the direction of the maximum principal stress was compared to the

orientation of the element itself. If the included angle, between the principal direction

and the element orientation, was found to be less than that of the previous 'worst case'

element then the current element was recorded as the new 'worst case'. In the event

that the current angle was found to be the same as that of the previous 'worst case' then

the percentage by which the magnitude of the maximum principal stress exceeded the

element strength was also taken into account. After examination of all the inter-particle

link elements, the final stored 'worst case' element was removed from the PSM mesh.

The FISH routine for the Mark 2 failure criterion can be summarised as shown

in Fig. 5.11. where both alternative routines for the calculation of the maximum

principal stress in the inter-particle link element are given. Both methods are also

presented in the full version of the code, which can be seen in Section Am.6. of

Appendix m. It can also be noted, particularly in the actual code, that, in addition to the

benefits discussed in the previous Section, the second method is also the more efficient

in terms of computational requirements.
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From Force-Displacement Law

No
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Routine 1

Alternative
Routine 2

Calculate Equivalent Continuum Stress
Tensors in Particle Contact Pair
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Equivalent Continuum

Stress Tensor in Element

Calculate Maximum Principal
Stress in Each Particle

Calculate Average of Maximum
Principal Stresses in Particles Calculate Maximum
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Average Stress
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(zero unless random strengths employed)
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Calculate Directions of Maximum
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Calculate Average of Directions of
Maximum Principal Stresses in Particles

Determine Particle Locations and Element Orientation

Determine Included Angle between Direction of Maximum
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Fig. 5.11. Flow Chart Summarising FISH Code for Mark 2 Failure Criterion
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5.6.3. Mark 2 Failure Criterion Benchmark Study

The numerical studies carried out for the Mark 1 criterion with the Two-Dimensional

Uniaxial Benchmark Model (See Section 5.4. above) were repeated for the Mark 2

failure criterion, as discussed above. The detail of the studies is presented in Table 5.3.

below.

Element Young's Poisson's Material Prescribed
Displ.

Length Modulus Ratio Strength Velocity

h E v It
(rn) (MPa) (N/rnrn2) (rnls)

x 0.50 1785 0.25 0.48750 5 x 10-~

x 0.25 1785 0.25 0.48750 5 x 10-~

x 0.10 1785 0.25 0.48750 5 x 10-~

y 0.50 1785 0.25 0.48750 5 x 10-~

y 0.25 1785 0.25 0.48750 5 x 10-~

y 0.10 1785 0.25 0.48750 5 x 1O.~

Table 5.3. Details of Two-Dimensional Uniaxial Model Studies with Mark 2 Failure Criterion

From the numerical studies listed above, the following load-displacement curves were

produced (See Fig. 5.12. and Fig. 5.13.).

From the plots above, it can be seen that the Mark 2 failure criterion produces

results generally similar to those produced by the Mark 1 criterion (See Fig. 5.5. and

Fig. 5.6.). Again, these are generally as would be expected of an elastic-brittle fracture

criterion.
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Fig. 5.12. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark Model with

the Mark 2 Failure Criterion and Prescribed Displacement in the x-direction
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Fig. 5.13. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark Model with

the Mark 2 Failure Criterion and Prescribed Displacement in the y-direction
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As before the load-displacement curves shown above can be compared with the

expected response of an equivalent continuum material. Again, the expected maximum

loads are indicated on the plots by the N,lines, and the maximum predicted extensions

were calculated as O.000410m for the mesh displaced in the x-direction and O.000473m

for the mesh displaced in the y-direction (See Section 5.5.3. and Eq. 5.5.). From the

plots shown above, it can thus be seen that the response produced by the Mark 2

criterion is much closer to a continuum response than that produced by the Mark 1

criterion. This is particularly true of the load-displacement response for prescribed

displacement in the y-direction where both the maximum load and the maximum

extension match very well with the expected values, although the predicted extension of

the mesh varies with the discretisation of the mesh. The load-displacement plot for

prescribed displacement in the x-direction also predicts the extension quite accurately,

however, in this case, the predicted maximum load shows mesh size dependency.

Therefore, it can be seen that both the Mark 1 and Mark 2 criteria produce

results that are dependent on the discretisation of the mesh. In the results from both

criteria, this is most clearly seen in the load-displacement plot for prescribed x-
displacement. It is not immediately clear why the mesh loaded in the x-direction should

be more sensitive to discretisation than the mesh loaded in the y-direction, but it may be

due to the mesh configuration and the fact some elements are aligned directly in the x-

direction whereas no elements are aligned in the y-direction. Despite this, the behaviour

of both sets of results becomes more accurate with increasing discretisation of the mesh.

As described for the results of the Mark 1 criterion, this occurs in accordance with the

findings of van Vliet [95] and the increasing L ratio of the meshes.

A further similarity between the results produced by the Mark 1 and Mark 2

criteria are the stepped events visible in the post-peak section of the load-displacement

curves. In fact, these are far more apparent in the results produced by the Mark 2

criterion than in those of the Mark 1. Previously, these events were attributed to an

effect of mesh discretisation and this is again the case. However, rather than being

related to the induced zone of weak elements in the meshes (See Section 5.5.3. above),

in this case it more likely to be caused by boundary effects. In particular, these

boundary effects relate to the calculation of the average stress tensors in the particles in

two, separate ways. Firstly, the stress tensors are averaged over the volume of the
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particles. Therefore, the larger the particles are the larger the volume over which the

average is taken and consequently the less accurately the value will represent the stress

state at the end of a link element. Since the stress tensor for the element itself is

assumed to be the average of two particle tensors, any error will be further increased

before the maximum principal stress in the bond is calculated. Secondly, as discussed

above, the stress tensor is calculated from the contributions of contact forces on the

particles. Consequently, the particles at the edge of a mesh, which obviously have

fewer contacts than particles in the centre of a mesh, will have apparently lower values

of stress than particles in the centre of a mesh. The larger the particles the further this

effect will penetrate into the mesh. This effect also accounts for the long tails present in

several of the load-displacement curves since the apparently lower magnitude stresses in

the edge particles will require larger than expected loads and hence a larger than

expected displacement in order to reach the failure stress. As would be expected, this

effect also diminishes with increasing mesh discretisation.

In addition to the two problems, associated with the averaged stress tensors in

the particles, discussed above, a further inaccuracy may occur due to deformation and

changes in the configuration of the PSM mesh. As discussed in Chapter 3, Section

3.4.3. and Chapter 4, Section 4.2.3.2.2., the granular-continuum stress conversion

factors are dependent on the mesh configuration. Therefore, the application of a

constant and uniform conversion factor, throughout the mesh and in time, assumes that

only small deformations take place. While this was seen to be a reasonable assumption

in the benchmark tests carried out in Section 4.2.3.2.2. of Chapter 4, only elastic

deformations were considered during that study. Clearly, when fracturing of the mesh

is introduced the configuration of the contacts on certain particles, and in particularly

those adjacent to a fracture, will change in time. This will consequently produce

anomalies in the stress tensors, similar to those described above for particles at the edge

of a mesh, which could subsequently lead to inaccuracies in the determination of failure

conditions in the mesh. However, this was not felt to be a significant problem for the

models developed in the course of this work since the areas of the mesh in which the

stress state was of particular importance were those ahead of a crack tip where, by

definition, the mesh was still intact and the original configuration prevailed. As

mention previously, it would perhaps be necessary to develop an automatically varying

set of conversion factors that would be constantly altered, for each individual particle,
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on the basis of the updated local mesh configuration. However, as also discussed

previously, this may be very difficult to code and would likely be computationally

expensive if developed in the FISH language associated with PFC3D
• Given these

potential problems it was not felt to be a worthwhile development during the course of

this research.

In contrast, a difference between the two sets of results, from the Mark 1 and

Mark 2 criteria, is that the results for x and y-displacements, were generally far more

similar to each other under the Mark 2 criteria than they were under the Mark 1

criterion. This would suggest that the Mark 2 criterion has much less of a directional

bias than the Mark 1 criterion. This is as would be expected since this criterion

calculates the stress in an element irrespective of its orientation. The presence of

'diagonal' elements, as discussed previously, is therefore irrelevant.

It can further be noted that, as mentioned before, the results and behaviour seen

here for the Mark 1 and Mark 2 criteria are similar to results reported by Schlangen and

Garboczi [79]. As discussed in Chapter 2, Section 2.3.1. and in Section 5.5.3. above,

these researchers encountered similar problems, associated with the fracture of a

triangular lattice model displaced in the x-direction, to those encountered in the PSM

model with the Mark 1 failure criterion, whereby all the elements aligned in the x-

direction failed, leaving the 'diagonal' elements intact (See Fig. 2.10.). Failure of all

the in-line elements in a mesh was avoided in the previous study of the Two-

Dimensional Uniaxial Benchmark Model with the Mark 1 criterion due to the

application of the weak zone in order to induce fracture localisation. However, it was

observed, as discussed previously, that the weak zone elements aligned in the x-

direction that failed first, leaving the 'diagonal' elements intact.

To overcome this problem Schlangen and Garboczi employed the 'node stress'

fracture criterion (See Chapter 2, Section 2.3.1.), which can be seen to implement a

stress homogenisation technique similar to that used in the Mark 2 criterion to calculate

the particle stress tensors. As discussed in See Chapter 2, Section 2.3.1. and Section

5.5.3. above, the failure criterion applied in lattice models examines the stress in

individual lattice elements. However, the 'node stress' criterion considered the
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maximum principal force in a node, divided over the combined cross-sectional area of

the beams in the associated principal direction (See Fig. 2.11. repeated below).

--,
\ /\
'VC"

I, F'node ~::l~"/ 1
.----~, I . F'nDde.mox 1--- F'._---., ~,

"~ !I--'/\ I ./ '" Qnode
. ~ _ node,mox

l/ \':., I. ~

! node A,+A2+AJ
" I \ \ • / '''., I \ \ , 1, , ,

jQnodeoO I

a) b) c) d) e)

Fig. 2.11. Diagram Showing Procedure for Calculation of 'Node Stress' in a Lattice. a) Forces in

Lattice Elements b) Resultant Normal and Shear Force Perpendicular to Nodal Cut c) Principal

Normal Force d) Cross-Sectional Area of Lattice Elements in Principal Direction e) Nodal Stress

(After Schlangen and Garboczi [79]) (repeated from page 38)

In this way, as with the Mark 2 criterion, the stress state and hence the failure conditions

for a lattice element are independent of the orientation of the element.

5.6.4. Mark 2 - Conclusions

From the results discussed above, it can be concluded that the Mark 2 failure criterion

showed definite improvement over the Mark I criterion in predicting the behaviour that

would be expected of an equivalent continuum material. This can be seen in both, the

predicted values of maximum load capacity and the predicted extensions of the meshes

at failure. Furthermore, it can also be seen that the Mark 2 criterion overcomes the

problems of directionality that were associated with the Mark 1 failure criterion.

Despite the improvements in the behaviour, described above, the results from

the studies involving the Mark 2 criterion again show size dependency, as was seen in

the results from the studies involving the Mark 1 criterion. Size dependent behaviour in

simple one or two force lattice type models with elastic-brittle failure criteria was also

noted by van Mier [59]. However, with the employment of three force lattice models,
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which, as discussed in Chapter 2, Section 2.3.1., develop the behaviour of a higher

order, Cosserat type material, no such size dependency is observed (van Mier [58],

Schlangen and Garboczi [79], Schlangen and van Mier [80, 81, 82]).

The PSM meshes are analogous to one or two force lattice models, depending on

the value of Poisson's ratio and hence the shear stiffness. Furthermore, both the Mark 1

and Mark 2 criteria are purely elastic-brittle fracture laws and as such, make no account

of fracture energy dissipation during propagation of fracture in the mesh. The

appearance of mesh size dependent results could therefore be expected.

Itwas consequently desirable, and a logical progression of this work, to develop

an elastic-softening failure criterion that could be used to account for fracture energy

dissipation and maintain a constant fracture energy release rate for any mesh

discretisation. Ifmodified appropriately for a particular element length, a criterion such

as this would produce results that were independent of the mesh discretisation and

consequently, would be a more generally applicable law.

A further advantage of an elastic-softening failure criterion is noted by Chang et

aI. [14] who acknowledge that, although, given a fine enough lattice model, overall

softening behaviour can be produced with only a simple, brittle fracture law, with such a

fine lattice, such an approach is not practical for the modelling of larger structures.

They suggest that similar behaviour could be modelled if a coarser lattice were to be

used in conjunction with a softening criterion, thus allowing larger structures to be

modelled with less computational effort.

It was considered that the simplest type of criterion in which this behaviour

could be developed was one based on the total uniaxial strain in an element in a similar

fashion to the Mark 1 criterion (See Section 5.5.). The development of such a criterion,

designated as the Mark 3, is described in the following Section.
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5.7. Mark 3 - Failure Criterion

(Softening, Uniaxial Total Strain Criterion)

5.7.1. Theory of the Mark 3 Failure Criterion

As discussed above, it was desired to develop an elastic-softening failure criterion that

would account for fracture energy dissipation during failure of the PSM mesh and hence

develop results independent of the size of the inter-particle link elements, h. It was

initially decided to implement this criterion on the basis of a Uniaxial Total Strain

model similar to the Mark 1 criterion (See Section 5.5.1.).

One way to implement a non-linear failure criterion such as this, would be to

modify the material stiffness in the model as plastic deformation is incurred. However,

as discussed in Chapter 3, Section 3.3. and Chapter 4, Section 4.2.1., the normal and

shear contact spring stiffnesses of the 'contact bonds', representing the inter-particle

link elements, are associated with the contact stiffnesses of the PFC3D particles

themselves. Therefore, it would not be possible to change the stiffness of one inter-

particle link element without affecting several other elements. This would not be an

accurate representation of material behaviour and consequently the non-linear behaviour

in the Mark 3 criterion was formulated with the so called Ko, initial stiffness algorithm,

with all non-linear effects accounted for by out of balance forces. This is discussed in

more detail below.

As with the Mark 1 criterion the Mark 3 criterion compared the uniaxial total

strain in each inter-particle link element, Et(link), to a constitutive model. However,

rather than the simple linear-elastic model used for the Mark 1 criterion, the comparison

made here was with a piecewise linear, elastic-softening model, as shown in Fig. 5.14.

below.

The precise shape of the constitutive model was dependent on the size of the

inter-particle link elements. In order to maintain mesh size objectivity, it was necessary

to keep the fracture energy release rate, Gj, which could be calculated from the area

under the constitutive model multiplied by the element characteristic length, h, constant

for any element size. Since the Young's Modulus, E, and material strength, ft, were

221



Chapter 5: Failure Criteria for the Particle Solid Model (PSM)

fixed for a given material, this was done by modifying the Softening Modulus, Es, and

hence the softening slope, of the constitutive model. For the PSM the element

characteristic length, h, was assumed equal to the original length of the inter-particle

links, i.e. equal to twice the particle radius.

U(link)

,red
U(/lnk J ---------------------------jl,,,,

" AU(/ink)

ft ----------------- '

St(link)

Fig. 5.14. Diagram Showing Elastic-Softening Constitutive Model for Mark 3 - Uniaxial Total

Strain Failure Criterion for the PSM

By writing the fracture energy release rate in terms of the area under the constitutive

model, as described above, it was then possible to rearrange the equation in terms of the

required Softening Modulus, Es, for a given element length (See Eq. 5.14. and Eq.

5.15.).

G = [.!.(t, + t, )t,J.h
f 2 E E 's

Eq.5.14.

E = 1

s [(~?~)-!] Eq.5.15.
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It should be noted that for a given set of material properties this formulation has a

limiting value, such that, for a certain element size, h, the softening modulus tends to

infinity and the elastic-softening model tends to an elastic-brittle model. Beyond this

limit, the softening slope of the model becomes inverse and the model would exhibit

snap back behaviour (See Fig. 5.15.). This effect is also noted by Jirasek & Bazant [40]

who point out that snap back behaviour is very hard to deal with computationally. For

this reason behaviour of this kind has been avoided in this work.

U(link)

f,

E.(G" h)

C'(lInk)
h increasing - E. increasing

Elastic-brittle
behaviour

Fig. 5.15. Diagram of Elastic-Softening Constitutive Model Showing Increasing Gradient of

Softening Slope with Increasing Element Length

From Eq. 5.15. and Fig. 5.15. above, it can be seen that the maximum value of element

length for a given set of material properties can be calculated as shown below (See Eq.
5.16. andEq. 5.17.).

As Es ~ 00 so [(2~ f J-_!_] -+ 0
!,.h E

Eq.5.16.

Eq.5.17.
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For the value of G, = 200N/m assumed for these studies, as discussed in Section 5.4.

above, the maximum element length, hmax, computed from Eq. 5:17. is 3.OOm. Clearly,

even the coarsest mesh of the Two-Dimensional Uniaxial Benchmark Model, with an

element length of O.5m, is well within this limit.

When comparison was made with the elastic-softening constitutive model, as

shown in Fig. 5.14. above, link elements were considered as candidates for failure, in a

similar procedure to that employed for the Mark 1 criterion, if the uniaxial total strain

was found to have exceeded the ultimate strain. In this case the ultimate strain was

defined by the constitutive model and was the strain at which the strength of the element

reached zero. From the set of all the candidates for failure, the link with the highest

strain was removed. This can be stated as shown below (See Eq. 5.18. and Eq. 5.19.).

max Gt(link) for e E {S~} Eq.5.18.

Eq.5.19.

In addition to the set of candidates for failure, a second set of softening elements had to

be considered. This consisted of elements in which the uniaxial total strain had

exceeded the maximum elastic strain, Ge, but had not exceeded the ultimate strain, &"

(See Eq. 5.20. below).

Eq.5.20.

where, S~e is the set of inter-particle links considered as softening elements.

Unlike the failure criterion, shown in Eq. 5.18., where only the 'worst case'

element' from the set of candidates for failure was removed, all of the elements in the
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set of softening elements were considered to experience softening behaviour and were

treated as discussed below.

As indicated previously, constraints of the PFC3D modelling environment

required that the non-linear behaviour of the Mark 3 failure criterion be implemented in

the so called Ko, initial stiffness algorithm. For this reason the uniaxial total strain in an

element could always be considered in relation to the deformation of a linear elastic

material. Consequently, the predicted uniaxial stress in an element, u~;::)I also

described as the 'effective stress' (Lu and Vaziri [53]) or the 'elastic response stress'

(Han and Chen (1986): cited by Lu and Vaziri [53]), could be simply calculated, from

Young's Modulus, E, and the uniaxial total strain, St(link).

As can be seen from Fig. 5.14. above, for elements in the set of softening

elements, this predicted stress, was larger than the maximum stress capacity of the

element, as defined by the elastic-softening constitutive model. In order to implement

softening behaviour the excess stress, AO(link), also know as the 'relaxation stress' (Lu

and Vaziri [53]), which was representative of the difference between the predicted

stress and the maximum stress capacity of the element, had to be redistributed, from the

softening element to other areas of the bonded particle assembly. This was done by

returning the stress to the element in the form of a self-equilibrating pair of out of

balance forces, Fear, applied to the particles at each end of the link element (See Fig.

5.16.).

PSM Mesh

Fig. 5.16. Diagram Showing Self Equilibrating Out of Balance Corrective Forces Applied to

Particle Pair to Redistribute Relaxation Stress to Other Parts of Bonded Particle Assembly
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These 'corrective' forces acted to further stretch the element and redistribute the

relaxation stress to other parts of the bonded particle assembly

The forces were developed, as shown below, by multiplying the relaxation

stress, l:t.G(_/ink), over an apparent cross-sectional area for the inter-particle link

element, AUld) (See Eq. 5.21.).

Eq.5.21.

The apparent cross-sectional area was determined by relating the normal stiffness of the

link element, produced by Morikawa and Sawamoto's equation for strain energy

equivalence under plane strain conditions (See Eq. 4.29. repeated below), to the material

properties via a simple elastic relationship (See Eq. 5.22.). This formulation assumes

that the material properties of the individual elements are the same as those of the

equivalent continuum material.

k = E
n .J3(1-2vXI+v) Eq.4.29.

k = ~~ink)
n h Eq.5.22.

Rearranging Eq. 5.22. gives,

Eq.5.23.
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Substituting Eq. 4.29. into Eq. 5.23. gives,

• h
A(/ink) = .J3(1-2vXl-v) Eq.5.24.

As the uniaxial total strain in the elements increased, the softening elements would

eventually also become candidates Jor failure and be considered by the failure criterion

described in Eq. 5.18. above. The application of forces, for the purposes of stress

redistribution, was continued in each of the softening elements, as discussed above, until

an element was considered to have failed and was consequently removed.

5.7.2. Implementation of the Mark 3 Failure Criterion

The FISH routine employed for the implementation of the Mark 3 failure criterion was

very similar to that of the Mark 1 failure criterion (See Section 5.5.2.). The code again

checked each link element of the PSM mesh in turn and determined if its uniaxial total

strain exceeded its ultimate strain. Each time an element was found to have exceeded

its ultimate strain, as determined by the constitutive model (See Fig. 5.14.), its strain

was compared to that of the stored current 'worst case' element. If its strain was found

to exceed that of the 'worst case' element then it was recorded as the new 'worst case'

element. After examination of all the inter-particle link elements, the final stored 'worst

case' element was considered to have failed and was removed from the PSM mesh.

In addition to testing for failure conditions, the Mark 3 criterion also took into

account softening behaviour by modifying the states of link elements that were

considered to have exceeded their elastic capacity. This was done by representing the

redistribution of stress through the application of self-equilibrating, out of balance force

dipoles to the particle contact pairs associated with each inter-particle link element that

was found to have exceeded its maximum elastic strain (See Fig. 5.16. above). As

mentioned in the previous Section, these out of balance forces, referred to as corrective

forces, Feor, were added to the total force acting on a particle. This subsequently
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affected the acceleration of the particle, as computed in the Motion calculation directly

following the execution of the failure criterion code in each time step (See Fig. 5.1.).

Thus, under the Mark 3 failure criterion, Eq. 3.26. (repeated below) can be rewritten as

in Eq. 5.25. below.

Eq.3.26.

Eq.5.25.

It may be noted that all other equations of the distinct element calculation remained

unaltered.

The FISH routine through which the Mark 3 failure criterion was developed can

be summarised as shown in Fig. 5.17. Detail of the actual FISH code can be found in

Section Am.7. of Appendix m and, where possible, variable names employed in the

code, are shown beside the relevant process in the flow chart below.
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Set Applied Forces to Current Boundary Conditions / Corrective Forces to Zero

No

Determine Coordinates of Contact and Particles at Ends of Link

ubond )

Calculate Strain in Link Element B

Determine Variation in Element Strength,/' ~
(zero unless random strengths employed) L::.::.J

Calculate Maximum Elastic Strain for Link Element I'"-e-l-a-s-m-a-x--"

No

epsmax

Determine the Relaxation Stress dsigma

Determine Directions between Contact and Particles

Calculate Apparent Cross-Sectional Area of Link Element bondarea

Calculate and Apply Components of
Corrective Forces to Particle Contact Pair

axl ayl
ax2 ay2

No

Record Current Element as New
'Worst Case'

Fig. 5.17. Flow Chart Summarising FISH Code for Mark 3 Failure Criterion
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5.7.3. Mark 3 Failure Criterion Benchmark Study

The Mark 3 failure criterion, as described in Section 5.7.1. above, was applied to the

Two-Dimensional Uniaxial Benchmark Model, discussed in Section 5.4., and the

following numerical studies, detailed in Table 5.4. below, were carried out.

Element Young's Poisson's Fracture Softening Material Prescribed
Displ.

Length Ratio Energy Modulus Strength VelocityModulus

h E v Gf E. li
(m) (MPa) (N/m) (MPa) (N/mml) (m/s)

x 0.50 1785 0.25 200 356.38 0.48750 5 x 10'8

x 0.25 1785 0.25 200 162.02 0.48750 5 x 10'8

x 0.10 1785 0.25 200 61.46 0.48750 5 x 10,15

y 0.50 1785 0.25 200 356.38 0.48750 5 x 1O~

y 0.25 1785 0.25 200 162.02 0.48750 5 x 10'"

Y 0.10 1785 0.25 200 61.46 0.48750 5 x 10'"

x 0.50 1785 0.25 1000 61.46 0.48750 5 x 10:S

x 0.25 1785 0.25 500 61.46 0.48750 5 x 10,11

x 0.10 1785 0.25 200 61.46 0.48750 5 x 1O:S

y 0.50 1785 0.25 1000 61.46 0.48750 5 x 10'11

y 0.25 1785 0.25 500 61.46 0.48750 5 x 10'11

y 0.10 1785 0.25 200 61.46 0.48750 5 x 10~9

Table 5.4. Details of Two-Dimensional Uniaxial Model Studies with Mark 3 Failure Criterion

As can be seen in table above, two groups of numerical tests were carried out. Both of

these considered the prescribed displacement, in the x and y-directions, of all three

discretisations of the model mesh. The first set of tests was carried out with a fixed

value for the fracture energy release rate, Gf, for each of the three mesh discretisations.

The second set of tests repeated the first set but applied a constant Softening Modulus,

El, for each of the three discretisations. As discussed previously, this effectively altered
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the fracture energy release rate for the various meshes. From the described studies, the

following load-displacement curves were produced (See Fig. 5.18. to Fig. 5.21.).

700000

-Coarse Mesh
--- Medium Mesh
....• Fine Mesh
--- N,'" ft.A

500000

o.
-100000

-300000
Dlsplacement'm

Fig. 5.18. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark

Model with the Mark 3 Failure Criterion and Prescribed Displacement in the x-direction

(Modified El - constant G,)

700000

- Coarse Mesh
--- Medium Mesh
·····Flne Mesh
--- N,· ft.A

o. 0.00020 O.ClOO4O 0.00060 0.00080 0.00100 0.00120 0.00140 0.00180 0.00180
-100000

-300000

Displacement' m

Fig. 5.19. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark

Model with the Mark 3 Failure Criterion and Prescribed Displacement in the y-direction

(Modified E. - constant G,)
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Fig. 5.20. load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark

Model with the Mark 3 Failure Criterion and Prescribed Displacement in the x-direction

(Constant E. - non-constant G,)
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Fig.5.21. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark

Model with the Mark 3 Failure Criterion and Prescribed Displacement in the y-direction

(Constant E. - non-constant G,)
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It is immediately obvious from the load-displacement plots shown above, that the post

peak behaviour displays controlled unloading behaviour, as would generally be

expected for an elastic-softening failure criterion. This is in contrast to the sudden

unloading behaviour seen in the load-displacement curves from the elastic-brittle, Mark

1 and Mark 2 failure criteria.

From examination of the results of the two studies for which the fracture energy

release rate, G" was held constant (Fig. 5.18. and Fig. 5.19.), it is also clearly seen that

the load-displacement curves, for all three mesh discretisations, reach failure, as

indicated by load capacity of zero, at precisely the same displacement. Thus, the Mark

3 failure criterion can be seen to show mesh size objectivity and produce results that are

independent of the mesh discretisation.

This behaviour is further confirmed in the plots of the two studies for which the

softening slope was held constant, where it can clearly be seen that the maximum

displacements vary considerably for the three mesh discretisations. This variation was

to be expected since a fixed softening slope results in an effective decrease of the

fracture energy release rate with decreasing element size.

Despite the general accuracy of the results in terms of the reproduction of

elastic-softening behaviour and the development of mesh size independent results there

are a number of specific features to be noted from the load-displacement results.

Firstly, despite evidence of mesh size objectivity in the softening behaviour

associated with the Mark 3 failure criterion, the elastic responses of the three mesh

discretisations vary as they did under the Mark 1 criterion and, as before, this effect is

strongest in the meshes displaced in the x-direction. As discussed in Section 5.5.3.

above, the mesh size dependency of the elastic behaviour is a consequence of the low L

ratios of the meshes applied in the Two-Dimensional Uniaxial Benchmark Model. As

similarly observed by van Vliet [95], the accuracy of the results, in comparison to those

expected for an equivalent continuum material, improved as the ratio, L, increased and

the boundary effects diminished. As discussed previously, according to the findings of

van Vliet and of the Uniaxial Benchmark Tests conducted in Section 4.2.3.2.1. of

Chapter 4, the fine meshes applied in the Two-Dimensional Uniaxial Benchmark Model
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had an L ratio sufficiently high to produce reasonably accurate results while the coarser

meshes could be expected to show evidence of boundary effects. Again, the

deficiencies of the coarser meshes are accepted on practical grounds due to the

computational effort involved in running models with finer meshes.

Secondly, it was again desirable to compare the predictions of the load-

displacement curves with the maximum load capacities and extensions as would be

expected from equivalent continuum material. As in previous sets of results, the

maximum expected continuum load capacity was indicated on the load-displacement

curves by an It line. It can thus be seen that all of the tests over predicted the overall

material strength and yielded well above this value. Furthermore, the maximum

extensions of the meshes at failure were calculated by considering the ultimate strain

defined by the elastic-softening constitutive model (See Fig. 5.14. and Eq. 5.26.). This

was possible since, as described previously, failure in the meshes was localised in a

weak zone of elements, the remainder of the mesh was completely unloaded when

fracturing occurred and hence, the strain in the weak zone elements was equal to the

strain in the whole mesh.

u = (f, +iL).hE E. Eq.5.26.

From the equation above, the expected extensions were found to be O.000821m for the

meshes displaced in both the x and y-directions. It can therefore be seen, from the plots

above, that all of the tests over predict the extension of the mesh in comparison to an

equivalent continuum material. As for the Mark 1 criterion, this is clearly explainable

by the presence of 'diagonal' elements that lie in a direction at an angle to the direction

of prescribed displacement. In order for these elements to reach their ultimate strain the

mesh as a whole must be extended beyond the maximum value that would be expected

for an equivalent continuum material.
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Although the constitutive model is applied to the uniaxial total strain in an

individual element, it is perhaps unrealistic, given the presence of 'diagonal' elements,

to assume that the overall extension of the meshes would be equal to the ultimate strain

in an element. Perhaps a more realistic measure of overall extension would be based on

a characteristic length associated with the width of the weak zone of elements (See Fig.

5.22.).

h = 1001ink)

h-.:lI/- 2 O(tink)

Elements of the
Weak Zone

a) b)

Fig. 5.22. Diagram Showing Alternative Interpretations of Characteristic Length,

h, for Two-Dimensional Uniaxial Benchmark Model Meshes for displacement in

a) the x-direction and b) the y-direction

As indicated above, it may be reasonable to assume a weak zone width equal to the

original link element length, IO(link), for the meshes displaced in the x-direction.

However, for the meshes displaced in the y-direction a value of lj-1o(link) may be more

appropriate. When these values of characteristic length are substituted into Eq. 5.26.

above, the maximum mesh displacements are calculated as O.000821m for the meshes

displaced in the x-direction, as before, and 0.000711 m for the meshes displaced in the y-

direction. As can be seen from the load-displacement plots this alternative

interpretation in fact leads to less accurate results than the assumption of the

characteristic length equal to the element length.
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Further evidence of the effect of 'diagonal' elements of the load-displacement

behaviour can be seen in the results for prescribed displacement in the x-direction (See

Fig. 5.18. and Fig. 5.20. above). As can be seen in all six plots, a distinct change in

slope occurs in the post-peak section of the curves at approximately the same load in all

cases. This change can be shown to coincide with the failure of the elements aligned in

the x-direction and the consequent transfer of the load to the remaining diagonals

elements (See Fig. 5.23. below).

800000

700000

r"..---------'

500000
-Coarse Mesh
..... Broken Link Elements

20 ~
c:
S

o ~eco
'0
cSz

600000

z-'1:1 400000

~
300000

200000

100000

o+---~--~--~----~-~--~--~--~ __~
0.00000 0.00020 0.00040 0.00060 0.00080 0.00100 0.00120 0.00140 0.00160 0.00160

Displacement I m

Fig. 5.23. load-Displacement Plot for Two-Dimensional Uniaxial Benchmark Model Coarse

Mesh with the Mark 3 Criterion and Prescribed Displacement in the x-direction, Overlaid with

Plot of Number of Failed Elements-Displacement

Accordingly, this behaviour is not seen in the plots from prescribed displacement in the

y-direction (See Fig. 5.19. and Fig. 5.21.), since in these cases, there are only 'diagonal'

elements present and, as would be expected, these yield, soften and fail simultaneously.

It was subsequently found that Bazant et al. [7] had also developed a bonded

particle assembly with an elastic-softening failure criterion, very similar to that

developed in this work. In fact, they applied the same formulation, as discussed above

(See Eq. 5.14. and Eq. 5.15.), in order to vary the softening slope of the constitutive

model and maintain a constant fracture energy release rate. However, the model
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developed by Bazant et al. employed a random particle assembly and while that would

be feasible with the PSM, and possibly a desirable extension of this work, it would

require the application of individual constitutive models to each element. This would

require more complex coding and an increase in the computational effort. A further

difference between their model and the PSM was that they considered the inter-particle

link elements to consist of three sections, made up of the two particles at each end of the

link and a cement material between them. In fact, it was only the cement component of

the link element that experienced softening behaviour. This is probably a reasonable

method of approximating the composition of a material such as concrete with a macro-

scale lattice type model as opposed to the micro-scale lattice models applied to the study

of concrete by authors such as Schlangen and van Mier [82]. However, this would not

be easily applicable within the PFC3D framework and a smeared approach to the various

material properties within one link element would probably be required, especially since

softening occurs over the full length of a link element. As can be seen in Fig. 5.24.

below, the load-displacement curves presented by Bazant et al. for a model similar to

the Two-Dimensional Uniaxial Benchmark Model applied in this work, showed

approximately exponential softening behaviour as might generally be expected for a

quasi-brittle material such as concrete.

Ci Ci

~

""I ""140
20

20 .........

0o.

Fig. 5.24. Load-Displacement Curves for Tension Specimen Constructed with a Random

Bonded Particle Assembly Model (Bazant et al. [7])

The increasing softening that occurs with increasing displacement in the post-peak

behaviour of the model was probably a result of microcrack formation as elements fail

in various parts of the assembly. This behaviour would consequently not be seen in the
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load-displacement curves produced by the Two-Dimensional Uniaxial Model since

failure is limited to a narrow weak zone in the mesh. It is unlikely however that this

behaviour would be produced by these models even if a weak zone were not included in

the meshes. Given the uniform configuration and strength in the PSM meshes, failure is

likely to occur throughout the meshes at almost the same time. A random strength

distribution in the PSM meshes might produce results similar to those shown in Fig.

5.24., however, the Mark 3 failure criterion would still over predict the strength and

extension of the meshes in comparison to an equivalent continuum material.

The development of the Mark 3 failure criterion can also be seen to have some

similarities with work carried out by Jirasek and Bazant [40], who, as discussed in

Chapter 2, Section 2.3.3., investigated the microscopic fracture characteristics of

random particle systems. The inter-particle links of their models were also considered

to have an elastic-softening constitutive model similar to those applied here.

In their research, Jirasek and Bazant considered two different approaches that

would account for the size of the link elements with softening behaviour. Firstly, they

considered maintaining a constant fracture energy release rate, G" in the link element,

in a method similar to that which was applied in this work. Secondly, they consider

maintaining a constant ratio between the ultimate strain for a link element and the

maximum elastic strain for a link element. They describe this ratio as the

'microductility' . They also note that the consideration of a constant fracture energy

release rate is only valid if there is only one crack in the full length of an inter-particle

link element whereas, a constant 'microductility' is valid even if more than one crack is

considered. As discussed previously (See Chapter 2, Section 2.3.1. and Section 5.2.
above), it is usual in lattice type models to consider only one fracture per element and

this is the assumption made in this work. Therefore, the consideration of a constant

fracture energy release rate in the Mark 3 criterion is valid.

In the work carried out by Jirasek and Bazant, a clear distinction is made

between the 'microproperties' of the particle links and the 'macroproperties' of the

equivalent continuum material. Additionally, they note that the parameter having the

strongest influence on the overall ductility of the continuum material is the fracture

energy,GI, of the inter-particle links. These assertions are confirmed in the results seen
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above in this Section since, firstly, the overall load-displacement curves for the meshes

show behaviour significantly different to that represented by the constitutive model for

an individual link, and, secondly, altering the fracture energy release rate was seen to

significantly affect the overall softening behaviour of the PSM meshes. However,

'microproperties' were not considered in this work and the inter-particle link elements

were assumed to have the same material properties as an equivalent continuum material.

This is perhaps partially responsible for the poor reproduction of equivalent continuum

behaviour, by the Mark 3 failure criterion, which is based on the properties of individual

link elements. It might be possible to follow the work by Jirasek and Bazant and choose

various 'microproperty' values for the elements that would produce overall mesh

behaviour as would be expected with the desired 'macroproperties'. However, it is not

immediately clear how this would be achieved and a trial and error calibration may be

required, whereby link properties are assigned and the overall material response

determined by testing. Furthermore, as was seen in the previous Sections of this

Chapter, there was a significant improvement in the results produced by the Mark 2

criterion, where continuum principles were applied, over those produced by the Mark 1

criterion, which considered the uniaxial strain in individual link elements. It is therefore

a logical progression of this work to develop an elastic-softening model, similar to the

Mark 3 criterion, but based on continuum principles in a similar fashion to the Mark 2

criterion.

A further difference between the two schemes described above and Mark 3

failure criterion is the implementation of material degradation incurred during plastic

deformation of the inter-particle link elements. The models developed by Bazant et al.

[7] and Jirasek and Bazant [40, 41] employ secant unloading schemes and reduce the

stiffness of the link elements accordingly, however, as discussed previously, the Mark 3

failure criterion was formulated in the Ko, initial stiffness algorithm and considers only

the current uniaxial total strain in a link element. Consequently unloading and reloading

of the material would follow the initial loading path. Therefore, degradation of the

material stiffness is not considered by the Mark 3 criterion and in the numerical studies

conducted in this work it is assumed that loading is purely monotonic. Once a link has

started to soften it is assumed that it does not unload before failure. Although it is

understood that some unloading may take place due to stress relaxation after a fracture

propagation event, given the limitation of one element failure per time step (See Section
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5.3.), this is considered to have a negligible effect on the overall behaviour of the PSM

mesh.

Although it is a highly desirable development of this work to take account of

material degradation due to plastic deformation, the Ko formulation obviously, by

definition, precludes the implementation of a secant stiffness algorithm. As mentioned

above, the existing Mark 3 criterion considers only the current uniaxial total strain of a

link element and has no knowledge of the 'strain history. Any unloading that takes place

will be elastic and from the position of the predicted stress, O'{;:::). Itmay be possible,

however, to implement a scheme whereby an irrecoverable strain is developed in the

inter-particle link elements. This would require the maximum uniaxial total strain

experienced by an element to be recorded. From the position on the constitutive model,

corresponding to the maximum recorded strain, a certain amount of elastic unloading,

representative of the recoverable deformation in the element, would be permitted (See

Fig.5.25.).

O'(link)

prtd
0'(111111 j ---------------------------;.,,,,,,

ft ----------------- '

Permanent
Deformation

Permitted
Elastic

Unloading

'\. Maximum Recorded
Uniaxial Total Strain

&t(lInk)

Fig. 5.25. Diagram Showing Elastic-Softening Constitutive Model for Modified Mark 3 Failure

Criterion with Elastic Unloading Scheme
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When the pennitted elastic unloading was complete and the load capacity had reached

zero, the remaining, unrecoverable, deformation could perhaps be maintained by

applying appropriate forces to the particles at each end of the link, thereby preventing

further shortening of the element.

No attempt to implement plastic degradation of the material was made in the

course of this work, as it was desired to continue the development of a softening failure

criterion that would accurately reproduce the behaviour that would be expected of an

equivalent continuum material.

5.7.4. Mark 3 - Conclusions

In summary, it can be concluded that, the Mark 3 elastic-softening failure criterion is

capable of producing load-displacement behaviour that is independent of the size of the

inter-particle link elements.

Despite this, it can also be seen that the maximum load capacities and the

extensions of the meshes at failure predicted by the Two-Dimensional Uniaxial

Benchmark Model with the Mark 3 criterion applied, exceed those that would be

expected for an equivalent continuum material. This is as would be expected for a

model that considers the uniaxial total strain in the individual link elements of the PSM

mesh and the behaviour is similar to that observed and discussed in conjunction with the

Mark 1 failure criterion (See Section 5.5.3. above).

Further limitations of the Mark 3 criterion, associated with the lack of

consideration of material degradation due to plastic deformation, were acknowledged

and it is accepted that, in its current form, the criterion is only representative of a

softening material undergoing monotonic loading. The numerical tests carried out in

this work are all considered to experience this loading condition.
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In Section 5.6.3. it was shown that the Mark 2 failure criterion, which was

developed through continuum principles applied in the PSM mesh, showed an

improvement in the reproduction of equivalent continuum behaviour over the Mark 1

criterion, which was based on the uniaxial total strain in the individual link elements of

the PSM mesh. In the previous Section, it has also been shown that the Mark 3 elastic-

softening criterion overcomes the problems of the size dependent results produced by

both the Mark 1 and Mark 2 elastic-brittle criteria but that it suffers from the poor

reproduction of equivalent continuum behaviour seen with the Mark 1 criterion. It was

therefore a logical progression for this work to develop a fourth failure criterion that

combined the accuracy of a model based on continuum principles and the generality of

an elastic-softening model. The development of this, the Mark 4 criterion, is discussed

in the following Section.

5.8. Mark 4 - Failure Criterion

(Softening, Continuum Total Strain Criterion)

5.8.1. Theory of the Mark 4Failure Criterion

As discussed in the previous Section, the Mark 4 criterion was intended to be an elastic-

softening model developed from continuum principles. It was initially hoped that this

would be implemented via a combination of the converted granular stress tensors, as

had been utilised for the Mark 2 criterion (See Section 5.6.1.), and the stress

redistribution technique developed for the Mark 3 criterion (See Section 5.7.1.).

However, it became apparent that this would not be possible. Due to the averaged

nature of the stress tensors in the particles, a force applied to one side of a particle, as

would occur in the stress redistribution process developed for the Mark 3 criterion (See

Section 5.7.1.), increased the granular stress by only half of what would be expected for

a given applied force in a continuum material. Consequently, due to the assumption that

the stress tensor in the link element was the average of those in the particles between

which it lay, the stress reported in the link element would also increase by only half of

what would be expected.
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It was therefore necessary to find an alternative approach to the measurement of

continuum properties in the PSM meshes and it was decided to return to a failure

criterion formulated from the total strain in an element. However, rather than

considering the uniaxial strain in an element, as had been the case for the Mark 1 and

Mark 3 criteria, a continuum measurement of total strain was taken. This was done be

considering each link element in the PSM mesh to be representative of an equivalent

continuum area of material which was defined by the two triangles on either side of it,

as delineated by other link elements to which it was joined (See Fig. 5.26.).

Equivalent
Continuum Area~~~;..:::_~'_~~~
Associated wit

Example 2

Equivalent
Continuum Area
Associated with

Example 1

Inter-particle
Link Element
Example 2 Inter-particle

Link Element
Example 1

Fig.5.26. Diagram Showing Equivalent Continuum 'Diamond' Area of PSM Mesh Associated

with Individual Link Elements for Mark 4 Failure Criterion

The average strain tensors in these triangles could then be calculated from the stretches

of each of the elements around its perimeter. This was done by treating the inter-

particle links as simple strain gauges, as might be employed to experimentally measure

the strain in a material sample (See Fig. 5.27.).
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x

b)

Fig. 5.27. Diagram Showing a) a General Arrangement of Uniaxial Strain Gauges (after Kalu

[45]) and b) the Equivalent Arrangement for Inter-Particle Link Elements in a PSM Mesh

Developing equations Eq. 5.27., Eq. 5.28. and Eq. 5.29., as shown below, from the

updated configuration of the inter-particle link elements, as shown above, and solving

them simultaneously, as shown in Eq. 5.30. to Eq. 5.31. below, it is possible to calculate

the various components of stress in any coordinate system (Kalu [45]).

Eq.5.27.

Eq.5.28.

sin 2 Ba
sin 2 Bb
sin 2 Be

Eq.5.29.

Eq.5.30.

Eq.5.31.
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where, Ea, Eb and Gc are the uniaxial strains in the strain gauges or equivalent inter-

particle links, (calculated according to Eq. 5.2.) and Ba, 0" and Beare the angles between

the positive x-axis of the coordinate system under consideration and the orientation of

the strain gauges or equivalent inter-particle links (See Fig. 5.27.).

Hence, a strain tensor, 6)j(~), can be constructed in the global coordinate system

of the PSM mesh for a triangle defined by any three inter-particle link elements

whatever their current configuration (See Eq. 5.32.).

Eq.5.32.

where, the shear stress components are assumed to be symmetrical such that rxy = r yx

The average strain tensor in a link element, Eij(link), was then assumed to be the

average of the strain tensors in its two associated triangles (See Eq. 5.33.)

_ .1( (biangle I) (biangle 2) )
&u(fink) - 2 &ij(~) + &U(~) Eq.5.33.

When an element on the boundary of the mesh was considered and only one triangle

was available, the strain was assumed to be symmetrical about the inter-particle link in

question. Consequently, the strain measured in the one available triangle was directly

representative of the average strain tensor in the link.

The process, detailed above, for the calculation of the averaged strain tensor in

an inter-particle link element of the PSM, is illustrated below (See Fig. 5.28. and Eq.
5.34. to Eq. 5.36.).
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Fig. 5.28. Diagram Showing Construction of Averaged Strain Tensors in Intra-Element

Triangles and Inter-Particle Link from Uniaxial Strains in Individual Inter-Particle Links

Eq.5.34.

Eq.5.35.

E(A.B) _l.(E(A.B.C) + E(A,B,D»)
ij(link) - 2 ij(6) ij(6) Eq.5.36.

From the strain tensor in the inter-particle link, it was then possible to the calculate

principal strains, EI(link) and E2(link), and hence, from the classical two-dimensional plane

elasticity relationships (See Eq. 4.21. to Eq. 4.26. repeated below), it was also possible

to calculate the maximum principal stress in the inter-particle link, Ul(llnk).
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Plane Stress Conditions:

Eq.4.21.

Eq.4.22.

E
Eq.4.23.

Plane Strain Conditions:

E(I-v) Eva = e + e
xx (l+v)(1-2v) xx (l+v)(1-2v) yy Eq.4.24.

Ev E(I-v)
(j = & + &yy (1+ v )(1- 2v) xx (I+ v )(1- 2v) yy Eq.4.25.

Eq.4.26.

The continuum total strain state, &(1.2)(llnk), as defined by the principal strains, could then

be compared to an elastic-softening constitutive model in a similar technique to that

applied for the Mark 1 and Mark 3 failure criteria. However, rather than the uniaxial

stress-uniaxial total strain space, O(llnk)-Etc.llnk), in which the previous models had been

constructed, the constitutive model for the Mark 4 criterion was constructed in principal

stress - two-dimensional principal strain space, (jl(lInk)-&I(/inWSz(llnk), (See Fig. 5.29.

below).
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(See Eq. 5.37.)
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(See Eq. 5.38.)

Fig. 5.29. Diagram Showing Elastic-Softening Constitutive Model for Mark 4· Continuum Total

Strain Failure Criterion for the PSM

As can be seen in the plot above, it was possible, again through the plane elasticity

relationships (See Eq. 4.21. to Eq. 4.26.), to plot the trace of a maximum elastic strain

state, &e, within this space (See Eq. 5.37. below). Furthermore, by applying the

formulation discussed in Section 5.7.1. above (See Eq. 5.15.), to calculate the required

Softening Modulus for a given fracture energy release rate, it was also possible to plot

the trace of an ultimate strain state, &u (See Eq. 5.38. below).

Eq.5.37.
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Eq.5.38.

Consequently, as before, in order to demonstrate mesh size objectivity in the results, the

precise shape of the constitutive model is defined by the fracture energy release rate, G"

and the length of the inter-particle link elements, h. Again, for a given fracture energy

release rate, there will be a maximum element length for the model, beyond which

snapback behaviour will be introduced (See Fig. 5.15. and Eq. 5.16. and Eq. 5.17.).

It can thus be seen, from Fig. 5.29., that, for any strain path, defined by the

current EI(link)-E2.(/ink) total principal strain state, a specific elastic-softening constitutive

model can be described, consisting of an apparent Young's Modulus, E*, and a

corresponding apparent Softening Modulus, E:. Considering all possible strain paths

and their associated constitutive models, the overall model can be visualised as a surface

in Ol(/ink)-EI(/ink)-E2.(l/nk) space. Since the maximum principle strain is always defined as

EI(/ink) the constitutive surface is mirrored about the line defined by El(l/nk)=E2.(l/nk).

Furthermore, since failure of the inter-particle links in compression is not considered,

only the quadrants of El(lInk)-E2.(/ink) space where El(/ink) is positive need be considered.

In a process similar to that applied in the Mark 3 failure criterion, when

comparison. was made with the elastic-softening constitutive surface, as discussed

above, link elements were considered as candidates for failure if the continuum total

strain state, defined by (El(lInk),E2.(/ink», was outside the area enclosed by the trace of the

ultimate strain state. From the set of all the candidates for failure, the link in which the

total strain exceeded the ultimate strain by the largest amount was removed. This can

be stated as shown below (See Eq. 5.39. and Eq. 5.40.).

max(E~.2Xfjnk)- Ell) for e E {s:u- } Eq.5.39.

Eq.5.40.
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where, h(1,2)(/ink) is the continuum total strain state in an inter-particle link element and

E* and E: are the apparent Young's Modulus and apparent Softening Modulus

respectively, which are dependent on the continuum total strain state.

Again, in a similar fashion to the Mark 3 criterion, a set of softening elements

was also considered that consisted of elements in which the continuum total strain state

had exceeded the maximum elastic strain, Ge, but had not exceeded the ultimate strain,

Gu (See Eq. 5.41. below).

Eq.5.41.

As before, all of the elements in the set of softening elements were considered to

experience softening behaviour. This was again dealt with in the Ko, initial stiffness

algorithm, by treating the total strain in a link element, in this case the continuum total

strain as defined by the principal strains, h(1,2)(/ink), as a deformation in an elastic

material. The predicted elastic response stress, in this case the maximum principal

stress from the maximum principal strain, O'~~::k)'was then calculated, as mention

above, from the plane strain relationship shown in Eq. 4.24. to Eq. 4.26. As discussed

previously, while it was possible to consider either plane stress or plane strain

conditions, only the latter were investigated in these studies. Accordingly, the

relaxation stress, ~O'I. was then calculated from the difference between the elastic

response stress, C1'~~::k)'and the maximum stress capacity, as defined by the constitutive

model (See Fig. 5.29.).

It was intended to redistribute the excess stress in exactly the way that it had

been done in the Mark 3 criterion, by returning the excess stress to the link element in

the form of forces (See Eq. 5.21. to Eq. 5.24.) applied to the particles at each end of the

link element (See Fig. 5.16. repeated below).
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Softening ~ __
Element

PSM Mesh

Fig. 5.16. Diagram Showing Self Equilibrating Out of Balance Corrective Forces Applied to

Particle Pair to Redistribute Relaxation Stress to Other Parts of Bonded Particle Assembly

(Repeated from Page 225)

However, in the Mark 4 criterion, the relaxation stress was calculated in terms of the

maximum principal stress and was therefore considered to act in the direction of the

maximum principal stress. If corrective forces based on the total relaxation stress had

been applied in the direction of the maximum principal stress, unless this aligned

directly with the link element, a force couple would have been introduced to the mesh.

This was an undesirable consequence and therefore, before redistribution could take

place, it was necessary to calculate the component of the relaxation stress that acted in

the direction of the inter-particle link element, LlU"Jtink)' The corrective forces, Feor,

were then produced from this component and applied, as before, in the direction of the

link element (See Eq. 5.42.).

Eq.5.42.

5.8.2. Implementation of the Mark 4 Failure Criterion

The Mark 4 failure criterion considered the total strain state in an equivalent continuum

area associated with each inter-particle link element, rather than considering the uniaxial
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total strain in an individual link element, as was the case in the Mark 1 and Mark 3

criteria. Due to numerous calculation steps required to do this the FISH routine was

longer and more complex than those of the previous criteria.

Once again, the code checked each link element of the PSM mesh in tum. In

addition to the particle contact pair associated with each inter-particle link element, the

particles on either side of the element, referred to as Markers, were also considered. As

shown in the previous Section, the particle contact pair and the two Marker particles

defined a diamond shaped area, at the centre of which lay the link element under

consideration (See Fig. 5.26. and Fig. 5.28.). In order to save computational effort the

determination of the Markers particles associated with each inter-particle link element

was carried with a separate FISH routine prior to running a model that employed the

Mark 4 failure criterion. Each time a link element was checked, the stretches of the five

elements making up the associated diamond area were calculated. A second separate

FISH routine was then employed to calculate the strain tensors in the two triangles,

making up the diamond area on either side of the link element under consideration, from

the stretches in the appropriate elements. Once these strain tensors had been established

it was possible to compute an average strain tensor and hence average principal strains

for the diamond area associated with the link element under consideration. The strain

state defined by the principal strains was then compared to a constitutive model in a

similar manner to the Mark 3 criterion (See Fig. 5.29.). Each time the strain state in an

element was found to lay beyond the failure surface, the amount by which the ultimate

strain was exceeded, in the direction of the strain path, was compared to that noted for

the stored current 'worst case' element. If the amount was found to be larger than that

of the 'worst case' element then the current element was recorded as the new 'worst

case' element. After examination of all the inter-particle link elements, the final stored

'worst case' element was considered to have failed and was removed from the PSM

mesh.

Again, similarly to the Mark 3 criterion, the Mark 4 criterion took into account

softening behaviour, in addition to testing for failure conditions. This was again done

by modifying the strain states of link elements that were considered to have exceeded

their elastic capacity. As before, the redistribution of stress was represented through the

application of self-equilibrating, out of balance force dipoles to the particle contact pairs
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associated with each inter-particle link element in which the strain state was found to

lay beyond the yield surface, but inside the failure surface, as defined by the constitutive

model (See Fig. 5.29.). As discussed in Section 5.3. earlier in this Chapter and again in

conjunction with the Mark 3 criterion (See Section 5.7.1.), these out of balance forces,

referred to as corrective forces, Feor, were added to the total force acting on a particle.

This subsequently affected the acceleration of the particle, as computed in the Motion

calculation directly following the execution of the failure criterion code in each time

step (See Fig. 5.1.). Thus, under the Mark 4 failure criterion, Eq. 3.26. can again be

rewritten as in Eq. 5.25. (repeated below).

Eq.5.25.

Once more, it may be noted that all other equations of the distinct element calculation

remained unaltered.

The FISH routine for the Mark 4 failure criterion can be summarised as shown

in Eq. 5.35. The actual FISH code is presented in Section Am.8. of Appendix m. and,

where possible, variable names employed in the code, are shown beside the relevant

process in the flow chart below.
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From Force-Displacement

Set Applied Forces to Current Boundary Conditions I Corrective Forces to Zero

ell e12
e21 e22

No

Determine Coordinates of Contact, Particles at Ends of Link Element and Markers
Defining Comers of Associated Triangular Equivalent Continuum Areas

Calculate Strain Tensors in Triangular Equivalent Continuum
Areas from Stretches in Elements Delineating the Areas

Calculate Average Strain Tensor and Hence Principal Strains and Directions in Link Element
el e2

Determine Variation in Element Strength,f, ~
(zero unless random strengths employed) L:.::..J

No

xintl yintl
xint2 vint2

Determine Shape of Constitutive Model along Strain
Path and Position of Current Strain State along it

Determine the Relaxation Stress I dsigma

Determine Orientation of Link Element and Calculate
Component of Relaxation Stress in Direction of Element

Determine Directions between Contact and Particles

bondareaCalculate Apparent Cross-Sectional Area of Link Element

axl
ayl
ax2
ay2No

Fig. 5.30. Flow Chart Summarising FISH Code for Mark 4 Failure Criterion
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5.8.3. Mark 4 Failure Criterion Benchmark Study

The Mark 4 failure criterion, as described above, was applied to the Two-Dimensional

Uniaxial Benchmark Model, discussed in Section 5.4., and the following numerical

studies, detailed in Table 5.5. below, were carried out.

Element Young's Poisson's Fracture Softening Material Prescribed
Displ.

Length Modulus Ratio Energy Modulus Strength Velocity

h E v G, El It
(rn) (MPa) (Ntrn) (MPa) (Ntrnrn2

) (rnts)

x 0.50 1785 0.25 200 356.38 0.48750 5 x lO-lS

x 0.25 1785 0.25 200 162.02 0.48750 5 x 10-11

x 0.10 1785 0.25 200 61.46 0.48750 5 x io"
y 0.50 1785 0.25 200 356.38 0.48750 5 x 10-OJ

Y 0.25 1785 0.25 200 162.02 0.48750 5 x 10-11

y 0.10 1785 0.25 200 61.46 0.48750 5 x lO-lS

Table 5.5. Details of Two-Dimensional Uniaxial Model Studies with Mark 4 Failure Criterion

From the numerical studies listed above, the following load-displacement results were

obtained (See Fig. 5.31. and Fig. 5.32.).

As can be seen from the load-displacement plots shown above, there is a

significant difference between the general shape of the curves developed for prescribed

displacement in the x-direction and those for prescribed displacement in the y-direction.

Those describing displacement in the x-direction (See Fig. 5.31.), once again, show

results that are generally as would be expected for an elastic-softening failure criterion.

As would be further expected, given the success of the Mark 3 criterion, these curves

also show mesh size objectivity and all three plots reach failure at exactly the same

displacement, irrespective of link element size.
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Fig. 5.31. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark Model with

the Mark 4 Failure Criterion and Prescribed Displacement in the x-direction
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Fig. 5.32. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark Model with

the Mark 4 Failure Criterion and Prescribed Displacement in the y-direction

As with previous sets of results, these were also compared with the expected values of

maximum load capacity and maximum mesh extension for an equivalent continuum

material. As before, the maximum expected load capacity for the meshes is indicated
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on the load-displacement plots by the N,line. It can thus be seen that the plots for x-

displacement predict the strength of an equivalent continuum material very well. In

addition, it can be noted that the predicted value becomes more accurate, in comparison

to the N/line, as the discretisation of the mesh increases. Once again this is consistent

with the findings of van Vliet [95] and the L ratio of the meshes (See Sections 5.5.3.,

5.6.3. and 5.7.3. above). Furthermore, as discussed in Section 5.7.3., the expected

maximum extension for the meshes displaced in the x-direction was calculated to be

O.000821m. In addition to the accurate prediction of maximum strength, it can also be

seen, in Fig. 5.31., that the Two-Dimensional Uniaxial Benchmark Model predicted this

value very closely.

Although, as described above, the results, produced with the Mark 4 failure

criterion, for prescribed displacement in the x-direction, show mesh size objectivity and

predict equivalent continuum behaviour very accurately it can be seen that there is

considerable noise in the post-peak behaviour. This is even more apparent in the plots

from the meshes displaced in the y-direction. Although the predicted maximum load is

reasonably close to the expected value for an equivalent continuum, as indicated by the

N,line, the post-peak behaviour appears to show almost brittle failure of the meshes

followed by additional noise. In fact, when close examination is made of the y-

displacement curves evidence can be seen of softening behaviour with a rapidly

increasing unloading rate. Obviously, this results in a maximum extension that is much

shorter than expected for an equivalent continuum displaced in the j-direction.

The poor behaviour observed in the post-peak sections of the load-displacement

curves was initially thought to be associated with the technique used to redistribute the

relaxation stress from an element to the rest of the mesh. It was realised that, while the

total strain state and consequently the predicted elastic response stress, were determined

from continuum principles, the excess stress was redistributed on an individual element

basis. Furthermore, as described above, only the component of the excess stress in the

direction of the link under consideration, AU;(unl)' was redistributed. Consequently, if

the principal strains did not align directly with the element, as was unlikely to occur,

then, when the ultimate strain was exceeded and the element removed, only a portion of

the total excess stress, Aut, would have been dissipated. It was thought that the
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resulting sudden release of energy, equivalent to a brittle failure, caused the noise seen

in the unloading slopes of the load-displacement curves. However, closer examination

of the noise events, which were characterised by sharp drops in load capacity, showed

that, despite the relatively short time over which these events occurred, they developed

over a number of time steps and further more the element failure, and subsequent

removal from the mesh, occurred at the end of the event and not the beginning. Thus,

the events were the cause and not the effect of a bond failure (See Fig. 5.33.).
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4 III

"Co
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Fig. 5.33. Load-Displacement Plot for the Two-Dimensional Uniaxial Benchmark Model with the

Mark 4 Failure Criterion and Prescribed Displacement in the x-direction Showing Typical Detail

of Noise Events in the Post-Peak Behaviour Overlaid with Plot of Number of Failed Elements-

Displacement (NB - The Data Points are Marked Every 20th Time Step)

The development of these events over a number of time steps with rapidly increasing

unloading rate is the same effect seen in the curves for displacement in the y-direction,

as discussed above. The difference being that the meshes displaced in the y-direction

lose all of their load carrying capacity whereas the meshes displaced in the x-direction

recover at least some of their strength and continue to unload. This is again probably, at

least partially, an effect of the mesh configuration. As described previously, the

elements in the meshes displaced in the y-direction are all 'diagonal' elements and

consequently failed at the same time. The meshes displaced in the x-direction consisted

of a combination of 'diagonal' elements and elements aligned in the x-direction.
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Observation of the failure process of these meshes showed that the 'diagonal' elements

failed first leaving the elements aligned in the x-direction. This indicated a directional

bias in the Mark 4 failure criterion, which was the kind of behaviour that the continuum

approach was intended to prevent.

After further consideration, it was concluded that both the noise in the load-

displacement curves and the directional bias were caused by the technique that was

employed to dissipate excess stress from softening link elements. This was not due to

brittle failures of elements from which the excess stress had only partially been

dissipated, as initially thought, but was an effect of the feedback from the corrective

forces, applied in order to redistribute the excess stress, to the triangles in which strain

was measured.

Evidence for this was found after further examination of the noise events where

it became apparent, from the rapidly increasing unloading rates, that the corrective

forces were becoming larger and larger. This implied that a cyclic effect existed

between the redistribution of excess stress and the continuum total strain state whereby

the corrective forces, applied to the particles at each end of the link element, further

deformed the triangles associated with that link element and caused an increase in the

strain, which consequently led to larger corrective forces. The speed with which this

occurred implied that this was an uncontrolled feedback.

This effect seemed to become even more significant after the failure and

removal of some elements. This occurred when, situations developed where the

continuum total strain was measured from the separation between sets of three particles

that were no longer bonded. With at least two of the particles unbonded and free to

move apart, the apparent strain in the triangle could become very large. Furthermore,

redistribution of the excess stress only served to increase the separation between these

free particles since there were no link elements to ensure their movement as a combined

unit, thereby perpetuating the situation.

This behaviour was further confirmed by the sections of the curves, noticeable in

both the sets of load-displacement plots, where the load becomes negative, implying

that more force was being redistributed than was being applied. Obviously, this is not a

realistic situation but it is interesting to note that, at least for the meshes displaced in the
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x-direction, the situation returned to normal as the link elements progressively failed

and in the end, the desired result, for an equivalent continuum material, was very

accurately reproduced. However, in order to develop a completely general model that

could capture elastic-softening behaviour in the post-peak regime, under any loading

conditions, it was necessary to solve the problems associated with redistribution of the

excess stress. It was hoped to do this by considering a redistribution of stress on the

basis of continuum principles, similar to those applied in order to calculate the

continuum total strain in a link element, rather than on the basis of an individual link

element, as was considered in the Mark 4 criterion. This is further discussed in the

following Sections.

An additional note, which should be made in regard to the Mark 4 criterion,

concerns the methods applied in order to calculate a continuum representation of the

total strain in an inter-particle link element. As discussed previously, the strain in the

triangles associated with a particular link element are computed from the current

stretches of the sides of those triangles in consideration of their current geometry. It is

recognised that this calculation is synonymous with an Eulerian strain measurement. It

is further recognised that the calculation of stresses from these strains, via the simple,

two-dimensional plane elasticity relationships, (See Eq. 4.21. to Eq. 4.26. above) results

in a Cauchy stress regime. While this is a method consistent with the approach

employed by the explicit, time stepping dynamic relaxation solver associated with the

PFC3D DEM code, it is only accurate for a continuum that experiences small strains.

For the purposes of the work carried out for this thesis, the assumption of small strains

is considered to be sufficient and while the limitations of the stress-strain measurement

technique are acknowledged, it was not felt necessary to apply any alternative schemes.

This topic is further explored in Chapter 7, Section 7.2.2.

It is also worth noting that the Mark 4 failure criterion has similarities to a strain

based rotating crack model applicable in FE frameworks. Both the rotating crack model

and the Mark 4 failure criterion evaluate the principal strains in order to determine

whether failure conditions exist. However, the rotating crack model considers a fracture

to open in the direction of the maximum principal strain whereas the Mark 4 failure

criterion is limited to opening a fracture in the direction of the inter-particle link

elements, which do not often align with the principal directions.
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5.8.4. Mark 4 - Conclusion

In summary, it can be said that the Mark 4 failure criterion was generally very

successful in reproducing the elastic-softening behaviour of a continuum material. This

was particularly true in the case of meshes displaced in the x-direction, the studies of

which produced accurate results for both predicted maximum load and predicted

maximum extension. Furthermore, as was expected from the results of the studies

involving the Mark 3 criterion (See Section 5.7.3.), the Mark 4 criterion produced

results that were independent of the discretisation of the mesh.

As discussed in the previous Section, it was also seen, despite the overall

accuracy of the results, that there was considerable noise in the post-peak behaviour of

failure criterion. This was seen to be worse under j-displacement than under x-

displacement. It was concluded that this noise was a consequence of the technique

employed to redistribute excess stress from softening links to elsewhere in the particle

assembly. While the total strain in an element was calculated from an equivalent

continuum area associated each link element, the stress redistribution was carried out on

an individual element basis and it was felt that these two schemes were not compatible.

Furthermore, it was seen that while the calculation of the continuum total strain

in an inter-particle link was accurate under elastic conditions the process became less

accurate as fractures developed and, for some elements, strain was measured across an

open fracture. Itwas felt that the relatively large displacements associated with opening

fractures led to anomalous strain calculations, which consequently resulted in

anomalous stress redistributions and a self-perpetuating inaccuracy.

In order to solve these problems and improve the unloading behaviour of the

Mark 4 criterion it was therefore desired to develop a method for redistributing excess

stress in a link element over the whole continuum area from which the strain was

calculated. The development of such a model, designated the Mark 5 failure criterion,

is discussed in the following Section.
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5.9. Mark 5 - Failure Criterion

(Modified Softening, Continuum Total Strain Criterion)

5.9.1. Theory of the Mark 5 Failure Criterion

As discussed above it was the objective of the Mark 5 failure criterion to overcome the

problems, which were encountered with the Mark 4 failure criterion, in association with

the redistribution of excess stress during softening of the link elements (See Section

5.8.3.).

The calculation of the continuum total strain in an inter-particle link element and

the failure criterion itself were exactly as they were for the Mark 4 criterion (See

Section 5.8.1. and Eq. 5.39. to Eq. 5.41.). Consequently, the calculation of the

relaxation stress, aut, in the direction of the maximum principal stress, in a softening

link element was also exactly the same as for the Mark 4 criterion. However, the

strategy employed in order to dissipate the excess stress from the link was significantly

modified.

Rather than returning the excess stress to the mesh via corrective forces applied

in the link element itself, as was the case for the Mark 3 and Mark 4 failure criteria (See

Fig. 5.16. and Eq. 5.21. to Eq. 5.24.), the Mark 5 criterion returned the relaxation stress

via the whole equivalent continuum area defined by the two triangles associated with

the link element under consideration (See Fig. 5.26.). To do this it was assumed, in a

reversal of the procedure applied in the calculation of the continuum total strain in the

link element, that the relaxation stress, aut, calculated in the link element, was also an

averaged value acting throughout each of the associated triangles. It was then possible

to treat the triangles on either side of the link element in a similar fashion to constant

strain finite elements. Given this analogy, out of balance nodal forces, equivalent to the

excess stress, could be calculated for both of the triangles, as shown for triangle (A,B,C)

in Eq. 5.43. to Eq. 5.47. below.

{fit }(A.B.C) = [K ]{bU} Eq.5.43.
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:. {~f}(A,B,C) =( f[BY[DIB]dV]{8u}
(A,B,C)

Eq.5.44.

Eq.5.45.

Eq.5.46.

:. {~f}(A,B,C) = f[BY ~aldV
(A,B,C)

Eq.5.47.

where, {~j} are the equivalent out of balance nodal forces for a triangular element, [K]

is the stiffness matrix for the triangular elements, {8u} are the element nodal

displacements, {e} are the element nodal strains, {o} are the element nodal stresses, [B]

is the element strain matrix and [D] is the element elasticity matrix.

{~.fl (A,B,C)

{~.fl (A,B,D)

{~.fl (A,B,D)

Fig. 5.34. Diagram Showing Application of Out of Balance Nodal Forces to Equivalent

Continuum Triangular Elements in Order to Redistribute the Relaxation Stress
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These nodal forces were then applied to the particles at the comers of the triangles

under consideration (See Fig. 5.34. below) and in this way, the excess stress was

redistributed over the whole of the equivalent continuum area associated with an inter-

particle link element, to other parts of the PSM mesh.

5.9.2. Implementation of the Mark 5 Failure Criterion

The FISH routine employed for the implementation of the Mark 5 failure criterion was

essentially the same as that of the Mark 4 failure criterion (See Section 5.8.2.).

However, in accounting for element softening behaviour, redistribution of stress was

represented by the application of self-equilibrating, out of balance forces, not just to the

particle contact pairs but also to the Marker particles associated with each inter-particle

link element that was found to have exceeded its maximum elastic strain (See Fig. 5.34.

above). Once again, these out of balance forces were referred to as corrective forces,

Feor (See Section 5.7.1.), and were added to the total force acting on a particle,

subsequently affecting the acceleration of the particle, as computed in the Motion

calculation directly following the execution of the failure criterion code in each time

step (See Fig. 5.1.). Therefore, Eq. 5.25., rewritten from Eq. 3.26. and repeated below,

is again applicable.

Eq.3.28.

It may be noted that all other equations of the distinct element calculation remained

unaltered.

The FISH routine for the Mark 5 failure criterion is summarised in Fig. 5.35.

and the actual FISH code can be found in Section Aill.9. of Appendix III. Again, where

possible, variable names employed in the code, are shown beside the relevant process in

the flow chart below.
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From Force-Displacement

Set Applied Forces to Current Boundary Conditions I Corrective Forces to Zero

No

Determine Coordinates of Contact, Particles at Ends of Link Element and Markers
Defining Comers of Associated Triangular Equivalent Continuum Areas

ell e12
e21 e22

Calculate Strain Tensors in Triangular Equivalent Continuum
Areas from Stretches in Elements Delineating the Areas

Calculate Average Strain Tensor and Hence Principal Strains and Directions in Link Element
el e2

No

xintl yintl
xint2 vint2 J

Determine Variation in Element Strength,};
(zero unless random strengths employed)

Determine Shape of Constitutive Model along Strain
Path and Position of Current Strain State along it

Determine the Relaxation Stress dsigma

No

Determine Components of Relaxation Stress
Tensor Rotated into Global x-y Directions fxi_up fxi_down

fyi_up fyi_down
fxLup fxj_down
fyLup fyj_down
fxm_up fxm_down
fym up fym down

Calculate Nodal Forces through Finite Element
Formulations Applied to the Relaxation Stress Tensor

Apply Nodal Forces to Particles Marking Comers
of Triangular Equivalent Continuum Areas

No Do the Conditions in the Current Element
Exceed those of the Previous 'Worst Case'?

Fig. 5.35. Flow Chart Summarising FISH Code for Mark 5 Failure Criterion
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5.9.3. Mark 5 Failure Criterion Benchmark Study

The Mark 5 failure criterion was then applied to the Two-Dimensional Uniaxial

Benchmark Model and the numerical studies carried with the Mark 4 failure criterion

were repeated. The detail of these studies is given in Table 5.6. below.

Element Young's Poisson's Fracture Softening Material Prescribed
Displ.

Length Modulus Ratio Energy Modulus Strength Velocity

h E v G, Es Ji
(m) (MPa) (N/m) (MPa) (N/mml) (m/s)

X 0.50 1785 0.25 200 356.38 0.48750 5 x 10-11

X 0.25 1785 0.25 200 162.02 0.48750 5 x 10-0

X 0.10 1785 0.25 200 61.46 0.48750 5 x 10-11

y 0.50 1785 0.25 200 356.38 0.48750 5 x 10-0

y 0.25 1785 0.25 200 162.02 0.48750 5 x 10-0

y 0.10 1785 0.25 200 61.46 0.48750 5 x 10-11

Table 5.6. Details of Two-Dimensional Uniaxial Model Studies with Mark 5 Failure Criterion

From the numerical studies listed above, the following load-displacement plots were

produced (See Fig. 5.36. and Fig. 5.37.).

As can be seen from the load-displacement plots shown above, the general form

of the curves does not as closely resemble the shape expected for elastic-softening

behaviour as those from the studies with the Mark 4 failure criterion did. This is

particularly the case for the plots concerning displacement in the x-direction. The plots

describing displacement in the y-direction are very similar to those produced by the

Mark 4 criterion, although neither criterion produced an accurate representation of

elastic-softening behaviour in this direction (See Fig. 5.31. & Fig. 5.32. and Fig. 5.36.

& Fig. 5.37.).
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Fig. 5.36. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark Model with

the Mark 5 Failure Criterion and Prescribed Displacement in the x-direction
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Fig. 5.37. Load-Displacement Plots for the Two-Dimensional Uniaxial Benchmark Model with

the Mark 5 Failure Criterion and Prescribed Displacement in the y-direction
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As in the previous studies conducted with the various failure criteria discussed in the

preceding Sections, the elastic responses for displacement in both the x and y-directions

show good results and furthermore, the expected maximum load for an equivalent

continuum material, indicated in the plots by the NI line, was predicted very well. For

the meshes displaced in the x-direction the accuracy of the elastic behaviour, in

comparison to equivalent continuum behaviour, again improves with increasing

discretisation and the consequently increasing L ratio of the meshes (See Sections

5.5.3.,5.6.3. and 5.7.3. above).

As with the load-displacement results for the Mark 4 failure criterion, the initial

post-peak behaviour of the model is promising. However, the rate of unloading can

again be seen to increase rapidly in all cases, resulting in almost brittle behaviour. As in

the previous studies, this behaviour appears to be associated with an uncontrolled

feedback cycle between the corrective forces, in this case nodal forces, applied in order

to redistribute the relaxation stress, and the continuum total strain measured in the inter-

particle link element. It can therefore be seen that, although the results produced by the

Mark 5 criterion are different to those produced by the Mark 4 criterion, the problems

associated with stress redistribution during softening of the link elements have not been

overcome.

Again, in a similar manner to the plots produced by the Mark 4 criterion, it can

be seen that after a rapid softening event the model meshes lost most of their load

carrying capacity. As before, in the meshes displaced in the y-direction, where all of the

elements fail almost simultaneously, the strength of the mesh is completely lost, while,

in the meshes displaced in the x-direction, some residual strength is retained due to one

or more link elements remaining intact. In contrast to the behaviour seen under the

Mark 4 criterion, where the unloading process continued in the remaining elements, it

can be seen that the load carried by the meshes increases after a failure event. This is

caused by effects similar to those seen in the results of the Mark 1 and Mark 2 failure

criteria (See Fig. 5.5., Fig. 5.12. and Fig. 5.13.) where, due to the method of calculating

stress, or in this case the total strain, in the remaining link elements, an extension, far

greater than would be expected for an equivalent continuum material, is required to fail

them.

268



Chapter 5: Failure Criteria for the Particle Solid Model (PSM)

One further possible explanation that was considered for the poor unloading

behaviour shown by the Mark 5 criterion was the assumed characteristic length for the

PSM mesh. As mentioned previously, it was initially assumed that the characteristic

length, h, would be equal to the initial inter-particle link length. However, given that

the Mark 5 criterion considers an equivalent continuum 'element' consisting of the

triangles on either side of an inter-particle link it was felt that it might have been more

appropriate to choose a characteristic length based on this area. Clearly, this would also

apply to the Mark 4 criterion since the same approach is taken for the calculation of the

continuum total strain in a link element.

To test this hypothesis, a square was considered, the area of which was equal to

the area of the 'diamond' formed by the two triangles associated with a link element. A

characteristic length was then set equal to the length of the side of this square. This

gave a value for h of :If- times the initial length of the inter-particle link. However,

when the coarse mesh run for displacement in the x-direction, shown in Fig. 5.36.

above, was repeated with the new value of h no significant difference was seen in the

load-displacement behaviour of the mesh. Various other choices for h are possible,

such as the diameter of a circle of area equal to that of the' diamond' element, however,

given the results of the test discussed here, it is not thought that altering the

characteristic length will significantly improve the results produced by the Mark 4 and

Mark 5 failure criteria.

In addition to the poor behaviour shown in the load-displacement plots, it can

also be noted that some dynamic effects are visible in the form of oscillations in the

curves. This effect is particularly noticeable in the fine mesh curves. This is indicative

that the applied velocity was too high to develop a quasi-static analysis. These effects

were however considered minor and certainly not responsible for the unloading

behaviour produced by the Mark 5 criterion. Given the very slow computational rate of

the model caused by the complexity of the FISH code for the Mark 5 criterion, it was

not considered necessary to repeat the numerical runs with a lower applied velocity.
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5.9.4. Mark 5 - Conclusions

From the results discussed above it can be concluded that, as would be expected from

the results of previous studies, the Mark 5 failure criterion produced accurate pre-peak

and initially promising post-peak elastic-softening behaviour in the PSM. However, it

was also clear that it made no significant improvements to the reproduction of softening

behaviour over the results produced by the Mark 4 failure criterion. Furthermore, it can

be seen that although the Mark 4 criterion was able to accurately predict the extension

of an equivalent continuum material the Mark 5 criterion was entirely unable to do so.

lt was apparent that, despite the adopted continuum approach to the redistribution of the

excess stress in an element, the Mark 5 criterion suffered from the same problems seen

in the Mark 4 criterion, namely an uncontrolled feedback between the corrective forces

and the continuum total strain in a link element, resulting in 'runaway' softening of the

meshes.

As yet, no satisfactory interpretation has been found to explain this behaviour,

which was seen in the results produced by both the Mark 4 and Mark 5 failure criteria.

However, the problem seems to relate to the continuum total strain in a link element, as

calculated from the continuum area associated with that link element. More

particularly, it seems to relate to the modification of the continuum total strain by the

redistribution of excess stress through the application of forces either at the nodes, as in

the Mark 5 criterion, or in the element itself, as in the Mark 4 criterion. Further

investigation will be required in order to establish the precise nature of this relationship

and to find an appropriate solution to the redistribution of excess stress from the

softening link elements, which will allow an accurate representation of elastic-softening

behaviour, in an equivalent continuum material, to be modelled by the PSM.

5.10. Summary

In the preceding Sections, the development of five failure criteria for the PSM was

presented in detail. Each of these criteria was applied to a simple two-dimensional,

uniaxial benchmark model and the results of the studies conducted were also presented

and discussed in detail.
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The first criterion was developed in a total strain formulation and considered the

uniaxial extension of individual link elements. As would be expected, this was shown

to produce results consistent with the deformation of a lattice- or truss-like framework

with purely elastic-brittle behaviour. However, the ultimate objective was to employ

the PSM to model fracturing of an equivalent continuum material. In order to achieve

this, the second model therefore applied continuum principles to the failure criterion by

considering the internal stress in the PSM mesh. As was again to be expected, this

showed behaviour much closer to that of an equivalent continuum material than that

produced by the first criterion. However, both the Mark 1 and Mark 2 models were

purely elastic-brittle criteria and as such showed behaviour that was dependent on the

mesh discretisation.

In order to develop a completely general model, that would produce results

independent of the link element size, the third criterion applied elastic-softening

behaviour, where softening behaviour was dependent on the mesh element size, and

thereby accounted for fracture energy dissipation during failure. For simplicity, this

was constructed in the uniaxial total strain formulation in a similar way to the first

criterion. This was shown to produce excellent results but, as would be expected, these

were again representative of a lattice-like framework and not of an equivalent

continuum material. Once again, in order to produce the desired behaviour a fourth

criterion was developed that employed a continuum approach. However, rather than

considering the internal stress state in the mesh, a continuum total strain approach was

developed that looked into an equivalent continuum area associated with each of the

inter-particle link elements. This produced some reasonable results in comparison with

those expected for an equivalent continuum material but problems were encountered

with the redistribution of excess stress to the PSM mesh. The Mark 5 criterion was

developed in an attempt to solve this problem by redistributing the excess stress over the

associated continuum area rather than in only the link element itself but this proved not

to solve the problems and a solution has yet to be found.

In general, it can be said that some success was had in developing fracture

criteria for the PSM and reproducing the expected behaviour for an elastic-brittle

material both in the form of a lattice-like structure and of an equivalent continuum

material. The criteria also successfully reproduced the more general elastic-softening
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behaviour of a lattice-like structure and demonstrated mesh size objectivity. However,

it proved difficult to develop this behaviour in terms of an equivalent continuum

material and, despite the development and adoption of several approaches, further

investigation will be required in this area.

Given the findings discussed above, the work described in the following Chapter

will continue the development of the combined modelling framework and look into

more realistic multi-phase fracture benchmark models where fracturing is driven by

fluid pressure. The basic methods discussed in detail in Chapter 4 will be applied in

conjunction with the fracture criteria discussed in this Chapter. Although consideration

will be given to the Mark 4 and 5 criteria, the emphasis will be on the Mark 1, 2 and 3

criteria, which are known to give accurate results, although not always for an equivalent

continuum material. The results of these combined benchmark models will be

presented and discussed in detail along with any conclusions that are drawn.
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Chapter6:

Coupled Hydraulic Fracture

Benchmark Models

6.1. Introduction

The work discussed in the preceding Chapters has been concerned with the development

of the Particle Solid Model (PSM) and the Particle Fluid Model (PFM) and the

validation of the behaviour of these models, through simple benchmark studies. As

discussed previously, these models were found to produce satisfactory results for the

examined problems. The work discussed in this Chapter concerns the application of the

PSM and PFM to more specific benchmark models in order to test their ability to

reproduce the basic behaviour of common geomechanical problems.

Two benchmark studies will be discussed. The first of these will look at the

simple propagation of a hydraulically driven fracture in a continuous rock matrix under

various loading conditions and with various fracturing criteria applied. The general set-

up of the model will be described before the results of the conducted parametric studies

are presented and discussed in detail. Conclusions will then be drawn.

The second study will look into a coupled fracture problem where the fracturing

of a continuous rock matrix, similar to that studied in the first benchmark model, will be

driven by a high pressure fluid modelled with the PFM. Again, the set-up of this model

will be described before the results of a limited parametric study are presented and

discussed. Finally, conclusions drawn on these results will also be presented.
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6.2. Hydraulic Fracture Benchmark Model (PSM)

6.2.1. Introduction and Model Set-up

As seen from the studies presented in the previous Chapters, the PSM was shown to

accurately reproduce the elastic deformation behaviour of an equivalent continuum

material (See Chapter 4, Section 4.2.3.). It was further shown that elastic-brittle and

elastic-softening fracture behaviour could also be accurately modelled when an

appropriate failure criterion was applied to a PSM mesh (See Chapter 5). However, the

studies discussed previously were conducted with very simple benchmark models and in

order to further test the capabilities of the PSM it was desirable to develop a more

complex benchmark model of a realistic geomechanical problem. Furthermore, given

the specific aim of this work to develop a combined modelling framework (See Chapter

3, Section 3.2.), it was desirable to develop a benchmark model of a multi-phase

problem. For these purposes, it was decided to construct a model similar to a two-

dimensional plane strain finite element model developed by Papanastasiou [69, 70, 71,

72] and applied to the study of, amongst other factors, the effects of elasto-plastic

material behaviour on hydraulic fracture propagation, in a poorly consolidated

sandstone.

The benchmark model was set up as shown below (See Fig. 6.1. and Fig. 6.2.)
and consisted of a PSM mesh constructed as described in Chapter 4, with an inter-

particle link length of 0.24m. As can be seen below, the mesh was fixed with a

symmetry boundary at one end while the other three sides were considered as stress

boundaries. Forces were applied to these three boundaries on a per-unit-length basis in

order to simulate confining pressures. As will be further discussed in the following

Sections, confinement was applied to the Hydraulic Fracture Benchmark Model mesh at

two different intensities, during the course of these studies. Numerical runs were firstly

carried out under zero confinement, in order to produce experimental control results and

secondly under a maximum horizontal stress, ~ = 9.0MPa (in the x-direction) and a

minimum horizontal stress, O'J = 3.7MPa (in the y-direction). The latter values were the

in situ stresses applied in the FE studies, carried out by Papanastasiou [69, 70, 71, 72],

as being representative of the stress field in a sandstone reservoir formation at a depth of

1500m.
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Fig. 6.1. Diagram Showing Set-up of Hydraulic Fracture Benchmark Model Mesh
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As mentioned previously, hydraulic fractures tend to open in the direction of least

resistance and therefore usually take the form of large, vertical, planar structures. The

FE model, developed by Papanastasiou [69], employs interface elements, placed along

the centre of the mesh, to model the fracture propagation process and thus, inherently

assumes that the crack will propagate in a direction exactly perpendicular to' the

minimum horizontal stress, O'j. While this may be generally true, especially for a

fracture in a homogeneous material, as discussed in Section 2.2. of Chapter 2, it may be

considered a simplification in terms of truly realistic behaviour. This may have been

appropriate for the purposes of the studies conducted by Papanastasiou, however, the

PSM makes no such assumption. Fracturing is free to develop as dictated by the in situ

conditions. This freedom is of course constrained by the locations of the inter-particle

links, however, as shown by Schlangen and van Mier [80, 81, 82], Tzschichholz and

Herrmann [88] and Tzschichholz et al. [89], it is still possible for behaviour such as

meandering and branching fractures to develop.

In addition to the confining pressures, the material properties applied to the

Hydraulic Fracture Benchmark Model were also taken from the FE studies conducted

by Papanastasiou [69, 70, 71, 72]. These are listed in Table 6.1. below and it can be

noted that they are similar to the properties applied in the Two-Dimensional Uniaxial

Benchmark Model employed in Chapter 5 (See Chapter 5, Section 5.4.).

Property Symbol Value

Young's Modulus E 1785.0MPa

Poisson's Ratio v 0.0/0.125/0.25

Tensile Strength ft 0.5N/mm":

Fracture Energy Release Rate Gf lOON/m

Table 6.1. Material Properties Applied to Hydraulic Fracture Benchmark Model

As before, the value of Young's Modulus, E, was adopted directly from the FE model,

as was the material tensile strength, ft. Again, the value of Poisson's ratio applied by

Papanastasiou's model was 0.3, however, for plane strain conditions, the equations of

Morikawa and Sawamoto [63] impose a maximum value of 0.25 (See Chapter 4,
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Section 4.2.2.3.). In addition, it was intended to vary the Poisson's ratio as part of the

parametric studies carried out with the Hydraulic Fracture Benchmark Model and

consequently values ofO.2S, 0.125 and 0.0 were chosen for Poisson's ratio.

As discussed in Chapter 5, a value for the material fracture energy release rate,

G" was also required for the elastic-softening fracture criteria. Although, for the Two-

Dimensional Uniaxial Benchmark Model a compromise value of 200N/m was applied

in order to satisfy problems of practicality in running test studies, it was found that a

value of lOON/m, initially chosen as being representative of a quasi-brittle material such

as concrete, worked well in the Hydraulic Fracture Benchmark Model.

As mentioned above, Papanastasiou's FE model was based on the plane strain

fracture geometry. While this is clearly a simplification of a complex three-dimensional

process, as discussed in Section 2.2. of Chapter 2, plane strain modelling can be

considered an acceptable simplification for certain fracture problems and in particular

for modelling short fractures, with a low length to height ratio, that can be assumed to

approach a rectangular profile in the xz-plane. For a rectangular profile such as this, it is

also implicitly assumed that the fracture remains within one layer of the reservoir and is

prevented from growing outside this layer by the toughness of the bounding layers and

the in situ stresses present within them. Consequently, only one set of material

properties need be considered. As further discussed in Section 2.2. of Chapter 2, these

assumptions are similar to those made by the CaDD model.

In order to ensure plane strain behaviour in the Hydraulic Fracture Benchmark

Model the values of the contact spring stiffnesses in the mesh were determined

according to the plane strain equations developed by Morikawa and Sawamoto [63]

through strain energy equivalence (See Chapter 4, Section 4.2.2.3. and Eq. 4.29. & Eq.
4.30. repeated below).

k = E
n .J3'(1-2v Xl+v) Eq.4.29.

k = E(I-4v)
s .J3'(1-2vXl+v) Eq.4.30.
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Furthermore, the fluid driven fracturing model, employed by Papanastasiou in the FE

study, required an initial fracture length from which to begin an analysis and this was

typically set at O.5m. As can be seen in Fig. 6.1. above, an initial fracture length of

O.6m was also included in the Hydraulic Fracture Benchmark Model. This was not

specifically a requirement of the model, however in order to initiate fracturing it was

necessary to apply fluid pressure to some kind of imperfection in the mesh. This initial

fracture length can therefore be viewed as a stress concentration similar to a wellbore

perforation.

Fluid pressure in the fracture was implemented by applying forces on a per-unit-

length basis to the particles making up the walls of the fracture (See Fig. 6.1. and Fig.

6.2. above), in a similar method to that used to apply the external confining pressures, as

discussed above. The 'fluid forces' were increased linearly in time until an inter-

particle link element was failed and removed from the mesh according to whatever

failure criterion was in place (See Chapter 5). The fracture fluid pressure was then

reduced, according to the ratio of the new fracture volume to the old fracture volume, in

an attempt to simulate the pressure variation that would be experienced under a constant

pumping rate in a realistic fracture treatment (See Eq. 6.1.).

Eq.6.1.

where, Pfis the fracture fluid pressure, "lis the fracture volume, ',is the fracture length

and Nlink is the number of broken links. The subscript t refers to the time step.

As can be seen above, this simplified scheme (Eq. 6.1.) firstly assumed that the

fracture volume was directly related to the fracture length and furthermore that each link

element, that was failed and removed, represented a fixed length of fracture growth.

Therefore, in order to calculate the ratio of new to old fracture 'volume', it was possible

to simply count the number of broken link elements. This scheme also tacitly assumed

that fracture propagation was always continuous and unbroken. This was considered a

reasonable assumption since, as will be seen from the results shown in the following
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Sections, in cases where discontinuous fracturing occurred, the overall behaviour of the

model was usually not considered to be realistic for a hydraulic fracture treatment.

After the failure and removal of a link element, the recalculated 'fluid forces' were

applied to all particles making up the wall of the fracture, including the new pair formed

as a result of the propagation event. This method of applying force dipoles in place of

removed link elements was similar to a technique applied to typical lattice models by

Tzschichholz and Herrmann [88] and Tzschichholz et al. [89] (See Chapter 2, Section

2.3.2.) and was chosen for the Hydraulic Fracture Benchmark Model because, as

discussed previously, it was easy to precisely control the applied fluid pressure at all

times.

In a further simplification, the 'fluid force' dipoles were always applied to the

particles in the y-direction (See Fig. 6.1.), each particle in a debonded pair receiving a

positive or negative force depending on their relative positions. This technique was

similar to the method of fluid pressure application employed by Bruno et al. [11].,

although they do not appear to have considered the application of fluid pressure within

the newly opened length of a propagating fracture. If, as would be suggested by the

observation that hydraulic fractures generally open in the direction of least resistance,

the fractures propagated in the x-direction, then this simplification would have generally

applied the fluid pressure in a direction normal to the fracture walls, as would be

expected in a realistic situation. However, it was understood and accepted that, if the

fracture deviated in the y-direction, some inaccuracy would be incurred, as at certain

locations, particles would experience loading that could not be considered normal to the

fracture wall.

An alternative method for applying the 'fluid forces' would have been to apply

the force dipoles in the orientation of the link element that they replaced, as was applied

in the Wellbore Stability Model developed by Davie [21]. However, although this

would have been more complex to implement, generally this would still not have solved

the problem of accurately applying the pressure in a direction normal to the fracture

surface when it deviated in the y-direction.

Ideally, the fluid pressure should be represented by a 'follower' load system so

that the 'fluid forces' always acted perpendicular to the fracture surface. In order to

279



Chapter 6: Coupled Hydraulic Fracture Benchmark Models

implement this it would have been necessary to develop a scheme by which to

determine the local orientation of the fracture surface. While this may be, in principle,

quite possible, by taking into account the relative locations of neighbouring particles, it

would be algorithmically very complex to implement in a freely propagating system of

branching fractures. The limitations of PFC3D and the associated FISH coding language

would have made this even more difficult and very computationally expensive.

Therefore, for the purposes of these studies, 'fluid forces' were only applied in the y-

direction.

For the purposes of the parametric studies carried out with the Hydraulic

Fracture Benchmark Model, it was assumed that the fracture fluid pressure profile was

constant along the whole length of the fracture, although it was understood that this was

a further, perhaps significant, simplification of the fluid behaviour. Although there are

many different assumptions that can be made for the fluid pressure profile in a fracture,

ranging from constant, through piecewise linear and linear drop off, to parabolic

distributions and more complex polynomial profiles, (Valk6 and Economides [91D,
these would again be very difficult to implement in a meandering or branched fracture

system in a PSM mesh. Furthermore, on examination of the fracture pressure profiles

produced by Papanastasiou, with a reasonably complex fluid model, (See Fig. 6.3.

below) it can be seen that the pressure is relatively constant over most of the fracture

length.
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Fig. 6.3. Plot Showing Net Pressure Profiles along the Length of a Fracture

(After Papanastasiou [69])
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It is therefore argued that a constant fracture pressure profile was reasonable for the

purposes of this work. Despite this, a further concern would be the, generally agreed

on, phenomenon known as fluid lag, whereby the fluid flowing into the fracture never

reaches the tip before fracture propagation occurs, thereby resulting in a complete drop

in pressure near to but not at the fracture tip. This effect can clearly be seen in Fig. 6.3.

above, however, for the Hydraulic Fracture Benchmark Model it was felt that the fluid

lag region could at least partially be accounted for within the length between the

foremost point at which 'fluid forces' are applied and the actual fracture tip (See Fig.

6.4. below) and would therefore not be 'visible' within the applied pressure profile. The

assumption of a constant pressure profile in the Hydraulic Fracture Benchmark Model

can still therefore be considered valid, although, obviously, if a higher mesh

discretisation were to be applied then this assumption might have to be rethought,

especially in regard to the near tip zone.
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Fig. 6.4. Diagram Showing Detail of Fluid Pressure Application in the Fracture Tip

Region in a PSM Mesh

As for the studies conducted with the Two-Dimensional Uniaxial Benchmark Model

discussed in Chapter 5, the numerical studies run with the Hydraulic Fracture

Benchmark Model were carried out as quasi-static analyses. Quasi-static behaviour was

again ensured by invoking the differential density scaling function, integral to PFC3D,
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and by applying a sufficiently slow loading rate so as to eliminate most of the dynamic

effects in the mesh.

Although fracturing may be considered a dynamic process, it can be argued that

it is acceptable to model hydraulic fracturing quasi-statically, since the fluid and solid

phases work on very different time scales, where the fluid transport is much slower than

the fracturing of the rock. The quasi-static nature of the problem modelled by the

Hydraulic Fracture Benchmark Model was further implied by the assumption of

complete stress redistribution between time steps, as inferred by the restriction of

fracture propagation to one link element per time step. This was previously discussed in

Chapter 2, Section 2.3.1. and Chapter 5, Section 5.3. In addition, the assumption of

instantaneous fluid flow in the fracture, as implied by the immediate application of a

'fluid force' dipole as soon as a link element was removed, was also suggestive of a

quasi-static problem.

As with the Two-Dimensional Uniaxial Benchmark Model (See Chapter 5,

Section 5.4.), it was felt that to realistically account for dynamic effects, very precise

control of the boundary conditions and material properties would be required. Thus, for

simplicity the effectively quasi-static method was adopted.

6.2.2. Numerical Studies

As mentioned in the previous Section, a number of numerical runs were carried out in

order to conduct a parametric study of the Hydraulic Fracture Benchmark Problem. The

overall study consisted of three smaller studies that focussed on the effect of specific

parameters on the behaviour of the model.

The first of these smaller studies consisted of eighteen numerical runs

constituting a general parametric study of the Hydraulic Fracture Benchmark Model.

The varied parameters were the Poisson's ratio of the material, which was equivalent to

varying the ratio of normal to shear stiffness in the PSM mesh (See Eq. 4.29. and Eq.
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4.30.), the confining pressure and the fracture criterion, which was chosen from the

Mark 1, 2 and 3 criteria.

The second study was a more limited investigation that repeated six of the tests

from the first study, several times each, while also considering the effects of a

heterogeneous material by randomising the material strength throughout the PSM mesh.

The final study again consisted of numerical tests similar to those carried out in

the first study but was intended to specifically investigate the capabilities of the Mark 4

and 5 failure criteria in a realistic benchmark problem.

Itwas the intention in each case, to run the models until a given number of inter-

particle link elements, N/ail, had failed. N/ail was chosen as nineteen, assuming the

fractures would propagate in the x-direction, as would be the case if the fracture opened

exclusively in the direction of least resistance (See Section 6.2.1. above), in which case

fractures of similar length to those in the results presented by Papanastasiou [69] would

have been produced. While this was appropriate in many of the tests, as will be seen in

the following Sections, some runs were stopped prior to N/ai1link element failures as the

fracture approached the boundary of the mesh. Furthermore, some runs were continued

passed N/ail element failures in order to further develop the failure behaviour.

In addition to the time taken to reach a state where N/a1llink elements had failed,

it should be noted that, due to the explicit time stepping solution scheme employed by

PFC3D, time had to be allowed for the mesh to reach steady state under the confining

pressure before fracturing could be begun.

The numerical runs carried out for the various parametric studies, as discussed

above, are listed in detail below (See Table 6.2. and Table 6.3.).
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Table 6.2. Details of Numerical Runs Carried Out for the First, General Parametric Study of

Hydraulic Fracture Benchmark Model
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Table 6.3. Details of Numerical Runs Carried Out for the a) Second and b) Third, Specific

Parametric Studies of Hydraulic Fracture Benchmark Model
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6.2.3. Discussion of Results

6.2.3.1. Introduction

In the following pages presentation and discussion is made of the results from the

studies described in the previous Sections. As discussed above, for each of the runs

listed in Table 6.2. and Table 6.3., a fracture system was developed in the Hydraulic

Fracture Benchmark PSM mesh. Many of these followed a straight path, propagating in

the x-direction, along the centreline of the mesh and thereby opening in the direction of

least resistance, as would be expected for fractures of this type. However, various other,

deviated fracture patterns were also produced. Table 6.4. below, lists a summary of the

fracture patterns produced by each numerical run and indicates the figure which best

illustrates the fracture behaviour. Since there was considerable repetition within the

results, only a representative sample of fracture shapes are shown (Fig. 6.5. to Fig. 6.8.),

however, where a unique fracture pattern developed a plot has been included. For ease

of comparison, the summary table and the fracture patterns themselves are presented

collectively in Section 6.2.3.2., before a detailed discussion given in Section 6.2.3.3.

For the fractures that developed along the centreline of the mesh it was also

possible to produce comparative results of the fracture width profiles, the failure of the

inter-particle link elements in the mesh during propagation of the fractures and the net

applied pressure at the point of failure for each link element. Since the pressure in the

fracture was constant, the latter was equivalent to a plot of the net pressure at the

wellbore. Plots of this kind, from the results of Test Groups A to E, as defined in Table

6.2., are shown below in Fig. 6.12. to Fig. 6.16. before a detailed discussion is

presented, in which comparison is made with the results given by Papanastasiou [69]

and reproduced in Fig. 6.11. For fractures that deviated from the centreline of the mesh,

it was not feasible to produce meaningful comparative plots of fractures width profiles,

however, in some instances, where a distinct fracture was judged to have formed, and

meaningful results were available, plots of link element failure and net wellbore

pressure have been included. Where no distinct fracture developed, results of this form

were not found to be appropriate. Similarly to the general fracture shape results, the

detailed profile plots are presented collectively, for ease of comparison, in Section

6.2.3.4., ahead of their detailed discussion in Section 6.2.3.5.
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6.2.3.2. Figures Showing General Fracture Patterns

Test Representative
Run No. General Fracture Shape

Group Figures

001 Straight Fracture (in x-direction) Fig. 6.5. a) & b)

A 002 Straight Fracture (in x-direction) Fig. 6.5. a) & b)

003 Straight Fracture (in x-direction) Fig. 6.5. a) & b)

004 Straight Fracture (in x-direction) Fig. 6.5. a) & c)

B 005 Straight Fracture (in x-direction) Fig. 6.5. a) & c)

006 Deviated Fracture (in -y-direction) Fig. 6.5. e)

007 Straight Fracture (in x-direction) Fig. 6.5. a) & d)

C 008 Straight Fracture (in x-direction) Fig. 6.5. a) & d)

009 Deviated Fracture (in +j-direction) Fig. 6.5. t)

010 Straight Fracture (in x-direction) Fig. 6.5. a)

D 011 Deviated Fracture (in +j-direction) Fig. 6.6. d)

012 Straight Fracture (in x-direction) Fig. 6.5. a)

013 Straight Fracture (in x-direction) Fig. 6.5. a)

E 014 Straight Fracture (in x-direction) Fig.6.5

015 Straight Fracture (in x-direction) Fig. 6.5. a)

016 Deviated Fracture (in +j-direction) Fig. 6.6. a)

F 017 Deviated Fracture (in +j-direction) Fig. 6.6. b)

018 Deviated Fracture (in +y-direction) Fig. 6.6. c)

019 Straight Fracture (in x-direction) Fig. 6.5. a) & b)

G 020 Straight Fracture (in x-direction) Fig. 6.5. a) & b)

021 Straight Fracture (in x-direction) Fig. 6.5. a) & b)

022 Straight Fracture (in r-direction) Fig. 6.5. a) & d)
H

023 Variable Deviation (in +j-direction) Fig. 6.7. a) & b)

024 Deviated Fracture (in -j-direction) Fig. 6.8. c)
I 025 No Defined Fracture Fig. 6.8. e) & t)

026 Deviated Fracture (in -j-dlrection) Fig. 6.8. a)
J

027 Deviated Fracture (in ±y-direction) Fig. 6.8. d)

No Defined Fracture028 Fig. 6.8. b)
Crack Bridging

K
Deviated Fracture (in ±y-direction)

Fig. 6.8. b)029
Crack Bridging

Table 6.4. Summary of General Fracture Patterns Produced in listed Numerical Runs During

Parametric Studies on Hydraulic Fracture Benchmark Model
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a) Typical Straight Fracture Pattern,
Any Failure Criteria, any value of v

c) Typical Contact Force Pattern for
Straight Frac., Unconfined, v = 0.125

e) Deviated Fracture Pattern for Mark 3
Failure Criterion, v = 0.125, Unconfined

b) Typical Contact Force Pattern for
Straight Frac., Unconfined, v = 0.00

d) Typical Contact Force Pattern for
Straight Frac., Unconfined, v = 0.25

f) Deviated Fracture Pattern for Mark 3
Failure Criterion, v = 0.25, Unconfined

Fig. 6.5. Diagrams of Various Fracture and Contact Force Patterns Produced by Numerical Runs

during 1st Parametric Study (Test Groups A, B & C) on Hydraulic Fracture Benchmark Model
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a) Fracture Pattern for Mark 1 Failure
Criterion, v = O. 25, Confined

c) Fracture Pattern for Mark 3 Failure
Criterion, v = 0.25, Confined

b) Fracture Pattern for Mark 2 Failure
Criterion, v = 0.25, Confined

d) Fracture Pattern for Mark 2 Failure
Criterion, v = 0.0, Confined

Fig. 6.6. Diagrams of Various Fracture Patterns Produced by Numerical Runs during 1st

Parametric Study (Test Groups D, E & F) on Hydraulic Fracture Benchmark Model

a) & b) Fracture Pattern for Mark 2 Failure Criterion, v = 0.25,
Unconfined, Random StrenQth Distribution

Fig. 6.7. Diagrams of Various Fracture Patterns Produced by Numerical Runs during 2nd

Parametric Study (Test Groups G & H) on Hydraulic Fracture Benchmark Model
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a) Fracture Pattern for Mark 4 Failure
Criterion, v = 0.0, Unconfined

c) Fracture Pattern for Mark 4 Failure
Criterion, v = 0.25, Unconfined

b) Fracture Pattern for Mark 4 Failure
Criterion, v = 0.125, Confined

d) Fracture Pattern for Mark 5 Failure
Criterion, v = 0.0, Unconfined

e) & f) Fracture Pattern for Mark 5 Failure Criterion, v = 0.25, Unconfined

Fig. 6.8. Diagrams of Various Fracture Patterns Produced by Numerical Runs during 3rd

Parametric Study (Test Groups I, J & K) on Hydraulic Fracture Benchmark Model
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6.2.3.3. Discussion of General Fracture Patterns

6.2.3.3.1. Introduction

As mentioned previously, the discussion in this Section focuses on the general

fracturing behaviour developed by the numerical runs carried out in the parametric

study of the Hydraulic Fracture Benchmark Model, as illustrated in the previous Section

(See Fig. 6.5. to Fig. 6.8.). The discussion is split into several Sections that consider

various aspects of the three smaller parametric studies, described in Section 6.2.2.,

which made up the overall parametric study of the Hydraulic Fracture Benchmark

Model. As can be seen in the figures presented in the previous Section, for clarity, most

of the plots show only the 'contact bonds' acting as the inter-particle links in the PSM

bonded particle assembly. From these diagrams, it is easy to see the relationship of the

bonded particle assembly to a lattice model.

6.2.3.3.2. Straight Fracture Patterns

Considering the fracture patterns produced by the various studies listed in Table 6.2.

and Table 6.3., it can be seen, from the summary of results given in Table 6.4., that most

of the numerical runs produced straight fractures that propagated down the centreline of

the mesh, as illustrated in Fig. 6.5. a) (repeated below).

Fig. 6.5. a) Typical Straight Fracture Pattern

(repeated from Section 6.2.3.2. above)
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This was the expected behaviour for the Hydraulic Fracture Benchmark Model since, as

mentioned previously, a fracture of this type tends to open in the direction of least

resistance (See Section 6.2.l. and Fig. 6.1. above). However, an additional influence

may have been the orientation of the applied 'fluid pressure forces', which, as described

in detail in Section 6.2.1., always acted in the y-direction, thereby tending to open a

fracture in this orientation. Nonetheless, based on these results, it was considered clear

that the PSM could be applied to realistic geomechanical problems and develop the

generally expected behaviour. A specific and detailed comparative study of the precise

behaviour of the numerical runs that produced these straight fractures is carried out in

Sections 6.2.3.4. and 6.2.3.5. below.

6.2.3.3.3. Contact Force Patterns for Straight Fractures

While, due to the development of a straight fracture in most of the numerical runs, the

general behaviour of the model was considered to be acceptable, further aspects of the

model behaviour can be noted on examination of plots showing the contact forces acting

between the particles in the PSM mesh (See Fig. 6.5. b), c) and d) repeated below). In

these plots, the dark lines indicate compressive forces, the light grey lines indicate

tensile forces and the force magnitude is indicated by the relative line thicknesses.

As can be seen in the figures below, the forces developed as would be expected

for a propagating fracture with a strong, tensile zone around the fracture tip that

dissipated, radially, with increasing distance from the tip. It can also be seen that as the

fracture propagated, the local stress regime, in the area along the walls of the fracture,

became compressive due to the applied fluid pressure. Consequently, a neutral stress

zone existed between the tensile tip zone and the compressive wall zones although this

is not easily seen in the plots. Although there was some variation due to the material

properties, the general behaviour described above was seen in the results of all studies

in which a straight fracture pattern was produced.
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b) c)

d)

Fig. 6.5. Typical Contact Force Pattern for Straight Fracture Pattern under Zero Confining

Pressure with b) v = 0.00 c) v = 0.125 and d) v = 0.25

(repeated from Section 6.2.3.2. above)

However, on further examination of Fig. 6.5. b), c) and d), it can also be seen that the

precise configuration of the contact force distribution apparently changed considerably

with Poisson's ratio. This was in fact due to the direct relationship between the

Poisson's ratio of the particle assembly and the ratio of the normal and shear contact

spring stiffnesses, as described by the equations of Morikawa and Sawamoto [63] (See

Fig. 4.29. and Fig. 4.30.). Thus, when the Poisson's ratio of the mesh was 0.25, the

shear stiffness was zero and only normal forces could be transmitted between the

particles, thereby resulting in a distinct hexagonal pattern of force distribution (See Fig.

6.5. d)). As Poisson's ratio decreased and the ratio of normal to shear stiffness

increased, more and more of the contact forces could be transmitted in shear. In Fig.
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6.5. b), c) and d), this effect is most noticeable in the regions around the fracture tip,

where tensile loads are highest, and in the region ahead of the fracture tip, where, as

mentioned above, a compressive zone is formed. Taking, as an example, the

compression zone, it can be clearly seen that, with a Poisson's ratio, v = 0.25 (k, = 0.0)

(Fig. 6.5. d) ), the compression was transmitted in a diamond pattern, with forces

normal to the inter-particle contacts. However, with a Poisson's ratio, v = 0.0 (ks = kn)

(Fig. 6.5. b) ), it can be seen that the forces were transmitted vertically (in the y-

direction) between the particles and this was only possible because of the action of the

shear springs.

Although the observed configurations of the contact forces generally confirmed

the expected model behaviour, it was also clear from the contact force plots that

boundary effects were present in three areas of the PSM meshes during these numerical

studies. The first of these can be seen at the comers of the mesh, on the fixed symmetry

boundary (the left-hand comers of the plots), where tensile forces built up in reaction to

the bending of the mesh as it was displaced in the y-direction. The second area of

concern was the compressive zone that developed ahead of the fracture tip in reaction to

the tensile opening of the fracture. While these forces may have been present anyway,

they were clearly concentrated by the presence of the mesh boundary. The third

noticeable effect, observed particularly in Fig. 6.5. c), was the concentration of forces

near the boundaries directly lateral to the fracture tip, where the natural force

distribution paths were intersected by the edges of the mesh. After examination of the

plots, it was concluded that all of these boundary effects occurred far enough from the

centreline of the mesh so as not to be a significant influence on the fracture propagation

over the length of interest in this work. However, if the fractures propagated too far or

deviated in the y-direction, as was the case in several of the numerical runs, then it was

considered that the boundary effects might have influenced the results. Where these

situations arose during this benchmark testing, as mentioned previously, the runs were

stopped when it was felt that the fracture was approaching to close to the mesh

boundary.
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6.2.3.3.4. Deviated Fracture Patterns

First Parametric Study - (Test Groups A to F)

As stated previously, from the observations of the development of the straight fractures

produced by the majority of the benchmark tests and the associated contact force

patterns, the general behaviour of the Hydraulic Fracture Benchmark Model was

considered satisfactory. However, in addition to the straight fractures, several of the

numerical runs also produced fracture patterns that deviated from the centreline of the

mesh (See Fig. 6.5. e) & f) and Fig. 6.6. a) to d) repeated below).

In considering these results, which developed under various applied material

properties and fracturing criteria, several points are notable. The first point of note is

that, in the results that produced deviated fracture patterns, there was a general tendency

for the deviation to take place in the positive y-direction (the upwards direction in Fig.

6.5. to Fig. 6.7.). A trend such as this is indicative of an artificial influence acting

within the model since, in a real material, a randomly distributed deviation would be

expected.

e) f)

Fig. 6.5. Deviated Fracture Pattern for Mark 3 Failure Criterion with e) v = 0.125 and Zero

Confining Pressure f) v = 0.25 and Zero Confining Pressure

(repeated for Section 6.2.3.2. above)
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a)

c)

b)

d)

Fig. 6.6. Deviated Fracture Pattern for a) Mark 1 Failure Criterion with v = 0.25 b) Mark 2

Failure Criterion with v = 0.25 c) Mark 3 Failure Criterion with v = 0.25 d) Mark 2 Failure

Criterion with v = 0.0, aI/ under Confined Conditions

(repeated for Section 6.2.3.2. above)

A possible cause of the trend seen in the results of the Hydraulic Fracture Benchmark

Model was the configuration of the mesh and in particular, of the initial fracture length.

As can be seen in Fig. 6.2. (repeated below), as a consequence of the mesh construction,

the sides of the initial fracture consisted of three inter-particle link elements on the

'upper' side and two elements on the 'lower' side".

t The referenced 'upper' and' lower' sides of the Hydraulic Fracture Model mesh refer to the orientation

in which all figures are presented in Sections 6.2.3.2. and 6.2.3.3.
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Fig. 6.2. Diagram of Initial Hydraulic Fracture Benchmark Model Mesh

(repeated from Section 6.2.3.2. above)

Although this led to an even number of nodes and therefore a symmetrical and even

application of fluid pressure to both sides of the fracture, under certain conditions, the

uneven length may have caused a stress concentration on the 'upper' side of the fracture

tip. This would have caused damage to develop preferentially in the positive y-direction

as shown in the results.

In order to test this theory, it would be possible to set-up a similar model in

which the initial fracture was configured in the opposite way, with the longer wall on

the lower side. If the uneven length of the fracture walls was the cause of the trend in

fracture deviation then the trend should be reversed when the fracture configuration is

reversed. Repeating the numerical studies that were shown to develop deviated

fractures would then confirm this. This was not attempted during the course of this

work since the majority of the results were not affected by this problem and

furthermore, the deviated fracture results were not considered an entirely accurate

representation of the expected fracturing behaviour.

A further possible explanation for the deviated fracture patterns discussed above,

was the presence of minor numerical imbalances in the loads applied to the mesh in

order to represent both in situ stresses and fluid pressure (See Section 6.2.1. above and

Fig. 6.1.). Given the single symmetry boundary, fixed against displacement in the x-

direction, and the application of the fluid pressures forces in the y-direction, it was
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expected that the mesh would displace laterally, to either side the fracture, as

propagation progressed, and this behaviour was observed during most of the numerical

runs (See Fig. 6.9. a) ).

a)

Symmetry
Boundary

Fixed against
Displacement in
the x-direction

Free Stress Boundary

b)

Lx Free Stress Boundary

11
Ci3
CD
en....
Ci3
CJ)
CJ)

OJoc:
::Ja.ru
-<

11
Ci3
CD
en..
Ci3
CJ)
CJ)

OJoc:
::Ja.ru
-<

Fig. 6.9. Diagram Showing Typical Displacement of Hydraulic Fracture Benchmark Model Mesh

a) Under Symmetrically Applied Fluid Pressure Forces and Confining Loads b) Under

Unbalanced Fluid Pressure Forces and Confining Loads (Arrows Indicate Particle Velocities)
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However, it was also noticed that there was a tendency for the whole mesh to displace

in the positive y-direction (See Fig. 6.9. b) ), resulting in very large distortions. This

effect was particularly evident in the numerical runs in which the mesh was subjected to

confinement and consequently high fluid pressure loads were required in order to

initiate fracturing. Although these external loads were applied symmetrically to the

model, it was felt that the overall displacement of the mesh in the positive y-direction

was the result of slight numerical imbalances, between the components of the applied

confining loads and the components of the. applied fluid pressure loads, which

developed as the mesh deformed under the action of both. However, it is not clear

whether the forces became unbalanced due to the deviated fracture or whether the

deviated fracture was a result of the movement of the mesh.

Clearly, the overall displacement of the mesh in one direction, and the resulting

distortions, could not be considered realistic behaviour for a semi-infinite body such as

the hydrocarbon reservoir rock represented by the Hydraulic Fracture Benchmark

Model, and various methods for preventing the movement of the mesh were

investigated.

The mesh was free to move in the y-direction due to the symmetrical

configuration of the model, whereby half of the overall system was represented by a

mesh with one symmetry boundary, fixed against displacement in the x-direction, and

three free, stress boundaries (See Fig. 6.1.). Thus, a possible solution to this problem

would be to construct the model in quarter symmetry, with two symmetry boundaries,

one fixed against displacement in the x-direction and one fixed against displacement in

they-direction, and two free, stress boundaries. When constrained in this way, the mesh

would not be able to displace in the manner observed in these studies. However, during

initial attempts to configure the model in this way, it was found that the constraints of

the PFC3D modelling environment and the triangular configuration of the mesh, caused

difficulties in propagating a fracture along a symmetry boundary. Furthermore, it is

clear that a model constructed in this way would not allow for inherently non-

symmetrical behaviour such as meandering or branching fracture patterns as may occur

in a heterogeneous material. It was therefore decided to continue with the half

symmetrymodel as was applied in this study.
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In an alternative effort to prevent displacement, the mesh was 'anchored' at its

corners, however this was found to affect the fracturing behaviour. Consequently,

although not entirely satisfactory, minor displacements of the mesh were accepted.

Where large displacements occurred, the results were generally disregarded, since they

were also usually accompanied by a deviated fracture pattern.

A noticeable feature of nearly all the deviated fracture patterns shown in Fig.

6.5. to Fig. 6.7. is crack bridging, whereby link elements, separate from the initial

fracture length, failed and were removed from the mesh. Since a 'fluid force' dipole

was inserted, as discussed previously, to replace a failed link element, irrespective of its

relative position, these bridged fractures continued to propagate without connecting to

the main fracture. Obviously, this is not wholly realistic behaviour since a fracture fluid

would not be able to flow from the wellbore into unconnected lengths of fracture. This

effect could have been corrected if the 'fluid pressure forces' were only applied in

continuous fractures that were directly connected to the initial fracture length and not in

place of remote failed elements. However, a program routine capable of discerning

between connected and remote fractures in a PSM mesh would be very complex to code

and it was not felt necessary for the purposes of this study since a single, straight,

connected fracture was the desired and expected behaviour.

Additionally, it can be noticed that in most cases where crack bridging occurs it

is horizontal elements (those orientated in x-direction) that remain intact while other

elements fail. This phenomenon can be attributed to a combination of the applied

loading conditions, the configuration of the mesh and the failure criterion. Due to the

applied fluid pressure loading in the y-direction the elements aligned in the x-direction

tended not to go into tension, which would lead to a violation of the Mark 1, and 3

failure criteria as described in Chapter 5. Furthermore, the effect is also seen in runs

where the Mark 2 criterion was applied and this is because, despite its consideration of

the maximum principal stress in an element, the Mark 2 criterion also takes into account

the orientation of the element relative to the direction of the of the maximum principal

stress. In the Hydraulic Fracture Benchmark Model the direction of the maximum

principal stress, developed under the pressure applied in the y-direction, was almost

perpendicular to the elements orientated in the x-direction. Consequently, elements

more closely aligned with the y-direction were preferred for failure over those aligned in
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the x-direction. Conversely, it can be seen that the crack bridging effect is less

prominent in the runs in which the Mark 4 and 5 criteria were applied. This is,

however, as would be expected since these criteria consider strain in an equivalent

continuum area associated with each link element and take no account of the directions

of either the principal strains or of the link element itself when considering failure.

It may also be noticed that the effect described above is similar to a problem

encountered by Schlangen and Garboczi [79] whereby, in a lattice model subjected to

uniaxial loading, elements of a particular orientation failed in preference to those in

other orientations. In order to solve this problem Schlangen and Garboczi developed a

failure criterion that considered a homogenised stress state at the nodes of the lattice.

This is a similar approach to that of the Mark 4 and 5 criteria, mentioned above, but

based on nodal stresses rather than elemental strains. The effect observed by Schlangen

and Garboczi is discussed in detail in Chapter 2, Section 2.3.1. and also in Section 5.5.3.

and Section 5.6.3. of Chapter 5, in conjunction with the Mark 1 and Mark 2 failure

criteria.

Thus, although, these problems were not addressed further during the course of

this work, it is clear from the points noted above that, in order to prevent their

occurrence within a regular, triangular PSM mesh, a failure criterion based on

continuum principles should be employed rather than one that considers the behaviour

of individual link elements.

In addition to the mechanisms discussed above, it has also been suggested by

Schlangen and Garboczi [79] that the fracturing behaviour of a lattice type model is

dependent on the type of element employed and particularly on the number of degrees

of freedom considered in each element. As discussed previously, the number of degrees

of freedom considered for the inter-particle link elements of the PSM is related to the

Poisson's ratio of the mesh. When Poisson's ratio is greater than or equal to zero but

less than the maximum value of 0.25\ two force components, a normal and a shear

, As discussed in Section 4.2.2.3. of Chapter 4,0.25 is the maximum value of Poisson's ratio according to

the equations of strain energy equivalence derived for plane strain conditions (Eq. 4.29 .. and £q. 4.30..)

(Morikawa and Sawamoto [63], Griffiths and Mustoe [32]).
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force, are considered in each element ofa PSM mesh. However, when Poisson's ratio is

equal to the maximum value of 0.25 the shear spring stiffness goes to zero and hence

only one force component, an axial force, is considered.

A comparative study of three lattice models, conducted by Schlangen and

Garboczi [79], considered lattices constructed of elements capable of transmitting

normal (one force lattice), normal and shear (two force lattice), and normal, shear and

bending forces (three force lattice). The results showed that, in general, the accuracy of

the lattice fracture patterns, in comparison to experimental results, increased with

increasing number of force components in the elements. While it is difficult to directly

compare the results of Schlangen and Garboczi [79] with the studies carried out in this

work, due to the different tests carried out, further examination of the results presented

above, shows that there are more occurrences of deviated fracture patterns when only

one force component is considered (v = 0.25) than when two are considered (0.0 ~ v <

0.25). This effect is more evident when in situ stresses are applied to the mesh than

under conditions of zero confinement, but it can be seen that there is general agreement

between the results of Schlangen and Garboczi and the results of the Hydraulic Fracture

Benchmark Model. This finding suggests that the accuracy of the fracturing behaviour

produced by the PSM might decrease with increasing values of Poisson's ratio and this

should be taken into account when considering the results of a fracture study. However,

little difference was seen between the results produced with a Poisson's ratio of 0.0 and

of 0.125. This implies that fracturing behaviour may be modelled accurately as long as

two force components are maintained, in which case only an application of the

maximum value of Poisson's ratio wi11lead to a reduction in the accuracy of the results.

In fact, it can be argued, from the results shown in Table 6.4., that the choice of failure

criteria may be more significant to the propagated fracture shape than the ratio of

normal to shear spring stiffness as long as a two force lattice model is employed.

A further study by Schlangen and Garboczi [79] investigated the influence of the

mesh configuration on the fracturing behaviour of a lattice model. They concluded that

the fracture patterns developed in a regular lattice were always influenced, to some

extent, by the dominant directions of the mesh. However, they found the regular

triangular mesh able to produce more realistic fracture patterns, in comparison to
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experimental results, than an equivalent square lattice. This is a finding confirmed by

Schlangen and van Mier [82], who applied a triangular lattice on the basis that it

provides the least opportunity for a preferential fracture direction to develop. However,

it can be said that to a certain extent the propagation of a fracture in a lattice type model

is always influenced by the mesh configuration since a failure of the model material can

only occur where a lattice element exists. While in the limiting case a fine lattice

approaches a continuous material, the failure of a lattice element may not occur exactly

as the failure of an equivalent continuum material would. Despite this many examples

can be found of fracture patterns developed in lattice type models that very accurately

reproduce the patterns observed in experimental results (Schlangen and Garboczi [79],

Schlangen and van Mier [80, 81, 82], Tzschichholz and Herrmann [88], Tzschichholz et

al. [89], van Vliet [95]).

From the results of the benchmark tests shown above, it can be seen, as

discussed previously, that the majority of the numerical runs produced straight fractures

that propagated down the centre of the mesh. While this was the expected result for the

benchmark model, it could be argued that these fractures propagated along a preferential

direction in the mesh. Furthermore, it is clear that some of the deviated fracture

patterns, such as those produced by runs 006 and 009 (See Fig. 6.5. e) and f) repeated

below), did propagate along a preferred line of fracture in the mesh.

e) f)

Fig. 6.5. Deviated Fracture Pattern for Mark 3 Failure Criterion with e) v = 0.125 and Zero

Confining Pressure f) v = 0.25 and Zero Confining Pressure

(Repeated from Section 6.2.3.2. above)
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Conversely, it can be argued that that runs such as 017 (See Fig. 6.6. b) repeated

below), although producing results that were not considered accurate behaviour for the

Hydraulic Fracture Benchmark Model, developed fracture patterns that propagated

across the preferential lines of fracture in the mesh.

b)

Fig. 6.6. b) Mark 2 Failure Criterion with v = 0.25 under Confined Conditions

(Repeated from Section 6.2.3.2. above)

The fact that runs 006 and 009 both employed the Mark 3 fracture criterion and run 017

employed the Mark 2 fracture criterion lends weight to the premise that, as mentioned

above, the fracture pattern is influenced more by the chosen failure criterion than by the

properties or configuration of mesh. However, a more detailed investigation would be

required in order to prove this relationship.

6.2.3.3.5. Random Lattice Mesh Configurations

Second Parametric Study - (Test Groups G and H)

As inferred in the previous Section, the influence of the mesh on the development of a

fracture pattern is largely irrelevant in the case on the Hydraulic Fracture Benchmark

Model since the desired fracture path lies along a preferential direction in the PSM

mesh. However, in order to overcome the general problems associated with the

influence of the mesh configuration on fracture propagation, Schlangen and Garboczi
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[79] advocate the use of random lattice configurations. For ease of implementation,

they also note that a suitably fine regular lattice mesh, given random element properties,

will produce the same effect and will successfully reproduce fracture patterns similar to

those observed in experimental results for fracture in heterogeneous materials such as

concrete.

There are a number of technical difficulties, in particular an appropriate

calibration of the model (See Chapter 4, Section 4.2.2.3.), which would need to be

overcome before a completely random mesh could be implemented with the PSM.

However, no such complexities existed in the implementation of random element

strengths in the PSM and this was easily applied to the Hydraulic Fracture Benchmark

Model mesh.

As mentioned earlier, the numerical runs carried out with the random strength

distribution (±5% deviation from the mean value), from groups G and H (See Table

6.3.), were repeated several times each. However, it was found that, in all cases, runs

019, 020, 02I" and 022 always produced a straight fracture that propagated down the

centreline of the mesh. While this was the expected behaviour for the propagation of a

hydraulic fracture in a homogeneous material, it was hoped that with a random strength

distribution some meandering or branching behaviour would be observed. In fact, only

run 023 could be shown to produce this kind of behaviour, examples of which can be

seen in Fig. 6.7. (repeated below).

a) b)

Fig.6.7. Typical Fracture Patterns for Mark 2 Failure Criterion, v = 0.25, Unconfined, Random

Strength Distribution

(Repeated from Section 6.2.3.2. above)
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Several possible explanations can be offered for these results. Firstly, run 023

employed the Mark 2 criterion, which, as discussed in Chapter 5, Section 5.6.1., is

formulated in terms of the maximum principal stress in an element rather than the total

strain, as is the case for the other failure criteria developed for the PSM. For this reason

it is possible that the Mark 2 criterion was more sensitive to random variations of the

material strength than those criteria that considered the deformation of the inter-particle

link elements and that it was therefore more able to capture the meandering fracture

behaviour that would be associated with a heterogeneous material. However, it can also

be noted that run 023 considered a mesh with Poisson's ratio, v = 0.25. As discussed

previously, a PSM mesh with this property is reduced to a single force component in

each element, which may lead to an inherent inaccuracy in the results. Thus, the

meandering nature of the fracture produced by run 023 may in fact be an inaccurate

result, similar to that produced by run 017 (See Fig. 6.6. b) ), It is further noticeable

that where deviation of the fractures produced by run 023 occurred it was always in the

positive y-direction as was the case for most of the deviated fracture patterns seen in the

results of the Hydraulic Fracture Benchmark studies. As stated above, this may have

been related to numerical imbalances and overall deformation of the Hydraulic Fracture

Benchmark Model mesh rather than an accurate representation of meandering fracture

behaviour in a heterogeneous material.

Alternatively, it could also be argued that the straight fractures, produced by the

majority of the runs carried out with a random strength distribution, could have been

influenced by the preferred fracture direction of the triangular PSM mesh and that run

023 was the only one to produce realistic results. However, a further alternative

interpretation is that the macro-scale of the mesh employed in the Hydraulic Fracture

Benchmark Model may have been too coarse to capture variation of the fracture path

from the centreline. It is possible that a micro-scale mesh, similar to those developed by

researchers such as Schlangen and Garboczi [79], Schlangen and van Mier [80, 81, 82]

and van Vliet [95], is required in order to accurately model the effects of material

heterogeneity on fracture propagation behaviour.
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Clearly, the results of these tests are inconclusive and further investigation

would be required in order to determine the behaviour of fracture propagation in a PSM

mesh with a random strength distribution. In addition, after further investigation, it may

be possible and, as indicated by Schlangen and Garboczi [79], desirable, to develop and

test a randomly configured PSM mesh for the purposes of modelling heterogeneous

materials. Such a model could consider variations of stiffness and strength on an

individual element basis, as might be appropriate for a micro-scale model considering

material variation on the grain scale, or, alternatively, material properties could be

varied over regions of the mesh, as may be more appropriate in the study of large rock

masses with a macro-scale model.

6.2.3.3.6. Application of the Mark 4 and Mark 5 Failure Criteria

Third Parametric Study - (Test Groups I, J and K)

In addition to the work discussed so far in this Section, the third and final benchmark

study, consisting of Test Groups I, J and K, as defined in Table 6.3. above, consisted of

numerical tests employing the Mark 4 and Mark 5 failure criteria, as described in

Chapter 5. Given the disappointing behaviour developed by these criteria with the Two-

Dimensional Uniaxial Benchmark Model (See Section 5.8.3. and Section 5.9.3. of

Chapter 5), the tests carried out in these studies simply serve to further investigate and

illustrate their poor performance.

As described previously, the expected behaviour for the Hydraulic Fracture

Benchmark Model was a single straight fracture that propagated down the centreline of

the PSM mesh. As can be seen from the results of the runs carried out with the Mark 4

and 5 criteria (See Fig. 6.8. repeated below), the fractures tended to initially deviate in

the negative y-direction before developing extensive distributed fracture patterns that

finally resulted in very large deformations of the mesh.
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a)

c)

e)

b)

d)

Fig.6.8. Deviated Fracture Patterns for a) Mark 4 Failure Criterion with v = 0.0 under Zero

Confinement b) Mark 4 Failure Criterion with v = 0.0 under Confined Conditions c) Mark 4

Failure Criterion with v = 0.25 under Zero Confinement d) Mark 5 Failure Criterion with v = 0.0

under Zero Confinement e) & f) Mark 5 Failure Criterion with v = 0.25 under Zero Confinement

(Repeated from Section 6.2.3.2. above)
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In contrast to the results of the studies conducted with the Mark 1, 2 and 3 failure

criteria, little difference was seen between the fracture patterns developed by the Mark 4

and 5 criteria under confined or unconfined conditions. It was noticed that under

confinement the fracturing tended to be more distributed, with more evidence of crack

bridging (See Fig. 6.8. b)). However, this was possibly more a consequence of the

overall displacement of the mesh from its original position, as discussed in Section

6.2.3.3.4. above, than of the applied confining pressures. The overall displacement and

distortion of the mesh was found to be considerable in most of the runs conducted with

the Mark 4 and 5 criteria under confinement. This is understandable when it is

considered that the problems with the Mark 4 and 5 criteria, described in Chapter 5,

were a consequence of the application of excessive corrective forces in softening inter-

particle link elements. In the Hydraulic Facture Benchmark Model, these excessive

forces resulted in large imbalances in the confined mesh and ultimately very large

displacements and distortions, an example of which can be seen in the plot of contact

forces shown in Fig. 6.10. below.

Fig. 6.10. Typical Contact Force Patterns for Hydraulic Fracture Benchmark Model with Mark 4

and Mark 5 Failure Criteria under Confined Conditions Illustrating High Degree of Distortion in

the Mesh Resulting from Overall Displacement in the y-direction

Clearly, the behaviour described above and illustrated in Fig. 6.8. and Fig. 6.10. was not

considered accurate for the Hydraulic Fracture Benchmark Model. However, as

mentioned previously, the continuum principles, on which these failure criteria are

based, resulted in the development of more continuous fractures and less crack bridging

than was developed by other failure criteria.
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A further point of note that can be seen in the results developed by the Mark 4

and 5 failure criteria in the Hydraulic Fracture Benchmark Model was the failure of the

horizontal elements (aligned in the x-direction) on either side of the initial fracture

length in preference to the elements at the fracture tip. This occurred as a consequence

of the measure of the total strain, which was developed from the relative displacements

in the 'diamond' of equivalent continuum material associated with each link element in

the mesh. For the link elements in the wall of the initial fracture length, the associated

'diamond' spanned the fracture. Consequently, as the fracture opened under the

influence of the applied fluid pressure, very large strains were measured in these

'diamonds' . These strains were subsequently related to the continuum total strain in

these elements, thereby resulting in their failure. This behaviour was also noticed and

discussed in Chapter 5, in conjunction with the Two-Dimensional Uniaxial Benchmark

Model. IIi order to solve this problem it would be desirable to develop coding in order

to determine if a particular link element is next to a fracture. This could be done by

checking whether all of the link elements forming an equivalent continuum 'diamond'

are intact. If an element was found to be at the edge of a fracture, then it could be

treated in the same way as an element at the edge of a mesh and its continuum total

strain state could be calculated from the triangular equivalent continuum area on only

one side of it (See Chapter 5, Section 5.8.1.). As in previous examples, code of this

kind would be complex to develop and would probably be computationally expensive to

execute. Furthermore, should the equivalent continuum area on both sides of an

element be affected by fracture development it is not clear how the continuum total

strain state would then be measured. As discussed in Section 5.9.4. of Chapter 5,

further investigation would be required in order to determine the exact nature of the

problems associated with the Mark 4 and Mark 5 failure criteria and in order to develop

them into robust failure criteria for the PSM.
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6.2.3.4. Figures Showing Comparative Fracture Propagation Results

a)
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Fig. 6.11. Plotted Results from FE Study by Papanastasiou [69] Showing a) Propagating

Fracture Width Profiles in an Elastic Medium, b) Propagating Fracture Width Profiles in and

Elasto-Plastic Medium & c) Plots of Net Pressure in Wellbore during Fracture Propagation
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6.2.3.5. Discussion of Comparative Fracture Propagations

As mentioned previously, comparison is made in this Section of the results of the

numerical runs, comprising Test Groups A to E, as defined in Table 6.2., that resulted in

a straight fracture that propagated along the centre line of the Hydraulic Fracture

Benchmark Model mesh (See Table 6.4.). It was decided to compare only these results

since, as discussed in the previous Section, they represented the expected behaviour of

the Hydraulic Fracture Benchmark model. In addition, it was not practical to plot

meaningful results from deviated fracture patterns or in fact to meaningfully compare

their behaviour with that of the centreline fracture. A further advantage of considering

the straight fractures was that they were similar to, and therefore comparable with,

results produced in the FE study conducted by Papanastasiou [69] (See Fig. 6.11.).

For the purposes of this comparative analysis, three types of plot were created

for each of the numerical runs in question (See Fig. 6.12. to Fig. 6.16.). The first of

these plots, item a) in each of the listed figures, show the fracture width profiles at the

maximum propagated length of approximately 2.5m. As mentioned previously, this

length related to Nlail failed inter-particle link elements along the centreline of the

Hydraulic Fracture Benchmark mesh and resulted in a fracture of similar length to those

represented in the results produced by Papanastasiou [69] (See Fig. 6.11.).

It should be noted that the plotting of the fracture width profiles was limited by

the discretisation of the PSM mesh, since it was the positions of the particle centroids

that were plotted. Furthermore, technical limitations meant that it was only possible to

plot the positions of particle pairs that had already been separated by the propagating

fracture. This meant that no information was known about the particle positions ahead

of the fracture tip and consequently an open end is seen in the fracture width profiles

plotted for the results of these studies. In order to show the full profile of a propagating

fracture in the Hydraulic Fracture Benchmark Model, for comparison with the results of

Papanastasiou's study, a plot was created for a typical fracture where the centreline

propagation path was known beforehand. This plot is shown in Fig. 6.17. below and it

can clearly be seen that the general shape of the propagating fracture profiles match

very well with those of the fractures produced in FE study conducted by Papanastasiou
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(See Fig. 6.11. a) repeated below). For the remainder of the fracture width profiles

shown in Fig. 6.12. to Fig. 6.16., it is assumed that the shape, beyond the foremost

plotted position, is similar to that shown below.

~.OE-0-4

Fracture Length (m)

Fig. 6.17. Diagram Showing Typical Fracture Width Profiles for a Propagating Hydraulic

Fracture in a PSM mesh

o 0.5 1.0 1.5
Distance from wellbore (m)

Fig. 6.11. a) Plotted Results from FE Study by Papanastasiou [69J Showing Propagating

Fracture Width Profiles in an Elastic Medium

(Repeated from Section 6.2.3.4. above)

It should also be noted that, as discussed in Section 6.2.3.3.4. above, an overall

displacement of the PSM mesh in the y-direction was experienced, due to slight

imbalances in the total applied forces, during some of the numerical runs carried out in
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these studies. It was consequently found that some of the fracture width profiles were

offset from their original positions. For the purposes of this work, it was therefore

necessary to re-centre these fracture profiles in order to overlay them in a comparative

manner as shown in Fig. 6.12. to Fig. 6.16. This was done simply by deleting the

amount by which the mesh had displaced from the y-coordinates of the plotted particle

centroids (See Fig. 6.18. below).
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Fig. 6.18. Plot Showing Example of Actual Position of Fracture Width Profile Resulting from

Overall Displacement of Mesh and Corrected Fracture Width Profile for Comparative Overlay

Despite this correction process, it can be seen that many of the fracture width profile

plots, shown in Fig. 6.12. to Fig. 6.16., are not quite symmetrical. This effect is again a

result of the overall displacement of the mesh and it was particularly noticeable in

results of Test Groups D and E (See item a) of Fig. 6.15. and Fig. 6.16.), which were

carried out under confined conditions. However, it was not felt that this deformation

significantly altered the overall profiles or propagation of the fractures.

An additional feature noticeable in most of the fracture width profiles is an

anomalous change in the curve of the fracture walls, either into or out of the fracture, at

the end nearest the wellbore. Again, this effect was partially due to the overall

movement of the PSM mesh but it was also thought to be associated with a combination

of the symmetry boundary conditions and the applied fluid pressure load on the PFC3D

particle at the edge of the PSM mesh. Nonetheless, as with the previous examples, this
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effect was not considered to have a significant influence on the overall shape of the

fracture profiles.

The second set of plots, item b) in Fig. 6.12. to Fig. 6.16., show the number of

broken inter-particle link elements against the number of model time steps. Since the

application of the differential density scaling function, in order to develop quasi-static

behaviour (See Section 6.2.1.), results in a unit time step, the x-axis of these plots

actually represent the model time in seconds. It should also be noted that the results

were normalised to account for the time taken to apply confinement to the mesh.

Furthermore, while these plots are not directly comparable with the results of

Papanastasiou's FE study, as is discussed in detail below, they were found useful in

confirming the behaviour observed in the Hydraulic Fracture Benchmark Model.

The third and final set of plots, item c) in Fig. 6.12. to Fig. 6.16., show the

change in the net pressure applied in the fracture with increasing fracture length. As

mentioned previously, since a constant pressure profile was applied in the Hydraulic

Fracture Benchmark Model, the net fracture pressure was equivalent to the net pressure

at the wellbore. These plots were then directly comparable with the net pressure plots

produced by Papanastasiou [69] for the FE study (See Fig. 6.11. c) ).

It should be noted that these plots show the net fracture pressures at which the

inter-particle link elements failed. The curves do not represent the actual pressure in the

fracture at all times. Due to the algorithm employed in the Hydraulic Fracture

Benchmark Model to apply the 'fluid pressure forces' (See Section 6.2.1. and Eq. 6.1.),

the actual fracture pressure dropped considerably after each fracturing event before it

increased linearly again, at the same rate as the initial pressure increase.

Considering firstly the plotted fracture width profiles for each of the five Test

Groups under consideration (See item a) in Fig. 6.12. to Fig. 6.16. repeated below),

several points of note can be made. Firstly, it can be seen that, in all cases, although the

fracture profiles within each individual plot are generally of the similar shape, the actual

width is greater under the Mark 2 failure criterion than under the Mark I, and is greater

yet under the Mark 3 criterion. It can also be seen in Fig. 6.12., Fig. 6./3. and Fig.

6.14., that the profile of the fractures developed under the Mark 2 criterion varies very
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little while the profile of the fractures developed under the Mark 1 criterion widens with

increasing Poisson's ratio. In Fig. 6.14., with a Poisson's ratio, v = 0.25, it can be seen

that the profiles of the Mark 1 and Mark 2 fractures are virtually identical.
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(Repeated from Section 6.2.3.4. above)
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The finding that the Mark 2 criterion was unaffected by varying Poisson's ratio is as

would be expected since the criterion is based on the stress tensors in the PFC3D DEM

particles (See Chapter 5, Section 5.6.1.) and, as discussed previously, these tensors are

only dependent on the external loading conditions. Furthermore, it is also to be

expected that the Mark 1 criterion would be affected by the material properties assigned

to the mesh since it is based on the uniaxial total strain in the inter-particle link elements

(See Chapter 5, Section 5.5.1.) and is consequently influenced by their normal stiffness.

It can be seen from Eq. 4.29., that the normal stiffness of the links increases with

increasing Poisson's ratio and, obviously, the higher the normal stiffness, the higher the

force that is required to extend the link elements to their ultimate strain. Furthermore,

the higher the applied load in the fracture, the wider the fracture will be when

propagation occurs and, indeed, this is the behaviour that can be observed in the fracture

width profiles produced in this study (See item a) in Fig. 6.12. to Fig. 6.14.).

The Mark 3 criterion produced the widest fractures, as it is also to be expected

since, due to the elastic-softening behaviour of the criterion (See Chapter 5, Section

5.7.1.), the ultimate strain is larger than that associated with the elastic-brittle criteria,

and consequently an equivalent fracture will be wider when propagation occurs.

However, it can also be noted that, as discussed in the previous Section, in meshes of

Poisson's ratio, v = 0.125 and 0.25, the Mark 3 criterion produces a deviated fracture

pattern, thus indicating that it is most sensitive to changes in the ratio of normal to shear

contact stiffnesses in the particle assembly.

The findings described above are also generally con finned by those of

Papanastasiou [69], who showed that hydraulic fractures developed in an elasto-plastic

material are wider than hydraulic fractures, of the same length, propagated in an elastic-

brittle material (See Fig. 6.11. a) and b) repeated below). However, it can also be seen

that Papanastasiou showed the profiles of elasto-plastic fractures to be of a different

shape to those of an elastic-brittle fracture and this feature is not very well represented

in the results of the studies presented here. A slightly different fracture shape is seen

under confined conditions than under zero confinement (See Fig. 6.12. and Fig. 6.15.)

but again no significant difference is seen between the shapes of the elastic-brittle and

elastic-softening factures under the same conditions.
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Fig. 6.11. a) Plotted Results from FE Study by Papanastasiou [69] Showing a) Propagating

Fracture Width Profiles in an Elastic Medium, b) Propagating Fracture Width Profiles in and

Elasto-Plastic Medium

(Repeated from Section 6.2.3.4. above)

In considering the actual fracture widths produced in these studies and comparing them

to the results of the FE study carried out by Papanastasiou [69] it can be seen that the

fracture widths produced by the Mark 1 and Mark 2 criteria, as shown in Fig. 6.12. to

Fig. 6.14., are very similar to those presented by Papanastasiou [69] (See Fig. 6.11. a)).

However, it is believed that this similarity is largely coincidental since, as shown in

Chapter 5, the Mark 1 and Mark 2 criteria are elastic-brittle criteria and as such produce

results that are dependent on the characteristic length of the mesh elements.

Furthermore, these tests were carried out under zero confinement whereas those for

which the results are shown in Fig. 6.11. a) were conducted under the confined

conditions described in Section 6.2.1. above. For the tests conducted under confined

conditions, as shown in Fig. 6.15. and Fig. 6.16., the fractures produced by the Mark 1

criterion can be seen to be very much wider than the elastic-brittle fracture profiles

shown by Papanastasiou (See Fig. 6.11. a)). This pattern in repeated with the elasto-

plastic fractures developed by the Mark 3 criterion, however, the actual fracture widths

shown in Fig. 6.15. and Fig. 6.16. are of a similar magnitude to those presented by

Papanastasiou (See Fig. 6.11. b) ).
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As indicate above, a direct quantitative comparison cannot be made between the

results of the elastic-brittle studies carried out in the FE study conducted by

Papanastasiou [69] and those carried out for the Hydraulic Fracture Benchmark Study

due to the inherent dependency of the results on the discretisation of the mesh.

However, the quantitative results for the studies conducted with elasto-plastic behaviour

should be directly comparable and the difference between the results of the two studies,

described above, can probably be largely attributed to the differences between the

ductility of the material and the applied fluid pressure profiles in the two models (See

Section 6.2.1.). Both of these factors would have affected the profiles of the

propagating fractures.

As mentioned previously, the fracture propagation behaviour inferred from the

fracture profiles discussed above can be further verified by examination of the plots

showing the progression of link element failure in time (See item b) in Fig. 6.12. to Fig.

6.16. repeated below). The information most obviously displayed by these figures is the

time of fracture initiation and the subsequent rate of propagation of the fractures, as

represented by the gradient of the curves, under the varying conditions applied in the

tests.

For Test Groups A, B and e, in which the runs were carried out under zero

confining pressure (See Fig. 6.12. to Fig. 6.14.), it can be seen that, of the three plotted

curves in each figure, those produced by the Mark 1 criterion are first to initiate and

furthermore they have slightly steeper gradients than the curves produced by the other

failure criteria. Thus, it can be seen that the Mark 1 criterion produces the fastest

fracture propagation. It can also be seen that the fractures produced by the Mark 2

criterion are next to be initiated and have only a slightly shallower gradient than the

curves for the Mark 1 criterion. Finally, the fractures produced by the Mark 3 criterion

clearly take much longer to initiate than those of the other two criteria. While these

curves eventually become shallower than the others are, they start at a much steeper
gradient.

324



Chapter 6: Coupled Hydraulic Fracture Benchmark Mode/s

20 20

" "

j" j"
I" jtO
ID , ID,

i i •

-',
,

,,~,
--',

--',
~,,

~,,~..,
, .
• 1000 2000 scee .... 5000 .... - 1000 1000

I_ • 20000

i) TIme(.,
iv)

'" 20

"
" "
" "JIZ j"
I" j I.
OI, ID ,

i ,;
z

..... 00000 I000O
Tlme(s)

100000 "0000

1000 2000 """ .... 5000 .... 7000 1000 0000 1_ 20000 ..... BOOOO 00000 100000 120000
Tlme(I' Time (I)

ii) v)

'"

".
1"
i"

J
OI,

i •

-'

1000 2000 ,... .... IlOOO 0000 - 1000 0000 10000
Tim. (I'

iii)

Number of Failed Inter-Particle Link Elements in Time during Fracture Propagation from i) (Fig.

6.12.) Runs 001, 002 and 003, v = 0.00, Zero Confining Pressure ii) (Fig. 6.13.) Runs 004, 005
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Zero Confining Pressure iv) (Fig. 6.15.) Runs 010 and 012, v = 0.00, G2= 9.0MPa, G3= 3.7MPa

v) (Fig. 6.16.) Runs013, 014and015, v=0.125, G2=9.0MPa, G3=3.7MPa

(Repeated from Section 6.2.3.4. above)

When considering the fracture width profiles discussed above it is clear that wider

fractures are synonymous with higher applied fluid pressures and since the fluid
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pressure was increased linearly, wider fracture are further synonymous with a slower

rate of propagation. Thus the relative propagation rates described above are in

agreement with the fracture width profiles, discussed previously, which indicated that

the fractures produced by the Mark 1 criterion were the narrowest while those of the

Mark 2 criterion were wider and those of the Mark 3 criterion were wider still.

From the previous discussion of the fracture width profiles it would also be

expected that it would take longer for a fracture to initiate under the Mark 3 failure

criterion than under the Mark 1 failure criterion since the ultimate strain available under

the elastic-softening Mark 3 criterion is much larger than that available under the

elastic-brittle Mark 1 criterion. Again, this is echoed in the results described above. It

was furthermore discussed above that the width profiles of the fractures produced by the

elastic-brittle Mark 1 and Mark 2 criteria become more alike with increasing Poisson's

ratio. Once more, this behaviour is confirmed by the relevant plots of failed link

elements in time, the initiation times and gradients of which become closer with

increasing Poisson's ratio until they are very similar under a Poisson's ratio of 0.25.

From the plots of the runs carried out under confinement, in Test Groups D and

E (See Fig. 6.J5. and Fig. 6.J6.), it can be seen that the fractures initiated much later

and propagated at a very much slower rate than those carried out under zero

confinement. This was obviously because the fracture pressure, which was again

applied linearly, had to increase to a much higher value, in order to overcome the

confining pressure in addition to the strength of the material, before a fracture could be

initiated. This is reflected in the plots of the fracture width profiles, discussed above,

which showed the fractures created under confined conditions to be very much wider

than those created under zero confinement. Furthermore, it can be seen that these plots

show very similar initiation times and fracture propagation rates for all three failure

criteria under confined conditions. Again, this was a reflection of the fracture width

profiles, which showed the fractures produced by these criteria to have very similar

dimensions.

It can also be noted that, for the majority of the plots of inter-particle link failure

in time and particularly for the unconfined runs, the gradient of the curves becomes

steeper in time. This is indicative that the fractures become easier to propagate as their
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length increases, an effect that is discussed further, below. The exceptions to this

observation are the plots, shown in Fig. 6.12. and Fig. 6.13., for the runs carried out

with the Mark 3 criterion under zero confinement. As mentioned previously, these

curves start steeply and then slow significantly before gradually steepening again in the

manner described for the other curves. The exact reason for this is not completely clear,

however it is probably an effect of the redistribution of stress in the PSM mesh ahead of

the fracture tip due to the elastic-softening behaviour of the Mark 3 failure criterion as

described in Section 5.7.1. of Chapter 5. The exaggeration of this effect in the results of

the run carried out with a Poisson's ratio of 0.125 (See Fig. 6.13.) is probably a

consequence of the deviation that occurs approximately halfway through the

propagation process.

Additionally, it can be seen, in the various plots described above, that while in

most cases, as would be expected, single bond failures occur at quite regular intervals,

instances can be seen where two bonds fail in close succession. This is particularly

evident in the runs carried out under confinement. It was initially thought that this

might be a dynamic effect resulting from too high a load rate, however a test run

showed that a reduced load rate in fact increased the occurrence of this phenomenon.

For the runs carried out under zero confinement it can also be seen that the incidence of

this phenomenon increases with increasing Poisson's ratio. It is therefore thought

possible that this was associated with the change in the PSM from considering two force

components to considering only one force component in each link element, as discussed

in the previous Section. However, under confined conditions, the phenomenon occurred

equally with Poisson's ratio 0.0 and 0.25. It can further be noticed that, for all cases, the

phenomenon is most evident in runs conducted with the Mark 1 criterion and so a third

possible interpretation was that the phenomenon might be an effect of the elastic-brittle

behaviour associated with the Mark 1 criterion. However, this again does not hold

universally true, since the behaviour is less evident in the runs conducted with the Mark

2 criterion, which is also elastic-brittle. A further observation that can be made is that

since the fracture fluid pressure drops after each element failure and increases again

linearly, the second failure in the rapid succession events, occurs at a lower pressure

than the first. In all cases, the second element to fail is orientated such that it is angled
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downwards towards the free boundary at the 'right-hand end" of the Hydraulic Fracture

Benchmark Model mesh (See Fig. 6.2.). Thus, elements orientated in this way are

apparently easier to fail than those orientated such that they are angled upwards towards

the 'right-hand end' of the mesh. It is not clear why this is, since the link elements in

these studies have uniform strength. However, it is possible that it is a consequence of

the overall movement of the mesh, as described previously, having a particular affect on

elements orientated in this way and resulting their over extension and premature failure.

Despite the various interpretations presented above, no conclusive explanation

has yet been found for the rapid succession of element failures. Whatever the cause of

this phenomenon, after examination of the plots and consideration of the drop in applied

fracture pressure after each element failure (See Eq. 6.1.), it is not thought to have a

significant affect on the overall fracture propagation rate. However, further

consequences of this phenomenon will be discussed below, in conjunction with the

variation of the net wellbore pressure during propagation of the fractures.

As mentioned, the final set of results presented in Fig. 6.12. to Fig. 6.16. are the

plots of Net Wellbore Pressure against Propagating Fracture Length (repeated below).

To reiterate, it should be noted that these profiles plot the net pressure in the wellbore at

the time of a link element failure.

As can be seen from the plots shown below, the relative behaviour represented is

as would be expected from the fracture width and element failure results discussed

previously. For the tests carried out under zero confinement (See Fig. 6.12. to Fig.

6.14.), this can particularly be seen in the pressure profiles from the runs carried out

with the Mark 1 criterion, which increase in magnitude with increasing Poisson's ratio.

A result that concurs with the associated fracture width profiles that widen with

increasing Poisson's ratio (See item a) of Fig. 6.12. to Fig. 6.14.) and with the fracture

initiation times which become longer with increasing Poisson's ratio (See item b) of

Fig. 6.12. to Fig. 6.14. and previous discussion). A further feature of the Mark 1

fracture width profiles discussed above was that they became more like those of the

, The referenced 'right-hand end' of the Hydraulic Fracture Model mesh refers to the orientation in which

all figures are presented in this Section.
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Mark 2 criterion with increasing Poisson's ratio. This is again mirrored in the pressure

profiles, which are seen to match very closely in Fig. 6.14, c).
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(Repeated from Section 6.2.3.4. above)
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The pressure profiles associated with the Mark 3 criterion are not completely

comparable since, as mention above, those shown in Fig. 6.13. and Fig. 6.14. are for

deviated fracture patterns. Evidence of this can be seen in the plot produced with a

Poisson's ratio of 0.125, where oscillation occurs approximately half way along the

otherwise smooth pressure profile, corresponding to the length at which the fracture

deviated (See Fig. 6.13. and Fig. 6.5. e) repeated below).
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6.2.3.2. above) for Run 006, v = 0.125, Zero Confining Pressure

However, as would be suggested by the previous results and comparison with the results

produced by the Mark I criterion, which is similarly based on the total uniaxial strain in

a link element, the magnitude of the Mark 3 profiles increases with increasing Poisson's

ratio. As with the plots of link element failure in time, described previously, the

exception to this observation is the plot produced for Poisson's ratio, v = 0.25. Due to

the severe deviation of the fracture (See Fig. 6.5. f) repeated below), it is seen to initiate

fracturing at a very much lower pressure than the other runs conducted with the Mark 3

criterion. It can be noted however, that this profile still has a higher magnitude than

those of either of the equivalent Mark 1 or Mark 2 pressure profiles.
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Fig. 6.5. f) Deviated Fracture Pattern for Mark 3 Failure Criterion with v = 0.25 and

Zero Confining Pressure

(Repeated from Section 6.2.3.2. above)

In addition to the plots produced under zero confinement it can be seen that the pressure

profiles produced under confined conditions are very similar with either a Poisson's

ratio of 0.0 or 0.125. This is again consistent with both the associated fracture width

profiles and the plots of element failure in time as discussed previously. The most

obvious features of these pressure profiles are the large oscillations seen in the

magnitude of the wellbore pressure during successive element failure events. These

variations are directly associated with the rapid succession of link element failures

discussed above. As suggested previously, it is clear from these results that the second

element to fail in these rapid succession events fails at a much lower pressure than the

first. In the results produced by the Mark I criterion it can be seen that the effect is so

strong that the second element fails at a net pressure value less than zero i.e. when the

pressure in the fracture is less than the confining pressure, an occurrence which should

not be possible. Despite the presence of rapid succession failure events in some of the

unconfined runs, as described previously, it can be noted that there is only a small

amount of oscillation in the associated pressure profiles. This implies that the

phenomenon is greatly enhanced by the presence of confining pressures and this would

further suggest a relationship with the overall displacement of the Hydraulic Fracture

Model mesh in the y-direction, which, as discussed in Section 6.2.3.3.4., is known to be

more pronounced under confined conditions.
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In addition to the regular oscillations in the pressure curves, a single large drop

in pressure is noticeable in the pressure profile of the run carried out with Mark 2 failure

criterion under confined conditions and with a Poisson's ratio of 0.25 (See Fig. 6.16.).

This event can also be seen in the equivalent plot of element failure in time, where three

elements failed in quick succession. It is not clear why this event occurred but it may

have been a dynamic effect due to the brittle release of a large amount of potential

energy associated with a build up of pressure. It is noted that, prior to the event, the

critical pressure required to initiate the fracture was higher than would be expected from

the previous results since it was greater than the critical pressure for the comparable

Mark 3 run. The cause of the overly high critical pressure is also unclear but again it

may have been a result of the overall mesh displacements discussed in the previous

Section.

Despite the problems discussed above, it can be seen that the general shape of all

of the net wellbore pressure profiles matches very well with those produced by

Papanastasiou [69] (See Fig. 6.11. c) repeated below), with the net wellbore pressure

decreasing as the fracture length increases.

7r-----~----~----~----__,

~7.5----~1.0~--~1~.5-----72.~O-----72.5
Fracture length 1m)

Fig. 6.11. c) Plotted Results from FE Study by Papanastasiou [691 Showing Plots of Net

Pressure in WeI/bore during Fracture Propagation

(Repeated from Section 6.2.3.4. above)

It can be noted that this decrease in pressure over time corresponds to the increasing

fracture propagation rates noted above in conjunction with the gradient of the plotted

curves of element failures in time.
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Furthermore, it may also be noted that this behaviour is similar to that predicted

by existing plane strain hydraulic fracture models such as the caDn model (See

Chapter 2, Section 2.2.). Additionally, similar results were also reported by

Tzschichholz and Herrmann [88] for analyses carried with a lattice model representation

of hydraulic fracturing that has various similarities to the Hydraulic Fracture

Benchmark Model.

Thus, it can be said that the PSM model generally produces qualitatively

accurate behaviour in comparison with what would be expected for a plane strain

representation of a hydraulically driven propagating fracture. However, it can also be

noted that the actual values of pressure predicted by this model are significantly lower

than those predicted by Papanastasiou [69] (See Fig. 6.11. c) ). As with previous data

the results from the analyses carried out under zero confinement are not directly

comparable with those of Papanastasiou, however, the runs carried out under confined

conditions are generally alike and would be expected to produce quantitatively similar

numerical results. As can be seen from comparison of Fig. 6.11. c) with Fig. 6.15 . c)

and Fig. 6.16. c), the pressures predicted by the Hydraulic Fracture Benchmark Model

are approximately one third the value of those predicted by Papanastasiou. This is a

similar discrepancy to that seen in comparisons of the fracture width profiles and again

it is possible that these differences are due to the different values of material ductility

applied in the two models and also to the different fluid pressure profiles applied to the

walls of the fractures. In a similar manner to their effect on the shape of the fractures,

both of these factors would have affected the critical pressures required to initiate

propagation of the fracture.

6.2.4. Conclusions

From the results discussed in the previous two Sections, it can be concluded that the

general behaviour developed by the Hydraulic Fracture Benchmark Model was

reasonably satisfactory. This assertion is made on the basis that the majority of the

numerical runs produced the straight fracture patterns that would be expected for a

333



Chapter 6: Coupled Hydraulic Fracture Benchmark Models

propagating hydraulically driven fracture in a homogeneous material. As discussed

above, the accuracy of the behaviour was further verified by the contact force

distribution observed in the PSM mesh.

Although the results were largely acceptable, it was also found that several of

the numerical runs produced deviated fracture patterns. It was felt that this behaviour

was not representative of the realistic fracture propagation behaviour in a homogeneous

material. These deviated fracture patterns were thought to have been a result of the

overall displacement of the mesh, which in tum was thought to be a consequence of

numerical imbalances in the externally applied forces. Since the mesh was bounded by

three free, stress boundaries, any out of balance forces resulting from the applied 'fluid

forces' and the applied confining pressures led to overall displacements of the mesh and

during the course of this work, no suitable way was found of restraining the mesh

without affecting the fracture propagation behaviour. It is possible that the application

of periodic boundary conditions would solve these problems, however, it is immediately

not clear how these could be implemented in PFC3D•

In addition to the overall displacement of the PSM mesh, it was implied by

Schlangen and van Mier [82] that the regular configuration of the PSM mesh might lead

to preferential directions of fracture growth. It was further implied, by Schlangen and

Garboczi [79], that this effect would be exaggerated by the type of element employed in

the construction of the model. Analysis of the results produced during the Hydraulic

Fracture Benchmark Study showed some evidence that the regular configuration of the

mesh guided the direction of fracture propagation. However, it was not conclusive and

some of the results shown in Fig. 6.5. to Fig. 6.11. could be presented as evidence that

any influence that the mesh configuration exerted was not strong and would be easily

overcome. Evidence was also found to suggest that the type of lattice element

employed did affect the fracture pattern and, as contested by Schlangen and Garboczi, it

was found that PSM meshes consisting of elements with only one force component

produced less accurate results than those consisting of elements with two force

components. However, it should be noted that this conclusion was based on a very

limited set of test results and in order to verify the findings it would be desirable to

carry out further studies. Additionally, it should be noted that it was in fact found

difficult to compare the results of the Hydraulic Fracture Benchmark Model with those
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for the model employed by Schlangen and Garboczi since the expected fracture pattern,

for the studies conducted in this work, followed what could be considered a preferential

direction in the mesh. In order to find conclusive evidence that either of the

mechanisms discussed above affected the behaviour developed by a PSM mesh, it

would be desirable to reproduce and test the model employed by Schlangen and

Garboczi [79]. It can be further noted that there was observable evidence in the fracture

patterns to suggest that the choice of failure criterion was as at least as significant as

either the mesh configuration or the lattice element type.

In order to prevent the influence of the mesh configuration on the fracture

growth Schlangen and Garboczi [79] suggest that a randomly configured lattice is

employed. However, they also note that a regular lattice is given a random strength

distribution will reasonably accurately reproduce the behaviour of a propagating

fracture in a heterogeneous material. When a random strength distribution was applied

to the Hydraulic Fracture Model mesh it was found to have little affect on the

propagating fracture behaviour. As discussed previously, it was not clear why this was

the case and various possible explanations were considered. It seems most likely that

the random strength variation applied (±5%) was not a strong enough influence to

overcome the natural behaviour of the model, which was to open a straight fracture

along the centreline of the mesh. It is felt that this may also have been a consequence of

the scale of the Hydraulic Fracture Model and that the macro-scale PSM mesh was not

sufficiently discretised in order to capture the meandering behaviour of the propagating

fracture that would be expected in a heterogeneous material. It may be that a micro-

scale lattice model, such as those employed by Schlangen and van Mier [80, 81, 82] and

Schlangen and Garboczi [79] would have produced such behaviour. It is furthermore

considered questionable whether it is reasonable to model material heterogeneity on the

meso- or macro-scales represented by the PSM mesh in the models employed in this

work.

Additionally, it would also be desirable to test models in which both random

strengths and random stiffnesses were applied to the inter-particle link elements and in

which the configuration was randomised, in order to determine whether they would be

capable of producing better representations of fracture growth behaviour in a

heterogeneous material. However, as mentioned previously it is not feasible to apply a
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random variation of element stiffness due to the constraints of the modelling

environment (PFC3~ employed for this work and further investigation will be required

before it is possible to develop a calibrated, randomly configured PSM mesh.

A further feature of the deviated fracture patterns discussed above was the

preferential failure of elements according to their orientation. It was found that under

certain loading conditions particular elements remained intact while their direct

neighbours, with different orientations, were removed, resulting in the development of

discontinuous fractures (See Fig. 6.6.). It was concluded that this effect was a

consequence of the failure criteria that primarily considered uniaxial tensile behaviour

in the individual link elements (See Chapter 5). Thus, elements that were not caused to

elongate by the externally applied loads could not be considered as candidates for

failure. This is behaviour that would be expected of lattice or truss frameworks rather

than a continuum material and it was further concluded that in order to prevent its

occurrence it would be necessary to employ failure criteria, such as the Mark 2, Mark 4

or Mark 5 (See Chapter 5), that are based non-local, continuum principles.

It was noted however that the Mark 2 criterion also allowed elements to remain

intact during propagation of the fracture despite its consideration of the equivalent

continuum stress state. This was because it took into account both the direction of the

maximum principal stress and the orientation of the link elements when considering

failure conditions. It was felt, however, that a more complex and less directional failure

criterion, such as the Mohr-Coulomb criterion, could be developed in the same way as

the simple Rankine criterion applied in this work (See Chapter 5, Section 5.6.1.) and

that this might, more realistically, represent continuum failure behaviour. It was further

noted that the Mark 4 and 5 criteria were the least likely of the five failure criteria to

leave elements intact and develop discontinuous fracture patterns since they did not

consider the orientation of the inter-particle link elements when considering failure. It

should therefore follow that these criteria would develop the best representation of

fracturing behaviour in a continuous material. However, while they would very

accurately deal with elastic-brittle behaviour, various problems were encountered when

dealing with softening plasticity which is required in order to resolve mesh size

dependency. The Mark 4 and 5 criteria were also shown to have difficulty dealing with

link elements situated at the edge of a fracture. These issues are discussed in detail in
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Chapter 5 but it can be seen that they are confirmed by the behaviour observed in the

Hydraulic Fracture Benchmark Study.

In addition to the accuracy of the general behaviour developed by the Hydraulic

Fracture Benchmark Model discussed above, it could also be said that the Fracture

Width Profiles and the Net Wellbore Pressure Profiles, developed during the course of

various fracture propagations, matched reasonably well with similar results presented by

Papanastasiou [69]. Itwas felt that the minor differences seen between the results of the

Finite Element study carried out by Papanastasiou and the results of the Hydraulic

Fracture Benchmark Study, were due to minor differences between the models

themselves. It was further noted that the trend in behaviour developed by the Hydraulic

Fracture Benchmark Model was comparable to that which would be developed by

existing plane strain hydraulic fracture models such as the CODD (See Chapter 2,

Section 2.2.) and this further verified the potential of the Multi-Phase Particulate

Modelling Framework to accurately model geomechanical problems.

However, it was also noted that various modelling factors, and in particular

effects resulting from the mesh boundary conditions, adversely affected the results of

the fracture propagation behaviour, especially under confined conditions. Before a

robust and reliable model representation can be constructed for any geomechanical

problem, including the hydraulic fracture problem considered in this Chapter, it would

be necessary to overcome these difficulties. Despite these problems, it is still

considered that great potential for the particulate modelling framework is indicated by

the results presented and discussed in the previous Sections.

6.3. Coupled Hydraulic Fracture Benchmark Model (PSM + PFM)

6.3.1. Introduction and Model Set-up

As discussed previously, it was a main aim of this work to develop a single software,

multi-phase, particulate mechanics framework for modelling geomechanical problems.

While the Hydraulic Fracture Benchmark Model, discussed in the previous Section,

could be considered a multi-phase model, the fluid behaviour was only considered in a

very basic manner, by applying forces, representative of fluid pressure, to a PSM mesh.
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In order to assess the full potential of the modelling framework another benchmark

model was developed, corresponding to a realistic problem, in which complex,

combined behaviour of the solid and fluid phases would be considered.

A combined solid/fluid benchmark model, representative of fluid flow into a

wellbore perforation, had previously been developed, as described in Section 4.4.1. of

Chapter 4, in order to test the capacity of the framework to develop accurate behaviour

with an integrated solid/fluid (PSM + PFM) model under primarily static conditions.

By applying any of the fracture criteria developed in Chapter 5, to the PSM mesh

component of this model, it was relatively easy to modify the Pressurised Notch

Coupled Benchmark Problem and produce a Coupled Hydraulic Fracture Benchmark

Problem.

The model itself was set up in exactly the same configuration as had been

applied to the Pressurised Notch Coupled Benchmark Problem (See Fig. 4.34. and Fig.

6.19. & Fig. 6.20. below). Moreover, in a similar fashion to those employed in the

Hydraulic Fracture Benchmark Model (See Section 6.2.1. above), additional forces were

applied, when necessary, to the free boundaries, in order to represent confining

pressures. The material properties applied to the PSM component of this benchmark

model were also similar to those applied in the Hydraulic Fracture Benchmark Model

and other benchmark models previously discussed (See Table 6.5. below). However,

given the complexities described in Section 4.4. of Chapter 4, no attempt was made to

calibrate the PFM component of this benchmark model and properties applied in the

benchmark models discussed in Chapter 4 were used again.

Property Symbol Value

Young's -Modulus E 1785.0MPa

Poisson's Ratio v 0.25

Tensile Strength It 0.5N/mm"

Fracture Energy Release Rate G, 200N/m

Table 6.5. Material Properties Applied to the PSM Component of the Coupled Hydraulic

Fracture Benchmark Model

338



Chapter 6: Coupled Hydraulic Fracture Benchmark Models
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Fig. 6.19. Diagram Showing Set-up of the Coupled Hydraulic Fracture Benchmark Model
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Fig. 6.20. Diagram of the Coupled Hydraulic Fracture Benchmark Model Mesh Showing Only

Inter-Particle link 'Contact Bonds' and 'Fluid Particles' for Clarity
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As with the Pressurised Notch Coupled Benchmark Model and the Pressurised Cylinder

Benchmark Model (See Section 4.3.4.1. and Section 4.3.4.2. of Chapter 4), an External

Pressure Zone was developed at the mouth of the notch, in which 'fluid particles' were

generated and subjected to forces representative of the external pressure. As the 'fluid

particles' moved out of the zone and into the notch, under the influence of the pressure,

new particles were created in their place, thus providing a continuous source of fluid.

This process was continued until the notch was filled and static equilibrium was reached

in a similar manner to the behaviour seen in the Pressurised Notch Coupled Benchmark

Model. The external pressure was then increased incrementally and the process

repeated until fracturing was initiated in the PSM mesh.

As discussed above, the numerical studies run with the Hydraulic Fracture

Benchmark Model were carried out as quasi-static analyses and it was initially intended

to do the same for the Coupled Hydraulic Fracture Benchmark Model. However, it was

found that with the relatively large time step applied when the differential density

scaling function is employed in PFC3D, it was not possible to capture the interaction

behaviour of the PSM and PFM components. This resulted in physical contact between

the 'fluid' and 'solid' particles, which as discussed in Section 4.3.2. of Chapter 4 is not

acceptable for the purposes of developing an accurate representation of fluid behaviour

with the PFM. The significance of this problem was particularly illustrated in this study

since, when physical contact occurred, the models became highly unstable and it proved

impossible to run them to conclusion. In order to reduce the model time step and allow

the solid/fluid interaction behaviour to develop accurately, the fully dynamic solution

scheme, integral to the PFC3D DEM code, was employed. Despite this, it was not

intended to account for realistic dynamic effects in these studies and the external

pressure was increased in increments designed to minimise the effects of stress or

displacement waves propagating through the model mesh.

In addition to the simplified behaviour described above, it can also be noted that,

as discussed in Chapter 4, only very basic interaction behaviour was considered

between the PSM and PFM in the Pressurised Notch Coupled Benchmark Model. It

was concluded that, although the static behaviour could be considered accurate, hence

implying the accuracy of the dynamic behaviour, and the integrated behaviour was
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considered satisfactory, further investigation would be required in order to develop

rigorous solid/fluid interaction with a combined PSM + PFM model.

Thus, it was the intention of the studies carried out with the Coupled Hydraulic

Fracture Benchmark Model to qualitatively assess the capabilities of the single software

multi-phase modelling framework to model complex, multi-phase geomechanical

problems. As will be seen in the following Sections, this will be done by comparing the

results of these studies with those of the Hydraulic Fracture Benchmark Model,

discussed in the preceding Sections, and with the behaviour expected for a problem of

this kind in the field. It is not however expected that this model will simulate a realistic

hydraulic fracture treatment.

Despite the simplicity of the model, it was hoped that, as mentioned above, it

would demonstrate the potential of the combined particulate modelling framework. It

was furthermore hoped that the model would demonstrate the potential of a combined

PSM + PFM to eliminate the need for simplifications of one or both of the model phases

as is often the case in a coupled or combined model. This ability was demonstrated by

this benchmark model when it was considered that, unlike the Hydraulic Fracture

Benchmark Model presented in the first part of this Chapter, there was no requirement

for simplifying assumptions for the fluid behaviour, such as a constant pressure profile

in the fracture or the limitation of applied fluid pressures to the y-direction only (See

Section 6.2.1. above). The pressure profile and the application of fluid pressure to the

solid mesh developed naturally as a result of the interaction of the PSM and PFM in the

manner described in Section 4.4. of Chapter 4. It was further anticipated that

phenomena such as fluid lag at the fracture tip would also be naturally dealt with by the

combined model and furthermore, problems that occurred in the Hydraulic Fracture

Benchmark Model, such as the development of fluid pressure in discontinuous and

remote fractures would simply not occur.
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6.3.2. Numerical Studies

The parametric study carried out with the Coupled Hydraulic Fracture Benchmark

Model was limited to four numerical runs designed to briefly investigate the qualitative

behaviour of the combined model in comparison with the findings of the Hydraulic

Fracture Benchmark Model, discussed earlier in this Chapter, and realistic hydraulic

fracture treatments. As mentioned above, during each of the numerical runs the applied

external pressure was increased incrementally in steps designed to maintain the quasi-

static nature of the analyses. This was repeated until the failure criterion under

consideration was exceeded and a fracture was initiated. Since the pressure was

maintained constantly by the external pressure field, once fracturing started it continued

until it had propagated all the way through the PSM mesh.

During the course of these numerical runs the external pressure was controlled

and the critical value, at which fracturing was initiated, was recorded. Once fracturing

had begun the rate at which propagation occurred was monitored by recording the

number of link element failures in time, as was done for the Hydraulic Fracture

Benchmark Model described in the preceding Sections. The details of the numerical

runs carried out for this study are presented in Table 6.6. below.

Run Fracture Young's Poisson's Tensile Fracture Softening In situ
No. Criterion Modulus Ratio Strength Energy Modulus Stress

E v It Gf Es
kPa

MPa N/mml N/m MPa az a3

001 Mark 1 1785.0 0.25 0.5 - 00 0.0 0.0

002 Mark2 1785.0 0.25 0.5 - 00 0.0 0.0
003 Mark3 1785.0 0.25 0.5 200.0 0.30 0.0 0.0
004 Mark 1 1785.0 0.25 0.5 - 00 75.0 75.0

Table 6.6. Details of Numerical Runs Carried Out for the Qualitative Parametric Study of the

Coupled Hydraulic Fracture Benchmark Model
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6.3.3. Discussion of Results

In this Section presentation and discussion is made of the results produced by the

numerical runs carried out in the parametric study of the Coupled Hydraulic Fracture

Benchmark Model. For each of the runs listed in Table 6.6. above, a fracture, driven by

the applied fluid pressure component of the model, developed with the PFM, was

propagated through the solid component of the model, as represented by the PSM. In

each case fracturing initiated at the notch tip where, as would be expected, the stress

concentration was highest. Once fracturing had begun it continued to propagate until

the mesh was fractured through.

The values of the critical pressures, at which fracturing was initiated in each of

the numerical runs, are listed in Table 6.7. below. In the following discussion relative

comparison is made between these values, however, it should be remembered that, due

to the simplified behaviour considered by the Coupled Hydraulic Fracture Benchmark

Model, it was only intended to make a qualitative comparison. In addition to the critical

pressure values, plots illustrating the development of each of the propagating fractures

patterns in time are considered (See Fig. 6.21. to Fig. 6.24.). Furthermore, in order to

verify the conclusions reached after examination of these results, plots of link element

failures in time, similar to those produced for the results of the Hydraulic Fracture

Benchmark Model, are discussed (See Fig. 6.27.).

Run No. Critical Pressure
kPa

001 66
002 56
003 129
004 190

Table 6.7. Summary of Critical Pressures Determined in the Numerical Runs Carried out for the

Parametric Study of the Coupled Hydraulic Fracture Benchmark Model
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Fig. 6.21. Diagrams of Various Stages of Fracture Propagation Produced during Run 001 of the

Parametric Study on the Coupled Hydraulic Fracture Benchmark Model (Mark 1 Failure

Criterion, Zero Confining Pressure, Critical Pressure of 66kPa)
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Fig. 6.22. Diagrams of Various Stages of Fracture Propagation Produced during Run 002 of the

Parametric Study on the Coupled Hydraulic Fracture Benchmark Model (Mark 2 Failure

Criterion, Zero Confining Pressure, Critical Pressure of 56kPa)
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Fig. 6.23. Diagrams of Various Stages of Fracture Propagation Produced during Run 003 of the

Parametric Study on the Coupled Hydraulic Fracture Benchmark Model (Mark 3 Failure

Criterion, Zero Confining Pressure, Critical Pressure of 129kPa)
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• cr3 = 75.0kPa
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d)

Fig. 6.24. Diagrams of Various Stages of Fracture Propagation Produced during Run 004 of the

Parametric Study on the Coupled Hydraulic Fracture Benchmark Model (Mark 1 Failure

Criterion, cr2 = 75.0kPa, cr3 = 75.0kPa, Critical Pressure of 190kPa)
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Chapter 6: Coupled Hydraulic Fracture Benchmark Mode/s

As can be seen from the plots shown above, the general behaviour of the model,

comprising the flow of 'fluid particles' into the notch in the PSM mesh, the interaction

of the PSM and PFM, and the transfer of the fluid pressure to the solid material, is

considered satisfactory and the model can be said to have performed qualitatively well.

This was to be expected since very similar behaviour was produced by the Pressurised

Notch Coupled Benchmark Model as described in Section 4.4.2. of Chapter 4..

However, behaviour not seen in the benchmark studies carried out in Chapter 4 was the

development of fracturing in the PSM mesh due to the pressure applied by the PFM,

although it was obviously comparable, to some extent, with the behaviour observed in

the Hydraulic Fracture Benchmark Model, earlier in this Chapter.

Examination of the critical pressure values detailed in Table 6.7. shows that, for

unconfined conditions, much lower critical pressures were measured for the numerical

runs in which the elastic-brittle Mark 1 and Mark 2 fracture criteria were applied, than

in those in which the elasto-plastic Mark 3 failure criterion was applied. Furthermore,

under confined conditions, the critical pressure required to initiate fracturing under the

Mark 1 failure criterion was much higher than in any of the other runs.'

The fact that the critical pressure was higher with the elasto-plastic Mark 3

criterion than with either of the elastic-brittle criteria was the same result as obtained

with the Hydraulic Fracture Benchmark Model (See Section 6.2.3.). Furthermore, it

was the expected result since the ultimate strain corresponding to failure under the

elasto-plastic criterion is much larger than that developed under the elastic-brittle

criteria and hence a larger applied pressure was required in order to extend the inter-

particle link elements to their failure length. Moreover, the fact that the highest critical

pressure was seen under confined conditions was also similar to the results obtained

with the Hydraulic Fracture Benchmark Model and this was again the expected result

since the applied load had to overcome both the confining pressure and the material

strength before failure could occur. However, these results differed from those of the

previous benchmark study in that, although similar, the critical pressure under the Mark

2 criterion was slightly lower that that seen under the Mark 1 criterion. This was in fact

a reversal of the situation seen with the Hydraulic Fracture Benchmark Model and it

was felt that it was most likely an effect of the mesh configuration, which is an issue

that is discussed in more detail below.
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Chapter 6: Coupled Hydraulic Fracture Benchmark Models

Although from the results discussed above the behaviour of the Coupled

Hydraulic Fracture Benchmark Model may be considered relatively simple, subtle but

significant variations in the fracturing process can be observed when the fracture

patterns are examined in detail.

As can be seen in Fig. 6.21. a) to c) (repeated below) the fracture pattern

developed under the Mark 1 criterion was a simple, straight fracture through the

narrowest part of the mesh.

a) b) c)

Fig. 6.21. Diagrams of Various Stages of Fracture Propagation Produced during Run 001 of the

Parametric Study on the Coupled Hydraulic Fracture Benchmark Model (Mark 1Failure

Criterion, Zero Confining Pressure, Critical Pressure of 66kPa)

(Repeated from page 344)

This is a satisfactory and acceptable result for the problem, although it should be noted

that, as discussed in Section 5.5.3. of Chapter 5, the deformation of the PSM mesh at

failure was likely to have been larger than would be expected for an equivalent

continuum material due to the method by which the Mark 1 criterion determines a

failure condition.

In contrast to the straight fracture developed by the Mark 1 criterion, it can be

seen in Fig. 6.22. a) to c) (repeated below) that, under the Mark 2 criterion, a 'fish bone'
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Chapter 6: Coupled Hydraulic Fracture Benchmark Models

fracture pattern developed In which a wide but discontinuous area of damage was

formed.

a) b) c)

Fig. 6.22. Diagrams of Various Stages of Fracture Propagation Produced during Run 002 of the

Parametric Study on the Coupled Hydraulic Fracture Benchmark Model (Mark 2 Failure

Criterion, Zero Confining Pressure, Critical Pressure of 56kPa)

(Repeated from page 345)

Only once the damaged area had propagated all the way through the mesh were the

remaining link elements failed, thereby forming a continuous fracture. Additionally, as

can be seen, relatively large deformation of the mesh was required in order for these

elements to reach critical conditions. It is possible that, in an infinite mesh, these

'second choice' link elements, left intact after the first pass of the propagating fracture

pattern, would never fail.

The development of this distinctive fracture pattern was a consequence of the

Mark 2 criterion's consideration of the stress states calculated in each of the PFC3D

DEM particles from the contributions of contact forces acting on them (See Chapter 3,

Section 3.4.2.). As described in Chapter 5, Section 5.6.3., the particles at the edge of

the PSM mesh had fewer contacts, and thus apparently lower stresses, than the particles

internal to the mesh. Since the stress state in the link elements was determined from the

average of the stress states in the particles between which they lay, link elements

attached to particles wholly within the mesh were deemed to reach failure conditions
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Chapter 6: Coupled Hydraulic Fracture Benchmark Models

before those attached only to surface particles. Consequently, the first elements to fail

and be removed were just below the surface of the mesh. As illustrated in Fig. 6.25.

below, the knock on effect of this was the creation of a new apparent mesh surface,

behind the removed elements, at which the particles experienced conditions of

apparently lower stresses in the same way as the original mesh surface. Thus, the next

elements to be considered to have reached failure conditions were just below this new

apparent surface. This process was then repeated, resulting in the formation of the 'fish

bone' fracture pattern.

Surface
Link
Elements

First Stage

PSM
Particles --~

Inter-Particle
Link Elements Link Elements Preferred

for Failure by Mark 2
Failure Criterion

First Three Failed
and Removed
Link Elements

Second Stage

New Apparent Surface Link Elements

Fig. 6.25. Diagram Illustrating Progression of Fracture Development in Coupled Hydraulic

Fracture Benchmark Model under Mark 2 Failure Criterion
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It is possible that this effect was particularly emphasised and exaggerated by the

configuration of the PSM mesh employed in the Coupled Hydraulic Fracture

Benchmark Model however, it is likely that a similar effect would occur in the edge

regions of any PSM mesh. The possibility of the occurrence of this phenomenon was

discussed previously in conjunction with the Two-Dimensional Uniaxial Benchmark

Model, employed in Chapter 5 to test the various failure criteria developed for the PSM,

and also in conjunction with the Hydraulic Fracture Benchmark Model presented earlier

in this Chapter. In these cases, it was concluded that the effect would not be significant

as long as the particles ahead of the fracture tip, where the consideration of failure

conditions was most important, had most of their original inter-particle links intact and

indeed, little effect was noticed in either of the benchmark studies. However, the

evidence shown here suggests that under certain conditions and configurations of the

PSM mesh the effect can be highly significant and it may be desirable to carry out

further investigation in order to determine methods by which it can be minimised.

On inspection of the fracture pattern developed under the Mark 3 criterion (See

Fig. 6.23. a) to c) repeated below) it can be seen that it is similar to that produced by the

Mark I criterion.

a) b)

. .. . .. . . .
. .

c)

Fig. 6.23. Diagrams of Various Stages of Fracture Propagation Produced during Run 003 of the

Parametric Study on the Coupled Hydraulic Fracture Benchmark Model (Mark 3 Failure

Criterion, Zero Confining Pressure, Critical Pressure of 129kPa)

(Repeated from page 346)
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Chapter 6: Coupled Hydraulic Fracture Benchmark Models

This is an expected result given that the criteria both consider the uniaxial total strain in

the inter-particle link elements in order to determine failure conditions (See Chapter 5,

Section 5.5.1. and Section 5.7.1.). However, a difference between the two fracture

patterns is that, although the Mark 3 fracture is generally straight and well defined, a

small deviation took place shortly after initiation. The reason for this is not clear but it

can be noted that in the parametric studies carried out with the Hydraulic Fracture

Benchmark Model (See Section 6.2.3.), tests combining the Mark 3 criterion and a

Poisson's ratio of 0.25, as applied in this test, were shown most likely to produce

deviated fracture patterns. As discussed in Section 6.2.3.3.4. above, this may have been

an inaccuracy associated with the analysis of a model consisting of elements in which

only a single force component was considered, as is the case for a PSM mesh with a

Poisson's ratio ofO.25.

In addition to the small deviation of the fracture, it can be noted that a large

number of elements were failed and removed from the areas of the mesh near the fixed

boundaries (See Fig. 6.23. c) and Fig. 6.19.). Since this phenomenon did not occur in

either Run 00 I or Run 002, this may have been a direct consequence of the application

of the Mark 3 failure criterion in Run 003. However, since the damage is not visible in

Fig. 6.23. a) or b) it is apparent that it did not occur until late in the analysis. Therefore,

it is considered more likely that the phenomenon was a consequence of the relatively

high fluid pressure applied during this numerical run, which, after the fracture had

propagated completely through the mesh, caused comparatively large deformations and

rotations of the two halves of the mesh (See Fig. 6.26. below). It is thus concluded, that

this effect can be disregarded since it is a consequence of the model construction. It is

not possible for the behaviour described above to develop in a realistic situation, since

the material on either side of a fracture could never become completely separated and

able to displace freely.
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and Rotation of ,;';<'\'Ii<c,
PSM Mesh »::: ~

'I ., " ,. ~ •• , " •• } " '. " " •
, •• ~ • ~ , .. • , • ~ A' " .. " , ,.
¥ ' •••••••• " •••• " t ,..,., ,',., .

~:%t:~~t:.~;:;:';:~::{~:~~<?
,;.:~~;.'.;.:.~~:\:,~.~<?);:,<;.:~{:.:.>~

"':'.,<"<:~t%~?(:i?t~~Yk~:~
·-\,::,::;<::;s:))?(~
. .

Complete
Separation of
Mesh Allows
Unrealistic
Deformations
and Rotations

...
...

Displacement
and Rotation of
PSM Mesh

Fig. 6.26. Diagram Showing Deformation of Coupled Hydraulic Fracture Model Mesh after

Complete Fracture Propagation

The final fracture pattern to be considered is that developed under confined conditions

with the Mark 1 failure criterion in Run 004. As can be seen in Fig. 6.24. a) to c)

(repeated below), the developed fracture pattern was again generally straight and well

defined in a similar manner to those developed in Run 001 and Run 003 with the Mark

1 and Mark 3 failure criteria respectively.

It can be noted, however, that before the main, straight fracture was established

several link elements failed in a dispersed pattern round the tip of the notch in the PSM

mesh. This may have been a result of the build up and concentration of stresses around

the notch due to the applied confining pressure. However, it is also possible that it was

caused by of a stress wave or similar dynamic effect, propagating through the PSM

mesh as a result of too rapid an increase of the applied external pressure in the model.

Irrespective of the cause, this effect was not thought to significantly affect the overall

fracturing behaviour since it was subsequently dominated by a clearly defined, straight

fracture, as mentioned above. Despite the similarity of the fracture shape to those

developed in the previous numerical runs, it is also notable that this fracture remained

much narrower than those seen before. This was obviously a direct consequence of the
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Chapter 6: Coupled Hydraulic Fracture Benchmark Models

applied confining pressures that acted to close the fracture at all times and this was

representative of realistic behaviour since similar confining pressures would always be

present in the field.

a) b) c)

Fig. 6.24. Diagrams of Various Stages of Fracture Propagation Produced during Run 004 of the

Parametric Study on the Coupled Hydraulic Fracture Benchmark Model (Mark 1 Failure

Criterion, 0"2 = 75.0kPa, 0"3 = 75.0kPa, Critical Pressure of 190kPa)

(Repeated from page 347)

In addition to the fracture propagation behaviour described above, it can also be seen, in

Fig. 6.24. c), that a considerable number of link elements failed near the fixed

boundaries of the model. This was very similar behaviour to that observed in Fig. 6.23.

c) and discussed above in conjunction with Run 003. The fact that a relatively high

critical pressure was recorded for this run, as listed in Table 6.7. above, substantiates the

hypothesis that the damage in both of these tests was related to the distortion of the

mesh associated with large displacements after the mesh had been fractured through

(See Fig. 6.26.). Despite the noted damage, the overall behaviour observed for Run 004

was generally comparable to that observed in tests carried out under confined conditions

with the Hydraulic Fracture Benchmark Model (See Section 6.2.3.).
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Chapter 6: Coupled Hydraulic Fracture Benchmark Models

The behaviour inferred by the development of the four fracture patterns over

time, as illustrated in Fig. 6.21. to Fig. 6.24., was further verified by the examination of

the progress of element failures over time for each of the numerical runs (See Fig. 6.27.

below).
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Fig. 6.27. Plots of Number of Failed Inter-Particle Link Elements in Time for the Numerical

Runs of the Parametric Study of the Coupled Hydraulic Fracture Benchmark Model

As can be seen, the fracture propagation rates, as indicated by the gradients of the

curves plotted in the figure above, are quite similar for the Mark 1 and Mark 2 criteria.

This matches very well with the results of the Hydraulic Fracture Benchmark Model,

which showed that fracture propagation behaviour under the two elastic-brittle criteria

was most similar in a PSM mesh of Poisson's ratio 0.25, as was the case in these tests.

It may be noted however, that after initiation of the fracture, propagation 'paused' for a

short time in Run 002, under the Mark 2 criterion, whereas propagation continued at a

steady rate in Run 001, under the Mark 1 criterion. The precise reason for this 'pause'

is not clear, however it may have been a consequence of the 'fish bone' fracture pattern

that developed under the Mark 2 criterion, as illustrated in Fig. 6.25. above.

In the studies conducted with the Hydraulic Fracture Benchmark Model the

Mark 3 criterion was shown to produce the slowest propagation rates (See Fig. 6.12. to

Fig. 6.16.). It was concluded that this was because more time was required for the

elements to reach the ultimate strains associated with the elasto-plastic failure criterion
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which were larger than those associated with elastic-brittle criteria. However, it can be

seen in Fig. 6.27. that the fracture propagation rate in Run 003, under the elasto-plastic

Mark 3 failure criterion, was much faster than those recorded for the elastic-brittle

criteria. Again, the reason for this is not clear, although there are several possible

explanations. Firstly, it is possible that it was due to a problem with the Mark 3 failure

criterion in which the corrective forces, applied in order to soften a link element (See

Chapter 5, Section 5.7.1.) also affected neighbouring elements, resulting in a self

perpetuating fracture. However, this is unlikely, since a similar effect was not evident

in any of the previous benchmark models to which the Mark 3 failure criterion was

applied. A second possibility, related to the same cause, is that the rate at which

softening, and hence the application of the corrective forces, occurred, caused dynamic

behaviour of the PSM mesh, which resulted in the application of unexpectedly high

loads to the elements ahead of the fracture, thus increasing the propagation rate. A

further possibility is that the gradient of the curve shown in Fig. 6.27. is misleading in

terms of defining the fracture propagation rate for Run 003, as it may have taken into

account the failure of elements near the boundaries of the mesh, which cannot be

associated with the true fracture propagation behaviour for the model. Again, this is

unlikely however, as the damage that occurred around the fixed boundaries of the mesh

has been shown not to have occurred until most of the main fracture had developed. It

is felt that the most likely cause of the high rate of fracture propagation was a dynamic

effect associated with the application of corrective forces and, although further

investigation of this will be required, the best solution would probably be to reduce the

increment by which the applied external pressure was increased prior to the initiation of

a fracture.

From the fracture propagation rates recorded in the Hydraulic Fracture

Benchmark Model (See Fig. 6.12. to Fig. 6.16.), it would be expected that the

propagation rate of a fracture produced under confined conditions would be slower than

for an equivalent fracture produced under zero confinement. Thus, itwas expected that

the propagation rate of the fracture produced in Run 004, under the Mark 1 criterion,

would have been slower than that of the fracture produced in Run 00 I, also under the

Mark 1 criterion. However, in Fig. 6.27. it can be seen that the rates of propagation of

these two fractures were very similar and this was probably due to the relatively low

confining pressures applied in this study, in comparison to those applied earlier in the
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Hydraulic Fracture Benchmark Study, having relatively little affect on the fracture

growth rate. Itmay further be noted that after initiation of the fracture in Run 004 there

was a long 'pause' before fracturing resumed at a reasonably constant rate, similar to

that recorded for Run 001. It is possible that this effect was related to the applied

confining pressures, but it is considered more likely that the initial element failure

event, prior to the 'pause', was due to a dynamic effect caused by too rapid an increase

in the applied external pressure. This conclusion is in agreement with that reached

previously after consideration of the dispersed pattern of the failed elements.

Lastly, in all of the curves shown in Fig. 6.27. it can be seen that after an

initially steady fracture propagation rate the gradient of the curves becomes more

variable. The steep steps and long 'pauses' can be attributed to boundary effects, as the

fractures reached the outside boundary of the mesh, and, in the cases of Run 003 and

Run 004, the failure of link elements in the areas of the mesh near the fixed boundaries.

Both of these effects can be ignored as they occur in isolation of the realistic

hydraulically driven fracture growth behaviour and in a model employing a sufficiently

large mesh, fracturing could be halted before they were encountered.

Further to the diagrams illustrating the development of the fracture patterns in

time, item d) in Fig. 6.21. to Fig. 6.24. (repeated below) shows the configuration of

both the PSM and PFM particles at a late stage in the numerical runs.

As can be seen from the positions of the particles and their velocities, as

indicated by the arrows, the fractures in the PSM meshes have opened wide and the

PFM 'fluid particles' have flowed into the gap. While, as mentioned previously, the

complete separation of the PSM mesh cannot be considered a realistic representation of

hydraulic fracturing behaviour, the plots are intended to demonstrate the potential of the

combined model to represent fluid flow in a propagating fracture. Although i.twas not

practical in the present circumstances, it is hoped that in the future it will be possible to

employ a large enough mesh so that sporadic fracture propagation events, accompanied .

by the flow of fluid into the newly opened fracture, can be modelled with this'

framework.
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Diagrams Showing PSM and PFM Particles in Final Stages of Fracture Propagations Produced

in the Parametric Study on the Coupled Hydraulic Fracture Benchmark Model from i) (Fig. 6.21.

d) ) Run 001 (Mark 1 Failure Criterion, Zero Confining Pressure, Critical Pressure of 66kPa) ii)

(Fig. 6.22. d) ) Run 002 (Mark 2 Failure Criterion, Zero Confining Pressure, Critical Pressure of

56kPa) iii) (Fig. 6.23. d) ) Run 003 (Mark 3 Failure Criterion, Zero Confining Pressure, Critical

Pressure of 129kPa) ivy (Fig. 6.24. d) ) Run 004 (Mark 1 Failure Criterion, 0'2 = 75.0kPa, 0'3 =
75.0kPa, Critical Pressure of 190kPa)

(Repeated from pages 344, 345, 346 & 347)
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Additionally, it can be seen in item d) of Fig. 6.21., Fig. 6.23. and Fig. 6.24. that several

PSM particles became detached from the main mesh due to the fluid pressure applied by

the PFM and this can be considered representative of processes such as disaggregation

and sanding (See Chapter 2, Section 2.5.). What is more it can be seen from the

velocities and positions of these particles, in relation to their original positions, that they

were carried along by the model fluid flow. This demonstrates perfectly the full

potential of the combined Multi-Physics Particulate Modelling Framework to integrate

solid, fluid and granular phases within one model, created within a single framework

and solved simultaneously, as proposed, in Chapter 3 Section 3.2., for the long term aim

for a computational framework such as this.

6.3.4. Conclusions

From the results discussed in the previous Section, it can be concluded that the

combined model was able to reproduce the interaction behaviour of the solid and fluid

phases in conjunction with the propagation of fractures driven by the fluid pressure, to a

qualitatively satisfactory standard.

The actual values of the critical pressures required to initiate fracturing in the

PSM mesh were lower than those observed under similar conditions in tests carried out

with the Hydraulic Fracture Benchmark Model. Considering the results of the those

studies, it is probable that the critical pressures recorded for the Coupled Hydraulic

Fracture Benchmark Model were much lower than would be expected for an equivalent

real case. It is therefore concluded that further investigation is required in order to fully

understand and improve the interaction behaviour of the PSM and PFM components of

the modelling framework and to thereby to accurately reproduce realistic behaviour.

This conclusion is in agreement with the findings of the Pressurised Notch Coupled

Benchmark Problem discussed in Section 4.4.2. of Chapter 4. Despite these findings, it

is felt that the Coupled Hydraulic Fracture Benchmark Model showed considerable

promise and demonstrated, very well, the potential of the combined multi-phase

modelling framework.
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It is further considered possible that in order to accurately reproduce the

behaviour of fluid flow in a propagating fracture it may be necessary to account for

fully dynamic behaviour in the model. Although, it can be considered acceptable, given

the differing times scales involved in fracture propagation and fluid flow, to model

hydraulic fracturing as a quasi-static process, this may not be sufficient for the

combined PSM + PFM framework in order to accurately capture the solid/fluid

interaction and fracturing behaviour. It would therefore be desirable to consider

dynamic behaviour in the future although it is accepted that this would require very

accurate control of the model parameters and boundary conditions.

Although the small benchmark models considered in this study were able to

illustrate the possibilities available with a multi-phase particulate modelling framework,

it should be noted that they were quite computationally expensive due to the number of

particles required and the complex FISH routines running concurrently during each time

step of the PFC3D model. It should also be noted that these models were only

representative of a few square millimetres of material and while it is desired, in the

future, to create a large enough mesh to model realistic hydraulic fracture treatments,

combining fracture propagation and fluid flow, this will require far more computing

power and, ideally, an optimised and perhaps purpose written code, rather than a general

DEM framework with only limited flexibility for user defined changes, as was the case
here.

In addition to the promising general behaviour, it can also be noted that the

results of the numerical tests conducted with the Coupled Hydraulic Fracture

Benchmark Model illustrated several problems concerning the Mark 2 and Mark 3

failure criteria. While these effects had been previously highlighted as potential

problems, they were not manifested until the criteria were applied to the PSM mesh

employed in this study, thus indicating their relationship to the mesh configuration.

Further investigation will be required in order to determine the precise cause of these

manifestations and to develop possible modifications to these models.
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6.4. Summary

In this Chapter, two benchmark studies, conducted with the purpose of testing the

capabilities of the Particulate Mechanics Modelling Framework to represent realistic

multi-phase geomechanical problems, were presented and discussed in detail. Both

benchmark models considered pseudo-realistic representations of propagating

hydraulically driven fractures.

The first benchmark model employed a PSM mesh in order to represent the solid

phase hydrocarbon reservoir rock and a simplified force representation for the pressure

applied to the walls of the fracture by the fracture fluid. Extensive parametric testing

was carried out with this model to determine the effects, on the fracture growth

behaviour, of varying the Poisson's ratio of the solid material, varying the confining

pressure, different failure criteria and randomising the material strength in order to

represent a heterogeneous material.

It was found that the model generally produced the straight fracture pattern

expected for a hydraulic fracture treatment in a homogeneous material and also

produced the behaviour expected under the parametric variations, to a reasonable

standard. The model was furthermore found to be capable of reproducing the results of

previous numerical studies to a satisfactory degree. However, not all of the numerical

studies produce results that were considered representative of the realistic hydraulic

fracture behaviour and problems were specifically related to the constraints and

boundary conditions applied to the PSM mesh. It was additionally noted that the force

representation of the fluid pressure, employed by this model, was limiting and resulted

in highly simplified fluid behaviour. Moreover, it is felt that very complex coding

would be required in order develop a more rigorous fluid model and to accurately

reproduce multi-phase behaviour using this technique.

The second benchmark model again employed a PSM mesh in order to represent

the solid phase material, however, rather than the force representation considered in the

first model, the fluid phase material was directly represented with the PFM. Given the

complexities and known limitations of the interaction behaviour between the Particle
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Solid Model and the Particle Fluid Model (See Chapter 4, Section 4.4.), the brief

parametric studies conducted with this model were intended only for a qualitative

assessment of the capabilities of the Particulate Modelling Framework in representing

complex multi-phase behaviour.

Itwas found that the combined model generally produced the expected trends in

behaviour for a hydraulic fracture problem and was able to reproduce the interaction

behaviour of the solid and fluid phases in conjunction with the propagation of fractures

driven by the fluid pressure, to a qualitatively satisfactory standard. It was furthermore

noted that the model was able to demonstrate the full potential of the single software

Particulate Mechanics Framework to combine the modelling of granular phase material

with the solid and fluid phases, without further development or modification of the

modelling framework.

Although the model was generally found to produce qualitatively acceptable

results, it is accepted that a considerable amount of work will be required before a

realistic representation of a problem, such as a hydraulic fracture treatment, can be

modelled. It is further accepted that a large model, as will be required for a realistic

problem such as this, would be very computationally expensive and an optimised code,

running on a powerful machine will be required to make it feasible. It is hoped,

however, that with the development of computing power this type of modelling

framework will become practical for everyday use.

In the next Chapter, the work presented during the course of this thesis will be

summarised in conjunction with the main conclusions reached. Additionally,

suggestions will be made for the direct continuation and enhancement of the studies

carried out for this thesis. An overall assessment will then be made of the Single

Software Multi-Phase Particulate Modelling Framework and the various modelling

techniques applied within it. Finally, discussion will be made of the overall

implications of the work considered and the conclusions drawn in this thesis, for the

future application of particulate frameworks and lattice type models in various fields to

which computational modelling is applicable.
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Chapter 7:

Conclusions and Further Work

7.1. Introduction

The research conducted for this thesis was concerned with the development of a

particulate mechanics framework for modelling multi-phase processes in fracturing

geomaterials, as is commonly required for geomechanical problems encountered in

disciplines such as petroleum, civil and geotechnical engineering. The framework was

developed within the existing commercial geotechnical DEM code, Particle Flow Code

in Three Dimension (PFC3~, with the aim that all material phases could be modelled

within a single software environment and solved simultaneously by the existing

dynamic relaxation solver.

The first part of this Chapter is divided into Sections concerning the

development of the solid phase Particle Solid Model (PSM), the fluid phase Particle

Fluid Model (PFM) and combined Solid/Fluid Models (PSM + PFM). In each of the

Sections, a brief review of the work undertaken will be given in conjunction with a

statement of the main conclusions reached after consideration of the work presented in

the preceding Chapters. Additionally, suggestions and recommendations will be made

for the direct extension and continuation of this research. Following these three

sections, an overview and assessment will be made, of the particulate mechanics

framework and its capabilities and potential as an environment in which generally

applicable multi-phase models of geomechanical problems can be developed.

In the second part of this Chapter, discussion will be made of the wider

implications of this work for the future application of particulate and lattice type

modelling in various fields to which computational analysis is applicable.
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7.2. Particle Solid Model (PSM)

7.2.1. Summary and Conclusions

The Particle Solid Model (PSM) was developed to allow the creation of model

representations of continuous, solid materials, in the form of two-dimensional regularly

configured, bonded particle assemblies, thus producing models comparable to lattice

type representations. The particles in the assemblies interacted through normal and

shear contact springs inherent in the PFC3D modelling environment and continuum

equivalence was established via equations developed by Morikawa and Sawamoto [63]

from the strain energy equivalence in regular triangular cells of closely packed particles.

The assemblies were bonded together by means of inter-particle links, realised through

'contact bonds', also inherent in the PFC3D modelling environment, which allowed

contact interactions to develop under tensile loading conditions. These links could be

removed from the assembly, as desired, in order to represent fracturing of the solid

material.

The initial work carried out with the PSM for this thesis considered the

reproduction of simple benchmark tests developed by Griffiths and Mustoe [32] for a

discrete element model similar to the PSM. These tests considered the deformation of a

square sample of material and a cantilever beam under prescribed loading conditions

and were designed to determine the capability of the PSM to reproduce the elastic

behaviour that would be expected of an equivalent continuum material. The results of

these tests showed that the PSM could very accurately reproduce the deformations that

would be expected for an equivalent continuum material and that as would be expected,

from the results of other numerical studies (van Vliet [95]), the accuracy of the

predictions increased with increasing discretisation of the PSM mesh. However, it was

also noted that the accuracy of the predicted deformations, decreased with increasing

Poisson's ratio. This was particularly noticeable in the lateral displacements, occurring

perpendicular to the direction of applied loading in the tests concerning the square

sample of material. It was concluded, however, that with a suitably fine mesh, the

accuracy of the PSM in reproducing the deformation behaviour of an elastic material

was more than sufficient for most requirements.
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The second area of investigation conducted with the PSM considered the

development of five failure criteria, which were used to develop fracturing behaviour in

the PSM mesh through the controlled removal of inter-particle links. The criteria were

tested in a simple benchmark model, which considered the development of a fracture in

a rectangular model mesh, subjected to uniaxial loading conditions.

The Mark 1 failure criterion considered elastic-brittle behaviour based on the

uniaxial total strain in individual inter-particle link elements. The criterion was found to

over predict both the ultimate load capacity and ultimate extension of the material

sample in comparison to the results that were expected for an equivalent continuum

material. It was concluded that this behaviour was to be expected since, due to the

triangular configuration of the particle assembly, the PSM mesh had to be over extended

in order for inter-particle links orientated diagonally to the direction of loading to reach

their ultimate strain. This effect was further confirmed by a directional bias that was

noted in the results, which could be related to the alignment of the inter-particle links in

comparison to the direction of loading. It was additionally concluded that a failure

criterion based on continuum principles, rather than the uniaxial behaviour of individual

inter-particle links, would be required in order to accurately reproduce equivalent

continuum behaviour in a meso- or macro-scale lattice type model such as the PSM. It

was noted however, that similar investigations, conducted by other researches

(Schlangen and Garboczi [79], Schlangen and van Mier [80, 81. 82]. Tzschichholz and

Herrmann [88], Tzschichholz et al. [89], van Vliet [95]), applying simple elastic-brittle

failure criteria to micro-scale lattice models, produced accurate results in comparison to

those expected for an equivalent continuum material. This tendency was also noted in

these studies as the results approached those expected for an equivalent continuum with

an increasing discretisation of the PSM mesh. In addition to the behaviour discussed

above, evidence was also seen of mesh size dependency in the results produced by the

Mark 1 criterion. This effect could be attributed to the fact that the Mark I failure

criterion was a purely elastic-brittle model and as such made no account of fracture

energy dissipation during failure of the inter-particle links.

The Mark 2 failure criterion also considered elastic-brittle behaviour. However,

inter-particle link failure was based on the Rankine principal stress criterion that

considered the continuum stress state, calculated in the particles of the PSM mesh,
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rather than the uniaxial total strain of individual links. In confirmation of the

conclusions reached after the tests conducted with the Mark I criterion, this failure

criterion was found to produce a more accurate prediction of expected equivalent

continuum behaviour. Furthermore, much less evidence of a directional bias was seen

in these results than in those of the Mark 1 tests. However, as observed in the results

produced by the Mark 1 criterion, the results produced by the Mark 2 criterion showed

evidence of mesh size dependency. Again, this was attributed to the purely elastic-

brittle behaviour considered by the model. Given the limitations of the PFC3D

modelling environment, it was concluded that, in order for a failure criterion for the

PSM to show mesh size objectivity, it would be required to maintain a constant fracture

energy release rate, independent of the mesh discretisation.

The Mark 3 failure criterion was an elastic-softening model designed

specifically to vary the softening behaviour in relation to the inter-particle link length

and the fracture energy release rate. Similarly to the Mark 1 criterion, the Mark 3

considered the uniaxial total strain in individual inter-particle links. It was found that

this criterion was highly proficient at developing mesh size objectivity under uniaxial

loading in any direction, however, as would be expected from the results of the tests

conducted with the Mark 1 criterion, the Mark 3 criterion over predicted both the

ultimate strength and ultimate extension of the model mesh in comparison to the

expected results for an equivalent continuum material. This further substantiated the

hypothesis that a failure criterion based on continuum principles, rather than the

uniaxial behaviour of individual inter-particle links, would be required in order to

accurately reproduce equivalent continuum behaviour in a meso- or macro-scale lattice

type model such as the PSM.

The Mark 4 failure criterion again considered elastic-softening behaviour but

was based on a continuum measure of the total strain in an equivalent continuum area

surrounding an inter-particle link element. This criterion also showed mesh size

objectivity and was furthermore found to produce far more accurate predictions of

ultimate strength and ultimate extension, in comparison to those expected for an

equivalent continuum, than the Mark 3 criterion, thus confirming the benefit of a

continuum based failure criterion for the PSM. However, considerable noise was

observed in the post-peak regions of the load-displacement curves plotted for these
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tests. It was considered that this behaviour was a consequence of the technique

employed to redistribute excess stress from softening links, which, in contrast to the

equivalent continuum measure of the total strain state, was carried out on an individual

element basis.

The Mark 5 failure criterion was a modified version of the Mark 4 criterion and

employed the same technique to calculate the continuum total strain state in the inter-

particle links. However, rather than redistributing the excess stress from a softening

inter-particle link through the link itself, redistribution was also spread over the whole

of the associated equivalent continuum area. Given the similarity of the two criteria the

results produced by the Mark 5 criterion were initially very similar to those produced by

the Mark 4 criterion in terms of the ultimate strength and extension of the model mesh

in comparison to the results expected for an equivalent continuum material. However,

the altered redistribution technique failed to solve the problem of noise in the unloading

phase of the numerical solution and in fact the overall behaviour produced by the Mark

5 criterion was considered to be generally worse than that of the Mark 4 criterion.

Although it is felt likely that the problem is related to an uncontrolled feedback between

the corrective forces, developed in order to redistribute excess stress from softening

inter-particle links, and the continuum total strain state, as yet no satisfactory

. explanation or solution can be given for the noise produced in the load-displacement

behaviour of both the Mark 4 and Mark 5 criteria.

7.2.2. Suggestions for Further Work

Given that the elastic behaviour of the PSM, and hence the applied continuum

equivalence technique, were found to be very accurate, the main area in which it would

be desirable to extend the development of the PSM is with the failure criteria. As

mentioned above, it was concluded that a continuum based failure criterion was

required in order to accurately reproduce equivalent continuum behaviour in a meso- or

macro-scale lattice type model such as the PSM. Thus, it would seem most appropriate

to continue the development of the Mark 2, Mark 4 and Mark 5 criteria.
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In respect of the Mark 2 criterion, although only the simple Rankine principal

stress criterion was applied in this work, it is theoretically possible to develop any stress

based failure criterion through manipulation of the continuum stress tensors calculated

for each particle in a PSM mesh. Thus, there is scope to develop more complex failure

criteria, such as the Mohr-Coulomb criterion, that may more accurately model the

fracture behaviour of a geomaterial. It should be noted however that, as with the Mark

2 Rankine criterion, this again would probably be restricted to an elastic-brittle analysis

unless a method can be found of developing softening behaviour through this approach.

For the Mark 4 and Mark 5 failure criteria, it is obviously desirable to determine

and solve the cause of the considerable noise observed in the post-peak load-

displacement behaviour and further investigation is required to this end. In addition to

these problems, it was also observed that the measurement of total strain employed in

the Mark 4 and 5 failure criteria was limited to an Eulerian approach, whereby simple

stretches of the link elements were calculated, irrespective of the current orientation or

location. Furthermore, the associated stress states were calculated via a simple Hookean

relationship, thus developing the Cauchy stress formulation. This technique was

consistent with the approach employed by the explicit, time stepping dynamic relaxation

solver, associated with the PFC3D distinct element code, which determines contact

forces and particle velocities based on only the current configuration of the particle

assembly. Obviously, the Eulerian formulation was dependent on the assumption that

only small strains took place, although it was equally applicable under either large or

small overall displacements. Under certain conditions, it may be desirable to accurately

model large strains with the PSM, in which case a Lagrangian formulation would be

preferable, taking into account the change in length and orientation of the mesh. Under

a Lagrangian formulation the stress could no longer be directly related to the strain state

through Hooke's law and an alternative formulation, such as Piola-Kirchhoff, would be

required. It would then also be required to map the stress-strain state between the

current and original mesh configurations. Obviously, the rigorous treatment of large

strains in a lattice type model would not be a simple procedure. However, although it

was not attempted during the course of this work to apply a large strain formulation to

the PSM, it is clear that there is significant scope to do so. Furthermore, this would not

be limited just to the PSM but would also be applicable in a general lattice type setting

and a large area of research could be opened up from this simple proposal.
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7.3. Particle Fluid Model (PFM)

7.3.1. Summary and Conclusions

The Particle Fluid Model (PFM) was developed to allow the modelling of fluid like

materials through a particle representation. The particles carried mass, position and

velocity information, and interacted with other particles, which came within certain

radii of influence, through drag and repulsion forces, representative of pressure and

viscosity fields. The DEM particles themselves were thus prevented from ever coming

into physical contact. The properties of the model fluid were dependent on five model

parameters; a coefficient of repulsion, a coefficient of drag, the radius of influence of

repulsion, the radius of influence of drag and the coefficient of mechanical damping

which is a parameter inherent to the PFC3D modelling environment.

In order to test the capacity of the PFM to develop simple fluid behaviour, two

benchmark models were created. The first considered static behaviour through the

development of a uniform pressure field in a closed cylinder subjected to an externally

applied pressure. The second model considered dynamic behaviour through the

development of a simple lubrication flow regime, representative of incompressible, one-

dimensional, steady, uniform, laminar flow between two parallel plates.

The results of the first benchmark model showed that the PFM was capable of

accurately developing a uniform pressure field under static conditions as, under various

applied pressures, the reaction measured on the walls of the cylinder matched very

closely the magnitude of the externally pressure field. Furthermore, it was seen from

the results of the second benchmark model that the PFM was also capable of accurately

producing dynamic fluid behaviour, since the expected parabolic velocity profile,

associated with lubrication flow, was successfully reproduced under various

combinations of the model parameters. It was also noted however, that the flow

developed with the PFM was prone to considerable noise in the solution, although this

was not found to significantly affect the development of simple dynamic behaviour.

Furthermore, despite the qualitative accuracy of the results seen in the

benchmark models it is also concluded that the relationships governing the effects of the
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five main model parameters on the behaviour of the PFM are extremely complex and

are far from fully understood. During the course of the work carried out for this thesis it

was only possible to determine the properties of the model fluid by comparing the

behaviour produced by the benchmark model with the lubrication flow theory. It was

not possible to calibrate the fluid properties prior to an analysis. Nonetheless, on the

basis of the results produced by the benchmark models, it is felt that the PFM shows

great promise and has the potential to be developed into a rigorous fluid modelling tool.

7.3.2. Suggestions for Further Work

There is still much work required in order to develop the PFM into a rigorous

and robust fluid model. The first priority will be to develop an understanding of the

relationships between the five main model parameters and the model fluid behaviour.

This may be attempted by empirical means but may prove extremely difficult to achieve

in the five parameter space. Thus, a more efficient and accurate approach may be to

develop an analytical relationship between the parameters of the PFM and the Navier-

Stokes equation for a fluid continuum. It may also prove useful to further investigate

the techniques applied to modelling fluids with the Particle-and-Force (PAF) model

(Johnson [43]) and furthermore, the relationship of this method to the PFM. Study of

the PAF, and particularly into recent advances made in discrete macroscopic modelling

of fluids and in improving the stability and efficiency of the solution scheme, may also

prove useful in reducing the noise observed in the flow developed by the PFM.

7.4. Combined Model (PSM + PFM)

7.4.1. Summary and Conclusions

Two types of multi-phase benchmark model were developed in order to test the

capabilities of the particulate mechanics framework in modelling combined solid/fluid

interaction behaviour. The first of these benchmark models considered the propagation

of a hydraulically driven fracture through a solid, rock like material. The solid phase
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was represented by a PSM mesh and the fluid phase was represented simply by forces,

corresponding to fluid pressures, applied to the walls of the fracture.

Under most conditions this benchmark model was shown to produce the

generally expected behaviour for a propagating hydraulically driven fracture in a

homogeneous material. It was also shown that the fracture profiles and associated

fracture pressures, measured during the propagation of the model fractures, matched

reasonably well with similar results presented by Papanastasiou [69]. Furthermore, the

general behaviour was comparable to that which would be expected from existing plane

strain hydraulic fracture models.

Although the results were largely acceptable, it was also found that under certain

parametric combinations, and in particular when confining pressures were applied,

inaccurate or unexpected behaviour was observed. This was attributed mainly to the

boundary conditions and fixity of the model mesh constructed for this benchmark

model, which caused the model to become unstable when imbalances developed in the

externally applied forces. During the course of this work, no method was found of

solving this problem without affecting the fracture propagation behaviour.

Although it will be required to resolve this problem, it is concluded, from the

behaviour observed in this benchmark study, that the particulate modelling framework

is capable of reproducing combined solid/fluid behaviour and that great potential was

shown for the future development of the framework for modelling multi-phase

problems. It may be noted however, that, while the representation of the fluid phase

through the application of forces representing pressure allowed easy control over the

boundary conditions of the model problem, it would be very difficult to describe

complex flow and pressure distributions using this method.

The second benchmark model also considered hydraulically driven fracture

growth behaviour in a solid material represented by a PSM mesh, however, rather than a

simple force representation, the fracture fluid was directly modelled with the PFM. In
simple parametric studies, it was found that the combined PSM/PFM model was

qualitatively able to reproduce both static and dynamic solid/fluid interaction behaviour,

as well as fluid driven fracture propagation behaviour, to a satisfactory standard.
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However, the measured critical pressures, required to initiate fracturing in the PSM

mesh, were, quantitatively, lower than those expected from the results of previous

studies.

It is thus concluded that the particulate modelling framework showed

considerable promise and potential for the modelling of multi-phase problems with

combined PSMlPFM models, although, clearly, further investigation is required in order

to fully understand and improve the interaction behaviour of the separate phase models

in order to accurately reproduce coupled solid/fluid behaviour. Once this is achieved, it

is hoped that the combined PSM and PFM framework will naturally reproduce complex

flow and pressure distributions that it would be difficult to model with the force

representation employed in the first benchmark model.

7.4.2. Suggestions for Further Work

Itwould initially be desirable to continue and extend the investigations carried out with

the first benchmark model. These would firstly carry on the studies carried out for this

thesis, with the aim of reaching clearer conclusions regarding the effects of the various

model parameters on fracture growth behaviour. Investigation would secondly extend

the work carried out for this thesis in order to explore the capacity of the particulate

modelling framework to deal with various model and problem parameters that may

influence fracture growth behaviour. These may include the presence of planes of

weakness or existing discontinuities, varying conditions of confinement and the mesh

discretisation. In addition to this suggested work, a main priority would be to resolve

the problems encountered during the course of the studies carried out for this thesis, that

were associated with the boundary conditions and the fixity of the PSM mesh.

However, it is also felt that it may prove more productive to focus future

investigation on the development of combined PSM/PFM models, as considered in the

second benchmark model. It is considered that if this type of model could be improved

in order to produce quantitatively accurate results, it would naturally overcome most of

the difficulties encountered in the first benchmark study. In order to accurately model
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multi-phase problems in this way it will be required to more thoroughly investigate the

results produced by the combined benchmark model and furthermore, it will be

desirable to reconsider the precise mechanism by which 'solid' particles interact with

'fluid' particles.

Although the multi-phase models investigated during the course of these studies

were all considered to exhibit quasi-static behaviour it may also be desirable in the

future to consider fully dynamic behaviour in order to develop the most accurate

representation possible. It is however acknowledged that this will require a very

detailed understanding and accurate control of the model parameters and boundary

conditions.

7.5. Overall Assessment and Conclusions

The overall aim of this project was to develop a particulate mechanics framework for

modelling multi-physics processes for particular application to geomechanical problems

that may involve fracturing. From the work presented in this thesis, it can be concluded

that in general this type of framework has considerable potential to deal with a wide

range of material combinations, undergoing complex interactions and developing

complex behaviour, in almost any conceivable configuration. Furthermore, the

particulate mechanics framework was shown to have many advantages over multi-phase

continuum mechanics modelling schemes, although clearly, within such a framework,

numerous methods and techniques are applicable to the modelling of the various

material phases and each would have their own particular advantages and

disadvantages. The particulate mechanics framework developed during the course of

this work and the techniques applied therein, are examined in more detail below, along

with their specific pros and cons, and some possible alternatives.

Considering firstly the modelling of the solid phase, it was shown in benchmark

testing, that the PSM very accurately reproduced the behaviour of an elastic solid

material and this additionally implies the suitability of the strain energy equivalence

technique used to calibrate the PSM mesh. It was furthermore shown that the PSM
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dealt reasonably well with softening behaviour and the development of fracturing,

although the results were dependent on the particular failure criterion employed.

During this benchmark testing, the advantages of a particulate mechanics framework

over a continuum framework were also clearly demonstrated, since it could be seen that

the PSM dealt naturally with the break up of an initially continuous material into

discrete pieces. It can furthermore be noted that, in contrast to a continuum framework

in which fracturing behaviour is developed, there was no requirement to remesh or

redefine elements or boundaries in the PSM mesh. Additionally, while the development

of a discrete fracture pattern in a solid mechanics framework may be limited to

predefined paths, the freedom of a fracture pattern to propagate naturally in a particulate

mechanics framework, developing meandering and branching behaviour, was also

demonstrated with the PSM.

In order to promote this realistic fracture growth behaviour, to allow the

modelling of fracturing in heterogeneous materials and to eliminate the possibility of

fracture growth being controlled by the configuration of the particle assembly, it is

suggested, by Schlangen and Garboczi [79], that a randomly configured assembly is

considered. This would thus be an appropriate extension of the work carried out for this

thesis, which was limited to the study of regular particle assemblies. Random variation

of the material strength in a PSM mesh was briefly considered in this work, although it

was seen to have little affect on the behaviour of the benchmark model. It is felt

however, that implementation of a random arrangement of particles with the PSM will

encounter several difficulties. Firstly, limitations of the PFC3D modelling environment,

in which the particulate mechanics framework was developed during the course of this

work, make it difficult to vary the stiffness of the inter-particle links in the PSM mesh.

Secondly, the strain energy equivalence technique developed by Morikawa and

Sawamoto [63] would no longer be directly applicable to a randomly configured particle

assembly. While similar techniques have been employed in order to establish

continuum equivalence in randomly configured lattice models, it is likely that it will be

difficult to do the same in a particle assembly, such as those created with the PSM, in

which the inter-particle links have no cross-sectional area. Further investigation will be

required in this area.
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The second main area of investigation considered during this work was the

modelling of the fluid phase. While it was concluded, from the results of benchmark

testing, that the PFM has significant potential, it was also acknowledged that a

considerable amount of work must be undertaken before it will be possible to accurately

model the behaviour of a specific fluid, especially in combination with a solid phase

material. The two main difficulties encountered with the application of the PFM were,

firstly, a lack of stability in the flow systems developed with the model and, secondly, in

the capacity to calibrate the model for particular fluid properties. Given these problems,

the possibility of employing an entirely different type of fluid model, in conjunction

with the particulate representation of a solid material, is considered.

During the course of this work, as an alternative technique to the PFM, it was

attempted to represent fluid behaviour through the application of simple forces

corresponding to fluid pressures. Itwas concluded, however, that, while it worked for a

simple case, it would be very difficult to model complex fluid behaviour in an irregular

fracture pattern with this technique. It was further noted that several, simplifying

assumptions had to be made for the fluid behaviour before the technique could

practically be implemented. In contrast, it is hoped that, once refined, the PFM will

naturally model complex fluid flow in any situation, without the need for any

simplifications or assumptions.

A further possible method of implementing fluid behaviour would be to utilise a

dedicated fluid modelling code, acting in combination with the particulate mechanics

framework. This would determine the fluid flow behaviour according to the current

configuration of the particle assembly and calculate the appropriate fluid pressures to be

applied to the solid material. Techniques of this kind have previously been shown to

work well in various schemes (Bruno et al. [11], Rouainia et at. (78).) However, it is

felt that such as technique would defeat the purpose of the single software particulate

mechanics framework, since separate codes are required and information must be

transferred back and forwards between them in a staggered analysis. The more efficient

single software scheme would solve both the solid and fluid models simultaneously

with a single solver.
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It is thus concluded that it remains worthwhile to pursue the concept of a particle

fluid representation, such as the PFM, that can interact with a particulate representation

of a solid material, such as the PSM, within a single modelling framework.

Alternatively, a further possibility may be the development of other forms of particle

representation for the fluid phase, such as Smooth Particle Hydrodynamics (SPH),

within the particulate mechanics framework. However, this would again require the use

of separate solvers for the solid and fluid phases and, for the purposes of the framework

developed during this project, even if SPH could be realised through code written in the

FISH language associated with PFC3D, it is likely that it would be extremely

computationally expensive.

The final material phase considered in this work is that of granular material.

Given the particulate mechanics basis of the modelling framework a granular material is

naturally modelled, however, where granular materials occur in geomechanical

problems they are likely to interact with solid and fluid materials. While these

combinations were not specifically tested, the potential for the particulate mechanics

framework to handle the simultaneous interaction of solid, fluid and granular phases

was illustrated in the course of benchmark testing of the combined solid and fluid (PSM

+ PFM) models, during which individual particles, dislodged from the solid material,

were carried along by the fluid. As before, it can be seen that all of these phases can be

dealt with in a single framework employing one solver. Furthermore, the partial

conversion of a continuous solid material to a discrete, particulate material is naturally

captured and again this is achieved without the need for complex remeshing. This is

behaviour that it would certainly be difficult to model in a continuum mechanics

framework.

It may be noted that, in order to realistically represent granular material, such as

sand or proppant, in a combined model such as that discussed above, it would be

necessary to employ a very large number of small particles. A consequence of large

numbers of particles is increasing computational expense and it was noted, even with

the relatively small benchmark models developed during the course of these studies,

that some of the analyses were reasonably slow to run. It is conceded however that

these benchmark studies were conducted on what may now be considered a slow

machine. It is further acknowledged that the code, developed in the FISH language
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associated with PFC3D, was not maximally efficient. It is felt that with an optimised and

perhaps purpose written particulate mechanics code, running on a powerful computer,

this modelling framework could be practically applied to modelling realistic, large-scale

geomechanical problems. The available possibilities can only increase as computer

power develops.

In overall assessment of the particulate modelling framework, it is thus

concluded that, although the capabilities are currently limited, there is significant

potential for the development of a simple and robust framework that can model

complex, multi-phase problems, and has the ability to combine various material scales

and can furthermore naturally capture complex processes such as fracturing.

As an ultimate aim for the particulate mechanics framework, it would be highly

desirable, given the nature of geomechanical problems such as hydraulic fracture

treatments, to develop a fully three-dimensional framework. Although this may be a

considerable advance from what is currently feasible, it would seem to be a reasonable

goal since some investigation of three-dimensional lattice type models have already

been conducted (Beranek and Hobbelman [8]) and the particulate mechanics

environment is readily applicable in three dimensions. However, before a three-

dimensional framework can be developed, various problems, such as the calibration of

the various phase models in three dimensions, would have to be addressed. As

mentioned previously, this has not yet been achieved for all cases in two dimensions.

Furthermore, it is probable that one of the largest problems encountered will be the

computational requirement associated with the huge numbers of particles required to

construct a fully three-dimensional model on a realistic scale. Even considering these

potential problems it is concluded that the particulate mechanics framework holds

significant promise as a versatile, alternative modelling framework for many

applications and particularly those concerning fracturing geomaterials.
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7.6. The Wider Implications for Lattice Type Modelling

The particulate mechanics framework and specifically the Particle Solid Model (PSM),

developed during the course of this work, is essentially equivalent to a lattice model.

The concept behind a lattice type model is to replace a continuous material with a

framework of simple beam- or truss-like elements that individually develop simple

behaviour, and are consequently simple to analyse, while the overall lattice develops

behaviour equivalent to the continuum material which it has replaced.

Typically, lattice models have been applied at the micro-scale, with elements on

the order of millimetres in length, in order to capture grain scale phenomena (D'Addetta

et al. [20]), and there are many examples of studies in which this type of application has

been shown to produce excellent results (Bolander et al. [9], Chang et al. [14],

Herrmann et al. [34], Hrennikoff [36], van Mier [59], Schlangen and Garboczi [79],

Schlangen and van Mier [80, 81, 82], Tzschichholz [87], Tzschichholz and Herrmann

[88], Tzschichholz et al. [89], van Vliet [95]). However, when considering large-scale

structures, it becomes impractical to apply a lattice type model, given the numbers of

elements that would be required. In these cases, when phenomena associated with the

material grains become less important and the material can be regarded as essentially

homogeneous, it is most efficient to employ continuum mechanics models. A

disadvantage of continuum mechanics models is that, if it is desirable to introduce

discontinuous processes such as fracture, it is necessary to consider some kind of

material length scale. A length scale is also accounted for when considering higher

order continua, such as Cosserat type media, as rotational degrees of freedom and

consequently moments, are taken into account. In contrast, it is to situations such as this

that lattice type models are particularly suited. Since a lattice type model consists of

individual linear elements, joined at their ends by nodes, a length scale is inherently

available. Thus, a lattice type model provides a simple framework that can be naturally

applied to the analysis of both continuous and discrete processes within the same model.

During the course of this work, it has been attempted to exploit this characteristic of

lattice type models in modelling large-scale structures and, rather than their typical

micro-scale application, meso- and macro-scale lattice type models were developed,

with elements on the order of tens of centimetres in length.
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Although micro-scale lattice models have been shown to develop the expected

overall behaviour of reasonably large bodies of material while considering only simple

behaviour in the individual lattice elements, it was found that in order to accurately

develop overall material behaviour with meso-/macro-scale lattice type models, it was

necessary to consider element behaviour based on equivalent continuum principles.

This is a similar concept to the application of continuum mechanics models that employ

phenomenological laws in order to reproduce the overall behaviour of large-scale

structures, although it may be noted that the inherent length scale and consequent

natural ability to capture discrete behaviour remained available in the meso-/macro-

scale lattice type models.

During the course of this work, application of continuum principles to the lattice

type model was made to work well under conditions of simple elastic behaviour

however difficulties were encountered in implementing more complex softening

behaviour. It is hoped that in the future, the development of more rigorous integrations

of lattice type model meshes and continuum mechanics principles may allow these

problems to be overcome, thus leading to the creation of a highly robust particulate

modelling framework in which discrete behaviour can be readily modelled in large-

scale structures.

A possible avenue for this development is the notable similarity between lattice

type models and micro-plane models. In its simplest form, the micro-plane/lattice

analogy relates the limited number of failure planes, considered by a micro-plane model

to pass through a particular material point, to the limited number of discrete inter-

particle link or lattice elements, in which failure can occur, around a particular node of a

lattice mesh. The equivalence of micro-plane models and particulate models, of the

type employed in the creation of the PSM, has been examined in detail by Kuhl et al.

[46] who compared the normal and shear stiffnesses, acting at an inter-particle contact,

to the normal and tangential elastic moduli, considered on a micro-plane. They found

that both model types produced very similar behaviour and further proposed that, given

their natural abilities to deal with grain scale behaviour but their consequent

computational expense for large-scale applications, particle models could be used to

carry out microstructural analyses in order to determine micromechanical properties

which could subsequently be entered into micro-plane based finite element models.
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This kind of application certainly warrants further investigation, however, it is felt that

it may also be possible to apply micro-plane formulations directly to meso-/macro-scale

lattice type models. In order to implement such a scheme an equivalent micro-plane

could be considered for each inter-particle link or lattice element. As in the

comparative study conducted by Kuhl et al. [46], the normal and shear contact forces

developed by the interaction of particle contact pairs, via contact springs, could be

related to the normal and shear components of tractions acting on each plane considered

by a micro-plane model. Consequently, any failure criterion that can be developed for a

micro-plane model could also be applied to lattice type model. It is anticipated that

softening behaviour, as determined by the micro-plane formulation, could be realised in

the lattice type model in much the same way as was realised in the elastic-softening

criteria developed during the course of this work (See Chapter 5).

In addition to the determination of failure conditions, it should also be possible

to use the information gathered from micro-plane analyses, carried out on planes

equivalent to inter-particle links or lattice elements, to determine the continuum stress-

strain state at points in an equivalent continuum, coincident with the particle centroids

or lattice nodes. This would result in a non-local measurement of the stress-strain state

similar to the granular stress measurements described earlier in this thesis (See Chapter

3, Section 3.4.2.). However, in contrast to the granular stress tensors, there would be no

requirement to employ granular-continuum stress conversion factors. Hence, this

system would seem to be potentially more readily applicable to deforming and irregular

particle assemblies and should furthermore be applicable under conditions of softening

behaviour.

If a rigorous system to apply equivalent continuum principles to lattice type

models, such as that described above, can be developed, it will allow meso- and macro-

scale lattice type models to be readily employed in the modelling of large-scale

structures. However, it may also be noted that lattice type models are equally applicable

on scales smaller than the micro-scale to which they are typically applied. In fact, if we

consider nano-scale or even molecular- and atomic-scale problems, then lattice type

models become highly representative of the material structure and continuum concepts,
I

such as stress, become unworkable in bonds that cannot reasonably be considered to

have measurable cross-sectional areas. It may be argued that the purest and most
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realistic material model that can be constructed would consider material structure on the

atomic level, where only simple laws would required to determine if an atomic bond

was intact or not. Clearly, with current technology, it is not feasible to model even

small machine components at this level, however, in the future this kind of model may

become practical for all scales of engineering.

In conclusion, it can be seen that while lattice type models are highly suited to

modelling material at extremely small scales they are equally applicable over a wide

range of modelling levels. This has been demonstrated during the course of this work

where it has been shown that, as long as behavioural principles appropriate to the scale

of the problem are applied, lattice type models can be utilised where other, less versatile

types of model are more typically employed. Thus, advantage can be taken of the

simple implementation of lattice type models and their inherent ability to capture both

continuous and discrete behaviour simultaneously, in any scale of problem. Once the

behaviour of a lattice type model developed for a specific type of problem is

understood, it is largely applicable to any scale of problem and it thus concluded that

considerable potential exists in the development of lattice type modelling frameworks.

The work carried out for this thesis has also demonstrated the potential of lattice type

models and particularly particulate mechanics models for the implementation of multi-

physics problems, an area of modelling for which there is much demand and

opportunity. In summary, it can therefore be concluded that extensive further

investigation in this field will be extremely valuable and highly worthwhile for all fields

in which computational analysis is applicable.
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Appendix II:

Granular-Continuum Stress

Conversion Factors

This Appendix contains the individual derivations of the four granular-continuum stress

. f G-C G-C G-C d G-C . dconversion actors, a(x, x) , a(x, y) , a(y, x) an a(y, y) , require to convert

the components of a granular stress tensor, as developed in the particles of the regular

hexagonally packed bonded particle assembly employed by the Particle Solid Model

(PSM) (See Fig. AII.l. below), to the components of an equivalent continuum stress

tensor. The technique applied in this Appendix is taken directly from that described in

Section 3.4.2. of Chapter 3.

Fig. All. 1. Typical Example of Regular Hexagonally Packed Particle Assembly Employed by the

Particle Solid Model
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a(x,x)G-C:_ Conversion Factor for granular stress, (j~x' to continuum stress, (jxx.

Sample of
PSM mesh Particle under

consideration

..J3r

Fig. AII.2. Diagram of Simple Loading Case Considered in Order to Derive Granular -

Continuum Conversion Factor for Normal Stress in the x-direction

From examination of the controlled loading case, shown in Fig. AI/'2. above, the

contact forces acting on the particle 'p', as a result of the external applied load, P, can

be determined (See Fig. AIl.3. below). It may be noted that, although there are three

contact points through which the load, P, applied in the x-direction could be resisted

(See Fig. AII.3. a) ), the lack of confinement in the y-direction suggests that it is most

reasonable to assume that the load is transferred directly through the particle. The

validity of this assumption was confirmed by observation of a PSM mesh subjected to

loading in the x-direction as was the case for the Uniaxial Benchmark Problem (See

Chapter 4, Section 4.2.3.2.). The resulting contact forces on a particle at the centre of a

PSM mesh, at some distance from the externally applied load, are shown in Fig. AlI.3.

b).
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a)

Positions of

con~c: \\
--.----

/

/ Particle 'p'

p

\
Actual reactive
contact force

i
i
~

External
Applied Load

Lx

i
I

t
Total contact
forces acting
on particle

b)

Fig. AI/.3. Diagram of Development of Contact Forces on the Particle 'p' Experiencing Normal

Stress in the x-direction Showing a) the reaction to external loading and b) the total resulting

contact forces on the particle

As derived in Section 3.4.2. of Chapter 3, the granular-continuum stress conversion

factor for the Uxx stress component, a(x, x)c-c , can be written as shown in Eq. 3.46.,

(repeated below).

P V(p)
a(x x)G-C -,-_"-X _-,- _

. - A "Ix(e) - x(p)ln(e,p) F(e)
x~' I X X

Ne

Eq.3.46.

Hence, from examination of Fig. All. 3. it can be seen that the following values can be

substituted into Eq. 3.46. in order to calculate the granular continuum stress conversion

factor for the normal stress component in the x-direction, a(x, x)c-c .
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The volume of the spherical particle, 'p', is,

Eq. AII.1

The distance between the particle centroid and the contact points, assuming small

deformations t, is,

Eq. AII.2.

The component of the unit normal from the particle centroid to the contact point, in the

x-direction is,

nx= ±1 Eq. AII.3.

The component of the contact force in the x-direction is,

Fx=±P Eq. AII.4.

The equivalent continuum area associated with the external load acting on a unit

thickness continuum, as shown in Fig. AII.2., is,

A = "/Jr.1 Eq. AII.S.

Substituting these values into Eq. 3.46. for the two contact forces acting on the particle,

as shown in Fig. AI!.3. b), gives the following solution for the granular-continuum

conversion factor for the component of normal stress in the x-direction,

t Although the initial distance between the centroid of a particle and a contact on the surface of that

particle will be equal to the particle radius, this distance will change when the particle assembly deforms.

In order to maintain a constant value for the conversion factor it can be assumed that only small

deformations occur and that, consequently, the separation between the particle centroid and the contacts

remains approximately equal to the particle radius.
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_p.17rr3
(X(X,X)G-C = 3

.J3r.((r. -l.P)+ (r.1. - p)) Eq. AI/.6 .

which simplifies to give,

G-C 2nr
(X(x,x) = 3.J3 Eq. AI/.7.

a(y, y)G-c:_ Conversion Factor for granular stress, O'~, to continuum stress, O'yy.

Sample of
PSM mesh

r
Particle under
consideration

Fig. AI/A. Diagram of Simple Loading Case Considered in Order to Derive Granular -

Continuum Conversion Factor for Normal Stress in the y-direction

From examination of the controlled loading case, shown in Fig. AII.4. above, the

contact forces acting on the particle 'p', as a result of the external applied load, P, can

be determined (See Fig. AIl.S. below).
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P
External
Applied ____
Load

a)

.',"At~j\.~
.012 PI2~ Positions of

Actual reactive/" r Contacts
contact forces

t.-.-

PI2 PI2

b)

Total contact
forces acting
on particle

PI2 PI2

Fig. AII.S. Diagram of Development of Contact Forces on the Particle 'p' Experiencing Normal

Stress in the y-direction Showing a) the reaction to external loading and b) the total resulting

contact forces on the particle

Although there are four contact points that can be considered to act on one half of the

particle two of these contacts are aligned exactly in the x-direction and are assumed not

to resist any load in the y-direction (See Fig. AII.5. a)). Therefore, the entire applied

load is resisted by the remaining two contact points as shown above. The resulting

contact forces on a particle at the centre of a PSM mesh, at some distance from the

externally applied load, are shown in Fig. All. 5. b).

In a similar fashion to the equation describing the granular-continuum stress

conversion factor for the O';a stress component (See Eq. 3.46. and Section 3.4.2. of

Chapter 3), an equation can be derived for the granular-continuum stress conversion

factor for the ayy stress component, a(y, y)G-C (See Eq. All. 8.).
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PV{p)
G-C y

a(y,y) = A "lx{C) _ x(p)ln{C,p) F{c)
y£..J I I Y Y

N.

Eq. AII.B.

From examination of Fig. AI/.5. it can be seen that the following values can be

substituted into Eq. AI/.8. in relation to the calculation of the granular continuum stress

conversion factor for the normal stress component in the y-direction, a(y. y)G-C •

The volume of the spherical particle, 'p', is,

Eq. AII.9.

The distance between the particle centroid and the contact points, assuming small

deformations (See t on page 403), is,

Eq. AI/.10.

The component of the unit normal from the particle centroid to the contact point, in the

y-direction is,

ny =±f- Eq. AI/.11.

The component of the contact force in the y-direction is,

PF =±-
y 2 Eq. AI/.12.

The equivalent continuum area associated with the external load acting on a unit

thickness continuum, as shown in Fig. AI/.4., is,

A = 2r.l Eq. AI/.13.
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Substituting these values into Eq. A1I.8. for the four contact forces acting on the particle,

as shown in Fig. AII.5. b), gives the following solution for the granular-continuum

conversion factor for the component of normal stress in the y-direction,

Eq. AII.t4.

which simplifies to give,

G-C 21Cr
£X(y,y) == r;;

3,,3 Eq. AII.tS.

a(y, x)G-c:_ Conversion Factor for granular stress, (j~, to continuum stress, (jyx'

Q •

Sample of
PSM mesh

Particle under
consideration

Fig. AII.6. Diagram of Simple Loading Case Considered in Order to Derive Granular-

Continuum Conversion Factor for Shear Stress across the y-direction
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From examination of the controlled loading case, shown in Fig. AIl.6. above, the

contact forces acting on the particle 'p', as a result of the external applied load, Q, can

be determined (See Fig. AIl.7. below).

External
Applied
Load ..........0__ / Particle 'p'

a) cl-'-

\,,
'~Positions of

Contacts

0/2:--H ___

Actual reactive/ ,/
contact forces

b)

Total contact
forces acting
on particle

Fig. AII.7. Diagram of Development of Contact Forces on the Particle 'p' Experiencing Shear

Stress across the y-direction Showing a) the reaction to external loading and b) the total

resulting contact forces on the particle

Although there are four contact points that can be considered to act on one half of the

particle two of these contacts are aligned exactly in the x-direction and are assumed to

experience no displacement relative to their neighbouring particles. Consequently, they

will not develop contact forces under the shear loading conditions applied in the

controlled loading case shown in Fig. AII.6. The validity of this assumption was

confirmed by observation of a PSM mesh subjected to shear loading conditions. The
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resulting contact forces on a particle at the centre of a PSM mesh, at some distance from

the externally applied load, are shown in Fig. AIl.7. b).

An equation similar to those derived for the granular-continuum stress

conversion factors for the normal components of the stress tensor (See Eq. 3.46. & Eq.

A1l.8. and Section 3.4.2. of Chapter 3). can be developed for the conversion factor for

the Ojx shear stress component, a(y,x)G-C (See Eq. All. 16.).

Qv(P)
a( x) G-C =- -:---=--..,..---

y, A ~lx~C) _x~P)ln(c.P)F(C)
y.t..J I I Y X

Ne

Eq. AII.tB.

From examination of Fig. All. 7. it can be seen that the following values can be

substituted into Eq. AI1.16.. in relation to the calculation of the granular continuum

stress conversion factor for the shear stress component across the y-direction,
G-Ca(y, x) •

The volume of the spherical particle, 'p', is,

Eq. AII.17.

The distance between the particle centroid and the contact points, assuming small

deformations (See t on page 403), is,

Eq. AII.1B.

The component of the unit normal from the particle centroid to the contact point, in the

y-direction is,

n =±~y 2 Eq. AII.19.
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The component of the contact force in the x-direction is,

F =+Q
x -2 Eq. AII.20.

The equivalent continuum area associated with the external load acting on a unit

thickness continuum, as shown in Fig. AIl.6., is,

A = 2r.l Eq. AII.21.

Substituting these values into Eq. AIl.16. for the four contact forces acting on the

particle, as shown in Fig. All. 7. b), gives the following solution for the granular-

continuum conversion factor for the component of shear stress across the y-direction,

Q4 3
G~ - J~

a(y,x) = 2r.(~.~.-t)+~.~.-t)+~.-f.t)+~.-f .t)) Eq. AII.22.

which simplifies to give,

G-C znr
a(y,x) = 3Ji Eq. AII.23.

a(x, y)G-c:_ Conversion Factor for granular stress, O'~-c , to continuum stress, CTxy•

Given that the shear components of the granular stress tensors computed by PFC3D are

equal, such that O'~ = a!, it may be assumed that the granular-continuum stress

conversion factors for the shear stress components are also equal, such that a(y, x)G-C =

a(x, y)G-c. However, this may be confirmed numerically by considering equilibrium

conditions for a particle under shear loading conditions (See Fig. AIl.B. below).
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Lx

Fig. AII.B. Diagram Showing Equilibrium Conditions for Particle under Shear Loading

Conditions as Shown in Fig. AII.7. b)

In order for equilibrium conditions to exist for a particle subjected to the horizontal

contact forces developed under the applied shear load, Q, as described in Fig. AIl.7., a

corresponding set of vertical contact force couples are indicated. Due to the difference

in the length of the vertical and horizontal lever arms, measured between the particle

centroid and the positions of the contacts, the vertical contact forces must have a value

~3 times those of the horizontal contact forces (See Fig. AII.B. above).

The procedure used to derive the granular-continuum stress conversion factor,

a(y,x)G-C, can then be applied to the derivation of the conversion factor a(x,y)G-c.

From Eq. AI1.16. it follows that a similar equation can be written for a(x,y)G-C as

shown below.

Eq. AII.24.

From examination of Fig. All. 7. and Fig. AIl.B. it can be seen that the component of the

unit normal from the particle centroid to the contact point, in the x-direction is,

Eq. AII.2S.
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It can further be seen that the component of the contact force in the y-direction is,

F =+ ..fjQ
y - 2 Eq. AII.26.

With the exception of these, the values of the variables applicable in the calculation of

the conversion factor a(x,y)G-C (See Eq. AII.24.) are the same as those applicable to the

calculation of a(y,x)G-C (See Eq. AI1.16. to Eq. AIl.21.). Substituting into Eq. AIl.24.

for the four vertical contact forces, as shown in Fig. All. B., gives the following solution

for the granular-continuum conversion factor for the component of shear stress across

the x-direction,

Eq. AII.27.

which simplifies to give,

G-C 21rr
a(x.y) = r::;

3v3
Eq. AII.2B.
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Appendix III:

FISH Code

AIII.1. Introduction

This Appendix contains routines written in FISH code with the purpose of

supplementing the behaviour of the distinct element method applied in PFC3D in order

to implement fluid behaviour with the PFM (See Chapter 4, Section 4.3.) and the failure

criteria for the PSM (See Chapter 5). The codes are presented in full and comments are

shown in bold type. Where it was felt appropriate further information has been given

concerning the User Defined Variables and User Defined Functions in the Glossaries at

the beginning of the Chapter. It may be noted that many more, smaller routines were

developed in FISH for the purposes of creating the models, collating data and

processing results, some of which are referred to in the following. However, the precise

details of those routines were not considered critical to the work carried for this thesis

and it was thus felt unnecessary to list them here.

AIII.2. Glossary of User Defined Variables

bondarea the apparent cross-sectional area of the inter-particle link elements

derived from the equations of normal stiffness for the link elements

and employed in the redistribution of stresses as forces (See Chapter

5, Section 5.7.1.).

broken_bonds simple total of number of link elements removed from the PSM mesh

through any of the failure criteria.

cst used to store the variation in strength of an element from the mean

value when random elements strengths were employed. The actual
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strength of the PFC3D 'contact bond' was set unbreakably high

(lx1021N) and assigned a random variation of plus or minus lx102oN.

The size of the variation was then interpreted in the FISH code as the

variation from the mean material strength, flo up to a maximum

percentage variation defined with the variable maxmin.

drag for the coefficient of drag required for the PPM (See Chapter 4, Section

4.3.2.).

dsigma the excess or relaxation stress (See Chapter 5, Section 5.7.1.).

dwght weighting function used to resolve problems with drag forces in

interactions between PSM and PFM particles (See Chapter 4, Section

4.4.1.).

elasrnax maximum elastic strain in and inter-particle link element.

eps measured uniaxial strain in an inter-particle link element.

fracendl model specific identifier for particle at the junction of the mesh

boundary and a fracture wall.

fracendpresup force representative of fracture fluid pressure applied to particle at the

junction of the mesh boundary and a fracture wall.

fracpresdown force representative of fracture fluid pressure applied to particles in a

fracture wall (opposite to fracpresup).

fracpresup force representative of fracture fluid pressure applied to particles in a

fracture wall (opposite to fracpresdown).

ft predefined mean material strength.

Gsubf predefined fracture energy release rate.
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rnarkerlid, rnarker2id element specific identifiers for Marker particles

delineating diamond shaped equivalent continuum areas considered by

Mark 4 and Mark 5 failure criteria. During execution of the failure

criteria, these identity numbers are read from tables constructed by a

separate FISH routine prior to the running the fracture analysis.

rnaxmin maximum percentage variation of material strength above and below

mean value. Used in conjunction with cst.

poissons predefined Poisson's ratio of equivalent continuum material.

radinfdrag radius of influence of drag required for the PPM (See Chapter 4,

Section 4.3.2.).

radinfrep radius of influence of repulsion required for the PPM (See Chapter 4,

Section 4.3.2.).

radius PSM particle radius used in construction of PSM mesh and

determination of uniaxial strains.

rep for the coefficient of repulsion required for the PPM (See Chapter 4,

Section 4.3.2.).

stresseoeff granular-continuum stress conversion factors (See Chapter 3, Section

3.4.3., Chapter 4, Section 4.2.3.2.2. and Chapter 5, Section 5.6.1.).

ubond measured length of an inter-particle link element.

upstrrnpres force representing external fluid pressure acting in PFM. The

magnitude of this force is calculated by the separate FISH routine

updownpresfield.

youngs predefined Young's Modulus of equivalent continuum material.
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AIII.3. Glossary of User Defined Functions

fracshape function used to determine and record the positions of the particles in

the wall of a fracture so that fracture width profiles can be plotted (See

Chapter 6, Section 6.2.3.).

fracsurface function that flags particles making up walls of fracture during crack

propagation so that the appropriate fluid pressure forces can be

applied in subsequent time steps.

fractirne simple function to determine and record the model time at which a

fracture propagation event occurs.

rosette_solver function used to analytically solve simultaneous equations in

order to calculate normal and shear stresses in terms of the global

coordinate system from simple uniaxial strains equivalent to strain

gauge measurements (See Chapter 5, Section 5.8.1.). The function

makes use of the variables straina, strainb, strainc, anglea,

angleb and anglec.

updownpresfield function used to calculate the force to applied to a PFM particle

in order to represent a predefined external fluid pressure.

Biller experience

hard· ware (hard'war1 The physical, touchable, material parts of a computer or other

system.
<http://www.dictionary.coDl> (25th June 2(02)

soft· ware (so!t'war', soft'-) The stuff you can only swear at!
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AUI.4. Particle Fluid Model Code

def attractrepulse
repfor = 1e4
dragfor = 1e3
radinfdrag = 2.2
radinfrep = 1.5
radinfdrag2 = (radinfdrag * radinfdrag)
radinfrep2 = (radinfrep * radinfrep)
updownpresfield, =................................ MAXN PARTXCLE LOOP •••
bpI = ball_head , loop over all particles
loop while bpI # null ,
bidl = b_id(bp1) ,
if b_ex(bpl) = 1 I

bxl = b_x(bpl) I

byl = b_y(bpl) I

bxv1 = b_xvel(bpl) I

byv1 = b_yvel(bpl) I

determine particle identity
checks if particle is 'fluid' particle

determine particle location

determine particle velocity

xdrag = 0.0 ;
ydrag = 0.0
xrep = 0.0
yrep = 0.0
xwdrag = 0.0
ywdrag = 0.0
xwrep = 0.0
ywrep = 0.0

reset all applied forces to zero

dwght = 0 ,
bp2 = ball_head I

loop while bp2 # null
bid2 = b_id(bp2) I

section
if b_ex(bp2) = 0 ;
exit section

else
endif
if bidl > 19999

NESTED PARTXCLE LOOP _••
reset weighting function
loop over all particles

;
~a= •• __ •• .=•••••__.=.._._•..•_••

determine particle identity

checks if particle is 'fluid' particle

if bid2 > 19999
exit section

else
endif

else
endif
if bidl = bid2
exit section

else
endif

; check if particles are both 'solid' particles
; NB particle id numbers model specific
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bx2 = b_x(bp2) determine 2M particle location
by2 = b_y(bp2)
bxv2 = b_xvel(bp2) determine 2M particle velocity
byv2 = b_yvel(bp2)

determine separation between particles and rejects
particle outwith radius of influence of repulsion

xdist = bx2 - bxl
modxdist = abs(xdist)
if modxdist < radinfrep
ydist = by2 - byl
modydist = abs(ydist)
if modydist < radinfrep
resdist = ((modxdist*modxdist) + (modydist*modydist»
if resdist < radinfrep2

determines repulsive force acting between particles
repulsive = (-l.O*repfor)/resdist

determine and sum components of repulsive force in global x and y
if xdist = 0.0
xdist = 0.00000001

else
endif
if xdist < 0 then
repangle = atan(ydist/xdist) + (pi)

else
repangle

endif
xrep xrep + (repulsive * cos(repangle»
yrep = yrep + (repulsive * sin(repangle»

atan(ydist/xdist)

else
endif

else
endif

else
endif

determine separation between particles and rejects
particle outwith radius of influence of drag

if modxdist < radinfdrag
ydist = by2 - by1
modydist = abs(ydist)
if modydist < radinfdrag
resdist = ((modxdist*modxdist) + (modydist*modydist»
if resdist # 0.0
if resdist < radinfdrag2

determine relative velocity of particles
relxvel = bxv1 - bxv2
relyvel = byvl - byv2
trelvel2 = ((relxvel * relxvel) + (relyvel * relyvel»
if bxv2 > -15/tdel

determines drag force acting between particles
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drag = (-1.0*dragfor*trelve12)/resdist
deter.mine and sum components of drag force in global x and y

if relxvel = 0.0
relxvel = 0.00000001

else
endif
if relxvel < 0 then
dragangle = atan(relyvel/relxvel) + (pi)

else
dragangle = atan(relyvel/relxvel)

endif
xdrag
ydrag =
dwght =

else
endif

else
endif

else
endif

else
endif

else
endif

endsection
bp2 = b_next(bp2)

xdrag + (drag *
ydrag + (drag *
dwght + 1

cos(dragangle))
sin (dragangle) )

endloop
,•••••••••••••••••••••••••••••••••••••••••••••• NESTED WALL LOOP •••

if bx1 < 0.0 model specific
wp3 = wall_head loop over all walls
loop while wp3 # null
wx3 = b_x (wp3)
wy3 = b_y(wp3)

deter.mine wall location

wxv3 = b_xvel(wp3)
wyv3 = b_yvel(wp3)

deter.mine x separation between particle and wall and rejecta
particle outwith radius of influence of repulsion

deter.mine wall velocity

1

wxdist = wx3 - bx1
modwxdist = abs(wxdist)
if modwxdist # 0
if modwxdist < radinfrep

deter.mine and sum x component of repulsive
force acting between particle and wall

wxrepulsive = «-1.0 * repfor) / (modwxdist * modwxdist))
if wxdist < 0 then
modifier = -1. 0

else
modifier 1.0

endif
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xwrep = xwrep + (modifier * wxrepulsive)
else
endif

else
endif

determine y separation between particle and wall and rejects
particle outwith radius of influence of repulsion

wydist = wy3 - by1
modwydist = abs(wydist)
if modwydist # 0
if modwydist < radinfrep

determine and sum y component of repulsive
force acting between particles and wall
* repfor) / (modwydist * modwydist))

;

wyrepulsive = ((-1.0
if wydist < 0 then
modifier = -1. 0

else
modifier = 1.0

endif
ywrep = ywrep + (modifier * wyrepulsive)

else
endif

else
endif

determine x relative velocity of particle and wall and
rejects particle outwith radius of influence of drag

if modwxdist < radinfdrag
1 determine relative velocity of particle and wall

relwxvel = bxv1 - wxv3
relwyvel = byv1 - wyv3
trelwvelx2 = «relwxvel * relwxvel) + (relwyvel * relwyvel))
determine and sum components of drag force in global x and y

wdragx = (-1.0*dragfor*trelwvelx2)/(modwxdist*modwxdist)
if relwxvel = 0.0
relwxvel = 0.00000001

else
endif
if relwxvel < 0 then
wdragangle = atan(relwyvel/relwxvel) + (pi)

else
wdragangle = atan(relwyvel/relwxvel)

endif
xwdrag = xwdrag + (wdragx * cos(wdragangle))
ywdrag ywdrag + (wdragx * sin(wdragangle))

else
endif

determine y separation between particle and wall and
rejects particles outwith radius of influence of drag
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modwydist = abs(wydist)
if modwydist < radinfdrag

I determine relative velocity of particle and wall
relwxvel = bxv1 - wxv3
relwyvel = byv1 - wyv3
trelwvely2 = «relwxvel * relwxvel) + (relwyvel * relwyvel»

determine and sum components of drag force in global x and y
wdragy = (-1.0*dragfor*trelwvely2)/(modwydist*modwydist)
if relwxvel = 0.0
relwxvel = 0.00000001

else
endif
if relwxvel < 0 then
wdragangle atan(relwyvel/relwxvel) + (pi)

else
wdragangle = atan(relwyvel/relwxvel)

endif
xwdrag = xwdrag + (wdragy * cos(wdragangle»
ywdrag = ywdrag + (wdragy * sin(wdragangle»

else
endif
wp3 = b_next(wp3)
endloop

else
endif

I •••••••••••••••••••••••••••••••••••••••••• END OF NESTED LOOPS •••
if b_x(bp1) < 0.0
if bid1 < 20000

application of upstream fluid pressure
NB model specific parameters

upstrm
else
endif

else
upstrm = 0

endif
if b_x(bp1) > 50.0
if bidl < 20000

upstrmpres

application of downstream fluid pressure
NB model specific parameters

dwnstrm = downstrmpres
else
endi f

else
upstrm = 0

endif
if dwght = 0
dwght = 1

else
endif

1 application of totalled repulsion and drag fore ••
b_xfap(bp1)=(xdrag/dwght)+xrep+upstrm+dwnstrm+xwdrag+xwrep
b_yfap(bp1)=(ydrag/dwght)+yrep+ywrep+ywdrag
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else
endif

bp1 = b_next(bp1)
endloop

end

AIII.S. Mark 1 Failure Criterion

def uniaxial_B
maxmin = 0.05
lastepsmax = 0.0
rbmin = 1000
rb = contact_head
loop while rb # null
section
if c_bflag(rb) = 1

loop over all inter-particle contacts

cb1 = c_ball1 (rb)
cb2 = c_ba1l2 (rb)
cblid = b_id (cb1)
cb2id = b_id(cb2)
cb1x = b_x (cb1)
cb1y = b_y(cb1)
cb2x b_x (cb2)
cb2y b_y(cb2)

check if link exists at contact
determine particle locations

I determine variation of element strength
cst = «(c_nstrength(rb)/le20)-10)*maxmin*ft)
ubond=(sqrt«(cb2x-cb1x)~2)+«cb2y-cb1y)A2») I element length
eps = (ubond - (2*radius»/(2*radius) I uniaxial element strain
elasmax = (ft+cst)/(youngs*le6) ; element Ultimate strain
if eps < elasmax check if element strain less than Ultimate

exit section
else
endif
if eps > elasmax
if eps > lastepsmax
lastepsmax = eps
rbmin = rb

check if element strain greater than
previous maximum

record new 'worst case' strain
record new 'worst case' element

else
endif

else
endif

else
endif
endsection

rb = c_next(rb)
endloop
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if type(rbmin) = 4
cpmin = rbmin
c_bflag(cpmin) = 0
broken_bonds = broken_bonds + 1
fracshape
fractime
fracsurface

else
endif

end

I delete 'worst case' element

AIII.6. Mark 2 Failure Criterion

def rankine_C2
maxmin = 0.05
strdiff = 0.0
rbmin = 1000
minsepangle = 1000
rb = contact_head loop over all inter-particle contacts

loop while rb # null
section
if c_bflag(rb) = 1
cb1 = c_ball1(rb)
cb2 = c_ball2(rb)
cb1id = b_id(cbl)
cb2id = b_id(cb2)

check if link exists at contact
determine particle identities

I

1

cb1sp =
cb1spll
cb1sp12
cb1sp21
cb1sp22
cb1s11 =

determine equivalent continuum stress tensors
in contact particle pair

b_stress(cb1)
= cblsp
= cb1sp + 1
= cblsp + 3

cb1sp + 4
mem (cblsp11)
mem(cb1sp12)
mem (cblsp21)

* stresscoeff
* stresscoeff

,1~ particle stress tensor
cb1s12 =
cb1s21 = * stresscoeff
cb1s22 = mem(cb1sp22) * stresscoeff
cb2sp = b_stress(cb2)
cb2spll = cb2sp
cb2sp12 = cb2sp + 1
cb2sp21 = cb2sp + 3
cb2sp22 = cb2sp + 4
cb2s11 = mern(cb2sp11) * stresscoeff
cb2s12 = rnern(cb2sp12) * stresscoeff
cb2s21 = mern(cb2sp21) * stresscoeff

12~ particle stress tensor
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cb2s22 = mem(cb2sp22) * stresscoeff

; ••••••••••••••••••••••••••••••••••••••••••••• ALTERNATIVE METHOD 1
I

;

Principal Stress in Element from Average of
Principal Stresses in Particles

; determine principal stresses from particle stress tensors
cblsmax=«(cblsll+cbls22)/2)+(sqrt««cblsll-cbls22)/2)A2)+

(cb1s12A2) )))
cb2smax=«(cb2s11+cb2s22)/2)+(sqrt««cb2s11-cb2s22)/2)A2)+

(cb2s12A2) )))
if cblsmax < (ft - (maxmin * ft»
if cb2srnax < (ft - (rnaxmin * ft»
exit section

else
endif

else
endif

check if failure
conditions probable

1 average of max principal stresses in particles
avsmax = (cblsmax + cb2smax)/2

1 determine variation of element strength
cst = «(c_nstrength(rb)/le20)-10)*maxmin*ft)
if avsrnax < (ft + cst)
exit section

else
endif

check if average maximum principal
stress greater than element strength
NOTE: DISALLOWS COMPRESSION FAILURE

;

calculate directions of maximum
principal stresses in particles

1

if cbls11 = cb1s22 then
the tal

else
thetal = (atan«(2*cbls12)/(cb1s11-cb1s22»»/2

(45*degrad)

endif
tta21 = 2 * theta1
cb1sx=«cb1s11+cb1s22)/2)+«(cb1s11-cb1s22)/2)*cos(tta21»+

(cb1s12*sin(tta21»
cb1sy=«cb1s11+cb1s22)/2)-«(cb1s11-cb1s22)/2)*cos(tta21»-

(cb1s12*sin(tta21»
if cb1smax = cb1sx then
srnaxangle1 = theta1

else
if cb1srnax = cb1sy then
smaxangle1 = theta1 + (90*degrad)

else
endif

endif
if cb2s11 = cb2s22 then
theta2 = (45*degrad)

else
theta2 (atan«(2*cb2s12)/(cb2s11-cb2s22»»/2
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endif
tta22 = 2 * theta2
eb2sx=«eb2s11+eb2s22)/2)+«(eb2s11-eb2s22)/2)*eos(tta22»+

(eb2s12*sin(tta22»
eb2sy=«eb2s11+eb2s22)/2)-«(eb2s11-eb2s22)/2)*eos(tta22»-

(eb2s12*sin(tta22»
if eb2srnax = eb2sx then
srnaxangle2 = theta2

else
if eb2srnax = eb2sy then
srnaxangle2 = theta2 + (90*degrad)

else
endif

endif
average direction of maximum principal stresses in particles

avsrnaxangle = (srnaxanglel + srnaxangle2)/2

I ••••••••••••••••••••••••••••••••••••••••••••• ALTERNATIVE METHOD 2
; Principal Stress in Element from Average

Stress Tensor in Element
calculate averaged equivalent continuum stress tensor in element

avsll = «eblsll+eb2s11)/2) * stresseoeff
avs12 = «ebls12+eb2s12)/2) * stresseoeff
avs21 = «ebls21+eb2s21)/2) * stresseoeff
avs22 = «ebls22+eb2s22)/2) * stresseoeff
calculate maximum principal stress in element from averaged tensor
avsrnax=«(avsll+avs22)/2)+(sqrt««avsll-avs22)/2)~2)+ (avs12~2»»

, determine variation of element strength
cst = «(e_nstrength(rb)/le20 )-lO)*rnaxmin*ft)

,

if avsrnax < (ft + cst)
if avsrnin < (ft + cst)
exit section

else
endif

else
endif
if avsll = avs22 then,
theta = (45*degrad) ,

check if average maximum principal
stress greater than element strength
NOTE: DISALLOWS COMPRESSION FAILURE

calculate direction of maximum
principal stress in element

else
theta = (atan«(2*avs12)/(avsll-avs22»»/2

end if
tta21 = 2 * theta
avsx=«avsll+avs22)/2)+«(avsll-avs22)/2)*eos(tta21»+

(avs12*sin(tta21»
avsy=«avsll+avs22)/2)-«(avsll-avs22)/2)*eos(tta21»-

(avs12*sin(tta21»
if avsrnax = avsx then
avsrnaxangle = theta

else
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if avsrnax = avsy then
avsmaxangle = theta + (90*degrad)

else
endif

endif
I •••••••••••••••••••••••••••••••••••••• == ••••••••••••••••••••••••••

cbix = b_x (cbi) deter.mine particle locations
cbiy b_y(cbi)
cb2x = b_x (cb2)
cb2y = b_y(cb2)
if cb2x = cbix I

bondangle = (90*degrad)
else
bondangle = atan((cb2y-cbiy)/(cb2x-cbix»

endif

deter.mine orientation of element

I deter.mine angle of separation between direction of average
, maximum principal stresses and element orientation

rotangle = abs(avsrnaxangle - bondangle)
if rotangle > (pi/2)
sepangle = pi - rotangle

else
sepangle = rotangle

endif
if sepangle < minsepangle
rninsepangle = sepangle

check if angle of Beparation

newstrdiff = (avsrnax -
strdiff = newstrdiff
rbrnin = rb

else
if sepangle = rninsepangle

if newstrdiff > strdiff
strdiff = newstrdiff
rbrnin = rb

I less than previous 'worst case'
(-l.O*(ft + cst»)/(-l.O*(ft + cst»

else
endif

else
rninsepangle = rninsepangle
rbrnin = rbrnin

endif
endif
else
endif

endsection
rb = c_next(rb)

endloop
if type (rbrnin) = 4
cprnin = rbrnin
c_bflag(cprnin) = 0 I delete 'worst ca•• ' element
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broken_bonds = broken_bonds + 1
fracshape
fractime
fracsurface
else
endif

end

AIII.7. Mark 3 Failure Criterion

def uniaxial_D
maxmin = 0.05
lastepsmax = 0.0
rbmin = 1000
baf = ball_head I

loop while baf # null
if b_ex(baf) = 3 I

b_xfap (baf)
b_yfap (baf)

b_xfap (baf)
b_yfap(baf) =

else
if b_ex(baf) = 2
b_xfap(baf) 0.0
b_yfap(baf) = fracpresdown

else
if b_ex(baf) = 1
if b_id(baf) = fracendl
b_xfap(baf) = 0.0
b_yfap(baf) = fracendpresup

else
b_xfap(baf) = 0.0
b_yfap(baf) = fracpresup

endif
else
b_xfap(baf) = 0.0
b_yfap(baf) = 0.0

endif
endif

endif
baf = b_next(baf)

endloop
rb = contact_head I

loop while rb # null
section
if c_bflag(rb) = 1
cbI = c_ball1(rb) I

cb2 = c_baI12(rb)

loop over all particle. to
re.et applied force. to

current boundary condition.
(corrective force •• et to .ero

before each calculation)

loop over all inter-particle contact.

check if link exist. at contact
dete~ine locations of particle.
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cb1id = b_id(cb1)
cb2id = b_id(cb2)
cb1x = b_x(cb1)
cb1y = b_y (cb1 )
cb2x = b_x(cb2)
cb2y = b_y(cb2)
cx = c_x(rb) I

cy = c_y(rb)
determine location of contact

I determine variation of element strength
cst = «(c_nstrength(rb)/le20 )-10 )*maxmin*ft)
ubond=(sqrt«(cb2x-cb1x)~2)+«cb2y-cb1y)~2») I element length
eps = (ubond - (2*radius»/(2*radius) I uniaxial element strain
e1asmax = (ft+cst)/(youngs*le6) I max. elastic strain

ultimate element strain
epsmax=«ft+cst)/(youngs*le6»+«ft+cst)/(softening*le6»

check if element strain less than max. elastic strain
in order to determine relaxation stress;

if eps < elasmax
dsigma = 0.0
exit section

else
epsplas = eps - elasmax
dsigma=(eps* (youngs*le6»-(ft+cst)+(epsplas* (softening* 1e6»

endif
I determine orientation of line between contact and 1·" particle

if cy = cb1y
if cx > cb1x
plasang1 = 0.0

else
plasangl = (180 * degrad)

endif
else
if cx = cb1x
if cy > cb1y
plasang1 = (90*degrad)

else
plasang1 = (-90*degrad)

endif
else
if cx < cb1x then
if cy < cb1y
oa = «cy-cb1y)/(cx-cb1x»
plasang1 = atan(oa)-(180*degrad)

else
oa = «cy-cb1y)/(cx-cblx»
plasangl = atan(oa)+(180*degrad)

endif
else
if cy < cb1y
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oa = «ey-eb1y)/(ex-eb1x»
plasang1 = atan(oa)

else
oa = «ey-eb1y)/(ex-eb1x»
plasang1 = atan(oa)

endif
endif

end if
endif

1 deter.mine orientation of line between contact and 2a4 particle
if ey = eb2y
if ex > eb2x
plasang2 0.0

else
plasang2 = (180 * degrad)

end if
else
if ex = eb2x
if ey > eb2y
plasang2 = (90*degrad)

else
plasang2 = (-90*degrad)

endif
else
if ex < eb2x then
if ey < eb2y
oa = «ey-eb2y)/(ex-eb2x»
plasang2 = atan(oa)-(180*degrad)

else
oa = «ey-eb2y)/(ex-eb2x»
plasang2 = atan(oa)+(180*degrad)

endif
else
if ey < eb2y
oa = «ey-eb2y)/(ex-eb2x»
plasang2 = atan(oa)

else
oa = «cy-eb2y)/(cx-eb2x»
plasang2 = atan(oa)

endif
endif

endif
endif

bondarea
calculate apparent cross-sectional area of element

(2*radius)/sqrt(3.0)/(1-(2*poissons»/(1+poissons)
calculate and apply x and y components of

corrective forces to particle pair
axl = -l.O*(dsigrna*cos(plasangl)*bondarea)
ayl = -l.O*(dsigrna*sin(plasangl)*bondarea)
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ax2 = -1.0*(dsigma*cos(plasang2)*bondarea)
ay2 = -1.0*(dsigma*sin(plasang2)*bondarea)
b_xfap(cb1)= b_xfap(cb1) + ax1
b_yfap(cb1)= b_yfap(cb1) + ay1
b_xfap(cb2)= b_xfap(cb2) + ax2
b_yfap(cb2)= b_yfap(cb2) + ay2
if eps > epsrnax I

if eps > lastepsrnax
lastepsrnax = eps
rbrnin = rb

else
endif

else
endif

else
endif

endsection
rb = c_next(rb)

endloop
if type(rbrnin) = 4
cprnin = rbrnin
c_bflag(cprnin) = 0 I

broken_bonds = broken_bonds + 1

check if element strain exceeds ultimate
check if greater than previous maximum

record new 'worst case' strain
record new 'worst case' element

delete 'worst case' element

fracshape
fractirne
fracsurface

else
endif
end

AIII.S. Mark 4 Failure Criterion

def rankine_E
rnaxmin = 0.05
rbmin = 1000.0
laste_exceed = 0.0
baf = ball_head I

b_yfap (baf)

loop over all particle. to
reset appli.d force. to

current boundary conditions
(corrective fore •••• t to zero

before each calculation)

loop while baf
if b_ex(baf)
b_xfap (baf)
b_yfap(baf) =

else
if b_ex(baf) = 2
b_xfap(baf) = 0.0

# null
= 3
b_xfap (baf)

b_yfap(baf) = fracpresdown
else
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if b_id(baf) = fracendl
b_xfap (baf) = 0.0
b_yfap (baf) = fracendpresup

else
b_xfap (baf) = 0.0
b_yfap (baf) = fracpresup

endif
else
b_xfap (baf) = 0.0
b_yfap (baf) = 0.0

endif
endif

endif
baf = b_next(baf)

endloop
rb = contact_head I

loop while rb # null
section
if c_bflag(rb) = 1
cbl = c_balll(rb) I

cb2 = c_bal12(rb)
cblid = b_id(cbl)
cb2id = b_id(cb2)
cblx = b_x (cbl)
cbly = b_y(cbl)
cb2x = b_x(cb2)
cb2y = b_y(cb2)
cx = c_x(rb) I

cy = c_y(rb)
rnarkerlid = 0
rnarker2id = 0
retnurn = c_ex(rb)
rnarkerlid = table(l,retnurn)
rnarker2id = table(2,retnurn)

loop over all inter-particle contacts

check if link exists at contact
determine locations of particles

determine location of contact

determine marker balls associated with
current link element from predefined table.

if rnarker2id = 0 I

bplO = ball_head I

loop while bplO # null
if b_id(bplO) = rnarkerlid
rnarkerladd = bplO
rnarker2add = bplO

endif
bplO = b_next(bplO)

endloop
else
if rnarkerlid = 0
bplO = ball_head
loop while bplO # null
if b_id(bplO) = rnarker2id

finds pointer. of marker ball.
& mirror marker ball. at edge.
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markerladd = bplO
marker2add = bplO

endif
bplO = b_next(bpiO)

endloop
else
bpiO = ball_head
loop while bpiO # null
if b_id(bpiO) = markeriid
markeriadd = bplO

endif
if b_id(bpiO) = marker2id
marker2add = bpiO

endif
bplO = b_next(bpiO)

endloop
endif

endif
; *********************
;

if b_x(cbi) > b_x(cb2)
bix = cblx
biy = cbiy
b2x = cb2x
b2y = cb2y

else
bix = cb2x
bly = cb2y
b2x = cblx
b2y = cbly

endif
mix = b_x(markerladd)
mly b_y(markerladd)
m2x = b_x(marker2add)
m2y = b_y(marker2add)

STRAIN FROM equivalent continuum DIAMOND AREA
(BALLI, BALL2, MARKERI, MARKER2)

assign numbering for force calculations

I coordinates of marker balls

1 strains of link elements for.ming triangles/diamond
epsa=«(sqrt«(blx-b2x)~2)+«bly-b2y)~2»)-(2*radius»/(2*radius»
ebup=«(sqrt«(b2x-mlx)~2)+«b2y-miy)~2»)-(2*radius»/(2*radius»
ecup=«(sqrt«(blx-mlx)~2)+«bly-miy)~2»)-(2*radius»/(2*radius»
ebdown=«(sqrt«(bix-m2x)~2)+«bly-m2y)~2»)-(2*radius))/(2*radius»
ecdowm=«(sqrt«(b2x-m2x)~2)+«b2y-m2y)A2»)-(2*radius))/(2*radius»
if bix = b2x
anga = pi/2

else
anga = atan«bly-b2y)/(blx-b2x»

endif

orientations of elements for.ming triangl.s/diamond

if mix = b2x
angbup = pi/2

else
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angbup = atan«rnly-b2y)/(rnlx-b2x»
endif
if rn1x = b1x
angcup = pi/2

else
angcup = atan«rnly-b1y)/(rn1x-b1x»

endif
if rn2x = blx
angbdown pi/2

else
angbdown = atan«rn2y-b1y)/(rn2x-b1x»

endif
if rn2x = b2x
angcdown = pi/2

else
angcdown = atan«rn2y-b2y)/(rn2x-b2x»

endif
straina = epsa
strainb = ebup
strainc = ecup
anglea = anga
angleb = angbup
anglec = angcup

, calculation of strain tensor in upper triangle

rosette_solver
eupperx = xxx
euppery = yyy

eupperxy = zzz
straina epsa I

strainb = ebdown
strainc = ecdown
anglea = anga
angleb = angbdown
anglec = angcdown

calculation of strain tensor in lower triangle

rosette_solver
elowerx = xxx
elowery = yyy
elowerxy = zzz
ell = (eupperx + elowerx)/2

(eupperxy + elowerxy)/2
el2
(euppery + elowery)/2
poissons
(l-poissons)
(l-(2*poissons»/2

«youngs*le6)/«l+poissons)*(1-(2*poissons»»
= D5*«D2*el1)+(D1*e22» stresS tensor from strain tensor

; calculate strain tensor in bond
e12 =
e2l =
e22
;D1 =
;D2
;D3 =
D5 =
;sll
;s12
;s21
;s22

D matrix variables

= D5*(D3*el2)
= s12
= D5*«Dl*el1)+(D2*e22»
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if e2 > el
el = e2
e2 = el

else
el = el
e2 = e2

endif
if el <= 0.0
if e2 <= 0.0
exit section

else
endif

else
endif
I

ismax=«(sll+s22)/2)+(sqrt««sll-s22)/2)A2)+(sl2A2»))
ismin=«(sll+s22)/2)-(sqrt««sll-s22)/2)A2)-(sl2A2»))
I principal strains from strain tensor in bond
el=«(ell+e22)/2)+(sqrt««ell-e22)/2)A2)+(el2A2»»
e2=«(ell+e22)/2)-(sqrt««ell-e22)/2)A2)+(el2A2»»

establish strain state in positive
quadrants of e1-e2 space

determine variation of element strength
cst = «(c_nstrength(rb)/le20)-10)*maxmin*ft)
if est> (ft * 0.05)
exit section

else
endif
emax = max(el,e2)
if ell = e22 then I

theta = (4S*degrad)
calculate principal directions

else
theta = (atan«(2*el2)/(ell-e22»»/2

endif
ex=«ell+e22)/2)+«(ell-e22)/2)*cos(2*theta»+(e12*sin(2*theta»
ey=«ell+e22)/2)-«(ell-e22)/2)*eos(2*theta»-(e12*sin(2*theta»
if emax = ex then
emaxangle = theta

else
if emax = ey
emaxangle = theta + (90.0*degrad)

else
endif

endif .
I determine intersections of strain path with yield and failure lines
I terms A-E come from components of equations

defining yield and failure line.;

A_term =
B_term =
C_term
D_term =
E_term =

(e2/el)
«poissons - l)/poissons)
«(ft + cst)/poissons)*(1/D5»
(-1.0/(sqrt(2.0)-l»
«2*Gsubf)/«ft + cst)*(2*radius»)
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xint1 = (C_terrn/(A_terrn - B_terrn))
yint1 = (A_terrn*xint1)
xint2 = ((D_terrn*E_terrn)/(D_terrn-A_terrn))
yint2 = (A_terrn*xint2)
elgth = sqrt(((xint1)A2)+((yint1)A2))
ecurrent = sqrt(((e1)A2)+((e2)A2))
if ecurrent < elgth
exit section

check if strain state exceeds
yield surface

else
endif, determine shape of constitutive model along strain path
, and determine position of current strain state along it
tlgth = sqrt(((xintl-xint2)A2)+((yint1-yint2)A2))
slgth = sqrt(((xintl-e1)A2)+((yint1-e2)A2))
Eapp = (ft + cst)/elgth determine apparent Young's Modulus
Esapp = (ft + cst)/tlgth determine apparent Softening Modulus
dsigrna = (ecurrent-elgth)*(Eapp+Esapp) ; determine relaxation stress
if cb2x = cb1x determine orientation of link element
bondangle = (90.0*degrad)

else
bondangle = atan((cb2y-cb1y)/(cb2x-cb1x))

endif
rotangle = abs(bondangle - ernaxangle)
,determine component of relaxation stress in direction of link element
dsigrnabond = dsigrna * abs(cos(rotangle))
, determine orientation of line between contact and l·t particle
if cy = cb1y
if ex > cb1x
plasang1 0.0

else
plasang1 = (180 * degrad)

endif
else
if ex = cblx
if cy > cb1y
plasang1 = (90*degrad)

else
plasang1 = (-90*degrad)

endif
else
if cx < cblx then
if cy < eb1y
oa = ((cy-cb1y)/(cx-cb1x))
plasang1 = atan(oa)-(180*degrad)

else
oa = ((cy-cb1y)/(cx-cb1x))
plasang1 = atan(oa)+(180*degrad)

endif
else
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if ey < ebly
oa = ((ey-ebly)/(ex-eblx»
plasangl = atan(oa)

else
oa = ((ey-ebly)/(ex-eblx»
plasangl = atan(oa)

endif
endif

endif
endif
1 dete~ine orientation of line between contact and 2~ particle
if ey = eb2y
if ex > eb2x
plasang2 = 0.0

else
plasang2 = (180 * degrad)

endif
else
if ex = eb2x
if ey > eb2y
plasang2 = (90*degrad)

else
plasang2 = (-90*degrad)

endif
else
if ex < eb2x then
if ey < eb2y
oa = ((ey-eb2y)/(ex-eb2x»
plasang2 = atan(oa)-(180*degrad)

else
oa = ((ey-eb2y) / (cx-cb2x) )
plasang2 = atan(oa)+(180*degrad)

endif
else
if ey < cb2y
oa = ((ey-eb2y)/(cx-eb2x»
plasang2 = atan(oa)

else
oa = ((ey-eb2y)/(ex-eb2x»
plasang2 = atan(oa)

endif
endif

endif
endif

calculate apparent cro.s-.ectional area of element
bondarea=(D5*(2*radius»/sqrt(3.0)/Eapp

calculate and apply x and y component. of
corrective force. to particle pair

axl = -1.0* (dsigmabond*cos(plasangl) *bondarea)
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ay1 = -1.0*(dsigmabond*sin(plasangl)*bondarea)
ax2 = -l.0*(dsigmabond*cos(plasang2)*bondarea)
ay2 = -l.0*(dsigmabond*sin(plasang2)*bondarea)
b_xfap(cbl)= b_xfap(cbl) + axl
b_yfap(cbl)= b_yfap(cbl) + ayl
b_xfap(cb2)= b_xfap(cb2) + ax2
b_yfap(cb2)= b_yfap(cb2) + ay2
if slgth > tlgth check if strain state exceeds failure surface
if (slgth-tlgth»laste_exceed I check if greater than previous max.
laste_exceed = (slgth - tlgth) record new 'worst case' strain
rbmin = rb record new 'worst case' element

else
laste_exceed = laste_exceed
rbmin = rbmin

endif
else
endif
else
endif
endsection
rb = c_next(rb)
endloop
if type(rbmin) = 4
cpmin = rbmin
c_bflag(cpmin) = 0 I delete 'worst case' element
broken_bonds = broken_bonds + 1
fracshape
fractime
fracsurface

else
endif
end

AIII.9. Mark 5 Failure Criterion

def rankine_F
maxmin = 0.05
rbmin = 1000.0
laste_exceed = 0.0
baf = ball_head I

loop while baf # null
if b_ex(baf) = 3
b_xfap(baf) = b_xfap(baf)
b_yfap(baf) = b_yfap(baf)

else
if b_ex(baf) = 2

loop over all particle. to
reset applied forces to

current boundary condition.
(corrective force •• et to .ero

before each calculation)
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b_xfap(baf) = 0.0
b_yfap(baf) = fracpresdown

else
if b_ex(baf) = 1
if b_id(baf) = fracendl
b_xfap(baf) = 0.0
b_yfap(baf) = fracendpresup

else
b_xfap(baf) = 0.0
b_yfap(baf) = fracpresup

endif
else
b_xfap(baf) = 0.0
b_yfap(baf) = 0.0

endif
endif

endif
baf = b_next(baf)

endloop
rb = contact_head I

loop while rb # null
loop over all inter-particle contacts

section
if c_bflag(rb) = 1
cbl = c_balll(rb)
cb2 = c_baI12(rb)
cblid = b_id(cbl)
cb2id = b_id(cb2)
cblx = b_x(cbl)
cbly b_y (cbl)
cb2x = b_x(cb2)
cb2y = b_y(cb2)
cx = c_x(rb)
cy = c_y(rb)
rnarkerlid = 0
rnarker2id = 0
retnurn = c_ex(rb)
rnarkerlid = table(l,retnurn)
rnarker2id = table(2,retnurn)
if rnarker2id = 0 ;
bplO = ball_head ,

check if link exist. at contact
deter.mine locations of particle.

deter.mine location of contact

deter.mine marker balls associated with
current link elament from predefined table.

finds pointer. of marker ball.
& mirror marker balls at edge.

loop while bplO # null
if b_id(bplO) = rnarkerlid
rnarkerladd = bplO
rnarker2add = bplO

endif
bplO = b_next(bplO)

endloop
else
if rnarkerlid = 0
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bplO = ball_head
loop while bplO # null
if b_id(bplO) = marker2id
markerladd = bplO
marker2add = bplO

endif
bplO = b_next(bplO)

endloop
else
bplO = ball_head
loop while bplO # null
if b_id(bplO) = markerlid
markerladd = bplO

end if
if b_id(bplO) = marker2id
marker2add = bplO

endif
bplO = b_next(bplO)

endloop
endif

endif
; ********************* STRAIN FROM equivalent continuum DIAMOND AREA

(BALL1, BALL2, MARKER1, MARKER2)
assign numbering for force calculations

;

if b_x(cbl) > b_x(cb2)
blx = cblx
bly = cbly
b2x = cb2x
b2y = cb2y

else
blx = cb2x
bly cb2y
b2x = cblx
b2y = cbly

endif
mlx = b_x(markerladd) , coordinates of marker balls
mly = b_y(markerladd)
m2x = b_x(marker2add)
m2y = b_y(marker2add)
, strains of link elements for.ming triangles/diamond
epsa=(((sqrt(((blx-b2x)~2)+((bly-b2y)~2»)-(2*radius»/(2*radius»
ebup=(((sqrt(((b2x-mlx)~2)+((b2Y-mly)~2»)-(2*radius»/(2*radius»
ecup=(((sqrt(((blx-mlx)~2)+((blY-mly)~2»)-(2*radius»/(2*radius»
ebdown=(((sqrt(((blx-m2x)~2)+((bly-m2y)~2»)-(2*radius))/(2*radius»
ecdowm=(((sqrt(((b2x-m2x)~2)+((b2y-m2y)~2»)-(2*radius))/(2*radius»
if blx = b2x
anga = pi/2

else
anga = atan((bly-b2y)/(blx-b2x»

orientations of elements for.ming triangles/diamond

endif
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if rnlx = b2x
angbup = pi/2

else
angbup = atan«rnly-b2y)/(rnlx-b2x))

endif
if rnlx = blx
angcup = pi/2

else
angcup = atan«rnly-bly)/(rnlx-blx))

endif
if rn2x = blx
angbdown = pi/2

else
angbdown = atan«rn2y-bly)/(rn2x-blx))

endif
if rn2x = b2x
angcdown = pi/2

else
angcdown = atan«rn2y-b2y)/(rn2x-b2x))

endif
straina = epsa I
strainb = ebup
strainc = ecup
anglea = anga
angleb = angbup
anglec = angcup
rosette_solver
eupperx = xxx
euppery = yyy
eupperxy = zzz
straina = epsa I
strainb = ebdown
strainc ecdown
anglea = anga
angleb = angbdown
anglec = angcdown
rosette_solver
elowerx = xxx
elowery = yyy

calculation of strain tensor in upper triangle

calculation of strain from lower triangle

elowerxy = zzz
ell = (eupperx + elowerx)/2 I

e12 = (eupperxy + elowerxy)/2
e21 = e12
e22 = (euppery + elowery)/2
iOl = poissons
i02 = (l-poissons)
i03 = (1-(2*poissons))/2
05 = «youngs*le6)/«1+poissons)*(1-(2*poissons))))
is11 = 05*«02*e11)+(01*e22)) stress tensor from strain tensor

calculate strain tensor in bond

D matrix variable.
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is12 = DS*(D3*e12)
is21 = s12
is22 = DS*«D1*e11)+(D2*e22»
ismax=«(sll+s22)/2)+(sqrt««sll-s22)/2)A2)+(s12A2»))
ismin=«(sll+s22)/2)-(sqrt««sll-s22)/2)A2)-(s12A2»))
I principal strains from strain tensor in bond
e1=«(e11+e22)/2)+(sqrt««ell-e22)/2)A2)+(e12A2»»
e2=«(ell+e22)/2)-(sqrt««e1l-e22)/2)A2)+(e12A2»»

establish strain state in positive
quadrants of e1-e2 space

if e2 > el
el = e2
e2 = el

else
el = el
e2 = e2

endif
if e1 <= 0.0
if e2 <= 0.0
exit section

else
endif

else
endif
I determine variation of element strength
cst = «(c_nstrength(rb)/1e20)-10)*maxmin*ft)
if cst> (ft * 0.05)
exit section

else
endif
emax = max(el,e2)
if ell = e22 then I

theta (45*degrad)
calculate principal directions

else
theta = (atan«(2*e12)/(ell-e22»»/2

endif
ex=«e11+e22)/2)+«(ell-e22)/2)*cos(2*theta»+(e12*sin(2*theta»
ey=«el1+e22)/2)-«(ell-e22)/2)*cos(2*theta»-(e12*sin(2*theta»
if emax = ex then
emaxangle = theta

else
if emax = ey
emaxangle = theta + (90.0*degrad)

else
endif

endif
I determine intersections of _train path with yield and failure line_
I term_ A-lIlcome from component_ of equation_
I defining yield and failure line_
A_term = (e2/e1)
B_term = «poissons - l)/poissons)
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«(ft + cst)/poissons)*(1/D5»
(-1.0/(sqrt(2.0)-1»
«2*Gsubf)/«ft + cst)*(2*radius»)

(C_term/(A_term - B_term»
(A_term*xintl)
«D_term*E_term)/(D_term-A_term»
(A_term*xint2)
sqrt«(xintl)A2)+«yintl)A2»

ecurrent = sqrt«(el)A2)+«e2)A2»
if ecurrent < elgth

C_term =
D_term =
E_term =
xintl =
yintl =
xint2 =
yint2 =
elgth

check if strain state exceeds
yield surfaceexit section

else
endif
tlgth = sqrt«(xintl-xint2)A2)+«yintl-yint2)A2»
slgth = sqrt«(xintl-el)A2)+«yintl-e2)A2»
Eapp = (ft + cst)/elgth I

Esapp = (ft + cst)/tlgth ;
apparent Young's Modulus

apparent Softening Modulus
determine relaxation stress. components of relaxation

stress tensor rotated into global x,y
dsigma = slgth*(Eapp+Esapp)
dsigmax = (dsigma/2) + «dsigma/2)*cos(-2.0*emaxangle»
dsigmay = (dsigma/2) - «dsigma/2)*cos(-2.0*emaxangle»
dsigmaxy = (-1.0*(dsigma/2)*sin(-2.0*emaxangle»

determine nodal forces for first triangle
i • b2 j. bi m • mi See Johnson [42]

if marker lid = 0
fxi_up
fyi_up
fxj_up
fyj_up
fxm_up
fyro_up

else
fxi_up
fyi_up =
fxj_up =
fyj_up =
fxm_up
fyro_up

endif
;

= 0.0
= 0.0
= 0.0
= 0.0
= 0.0
= 0.0

«1.0/2.0)*«(bly-mly)*dsigmax)+«mlx-blx)*dsigmaxy»)
«1.0/2.0)*«(mlx-blx)*dsigmay)+«bly-mly)*dsigmaxy»)
«1.0/2.0)*«(mly-b2y)*dsigmax)+«b2x-mlx)*dsigmaxy»)
«1.0/2.0)*«(b2x-mlx)*dsigmay)+«mly-b2y)*dsigmaxy»)

= «1.0/2.0)*«(b2y-bly)*dsigmax)+«blx-b2x)*dsigmaxy»)
= «1.0/2.0)*«(blx-b2x)*dsigmay)+«b2y-bly)*dsigmaxy»)

determine nodal forces for second triangle
i • bi j. b2 m • m2 See Johnson [42]

if marker2id = 0
fxi_down = 0.0
fyi_down = 0.0
fxj_down = 0.0
fyj_down = 0.0
fxm_down = 0.0
fyro_down 0.0
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else
fxi_down =
fyi_down =
fxj_down =
fyj_down =
fxrn_down =
fyro_down =

«1.O/2.0)*«(b2y-m2y)*dsigmax)+«m2x-b2x)*dsigmaxy)))
«1.O/2.0)*«(m2x-b2x)*dsigmay)+«b2y-m2y)*dsigmaxy)))
«1.O/2.0)*«(m2y-biy)*dsigmax)+«bix-m2x)*dsigmaxy)))
«1.O/2.0)*«(bix-m2x)*dsigmay)+«m2y-biy)*dsigmaxy)))
«1.O/2.0)*«(biy-b2y)*dsigmax)+«b2x-bix)*dsigmaxy)))
«1.O/2.0)*«(b2x-bix)*dsigmay)+«biy-b2y)*dsigmaxy)))

endif
if b_x(cbi) > b_x(cb2) swn and apply nodal forces
b_xfap(cbi)= b_xfap (cbi) + fxj_up + fxi_down
b_yfap(cbi)= b_yfap (cbi) + fyj_up + fyi_down
b_xfap(cb2)= b_xfap (cb2) + fxi_up + fxj_ down
b_yfap(cb2)= b_yfap(cb2) + fyi_up + fyj_down

else
b_xfap(cbi)= b_xfap (cbi) + fxi_up + fxj_down
b_yfap(cbi)= b_yfap (cbl) + fyi_up + fyj_down
b_xfap(cb2)= b_xfap(cb2) + fxj_up + fxi_down
b_yfap(cb2)= b_yfap (cb2) + fyj_up + fyi_down

endif
b_xfap(markerladd) = b_xfap(markerladd) + fxrn_up
b_yfap(markeriadd) = b_yfap(markerladd) + fyro_up
b_xfap(marker2add) = b_xfap(marker2add) + fxrn~down
b_yfap(marker2add) = b_yfap(marker2add) + fyro_down

if slgth > tlgth check if strain state exceeds failure surface
if (slgth-tlgth»laste_exceed I check if greater than previous max.
laste_exceed = (slgth - tlgth) record new 'worst case' strain
rbmin = rb record new 'worst case' element

else
laste_exceed = laste_exceed
rbmin = rbmin

endif
else
endif
else
endif
endsection
rb = c_next(rb)
endloop
if type(rbmin) = 4
cpmin = rbmin
c_bflag(cpmin) = 0 delete 'worst case' element
broken_bonds = broken_bonds + 1
fracshape
fractime
fracsurface

else
endif
end
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Appendix IV:

Publications

This Appendix contains additional papers produced from the work carried out for this

thesis and published during the course of this research.

1. Davie, C. T. and Bicanic, N., Progressive Fracturing Using Lattice Models,

Proceedings of Fourth International Conference on Analysis of Discontinuous

Deformation, University of Glasgow, 2001, ISBN 0 85261 735 6.

It may be noted that a very similar paper of the same title was also published in:

Proceedings of 9th Annual Conference of the Association for Computational

Mechanics in Engineering, University of Birmingham, 2001, ISBN 0 704423022.

To avoid repetition, this is not included here.

2. Davie, C. T. and Bicanic, N., Failure Criteria for Quasi Brittle Materials in Lattice

Models, Proceedings of 10th Annual Conference of the Association for

Computational Mechanics in Engineering, University of Swansea, 2002, ISBN 0

954254406.
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Progressive Fracturing Using Lattice Models

C. Davie and N. Bicanic
Department of Civil Engineering, University of Glasgow, Glasgow, G12 8LT

Introduction

Potential of the lattice modelling framework is explored in the study of hydraulically
driven fractures in which propagation is initiated by the action of a high pressure fluid.
A good understanding of hydraulic fracturing is of primary interest to the oil industry
where the deliberate inducement of hydraulic fractures in oil bearing rock units is a
technique employed to increase oil production rates by creating high permeability
pathways from the reservoir to the well bore. However, the same physical phenomenon
is also of interest to civil engineers concerned with unlined water carrying tunnels and
dam foundations.

Lattice models comprise assemblies of truss or beam elements and the principal
intention behind a lattice model is to replace a continuum domain by a simpler analogue
of equivalent line elements. One of the first people to utilise this method was
Hrennikoff [4] in the early 1940s. Since then, lattice model investigations have been
carried out on various problems, notably by Schlangen & van Mier [6] into fracture of
concrete, and by Tzschichholz et al. [7] into basic hydraulic fracture models. There are
various strategies to arrive at equivalent lattice properties, with the aim to adequately
replace the continuum domain - such strategies depend on the form and regularity of
lattice configuration, ranging from highly regular assemblies to fully randomised lattice
configurations.

Model Construction

All lattice models used here were formulated in the discrete element modelling (DEM)
environment Particle Flow Code in Three Dimensions (PFC3D)[I], which nominally
deals with transient dynamics of particulate media. The same modelling environment
also deals with bonded particulate media, where bonds may be of different types -
either so called contact bonds (with axial and shear stiffness and limited axial and shear
strength) or parallel bonds, where the local transfer of moments between particles is
possible. The normal contact bond model is adopted here and the dynamic relaxation
solver was used to arrive at static solutions to the problem. In such situations the
system response is governed by bond stiffness and strength only and the PFC3D

framework represents a lattice modelling framework, with a specific type of lattice
element, with a normal and shear spring. A built-in coding language, known as FISH,
allows additional functions to be written that can act in conjunction with any model
constructed in the PFC3D modelling environment.

The elastic deformabiIity equivalence between the continuum and the lattice model was
achieved using a technique recently proposed by Griffiths & Mustoe [3] for a model of
lattice type configuration very similar to those used here. The technique is based on the
equivalence of strain energy density for two frameworks for a basic triangular shape
unit of three lattice elements. For a material with a given Young's modulus and Poisson
ratio under plane strain conditions, the equivalent axial and shear stiffness of the contact
bonds are defined as
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k; = r::;( X )",31-2v l+v
E

k = E(1-4v)
s J3(1-2vXl+V)

Stress State and Failure Criterion in Lattice Framework

Formulation of any strength criterion to initiate material failure requires the knowledge
of the state of stress within the domain of interest. Although the lattice modelling
framework is best suited to formulate failure criteria based on critical values of normal
or shear forces, here a strategy of an equivalent continuum failure criterion is adopted.
In the lattice framework the average stress tensor at a given point can be defined from
contributions from all contact forces acting on a particle

(J'.(p) = _l_"lx~C) - x(p)Lx(c.p)F~c)
IJ yep) £..J I I r, J

Ne

where a is the average stress tensor at the particle point, V is the volume of the particle,
x is the location of the contact force or of the particle centroid, n is the unit normal from
the centroid towards the location of the contact force, F is the magnitude of the contact
force and the superscripts c andp indicate contact and particle respectively.

The Rankine principal stress criterion 0'1 ~ it is adopted here. The algorithm considers
each lattice element (contact bond) in turn and determines the pair of end particles
involved. Maximum principal stresses are calculated in both end particles using the
respective averaged stress tensors. It is then assumed that the magnitude of the
maximum principal stress in the bond is the average of the two end values. If this stress
exceeds the predefined tensile strength of the bond, the bond is considered as a
candidate for failure. The direction of the principal stress in the bond is also determined
as the average of the principal stress directions associated with the end particles. This
direction is then compared to the orientation of the bond. From all the "candidates for
failure" the worst case bond is subsequently removed - i.e. the bond in which the
maximum principal stress has exceeded its tensile strength and whose direction is
closest to that of the principal stress. In the event that two bonds have failed and are
inclined at the same angle with respect to the direction of the principal stress the
percentage by which stress exceeds strength is taken into consideration for the removal
of bond.
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Numerical Example using Rankine Failure Criterion

The numerical example shown below was implemented using the Rankine criterion
described above. A lattice model was constructed (See Fig. 1 below) that was similar to
the plane strain finite element model developed by Papanastasiou [5].

Symmetry --....."Boundary

_----:/Free
Boundary

Fig. 1Diagram of Lattice Model Mesh

Forces were applied to the fracture walls to represent fluid pressures. These increased
linearly until the failure criterion is reached and the bond removed, representing a
propagated fracture. The associated drop of the fluid pressure was then accounted for
by recalculating the new pressures by the ratio of the new fracture length to the old. For
simplicity, fluid pressures were assumed to be constant over the length of the fracture.
As the fracture extended the deformed shapes of its walls were recorded and compared
to the fracture shape obtained by Papanastasiou [5]. The pressure at which fracturing·
occurred was also noted. The comparative results are shown below (See Fig. 2a & Fig.
2b and Fig. 3a & Fig. 3b).

Symmetry
Boundary

O.OE ...OO +------,-.__~-,.-____,"_r_-"--_,__r__"'_-,.-

0.5 DiSlanc:j~omwellbor~·Zn) 2.0 0.0 0.5 1.0 1.5 2.0

a) b) Distance from well bore (m)

Fig. 2 a) Plotted Fracture Shapes (after Papanastasiou [5]), b) Plotted Fracture Shapes
from PFC3D Lattice Models

6.0E·04
5.0E·04
4.0E·04
3.0E·04
2.0E·04
1.0E·04

2.5

...
..~.........

'~ ...........
....~ ~.: .

J
2.5

a) b)
0.0 0.5 1.0 1.5 2.0 2.5

Fracture Length (m)

Fig. 3 a) Plot Showing Net-pressures at Well Bore (after Papanastasiou [5]), b) Plot
Showing Net-pressures at Well Bore from PFC3D Lattice Models
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Configuration sensitivity tests subsequently showed the lattice fracture shapes to be
clearly dependent on lattice element size (See Fig. 4 & Fig. 5 below).

2

1 - Coarse Mesh
2 - Medium Mesh
3 - Fine Mesh
4 - V. Fine Mesh

6.0E-04

5.0E-04

4.0E-04

3.0E-04

2.0E-04

1.0E-04 I====;===~==~~~~..__--,O.OE+OO
0.0

3

0.5 1.0 1.5 2.0 2.5

Distance from well bore (m)

Fig. 4 Plotted Fracture Shapes for Varying Lattice Element Sizes

0.0 0.5 1.0 1.5 2.0

1 - Coarse Mesh
2 - Medium Mesh
3 - Fine Mesh
4 - V. Fine Mesh

2.5

Fracture Length (m)

Fig. 5 Plot Showing Net-pressures at Well Bore for Varying Lattice Element Sizes

As the fracture criterion does not account for fracture energy, it was not entirely
surprising to observe this dependency. The abrupt removal of bonds corresponds to an
elastic-fully-brittle material behaviour with no account for dissipation of energy during
the fracturing process, and the inclusion of softening behaviour is required.

Gradual Reduction of Bond Strength and Energy Dissipation

The inclusion of softening behaviour was of further interest with regard to hydraulic
fracturing as Papanastasiou [5] had shown that elasto-plastic behaviour has very
significant influence on fracture propagation and shape.

A softening uniaxial stress-strain relationship was developed for each bond (See Fig. 6
below) where the total strain in a given bond was determined by its current length
compared to its original length. The softening slope is controlled by the fracture energy
release rate and the length of the bond.

e:
Fig. 6 Diagram of Typical Loading/Unloading Model for Lattice Element

448



Appendix IV: Publications

At every step, each bond was taken in turn and the available stress capacity, evaluated
from the total strain, was calculated according to the constitutive model. Any out of
balance residual force was then taken into account for the subsequent deformation of the
lattice model. Once the stress capacity of the bond was reduced to zero (total strain
equal to the ultimate strain) the bond is considered to have failed and is removed from
the model.

An illustrative numerical example was carried out using both the elastic-brittle and the
elastic-softening model described above. A one-dimensional model problem under
prescribed end displacement is considered (See Fig. 7a & Fig. 7b).

1 - Initial
~u~----.

3 - Post-Peak

0------0 0--------0 ~

Middle I
Elemen~

t'
!

2 - Pre-peak u
O-------O-------G-------O ----.

a) b)

Fig.7 a) Progressive Deformation of Elastic I-D Bar Model, b) Comparative
Strain/Time Plot for all Lattice Elements

The middle bond is given a tensile strength slightly lower than that of the outside two to
ensure strain localisation solution. As above, total strain histories for the three bonds
are shown below (See Fig. 8a & Fig. 8b below).

I - Initial

OO~~~ Middle
~Element

2 - Pre-peak u
O-------O-------()-------O----. 3

a)

Outside
/Elements3 - Post-Peak

()---------O----------------O---------O~

b)

Fig. 8 a) Progressive Deformation of Elasto-plastic I-D Bar Model, b) Comparative
Strain/Time Plot for all Lattice Elements

Conclusions

Progressive fracturing in lattice models was considered. The deformability is based on
the equivalent lattice moduli proposed by Griffiths and Mustoe and an elastic-brittle
material model based on Rankine criterion produced a reasonable, qualitative
representation of a simple hydraulic fracture propagation. The inclusion of a softening
model to represent a gradual reduction of strength and the associated energy dissipation
was illustrated on the one dimensional model problem. Further work will include the
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incorporation of softening for a general state of stress in order to study the influence of
material plasticity on hydraulic fracturing and to eliminate lattice element size
dependency.
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Failure Criteria for Quasi Brittle Materials in Lattice Models

C. Davie and N. Bicanic
Department of Civil Engineering, University of Glasgow, Glasgow, G 12 8LT

Various lattice models exist to simulate behaviour of simple and higher order continua.
Lattice member are assigned equivalent elastic properties and lattice configurations
range from regular patterns to random lattices. Such models have also been extended to
include modelling of material failure, where the removal of individual lattices is usually
controlled by some strength based criterion.

Lattice based models have also been adopted for modelling of quasi brittle materials,
e.g. concrete and rock, where the experimental evidence suggests softening behaviour
under displacement control and a gradual reduction of strength is observed. Very fine
random lattice configurations are adopted and some researchers have argued that the
simple removal of lattice members after a strength criterion is reached is adequate
whereas others have suggested that the inclusion of softening into the lattice failure
models is needed [3,7].

In the following, several simple strategies to implement failure criteria for quasi brittle
materials in lattice models based on the gradual reduction of strength are explored. The
implementation of these strategies is conducted in the lattice modelling environment,
realised within the DEM code PFC3D

, where a static solution is obtained through
dynamic relaxation, using an explicit time stepping scheme. Failure criteria were
implemented through code devel0Pred in the FISH language associated with PFC3D

. For
simplicity and for reasons of PFC D constraints, the nonlinear solution scheme employs
the Ko initial stiffness algorithm.

Two simple configurations (plane strain panels under prescribed extension) are
considered, using six regular lattice meshes. Lattice members, realised through normal
and shear contact springs, k, and k, can transfer axial and shear forces only. Values for
k, and k, are determined by relating the strain energy density of a typical triangular unit
of lattice elements to an equivalent continuum with E and v. This approach was
proposed by Morikawa and Sawamoto [5] and further developed by Griffiths and
Mustoe [1].

Prescribed X

Rigid Particles Lattice Elements Prescribed Y

r l• I.Om 1
Coarse Mesh, O.5m Medium Mesh, O.25m Fine Mesh. 0.1 m
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Five failur~ c~iteria were implemented and examined for the two model problems.
Mark 1 - Limit Total Strain Criterion (Brittle) ,li _li
o' £1 = ,0 < e = it

l~ max E
where a lattice element is removed
from the mesh when its strain is larger
that the critical value. No softening is
considered.

e' ~£ = it
max E Mesh size dependency and a

directionality bias are observed.
Mark 2 -Principal Stress Criterion (Rankine, Brittle)

The average stress tensor in a discrete particle can be calculated from the contributions
of the contact forces acting on the particle. The stress tensor in the 'contact bond'/Jattice
element between two particles is approximated as the average of the tensors in the
particle pair. As the components of the average stresses refer t~ "granular': stresses,
conversion factors were derived to obtain stress tensor in an eqUivalent contmuurn of
unit thickness. Lattice elements were then removed when the Rankine principal stress
criterion was violated. No softening is considered. If more than one lattice had a stress
state exceeding it' the bond in which the maximum principal stress was most closely
aligned to the bond orientation was removed.

B

o :" =!(J'~+cr,B)
u 2 ~ IJ ~J

Although a better prediction of the failure length was obtained as compared to the Mark
1 model, clear size dependency is again observed. Size dependency for both Mark 1 and
2 criteria could be expected as no account of energy dissipation is taken.

(JAB AB
1 ,n

(n; m)max

Mark 3 - Uniaxial Total Strain Criterion with Fracture Energy Controlled Softening

lAB lAB
AB - (Jt - 0 pred

tal - lAB
o

(J'

A* = knh
~ ~ __ trot E

Be

~if =A*~(J Cor
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This elasto softening plasticity model, based on the total strain model accounts for the
fracture energy dissipation in an element, hence the softening slope is mesh size
dependent to ensure mesh objectivity. Any excess stress during softening is applied as a
self equilibrating set of out of balance forces to the lattice ends. Lattice elements were
removed from the mesh, once the ultimate total strain has been reached.

Results showed objectivity with respect to the mesh size, although a directionality bias
is present (diagonal lattices in y-direction). Conversely, when a constant softening slope
was used for various lattice sizes, mesh sensitivity was noticed, as expected.

Mark 4 - Total Continuum Strain Model with Fracture Energy Controlled Softening (A)
- - ABCeAB' £,BC' £'CA ==> £'ij

C

- - ABD
eAB,eBD,eDA => eij

t,

~(jAB =~(J;nAB
~fAB = A'~(jAB

Strain tensors in the two triangles adjacent
to the lattice element were evaluated from
simple stretches of the three sides. The
strain tensor in the lattice was then
assumed to be the average of the strain
tensors reported for the two triangles, and
the two principal strains in the lattice are
subsequently computed. Softening Rankine
principal stress criterion is then considered
in the principal total strain space. The
reduction of strength associated with
particular values of total strains allows for
the excess stress to be determined, which is
then redistributed to the remaining part of
the lattice mesh through the out of balance
forces. Excess stress in the principal
direction is projected in the direction of the
lattice, and the out of balance forces are
determined. An equivalent cross section
area for the lattice A', emanating from the
k; spring equivalence, was adopted,
similarly to the Mark 3 model. Lattice
elements were removed from the mesh,
when the ultimate state of total
strains E\, £2 was reached.
Results of tests in the X direction showed
promise, as the analysis predicted failure
length very close to the solution expected
for a continuum. Significant solution noise
occurred when more diagonal lattices
failed simultaneously, for which no
satisfactory interpretation can be given.
Directionality bias is observed again, and
poorer results are noted for the model
meshes with predominantly diagonal
elements in the Y direction.
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P-8 diagrams for model problems using the five failure criteria (Mark 1-5)

Prescribed Displacement X Prescribed Displacement Y
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Mark 5 - Total Continuum Strain Model with Fracture Energy Controlled Softening (B)

The model is essentially
identical to the Mark 4
model, except for the excess
stress redistribution strategy.
Here it is assumed that the
excess stresses exist in both
adjacent triangles (either over
the hole "diamond" area, or
only over the area associated
with the lattice element under
consideration), so that the
equivalent out of balance
nodal forces could be
evaluated similarly to the
constant strain triangles in
the FE framework.

As before, the model predictions were encouraging during the initial post peak
behaviour, however excessive noise in the overall P - 0 diagram is noted when several
lattice members fail simultaneously.

ABCD

flfABCD = f BT L1atdV
8(ABCD)
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