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Abstract

This thesis examines the phenomenon of visual transparency in a novel

application of the efficiency approach. Transparency provides a useful stimulus

to probe the visual mechanisms that underlie the visual surface representation,

introduced in Chapter One. Previous research has found that there is a cost in

processing visual transparency defined purely by motion or stereo cues. This has

been interpreted in terms of visual mechanisms constraining the recovery of

transparency. However, the cost for transparency may reflect the increased

complexity of the stimuli. To address this issue I computed the efficiency for

motion and stereo defined transparency tasks by comparing human performance

with that of the ideal observer. The efficiency approach has two key advantages

over traditional psychophysical measures: 1) it provides a performance measure

normalised relative to the available information, 2) it is an absolute measure and

can be compared directly across diverse tasks. I provide a review of the

efficiency approach in Chapter Two. In Chapter Three, I present a study of the

efficiency for speed discrimination of transparent random dot stimuli and

comparable non-transparent random dot stimuli, as a function of the speed ratio

and the dot density of the stimuli. In Chapter Four, I present a study of the

efficiency for depth discrimination of transparent and non-transparent random

dot stereograms, across a range of disparity ratios and dot densities. In Chapter

Five, I present an extension of the efficiency approach to the motor domain, for

the smooth pursuit of high-density transparent and non-transparent random-dot

stimuli. Finally, in Chapter Six I provide physiologically plausible accounts of

the findings.
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Chapter One: General Introduction

1.1 The Problem of Vision

Vision science aims to understand the mechanisms of the visual system, how the

apparatus of the brain provides us with our rich visual experience. How is it that

we are conscious of a three-dimensional world, when the information given to us

is a two-dimensional image formed on the retina by the optics of the eye? The

problem of vision is to retrieve the three-dimensional information about the

scene given the two-dimensional image, this is known as the inverse problem of

vision and it is non-trivial. In simple terms, there are infinitely many possible

three-dimensional scenes that could have given rise to any particular two-

dimensional image. This has been understood at least since the philosophical

considerations of George Berkeley (Berkeley, 1709). The modem approach to the

problem has roots in classical constructivism (e.g. Helmholtz, 1867). This holds

that, given the ill-posed nature of the problem of vision, the processes of visual

perception must use assumptions, or 'unconscious inferences', to arrive

successfully at an interpretation of the three-dimensional scene. Indeed, the

existence of visual illusions provides compelling evidence for these inferential

visual processes (e.g. Hoffman, 1998). The fundamental concept in the modern

approach is to consider these inferential visual processes as information

processing events, and this is best exemplified in the theoretical framework of
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Marr (1982). Marr was not the first to champion a computational approach to

vision, indeed there are a number of significant developments in applying

information processing concepts to cognition in general that precede his work

(Shannon, 1949; Turing, 1950) and also more specifically to visual processing

(Rosenblatt, 1962; Minsky & Papert, 1969; Land & McCann, 1971; Hom, 1975).

Nevertheless, Marr's contribution cannot be understated. His work provided a

meta-theoretical framework for vision research, and in particular proposed a

specific representational scheme that continues to inform our understanding of

the structure and function of the visual system.

In his posthumously published book, 'Vision' (1982), Marr contrasted the

development of the modem computational approach with a dominating purely

physiological approach, which taken to its logical conclusion equates

descriptions of physiological responses with explanations of visual behaviour

(see Barlow, 1972). In contrast to the reductionist enterprise, Marr described

three levels of analysis necessary to explain any information-processing problem.

These levels are the computational level, the level of representation and

algorithm, and the implementationallevel. The computational level is essentially

a theory of the goal of the system. In the case of vision, the basic goal of the

visual system is to solve the inverse problem and recover a three-dimensional

representation of the scene, given a particular two-dimensional image. The level

of representation and algorithm is concerned with specifying how to implement
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this theory, in terms of the necessary transformations. Marr proposed a

particular representational framework, which has shaped much of the modern

approach. The final implementational level is concerned with specifying

precisely how the algorithm is realised in a physical system. In vision this means

understanding how the algorithm is realised in the biological system. This is not

simply a case of looking at physiological data, but of using the data to constrain

explanatory models of the system. To provide a complete understanding of the

visual system will require an interaction between these three levels of analysis.

In practice this demands a synergy between computational theory and

modelling, psychophysics and physiology.

This thesis is concerned with a particular problem in vision, the recovery of

surface transparency. I approach this problem in terms of the three levels of

analysis described by Marr. At the computational level, I employ a particular

computational theory of the task to analyse behavioural performance, the

efficiency approach. In the second chapter of this thesis I explain this approach

in detail. At the representational level, I consider the problem of transparency in

terms of a general representational framework. In the following section IA

Sequence of Representational Stages' I describe in further detail this

representational framework. At the irnplementational level, I interpret my

results in terms of particular physiological constraints. I provide a general and

brief background to the known physiology in the Section IA Visual Hierarchy'.
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The Section on 'The Problem of Transparency', describes the particular problem

that I investigate in this thesis. The final Section in this chapter, 'Thesis Outline',

states the aims of the present thesis, and provides a brief summary of the

research reported in the following chapters.

1.2 A Sequence of Representational Stages

An important task of vision is to provide a representation of the three-

dimensional scene, given a two-dimensional retinal image. Marr (1982)

described how this could be achieved by a sequence of three main

representational stages, an initial representation of luminance differences

(specifically edges), a subsequent elaboration into a partial three-dimensional

representation of the location of surfaces in the world, and the final three-

dimensional 'object-centred' representation. The representations at each stage

are constructed by algorithms that use specific assumptions to make explicit

aspects of the scene not available in the immediately preceeding stage. While the

particular algorithms Marr and colleagues (Marr & Poggio, 1976, 1979; Marr &

Nishihara, 1978; Marr & Hildreth, 1980; Marr & Ullman, 1981) provided to

construct these representations have not gone unchallenged, the notion that the

visual system consists of a sequence of representational stages has (at least

implicitly) become an integral part of the modern approach. The stages of

representation are more generally referred to as low-level (image representation
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stage), mid-level (surface representation stage) and high-level (object

representation stage).

This thesis focuses on mid-level vision. InMarr's representational framework,

the surface representation provided a crucial link between image representations

and object representations. The importance of surfaces in visual perception had

earlier been emphasised in the work of J. J. Gibson. Gibson's contribution was to

consider the information available to an observer in the environment. In his

analysis (Gibson, 1979) it was clear that the surfaces in the environment provided

crucial information for visual perception:

"The main invariants of the terrestrial environment, its persisting

features, are the layout of its surfaces and the reflectances of these

surfaces." (p. 87)

However, Gibson denied there was any need for the visual apparatus to extract

or represent the information in the environment. Rather the information was

assumed to be directly available to the observer, the apparatus of the visual

system was assumed simply to 'resonate' with the information given in the

'ambient optic array' (the changing visual angles of projection from surfaces to

the observer as the observer explores the environment). Gibson's argument

therefore goes as far to deny the retinal image and the fundamental problem of
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vision. Marr (1982) acknowledged the contribution of Gibson in emphasising the

information available in the environment, but restated this in contructivist terms.

Surfaces indeed provide crucial information for perception, but this information

is available only indirectly in the two-dimensional retinal image:

"The principal factors that determine the intensity values in an

image are (1) the illumination, (2) the surface geometry, (3) the

surface reflectance, (4) the vantage point." (p. 272)

This brings us back to the retinal image as the start of the problem. Marr

emphasised that the visual system could exploit the structure inherent in the

two-dimensional image, in the form of assumptions, to recover a representation

of the surfaces in the environment. The importance of this representational stage

intermediate between low-level and high-level visual processing was recently re-

emphasised by Nakayama, He & Shimojo (1995), and is increasingly becoming a

key issue in vision science.

1.3 The Visual Hierarchy

Throughout this thesis, I refer to physiological aspects of the visual system,

particularly in the interpretation of the behavioural data. Here I provide a brief

background of the key physiological research. While Marr's approach was

developed largely as a reaction to a purely physiological approach, extensive

13



physiological studies have provided fascinating descriptions of the visual

system. Primate visual cortex consists of a number of distinct areas, known to

occupy around 60% of the entire cortical area (Van Essen & Maunsell, 1980).

Furthermore, analysis of the intercellular connections between these different

areas revealed a complex neural architecture beginning in the retinal layers in

which information is fed up (and also back down) through a sequence of areas or

visual processing modules (Maunsell & Van Essen, 1983;Maunsell & Newsome,

1987; Van Essen et al., 1992). A key development in the physiological approach

was the development of techniques to record the electrical activity in single cells

of the system (see Hubel & Wiesel, 1998), allowing researchers to map the

'receptive fields' of neurons i.e. to identify the types of visual stimuli that cells

respond best to. A wide range of single-cell recording studies (initially with

mammals such as cat and rabbit, but later focusing on the primate visual system,

largely in the macaque monkey) had provided fascinating insights into the

nature of the visual network following the initial transduction of light energy

into neural signals (electrical impulses) by the retinal photoreceptors, the

selective responses of visual neurons suggested a complex system of information

processing. Studies of the early retinal architecture found cells sensitive to local

luminance differences (e.g. Barlow, 1953; Kuffler, 1953), and it was suggested

that these responses could be achieved by spatially pooling information from

many photoreceptors selectively. These responses are combined in increasingly

selective ways as the information is fed through the LGN to visual cortex.
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In striate cortex (VI), the first visual cortical area largely receiving retinal input

relayed from the LGN, the information from retinal cells is pooled selectively.

Hubel & Wiesel's studies (1962, 1965, 1968) established the principle that the

sensitivity of cells could be achieved through selective combinations of the

outputs from the preceeding stage, and by this principle they established a

hierarchy of responses in VI (simple cells -> complex cells -> hypercomplex

cells). The simple responses were initially thought to be extracting important

features in the image, namely edges of particular orientations (Hubel & Wiesel,

1962, 1965, 1968), although these responses may be better understood not as

feature detectors but as spatial frequency analysers (Campbell & Robson, 1968;

Blakemore & Campbell, 1969; De Valois & De Valois, 1988). Further studies in

monkey delved further and further into the system. In area V2, an area

immediately following VI, the selectivity appears to integrate this early

information e.g. for contours (von der Heydt et al., 1984). Higher up in the

system, there is selectivity for more complex geometric stimuli in V4 (Gallant et

al, 1993), and even hands (Gross et al, 1972), faces (Perret et al., 1982) and specific

objects (Logothetis & Sheinberg, 1996) in area IT.

This range of evidence suggested that the visual system consists of an anatomical

and functional hierarchy of areas, in which processing proceeds from the simple

(feature detection or spatial frequency analysis) to the complex (specific object or
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face detection). Therefore, in principle the responses in the visual hierarchy can

be mapped onto Marr's representational stages. However, the exact hierarchical

organization of the system is indeterminate, while anatomical constraints can

limit the possibilities, no single hierarchy can be determined (Hilgetag et aI, 1996;

Crick & Koch, 1998). Furthermore, it has been hypothesised that the hierarchy

(however it is arranged) can be subdivided into two parallel pathways, one

specialising in analysis for object recognition, referred to as the 'what' pathway,

and the other in the analysis for spatial location, the 'where' pathway

(Ungerleider & Mishkin, 1982; Mishkin, Ungerleider & Macko, 1983), famously

re-interpreted as an 'action' pathway and a 'perception' pathway (Milner &

Goodale, 1995). A subdivision in visual processing can be identified as early as

the LGN (Livingstone & Hubel, 1988), the distinction between selectivity for

color and form and selectivity for motion and depth (see also Van Essen &

Maunsell, 1983). The motion pathway proceeds from cells in layer 4b of VI

(Maunsell & Newsome, 1987) where responses are local and ambiguous

(Movshon et aI, 1986), directly through to area MT where cells are selective for

global pattern motion (Movshon et al, 1986), through to area MST where cells are

selective for global optic flow (Tanaka & Saito, 1989). Evidence for parallel

processing of different visual attributes is consistent with the principle of

modular organization (Fodor, 1983). The following section expands on the

concept of modularity in terms of the general problem of vision, and introduces

the particular problem addressed by this thesis.

16



1.4 The Problem of Transparency

A fundamental problem of vision is the recovery of the third dimension, depth.

We have seen that surfaces are fundamental to visual perception; the distance of

a surface to the observer specifies depth. A number of types of information are

useful cues in the recovery of depth, and are generally divided into the

monocular cues, such as texture, shading, motion, linear perspective, relative

size, and binocular cues, such as stereopsis, the difference between the images in

the two eyes. These different sources of information available to the system can

be combined to obtain reliable estimates of depth in the scene (e.g. Landy et al.,

1995), particularly useful in complex situations such as the case of transparency

(Kersten,1991). Perceptual transparency occurs when two surfaces are perceived

simultaneously in the same visual direction, a far surface is perceived through a

nearer transparent surface. Here the visual system is able not only to reconstruct

depth from a two-dimensional image, but multiple depths in the same visual

direction. Information arising from a common surface is integrated, and

information arising from different surfaces is segmented. These segmentation

processes are fundamental in recovering a surface representation (Marr, 1982).

Therefore, probing the ability of the system to recover such a complex percept

may reveal some basic principles of visual surface processing.
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A number of different types of transparency that arise in day-to-day viewing of

the environment can be identified: such as film transparency, which occurs when

we look through a transparent sheet, or specular transparencies, as occurring

when looking through a pane of glass, and other familiar occurrences such as

shadows and occlusions are also cases of transparency (see Kersten, 1991, for a

detailed and mathematical description of the possible cases). Nevertheless, an

interesting aspect of perceptual transparency is that it can be elicited by

particular two-dimensional stimuli, where there is phenomenal transparency in

the absence of physical transparency. This indicates that the mechanisms of

surface representation function according to particular constraints or rules. For

example, particular 20 spatial arrangements of areas of different luminance elicit

perceptual transparency conforming to a theory of 'color scission', that is to say

that the visual system will construct transparent surfaces when provided with a

stimulus consistent with the physics of transparency (Metelli, 1974). A

particularly compelling impression of transparency occurs with random dot

displays moving in different directions, or presented stereoscopically at different

depths. Random dot displays are in themselves interesting stimuli in probing

surface representation. A sparse display of randomly placed dots on a

background can be perceived as a continuous surface (White, 1962), suggesting

that the visual system interpolates surface information; the exact process of

'filling-in' has received much research attention recently (Shimojo et al., 2001;

Komatsu et al., 2000; De Weerd et al., 1998). When two random dot displays are
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presented simultaneously in different directions, or presented stereoscopically at

different depths, two surfaces are perceived; an opaque surface is perceived

beyond a near transparent surface. Indeed, stereopsis and motion are known to

be particularly strong cues to depth (e.g. Marr, 1982). This thesis focuses on the

ability of the visual system to recover surface transparency from motion and

stereo cues.

1.S Thesis Outline

I use a particular computational approach, the efficiency approach, to examine

visual transparency, specifically for transparency defined by motion and stereo

cues in random dot displays. The aim of the thesis is to elucidate the

mechanisms underlying the surface representation, how does the visual system

selectively combine local information to recover a description of the surfaces in

the environment? In Chapter Two I describe the efficiency approach in greater

detail. It will be shown that there are two main benefits in the approach: 1)

efficiency normalises performance to the available information, therefore

patterns in performance can be directly interpreted in terms of the underlying

mechanisms, 2) efficiency is an absolute measure of visual performance, thus we

can compare performance directly across different tasks. In Chapter Three, I

report an experimental study on the efficiency of visual transparency defined by

motion cues. The main results are: 1) there is a cost for processing motion

transparency compared to non-transparent motions, and 2) performance is
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impaired by increasing the density of the random dot displays. InChapter Four,

I report an experimental study on the efficiency of visual transparency defined

by stereoscopic information. The main results are: 1) there is no cost for

processing stereoscopic transparency compared to a non-transparent surfaces,

and 2) performance is impaired by increasing the density of the random dot

displays. In Chapter Five, I report an experimental study that extends the

analysis of transparent motion efficiency to the motor domain, specifically to the

analysis of smooth pursuit eye movements to transparent motion. This study

has two aims: 1) to permit a comparison of motor and perceptual efficiencies for

transparent motion, and 2) to probe the temporal dynamics of motion integration

and segmentation. Finally, in Chapter Six I review the main findings of these

experimental studies, and consider the future directions of the research.
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Chapter Two: The Efficiency Approach

2.1 Introduction

The behavioural study of visual perception involves the measurement of

observer's responses, their observable behavioural performance, for well-

designed visual tasks in order to make inferences about the unobservable

sensory systems that underlie that behavioural performance. Traditionally the

discipline is known as 'psychophysics', emphasising the empirical goal of

relating physical stimulus properties to their psychological effects. The

fundamental measurement of psychophysics is a threshold, measured in units of

the manipulated variable. A number of methods to estimate thresholds were

developed in the nineteenth century by Gustav Fechner (1860), the 'father of

psychophysics'. These were the method of adjustment, the method of limits, and

the method of constant stimuli. As a simple example, we could measure the

'absolute' threshold for detecting a spot of light. We would present an observer

with a range of light intensities (method of constant stimuli) and ask the observer

to state whether or not they detected the spot of light, and we could then

construct a psychometric function from this data, which are typically well fit by

sigmoid functions. We might then arbitrarily define their sensory threshold as

the light intensity the observer requires to detect the spot of light 50% of the time.

This would give us an indication of the sensitivity of the visual system to light.

21



Thresholds can be computed across a range of stimulus parameters, and the

pattern of thresholds as a function of the stimulus parameters, the

psychophysical function, may be used to infer properties of the underlying

visual mechanisms. Indeed, in the late nineteenth century this approach led to

the discovery of basic psychophysical laws, such as Weber's law which states

that the change in light intensity required to detect a change increases as the

baseline light intensity increases. Since then the basic method of computing

psychophysical functions from psychometric data has been applied to a broad

range of visual tasks e.g. the detection or discrimination of motion signals, where

the threshold might be expressed in terms of speed, or the detection of

stereoscopically defined depth, where the threshold might be expressed in terms

of disparity. This approach is used to make inferences about the nature of the

underlying mechanisms within a domain e.g. the range of speeds the visual

system is sensitive to for a given task.

However, a number of drawbacks can be identified that limit the power of basic

threshold measurements. First, simple threshold measurements (derived from

yes/no tasks) confound the measurement of the observer's sensitivity (what

psychophysicists are interested in) with the observer's criterion, the willingness

of the observer to respond in one way or another based on the sensory

information available to them. This problem was a key concern driving the

development of signal detection theory, which provided a method to measure
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the observer's sensitivity independent of their criterion (Tanner & Swets, 1954;

Swets, Tanner & Birdsall, 1961). By this approach the observer does not respond

in an all or none fashion when a given stimulus attribute exceeds an estimated

threshold value, rather the observer uses the available sensory information to

perform a statistical decision (see Swets, 1964). Second, while it would be useful

to compare visual performance across different domains to build a complete

description of the system, it is meaningless to directly compare thresholds

measured in different units e.g. to compare a disparity threshold directly with a

speed threshold. To compare visual performance directly across different visual

domains such as motion and stereo we require a unit-free measure of

performance. Third, threshold measurements do not depend upon a theory of

the task, that is to say that while our aim is to make inferences about the

underlying visual mechanisms, without specifying what information is actually

available to perform the task we cannot be sure of the underlying cause of any

performance limitations we may find. In particular, without a theory of the task

we cannot determine whether performance is limited by the information we provided to

perform the task, or the observer's use of that information.

All three of these issues can be addressed by the efficiency approach. While the

problem of the criterion can be circumvented by the use of 2AFC tasks, and unit-

free measures of performance are available, such as the d-prime measure of

signal detection theory (which also controls for the observer's criterion),
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efficiency has a distinct advantage over these methods in that it is a unit-free

measure of information processed or required. A level of performance given by

any other measure will reflect the ability of the visual mechanisms to use the

visual information, but also will reflect the information available for the task at hand.

This is a subtle but crucial distinction. When these two possible causes of

performance levels are confounded, this puts serious limitations on the

inferences we can draw about the underlying mechanisms, when looking at

performance across a range of parameters within a domain or comparing

performance for different stimuli (within or across domains). The advantage of

efficiency over other traditional information processing measures is that it

compares two observers, human and ideal. Essentially, the ideal observer makes

optimal use of the information available to satisfy a performance criterion for a

given task, providing a theoretical upper bound to compare with human visual

processing. The level of discrepancy between actual and optimal performance

(measured sensitivities) can then be computed simply by taking the ratio of the

two. Computing this ratio normalises human performance relative to the available

information. Therefore any performance limits can be interpreted purely in terms

of the ability of the underlying mechanisms to use the available information.

This absolute measure can then be compared both across parameters within a

task and also between different tasks.
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The efficiency measure can inform us about the nature of the mechanisms of the

visual system, free from confounding effects of the available information.

Furthermore, the measure can be used to tease apart the internal factors

contributing to performance; the effectiveness of the underlying mechanisms, the

variability in the decision process, and the internal noise of the system (see

section 2.4). There are a number of ways in which the approach has been

applied. We can search a space of stimulus dimensions and identify the 'best'

parameters, e.g. the spatial & temporal frequencies giving the highest efficiencies

for detecting a Gabor patch (Watson et. al, 1983). These 'optimal' stimuli are

excellent candidates for visual mechanisms, i.e. we would expect to find

mechanisms 'tuned' to such stimuli at some stage of the visual system. As the

efficiency measure is absolute, we may also compare efficiencies between

different tasks. Simply stated, we can assess how good (or bad) the visual

system is at performing different tasks. Then, by comparing efficiencies across

diverse tasks the method could provide us with a more complete description of

the system. That is to say that, not only can we identify the optimal parameters

for a given class of stimuli (e.g. Gabor patches), but by comparing efficiencies

across different classes of stimuli we could also identify the tasks the visual

system has been designed to perform. We may also use the measure to test our

models of the system. Having established the absolute efficiency for a task, we

may introduce constraints to the ideal observer. We may permit the ideal

observer the use of only a subset of the available information (e.g. Liu et aI, 1995;
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Knill, 1998a, 1998b, 1998c), or introduce physical limitations known to affect

human performance e.g. optical blurring of the image and photoreceptor spacing

(Andrews et al., 1973;Watt & Andrews, 1982) or place the ideal observer at any

stage of the known physiological mechanisms (Geisler, 1989). If these

modifications led to improved efficiencies we could infer that we have succeeded

in identifying a key limitation of the system. Similarly, we would compute

efficiencies relative to a model of the system, high efficiencies would confirm the

validity of our models (Liu & Kersten, 1998). The present thesis uses the

efficiency measure to control for the information provided in speed and depth

discrimination tasks. The basic logic is to use the measure to make direct

comparisons between different experimental conditions, specifically for

discriminations of transparent stimuli and comparable non-transparent stimuli,

and also between different tasks, specifically between speed discriminations and

depth discriminations.

In the following sections I provide a more detailed discussion of the efficiency

measure. First I trace the development of the efficiency approach, specifically the

application of the approach to vision. I provide a series of definitions to

emphasise the development and applicability of the approach. Second, I

consider in further detail what an ideal observer is. I will provide a definition of

the ideal observer, that uses the available information to implement the optimal
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decision strategy. Third, I consider the causes of inefficiency. Finally, I review a

broad range of studies that have employed the efficiency approach.

2.2 What is Efficiency?

The concept of efficiency can be traced to Fisher's (1925) discussion of statistics.

Fisher defined an efficient statistic as that with the least possible variance,

specifically it minimises the variance of the error distribution. The error is the

discrepancy between statistical estimates of parameters based on a given sample

with the actual parameters of the population. For those statistics that tend to the

actual parameters of the population as the sample size is increased, the error

distribution is normal. In Fisher's terminology, an efficient statistic is then one

that makes use of all the relevant information available in the sample, while an

inefficient statistic makes use of less than 100% of the relevant information

available. The (relative) efficiency of a given statistic can then be assessed by

comparing the variance of the error distribution for that statistic with that of the

efficient statistic. A statistic with twice the variance of the efficient statistic can

be said to have an efficiency of 50%. Therefore, efficiency measures the use of

available information by comparison with the optimal use of information. This is

the fundamental logic of the efficiency approach applied to perception.

Rose (1948) first applied Fisher's logic to the visual domain. Rose aimed to

provide an absolute scale to measure performance of the 'human eye' to assess
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how many quanta could be absorbed by the human eye. To achieve this, an

optimal eye or 'ideal picture pickup device' was first defined, limited only by the

inherent random fluctuations in the distribution of quanta (a statistical limit).

Given a task of detecting a signal on a uniform background, the (theoretical)

performance of the ideal device was then matched to that of a human observer

by limiting the number of quanta available to be absorbed by the ideal device.

Thus it was possible to estimate the quantum efficiency, the proportion of quanta

used by the human eye. By this method Rose estimated that the human 'eye' has

a quantum efficiency of 5%, in other words we are able to absorb 5% of the

available photons. This approach was an interesting development, but it was

limited to assessing the efficiency of the initial information pick-up. Barlow

(1962a, 1962b) extended the quantum efficiency approach to address not only the

initial pickup of visual information, but also the further processing and

translation into performance of the visual information, aspects of visual

processing of interest to modem day vision science. Overall quantum efficiency is

defined as:

F = _Le_as_t....!q:....u_an_t_it::....y_o_f_li~g_ht_t_h_eo_r_et_ic_a_lI~y_r_eq.!...u_ir_e_d_fo_r....!p'-e_ri_o_rm_in~g:....a_t_a_sk
Least quantity required in practice for performing that same task

(1)

But again, this definition was limited. By definition the overall quantum

efficiency measure applies to tasks only where the discrimination of light

intensities limits performance. Generally, we desire a measure of visual
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performance that can assess a broad range of performance limitations, beyond

the initial absorption of quanta.

Signal detection theory provides us with the method to compute human and

ideal performance, and therefore the efficiency, for visual tasks more complex

than the detection of light. Efficiency is defined as (Tanner & Birdsall, 1958):

(2)

where Eh is the experimentally determined signal energy required by an

observer to reach a specific performance level and E, is the signal energy required

by an ideal device to match the performance of the observer under study. Later,

Barlow (1978) re-introduced the efficiency approach as statistical efficiency:

F = Sample size required by ideal device (3)
Sample required by subject doing the same task

This is computed experimentally as the ratio of human sensitivity to that of the

Ideal Observer:

(4)
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Here cl i is the sensitivity of an ideal detector for the task, and cl h is the

experimentally determined sensitivity of the human observer for the same task.

Barlow was particularly concerned with the detection of signals in random dot

displays, however this definition applies to any task for which the human and

ideal sensitivity can be computed, allowing us in principle to compute

efficiencies for a broad range of complex tasks. In the following section I provide

the general definition of an Ideal Observer.

2.3 What is an Ideal Observer?

As we have seen above, efficiencies can be computed for a visual task by

comparing human performance with that of the ideal observer. As we have also

seen, the ideal observer is the theoretical observer that makes use of all the

available information to perform the given task in the optimal way. But how do

we define optimal performance? The optimal strategy can be expressed given a

statistical description of the task (Kersten, 1990). For example, a general task

faced by an observer is to decide what the three-dimensional scene in the world

is (the distal stimulus) given a particular two-dimensional image (the proximal

stimulus). However, because many scenes could have given rise to any

particular image, there is an uncertainty about the state of the world, the

observer cannot be sure if a particular scene gave rise to the given image. Due to

this uncertainty, we can say the task of the observer is to decide how likely a

particular scene is, given a particular image. Bayes' theorem (e.g. Berger, 1985)
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provides a way to break this probability down into parts, and lends itself well to

an analysis of visual perception (for example see Mamassian et al., 2001).

Essentially, the theorem allows us to re-express a conditional probability, given

some knowledge about how the states of the world relate to the image, and some

additional prior knowledge about plausible states of the world. Applied to

present example, the theorem states that the probability of a particular scene

given a particular image, the posterior (a posteriori) information, is given as:

I. p(ils)p(s)
p(SI)=-'---

p(i)

Here p(sli) is a distribution of the probabilities of possible scenes given a

particular image. The right hand side of the equation expresses this in terms of a

likelihood, a prior, and a normalising factor. The likelihood term, pUis),

represents the likelihood that a given image would arise from a particular scene.

Thus it embodies knowledge about the possible scenes. The a priori term, p(s),

represents a distribution of the probabilities of the possible real world states i.e. it

embodies knowledge about the plausibility of states of the world. The final

ingredient in the equation, p(i) is simply a normalising factor that ensures the

posterior is a true probability distribution (i.e. that the integral over all scene

values sums to 1). This formulation of the visual problem is important, as it

permits us to specify an optimal decision strategy. If the task of the observer is to

respond incorrectly as few times as possible, the optimal decision rule that
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minimises the probability of error is to maximise the posterior probability (MAP).

However, when the prior information is uniform (i.e. the prior probabilities are

constant) the MAP strategy reduces to maximising the likelihood, or MLE

(Kersten, 1990;Liu et al, 1995).

Similarly, the likelihood (of a particular stimulus) is also a fundamental concept

in signal detection theory, but applies to a more specific experimental situation of

deciding between two alternatives given a particular observation (e.g. Swets et

al., 1964). In a basic detection task the observer must decide whether the sensory

information arose from the signal (e.g. a spot of light) or alternatively was simply

a result of the background noise (which may simply be the noise inherent in the

sensory process). At the core, detection theory assumes that the amount of

sensory information that arises from signal and noise together, and from noise

alone, can be described by normal distributions. That is to say that, if we were to

repeatedly present the same signal and measure the amount of sensory

information it transmits, the frequencies of sensory information would follow a

normal distribution. These distributions represent the likelihood of the stimulus

(signal and noise, or noise alone) occurring given a particular amount of sensory

information. The distributions are assumed to have equal variance, and the

distance between these two distributions specifies the observer's sensitivity, such

that the observer's sensitivity is linearly related to the strength of the signal.

Therefore, each sensory response will have a likelihood that it resulted from
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signal and noise, and also a likelihood that it arose from noise alone, so each

sensory stimulus will correspond to a ratio of the two likelihoods. To decide if a

signal was presented a decision criterion can be applied corresponding to a

particular value of likelihood ratio, e.g.

If x > 1 say 'yes'

If x < 1 say 'no'

where x is the likelihood ratio for a given trial. This particular criterion (a

likelihood ratio of 1) corresponds to the case where the two alternatives (signal

and noise, or noise alone) are equally likely to occur, but if these a priori

probabilities were to change (or any other aspect of the task were to change the

area of overlap between the distributions) the optimal criterion would be

different. Thus detection theory specifies the optimal decision criterion for a

given task. The ideal observer for a given task of distinguishing between two

alternatives will therefore compute the likelihood ratio for a given trial and apply

the optimal decision criterion to this value. The question remains, given the

optimal decision rule, how to define the ideal observer for a given task.

Detection theory specifies the ideal observer for a detection task, it computes the

likelihood by taking the cross-correlation of the observed stimulus with the

expected signal (p, 163 Green & Swets, 1966), this is known as template matching,

and applies the optimal decision rule to this computed likelihood. The template
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matching procedure is consistent with the previous considerations of ideal

performance, it makes use of all the available information and knowledge of the

task, a perfect representation of the possible alternatives. There are mathematical

proofs that this is optimal for the detection of known signals on backgrounds

(Green & Swets, 1966) and has also been shown to apply to more complex object

recognition tasks (Tjan et al, 1995; Liu et al, 1995). The present thesis applies the

template matching ideal observer to speed and depth discrimination tasks (and a

formal proof is provided in the Appendix) .

2.4 Why are we Inefficient?

Efficiency normalises human performance to the available information, therefore

it measures the ability of the observer to use the available information. What

factors limit the ability to use all the available information? Causes of efficiency

loss may be either internal noise in the system, arising from variability in the

decision process (Burgess, 1990; Pelli, 1990) or in any neural firing (Tolhurst et al,

1983), or to a 'faulty memory' for the signal (Burgess et. al, 1981; Burgess &

Barlow, 1983). Of course, what we are interested in is the effectiveness of the

visual mechanisms, beyond the effects of any internal noise. Statistical

efficiencies will reflect the contribution of both. A number of methods have been

developed to factor out the contributions of internal neural noise to efficiency

loss for simple tasks - sampling efficiency (Burgess et. al, 1981), calculation efficiency

(Pelli, 1990; Bennett et al, 1999) and high-noise efficiency (Pelli & Farell, 1999) -
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while decision noise can be assessed by a double-pass paradigm, in which the

consistency with which observers perform a task on identical noisy stimuli across

two sessions is assessed (Burgess, 1990).

Beyond the effects of internal noise, what form does inefficiency take? In a

simple detection task e.g. of a Gabor patch on a background of Gaussian

luminance noise, the ideal observer compares the stimulus with a template and

this template is an exact match of the stimulus i.e. the ideal observer knows the

stimulus exactly. In contrast, the human observer may not be able to use an exact

representation of the stimulus i.e. the visual mechanisms do not match the

stimulus exactly and so are not able to use all the available information. Instead,

the visual mechanisms may provide a partial but incomplete representation,

thereby introducing uncertainty into the stimulus. For example, Burgess et al

(1981) found extremely high efficiencies for the detection of simple Gabor

signals, the sampling efficiency was 83% on average. This indicates that human

observers are able to use visual mechanisms that closely (but not exactly) match

the stimuli, and based on the known physiology these are likely to be the

'simple' cells of VI. Such high efficiencies are rare. In the following section, I

review the broad range of efficiency studies to assess the type of stimuli human

observers can use effectively.
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2.5 Summary of Efficiencies

In summary, by comparing human performance with an optimal baseline, the

ideal observer, we can assess how efficient human observers are at extracting

visual information to perform a given task. In essence, we normalise

performance relative to the available information. Indeed, this fact can be

exploited to test whether threshold differences in similar tasks are indeed due to

differences in the underlying mechanisms, or differences in the available

information. Moreover, we can indeed compare efficiencies directly between

diverse tasks. Efficiencies have already been computed for a range of tasks over

the years by various authors, and I summarise these in Table 1. The table

includes a description of the basic task, the stimulus, and the maximum

efficiency reported. Where efficiencies were reported for observers individually,

I have computed the average efficiency across observers (mean number of

observers across studies = 3). The table is ordered by maximum efficiency in

descending order.

There are a number of interesting aspects of the efficiency literature. From

examination of Table 1, it is clear that there is a broad range of efficiencies, from

the close to optimal 83% of Burgess et al. (1981) for the discrimination of Gabors,

through efficiency of 50% for the density discrimination of random dots (Barlow,

1978) down to the extremely small efficiencies of 0.05% for the direction
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Authors Year Efficiency [rask Stimulus

BUllless et al. 1981 83.00% fSignal Discnmination !Gabors

Legge, Gu " Luebker 1989 80.00% Discnmination of Means Numbers, scatterplots or luminance bars

BUlll<SSet al. 1981 70.00% ~ignal Discnmination jcabors

Legge, Gu " Luebker 1989 70.00% Discnmination of Variances Numbers, scatterplots or luminance bars

Kersten 1987 59.SO% !Signal Detection jcabors

BUllless 1999 58.00% ~ignal Detection "Nodules", Simulated Tumours (Gaussian Noise)

BUlll"SS 1999 58.00% 5ignal Detection "Nodules", Simulated Tumours (power-Law Noise)

BUIlIe.. " Barlow 1983 54.00% Numerosity Discrimination Randomly Positioned Dots

BUllless 1999 51.00% ~ignal Detection "Nodules", Simulated Tumours

Barlow 1978 SO.OO% Density Discrimination Randomly Positioned Dots

van Meeteren " Barlow 1981 SO.OO% !Signal Detection [Sinusoidally Modulated Random Dots

Burgess &t Ghandeharian 1984 SO.OO% ~ignalldentification Disks

BUIlIess, Li " Abbey 1997 SO.OO% ~ignal Detection Disks on Uniform &. Lumpy Backgrounds

Bu~ss, Li &t Abbey 1997 SO.OO% !Signal Detection !Gaussian on Uniform &: Lumpy Backgrounds

BUIlIess .. Ghandeh.rian 1984 SO.OO% ~ignalldentification Disks

BUllies." Ghandeharian 1984 SO.OO% f.;ignalldentification Squares

Liu ItK.rsten 1998 SO.OO% pbject Recognition Balls, Irregular, Symmetric, V-Shaped

BUIlIess 1999 45.00% ~ignal Detection !Gaussian

Parish It Sperling 1991 ~2.00% Letter Identification pussian Filtered

BUIlIe.. 1985 40.00% ~ignal Detection - 10AFC Hadamard Signals

Eckstein et ill. 2001 38.00% Search (+ Saccades) -10AFC !Gaussian-Blurred Disk

Kingdom et al. 1987 37.00'. Unedetection-SOOAFC Sinusoidally Modulated Lines

Harri. "" Parker 1992 35.00% Depth Discrimination Random Dots

Watamaniuk 1993 35.00% Direction Discrtmmation Random Dots - Gaussian Direction Distribution

Eckstein et ill. 2001 33.00% Search (+ Pixanonl - 10AFC Caussian-Blurred Disk

BUIlIess 1985 33.00% ~ignal Detection - 2AFC Hadamard Signals

Eckstein et ill. 1997 31.20% Signal Detection - 4AFC !'-'aussian-Blurred Disk in Uniform Backgrounds

Kersten 1984 30.00% !Signal Detection leabors

Banks, Geisl.r lot Bennett 1987 30.00% ~ignal Detectiorr- 2lFC ISinusoidal Gratings

Barlow"" Reevel 1979 25.00% Symmetry Detection Random Dot Patterns

Liu. Knill "" Kersten 1995 25.00% ~ject Recogni tion Balls, Irregular, Symmetric, V-Shaped

B.nks, Geisler &- 8~nnett 1987 24.10% ~ignal Detection - 2lFC Sinusoidal Gratings

Barlow"" Tripathy 1997 22.50% Direction Discrimination Random Dots

Eckstein et al. 2001 20.00% ~arch (Saccades) -10AFC Gaussian-blurred Disk

Eckst.in et al. 1997 18.70% SIgnal Detection - 4AFC Gaussian-olurred Disk in Different Backgrounds

Eckstein et al. 1997 16.60% ~ignal Detection - 4AFC Gaussian-blurred Disk in Repeated Backgrounds

Tjanetal. 1995 16.30% Letter Recogni tion Geneva Font

till. K.... t.n "" Knill 1999 15.00% Pbject Recognition Balls, Tinker Toys and Wire objects

BUlll'SS 1999 13.00% ~ignal Detection Simulated Microcakification Clusters

Leggeetal. 1987 12.00% !contrast Discrimination Disk

Solomon"" Pelli 1994 11.SO% leiter Identification Geneva Font

Knill. Field"" Kersten 1990 10.00% Texture Discrimination Fractal Noise Textures

Hanett 1987 9.00% ~ignal Detection Blue-green stimulus· 5 flashes per intensity

Braje, Tjan " Legge 1995 8.40% ~ject Detection :Wedges, Cones, Cylinders &: Pyramids (Silhouettes)

Tjan et al. 1995 7.84% fobject Recognition Wedges, Cones, Cylinders &< Pyramids (Small Silhouettes)
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Autho," Year Efficienc

Legge et al. 1987 7.50% ontrast Discrimination bor

Solomon" Pelli 1994 7.00%

HaUeH 1987 6.40% Blue-green stimulus - 50 flashes per intensity

Simpson.tal. 1999 6.00% Random Dots - Two Step Motion

Gold et al. 1999a 5.50% Band-Pass Filtered and Unfiltered Faces

Tjan etal. 1995 .74% ject Detection Wedges. Cones. Cylinders" Pyramids (Silhouettes)

Tjan et al, 1995 ject Detection edges. Cones. Cylinders &. Pyramids (Line Drawmgs)

Barlow 1962 .60% lashes of Light

Tjan etal. 1995 .51% ject Recogni tion edges. Cones. Cylinders &. Pyramids (large Silhouettes)

Braj., Tjan " Legge 1995 4.50% lect Detection Wedges. Cone s, Cylinders &. Pyramids (Line Drawings)

Braje, Tjan " Legge 1995 3.75% ject Recogni tion edges. Cones. Cylinders &. Pyramids (Line Drawings)

Tjan et al. 1995 3.28% ject Recognition Wedges. Cones. Cylinders &. Pyramids (Shaded)

Beale, Tjan " Legge 1995 3.23% ject Recogni tion Wedges. Cones. Cylinders &. Pyramids (Silhouettes)

Tjan etal 1995 2.69% ject Recognition edges. Cones. Cylinders &. Pyramids (line Drawings)

Gold.tal. 1999b 2.00% Face Identification -10AFC Unfiltered Faces

Tjan et al, 1995 1.53% ject Detection Wedges. Cones. Cylinders &. Pyramids (large Silhouettes)

Gold et al. 1999a 0.90% Band-Pass Filtered and Unfiltered letters. Geneva Font

Gold.tal. 1999b 0.60% Texture Identification -IOAFC Band-Pass Filtered Gaussian Noise

Watson et al. 1983 0.05% ratings

Watson" Turano 1995 0.05% Direction Discrimination bors

Table 1. Summary of Reported Efficiencies. The table includes a description of the basic

task, the stimulus, and the maximum efficiency reported for a broad range of studies. The

table is ordered by maximum efficiency in descending order.

discrimination of translating Gabors (Watson & Turano, 1995). Thus, it appears

that the visual system is more efficient in processing some visual stimuli than

others. An important question to ask then is, is there a general trend in variation

of efficiencies as a function of the task/stimulus? Although there is large

variation in the values of efficiencies for similar stimuli and tasks, the higher

efficiencies reported tend to be for simple detection or discrimination of simple

stimuli, such as Gabors, disks and sinusoidal gratings. On the other hand, the

lower efficiencies reported tend to be for the recognition or identification of more
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complex stimuli, such as letters, objects and faces. This is an intriguing pattern,

as it suggests that low-level image based stages of processing represent more of

the available information than representations at high-level object based stages of

processing. It is premature to make any strong conclusions here, without a

detailed analysis of these patterns in efficiency, but it is interesting to note that

this pattern of efficiencies may be consistent with an early "efficient coding" of

natural images (e.g. Simoncelli & Olshausen, 2001).

It is clear that very little 'mid-level' work has been done using the efficiency

approach. Notably, Harris & Parker (1992) calculated the efficiency for depth

discrimination in random dot stereo grams, and Watamaniuk (1993) calculated

the efficiency for motion integration in random dot stimuli. Certainly nothing

has been done on perceptual transparency. The resolution of transparency (in

the natural world) is likely to require the integration of different kinds of visual

information (Kersten, 1991). By the efficiency approach, we can compare

performance directly for different types of information; therefore we can begin to

assess the type of visual information that is useful for the resolution of transparency, and

the surface representation in general. Crucially, because efficiency normalises

performance to the available information, the measure permits stronger

inferences to be made about the nature of the underlying mechanisms than other

available measures of visual performance. This point cannot be overemphasised.

A performance level for a particular task given by any other measure could be a
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function of either a) the observers ability to use the available information (what

we are interested in), or b) how useful the available information is for a given

task. Without the thorough analysis of the information available to perform a

given task, these two alternatives cannot be teased apart. In the two

experimental studies that follow this chapter, I compute the efficiency of

transparency defined purely by motion (Chapter Three) and stereopsis (Chapter

Four). In Chapter Five, I extend the study of motion efficiency to the motor

domain.
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Chapter Three: The Efficiency of Motion Transparency

3.1 Introduction

Local motion signals, known to occur early (area VI) in the primate visual

system, must be integrated and segmented. In general, the motion system must

integrate local motion signals that arise from the same surface into a global,

coherent motion, and segment motion signals that arise from different surfaces

(Braddick, 1993). Transparent motion, in which two or more surfaces are

perceived segregated in depth, is a particularly good stimulus to study the

limitations of these motion mechanisms as it involves the simultaneous

integration and segmentation of local motion signals. In this chapter I use the

efficiency approach to assess the visual mechanisms underlying transparent

motion. First I briefly introduce a fundamental problem in motion vision that

has implications for the recovery of transparency, the motion correspondence

problem, and then provide a brief summary of the previous research on

transparent motion.

3.1.1 The Motion Correspondence Problem

The motion correspondence problem (Marr, 1982)occurs when a number of local

elements at a time t, are displaced at a time tr There are a number of possible
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matches between the elements, some correspond to the true displacements but

some to spurious correspondences. Therefore, a fundamental task for the visual

motion system is to identify those correspondences arising from true

displacements in the world. The local motion signals of the early visual system

cannot distinguish between a true and spurious correspondence. Therefore an

interaction of local information is required to overcome the correspondence noise

in the stimulus. Random-dot stimuli (e.g. Braddick, 1974)have provided a useful

tool to investigate the correspondence problem, as they permit direct

manipulations of the local elements that contribute to the correspondence

problem. A number of studies that have employed these stimuli have suggested

that the quantity of false correspondences that actually occur in a stimulus may

be a crucial limiting factor for motion perception; direction discrimination

performance (Williams & Sekuler, 1984; Barlow & Tripathy, 1997) and the

maximum detectable displacement (Eagle & Rogers, 1996) are limited by dot

density, thus the number of possible correspondences in the stimulus. The

correspondence problem will be particularly severe in the case of transparent

motion, as here the system must identify the correspondences belonging to two

different surfaces simultaneously.

3.1.2 Previous Research

Transparency can be perceived in random dot stimuli purely from differences in

motion (such as direction and speed). However, there is a performance cost
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associated with this stimulus. While transparency can be perceived when two

random dot stimuli are presented simultaneously in opposite directions

(Mulligan, 1993; Murakami, 1997) motion detection thresholds are higher for

such transparent motion stimuli than for each motion stimulus presented alone

(Mather & Moulden, 1983) and for transparent motions in orthogonal directions

(Lindsey & Todd, 1998). The maximum detectable displacement, Dmax' is less for

transparent motions in orthogonal directions than for single coherent motions

(Snowden, 1989). Similarly, direction discriminations are impaired for

superimposed transparent motions relative to segmented motions (Smith,

Curran & Braddick, 1999). This cost in processing transparent motion has been

interpreted in terms of inhibitory interactions between different directionally

tuned detectors (Snowden, 1989). This account is consistent with the 'direction

repulsion' effect, in which the perceived directions of transparent random dot

displays are exaggerated when the angle between the different directions is

within a critical value (Marshak & Sekuler, 1979;Mather &Moulden, 1980;Hiris

& Blake, 1996; Chen, Matthews & Qian, 2001). Inhibitory mechanisms of this

kind have been identified in area MT (Snowden, Treue, Erickson & Andersen,

1991). In contrast, VI responses are not suppressed for transparent motion

(Snowden et al., 1991). Moreover, the suppression of MT cell responses varies

depending upon the spatial proximity of opposing dots, in a manner that

parallels perceptual behavior (Qian & Andersen, 1994; Qian, Andersen &
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Adelson, 1994a). This suggests that MT processing limits the perception of

transparent motion.

Recent psychophysical evidence questions the directional inhibition account of

the cost for transparency. Firstly, De Bruyn & Orban (1999) suggested that the

suppressed MT responses for opposite direction transparent stimuli reflect sub-

optimal responses to transparent stimuli. This was based on a psychophysical

speed enhancement effect, in which observers overestimated the speeds of

opposite direction transparent motions. Secondly, Masson, Mestre & Stone

(1999) found a cost for transparent motions moving in the same direction

compared to unidirectional coherent motions. This suggests that the cost for

transparent motion cannot be entirely due to directional inhibition. An

alternative account suggested by Masson et al. was that the cost for transparency

reflects a cost for segmenting different motions, and involves different neural

substrates for transparent and coherent motion. In support of this they found

that speed tuning for transparent motion was low-pass, similar to VI speed

tuning functions, and the speed tuning for coherent motion was high-pass,

similar to MT speed tuning functions. This account contrasts with physiological

evidence suggesting MT limits transparent motion perception (Stoner &

Albright, 1992;Movshon, Adelson, Gizzi & Newsome, 1986). However, previous

psychophysical data supports this account of a local signal for segregation and a

global signal for discrimination (Bravo &Watamaniuk, 1995).
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3.1.3 Present Study

The experiments that follow test whether a difference in the available

information in transparent and coherent motion stimuli may be contributing to

the cost in processing transparent motion regardless of the particular directional

combinations. One difficulty in comparing performance for coherent and

transparent motion is a difference in controlling for the dot density of the

random dot stimuli. The total density of a unidirectional coherent motion can be

equated to that of two transparent motions, moving in different directions

(Mather & Moulden, 1983; Lindsey & Todd. 1988) or in the same direction

(Masson et al., 1999). Here, the overall density of the coherent and transparent

stimuli is the same. However, there are less dots moving in the same direction in

the transparent interval. In other stimuli, the density of a single coherent motion

can be equated to the density of one of two transparent motions (Mather &

Moulden, 1983; Snowden, 1989, 1990; Smith et al., 1999). Here the number of

dots moving in the same direction in each condition is the same, but the overall

density differs between the two conditions. Despite these stimulus differences

all these studies find a cost for transparency. The question I ask here is whether

this cost is due to the difference in the available information in coherent and

transparent motion conditions, or due to a difference in the way the stimulus is

processed. To address this question I used the efficiency approach (see Chapter

Two for a general review of the efficiency approach). The efficiency approach
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has recently been applied to a range of motion tasks (Watamaniuk, 1993;Watson

& Turano, 1995; Barlow & Tripathy, 1997; Simpson, Manahilov & Mair, 1999;

Simpson & Manahilov, 2001), but has yet to be applied in an analysis of

transparent motion perception.

I computed the efficiency for speed discrimination of coherent and transparent

motion in two experiments. The use of a speed discrimination task is of course

an indirect method to target the mechanisms underlying perceptual

transparency. However, there are two serious limitations in using a more direct

task to probe transparency: 1) if observers are asked simply to respond whether

or not they perceive transparency or not (e.g. Adelson & Movshon, 1982; Stoner

et al., 1990; Qian et al., 1994), the measurements will be confounded by criterion

effects, and 2) even if the observer is forced to respond to one of two stimulus

alternatives (either spatial locations or temporal intervals), this does not

necessarily require the observer to represent both motions (Braddick, 1997).

Moreover, the application of the efficiency approach to an analysis of perceptual

transparency demands a well defined task. The two-alternative speed

discrimination task used in these experiments avoids criterion effects, demands

the representation of the speeds of both motions in a transparent stimulus, and

lends itself well to an ideal observer analysis. The main goal of the two main

experiments of this chapter was to make a general comparison between coherent

and transparent motion efficiencies across a range of relevant parameters, to
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assess whether there is indeed a processing limitation for transparent motion in

opposite directions. In Experiment 1 I fixed the speeds of the stimuli and varied

their dot density. In Experiment 2, I fixed the dot density and varied the speed.

Inboth experiments I found a consistent cost in efficiency for transparent motion.

In the additional Experiment 3, I again fixed the speeds of the stimuli and varied

their dot density, but asked observers to respond if they perceived two surfaces.

This experiment is included simply to provide a comparison between the results

of the speed discrimination experiments and a more direct task.

3.2 General Methods

The methods common to all three experiments are described below. The

manipulations unique to each experiment are described in those sections.

3.2.1 Human Observers

Three experienced psychophysical observers participated, 1 experimenter aW), 1

postdoctoral researcher (EG) and 1 paid graduate student (RG). All observers

had normal or corrected-to-normal visual acuity.
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3.2.2 Apparatus

Stimuli were presented on a 17' Sony Trinitron monitor VIa a G4 Power

Macintosh running MATLAB with the Psychophysics Toolbox (Brainard, 1997;

Pelli, 1997). The maximum luminance of the display was 80.6 cd/rn'. The

monitor refresh rate was set to 75Hz at a resolution of 832 by 624 pixels. The

stimuli were viewed monocularly (right eye) in a dimly lit room at a distance of

573 mm. Each pixel subtended a visual angle of 0.035° by O. 035°. Observers

used a chin rest to stabilize head position throughout the experiment and fixated

on a central white fixation point, a square of side 0.14°.

3.2.3 Stimuli

The stimuli consisted of randomly positioned signal and noise dots. Each signal

dot was displaced by a fixed increment on each frame continuously, the exact

increment depending on whether the signal was the standard or the target. The

standard speed was fixed for all experiments, while the faster target speed was

fixed for Experiment 1 but was varied in Experiment 2. Noise dots were

randomly displaced on each frame, such that they reappeared with a uniform

probability anywhere on the screen. All dots were white squares of side 2 pixels,

subtending 0.07 by 0.07 degrees of visual angle, and were presented on a square

black background, 7 by 7 degrees of visual angle. The remainder of the screen

was set to the mean luminance of the stimulus (which varied with the dot
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density), to maintain a uniform mean luminance across the entire display. In

both experiments, the dot density was controlled as described in the Appendix.

3.2.4 Procedure

I presented opposite motion random dot displays in two conditions. In the

coherent motion condition, each trial consisted of two random dot signals,

presented sequentially in temporal intervals of 267ms duration. This stimulus

duration lies beyond the temporal integration asymptote for coherent motion,

estimated by Masson et al. (1999) to be approximately 6Sms. In one interval the

signal moved to the left, in the other the signal moved to the right. The direction

of the standard and target motions was randomised across trials. Each trial was

preceded for 1000ms by a fixation point, centred in the presentation window.

The fixation point was present throughout each trial. There was an interval of

SOOmsbetween intervals, in which only the fixation point was present. The

observer's task was to indicate the direction of motion of the faster stimulus, 'left'

or'right'. In the transparent motion condition, again each trial consisted of two

motion signals, but now superimposed in the same interval of 267ms duration.

This stimulus duration lies beyond the temporal integration asymptote for

transparent motion, estimated by Masson et al. (1999) to be approximately

200ms. One signal moved to the left, the other moved to the right. Again, the

observer's task was to indicate the direction of motion of the faster stimulus, 'left'

or'right'.
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3.3 Experiment 1

My aim was to assess whether there is a processing limitation for transparent

motions of opposite directions by comparing efficiencies for speed

discriminations of transparent motions with efficiencies for speed

discriminations of coherent motions. In this experiment I made this comparison

over a range of dot densities, for a constant speed difference.

3.3.1 Methods

The basic methods were as described in the General Methods section.

3.3.1.1 Stimuli

For each trial two sets of dots were generated, one for the standard speed and

another for the target speed. For each signal, a 'strip' of randomly placed dots

was generated (a binary matrix), the width of which was the size of the image

plus the total speed increments over the 10 frames. Sampling this strip at

successive increments generated the subsequent frames of the movie. The

increment corresponded to the standard or target speed. In the transparent

condition, corresponding frames of the target and standard speeds were
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superimposed. Before presentation of each frame of the stimulus, a proportion

of noise dots were randomly placed in the image.

3.3.1.2 Procedure

Here I presented transparent and coherent random dot stimuli at a range of dot

densities. I used dot proportions of 0.01, 0.02, 0.04, 0.08, 0.16 and 0.32,

corresponding to 2.04, 4.08, 8.16, 16.3,32.6 and 65.3 dots per squared degree of

visual angle. The dot density refers to the total dot density of the stimulus.

Therefore each interval of the coherent condition had a density of half the total

value. The standard signal dots were displaced 0.07° (2 pixels) horizontally

left/ right on every frame, giving a speed of 2.63° S·I. The target signal dots were

displaced 0.14° (4 pixels) horizontally right/left on every frame, giving a speed

of 5.26° S·I. To limit performance, I presented the signals in a number of noise

levels using the method of constant stimuli. I tested five high noise levels per

condition and measured d' (Tanner & Birdsall, 1958) for each noise level tested.

In both the coherent and transparent motion conditions each observer completed

20 practice trials with 0% noise to become familiar with the stimulus before

beginning a session for a new condition. There were equal numbers of left faster

and right faster trials. Each condition was blocked, with 40 trials per each noise

condition (20 left faster, 20 right faster) for observers EG & RG, and 80 trials per

condition (40 left faster, 40 right faster) for observer JW. Within each condition,
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trials for different noise levels were randomly interleaved. Each observer

participated in over 10 hours data collection.

3.3.1.3 Ideal Observer

The ideal observer for a given task makes use of all the relevant information in a

given stimulus to perform that task optimally i.e. maximising the number of

correct responses by performing a maximum likelihood estimate (Green & Swets,

1966). I provide a formal derivation of the Ideal Observer in the Appendix and

here describe its implementation. For the experiments in this study, the ideal

observer is facing the same speed discrimination task as any human observer.

The ideal observer needs to represent the speeds displayed in the stimulus,

compare these speeds to the speeds of the possible templates, and choose the

appropriate template that best matches the speeds in the stimulus (Figure 3.1).

The speeds of each stimulus are given by the cross-correlation across successive

frames of the stimulus (see also van Doom & Koenderink, 1982a). The cross-

correlation function simply describes the quantity of matches at each speed with

no loss of information. It is a representation of the stimulus, and does not

implement any particular model of speed perception. Any other model, e.g.

motion energy filtering, would reduce the information content. However,

because the task is to discriminate only leftward or rightward displacements, the

ideal observer needs only to consider horizontal displacements, information

given by a simple one-dimensional cross-correlation. For the coherent stimulus
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the speed correlation is performed separately for each interval, and then

summed. For the transparent stimulus a single speed correlation is performed.

At low external noise levels, the peaks of this speed correlation correspond to the

standard and target signal speeds. This can be seen in Figure 3.1A for a

transparent stimulus with 0.70 noise dots (0.30 signal dots), in which the target

speed is moving to the right. The ideal algorithm computes the likelihood of

each possible outcome by comparing the incoming stimulus with a number of

'templates'. Each template is a representation of the possible stimulus

alternatives, correlations that peak at the expected speeds (Figure 3.1B). The

exact speeds will correspond to the speeds presented within a given block of

trials. In Figure 3.1B the possible alternatives are given for a disparity ratio of 2.

To compute the likelihood of each possible outcome, the ideal algorithm cross-

correlates each template with the stimulus. The ideal decision rule is then to

choose the template that returns the largest cross-correlation value with the

stimulus (Figure 3.1C), a maximum likelihood decision rule (Green & Swets,

1966). In the case of low external noise, the template with the highest value will

correspond to the actual signal presented, and in Figure 3.1C the ideal observer

indeed selects the correct template. However, at much lower signal levels the

value of the incorrect template can be higher than that of the correct template.

Only these occurrences limit the ideal observer performance.
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Figure 3.1. (A) Stimulus Representation: The cross-correlation for a random dot display

of 8% density, 50% noise, and a speed ratio of 2 (target moving to the right). The

correlation peaks at a lag equivalent to a rightward displacement of four pixels per frame,

and at a lag equivalent to a leftward displacement of two pixels per frame. (B) Templates:

There are two memory templates for a speed ratio of 2. The template on the left represents

a stimulus in which the leftward motion is faster. The template on the right represents a

stimulus in which the rightward motion is faster. (C) Decision Rule: The ideal observer

computes the correlation for each template of Figure B with the random dot display of

Figure A. The ideal observer selects the template with the largest value, a maximum

likelihood decision rule.
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The effects of varying the signal level and the dot density on the stimulus

correlation, and therefore the predicted effects on ideal performance, can be seen

in Figure 3.2. The left columns are correlations for stimuli of 16% density (d =

0.16), and the right columns are correlations for stimuli of 32% density (d = 0.32).

The correlations represented by filled bars are for the coherent condition, and the

correlations represented by open bars are for the transparent condition (the open

bars are presented upside-down for better comparison with the filled ones).

Each row contains correlations for a particular level of signal, the top row is for

100% signal dots (where the proportion of noise dots is zero, n' = 0), the middle

row is for 50% signal dots (n' = 0.50), and the bottom is for 0.5% signal dots (n' =

0.995). First consider the effects of decreasing the proportion of signal dots

(thereby increasing the proportion of noise dots). In the top row two peaks are

clearly distinguishable; these correspond to the displacements of the signal dots.

However, even with 0% noise dots, there are spurious matches at other

displacements, due to matching different signal dots. I refer to this as the baseline

level of the correlation, and the reader should be careful to distinguish this from

the proportion of noise dots in the stimulus. The ideal observer selects the

correct template because the amplitude of the baseline correlation is much lower

than the peak amplitudes, which do correspond to the correct signal speeds. In

the middle row the proportion of signal dots has dropped and the corresponding
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Figure 3.2. Cross-correlations for a number of stimuli, for each correlation 'd' indicates

the dot density and 'n I the proportion of noise (so 1- n ' is the proportion of signal dots).

All the correlations arefor a speed ratio of 2, in which the leftward motion is faster. Dark
bars are for the coherent condition, and light bars are for the transparent condition.
Increasing the noise level decreases amplitude of the peaks, whereas increasing the dot
density increases the amplitude of both the peaks and baseline correlations. Note that the
baseline correlations are stronger in the transparent condition than in the corresponding

coherent condition. Arrows indicate the theoretical location of the peaks when the

background noise is large.
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peaks have also dropped, however the value of the baseline correlation has not

changed. In the bottom row the proportion of signal dots has been decreased

further still. Here dropped, however the value of the baseline correlation has not

changed. In the bottom row the proportion of signal dots has been decreased

further still. Here the peaks are no longer present in the transparent condition,

but are still present in the coherent condition (this is not easily apparent in the

0.16 density correlation, but is clear for the 0.32 density condition). Now the

ideal observer is just as likely to select the incorrect template as the correct

template in the transparent condition, as the values for the incorrect speeds may

be larger than the correct speeds by chance matches. However, in the coherent

condition the correct template will be selected. This predicts that the ideal

observer thresholds will be higher in the transparent condition. The second

aspect of the correlations to consider is the effect of density. As density is

increased two fold from the left column to the right column, it is clear that the

amplitude of the baseline correlation increases. However, the peak amplitude

also increases. Therefore, dot density will affect ideal performance if the increase

in peak and baseline amplitudes differs e.g. if the peak amplitude increases

proportionally more than the increase in the baseline amplitude then ideal

performance should improve. I return to these aspects when considering the

actual simulated data, but for now it should be noted that the peak and base

amplitudes of the cross-correlation are not equivalent to signal and noise. While

the baseline amplitude of the cross-correlation is simply a function of the number
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of dots in the stimulus, the peak amplitudes depend on the relative proportions

of the signal and noise dots (and therefore also the number of dots).

To compute ideal sensitivity, I ran simulations of the ideal observer for both the

transparent and coherent motion tasks in the same conditions as the human

observers. The simulations were performed at five noise levels for each

condition, with 400 trials (200 left faster, 200 right faster) per noise level.

Efficiency is the ratio of human sensitivity to that of the ideal observer (Barlow,

1978):

(1)

The problem in using this definition is that the ideal observer easily reaches

ceiling performance for a suitable range of signal values for the human observer.

Thankfully, as we will see in the results section below, d' is a linear function of

the proportion of signal dots presented. I can therefore compute efficiency as the

squared ratio of the signal thresholds:

(2)
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Causes of human efficiency loss may be either internal noise or inefficient

sampling. The internal noise for the motion detection system is known to be low,

equivalent to an external noise level of between 5% & 10% (Bums & Zanker,

2000). Therefore, any loss in efficiency can be attributed mainly to incomplete

use of the available information.

3.3.2 Results

An example of the data obtained is shown in Figure 3.3, of a human observer and

a set of simulation of the ideal observer. These data are for the transparent

condition, with a dot density of 8%, and a speed ratio of 2. It can be seen that d'

increases linearly as the proportion of signal dots is increased (and therefore as

the proportion of noise dots is decreased), for both the human and ideal

observers. A linear fit constrained to pass through the origin gave an excellent fit

(r2 = 0.89 for the human data, r2 = 0.98 for the ideal data). I define the signal

threshold (eh & e,) as the proportion of signal dots required for d' of 1. Note the

much higher levels of noise required to limit performance of the ideal observer.

The ideal and human thresholds for both the coherent and transparent motion

condition are shown in Figure 3.4. First I consider the performance of the ideal

observer, shown in Figure 3.4A. There are two features to ideal performance.
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Figure 3.3. Sensitivities for a human observer (black circles) and the simulated ideal

observer (grey circles). A linear function gave very good fits to the data (ideal r2= 0.98,

human ~ = 0.89). It is clear that the slope of the fitted line for the ideal observer data is

much steeper (a= 195) than that a/the human data (a= 33.6). Thresholds (8, & OJare

taken at d'= 1.

The first is that there is a performance cost for the ideal observer in the

transparent condition. Transparent thresholds are consistently higher than that

of the coherent condition, a greater number of dots are required for each signal in

the transparent condition to attain an equivalent level of performance as the

coherent condition. This confirms that the baseline correlation is indeed higher

in the transparent condition than the coherent condition (shown in Figure 3.2).

The second feature to these data is that ideal observer thresholds improve with

increasing dot density in both the coherent and transparent motion tasks. This is

somewhat counter-intuitive, as increasing the dot density increases the number

of possible correspondences, which will raise the value of the baseline
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Figure 3.4. (A) Signal thresholds for the ideal observer as a function of dot density.

(B) Average signal thresholds for the human observers as a function of dot density.

Error bars indicate the standard error across the three observers. Filled circles

indicate coherent thresholds, open circles indicate transparent thresholds.

correlation. However, increasing dot density will also increase the peak

amplitude corresponding to the signal displacements. The improvement in

performance suggests that increasing the dot density affects the peak and base

amplitudes differently. To assess this I analysed the effect of dot density on

the peak and baseline amplitude. I computed the average amplitude (across

400 trials) for transparent stimuli with a signal proportion equal to 1, and a

speed ratio of 2 in which the rightward motion was faster. I then took the

average of the peak amplitudes (that correspond to the two signal speeds that

the ideal observer isolates with the correct template), and compared this to the

average baseline amplitude (that correspond to the two signal speeds that the

ideal
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Figure 3.5. The average peak amplitude (filled squares) and base amplitude (open

squares) of the cross-correlation, as a function of dot density (speed ratio: 2). The

dashed lines are taken from the closed form solution (see Appendix), and follow the

simulations well. Note that the peak and base amplitudes do not increase at the same

rate, thereby accounting for the effect of dot density on ideal performance (Figure

3.4A).

observer isolates with the incorrect template). The average amplitudes for the

peak and baseline correlations are plotted in Figure 3.5.

Figure 3.5 shows that the simulated data (filled and open symbols) follows the

closed form solution provided in the Appendix (dotted lines). The different

effect of increasing dot density on the peak and baseline amplitudes

determines ideal performance. Recall that the effect of adding noise lowers

the peak amplitudes corresponding to the signal displacements but has a

negligible effect on the baseline amplitudes. Within the range of densities

tested, at low densities a smaller proportion of noise will be required to bring

the peak amplitude back
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Figure 3.6. The average efficiencies as a function of dot density (speed ratio: 2), for

both the coherent (filled circles) and transparent (open circles) conditions. Error bars

indicate the standard error across the three observers.

to the baseline level, while at larger densities a larger proportion of noise will

be required to return the peak to the baseline level. The peak and baseline

amplitudes behave in the same way for coherent stimuli, with the exception

that the baseline amplitudes are generally lower than the transparent baseline

(accounting for the lower coherent thresholds).

Overall results for three human observers are shown in Figure 3.4B. There is

an overall cost in human performance in the transparent condition, similar to

ideal performance. However, the effects of density are not comparable to

ideal performance. Overall, performance declines (the signal thresholds

increase) as density is increased in both conditions, and the effect is greater in

the transparent condition. For completeness, the results for the individual

observers are presented in Figure 3.7B - C.
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I assessed the cause of the performance loss in the transparent motion

condition by computing the efficiency. The overall efficiencies for the three

observers are shown in Figure 3.6. First, there is a residual cost in efficiency

for transparent motion, indicating that the difference in stimulus information

cannot account for the cost in human performance. Furthermore, efficiencies

decrease as dot density is increased in both the coherent and transparent

motion conditions. For completeness, the results for the individual observers

are shown in Figure 3.7D- F.

3.3.3 Discussion

The main aim of this experiment was to compare performance between the

coherent and transparent motion tasks. I found that signal thresholds were

consistently higher for the transparent conditions. This finding is consistent

with previous findings covered in the introduction (e.g. Mather & Moulden,

1983). However, the results extend these findings. I found that ideal observer

thresholds were also higher for transparent motion compared to coherent

motion, confirming that there is indeed a difference in the available

information in the different conditions. Therefore we should be cautious

about interpreting the previous findings where performance measures were

not normalized relative to the available information. Nonetheless, I found

that this difference in the stimulus information did not account entirely for the

psychophysical cost for transparent motion. Transparent efficiencies are

higher on average than the coherent efficiencies. This cost in efficiency for

transparent motion indicates that constraints imposed by the visual system
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limit performance for transparent motion. I consider possible mechanisms

underlying this constraint in the General Discussion.

An interesting outcome of this experiment was that the efficiencies decreased

as dot density increased in both conditions. We saw from the ideal observer

analysis that the effect of increasing the dot density increases the level of

spurious correlations in the stimulus. I think that the further decline in

efficiency with increasing dot density suggests that the mechanisms

underlying both coherent and transparent motion are increasingly impaired

by these false correspondences. Indeed, this sensitivity to false

correspondences may account for the low maximum efficiencies. The effect of

density in both the coherent and transparent conditions can be considered in

terms of the effect of density on the signal and noise amplitudes of Figure 3.5.

We saw that the ideal thresholds initially improve because the peak and

baseline amplitudes diverge with increasing dot density (within the range we

tested). Clearly, the human observers cannot be taking advantage of the

increase in the peak amplitudes with increasing density. Instead, observers

appear to quickly reach a limit on the information that they are able to use

effectively, their subsequent performance determined by the increase in false

correspondences. This is demonstrated by the decay in efficiency with

increasing density. There is a similar finding for the efficiency of stereopsis

(Harris & Parker, 1992). I consider an account for this effect on performance

in the General Discussion.
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3.4 Experiment 2

In the second experiment I compared efficiencies for coherent and transparent

motions across a range of speed differences, for a constant dot density.

3.4.1 Methods

3.4.1.1 Stimuli

The stimuli were random dot movies, as described in the General Methods

section, constructed as described inExperiment 1.

3.4.1.2 Procedure

I presented transparent and coherent stimuli as described in the General

Methods section. Here I used a constant density of 0.05 for all the conditions,

equivalent to 10.23 dots/ deg', This gives a density of 0.025 for each interval

of the coherent condition. The standard speed was set to 2.63°s·1. The target

speeds were 5.26°s·1,7.89°s·1,10.5°s-\ 13.2°s-1and 15.8°s-1.These correspond to

speed ratios of 2,3,4,5 & 6. I tested five high noise levels per condition and

measured d' for each noise level I tested. In both the coherent and transparent

motion conditions each observer completed 20 practice trials with 0% noise to

become familiar with the stimulus before beginning a session for a new

condition. There were equal numbers of left faster and right faster trials. Each

condition was blocked, with 40 trials per each noise condition (20 left faster,
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20 right faster) for observers EG & RG, and 80 trials per condition (40 left

faster, 40 right faster) for observer JW. Within each condition, trials for

different noise levels were randomly interleaved. Again, observers were

required to indicate whether they perceived the leftward or rightward motion

as faster.

3.4.1.3 Ideal Observer

The ideal observer for this task was identical to that described in Experiment 1

in detail. The quantity of matches of a given speed is given by the cross-

correlation of successive frames of the stimulus. This is then compared with

templates, by cross-correlation. The templates used by the ideal observer

described the two possible speed combinations (the location of the peaks in

the templates) for a given condition of speed ratio. The ideal observer then

selects the template with the highest correlation, a maximum likelihood

decision rule. Note that, for the ideal observer, the effect of changing the

speeds will simply change the locations of the peaks in the correlations.

Therefore, because the ideal observer will apply templates matched exactly to

these speeds, there should be no effect of speed on ideal performance.
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Figure 3.B. (A) Signal thresholds for the ideal observer as afunction of speed ratio

(dot density: 0.05). (B) Average signal thresholds for the human observers as a

function of speed ratio (dot density: 0.05). Error bars indicate the standard error

across the three observers. Filled circles indicate coherent thresholds, open circles

indicate transparent thresholds.

3.4.2 Results

Ideal observer performance is constant across the speed ratios, but again

displays a cost for transparent motion (Figure 3.8A). For human observers,

thresholds are generally higher for transparent motions across the range of

speed ratios tested (Figure 3.8B). For completeness, the individual data is

shown in Figure 3.10A- C. It can be seen that RG is an exception to the trend,

performance is impaired in transparency for this observer only at the two

lower speed ratios tested.
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Figure 3.9. Average coherent (filled circles) and transparent (open circles) efficiencies

as a function of speed ratio (dot density: 0.05). Error bars indicate the standard error

across the three observers.

The average efficiencies for three observers are shown in Figure 3.9.

Efficiencies in the transparent motion condition are consistently lower than

for the coherent motion condition. For completeness, the individual data is

shown in Figure 100 - F. It can be seen that observer RG has a cost in

efficiency for transparency only for the smaller speed ratios tested (pulling the

average efficiency up at the higher speed ratios). This may reflect the strategy

reported by RG to try and attend only to the slowest speed, although it is hard

to see how this strategy would work at threshold where the detection of the

two speeds will be difficult.

70



'0
'0 0.1
J:..
2!
~
~
CJ) 0.01

iii

A
JW

B

'0:g 0.1..e
J:
I-
OJ
C
~ 0.01

Speed Ratio

~• • • •

EG

c

'0
"0 0.1
J:

~
~
OJ
c::
Cl 0.01

iii

Speed Ratio

RG

Speed Ratio

o

~
C
.~ 0.01

!E
W

0.001

0.01

0.001

0.001

0.1

JW

EG

RG

E

~
C..·u
!Ew

Speed Ratio

0.1

Figure 3.10. (A) - (C) Coherent (filled circles) and transparent (open circles) signal
thresholds for each of the human observers as a function of speed ratio (dot density:
0.05). (D) - (F) Coherent (filled circles) and transparent (open circles) efficiencies for
each of the human observers as afunction of speed ratio (dot density: 0.05).

F

~
C
.~ 0.01

!E
W

Speed Ratio

0.1

Speed Ratio

71



3.4.3 Discussion

In this experiment I computed thresholds for human and ideal observers

across a range of speed differences. Again, I found that signal thresholds

were consistently higher in the transparent condition. By computing

efficiencies, I normalised human observer performance to the available

information and found that transparent efficiencies were consistently lower

than coherent efficiencies. This confirms the results of Experiment 1,

demonstrating that a visual mechanism limits performance for transparent

motions over a range of speed differences. A further aspect of the results is

the effect of speed ratio (Figure lOa). Previous psychophysical (McKeeet al.,

1986; Masson et al., 1999) and fMRI (Chawla et al., 1999) results have

suggested an optimal speed sensitivity of around lOos-I. However, this

behaviour is only hinted at by the present results, with a very slight peak at a

speed ratio of 4 (corresponding to a target speed of 10.5°s-1). In fact, there is

very little effect of speed. The similarity between this results and the

performance of the ideal observer suggests that the human observers have

access to a fine representation of the different speeds in the stimulus.

3.5 Experiment 3

Observers' reported that it was difficult to perceive surfaces at the lowest

densities used in Experiment 1, but a clear surface perception accompanied

the higher densities. To quantify this subjective change, I ran a short

experiment in which observers were required to indicate whether they did
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perceive two surfaces, a similar subjective task to that used in a number of

influential studies of motion transparency (e.g. Adelson & Movshon, 1982;

Stoner et al., 1990;Qian et al., 1994).

3.5.1 Methods

3.5.1.1 Stimuli & Procedure

The apparatus, stimuli and observers were identical to Experiment 1. Here, I

used the adaptive QUESTprocedure (Watson & Pelli, 1983)to find the signal

thresholds for surface perception over a range of density conditions, from 1%

to 32% of the available dot positions. I modified the QUESTprocedure to use

a cumulative Gaussian psychometric function and the mean estimate of King-

Smith et al. (1994), and a threshold at 75% correct. Each session for a

particular density was terminated after a fixed number of trials (100). The

density of the stimulus was constant throughout each session. The direction of

the faster motion was randomly determined from trial to trial. The

proportion of signal dots varied from trial to trial depending on the current

threshold estimate (mean of the posterior probability distribution function). I

used the same standard (2.63°5-1) and target (5.26°5-1) speeds as Experiment 1,

and the same presentation methods for both the coherent motion task and the

transparent motion task. On each trial observer's indicated with a key press

whether they perceived a coherent surface (in the coherent motion task) or

two surfaces, one sliding over the other (in the transparent motion task).
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3.5.2 Results

For two of the three observers (JW & EG, Figure 3.llA & B), the thresholds for

surface perception are very similar in both the coherent and transparent

conditions. Observer RG (Figure 3.llC) requires much more signal to
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Figure 3.11. Coherent (filled circles) and transparent (open circles) signal thresholds
as afunction of dot density for each of the human observers (A - C).
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perceive surfaces in the transparent case. Generally, across all the observers

the surface thresholds are lowest in the range of densities from 1% to 10% in

both conditions.

3.5.3 Discussion

This experiment set out to quantify the change in the perception of surfaces

reported in Experiment 1. The results demonstrate that there is an effect dot

density on surface perception, but this is not consistent across observers.

Thus, while it was interesting to attempt to confirm that the stimuli of

Experiments 1 & 2 were providing a surface perception, the problem with this

approach is that the subjective task will be contaminated by a criterion for

surface perception. Therefore the results do not necessarily reflect the

mechanisms underlying the surface perception. It would be possible to

devise a criterion free subjective task, by forcing the observer to choose

between two stimulus alternatives, but even in this case it is not possible to

establish whether the observer is really relying on a full representation of

transparency (Braddick,1997). In this particular case, the surface perception

thresholds do not capture the performance cost identified by the indirect

method in Experiments 1 and 2. Indeed, the thresholds for surface perception

are much higher than those for speed discrimination. This inconsistency

between the results of this experiment and the previous two implies that the

two methods are tapping into different processes, and while there are serious

confounds in the present experiment, much stronger conclusions can be

drawn from the indirect speed discrimination task.
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3.6 General Discussion

3.6.1 Summary

I measured performance in terms of signal thresholds for speed

discrimination of both coherent and transparent motion. From these data, I

also computed efficiencies for these tasks by comparing human with ideal

observer performance, thus normalizing performance relative to the available

information. In both Experiment 1 and Experiment 2 I found that there is an

overall cost in raw performance for transparent motion, consistent with

previous findings (Mather & Moulden, 1983;Snowden, 1989;Lindsey & Todd,

1998; Smith, Curran & Braddick, 1999). Here I extended these findings

through an ideal observer analysis and demonstrated that part of the loss of

performance I found can be attributed to a difference in the available

information in the transparent condition. Nonetheless, I found a consistent

residual loss of efficiency in the transparent conditions. This indicates that

constraints imposed by the visual system limit performance for transparent

motion. However, the difference is small, generally less than 5%. Generally, I

found that efficiencies for both coherent and transparent motion were less

than 10%. Therefore, observers were using only a small sample of the

available information. In Experiment 1 I found that speed discrimination

efficiencies for both coherent and transparent motion depended upon dot

density. This demonstrated that the mechanisms underlying both coherent

and transparent motion are sensitive to the level of false correspondences in

the stimulus, observers were less able to use all the available information the
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greater the number of possible correspondences in the stimulus. Therefore

we should be cautious when comparing performance for random dot stimuli

with different overall densities, and also for random dot stimuli with the same

overall density but with different densities contributing to different signals.

3.6.2 Comparisons with other Efficiency Measures

Generally the efficiencies were approaching 10%. The highest efficiency

reported in the literature has been 83%for the discrimination of a gabor patch

(Burgess et al., 1981). Other representative efficiencies are 50% for density

discrimination of random dot displays (Barlow, 1978) and 50% (Liu, Knill &

Kersten, 1995)to 2.69% (Tjan et al., 1995)for object recognition, and as low as

. 0.05% for grating detection (Watson et al., 1983). The range of efficiencies

found for the motion tasks in the present study compares well with

efficiencies of less than 10% reported by Simpson et al. (1999) for various

motion tasks, using two-frame horizontal random dot jumps. This range is

also similar to efficiencies reported for direction discrimination of random dot

stimuli with a small direction distribution (Watamaniuk, 1993), suggesting

that these studies are isolating similar visual mechanisms, however these

efficiencies are also somewhat lower than found for direction discrimination

of coherent motions (Barlow & Tripathy, 1997). It is worth noting that no

absolute efficiencies reported in the literature approach 100%. However, this

should not be taken as an indication that the human visual system is

inherently sub-optimal. Rather, the visual system is not optimally configured
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to perform any single psychophysical experiment, but rather multiple

ecological tasks. A fruitful avenue for future research could be to devise

stimuli (and tasks) with greater ecological validity in an attempt to maximize

visual efficiency.

3.6.3 Correspondence Noise

I found that dot density, and therefore the level of false correspondences in

the stimulus, limits performance in speed discrimination of both coherent and

transparent motions. This effect of 'correspondence noise' has been explored

using random dot stimuli by a number of authors (Braddick, 1974;Williams &

Sekuler, 1984;Todd & Norman, 1995;Eagle & Rogers, 1996, 1997;Barlow &

Tripathy, 1997). In particular, Barlow & Tripathy (1997)found that direction

discrimination efficiencies improved as the ideal observer pooled information

over increasing areas. This indicates that, for coherent motion stimuli, the

visual system pools information over quite a large area, up to about 4 degrees

of visual angle. This pooling is functionally significant, as it would serve to

average out the effects of correspondence noise. This pooling operation could

be limiting performance in both the coherent and transparent motion tasks.

The spatial pooling of motion information would effectively reduce the

available information, accounting for the low efficiencies found. However,

this mechanism will cease to take advantage of increasing information when

the available information exceeds the amount that can actually be pooled,

performance would then increasingly be driven by the correspondence noise.
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This would account for the decay of efficiency with increasing density.

Therefore, spatial pooling of motion information provides a parsimonious

account for the low efficiencies and the effects of dot density. There is a

further account for the difference in performance level between the human

and the ideal observer. The ideal observer considers only the horizontal

displacements, given by the one-dimensional cross-correlation. However,

while the ideal observer knows to look only for horizontal displacements, the

human observers may be unable to isolate only the horizontal displacements

from the full range of potential mismatches, the two-dimensional

correspondence noise.

3.6.4 Visual Mechanisms underlying Transparent Motion

The processing limitation I found for transparent motion is supported by

previous evidence for detrimental interactions between simultaneously

presented motions of different directions (Snowden, 1989;Lindsey & Todd,

1998; Mather & Moulden, 1983). These psychophysical results have a

physiological parallel, the responses of motion selective cells in area MT are

reduced, or inhibited, in response to simultaneously presented motions of

different (preferred and anti-preferred) directions compared to single

(preferred) directions of motion (Snowden et al., 1991; Qian & Andersen,

1994). This effect has also recently been identified in human MT+ (Heeger,

Boynton, Demb, Seidemann & Newsome, 1999). These results are generally

consistent with models of motion detection that involve a stage of subtractive
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inhibition between motions of opposite directions, these are the Reichardt

detector models (e.g. van Santen & Sperling, 1985;Zanker et al., 1999;Zanker,

2001) and the alternative energy models (Adelson & Bergen, 1985; Qian,

Andersen & Adelson, 1994b). A theoretical basis for this interaction is that a

motion sensor that considers only the displacements (or the spatiotemporal

energy) in one direction cannot unambiguously signal a particular direction of

motion, indeed it cannot disambiguate motion from a static stimulus!

Moreover, and of particular relevance to the present study, subtractive

inhibition may serve to reduce correspondence noise (Qian & Andersen, 1994;

Snowden et al., 1991).

However, the results do not rule out other possibilities. What I have shown is

that, by normalizing performance to the information content of the stimuli by

comparison with the ideal observer, a visual mechanism does indeed

constrain performance for transparent motions. Because I used opponent

transparent motions the finding is entirely consistent with directional

inhibition. Two alternatives are also consistent with the findings. First, the

coherent motions are presented sequentially, while the transparent stimuli are

by their nature presented simultaneously. Perhaps the system is not effective

at representing two global motions (surfaces) at the same time. In support of

this idea, Braddick et al. (2002)found that observers were impaired in a global

directional judgment for two motions compared to one, for both transparent

motions and two coherent motions side by side. It would therefore be

interesting to test whether performance, normalized to the stimulus
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information, for transparent stimuli of opposite directions would be

comparable to that of segmented coherent motions of opposite directions.

Second, it remains a possibility that the cost for transparency reflects a cost for

segmenting motions (Masson et al., 1999). To further explore this hypothesis,

I suggest that comparisons should be made for unidirectional transparent and

coherent stimuli, in which performance is normalized relative to the

informational content in these different stimuli.

3.6.5 Conclusions

I found an overall cost in efficiency for speed discriminations of transparent

motions compared to coherent motions. This demonstrates that constraints

imposed by the visual system limit the processing of opponent transparent

motions, consistent with a range of psychophysical and physiological

evidence for directional inhibition. Efficiencies for speed discrimination of

both coherent and transparent motions are less than 10% and decay with

increasing dot density. This may be the result of a spatial pooling of motion

signals.
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Chapter Four: The Efficiency of Stereoscopic

Transparency

4.1 Introduction

Perceptual transparency occurs when one surface is viewed behind another,

such as when looking through transparent, reflective surfaces like glass or

water. Here a scene is perceived through the transparent surface, yet the

surface through which the scene is viewed is also perceived, due to reflections

or specularities. The visual system successfully groups information arising

from each surface and recovers two surfaces segregated in depth. In this

chapter I use the efficiency approach to assess the stereoscopic mechanisms,

those relying on the difference in information from the two eyes, underlying

visual transparency. First I introduce a fundamental problem in stereoscopic

vision, the stereo correspondence problem, and then briefly summarise the

previous research on stereoscopic transparency.

4.1.1 The Stereo Correspondence Problem

One of the basic facts of human vision is that we receive visual information

from two eyes. Because the eyes occupy different positions in space, they

receive different views of the visual scene. A fundamental problem faced in

understanding human vision is how the visual system integrates the different

two-dimensional images transmitted by the two retinae to achieve a unified
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'cyclopean' percept of the three-dimensional scene. From a geometrical

perspective it is clear that binocular disparity, the difference in retinal

positions between corresponding points in the two eyes, provides a cue to

depth that the visual system can exploit to recover a veridical estimate of the

three-dimensional scene. However, there is no a priori way that the visual

system can know the corresponding points in the two images. Indeed, each

point in one image could conceivably be matched with any point in the other

image. The problem of this ambiguity has been termed the stereo

correspondence problem. Indeed, this computational problem is of exactly the

same form as the motion correspondence problem discussed in the previous

chapter. While in the motion case there was an ambiguity in matching points

at successive intervals of time, in the stereo case there is an ambiguity in

matching points in the left and right images. In one case the problem is to

identify the true displacements (differences in position between a monocular

image at successive intervals of time), and in the other the problem is to

identify the true disparities (differences in position between the left and right

images at the same moment in time). The similarity between these

computational problems invites a comparison between stereo and motion

performance. To facilitate such a comparison, the design of the stereo

experiments in this chapter are directly analogous to the previous motion

experiments.
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Figure 4.1. The correspondence problem. (A) & (C) a dot in a left window has only

one partner in the right window. The dots are displaced relative to each other, and

when fused this creates a sensation of depth. (C) the dot pairs in (A) and (B) are

superimposed, such that each window contains two dots. Now there is a matching

ambiguity, as each dot in one window could be matched to either two dots in the other

window. This ambiguity will be more severe for random dot stereograms with greater

dot densities, and multiple disparities.

Random dot stereograms (julesz, 1964) have provided a powerful tool to

investigate the stereo correspondence problem. These stimuli are constructed

by randomly placing dots on a background. The resulting pattern is

presented to each eye separately (for example, by way of a Wheatstone

stereoscope), but with a relative displacement, or disparity, between

corresponding dots in each eye. Despite the multitude of possible matches for

each dot, and the absence of monocular cues to depth, such stimuli produce a

vivid sensation of depth. This is illustrated in Figure 4.1. The stereograms of

Figure 4.1A and Figure 4.1B are unambiguous, there is only one dot in each

stereo-half; therefore there is only one possible match between the stereo-

halfs. When fused, in each of these stereograms are fused one dot is

perceived in depth. However, increasing the number of dots in each opaque

stereogram would create a matching ambiguity. The stereogram of Figure
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4.1C consists of the two previous stereograms superimposed. Now there is an

ambiguity in the matching, each dot in a stereo-half can possibly be matched

to two dots in the other stereo-half. How does the visual system resolve this

ambiguity?

4.1.2 Previous Research

A particularly acute case of the correspondence problem occurs when two

disparities are present simultaneously in the same visual location. The visual

system successfully groups similar disparities and segments dissimilar

disparities to recover two surfaces segregated in depth, despite the fact that

points from each surface will project to only one point on the retina. Stereo

algorithms that employ the uniqueness and continuity constraints of Marr &

Poggio (1976, 1979) will be unable to recover such scenes, as they do not

permit the occurrence of more than one disparity at a given visual location.

Indeed, these constraints apply only to smooth opaque surfaces.

Psychophysical studies using variations of random-dot stereograms have

demonstrated that these constraints can be violated. Specifically, random dot

versions of Panum's limiting case (Kaufman et al., 1973)and the double-nail

illusion (Weinshall, 1989,1991)can be perceived as one or more transparent

surfaces in depth against an opaque background, although it has been argued

that these percepts do not necessarily depend upon non-unique matches

(Pollard et al., 1985, 1990). The PMF stereo algorithm (Pollard et al., 1985,

1990) implements the uniqueness constraint by restricting matching to a
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disparity gradient limit (Burt & Julesz, 1980). This algorithm can recover

isolated patches of the different disparities in transparent random dot

stereograms, but does not interpolate these patches of disparity to recover two

surfaces at different depths.

Despite the computational significance of stereoscopic transparency, the

psychophysical research is surprisingly sparse. A few studies have assessed

the limits of stereoscopic transparency with random dot stereograms that

contain two disparities. For such stimuli, there is a continuum of percepts as

the difference in disparity is increased (Tyler, 1991; Parker & Yang, 1989),

from a single plane, through a thickened plane ('pyknostereopsis'), to

transparency ('diastereopsis'). Observers will tolerate a disparity difference

of only 3.6 arcsec to perceive a single plane, and up to 38 arcsec difference for

a thickened plane, but for transparent surfaces the observers required up to at

least 351 arcsec (5.85 arcmin) of disparity difference to detect two surfaces

(Stevenson et al., 1989). Parker & Yang (1989)claimed that a low-pass spatial

filtering of the image, followed by a cross-correlation between the two images,

could account for this transition. A similar model that additionally includes

an edge extraction mechanism can account for disparity attraction and

repulsion effects (without the need for inhibitory interactions), contrast effects

and effects of stimulus correlation (Stevenson et al., 1991; Cormack et al,

1991). With regard to a transparent stimulus, cross-correlating the left and

right images of a stereogram would result in a function that peaks at locations

corresponding to the disparities in the stimulus. When the images are first
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convolved with a Gaussian filter, the peaks of the cross-correlation are

Gaussian. Parker & Yang (1989) proposed that due to these combined

operations, at larger disparity differences the two peaks are separate, and the

two surface disparities can thus be easily extracted. However, when the

difference in disparity is small, the two peaks would merge into a single peak

at the average disparity of the two, accounting for the 'disparity averaging' of

two disparities into a single plane. In fact, this account does not necessarily

depend upon Gaussian filtering, but simply that there be some continuous

representation of disparity and that the representation of a given disparity be

distributed in some way. This account is attractive as it is not restricted to the

disparity domain, it has been argued that the perception of transparent

motion is also limited by the detection of separable peaks in a response

distribution (Smith, Curran & Braddick, 1999),although some argue that the

perception of transparency is not limited by the detection of separable peaks

in a response distribution but rather by the width of the distribution (Treue,

HoI & Rauber, 2000).

Akerstrom & Todd (1988) found that observers were less likely to perceive

segregated transparent planes as the overall disparity, and the disparity

difference, of the two planes was increased (the disparity differences were

above the lower limits previously reported). In contrast, increasing the

disparity did not impair the segregation of the opaque surfaces. Moreover,

increasing the dot density of the transparent stereograrns impaired the

segregation of the two surfaces (but to a lesser extent when the two surfaces
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were defined chromatically). Akerstrom & Todd (1988) argued that these

results demonstrated both facilitatory and inhibitory interactions between

different disparity detectors. In the transparent condition, disparity varies

sharply across the image, and inhibitory interactions between different

disparities would limit any facilitatory interactions. They argued that

increasing the dot density would increase the strength of the inhibition,

leading to the degraded perception of transparency they found. More

recently, Cepshtein & Cooperman (1998) also argued for inhibitory

interactions between differently tuned disparity detectors. They presented a

random dot stereogram of a cylinder behind a transparent plane. Observers

were required to report the orientation of the cylinder, horizontal or vertical.

They found that, to perform at a particular level, observers required the dot

density of the transparent plane to be lowered as the depth separation

between the surfaces was increased. They argued that this behaviour could

be accounted for by inhibitory interactions between disparity detectors.

Indeed, adaptation experiments (Stevenson et al., 1992) and subthreshold

summation techniques (Cormack et al., 1993) have provided evidence for

inhibitory effects in disparity tuning, which could arise from a centre-

surround receptive field structure or lateral interactions between disparity-

tuned channels. Inhibitory (and excitatory) interactions are exactly the type of

interactions proposed by Marr & Poggio (1976, 1979) to implement the

uniqueness and continuity constraints (see also Crimson, 1985). This is in

contrast, for example, to the stereo algorithm of Prazdny (1985)that includes

only excitatory interactions to permit the resolution of transparency.
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4.1.3 Present Study

In the present study I use the efficiencymeasure to quantify the limitations on

stereoscopic transparency. Efficiency is an absolute measure of performance

computed by comparing human performance with that of the ideal observer

that utilises all of the information in a given stimulus to perform a given task

optimally (Green & Swets, 1966;Barlow, 1978). Therefore, it is a measure of

the amount of visual information actually used by a human observer to

perform a task. Harris & Parker (1992) computed efficiencies for depth

discrimination of random dot stereograms of two side-by-side surfaces at

different depths. Human and ideal performance was limited by randomly

perturbing the disparity of the dot pairs that constituted the surfaces to be

discriminated. These authors found that the efficiency of depth

discrimination for these opaque surfaces fell as the number of dots in the

stimulus was increased, from about 20%efficiency at 4 dots to about 1%at 350

dots. Thus observers were less and less able to utilise all the available dots as

the number of dots, and consequently as the number of potential matches,

increased. Similarly, Cormack et a1. (1997) found that the efficiency for

detecting correlations in dynamic random dot stereograms also decreases

with increasing dot density. This demonstrates that the effect is not task-

dependent, but is indeed a property of the stereoscopic system. Harris &

Parker (1992) suggested that the effect of dot density reflected a difficulty in

solving the correspondence problem. Indeed, there is a parallel effect of

density on the motion correspondence problem, as demonstrated in the
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measurement of dmo.(Eagle & Rogers, 1996,1997)and the efficiency of motion

discriminations (see Chapter Three).

Here I compute the efficiency for depth discrimination of transparent random

dot stereograms and comparable opaque stereograms. In the transparent

condition I presented two populations of dots at different disparities

simultaneously, while in the opaque condition I presented each disparity

sequentially. The key difference between these conditions is that there is a

greater correspondence problem in the transparent case. Two different

stereograms of different disparities are superimposed. Here there is a

matching problem across the entire image, as by chance dots from one surface

can be rnatched to dots in the other surface (or to other dots of the same

surface). By comparing performance with an ideal observer that is only

limited by correspondence noise (i.e. false dot matches) I could assess whether

correspondence noise accounts for the impairment in performance for

stereoscopic transparency.

4.2 General Methods

Here I describe the basic methods for the experiments. More specific details

will be provided for each experiment.
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4.2.1. Human Observers

Three experienced psychophysical observers participated, one experimenter

OW), & two paid graduate students (RG& VL). All observers had normal or

corrected-to-normal visual acuity.

4.2.2. Apparatus

Stimuli were presented on a 21" Sony Trinitron Flatscreen monitor via a G4

Power Macintosh running MATLAB with the Psychophysics Toolbox

(Brainard, 1997; Pelli, 1997). The monitor refresh rate was set to 75Hz at a

resolution of 1152 by 870. The stimuli were viewed binocularly via a

Wheatstone mirror stereoscope in a dimly lit room at a distance of 800 mm.

Observers used a chin rest to stabilize head position throughout the

experiment and fixated on a central white fixation cross, of length 0.30

degrees of visual angle.

4.2.3 Stimuli

The stimuli were random dot stereograms constructed by randomly placing

dots on the left and right images and presenting these images separately to

each eye via the Wheatstone stereoscope. Each image consisted of white

squares ('dots') of side 0.075 degrees of visual angle on a black background,

7.5 by 7.5 degrees of visual angle. The remainder of the screen was set to the

mean luminance of the stimulus (which varied with the dot density), to
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maintain a uniform mean luminance across the entire display. A proportion

of the dots were referred to as 'signal dots'; these dots corresponded to the

projection of dots on surfaces located either near or far relative to the fixation

plane. The remaining dots were referred to as 'noise dots'; these dots were

randomly placed independently in each image to introduce disparity noise.

Two examples of stimulus are illustrated in Figure 4.2A (without noise) &

Figure 4.2B (with noise). In Figure 4.2A the stereogram contains only two

disparities, corresponding to a 'near' transparent surface and a 'far' opaque

surface. Figure 4.2B contains the same signal disparities, but now a

proportion of dots are 'noise dots'. The effect of these added dots is to create

more ambiguity in the matching, and results in the perception of dots at many

depths. Indeed, some of these matches will be false correspondences

resulting from incorrectly matching a signal dot with a non-corresponding

noise dot. At the level of noise shown in Figure 4.2B it is still possible to

perceive the two surfaces, but they are noticeably less clear. In both

experiments, the dot density was controlled following the Appendix

(Equations (1)- (4».
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Figure 4.2A. This stereogram contains two populations of dots, one at crossed

disparity and the other at uncrossed disparity. When the stereogram is fused (the two

leftward panels are arranged for crossed convergence, and the two rightward panels

for uncrossed convergence), a 'near' transparent surface is perceived in front of a jar'

opaque surface. Here the jar' surface is further from the fixation cross.

Figure 4.2B. This stereogram contains two populations of dots, one at crossed

disparity and the other at uncrossed disparity. Here, a proportion of dots are 'noise',

randomly placed in the left and right window. WIlen the stereogram is fused (the two

leftward panels are arranged for crossed convergence, and the two rightward panels

for uncrossed convergence), it is still possible to perceive a 'near' transparent surface

and a jar' opaque surface, but they are now embedded in a cloud of dots and are

harder to see than before.
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4.2.4 Procedure

In all experiments, I presented random dot stereograms in two conditions. In

the transparent condition, each trial consisted of two disparity signals

superimposed in the same interval of 2000ms duration. Two observers (RG&

VL) initially had difficulty in perceiving the transparent stereograms at this

duration, but with little training on stereograms with a longer duration the

observer could perceive the transparent stereogram at the shorter duration

without difficulty. One signal (standard or target) was at uncrossed disparity

(for a 'far' depth), while the other (target or standard) was at crossed disparity

(for a 'near' depth). The depth (near or far) of the target stimulus was

randomised across trials. To ensure fusion of the stereograms, each trial was

preceded for 500ms by a fixation cross with nonius lines, centred in the

presentation window. The fixation cross was present throughout each trial.

In the opaque condition, again each trial consisted of two random dot signals,

but now presented sequentially in temporal intervals of 2000ms duration

each. In one interval the signal disparity was crossed for a near depth, in the

other the signal disparity was uncrossed for a far depth. There was an

interval of 500ms between intervals, in which only the fixation cross was

present. The observer's task is illustrated in Figure 4.3. On each trial, the

observer indicates which surface is perceived as being farther from the

fixation plane.
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Far Surface 'a. _

Plane of Fixation

Near Surface

Figure 4.3. A cartoon illustration of the two stimulus alternatives, viewed from an

overhead. The plane of fixation is defined by a fixation cross, and the near and far

surfaces by dots at the appropriate disparities. Observers decide which surface is

further from this reference plane. On the left of the illustration the far surface is

further from the fixation plane, and the example observer makes the correct response.

On the right of the illustration the near surface is further from the fixation plane, and

the example observer makes the correct response.

The dot density of the transparent and opaque conditions was equated, such

that each interval of the opaque condition had a density of half the total value.

Therefore, a density of 4% corresponds to a 4%dot density for the transparent

condition, but a 2%dot density for each interval of the opaque condition. This

convention follows Akerstrom & Todd (1988) who also matched the dot

densities of their transparent and opaque stimuli. However, they presented

each opaque surface side by side, within the same stimulus area as the

transparent stimulus such that each opaque surface was half the size of the

corresponding transparent surface. Here the opaque surfaces are presented

sequentially, therefore the average spacing of dots belonging to each surface

is equivalent in the two conditions.
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4.3 Experiment 4

The general aim was to assess whether there is a processing limitation for

stereotransparency by comparing efficiencies of depth discriminations for

both the opaque and transparent conditions. Specifically, in this experiment I

compare the efficiency of depth discrimination in the opaque and transparent

conditions across a range of dot densities. As dot density increases, the

number of dots and therefore the number of possible correspondences

between dots increases. If the mechanisms of stereopsis underlying

performance in both the opaque and transparent conditions are sensitive to

false correspondences, performance will be similarly impaired as dot density

is increased.

4.3.1 Methods

4.3.1.1 Stimuli

For each trial two sets of signal dots were generated, one for the 'near' surface

and one for the 'far' surface. One of these surfaces could be further from a

zero-disparity fixation plane, while the other could be nearer. The surface

further from fixation was defined by a target disparity, and the surface nearer

to fixation by a standard disparity. For each surface, a 'strip' of randomly

placed dots was generated (a binary matrix), the width of which was the size

of the image plus the disparity. Sampling the strip at a horizontal increment

generated the left and right images. This increment corresponded to either
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the standard or target disparity. For example, for a disparity of 6 pixels (far

depth) the strip would be sampled at +3 pixels for the left image and -3 pixels

for the right image. This sampling increment results in corresponding dots to

be uniformly displaced in each image at the appropriate disparity (because

each image contained a displaced sample of the strip, a small proportion of

'signal' dots in each image had no corresponding points). In the transparent

condition, the left images of each signal were superimposed, and similarly for

the right images of each signal. Before presentation of the stimulus, a

proportion of noise dots were randomly placed on the images, independently

for the left and right images.

4.3.1.2 Procedure

The purpose of the first stereo experiment was to study the effect of dot

density on depth discrimination for transparent and opaque random dot

stimuli. I used a range of dot densities; 0.005, 0.01, 0.02, 0.04, 0.08, 0.16 and

0.32. These densities correspond to total dot numbers of 50, 100,200,400,800,

1600and 3200dots, and to 1.78,3.56,7.12, 14.2,28.5 and 57.0 dots per squared

degree of visual angle. Recall that the dot density refers to the total dot

density of the stimulus, such that each interval of the opaque condition had a

density of half the total value. The observer's task was to decide whether the

'near' or 'far' surface was further from the fixation plane, a 2-AFC depth

discrimination. The two possible alternatives ('far' is further from fixation,

and 'near' is further) are illustrated in Figure 4.3 for the case of a transparent
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stimulus. The standard disparity was fixed at 9 arcmin for all three

experiments, while the larger target disparity was fixed at 18 arcmin, giving a

disparity ratio of 2 (18/9). To limit performance, I presented the signals in a

number of noise levels by the method of constant stimuli. I tested five noise

levels per condition and measured d' for each noise level tested. In both the

transparent and opaque conditions each observer completed 20 practice trials

with 0%noise to become familiar with the stimulus before beginning a session

for a new condition. There were equal numbers of near-further and far-further

trials. Each condition was blocked, with 40 trials per each noise condition (20

near-further, 20 far-further). Within each condition, trials for different noise

levels were randomly interleaved.

4.3.1.3 Ideal Observer

The ideal observer for a given task makes use of all the available information

in a given stimulus to perform that task optimally i.e. maximising the number

of correct responses by performing a maximum likelihood estimate (Green &

Swets, 1966). For the experiments in this study, the ideal observer is facing

the same depth discrimination task as any human observer. The ideal

observer needs to represent the disparities displayed in the stimulus, compare

these disparities to the disparities of the possible templates, and choose the

appropriate template that best matches the disparities in the stimulus (Figure

4.4). The disparities of each stimulus are computed by cross-correlating the

left and right images of the stimulus (see also Harris & Parker, 1994). These
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images are simply binary matrices, in which 'I' signals the presence of a dot

and '0' is the background. The cross-correlation function describes the

quantity of matches at each disparity, with no loss of information. It is not a

model of the human stereoscopic system (although the cross-correlation

function has been used as the basis of a model of human stereoscopic vision;

e.g. Cormack et al, 1991). For the transparent stimulus a single disparity

correlation is performed on the left and right images. For the opaque

stimulus two disparity correlations are performed, one for each interval. The

correlations for both intervals are then summed. At low external noise levels,

the peaks of this disparity correlation correspond to the standard and target

signals. This can be seen in Figure 4.4A for a transparent stimulus with 0.70

noise dots (0.30 signal dots), in which the far surface is further. The ideal

algorithm computes the likelihood of each possible outcome by comparing

the incoming stimulus with a number of 'templates'. Each template is a

representation of the possible alternatives that were illustrated in Figure 4.3

('far' is further or 'near' is further). These templates are correlations that peak

at the expected disparities (Figure 4.4B). The exact disparities will correspond

to the disparities presented within a given block of trials. In Figure 4.4B the

possible alternatives are given for a disparity ratio of 2. To compute the

likelihood of each possible outcome, the ideal algorithm cross-correlates the

stimulus correlation with each template. The ideal decision rule is then to

choose the template that returns the largest cross-correlation value with the

stimulus (Figure 4.4C), a maximum likelihood decision rule (Green & Swets,

1966). In the case of low external noise, the template with the highest value
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Figure 4.4. A schematic illustration of the ideal observer for the depth discrimination

task of this study. (A) Stimulus Representation: This is the cross-correlation of the

left and right images for a transparent stimulus, in which the far' surface is further

from fixation (disparity ratio: 2; dot density: 0.05; proportion of signal dots: 0.30).

The correlation peaks at a lag of -4 (a total uncrossed disparity of four dot steps), and

+2. (B) Templates: These are the templates for a disparity ratio of 2. Template '1' on

the left represents the stimulus in which the far' surface is further from fixation, and

template '2' on the right represents the stimulus in which the 'near' surface is further

from fixation. (C) Decision Rule: The computed correlations for template '1' and
template '2' with the stimulus correlation. The correlation is largest for template 1,

the correct stimulus, and is selected by the ideal observer.
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will correspond to the actual signal presented, and in Figure 4.4 the ideal

observer indeed selects the correct template. However, at much lower signal

levels the value of the incorrect template can be higher than that of the correct

template. Only these occurrences limit the ideal observer performance.

The ideal observer defined here contrasts with the ideal observer of the Harris

& Parker (1992)study, which I summarize here for comparison. In Harris &

Parker's (1992) study, observers were required to indicate which side of a

stereogram stood out closer towards them in depth. Their ideal observer was

given the disparity of each pair of dots in the stimulus (thereby assuming that

the correspondence problem was somehow solved). It then computed the

mean disparity of each side of the stimulus and chose the side with the largest

mean disparity as being further towards the observer. Ideal performance was

limited by randomly perturbing the disparity of the dot pairs, such that

sometimes the mean disparity of one side of the stimulus could be larger than

the other due to the random perturbation. This is in contrast to the present

study, where performance is limited by varying the strength of the correlation

at a particular disparity. In the present study the task is similar to Harris &

Parker's (1992),in the sense that the ideal observer must decide which of two

alternatives was presented (either 'near' surface or 'far' surface further away

from fixation). Here, the ideal observer knows that the stimulus will always

contain disparity signals corresponding to one of the possible alternatives in a

block (these alternatives are also available to the human observer who can see

the stimuli without noise before running a block). On a given trial, these
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signals are presented together with noise, dots that have no partner in the

other image. To decide which combination of disparity signals were

presented, the ideal observer computes the quantity of matches at each

disparity by cross-correlation. It then makes a maximum likelihood decision

by matching templates that describe the possible combination of signals with

the stimulus correlation (thereby discarding all spurious correlations that do

not correspond to the expected signal disparities). Therefore, the ideal

observer for the present study indeed uses all of the available information in

the stimulus presented on a given trial to implement the optimal decision

rule.

The effects of varying the signal level and the dot density on the stimulus

correlation, and therefore the predicted effects on ideal performance, can be

seen in Figure 5. The left columns are correlations for stimuli of 16%density

(d = 0.16),and the right columns are correlations for stimuli of 32%density (d

= 0.32). The correlations represented by filled bars are for the opaque

condition, and the correlations represented by open bars are for the

transparent condition (the open bars are presented upside-down for better

comparison with the filled ones).
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Figure 4.5. Cross-correlations for a number of stimuli, for each correlation 'd'

indicates the dot density and In" the proportion of noise (so 1- n ' is the proportion of

signal dots). All the correlations are for a disparity ratio of 2, in which the 'far'

surface is further. Dark bars are for the opaque condition, and light bars are for the

transparent condition. It can be seen that increasing the noise level decreases the

strength of the signal, the peaks in the correlation. Increasing the dot density

increases both peak strength and the baseline correlations. Note that the values of the

baseline correlations are larger in the transparent condition than the corresponding

opaque condition. The arrows indicate the theoretical location of the peaks in high

levels of noise.
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Each row contains correlations for a particular level of signal, the top row is

for 100%signal dots (where the proportion of noise dots is zero, n' = 0), the

middle row is for 50%signal dots (n' = 0.50),and the bottom is for 5% signal

dots (n' = 0.95). First consider the effects of decreasing the proportion of

signal dots (thereby increasing the proportion of noise dots). In the top row

two peaks are clearly distinguishable, corresponding to the signal disparities.

However, even with 0% noise dots, there are spurious matches at the non-

signal disparities, due to matching different signal dots. I refer to this as the

baseline level of the correlation. The ideal observer selects the correct

template because the baseline values are much lower than the peaks. In the

middle row the proportion of signal dots has dropped and the corresponding

peaks have also dropped, and the baseline value has not noticeably changed.

In the bottom row the proportion of signal dots has been decreased further

still. Here the peaks corresponding to the two signal disparities are no longer

distinguishable from the baseline correlations in the transparent condition,

but are still present in the opaque condition (this is not easily apparent in the

0.16 density correlation, but is clear for the 0.32 density condition). Now the

ideal observer is just as likely to select the incorrect template as the correct

template in the transparent condition, as the values for the incorrect

disparities may be larger than the correct disparities by chance matches.

However, in the opaque condition the correct template will be selected. This

predicts that the ideal observer thresholds will be higher in the transparent

condition. The second aspect of the correlations to consider is the effect of

density. As density is increased two fold from the left column to the right
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column, it is clear that the values of the noise disparities increase. However,

the value of the signal disparities also increases. Therefore, dot density will

affect ideal performance if the increase in signal and noise amplitudes differs

e.g. if the signal amplitude increases proportionally more than the increase in

the noise amplitude then ideal performance should improve. I return to these

aspects when considering the actual simulated data. I ran simulations of the

ideal observer for both the transparent and opaque conditions. To compute

ideal sensitivity, the simulations were performed at five noise levels for each

condition, with 400 trials (200 near further, 200 far further) per noise level.

Efficiency is the ratio of human sensitivity to that of the ideal observer

(Tanner & Birdsall, 1958;Barlow, 1978):

(1)

The problem in using this definition is that the ideal observer easily reaches

ceiling performance for a suitable range of signal values for the human

observer. Thankfully, as we will see in the results section below, d' is a linear

function of the proportion of signal dots presented. I can therefore compute

efficiency as the squared ratio of the signal thresholds:

(2)
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4.3.2 Results

An example of the data obtained is shown in Figure 4.6 for both a human

observer and a set of simulation of the ideal observer. These data are for the

transparent condition, with a dot density of 1%, and a disparity ratio of 2

(standard disparity 0.15 degrees of visual angle, target disparity 0.30 degrees

of visual angle). It can be seen that d' increases linearly as the proportion of

signal dots is increased (and therefore as the proportion of noise dots is

decreased), for both the human and ideal observers. A linear fit constrained

-~
~ 3

:c
~ 2
E;:
U
III
is

4

o

0.3 0.4 0.5

Proportion Signal

Figure 4.6. Sensitivities for a human observer (black circles) and the simulated ideal

observer (grey circles). A linear function gave very good fits to the data (human"; =
0.96, ideal"; = 0.98). It is clear that the slope of the line to the ideal observer data is

much more steep (a = 55.9) than that of the human data (a= 6.93). Thresholds (B. &
8; are taken at d' = 1.
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to pass through the origin gave an excellent fit (r' = 0.96for the human data, r2

= 0.98 for the ideal data). I define the signal threshold (8h & 8) as the

proportion of signal dots required for d' of 1. Note the much higher levels of

noise required to limit performance of the ideal observer. Figure 4.7A plots

the ideal signal thresholds as a function of the total dot density for both the

opaque and transparent conditions. There are two features to these data.

The first is that the ideal signal thresholds are consistently higher in the

transparent condition than in the opaque condition, across the range of dot

densities. This indicates that there is indeed a higher quantity of false

matches in the transparent condition (shown in Figure 4.5). The second

feature to these data is that ideal performance initially improves rapidly as dot

density is increased, but levels off at around 5% density. This is somewhat

counterintuitive, as increasing dot density increases the number of possible

correspondences, which will raise the value of the correlation for the noise

disparities. However, increasing dot density will also increase the strength of

the signal (see Figure 4.5). The improvement in performance indicates that

the signal strength initially improves faster than the strength of the

correspondence noise (the heights of all the other peaks of the stimulus

correlation), but these rates increase similarly from a dot density of around

5%.

Figure 4.7B plots the average signal thresholds for three human observers in

the opaque and transparent conditions as a function of the total dot density.
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Figure 4.7. (A) Opaque (filled circles) and transparent (open circles) signal

thresholds for the ideal observer as a function of dot density. (B) Average opaque

(filled circles) and transparent (open circles) signal thresholds for the human

observers as a function of dot density. Error bars are standard errors across the three

observers.

The error bars are standard errors of the mean across observers. By

comparison with Figure 4.7A, it is dear the performance is much worse than

ideal performance in both opaque and transparent conditions. However,

similarly to the ideal data, the thresholds for the transparent depth

discrimination are consistently higher than those in the opaque condition.

Thus, more signal dots are required to perform depth discrimination in the

transparency case at an equivalent level of performance as the opaque case.

The effect of dot density on human observer performance contrasts with the

ideal observer, performance declines as dot
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Figure 4.8. Average opaque (filled circles) and transparent (open circles) efficiencies

as afunction of dot density. Error bars are standard errors across the three observers.

density is increased. Thresholds for the individual observers are provided in

Figures 4.9A - C.

Figure 4.8 plots the overall efficiencies for the three observers as a function of

dot density. Error bars are standard errors of the mean across observers. The

efficiencies for the opaque and transparent condition are approximately equal.

The cost in performance (higher signal thresholds) for depth discrimination of

transparent surfaces does not translate into a lower efficiency, but is in fact

removed by comparing human performance with that of the ideal observer.

A second aspect of this data is that efficiency decreases similarly for both the

opaque and transparent conditions as dot density increases. Efficiencies for

the individual observers are provided in Figures 4.9D - F.
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4.3.3 Discussion

In this experiment I compared human performance for depth discrimination

of transparent and opaque surfaces as a function of dot density. The first

issue to address was whether discrimination performance was impaired for

transparent stereograms. I found that the human observers' signal thresholds

were higher in the transparent condition than the opaque condition. This

could imply that there is an additional limitation on performance in the

transparent case, such as inhibitory interactions between different disparities.

However, I found that ideal thresholds were also higher in the transparent

condition, which indicates an informational limit on performance. By

computing the efficiency, I could assess the relative cost between human and

ideal observer performance. Indeed, I found that efficiencies were

approximately equal in the two conditions. Therefore, the limitations on ideal

performance account for the limitations on human performance. In other

words, false matching accounts for the higher thresholds in the transparent

condition, for both the human observers and the ideal observer. The

similarity in the opaque and transparent efficiencies also indicates that there

is no additional processing limitation in recovering depth from transparent

stereograms (at least at the depths tested here), suggesting that the same

mechanism underlies performance inboth conditions.

The effect of dot density confirms that this mechanism is limited by

correspondence noise. Efficiency decreases similarly with increasing dot

density in both opaque and transparent conditions, indicating that the human
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observers are increasingly impaired as the number of potential matches

increases. Indeed, the maximum efficiencies are around 1%, indicating that

human observers use far less information than is available to perform the task

(e.g. human observers use only a proportion of the available disparity

samples). We can think of this limitation in terms of the stimulus cross-

correlations in Figure 4.6. From Figure 4.6 it was shown that decreasing the

level of signal decreased the height of the peaks in the correlation. If human

observers cannot use all of the available disparity information, these peaks

will be lower than the ideal case (and so will indeed require more signal dots

than the ideal observer to raise the peaks above the background

correspondence noise). This result confirms the finding of Harris & Parker

(1992)in which the efficiency of detecting a step-change in depth declined as

the number of dots in their stereograms was increased, and also the findings

of Cormack et al. (1997) in which the efficiency for detecting correlation in

dynamic random dot stereograms decreased with increasing dot density. The

present experiment extends these findings, demonstrating this effect of

density is true also for depth discrimination of transparent stereograms. The

similarity in the findings across these different studies is striking given the

differences in stimuli, task, and the consequent ideal observer. This

encourages the view that all the studies are tapping into the same

correspondence noise limited mechanism, and furthermore demonstrates that

absolute measures of efficiency can indeed be meaningfully compared across

studies.
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4.4 Experiment 5

In Experiment 4 I fixed the disparities of the standard and target surfaces,

resulting in a constant disparity ratio, while varying the dot density. Here I

aimed to see if equal efficiencies are found in the transparent and opaque

conditions across a range of disparity ratios, keeping the dot density constant.

The results of both Akerstrom & Todd (1988) and Gepshtein & Cooperman

(1998)would predict that performance in the transparent condition should be

increasingly impaired as the disparity between the two surfaces is increased.

4.4.1 Methods

4.4.1.1 Stimuli

The stimuli were random dot stereograms as described in the General

Methods section, constructed as described in Experiment 4.

4.4.1.2 Procedure

I presented transparent and opaque stereograms as described in the General

Methods section. Here I presented transparent and opaque random dot

stimuli at a range of disparity ratios. I fixed the standard disparity to 0.15

degrees of visual angle, and used five target disparities of

0.30.0.45.0.60.0.75& 0.90 degrees of visual angle, giving disparity ratios of 2,

3, 4, 5 & 6. I used a fixed dot density of 0.05. To limit performance, I
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presented the signals in a number of noise levels by the method of constant

stimuli. I tested five noise levels per condition and measured d' for each noise

level I tested. In both the transparent and opaque conditions each observer

completed 20 practice trials with 0% noise to become familiar with the

stimulus before beginning a session for a new condition. There were equal

numbers of near further and far further trials. Each condition was blocked,

with 40 trials per each noise condition (20near further, 20 far further). Within

each condition, trials for different noise levels were randomly interleaved.

4.4.1.3 Ideal Observer

The ideal observer for this task was identical to that described in Experiment 4

in detail. The quantity of matches of a given disparity is given by the cross-

correlation of the left and right images. This is then compared with templates,

by correlation. The templates used by the ideal observer described the two

possible disparity combinations (the location of the peaks in the templates) for

a given condition of disparity ratio. The ideal observer then selects the

template with the highest correlation, a maximum likelihood decision rule.

4.4.2 Results

Figure 4.10A plots the ideal signal thresholds as a function of disparity ratio

for both the transparent (open symbols) and opaque (filled symbols)

conditions. There are two features to these data. The first is that the ideal

signal thresholds are consistently higher in the transparent condition than in
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Figure 4.10. (A) Opaque (filled circles) and transparent (open circles) signal

thresholds for the ideal observer as a function of disparity ratio. (B) Average opaque

(jilled circles) and transparent (open circles) signal thresholds for the human

observers as a function of disparity ratio. Error bars indicate standard errors across

observers.

the opaque condition, across the range of disparity ratios. The second feature

to this data is that ideal performance is constant across the disparity ratios.

Indeed, there is no reason to expect an effect of increasing the difference in

disparity between the standard and target surfaces. This simply changes the

location of the peaks of the disparity correlations. The only limitation on ideal

performance is the disparity noise.

Figure 4.10B plots the average signal thresholds for three observers as a

function of disparity ratio for both the transparent (open circles) and opaque

(filled circles) conditions. As in Experiment 4, error bars are standard errors
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Figure 4.11. Average opaque (filled circles) and transparent (open circles) efficiencies

as afunction of disparity ratio. Error bars indicate the standard error across the three

observers.

of the mean across observers. Again, there are two features to these data. The

first is that transparent thresholds are consistently higher than opaque

thresholds. The second feature is that there is little effect of disparity ratio,

thresholds are more or less constant across the range of disparities tested.

Thresholds for the individual observers are plotted in Figure 4.12A - C.

Figure 4.11 plots the average efficiencies for the three observers as a function

of disparity ratio. Error bars are standard errors of the mean across observers.

The efficiencies are similar for the opaque and transparent conditions across

the range of disparity ratios. The cost in performance (higher signal

thresholds) for depth discrimination of transparent surfaces does not translate

into a lower efficiency. Efficiencies are constant across the disparity ratios for

both the opaque and transparent conditions, and similar in amplitude across
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Figure 4.12. (A) - (C) Opaque (filled circles) and transparent (open circles) signal
thresholds as afunction of disparity ratio for each of the human observers. (D) - (F)

Opaque (filled circles) and transparent (open circles) efficiencies as a function of
disparity ratiofor each of the human observers.
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conditions. Efficiencies for the individual observers are plotted in Figure 4.12D - F.

4.4.3 Discussion

In this experiment I compared human performance for depth discrimination

of transparent and opaque surfaces as a function of disparity ratio. This

addressed the question of whether discrimination performance is impaired

for transparent stereograms across a range of disparity ratios, and whether

the disparity ratio has an effect on depth discrimination. I found that signal

thresholds are consistently higher in the transparent condition than the

opaque condition, for both the human observers and the ideal observer,

across a three-fold range of disparity ratios. I also found that efficiencieswere

approximately equal in the two conditions across the range of disparity ratios.

This confirms the finding of Experiment 4, false matching accounts for the

cost in the transparent condition. However, I found that there is no effect of

disparity ratio on depth discrimination of transparent or single opaque

surfaces. This is in contrast to the findings of Akerstrom & Todd (1988)who

found that increasing the disparity difference between transparent surfaces

impaired perceived transparency. The results are also in contrast to the

findings of Gepshtein & Cooperman (1998) who found that the limiting

density to discriminate an oriented cylinder behind a transparent plane

decreased as the depth between the surfaces was increased, which they

termed the 'farther worse' effect. The difference between the present study

and the Akerstrom & Todd (1988)study may be due to the disparities used.

118



Here I fixed a standard disparity at ±9 arcmin and increased a target disparity

in steps up to ±54 arcrnin. In contrast, Akerstrom and Todd (1988)used a

minimum difference of ±7 arcrnin and ±21 arcmin up to a maximum of ±49

arcmin and ±63 arcmin (although the exact disparities varied across

observers). Therefore the largest absolute disparity in their study was 112

arcmin, while here it is 63 arcmin. It is possible that the effect of disparity on

stereo-transparency found by Akerstrom and Todd (1988)is due to a problem

in fusing the two-planes simultaneously. Indeed, it was noted by Akerstrom

& Todd (1988) that their observers found they had to make a considerable

effort to see the two surfaces in their stereograms, even over long presentation

times (up to 35s), suggesting the need for vergence eye movements. In

contrast, here observers were instructed to fixate on a zero disparity cross and

could perceive transparency at a relatively short duration.

Effects of disparity on surface perception have been attributed to inhibitory

interactions at the level of surface representations. This was suggested by the

Gepshtein & Cooperman (1998) study, in which the 'farther worse' effect

persisted when the two surfaces were defined by opposite polarities, although

the overall magnitude of the effect was less than the same polarity condition.

This parallels Akerstrom & Todd's (1988)finding that perceived transparency

was impaired by increasing the disparity difference between chromatically

defined surfaces, but to a lesser extent than a single colour condition. There

is evidence for inhibitory interactions in disparity tuning, though not

specifically at the level of a surface representation. Specifically, Stevenson et
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al. found (1992)that adapting to a particular disparity resulted in a threshold

elevation in the disparity sensitivity function, and Cormack et a1.(1993)found

that correlation thresholds for a given disparity were raised by the presence of

a different disparity. The disparity tuning functions derived from these

studies were very similar (see Cormack et al., 1993), with clear inhibitory

regions. Stevenson et al. (1992) demonstrated that their tuning functions

could be modelled by a number of narrowly tuned disparity channels with

inhibitory lobes (a centre-surround receptive field), but did not rule out a

mutual inhibition between disparity tuned channels. The lack of an effect of

disparity in the present study suggests that the range of disparities I used

were beyond the range of any inhibitory interactions, and so favours an

account of disparity domain inhibition in terms of narrowly tuned disparity

channels with inhibitory lobes, rather than a mutual inhibition between

disparity channels, or disparity defined surfaces.

4.5 Experiment 6

Observers reported that the perception of a surface was absent at the lowest

densities used here, but was more likely to occur as the dot density was

further increased. I ran an experiment in which observers were required to

indicate whether they did perceive two surfaces, a similar task to that of

Akerstrom & Todd (1988).
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4.5.1 Methods

4.5.1.1 Stimuli & Procedure

I presented transparent and opaque stereograms as described in the General

Methods section. Two of the observers were asked to indicate whether they

perceived two surfaces, 'yes' or 'no'. The standard disparity was fixed at 0.15

degrees of visual angle and the target disparity was 0.30 degrees of visual

angle, giving a disparity ratio of 2 (0.30/0.15). I added a proportion of noise

dots by the adaptive QUEST procedure (Watson & Pelli, 1983) to find the

threshold (75%correct) level of signal dots.

4.5.2 Results

Figures 4.13a& 4.13bplot the surface thresholds for two observers (RG& JW)

for the opaque and transparent conditions. There is no consistent pattern

across observers. For RG the transparent thresholds are consistently higher

than the opaque thresholds, and there is little effect of dot density. In

contrast, observer JW is at a ceiling for surface perception at the lower

densities in both conditions, but at higher densities the thresholds drop and

are generally higher in the transparent condition. Generally, the thresholds

for surface perception are very high and within the same range across

observers.
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Figure 4.13. Opaque (filled circles) and transparent (open circles) signal thresholds

for surface perception as afunction of dot density for two observers.

4.5.3 Discussion

There is a trend for surface perception thresholds in the transparent condition

to be higher than the opaque condition. This pattern of results is not entirely

consistent with those of Experiment 4, the surface thresholds are generally

higher and generally the pattern of thresholds does not parallel the depth

discrimination thresholds. Similar to the previous chapter, the inconsistency

between the subjective results and the depth discrimination results argues

against the use of subjective measures to probe transparency. The subjective

results will be contaminated by a criterion for surface perception, whereas the

indirect depth discrimination task is a criterion free method to probe the

mechanisms underlying stereoscopic transparency.
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4.6 General Discussion

4.6.1 Summary of Results

In this study I have computed the efficiency for depth discrimination of

transparent and similar opaque random dot stereograms. The advantage of

the approach was twofold. The objective method not only gives a more

reliable estimate of perceptual performance free of subjective criteria, but the

efficiency measure allows the experimenter to normalize that performance to

the information available in the stimulus. An efficiency experiment thereby

allows us to compare performance across observers (because it is objective)

and across task (because performance is normalized to absolute performance).

In Experiment 4 I found that the efficiencieswere approximately equal for the

transparent and opaque conditions. This demonstrated that the higher

thresholds in transparency are accounted for by a greater incidence of false

matching in that condition. This suggests that the findings of Akerstrom &

Todd (1988),who found thresholds for the perception of transparency to be

higher than for similar opaque surfaces, may also be due to a higher rate of

false matching in that condition and do not necessarily imply inhibitory

interactions. The very low efficiencies I found, of around 1% or less, in both

the opaque and transparent conditions suggest there is a problem in using all

the available signal information. In support of this I also found that

increasing the dot density, thus increasing the number of possible

correspondences, decreased the efficiency in both conditions. In Experiment

5, I found that the efficiencies in the opaque and transparent conditions were
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approximately equal across a range of disparity differences, supporting the

finding of Experiment 4. In addition, I found that there was no effect of

disparity ratio on stereoscopic transparency. This contrasts with other

studies that have found an effect of disparity on transparency, attributed to

mutual inhibition between disparity detectors or disparity defined surface

representations (Akerstrom & Todd, 1988;Gepshtein & Cooperman, 1998).

The present findings call into question these inhibitory accounts. I consider

further implications of these results in the following sections.

4.6.2 Comparison with Motion Efficiencies

These findings are comparable to those of motion efficiency (Chapter Three).

The stimuli and task used in the motion study are comparable to those used

here. The ideal observer for the speed discrimination task is identical to the

ideal observer for the depth discrimination task, cross-correlating subsequent

frames of the motion stimulus and performing a maximum likelihood

decision rule by template matching. The maximum efficiencies for the motion

study were considerably higher, around 10% compared to 1% here. This

suggests that motion mechanisms maintain an improved signal-to-noise ratio

compared to stereo mechanisms. The motion stimulus was inherently

dynamic, consisting of 10 frames of multiple motion steps, compared to the

single presentation of the disparities here and so there were more available

motion samples in the motion stimulus. The improved efficiency indicates

that the motion system was indeed able to take advantage of this additional
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information. In contrast to the present stereo results, I found there was a

residual cost for processing transparent motion (indicated by higher

efficiencies in that condition than the coherent condition). This residual cost

was present across the range of dot densities and speed ratios I tested. The

similarities and the differences between the motion and stereo results are

further considered in Chapter Six.

4.6.3 Correspondence Noise Limitations

The low efficiencies I find suggest that human observers are unable to use all

of the available disparity information to perform depth judgments. This

supports previous findings of low efficiencies for other stereo tasks (Harris &

Parker, 1992; Cormack et al, 1994; 1997). Both Harris & Parker (1992) and

Cormack et a1. (1997) found efficiencies of 20% or less and, as I found here,

their efficiencies declined as the dot density of their stereograms was

increased. Increasing the dot density increased the level of false matches in

the stimulus (see Figure 4.5), thus creating a greater correspondence problem.

Therefore, these results suggest that the mechanisms of stereopsis are limited

by correspondence noise i.e. the greater the correspondence problem the less

effective the system is at solving it. How do disparity selective mechanisms

combat correspondence noise, if not by a mechanism of mutual inhibition?

One possibility is by spatial pooling. In the same way that MT spatial pooling

can serve to combat the motion correspondence problem (Barlow & Tripathy,

1997),the pooling of disparity information over a large area may also serve to
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combat the stereo correspondence problem. Furthermore, such a pooling

operation may account for the low efficiencies, as it would effectively reduce

the quantity of disparity samples used to perform the task. Indeed, the

similarity of the effects of correspondence noise here and in Chapter Three

suggest that, while there is a difference in the effects of transparency, a similar

mechanism underlies performance in both domains. I further consider this

comparison in Chapter Six.

4.6.4 Visual Mechanisms underlying Stereoscopic Transparency

Transparency has provided a crucial 'test case' for models of stereoscopic

vision. As described in the introduction, stereo algorithms that employ the

uniqueness and continuity constraints of Marr & Poggio (1976, 1979)will be

unable to recover stereoscopic transparency, as they do not permit the

occurrence of more than one disparity at a given visual location. More

recently a range of computational models have been proposed that pass the

test of transparency to varying degrees of success (Prazdny, 1985;Pollard et

al., 1985;Gray et al., 1998;Read, 2002;Tsai & Victor, 2003). The later of these

models incorporate physiological constraints of the underlying mechanisms

(DeAngelis et al., 1991;Freeman & Ohzawa, 1990;Ohzawa et al., 1990, 1996,

1997;Anzai et al., 1999a, 1999b, 1999c),understood to compute a 'disparity-

energy' (Qian, 1994; Ohzawa, 1998). By controlling for the available

information the present findings argue against inhibitory interactions

between disparities over large regions in the same visual direction (although
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the possibility remains that inhibitory interactions occur at a finer level}, and

are thus consistent with these models. The present results do not rule out

inhibitory interactions between adjacent regions of space (across different

visual directions). This form of inhibition could be useful to accentuate

surface boundaries, and indeed this kind of inhibitory interaction has been

identified in the center-surround disparity tuning of MT cells (Bradley &

Andersen, 1998).

4.6.5 Conclusions

This study has confirmed that stereo mechanisms do not use all the available

disparity information, and are significantly impaired by the correspondence

problem. This may be the result of a spatial pooling of disparity information.

Furthermore, I extended these findings and have shown that the same

limitations underlie the recovery of transparency from disparity. There was

no cost in efficiency for stereoscopic transparency. This result contrasts with

the results of Chapter 3, where there was a cost in efficiency for transparent

motion, and suggests an important difference in the way information is

processed by motion and stereo mechanisms.

127



Chapter Five: The Efficiency of Smooth Pursuit

5.1 Introduction

In this chapter I extend the efficiency approach from perception to visually

guided action. The action system I examine is the oculomotor system,

specifically I assess performance for the smooth pursuit of transparent and

corrugated random dot patterns. There are two main aspects to this analysis.

The first is to make a direct comparison between motor and psychophysical

performance for similar stimuli. The second is to use the intrinsically

dynamic pursuit response to probe the temporal dynamics of the underlying

visual mechanisms. In the following introduction I provide a brief review of

the oculomotor research related to motion integration and segmentation, the

attempts made to relate oculomotor and psychophysical performance, and the

use of the oculomotor response to assess the temporal dynamics of the

underlying mechanisms.

5.1.1 Previous Research

In the natural environment, smooth pursuit is a conjugate eye movement that

tracks a (slow-moving) object of interest, to maintain the object on the fovea.

Usually this is punctuated by saccades, fast ballistic eye movements that

facilitate accurate tracking. Rashbass (1961) studied this behaviour

experimentally with 'step-ramp' stimuli, in which a spot was presented before
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Figure 5.1. The pursuit system can be modelled as a control loop. The negative

feedback loop aims to minimize the retinal error, the difference between target motion

and eye motion. The positive feedback loop sends a copy of the motor command to

reconstruct the target velocity, providing a stable signal to the motor pathways. This

'black-box' model captures some important aspects of pursuit (this figure is adapted

from Lisberger et al., 1987).

changing position and then set into motion in the opposite direction to the

change in position. It was found that after an initial latency (around lOOms)

the eyes first began tracking in the direction of the target motion, then at a

further delay made a saccadic movement towards the target (in the direction

of the positional change) and continued to track in the direction of the target

motion. This behaviour identified image motion as the stimulus for smooth

pursuit, distinguished from saccadic eye-movements that respond to stimulus

position.

Pursuit has been modelled as a negative feedback control loop, in which the

motor system aims to reduce the retinal error, the difference between retinal

motion and eye motion (Figure 5.1). This negative-feedback control loop also

requires positive feedback of eye velocity, to provide a measurement of target

velocity and prevent the eyes from stopping when the error signal reaches
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zero (see Lisberger et al., 1987). This characterization of the system has been

criticized (Steinman, 1986) and more recently there has been an interest in

developing a more physiologically plausible description of the mechanism

and relating this to the visual mechanisms that underlie visual perception

(e.g. Krauzlis & Stone, 1999). Nevertheless, the control system description of

pursuit captures some important aspects of the behaviour. Mainly, pursuit

behaviour will reflect the negative-feedback loop, the interplay between

visual input and motor output. However, if the loop could be 'opened' it

would be possible to use the pursuit response as a probe of the underlying

visual mechanisms. One method to do this is to take advantage of the delay

between the onset of target motion and the initiation in pursuit: this dictates

that the first lOOmsor so (depending on the stimulus parameters) of the

pursuit response will reflect purely the visual inputs (Lisberger & Westbrook,

1985;Lisberger et al., 1987). The pursuit system can then be used to probe the

mechanisms that underlie visual motion processing. The use of eye

movements to probe the underlying mechanisms is a well-established

tradition, saccades are used as a probe for cognitive processing in reading

(Rayner, 1977,1998)and attention (Posner, 1980;Rizzolatti et al., 1997).

As described in Chapter Three, the human visual motion system must

integrate similar motion signals and segment different motion signals to

recover an accurate representation of the three-dimensional visual scene (see

Braddick, 1993). Previous oculomotor research has tended to use small

single-spot motion targets (e.g. Lisberger & Westbrook, 1985). These simple

130



local motion stimuli by their nature do not demand the integration or

segmentation of local motions, and therefore do not probe the systems

response to complex stimuli of the kind that occur in the natural environment

e.g. tracking a butterfly in flight against the changing, textured background of

foliage. Larger field motion displays have been used, generally to elicit

passive eye movements, optokinetic nystagmus (OKN) (Cohen et al., 1977)or

'ocular following' responses (see Miles, 1998). These automatic 'reflex'

responses reduce retinal image motion in response to movement of the entire

visual field and are therefore behaviourally quite different to smooth pursuit,

an intentional eye movement that tracks a visual object of interest moving

against the background of the environment (Kowler et al., 1984;Collejiwn &

Tamminga, 1984), although it is understood that pursuit and OKN rely on

common neural mechanisms (Pola & Wyatt, 1985;Kawano, 1999). Recently, it

has been demonstrated that voluntary pursuit eye movements are sensitive to

large stimuli, in particular pursuit accuracy is improved, acceleration is

increased and latency is decreased as the size of a global motion stimulus is

increased (Heinen & Watamaniuk, 1998). This demonstrates that active,

smooth pursuit does depend on the output from integrative motion

mechanisms. Area MT has been identified as the neural site for these

integrative motion mechanisms (Newsome & Pare, 1988;Stoner & Albright,

1992), and provides the visual information used by smooth pursuit eye

movements (Komatsu &Wurtz, 1988,1989;Groh et al., 1997;Born et al., 2000).
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A few studies have examined the oculomotor response, both active and

passive, to more complex global motion stimuli, particularly motion

transparency. Motion transparency occurs when two global motions are

perceived in the same visual direction at different depths (e.g. Adelson &

Movshon, 1982;Snowden, 1989;Stoner et al., 1990;Murakami, 1997). This is a

particularly useful stimulus to study the mechanisms of motion integration

and segmentation, as it involves both simultaneously. It has been shown that

the velocity of pursuit is reduced to transparent stimuli of opposite global

motions, compared to single global motion stimuli (Niemann, Ilg & Hoffman,

1994). This oculomotor behaviour parallels the physiological evidence for

suppressed responses in MT to transparent stimuli (Snowden et al., 1991).

There have also been attempts recently to relate oculomotor responses to

transparent stimuli to perceptual behaviour. Transparency is a depth percept,

although when it is elicited by motion the depth ordering is ambiguous.

Watanabe (1999)demonstrated perceptual reversals of the direction of motion

for transparent stimuli of opposite directions even when observers were

instructed to attend to the motion at a particular perceived depth. However,

the direction of the slow-phase of the OKN elicited by these stimuli was

correlated to the perceptual reports, demonstrating a coupling between the

perceptual system underlying motion transparency and the oculomotor

response. Mestre & Masson (1997)demonstrated that the velocity of OKN in

response to same-direction transparent stimuli followed the average of the

motion vectors in the stimulus, and (for stimuli with three velocities or less)
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after observers reported perceiving the transparent stimuli the eye velocity

follows the slowest velocity in the stimulus.

Recent studies have attempted to directly compare perceptual and pursuit

performance for the same tasks. Beutter & Stone (1998) computed

'oculometric' functions, the equivalent of psychometric functions for the

oculomotor system, for the direction discrimination of plaid stimuli. This

approach permitted a comparison between psychophysical thresholds and

oculomotor thresholds. They found that the directional biases in pursuit were

very similar (see also Stone, Beutter & Lorenceau, 2000). Watamaniuk &

Heinen (1999)applied the oculometric analysis to the direction discrimination

of random dot motions. In Watamaniuk & Heinen's analysis thresholds were

computed as a function of external noise to estimate the internal noise of the

oculomotor (specifically smooth pursuit system) and perceptual mechanisms,

following Pelli (1990). They found that while psychophysical performance

was better than oculomotor direction discrimination, the estimated internal

noise was approximately equal. It was argued that the oculomotor system

was limited by the same noise as the perceptual mechanisms, Le.both systems

rely on the same underlying visual mechanisms. While identifying a common

noise source for perception and action, this novel approach to comparing

oculomotor and psychophysical performance does not isolate the visual

information driving perceptual and oculomotor performance. The efficiency

approach permits this crucial comparison to be made. Notably, Eckstein et al.

(2001) demonstrated that the efficiency approach can be extended to the
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motor domain, and assessed the visual information driving saccadic

behaviour in visual search. Here I further extend the approach to the analysis

of the visual information driving smooth pursuit for random dot motions.

5.1.2 Present Study

In the following experiment I compute the efficiency of smooth pursuit for

high-density 'corrugated' and 'transparent' random dot motions. These

stimuli are illustrated in Figure 5.2. This type of stimulus was originally used

by van Doorn & Koenderink (1982a,1982b). They demonstrated that varying

the bar width of the configuration altered the perception of the stimulus, at

large bar widths the individual strips of motion are perceived (as in the

corrugated condition), but as the bar width is decreased observers perceive

two transparent surfaces, one sliding over the other in depth (as in the

transparent condition of Chapter Three). The terminology for the stimuli in

the present experiment therefore refers to the different percepts elicited by

similar stimuli with different bar-widths (and numbers of bars). Recently,

Mestre et al. (2001)determined that this transition occurs at a bar-width of

around 0.4 degrees of visual angle. Here, I present corrugated stimuli of non-

overlapping motions, and transparent stimuli of (perceptually) overlapping

motions to assess the sensitivity of smooth pursuit to mechanisms of motion

integration and motion segmentation. There are two main purposes for this

study. First, the efficiency computation will permit a direct comparison with

the perceptual performance of Chapter Three. Second, it has previously been
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demonstrated that the analysis of smooth pursuit eye movements in response

to motion stimuli provides a technique that allows us to probe the temporal

evolution of motion processing (Masson & Mestre, 1998;Born et al., 2002).

Such studies have shown for example that in response to 'barber pole' stimuli

the motion system initially provides one-dimensional motion estimates

(corresponding to the motion direction orthogonal to the orientation of the

line segments) and over time computes the two-dimensional motion of the

terminators (Masson et al., 2000),or that tracking of 'line-diamond' stimuli is

initiated in the direction of the vector average of the moving segments and

over time corrects to the true object motion (Masson & Stone, 2002). Here, I

use the pursuit response to examine the temporal dynamics underlying

motion integration and segmentation in the corrugated and transparent

stimuli.
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5.2 Experiment 7

5.2.1 Methods

5.2.1.1 Human Observers

Two observers participated in the experiment. One observer (AK) was an

experienced participant in eye-tracking experiments. The other OW) was an

experienced psychophysical observer but a novice to eye-tracking

experiments. Both observers had normal or corrected-to-normal visual acuity.

5.2.1.2 Apparatus

Stimuli were back-projected on a large translucent screen, using a RGBvideo

projector. Stimulus presentation was controlled by a PC with the REX

software package (Hays, Richmond & Optican, 1982). Observers were seated

and head position was stabilised by a chin support and forehead rest.
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Figure 5.2. Schematic illustrations of (A) corrugated and (B) transparent stimuli.

5.2.1.3 Stimuli

The visual stimuli were 35 frame movies generated by the HIPS software

(Landy et al., 1984)running on a Silicon Graphics workstation. Two types of

random dot displays were used, a corrugated motion stimulus and a

transparent motion stimulus. Both stimuli were constructed from a 256 by

256 pixel array, and subtended 12 by 12 degrees of visual angle when back-

projected onto a large translucent screen (subtending 80 by 80 degrees of

visual angle, viewed at a distance of 1m). The stimuli were back-projected by

a video projector at 75 Hz. Each location in the stimulus pixel array was black

or white with a probability of 0.50,corresponding to a dot density of 50%.

In the corrugated motion stimulus (Figure S.2A), dots in the upper half of the

stimulus (the first 128 rows) were displaced in one direction and dots in the

lower half (the next 128 rows) of the stimulus were displaced in the opposite
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direction (each half of the corrugated stimulus subtended a visual angle of 6

by 12 degrees). This stimulus is perceived as two opaque surfaces moving in

opposite directions. The transparent motion stimulus (Figure 5.2B)was then

constructed by alternating the direction of motion every 4 pixels (0.2degrees).

Although this stimulus consisted of a number of horizontal 'strips' of

alternating directions, this stimulus is perceived as two surfaces moving in

opposite directions, one sliding transparently over the other, as first described

by van Doorn & Koenderink (1982a,1982b). Note that in both of these stimuli

dots moving in different direction are spatially segregated. In both stimuli

dots moving in the same direction must be integrated and dots moving in the

opposite direction must be segmented from each other. The key difference is

that while the corrugated bars remain perceptually segregated, the

transparent bars of the same direction are integrated together and are

perceived as a surface extending across the entire display.

Each random dot display subtended 12 by 12 degrees of visual angle.

Performance was limited by varying the amount of flicker noise in the

stimulus, this type of noise is different from that used in the previous

psychophysical experiments. Flicker noise refers to the probability that a

given pixel in the image (which could be black or white) could change its

polarity (n). Therefore, the probability that a given pixel remained the same

polarity (5) was 1 minus the flicker noise probability (5 = 1 - n). This flicker

noise determines that the density of white (and black) pixels was constant at

50%. With zero probability of noise then the polarity of all dots remained
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constant, and the direction of motion was clearly perceived. However, with

increasing amounts of flicker noise the direction of motion was increasingly

more difficult to perceive.

5.2.1.4 Procedure

In a given block of trials observers were presented with one type of motion,

either the corrugated stimuli or the transparent stimuli described above. For

the corrugated motion type, each trial consisted of two opposite directions of

horizontal motion (left and right), the upper half of the stimulus moved in one

direction and the lower half of the stimulus moved in the opposite direction.

The direction that dots were displaced in the upper and lower areas was

randomised across trials. For the transparent motion type, again each trial

consisted of two opposite directions of motion, but now the direction of

motion alternated between 'strips' of the stimulus. The direction in which

dots were displaced in the 'odd' and 'even' strips was randomised across

trials. For each motion type, one of the motions moved at the 'standard'

speed of 4 degrees per second. The other 'target' speed was 8° S·I, 12°S·lor 16°

S·I, corresponding to speed ratios of 2,3 & 4. The direction of the target (and

therefore the standard) motion was randomised across trials. For each motion

type and for each speed ratio, performance was limited by varying the

amount of flicker noise present in the stimulus, 10 flicker noise probabilities

were used ranging from 0.01 to 0.99. For each motion type, the speed ratio

and noise level were randomised across trials. Observers ran 35 trials at each
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noise level, for each speed ratio and condition. For both motion types, the

stimulus duration for each trial was 45Oms. The observer's task was to track

the faster surface motion. Data was collected from each observer in sessions

of one hour duration, up to 20 hours of data collection in total for each

observer.

5.2.1.5 Eye Movement Recording and Data Analysis

Eye movements were recorded by the scleral search coil method (Collewijn,

van der Mark & Jansen, 1975) supplied by Skalar Med (spatial resolution: 1

min of arc, temporal resolution: 1kHz). A coil was placed in the right eye

only, following the application of a topical anaesthetic to facilitate the placing

and wearing of the coil. On each session of data collection, after the coil was

placed, the responses were calibrated by a fixation task (to map the display

locations to the coil response). On each trial eye movements were recorded

from lOOms before the stimulus onset up to the end of the stimulus

presentation (450ms after stimulus onset) by the REXsoftware package (Hays,

Richmond & Optican, 1982). Responses were analysed using the IDEA

software environment', which provides a visual representation of the pursuit

response. Saccades were identified by visual inspection and responses

containing saccades were rejected from analysis. For each trial, a baseline

response was computed as the average horizontal velocity from -30ms (30ms

prior to stimulus onset) to 60ms after stimulus onset. Pursuit latency was

• Eye-movement data analysis software environment developed and supplied by Richard Krauzlis, Salk
Institute.
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determined by the linear regression technique (Carl & Gellman, 1987),and all

responses were re-aligned with respect to the onset of the pursuit response.

Trials were rejected if the latency was greater than 210ms. The horizontal

velocity of the pursuit responses were then averaged within four bins or 'time

windows', 0 - 6Oms,60 -120ms, 120-180ms, and180 - 240ms, where Omsis

the onset of the eye movement. Within each time window, the criterion for

deciding the eyes moved was a horizontal velocity greater than 1 standard

deviation of the baseline response. To compute oculomotor sensitivity

functions, the direction of the pursuit response was determined for each time

window by taking the sign of the average velocity for that time window. This

analysis therefore reduces the dynamic pursuit response to a simple binary

decision, 'left' or 'right'. These binary responses were then used to compute

the hit rate and false alarm rates over the repeated trials for each noise level

within a condition, and thus the corresponding d', Note that these hit and

false alarm rates, therefore the computed sensitivities, will vary over time

only if there is a change in the direction of the eyes over time.

5.2.1.6 Ideal Observer

The ideal observer for a given task makes use of all the relevant information

in a given stimulus to perform that task optimally i.e. maximising the number

of correct responses by performing a maximum likelihood estimate (e.g.

Swets, 1964;Green & Swets, 1966).The ideal observer here is facing the same

speed discrimination task as any human observer. Recall that the task posed
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to the oculomotor pursuit system is to select the faster surface motion. To

select the faster surface motion, the ideal observer needs to represent the

speeds displayed in the stimulus, compare these speeds to the possible speed

combinations, and thereby select the faster speed. These three stages are the

stimulus representation, template matching and the decision stage (Figure

5.3). This is an extension of the ideal observer described in Chapter Three, for

the case of multiple speed combinations. The stimulus representation is given

by the one-dimensional cross-correlation across successive frames of the

stimulus (see also van Doom & Koenderink, 1982a). The cross-correlation

function simply describes the quantity of matches at each speed with no loss

of information. As the task is to discriminate only leftward from rightward

motions, only horizontal displacements are considered. At low levels of

flicker noise, the peaks of this speed correlation correspond to the standard

and target signal speeds. This can be seen in Figure S.3A for a transparent

stimulus with a 0.10 probability of flicker noise, inwhich the target speed is

moving to the left (here the correlation is computed across 20 frames). The

ideal algorithm computes the likelihood of each possible outcome by

comparing the stimulus representation with a number of 'templates'. Each

template is a representation of the possible speed combinations, correlations

that peak at the possible speeds (Figure S.3B). As all the speed combinations

can be presented within a given block of trials, the stimulus representation is

compared with the six possible speed combinations. To compute the

likelihood of each possible outcome, the ideal algorithm cross-correlates the

stimulus correlation with each template (e.g.Green & Swets, 1966).
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The ideal decision rule is then to choose the template that returns the largest

cross-correlation value with the stimulus (Figure 5.3C),a maximum likelihood

decision rule. In the case of low levels of flicker noise, the template with the

highest value will correspond to the actual signal presented, and in Figure 5.3

the ideal observer indeed selects the correct template. However, at much

higher levels of flicker noise the value of the incorrect template can be higher

than that of the correct template leading the ideal observer to make an

incorrect decision. Only these occurrences limit the ideal observer

performance. Note that, in contrast to the previous experiments, the

displacements in opposite directions in both the conditions are spatially

separated. Therefore, as the ideal observer considers only the one-

dimensional cross-correlation, ideal performance should be equivalent in the

two conditions of the present experiment.

To compute ideal thresholds, simulations of the ideal observer were

performed for both the transparent and coherent conditions. Simulations

were performed for each of the three speed ratios, at ten noise levels for each

speed ratio condition, with 30 trials (15 left faster, 15 right faster) per noise

level. To compare ideal performance with pursuit performance across the

different time windows, the ideal observer performance was computed for

four integration windows, 5 frames, 10 frames, 15 frames and 20 frames.

These integration windows are equivalent to the total length of stimulus

information that was available to the pursuit response at the end of each time

window, therefore the efficiency for each time window will measure the
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performance relative to the total information that was available to drive the

eye-movement. The ideal observer averages the correlation over the

appropriate number of frames for each integration window. As in the

previous chapters, efficiency is the ratio of human sensitivity to that of the

ideal observer (Tanner & Birdsall, 1958;Barlow, 1978):

(1)

As we will see in the results section below, d' is a linear function of the

proportion of signal dots presented. Therefore:

(2)

where ~ is the slope of the linear function of the human d' and ai is the slope

of the linear function of the ideal d', This definition is equivalent to the ratio

of human to ideal thresholds:

(3)
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5.2.2 Results

An example of the data obtained is shown for a set of simulation of the ideal

observer (Figure 5.4A) and of one human observer (Figure 5.4B). These data

are for a speed ratio of 4, and were analysed in the final time window, 180-

240ms (corresponding to 20 frames for the ideal observer). The sensitivities of

the human observer and the ideal observer increase approximately linearly as

the signal probability increases (therefore as the noise probability decreases),

in both the transparent and corrugated conditions. The linear fits were

restricted to conditions that led to a d' in the range 0.25 to 2.90. Note the

much higher levels of noise required to limit the ideal observer performance.

The sensitivities were then fitted with a line constrained to pass through the

origin and the signal threshold was defined as the signal proportion (5)

required for a d' of 1.
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Figure 5.4. Fitted slopes for the (A) ideal and (B) human observers. Note the fourfold

difference in scale for the proportion signal between the ideal and human observer.

For the ideal observer, the slope of the fitted line is 3,83 x 104 in the corrugated

condition and 5.53 x 104 in the transparent condition. For the human observer, the

slope of the fitted line is 2.55 in the corrugated condition and 1.96 in the transparent

condition,

5.2.2.1 Speed & Type of Motion

A 2 x 3 two-way analysis of variance was conducted to assess the effects of

speed ratio and type of motion (corrugated versus transparent), collapsed

across time window, on pursuit thresholds for each observer. Performance

for the ideal observer is shown in Figure 5.5. Results for the ideal observer

indicated a main effect for motion type (F(1,18)= 31.6,P < .05) and speed ratio

(F(2,18)= 11.5, P < .05), but no interaction between condition and speed ratio

(F(2,18)< 1, P > .05), Note that in general, the ideal observer requires only a

very small proportion of signal to perform the task in both the transparent
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Figure 5.5. Mean transparent (open circles) and corrugated (filled circles) signal

thresholds, collapsed across time window, for the ideal observer as a function of speed

ratio. Error bars indicate standard error of the mean.

and the corrugated conditions. This is a smaller figure than in the previous

motion experiments, however the thresholds are not directly comparable as

the for of noise is quite different between these two studies. The small but

significant difference between the transparent and corrugated conditions is

perplexing as this goes against the theoretical predictions, and suggests that

this difference is a result of a stimulus artefact. Similarly, there is no

theoretical basis for an effect of speed ratio. This may be a result of the

stimulus construction, specifically at higher speeds there is in principle a

greater loss of speed information at the edges of the stimulus than for smaller

speeds.
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The performance of observers AK and JW are plotted in Figure 5.6. The

results of the analysis for observer AK indicated a main effect of condition, in

the opposite direction to the ideal observer (F(1,14) = 9.86, P < .05), but no

main effect of speed ratio (F(2,14) < 1, P > .05) and no interaction between

condition and speed ratio (F(2,14) < 1, p > .05). The results of the analysis for

observer JW indicated a main effect of condition (F(1,17) = 9.39, P < .05) but

not effect of speed ratio (F(2,17) < 1, P > .05) and no interaction between

condition and speed ratio (F(2,17)< 1, P > .05).

Now I tum to the analysis of the observers' efficiencies, which were computed

following Equation (2) of this chapter. The efficiencies of both observers are

plotted in Figure 5.7. A 2 x 3 two-way analysis of variance was conducted,

collapsed across time window, to assess the effects of speed ratio and

condition (corrugated versus transparent) on pursuit efficiencies for each

observer. The results of the analysis for observer AK indicated no main effect

of condition (F(1,18) = 7.20, P > .05) or speed ratio (F(2,18) = 1.42, P > .05) and

no interaction between condition and speed ratio (F(2,18) = 1.17, P > 0.05).

Similarly, the results of the analysis for observer JW indicated no main effect

of condition (F(1,18) < 1, P > .05) or speed ratio (F(2,18) = 1.98, P > .05) and no

interaction between condition and speed ratio (F(2,18) < 1, p > 0.05).
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5.2.2.2 Time Window & Type of Motion

To consider the effect of the time window and condition on pursuit

thresholds, a 2 x 4 two-way analysis of variance was conducted for each

observer, collapsed across speed ratio. Results for the ideal observer

indicated a main effect for motion type, (F(I,16) = 15.5,P < .05),but no main

effect of time window (F(3,16) < 1, P > .05) and no interaction between

condition and speed ratio (F(3,6)< 1, p > .05). Note that in general, the ideal

observer requires only a very small proportion of signal to perform the task in

both the transparent and the corrugated conditions.

0.1

IDEAL

0.01

0.001

0.0001

Time Window

Figure 5.B. Mean transparent (open circles) and corrugated (filled circles) signal

thresholds, collapsed across speed ratio, for the ideal observer for the four different

time windows of analysis.
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Figure 5.9. Mean transparent (open circles) and corrugated (filled circles) signal

thresholds, collapsed across speed ratio, as a function of the time window of analysis

for the two human observers. Error bars indicate standard error of the mean.

The human observers thresholds are plotted in Figure 5.9. The results of the

analysis for observer AK indicated a main effect of motion type (F(1,12) =31.6,

p < .05) and time window (F(3,12) = 8.53, P < .05), thresholds gradually

decreasing with time, but no interaction between condition and time window

(F(3,6)< 1, P > 0.05). For observer ]W, there was also a main effect of motion

type, (F(l,lS) = 31.3, p < .05), and also a main effect of time window (F(3,lS)

=10.5, P < .05) with thresholds decreasing over time, and no effect of an

interaction between condition and time window (F(3,15) = 3.45, P > 0.05). The

means for observer JW are plotted in Figure S.9B.
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efficiencies, collapsed across speed ratio, as a function of the time window of analysis

for the two human observers. Error bars indicate standard error of the mean.

Now I tum to the analysis of the observers' efficiencies, which were computed

following Equation (2) of this chapter. These efficiencies are plotted in Figure

5.10. A 2 x 4 two-way analysis of variance was conducted, collapsed across

speed ratio, to assess the effects of time window and condition (corrugated

versus transparent) on pursuit efficiencies for each observer. The results of

the analysis for observer AK indicated a main effect of condition (F(I,16) =

7.99, P < .05) but no main effect of time window (F(3,16)= 2.00, P > .05) or

interaction between condition and time window (F(3,16) = 1.24, P > 0.05).

Though not significant, there is a trend for efficiencies to increase with time.

The results of the analysis for observer JW indicated no main effect of

condition (F(l,I6) < I, p > .05), but there was a main effect of time window

(F(3,16)= 5.58, P < .05), efficiencies improving over time, and no effect of an

interaction between condition and speed ratio (F(3,16)< I, P > .05).
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5.2.3 Discussion

The general finding is that the efficiency of smooth pursuit is extremely small,

and is not significantly different between corrugated and transparent stimuli.

This overall result is not compatible with evidence of a performance cost for

smooth pursuit of transparent motion (Niemann et al., 1994). Furthermore, it

is not compatible with the results of Chapter Three and a range of previous

psychophysical evidence for a performance cost in transparent motion.

However, here the transparent stimuli are constructed from alternating the

direction of high-density random-dot strips, whereas the transparent stimuli

in the psychophysical tasks of Chapter Three and of Niemann et al. (1994)

were superimposed random dot patterns. It is possible that there is not an

inhibitory interaction in the strip stimuli of the kind that limits performance in

the psychophysical case. Mestre et al. (2001) used stimuli similar to those

used here, alternating the speed (but fixing the direction) of horizontal

random-dot strips. They found a cost in segmenting motions based on speed

cues alone when each dot of the stimulus was 'paired' with a dot of a different

speed, placed within 0.20 or less vertically and horizontally (with some

random jitter) of each other, and argued that this behaviour reflects an early

local pooling of motion signals. However, without this strict pairing

constraint there was little cost for stimuli with bar-widths less than 0.20 even

though observers perceived transparency. Similarly, in the current

experiment the bar-width is 0.20 and transparency is perceived i.e.

segmentation is not blocked. Furthermore, the arrangement of opposite

directions of motion in horizontal strips precludes the possibility of spatially
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localised inhibition between different directions of motion. Therefore, the

finding of no difference in performance for transparent and corrugated

stimuli is not inconsistent with directional inhibition accounts of

transparency .

There are two further aspects of the analysis to consider, the manipulation of

speed ratio and time window. There was an effect of time window on smooth

pursuit performance, thresholds improved significantly with time (for both

observers), and efficiencies tended to improve with time (though this trend

was significant for only one observer). This result is further considered in the

General Discussion. In contrast, speed ratio had very little effect on

observer's performance. It has been shown that there are differences in the

effects of speed on the perception of transparent and non-transparent

motions. Psychophysical performance for uni-directional motion tasks that

require the segmentation of motions is tuned to lower speeds than tasks that

do not (Masson et al., 1999). Also, Mestre et al. (2001) demonstrated for

unidirectional stimuli, that smaller speed differences were required to

support the perception of corrugated displays of the type used here, while

larger speed differences were required to support the perception of the

transparent displays used here. The lack of an effect of speed for the opposite

direction displays here suggests that speed cues are not required for stimuli

that can be clearly segmented by directional cues.
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S.3 General Discussion

5.3.1 Comparisons with Visual Efficiencies

The efficiencies found in the current study are the smallest efficiencies ever

reported (see Table 2.1 for comparison)! Notably, they are much smaller than

the visual efficiencies reported in Chapter Three for coherent and transparent

motions. It is true that while the stimuli elicit similar percepts, and that the

transparent stimuli demand both segmentation and integration of local

motions, the construction of the stimuli are somewhat different. In Chapter

Three the dots were located randomly anywhere on the screen, and dots of

different directions were presented either simultaneously or sequentially.

Here, dots of different directions were constrained to fall in different 'strips'

of the stimulus. As discussed in the previous section, this difference may

account for the lack of a consistent effect of transparency found here.

Nevertheless, by computing efficiency performance is normalised to the

information content in the stimulus, therefore in principle meaningful

comparisons can be made between these two studies. There is a range of

evidence that smooth pursuit is driven by the same visual mechanisms that

drive perception (e.g.Krauzlis & Stone, 1999). If the pursuit system does have

access to the same information as perception, the smaller efficiencies for

smooth pursuit suggest that pursuit does not use all of the available

information. It is possible that pursuit is driven by only a subset of the

available temporal information, less than is used for perception. Indeed, the

eye movement is driven after a short delay following stimulus onset for at
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least a 240ms duration (the total duration of the analysis windows), while the

psychophysical decision of Chapter Three occurs after the entire stimulus

presentation (267ms), so it is possible that the psychophysical decision can

utilise more of the available information. A further possibility is that low

efficienciesare due to the high density stimuli used. Itwas shown in Chapter

Three that perceptual efficiencies decline with increasing dot density,

showing that correspondence noise constrains perceptual performance. The

high-density stimuli represent the highest densities possible, and pose a

severe correspondence problem. It is conceivable that perceptual efficiencies

for such high-density stimuli would be comparable to the smooth pursuit

efficiencies found here. Finally, the low efficiencies may be related to the

flicker noise. In the case of levels of flicker noise approaching 100%, a

significant proportion of the moved pixels in the stimulus will reverse

polarity in successive frames, effectively producing a reverse phi stimulus.

This would elicit motion percepts in the opposite direction to the actual

displacements, potentially limiting the performance levels attainable in the

task.

5.3.2 Temporal Dynamics

The main finding of the present experiment is that smooth pursuit

performance generally improves over time, and does so similarly for the

corrugated and transparent stimuli. Indeed, both these stimuli require both

the segmentation of motions in different directions and the integration of
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motions in same directions (with the difference that in one case transparency

is perceived). Recently, there has been a range of research addressing the

issue of the temporal dynamics underlying motion perception. For example,

it has been shown that pursuit movements in response to 'barber-pole' stimuli

are initially in the direction of the one-dimensional motion signals but over

time follow the two-dimensional motion (Masson et al., 2000),and that, given

two spots to track, pursuit is initiated in the vector average direction of both

spots before one is selected for tracking (Lisberger & Ferrera, 1997). Recently

the physiological mechanisms underlying such dynamic behaviour have been

examined. For example, it has been shown that responses of single neurons in

MT to motion stimuli initially suffer from the aperture problem (see Marr &

Ullman, 1981 for a definition) but over time respond to the true stimulus

motion (Pack & Born, 2001). Furthermore, it was shown that pursuit eye-

movements initially deviated from true stimulus motion but over time are

corrected (similar to the finding of Masson et al., 2000), with a comparable

time course to that of the MT responses. It has also recently been suggested

that the temporal dynamics of motion integration observed in area MT

depends upon feedback from even higher areas (Pack et al., 2001,but see also

the critiwue of Movshon et al., 2003). Indeed, cortical feedback is known to

operate in figure/ground segmentation from texture cues (Super et al., 2001;

Hupe et al., 1998)and may be a crucial principle of visual cortical function in

general (Lamme & Roelfsema, 2000). A recent study has suggested key

differences between mechanisms of integration and segmentation, specifically

that motion segmentation depends upon the speed dependent responses of
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VI while motion discrimination (demanding integration without

segmentation) depends upon the speed dependent responses of the higher

cortical visual area MT (Masson et al., 1999). Therefore, in principle the use of

the pursuit response to examine the temporal dynamics of integration and

segmentation can begin to address the interplay between these fundamental

processes. The results of the present experiment suggest that the mechanisms

of integration and segmentation at work processing both the corrugated and

transparent stimuli follow a similar time course.

5.3.3 Conclusions

I conclude this chapter with two remarks. First, efficiencies were computed

for smooth pursuit of transparent and corrugated motions. These efficiencies

were computed across a range of speed ratios, and over time. In principle, it

is possible to directly compare the oculomotor efficiencies here with those of

Chapter Three, to make meaningful conclusions about the similarities of the

underlying mechanisms. There were two main impediments to this

comparison. First, the stimuli across the experiments are structured

differently, therefore mechanisms that come into play in one experiment may

not necessarily be targeted in the other experiment. Secondly, the high dot

density in the current experiment is beyond the range tested in the

experiments of Chapter Three, which is an issue given the decline in

efficiencieswith dot density. Therefore, before drawing conclusions about the

nature of the mechanisms underlying perceptual and oculomotor
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performance, it would be desirable to compute perceptual efficiencies for the

corrugated and transparent stimuli used here.

My second remark concerns the comparison between smooth pursuit for

corrugated and transparent motions. There were two relevant questions here.

Will there be a cost in performance for smooth pursuit of transparent motions,

paralleling perceptual performance? Will the performance for corrugated and

transparent stimuli follow a different time course? The answer to the latter

question was negative, in contrast the findings suggested that the

mechanisms processing both stimuli follow a similar temporal build-up. The

answer to the first question is unanswered by the present study, given the

inconsistencies in the results. Again, it would then be desirable to compute

perceptual efficiencies for the corrugated and transparent stimuli used here

and assess the similarity of the mechanisms at play for perception and action.
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Chapter Six: Overall Summary and Conclusions

6.1 Summary

In this thesis I have applied the efficiency approach to examine the

phenomenon of visual transparency, in which two surfaces are perceived

simultaneously in the same visual direction. In the seminal computational

analysis of Marr (1982),the surface representation is a crucial stage in visual

processing that links initial spatially localised descriptions to a later three-

dimensional object representation. Little is known about how this crucial

intermediate representation is achieved by the cortical visual system, and it is

increasingly becoming a key issue in the field. Two processes are thought to

be fundamental to the recovery of the surface layout in the environment, the

segregation and integration of spatially local information (e.g. Braddick,

1993). The complex nature of visual transparency can be used to probe the

limitations of these processes on the recovery of the surface representation, as

transparency demands both segregation and integration simultaneously. In

this thesis I examined the limitations on visual transparency elicited purely by

motion or stereoscopic information.

As discussed in Chapters Three and Four, previous researchers have found

that there is a cost in processing both motion defined transparency and

stereoscopic defined transparency compared to similar non-transparent

surface tasks. This cost has been attributed to constraints in the underlying
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mechanisms. However, given the acute correspondence problem of

transparent stimuli compared to non-transparent stimuli, the cost could

reflect a difference in the available information. By applying the efficiency

approach for the first time to an analysis of visual transparency, I was able to

address this issue. The efficiency approach had two key advantages: 1)

performance is normalised to the available information; 2) efficiencies are

absolute measures of performance and can be compared directly across tasks.

Thus in this thesis I could assess performance within the domains of motion

and stereo and also compare performance directly between the two. The key

questions I asked were: 1) Does the cost in processing transparent motion

reflect a difference in the available information or a limitation in the

underlying mechanisms? 2) Does the cost in processing stereoscopic

transparency reflect a difference in the available information or a limitation in

the underlying mechanisms? 3) How does performance compare between

motion and stereo?

I computed efficiencies for visual transparency elicited by differences in

motion (Chapter Three) and differences in disparity (Chapter Four) in

random dot stimuli, and in addition extended the approach to the analysis of

smooth pursuit for transparent motion (Chapter Five). In each case,

performance for visual transparency was compared with performance for

comparable non-transparent surfaces. Generally, I found that 1) there is a

residual cost in efficiency for transparent motion (across a range of dot

densities and speed ratios), 2) there is no cost in efficiency for stereoscopic
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transparency (across a range of dot densities and speed ratios), 3) both motion

and stereo mechanisms are sensitive to correspondence noise. I have

provided my interpretation of these results in motion and stereo in Chapters

Three and Four. In summary these are that; 1) an inhibitory interaction

between different directions of motion constrained performance for

transparent motion, 2) there is no inhibitory interaction between disparity

defined surfaces (although there may be local inhibitory interactions), 3) there

is a correspondence noise sensitive mechanism similar or common to motion

and stereo, which may be a spatial pooling of local information.

In the following sections I further consider an account of the different effects

of transparency in the motion and stereo tasks, and also consider how this

may account for the additional finding of lower efficiencies in stereo

compared to motion. I also consider the benefits and limitations of the

efficiency approach in general. Finally, I consider the future investigations

that can follow from the work in the present thesis.

6.2 The Interplay of Motion and Stereo Mechanisms in Visual

Transparency

In the natural environment, it is likely that the resolution of transparency

involves the interaction of multiple depth cues (Kersten, 1991). The present

results indicate that there is a cost on the recovery of transparency purely

from motion cues, but no cost on the recovery of transparency from
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stereopsis. This echoes a recent series of psychophysical and physiological

findings of Qian and colleagues (Qian & Andersen, 1994;Qian et al., 1994a).

In these studies, random dot stimuli were constructed in which pairs of dots

moved in opposite directions in close spatial proximity. These stimuli were

perceived as 'flicker'. However, when the dots were unpaired such that they

did not move in close spatial proximity, transparency was perceived.

Furthermore, when paired dots were presented such that each dot had a

different disparity, the previous 'flicker' percept was abolished and observers

could segregate the two planes of motion. Here, the stereoscopic information

resolved the conflict of the local motion information. To account for this Qian

et al. (1994b) introduced the 'modified motion energy model', described in

Chapter Three, a physiologically plausible account of motion and disparity

processing up to the level of area MT. This model is essentially a fusion of the

motion energy model (Adelson & Bergen, 1985) and the disparity energy

model (Ohzawa et al., 1990). The aspect of the model relevant to the present

discussion is that the opponent motion inhibition is restricted within

disparity-tuned cells (and within a small spatial region hypothesised to

correspond to the size of MT 'subunits'), with no inhibitory interaction

between the disparity-tuned channels. This provides a physiologically

plausible account of the different effects of transparency on motion and stereo

efficiencies. I further suggest that the difference in processing motion and

disparity may account for the higher efficiencies in the motion study Le. the

suppressive interactions between motion results in a weaker residual noise

response than in the disparity case, where there is no suppressive interaction
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between different disparities. Indeed, it has been found that MT responses to

pure random noise (of the kind used here) are small, suggesting that the

inhibition of different motion signals serves to combat the unwanted effects of

correspondence noise (Qian & Andersen, 1994).

The modified motion energy model places the neural interactions that

underlie perceptual transparency beyond VI in an unidentified area, a 'sub-

unit' input to area MT. Interestingly, recent physiological evidence suggests a

functional interaction of motion and stereo at a sub-unit level (Pack, Born &

Livingstone, 2003). In Chapters Three and Four I discussed how the similar

dependencies on dot density for motion and stereo tasks suggest that a

similar mechanism underlies performance in both cases. One possible

mechanism is the spatial pooling of motion and disparity information that

occurs within MT. Indeed, it has been found that MT cells selective to both

motion and disparity are inhibited in response to different directions of

motion within the same disparity, but not to different directions of motion at

different disparities (Bradley et al., 1995). Therefore, an ecologically valid

situation of transparency in which there are two (moving) surfaces at different

depths can be represented effectively by the visual system. This implies that

the inhibitory responses identified in MT in response to motion serve to

average out motion noise at a given depth (i.e.within a surface). This is not to

say that motion information is uninformative, indeed we do perceive depth in

the transparent motion displays. It has been suggested that the system

achieves this as a result of the zero-disparity motion signals in transparent
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motion displays being segregated into different populations of broadly tuned

MTneurons, those tuned to near and those tuned to far disparities (Bradley et

al.,1998).

The above discussion provides a parsimonious account of my findings on the

efficiency of visual transparency defined by motion and stereo information,

and suggests that a common neural mechanism underlies the performance in

both domains. Indeed, recent psychophysical evidence points to a functional

interaction between motion and stereopsis in the recovery of surfaces (e.g.

Lankheet & Palmen, 1998;van Ee & Anderson, 2001). However, while I have

suggested that the mechanisms may lie in area MT, there is some evidence

that in the motion case transparency is limited not by inhibitory interactions

at MT (or the MT subunit level) but earlier fine-scale operations in VI

(Masson et al., 1999;Mestre et al., 2001). Indeed, in order to integrate different

areas the boundaries must be demarcated, and the scale of VI processing is

better suited to this segmentation task than the larger receptive fields of MT.

By this alternative argument, the local interaction limiting motion

segmentation (transparency) is an early local averaging within VI. The data

in the current thesis cannot distinguish between the two alternatives.

Nevertheless, if early VI responses do limit segmentation, and later MT

responses limit integration, then there should be some interplay between

these areas, as there is a necessary two-way interaction between the processes

of segmentation and integration (e.g. Braddick, 1993). A signature of the

interplay between feed-forward and feedback mechanisms could be found in
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the temporal dynamics of the system. In the final experiment on smooth

pursuit, the motor response was used to probe the temporal dynamics of

motion processing. The results indicated a common temporal build-up for the

corrugated and transparent stimuli, suggesting that common mechanisms of

segmentation and integration operate in both cases. It would then be of

interest to use stimuli that dissociate these two processes, and see whether the

pursuit response reveals a different temporal build-up of the response.

In summary, while I have provided a parsimonious interpretation of my key

results in this section, other possibilities remain open. In the final section

'Further Work', I consider the various research directions that can follow from

the work in this thesis to address these issues. First, I further consider the

efficiency approach I used in this thesis, highlighting the main benefits of the

analysis and also consider the more problematic aspects.

6.3 The Efficiency Approach: Benefits and Limitations

The results of the present thesis demonstrate a number of key benefits of the

efficiency approach. First, there were advantages in normalising performance

to the available information. In the motion and stereo studies, there was a

question as to whether the cost for transparency did reflect a visual

mechanism, or alternatively a difference in the available information. The

analysis revealed that while there is a residual cost in efficiency for

transparent motion, there was no residual cost in efficiency for stereoscopic
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transparency. Thus while a visual mechanism underlies the cost in

transparent motion, in the stereo-transparency case a difference in the

available information accounts for the raw performance cost. If I had not

controlled for the available information in these tasks I may have come to

quite different (erroneous) interpretations about the nature of the underlying

visual mechanisms. Indeed, this criticism applies to any psychophysical task

in which there are differences in the available information across conditions.

Another aspect of controlling for the available information is that it constrains

the interpretation of the results. In Chapters Three and Four, the ideal

observer analysis demonstrated that there was a greater incidence of

correspondence noise in the transparency conditions, but also a greater

incidence of correspondence noise with increasing dot density. Therefore I

could attribute the similar decline in efficiency for the motion and stereo tasks

in terms of a common sensitivity to correspondence noise.

Another benefit of the efficiency approach was that, in normalising

performance to the available information, it was then possible to make direct

comparisons across tasks. In the current thesis, the computation of

efficiencies permitted the comparison of performance between similar tasks in

motion and stereo, and also to smooth pursuit eye movements. At face value

comparison suggests that the visual system is better with motion than stereo

information, and both are better than the performance of the pursuit motor

system. To make a meaningful comparison across these domains required

further consideration of the stimuli used in each domain, and the mechanisms
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that may be constraining performance in each case. For example, in the

previous section quite severe performance limitations were found in my

laboratory experiments, compared to a theoretical observer optimised for

those artificial tasks. Nevertheless, a careful consideration of the results

suggested that the visual system is optimal in the natural environment where

multiple cues are available to resolve complex scenes, such as transparency.

Similarly, in the survey of efficiencies in Chapter Two, the comparison of

efficiencies across the different tasks could be interpreted in terms of a

sequence of representational stages and the possible implementation of this

sequence in the cortical visual hierarchy.

The above considerations illustrate the power of the efficiency approach in the

endeavour to understand the mechanisms of the visual system. However,

while the approach offers more than basic psychophysical approaches, there

are a number of limitations to be aware of. To apply the method, tasks must

be used where performance is constrained by noise. It is important that the

noise is relevant to the task at hand i.e. that it targets the same (hypothetical)

mechanisms as the task. It must be possible to specify the information

available to perform the task and specify optimal performance. This tends to

be quite trivial for basic signal detection tasks, but for more complex tasks

these limitations can pose a more formidable problem, although there are

ways of applying the efficiency approach to more complex situations (Elder,

2002). A further constraint has been suggested above. The interpretation of

differences in efficiencies requires a careful consideration of the differences between

169



stimuli and tasks. In the present thesis, the absolute nature of the efficiency

measure permitted a direct comparison between the perceptual performance

of Chapter Three and the motor performance of Chapter Five. However,

while this comparison did suggest some interesting differences between

motor and perceptual performance, there were clear differences in the stimuli

that may have been contributing to the difference, namely the high dot

density and different structure and noise of the pursuit stimuli. In general,

while there is much to be gained from applying the efficiency approach, it

does impose restrictions on experimentation and the results require

considered interpreta tion.

6.4 Future Work

There are a number of directions that follow from the present findings. One

direct extension of the present results is the analysis of combined stereo-

motion stimuli, and a number of interesting manipulations could be

performed to assess the extent of the proposed stereo-motion interaction. For

example, I could assess whether the addition of stereo cues improved

efficiencies in the speed discrimination task, or whether the addition of speed

cues improved efficiencies in the depth discrimination task. If a local

disparity-limited inhibitory interaction does limit performance in the motion

case, I predict that the addition of stereo cues to the speed discrimination task

will increase efficiencies. Similarly, I predict that if motion and stereo

mechanisms are tightly coupled there will be an improvement in the stereo
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efficiencies when given the additional motion information. A second direct

extension of the present research was suggested in Chapter Three, the

computation of efficiency for unidirectional transparent motions. This would

directly assess the claims of motion inhibition. The prediction is that if the

limiting mechanism in transparency is an inhibitory interaction between

different directions of motion, there should be no cost in the efficiency of

transparency in the absence of directional cues. A final direct extension of the

present work concerns the comparison between perceptual and pursuit

performance. As discussed in Chapter Five, it would be desirable to compare

these performances for the same stimuli, and to extend the approach to

stimuli that dissociate processes of segmentation and integration to assess the

underlying temporal dynamics.

A further direction concerns an adaptation of the random dot stimuli used in

the present study. These stimuli are spatially 'broad-band', that is to say that

each dot in the stimulus contains energy at all spatial frequencies. A more

controlled analysis of the mechanisms of integration and segmentation could

be achieved by replacing the local elements in my random dot stimuli with

Gabor elements, Gaussian windowed spatial frequency gratings. Indeed, the

highest efficiencies reported in the literature have been found for Gabor

stimuli that match the receptive field structure in early visual cortex. The

advantage of using these Gabor stimuli as that the precise spatio-temporal

content of the elements can be manipulated. These manipulations could be

performed in motion and stereo to further explore the visual mechanisms that
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contribute to solving the correspondence problem, segmenting and

integrating local information. For example, it would be possible to test the

spatio-temporal parameters of the interaction limiting transparent motion.

Further directions would be to compare these indirect behavioural

experiments with comparable direct physiological studies to locate the level of

the interactions. I suggested in section 6.2 that the similar effects of dot

density in motion and in stereo are due to a spatial pooling of local

information that occurs in area MT. This could be tested directly by isolating

stereo and motion sensitive neurons in MT and assessing the effects of dot

density on the neurons response. Other possibilities would be to assess MT

neurons response to pure stereoscopic transparency and non-transparent

surfaces, to assess whether indeed the response is similar for both and not

reduced for transparency. Itmay also be interesting to assess responses in Vi

and MT simultaneously to the transparent and non-transparent motion and

stereo stimuli, as this may reveal any interplay between the areas in the

process of integration and segmentation. Finally, it should also be possible to

apply these designs to localise the mechanisms more directly with human

observers by fMRI techniques.
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Appendix - Ideal Observer

This appendix provides the foundations of the ideal observer for the

experiments. The derivation refers specifically to the case of the motion

experiments, but the equations here also apply to the stereo case. First the

effective density of the display is computed from the proportion of signal and

noise dots. Then the probability of matching dots from frame to frame is

computed. Finally, the decision rule used by the ideal observer is derived.

Effective Density

Each frame is composed of K=lO,OOO (100by 100) locations where a dot can

appear, and each movie is composed of a sequence of F = 10 such frames.

Each movie is produced by randomly throwing U signal dots and V noise

dots on the first frame. The signal dots are then moved to the next frames

according to their desired speed while the noise dots are thrown on new

random locations for every frame. If X refers to the total number of dots

thrown in one frame, X = U + V. Let s and n denote the probability that a

location in a frame is a signal or noise dot respectively. By definition, s = U /

K and n = V / K. Let now s' and n' denote the probability that a dot thrown in

a frame is a signal or noise dot respectively. By definition, s' = U / X and n' =

V / X,so that:

s' + n' = 1. (1)
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From these definitions, we also get:

5/5' = n / n', (2)

These definitions allow us to compute the density of the stimulus. In the

coherency task, the density d is defined as the sum of the densities in the two

temporal intervals. Because signal and noise dots can superimpose, the

effective density in one interval is:

d-=s+n-sn.
2

(3)

In the experiments, the density d and the proportion of noise dots n' are set,

and so we can infer the density probabilities of signal and noise 5 and n from

Equations (1), (2) and (3). Similarly, in the transparency task, the effective

density of the stimulus is:

d = 1- [0- n)(l- S)2]. (4)

We can infer the density probabilities of signal and noise from Equations (1),

(2)and (4).
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Matching Probability

The task involves a comparison of the slow and fast displacements of the

signal dots. Because of ambiguities in matching dots across frames (the

correspondence problem), each stimulus contains multiple speeds even in the

noiseless condition. The multiple speeds contained in a stimulus are exactly

represented in the cross-correlation computed across frames. Such a cross-

correlation will present two peaks (one at the fast and the other at the slow

speed) and a baseline level that corresponds to matching two unrelated dots

by chance. Let c, and Cz denote the peak and baseline amplitudes of the cross-

correlation in the coherency task, and similarly t, and tz for the transparency

task.

We now derive these values Cl' c2' t, and t2 explicitly. Let us start with c, and,

for the sake of the argument, let's assume that one of the signals is a

displacement to the right by 2 positions and the second signal a displacement

to the left by 4 positions. The value c, is the sum of two probabilities ell and e'2

corresponding to the two intervals in a coherency trial. If the first signal is

presented in the first interval, then ell is the joint probability of observing a

dot at location i at time t and a dot at location (i + 2) at time (t + 1) that we find

to be:

2cll=s+(1-s)n . (5)
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Because the first signal was presented in the first interval, only chance will

participate to the cross-correlation at the same lag of +2 in the second interval:

(6)

Similar reasoning for the transparency task lead to the following table:

fCI =s+(I-s)n2 +d2/4
IC2 = d2/2
~ .,tl =s+(1-s)(s+n-sn)2
lt2 = d2

(7)

Of course, Equations (3) and (4) above can be used to eliminate 5 from

Equation (7) and obtain cross-correlation amplitudes purely in function of d

andn.

The values obtained in Equation (7) are the means of the cross-correlation

amplitudes for an infinite number of trials. For one particular trial, let {bl, b2,

by b.} denote the amplitudes of the cross-correlation at the four bins of interest

(in the example above, the bins at -4, -2, +2 and +4 lags). Each bi follows a

binomial distribution beN, R), where N = K.(F - 1) and R is one of the base

probabilities given in Equation (7). Since N is large (90,000), the binomial

distributions we are dealing with are indistinguishable from Normal
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distributions with mean J..l = R and variance d = R . (1 - R) / N. For instance,

the first bin in our example will be distributed as:

(8)

Decision Rule

The final stage of the ideal observer model is to combine the amplitudes of the

cross-correlation and select the decision rule. Given that there are only two

possible choices for the ideal observer, the optimal decision rule is to select

leftward motion whenever

p(leftward I stimulus) > p(rightward I stimulus) (9)

where the 'stimulus' is represented by the four amplitudes of the cross-

correlation function as described above. These posterior conditional

probabilities can be rewritten as functions of likelihoods using Bayes' rule:

(I f
. p(stimulus I leftward) p(leftward)

p e tward I stimulus) = .
p(stimulus)

(10)
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Given that the denominator in Equation (10) is a constant for a particular trial,

and that leftward and rightward motions are equally likely, the decision rule

in Equation (9) can be rewritten in terms of the likelihood ratio D:

D p(stimuluslleftward)= >1p(stimulus Irightward) .
(11)

We therefore only need to focus on the likelihoods. If we assume

independence between the bins of the cross-correlation, the likelihood for the

coherency task becomes:

p(stimulusl leftward) = ptbin, = bl'bin2 = b2•bin) = b). bin, = b4 Ileftward)
= p(b. = cI'b1 = c1.b} = c..b, = c2)
= p(b. = c.) p(b2 = c2) pCb}= Cl) pCb. =c2)

I r (b,-c,i (b2-cS (b3-c,)2
= -2 2-2 eXPl -2-24" (]'I U 2 20; 202 201

(12)

If we further assume tha t near threshold, the variances of the peak and

baseline amplitudes of the cross-correlations will be approximately equal

(er. = (]'; = (]'2 ), the likelihood can be further simplified:

p(stimulusl leftward) =
1 r (h,-c,t+(h2-cJ+(b3-c,t+(b4-cSl.

4;r2(]'4 eXPl 2(]'2 J
(13)

The likelihood ratio then becomes:
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D= exp[ _ (b,-c,t +(1), -c,r:Jb, -c,t + (b,-c,t

+ (hI -cS + (h~-CIt + (b~-c2t + (b4 -crf
J
1.

2(i

r (Cl - c~) ( )1= eXPl ul . b, - bl +bJ - b, J

(14)

Since c. ~ C2 the decision rule from Equation (11) simplifies to:

(15)

Similar reasoning lead to the same decision rule in the transparency task.

The decision rule in Equation (15) is equivalent to template matching with

two templates. The leftward template has only two peaks at bins 1 and 3 (in

our example, speeds -4 and +2) and the rightward template has peaks at bins

2 and 4. This template matching procedure is the one that is implemented in

the simulations of the ideal observer.
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