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Abstract

The respiratory system is highly compromised after a tetraplegic Spinal Cord In-

jury (SCI) due to paralysis of the major breathing muscles. As a result Mechani-

cal Ventilation (MV) is often required and respiratory complications are a major

cause of rehospitilisation, morbidity, and early mortality. Functional Electrical

Stimulation (FES) applied acutely to the abdominal wall muscles in synchrony

with a patient’s volitional exhalation has been shown to improve breathing vol-

umes and the ability to cough in spontaneously breathing tetraplegic patients.

It has also been used acutely to improve breathing volumes in otherwise me-

chanically ventilated patients. The e↵ect of using Abdominal Functional Electri-

cal Stimulation (AFES) chronically on AFES-assisted and unassisted respiratory

function is currently unknown. To support clinical adoption of AFES practical

systems are required. Systems that synchronise AFES with exhalation automat-

ically have been developed but they have relied on invasive respiratory sensors.

In the first clinical study of this thesis twelve tetraplegic patients who could

breathe spontaneously completed a three week AFES training programme in ad-

dition to a one week pre-training control period and a three week post-training fol-

low up period. The results showed a significant increase in AFES-assisted Forced

Vital Capacity (FVC), and unassisted FVC, Peak Expiratory Flow (PEF), and

Cough Peak Flow (CPF) throughout the training period. AFES-assisted PEF

and CPF tended to increase over the same period, but the increase was not sig-

nificant. The di↵erence between unassisted and AFES-assisted measures did not

change. Overall, there were limited changes in the outcome measures during

the control and follow up periods, which suggests that the changes in outcome

measures observed during the training period were a response to training.

In the second clinical study daily sessions of AFES-breathing were combined

with the standard of care during the process of weaning a single tetraplegic patient

from MV. The results showed that the approach was feasible: AFES acutely

increased the duration of ventilator free breathing at the start of the weaning

process and daily ventilator free breathing improved considerably during two
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four-week long periods of daily AFES-assisted breathing.

In the final study breathing data was recorded from ten healthy volunteers

using a spirometer (the current standard), a nasal thermocouple, and piezoelectric

belts wrapped around the chest and abdomen. An algorithm was written for

each of the sensors so that they could be used to trigger stimulation during quiet

breathing. The thermocouple system, followed by the chest belt system, were

shown to be the most suitable replacement sensors for the spirometer.

The results of this thesis suggest three di↵erent applications of AFES in

tetraplegia: a neurorehabilitation device that can be used to improve unassisted

respiratory function in spontaneously breathing tetraplegics; a neuroprosthesis

device that could be used to assist spontaneously breathing tetraplegics in times

of respiratory distress, e.g. during recovery from respiratory infection; and as

a method of weaning tetraplegic patients from MV. The realisation of these

applications will be assisted by the non-invasive respiratory sensor algorithms de-

veloped in this thesis. Collectively these results have demonstrated the feasibility

of several new areas of future research, which could ultimately be of great benefit

to the health of patients with tetraplegia.
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Thesis Outline

Chapter 1 The epidemiology and consequences of tetraplegia are described with

a particular focus on respiratory problems in this patient group. The current

standard of respiratory care is presented and the unmet medical needs are

identified. AFES is put forward as a potential solution to the unmet needs, a

summary of the current knowledge of AFES is given and the open questions

addressed in this thesis are formulated.

Chapter 2 The healthy respiratory system is explained and compared with the

respiratory system in tetraplegia. This is followed by a detailed description

of AFES technology and its alternatives. In conclusion there is a critical

review of the literature related to the e↵ects of AFES on the respiratory

system.

Chapter 3 The subjects and general methods employed to investigate a three

week AFES training programme and its e↵ects on unassisted and AFES-

assisted respiratory function are detailed.

Chapter 4 The results of three weeks of AFES training on unassisted and AFES-

assisted standard clinical tests are presented and discussed.

Chapter 5 The results of three weeks of AFES training on unassisted and AFES-

assisted coughing are presented and discussed.

Chapter 6 The results of three weeks of AFES training on unassisted and AFES-

assisted quiet breathing are presented and discussed.

Chapter 7 The use of AFES in combination with standard of care to assist the

process of weaning a tetraplegic patient from MV is described. The methods

and results are presented and the feasibility of using AFES for ventilator

weaning is discussed.

Chapter 8 The design and evaluation of three new sensor and algorithm sys-

tems for the purpose of providing stimulation automatically during quiet
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breathing are presented and discussed.

Chapter 9 The findings of this thesis and the role of AFES in the clinical setting

are discussed. After this discussion the conclusions of this thesis are drawn.

Chapter 10 The areas of interest for future work are discussed.
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Contributions

• This thesis delineated the use of AFES to improve respiratory function into

three clinical applications: as a neuromuscular training device for respira-

tory rehabilitation, as a respiratory neuroprosthesis that could be used in

times of respiratory distress and as a tool to assist in the process of weaning

patients from MV.

• This thesis was the first to examine the e↵ects of a passive training pro-

gramme on respiratory function in tetraplegia. Previous training modalities

have either required active participation by the patient or have stimulated

more than one group of respiratory muscles. In contrast, the training pro-

gramme presented in this thesis was easy and quick to apply and allowed

patients to complete other activities at the same time of training, for ex-

ample hand rehabilitation. These advantages are expected to be useful in

a busy clinical setting.

• This thesis was the first to show that three weeks of passive AFES training

can improve unassisted and AFES-assisted respiratory function. The results

of this thesis suggest that AFES-assisted respiratory function changed in

response to a change in unassisted respiratory function rather than a change

in the contractile properties of the abdominal muscles. Several novel hy-

pothesis were proposed to explain these results which can be used to help

design future passive AFES training programmes.

• The temporal response of ventilatory parameters during AFES-assisted

breathing was examined for the first time. Importantly this showed that

in most tetraplegic patients End Tidal Carbon Dioxide (ETco2) did not

increase during AFES-assisted breathing. This result, coupled with the

finding that AFES-assisted breathing increased blood oxygenation during

AFES-assisted MV weaning sessions, suggest that AFES-assisted breathing

is metabolically e�cient.
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• A novel weaning protocol to use AFES in combination with standard of care

to assist in the process of weaning tetraplegic patients from ventilation was

developed. The feasibility of this protocol was tested in a case study which

provided preliminary evidence on the e�cacy of AFES-assisted weaning.

• Stimulation algorithms, one of which used the output of a nasal / oral ther-

mocouple the other the output of a piezoelectric belt wrapped around the

chest, were developed and evaluated quantitatively. These algorithms can

be used for applying stimulation automatically both during AFES neuro-

muscular training and also during AFES-assisted weaning sessions respec-

tively.
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Chapter 1

Introduction

A Spinal Cord Injury (SCI) at the cervical region of the spine (i.e. neck vertebrae

C1 to C7) results in tetraplegia. Tetraplegia is associated with a degree of paral-

ysis which a↵ects all four limbs and the trunk. In particular, a tetraplegic SCI

can include paralysis of the main inspiratory and expiratory breathing muscles:

the diaphragm, the intercostal muscles and the abdominal muscles.

Breathing muscle paralysis in tetraplegia results in several complications but

the most prominent of these are atelectasis (collapse of the lung) and pneumonia

(inflammation of the lung caused by bacterial or viral infection, which results in

the alveoli filling with fluid). Despite improvement in respiratory health care over

the last 20 years, respiratory complications remain one of the leading causes of

death and morbidity for patients with tetraplegia. Thus, there is motivation to

develop new approaches to improve respiratory health for this patient group.

One approach is the application of electrical stimulation to the abdominal

muscles in synchrony with a patient’s volitional exhalation. This technique uses

electrical stimulation of the abdominal muscles for a functional purpose, and will

be referred to as Abdominal Functional Electrical Stimulation (AFES) through-

out this thesis. Previous research has shown that AFES can be used acutely with

tetraplegic patients to improve tidal volume during resting breathing, as well as

peak flow rates during coughing. The chronic e↵ects of AFES on the respiratory

system are currently unknown. Furthermore, existing technology only supports

the use of AFES in the research setting. This thesis seeks to investigate these

open questions and to explore the potential practical applications of AFES as a

method to improve the respiratory function of patients with tetraplegia.

In this chapter an overview of tetraplegia and its associated respiratory com-

plications will be given. This will be followed by a summary of AFES and its

present applications and limitations. This chapter concludes with the formulation
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of the open questions which are addressed in this thesis.

1.1 Tetraplegia

SCI causes a disruption in communication between the brain and the rest of the

body. A tetraplegic SCI occurs when the injury is at the cervical level of the

spine and is associated with paralysis and a loss of sensation which a↵ects all

four limbs and the trunk.

1.1.1 Etiology, Incidence and Prevalence

The majority of SCIs result from traumatic injuries including motor vehicle ac-

cidents, falls, violence and sports and recreation. The incidence of each of these

causes varies between countries; Table 1.1 shows an approximate range of rates for

each cause [107, 129]. SCI may also result from non-traumatic causes including,

but not limited to, multiple sclerosis, spina bifida and cerebral palsy [107].

Table 1.1: Etiology of traumatic SCI

Cause of Injury Incidence (%)
Motor vehicle accidents 35 - 50
Falls 17 - 20
Violence 5 - 29
Sports and recreation 7 - 25

Approximately one third of SCI will result in tetraplegia; it a↵ects millions

of patients across the world and there are thousands of new cases every year. A

recent literature review found that the average number of SCI per one million

inhabitants is 755 in North America, 252 in Europe and 681 in Australia. In

addition, the average number of new injuries per million inhabitants per year is

estimated at 51 in North America, 19 in Europe and 17 in Australia [156].

Most SCI appear to occur in young males. It is reported that the average age

at the time of SCI is 33 and that there is 3.8 times more male SCI than female

SCI [107,156].

1.1.2 Consequences of Tetraplegia

The primary consequence of tetraplegia is muscle paralysis and a loss of sensation

which a↵ects all of the parts of the body that are innervated below the level of

injury. This will include paralysis of the breathing muscles for most patients, as



1.1. TETRAPLEGIA 3

well as partial or complete paralysis of the trunk, arms and legs. In addition to

the level of injury, the degree of impairment inflicted by tetraplegia is also related

to the completeness of the transection of the spinal cord. The completeness of

the injury is determined by a motor and sensory neurological examination, and

graded according to the American Spinal Injuries Association (ASIA) impairment

scale (AIS) [103]. This is discussed in detail in Chapter 2.

A myriad of secondary complications follow from the primary complications

with respiratory complications among the most common [25,77,108,151].

1.1.3 Prognosis

In the past a SCI was associated with a considerably lower life expectancy com-

pared with able-bodied people. As a result of increasing standards of care, SCI

life expectancy is increasing [151], although it remains lower than that of the

able-bodied population [25]. The major factors a↵ecting the life expectancy of

tetraplegic patients are: level and completeness of injury; age at the time of injury;

ventilator status (i.e. the extend to which a patient can breathe spontaneously);

time from injury; and secondary complications [36, 129,151].

Ventilator status plays a key role in life expectancy: it is the strongest predic-

tor of survival during the first year of injury when mortality rates are greatest [36].

Respiratory complications, which are closely correlated to ventilator status, are

the leading cause of mortality after the first year of injury. Strikingly, one study

found that respiratory complications were the only cause of death after the first

year of injury [36].

Secondary complications have a significant e↵ect on tetraplegic patients: hos-

pitalisation arising from secondary complications is between 1.7 and 2.4 times

the rate of the able bodied population [77]. Additionally, during the acute-care

period after SCI, the length of hospital stay is significantly related to the number

of respiratory complications [153].

Despite the morbidity and mortality associated with SCI, most patients have

a positive view of their quality of life, with the highest ratings coming from the

younger age group [77, 151]. In one study, only 15% of patients reported that

their quality of life was poor and less than 3% described themselves as being

depressed [77].
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1.1.4 Economic Cost of Spinal Cord Injury

SCI places a huge financial burden on health care providers. It is di�cult to

get data from the UK, but reports in the USA estimate initial hospital costs

at $95,000, home modification at $8,000, and ongoing costs (excluding the costs

of hospitalisation from secondary complications) at $14,000 [129]. A leading

contributor to hospital costs is treatment for respiratory complications [153], with

one centre in Europe estimating the cost of a single respiratory treatment at

19,000 Euros [71].

1.2 Respiratory Complications in Tetraplegia

In patients with tetraplegia, paralysis of the main breathing muscles [154], muscle

atrophy [26, 51, 63, 142] and changes in the mechanical properties of the lung

[48, 54, 126] severely compromise ventilation. As a result, patients su↵er from

dyspnea [23] and the inability to cough [154]. In severe cases, patients su↵er

complete diaphragmatic paralysis and are unable to sustain adequate ventilation

without artificial support [32,74]. The reduced respiratory function of tetraplegic

patients has considerable implications for their health and general well-being.

Respiratory complications are one of the main causes of rehospitalisation and

early mortality in tetraplegia [25, 36]. Furthermore, they are a burdening source

of morbidity for patients and their relatives [153].

1.2.1 Ventilation

Many patients with tetraplegia will initially require Mechanical Ventilation (MV)

to support their breathing. The incidence of patients being unable to sustain

independent ventilation in the initial stages of injury is highest in those with

an injury between C1 and C4 (40%) but it also occurs in those with an injury

between C5 and C8 (23%) [74]. Most tetraplegic subjects with a motor complete

SCI will require a period of ventilation in the early stages of injury [32]. In

comparison, the incidence of MV is considerably lower in those subjects with an

incomplete injury [32].

For those patients who require MV only some of them will wean from the

ventilator. Those patients who fail to wean will mostly include subjects who

have paralysis that a↵ects the diaphragm (injuries at C5 or above) but can also

include injuries in which diaphragm function is spared [32].
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There are several ventilator strategies that can be used in the process of wean-

ing a patient from MV. These include progressive ventilator free breathing and

intermittant mandatory ventilation [119]. While existing ventilator strategies

di↵er in their implementation, they are similar in that they all aim to gradually

reduce the work of breathing performed by the ventilator so that the patient’s

respiratory system can become reconditioned to breathing independently [47].

Unfortunately, however, there are limited treatments that can be used to accel-

erate the process of weaning patients from MV.

Unmet Medical Need

Prolonged MV is associated with significantly increased mortality [152], signifi-

cantly reduced quality of life and a significant economic cost to the health care

provider. Currently, there are limited interventions that can be used to reduce

weaning time and improve the probability of weaning in patients who have dif-

ficulty weaning from MV. Therefore, there is an unmet medical need for new

approaches that can improve weaning outcome in patients with tetraplegia.

1.2.2 Spontaneously Breathing Tetraplegics

Those patients with less severe tetraplegic injuries have a good chance of wean-

ing from MV, however, they will remain at high risk of developing respiratory

infections and dyspnea.

Coughing

One of the major reasons that patients are susceptible to respiratory complica-

tions is because they are unable to generate an e↵ective cough.

The lung is an organ which has the largest surface area in the body exposed to

the external environment. Coughing is an important part of the lung’s physical

defense mechanisms which helps to remove mucus which contains bacteria and

foreign particles. By failing to remove this mucus the lung is susceptible to

pneumonia, atelectasis and respiratory failure [106].

In tetraplegia, the paralysis of the main expiratory muscles (the abdomi-

nal and internal intercostal muscles), and the impaired ability to inhale, limits

the intra-thoracic pressure that can be generated during the compressive phase

of coughing [117]. Patients are unable to produce a Cough Peak Flow (CPF)

su�cient to dislodge secretions and consequently are susceptible to respiratory

infections.
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Tidal Volume and Dyspnea

In tetraplegic patients who are still able to breathe spontaneously, the capacity

to ventilate the lung is reduced by respiratory muscle paralysis and changes in

the mechanics of breathing. This may contribute to dyspnea [23], incidence of

atelectasis [23, 154] and likelihood of acute respiratory failure [154].

Respiratory Management

Respiratory management in tetraplegia can be broken into two categories: pro-

phylactic treatment and treatment after respiratory complications develop. This

section will give an overview of the common techniques used. For a complete

description the reader is directed toward the review by Berlley and Shem [12]

and the physiotherapist text book by Bromley [22].

Prophylactic Treatment Prophylactic treatment includes a variety of tech-

niques such as breathing exercises, positioning and postural drainage, and cough-

ing.

Breathing exercises can be useful in maintaining lung expansion in all ar-

eas. Their aim is to increase respiratory reserve so that patients can deal more

e↵ectively with respiratory problems.

Constant repositioning while a patient is lying in bed promotes mobilisation of

mucus and sputum within the lungs. Alternatively, if a patient is neurologically

stable, then postural drainage is appropriate. This uses the e↵ect of gravity to

move secretions from the peripheral airways.

As discussed, the ability to cough in tetraplegia is highly compromised. To

improve the ability to cough the patient can either be assisted by a physiotherapist

or can use techniques to self-assist. The goal of the physiotherapist when assisting

with a cough is to imitate the function of the paralysed abdominal muscles.

Treatment During Respiratory Complications When respiratory compli-

cations develop the following treatment options may be appropriate.

• Oxygen therapy is used when the partial pressure of oxygen in the blood is

low. It involves giving the patient supplemental oxygen via a face mask or

tracheostomy.

• Humidification of thick mucus is accomplished using a saline nebulizer, this

thins and loosens the mucus and makes it easier to clear.
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• Drugs, such as antibiotics, steroids or bronchodilators can also be used to

relieve the symptoms of respiratory complications.

• Mechanical insu✏ation-exsu✏ation devices are used to clear retained secre-

tions and work by slowly applying a positive pressure to the airways which

is followed by a rapid switch to negative pressure. The shift in pressure

produces a large peak expiratory flow from the airways thus simulating the

actions of a cough.

• Suctioning is used to clear mucus build up in the upper airways by inserting

a small diameter catheter either through the mouth or the tracheostomy

opening.

• Short term mechanical ventilation using either continuous positive airway

pressure or intermittent positive pressure breathing can be used to open the

smaller airways and prevent alveolar collapse.

Unmet Medical Need

Despite the variety of methods now available to maintain respiratory hygiene and

to treat respiratory complications when they occur, respiratory complications

remain one of the leading causes of death and a major source of morbidity in

spontaneously breathing tetraplegics. The lack of an e↵ective cough is a major

contributor to respiratory complications. Thus, there is a need to develop new

methods for enhancing cough in tetraplegia. Dyspnea also a↵ects the quality of

life of many tetraplegic patients. Therefore, there is also a need for new methods

of improving tidal volume in tetraplegic patients.

1.3 Abdominal Functional Electrical Stimulation

An appealing approach to the unmet medical needs described is the restoration

of function to the respiratory muscles that were paralysed by the injury. This

can be achieved by using neuromuscular electrical stimulation to induce an action

potential in the motor nerve that supplies the muscle [130].

There are several types of neuromuscular stimulation. These include, transcu-

taneous Functional Electrical Stimulation (FES), percutaneous FES, implanted

FES, Spinal Cord Stimulation (SCS) and Functional Magnetic Stimulation (FMS).

Each of these paradigms have been shown to be useful for improving one or

more aspects of respiratory function in tetraplegia. A full description of these
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paradigms and their clinical benefit is given in Chapter 2. AFES is the method

of choice in this thesis for the following relative advantages: it is easy to apply

compared with percutaneous FES; the equipment required is small and portable

compared with FMS; and it does not require surgery, unlike implanted FES or

SCS.

1.3.1 Previous Work

AFES was used initially in tetraplegia as a cough respiratory neuro-prosthesis [93].

This was achieved by attempting to mimic the normal physiological recruitment

of the abdominal muscles during cough. Specifically, the onset of AFES was

synchronised with the patients closing their glottis and AFES was applied con-

tinuously throughout exhalation. Using this method, it has been shown that

CPF is significantly greater during AFES-assisted cough compared with unas-

sisted cough [24]. Since the e�cacy of a cough is mainly dependent on the CPF

generated [146], it is assumed that chronic use of an AFES-assisted cough device

would reduce respiratory complications in tetraplegia.

Previous work has also shown that AFES can be used as a respiratory neuro-

prosthesis to improve tidal volume during quiet breathing by applying stimulation

in synchrony with a patient’s volitional exhalation. This technique has been

shown to be e�cacious both in spontaneously breathing tetraplegic patients [57,

134], and in patients whose diaphragms were completely paralysed [78].

In addition to using AFES as a neuro-prosthesis, emerging evidence suggests

AFES could also be useful for neuromuscular training to improve unassisted

breathing function. Previous research has shown that interventions which in-

clude AFES, in addition to stimulation of other muscle groups [27] and breathing

exercises [159], can improve unassisted standard clinical pulmonary function mea-

sures.

Most of the studies describing AFES have included a rudimentary system

where stimulation is applied manually by either the researcher or the patient.

While it may be feasible to trigger AFES manually in a research setting, a more

practical solution would be to control the stimulation automatically. In this

regard there have been several studies that have proposed solutions. A common

approach is to use a sensor which measures air flow rate at the mouth (i.e. a

spirometer or pneumotachograph), and combine it with an algorithm that applies

stimulation at the correct point in the breathing cycle [57]. While this approach

has been shown to work well, the choice of respiratory sensor poses a major

drawback as it requires the patient to wear a face mask which interferes with
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other activities such as eating or speaking

1.3.2 Open Questions

Previous research has demonstrated the e↵ectiveness of using AFES acutely to

improve respiratory function in tetraplegia. However, the chronic e↵ects of AFES

on the respiratory system are currently unknown. In addition, the current tech-

nology only supports the use of AFES in the research setting. This thesis aims

to address these issues by answering the following open questions.

What e↵ect does AFES neuromuscular training have on AFES-assisted

breathing in tetraplegia? An important secondary complication of SCI is

muscle disuse atrophy which occurs rapidly after the injury. Specifically, it has

been shown that in the chronic stages of injury the thickness of the abdominal

wall is reduced by up to 34% in tetraplegic patients [51]. Thus, it is plausible

that by reducing the disuse atrophy of the abdominal muscles, the e�cacy of

AFES-assisted coughing or quiet breathing may be improved.

What e↵ect does AFES neuromuscular training have on unassisted

breathing in tetraplegia? Previous research has shown that neuromuscular

training programmes that incorporate AFES improve unassisted breathing in

tetraplegia. It is not known whether a training programme that uses AFES

exclusively would be e�cacious. An exclusive AFES training programme has two

main advantages over the other programmes which use AFES in combination with

other therapies: it is a passive programme (does not require patient interaction),

which allows the patient to participate in other activities at the same time as

training; it is quicker and easier to apply stimulation electrodes to one muscle

group rather than to several groups. This is an important consideration in a busy

hospital.

Can AFES be used to assist in the process of weaning tetraplegic pa-

tients from mechanical ventilation? Although AFES is e↵ective in inducing

relatively large tidal volumes in otherwise MV dependent patients, it is unlikely

that AFES will be used to support extended periods of ventilator free breathing in

the foreseeable future, as the pattern of muscle fibre recruitment when using FES

is physiologically ine�cient and causes the muscle to fatigue quickly. However,

given that AFES can temporarily enhance breathing volumes, and that this the-

sis found that AFES neuromuscular training can increase unassisted maximum
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breathing capacity in spontaneously breathing tetraplegics, AFES may provide

the basis of a novel weaning protocol that could reduce the duration and improve

the probability of patients weaning from MV.

Can an accurate method of triggering stimulation automatically using a

non-invasive respiratory sensor be developed? A key aspect of AFES that

will allow it to be adopted in the clinic is the technology that supports the clinical

protocols that are designed. In order to be able to apply stimulation at the correct

point in the breathing cycle it is necessary to have a measurement of the patient’s

respiratory activity. There are several respiratory sensors which are currently used

for sleep monitoring studies that could be used in this application. While some

respiratory sensors which could be used as an alternative to a spirometer have

been previously investigated, no previous studies have quantified the accuracy of

the designed systems properly.

1.4 Thesis Overview

Chapter 2 reviews the relevant literature. This includes a review of the e↵ects of

AFES and other types of neuro-prostheses on pulmonary function in tetraplegia;

a review of the e↵ects of muscle training, using either FES or other techniques,

on the respiratory system in tetraplegia; and a review of respiratory sensors and

AFES control approaches.

In Chapters 3 to 6 the first study of this thesis is presented. This study in-

vestigated the e↵ects of a three week AFES intervention on both unassisted and

AFES-assisted breathing in spontaneously breathing tetraplegics. In Chapter 3,

the materials and methods of this study are presented. In Chapters 4 to 6 the

e↵ects of the intervention on Forced Vital Capacity (FVC) and Maximum Expi-

ratory Pressure (MEP), coughing, and quiet breathing are presented respectively.

Chapter 7 describes the second study of the thesis which evaluated the possibility

of using AFES as a tool to assist with weaning from MV. The final study of the

thesis is presented in Chapter 8. In this study a range of respiratory sensors were

tested and compared to the output of a spirometer.

In Chapter 9 the findings from Chapters 3 to 8 are corroborated and discussed,

and the conclusions of the thesis are drawn. Finally, areas of future work are

suggested in Chapter 10.
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Chapter 2

Background and Literature

Review

This chapter establishes the background to, and context of, this thesis and

presents the key literature relating to AFES. It includes a description of, and

methods of measuring changes to, the healthy respiratory system. It also contains

a detailed analysis of the e↵ects of tetraplegia on the system. It then describes the

essential attributes of FES and compares it to similar neuromuscular stimulation

technologies. Once the background has been established it reviews the literature

relating to AFES: both the technological approaches to its implementation and

the clinical evidence supporting its use to improve the respiratory function in

tetraplegia.

2.1 The Healthy Respiratory System

The primary function of the respiratory system is to facilitate the transfer of

oxygen and carbon dioxide to and from the blood supply to meet the metabolic

demands of the body. The three main aspects of this process are: control of

the breathing muscles, ventilation of the lung and di↵usion across the blood-gas

barrier.

2.1.1 Control of Respiration

The control of respiration is primarily autonomous. The basic rhythm of breath-

ing is modulated by the respiratory control centre located in the medulla and

pons of the brain stem [141, 150, 158]. In addition, interneurons located within

the spinal cord can contribute to the regulation of breathing [141]. The objective
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of the autonomous breathing controller is to maintain blood gas levels within a

normal range. It does this by monitoring the partial pressures of carbon dioxide

and oxygen in the blood, via central and peripheral chemoreceptors, and adjusting

the respiratory muscle output accordingly.

Although the basic rhythm of breathing is based on blood gas concentrations,

ventilation is also modulated according to sensory input from stretch and irritant

receptors in the lung, nose and upper airway; joint and muscle receptors; arterial

baroreceptors and the sensation of pain or temperature. Breathing pattern may

also be modulated by the central cortex in response to emotional events or through

voluntary e↵ort [141,150].

2.1.2 Ventilation

The output from the respiratory control centre signals and coordinates the ac-

tions of the breathing muscles. The role of the breathing muscles is to expand

(inhalation) or compress (exhalation) the lung. When the lung changes volume

a pressure di↵erential is created between the inside of the lung and the outside

atmosphere. This di↵erence in pressure is the driving force that causes air to be

inhaled or exhaled from the lung.

Ventilation consists of two phases: inhalation and exhalation. Ventilation is

mainly achieved using the main inspiratory muscles which are the diaphragm and

the external intercostal muscles. These muscles are supported when necessary by

the accessory inspiratory muscles, which include the scalene and sternocleidomas-

toids and by expiratory muscles which include the the internal intercostals, the

rectus abdominis, transversus abdominis, and the internal and external obliques.

The respiratory muscles are illustrated in Figure 2.1 and their corresponding lev-

els of innervation from the spinal cord are shown in Table 2.1. The remainder

of this section describes the mechanism by which the breathing muscles and the

compliance of the lung a↵ect ventilation. This information has been summarised

from the respiratory physiology text book by West [150] and the exercise physi-

ology text book by Katch et al. [79].

Quiet Breathing Inhalation during quiet breathing is achieved by contraction

of the diaphragm and the external intercostal muscles. The diaphragm is a dome

shaped muscle which separates the thoracic and abdominal cavities and is inserted

into the lower ribs. When the diaphragm contracts, its dome flattens out and

displaces the abdominal contents downward, increasing the vertical dimension

of the thorax. In addition, as the diaphragm moves downward, the abdominal
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transdiaphragmatic pressure (Pdi) re-
lates to the tangential tension (Tdi)
developed by the diaphragm accord-
ing to LaPlace’s law: Pdi ! Tdi/r

2.
Thus, a more tightly curved dia-

phragm results in a smaller r and more
effective translation of diaphragmatic
tension (Tdi) to Pdi.

14 Because of its
curvature, the diaphragm abuts the
lower ribcage forming the zone of ap-
position. This circumferential zone is
greater at lower lung volumes and de-
creases as the diaphragm moves cau-
dally during inspiration.15 In the intact
person, contraction of the diaphragm
increases negative intrathoracic pres-
sure by increasing thoracic volume
with a compensatory displacement of
the abdominal contents.

In a study of two C1 tetraplegic
subjects with diaphragmatic pacers
and denervated scalene and paraster-
nal intercostal muscles, Danon et
al.13 showed that the anteroposterior
and transverse diameters of the upper
rib cage are reduced with diaphrag-
matic stimulation. The absence of
scalene and intercostal muscle func-
tion in these subjects caused an in-
ward movement of the upper rib cage
during inspiration when negative
pleural pressure was generated by
electrically stimulated diaphragmatic
contraction. This paradoxical motion
of the upper rib cage diminishes the
effectiveness of the inspiratory effort.

In the uninjured person, as the
diaphragm moves caudally during in-
spiration, it presses on the abdominal
contents that act as a fulcrum and
transmit “appositional” forces later-
ally to expand the lower rib cage.16

The magnitude of the appositional
force depends on (1) the rise in ab-
dominal pressure and (2) the area of
the zone of apposition.12 Studies of
thoracoabdominal movements in
persons with tetraplegia demonstrate
that increases in the anteroposterior
and transverse diameters of the abdo-
men are greater than the changes in
comparable dimensions of the lower
rib cage.12,13 An examination of the
effect of posture on thoracoabdomi-

nal function can help explain this
observation.

In tetraplegic persons, tidal vol-
ume (VT), Pdi, and airway occlusion
pressures are greater in the supine
compared with the upright posture.13

When persons with tetraplegia as-
sume an upright posture, lung vol-
ume increases as the abdominal con-
tents are shifted caudally due to
gravitational forces and the lack of
abdominal muscle tone. As shown in
Figure 4, this caudal shift (1) short-
ens diaphragmatic muscle fiber
length reducing Pdi, (2) decreases the
zone of apposition, and (3) increases
r. All contribute to a reduction in Tdi.
As a result, VT is lower in the upright
compared with the supine posture.
Therefore, in the upright posture, ap-
positional forces are reduced in per-
sons with tetraplegia both because of
an inability to raise abdominal pres-
sure due to a lack of abdominal mus-

cle tone and a decrease in the zone of
apposition. The relationship between
resting lung volume, VT, and posture
is shown in Figure 5.

For subjects with tetraplegia,
VT increases about 16% with the
addition of an abdominal binder,
primarily due to an increase in both
anteroposterior and lateral rib cage
excursion during inspiration.13 By
supporting the abdominal wall,
binders shift the abdominal con-
tents cephalad. For persons with
some residual function of the dia-
phragm, this cephalad shift restores
the fulcrum effect of the abdominal
contents facilitating expansion of
the lower rib cage. Abdominal bind-
ers also allow the lung to operate
at a lower functional residual capac-
ity, perhaps placing the remaining
functional inspiratory muscles in a
position of greater mechanical
advantage.

Figure 2: Main muscles of respiration.
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Figure 2.1: The muscles of respiration [154]

Table 2.1: The muscles of respiration and their innervation

(a) The muscles of inspiration

Muscle Innervation
Main
Diaphragm C3-C5
External intercostals T1-T11
Accessory
Scalene C3-C8
Sternocleidomastoid C2-C4

(b) The muscles of expiration

Muscle Innervation
Rectus abdominis T6 - T12
Transversus abdominis T2 - L1
Internal and external obliques T6-L1
Internal intercostals T1-T11

Figure 2.1 has been removed due to copyright restrictions



2.1. THE HEALTHY RESPIRATORY SYSTEM 14

contents act as a fulcrum. This allows the diaphragm to exert lateral appositional

forces on the lower rib cage and increase the transverse diameter of the thorax.

The external intercostal muscles are situated between the ribs. When they

contract the ribs are raised upward and forward, which increases the lateral and

anterior-posterior diameters of the thorax. The volume increase of the thorax,

resulting from contraction of the diaphragm and external intercostal muscles,

creates a negative pressure gradient beween the atmosphere and the inside of

the lungs, causing air to be inhaled. Exhalation during quiet breathing is a

passive process. The lung and chest wall are elastic and upon relaxation of

the inspiratory muscles they return to their natural equilibrium position. The

reduction in dimensions of the thorax results in a positive pressure and air is

expelled from the lungs.

Breathing During Exertion When the respiratory system is under stress,

for example during exercise, ventilation has to increase to meet the additional

metabolic demands of the body. To increase ventilation both the inspiratory and

the expiratory muscles are used.

During exertion, a greater thoracic expansion compared with quiet breathing

is observed. This is achieved both by additional activity in the diaphragm and

intercostal muscles and by contraction of the inspiratory accessory muscles, which

include the scalene and sternocleidomastoid muscles. These muscles are located

in the neck and elevate the first two ribs and the sternum when they contract.

Increased thoracic expansion causes an increased negative thoracic pressure and

results in increased inhalation compared with quiet breathing.

As ventilation demands increase, passive exhalation switches to active ex-

halation. The main muscles of exhalation are the internal intercostal muscles

and the abdominal wall muscles. When the internal intercostal muscles contract

they work in the opposing direction to their external counterpart to reduce the

anterior-posterior and lateral dimensions of the thorax. The abdominal wall con-

sists of the rectus abdominis, transversus abdominis and the external and internal

oblique muscles. When the abdominal muscles contract they push the diaphragm

upward compressing the vertical dimension of the thorax. The action of the in-

ternal intercostal and abdominal wall muscles reduces the dimensions of the lung

and chest wall past the end expiratory lung volume that is normal during quiet

breathing. In turn, this causes a further increase in positive pressure and more

air to be expelled from the lungs. The complement to this action is the passive

recoil of the lungs and chest wall back to their equilibrium point which increases

the air drawn into the lungs during the next inhalation.
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Elasticity of the Lung and Chest Wall (Compliance)

The chest wall and the lung are both elastic and are divided by the intra-pleural

space. At the end of exhalation during quiet breathing, the lung and the chest

wall are in their natural equilibrium position. At this lung volume, known as

Functional Residual Capacity (FRC), the intra-pleural pressure is negative. This

resists the tendency of the lung to deflate and the tendency of the chest wall

to spring out. As the lung inflates past FRC the intra-pleural pressure becomes

more negative. As the lung volume deflates from FRC the intra-pleural pressure

increases toward zero. The ratio between the change in unit volume of the lung for

every change in unit pressure in the intra-pleural space is known as compliance. In

the normal operating range of the lung, compliance is relatively high and the lung

can be easily expanded or compressed by the respiratory muscles. However, at

very high or very low lung volumes the compliance is reduced and it becomes much

harder for the respiratory muscles to expand or compress the lungs. Compliance

is an important aspect of ventilation because it determines how much work the

breathing muscles need to do to expand or compress the lung. This information

has been summarised from the text in the respiratory physiology text book by

West [150] and the exercise physiology text book by Katch et al. [79].

2.1.3 Di↵usion Across the Blood Gas Barrier

During inhalation, air is drawn in through the nose and mouth and initially flows

through the conducting airways, which are made up of the trachea, the main

bronchi and the terminal bronchioles. From the terminal bronchioles the air

moves into the respiratory zone that consists of approximately 300 million small

capillary wrapped air sacks, called alveoli.

In the alveoli, oxygen and carbon dioxide are transferred across the alveoli

wall, or blood-gas barrier, by di↵usion. In the blood that enters the capillary

network around the alveoli, the partial pressure of oxygen is lower than that

found in air and the partial pressure of carbon dioxide is higher than that found

in air. These pressure gradients across the blood-gas barrier drive di↵usion so

that oxygen rich blood leaves the lungs and is carried to the rest of the body.

Alveolar Ventilation

Alveolar ventilation referes to the portion of air that is inhaled each breath which

reaches the alveoli (i.e. the air in the respiratory zone). It is always less than

the volume of air inhaled as di↵usion does not occur in the anatomical dead
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space, which includes the trachea, the main bronchi and the terminal bronchioles.

During rapid and shallow breathing a greater proportion of the air that is inhaled

is lost to the anatomical dead space compared with deep and slow breathing.

Thus, deep and slow breathing represents a more e�cient pattern of breathing.

Ventilation to Perfusion Ratio

The ventilation to perfusion ratio is the ratio of the volume of air to the vol-

ume of blood reaching the alveoli. Ideally, the amount of oxygen provided via

ventilation to each alveoli would be enough to saturate the blood in the capillar-

ies surrounding each alveoli. In reality alveoli can be either under-perfused, in

which alveoli contain more oxygen than can be absorbed by the blood in the sur-

rounding capillaries, or over-perfused, in which alveoli contain less oxygen than is

required to saturate the blood in the surrounding capillaries. Under-perfused or

over-perfused alveoli represent physiological dead spaces and represent a loss in

breathing e�ciency. This information in Section 2.1.3 has been summarised from

the text in the respiratory physiology text book by West [150] and the exercise

physiology text book by Katch et al. [79].

2.1.4 Non Respiratory Functions of the Lung

The lung is the organ which has the largest surface area in the body exposed

to the external environment: consequently it is highly susceptible to damage by

foreign material and infection. To compensate for this, the lung has both physical

and immunological defense mechanisms.

A cough is an important physical defense mechanism which is used to clear

foreign particles and mucus from the lungs after they have been transported to

the trachea by mucociliary clearance. It is defined as a three phase motor action

which begins with the patient making an inspiratory e↵ort (inspiratory phase).

This is followed by contraction of the expiratory muscles against a closed glottis

allowing intrathoracic pressure to rise (compressive phase). In the final phase

the glottis is opened causing a rapid expulsion of air from the lungs (expulsive

phase) [114]. Without an e↵ective cough, mucus becomes trapped in the lung

and can lead to pneumonia, atelectasis and respiratory failure [106].
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2.2 Respiratory Testing

To diagnose problems or to track changes over time, it is necessary to be able

to quantify the di↵erent aspects of the respiratory system. Various tests have

been developed to diagnose problems in, and track changes to, the respira-

tory system. The aspects measured include ventilation, di↵usion, blood flow,

ventilation-perfusion relationships, blood gases and pH, changes in the mechan-

ics of breathing and the control of ventilation. An overview of these tests is given

by West [150]. In this section a summary of both the lung volume measurements

and the respiratory tests that are used in this thesis are given.

2.2.1 Lung Measurements

The volumes of the lung are shown in Figure 2.2. A description of the terms used

in the figure follows:
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Figure 2.2: Standard lung volumes (adapted from wikipedia,
http://en.wikipedia.org/wiki/File:Lungvolumes.svg)

Total lung capacity The maximum volume of air that can be contained within

the lung.

Vital capacity The maximum volume of air that can be inhaled/exhaled fol-

lowing a maximum exhalation/inhalation.
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Residual volume The volume of air that remains in the lung after maximum

exhalation from TLC (TLC - vital capacity).

Tidal Volume (VT) The volume of air inhaled or exhaled during normal quiet

breathing.

Inspiratory Reserve Volume The extra volume of air that can be inspired at

the end of quiet breathing inhalation.

Expiratory Reserve Volume The extra volume of air that can be expelled

following quiet breathing exhalation.

Functional Residual Capacity (FRC) The total volume of air left in the

lungs following quiet breathing exhalation (residual volume + expiratory

reserve volume).

In addition to measuring lung volumes there are several other breathing pa-

rameters which are defined as follows:

Forced Vital Capacity (FVC) The maximum volume of air that can be ex-

haled when exhaling with maximum forced e↵ort from a full inspiration.

Forced Exhaled Volume in One second (FEV1) The volume of air exhaled

in the first second of a forced expiration from a position of full inspiration.

Peak Expiratory Flow (PEF) The peak expiratory flow rate obtained during

a forced exhalation from a position of full inspiration.

Cough Peak Flow (CPF) The peak expiratory flow rate obtained during a

cough.

Maximum Expiratory Pressure (MEP) is the maximum expiratory pres-

sure (commonly measured in centimeters of water (cmH2O) that can be

generated at the mouth and can be either measured from total lung capac-

ity or FRC.

Breathing Rate (BR) The number of full breaths (inhalation and exhalation)

taken every minute.

Minute Ventilation (V̇) The total volume of air inhaled or exhaled every minute.
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2.2.2 The Forced Vital Capacity Test

The FVC test is a simple and useful test of pulmonary function [112]. The main

outcome measures from the test are FVC, FEV1 and PEF which are described

in Section 2.2.1.

To conduct the test the patient is asked to inhale to total lung capacity before

exhaling as quickly and completely as possible. This is repeated, up to eight times,

until three acceptable manoeuvres have been collected. Acceptable repeatability

is achieved when the di↵erence between the largest and the next largest FVC is

less than or equal to 0.15 L, and the di↵erence between the largest and next largest

FEV1 is less than or equal to 0.15 L. The best outcome measures from the three

acceptable manoeuvres are taken as the overall test result. The test is usually

conducted using a hand-held spirometer according to the guidelines published by

the American Thoracic Society (ATS) and European Respiratory Society (ERS)

[112], which were written to ensure reliability in the general population. The

work carried out by Kelley et al. [80] found that the FVC test guidelines could

be used reliably in SCI, although it should be noted that his investigation only

included patients who were at least one year post injury.

Despite the findings of Kelley et al. [80] several studies which measure respi-

ratory function in tetraplegia using the FVC test have used the best result from

three attempts rather than following the ATS/ERS guidelines [27, 70, 159].

When the FVC test is applied to SCI patients the outcome measures are com-

monly expressed as a percentage of the predicted values for a healthy subject

calculated by reference equations based on age, sex, height and race [69]. Ac-

cordingly it can used both as a diagnostic tool to measure the e↵ect of disease

on pulmonary function and as a monitoring tool to assess therapeutic interven-

tion [112].

2.2.3 The Maximum Expiratory Pressure Test

MEP is a straightforward and convenient index of respiratory muscle strength.

The guidelines set out by the ATS/ERS [53] specify that it should be measured

at the mouth using a pressure transducer but they allow for significant di↵erences

in methodology, which makes the comparison of studies di�cult.

The two major di↵erences are:

1. Whether a flanged or tube type mouthpiece is used. MEP is greatest when

measured using a flanged mouthpiece (the recommended mouthpiece) as

it ensures a lower leak, particularly for subjects with severe respiratory
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weakness [53].

2. Whether the test is conducted from total lung capacity or from FRC. MEP

is greater when measured from total lung capacity, the method used in the

majority of studies [66, 113,145].

2.2.4 Assessment of Cough

The e↵ectiveness of a cough is most commonly assessed using CPF [9]. A CPF

of 160 L/min (2.7 L/s) is regarded as the minimum required to clear secretions

e↵ectively and it has been shown that patients with a CPF of at least 270 L/min

(4.5 L/s) are significantly less likely to develop pneumonia [146]. CPF is highly

dependent on the pressure that is generated during the glottal closure phase

of the cough [41]. MEP is therefore also useful in assessing cough e�cacy. In

addition, some cough studies also report gastric pressure and oesophageal pressure

as outcome measures [24, 87,104].

There is considerable variation in the methodology that has been used across

cough studies. Important variables in the measurement of cough include inhala-

tion volume, subject position and the measurement protocol.

Cough inhalation volume has been the most inconsistent factor between stud-

ies. Studies have chosen to measure either the maximum cough e↵ort without

controlling for inhalation volume [57], or the maximum e↵ort from total lung ca-

pacity [24], or to measure cough from FRC [92]. Inhalation volume of a cough is

an important variable since the recoil force of the lung increases with increasing

lung volume. This is illustrated by Di Marco et al. who showed that airway

pressure generated using SCS was smaller at FRC compared with total lung ca-

pacity [41].

The majority of studies have measured cough while the patient is sitting

(for example, Gollee et al. [57] and Butler et al. [24]), however, there have been

investigations in which the patient was supine (for example, Jaeger et al. [75]).

This variable is important because lung mechanics are substantially di↵erent

between the supine and sitting position (see Section 2.3.4).

The measurement protocol for cough has included either taking the best of

three attempts (for example, Butler et al. [24]) or taking the mean of several

attempts (for example, Gollee et al. [58] and Jaeger et al. [75]). There are ad-

vantages and disadvantages to each approach. It is theoretically not possible to

overestimate a measure of maximum capacity but taking the mean over several

attempts reduces the possibility of measurement errors, which are unavoidable in
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a practical setting.

2.2.5 Quiet Breathing Measurement

The outcome measures that are commonly used to characterise quiet breathing

are VT, BR and V̇. Less commonly, breathing gases, such as End Tidal Carbon

Dioxide (ETco2), have also been measured. There is no standard protocol for the

assessment of quiet breathing. Previous studies have typically compared short

periods (for example 30s [134]) of unassisted and AFES-assisted breathing.

End-Tidal Carbon Dioxide Measurement

ETco2 is a surrogate measure of the partial pressure of carbon dioxide in the alve-

oli and in the arteries and can be used to determine alveolar ventilation [110].

The partial pressure of carbon dioxide in the arteries is inversely proportional to

the alveolar ventilation. For example, if the partial pressure of carbon dioxide in

the arteries doubles then the alveolar ventilation is halved, all other factors being

equal [150]. The other factors which influence the partial pressure of carbon diox-

ide in the arteries include metabolic rate, cardiac output and body temperature.

2.3 The Respiratory System in Tetraplegia

The respiratory system is severely compromised in patients with tetraplegia as a

result of breathing muscle paralysis (Section 2.3.1), muscle atrophy (Section 2.3.2),

and changes in the mechanical properties of the lung (Section 2.3.3). The extent

to which these changes a↵ect the function of the respiratory system can clearly

be observed in spirometry measurements (Section 2.3.4), assessment of cough

(Section 2.3.5) and assessment of quiet breathing (Section 2.3.6).

2.3.1 Breathing Muscle Paralysis

Most tetraplegic patients will su↵er from paralysis of their breathing muscles

[154]. The extent of the paralysis will depend on the neurological level and

completeness of the SCI. The completeness of an injury is commonly assessed

using the ASIA Impairment Scale (AIS), which is explained in Table 2.2 below.

The neurological level of SCI is defined as the most posterior segment of the

spinal cord in which normal motor and sensory function on both sides of the

body remain [103].



2.3. THE RESPIRATORY SYSTEM IN TETRAPLEGIA 22

In all patients with a motor complete tetraplegic injury, the intercostal muscles

(innervated from T1-T11) and the abdominal wall muscles (innervated from T6-

L1) will be paralysed. As the level of tetraplegic SCI moves further up the cervical

region of the spinal cord, the latissimus dorsi (innervated from C6-C8), pectoralis

major (innervated between C5-C7), scalene (innervated from C3-C8) and ster-

nocleidomastoid (innervated from between C2-C4) may also become paralysed.

At injuries above C5, diaphragm function will be a↵ected. In motor complete

tetraplegia above C3, the diaphragm will be completely paralysed and the pa-

tient will be unable to breathe without mechanical ventilation.

Table 2.2: Grades of the AIS

Grade Description
A Motor complete. No Sensory or motor function is preserved in the

sacral segments S4-S5. (This includes anal sensation).
B Motor complete. Sensory but no motor function is preserved below

the neurological level and includes the sacral segments (this includes
contraction of the external anal sphincter).

C Motor incomplete. Motor function is preserved below the neuro-
logical level, and more than half of the key muscles below the neu-
rological level do not have full range of motion against gravity.

D Motor incomplete. Motor function is preserved below the neuro-
logical level, and at least half of key muscles below the neurological
level have full range of motion against gravity.

E Normal. Sensory and motor function is normal.

2.3.2 Muscle Atrophy in Spinal Cord Injury

Respiration in tetraplegia is also a↵ected by muscle atrophy [72], which is a major

secondary complication following a SCI [63, 118]. The primary consequences of

muscle atrophy in SCI are a change in the composition and a reduction in the

cross sectional area of a patient’s muscle [26, 51, 63, 118].

The change in muscle composition following a SCI is observed as a change

in the relative constituents of the di↵erent types of muscle fibres that make up

skeletal muscle [26,118,142]. There are three muscle fibre types: Type 1, Type 2A

and Type 2X [118,123].

• Type 1 fibres rely predominately on oxidative metabolism; they contract

slowly and are resistant to fatigue.

• Type 2A fibres rely on a mix of oxidative and anaerobic metabolism; they

are fast-contracting and fatigue resistant.
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Figure 2.3: The innervation of the respiratory muscles. (Accessed 2nd June
2014 from Wikimedia Commons http://commons.wikimedia.org/wiki/File:Gray 111 -
Vertebral column-coloured.png)

• Type 2X fibres rely predominately on anaerobic metabolism; they are fast-

contracting and susceptible to fatigue.

The range in muscle fibre types allows a variety of tasks to be completed

e�ciently. Slow contracting muscles fibres are recruited mainly for tasks that

have to be sustained over a long period but which do not require a large force or

speed of contraction, e.g. maintaing posture. Fast contracting fibres are recruited

for tasks which require rapid forceful contractions that are not sustained e.g.

jumping [123].

Following a SCI, there is a shift in the relative constituents of the muscle

fibres, which results in a higher relative proportion of Type 2A muscle fibres

than other muscle fibre types [118]. The mechanism by which this occurs is not

clear. Some studies have found that the number of Type 1 and Type 2X fibres

decrease. Other studies have only found a reduction in the number of Type 2X

fibres without a corresponding change in the number of Type 1 fibres [26].

The magnitude of the reduction in muscle cross sectional area following a

SCI is known to vary depending on the muscle and the level of injury [118]. To

date studies investigating the e↵ects of disuse atrophy have concentrated on the

muscles of the leg [26, 64] or arm [142]. However, Estenne et al., demonstrated

a 34% reduction in the thickness of the abdominal-wall muscles in patients with
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tetraplegia [51]. Furthermore, Kowalski et al. showed a reduction in the cross

sectional area and a shift in the fibre type composition of the internal and external

oblique, internal intercostal and transversus abdominis muscles in spinalised cats

[82].

The major clinical implication of muscle atrophy and muscle fibre type conver-

sion is a reduction in fatigue resistance of the muscle. This can a↵ect a patient’s

ability to complete activities of daily living, inhibit the e↵ectiveness of rehabili-

tation programs and decrease overall quality of life [118].

2.3.3 Compliance and the Work of Breathing

A tetraplegic patient’s ability to ventilate the lung is severely compromised by

changes in lung-chest wall compliance and by changes in the mechanics of breath-

ing.

In the two weeks following tetraplegic SCI, an inward movement of the chest,

which is paradoxical to the outward distension of the abdomen, can be observed

during inhalation. The collapse of the chest results from intercostal muscle paral-

ysis and reduces the e↵ectiveness of the diaphragm in expanding the thorax and

inhaling air into the lungs [12]. Paradoxical chest movement becomes less com-

mon within two weeks to one month after SCI [126] as a result of:

• increased strength of the accessory muscles (scalene and sternocliedomas-

toid) which are recruited to support the upper chest wall during inhala-

tion [54].

• A reduction in overall compliance of the respiratory system [48, 54]. The

reduction in overall compliance resists the tendency for the chest wall to

collapse during diaphragm excursion [35]. The reduction may be caused

changes in the surfactant in the lung, a sti↵ening of the rib cage, ankylosis

of the rib cage joints [48, 54, 126], and spasticity of the intercostal muscles

[54, 126].

Although there is a reduction in chest wall compliance as the injury pro-

gresses, the thoracic-abdominal wall compliance is elevated by 170% in tetraplegic

patients compared with healthy individuals [48]. As a result, the biggest contri-

bution to tidal volume in tetraplegia is from volume changes in the abdominal

compartment [48]. The increased abdominal compliance reduces the fulcrum ef-

fect of the diaphragm contracting against the abdominal contents and thus limits

the diaphragms ability expand the lower rib cage. [48, 154]
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The e↵ect of the reduction in chest-wall compliance and increase in thoracic-

abdominal wall compliance for a patient with tetraplegia is an increased work

of breathing that increases the load placed on the respiratory muscles compared

with healthy subjects [127].

2.3.4 Measured Changes in Spirometry

The e↵ect of tetraplegia on ventilation can be clearly observed in measurements of

FVC, FEV1, PEF, MEP and maximum inspiratory pressure, which are reduced

considerably compared with a healthy population (see Table 2.3 for example

values) [66, 76, 86, 94, 102, 113, 115, 136, 138, 145, 148]. These measures are most

a↵ected in patients with the highest levels of SCI who su↵er from the greatest

degree of paralysis [94, 102,148].

Table 2.3: Pulmonary function measures in patients with tetraplegia. FVC, FEV1,
and PEF were taken from the study by Cheng et al. [27]. MEP and maximum inspira-
tory pressure were taken from the study by Mateus et al. [102]. %pred.: percentage of
the predicted value for a healthy subject (see Section 2.2.2); MIP: maximum expiratory
pressure

Measure Absolute value %pred. Reference
FVC 1.79 L 39.2 Cheng et al. [27]
FEV1 1.74 L 48.9 Cheng et al. [27]
PEF 2.91 L/s 36.3 Cheng et al. [27]
MIP 45.36 cmH2O 57.6 Mateus et al. [102]
MEP 69.04 cmH2O 24 Mateus et al. [102]

Pulmonary function measurements are at their lowest during the three weeks

immediately following an injury. Thereafter they can increase considerably within

the first year of injury [86, 115], possibly as a result of the increased chest wall

compliance (see Section 2.3.3) [86, 115] and increased levels of physical activity

[115]. After the first year of injury there is a decline in pulmonary function

measurement which is related to time post injury, age and continued smoking

[76,94,138] but unrelated to the level and severity of injury [138].

E↵ect of Posture

In an able-bodied individual, vital capacity usually decreases slightly when mov-

ing from a seated to a supine posture. However, in tetraplegia, vital capacity is

greatest in the supine position and decreases as a patient’s upper body becomes

more upright [10, 49].



2.4. FUNCTIONAL ELECTRICAL STIMULATION 26

2.3.5 E↵ect of Tetraplegia on Cough

Tetraplegia a↵ects both the compressive and the expulsive phases of the cough.

During the compressive phase, both the paralysis of the main expiratory muscles

(the abdominal and internal intercostal muscles) and the reduced vital capacity

in tetraplegic patients which restricts the lung recoil force, limit the intra-thoracic

pressure generated [117]. In turn the reduced intra-thoracic pressure limits the

CPF that is generated during the expulsive phase of the cough.

Conventional thinking assumes that the passive recoil of the lung is the only

mechanism by which tetraplegic patients generate intra-thoracic pressure during

a cough. However, it has been shown that patients can contract the latissimus

dorsi and clavicular portion of the pectoralis major muscles to achieve active

expiration [50,52, 144].

The generation of CPF in tetraplegia is significantly related to the neurological

level of SCI [148]. It has been reported to be between 1.86 L/s to 4.73 L/s (see

Table 2.4 on page 42) which is less than half the 8.7 L/s reported in healthy

subjects [125].

2.3.6 E↵ect of Tetraplegia on Quiet Breathing

In tetraplegic patients who are still able to breathe spontaneously, VT during

resting breathing has been shown to be significantly lower than in the able-bodied

population [18]. In some patients the reduced VT is compensated by an increase

in BR resulting in a V̇ that is similar to the able-bodied population. In other

patients, however, BR is similar or reduced, and thus V̇ is reduced, compared

with the able-bodied population [18]. Maximum voluntary ventilation is also

considerably lower in patients with tetraplegia (78 L/min [109]) compared with

able bodied controls (140-160 L/min [79]).

2.4 Functional Electrical Stimulation

FES is a technique that can be employed to elicit a non-voluntary contraction of

skeletal muscles. For many years it has been used on patients with SCI in a wide

range of applications including arm cranking exercise for tetraplegic patients [33]

and paraplegic cycling for paraplegic patients [14]. This thesis focuses on the

use of AFES as a method of enhancing respiratory function in patients with

tetraplegia. This section gives an overview of the important general aspects of

FES, while Section 2.5 discusses the specific aspects of AFES.
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2.4.1 Stimulation Parameters

The strength of the muscle contraction generated using FES is governed by three

main stimulation parameters: stimulation current, stimulation frequency and

stimulation pulse-width (illustrated in Figure 2.4) [15]. Previous research has

shown that progressive increases in either the stimulation current or pulse-width

increases the number of motor fibres recruited in the arm or leg muscle groups.

Progressive increases in stimulation frequency increase the torque produced per

active fibre [130].
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Figure 2.4: Stimulation waveform parameters

In the majority of FES stimulators that are currently available, the stimulation

pulses within a stimulation train are delivered at a constant frequency. This

is known as Constant Frequency Train (CFT) stimulation and is illustrated in

Figure 2.4. Catchlike Inducing Frequency Trains (CITs) are another type of

stimulation train that is being researched. They include an initial two pulse burst

(called a doublet) that are delivered at a higher frequency than the remainder of

the pulses in the train (Figure 2.5). It has been shown that CITs can increase

the force production of electrically stimulated muscle compared with CFTs [16].

There is a paucity of research that has investigated the e↵ect of modulat-

ing the stimulation parameters on abdominal muscle contraction. However, two

studies have demonstrated that a positive linear relationship exists between stim-

ulation current and twitch gastric pressure [24, 88]. Since gastric pressure is di-

rectly related to the strength of abdominal muscle contraction, this suggests that

the strength of abdominal muscle contraction is also related to the stimulation

current.
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Figure 2.5: Catchlike inducing stimulation train

2.4.2 Muscle Recruitment During Functional Electrical

Stimulation

Type 1 fibres contract mainly using aerobic metabolism, Type 2x fibres contract

mainly using anaerobic metabolism and Type 2A contract using both aerobic and

anaerobic metabolisms. Anaerobic metabolism relies on fast glycolysis, which al-

lows the muscle to contract quickly but is less metabolically e�cient than aerobic

metabolism. As a result Type 2X muscle fibres fatigue quicker than Type 1 mus-

cle fibre types [79]. During a normal physiological contraction controlled by the

central nervous system, muscle fibres are activated according to the Henneman

size principle [15,123]. This principle states that Type 1 fibres are recruited dur-

ing slow moving tasks that require a small amount of force. As the speed and

force required for a task increases, additional fibre recruitment includes Type 2A

fibres and subsequently Type 2X fibres. The size principle ensures that a muscle

contraction uses a little anaerobic metabolism as possible to achieve a given task

(i.e. it is metabolically optimal) [15, 123,130].

There are two major di↵erences in the muscle fibre recruitment pattern when

a contraction is elicited using transcutaneous FES.

1. When using transcutaneous FES only those muscle fibres located within

the electrical field produced by the stimulation are activated [15]. Conse-

quently, for a given stimulation intensity the same group of muscle fibres

is activated repeatedly, i.e. the recruitment is spatially fixed. By contrast,

physiologically normal contractions recruit a range of fibres that are inner-

vated by motor nerves that are not necessarily proximal to the surface of

the skin. In addition consecutive contractions of the same overall output
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may be realised by di↵erent muscle fibres i.e. recruitment is not spatially

fixed.

2. When using FES, within the group of muscle fibres reached by the stimula-

tion field, activation is not specific and the activation of the di↵erent fibre

types is random [15]. This is intrinsically di↵erent from the recruitment

order of muscle fibres specified by the Henneman size principle and is not

metabolically optimal.

Both of these di↵erences result in a higher rate of fatigue during an FES

evoked contraction compared with a physiologically normal contraction.

2.4.3 Muscle Fatigue

Muscle fatigue is a major limitation when using FES in SCI. It is partially a result

of the muscle fibre recruitment pattern, described above, and partially caused by

the disuse atrophy of the muscles [15, 118].

It is possible to defer the onset of fatigue by increasing the stimulation in-

tensity (either via current or pulse-width) or by increasing stimulation frequency

[29, 67]. While increasing stimulation intensity increases the number of motor

fibres recruited (by increasing the penetration of the stimulation field), it also

continues to recruit the fibres close the stimulation site. Increasing the stimula-

tion frequency increases the force output of the activated fibres. Both strategies

do not allow motor fibres to recover and complete fatigue of the muscle is in-

evitable.

Kandare et al. [78] have been the only authors to have studied this aspect

when using AFES. In a single patient, they found an approximately linear nega-

tive relationship between tidal volume and cumulative number of AFES-assisted

breaths.

2.4.4 Autonomic Dysreflexia

A potentially serious side e↵ect of FES is autonomic dysreflexia. Autonomic dys-

reflexia is a result of disruption to the autonomic nervous system whose symptoms

include anxiety, sweating and headache. In extreme cases autonomic dysreflexia

can be fatal. Autonomic dysreflexia only occurs in patients with an injury above

the T6 level of the spinal cord. It is triggered when nociceptive stimulus below

the level of SCI, causes a reflex induced sympathetic discharge. This discharge

causes vasoconstriction which in turn leads to hypertension. The physiologically
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normal response to hypertension is to stimulate baroreceptors to induce a com-

pensatory response that includes bradycardia and vasodilation. However since the

fibres that stimulate vasodilation are unable to cross the site of SCI, hypertension

below the level of injury persists until the nociceptive stimulus ceases [7, 83].

Autonomic dysreflexia is normally caused by irritation of the gastrointestinal

tract and bladder. However, since transcutaneous FES results in stimulation of

the sensory nerves, in addition to the motor nerves, it can also trigger autonomic

dysreflexia [7].

2.5 Abdominal Functional Electrical Stimulation

Technology

There have been several di↵erent approaches to the implementation of AFES to

improve respiratory function in tetraplegia. In this section the two basic AFES

paradigms are introduced and the technological approaches described.

2.5.1 Abdominal Functional Electrical Stimulation Paradigms

The application of AFES to improve respiratory function can be divided into two

basic paradigms: neuro-prosthesis applications and neuromuscular retraining [5].

When using AFES as a respiratory neuro-prosthesis, a patient’s unassisted respi-

ratory function is temporarily improved while their abdominal muscles are being

stimulated [58]. In contrast, neuromuscular training refers to an intervention,

made up of regular sessions of AFES applied over a period of several weeks, with

the goal of improving a patient’s unassisted respiratory function [27].

The majority of AFES research has been focussed on using AFES as a respira-

tory neuro-prosthesis (Section 2.7). Under this paradigm, previous authors have

been focussed on a common aim: developing an assistive device that can be used

in tetraplegia to reduce respiratory complications. The first step in achieving this

goal is to determine the acute e↵ect of AFES on key ventilatory parameters. This

step has been well researched and it is known that AFES can be used to enhance:

FVC, FEV1, PEF, and MEP (see Section 2.7.1); CPF (see Section 2.7.2); and VT
(see Section 2.7.3). The next logical step is to investigate the e↵ects of chronic

use of AFES as a neuro-prosthesis. In other words, what impact does using AFES

over a period of time (e.g. three to four weeks) have on AFES-assisted breathing

parameters? Since SCI is associated with muscle disuse atrophy and muscle fibre

remodeling, chronic use of AFES may result in muscle adaptions that improve
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(or reduce) the acute benefits of AFES. As will become evident in Section 2.7.1

to Section 2.7.3 there is a paucity of research on this topic.

There is limited evidence emerging that AFES neuromuscular training im-

proves unassisted respiratory function in tetraplegia (see Section 2.8). An advan-

tage of this paradigm is that after the training programme, the patient benefits

from improved respiratory function without having to use an external aid. How-

ever, an important consideration and potential limitation of this paradigm is its

ability to be implemented within a normal pulmonary rehabilitation programme.

2.5.2 Technological Implementation of Abdominal Func-

tional Electrical Stimulation

The fundamental components of an AFES system include:

• a sensor to measure a patients breathing pattern

• a controller that triggers stimulation in synchrony with a patients volitional

exhalation

• a stimulator that generates the desired stimulation waveform output

• stimulation electrodes that deliver stimulation to the abdominal wall mus-

cles

These fundamental components are illustrated in the system schematic shown

in Figure 2.6.

The implementation of AFES has varied across di↵erent research studies,

ranging from the most basic approach, where an operator visually monitors a

patients breathing activity and manually activates stimulation (for example, the

work by Butler et al. [24]), to more elaborate approaches, in which a patient’s

respiratory activity is measured by a sensor and stimulation is automatically

applied to the abdominal muscles using a computer as the controller (for example,

the work by Gollee et al. [57]).

2.5.3 Stimulation Electrodes

While the majority of research studies have used two stimulation channels with

electrodes placed over the rectus abdominis muscle group [75,87,133,140], Gollee

et al. [57, 58] used four channels with electrodes placed over the rectus abdomi-

nis and external oblique muscles, and Butler et al. [24] used two channels with
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Controller

Stimulator

Respiratory 
sensor

Stimulation 
electrodes

Figure 2.6: A schematic of the fundamental components of an AFES system

electrodes placed posterolaterally. Figure 2.1 on page 13 illustrates the breathing

muscles and Figure 2.7 illustrates the di↵erent electrode positions.

(a) Rectus abdominis (shown as
grey) and external oblique (shown
as black) electrode placement

(b) Postereolat-
eral electrode
position

Figure 2.7: Position of the stimulation electrode electrodes used in previous research
studies.

There is debate as to which electrode position is optimal for AFES. The

study by Kandare et al. was the first to investigate the e↵ect of the number of

electrodes and the electrode position [78]. This study, which included a single
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tetraplegic patient, found that the combined stimulation of the rectus abdominis

and the external oblique muscles was more e↵ective than stimulation of either of

the muscle groups individually.

The optimal electrode position for AFES has been further researched in groups

of healthy subjects. Lim et al. [88] measured twitch gastric pressures while stim-

ulating the abdominal muscles using two channels. They found that electrodes

placed posterolaterally evoked greater pressures than electrodes placed over the

rectus abdominis for a given stimulation intensity. Subsequent work by Gollee

and Henderson [56] measured change in abdominal circumference with stimulating

electrodes placed either over the rectus abdominis, or external oblique muscles,

or posterolaterally, or in combinations of the above. They found that electrodes

placed either over the external oblique muscles or posterolaterally resulted in

the strongest response. They also found that the optimum configuration varied

between subjects.

The results from the studies cited above are di�cult to compare directly as

there are significant methodological di↵erences between them. For example, Lim

et al [88] assessed the positions using gastric pressure whereas Gollee and Hender-

son [56] measured abdominal movement. Further work is required to determine

which is the most e↵ective electrode position overall. It is likely that the optimal

electrode position will vary between patients and that an optimum position will

have to be established for each individual.

2.5.4 Control Strategies

The majority of studies that have investigated the clinical e↵ects of AFES have

used commercially available stimulation systems which allow the user to control

the timing of stimulation with a pushbutton. In these studies, stimulation has

been controlled either by the researcher (for example the work by Langbein et

al. [85]) or by the patient (for example the work by Butler et al. [24]). The

e↵ectiveness of AFES to improve unassisted respiratory function has been shown

to be independent of the manual operator [24].

There are a limited number of studies which have developed and used auto-

matic approaches to the control of AFES [57,61,78,132,133].

Sorli et al. [132] were the first to report a system that applied AFES automat-

ically in synchrony with a patient’s volitional exhalation. In this system, air flow

rate was measured at the mouth using a pneumotachograph. A microcontroller

monitored the flow rate and generated a one second stimulation trigger when the

flow rate reached 15% of a pre-calibrated maximum. A similar system was used
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by Kandare et al. [78] when they investigated the e↵ects of AFES on breathing

volumes in tetraplegic patients with diaphragm paralysis.

The two systems described by Sorli et al. [132] and Kandare et al. [78] were

successful in augmenting unassisted VT in patients but were not suitable for

assisting cough. Spivak et al. [133] used the finding that tetraplegic patients

can contract the clavicular portion of the pectoralis major during coughing [50,

52, 144], to design an automatic AFES system to assist coughing. That system

triggered stimulation according to the activity of the pectoralis major muscle,

measured using electromyography.

A major limitation of these automatic AFES systems is that they can be used

to assist only one type of breathing activity. Gollee et al. developed a system

which could be used to assist both quiet breathing and coughing [57]. In addition

this system could aimed prevent unwanted stimulation by automatically muting

stimulation during speech. The system classified quiet breathing successfully but

was less successful in di↵erentiating between deep breathing and an attempt to

cough.

A subsequent control system developed by Gollee et al. used a steady state

visual evoked potential brain computer interface [61]. Brian computer interface

technology allows for a novel, non-neuromuscular pathway for communication

and control [155]. A steady state visual evoked potential type brain computer

interface can infer a user’s intent by detecting their visual attention to one of a

panel of rapidly oscillating light sources [4]. The AFES brain computer interface

system developed by Gollee et al. allowed accurate switching between di↵erent

stimulation modes (quiet breathing, cough or mute). In addition, this was the

first AFES system which allowed the user to increase the stimulation intensity to

account for abdominal muscle fatigue. While brain computer interface systems

are rapidly progressing they currently remain confined to the research domain.

This approach is, therefore, unlikely to become a practical option in the near

future.

2.5.5 Respiratory Sensors

An integral component of the systems described above is the measurement of

respiratory activity. In previous studies both the sensor used and the type of

signal measured have had practical drawbacks. A measurement of air flow rate

at the patient’s mouth provides an accurate measure of a patient’s respiratory

activity. Its application is limited as it requires a patient to wear a sensor over
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the mouth which restricts the ability to eat or speak. electromyography measure-

ment of the pectoralis major only provides a useful signal for triggering cough as

these muscles are not active during quiet breathing. To address these drawbacks,

several researchers have evaluated alternative respiratory sensors for the purpose

of triggering AFES [55,60].

Gollee and Chen [55] used an inertial measurement unit attached to a belt

around the abdomen. The results of this study showed that the inertial measure-

ment unit output was able to distinguish between quiet breathing and a cough.

However, an inertial measurement unit would also be sensitive to other move-

ments in addition to those produced by breathing.

Gollee and Mann [60] used piezoelectric e↵ort belts worn around the chest

and the abdomen to measure breathing. This study showed qualitatively that

the combined signal from the abdominal and chest belts closely followed the

air flow rate measured by a spirometer. However, no quantitative analysis was

performed and the data was collected only from healthy subjects.

Inertial measurement units and piezoelectric belts have been the only non-

invasive respiratory sensors that have been investigated in the context of AFES.

There are several other non-invasive respiratory sensors that could also be used

to trigger AFES including respiratory inductive plethysmographs [31], fibre optic

plethysmographs [8, 34], and nasal thermocouples [99].

2.5.6 Methods of Evaluation

In previous studies, the performance of a complete AFES system has either not

been reported [132], or been reported only qualitatively [57, 133]. Respiratory

sensors, which are possible alternatives to a spirometer, have been evaluated either

qualitatively [60], or quantified by comparing the signal peaks during inhalation

and exhalation for di↵erent breathing modes (eg. coughing and quiet breathing)

[55]. There have been no previous studies which have evaluated the phase delay

of AFES systems or alternative respiratory sensors.

In the authors opinion there are three key metrics that should be used to

quantify the performance of an automatic AFES system: sensitivity, error rate,

and phase delay. Sensitivity and error rate describe the accuracy of a system to

apply stimulation for a given breathing pattern. For example, quiet breathing

sensitivity is the ratio of the number of correctly stimulated breaths over the

total number of breaths performed by a subject. Quiet breathing error rate is

the ratio of the number of falsely stimulated breaths over the total number of

breaths performed by a subject. Phase delay is the delay between the desired
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start of stimulation and the actual start of stimulation. For example, during

quiet breathing the phase delay is the temporal di↵erence between the start of

exhalation and the start of stimulation.

2.5.7 Discussion

Section 2.5.4 presented several di↵erent approaches to the control of AFES. Of

these approaches, the author believes that applying stimulation automatically

during cough and quiet breathing while muting stimulation during speaking [57]

is the most practical solution when considering the use of AFES as a respiratory

neuro-prosthesis. Currently one of the biggest drawbacks is its reliance on the

measurement of air flow rate using a spirometer. In Section 2.5.5, non-invasive,

alternative sensors to a spirometer were presented. Based on the current lit-

erature, piezo-electric belts worn around the abdomen and chest appear to be

the best replacement for the spirometer. However, there are several other non-

invasive sensors currently used in other fields that have not been investigated in

the context of AFES and previous research has not properly quantified and com-

pared the performance of the alternative sensors investigated with the spirometer.

Quantification of the phase delay between an alternative sensor and the spirome-

ter is particularly important for AFES-assisted cough as CPF is generated at the

beginning of exhalation.

Previous research has focused on the technological challenges of using AFES

as a respiratory neuro-prosthesis where the ability to distinguish between quiet

breathing, speech and coughing is key. On the other hand, if AFES is used as a

rehabilitation device as outlined in Section 2.5, the main functional requirement is

the ability to apply stimulation in synchrony with the patient’s volitional breath-

ing. Coughing or other breathing patterns could be controlled using a simple

on-o↵ switch. These requirements could be met by using the approach outlined

by Sorli et al. in Section 2.5.4 combined with one of the non-invasive sensors

described in Section 2.5.5.

2.6 Alternatives to Abdominal Functional Elec-

trical Stimulation

There are several other forms of neuro-prosthesis which have been used or could be

used to improve respiratory function in tetraplegia. These include percutaneous

FES, implanted FES, SCS and FMS. All of these techniques initiate an action
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potential which propagates down the motor nerve to the neuromuscular junction.

However, the means by which the action potential is generated di↵ers between

the approaches and each technology has advantages and disadvantages associated

with its implementation.

2.6.1 Percutaneous Functional Electrical Stimulation

Percutaneous electrodes are minimally invasive needle electrodes which penetrate

the skin and can be used to stimulate motor nerves directly [130]. Stimulation

is more specific than transcutaneous FES and does not result in stimulation of

the sensory nerves. Furthermore, since the electrodes can be used to stimulate

specific motor nerves, it is possible to achieve finer control of the stimulated mus-

cle. The limitations of the technology include electrodes breaking and infections

occurring at the electrode skin junction. As a result, percutaneous FES systems

are used mainly in research before a fully implanted system is considered [130].

As far as the author is aware, there have been no previous studies that have used

percutaneous FES as a means to improve respiratory function in tetraplegia.

2.6.2 Implanted Functional Electrical Stimulation

Implanted systems are suitable only in applications where long-term use is en-

visaged [130]. The implanted components of these systems include electrodes,

leads and a stimulator unit. The stimulator is charged and controlled by an

external unit through a radio-frequency telemetry link. The electrodes can be

placed either on to the muscle (epimysial electrodes) or on to the nerve supply-

ing the muscle (cu↵ electrodes) [130]. Implanted phrenic nerve stimulators are a

widely used alternative to chronic MV in tetraplegic patients who have diaphragm

paralysis [71].

2.6.3 Spinal Cord Stimulation

SCS is another type of implanted electrical stimulation [39–41]. The electrodes

for SCS are placed in the epidural space and stimulate the spinal cord ventral

roots. As with percutaneous electrodes, the advantage of implanted systems

over transcutaneous stimulation is improved stimulation specificity. Problems

associated with implanted systems relate to biocompatibility of the implanted

materials, electrode displacement, and electrode lead breakage. Currently SCS is

being investigated by DiMarco et al. [39–41] as a means of improving cough in

tetraplegic patients.
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2.6.4 Functional Magnetic Stimulation

FMS uses the principles of magnetic induction to generate an electrical current in

nerve fibres. The equipment consists of a magnetic stimulator connected to a coil.

The coil is generally placed over the spinal cord at the level which corresponds

with the muscles that are to be stimulated. The advantages of FMS are that it

is easy to apply (since the coil can be placed over clothes), it is painless, and,

compared to transcutaneous FES, a more complete activation of the muscle can

be achieved. The limitation of FMS is that the equipment is bulky and relies on

mains supply voltages [38]. There have been several studies that have investigated

the use of FMS to improve respiratory function in tetraplegia (see Section 2.7 and

Section 2.8).

2.6.5 Neuro-Prosthesis Comparison

Implanted FES, FMS and SCS are most e↵ective at activating a muscle com-

pletely but have practical limitations. Presently, the need for a mains power

source and bulky equipment mean that FMS is unlikely to be suitable for a prac-

tical neuro-prosthesis. Due to the inherent safety concerns of implanted systems,

it is likely that implanted FES and SCS will be considered only for patients with

the most severe problems. Transcutaneous FES, too, has practical limitations but

the simplicity of the equipment and ease of application have led to its widespread

use in research and commercial settings.

2.7 Clinical E�cacy of Abdominal Functional

Electrical Stimulation as a Neuro-Prosthesis

Currently, the most widespread use of AFES has been as a neuro-prosthesis.

Previous work has determined the e�cacy of this approach by assessing AFES-

assisted pulmonary function tests, cough, and quiet breathing. In this section

these clinical studies will be reviewed and discussed in relation to similar studies

that have reported the use of other forms of neuro-prosthesis.

2.7.1 Standard Pulmonary Function Tests

There have been two studies that have investigated the acute e↵ects of AFES us-

ing the FVC test [85,159]. Zupan et al. found, in a group of thirteen tetraplegic

patients with an injury level between C4 and C7, that unassisted FVC and FEV1
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were increased by 10%-20% when the patients were assisted by AFES [159]. The

statistical significance of this result was not reported. In the second study, Lang-

bein et al [85] investigated the e↵ect of AFES in a study of ten SCI patients with

injury levels ranging from C5 - T7. They found the group mean AFES-assisted

FVC, FEV1 and PEF to be to be 3.49 L, 2.73 L, and 6.24 L/s which showed a

statistically significant increase over unassisted FVC, FEV1 and PEF, of 3.08 L,

2.47 L, and 5.43 L/s respectively.

There have been comparably few studies which have reported AFES-assisted

MEP. In a single case study, Lee et al. found AFES-assisted MEP to be

10 cmH2O, which was greater than the patient’s unassisted MEP of 6 cmH2O [87].

In another study of eleven C3-T6 SCI patients, Butler et al. [24] found that gastric

and oesophageal pressure showed a significantly increase during AFES-assisted

MEP e↵orts compared with unassisted MEP e↵orts.

To date, there has been one study which has investigated whether abdominal

muscle reconditioning improves the e↵ectiveness of AFES to augment unassisted

pulmonary function measures [159]. In the first study, thirteen tetraplegic sub-

jects completed a four week intervention of expiratory muscle training which

included breathing exercises complemented with AFES. The results showed a

statistically significant increase in AFES-assisted FVC and FEV1 over the course

of the intervention. However, since unassisted FVC and FEV1 also increased and

the study did not provide numerical data, it is not clear whether AFES-assisted

outcome measures increased relative to, or in parallel to, the unassisted outcome

measures.

Functional Magnetic Stimulation and Spinal Cord Stimulation Assisted

Pulmonary Function Tests

To the author’s knowledge there have been no studies which have investigated the

acute e↵ects of FMS or SCS using standard FVC and MEP manoeuvres. Lin et

al. [92] measured the e↵ect of FMS on unassisted MEP and PEF from FRC. As

shown in Table 2.4 (Section 2.7.2), FMS-assisted PEF from FRC, was significantly

greater than unassisted PEF from FRC. In addition, the FMS-assisted MEP from

FRC of 66.4 cmH2O was significantly greater than unassisted MEP from FRC of

56.2 cmH2O.

Discussion

It is di�cult to make direct comparisons between the studies described above as

a result of the di↵erent measurement methodology. This di�culty is compounded
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by the heterogenous case mix of patients who participated in each study. One

reasonable point of comparison is the improvement in unassisted PEF when FMS

and AFES are used acutely. Lin et al. [92] reported an 11% increase in PEF

when using FMS, versus a 15% increase reported by Langbein et al. when using

AFES [85]. However, it should be noted that the two studies measured PEF from

di↵erent lung volumes. From these limited studies it would appear that the two

technologies yield similar results.

The outcome measures from the FVC and MEP test are important as they

can give a general indication of health of the respiratory system. In particular,

PEF measured during an FVC manoeuvre has been shown to be comparable to

the PEF during cough [20]. Although these tests are useful indicators it is also

important to gain an understanding of how respiratory neuro-prosthesis a↵ects

functional respiratory outcome measures. The subsequent sections will review

the e↵ect of respiratory neuro-prosthesis on cough and quiet breathing.

2.7.2 Cough

The first application of AFES in patients with tetraplegia was as a method of

improving cough. This application was originally investigated in 1993 by Linder

et al. [93] and Jaeger et al. [75]. These authors found a statistically significant

increase in MEP [93] and CPF [75] between unassisted and AFES-assisted cough.

This result has been corroborated by several other studies (see Table 2.4) [24,24,

57,58,89, 140].

Taylor et al. [140] reported the greatest di↵erence between AFES-assisted

CPF (7.1 L/s) and unassisted CPF (4.6 L/s). This was achieved in a case study

covering only a single patient which restricts the generalisation of this result.

Butler et al. [24] have had the greatest success in augmenting unassisted cough

using AFES in a group of eleven subjects. They found the mean AFES-assisted

CPF to be 4 L/s, which was 35% greater than the mean unassisted CPF. To

date, there has been only one study that has not found a statistically significant

di↵erence between AFES-assisted cough and unassisted cough [133].

There have been two studies that have investigated the e↵ect of a period of

abdominal muscle reconditioning on AFES-assisted cough [87,104]. In the single

case study [87], the patient participated in cough training sessions, in which he

was asked to practice AFES-assisted coughing, 20-30 minutes per day for four

weeks. The results showed that unassisted CPF increased from 3 L/s to 3.8 L/s,

and that AFES-assisted CPF increased from 3.3 L/s to 5 L/s. The second study,

which was published after the clinical experiments of this thesis were finished, was
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a randomised crossover trial which included fifteen SCI patients who completed

fifty AFES-assisted coughs per day, five days per week, for six weeks. The results

showed that AFES-assisted CPF increased from 3.1 to 3.6 L/s [104].

There have been two case studies which have reported chronic use of an AFES-

assisted cough system for management of secretions [87,140].

Functional Magnetic Stimulation Assisted Cough

FMS was first proposed as a technology to assist with cough by Lin et al. [91]

in 1998. Lin et al. [91] initially tested the feasibility of using FMS for cough

assistance in a study of twelve able-bodied subjects and found that the PEF

generated from FMS was not significantly di↵erent from the PEF that subjects

could generate voluntarily. This result was later confirmed by Polskey et al.

[121]. Subsequently, Lin et al. [92] investigated the e↵ect of FMS in a cohort of

tetraplegic patients where they found that FMS-assisted PEF was significantly

greater than unassisted PEF (see Table 2.4).

Spinal Cord Stimulation Assisted Cough

DiMarco et al. have been the only group to research the use of SCS to improve

cough in tetraplegia. In the seminal case study [39], SCS was able to increase

unassisted PEF (measured from total lung capacity) from 2.4L/s to 7.2L/s. In

addition, SCS allowed the patient to become completely independent of caregiver

assistance for airway management. DiMarco et al. succeeded this case study

with a clinical trial involving nine tetraplegic patients [40, 41]. The clinical trial

showed that SCS significantly improved unassisted PEF from 1.86L/s to 8.8L/s

and, in addition, compared with the period pre-implant, significantly reduced

the number of respiratory infections and level of caregiver report. It should be

noted that in both of the studies by DiMarco et al. [40, 41] the subjects received

a period of muscle reconditioning (lastings six weeks in the case study [39] and

for an unspecified time before the start of the clinical trial [40, 41]).

Discussion

The studies described above have shown that either AFES, FMS, or SCS can

be used acutely to increase unassisted CPF. From these studies it is clear that

SCS is the most e�cacious in improving unassisted CPF when compared with

either AFES or FMS. The reports of FMS-assisted cough suggest it is more

e↵ective at improving CPF than AFES. However, it should be noted that the
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unassisted PEF was considerably greater in the study by Lin et al. [92] than in

most of the studies that have investigated AFES-assisted cough. This di↵erence

in baseline unassisted cough between the AFES and FMS studies in addition to

other confounding factors such as measurement protocol, make a comparison of

e�cacy between the two technologies di�cult.

As discussed in Section 2.3.5, since there is not a standard method of measur-

ing cough, the measurement protocol used varies considerably between studies.

In addition, di↵erent authors have used di↵erent electrode configurations and

stimulation parameters. Despite these confounding factors, the author believes

that using an optimised electrode configuration [88] and instructing patients to

cough from total lung capacity, contributed to the success of the protocol used

by Butler et al. [24] compared with previous researchers.

AFES-assisted CPF is smaller than SCS-assisted CPF. However, AFES-

assisted coughing would be clinically useful if it produced a clinically significant

cough of greater than 4.5 L/s (see Section 2.2.4). The study by Butler et al. [24]

showed AFES-assisted CPF to be 4L/s, which is close to clinical significance.

However, the subject cohort were all at least one year post injury, and thus likely

to have considerable atrophy of the abdominal muscles [26, 51]. Given the re-

sults from the studies by Lee et al. [87] and McBain et al. [104], which showed an

increase in AFES-assisted CPF following a period of cough training, and the find-

ings reported in Section 2.7.1, which showed that abdominal muscle training could

improve AFES-assisted PEF, it is possible that AFES-assisted cough might be-

come clinically useful after a period of abdominal muscle training. Furthermore,

the successful demonstration of this hypothesis would be consistent with the two

AFES case studies presented in this section which both reported improved res-

piratory health and continued use after the conclusion of the study [87, 140]. If

it can be shown that AFES-assisted cough is clinically useful then it would be a

feasible alternative to SCS -assisted cough, without the risks associated with an

implanted device.

2.7.3 Quiet Breathing

To date, AFES is the only type of neuro-prosthesis that has been investigated as

a method of improving quiet breathing in patients with tetraplegia.

Sorli et al. [132] were the first to demonstrate that AFES could be used to

increase VT in a study of nine able-bodied subjects. This study showed that

AFES applied in synchrony with volitional exhalation statistically significantly

increased unassisted VT from 667 ml to 1100 ml, BR from 16 breaths/min to
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18.6 breaths/min, and V̇ from 10.3 L/min to 17.5 L/min.

Stanic et al. [134] continued the work of Sorli et al. in a follow up study

which included six healthy subjects and five tetraplegic patients (Injury level:

C4-C7, AIS: -,PI: 18-42 yrs). In the healthy subjects, Stanic et al. confirmed

the results of Sorli et al. and in the tetraplegic patients Stanic et al. found

AFES produced a statistically significant increase in VT from 629 ml to 852 ml

and V̇ from 9.7 L/min to 14.2 L/min. AFES also increased unassisted BR from

15.5 breaths/min to 17 breaths/min but the di↵erence was not statistically sig-

nificant.

Gollee et al. have published two papers on the use of AFES to assist with

quiet breathing in tetraplegia [55,58]. Both of these papers confirmed that AFES

could significantly improve unassisted VT in tetraplegia. Gollee et al. [58] also

confirmed that AFES could significantly improve unassisted V̇ in tetraplegia.

However, contrary to the results of Stanic et al. [134], Gollee et al. [58] found that

AFES significantly reduced unassisted BR. Lastly Gollee et al. [58] found that

ETco2 during AFES-assisted breathing was lower than ETco2 during unassisted

breathing for some subjects.

Discussion

The findings presented in this section show that AFES can increase VT, BR and

thereby V̇ (which is calculated from the product of VT and BR). There are

however several important unanswered questions.

The extent to which AFES-assisted breathing a↵ects alveolar ventilation is

unknown since the increase in V̇ could also be a↵ecting the ventilation to perfusion

ratio (see Section 2.1.3.) The finding by Gollee et al. which showed a reduction

in ETco2 during AFES-assisted breathing suggests only that alveolar ventilation

is being increased [58].

The investigation by Gollee et al. [58] suggests that the increase in V̇ during

AFES-assisted breathing is su�cient to compensate for the increase in carbon

dioxide which would be expected from the additional abdominal muscle contrac-

tion during AFES-assisted breathing. However, the study by Gollee et al. [58]

included only four subjects and therefore further work is required to fully under-

stand this aspect of AFES-assisted breathing.

The temporal e↵ect of AFES on quiet breathing parameters has not been

investigated. A limitation of the previous work is that the di↵erence between

unassisted and AFES-assisted breathing has been quantified as a single static

measurement by comparing the means taken over a period of breathing. If ETco2
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is modified in response to AFES, this would indicate a change in respiratory drive,

in which case the temporal response would become particularly interesting.

The possibility of improving the e↵ectiveness of AFES-assisted breathing us-

ing muscle reconditioning has not previously been studied. As was discussed in

Section 2.7.1, there is evidence that shows that a period of abdominal muscle

training results in improvements in standard pulmonary indicators. Therefore,

it is possible AFES applied chronically may alter the e↵ect of AFES on quiet

breathing.

2.8 Clinical E�cacy of Using Abdominal Func-

tional Electrical Stimulation for Neuromus-

cular Training

The second AFES paradigm presented in Section 2.5.1 was respiratory neuro-

muscular training. To date, there have been two studies which have investigated

a purely AFES neuromuscular training programme [87, 104]. In the first case

study, the patient completed twenty to thirty minutes of AFES-assisted coughing

per day for four weeks. The results of this study showed that unassisted CPF

increased from 3 L/s to 3.8 L/s over the course of the study [87]. In the second

study, fifteen patients completed approximately fifty AFES-assisted coughs per

day over a period of six weeks. The results of this study showed that unassisted

CPF increased from 2.1 L/s to 2.5 L/s over the training period, but the increase

was not statistically significant.

There have been two other studies which, despite including elements in ad-

dition to AFES, demonstrate the feasibility of the AFES neuromuscular train-

ing [27, 159].

In the study by Zupan et al. [159], thirteen tetraplegic patients completed a

four week intervention of expiratory muscle training, which included breathing

exercises assisted with AFES (i.e. an active training programme). The results of

this study found a significant increase in unassisted FVC and FEV1 of 17% and

16% respectively when the patients were in the supine position. There was no

change in unassisted FVC and FEV1 when patients were in the seated position

[159].

In the second study, Cheng et al. [27] conducted a randomised controlled trial

on the e↵ects of pectoral and abdominal neuromuscular training on the unassisted

respiratory function of patients with tetraplegia. The training protocol used in
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this intervention did not require active participation by the study subjects (pas-

sive neuromuscular training). In the treatment group of this trial, stimulation was

applied for 30 mins/day, 5 days/week, for 4 weeks. At the end of the intervention:

• Unassisted FVC had increased from 1.71 L to 2.26 L (�: 0.55 L, p < 0.01)

• Unassisted FEV1 had increased from 1.78 L to 2 L (�: 0.22, p < 0.01)

• Unassisted PEF had increased from 2.96 L/s to 3.93 L/s (�: 0.97 L/s, p <

0.01)

• Unassisted maximum inspiratory pressure had increased from 39.5 cmH2O

to 49.2 cmH2O (�: 9.7 cmH2O, p < 0.01)

• Unassisted MEP had increased from 30.8 cmH2O to 39.8 cmH2O (�: 9

cmH2O, p < 0.01)

No significant changes were found for the control group which did not receive any

stimulation. In addition to investigating pulmonary function measures, Cheng

et al. found that the frequency of respiratory complications in the 6 months

following the start of the study were significantly lower in the intervention group

than in the control group.

2.8.1 Functional Magnetic Stimulation Neuromuscular Train-

ing

As far as the author is aware the only study which has investigated the benefits

of using FMS for neuromuscular training is that reported by Lin et al. in which

they applied FMS to a group of eight tetraplegic patients (injury level: C4-T5,

AIS: A-B, PI: 2-27 yrs) for 20 minutes/day, 5 days/week for four weeks [90]. Over

the course of the intervention, MEP showed a significant increase from 22.9 to

29.6 cmH2O. PEF did not change significantly. Two weeks after the conclusion

of the study all pulmonary function measures had returned to their pre-training

levels.

2.8.2 Discussion

The respiratory neuromuscular training studies that included AFES showed sta-

tistically significant increases in unassisted FVC, FEV1 and PEF. However, it is

di�cult to interpret the contribution of AFES in these studies because the inter-

vention also included other training modalities. In the case of Zupan et al. [159],
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AFES was combined with breathing exercises. In the case of Cheng et al. [27],

AFES was combined with FES of the pectoralis major muscles. The case study

by Lee et al. [87] demonstrated that similar results could be expected in a purely

AFES training programme. However, since it included only one patient, further

work is required before conclusions can be drawn.

Although the increases in MEP following FMS [90] and FES neuromuscular

training [27,87,159] were similar, there was no significant change in PEF following

FMS training [90] whereas there was a moderate and significant change in PEF

following FES neuromuscular training [27, 87, 159]. From the evidence available

it appears that FES neuromuscular training is at least comparable, but possibly

more e↵ective, than FMS neuromuscular training.

The intervention studies presented in this section have demonstrated the fea-

sibility of training the abdominal muscles to improve unassisted respiratory func-

tion in tetraplegia. In addition, the study by Cheng et al [27] indicated that there

is a correlation between improvements in unassisted respiratory function and the

frequency of respiratory complications.

2.9 Weaning From Mechanical Ventilation: A

New Method of Using Abdominal Functional

Electrical Stimulation?

The previous sections have focussed on the use of AFES in spontaneously breath-

ing tetraplegic patients; either as an assistive device or as a respiratory rehabil-

itation tool. In this section, new approaches to weaning a patient from MV will

be discussed and a novel method of using AFES will be presented.

As discussed in Section 1.2.1, the process of weaning a patient from a MV

typically revolves around a weaning protocol (for example t-piece weaning). An

emerging technique that may accelerate this process is the use of respiratory

muscle training. Although using respiratory muscle training has not been tested

in SCI patients it has been shown to be successful at reducing weaning time in

non-SCI patients who required MV [101].

For patients who are unable to wean from MV, phrenic nerve stimulation is

the most widely used alternative to mechanical ventilation. Phrenic nerve pacing

is associated with a higher initial cost but also with a significant reduction in

respiratory infections and an improved quality of speech [38]. The high initial
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cost is o↵set with the associated benefits. One institution found that the pay-

back period for the initial investment was less than one year when the reduced

respiratory infections, reduced requirement for single use equipment, and reduced

care-giver time were taken into account [71]. Patients whose phrenic nerves are

damaged are not suitable candidates for phrenic nerve stimulation [38, 130]. For

those patients diaphragm pacing using intramuscular electrodes [45] or combined

intercostal and phrenic nerve pacing [43] may be considered as alternatives.

Another option for patients who are only partially dependent on MV is the

pneumobelt. The pneumobelt is an inflatable corset which is worn around the

abdomen and inflated and deflated by a positive pressure ventilator. The pneu-

mobelt acts on the abdomen in a similar fashion to AFES and on average users

can achieve 12 to 14 hours of ventilation. Since all the equipment required for the

device can be contained on a wheelchair, the pneumobelt considerably improves

mobility for patients. In addition, other reported advantages compared with a

MV connected to a tracheostomy include improved cosmetic appearance, speech,

comfort, safety and health [111].

There has been only one report of AFES used in ventilator dependent patients.

In this case study, AFES was used to support breathing in tetraplegic patients

with diaphragm paralysis [78]. Since the patients in this case study were unable

to breathe spontaneously, AFES open-loop control was used to apply AFES at

the same rate as the patient’s normal ventilator settings. Using this technique,

ventilator free breathing was supported for up to 210 s.

2.9.1 Discussion

Previous literature has demonstrated the feasibility of using AFES to support

ventilator free breathing in patients who were otherwise MV-dependent. While

the maximum duration of ventilator free breathing was short (210 s), it is pos-

sible that this could be extended following a period of abdominal muscle recon-

ditioning. However, it is unlikely that AFES could be developed into a practical

alternative to MV. This is partly due to the inherent limitations of AFES, and

partly because there are other well established alternatives to MV.

Due to the inherent risk of an implanted device (see Section 2.6.3), phrenic

nerve pacing is less preferable to weaning from MV. However, aside from the

established weaning guidelines there is a paucity of interventions that can be

used to assist in this process. Respiratory muscle training has been shown to be

useful in improving weaning outcomes in other patient groups and future research

may also find that it can also be used to help with weaning in SCI.
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As was discussed in Section 2.8, interventions that incorporate AFES have

been shown to improve unassisted breathing volumes in tetraplegic patients who

can breathe spontaneously. This finding, combined with the observation that

respiratory muscle training has previously been used to assist patients wean from

MV, raises the question: can AFES applied chronically be used as an intervention

to assist SCI patients wean from MV?
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Chapter 3

Study 1: Methods

AFES can either be used as a respiratory neuro-prosthesis or for respiratory

neuromuscular training [5]. Previous research has shown that as a respiratory

neuro-prosthesis and compared with a SCI person’s unassisted respiratory e↵ort,

AFES can acutely augment standard respiratory indices (FVC, FEV1, PEF and

MEP, see Section 2.7.1), CPF (see Section 2.7.2), and VT during quiet breathing

(see Section 2.7.3). There have been no prior investigations on the impact of

repeated regular use of AFES on AFES-assisted respiratory outcome measures.

SCI is associated with considerable disuse atrophy of the skeletal muscles, in-

cluding the abdominal muscles [51], and therefore it is possible that a period of

abdominal muscle reconditioning would lead to improved AFES-assisted respira-

tory outcomes.

There is limited evidence emerging that respiratory muscle training, using ei-

ther neuromuscular stimulation or breathing exercises, can lead to improved unas-

sisted respiratory outcome measures (see Section 2.8). It is not known whether a

training programme that uses AFES exclusively would be e�cacious. Such a pro-

gramme would have practical advantages which are an important consideration

in a busy hospital.

Leading on from previous work the primary aims of this study were:

1. To determine the e↵ect of AFES neuromuscular training on AFES-assisted

breathing in tetraplegia.

2. To determine the e↵ect of AFES neuromuscular training on unassisted

breathing in tetraplegia.

This study also included two secondary aims:

1. To investigate the use of a CIT during AFES-assisted cough. CPF is de-

pendent on the intrathoracic pressure generated during the glottal closure
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and expulsive phases of coughing. Contraction of the abdominal muscles

contributes to this pressure. Therefore the more forceful the contraction of

the abdominal muscles, the greater the increase in intrathoracic pressure

and CPF. It is known that a CIT can increase the force production in elec-

trically stimulated muscle compared with a CFT, though it has not been

used in the application of AFES-assisted cough.

2. To characterise the temporal response of ventilatory and blood-gas mea-

surements during extended periods of AFES-assisted breathing. Gollee

et al. [58] previously observed a decrease in ETco2 during AFES-assisted

breathing in a limited number of tetraplegic patients. They postulated that

the increased ventilation induced by AFES o↵set the increase in metabolic

demand resulting from contraction of the abdominal muscles. This ob-

servation needs to be verified in a larger patient group. In addition, in all

previous studies the e↵ect of AFES on quiet breathing has been determined

by comparing mean ventilatory parameters between unassisted and AFES-

assisted breathing. It is possible that the e↵ect of AFES on ventilation

would change over time and therefore this aspect needs to be investigated.

To address the aims of this study, tetraplegic patients who could breathe spon-

taneously were invited to participate in a three week AFES training programme.

Throughout the programme, the patients’ unassisted and AFES-assisted respira-

tory functions were measured using a combination of standard breathing tests and

continuous breathing tests. The standard breathing tests included the FVC test

and the MEP test; the continuous breathing tests included a cough assessment

and a quiet breathing assessment.

This chapter describes the equipment, study design, training protocol, testing

methods and general analysis methods used. This chapter also details the subjects

who participated in this study and describes deviations from the defined protocol.

Chapters 4 to 6 present the results of individual breathing tests and discuss

their implications.

3.1 Subjects

This study aimed to recruit tetraplegic subjects based on the following inclusion

and exclusion criteria.

The inclusion criteria for the study were:

• tetraplegia following spinal cord injury (AIS A-C)



3.2. EQUIPMENT AND SETUP 52

• and no useful abdominal movement

• and able to breathe without the use of artificial ventilation

• and reduced vital capacity

• and visual contraction of the abdominal muscles in response to AFES.

The exclusion criteria were:

• pregnancy

• or a significant history of autonomic dysreflexia

• or unable to give informed consent

• or under the age of 16.

A sample size calculation was performed for this study as the quantitative

e↵ectiveness of the AFES intervention was unknown. Instead, in this exploratory

study, the number of subjects recruited was determined by the available eligible

patient population during the study time. All procedures were approved by the

NHS Greater Glasgow and Clyde Local Research Ethics Committee. All subjects

gave written informed consent.

3.2 Equipment and Setup

Figure 3.1 shows a picture of the equipment that was used for the study.

CO
2
 monitor

FES s�mulator

Face mask

Spirometer

Figure 3.1: Apparatus
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Table 3.1: Output charactersitics of the RehaStim. ⇤ Maximum frequency range when
using four stimulation channels.

Parameter Output range
Current 0 mA - 126 mA
Pulsewidth 20 µs - 500 µs

Frequency⇤ 0 Hz - 222 Hz

3.2.1 FES Stimulator

A stimulator (RehaStim, Hasomed, Germany) was used to apply bi-phasic, charge

balanced, transcutaneous FES to the abdominal wall muscles. The output ranges

of the stimulation parameters for the stimulator are given in Table 3.1. Stimu-

lation was delivered across four channels using eight surface electrodes (3.3 cm x

5.3 cm and 5 cm x 9 cm, PALS Platinum, Nidd Valley Medical, UK). Generally

the larger electrodes were used for stimulation channels one and four, while the

smaller electrodes were used for channels two and three. Electrodes were placed

over the rectus abdominis and external oblique muscles as shown in Figure 3.2.

Umbilicus

12
th
 rib

Ch 2 Ch 3

Ch 1 Ch 4

Figure 3.2: Electrode placement. Pairs of electrodes that make up single stimulation
channel are illustrated with the double-headed arrows. Each stimulation channel is
indicated with the ’Ch’ prefix.

In the assessment sessions (Section 3.5), the stimulator was controlled by an

external PC (‘Science-Mode’) using custom designed software described in this

section. In the AFES training sessions (Section 3.6), the stimulator was controlled

using its on-board programme.

In ‘Science-Mode’ the timing of individual stimulation pulses was controlled

by the stimulator’s on-board microcontroller while an external PC turned stimu-

lation on and o↵ and controlled the stimulation parameters (current, frequency,

pulse width, and pulse pattern, see Figure 2.4 on page 27). The two types of
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pulse pattern used in this thesis1 were single pulses and doublets. The single

pulse pattern delivered stimulation pulses at the main stimulation frequency. In

comparison, the doublet pulse pattern delivered groups of two single pulses at the

main stimulation frequency while individual pulses within the group were spaced

according to a separate (greater) frequency.

The on-board stimulator programme applied a cyclic stimulation pattern

which allowed stimulation to be applied in phase with a patient’s volitional exha-

lation. The stimulation pattern consisted of a period of no stimulation followed

by a period of stimulation. At the start of each training session the period of no

stimulation was adjusted to correspond to the patient’s inhalation time and the

period of stimulation was adjusted to correspond with the patient’s exhalation

time. When using the on-board programme the stimulation current could be set

for individual stimulation channels while the stimulation pulse width and fre-

quency were equal for each stimulation channel. Throughout the training session

the period of no stimulation and the period of stimulation were adjusted period-

ically to account for variations in breathing pattern. In addition, the stimulation

pulse width was adjusted periodically to account for abdominal muscle fatigue.

3.2.2 Spirometer

Air flow rate and volume measurements were made using a hand held spirometer

(Microloop, Micromedical, UK) connected to a low dead space full face mask

(Hans Rudolph, USA).

The spirometer’s on-board software was used to record the FVC test described

in Section 3.5.1). After each FVC manoeuvre the software reported FVC, FEV1
and PEF. In addition, the variation between successive FVC manoeuvres was

reported as the percentage di↵erence between the sum of the FVC and the FEV1
from the best and the worst attempt.

The spirometer was used in ‘live mode’ with the assessment control system

described in Section 3.3 to perform the continuous breathing tests described in

Section 3.5.2. In this mode the total volume of air inhaled and exhaled since the

start of recording (spiro V) and the direction of air flow (spiro D) was streamed

in real-time to an external PC over a serial connection. From these two vari-

ables, breath-by-breath volume and flow rate could be calculated as described in

Section 3.7.
1The stimulator was also capable of delivering a triplet pulse pattern
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3.2.3 Mouth Pressure Meter

A mouth pressure measuring device (MPM, Micromedical, UK) was used to mea-

sure MEP at the mouth. Measurements were taken from total lung capacity using

a flanged mouthpiece. The meter averaged the pressure over two second windows

and reported the maximum average pressure.

3.2.4 Carbon Dioxide Monitor

ETco2 was measured using a carbon dioxide monitor (Datex Normcap, Intrumen-

tarium, Finland) with its sampling line inserted into the tube which connected

the spirometer and the facemask. The monitor included an analog display and an

analog output of continuous partial pressure of carbon dioxide data. Consistent

with the manufacturers instructions, the monitor was switched on at least five

minutes before testing began to allow the reading to settle.

3.3 Stimulation System

A stimulation system was developed to apply AFES automatically in synchrony

with a patient’s volitional respiratory e↵ort.

3.3.1 Hardware

A block diagram of the system is shown in Figure 3.3. The spirometer was used

in ’live mode‘ and connected to the laptop PC via an RS232 serial connection.

The carbon dioxide monitor, a potentiometer and a push button switch (both

used to control the stimulation output) were interfaced to the laptop PC via a

data acquisition card (NI USB-6009, National Instruments Corporation, Austin,

Texas, USA). Finally, the stimulator was used in ‘Science Mode’ and interfaced

to the laptop PC using a USB interface.

3.3.2 Graphical User Interface

A Graphical User Interface (GUI) (Figure 3.4) was designed using LabVIEW

(National Instruments, Austin, Texas, USA) and interfaced to the control system

implemented in Simulink (MathWorks, Massachusetts, USA) (described below)

using the Simulation Interface Toolkit (National Instruments). The GUI allowed

the researcher to switch between stimulation modes, adjust the stimulation cur-

rent for each channel, view the stimulation pulse width (set by the potentiometer),
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Laptop

Simulink

Labview
Stimulator

Data Acquisition
Card

Spirometer
RS232

USB

USB

ETCO2

MonitorSwitch
Potentiometer

Figure 3.3: Block diagram of the system

and set the control algorithm parameters (described below). In addition, the GUI

displayed continuous traces of breathing volume, average air flow rate and ETco2.

The stimulation trigger output was superimposed onto the volume and flow rate

displays to allow the researcher to monitor the stimulation timing and vary the

parameters accordingly.

assessment_gui.vi
C:\Users\Amgus\Desktop\assessment_gui.vi
Last modified on 5/30/2013 at 9:57 PM
Printed on 5/30/2013 at 9:57 PM
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Figure 3.4: The GUI designed for the assessment control system
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3.3.3 Control System

The system was controlled using software written in Simulink. Figure 3.5 is a flow

chart of the overall system, which looped every 20 ms. At the start of the loop,

the output of the spirometer, the carbon dioxide monitor, the potentiometer,

the push button switch and the software inputs from the GUI were read. The

spirometer outputs, Spiro D and Spiro V, were used to determine flow rate and

the derivative of flow rate as shown by the flow chart in Figure 3.6. After the

system inputs had been read, a stimulation trigger was generated by one of three

modes: manual mode, cough mode, and quiet breathing mode (described below).

The stimulation trigger was multiplied by the output of the potentiometer to

give the value of the stimulation pulse width. The stimulation pulse width, in

addition to the stimulation current for each channel (controlled by the GUI) was

used to control the output of the stimulator. After the stimulator output had been

adjusted the GUI was updated with the current status of the system. Finally,

the current output of the spirometer, carbon dioxide monitor and stimulator and

the status of each of the stimulation triggers were written to disk.



3.3. STIMULATION SYSTEM 58

START!

READ 
DAQ!

READ 
SOFTWARE 

INPUTS!
READ 

SPIROMETER!

MANUAL 
MODE 

ACTIVE?!

QB !
MODE 

ACTIVE?!

COUGH 
MODE 

ACTIVE?!

QB 
TRIGGER!

COUGH 
TRIGGER!

MULTIPLY BY 
100 TIMES 

POT OUTPUT  !

UPDATE 
STIM!

UPDATE 
GUI!

WRITE 
DATA!

1 IF PUSH BUTTON 
PRESSED!

ELSE 0!

False!

False!

False!True!

True! True!

Figure 3.5: Flow chart of the overall control system control algorithm.
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Manual Mode

In manual mode all automatic triggers were ignored and stimulation was turned

on whenever the push-button switch was pressed. Stimulation was applied using

a 30 Hz CFT and a stimulation current and pulse width that was adjusted on an

individual subject basis (see Section 3.5).

Cough Mode

The cough mode used the cough algorithm as presented by Gollee et al. [57]. The

goal of this mode was to distinguish between a normal breath and an attempt

to cough, and to apply stimulation at the end of inspiration to coincide with the

glottal closure phase of a cough.

A flow diagram of the cough mode algorithm is shown in Figure 3.7 and

Figure 3.8 illustrates the stimulation output generated by the cough mode. When

cough mode was active an attempt to cough was registered if the flow rate during

inspiration crossed a negative threshold ⌧

cflow

. Figure 3.8(a) illustrates the flow

rate (solid line) during two example coughing cycles. In the figure, a negative

flow rate corresponds to inhalation and the threshold ⌧

cflow

is depicted by the

dashed line. Since the peak inspiratory flow during a cough is normally greater

than during quiet breathing, adjustment of ⌧
cflow

allowed the algorithm to make

a clear distinction between a quiet breath and a cough. Adjustment of ⌧
cflow

was

done on an individual subject basis.

The end of inspiration was taken as the point in which the flow rate started

to increase during the inspiratory phase of the cough and determined as the

point in which the derivative of flow rate during inhalation crossed a positive

threshold ⌧

cdflow

. Figure 3.8(b) illustrates the derivative of flow rate (solid line)

during the example cough cycles shown in Figure 3.8(a) and the threshold ⌧

cdflow

(dashed line). Adjustment of ⌧
cdflow

was done on an individual subject basis to

synchronise the start of stimulation with the glottal closure phase of the cough.

Once an attempt to cough had been registered and the start of inhalation had

been detected, the algorithm applied a stimulation burst of duration ⌧

cstim

. ⌧
cstim

was set to one second for all subjects and the stimulation burst is illustrated in

Figures 3.8(a) and 3.8(b) by the shaded regions. If the direction of flow rate

changed during the stimulation burst, indicating the start of inhalation, then

stimulation was immediately turned o↵. As a safety precaution, the push button

switch had to remain depressed for stimulation to be turned on.

In this mode stimulation could be applied using either a CFT or a CIT (de-

termined through the GUI). The CFT was delivered at 30 Hz while the CIT
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Figure 3.7: Flow chart of the cough trigger subsystem
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included an initial doublet, delivered at 150 Hz, followed by a CFT delivered at

30 Hz. The stimulation current and pulse width were adjusted on an individ-

ual subject basis (see Section 3.5). Stimulation pulse width was filtered using a

second order transfer function with a rise time of 0.1 s.
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Figure 3.8: Illustration of the cough stimulation trigger. (a) An attempt to cough
was registered when inspiratory flow crossed ⌧

cflow

. (b) When the derivative of flow
crossed ⌧

cdflow

the cough stimulation burst (shaded area) was applied for ⌧
cstim

seconds.
Algorithm parameters were empirically determined for individual subjects.

Quiet Breathing Mode

The quiet breathing mode was based on the algorithm presented by Gollee et

al. [57], but simplified to exclude the cross-correlation with a reference breath. A

flow chart of the algorithm is shown in Figure 3.9. In this mode, stimulation was

turned on for one second every time the direction of air flow (spiro
D

) changed

from negative to positive (the start of exhalation) as illustrated in Figure 3.10.
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If the direction of airflow changed (indicating inhalation) during the stimulation

period, stimulation was turned o↵. As a safety precaution, the push button switch

had to remain depressed for stimulation to be turned on.

In this mode, stimulation was applied using a 30 Hz CFT and a stimulation

current and pulse width that was adjusted on an individual subject basis (see

Section 3.5). Stimulation pulse width was filtered using a second order transfer

function with a rise time of 0.1 s.
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Figure 3.9: Flow chart of the quiet breathing trigger subsystem
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signal from
the spirometer and the crosses mark the beginning of exhalation. Stimulation (shown
by the grey areas) was applied for one second at the onset of exhalation in the QB
mode.

3.3.4 System Calibration and Validation

The manufacturer instructions for the spirometer state that the device does not

need to be periodically calibrated. The calibration of the spirometer was verified

by recording the volume output of the spirometer during five strokes of a 3 litre

calibration syringe. To ensure that the system functioned correctly several trial

runs of the study protocol were completed before formal data collection began.

3.4 Study Design

An outline of the study design is shown in Figure 3.11. The study consisted of

three phases:

1. Control phase. This began at the start of the study and lasted for one

week. The purpose of this phase was to determine whether the patients

respiratory function was stable before the start of the training intervention.

2. Training phase. This began at the start of week two and lasted for three

weeks. During this phase subjects participated in an incremental training

program of AFES as described in Section 3.6 (page 70).

3. Follow up phase. This began at the beginning of week five and lasted for

three weeks. The purpose of this phase was to assess whether the impact

of training was sustained following its cessation.
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Week 1 2 3 4 5 6

Training (min/day) 20 40 60

Assessment A1 A2 A3 A4 A5 A6

7

Phase Control Training Follow up

Figure 3.11: Outline of the study design

To monitor respiratory function through the study, each subject was asked

to participate in six assessment sessions (A1 - A6) during which unassisted

and AFES-assisted respiratory assessments were carried out as described in Sec-

tion 3.5.

3.4.1 Initial Screening

At the beginning of the first assessment session each patient participated in a

screening session. The screening session had two objectives.

1. To ensure that AFES did not cause a patient to become dysreflexic.

It has been shown that because FES stimulates the sensory nerves as well as

the motor nerves, it can trigger autonomic dysreflexia in some patients [7].

To assess this possibility, a physician monitored the patient for visible symp-

toms of autonomic dysreflexia and monitored the patient’s blood pressure

while quiet breathing stimulation was applied for approximately two min-

utes.

2. To determine whether a patient’s abdominal muscles responded to AFES.

In some cases of SCI there is lower motor neuron damage in addition to

upper motor neuron damage. If the lower motor neuron damage a↵ected

the intercostal nerves that supply the abdominal muscles, AFES would not

cause the abdominal muscles to contract. This objective was assessed by

ensuring that a visible muscle contraction was present bi-laterally in the

rectus abdominis and external oblique muscles in response to AFES.

3.4.2 Dealing with Illness and Bed Rest

The main interruptions to the study protocol resulted from illness or periods of

bed rest used to treat pressure sores. These were dealt with as follows:

• If an illness lasted from one to three days, the study protocol was resumed

from the training or assessment session missed.
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• If an illness lasted for more than three days but less than one week, then

one or two training sessions were added to the protocol before the next

assessment session.

• If an illness lasted for more than one week during the training phase the

patient was removed from the study. A delay of up to two weeks was deemed

acceptable during the control or follow up phases of the study.

• If a patient was being treated with bed rest the training sessions continued.

Assessment sessions were not conducted during bed rest since patients were

required to be sitting in their wheelchair.

• If the bed rest coincided with assessment sessions A3 or A4 these were

skipped, for other assessments the same policy as that outlined for illness

was used.

3.4.3 Changes to the Training and Assessment Protocols

The training and assessment protocols were modified (refer to the respective sec-

tions for details of the protocols used) after subjects S1, S2 and S3 had completed

the study. The protocols were changed to improve the consistency of both the

AFES application and the standard clinical tests.

3.5 Assessment Protocols

Assessment sessions always took place while patients were seated in their wheelchair

since it is known that lung volumes vary significantly between a sitting and a

supine posture [95]. Each assessment session started by placing the electrodes

over the subjects abdomen and connecting them to the stimulator. The stimu-

lation frequency was set at 30 Hz for all tests (except the CIT cough test), this

frequency was chosen to match the stimulation frequency during the training ses-

sions (see Section 3.6). The current for each channel of stimulation was adjusted

until a strong visible contraction of the corresponding muscle group was observed

at a constant pulse width of 150 µs. Following this, stimulation to all channels

was applied simultaneously. Adjustments were then made to the current settings

for each channel until an even contraction across the abdomen was obtained. To

ensure maximum muscle contraction the pulse width was increased during the

AFES-assisted MEP tests until no further gains in MEP were achieved. Adjust-

ing the stimulation current and pulse width to give maximum muscle contraction
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was done to improve the repeatability of the stimulation setup. The contraction

of the abdominal muscles were visually monitored throughout the assessment ses-

sion for fatigue. If the contraction appeared to weaken then the stimulation pulse

width was increased to compensate.

The standard clinical respiratory tests and continuous breathing tests pro-

ceeded according to the time-line shown in Figure 3.12.

MEP test

1) Unassisted atempts

2) AFES-assisted atempts

FVC test

1) Unassisted atempts

2) AFES-assisted atempts

Cough test

1) 5 to 6 unassisted coughs

2) 5 to 6 CFT coughs

3) 5 to 6 CIT coughs (inital doublet)

QB test

1) 1 minute unassisted QB

2) 5 minutes AFES-assisted QB

3) 1 minute unassisted QB

T
im

e

Standard clinical tests

Contnuous breathing tests

Figure 3.12: Time line for assessment session tests

3.5.1 Standard Clinical Respiratory Tests

Two standard clinical respiratory tests were performed in each assessment session:

the MEP test and the FVC test (see Section 2.2 for a description of these tests). In

both of these tests, the researcher triggered AFES manually so that stimulation

coincided with the beginning and end of exhalation. Subjects were asked to

attempt each test up to five times, or until three valid attempts had been collected

(see below). Tests and control of AFES were conducted by the same researcher

in every assessment session.

Maximum Expiratory Pressure Test

The ‘expiratory’ one-way valve was fitted to the mouth pressure meter. This

allowed the subject to inhale through the mouthpiece without a↵ecting the meter.

Subjects were instructed to place the flanged mouthpiece under their lips and
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to put the bite blocks of the mouthpiece between their teeth. They were then

instructed to inhale to total lung capacity before exhaling as forcefully as possible

for at least two seconds. Subjects were told not to use the muscles of their cheek

to help generate pressure and were encouraged throughout the manoeuvre. Three

valid attempts were counted when the MEPs were within 20% of each other.

Forced Vital Capacity Test

The facemask was secured using a net which was placed around the back of

the subject’s head and clipped on to both sides of the facemask. The net was

tightened to ensure that there were no air leaks from the mask. A cardboard

connector tube was used to connect the spirometer to the mask and the spirometer

was set to ‘FVC’ test mode. Subjects were instructed to inhale to total lung

capacity before exhaling as forcefully, as quickly, and as fully as they could.

They were also told to indicate (usually by blinking or by nodding their head)

when they had reached the end of inhalation and were about to start exhalation

to enable the researcher to start recording on the spirometer. In the case of

the AFES-assisted tests, this was also the signal for the researcher to turn on

the AFES. Subjects were encouraged throughout each manoeuvre. Three valid

attempts were counted when the subject had performed three FVC manoeuvres

in which the sum of the FVC and FEV1 were within 20% of each other.

3.5.2 Continuous Breathing Tests

To conduct the continuous breathing tests the assessment control system was

used (see Section 3.3, page 55).

Cough Test

Three sets of coughing were done: unassisted cough, CFT cough and CIT cough.

For each set, subjects were instructed to cough, with maximum e↵ort, five to six

times. Subjects were told that they could take as many normal breaths as they

would like between coughs. A minimum of thirty seconds of normal breathing

separated each set of coughing. The researcher monitored the CPF of each cough

throughout each set and gave feedback to the subject to encourage maximum

e↵ort for each cough.

In most cases, stimulation for the relevant coughs was applied automatically

as described in Section 3.2. However, if it was not possible to set suitable triggers

for automatic stimulation, then AFES was triggered manually by the researcher
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to coincide with the glottal closure phase of the cough and to last approximately

one second.

Quiet Breathing Test

Approximately seven minutes of continuous quiet breathing was recorded for this

test. This consisted of one minute of unassisted quiet breathing which was fol-

lowed by five minutes of AFES-assisted quiet breathing and concluded with a

further one minute of unassisted quiet breathing. Subjects were instructed to

breathe as naturally as possible during the test.

For the AFES-assisted quiet breathing, stimulation was triggered automati-

cally as described in section 3.2.

3.5.3 Assessment Protocol for the First Three Subjects

Subjects S1, S2 and S3 completed a di↵erent assessment protocol from the other

subjects (see Section 3.4.3). The assessment timeline for these subjects is shown

in Figure 3.13.

MEP test

1) 3 Unassisted atempts

2) 3 AFES-assisted atempts

FVC test

1) 3 Unassisted atempts

2) 3 AFES-assisted atempts

Cough test - 5 unassisted coughs

QB test – 1 minute unassisted

T
im

e Cough test - 5 unassisted coughs

QB test – 3 minutes unassisted

Cough test - 5 CIT coughs

QB test – 3 minutes unassisted

Cough test - 5 CIT coughs

QB test – 3 minutes unassisted

QB test – 10 minutes AFES-assisted

MEP test

1) 3 Unassisted atempts

2) 3 AFES-assisted atempts

Figure 3.13: Time line of the assessment session for subjects S1, S2 and S3

The di↵erences in assessment protocol, aside from the di↵erences in assessment
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timeline, between the protocol for S1, S2 and S3 and the rest of the subjects are

described in Table 3.2

3.6 Training Protocols

The on-board programme on the stimulator was used to conduct the training

sessions. Training sessions were normally completed while subjects were seated

in their wheelchair although some sessions were completed while the patient was

supine in their bed (see Section 3.4). The stimulation frequency was set at 30

Hz for all of the training sessions. Since the rate of muscle fatigue increases with

stimulation frequency [67], the stimulation frequency was set at 30 Hz so as to

produce a tetanic contraction of the abdominal muscles throughout the training

sessions. The stimulation current settings that were used in the assessment ses-

sion prior to each week of training were used. At the start of a training session,

the electrodes were placed on the subjects abdomen (as shown in Figure 3.2)

and the stimulation current settings were checked to ensure an even contraction

across the abdomen. The on-board stimulation programme’s parameters were

adjusted so that stimulation would coincide with exhalation, and the stimulation

was turned on. For S1, S2, and S3 the pulse width was increased until a strong

visual contraction of the abdominal muscles was observed. For subsequent sub-

jects the pulse width was quickly increased from 20 µs to the level which had

produced the highest MEP during the previous assessment session. Throughout

the training session the pulsewidth was increased further to maintain the same

visual contraction of the abdomen.

Training sessions were carried out up to five times per week. The duration

of training was twenty minutes per day in the first week, forty minutes per day

in the second week and sixty minutes per day in the third week. The design of

the training program, in which the training volume was progressively increased

every week, was chosen according to the principles of progressive overload [79].

Training was either carried out by a researcher for inpatients of the QENSIU, or

left to the responsibility of the patients if they were living at home. In both cases

a training diary was kept to record the stimulation current, stimulation pulse

width, duration of training and comments from either the patient or researcher.
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3.7 Analysis

In this section the general analysis methods of the recorded data is described.

Full details of the specific analysis used for each respiratory test are given in the

relevant chapters.

3.7.1 Breath Analysis

Examples of spiro D and spiro V (described in Section 3.2.2) recorded from the

spirometer are shown in Figure 3.14 and Figure 3.15 respectively. From these

variables, continuous breath-by-breath volume and flow rate were calculated using

the following method.

1. As illustrated in Figure 3.14, the location of the zero crossings corresponding

to the start and end of inhalation and exhalation were calculated from

spiro D.

2. Spiro V was zero phase filtered using a forward and reverse pass of a 5th

order simple moving average filter.

3. Using the zero crossings, spiro V was reshaped into breath-by-breath vol-

ume profiles (illustrated in Figure 3.16).

4. Using the sampling time, the breath-by-breath volume was di↵erentiated

to obtain air flow rate (illustrated in Figure 3.17)

From the breath-by-breath volume and flow rate the following respiratory

measures were derived. These are described below and illustrated in Figure 3.18

and Figure 3.19.

Inhaled Volume (VI) The total volume of air inhaled in a breath, measured

in litres (L).

Exhaled volume The total volume of air exhaled in a breath, measured in litres

(L). This quantity is used interchangeably with VT throughout this thesis.

Inspiratory time the duration of inhalation, measured in seconds (s).

Expiratory time the duration of exhalation, measured in seconds (s).

Breathing period the sum of inspiratory and expiratory time, measured in

seconds (s).
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Fractional Inspiratory Time (TI/TOT) Inspiratory time divided by breath-

ing period.

Breathing Rate (BR) The number of Breaths per Minute (BPM). Calculated

for each breath by dividing sixty by breathing period.

Minute Ventilation (V̇) The volume of air exhaled every minute, measured

in Litres per minute (L/min). Calculated for each breath by multiplying

exhaled volume by the BR.

Forced Exhaled Volume in One second (FEV1) The volume of air exhaled

in the first second of exhalation, measured in litres (L). FEV1 was nor-

mally calculated from the point at which flow rate became positive. During

coughing, however, flow rate often became positive during the glottal clo-

sure phase of the cough. To ensure that the calculation of FEV1 during a

cough did not include the glottal closure phase of the cough, the start of

exhalation was taken as the first sample of positive flow in which the next

four samples showed a progressive increase in flow rate (see Figure 3.19). If

the duration of exhalation was less than one second, this measure was not

calculated.

Peak Expiratory Flow (PEF) The maximum flow rate during exhalation taken

from the filtered flow rate signal, measured in litres per second (L/s)

In addition to the above measurements the maximum stimulation pulse width

and the maximum partial pressure of carbon dioxide exhaled (i.e. ETco2 during

each breath was recorded.

Individual breaths were sorted into unassisted breaths and stimulated breaths.

At the end of this stage of the analysis a dataset of unassisted and AFES-assisted

breaths was available for each respiratory test completed during the assessment.
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Figure 3.14: Example of the spiro D output from the spirometer when used in live
mode. The x’s indicate the start of exhalation and the o’s indicate the start of inhala-
tion.
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Figure 3.15: Example of the spiro V output from the spirometer when used in live
mode. The x’s indicate the start of exhalation and the o’s indicate the start of inhala-
tion.
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Figure 3.16: Example of the breath-by-breath volume calculated from spiro V and
spiro t. A positive gradient indicates an inhalation and a negative gradient indicates
an exhalation. The volume trace has been reset to zero at the start of every inhalation.
The x’s indicate the start of exhalation and the o’s indicate the start of inhalation.
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Figure 3.17: Example of the continuous flow rate calculated from spiro V and spiro t.
Negative flow indicates inhalation while positive flow indicates exhalation. The x’s
indicate the start of exhalation and the o’s indicate the start of inhalation.
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Figure 3.18: Respiratory measures calculated from the spirometer when used in ‘live
mode’. The plots show two normal quiet breath followed by two coughs. (a) shows
the breath-by-breath volume; a positive gradient indicates inhalation and a negative
gradient indicates exhalation. The volume has been reset to zero at the start of every
inhalation. (b) shows the breath-by-breath flow rate. A negative flow rate corresponds
to an inhalation while a positive flow rate corresponds to exhalation.
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Figure 3.19: Example of how FEV1 was calculated. In each of the subfigures, the
circle marks the zero crossing which indicates the start of exhalation, the cross marks
the start point used for the calculation of FEV1 and the diamond marks the end point
used for the calculation of FEV1.
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3.8 Study Performance

3.8.1 Subjects

This study included sixteen subjects whose details are given in Table 3.3. The re-

cruitment of subjects started in March 2009 and continued for twenty-one months.

The subjects recruited included current inpatients at the Queen Elizabeth Na-

tional Spinal Injuries Unit (QENSIU), Southern General Hospital, Glasgow and

outpatients who lived in the local area.

Table 3.3: Subject details. Age and time post injury are given at the time of the first
study assessment session. *: subjects who were outpatients of the hospital; †: subjects
who did not complete the entire protocol (see Section 3.8).

ID Sex Age Height Level of ASIA Post-injury Smoker
[years] [cm] injury [months]

S1 M 18 183 C4/5 A 5 N
S2 M 31 180 C5/6 C 2 N
S3 M 73 180 C4 A 5 N
S4† M 56 186 C4 A 3 N
S5* M 24 168 C4 A 94 N
S6† M 52 173 C4 A 4 N
S7 M 54 187 C6 C 9 N
S8 M 53 178 C3 C 4 N
S9* M 18 173 C6 A 27 N
S10 M 21 183 C6 A 5 Y
S11 M 18 183 C6 C 3 N
S12 M 68 168 C4 A 3 N
S13† F 51 168 C5 C 3 N
S14 F 53 183 C6 C 3 N
S15* M 32 178 C5 A 36 Y
S16† M 16 178 C5 A 4 N
Mean - 39 178 - - 13 -
S.D - 19 6 - - 24 -
Median - 42 179 - - 4 -
Range - 16 - 68 168 -187 - - 2 - 94 -

Out of the seventeen subjects who were approached, sixteen were recruited

into the study and twelve subjects completed the full study protocol. This is

illustrated by the consort diagram in Figure 3.20.

One subject was approached but was determined not eligible as no visual

contraction of her abdominal muscles was observed in response to AFES. S11

completed the study but missed out assessment A3. However, he moved from the

twenty minute training sessions to the forty minute training sessions according to
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Patients approached!
(n=17)!

Excluded (n=1)!
•  Did not meet inclusion 

criteria (n=1)!
Completed baseline 

assessments A1 and A2 
(n=16)!

Completed training 
assessments A2 to A5 

(n=12)!

Completed follow up 
assessment A6 !

(n=12)!

Excluded (n=4)!
•  Illness (n=2)!
•  Withdrew (n=2)!

Figure 3.20: Consort diagram for the study.

the study protocol. Subjects S4, S13 and S16, left the study after A3 and S6 left

the study after A4. S4 and S6 both left the study as a result of illness urelated

to the study. S13 withdrew from the study for personal reasons. S16 reported

increased spasms coincidental with the start of the study, although the subject’s

medical team were unclear whether it was caused by AFES as this subject already

had a history of significant muscle spasticity.

3.8.2 Subject Compliance

The mean number of days that elapsed between the assessment sessions is given

in Table 3.4. To calculate the mean days between A2 and A3 and between A3

and A4 for S11, a virtual A3 assessment was created at the time point at which

the subject would have completed A3 had he been able to do so. Table 3.4

demonstrates that the average number of days spent between assessments was

greater than prescribed. Since all assessments had to be completed while the

subject was sitting in their wheelchair bed rest was the major cause of the delay.

Other factors which led to delays between the assessment sessions were illness

and general fatigue.

The largest deviations from the prescribed periods are as follows:
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• The control period was longer than prescribed for S19, S10 and S16. For

S9 this was 13 days while for S10 and S16 this was 21 days.

• The period between A2 and A3 was longer than prescribed for S4 and S11.

For S4 this period lasted 22 days and for S11 this period lasted 11 days.

The period between A2 and A3 was only 5 days for S15.

• The period between A3 and A4 was longer than prescribed for S8 and S15.

For S8 this period lasted 9 days and for S15 this period lasted for 10 days.

• The period between A4 and A5 was longer than prescribed for S3, S5, S8,

and S10. For S3 and S5 this period lasted for 14 days and for S8 and S10

this period lasted for 10 days.

• The follow up phase was lasted for 29 days for S2.

Table 3.4: Average number of days between assessment sessions for di↵erent subsets
of the total subject pool. Aa,b denotes the period between assessment a and assessment
b. N signifies the number of subjects in each subset. The prescribed number of days
between each assessment session is given at the top of the table for comparison. SD:
standard deviation

Group N
Mean days in period (SD)

A1,2 A2,3 A3,4 A4,5 A5,6
Prescribed - 7 7 7 7 21
All recruited subjects 16 9.1

(4.8)
8.1
(3.8)

7.5
(1.0)

8.7
(2.8)

21.8
(2.37)

Subjects that completed
the study protocol

12 8.7
(4.3)

7.3
(1.4)

7.5
(1.0)

8.7
(2.8)

21.8
(2.4)

Table 3.5: Average number of minutes of received abdominal FES during each week
of training. The mean and standard deviation for di↵erent subsets of the total subject
pool are presented for each of the three weeks of training and for the total training
period. N stands for the number of subjects in each subset. SD: standard deviation

N
Mean FES minutes (SD)

Week 1 Week 2 Week 3 Total
Four days of training for
the prescribed duration

- 80 160 240 480

All recruited subjects 16 88 (43) 155 (35) 241 (77) 395 (177)
Subjects that completed
the study protocol

12 79 (10) 158 (34) 241 (77) 478 (130)

The mean minutes of AFES received during each week of training are given

in Table 3.5. The results in this table are also presented on the assumption of
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a virtual A3 for S11. Three subjects, S7, S10 and S14, completed their training

during their normal hand therapy sessions. As the mean training times in the

table suggest, most subjects had four training sessions in each week of training.

The following subjects deviated from this:

Week 1 S1, S6 and S10 had three training sessions totaling 60 minutes, S11 had

five training sessions totaling 100 minutes, and S4 has 13 training sessions

totaling 245 minutes.

Week 2 S3 had three training sessions totaling 90 minutes, S1 and S6 had three

training sessions totaling 120 minutes, S8 had five training sessions totaling

200 minutes and S5 had six training sessions totaling 227 minutes.

Week 3 S1 had three training sessions totaling 180 minutes, S7 and S8 had three

training sessions totaling 190 minutes, S12 had four training sessions total-

ing 200 minutes, and S5 had eight training sessions totaling 475 minutes.

In general, subjects managed to perform the respiratory tests in the assess-

ment session well. However, S8 experienced claustrophobia while wearing the face

mask and refused to have it fastened using the hair net. Therefore, the mask had

to be held tightly in place by a researcher during the FVC test and the continuous

breathing tests. Other deviations from the assessment protocol, related to the

specific breathing tests, are presented in the relevant chapter.

3.8.3 AFES Issues

In almost all cases, subjects tolerated the stimulation well and a good contraction

of the abdominal muscles was achieved. However, there were AFES issues for the

following subjects.

S7 This subject required the maximum stimulation current to be applied for

every stimulation channel. Although using the maximum current evoked a

strong response from the abdominal muscles on the left side of the patient,

the contraction of the muscles on the right side was noticeably weaker.

This may have been caused by poor contact between the electrodes and

the skin as this patient had a large amount of body hair on the abdomen.

Alternatively, it may also have been because the abdominal muscles on the

right side of the abdomen were weaker than the muscles on the left side.

S8 This subject had intact sensation on the right side of his abdomen, which

limited the stimulation current that could be applied to it. Therefore, it
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was not possible to obtain an even contraction across the abdominal muscles

in this subject. In the third week of training, stimulation to the right side

of the rectus abdominis was removed, this allowed the intensity to the right

external oblique muscle to be increased and a more even contraction was

achieved.

S16 This subject reported increased spasms after the completion of an AFES

training session. Since this subject had a significant history of muscle spas-

ticity, the subject’s medical team were unclear as to whether this e↵ect was

a consequence of AFES or coincidental with the start of the study.

3.8.4 Non Respiratory E↵ects

Three subjects, S7, S14 and S15, reported a self-perceived increase in abdomi-

nal muscle tone following the training. These subjects regarded this increased

abdominal tone as useful in helping with tasks that required stability of the up-

per body, for example wheelchair transfers. Furthermore, they enquired whether

there was a stimulator they could purchase for use at home.

3.9 Discussion

In this chapter, the methods that were used to investigate the acute and chronic

e↵ect of AFES in spontaneously breathing tetraplegics have been described. In

addition the results which describe the adherence to the overall protocol of the

study have been presented. The results from the respiratory tests conducted will

be presented in separate chapters. Specifically the FVC and MEP test results

will be presented in Chapter 4, the results from the cough test will be presented

in Chapter 5 and the results from the quiet breathing test will be presented in

Chapter 6.

The greatest challenge in conducting this study was in working with the pa-

tients who were recently injured and currently participating in standard rehabil-

itation. This created two issues.

1. Finding a suitable time to conduct the assessment and training sessions was

often di�cult.

2. Dealing with secondary complications associated with the injury, in partic-

ular bed rest, resulted in deviations from the protocol.
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Despite these problems, the majority of the subjects recruited were both able

to complete the study and to follow the training programme with reasonable

accuracy. This demonstrates the benefits of passive training which stimulates

only the abdominal muscles. The practical advantages are:

1. Patients were able to complete their training sessions during their normal

hand therapy sessions. This would not have been possible if an active

training programme had been used, such as the approach used by Zupan et

al. [159].

2. If the pectoral muscles had been stimulated, as proposed by Cheng et al.

[27], this would have required a longer set up time and patients may also

have required that the electrodes be applied in private.

On these practical aspects alone the author believes that the training paradigm

proposed in this thesis is superior to previous training paradigms.

The non-respiratory e↵ects of the AFES training programme reported by some

patients are encouraging. Although conclusions cannot be drawn, this evidence

highlights an interesting question: are the patients likely to continue with the

intervention unsupervised?
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Chapter 4

Study 1: Clinical Respiratory

Test Results

4.1 Introduction

The FVC and MEP tests are standardised clinical tests that are used to measure

respiratory function (see Section 2.2.2, page 19). The FVC test is used as a

diagnostic tool to assess the impact of disease on respiratory function and to assess

the e↵ect of therapeutic interventions on the respiratory system [112]. The MEP

test is used to measure expiratory muscle strength [53]. The outcome measures

from these tests have been shown to be substantially reduced in tetraplegic SCI

compared with normal values for an able-bodied population [94]. Furthermore,

an improvement in these indicators has been shown to be positively correlated

with a reduction in respiratory complications in tetraplegia [27].

It has previously been shown that an FES respiratory muscle training pro-

gramme can improve tetraplegic patients’ unassisted FVC and MEP test out-

comes [27, 159]. Two types of training programme have beed used previously:

1. Zupan et al. [159] combined breathing exercises with AFES, an active train-

ing programme.

2. Cheng et al. [27] applied a repeating pattern of FES to the pectoral and

abdominal muscles, a passive training programme.

The e↵ect of an exclusive AFES passive training programme on unassisted FVC

and MEP outcome measures has not been studied but has two main advantages

over the other programmes: (i) it is a passive, which allows the patient to partici-

pate in other activities at the same time as training; (ii) it is quicker and easier to
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apply as it only requires stimulation to one muscle group rather than to several

muscle groups. This is an important consideration in a busy hospital.

Previous work has shown that AFES-assisted FVC and MEP test outcomes

are greater than unassisted test outcomes in patients with tetraplegia [85, 87,

159]. This e↵ect has been shown only in single session studies and the e↵ect of

repeated chronic use of AFES on AFES-assisted outcome measures has not been

investigated. If the di↵erence between the AFES-assisted and unassisted outcome

measures became greater through chronic use of AFES, then it would be clear that

AFES was becoming increasingly e↵ective and that an AFES neuroprosthesis,

for example the system proposed by Gollee et al. [57], would also become more

e↵ective over time.

Leading on from previous work, this chapter presents the results of a three

week passive AFES training programme on FVC and MEP test outcomes. The

primary aims of this study were to determine the e↵ect of the training programme

on:

1. The unassisted FVC and MEP test outcome measures.

2. The AFES-assisted FVC and MEP test outcome measures.

3. The AFES-assisted FVC and MEP test outcome measures relative to their

corresponding unassisted outcome measures.

The secondary objective of this study was to verify that AFES-assisted FVC

and MEP outcome measures were greater than their respective unassisted out-

come measures.

4.2 Methods

The FVC and MEP tests and the study protocol are described in Chapter 3.

The dependent outcome measures were FVC, FEV1, PEF and MEP. All re-

sults were expressed as absolute values and as a percentage of the predicted value

for a healthy subject (%pred.) [17, 69]. For each outcome measure the mean of

the three valid recordings made on each assessment session was calculated. Re-

sults representing the di↵erence between unassisted and AFES-assisted outcome

measures are denoted with a �AFES prefix.
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4.2.1 Main Analysis

The main focus of the study was to investigate the change in unassisted, AFES-

assisted, and �AFES FVC and MEP test outcome measures over course of the

training period, and to compare this change to any change that occurred during

the control and follow up periods of the study. This analysis included only sub-

jects that completed the final assessment session (A6) and that missed no more

than one assessment session during the study.

4.2.2 Secondary Analysis

The secondary objective of this study was to verify previous authors’ finding that

AFES-assisted FVC and MEP test outcome measures were greater than their

respective unassisted outcome measures (i.e. �AFES was positive) [85, 87, 159].

This analysis included all of the subjects who completed at least one of the A1

and A2 assessment sessions. For each eligible subject the mean was taken over

A1 and A2.

4.2.3 Statistics

The data from each assessment session was tested for normality using the Shapiro-

Wilks test. Based on the finding that data on some assessment sessions was not

normally distributed, non-parametric statistical tests were used for hypothesis

testing. Data sets with more than one missing value were discarded. Missing

data points were replaced by the value from the previous assessment (last value

carried forward). The Wilcoxon Signed Rank test was used for paired comparison

testing at baseline. The repeated measures Friedman test was used to test for

longitudinal changes in the outcome measures through the study. In the case

of significance, post hoc multiple comparisons were performed using the Tukey-

Kramer honestly significant di↵erence procedure. To test the validity of using the

last value carried forward to replace missing data a sensitivity analysis was done

by also completing the statistical analysis after removing subjects that missed at

least one assessment from the data set. For all tests p < 0.05 was regarded as

statistically significant.
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4.3 Results

4.3.1 Missing Data

The MEP test results for S1, S2 and S3 were not collected due to technical

problems and the MEP results from S8 were discarded as unreliable because this

subject had di�culties performing this test. The FVC test results were discarded

for S10 as he started swinging his upper body forward while performing the test

in later assessment sessions. As described in Section 3.8, S11 did not complete

A3.

Unassisted FVC, FEV1 and PEF were discarded on A3 for S1, and on A2 for

S2 and S3 because only one usable attempt was collected. In addition, AFES-

assisted FVC, FEV1 and PEF were discarded on A1, A2 and A3 for S1, on A1

for S2 and S8, and on A2 for S3 because only one usable attempt was collected.

4.3.2 Subject Pools

Table 4.1 shows which subjects were used in each part of the analysis after re-

moving datasets that contained more than one missing data point and excluding

subjects who did not finish the study from the longitudinal data analysis.

Table 4.1: Subjects used in each stage of the analysis after accounting for missing
data

Analysis N Subjects
Unassisted analysis 11 S1-S3, S5, S7-S9, S11, S12, S14, S15
AFES analysis 10 S2, S3, S5, S7-S9, S11, S12, S14, S15
�AFES longitudinal analysis 9 S3, S5, S7-S9, S11, S12, S14, S15
�AFES baseline analysis 15 S2-S16

4.3.3 Unassisted Results

Table 4.2 details the group mean unassisted results on each assessment session.

As can be seen from the table there was very little change over the control phase

(between A1 and A2) for all of the outcome measures. Over the training phase

(between A2 and A5) FVC, FEV1 and PEF increased, while there was little

change in MEP. During the follow up phase (between A5 and A6), there was very

little change in FVC, FEV1 and PEF, while MEP increased slightly. Table 4.2

also shows the p-value from the Friedman statistical analysis. The longitudinal

changes in FVC, PEF, and MEP were significant. Post-hoc multiple comparison
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testing for FVC found a significant di↵erence from A2 to A5 and A6. For PEF,

a significant di↵erence was found between A2 and A6. Post-hoc testing did not

find any significant di↵erences for MEP.

Table 4.2: The group mean (± standard deviation) unassisted FVC, FEV1, PEF,
and MEP test results on each assessment session. p is the probability that there was
no change in each of the outcome measures throughout the study calculated using the
Friedman test.

A1 A2 A3 A4 A5 A6 p
FVC (L) 1.79 ± 1.04 1.81 ± 1.27 1.85 ± 0.96 1.98 ± 1.23 2.17 ± 1.27 2.23 ± 1.39

<0.01
FVC (%pred.) 35.12 ± 18.96 35.33 ± 22.83 36.50 ± 18.37 38.87 ± 22.44 42.70 ± 23.29 43.88 ± 25.80
FEV1 (L) 1.16 ± 0.55 1.17 ± 0.54 1.22 ± 0.59 1.22 ± 0.63 1.35 ± 0.59 1.36 ± 0.59

0.06
FEV1 (%pred.) 28.00 ± 12.84 28.18 ± 12.74 29.62 ± 15.95 29.51 ± 15.10 32.43 ± 14.57 33.11 ± 14.82
PEF (L/s) 2.09 ± 1.19 2.07 ± 1.30 2.29 ± 1.53 2.23 ± 1.40 2.46 ± 1.56 2.43 ± 1.50

0.04
PEF (%pred.) 22.57 ± 13.59 22.31 ± 14.91 25.03 ± 18.47 24.25 ± 16.84 26.52 ± 18.24 26.45 ± 17.92
MEP (cmH2O) 25.42 ± 16.57 24.83 ± 17.06 22.25 ± 13.32 24.29 ± 15.39 24.75 ± 14.25 28.17 ± 18.09

0.03
MEP (%pred.) 19.59 ± 15.65 19.17 ± 15.91 17.31 ± 14.07 19.05 ± 16.30 19.25 ± 15.27 21.40 ± 15.96

Figure 4.1 illustrates the unassisted individual subject results over the course

of the study. As can be seen from the figure there was considerable inter and

intra subject variation for each of the outcome measures.

E↵ect of AFES Training on Di↵erent Sub-Populations

Figure 4.2 shows the mean changes from A1 in the unassisted outcome measures

for di↵erent patient sub-populations, which include motor complete tetraplegics,

motor incomplete tetraplegics, tetraplegics with an injury level at or above C4

(i.e a high level injury) and tetraplegics with an injury at or below C5 (i.e. a low

level injury). The demographics of the patient sub-groups are shown in Table 4.3.

Table 4.3: Demographics of the sub-populations of subjects. Where applicable results
are expressed as mean ± standard deviation.

Complete Incomplete High Low
N 7 5 4 8
Sex (male/female) 7/0 6/1 4/0 7/1
Age (years) 36 ± 24 42 ± 16 55 ± 22 30 ± 15
Height (cm) 176 ± 7 182 ± 3 174 ± 6 181 ± 4
Injury level (high/low) 3/4 1/4 4/0 0/8
ASIA (A/C) 7/0 0/5 3/1 4/4
Time Post Injury (months) 25 ± 33 4 ± 3 27 ± 45 11 ± 13
Smoker/Non-smoker 2/5 0/5 0/4 2/6

There was an increase in all of the outcome measures between A5 and A6

for the tetraplegic patients with a motor complete SCI. In contrast there was a

decrease in all of the outcome measures for the tetraplegic patients with a motor

incomplete SCI. Similarly FEV1 and PEF increased between A5 and A6 for the
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Figure 4.1: Unassisted FVC, FEV1, PEF and MEP results. The grey lines represent
individual subjects and the black line represents the group mean.

tetraplegic patients with a high level SCI and decreased for the patients who

have a low level SCI. No other clear di↵erences between the subject groups were

observed.
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Figure 4.2: Change in unassisted FVC, FEV1, PEF and MEP test results stratified
by di↵erent patient groupings

4.3.4 AFES-Assisted Results

Table 4.4 gives the group mean AFES-assisted results over the course of the study.

The change in AFES-assisted outcome measures followed a similar trend to that

of the unassisted results. Only the longitudinal change in FVC was found to be

significant, for which multiple comparison testing found A2 to be significantly

di↵erent from both A4 and A5.

The inter and intra subject variations of the AFES results were of a similar

magnitude to the unassisted results (illustrated in Figure 4.1). In addition no

obvious di↵erence was observed in the AFES-assisted response to training for

di↵erent subject sub-populations.
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Table 4.4: Group mean (± standard deviation) AFES-assisted FVC, FEV1, PEF and
MEP results on each assessment session

A1 A2 A3 A4 A5 A6 p
FVC (L) 1.93 ± 1.12 1.98 ± 1.32 2.05 ± 1.12 2.34 ± 1.44 2.36 ± 1.43 2.31 ± 1.44

<0.01
FVC (%pred.) 38.39 ± 20.78 39.74 ± 24.85 41.31 ± 21.61 46.91 ± 26.94 47.39 ± 27.03 46.62 ± 27.50
FEV1 (L) 1.26 ± 0.52 1.26 ± 0.54 1.31 ± 0.60 1.24 ± 0.54 1.48 ± 0.65 1.44 ± 0.65

0.57
FEV1 (%pred.) 31.09 ± 12.25 31.04 ± 12.60 32.68 ± 15.78 31.08 ± 13.84 36.52 ± 15.38 36.13 ± 16.54
PEF (L/s) 2.33 ± 1.14 2.37 ± 1.27 2.35 ± 1.55 2.45 ± 1.75 2.83 ± 1.70 2.83 ± 1.77

0.58
PEF (%pred.) 25.17 ± 13.12 25.67 ± 14.70 25.85 ± 18.65 26.83 ± 20.62 30.42 ± 19.06 30.87 ± 20.65
MEP (cmH2O) 28.67 ± 18.15 31.88 ± 16.45 27.88 ± 17.65 28.42 ± 16.27 33.38 ± 14.41 33.92 ± 18.75

0.29
MEP (%pred.) 21.42 ± 14.01 24.29 ± 15.80 22.06 ± 19.02 22.18 ± 16.78 25.75 ± 15.30 26.26 ± 18.49

4.3.5 �AFES Results

Table 4.5 shows the group mean results at baseline. As shown in the table,

AFES-assisted FVC, FEV1, PEF, and MEP were significantly greater than their

corresponding unassisted outcome measures.

Table 4.5: E↵ect of AFES on the FVC, FEV1, PEF and MEP results at baseline.
The results reported are the group mean ± one standard deviation of the individual
subject results averaged over A1 and A2. p is the p-value from the comparison of the
unassisted and AFES-assisted results using the Wilcoxon Sign Rank test

Unassisted AFES-assisted �AFES p
FVC (L) 1.76 ± 0.96 1.95 ± 1.00 0.19 ± 0.31 0.01
FVC (%pred.) 34.83 ± 17.43 39.53 ± 19.39 4.32 ± 7.51 0.01
FEV1 (L) 1.17 ± 0.47 1.30 ± 0.45 0.10 ± 0.16 < 0.01
FEV1 (%pred.) 28.38 ± 10.75 32.15 ± 10.38 2.74 ± 4.32 < 0.01
PEF (L/s) 2.04 ± 1.06 2.33 ± 1.05 0.23 ± 0.20 < 0.01
PEF (%pred.) 22.06 ± 11.86 25.22 ± 11.68 2.54 ± 2.12 < 0.01
MEP (cmH2O) 20.31 ± 14.15 26.95 ± 14.90 6.64 ± 5.57 < 0.01
MEP (%pred.) 15.88 ± 12.94 20.79 ± 12.54 4.92 ± 4.43 < 0.01

Figure 4.3 shows the group mean unassisted and AFES-assisted outcome mea-

sures, and Table 4.6 gives the group mean �AFES outcome measures, at each

assessment during the study. Though there were large di↵erences between several

assessment sessions (e.g. �MEP increased from 3.25 to 7.04 cmH2O between A1

and A2), there were no clear trends in the change in �AFES throughout the

study for any of the outcome measures. Accordingly, the changes in the outcome

measures were not statistically significant.

Table 4.6: Group mean (± standard deviation) �AFES FVC, FEV1, PEF and MEP
results on each assessment session

A1 A2 A3 A4 A5 A6 p
�FVC (L) 0.10 ± 0.28 0.15 ± 0.45 0.19 ± 0.34 0.34 ± 0.51 0.13 ± 0.49 0.07 ± 0.44 0.39
�FEV1 (L) 0.02 ± 0.13 0.07 ± 0.20 0.09 ± 0.15 0.02 ± 0.20 0.08 ± 0.30 0.08 ± 0.34 0.86
�PEF (L/s) 0.11 ± 0.26 0.20 ± 0.21 -0.01 ± 0.23 0.22 ± 0.49 0.19 ± 0.45 0.37 ± 0.54 0.23
�MEP (cmH2O) 3.25 ± 7.16 7.04 ± 6.83 5.62 ± 6.32 4.12 ± 5.33 8.62 ± 9.62 5.75 ± 7.77 0.53
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Figure 4.3: Group mean unassisted and AFES-assisted FVC, FEV1, PEF and MEP
results

4.3.6 Sensitivity Analysis

Table shows the p-values from the Friedman test performed on the data set in

which subjects who had missed at least one assessment session were removed.

This analysis confirmed that the change in unassisted and AFES-assisted FVC

was significant. Contrary to the last value carried forward analysis, however, it

found that the change in unassisted PEF was not significant and that the change

in �AFES PEF was significant. All other results were in agreement between the

two analysis methods.
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Table 4.7: Results of the sensitivity analysis. The table shows the p-values from the
Friedman test performed on the data set in which subjects who had missed at least one
assessment session were removed.

Unassisted AFES �AFES
FVC 0.0021 0.0098 0.3451
FEV1 0.2262 0.2971 0.8989
PEF 0.0825 0.3347 0.0419
MEP 0.0872 0.1834 0.2771

4.4 Discussion

The aim of this study was to determine the e↵ect of a passive AFES respiratory

muscle training programme on unassisted and AFES-assisted standard clinical

pulmonary function measures. Based on previous work it was hypothesised that

the training intervention would improve unassisted FVC and MEP test outcome

measures [27,159]. In addition it was hypothesised that the training intervention

would increase the absolute value of the AFES-assisted outcome measures, and

the relative value of the AFES-assisted outcome measures compared with the

unassisted outcome measures. This study found that both unassisted and AFES-

assisted FVC were significantly augmented over the training period but a relative

change between AFES-assisted and unassisted FVC was not found.

4.4.1 Unassisted Clinical Respiratory Tests

The results show a significant improvement in FVC of 20% over the training

period (A2 to A5). An increase in unassisted PEF of 19% was also shown,

however, since the sensitivity analysis did not agree with the original analysis,

further research is needed to confirm the validity of this result. While there

was also a tendency for FEV1 to increase over the training period this was not

statistically significant. In the one week pre-training control phase (A1 to A2)

and the three week follow up phase (A5 to A6), no statistically significant changes

in any of the outcome measures were found. This suggests that the change in

FVC over the training phase was a response to the intervention rather than due

to natural recovery, which can occur in the acute phase of SCI [86].

This study included a heterogeneous sample of patients with a mix of injury

levels, time post injury and AIS grade which led to a large inter-subject variability.

Despite this complex case mix the results show that FVC improved for all but

one subject over the training phase. Furthermore the absolute changes during

the training phase relative to baseline over the study were comparable for those
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subjects with motor complete and those with motor incomplete tetraplegia. This

suggests that AFES training is applicable for a wide demographic of tetraplegic

patients.

There was an increase between A5 and A6 in all of the outcome measures for

the motor complete tetraplegic subjects. This observation is surprising as motor

complete patients are much less likely to regain function than motor incomplete

patients. There is no clear explanation for this di↵erence and it should be verified

in a future investigation.

The subjects included in this study were unable to contract their abdominal

muscles voluntarily. Therefore, it is unlikely that the increase in FVC was a result

of increased abdominal muscle strength. Instead the author hypothesises that an

increase in inhalation volume resulted in the increase in FVC. There are at least

two possible explanations for an increase in inhalation volume:

1. The respiratory muscle training programme used in this study may have

increased abdominal muscle mass, which has been shown to be reduced

in tetraplegia [51]. Previous studies have shown an increase in the cross

sectional area of the leg muscles in SCI individuals after eight weeks [46]

or six months [131] of FES. Although these studies lasted longer than the

present study it is feasible that the training programme used in this study

increased the cross sectional area of the abdominal muscles. This would lead

to greater support of the abdominal contents, which act as a fulcrum as the

diaphragm contracts [154], placing the diaphragm in a better mechanical

position to expand the lower lung. Inhalation capacity would be increased

and in turn so would FVC.

2. The compliance of the lung was increased. During the training sessions

abdominal stimulation was applied in synchrony with exhalation and this

probably augmented VT [57,58,134]. In turn the augmented VT may have

increased the compliance of the lung, making it easier for patients to expand

their lungs. This mechanism is reported to be responsible for the reduction

in weaning duration observed in patients who are ventilated with greater

tidal volumes [120].

In this study, neither the mass of the abdominal muscles, nor the compliance of

the lung were measured since the primary objective of this exploratory study was

to investigate whether the training programme a↵ected respiratory parameters.

Future studies should aim to validate the positive findings of this study and
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should also validate the explanatory mechanisms presented here by including

measurements of abdominal muscle mass and lung compliance.

The average increase in unassisted FVC (20% increase) found in this study

was similar to the results of one previous study [159] but smaller than in other

previous studies [27, 87]. In addition, a previous similar study [27] found a sta-

tistically significant increase in unassisted FEV1 and PEF, whereas the increase

in unassisted FEV1 and PEF was smaller in this study and not statistically sig-

nificant. There are at least two possible explanations for these di↵erences:

1. The three week training period in this study was shorter than the four week

training period used in the comparison studies [27, 87, 159]. In the current

study the increase in FVC, FEV1 and PEF did not plateau which suggests

that further benefits from the intervention might be achieved if training was

continued over a longer period of time. In the case of FEV1 and PEF this

may lead to a statistically significant change.

2. The training modality used. The interventions used in previous work trained

other respiratory muscles, for example the pectoral muscles, in addition to

the abdominal muscles. This was accomplished either by using additional

channels of electrical stimulation [27], or by using breathing exercises which

inherently recruit other expiratory muscles in addition to the abdominal

muscles [87, 159]. Expiration is known to be an active process in patients

with a tetraplegic SCI below the level of C5 [50]. Therefore, in this group

of patients the training modalities used in previous work probably o↵ered

an additional physiological benefit compared with the training programme

used in the current study.

Decreases in FVC have also been observed in a previous similar study by

Hascakova-Bartova et al. [70]. Although Hascakova-Bartova et al. agree that

training increased abdominal bulk they concluded this would have a negative

impact on the diaphragm. A major di↵erence between the present study and the

study by Hascakova-Bartova et al. was the initial FVC of the subjects studied,

which was considerably greater in the study by Hascakova-Bartova et al. than in

the present study.

4.4.2 AFES-Assisted Clinical Respiratory Tests

The second and third aims of this study were to determine whether a passive

AFES respiratory muscle training programme increased (i) the absolute values
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of the AFES-assisted outcome measures, and (ii) the relative value of the AFES-

assisted outcome measures compared with the corresponding unassisted outcome

measures. These aims were investigated by initially verifying that there was a

di↵erence between unassisted and AFES-assisted outcome measures before the

intervention began. Subsequently, this study determined whether AFES-assisted

outcome measures changed over the study period. Finally, the change in the

di↵erences between the unassisted and AFES-assisted outcome measures over

the course of the study were investigated.

Acute E↵ect of AFES on Clinical Respiratory Tests at Baseline

The results of this study showed that the AFES-assisted FVC, FEV1, PEF and

MEP were significantly greater than their corresponding unassisted outcome mea-

sures. A significant di↵erence between unassisted and AFES-assisted FVC, FEV1
and PEF has been reported previously [85]. However this is the first study that

has reported a significant di↵erence between unassisted and AFES-assisted MEP.

The magnitude of the di↵erence between unassisted and AFES-assisted FVC

and FEV1 in this study was similar to the results reported by Zupan et al. [159],

but smaller than in the study by Langbein et al. [85]. In addition, the magnitude

of the di↵erence between unassisted and AFES-assisted PEF was smaller in the

present study compared with the study by Langbein et al. [85]. The subjects in

both the current study and the study by Zupan et al. were more recently injured

than the subjects studied by Langbein et al. This may explain the di↵erence

in results between the studies as recently injured patients have to relearn to

coordinate their respiratory muscles [141]. On the contrary, chronically injured

patients are likely to have greater atrophy of the abdominal muscles and thus

benefit less from AFES than recently injured subjects. From the data available

currently there is not a satisfactory explanation for the di↵erence between the

results of the current study and the study by Langbein et al. Further work will

be required to fully determine the factors that influence �AFES.

The di↵erence between unassisted and AFES-assisted MEP in the current

study was comparable to the result reported in the single case study by Lee et

al. [87]. Abdominal muscle contraction increases the intra-abdominal pressure

which causes the abdominal contents to be pushed upward toward the lung and

increase intra-thoracic pressure. Therefore the results reported in this study were

expected.
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E↵ect of AFES Training on AFES-Assisted Pulmonary Function Tests

The results of this study showed that AFES-assisted FVC significantly improved

over the training period. In addition FEV1, PEF and MEP all tended to increase

over the training period. However, contrary to the hypothesis of this study, the

di↵erence between the unassisted and AFES-assisted outcome measures did not

change over the course of the intervention. These results suggest that the im-

provements in AFES-assisted outcome measures were a result of the improvement

in unassisted outcome measures rather than a consequence of an improvement in

abdominal muscle contractile properties.

This is the first study that has specifically examined the e↵ect of a respiratory

muscle training regime on the di↵erence between unassisted and AFES-assisted

pulmonary function measures. Other studies [87, 159], have reported both unas-

sisted and AFES-assisted outcome measures in response to respiratory muscle

training but have not focussed on the di↵erence between them. The results re-

ported by Zupan et al. [159] appear to indicate that the di↵erences between unas-

sisted and AFES-assisted FVC and FEV1 did not change following four weeks of

breathing exercises, which included AFES. The results from a single case study,

reported by Lee et al. [87], indicate that the di↵erence between unassisted and

AFES-assisted PEF and MEP increased after four weeks of AFES-assisted cough-

ing exercises.

Previous work has shown that the cross sectional area of the limb muscles de-

creases significantly within 6 weeks post-SCI [26,65,128]. Although the decrease

in cross sectional area is likely to vary between di↵erent muscles [26], Estenne et

al. showed a decrease in the thickness of the abdominal wall muscles in chronic

tetraplegic patients compared with age, sex, height and weight matched able-

bodied controls [51]. In addition, Kowalski et al. [82] found a significant decrease

in the weight of the abdominal muscles of cats 6 months after spinalisation. Fur-

thermore, Kowalski et al. [82] found that the airway pressure generating capacity

of the cats decreased by 46% 6 months after spinalisation. Since all of the sub-

jects in this study were at least three months post-SCI it is presumed that their

abdominal muscles would be significantly atrophied. Thus, reversing the mus-

cle atrophy should have resulted in an increase AFES-assisted outcome measures

relative to the unassisted outcome measures.

From the results of this study it is not possible to determine why the training

programme did not improve the AFES-assisted outcome measures relative to the

unassisted outcome measures. There are at least two possible explanations.

Firstly, The training programme was not of a su�cient duration to reverse
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the e↵ects of muscle atrophy. To the authors knowledge, there has only been

one previous study in which the e↵ects of AFES on the strength of the abdom-

inal muscles was investigated [6]. In this study four weeks of AFES improved

the force generating capacity of the abdominal muscles in able-bodied subjects.

Four weeks of electrical stimulation has also been shown to improve the maxi-

mum voluntary contraction of the quadriceps muscle in able-bodied subjects [62].

However, changes in muscle contractile properties following four weeks of elec-

trical stimulation training have been attributed to neural adaptions, rather than

a morphological change in the muscle. Furthermore these neural adaptions are

thought to occur at the supra spinal level [62]. Since SCI mitigates the possibility

of supra spinal neural adaptions a↵ecting abdominal muscle contraction it may be

that training programs that last longer than three weeks are required before im-

provements in abdominal muscle contractile properties are observed in tetraplegic

patients. The last statement is at least partially supported by the observation that

previous FES training studies, which show an improvement in muscle strength in

SCI patients, have lasted considerably longer than three weeks [11, 46].

Secondly, the design of the training programme was not suitable to induce

changes in abdominal muscle strength. It is generally accepted that the most

e↵ective way to increase the strength of a muscle is to contract the muscle against

a load. In comparison, repetitive unloaded contractions result in improvements in

muscle endurance [79]. In the present study, AFES was applied in synchrony with

a patients volitional exhalation. Therefore the abdominal muscles were unloaded

relative to the abdominal muscles contracting against a held breath. Thus, it

is possible that the training regime used in this study could have improved the

endurance capacity rather than the strength of the abdominal muscles. The

results from two previous studies support this explanation. In the first study [135],

the tibialis anterior muscle of SCI patients was stimulated for two hours per day

without any external loading. The results of that study showed a significant

increase in the endurance capacity of the muscle but no increase in the strength

of the muscle. In the second study [46], the quadriceps muscle of patients with

SCI was contracted 40 times per day against a load using FES. The results of

that study showed a significant increase in muscle strength.

4.4.3 Study Limitations

There was considerable intra-subject variability seen in some of the subjects. This

could be attributable to fluctuating general health of the patients but might also

be attributed to test-retest reliability. In this study, the mean of three attempts
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which were within 20% of each other was used for analysis. This protocol was in

line with ATS/ERS recommendations for the MEP test [53] but it was not possible

to follow the recommendations for the FVC test [112]. Although previous work

has shown ATS/ERS standards for spirometry can be applied in SCI [80] this

only included subjects with chronic injuries ( > 2 years). In the present study

it was necessary to accept this large variation between attempts to make data

collection possible as most of the subjects were in the early stages of injury and

found it di�cult to produce consistent results.

It is important to exercise caution when interpreting the results of this study

as there is not a matched control group. Some previous work has reported that

FVC, FEV1 and PEF increase considerably within the first three months of

injury due to natural recovery [86]. In another study, however, which included

subjects with a similar time post injury to this study, no changes in respiratory

function occurred over a period of four weeks [27]. While it is not possible to

rule out natural recovery for the changes seen in this study the lack of change in

respiratory function during the week before training and three weeks post training

do not support this notion.

4.5 Conclusions

1. The passive AFES training programme presented in this study is a feasible

technique to improve unassisted clinical respiratory measures. The results

provide a basis for a future controlled trial of the technique.

2. The application of AFES acutely improves unassisted FVC, FEV1, PEF

and MEP.

3. The passive AFES training programme presented in this study is a feasible

technique to improve AFES-assisted clinical respiratory measures but not

AFES-assisted clinical respiratory measures relative to unassisted clinical

respiratory measures. Future work with this goal should investigate the

feasibility of AFES training against a resistance.
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Chapter 5

Study 1: Cough Results

Coughing is an essential part of the respiratory system’s defences and is required

to remove secretions from the lungs. The ability to cough is severely compromised

in patients with a tetraplegic SCI as a result of the paralysis of the abdominal and

intercostal muscles. This puts these patients at an increased risk of developing

pneumonia and atelectasis [108].

Traditional methods for the treatment of an impaired cough include postu-

ral drainage [122], mechanical insu✏ation-exsu✏ation [9] and manually assisted

cough by a trained therapist [22]. However all of these methods require assistance

by a trained caregiver which makes it unlikely that patients clear secretions as

often as is necessary.

AFES o↵ers a potentially new method of cough assistance in these patients

[57]. Previous studies have shown that both the pressure (gastric, esophageal and

mouth) and CPF are larger in AFES-assisted coughs than in unassisted coughs

in tetraplegia [24, 58, 75, 87, 89, 133, 140]. A major potential advantage of AFES-

assisted cough is that it could be incorporated into a device which is operated

independently by the patients [57]. This would allow the patients to cough at

will and thereby reduce the burden on the caregiver.

Generally AFES is applied at the end of inhalation during the glottal closure

phase of the cough. Contraction of the abdominal muscles during this phase

increases intrathoracic pressure, which causes a rapid expulsion of air when the

glottis is opened. The more forceful the contraction of the abdominal muscles, the

greater the increase in intrathoracic pressure and subsequent expiratory flow rate.

It is known that by using stimulation frequency trains which include an initial

high frequency burst of two to four pulses, the force production of electrically

stimulated muscle can be increased compared with stimulation by CFTs. This

e↵ect is called the catchlike property of muscle and the trains that induce it
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are called CITs [16]. Although CITs may be useful for maximising the e�cacy of

AFES-assisted cough, to date they have not been investigated for this application.

One of the consequences of SCI is considerable muscle disuse atrophy and a

change in the fibre type composition of the paralysed muscles [118]. However,

the e↵ect of abdominal muscle training on AFES-assisted cough has been given

limited attention [87, 104]. Prior to the start of the current study, a single case

study in which the patient practiced AFES-assisted coughing for twenty minutes

per day, five times a week for four weeks, found an increase in both unassisted

and AFES-assisted CPF and MEP [87]. After the conclusion of the current study,

the results of a fifteen patient crossover trial were published as a sequel to the

single case study [104]. That study found a significant increase in unassisted

and AFES-assisted CPF after six weeks of AFES-assisted cough training. These

results are interesting as they suggest that an AFES cough neuroprosthesis [57]

would become more e↵ective over time.

The results described above also suggest that AFES neuromuscular training

may improve unassisted cough in tetraplegia. However, AFES-assisted cough

training can be considered an active training programme and is therefore subject

to the disadvantages discussed in Chapter 4. The e↵ect of an exclusive AFES

passive training programme on unassisted and AFES-assisted cough has not been

studied.

Leading on from previous work this study investigated the e↵ect of a passive

AFES training programme on the ability to cough. The primary aims of this

study were:

1. To determine the e↵ect of the training programme on unassisted coughing.

2. To determine the e↵ect of the training programme on AFES-assisted cough,

and on AFES-assisted cough relative to unassisted cough.

The secondary objectives of this study were:

1. To verify that AFES-assisted cough is greater than unassisted cough.

2. To determine the e↵ect of using a CIT on AFES-assisted cough.

5.1 Methods

The study protocol and cough assessment is described in Chapter 3. In this

section the methods which were specific to the analysis of the cough data are

described.
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The dependent outcome measures were CPF, FEV1 and VI. For each assess-

ment session the means of the dependent outcome measures were taken over the

best three coughs for each mode of coughing (unassisted cough, CFT cough and

CIT cough). If less than three coughs were attempted for a mode of coughing

then these results were excluded from the analysis.

The CFT cough outcome measures were examined as absolute values and with

respect to the unassisted outcome measures (�CFT). Similarly, the CIT cough

outcome measures were examined as absolute values, and with respect to the

CFT cough outcome measures (�CIT-CFT) and with respect to the unassisted

cough outcome measures (�CIT-U)

5.1.1 Primary Analysis

The changes in the dependent outcome measures over the course of the training

period were investigated and compared with the changes which occurred during

the control and follow up periods of the study. This analysis included only sub-

jects who completed the final assessment session (A6) and who missed no more

than one assessment session during the study. Missing data for assessment A1 was

replaced by A2, missing data for assessments subsequent to A1 was replaced by

the data from the previous assessment. A significant change was determined using

the Friedman test with post-hoc multiple comparisons using the Tukey-Kramer

Honestly Significant Di↵erence correction.

5.1.2 Secondary Analysis

This analysis is related to the secondary objectives of this study and included all

of the subjects who completed at least one of the A1 and A2 assessment sessions.

For each eligible subject the magnitude of �CFT and �CIT was averaged over

the baseline assessments and compared with zero using the Wilcoxon Signed Rank

test.

5.2 Results

5.2.1 Stimulation timing

The automatic cough stimulation trigger was e↵ective for the majority of subjects.

The automatic trigger could not be used for subjects S3, S6, S7 and S8 as their

quiet breathing and coughing peak inspiratory flows were similar. For these
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subjects, stimulation was triggered manually by the researcher to coincide with

the glottal closure phase of the cough.

5.2.2 Data Collection

As discussed in Chapter 3, subjects S4, S6, S13, and S16 did not complete the

whole study.

The following data points were discarded since less than three coughs were

recorded:

• unassisted cough on A1 for S7

• CFT cough on A1 for S4

• CIT cough on A1 for S1; on A4, A5, and A6 for S5; on A1 for S9; on A2

for S12; and on A1 for S14

CIT cough was not collected for S3, S6, S7, and S8 as the manual stimulation

trigger could not be used to produce a CIT.

CFT cough was not collected for S1 or S2 because these subjects were tested

using the original protocol which did not include CFT cough (see Chapter 3 for

details).

As a result of the missing data described above di↵erent groups of subjects

were used for di↵erent parts of the analysis. These are described in Table 5.1.

5.2.3 Forced Exhaled Volume in One Second

For the majority of subjects the exhalation time of a cough was shorter than one

second and it was not possible to calculate FEV1. Example flow rate traces of

coughs from S5 and from S15 are shown in Figure 5.1. S5 was the only subject

for which the exhalation time of cough was consistently greater than one second.

Accordingly, FEV1 was removed as an outcome measure from the analysis.
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Table 5.1: Subjects used for di↵erent parts of the cough analysis. N indicates the
number of subjects that were included in each part of the analysis.

Analysis Description N Subjects
Baseline
CFT
Cough

Subjects who completed at least one baseline
assessment (A1 and A2) for both unassisted
cough and CFT cough

14 S3 to S16

Baseline
CIT
Cough

Subjects who completed at least one baseline
assessment for unassisted cough, CFT cough
and CIT cough

10 S4, S5, S9 to
S16

Training
Unassisted
Cough

Subjects who completed the study and
missed no more than one unassisted cough
assessments

12 S1 to S3, S5,
S7 to S12,
S14, S15

Training
CFT
Cough

Subjects who completed the study and
missed no more than one of the unassisted
cough and CFT cough assessments

10 S3, S5, S7 to
S12, S14, S15

Training
CIT
Cough

Subjects who completed the study and
missed no more than one of the unassisted
cough, CFT cough and CIT cough assess-
ments

6 S9 to S12,
S14, S15
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Figure 5.1: Example flow rate traces of unassisted cough, CFT cough, and CIT cough
for (a) S5 during A2, for which it was possible to calculate FEV1 and (b) S15 during
A2, for which it was not possible to calculate FEV1. The bold black line shows when
stimulation was applied.

5.2.4 Unassisted Cough

The unassisted cough results are shown for the Training Unassisted Cough sub-

jects in Figure 5.2 and summarised in Table 5.2. The standard deviations in

Table 5.2 and the individual subject data in Figure 5.2 demonstrate that there

was considerable variation for all outcome measures both between subjects and

within individual subjects.
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The longitudinal change in CPF and VI were found to be statistically sig-

nificant according to the Friedman test. Multiple comparison testing found a

significant di↵erence between A2 and A5 for the CPF results and between A2

and A5 for the VI results.
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Figure 5.2: Unassisted cough results over the whole study. Individual subject results
are represented by the grey lines while the group mean is shown by the bold black line.

Table 5.2: Mean (standard deviation) unassisted cough results for each outcome
measure shown for each assessment session. �

2 is the Friedman test statistic and p is
the corresponding p-value.

A1 A2 A3 A4 A5 A6 �

2 p
CPF (L/s) 3.29 (1.47) 3.05 (1.48) 3.34 (1.70) 3.42 (1.73) 3.60 (1.47) 3.48 (1.71) 12.14 0.033
VI (L) 1.28 (0.48) 1.20 (0.53) 1.42 (0.45) 1.36 (0.53) 1.45 (0.48) 1.42 (0.52) 17.36 0.004
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5.2.5 AFES-Assisted Cough at Baseline

CFT Cough

Flow rate traces from example coughs are shown for S16 and S14 in Figure 5.3.

This figure shows that CPF was considerably higher during both CFT cough

and CIT cough, compared with unassisted cough, for S16. Conversely, CPF

was substantially smaller during CFT cough and CIT cough, compared with

unassisted cough, for S14.
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Figure 5.3: Flow traces of the best unassisted cough, CFT cough, and CIT cough
from (a) S16 on A1 who had the largest CFT cough in comparison to unassisted cough
and (b) S14 on A2 who had the smallest CFT cough in comparison with unassisted
cough. The bold black line shows when stimulation was applied. U-C: unassisted cough;
CFT-C: CFT cough; CIT-C: CIT cough.

Table 5.3 shows the group mean unassisted cough, CFT cough and �CFT

cough averaged baseline results for the Baseline CFT Cough subjects. �CFT

cough was not significantly di↵erent from zero for either CPF (p=0.14) or VI
(p=0.81). The repeatability of �CFT cough was poor across A1 and A2; CPF

was only consistently positive for five out of the twelve subjects who completed

both assessment sessions.

Table 5.3: The group mean (standard deviation) CFT cough results at baseline.
Baseline data was calculated by taking the mean over A1 and A2 for each subject. p
is the probability that �CFT cough is equal to zero which was calculated using the
Wilcoxon Signed Rank test. U-C: unassisted cough; CFT-C: CFT cough; �CFT-C:
�CFT cough.

U-C CFT-C �CFT-C p
CPF (L/s) 2.88 (1.36) 2.99 (1.41) 0.16 (0.48) 0.14
VI (L) 1.11 (0.41) 1.10 (0.44) -0.00 (0.15) 0.81
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Figure 5.4 shows the results of the regression of CPF on VI for unassisted

cough and CFT cough. The regression found CPF to vary significantly with

respect to VI for both unassisted cough and CFT cough (p=0.001 and p=0.012,

respectively). However, there was no evidence to sugest that CPF was di↵erent

between CFT cough and unassisted cough after adjusting for the variability in

VI.
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Figure 5.4: Fit from least squares regression of CPF on VI for unassisted cough (grey
lines and markers) and CFT cough (black lines and markers). The regression was done
using the mean VI and CPF over all assessment sessions for each subject. The solid
lines represent the fitted model and the dashed lines represent the confidence intervals
of the fit. The Durbin-Watson test found the residuals from the unassisted cough
and CFT cough fits to meet the assumption of random error (p=0.103 and p=0.081,
respectively).

CIT Cough

Table 5.4 shows the group mean baseline results for the Baseline CIT Cough

subjects. �CIT-CFT was not significantly di↵erent from zero for either CPF

(p=0.27) or VI (p=0.92). �CIT-CFT CPF was consistently positive across A1

and A2 for one out of the six subjects who completed both assessment sessions.

�CIT-U was not significantly di↵erent from zero for either CPF (p=0.43) or VI
(p=0.84). �CIT-U CPF was consistently positive across A1 and A2 for three out

of the seven subjects who completed both assessment sessions.
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Table 5.4: The group mean (standard deviation) results for the CIT cough subjects
at baseline. Baseline data was calculated by taking the mean over A1 and A2 for each
subject. U-C: unassisted cough; CFT-C: CFT cough; CIT-C: CIT cough; �CIT-U-C:
�CIT-U cough; �CIT-CFT-C: �CIT-U cough

U-C CFT-C CIT-C �CIT-U-C �CIT-CFT-C
CPF (L/s) 3.29 (1.41) 3.28 (1.57) 3.44 (1.40) 0.17 (0.54) 0.10 (0.36)
VI (L) 1.19 (0.39) 1.11 (0.45) 1.16 (0.45) -0.00 (0.14) 0.02 (0.10)

5.2.6 E↵ect of Training on AFES-assisted Cough

CFT Cough

The CFT cough results for the Training CFT Cough subjects are summarised in

Table 5.5 which show a pattern similar to that of the unassisted cough. There

was considerable variation, both inter and intra subject, for each of the outcome

measures. CPF tended to increase over the training phase but this change was

not statistically significant. The change in VI was statistically significant over the

course of the study according to the Friedman test. Multiple comparison testing

found significant di↵erences between A1 and A5, and between A1 and A6.

The group mean CFT cough and unassisted cough results for the Training

CFT Cough subjects are shown in Figure 5.5. The figure shows that the di↵erence

between unassisted cough and CFT cough does not change throughout the study

for either CPF or VI. This observation is reflected in Table 5.6 which shows that

neither �CFT cough CPF nor VI changed significantly during the course of the

study.

Table 5.5: Group mean (standard deviation) results for CFT cough over the course
of the study. �2 is the Friedman test statistic and p is the corresponding p-value.

A1 A2 A3 A4 A5 A6 �

2 p
CPF (L/s) 3.08 (1.58) 3.09 (1.70) 3.25 (1.85) 3.16 (1.78) 3.47 (1.57) 3.47 (1.71) 9.04 0.108
VI (L) 1.10 (0.37) 1.16 (0.52) 1.29 (0.42) 1.25 (0.49) 1.39 (0.50) 1.32 (0.46) 16.95 0.005

Table 5.6: Group mean (standard deviation) results for �CFT cough over the course
of the study. �2 is the Friedman test statistic and p is the corresponding p-value.

A1 A2 A3 A4 A5 A6 �

2 p
CPF (L/s) -0.03 (0.44) 0.20 (0.77) 0.03 (0.24) -0.06 (0.63) 0.05 (0.49) 0.03 (0.53) 3.98 0.552
VI (L) -0.08 (0.17) 0.07 (0.21) -0.05 (0.12) -0.02 (0.20) 0.04 (0.15) -0.02 (0.27) 5.65 0.342
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Figure 5.5: The changes in CFT cough and unassisted cough, CPF and VI means
throughout the study. U-C: unassisted cough; CFT-C: CFT cough

CIT Cough

The CIT cough results for the Training CIT Cough subjects are summarised in

Table 5.7. As with the unassisted cough results and the CFT cough results the

inter and intra subject variation was considerable for both CPF and VI. The table

shows that both CPF and VI tended to increase over the training intervention.

The statistical analysis found that these trends were not statistically significant.

The group mean CIT cough, CFT cough, and unassisted cough results for the

Training CIT Cough subjects are shown in Figure 5.6. The figure shows that the

di↵erence between CIT cough and both unassisted cough and CFT cough did not

change throughout the study for either CPF or VI. This observation is reflected

in Tables 5.8 and 5.9 which show that the �CIT-CFT cough and �CIT-U cough

outcome measures did not change significantly throughout the study.

Table 5.7: Group mean (standard deviation) results for CIT cough results over the
course of the study. �2 is the Friedman test statistic and p is the corresponding p-value.

A1 A2 A3 A4 A5 A6 �

2 p
CPF (L/s) 3.65 (1.50) 3.76 (1.52) 3.84 (1.85) 3.77 (1.70) 4.07 (1.70) 3.98 (1.67) 7.07 0.215
VI (L) 1.38 (0.54) 1.43 (0.57) 1.50 (0.52) 1.43 (0.54) 1.59 (0.50) 1.52 (0.46) 3.15 0.678

Table 5.8: Group mean (standard deviation) results for �CIT-CFT cough over the
course of the study. �2 is the Friedman test statistic and p is the corresponding p-value.

A1 A2 A3 A4 A5 A6 �

2 p
CPF (L/s) 0.20 (0.64) 0.03 (0.45) -0.11 (0.25) 0.04 (0.63) -0.03 (0.18) -0.02 (0.38) 3.23 0.665
VI (L) 0.05 (0.14) 0.01 (0.20) -0.06 (0.14) -0.02 (0.15) -0.02 (0.09) 0.05 (0.12) 4.20 0.521
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Figure 5.6: The changes in unassisted cough, CFT cough and CIT cough, CPF and
VI means throughout the study. U-C: unassisted cough; CFT-C: CFT cough; CIT-C:
CIT cough.

Table 5.9: Group mean (standard deviation) results for�CIT-U cough over the course
of the study. �2 is the Friedman test statistic and p is the corresponding p-value.

A1 A2 A3 A4 A5 A6 �

2 p
CPF (L/s) -0.05 (0.60) 0.19 (0.54) -0.06 (0.32) -0.09 (0.56) -0.01 (0.62) 0.04 (0.55) 3.72 0.591
VI (L) -0.06 (0.21) 0.04 (0.15) -0.09 (0.16) -0.11 (0.16) -0.06 (0.16) -0.11 (0.18) 6.68 0.245

5.3 Discussion

The primary aim of this study was to investigate the e↵ect of a passive abdominal

muscle training program on unassisted and AFES-assisted cough. The secondary

aims of this study were to verify the results of previous authors that AFES-

assisted cough was greater than unassisted cough and to evaluate the use of a

CIT to improve the e↵ectiveness of AFES-assisted coughing. This study found

that unassisted, but not CFT cough or CIT cough, CPF was significantly aug-

mented over the training period. Neither CFT cough nor CIT cough significantly

improved unassisted CPF prior to training.

5.3.1 Unassisted Cough

The results of this study found that there was a progressive increase in the group

mean of both unassisted CPF (18%) and VI (21%) over the training period (be-

tween A2 and A5). While this was statistically significant there was a decrease

in both measures in the control period (A1 to A2) reducing the overall di↵er-

ence between A1 and A5 to approximately 9% and 13% respectively. There was

however a consistent trend that suggests a training e↵ect. There was a small
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decrease through the follow up period (between A5 and A6), but there appeared

to be some residual benefit. This is similar to the change in PEF and FVC shown

in Chapter 4.

The tetraplegic patients in this study were unable to contract their abdominal

muscles voluntarily and so it is unlikely that CPF improved through an increase in

abdominal muscle strength. Instead, since lung recoil force becomes greater with

increasing lung volume, the most likely explanation is that CPF increased as a

result of increased VI. This relationship between CPF and VI was demonstrated

by the regression of CPF on VI using the results of this study.

There are two possible explanations for the increase in VI observed over the

training period:

1. Patients exerted greater e↵ort in the later training sessions. While this

explanation cannot be eliminated, since VI was not explicitly controlled

for, it should be noted that patients were encouraged by the researcher to

cough with maximum e↵ort throughout the study.

2. It was less strenuous for patients to take larger inhalations as a result of

increased inhalation capacity. This explanation is coherent with the find-

ings of Chapter 4 which showed that FVC increased during this training

programme.

Previous work has reported the e↵ects of an AFES-assisted cough training

programme on unassisted cough in tetraplegia [87, 104]. The results of these

studies showed that unassisted CPF increased by 23% [87] and by 19% [104]

after three and six weeks of training respectively. These increases are similar to

the increase in CPF between A2 and A5 reported in the current study. Although

these studies used a di↵erent AFES training modality to the current study, the

results further suggest that AFES neuromuscular training is a useful tool to

improve unassisted cough in tetraplegia.

5.3.2 AFES-Assisted Cough

In this study AFES-assisted cough was tested using both a CFT stimulation

pattern, the standard method used for AFES-assisted cough, and a CIT stimu-

lation pattern, a new method which has the potential to enhance the e�cacy of

AFES-assisted cough. The main findings of this study were:

1. At baseline, the CFT cough and the CIT cough outcome measures were

not di↵erent from unassisted cough outcome measures, and the CIT cough

outcome measures were not di↵erent from CFT cough outcome measures.
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2. The absolute values of the CFT cough and the CIT cough outcome mea-

sures tended to improve over the training period but this change was not

significant.

3. AFES training did not a↵ect the CFT cough outcome measures relative

to the unassisted cough outcome measures nor did it a↵ect the CIT cough

outcome measures relative to either the CFT cough outcome measures or

the unassisted cough outcome measures.

Baseline CFT cough

The results showed only a small increase between the group mean unassisted

cough and CFT cough CPF, which was not statistically significant. Furthermore,

�CFT cough was not consistent over A1 and A2 for more than half of the subjects

studied.

These results are contrary to the original hypothesis of this study. The ap-

plication of AFES to the otherwise paralysed abdominal wall muscles during the

glottal closure phase of a cough should augment the intrathoracic pressure that

the patient can generate volitionally. In turn, this increased intrathoracic pressure

should result in a CPF greater than that with the patient’s volitional e↵ort.

There are at least two possible explanations for the results of this study.

1. AFES did not augment unassisted intrathoracic pressure. While this expla-

nation cannot be eliminated since intrathoracic pressure was not measured,

a strong visual contraction of the abdominal muscles in response to AFES

was observed in every subject who participated in this study. Further-

more, the results of Chapter 4 showed, in the same group of subjects, that

AFES-assisted MEP and PEF were greater than unassisted MEP and PEF.

Therefore, it seems unlikely that the lack of di↵erence between unassisted

cough and CFT cough can be explained by insu�cient abdominal muscle

contraction.

2. The timing of stimulation a↵ected the coordination of the subjects’ other

respiratory muscles during cough. In this study stimulation was timed au-

tomatically to coincide with the glottal closure phase of the cough for the

majority of the subjects tested. This method was devised by Gollee et

al. [57, 58] who showed it to be e↵ective at improving unassisted CPF in

chronically injured tetraplegic patients. A cough consists of a complex series

of muscle contractions which have to be timed appropriately. In addition,

patients in the post-acute stage of injury are relearning to coordinate their
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muscles [141]. Although an automatic method of applying AFES should

provide consistency, its timing is based on a single measurement. There-

fore, particularly for the subjects included in this study, it is possible that

the automatic method would not be as e↵ective as a human operator in

sensing the best timing for coughing. Furthermore, it is possible that inap-

propriately timed abdominal contraction could perturb the coordination of

the other respiratory muscles during cough.

The results of this study contradict the results found by several previous au-

thors [24,58,75,87,89,104,140]. There has been only one previous study which has

not found a di↵erence between unassisted and CFT CPF [133]. Although there

are several methodological di↵erences between the current study and previous

studies, the major di↵erences are:

1. The time post injury. The average duration post injury for subjects in the

previous studies ranged between 21 months [58] to 11.9 years [104] whereas

the average duration post injury for the subjects in the current study was

13 months. As more recently injured subjects in the current study are likely

to be in the process of relearning to coordinate their breathing muscles this

could a↵ect the outcome of AFES and explain the contradictions between

the results of this study and previous studies.

2. The di↵erence in stimulation frequency. The stimulation frequency in this

study was set at 30 Hz whereas most previous studies have used 50 Hz [24,

58, 75, 87, 89]. In this study the cough stimulation frequency was chosen to

match the stimulation frequency that was used during AFES training, which

was conducted at 30 Hz to minimize the impact of muscle fatigue during

the training sessions. It is known that the force of contraction progressively

increases with the frequency of stimulation. In addition, DiMarco et al. [39]

demonstrated that the airway pressure during SCS at 30 Hz was 80% of

the pressure generated when the stimulation frequency was set at 50 Hz.

Although the di↵erence in stimulation frequency could have explained a

reduced CFT CPF compared with other studies, the author does not believe

that the lack of di↵erence between unassisted and CFT CPF was a result

of insu�cient contraction of the abdominal muscles (discussed above).

The E↵ect of AFES Training on CFT Cough

The results of this study showed an increase in CFT CPF over the training phase

which was not statistically significant. The results also showed the �CFT CPF
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did not change throughout the study. This indicates that any change in CFT

CPF was a consequence of the change in unassisted CPF.

The results do not support the hypothesis of this study that AFES training

would augment �CFT cough by reversing the atrophy of the abdominal muscles

which occurs after a SCI. The explanations for this finding are:

1. This study did not find a di↵erence between CFT cough and unassisted

cough at baseline (the reasons for this were discussed previously). Accord-

ingly training would not improve one more than the other.

2. The training programme was not long enough to reverse the atrophy of the

abdominal muscles. This was discussed in Chapter 4.

3. The training system a↵ected the respiratory system but this e↵ect was not

useful for AFES-assisted cough. Following a tetraplegic SCI there is both a

reduction in the abdominal muscle bulk and a shift in the fibre composition

of muscles. Although not demonstrated in the abdominal muscles, previous

studies have shown that in the vastus laterallis muscles of a patient with

SCI there is a reduction in type IIa fibres and an increase in type IIx fi-

bres [26]. The reduced cross sectional area of the abdominal muscle fibres

would relate to a reduction in maximum force production of the muscle,

which is undesirable for an AFES-assisted cough. The fibre type transfor-

mation would reduce the contraction time of the muscle and increases the

force generated per fibre cross sectional area, which is an advantage for

AFES-assisted cough. The training modality did not train the abdominal

muscles against a resistance, which, according to the overload principle of

exercise training, is a key component of improving the strength of a muscles.

Therefore, it is possible that the AFES training program reversed the shift

in muscle fibre composition without reversing the atrophy of the abdominal

muscles, which would result in a diminished e↵ect on �CFT cough.

There has been a single case study [87] and a follow up fifteen patient crossover

trial [104] that have investigated the e↵ect of practicing AFES-assisted cough over

a period of several weeks on AFES-assisted cough in tetraplegia. The results of

the crossover trial showed that AFES-assisted CPF increased by 17%, but that

�CFT CPF did not change, during the training programme. In addition, this

study did not find a change in abdominal muscle strength through the training

programme, suggesting that the change in AFES-assisted CPF was a result of

underlying changes in unassisted CPF. There are several important comparisons

that can be made with the current study. In the crossover study:
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1. AFES was applied during the glottal closure phase of a cough. Compared

with the current study, this would have provided a greater resistance against

the contracting abdominal muscles, which may have stimulated a greater

training response.

2. There were 50 abdominal muscle contractions per training session in the

crossover trial. Compared with the current study, which included an average

of 600 abdominal muscle contractions per training session1, this would have

reduced the training response.

3. The training programme allowed the patient to practice AFES-assisted

cough as well as training the abdominal muscles. Coughing requires a series

of co-ordinated muscle contractions which like any skill could be expected

to improve with practice.

The crossover study, like the current study, did not include any measurements

of abdominal muscle thickness, abdominal fiber type composition, or respiratory

muscle coordination, and therefore it is unclear what e↵ect AFES training has

on AFES-assisted cough. Investigation of these aspects should help to further

determine the potential of AFES training to improve AFES-assisted cough and

allow future training paradigms to be optimised for this application.

CIT Cough

The results of this study showed that at baseline there was no di↵erence between

CIT cough and both CFT cough and unassisted cough. During the training period

CIT cough tended to increase but this increase was not statistically significant.

�CIT-CFT cough and �CIT-U cough did not change during the training period

suggesting that any change in CIT cough was a consequence to the change in

unassisted cough. These results were contrary to the hypothesis of this study,

which was that a CIT would augment the contractile force of the abdominal

muscles, and in turn CPF, compared with a CFT.

This was the first study to investigate the di↵erence between CFT cough and

CIT cough. The hypothesis was based on previous studies which have shown in

animals and in human quadriceps muscles, that the maximum force produced and

rate of force production is greater when using a CIT [16]. The same explanations

apply to the CIT cough results as those discussed for CFT cough. One further

1Assuming a breathing rate of fifteen breaths per minute and a forty minute training session
duration
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reason, which applies only to CIT cough, is that a CIT does not a↵ect the abdom-

inal muscles in the same way as it a↵ects the quadriceps muscle group. Further

work, including measurement of gastric pressure is required to understand the

e↵ect of a CIT on AFES-assisted cough.

5.4 Study Limitations

There was a high degree of inter and intra subject variability observed in the

results of this study. There are two potential sources that may have contributed

to this variability: (i) cough inhalation volume, which is an important factor

in CPF; and (ii) the fluctuating general health of this group of recently injured

patients.

5.5 Conclusions

1. The passive AFES training programme presented in this study is a feasible

technique to improve unassisted CPF in tetraplegia. The results provide

the basis for a future controlled trial of the technique.

2. The CFT and CIT cough results should be verified in a repeat study. The

baseline CFT cough results in this study contradicted the results of at least

six previous studies. The author believes that inhalation volume, stimula-

tion timing, stimulation frequency and the time post injury of subjects may

explain this contradiction and recommends that a follow up study should

aim to investigate the relationship between these factors and CFT CPF.

A follow up study is also recommended to investigate the e↵ect of passive

AFES training on tetraplegic patients whose AFES-assisted CPF is greater

than unassisted CPF at baseline.
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Chapter 6

Study 1: Quiet Breathing

6.1 Introduction

In tetraplegic patients who are still able to breathe spontaneously, VT during

resting breathing has been shown to be significantly lower than in the able-bodied

population [18]. In some patients the reduced VT is compensated for by an

increase in BR resulting in a V̇ that is similar to the able-bodied population. In

other patients BR is similar or reduced, and thus V̇ is reduced, compared with the

able-bodied population [18]. Maximum voluntary ventilation is also considerably

lower in patients with tetraplegia (78 L/min [109]) compared with able bodied

controls (140-160 L/min [79]). These alterations in respiratory physiology in

tetraplegia may contribute to dyspnea [23], incidence of atelectasis [23, 154] and

likelihood of acute respiratory failure [154]. New treatments which can improve

ventilation in these patients are highly important.

AFES applied during exhalation has previously been shown to improve ven-

tilatory parameters in healthy subjects [132, 134], in tetraplegic patients who

could breathe spontaneously [57,58,134] and in tetraplegic patients who required

MV [78]. These previous studies have identified the potential of using AFES to

improve ventilation. There remain several important aspects of this technique

which should be studied:

1. The temporal response of the ventilatory parameters during an extend pe-

riod of AFES-assisted breathing. In all of the previous studies the e↵ect of

AFES-assisted breathing has been studied by comparing mean ventilatory

parameters between unassisted and AFES-assisted breathing. The disad-

vantage of this approach is that temporal changes in ventilatory breathing

parameters during AFES-assisted breathing would not be detected.
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2. The e↵ect of AFES-assisted breathing on blood gas levels. Gollee et al. [58]

observed that AFES-assisted breathing reduced ETco2 in two out of four

tetraplegic patients and postulated that the increased ventilation induced

by AFES o↵set the increase in metabolic demand resulting from contraction

of the abdominal muscles. Since the study by Gollee et al. only included

a limited number of patients, this observation should be verified in a larger

patient group.

3. The e↵ect of an abdominal muscle training programme on AFES-assisted

breathing. The atrophy of skeletal muscle following a SCI is well docu-

mented in several muscle groups including the abdominal muscles [51]. It

is reasonable to assume that a reversal of abdominal muscle atrophy would

result in an improvement in the ventilatory benefits gained from AFES-

assisted breathing.

The results presented in Chapter 4, as well as the findings by other authors

[27,159], have shown that an AFES based respiratory muscle training programme

can improve unassisted FVC in tetraplegia. It is possible that an increase in FVC

would allow a patient to breathe more e�ciently, by taking slower deeper breaths,

and reduce dyspnea in patients with severely compromised VT.

6.1.1 Aims

Leading on from previous work this study had the following aims:

1. To characterise the temporal response of ventilatory and blood-gas mea-

surements during extended periods of AFES-assisted breathing.

2. To determine whether three weeks of AFES abdominal muscle training af-

fects the respiratory system response to AFES-assisted breathing.

3. To determine whether the training programme a↵ects unassisted ventilatory

and blood-gas measurements.

6.2 Methods

The study protocol and quiet breathing assessment is described in Chapter 3.

In this section the analysis methods specific to the quiet breathing data are

described.
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The test protocol included three periods in the following order: i) one minute

of unassisted breathing; ii) five minutes of AFES-assisted breathing; and iii) one

minute of unassisted breathing. As described in Chapter 3, the first three subjects

(S1, S2, and S3) recruited for the study completed a di↵erent protocol. These

subjects completed three minutes of unassisted breathing followed by ten minutes

of AFES-assisted breathing and did not complete a period of unassisted breathing

after AFES-assisted breathing. In the analysis of these subjects’ data only the

final minute of unassisted breathing and the first five minutes of AFES-assisted

breathing were included.

6.2.1 Analysis

The dependent outcome measures were VT, BR, V̇, ETco2 and TI/TOT.

Quiet Breathing Regions

In each assessment session the seven minutes of quiet breathing were discretised

into four regions. The four regions are illustrated in Figure 6.1(a) and described

as follows:

1. Unassisted-QB: The last sixty seconds of unassisted breathing which

occurred before the start of AFES-assisted breathing.

2. AFES-start: The first sixty seconds of AFES-assisted breathing.

3. AFES-end: The last sixty seconds of AFES-assisted breathing.

4. post-AFES: The first sixty seconds of unassisted breathing which occurred

after the AFES-assisted breathing had finished.

In selecting the data included in each quiet breathing region, windows of

sixty seconds of breathing data were selected by working from the transition

between unassisted and AFES assisted breathing until the cumulative sum of the

selected breaths’ period was greater than sixty seconds. For example to select

the unassisted-QB data, working back from the point where AFES started, the

breathing period of individual breaths were cumulatively summed until the total

was greater than sixty seconds. In cases where sixty seconds worth of breathing

data were not available all suitable breaths in a region were extracted.
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Figure 6.1: The e↵ect of dividing the quiet breathing test into four discrete regions.
(a) shows the original breath by breath tidal volume data for S18 on A1 as a function
of time. In (a) the four regions of the quiet breathing test have been marked using
crosses, circles, squares and diamonds. The single dots represent breaths that were not
part of the regions used in the analysis. In (b) the quiet breathing data represented
using the mean at each region is shown. As can be seen from the figure, by defining four
regions of interest in the quiet breathing test, the time series data can be summarised
using four numbers while still maintaining the main features of the data.

Baseline Analysis

The purpose of the baseline analysis was to investigate the temporal change in

ventilatory parameters during AFES-assisted breathing at baseline (i.e. aim one).

The baseline analysis included all sixteen subjects recruited and was completed

using the data collected at A2 since every subject completed this assessment

session. The group mean outcome measure at each region was compared. In

addition, the ETco2 profiles of AFES responder subjects were examined. Given

that VT is the most direct measure of the e↵ect of AFES on the respiratory

system, responder subjects were defined as those whose VT increased between

unassisted-QB and AFES-start.
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Training Analysis

The purpose of the training analysis was to determine the e↵ect of the three week

AFES training programme on AFES-assisted and unassisted breathing parame-

ters (i.e. aims two and three). This analysis included the twelve subjects who

completed the study (S4, S6, S13, and S6 withdrew prematurely from the study,

see Chapter 3).

Statistics

Pooled results were tested to see whether they followed a normal distribution

using the Shapiro-Wilks test. Since no evidence to suggest that the data followed

a non-normal distribution was found, all statistical comparisons were performed

using parametric tests. Paired comparisons were performed using the paired t-

test. Intra subject comparisons of three or more groups were performed using the

repeated measures Analysis of Variance (ANOVA). Post-hoc multiple compari-

son testing using the Tukey-Kramer Honestly Significant Di↵erence criterion was

used when a significant di↵erence was detected by the ANOVA. The statistical

significance level was set at p < 0.05.

6.3 Results

AFES-assisted quiet breathing was well tolerated and the subjects did not have

any problems following the protocol.

There were technical issues on several of the assessment sessions that resulted

in incomplete data sets. The most commonly occurring issue was for the capno-

graph not to be turned on for the assessment session. As a result, ETco2 data

was not collected for: S4 on A1 and A2; S6 on A3; S7 on A3; and S9 on A1. A

software problem during A1 for S12 meant that it was not possible to test AFES-

assisted breathing. This resulted in only pre-AFES data being available on A1

for this subject. A second technical issue was that the spirometer would stop

recording occasionally for short periods. If this was greater than thirty seconds

then the test was repeated.

6.3.1 The Baseline Response of the Respiratory System

to AFES-Assisted Breathing

Figure 6.2 shows the change in the dependent outcome measures during the quiet

breathing test at A2. In the plots, the light gray lines represent individual subjects
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and the black line represents the overall group mean.
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Figure 6.2: Results of the quiet breathing test on A2 for the baseline subjects. The
gray lines in each plot represent individual subjects and the thick black line represents
the overall group mean.
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Analysis of the Whole Group

There was a similar trend for the group mean VT, V̇ and TI/TOT: there was

an increase between unassisted-QB and AFES-start, followed by a slight decrease

between AFES-start and AFES-end and a further decrease between AFES-end

and post-AFES. A statistically significant change during this trend was found for

VT, V̇, and TI/TOT (all p<0.001); post-hoc multiple comparison testing found

a significant di↵erence from unassisted-QB to AFES-start and AFES-end; and

from AFES-start and AFES-end to post-AFES.

The group mean BR and ETco2 both decreased between unassisted-QB and

AFES-start and increased between AFES-start and AFES-end. The group mean

BR increased between AFES-end and post-AFES whereas the group mean for

ETco2 decreased. Statistical testing did not find a significant di↵erence be-

tween any of the quiet breathing test regions for both BR (p=0.089) and ETco2
(p=0.061).

ETco2 Analysis

As shown in Figure 6.2, the individual subjects’ responses for VT,V̇ and TI/TOT
were similar whereas their responses for BR and ETco2 were mixed.

There were thirteen responder subjects whose VT increased between unassisted-

QB and AFES-start. Of these subjects ETco2 decreased between unassisted-

QB and AFES-start for eleven subjects, increased for one subject (S7) and was

not recorded for one subject (S4). S7 had the smallest change in VT between

unassisted-QB and AFES-start.

ETco2 decreased between AFES-start and AFES-end for six of the responder

subjects (Group A in Table 6.1, page 125) and increased for six of the responder

subjects (Group B in Table 6.1). The response profiles of Group A and Group

B are shown in Figure 6.3. The di↵erence between unassisted-QB and AFES-

start was significant between the two groups for VT (p = 0.018), but not for V̇

(p = 0.13), BR (p = 0.36), ETco2 (p = 0.10) or TI/TOT (p = 0.41). The change

between AFES-start and AFES-end was significantly di↵erent between the two

groups for ETco2 (p < 0.001), but not for VT, V̇, BR or TI/TOT. Table 6.1

shows the demographic data of both groups, which were found to be similar. The

one noticeable di↵erence was the mean time post injury which was considerably

greater in Group A compared with Group B. It should be noted that Group A

contained the two chronically injured subjects that completed this study.
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Figure 6.3: Results of the two groups of subjects identified from the response profiles
of VT and ETco2. The solid lines represent Group A subjects, the dashed lines repre-
sent Group B subjects, the light grey lines represent individual subjects and the black
lines represent group means.



6.3. RESULTS 125

Table 6.1: Demographics of the two groups of subjects. Where applicable results are
given as mean ± standard deviation. ⇤ High injury level was defined as a neurological
injury level of C4 or above, low injury level was defined as neurological injury level
below C4.

Group A Group B
Subjects S5, S7, S12, S14, S15,

S16
S3, S4, S6, S9, S10,
S11, S13

N 5 5
Sex (M/F) 5/1 5/1
Age (yrs) 41.2 ± 20.2 37.2 ± 20.4
Height (cm) 177 ± 7.7 176.7 ± 6.2
Weight (kg) 77.2 ± 8.3 70 ± 12.6
Injury level (high/low) ⇤ 2/4 2/4
ASIA (A/C) 4/2 4/2
Time post Injury (months) 24.8 ± 36.2 7.8 ± 9.4
Smoker / non-smoker 4/1 4/1

6.3.2 E↵ect of Abdominal Muscle Training

Figure 6.4 shows the group mean unassisted-QB, AFES-start, AFES-end, and

post-AFES outcome measures at each assessment session.

Unassisted-QB

The unassisted-QB results are shown by the crossed marked line in Figure 6.4.

VT, and TI/TOT tended to increase and BR tended to decrease throughout the

study. There did not appear to be a change in either V̇ or ETco2. The statistical

analysis in Table 6.2 shows that unassisted-QB TI/TOT changed significantly

over the study. Post-hoc multiple comparison testing found that A2 was signifi-

cantly di↵erent to A5.

Table 6.2: Overall group mean unassisted ventilatory parameters at each assessment
session. F and P are outcomes of the one-way repeated measures ANOVA performed
on the data.

A1 A2 A3 A4 A5 A6 F P

VT (L) 0.50 (0.10) 0.50 (0.10) 0.55 (0.12) 0.52 (0.16) 0.59 (0.20) 0.52 (0.14) 1.6 0.17
V̇ (L/min) 9.60 (2.40) 9.10 (2.30) 11.00 (4.10) 9.00 (3.00) 9.80 (3.40) 9.40 (3.10) 1.1 0.39
BR (BPM) 19.00 (4.10) 18.00 (2.80) 19.00 (3.30) 18.00 (3.30) 17.00 (4.20) 18.00 (4.00) 1.1 0.39
ETco2 (%) 4.90 (0.52) 5.00 (0.62) 5.00 (0.46) 5.10 (0.58) 5.00 (0.41) 5.10 (0.57) 0.7 0.62
TI/TOT () 0.39 (0.06) 0.40 (0.06) 0.40 (0.07) 0.41 (0.06) 0.42 (0.06) 0.42 (0.06) 2.6 0.03
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Figure 6.4: The change in the quiet breathing regions throughout the study. The
grey lines represent the unassisted regions and the black lines represent the AFES re-
gions. The cross marked line represents unassisted-QB, the circle marked line represents
AFES-start, the square marked line represents AFES-end and the diamond marked line
represents post-AFES
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AFES-Assisted QB

The AFES-assisted quiet breathing regions are shown by the black lines in Fig-

ure 6.4. Throughout the study the trends between the quiet breathing regions

that were identified in the baseline analysis were consistent.

The di↵erence between unassisted-QB and AFES-start (the cross marked line

and the circle marked line, respectively) did not change noticeably throughout

the study. The statistical analysis, shown in Table 6.3, found that this di↵erence

did not vary significantly for any of the outcome measures.

Table 6.3: The group mean di↵erence between unassisted and the start of AFES-
assisted quiet breathing over the course of the study. F and p are outcomes of the
one-way repeated measures ANOVA performed on the data.

A1 A2 A3 A4 A5 A6 F P

�VT (L) 0.19 (0.22) 0.12 (0.13) 0.19 (0.27) 0.16 (0.20) 0.19 (0.23) 0.16 (0.19) 1.1 0.37
�V̇ (L/min) 2.50 (4.00) 1.70 (1.90) 2.30 (2.80) 2.60 (3.10) 3.30 (3.90) 2.50 (3.20) 1.0 0.41
�BR (BPM) -1.50 (3.00) -0.90 (2.50) -1.00 (3.40) -0.35 (1.50) -0.65 (1.80) -0.87 (1.90) 0.5 0.75
�ETco2 (%) -0.19 (0.36) -0.19 (0.29) -0.23 (0.26) -0.11 (0.26) -0.14 (0.32) -0.08 (0.32) 1.3 0.29
�TI/TOT () 0.10 (0.07) 0.07 (0.05) 0.06 (0.04) 0.06 (0.05) 0.08 (0.06) 0.05 (0.06) 1.4 0.24

The di↵erence between the AFES-start and AFES-end (the circle and square

marked lines respectively) appeared to increase toward the end of the study for

VT and V̇ but not for any of the other outcome measures. Statistical analysis,

shown in Table 6.4, found that this di↵erence did not vary significantly for any

of the outcome measures.

Table 6.4: The group mean di↵erence between the start and end of AFES -assisted
quiet breathing over the course of the study. F and p are outcomes of the one-way
repeated measures ANOVA performed on the data.

A1 A2 A3 A4 A5 A6 F P

�VT (L) -0.02 (0.12) -0.05 (0.08) -0.01 (0.14) -0.05 (0.16) -0.15 (0.24) -0.09 (0.07) 1.7 0.16
�V̇ (L/min) -0.31 (1.90) -0.85 (1.30) -0.69 (2.30) -0.50 (2.60) -2.30 (3.60) -1.50 (1.60) 0.9 0.50
�BR (BPM) 0.18 (1.10) -0.10 (2.20) -0.65 (2.20) 0.40 (0.77) 0.05 (1.10) 0.30 (1.70) 1.0 0.41
�ETco2 (%) -0.18 (0.32) -0.05 (0.46) -0.13 (0.34) -0.14 (0.23) 0.02 (0.48) -0.11 (0.20) 0.6 0.69
�TI/TOT () 0.01 (0.07) 0.01 (0.03) 0.05 (0.05) 0.00 (0.02) -0.00 (0.04) 0.00 (0.04) 2.3 0.06

6.4 Discussion

The aims of this study were to characterise the temporal response of the respi-

ratory system to periods of AFES-assisted breathing and to test the hypothesis

that a period of abdominal muscle training would improve AFES-assisted and

unassisted breathing parameters. The results of this study found that VT, V̇,
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TI/TOT were increased and that BR and ETco2 were reduced during AFES-

assisted breathing compared with unassisted breathing. The training programme

had a minimal e↵ect on unassisted-QB and no e↵ect on AFES-assisted breathing.

6.4.1 Baseline Response of the Respiratory System to AFES-

Assisted Breathing

The results of this study found that there was a significant increase in VT, V̇, and

TI/TOT, and a tendency for BR and ETco2 to decrease, during the transition

from unassisted breathing to AFES-assisted breathing. During the subsequent

five minutes of AFES-assisted breathing VT, V̇, and TI/TOT tended to decrease,

BR tended to increase, and ETco2 remained approximately constant, although

these changes were not significant. During the transition from AFES-assisted

breathing back to unassisted breathing VT, V̇, TI/TOT and BR returned to

their baseline levels, while ETco2 was reduced slightly compared with its baseline

level.

Tidal Volume

The change in VT during the initial AFES response corroborates the results

reported by other authors [57–59, 78, 132, 134]. When the abdominal muscles

contract during exhalation, the abdominal contents are pushed upward toward

the bottom of the lung. This movement causes the lung to empty past FRC and

augments expiratory volume. The subsequent inhalation is augmented as a result

of the passive recoil of the lung from FRC.

Throughout the five minute period of AFES-assisted breathing the stimula-

tion pulse width was adjusted to maintain a constant visual contraction of the

abdominal muscles, in order to minmise the e↵ect of abdominal muscle fatigue on

AFES-assisted breathing. Although VT tended to decrease slightly during this

period, the lack of significant change suggests that this strategy was e↵ective. A

limitation of using VT to assess muscle fatigue (or lack thereof) instead of a more

direct measure of abdominal muscle contraction, such as gastric pressure, is that

VT is also a↵ected by the work done by the inspiratory muscles.

Breathing Rate

Although BR did not change significantly during the initial AFES response, it

decreased for the majority of subjects. In addition, there was a significant in-

crease in TI/TOT during the initial AFES response. These results indicate that
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AFES influenced the breathing pattern of subjects. Since the timing of stimu-

lation was paced by the subjects’ volitional breathing pattern, AFES must have

a↵ected BR and TI/TOT indirectly. A possible explanation is that the cessa-

tion of stimulation during expiration, resulted in an acute reduction in gastric,

and in turn intrathoracic, pressure that prematurely initiated inhalation. This

reasoning is supported by the increase in TI/TOT, which shows that expiratory

time was reduced in relation to inspiratory time, between unassisted and AFES-

assisted breathing. Previous studies have reported mixed e↵ects of AFES-assisted

breathing on subjects’ breathing rate. While the tendency for BR to decrease was

observed by Gollee et al. [57–59], an increase in BR has been observed by oth-

ers [132, 134]. Since this study and all previous research has used a one second

stimulation burst during exhalation, the reason for the di↵erence in reports of

the e↵ect of AFES on BR is unclear.

Minute Ventilation

The trend in V̇ generally followed the trend in VT throughout the testing pro-

tocol. This shows that the reduction in BR was more than o↵set by the corre-

sponding increase in VT. An important aspect of ventilation is the ratio of dead

space ventilation to total ventilation (i.e. the ratio of the air that is inhaled and

not being used to oxygenate the blood). Although this ratio was not measured

in this study, the pattern of increased V̇ through an increased VT and reduced

BR suggests that alveolar ventilation was increased [79]. The increase in unas-

sisted V̇ as a result of AFES-assisted breathing has been reported by previous

authors [57–59,132,134].

End Tidal Carbon Dioxide

While the change in ETco2 during the quiet breathing test for the overall group

was not significant, ETco2 decreased between unassisted breathing and the onset

of AFES-assisted breathing in eleven out of the thirteen subjects who responded

to AFES-assisted breathing. ETco2 continued to decrease throughout the five

minute period of AFES-assisted breathing for six of the responder subjects (Group

A) and returned to its baseline level for the other six responder subjects (Group

B). The only di↵erence between the two groups was that the Group A subjects

had a significantly greater increase in VT during the initial AFES response.

ETco2 is a surrogate measure for arterial partial pressure of carbon dioxide,

which is a primary mediator in the neural control of respiration [150]. An increase

in the arterial partial pressure of carbon dioxide stimulates chemoreceptors in the
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medulla and peripheral nervous system which in turn increase V̇ so that the excess

carbon dioxide is removed from the body.

A reduction in arterial partial pressure of carbon dioxide may be caused by an

increased V̇, a reduced metabolic rate, an acute decrease in body temperature,

and reduced cardiac output [149]. AFES-assisted breathing has been used previ-

ously to increase cardiac output [140], it should increase metabolic rate through

the contraction of the abdominal muscles, and is unlikely to have an e↵ect on body

temperature. These three factors would all increase arterial partial pressure of

carbon dioxide during AFES-assisted breathing.

In the Group A subjects, ETco2 decreased during the transition from unas-

sisted to AFES-assisted breathing, and decreased further over the five minutes of

AFES-assisted breathing. This trend suggests that in these patients the increase

in V̇ during AFES-assisted breathing more than o↵set the increase in metabolic

and cardiac output caused by AFES.

In the Group B subjects, ETco2 decreased during the transition from unas-

sisted to AFES-assisted breathing, and increased back to baseline levels over the

five minutes of AFES-assisted breathing. These results suggest that the initial

increase in ETco2 was transient and caused by the step change in V̇ and that

ETco2 at the end of the five minutes reflected the steady-state ETco2 during

AFES-assisted breathing [139]. The fact that ETco2 at the end of five minutes

of AFES-assisted breathing was similar to the ETco2 during baseline unassisted

breathing suggests that the increase in V̇ during AFES-assisted breathing o↵set

the increase in metabolic and cardiac output caused by AFES.

For the non-responder subjects, whose AFES-assisted VT was not greater

than their unassisted VT, and the responder subject who had the smallest dif-

ference between unassisted and AFES-assisted VT, the increase in ETco2 during

AFES-assisted breathing suggests that AFES-assisted breathing increased the

arterial partial pressure of carbon dioxide.

These results have clinical implications. Excess carbon dioxide in the blood

(hypercapnia) can cause dyspnea in mild cases to unconsciousness in severe cases.

Low levels of carbon dioxide in the blood (hypocapnia) can cause light headed-

ness and dizziness. To avoid these situations the results of this study suggest

that AFES should not be used with the non-responder group of subjects and

that the e↵ect of AFES should be reduced (possibly by reducing the stimulation

intensity or by reducing the number of breaths that are stimulated) in the Group

A subjects.
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6.4.2 E↵ect of Training on the Respiratory Response to

AFES-Assisted Breathing

This is the first study that has investigated the e↵ect of abdominal muscle training

on AFES-assisted breathing. The results of this study did not find a statistically

significant change in either the di↵erence between unassisted breathing and the

onset of AFES-assisted breathing, or the di↵erence between the start and end

of five minutes of AFES-assisted breathing. While in some individual subjects

there appeared to be a training e↵ect there were no consistent patterns of change

observed in sub-groups of subjects.

The results of this study are contrary to the original hypothesis which was

that training would increase the power, and in turn the e↵ect of AFES on VT,

by reversing the atrophy of the abdominal muscles caused by SCI. There are at

least two possible explanations for the negative result of this study:

1. The duration of the training programme was not su�cient (discussed in

Chapter 4)

2. The design of the training programme was not suitable to induce changes

in abdominal muscle strength (discussed in Chapter 4)

It is possible that the training programme a↵ected the fatigue resistance of

the abdominal muscles. However, the experiments of this study did not include

a measurement of abdominal muscle fatigue. Future work should investigate this

aspect of abdominal muscle training, as the endurance time of the abdominal

muscles is an important aspect of AFES-assisted breathing.

The E↵ect of Training on Unassisted Quiet Breathing

The results of this study showed that TI/TOT increased significantly and VT
tended to increase over the training period. The tendency for VT to increase

over the training period may be explained by the corresponding increase in FVC

that was found in Chapter 4, as well as by previous authors investigating AFES

based respiratory muscle training programmes [27,159]. Switching to a pattern of

slower, deeper breathing would reduce dead space ventilation and thus improve

the e�ciency of breathing, which in turn is likely to improve patient comfort and

potentially aid in reducing respiratory complications. The reasons for the lack of

significant change in VT, BR or V̇ were covered in the discussion of the e↵ect of

training on AFES-assisted breathing. One additional reason, is that the overall

group mean quiet breathing VT, BR and V̇ of the subject group studied were
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within the normal range and therefore there was no physiological basis to support

a change in breathing pattern.

6.5 Study limitations

There were at least two limitations of the experiments described in this chapter:

1. The changes in ETco2 may not accurately reflect the changes in the arterial

partial pressure of carbon dioxide. The correlation of these variables is

a↵ected by changes in the dead space to VT ratio [110], which can be

altered by changes in breathing pattern [79]. The positive gradient between

the arterial partial pressure of carbon dioxide and ETco2 reduces with

progressive reductions in the dead space to VT ratio; with all other factors

remaining constant a reduction in the dead space to VT ratio would result

in an increased ETco2 for a given arterial partial pressure of carbon dioxide.

Given that AFES-assisted breathing results in an increased VT and reduced

BR, it should also have a reduced dead-space to VT ratio [79]. Therefore,

the author believes that the use of ETco2 as a surrogate measure may have

underestimated the changes in arterial partial pressure of carbon dioxide

that occurred during AFES-assisted breathing.

2. The length of the AFES-assisted breathing section of the test was short.

While the results of this study showed that AFES-assisted breathing could

augment ventilation for short periods of time, future work needs to deter-

mine the limit of AFES-assisted breathing as a tool to augment ventilation

in tetraplegia.

6.6 Conclusions

1. AFES-assisted breathing results in increased VT, V̇, and TI/TOT, and

reduced BR compared with unassisted breathing.

2. In patients whose AFES-assisted VT is greater than their unassisted VT,

the increased V̇ during AFES-assisted breathing o↵sets any increase in

metabolic or cardiac output that would be expected during AFES-assisted

breathing.

3. Three weeks of abdominal muscle training does not a↵ect AFES-assisted

ventilatory parameters and but may have a minimal e↵ect of unassisted

ventilatory parameters.
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Chapter 7

Ventilator Weaning with AFES

7.1 Introduction

MV is commonly required during the initial stages of injury for individuals with

a cervical SCI [32, 152]. For motor complete injuries above C3, MV is required

because the diaphragm and other breathing muscles are completely paralysed

[32, 152]. For individuals who maintain partial or complete diaphragm function,

there are several reasons why MV might be required. Firstly, there may be

bleeding or swelling at the level of trauma that can cause the neurological level

of the injury to rise by up to two levels [152]. Secondly, there is increased load

on the diaphragm as a result of paralysis of the other respiratory muscles and/or

respiratory infection which can cause diaphragmatic fatigue [127,152]. Incidence

of tetraplegic individuals requiring ventilation varies between reports. In one

study incidence was reported at 90% [32] whereas in another study, incidence of

ventilatory failure in cervical SCI individuals was 29% [74]. Both of these reports

found that the incidence of MV is greater in those with the highest levels of injury.

It may be possible to wean those tetraplegic individuals whose diaphragm is

not completely paralysed from MV. The likelihood of weaning and length of time

taken to wean depends on several factors: the neurological level of injury, the

age of the individual, co-morbidities and the development of respiratory infection

during the weaning process [152]. Weaning success and duration may also be

a↵ected by non-patient related factors such as the type of weaning method used

(e.g. progressive ventilator free breathing weaning vs. intermittant mandatory

ventilation) [21, 47, 119], ventilator volume settings [120], and the initiation of

the weaning process by the individual’s physician [19]. Weaning an individual

from MV is of paramount importance as prolonged MV can increase the risk

of respiratory infection (for example, ventilator induced pneumonia) [19] and
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cause respiratory muscle weakness [143]. Furthermore, ventilator dependency

in individuals is associated with lower survival rates than individuals who are

weaned from MV [152].

Although weaning techniques di↵er in their implementation, the general goal

is to reduce progressively the work of breathing accomplished by the ventilator

and thus recondition the respiratory muscles that have been weakened during the

period of MV [47]. It follows that interventions that allow this process to begin

earlier and target the strength of the respiratory muscles may assist with weaning

in these individuals. It has been shown that:

• AFES can be used to improve VT in spontaneously breathing tetraplegic

individuals (Chapter 6), [58, 132,134].

• AFES can be used to support short periods of ventilator free breathing in

tetraplegic individuals who are otherwise ventilator dependent [78].

• AFES based training paradigms can improve unassisted respiratory function

(Chapter 4), [27, 87,159]

Consequently, it was hypothesised that incorporating AFES into the weaning

process would allow weaning both to begin earlier and reduce the time to wean.

The aim of this study was to demonstrate the feasibility of this approach by

combining AFES with a standard weaning protocol for a single tetraplegic patient.

7.2 Materials and Methods

7.2.1 Case Study

This study included a twenty-four year old man with a C4/C5 spinal fracture

dislocation and head injury. Upon entry to the spinal unit the neurological in-

jury was classified at level C2 and severity AIS A. Five months after injury, the

patient’s neurological injury was reclassified at level C4/C5 and severity AIS A.

At the start of this study the patient had been injured for two months and

was able to sustain volitional ventilation for up to three minutes. He had a

tracheostomy and was completely reliant on MV.
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7.2.2 Study Outline

This study lasted for a total duration of twenty-eight weeks and included two

phases which were timed as shown in Figure 7.1(a). AFES was used to com-

plement standard of care which included a progressive ventilator free breath-

ing weaning programme. During progressive ventilator free breathing weaning,

the patient is required to breathe without ventilator support during daily trials

(known as Spontaneous Breathing Trials (SBTs)) which progressively increase in

duration until the patient is completely weaned from MV.

Both phases of the study included AFES SBTs described in Section 7.2.4

and respiratory assessment sessions described in Section 7.2.5. An outline of the

timeline of the AFES SBTs and assessment sessions is given in Figure 7.1(b) for

phase 1 and in Figure 7.1(c) for phase 2.

7.2.3 AFES

AFES was applied over the rectus abdominis and external oblique muscle groups

using a constant stimulation frequency of 30 Hz. During the training and as-

sessment sessions current was kept constant while pulse width was increased to

account for muscle fatigue. During the AFES SBTs and the assessment sessions

which used the stimulators on-board program, the stimulation pulse width had a

ramp up time of 0.1 s and a 0 s ramp down time. During the assessment sessions

which used the automatic stimulation system, the stimulation pulse width was

filtered using a 2nd order transfer function with a 0.1 s rise time. Stimulation set

up followed the same methodology that was used in the study of spontaneously

breathing tetraplegics (Chapter 3). The stimulation settings used in this study

were chosen based on the settings used in the previous study.

7.2.4 AFES Spontaneous Breathing Trials

AFES-SBTs were prescribed up to five times per week for the durations given in

Figures 7.1(b) and 7.1(c). During the AFES-SBTs the on-board programme on

the stimulator was used as described in Chapter 3. The programme cycle period

and stimulation on-time were set to match the breathing period and expiratory

time normally provided by the ventilator. Stimulation was turned on before the

patient was disconnected from MV. When the patient was comfortable, MV was

removed and the patient was cued to breathe in time with the stimulation. During

the training sessions up to A1 the cue was given verbally using the instructions

‘breathe in, breathe out’. In all training sessions subsequent to A1, a balloon was
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0 8 17 28

Phase 1 Phase 2

End of 

week:

(a) Overview of the study protocol

End of 
week: 0 1 2 3 4 5 6 7 8

AFES-SBT  
session duration 
(mins/session): 20 20 30 40

Assessment: A1 A2 A3 A4 A5 A6 A7

(b) Outline of phase 1

End of 
week: 17 18 19 20 21 22 23 24 25

AFES-SBT 
session duration 
(mins/session): 40

Assessment: A8 A9 A10 A11 A12 A13

26 27 28

40 40 40 40 40

(c) Outline of phase 2

Figure 7.1: Study protocol. AFES SBTs were completed up to five time per week.

attached to the mechanical ventilator and the patient was coached to inhale and

exhale in time with the balloon’s inflation and deflation. Throughout the training

sessions, the patient’s blood oxygen saturation was monitored and recorded, by

hand, every minute. If the patient’s blood oxygen saturation level dropped below

92% during the training session, MV was immediately re-instituted. The patient

remained on MV in combination with AFES, until the patient’s consultant felt

comfortable removing MV again. This process of AFES-assisted breathing with

and without MV continued for the duration of the session.
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7.2.5 Assessment Sessions

As shown in Figures 7.1(b) and 7.1(c), the whole study consisted of a total of thir-

teen assessment sessions. Each assessment session included a series of respiratory

tests as illustrated in Figure 7.2.

The tests of unassisted breathing, AFES-only breathing and AFES-assisted

breathing, lasted for 2 minutes or until the patient’s blood oxygen saturation

level dropped below 92%. The test of max unassisted and max AFES-assisted

breathing lasted for one minute. A description of each of the breathing tests is

given below:

Unassisted breathing The patient was asked to breathe without the assis-

tance of MV or AFES.

AFES-only breathing The patient was asked to relax and to attempt to let

AFES support breathing completely.

AFES-assisted breathing The patient was asked to breathe normally while

being assisted with AFES.

Max unassisted breathing The patient was asked to breathe with maximum

e↵ort without the assistance of MV or AFES

Max AFES-assisted breathing The patient was asked to breathe with max-

imum e↵ort while being assisted with AFES.

Unassisted

breathing

Break AFES-only

breathing

Break AFES-

assisted

breathing

(a) Outline of the tests conducted in assessments A1 to A5

Max AFES-

assisted

breathing

Unassisted

breathing

Break AFES-

assisted

breathing

Break Max 

unassisted

breathing

Break

(b) Outline of the tests conducted in assessments A6 to A13

Figure 7.2: An outline of the tests conducted in each of the assessment sessions
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Maximum unassisted and AFES-assisted breathing were not specifically tested

in assessment sessions A1 to A5 since the patient had to use maximum e↵ort dur-

ing the unassisted and AFES-assisted breathing tests to sustain MV free breath-

ing. The AFES-only breathing test was included in assessment sessions A1 to A5

only. After this point the patient could maintain spontaneous ventilation without

conscious e↵ort.

During the assessment sessions, the patient’s ventilation was measured using

the spirometer in ‘live mode’, as described in Chapter 3. In assessment sessions

A1 to A5 the spirometer was connected to the patient’s tracheostomy whereas

in assessment sessions A6 to A13 the spirometer was connected to a full face

mask. The stimulator’s on-board programme was used in assessment sessions A1

to A6. The programme cycle period and stimulation on-time were set to match

the breathing period and expiratory time normally provided by the ventilator.

Stimulation was synchronised with the patient’s volitional breathing using the

balloon method described Section 7.2.4. In A1 and A2 the cycle period was set

equivalent to 13 breaths/min with a stimulation on-time of 40%. In A2 to A5

the cycle period was set equivalent to 13 breaths/min with a stimulation on-time

of 50%. In A6 the cycle period was set equivalent to 30 breaths/min with a

stimulation on-time of 50%. In assessment sessions A7 to A13 stimulation was

synchronised with the patient’s volitional exhalation using the quiet breathing

trigger described in Chapter 3

7.2.6 Additional Measurements

The patient’s diaphragm movement was assessed by fluoroscopy one week prior to

the start of study and at the beginning of week seventeen (one week prior to A8).

Diaphragm movement was assessed while the patient was supine under two con-

ditions: unassisted and AFES-assisted breathing. Under both of these conditions

the patient was asked to breathe with maximum e↵ort. During AFES-assisted

breathing, the stimulation intensity was set to give a strong even contraction of

the abdominal muscles (Section 3.2.1 on page 53). Triggering of the stimulation

was accomplished by manually timing stimulation to coincide with the complete

voluntary expiratory phase of the patient’s breathing.

The nurses medical notes were available for this study. From these notes the

duration of the patients regular unassisted SBTs were recorded.
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7.2.7 Analysis

Using the recorded output of the spirometer, VT, V̇ and BR were calculated

using the methods described in Chapter 3. For each assessment session for the

unassisted, AFES-only and AFES-assisted breathing tests, the mean was calcu-

lated over every breath recorded in each test. For the maximum unassisted and

AFES-assisted breathing tests, the mean VT, V̇ and BR were calculated over the

three breaths which had the greatest VT.

From the videos recorded from the fluoroscopy sessions each frame was visu-

ally inspected and the frames which corresponded to the beginning and end of

inhalation were extracted. The position of the diaphragm in relation to the ruler

that was placed over the abdomen during the recording was noted for each of

these images and diaphragm movement was calculated accordingly.

7.3 Results

7.3.1 Diaphragm Fluoroscopy

Figure 7.3 shows still images from the diaphragm fluoroscopy which was com-

pleted prior to the start of the study. As can be seen in the figure, during this

session, diaphragm movement was less that 1 cm during unassisted breathing

(Figures 7.3(a) and 7.3(b)) and approximately 2 cm during AFES-assisted breath-

ing (Figures 7.3(c) and 7.3(d)). In the second fluoroscopic assessment (beginning

of study week seventeen), diaphragm movement was approximately 5 cm during

unassisted breathing and approximately 8 cm during AFES-assisted breathing.

7.3.2 Spontaneous Breathing Trial Duration

Figure 7.4 shows the duration of the AFES-SBTs and unassisted SBTs during

the first phase of the intervention. The figure demonstrates:

1. For the first three weeks of the study the patient was able to sustain much

longer periods of ventilator free breathing while assisted with AFES than

with volitional breathing.

2. AFES weaning sessions started approximately three weeks sooner than the

unassisted weaning sessions. However once unassisted SBTs were started,

the patient made rapid progress.

Figure 7.5 shows the duration of unassisted SBTs from the start to the end of

the study. Following the first phase of the intervention, unassisted SBT duration
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(a) Diaphragm position at the end of unas-
sisted inhalation

(b) Diaphragm position at the end of unas-
sisted exhalation

(c) Diaphragm position at the end of AFES-
assisted inhalation

(d) Diaphragm position at the end of AFES-
assisted exhalation

Figure 7.3: Diaphragm fluoroscopy during unassisted and AFES-assisted breathing
before the start of the study. The scale shown in the pictures is in increments of 1 cm.
Diaphragm movement during unassisted breathing was less than 1 cm. Diaphragm
movement during AFES-assisted breathing was approximately 2 cm

increased rapidly until week nine at which point progress almost stalled at 12

hours/day. By the start of week fifteen, the duration of the unassisted SBTs

had only increased to thirteen hours/day. Furthermore the patient’s nurses had

attempted longer daily times but had noted that the patient’s blood gas levels

had become unstable. During week fifteen, the patient’s condition became worse

and he was only able to sustain 10 hours/day of ventilator free breathing. The

second phase of the study started at the beginning of week seventeen. From this

point the patient made steady progress until the start of week twenty six when
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Figure 7.4: Maximum AFES-SBT (shown as the black bars) and unassisted SBT
(shown as the grey bars) duration through the initial weeks of the study.

the patient was completely weaned from MV.
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Figure 7.5: Change in unassisted SBT duration (shown by the black line and the left
y-axis) compared with the timing and duration of AFES-SBT sessions (shown by the
shaded grey areas and the right y-axis) throughout the study.

7.3.3 Respiratory Measurements

Figures 7.6(a), 7.6(b) and 7.6(c) on page 143 show the change in VT, V̇ and

BR throughout the study for the di↵erent breathing tests conducted in each as-

sessment session. During assessment session A5 the patient was feeling generally

below par. A6 was the first assessment in which ventilation was measured using

the face mask as opposed to the tracheostomy. A6 was also the first assessment
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in which a distinction was made between quiet breathing and breathing with

maximum e↵ort.

7.4 Discussion

The major finding of this study is that it is feasible to incorporate AFES into the

weaning process of a tetraplegic subject. This study also provided preliminary

data to support the hypothesis that using AFES to assist weaning a patient o↵

MV would allow the weaning process to begin earlier than otherwise possible and

may reduce the time to wean by improving unassisted ventilatory parameters.

7.4.1 Initial Spontaneous Breathing Trials

At the start of the study, AFES-SBTs could last considerably longer than unas-

sisted SBTs (10 minutes compared with 3 minutes, Figure 7.4). Since the patient

was able to tolerate longer AFES-SBTs than unassisted SBTs, the patient was

willing to participate in AFES-SBTs approximately three weeks before regular

unassisted SBTs started. Once regular unassisted SBTs begun, progress was

rapid, increasing from 30 minutes per day to 110 minutes per day over the course

of one week. It is clear from the results of this study that, in this case, AFES

allowed the weaning process to begin earlier than would have been otherwise

possible.

7.4.2 Weaning from Mechanical Ventilation

After the cessation of AFES-SBTs, at the end of week four, unassisted SBT du-

ration continued to progress quickly, reaching 12 hours per day at week nine of

the study. In the subsequent six weeks the patient made only a modest gain

in unassisted SBT duration and during week fifteen, unassisted SBT duration

declined. Therefore, in week seventeen, another period of AFES-SBTs was initi-

ated. Through the following four weeks of AFES-SBTs the patient’s unassisted

SBT duration started increasing again. Unassisted SBT duration continued to

increase after the conclusion of the second period of AFES-SBTs until, during

week twenty six, the patient was completely weaned from MV.

Firm conclusions cannot be drawn from the trend described above because

this is a single case study. However, the increase in unassisted SBT duration

over the whole study, and, in particular, the increase in unassisted SBT duration

during the second period of AFES-SBTs, following the stall in progress during
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Figure 7.6: Respiratory measurements (shown by the lines and left y-axis) compared
with the timing and duration of AFES-SBTs (shown by the shaded grey areas and
the right y-axis) throughout the study. Lines with square’s as data points indicate
AFES-assisted respiratory measures; lines with x’s as data points indicate unassisted
respiratory measures; lines with circles as data points indicate AFES-only respiratory
measures. Solid lines indicate quiet breathing; dashed lines indicate maximum breath-
ing.
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the prior 8 weeks, certainly suggests that the intervention had an e↵ect on the

weaning outcome of this patient.

7.4.3 Potential Mechanisms

The di↵erence between AFES-SBT and unassisted SBT duration, over the initial

four weeks of the study, can be explained by the augmented VT and V̇ during

AFES-assisted breathing compared with unassisted breathing. AFES increases

VT by compressing the abdominal contents, which, in turn, push upward on the

diaphragm. This mechanism is clearly illustrated by the results of the diaphragm

fluoroscopy sessions which showed a substantial di↵erence in vertical diaphragm

displacement during AFES-assisted breathing compared with unassisted breath-

ing.

The trend in unassisted SBT duration appeared to be highly correlated with

underlying changes in the patient’s ventilatory parameters. During phase 1 of

the study, in which unassisted SBT duration increased substantially, there was

a considerable increase in VT and V̇ (It should be noted that during A1 to A6

the measurements of breathing rate are not representative as the patient was

asked to follow a set rate). Between A7 and A8, through which there was a net

decline in unassisted SBT, there was a decline in maximum unassisted VT and a

sharp rise in both maximum and quiet unassisted BR. At the start of phase two

in the study, unassisted SBT progress resumed, and there was a corresponding

increase in maximum unassisted VT and decrease in both maximum and quiet

unassisted BR. The correlation between VT and duration of U-SBT may lie

in the di↵erence between maximum and quiet unassisted VT. As the di↵erence

between quiet VT and maximum VT increases, the e↵ort required to expand the

lungs decreases, and the respiratory musculature su↵ers less fatigue. The reduced

di↵erence between maximum and quiet VT between A7 and A8 also explains the

increased BR between A7 and A8.

It is possible that the change in ventilatory parameters would have occurred

without the intervention of AFES [86] and from the results of a single case study it

is not possible to draw conclusions to the contrary. However, it is persuasive that

the greatest improvement in ventilatory parameters occurred during the periods

of AFES-SBTs. This observation also agrees with the findings in Chapter 4,

which showed a statistically significant increase in FVC following three weeks of

AFES training, and the findings by other authors that have shown AFES training

can improve unassisted FVC [27,87,159].
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If the AFES-SBT intervention was responsible for the progression in unas-

sisted SBT duration there are several possible explanations:

1. AFES improved the bulk of abdominal muscles which increased inhalation

capacity through the fulcrum e↵ect [84,154] (explained fully in Chapter 4).

2. AFES a↵ected the diaphragm through two complimentary mechanisms:

(a) in addition to abdominal muscle recruitment, AFES also recruited the

diaphragm

(b) it also moved the diaphragm though a greater range of motion com-

pared with unassisted breathing. This passive diaphragmatic stretch,

in turn might have preserved the architecture of muscle fibres in a sim-

ilar way to the purported e↵ect of passive range of motion exercises

applied to locomotor muscles [68].

3. The higher lung volumes associated with AFES-assisted breathing may have

recruited additional elements of the lung and helped clear atelectasis. The

subsequent increase in compliance would have reduced the work of breathing

and aided in the weaning process [120].

4. The co-ordination of the breathing muscles is a complex task requiring input

from several pathways, which are disrupted following a tetraplegic SCI [141].

By following a set breathing pattern and, at the same time contracting the

abdominal muscles to reduce the load on the other breathing muscles, the

patient may have been able to relearn how to co-ordinate his neurologically

intact breathing muscles.

7.4.4 Clinical Implications

Weaning from MV has important clinical implications. MV is a life-saving in-

tervention for many SCI patients. However prolonged use of MV is associated

with increased respiratory complications, particularly ventilator associated pneu-

monia. Lifelong use of MV is also associated with a severely reduced five year

survival rate when compared with spontaneously breathing tetraplegics [152]. In

addition life-long ventilator use is associated with a lower quality of life when

compared with ventilator free patients. While there have been other respira-

tory muscle training programs used to improve weaning outcomes for tetraplegic

and non-SCI patients [137], this is the first study demonstrating an AFES-based

respiratory muscle training programme for ventilator weaning in tetraplegia.
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Of the other approaches, inspiratory muscle training using resistive mouth-

piece devices has received the most attention. Inspiratory muscle training has

been shown to be e↵ective at improving weaning outcome in non-SCI patients

with prolonged MV [100, 101]. There is also evidence that inspiratory muscle

training may be useful in spontaneously breathing tetraplegic patients [137,147].

However inspiratory muscle training has not been tested in ventilator depen-

dent SCI. If a patient fails to wean it may be possible to use an implanted

diaphragm pacing system as an alternative to MV [37, 38, 42, 43, 71, 130]. How-

ever this approach may not be suitable for every patient and may be associated

with complications [71,130]. Therefore, following validation with future research,

the weaning technique demonstrated in this study would provide clinicians with

another tool to use before an implant or lifelong ventilation is necessary.

In addition to the clinical benefits weaning from MV has for a patient, im-

proving weaning outcome and reducing time to wean has economic implications.

Days spent in an intensive care unit are expensive for the health care provider.

Daily costs in the intensive care unit are reported to be around $4000 per day

in the United States [157] and 2000 Euros per day in Europe [71]. If the inter-

vention proposed in this case study is shown to be generally successful it has the

potential to improve the health of patients and o↵er a fiscal benefit to the health

care provider.

7.4.5 Study Limitations

The major limitation of this study was that it comprised a single case study. In

addition there were two other limitations:

1. During the assessments A1 to A6, AFES was set at a constant rate to

which the patient was asked to synchronise his breathing. Inevitably this

resulted in a discrepancy between the application of stimulation and the

patient’s exhalation. This can be observed in the BR recorded for unassisted

breathing and AFES-assisted breathing during these assessment sessions.

BR should have been at 13 breaths per minute in these assessments (30

breaths per minute in A6) however as can be seen in Figure 7.6(b), it was

often much higher than this.

2. During phase two of the study, the assessment sessions generally took place

during unassisted SBT. Although the assessments were carried out at the

same time of day, they did not necessarily take place at a constant time
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in relation to the start of unassisted SBT. As a result patient fatigue may

have unevenly a↵ected the results of these assessments.

7.5 Conclusions

The results of this study demonstrate the feasibility of using AFES in the process

of weaning a tetraplegic patient o↵ MV. AFES can be used to allow the wean-

ing process to begin earlier than standard progressive ventilator free breathing

weaning and increase the duration of unassisted SBTs at the start of the weaning

process. In addition, an apparent relationship was demonstrated between the

AFES intervention periods and the change in ventilatory parameters and SBT

duration. Although these results have to be taken with the necessary caution

for a single case study, they provide compelling data to support the hypothesis

that AFES can be used to assist with weaning in tetraplegic SCI. The results in

this study provide the necessary justification for future follow up work in a larger

subject cohort.
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Chapter 8

Automatic Timing of AFES

8.1 Introduction

The e↵ects of AFES applied over a period of several weeks on the respiratory

function of tetraplegic patients was investigated in the two clinical studies that

were completed for this thesis. During the AFES training sessions in these studies,

either the researcher attempted to synchronise the stimulation with the patients

volitional breathing (Chapter 3), or the patient was instructed to synchronise

their volitional breathing with a pre-determined stimulation pattern (Chapter 7).

There are two disadvantages with these systems:

1. The patient’s breathing may not remain synchronised with the stimulation.

2. Either the researcher or the patient is required to monitor the stimulation

output.

An automatic stimulation triggering system was used in the first clinical study

of this thesis, which was based on the work by Gollee et al. [57], and is described

in Chapter 3. In quiet breathing mode, this system monitored the patient’s

volitional breathing using a spirometer and applied stimulation automatically in

synchrony with a patients exhalation. However, the use of a spirometer required

the patient to wear a face mask which is impractical for a device that is used

regularly in the clinic.

Spivak et al. [133] proposed an alternative approach for automatic control of

stimulation, which used electromyography measurements of muscle activity as a

trigger for AFES. Electromyography measurements were taken from the pectoral

muscles, however these muscles are only functional during cough and only active

in lower level tetraplegic SCI [144]. Therefore, this approach would not be suitable

as a method of triggering AFES in synchrony with quiet breathing.
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There have been other studies that have concentrated specifically on suitable

sensors for timing of AFES [55,60], while using a triggering system similar to that

described by Gollee et al [57]. Gollee and Chen [55] used an inertial measurement

unit attached to a belt around the abdomen. While the results of this study

showed that an inertial measurement unit could be suitable for use as a sensor

for timing of stimulation, it would be sensitive to other body movements as well

as those produced by breathing.

Gollee and Mann [60] used piezoelectric e↵ort belts worn around the chest

and the abdomen to measure breathing. This study showed the feasibility of this

type of sensor for timing AFES-assisted breathing. However the system was only

tested in two tetraplegic subjects and therefore needs to be further validated.

In order to be able to assess di↵erent AFES systems, their performance needs

to be quantified. In previous work this has either not been reported [132], or

been reported only qualitatively [57]. The primary function of an AFES system

is to provide stimulation to the abdominal muscles in synchrony with exhala-

tion. Moreover, stimulation applied during inhalation may increase the work of

breathing. Therefore, an ideal AFES system should not fail to stimulate dur-

ing exhalation, it should not stimulate during inhalation, and there should be no

phase delay between the start of exhalation and the start of stimulation. Further-

more, these AFES system characteristics should remain consistent over several

days of use, through a range of breathing rates and volumes, and while the pa-

tient is either active or inactive. Finally, an ideal system should not need to be

calibrated for individual patients.

Based on the clinical data collected in this thesis and the disadvantages as-

sociated with previous work described above, the aim of the study presented in

this chapter was to develop and validate a new, practical respiratory sensor and

algorithm combination that would allow AFES to be synchronised automatically

with a patient’s volitional breathing pattern.

8.2 Objectives

The objective of this study was to design a non-invasive stimulation triggering

system with a sensitivity, error rate and phase shift that was comparable to a

spirometer based stimulation system and that was:

1. Robust to variations in breathing rate and volume.

2. Robust to movement not related to breathing.
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3. Robust between days of use.

8.3 Methods

8.3.1 Subjects

This study involved ten able-bodied subjects who were in good general health

and who were not pregnant. Of the subjects who were recruited, six were male

and four were female. No subjects were past or present smokers. All procedures

were approved by the Faculty of Biomedical and Life Sciences ethics committee,

University of Glasgow.

8.3.2 Apparatus

A modified version of the apparatus used in the first clinical study of this thesis

(described in Chapter 3) was used to apply stimulation to the abdominal wall

muscles in synchrony with exhalation, record all sensor data, and provide a GUI

for the experiments.

The subject’s air flow rate was measured at the mouth using the spirome-

ter described in Section 3.2.2. In addition, the subject’s breathing was monitored

using a nasal/oral thermocouple (Pro-Tech, USA) and chest and abdominal move-

ments were measured using two piezoelectric belts (Pro-Tech, USA). The typical

outputs of the thermocouple and piezoelectric belts during quiet breathing were

300 µV and 1 mV respectively. An instrumentation amplifier [98] was used to

amplify, and to apply a 15 Hz low pass filter to, the thermocouple and piezoelec-

tric belt outputs before they were digitised by a data acquisition card (6036E,

National Instruments, Texas, USA). A potentiometer and a push button switch

were used to control the output of the stimulator; their outputs were digitised

using the data acquisition card. The data acquisition card was connected to

a laptop PC, which ran the system control algorithm in Simulink (Mathworks,

Massachusetts, USA) and controlled the output of the stimulator (described in

Section 3.2.1). The GUI described in Section 3.3 was modified to include the

output of the piezoelectric belts and the thermocouple and was displayed on the

laptop’s built in monitor. In addition an external monitor was used to display

a second biofeedback GUI (described in Section 8.3.4). A block diagram of the

system setup is shown in Figure 8.1.

The complete control algorithm described in Section 3.3 was used to control

the output of the stimulator, however this experiment only used the system’s
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Figure 8.1: Block diagram of the experimental system. DAQ: data acquisiton card;
Abdo Belt: abdominal belt.

quiet breathing stimulation mode. The complete Simulink model used in the

experiment is shown in Appendix A.

8.3.3 Apparatus Setup

The stimulation electrodes were placed on the abdomen as shown in Figure 3.2

(page 53). The stimulation frequency was set at 30 Hz and the stimulation pulse

width was filtered using a second order transfer function with a 0.1 s rise time

for all tests in this experiment. The current for each channel of stimulation was

adjusted until a strong, visible contraction of the corresponding muscle group

was observed at a constant pulsewidth of 150 µs. Following this, stimulation

was applied to all channels simultaneously, and adjustments were made to the

current settings for each channel, until an even contraction across the abdomen

was obtained. Since transcutaneous stimulation recruits sensory as well as motor

nerves, care was taken throughout this process to ensure that no discomfort was

caused to the subject. The stimulation parameters in this studies were chosen

based both on the settings used in the previous studies.

The abdominal belt was placed so that the centre of the piezoelectric material

covered the subject’s naval. The chest belt was placed so that the centre of the
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piezoelectric material was inline with the base of the sternum. Both of the belts

were a�xed so that the piezoelectric sensor measured approximately 12 cm at

the end of normal exhalation.

The thermocouple was placed on the upper lip so that the nasal sensing probes

were just below the nostrils and the oral sensing probe was in line with the middle

of the lips. The thermocouple was held in place by tightening the cable around

the back of the subject’s head.

The face mask was secured using a net that was placed around the back of

the subject’s head and clipped on to both sides of the face mask. The net was

tightened to ensure that there were no leaks from the mask.

Prior to the start of the study the calibration of the spirometer was verified

using a three liter calibration syringe as described in Section 3.2.2; the piezoelec-

tric belts and thermocouple were not calibrated. Several trial runs of the study

protocol were completed before the start of formal data collection to ensure that

the system functioned as designed and that the study protocol ran smoothly.

8.3.4 Study Protocol

This study included two assessment sessions which were conducted on two sep-

arate days. After the apparatus was set up as described in Section 8.3.3 the

subject was asked to perform a series of unassisted and AFES-assisted breathing

exercises. In total there were nine di↵erent breathing exercises. Each assess-

ment session included three sets of the nine breathing exercises as illustrated in

Figure 8.2 .

Set 1

Assessment session

Set 2 Set 3RestRest

Breathing Exercise 1 Rest Breathing Exercise 9

Figure 8.2: Outline of the assement protocol

Within a set the order of the breathing exercises was randomised. Subjects

were allowed to rest for as long as they wished between breathing exercises. The

di↵erent breathing exercises are described below.

Unassisted QB Subjects were asked breathe as normally as possible for one

minute. Subjects were given no feedback on their breathing pattern.
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AFES QB Similar to unassisted QB except that the subject’s breathing was as-

sisted with AFES. Subjects were instructed not to focus on their breathing

or the sensation of stimulation.

Unassisted deep breathing Subjects were instructed to breathe with double

their average unassisted QB VT for 30 seconds. A GUI gave the subjects

real-time feedback on the volume of the current breath and displayed a

target breath volume range (Figure 8.3(a)). The range was set to be ±10%

of target tidal volume. Subjects were instructed to breathe as continuously

and as smoothly as possible during this exercise.

AFES deep breathing Similar to unassisted deep breathing except that the

subject’s breathing was assisted by AFES.

Unassisted rapid breathing Subjects were instructed to breathe at double

their average unassisted QB BR for 30 seconds. During this exercise a

GUI displayed a white circle with twelve equally spaced markings (similar

to a clock face without numbers). A large red dot moved round the outer

edge of the circle with a period that was equal to the reciprocal of the target

breathing rate. Subjects were instructed to complete a full breathing cycle

(i.e. inhalation and exhalation) in synchrony with one revolution of the red

dot (Figure 8.3(b)). Subjects were asked to try to breathe as smoothly as

possible during this exercise.

AFES rapid breathing Similar to unassisted rapid breathing except that the

subject’s breathing was assisted by AFES.

No breathing In this exercise subjects were asked to hold their breath for 15

seconds.

No breathing with hand clapping In this exercise subjects were asked to

hold their breath for 15 seconds while clapping their hands above their

head.

Quiet breathing with hand clapping In this exercise subjects were asked to

clap their hands above their head while breathing as normally as possible.

This breathing exercise lasted for 15 seconds.
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Inhalation Exhalation

(a) Deep breathing GUI

40

(b) Rapid breathing GUI

Figure 8.3: The GUIs used for the deep breathing and rapid breathing tests. (a) shows
the GUI used during the deep breathing tests. The red bar indicates the volume of the
current inhalation or exhalation. Subjects were instructed to modify their VT so that
at the end of each inhalation or exhalation the red bar was between the black tolerance
bars. (b) shows the GUI used during the rapid breathing test. The red dot travelled
around the clock face at the target breathing rate which is shown in breaths per minute
at the top of the clock face. Subjects were instructed to complete a breathing cycle
(inhalation and exhalation) in synchrony with the red dot making a complete rotation
of the clock face.

8.3.5 Data Screening

Sets of breathing exercises were visually inspected for each breathing sensor. If

there had been a problem recording the data from any of the breathing exercises

then this data was removed. Typical problems included the sensor becoming dis-

placed and the sensor becoming disconnected. An example of recorded thermo-

couple data that was removed due to the sensor becoming displaced is illustrated

in Figure 8.4

8.3.6 Algorithm Development

For each assessment session the data recorded over the three sets of breathing

exercises was combined into a single data set to give a data set for each sensor

per breathing exercise.

The location of the air flow rate zero crossings corresponding to the start of

inhalation and exhalation were calculated from the output of the spirometer as

described in Section 3.7.1.
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Figure 8.4: An example of the change in the thermocouple signal when the thermo-
couple became dislodged.

The analysis of the recorded signals from each of the other breathing sensors

was divided into the following steps (i) feature identification, (ii) filtering, (iii)

development of a feature detection algorithm, (iv) matching the detected features

to the corresponding zero crossings, and (v) evaluation

Feature Identification

Feature identification involved identifying the points in the signals recorded by the

alternative sensors (abdominal belt, chest belt, and thermocouple) which corre-

sponded to the start of exhalation and inhalation as measured by the spirometer.

This was done by comparing visually the output from each of the alternative sen-

sors to the air flow rate measured by the spirometer. As illustrated in Figure 8.5

the peaks and troughs in the thermocouple output approximately corresponded

to the start of exhalation and inhalation respectively. For the belt signals the

mid point between a trough and a peak corresponded to the start of exhalation,

while the mid-point between a peak and a trough corresponded to the start of

inhalation.

Filtering

The recorded thermocouple signal contained a small amount of noise, which ac-

cording to its frequency response was not specific to a single frequency. A range of

simple moving average filters with di↵erent window types and filter orders were

tested. A 5th order simple moving average filter with a gaussian window was

selected since it provided su�cient smoothing with a minimal phase delay.

It was necessary to remove the o↵set in the recorded piezoelectric belt signals

so that a zero crossing algorithm could be written to detect the location of in-

halation and exhalation in the signals. A range of infinite impulse response high

pass filters were tested. A 1st order Butterworth high pass filter with a 0.08 Hz 3
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Figure 8.5: Comparison of air flow rate measured by the spirometer and the output
of the thermocouple and piezoelectric belts. The outputs from each of the sensors were
filtered as described in Section 8.3.6.

dB cuto↵ was selected as it adequately removed the o↵set with a minimal phase

delay.

Feature Detection Algorithms

For the piezoelectric belts a zero crossing algorithm was developed and for the

thermocouple a peak and trough detection algorithm was developed. Both algo-

rithms were developed so that they could be used in an online system to detect

the onset of exhalations and inhalations.

Zero Crossing Detection Zero crossings were considered as the points at

which the sign of the signal changed either from negative to positive (exhala-

tion), or from positive to negative (inhalation). In the algorithm developed an

exhalation (inhalation) was defined:

1. IF the number of positive (negative) samples was greater than the number of

negative (positive) samples in the window of length FW

E

(FW

I

), after the

current point AND the number of negative (positive) samples was greater

than the number of positive (negative) samples in the window of length

BW

E

(BW

I

) before the current point.
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2. AND the last detected zero crossing was not an exhalation (inhalation).

3. AND the integral between the last zero crossing and the current point was

greater than Int

E

(Int
I

).

4. AND EITHER the period between the last zero crossing and the current

point was greater than Blank

E

(Blank

I

) multiplied by the period between

the previous pair of zero crossings OR the period between the last zero

crossing and the current point was greater than five seconds.

Condition two in the above algorithm was to mitigate false positives that

were caused by small signal excursions over the zero crossing which were not

related to breathing. In condition four the first statement was to mitigate false

positive zero crossings caused by large troughs that crossed zero at the onset of

stimulation (see Figure 8.6). The second statement acted as an algorithm reset

when the algorithm had failed to identify one or more previous zero crossings.

Five seconds was chosen based on the slowest expected breathing rate of a user,

which was taken as six breaths per minute.1

Peak and Trough Detection Peaks and troughs were considered by exam-

ining the gradient of the samples in windows either side of an expected peak or

trough. In the algorithm developed a peak (trough) was defined:

1. IF the di↵erence between each of the samples, in the window, of length

BW

E

(BW

I

), leading up to the peak (trough) was greater (less) than or

equal to zero AND the di↵erence between the samples, in the window, of

length FW

E

(FW

I

), following the peak was less (greater) than or equal to

zero.

2. AND the last detection was not a peak (trough).

3. AND the integral between the previous trough (peak) and the current point

was greater than Int

E

(Int
I

).

4. AND EITHER the period between the current peak (trough) and the pre-

vious trough (peak) was greater than Blank

E

(Blank

I

) multiplied by the

period between the previous trough (peak) and the previous peak (trough)

OR the period between the previous trough (peak) and the current point

was greater than five seconds.

1Each pair of zero crossings is equivalent to half a breath cycle, therefore the threshold of
five seconds represents a full breath cycle lasting 10 seconds; or equivalently a breathing rate
of six breaths per minute
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Figure 8.6: Example of the stimulation artefact that occured during the early phase
of expiration in the abdominal belt output. The upper plot shows the flow rate and
the lower trace shows the abdominal belt output. In both plots, the horizontal black
bars show the period that stimulation was active.

Matching Flow Rate Zero Crossings to Detected Features

Each of the zero crossings detected in the airflow rate were matched to the closest

feature detected by each of the alternative sensors according to the following rules:

1. An exhalation detected in the airflow rate could only be matched to a feature

that corresponded to an exhalation detected in the alternative sensor. For

example, a negative to positive zero crossing in the flow rate measured by

the spirometer could only be matched to a trough in the thermocouple

signal. An equivalent rule was followed for inhalations.

2. Zero crossings detected in the airflow rate could only be matched with

features detected in the signal from the alternative sensor that occurred

within half of the average breathing period before or after the airflow rate

zero crossing.

It should be noted that for this analysis the sample at the end of the window

after the alternative sensor breath feature (i.e. the sample at the end of FW

E

or FW

I

) was used, since this is the earliest sample at which the breath feature

could be detected in an online system.
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Evaluation

The outcome measures that were used to assess the di↵erence between the ex-

halations and inhalations detected using the spirometer and the exhalations and

inhalations detected using the alternative breathing sensors were sensitivity, error

rate and phase shift.

Sensitivity True positives (TP ) were defined as exhalations or inhalations that

were detected by both the alternative breathing sensor and the spirometer. The

total number of breaths (N
B

) was defined as the total number of breaths detected

by the spirometer. Accordingly, sensitivity was defined according to Equation 8.1.

Sensitivity =
TP

N

B

⇤ 100 (8.1)

The reciprocal of sensitivity is the false negative (FN) rate, where false neg-

atives were defined as exhalations or inhalations that were not detected by the

alternative breathing sensor but were detected by the spirometer.

Error Rate False positives (FP ) were defined as exhalations or inhalations

that were detected by the alternative breathing sensor but not detected by the

spirometer. Accordingly error rate was defined according to Equation 8.2.

Error rate =
FP

N

B

⇤ 100 (8.2)

Phase Shift Phase shift was defined as the number of samples between the

alternative sensor true positives and the corresponding inhalations or exhalations

detected by the spirometer. A positive phase shift indicated that the exhalation

or inhalation detected by the alternative sensor occurred after the exhalation or

inhalation detected by the spirometer.

Algorithm Parameter Optimisation

To find the optimal set of parameters (BW

E

, BW

I

, FW

E

, FW

I

, Int

E

, Int

I

,

Blank

I

and Blank

E

) for a given sensor and algorithm combination a parameter

sweep routine was written and performed in Matlab. The routine calculated the

sum of the number of false positives and false negatives during AFES quiet breath-

ing, deep breathing, and rapid breathing on assessment one using a range of values

of each algorithm parameter (determined empirically and shown in Table 8.1) for

a given algorithm and sensor combination. The combination of parameters that
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reduced the sum of the false positives and the false negatives for a given sensor

and algorithm combination were considered to be optimal.

The optimal set of parameters were calculated on an individual subject basis

and on the pooled subject data. Since the overall group mean sensitivity and

error rate was not significantly di↵erent when using the individual subject set of

optimal parameters and the global set of optimal parameters, the global set of

optimal parameters were used for the remainder of the data analysis.

Table 8.1: The range of algorithm parmaters tested in the parameter sweep for each
algorithm and sensor combination.

Parameter
Sensor (lower limit, upper limit, increment)

Abdo belt Chest belt Thermocouple
BW

I

, BW

E

1, 10, �1 1, 10, �1 0, 10, �1
FW

I

, FW

E

1, 10, �1 1, 10, �1 0, 10, �1
Int

I

, Int

E

0, 0.15, �0.01 0, 0.15, �0.01 2, 3.5, �0.1
Blank

I

, Blank

E

0.1,0.9,�0.1 0.1,0.9,�0.1 0.1,0.9,�0.1

8.3.7 Statistics

Statistics were calculated on the group results pooled over all of the subjects. The

pooled results were tested to see whether they followed a normal distribution using

the Shapiro-Wilks test. It was found that while some of the pooled results followed

a normal distribution, for example the phase shift results, other results did not.

Therefore, for consistency, all statistical comparisons were performed using non-

parametric tests. Paired comparisons were performed using the Wilcoxon rank

sum test. Intra subject comparisons of three or more groups were performed using

the Friedman test. Post-hoc multiple comparison testing using the Tukey-Kramer

Honestly Significant Di↵erence criterion was used when a significant di↵erence

was detected using the Friedman test. The statistical significance level was set

at p < 0.05.

8.4 Results

8.4.1 Algorithm Parameters

The globally optimal algorithm parameters determined from the parameter sweep

are shown in Table 8.1.

The overall mean sensitivities and error rates calculated from the pooled AFES

quiet breathing, deep breathing and rapid breathing (collectively, AFES-B) data
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Table 8.2: The globally optimal algorithm parameters determined from the parameter
sweep of the AFES-B data from assessment one.

Parameter
Sensor

Abdo belt Chest belt Thermocouple
FW

I

3 1 5
BW

I

1 1 0
Blank

I

0.4 0.4 0.3
Int

I

0.1 0.03 3
FW

E

1 1 7
BW

E

1 1 0
Blank

E

0.3 0.3 0.3
Int

E

0.1 0.08 0

from both assessment sessions using the globally optimised parameter set were

not significantly di↵erent from those calculated using the individual subject op-

timised parameter sets (Table 8.3). For the same comparison the phase shift was

not significantly di↵erent for the abdominal belt, and the chest belt but it was

significantly di↵erent for the thermocouple (Table 8.3). The phase shift of the

thermocouple system using the globally optimised parameters was 0.02 ± 0.07s,

whereas the equivalent phase shift calculated using the individually optimised

parameters was 0.08± 0.08s (mean ± standard deviation).

Table 8.3: p-values obtained when the AFES-B results obtained using the globally
optimised algorithm parameters were compared with the equivalent results obtianed
using the individually optimised algorithm parameters.

Outcome
Sensor

Abdo belt Chest belt Thermocouple
Sensitivity 0.33 0.31 0.19
Error rate 0.64 0.5 0.19
Phase shift 0.49 0.10 <0.01

8.4.2 Overall Performance

The mean sensitivities of the pooled AFES quiet breathing, deep breathing and

rapid breathing results, taken over both assessment sessions for individual sub-

jects, are illustrated by box plots for each of the alternative sensors in Fig-

ure 8.7(a). Similarly the error rate and phase shift results are shown in Fig-

ures 8.7(b) and 8.7(c) respectively.

Friedman testing found a significant di↵erence in the sensitivity and error rate

of each of the sensors (p < 0.01 and p = 0.01 respectively). Multiple comparison
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Figure 8.7: Box plots showing the overall performance of each of the alternative
sensors during AFES-assisted breathing. Results were calculated by pooling the quiet
breathing, rapid breathing and deep breathing over both assessment sessions. In each
box plot, the middle bar represents the median, the box edges represent the upper and
lower limit of the interquartile range, the whiskers represent the complete spread of
the data (excluding outliers) and the crosses represent outliers. Outliers were defined
as points that were either above the 75th percentile or below the 25th percentile by a
factor of one and a half times the interquartile range.

testing found that the sensitivity of the thermocouple system was significantly

greater than the sensitivity of both the abdominal belt and chest belt systems.

In addition the error rates for the thermocouple and chest belt systems were

significantly lower than the abdominal belt system error rate. There was not a

significant di↵erence in phase shift (p = 0.17) between the sensors.

8.4.3 Repeatability

For all three of the alternative sensors, the sensitivity, error rate and phase shift

did not di↵er significantly between the assessment sessions. The p-values from

the comparisons are given in Table 8.4
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Table 8.4: p-values from the comparison between assessment session one and as-
sessment session two using the Wilcoxon rank sum test. For the comparisons the
mean sensitivity, error rate and phase shift was calculated from the pooled AFES quiet
breathing, rapid breathing, and deep breathing.

Sensitivity Error rate Phase shift
Thermocouple 0.23 1 0.69
Chest belt 0.50 0.44 0.28
Abdo belt 0.92 0.91 0.23

8.4.4 E↵ect of Breathing Pattern

The mean sensitivities, error rates, and phase shifts, taken over both assessment

sessions for individual subjects, for AFES quiet breathing, deep breathing, and

rapid breathing are illustrated by box plots in Figure 8.8.

The e↵ect of the breath pattern on the sensitivity of the thermocouple system

was statistically significant (p = 0.02) whereas for both the abdominal and chest

belt systems the e↵ect was not significant (p = 0.41 for both systems). Post-hoc

multiple comparison testing found that AFES deep breathing was significantly

di↵erent to AFES-QB for the thermocouple system.

Error rate was not significantly a↵ected by breathing pattern for either the

thermocouple (p = 0.56), or the chest belt (p = 0.24) or the abdominal belt

(p = 0.70) systems.

The phase shift of each of the alternative sensor systems was a↵ected by the

breathing pattern (p < 0.01 for both the thermocouple and chest belts systems,

and p = 0.01 for the abdominal belt system). Multiple comparison testing found

that the phase shift was significantly di↵erent between:

• AFES rapid breathing and AFES-QB for the thermocouple system;

• AFES deep breathing and AFES rapid breathing for the abdominal belt

system;

• AFES rapid breathing and both AFES-QB and AFES deep breathing for

the chest belt system.
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Figure 8.8: E↵ect of breathing pattern on the performance of the systems. The results
were calculated by pooling the data over both assessment sessions. In each box plot,
the middle bar represents the median, the box edges represent the upper and lower
limit of the interquartile range, the whiskers represent the complete spread of the data
(excluding outliers) and the crosses represent outliers. Outliers were defined as points
that were either above the 75th percentile or below the 25th percentile by a factor of
one and a half times the interquartile range.
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8.4.5 False Positives During Periods of No Breathing

Example output from each of the sensors during a period of no breathing is shown

in Figure 8.9.
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Figure 8.9: Example output from each of the sensors during a period of no breathing.

The number of false positives which occurred during periods of no breathing

are illustrated by box plots for each of the respiratory sensors in Figure 8.10. For

each sensor system the number of false positives was significantly greater than

zero (p < 0.01 for each of the systems).
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Figure 8.10: Number of false positives that occurred during periods of apnea. Results
were calculated using pooled no breathing data from both assessments. In each box
plot, the middle bar represents the median, the box edges represent the upper and lower
limit of the interquartile range, the whiskers represent the complete spread of the data
(excluding outliers) and the crosses represent outliers. Outliers were defined as points
that were either above the 75th percentile or below the 25th percentile by a factor of
one and a half times the interquartile range.

8.4.6 E↵ect of Movement Unrelated to Breathing

Figure 8.11 shows the e↵ect of hand clapping on the output from the alternative

sensors during a period of no breathing (Figure 8.11(a)) and during a period of

quiet breathing (Figure 8.11(b)).

The number of false positives during period of no breathing with hand clap-

ping for each sensor system is illustrated by box plots in Figure 8.12(a). The

sensitivities, error rates and phase shifts during periods of unassisted QB and

quiet breathing with hand clapping for each of the alternative sensor systems are

illustrated by box plots in Figures 8.12(b), 8.12(c) and 8.12(d) respectively.

The statistical analysis found the following:

• The number of false positives during periods of no breathing with hand

clapping was significantly greater than the number of false positives during

periods of no breathing for each of the sensor systems (p < 0.01 in all cases).

• The unassisted QB and quiet breathing with hand clapping sensitivities

were significantly di↵erent for each of the alternative sensor systems (p <

0.01 in all cases).

• The unassisted QB and quiet breathing with hand clapping error rates were

significantly di↵erent for the abdominal belt system (p = 0.02) but not for

the thermocouple system (p = 0.16) or the chest belt system (p = 0.05).
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• The unassisted QB and quiet breathing with hand clapping phase shifts were

significantly di↵erent for the thermocouple (p < 0.01), chest belt (p < 0.01)

and abdominal belt (p = 0.02) systems.
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Figure 8.11: Example outputs of the sensors during (a) no breathing with hand
clapping and (b) quiet breathing with hand clapping.



8.5. DISCUSSION 168

Abdo belt Chest belt Thermocouple

5

10

15

20

25

30

35

40

45

N
u
m

b
e

r 
o
f 

fa
ls

e
 p

o
si

tiv
e
s

(a)

Abdo belt Chest belt Thermocouple
65

70

75

80

85

90

95

100

S
e
n

si
tiv

ity
 (

%
)

(b)

Abdo belt Chest belt Thermocouple

0

5

10

15

20

E
rr

o
r 

ra
te

 (
%

)

(c)

Abdo belt Chest belt Thermocouple

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

P
h
a
se

 s
h

ift
 (

s)

(d)

Figure 8.12: The e↵ect of movement unrelated to breathing on the performance of
the three systems. (a) shows the number of false positives generated by hand clapping
during a period of apnea. (b) - (d) compares the sensitivity, error rate and phase shift
between Unassisted-QB (grey boxes) and quiet breathing with hand clapping (black
boxes). In all of the plots the results were calculated based on the pooled data from
both assessment sessions. In each box plot, the middle bar represents the median, the
box edges represent the upper and lower limit of the interquartile range, the whiskers
represent the complete spread of the data (excluding outliers) and the crosses represent
outliers. Outliers were defined as points that were either above the 75th percentile or
below the 25th percentile by a factor of one and a half times the interquartile range.

8.5 Discussion

The aim of this study was to develop a new respiratory sensor and algorithm

combination suitable for triggering AFES in synchrony with a patient’s volitional

exhalation.

In this study three new systems were designed. The first system used a nasal

and oral thermocouple in combination with a peak detection algorithm. The

second and third systems both used piezoelectric belts in combination with a zero

crossing algorithm. In the second system the belt was placed around the chest

while in the third system the belt was placed around the abdomen. To evaluate

the performance of the new systems, the inhalations and exhalation detected by
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each of the new systems were compared to the inhalations and exhalation detected

by the spirometer.

8.5.1 Sensitivity and Error Rate

The thermocouple and chest belt systems had significantly greater sensitivity and

tended to have a smaller error rate than the abdominal belt system (Figure 8.7,

page 162). For all subjects the thermocouple system sensitivity was greater than

98%, which was larger than either of the other two systems, and the error rate

was less than 2%. On average these results equate to one missed breath and one

unintentional burst of stimulation every three minutes2.

The abdominal belt system’s sensitivity was significantly reduced, and its

error rate tended to be greater than either the thermocouple or the chest belt

system (Figure 8.7, page 162). The most common explanation for this reduced

performance was the stimulation artefact (see Figure 8.6, page 158) which was

regularly present in the abdominal belt signal but not in either the thermocouple

or chest belt signals. The zero crossing algorithm attempted to account for this

artefact by incorporating a variable duration blanking window (Blank

E

) after

exhalation was detected. While this algorithm feature reduced false positives

and false negatives for some subjects, it did not perform well for other subjects.

The sensitivity of the thermocouple system was reduced during periods of

deep breathing compared with periods of either quiet breathing or rapid breathing

(Figure 8.8, page 164). Neither the error rate of the thermocouple system nor the

sensitivity and error rate of the abdominal and chest belt systems were a↵ected

by either breathing rate or breathing volume. Examination of individual subject

cases found that the reduced thermocouple sensitivity during deep breathing was

a result of unexplained noise in the signal rather than the mode of breathing.

Collectively, these results show that the sensitivity and error rate of the three

systems designed in this study are robust through a wide range of breathing

patterns.

8.5.2 Phase Shift

The overall median phase shift for each of the alternative sensor systems was close

to zero and ranged between -0.1 s and 0.1 s (Figure 8.7(c), page 162). The phase

shift for each alternative sensor system was significantly a↵ected by breathing

pattern (Figure 8.8, page 164). For each sensor the phase shift during both deep

2Assuming an average breath rate of 15 breaths per minute
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breathing and quiet breathing tended to be similar and reduced compared with

the phase shift during rapid breathing (Figure 8.8(c), page 164).

It was expected that while the phase shift of the abdominal and chest belts

would be similar, since the abdomen and chest work in tandem to expand and

compress the thorax [154], the phase shift of the belt signals would be less than

zero and reduced compared with the thermocouple system for the following rea-

sons:

1. The movement of air to and from the lungs begins with the expansion and

compression of the thorax. In addition, previous authors have demonstrated

that in measurements of abdominal and chest movement, using an inertial

measurement unit [55] or respiratory inductive plethysmography belts [30],

the zero crossings occur before the zero crossings in measured flow rate.

2. The thermocouple measures breathing activity by responding to a change in

airflow temperature and there is an inherent phase delay between the change

in temperature of the airflow and the change in output voltage produced

by the thermocouple.

While the overall phase shift results (Figure 8.7(c)) contradict the above ex-

pectations, the analysis of the e↵ect of breathing pattern on phase shift (Fig-

ure 8.8(c)) shows that the above expectations hold for deep breathing and quiet

breathing. During rapid breathing the phase shifts become similar across the

di↵erent alternative sensor systems and positive (compared with the spirometer

system). In each of the alternative sensor systems, delays would be introduced

through the analog and digital filtering process and the length of FW

I

and FW

E

chosen in the detection algorithms. In comparison, the spirometer provided a

digital output of the flow direction, and therefore no filtering delays or algorithm

delays were introduced into the system. Considering that the increased flow rate

during rapid breathing compared with either quiet or deep breathing, is likely to

have minimised the delay caused by the physical separation of the three alterna-

tive sensors and the spirometer, this would:

1. equalize the phase delay between each of the three alternative sensor sys-

tems, since the technical delay in each system was comparable and

2. increase the phase delay of each of alternative sensor systems compared

with the spirometer, since the spirometer had minimal technical delay.

Practically speaking it is undesirable to have a stimulation triggering system

that interrupts inhalation by applying stimulation before the start of exhalation
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as this is likely to be uncomfortable for a patient and may lead to dyspnea.

Although the phase delay of each of the alternative breathing systems was less

than zero, this could be corrected for by adding an additional delay into the

system. If AFES was being used for neuromuscular training the author believes

that a small delay between the start of volitional exhalation and the onset of

stimulation is of minimal concern. In comparison, if AFES was being used as a

cough neuroprosthesis, the phase delay between the start of volitional exhalation

and the onset of stimulation would be highly important as the greatest CPFs

are reached during the beginning of exhalation. An additional usability factor

that should be considered is that an inconsistent stimulation trigger may be

distracting for the patient. In each of the systems designed in this study the

phase shift changed between di↵erent modes of breathing. A future improved

design could possibly correct for this di↵erence by modeling the phase shift as a

function of breathing pattern factors (e.g. BR, VT, PEF etc.) and applying a

variable delay to the system based on the predicted phase shift.

8.5.3 E↵ect of Apnea

All three of the systems designed in this study produced a statistically signif-

icant number of false positive detections during periods of apnea (Figure 8.10,

page 166). However, the number of false positives detected tended to be largest

for the abdominal and chest belt systems. As shown in Figure 8.9 the chest belt

picked up a strong periodic signal during these periods, which was present to a

lesser extent in the abdominal belt. It is presumed that this signal resulted from

the heart beat of the subjects. Since heart beat frequency is greater than breath-

ing frequency an improved design of the belt systems could include an analog

filter with greater stop band attenuation or an additional low pass digital filter.

8.5.4 E↵ect of Movement Unrelated to Breathing

As shown in Figure 8.12 all three of the systems were a↵ected by the subject

clapping their hands over their head. The abdominal and chest belt systems were

most severely a↵ected by the hand clapping. As shown by Figure 8.11, the arm

movement resulted in expansion and contraction of the chest that was unrelated

to breathing. Although only a specific movement was tested in this study, these

results illustrate a general limitation of the piezoelectric belt systems designed:

the diameter of the abdomen and chest are a↵ected by upper body movement in

addition to breathing.
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Figure 8.11(a) shows that the output of the thermocouple was a↵ected by hand

clapping during periods of apnea. A possible explanation is that small amounts

of air escaped the nose or mouth during the exercise that was not detected by

the spirometer.

As reported in Chapter 3, some patients included in the first clinical study

of this thesis received AFES while they participated in hand therapy sessions.

Therefore retained system performance during periods of upper body movement

is an important property for an abdominal stimulation system that would be

used in the clinic. In this regard, the thermocouple was least a↵ected by arm

movement and therefore the most suitable.

8.5.5 Practical Aspects

There was not a statistically significant di↵erence between the results found in

the two assessment sessions in this study. This indicates that the performance of

the systems designed should be stable between di↵erent days of use.

The same algorithm parameters were used for every subject included in this

study. It was found that the results obtained with these globally optimised pa-

rameters and the results obtained with individually optimised parameters were

not statistically di↵erent. It is assumed that the globally optimised parameters

would produce similar results in a wider tetraplegic population. This is a useful

finding as it indicates a system which does not need to be specifically tuned for

individual subjects.

All three sensors required minimal e↵ort and were quick to apply to the sub-

jects in this study. A disadvantage of either the abdominal or chest belt systems

is that to place the belts the patient needs to lean forward, a feat which generally

requires the assistance of two health care workers. In comparison the thermo-

couple could be placed on a tetraplegic patient as easily as it was placed on the

healthy subjects in this study. The disadvantage of the thermocouple system is

that it could not be used with a patient who had a tracheostomy.

8.5.6 Other Possible Sensors

There are a wide range of other respiratory sensors that are used currently in sleep

studies. The most common of these are respiratory inductive plethysmography

belts and systems that measure pressure changes in a nasal cannula.

Respiratory inductive plethysmography systems have generally superseded

piezoelectric belt systems in the sleep market for two reasons:



8.6. CONCLUSIONS 173

1. The sensing element of the respiratory inductive plethysmography belt is

e↵ectively the whole belt whereas the sensing element of piezoelectric belts

only covers a small region of the diameter of the belt. This means that

respiratory inductive plethysmography belts are less susceptible to errors

caused by parts of the belt becoming trapped when the patient moves.

2. Respiratory inductive plethysmography belts provide a more accurate mea-

surement of volume.

Although respiratory inductive plethysmography belts have advantages over the

piezoelectric belts, they are still likely to be susceptible to the movement artefacts

caused by stimulation and by arm motion that were observed in the piezoelectric

belt signal used in this study.

The shape of the waveform produced by the systems that measure pressure

changes in a nasal cannula is closer to the flow rate signal measured be a spirom-

eter, although it is not known whether this would result in improved performance

when compared with the system by the thermocouple.

8.5.7 Study Limitations

The major limitation of this study was that the experiments were completed

in healthy subjects and therefore these results have to be verified in tetraplegic

patients. This is particularly important for the piezoelectric belt results as it is

known that thoracic breathing mechanics can be a↵ected in tetraplegia [154].

The methodology used to calculate the optimal algorithm parameters was lim-

ited in that the parameter sweep found the algorithm parameters that minimised

the number of false positives and false negative but did not consider the phase

delay.

8.6 Conclusions

The thermocouple system tended to have the greatest sensitivity, the lowest er-

ror rate and was least a↵ected by arm movements compared with the abdominal

and chest belts systems. Unless a patient has a tracheostomy, the thermocou-

ple system should also be easiest to apply to patients compared with the other

systems designed. Therefore, when AFES is used for pulmonary rehabilitation

in spontaneously breathing tetraplegics this is the most suitable system from the

three that were designed.
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The performance of the chest belt was not statistically di↵erent to the perfor-

mance of the thermocouple system when arm movement was not present. Since it

is unlikely that patients would be completing other tasks that require arm move-

ment while being weaned from MV, and the chest belt could be used in patients

with a tracheostomy, the chest belt system designed in this study is recommended

for triggering AFES automatically in interventions that are designed to improve

weaning outcome in tetraplegic patients.
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Chapter 9

Discussion:

The Role of AFES in Tetraplegia

Electrical muscle stimulation applications can be divided into two basic paradigms:

neuromuscular retraining and neuroprosthetics [5]. In the context of this thesis,

neuromuscular training refers to using AFES as a tool to improve a patient’s unas-

sisted respiratory function, whereas, an AFES neuroprosthesis uses stimulation

to enhance a patient’s respiratory function temporarily.

The results from previous research had indicated that AFES may be use-

ful for neuromuscular training in tetraplegia [27, 87, 159]. However, these stud-

ies either combined an AFES intervention with other forms of respiratory mus-

cle training [104, 159], or combined AFES with stimulation of additional mus-

cle groups [87], leaving open the question of whether a passive neuromuscular

training intervention based solely on AFES could be used to improve unassisted

respiratory function in tetraplegia.

Prior research had also demonstrated the e�cacy of AFES as a respiratory

neuroprosthesis [24,57–59,78,85,87,104,132–134,140]. The majority of these pre-

vious studies used a cross-sectional design in which measurements were collected

on a single day of assessment. Salmons and Jarvis [124] suggested that using an

AFES respiratory neuroprosthesis for a period of time may result in changes in

contractile properties of the abdominal muscles, which could a↵ect the e�cacy

of AFES to enhance unassisted respiratory function. However, only one study,

which was published after the conclusion of the clinical work in this thesis, has

investigated this issue [104].

From the ideas of using AFES for respiratory neuromuscular training and

of using AFES as a respiratory neuroprosthesis, the question of clinical applica-

tion arises. Previous work has shown that an improvement in respiratory outcome
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measures is associated with a reduction in respiratory complications in tetraplegic

patients [27]. In addition, it has been shown that an AFES respiratory neuro-

prosthesis can be used to support periods of unassisted breathing in tetraplegic

patients who are unable to breathe spontaneously [78]. These findings provide

the foundation for using AFES as a tool to wean patients from MV. Prolonged

MV has considerable health implications for patients [152], and therefore this

previously unexplored application of AFES warrants investigation.

Central to the clinical adoption of AFES is the technology used to support the

applications. Gollee et al. previously designed an AFES control system that ap-

plied AFES automatically in synchrony with a patients volitional exhalation [57].

The system required that patients wear a spirometer connected to a face mask,

which is not practical solution. Therefore, subsequent studies demonstrated the

feasibility of using alternative respiratory sensors [55,60]. A quantitative analysis

on the accuracy of an automatic stimulation system using alternative sensors had

not been performed.

Based on the open questions presented above, this thesis had four aims:

1. To determine the e↵ect of a AFES training on unassisted respiratory func-

tion in tetraplegia (i.e. using AFES for neuromuscular training).

2. To determine the e↵ect of using AFES training on AFES-assisted respira-

tory parameters (i.e. the e↵ect of AFES training on an AFES prosthesis).

3. To determine the feasibility of using AFES to assist with weaning tetraplegic

patients from MV.

4. To design and determine the performance of an automatic AFES system

using a non-invasive respiratory sensor.

9.1 AFES for Respiratory Neuromuscular Train-

ing

The main findings of this thesis when using AFES for respiratory neuromuscular

training were:

• Unassisted FVC improved significantly over three weeks of passive AFES

neuromuscular training and this improvement was sustained three weeks

after the cessation of training (Chapter 4). In addition, four weeks of AFES

neuromuscular training was correlated with an increase in unassisted FVC

in a tetraplegic patient who was weaning from MV (Chapter 7).
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• Unassisted CPF improved significantly and PEF tended to improve over

three weeks of passive AFES neuromuscular training (Chapters 4 and 5).

9.1.1 Physiological Mechanisms

The abdominal muscles were paralysed in the tetraplegic patients included in this

thesis and therefore it is unlikely that an increase in abdominal muscle strength

would have a↵ected unassisted forced exhalation. FVC, PEF, and CPF are ex-

piratory manoeuvres that depend on expiratory muscle strength but also on in-

spiratory capacity. This is evidenced by the fact that FVC and PEF are greater

when measured from total lung capacity rather than FRC [159], and by the re-

sults of this thesis which showed (i) a significant relationship between CPF and

VI (Chapter 5) and (ii) that the increase in CPF over the training period corre-

lated with an increase in VI. There are at least four possible explanations for an

increase in inhalation capacity following AFES neuromuscular training:

1. AFES training improved the fulcrum e↵ect of the diaphragm contracting

against the abdominal contents.

2. AFES a↵ected the diaphragm either by unintended stimulation of the phrenic

nerve, or by moving the muscle through an increased range of motion com-

pared with unassisted breathing.

3. AFES breathing increased the compliance of the lung making it easier for

the lung to expand.

4. AFES training enhanced the patient’s ability to coordinate their breathing

muscles.1

Given the patient population investigated in this study, and previous authors’

findings that unassisted respiratory function can improve markedly during the

first year of a tetraplegic SCI [86,115], it is possible that some of the improvement

in unassisted outcome measures over the training period can be attributed to

natural recovery2. It seems unlikely that this is the only explanation for two

reasons:

1. The results of the main clinical study of this thesis (Chapters 3 to 6) showed

that (i) during the control period (A1 to A2) there was either no change

1These mechanisms are explained in full in the discussions presented in Chapters 4 and 7
2Where natural recovery in this case was defined as the recovery that would have occurred

even if the patients had not participated in the AFES training intervention
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(for FVC and PEF) or a reduction (for CPF) in the unassisted outcome

measures, and (ii) during the follow up period (between A5 and A6) there

was either a small change relative to the change during the training period

(for FVC), or a reduction (for PEF and CPF) in the unassisted outcome

measures.

2. In the MV case study presented in Chapter 7 there was a substantial im-

provement in FVC during four weeks of AFES neuromuscular training that

followed eight weeks of conventional care, in which FVC changed only mod-

estly.

Although the design of the studies and the outcomes of the statistical analysis

in this thesis do not allow firm conclusions to be drawn, the aggregation of these

observations demonstrate the feasibility of the AFES neuromuscular training ap-

proach and provide a framework for a follow up controlled trial.

9.1.2 Comparison with Other Forms of Respiratory Mus-

cle Training

The work in this thesis was the first to investigate a passive AFES neuromuscu-

lar training programme. Respiratory muscle training can be divided into active

or passive training programmes based on whether they require patient interac-

tion. Other passive respiratory muscle training programs have included: neuro-

muscular training of the abdominal and pectoral muscles [27]; and FMS based

neuromuscular training of the abdominal muscles [90]. Other active respiratory

muscle training programs have included breathing exercises complemented with

AFES [159]; AFES-assisted coughing [104]; and respiratory muscle training using

a flow resistant mouthpiece [13].

The increase in unassisted FVC, PEF, and CPF through the training pro-

gramme investigated in this thesis was comparable to the results of two previous

studies that included AFES [104,159] but smaller than in other previous studies

that incorporated AFES [27,87], and that used other forms of respiratory muscle

training [13]. Other respiratory muscle training programs have resulted in signif-

icant increases in unassisted MEP [13, 27], which was not found in the present

study. A major di↵erence between the current study and other respiratory muscle

training studies is the duration of the training programme, which was shorter in

the current study. Given this methodological di↵erence and that there was no

evidence in the current study to suggest that FVC, PEF and CPF would not have

improved further if the training period was increased (perhaps to the extent of
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producing a significant result for PEF), the author believes it would be premature

to draw conclusions on the most e↵ective training modality.

Practically, the AFES neuromuscular training programme presented in this

thesis was straightforward to implement and was easily incorporated within the

patient’s existing rehabilitation timetable. The author believes that AFES neuro-

muscular training has a practical advantage over other training modalities for two

reasons. Firstly, unlike abdominal and pectoral neuromuscular training [27], elec-

trodes need only to be applied to one muscle group. Secondly, it is passive, which

allows patients to complete other activities at the same time as AFES neuromus-

cular training. This was demonstrated in the main clinical study of this thesis by

the three patients who completed their training sessions while undergoing hand

therapy.

9.1.3 Technological Implementation of AFES During Train-

ing

The abdominal muscles are a major muscle of expiration and can increase the

work of breathing if they contract during inhalation. Therefore, it is impor-

tant to synchronize AFES with a patient’s volitional breathing pattern. In the

AFES training protocol used in this thesis, basic open-loop control was used to

approximately apply stimulation in phase with a patient’s volitional exhalation.

There were two limitations to this approach. Firstly, stimulation had to be syn-

chronized manually with the patient’s voluntary exhalation, both at the start,

and periodically throughout the training session. Secondly, stimulation was not

always delivered at the same time relative to exhalation.

As part of this thesis two new automatic stimulation trigger systems were

designed. The first system used a nasal thermocouple as the respiratory sensor

and the second system incorporated a piezoelectric belt worn around the chest

of the user. It was concluded that the first system was most suitable for mobile

patients and the second system was most suitable for patients on MV. It was

demonstrated that both of the systems achieved high sensitivity and a low error

rate during varying breathing patterns. Either of these systems could be inte-

grated with a FES stimulator to allow AFES muscle training to be consistently

and simply applied in a wide range of settings.
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9.2 AFES as a Respiratory Neuroprosthesis

The main findings of this thesis on the application of AFES as a neuroprosthesis

were:

1. AFES-assisted pulmonary function measures (FVC, FEV1, PEF, and MEP)

were significantly greater than unassisted pulmonary function measures

(Chapter 4).

2. AFES-assisted CPF was not significantly greater than unassisted CPF (Chap-

ter 5).

3. AFES-assisted VT and V̇ were significantly greater than unassisted VT and

V̇. In addition, there was a significant reduction in ETco2 during AFES-

assisted breathing in those patients who had the greatest AFES-assisted

VT (Chapter 6 and 7).

4. AFES-assisted FVC improved significantly, and AFES-assisted FEV1, PEF

and CPF tended to improve over three weeks of AFES training. Quiet

breathing ventilatory parameters did not change over the course of the

training period (Chapter 4 to 6).

5. The di↵erence between the AFES-assisted and unassisted outcome mea-

sures studied did not change over three weeks of abdominal muscle training

(Chapters 4 to 6).

9.2.1 Physiological Mechanisms

Acute E↵ects

The results of this thesis were consistent in demonstrating that AFES-assistance

augments unassisted breathing volumes. This finding can be explained by the

same mechanism of action that describes the e↵ect of a normal physiological

contraction of the abdominal muscles during breathing. When the abdominal

muscles contract during exhalation, the abdominal viscera are pushed upward

and cause the lungs to empty past FRC. This movement augments expiratory

volume, whereas the subsequent passive recoil of the lung back to FRC augments

inhalation [150].

During quiet breathing, the results of this thesis showed that the increase in

VT was not associated with an increase in ETco2 (which is used as a measure-

ment of blood homeostasis and metabolic demands) in any of the subjects whose
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AFES-assisted VT was greater than unassisted VT (defined as responder sub-

jects). In fact, for the patients who displayed the largest AFES-assisted VT, a

sharp decrease in ETco2 was observed. This suggests, as discussed in Chapter 6,

that the di↵erence between unassisted and AFES-assisted VT was at least suf-

ficient to o↵set the additional metabolic demands of the contracting abdominal

muscles. In addition, during AFES supported weaning sessions, an increase in

blood oxygenation was observed (Chapter 7). The corroboration of these findings

suggest that AFES-assisted breathing is metabolically e�cient.

In this thesis it was shown that AFES had an inconsistent e↵ect on peak

expiratory flow rates. During standardized clinical testing, AFES-assisted PEF

was greater than unassisted PEF (Chapter 4). In contrast, a di↵erence between

unassisted CPF and AFES-assisted CPF was not found (Chapter 5). Since both

of these findings were associated with the same group of subjects, di↵erences in

the measurement protocol o↵er the most likely explanation for these apparently

contradictory results. In this regard there were three important di↵erences.

Firstly, the inhalation volume that preceded the expiratory manoeuvre was

greater in the measurement of PEF when compared with the measurement of

CPF. As discussed in previous chapters, the expiratory elastic recoil of the lung

increases in proportion to the inhalation volume. In addition, the results pre-

sented in Chapter 5 showed a significant linear relationship between inhaled vol-

ume and CPF. Therefore, it may be that AFES-assisted cough is only e↵ective

following a large inhalation.

Secondly, the timing of stimulation in relation to the respiratory cycle di↵ered

between the two tests. In the measurement of AFES-assisted PEF, stimulation

was applied at the onset of exhalation. In comparison, during the measurement

of CPF stimulation was applied just before the start of exhalation, during the

glottal closure phase. Applying stimulation at the end of inhalation may have

been distracting for the patient, possibly interfering with their respiratory muscle

co-ordination.

Thirdly, the underlying physiology that is described by PEF and CPF is dif-

ferent. PEF is dependent on the instantaneous increase in intrathoracic pressure

that results from expiratory muscle contraction. In comparison CPF is dependent

on the build up of pressure that is generated during the glottal closure phase of

the cough.
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Chronic E↵ects

Although the main clinical study conducted in this thesis showed improvements

in AFES-assisted outcome measures through the training programme, the di↵er-

ence between the AFES-assisted outcome measures and the unassisted outcome

measures did not change. These results suggest that the improvement in AFES-

assisted outcome measures were as a result of the improvement in unassisted

outcome measures rather than a consequence of an improvement in abdominal

muscle contractile properties. One explanation is that the abdominal muscles in

tetraplegia cannot be trained e↵ectively. Although this seems unlikely as there

have been several previous studies that have shown changes in the properties of

other muscles following FES training [11,131], McBain et al. [104] did not find a

change in abdominal muscle strength following six weeks of AFES-assisted cough

training. Other possible explanations are:

1. Three weeks of AFES training are insu�cient to induce a change in the

properties of the muscle. This is supported by previous research which has

shown that the at least four weeks of electrical muscle stimulation training

is required before morphological change occurs in the muscle [96].

2. AFES caused an unmeasured e↵ect on the properties of the abdominal mus-

cles. The outcome measures included in this thesis were mostly dependent

on the power, rather than the fatigue resistance, of the abdominal muscles.

It is plausible that the AFES training programme improved the fatigue

resistance but not the strength of those muscles.

The current knowledge of the e↵ect of abdominal muscle training on AFES-

assisted cough is incomplete and further studies are required with a focus on the

underlying mechanisms. This should help to determine the potential of AFES

training to improve AFES-assisted cough and allow future paradigms to be opti-

mised for this application.

9.2.2 Comparison with Other Respiratory Neuroprosthe-

sis

Previously, it had been shown that AFES assistance can augment unassisted

respiratory outcomes measured during quiet breathing, FVC and MEP tests [57–

59,78,85,132,134]. The results presented in this thesis corroborate this conclusion.

Contrary to the results presented in this thesis, previous studies have shown

that AFES-assisted CPF is greater than unassisted CPF [24, 87, 104, 140]. A
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number of possible explanations for this contradiction are presented in Chapter 5.

However, the results presented in this thesis are unique in that both CPF and

PEF measurements were made on the same subjects. Therefore, as discussed

above, the measurement and stimulation protocol used in this thesis o↵er the

most likely explanations for these contradictory results.

Previous research on other types of respiratory neuroprosthesis has mainly

concentrated on restoration of cough in tetraplegia. For this application, AFES,

FMS [91] and SCS [40,41] have all been investigated. Of the three approaches SCS

has been shown to provide the greatest improvement compared with unassisted

CPF. However, since SCS has practical disadvantages it was reasoned that AFES-

assisted cough could be useful if it could provide a clinically significant cough

(defined as CPF greater than 4.5 L/s [146]). Although this thesis did not find a

di↵erence between unassisted and AFES-assisted CPF at baseline, it was found

that AFES-assisted CPF increased by 0.38 L (11%) over the training programme.

A similar result was shown by Mcbain et al. [104]. These findings, combined with

the research of Butler et al., which demonstrated a mean AFES-assisted CPF of 4

L/s [24], suggests that, while SCS is the most e↵ective method to augment cough,

AFES-assisted cough has the potential to become clinically useful in tetraplegia.

9.2.3 Technological Implementation of an AFES Respira-

tory Prosthesis

Patients with tetraplegia have limited means to interact with their environment.

This has two implications for a respiratory neuroprosthesis. Firstly, the system

would most likely be applied to the patient by a caregiver. Therefore, it should

be designed in such a way that it can be worn throughout the day and could be

operated by the patient when needed. Otherwise, the device would reduce rather

than enhance patient independence. Secondly, the device should require minimal

user interaction.

Previous studies, which have automatically synchronised AFES with a pa-

tient’s volitional breathing pattern, have either used a spirometer or electromyo-

graphy measurements of the pectoral muscles. A spirometer measures airflow

rate from the mouth, and thus is not a practical sensor for a neuroprosthesis as it

interferes with other activities such as eating or speaking. Pectoral electromyo-

graphy measurements can only be used to trigger stimulation for coughing and

not quiet breathing. The results of this thesis demonstrated that a non-invasive

sensor, such as a plethysmographic belt or a nasal thermocouple, can be used
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to replace the spirometer in an automatic stimulation system for quiet breath-

ing. Using these non-invasive sensors allow for a practical AFES system to be

developed. The components of this system (the sensor technology, stimulation

electrodes and stimulator) could be incorporated into a garment that would be

worn under a patient’s normal clothes. Such a system could be put onto the pa-

tient in the morning and taken o↵ at night by the caregiver, allowing the patient

to use the device when necessary.

There is a paucity of research on user-friendly methods to control AFES. The

most comprehensive control scheme to date was proposed by Gollee et al. [57].

This control scheme monitored the patient’s respiratory pattern and modified

stimulation output accordingly. An adaption of this system was used in the main

clinical trial of this thesis. Although the system worked well for some patients,

it was inaccurate at triggering stimulation for other subjects. Accuracy could be

poor during cough for those subjects whose peak inspiratory flow was approxi-

mately equal during cough and quiet breathing. In addition, the accuracy of the

quiet breathing cross-correlation trigger was not robust to changes in breathing

pattern, which for some patients varied considerably, either within a single as-

sessment session or between assessment sessions. Recent research on this topic

is investigating statistical classification methods [105] to improve upon the con-

trol schemes proposed by Gollee et al [57]. However, this approach is yet to be

throughly tested in a wide tetraplegic population. Although this approach is

worthwhile and promising, it is the authors opinion that simpler control methods

should also be considered.

For a system to assist with breathing volume in tetraplegia, the automatic

triggering scheme proposed in Chapter 8 could be combined with a simple on

and o↵ switch. This would not be di�cult to implement as many tetraplegic

patients currently use simple buttons to control other devices which they use.

Furthermore, it is more likely to be accurate as the algorithm relies only on the

onset of exhalation to trigger stimulation, rather than the shape of the breath as

used in the system by Gollee et al. [57].

For a cough stimulation system, a simple approach of having the patient

control the timing of the stimulation manually is recommended for two reasons:

1. It would remove the problem of detecting a cough accurately. This is not a

trivial task, especially in an online system. This is highlighted by the fact

that, despite several attempts by di↵erent groups, there is not an accurate

cough monitor [114].

2. In the studies that have been most e↵ective at improving cough using AFES,
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stimulation has been triggered manually, either by the researcher or the pa-

tient. Furthermore, Butler et al. [24] have shown that there is no di↵erence

between cough stimulation initiated by the patient and cough stimulation

initiated by a second person.

9.3 Clinical Implications

Despite improvements in respiratory health care over the last 20 years, respiratory

complications remain one of the leading causes of death and morbidity for patients

with tetraplegia [25].

9.3.1 Coughing in Tetraplegia

A major contributor in the development of respiratory complications in tetraple-

gia is the lost ability to cough. Although, SCS-assisted CPF [41] is greater than

AFES-assisted CPF [24], both methods have the potential to provide a clinically

useful cough. Therefore, it is important to consider the practical aspects of both

technologies. A cough respiratory neuroprosthesis should, ideally, be available

to patients at all times. In this respect, a SCS system could be regarded as

more practical as it is implanted. On the other hand, a surface stimulation sys-

tem could be practical if it was incorporated into a garment that could be worn

throughout the day. Furthermore, surface stimulation systems are less expensive

than implanted systems and do not carry a risk of infection. Therefore, while

AFES-assisted cough is not as e↵ective as SCS-assisted cough, there are practical

advantages which may make the technology more suited to a di↵erent group of

patients than would be considered for SCS; for example those patients who have

a borderline clinically e↵ective cough. For this reason an AFES based cough neu-

roprosthesis remains a clinically useful possibility and should be researched more

thoroughly.

9.3.2 Dyspnea and Respiratory Failure

Although not as common as respiratory infection, dyspnea [23] and acute res-

piratory failure [154] remain a problem in tetraplegic patients. Previously, au-

thors have shown that AFES can be used to augment unassisted VT in pa-

tients [57,59,134]. The results presented in this thesis have added to this finding

by demonstrating that this e↵ect can be observed across a wide demographic

of patients. In addition, the results in this thesis suggest that AFES-assisted
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breathing is metabolically e�cient. This has important clinical implications as it

suggests that AFES-assisted breathing could be useful during times of respiratory

stress, e.g. a patient su↵ering from dyspnea secondary to respiratory infection.

As with an ideal cough AFES neuroprosthesis, it would be desirable to incor-

porate the stimulation system into a practical form so that it could be easily

adopted into the clinic.

9.3.3 AFES to Assist Weaning from Mechanical Ventila-

tion

Chapter 7 presented the first study which demonstrated the use of AFES as an

intervention to assist in the process of weaning patients from MV. This applica-

tion is particularly interesting in the context of this discussion, not only because

of its clinical implications, which are discussed fully in Chapter 7, but because

it utilises AFES both as a neuromuscular training device and as a respiratory

neuroprosthesis.

AFES was most useful as a respiratory neuroprosthesis at the start of the

weaning process, when the patient was only able to sustain three minute periods

of volitional breathing. By augmenting the patients unassisted VT, AFES allowed

the patient to breathe for extended periods without ventilator support. Although

it was not demonstrated in this thesis, it is reasonable to assume that this allowed

the weaning process to begin sooner than otherwise possible. This may have been

beneficial for the patient not only physiologically but perhaps also psychologically.

The initial sessions of ventilator free breathing can be extremely stressful for a

patient: AFES-assisted breathing may o↵er a compromise between ventilator

supported breathing and unassisted breathing.

AFES was used as a neuromuscular training device in the later stages of

weaning, when the second AFES intervention was initiated and the patient was

able to breathe volitionally for 10 hours per day. Although only a single patient,

the correlation between the start of the AFES intervention and the immediate

improvement in daily ventilator free breathing was striking. Furthermore, this

observation was congruent with the discussion presented in Section 9.1, which

concludes that AFES neuromuscular training improves breathing capacity in pa-

tients in tetraplegia.
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9.4 Commerical Aspects

There are several commercially available stimulators that are currently available

for:

1. The general application of FES (for example, Empi Continuum [1]). These

are prescription devices that are capable of producing the levels of stim-

ulation output used in the studies in this thesis. The intended uses of

these stimulators includes reducing muscle atrophy and improving range of

motion.

2. Toning the abdominal muscles (for example, Slendertone Flex [3]). These

are over the counter devices that are capable of limited stimulation output.

The intended use of these stimulators is to improve abdominal muscle tone

in healthy adults.

3. Correction of dropped foot in SCI (for example, Odstock ODFS Pace [2]).

These are prescription FES stimulators and produce are capable of produc-

ing the levels of stimulation output used in the studies in this thesis.

There are currently no commercially available stimulators that provide elec-

trical stimulation to the abdominal muscles in synchrony with exhalation. Stim-

ulation technology and its risks are well understood. Furthermore, the results of

this thesis (Chapter 8) established that triggering stimulation with a user friendly

respiratory sensor is feasible. Therefore, from a technical perspective it would be

relatively straightforward to develop a commercially viable device. The results of

this thesis have also provided the clinical justification to conduct a larger scale

clinical trial, the results of which would be needed to obtain regulatory clearance

for the device and to justify payment for the device by the health care payer (e.g.

the National Health Service in the United Kingdom).

9.5 Thesis limitations

Individual chapters cover the study limitations specific to that chapter. In this

section, the most important study limitations as they relate to conclusions drawn

from this thesis will be reiterated.

One of the main clinical contributions of this thesis, was the investigation of

AFES training on unassisted and AFES-assisted respiratory outcome measures.

Several reviewers, from the publication of the data presented in Chapter 4, com-

mented that the most important limitation in this investigation was the choice
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of study design. The choice of a longitudinal design as opposed to a randomised

controlled trial was made for several reasons.

This was the first investigation of a passive AFES training program on respira-

tory function measures. Therefore, information on the variability of the proposed

outcome measures, which is needed for a randomised controlled trial power cal-

culation, was not available.

Secondly, since there is a high level of inter-subject variability in the tetraplegic

population, especially those who are in the sub-acute phase of recovery, which

included the majority of patients studied in this thesis, it was considered that the

scale of an appropriately powered randomised controlled trial, would not be jus-

tified at such an early stage of this research. Nonetheless, the lack of a matched

control group limits the strength of the conclusions that can be drawn from this

work.

In retrospect, the design of the main clinical trial in this study could have

been improved in several ways.

1. The pre-training control phase should have been increased to match the

duration of the training and follow up phase. As observed in this thesis,

there was considerable intra-subject variability during successive weeks of

measurement. Had the control phase duration been increased, a stable

estimation of the pre-training temporal change in respiratory function could

have been estimated. This could have been compared directly to the change

in respiratory function over the training period and would have greatly

improved the strength of the conclusions drawn.

2. The length of the training intervention should have continued for longer

than three weeks. Research has shown that it takes at least four weeks of

FES training before morphological change is observed in the muscle.

3. A measurement of muscle fatigue should have been included in the main

clinical study since the training scheme used may have had an unobserved

e↵ect on the fatigue resistance of the abdominal muscles to repeated con-

traction by AFES

The main limitation from the case study on weaning from MV was that only

one subject was included. Therefore, while the results demonstrate the feasibility

of the approach proposed, they have to be taken as preliminary.

Finally, in the last experimental chapter, in which an automatic stimulation

system was developed, the main limitation was that the study was completed

using healthy volunteers and not tetraplegic patients. Since tetraplegia is known



9.6. CONCLUSIONS 189

to a↵ect the mechanics of breathing, the results presented need to be verified in

this patient population.

9.6 Conclusions

1. The use of AFES to improve respiratory function in tetraplegia can be split

into two paradigms: as a neuromuscular training tool and as a respiratory

neuroprosthesis.

2. Passive AFES neuromuscular training is a feasible method of improving

unassisted respiratory function in tetraplegia. Furthermore, it has several

practical advantages over other types of respiratory muscle training. The

mechanism underlying the changes in unassisted respiratory function ob-

served is currently not fully understood but several hypothesis were gen-

erated in this thesis. An investigation of these mechanisms may maximise

the benefit of AFES neuromuscular training in tetraplegia. Collectively, the

results presented in this thesis provide the basis for a future controlled trial

of the technique.

3. An AFES neuroprosthesis can be used to improve ventilation during quiet

breathing in tetraplegia. Moreover, the results of this thesis suggest that

the technique is metabolically e�cient.

4. Using AFES is a feasible method to assist in the process of weaning a patient

from MV. In this application, AFES was shown to be useful as both a

neuroprosthesis, to allow the weaning process to begin earlier than would

otherwise be possible, and for neuromuscular training, to improve unassisted

respiratory function. The combination of these e↵ects may improve the

probability of weaning and reduce the time to complete liberation from

MV. Although only a single case study, these results provide the basis for

a future path of exciting research.

5. AFES can be synchronised automatically with a patient’s volitional exhala-

tion by a system that uses either a thermocouple or a piezoelectric belt that

encircles the chest. This finding should be utilised in the future develop-

ment of a practical AFES system that can be used both for spontaneously

breathing tetraplegic patients and as a tool to aid the process of weaning

from mechanical ventilation.
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6. Collectively the results presented could also be used as the first step in the

development of a commercially viable device.

To conclude, the work of this thesis has delineated several possible applications

of AFES for the improvement of respiratory function in tetraplegia. Furthermore,

contributions to the body of evidence to support these applications have been

made and possible explanatory mechanisms have been provided. Lastly, advances

in the technology to support the practical implementation of these applications

have been made. Although the conclusions that have been drawn here should be

taken as preliminary, they provide exciting possibilities for future research, which

could ultimately be a great boon to the health of patients with tetraplegia.
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Chapter 10

Future work

In the authors opinion, using AFES for neuromuscular training in spontaneously

breathing tetraplegics and as a tool for ventilator weaning are the most promising

areas for future work. Therefore this chapter will present future work related to

these applications.

10.1 Basic Science

10.1.1 Mechanisms of Action

This thesis proposed four mechanisms of action to explain the e↵ect of AFES neu-

romuscular training on unassisted breathing capacity in patients with tetraplegia.

These mechanisms were:

1. The fulcrum e↵ect.

2. Improvement in diaphragm strength.

3. Increased compliance of the lung.

4. Improved co-ordination of the breathing muscles.

Investigation of these mechanisms is important as it would help to determine the

most e↵ective training paradigm.

To determine whether the fulcrum e↵ect is a mechanism associated with AFES

training would require the measurement of abdominal muscle tone and abdominal

muscle bulk. The former is hard to measure as, currently, there are no currently

established methods. One possibility would be to measure the transient gastric

pressure during inhalation. If tonus was present in the abdominal muscles, gastric

pressure should increase as the abdominal muscles resisted pressure applied to
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the intra-abdominal space by the contracting diaphragm. Abdominal muscle bulk

could easily be measured using ultrasound similar to the method used by Estenne

et al. [51]. An increase in abdominal bulk or gastric pressure from pre to post

training would provide indirect evidence of the fulcrum e↵ect. If this mechanism

was found to be a real response to AFES training it would suggest that future

training paradigms should be designed with the aim of improving abdominal

muscle bulk.

Stimulation of the diaphragm may occur from AFES through two pathways:

unintentional stimulation of the phrenic nerve and passive stretch of the di-

aphragm. Unintentional stimulation of the phrenic nerve would result in action

potential being sent in both the direction of the diaphragm and the direction of

the cervical nerves. Therefore a phrenic electroneurogram [73] could be used to

determine whether abdominal stimulation resulted in unintentional stimulation

of the diaphragm. This technique is invasive and to the authors knowledge has

not previously been used in humans, however, and this experiment would likely

have to be completed in an animal model, such as a spinalised dog or cat [44].

It would also be di�cult to measure whether a passive stretch of the diaphragm

results in muscle fibre activation. Electromyography would not be useful since

a↵erent pathway activity is not an indicator of active e↵erent pathways. Al-

though it is possible to measure the diaphragm directly using electromyography

electrodes placed on a oesophageal balloon this technique would be unable to

distinguish between the electrical activity from the diaphragm and the electrical

activity from stimulation. A possible solution could be to measure diaphragm

electromyography while the abdomen was manually compressed. If diaphragm

activity was found in this case it would indicate the benefit of the mechanical

action of the abdominal contents, which is present during AFES, on diaphragm

activity. If passive stretch of the diaphragm did cause muscle activity, future

AFES training protocols could utilise this finding by attempting to maximize the

vertical displacement of the abdominal contents during stimulation.

Standard techniques could be used for measuring lung compliance [150] and

electromyography could be used to measure respiratory muscle coordination [116].

10.1.2 Muscle Fatigue

The recruitment of muscle fibres using FES is much less e�cient than the natural

recruitment of muscle fibers [97]. Therefore muscle fatigue is a central issue to any

FES application. Related to AFES, muscle fatigue is most important when using

AFES as a respiratory neuroprosthesis: by minimising abdominal muscle fatigue
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the patient could be supported by AFES-assisted breathing for longer periods. In

this respect methods to reduce muscle fatigue caused by AFES would be useful

for the application of ventilator weaning, particularly at the start of ventilator

weaning where the patient may benefit from longer AFES weaning sessions.

There are several possible approaches to the problem of fatigue. Optimis-

ing the stimulation waveform parameters (current, pulsewidth and frequency),

stimulation timing, and stimulation electrode position may all be useful. An-

other option, since both stimulation of the rectus abdominis and external oblique

muscles are e↵ective at improving breathing volumes when stimulated individ-

ually [56], is to alternate the stimulation of di↵erent abdominal muscle groups.

This strategy is similar to strategies that have been implemented successfully in

other FES applications [15].

10.1.3 AFES Training Paradigm

In this thesis, the maximum duration of a single AFES training session was one

hour, the stimulation settings were generally set to produce maximum contraction

of the abdominal muscles, and the length of the training paradigm was three

or four weeks. The design of this paradigm was based partly on the similar

training interventions reported in the literature [27,87,159] and partly on practical

limitations (for example it was generally not possible to spend more than an hour

with a patient per day due to other rehabilitation commitments). However the

design of this paradigm may not be optimal.

In determining the optimal stimulation settings and duration of AFES training

sessions the end application should be considered. For example, AFES-assisted,

compared to unassisted, tidal volume was greater in almost all of the patients

studied in this thesis. Therefore, since the power of the abdominal muscles seems

to be su�cient in these patients, the goal of training in the application of AFES

as a quiet breathing neuroprothesis should be to maximise the fatigue resistance

of the abdominal muscles. In contrast to quiet breathing, coughing is a discreet

event that requires short powerful bursts of abdominal muscle contraction. Thus,

the goal of training in this application should be to maximise abdominal muscle

power, even if it comes at the expense of fatigue resistance.

Neuromuscular training with AFES poses new challenges in developing an op-

timal training paradigm since the underlying mechanisms are currently unknown,

and probably do not depend on the contractile properties of the abdominal mus-

cles (see Section 10.1.1). Future work should concentrate on understanding these

mechanisms.
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10.2 Clinical Development

10.2.1 Neuromuscular Training

In the studies included in this thesis, pulmonary function measures were used

as the main outcome measure. However, the ultimate goal of developing an

AFES neuromuscular training programme is to improve the respiratory health

of tetraplegic patients. Not only would this reduce morbidity, and potentially

mortality, for patients but it would also reduce the economic burden on the health

care system.

The primary aim of future work should be to establish the best AFES neu-

romuscular training parameters to improve pulmonary function measures as de-

scribed at the start of this section. Subsequently, a link between AFES neu-

romuscular training and funtional health outcome measures (such as dyspnea,

respiratory infections and quality of life) and cost of care of patients should be

investigated.

10.2.2 Ventilator Weaning

The results of this thesis showed the feasibility, and demonstrated the potential,

of using AFES to assist in the process of weaning patients from MV. Although

the results were encouraging, they were from a single case study and further work

is required to validate the results.

If it is assumed that AFES is e↵ective at improving weaning outcome for

patients, then it follows that AFES should be incorporated as early as possible

into the process of weaning a patient from MV. In order to demonstrate the

e↵ectiveness of this approach it would be necessary to conduct a study in which

weaning with AFES is compared with weaning using conventional techniques.

However, there is large variability in the probability of weaning and time taken

to wean in this patient group. Accordingly, a large group of patients would be

required for the trial to be powered su�ciently. To give it some perspective,

a study which compared four di↵erent weaning techniques in di�cult to wean

patients, who did not have a SCI, included 130 patients [47]. To conduct a study

with that number of patients in an SCI population would take considerable time

and resources.

The large variability in weaning success rate and time taken to wean for

mechanically ventilated tetraplegic patients could be reduced with a suitable di-

agnostic. This would allow similar groups of patients to be identified and would
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reduce the number of patients required for a clinical trial to be reduced. Di-

aphragm needle electromyography has been shown to be an accurate predictor

of weaning success in tetraplegic patients [28]. In addition, measurement of the

vertical excursion of the diaphragm, using M-mode ultrasound, can indicate total

weaning time in non-SCI patients who require MV [81]. Further investigation of

these techniques in tetraplegic patients may show that they are useful to define

cohorts of patients who have similar weaning characteristics.

An alternative approach for future investigation of AFES in ventilator wean-

ing is to focus on patients who have failed to wean using conventional techniques.

In the case study in this thesis ventilator free breathing duration increased sub-

stantially through the second AFES intervention. This result was particularly

striking since the patient had shown no improvement over the previous eight

weeks using conventional techniques. This result could be replicated by testing

AFES weaning in patient who had failed to wean using conventional techniques.

This group would not need a control group to establish feasibility and could be

used to set the stage for a larger scale study.

10.3 Technical Development

In order for any FES application to be adopted in the clinic, the technology

should be easy to use. In this thesis an automatic stimulation system which

did not require an invasive respiratory sensor was developed. This system was

only tested in healthy volunteers and therefore the accuracy of the system to

synchronise stimulation with a patients volitional exhalation needs to be verified

in a tetraplegic population. While automatic timing of stimulation is obviously

essential for a practical AFES system, there are additional features that would

also be useful to develop.

Firstly, it would be desirable to have a method by which the stimulation

intensity is automatically adjusted to account for muscle fatigue. During the

experiments carried out in this thesis, it was necessary to increase the stimulation

intensity approximately every five to ten minutes. While this task is not time

consuming it would require that the clinician attend to the patient at regular

intervals. If a reliable and safe method of automatically increasing the stimulation

intensity automatically could be developed, this would allow unsupervised AFES

sessions to be completed.

The second feature that would be useful to develop is automatic adjustment of
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stimulation parameters to account for varying breathing patterns. While the pre-

vious chapter made the point that a simple on and o↵ control would be su�cient

for most applications, a robust automatic controller would improve the patient’s

experience while using the device. Current research is aiming to improve upon

the system originally proposed by Gollee et al. [57] by using statistical classifi-

cation methods [105]. While further development is needed in this approach, it

could prove a useful addition to future systems.



197

Appendix A

Stimulation System Simulink

Model

This appendix details the complete Simulink diagram and model parameters for

the stimulation system, which was described in Chapter 3 and used throughout

the experiments of this thesis.

The stimulation system was modified for the experiment described in Chap-

ter 8 to include analog inputs for the additional respiratory sensors and this is

the version of the model that is presented in this chapter. It should be noted that

there were several features of this model which were not used in the experiments

conducted in this thesis (for example, a delay between exhalation detection and

the onset of stimulation could be configured for the quiet breathing stimulation

mode). Since these features were not used in the experiments they have not been

described in the main body of this thesis.

The organisation of this chapter is as follows. The top-level of the Simulink

diagram is shown in Figure A.1 and the parameters for the blocks included in

this diagram are given in Table A.1. The sub-functions of this level are described

in Table A.1, which references the figures that describe each sub-function. This

pattern has been repeated for each level of the diagram. Every Simulink block

contains several pages of parameters, only the non-default parameters have been

described in this Appendix. In addition, most Simulink blocks include a sample

time parameter, this was set to 0.02 (s) for all blocks and therefore has also been

omitted from the parameter description tables.
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Figure A.1: Assessment.mdl



APPENDIX A. SIMULINK MODEL 199

T
a
b
le

A
.1
:
B
lo
ck

p
ar
am

et
er
s
fo
r
A
ss
es
sm

en
t.
m
d
l
sh
ow

n
in

F
ig
u
re

A
.1

N
am

e
T
yp

e
P
ar
am

et
er

V
al
u
e

N
ot
e

rt
sy
n
c

S
-f
u
n
ct
io
n

T
s

0.
02

C
on

tr
ol
le
d

re
al
-t
im

e
ex
ec
u
ti
on

of
th
e

m
od

el
.
W
ri
tt
en

by
H
.
G
ol
le
e

T
o
W
or
ks
p
ac
e

T
o
W
or
ks
p
ac
e

V
ar
ia
b
le

n
am

e
T
s
m
ea
su
re

S
av
e
fo
rm

at
A
rr
ay

C
lo
ck

C
lo
ck

-
-

d
ef
au

lt
s
u
se
d

T
o
W
or
ks
p
ac
e1

T
o
W
or
ks
p
ac
e

V
ar
ia
b
le

n
am

e
T
im

e
S
av
e
fo
rm

at
A
rr
ay

ge
t
in
p
u
ts

S
u
b
-f
u
n
ct
io
n

-
-

F
ig
u
re

A
.2

P
ro
ce
ss

S
u
b
-f
u
n
ct
io
n

-
-

F
ig
u
re

A
.9

d
eb
u
g

S
u
b
-f
u
n
ct
io
n

-
-

F
ig
u
re

A
.2
2

to
h
ar
d
w
ar
e

S
u
b
-f
u
n
ct
io
n

-
-

F
ig
u
re

A
.2
3

to
la
bv

ie
w

S
u
b
-f
u
n
ct
io
n

-
-

F
ig
u
re

A
.2
4

sa
ve

d
at
a

S
u
b
-f
u
n
ct
io
n

-
-

F
ig
u
re

A
.2
5



APPENDIX A. SIMULINK MODEL 200

Figure A.2: Assessment/get inputs.mdl

Table A.2: Block parameters for Assessment/get inputs.mdl shown in Figure A.2

Name Type Parameter Value Note
Hardware Input Sub-function - - Figure A.3
Software Input Sub-function - - Figure A.5



APPENDIX A. SIMULINK MODEL 201

Figure A.3: Assessment/Hardware Input.mdl
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Figure A.4: Assessment/Hardware Input/MicroLoop.mdl
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Figure A.5: Assessment/Software Input.mdl

Table A.5: Block parameters for Assessment/get inputs/Software Input.mdl shown
in Figure A.5

Name Type Parameter Value Note
QB software input Sub-function - - Figure A.6
cough software input Sub-function - - Figure A.7
stim software input Sub-function - - Figure A.8
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Figure A.6: Assessment/Software Input/QB software input.mdl

Table A.6: Block parameters for Assessment/get inputs/Software Input/QB software
input.mdl shown in Figure A.6. All of the values for these blocks were set by the GUI.

Name Type Parameter Value Note
QB filter switch Constant Value 1 or 0 Set to 1 for all

subjects
QB trigger switch Constant Value 1 or 0
QB delay time Constant Value �0 Set to 0 for all

subjects
QB stim time Constant Value >0 Set to 1 for all

subjects
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Figure A.7: Assessment/Software Input/cough software input.mdl

Table A.7: Block parameters for Assessment/get inputs/Software Input/cough soft-
ware input.mdl shown in Figure A.7. All of the values for these blocks were set by the
GUI.

Name Type Parameter Value Note
cough filter switch Constant Value 1 or 0 Set to 1 for all

subjects
cough trigger switch Constant Value 1 or 0
cough delay time Constant Value �0 Set to 0 for all

subjects
cough stim time Constant Value >0 Set to 1 for all

subjects
cough flow th Constant Value <0 ⌧

cflow

cough deriv trig Constant Value >0 ⌧

cdflow

cough doublet switch Constant Value 1 or 0
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Figure A.8: Assessment/Software Input/stim software input.mdl

Table A.8: Block parameters for Assessment/get inputs/Software Input/stim soft-
ware input.mdl shown in Figure A.8. All of the values for these blocks were set by the
GUI.

Name Type Parameter Value Note
current ch1 Constant Value 0 - 120
current ch2 Constant Value 0 - 120
current ch3 Constant Value 0 - 120
current ch4 Constant Value 0 - 120
manual overide switch Constant Value 0 or 1

Table A.9: Block parameters for Assessment/Process.mdl shown in Figure A.9.

Name Type Parameter Value Note
QB trigger Sub-function - - Figure A.10
cough trigger Sub-function - - Figure A.14
breath analysis Sub-function - - Figure A.19
set stim param Sub-function - - Figure A.21
const Constant Value 1
man overide Switch Criteria u2 > Threshold

Threshold 0.5
MinMax MinMax Function max
Product1 Product - - Defaults used
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Figure A.9: Assessment/Process.mdl
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Figure A.10: Assessment/Process/QB trigger.mdl
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Figure A.11: Assessment/Process/QB trigger/Delay.mdl

Table A.11: Block parameters for Assessment/Process/QB trigger/Delay.mdl shown
in Figure A.11

Name Type Parameter Value Note
-1 Constant Value -1
pulse length DiscreteIntegrator Gain 1

External reset rising
Initial condition source external

0 Constant Value 0
 Relational Operator Relational operator 

Figure A.12: Assessment/Process/QB trigger/Pulse Length.mdl
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Table A.12: Block parameters for Assessment/Process/QB trigger/Pulse length.mdl
shown in Figure A.12

Name Type Parameter Value Note
-1 Constant Value -1
pulse length DiscreteIntegrator Gain 1

External reset rising
Initial condition source external

0 Constant Value 0
 Relational Operator Relational operator 

Figure A.13: Assessment/Process/QB trigger/Pulse Length/2nd order filter.mdl

Table A.13: Block parameters for Assessment/Process/QB trigger/2nd order fil-
ter.mdl shown in Figure A.13. This block was masked with the following initialisation
commands: wn=1.8/tr; xi=0.99; sys=tf(wnˆ2,[1 2*xi*wn wnˆ2]); sysd = c2d(sys,Ts);
The mask had two dialog variables: tr was set to 0.1 for all subjects; Ts was the model
sample time (0.02)

Name Type Parameter Value Note
LTI System LTI Block system variable sysd
1e-5 Constant Value 1e-5
Relational Operator Relational Operator >

Product Product - - Defaults used
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Figure A.14: Assessment/Process/cough trigger.mdl
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Figure A.15: Assessment/Process/cough trigger/Insp Flow.mdl

Figure A.16: Assessment/Process/cough trigger/derivative threshold.mdl
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Figure A.17: Assessment/Process/cough trigger/Delay.mdl

Table A.17: Block parameters for Assessment/Process/cough trigger/Delay.mdl
shown in Figure A.17

Name Type Parameter Value Note
-1 Constant Value -1
pulse length DiscreteIntegrator Gain 1

External reset rising
Initial condition source external

0 Constant Value 0
 Relational Operator Relational operator 
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Figure A.18: Assessment/Process/cough trigger/Pulse Length.mdl
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Figure A.19: Assessment/Process/breath analysis.mdl
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Figure A.20: Assessment/Process/breath analysis/calculate breathing rate.mdl
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Figure A.21: Assessment/Process/set stim param.mdl
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Figure A.22: Assessment/Process/debug.mdl
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Figure A.23: Assessment/Process/to hardware.mdl

Table A.22: Block parameters for Assessment/to hardware shown in Figure A.23

Name Type Parameter Value Note
Stimulator
Interface

S-function Channels to be
Stimulated

[1 2 5 6] S-function writ-
ten by H. Gollee

Main Time 33
Group Time 6
Enable doublets True
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Figure A.24: Assessment/Process/to labview.mdl
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Figure A.25: Assessment/Process/save data.mdl. Each of the blocks in this diagram
were To Workspace blocks with the Variable name as shown in the Figure and the save
format set to Array.
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