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Abstract

With the development of pixelated liquid crystal displays, a new paradigm has emerged

in the field of optics. Essentially, these displays enable interfacing a computer program

with light, and therefore allow a wide range of light beams to be created. In this thesis,

I shall be using liquid crystal displays to create phase diffraction patterns and, in this

case, the displays are more commonly referred to as Spatial Light Modulators (SLMs).

One area where SLMs have shown particular promise is that of optical microscopy. Here,

they have been used in two different applications, namely holographic optical tweezers

and SLM microscopy; this thesis concerns both. The aim of the thesis is to explore and

develop new techniques combining SLMs with microscopy.

The first part of this thesis goes into results of the experiments I have carried out

in holographic optical tweezers. Hydrodynamic interactions play an important role in

many physical and biological processes. I present experimental evidence for the partial

synchronisation of the stochastic oscillations of two spheres in a bistable optical trap.

This experiment showed that, even in the absence of an external driving force, a degree

of synchronisation still exists due to the Brownian motion alone. I then describe a new

procedure to protect the optical trap from contamination in sensitive samples. Microrhe-

ology using optical tweezers requires lengthy position measurements in order to obtain

the linear viscoelastic properties of fluids and this measurement is often compromised

by freely diffusing material entering the trap. I then apply rotational Doppler velocime-

try to a particle spinning in an optical tweezers. This is the first time that structured

illumination has been used to determine rotation rate in the micro regime.

The second part describes the development of an SLM microscope and a series of

experiments I carried out with it. The set up of the microscope is described and images

are characterised in terms of the point spread function. I also demonstrate the multimodal

capabilities by diffracting three different images, each with a unique spatial frequency

filter, onto a single camera chip. Next, I report the development of some new frequency
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filters, namely holographic stereo microscopy and three variations, including stereo with

defocus which mimics human binocular vision where we have two eyes (views) of the

world, each having its own lens. I used 3D particle tracking to investigate sedimentation

in a confined microscope sample. This experiment brought together SLM microscopy and

optical tweezers to create a new technique for particle sizing, or study surface effects.

This thesis describes several new applications of SLMs in microscopy, with the common

theme being that the SLM is placed in the Fourier plane of the sample. Both holographic

optical tweezers and SLM microscopy have been expanded by the techniques I have de-

veloped. In future, this work will serve as foundation for the combination for 3D particle

tracking and visualisation with SLM microscopy, whilst microrheology will benefit from

the new approaches.
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i

Optical Tweezers

That light can exert a force is now well documented, although still somewhat beguiling.

The force was predicted by J. C. Maxwell in, “A Treatise on Electricity and Magnetism,”

published in 1873 [1]. One of the first experimental demonstrations of radiation pressure

from light was in 1901, where an experiment was performed using silvered microscope

coverslips as mirrors suspended inside a de-pressurised bell-jar. The mirrors were illumi-

nated with an arc lamp and were observed to rotate, proving the existence of radiation

pressure [2].

It is worthwhile to note that this experiment and associated theory was done before

the idea of a photon was suggested. The radiation pressure was inferred from the concept

of light being a wave. As concluded by Maxwell,

“In a medium in which waves are propagated there is a pressure normal to the waves and

numerically equal to the energy in unit volume.”

With the advent of quantum mechanics, and the explanation of photons as the mini-

mum unit of energy carried by a light beam, the force exerted by light could be interpreted

as the transfer a photon’s momentum to a scattering or absorbing object.

The momentum of a photon is given by p = ~k, where ~ is Planck’s constant divided

by 2π and k is the wave vector of the light, |k| = 2π
λ

. The optical force arises from objects

changing either the magnitude or direction of the momentum vector,

F =
dp

dt
. (1.1)

where F is the optical force vector. For light scattering off a mirrored surface, as in the

1901 experiment, each photon is reflected at normal incidence. This means there is 2~k of

momentum per photon given to the mirror, Fig. 1.1. The number of photons per second

is given by the power of the light source.
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Figure 1.1: The wave and photon interpretations of radiation pressure on a mirror. a)
shows the origin of radiation pressure for the point of view of light being a wave. S1,2 are
the incident and reflected Poynting vectors of the electromagnetic field near the mirror.
The magnitude of the momentum is given by U

c
, where U is the energy of the field, and

the direction is given by the Poynting vector, S = E×H, where E and H are the electric
and magnetic fields respectively. b) shows the photon interpretation. Each photon gives
a ∆p kick of momentum to the mirror.
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Optical Tweezers

The energy of one photon is given by E = ~ω, where ω is the angular frequency of

the photon. As the photons in the experiment are close to being perfectly reflected, it

seems as if the energy of the photon is unchanged. However, this cannot be the case as

the mirror was initially at rest and was accelerated to some velocity, v, and therefore has

an energy proportional to v2. The origin of this energy must be from the light itself, and

arises from a Doppler red shift of the photons reflecting off the moving surface, although

this shift is usually ignored.

Everyday experience tells us that if there is an optical force, it must be particularly

small. It is therefore perhaps inevitable that the phenomenon has found application in

microscopy. An object’s volume, and therefore mass, scales with the cube of its radius,

meaning a factor of a million reduction in radius gives a 1018 reduction in mass. The

first observation of microscopic particles being influenced by light came in 1969. Ten

years after the invention of the laser, Ashkin [3] reported that a laser could accelerate

microscopic particles at 105 times acceleration due to gravity. In his experiment, thermal

effects were avoided by using transparent particles which did not absorb light, yet did

deflect the light owing to the particles having a higher refractive index compared to the

surrounding fluid (water). Ashkin reported that the particles were, “drawn in to the

beam axis and accelerated in the direction of the light,” which hints at the presence of

two mechanisms, one to pull the particle in and one to push the particle upwards.

Optical tweezers use tightly focussed light to trap and move particles [4]. Developed by

Ashkin in 1986, and originally termed as a “gradient force optical trap,” optical tweezers

represented a significant development in optical trapping [5]. The key feature of this

technique is the focusing of the beam, which makes use of the propensity of light to pull

high refractive index objects into high intensity regions. This force is called the gradient

force and can be considered from two different view points [6]. For particles much larger

than the wavelength of light, it is sufficient to consider a ray optical approach, see Fig. 1.2.

A dielectric sphere of higher refractive index than the surrounding medium is illuminated

by a focused laser beam. If the particle was displaced downwards from the beam focus,

as in Fig. 1.2 b), the refracted beam deflected by the particle is now more diverging.

The upward component of the deflected beam’s momentum is therefore reduced, while all

transverse components remain unchanged. In order to conserve momentum, the particle

must move upwards, i.e., the particle gains the momentum that the light has lost, and

moves towards the beam focus. That the sphere moves back towards the focus is also true

if the sphere is displaced up from the focus, or laterally, Fig. 1.2 c).

Figure 1.2 only shows the refracted rays, however there are also reflected rays. These

rays also change their momentum when interacting with the sphere, and have the effect

of pushing the sphere in the direction the light is propagating. This force is called the

3
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Figure 1.2: Understanding optical trapping from a ray optical perspective. a) shows a
single ray of light with momentum ~k1 per photon that is incident on a dielelctric sphere
at an angle θ1 from the surface normal, ns. If the refractive index inside the sphere
(n2) is greater than the refractive index outside the sphere (n1), the rays direction will
refract towards the normal at θ2. Upon exiting the sphere, the ray changes direction
again, this time refracting away the surface normal. The change in momentum of the
light is calculated in the right column. In order to conserve momentum, an equal and
opposite reaction force acts on the sphere (shown in with an orange arrow). In b) and c),
pairs of rays are used. The total momentum change, ∆pT, is the sum of the change in
momentum for each ray. For both b) and c), the direction of the reaction force is towards
a equilibrium position where the momentum change to the light ray is zero. Reflected
rays (omitted for clarity) mean the equilibrium is at a larger z than would be otherwise.
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scattering force and means the trap centre is located slightly above the focus of the laser

beam.

If the particle is much smaller than the wavelength of light, then the ray optics picture

cannot be used. Instead, the particle is considered to have a dipole induced by the

electromagnetic field of the light. A dipole in an electric field gradient - as is present in a

focused laser beam - feels a force towards the highest intensity of electric field, or towards

the beam focus [7]. In optical tweezers, the size of the particles tend to lie between the

two models [8].

It should be noted that optical tweezers are not the only occurrence of a gradient force

in physics. Another example is the so-called Coandă effect, whereby a fluid flow entrains

the surrounding fluid. Fig 1.3. Here, there is a gradient of the fluid flux. If there was

an object near the flow, entrainment is prevented and the effect is the deflection of the

flow around the object. The deflection causes a change in momentum of the fluid flow,

which must be conserved, and, as in optical tweezers, the object moves towards the high

intensity. This makes a popular demonstration in science museums, as well as being the

mechanism that was used in a now abandoned military project to build a hover vehicle,

known as the Avrocar [9].

Sphere

air flow

Entrained 
fluid

pipe
Figure 1.3: A sphere is near a flow of air. The air flow is pulled towards to sphere,
meaning there is a reaction force on the sphere into the flow. In the steady state case,
the sphere’s weight is balanced by the impacts of air molecules off the sphere’s surface.

In optical tweezers, for small displacements from the equilibrium position, the restoring

force on the particle is linear, i.e., the trap is like a Hookean spring, with a trap stiffness

κ. Displacements from the trap centre occur naturally due to the noisy Brownian fluid

in which optical tweezers’ experiments usually take place. The small size of the particles
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used means that Brownian fluctuations are sufficient to agitate the particle. However, the

fluid has the benefit of damping any fluctuations so that the particle does not resonate

inside the trap. The damping arises from a systematic slowing down of moving objects in

a fluid - as an object moves forwards, it is more likely to collide with molecules in the fluid

on its front surface than its rear. This is the origin of viscosity, which has the symbol, η.

1.1 The position autocorrelation function

A data analysis tool in optical tweezers is the Position Autocorrelation Function

(PAF). This function measures how similar a bead’s position is to itself at a later time.

The bead’s position is limited to being inside the optical trap, so we assume a parabolic

potential for all displacements from the trap centre. Qualitatively, after short times, the

bead is likely to be in similar positions (i.e., the bead is probably where it was), whereas,

after long times, the bead’s positional probability reflects the potential (i.e., the bead

is probably at the bottom of the potential well). How the bead’s position goes from

correlated to uncorrelated in described by the PAF and provides useful insights into the

properties of the surrounding fluid. It is calculated from experimental data as,

Ax(τ) = 〈x(t)x(t+ τ)〉 (1.2)

where Ax(τ) is the PAF and x(t) is the experimentally obtained position data. The angle

brackets are an average over all start times, t, and τ is the lag time. In this section, the

autocorrelation function of a bead in a viscous fluid, held in a harmonic optical potential

is derived. I shall show this by first deriving the power spectrum for the bead in a trap,

from which the autocorrelation can be obtained by the Wiener-Khinchin Theorem [10].

The power spectrum is given by the modulus squared of the Fourier transform of the

sphere’s trajectory. The governing equation for the position, x(t), of the bead in the

Langevin equation, given as:

m
δ2x(t)

δt2
+ γ

δx(t)

δt
+ κx(t) = ξ(t) (1.3)

where m is the particle’s mass, x(t) is the particle’s trajectory, γ = 6πηa (a is the particle’s

radius) is the Stokes’ drag coefficient for a sphere and ξ(t) is the noise term, driving the

Brownian motion. To get the power spectrum, we first compute the Fourier transform of

Eq. 1.3. For this, the following result is required:

δx̃(ω)

δt
=

δ

δt

∫ ∞
−∞

x(t)eiωtdt = iωx̃(ω), (1.4)
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where x̃(ω) is the Fourier transform of x(t). The Fourier transform of Equation 1.3 is

then given by,

−mω2x̃(ω) + iωγx̃(ω) + κx̃(ω) = ξ̃(ω), (1.5)

=⇒ x̃(ω) =
ξ̃(ω)

−mω2 + iωγ + κ
. (1.6)

The power spectrum, Sx(ω) = x̃(ω)x̃∗(ω), is found by multiplying both sides of Eq. 1.6

by the complex conjugate,

Sx(ω) =
Sξ(ω)

m2ω4 + γ2ω2 − 2mκω2 + κ2
, (1.7)

where Sξ(ω) is the power spectrum of the noise. Figure 1.4 shows the functional form of

Eq. 1.7. From this it can be seen that increasing the size of the particle, and therefore

its mass, means the inertia term, m2ω4, plays an increasingly important role at lower

frequencies. For example, a 10µm particle is influenced by inertia at around 100 kHz,

while a 2µm particle is diffusive up to 1 MHz. For all experiments in this thesis, the

inertial motion is outside the accessible frequency range and therefore is neglected. Also,

the 2mκω2 term can be ignored as is this is much smaller than γ2ω2. The equation for

the power spectrum then becomes,

Sx(ω) =
Sξ(ω)/γ2

ω2 + ω2
0

. (1.8)

Equation 1.8 is a Lorentzian function, where ω0 = κ/γ is the corner frequency marking the

transition from trapped to diffusive motion. It is known that Sξ(ω) is spectrally flat, i.e.,

it is white noise, having a constant value for all experimentally accessible frequencies [11].

To find its value, the strategy is to first find the sphere’s response to a impulse force, from

which the power spectrum of the sphere’s velocity can be found while it is experiencing

a randomly fluctuating force. The area under the velocity power spectrum is equal the

variance of the velocity distribution, which is then related to the thermal energy using

the equipartition theorem. First, however, the Langevin equation for a freely diffusing

sphere needs to be solved. In the absence of thermal noise,

m
δ2x(t)

δt2
+ γ

δx(t)

δt
= 0. (1.9)

This says that the deceleration of the sphere is proportional to the velocity of the sphere.

Using a trial solution of x(t) = x0e
αt gives,

7
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Figure 1.4: Theoretical power spectrums for the motion of various spheres in an optical
trap of trap stiffness κ = 1µNm−1. The low frequency is dominated by the trap and
is therefore flat. The intermediate region, between around 10 rad/s and 100 rad/s, is
diffusive motion and has a slope of −2. The high frequency is inertial motion which has
a slope of −4. The larger the sphere, the sooner the inertia becomes important.
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α2mx(t) + γαx(t) = 0, (1.10)

α2m+ γα = 0, (1.11)

=⇒ α = − γ
m
. (1.12)

Thus, x(t) = x0e
− γ
m
t. As the mass is tiny, any motion of the sphere will be exponentially

damped. The speed of the damping depends, as may be expected, on the mass and Stokes’

drag coefficient of the sphere. Of particular interest is the response to a delta function

force as this gives the Green’s function, G(t), which can be convolved with any driving

force to obtain the trajectory of the sphere. The momentum of the sphere just after the

force f(t) (at t = t′) is,

p = m
δx(t)

δt

∣∣∣∣
t=t′

=

∫ t′

−∞
f(t)dt =

∫ t′

−∞
δ(0)dt = 1, (1.13)

=⇒ δx(t)

δt

∣∣∣∣
t=t′

= − γ
m
x0e
− γ
m
t′ =

1

m
, (1.14)

=⇒ x0 = −1

γ
. (1.15)

So, the Green’s function and its time derivative are, respectively,

G(t) = −1

γ
e−

γ
m
t, and, (1.16)

Ġ(t) =
1

m
e−

γ
m
t. (1.17)

Given the driving Brownian force, ξ(t), the velocity of the particle is given by the convo-

lution of ξ(t) and Ġ(t), from which the velocity power spectrum is calculated:

δx(t)

δt
= ξ(t) ∗ Ġ(t), (1.18)

δx̃(ω)

δt
= FT (ξ(t) ∗ Ġ(t)), (1.19)

= ξ̃(ω) ˜̇G(ω), (1.20)

Sẋ(ω) = Sξ(ω) ˜̇G(ω)
˜̇
G∗(ω). (1.21)

where Sẋ(ω) is the velocity power spectrum and Sξ(ω) is the power spectrum of the noise.

9



Optical Tweezers

˜̇G(ω) is computed as:

˜̇G(ω) = FT

(
1

m
e−

γ
m
t

)
, (1.22)

=
1

m( γ
m

+ iω)
, (1.23)

=
1

γ + imω
, (1.24)

=⇒ Sẋ(ω) = Sξ(ω)
1

γ2 +m2ω2
. (1.25)

Equation 1.23 relies on the fact that Ġ(t) is a single sided exponential (i.e., for t <

0, Ġ(t) = 0). From the definition of a power spectrum, the area under the power spectrum

of a signal is equal to the variance of the signal in the time domain, i.e., in this instance,

∫ ∞
−∞

Sẋ(ω)dω =

〈(
δx(t)

δt

)2
〉

=
kBT

m
, (1.26)

where the angle brackets indicate the time average, T is the temperature and kB is Boltz-

mans constant. The value of the velocity variance has been found through the equipar-

tition of energy. By integrating Eq. 1.25, and substituting in Eq. 1.26, the following is

obtained:

kBT

m
= Sξ(ω)

∫ ∞
−∞

1

γ2 +m2ω2
dω. (1.27)

As previously noted, Sξ(ω) is assumed to be spectrally flat and therefore is just a constant

for the integration. Rearranging Eq. 1.27 gives an expression for the power spectrum of

the thermal fluctuations,

Sξ(ω) =
kBT

m

/∫ ∞
−∞

1

γ2 +m2ω2
dω, (1.28)

=
kBT

m

/
1

m2

[
m

γ
tan−1

(mω
a

)]∞
−∞

, (1.29)

=
kBTγ

π
. (1.30)

Equation 1.8 can now be rewritten as,
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Figure 1.5: a) A three second section of the position trace of a 2µm particle held in optical
tweezers. The particle is seen to fluctuate due to Brownian motion. b) The normalised
autocorrelation function, as calculated from 40 s of data.

Sx(ω) =
kBT

πγ

1

ω2 + ω2
0

. (1.31)

The Wiener-Khinchin theorem states that the Fourier transform of the autocorrela-

tion is equal to the power spectrum. So, to obtain the position autocorrelation function

(PAF), the inverse transform of Eq. 1.31 must be performed. The Fourier transform of a

Lorentzian is a (double sided) exponential decay so we have,

Ax(τ) = FT−1

(
kBT

πγ

1

ω2 + ω2
0

)
, (1.32)

=
kBT

κ
e−ω0τ . (1.33)

Typically, the PAF is divided by the variance of the sphere’s trajectory to obtain the

normalised position autocorrelation function (NPAF), Fig 1.5,

Ax(τ) = e−ω0τ . (1.34)

The variance is found by applying the equipartition theorem to the energy stored in the

trap [12],

1

2
kBT =

1

2
κ〈x2〉 (1.35)
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Figure 1.6: a) Position histograms using the same data as Fig. 1.5 for x (purple), y
(black) and z (blue). The variance of these plots is related to the trap stiffness. For this
experiment the trap stiffness in z is κz = 1.6µNm−1, which is about 4 times less than
the stiffness in x and y. b) The corresponding energy potential. That these are parabolic
implies that the restoring force is linear.

Therefore, the measurement of the variance of a trapped particle easily gives the trap

stiffness, κ. This means that γ = κ/ω0, which contains information on interesting and

useful parameters like particle size and fluid viscosity, is readily accessible from the auto-

correlation function of a trapped particle’s trajectory.

The calibration against the equipartition of energy relies on there being a linear restor-

ing force acting to move the trapped particle back towards the trap equilibrium. For a

typical optical tweezer, this is the case even for quite large displacements, i.e., the poten-

tial in which the particle sits is quadratic. For more elaborate systems, the calibration

method is only valid for small displacements [13]. Measurement of the underlying poten-

tial is possible by accumulating a histogram of the particle’s position, Fig. 1.6 a). The

histogram for a single optical trap is a Gaussian distribution, where the skewness, kur-

tosis and higher order terms are close to zero for a well aligned system. By normalising

the histogram, the position probability distribution, ρ(x, y, z), of the particle position is

obtained. This is related to the energy potential, U(x, y, z), by,

ρ(x, y, z) = exp[−U(x, y, z)/kBT ]. (1.36)

The potential is shown in Fig. 1.6 b). This method is general and can be used to find the

potential of any configuration of optical field, so long as the particle has sufficient thermal
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energy to explore the regions of interest and assuming a conservative force field [14].

1.2 Optical tweezers: set up

One appeal of optical tweezers is the reasonable simplicity of the required optical

system. One needs to focus the trapping laser to create a high field gradient and to

view the trapped object with a sufficient magnification to observe the sample. Both of

these requirements are satisfied using a high-magnification optical microscope. High mag-

nification objectives have large collection angles, quantified by the Numerical Aperture,

(NA = n sinθ, where n is the refractive index of the medium between objective and sample

and θ is half the collection angle). To obtain a large NA, oil immersion objectives are used

which have n ≈ 1.5, giving modern high power objectives NAs of up to 1.4. In addition

to the imaging optics it is usually straight forward to incorporate a beam splitter into the

optical path, inserted between the infinity corrected objective lens and the microscope

tube lens. A collimated laser beam introduced at this point is brought to a tight focus

in the focal plane of the sample, creating an optical trap into which any nearby dielectric

particle of higher refractive index than the surrounding fluid will be attracted. The size,

d, of the focus is given by,

d =
1.22λ

NA
, (1.37)

where λ is the wavelength of the trapping laser. The smaller the focal spot, the greater

the gradient force. It is interesting to note that if the particle has a lower refractive index

than the surrounding fluid, then the optical forces act to repeal it away from the beam

focus.

Trapping a micron-sized object in a microscope is a beautiful demonstration of optical

momentum, but it is also possible to manipulate the object. Shifting the optical trap in a

lateral direction requires a change in angle of the light going into the objective lens. Most

simply, this can be achieved using a beam steering mirror that is telescopically imaged

onto the back focal plane of the objective lens. Automating this mirror, or other angular

beam steering technology, gives the basis of a user interface. Creating two traps with the

same microscope can be achieved by introducing a second laser, or two beam splitters

and an additional mirror, but three or more traps would become complicated. Rather

than use separate optical paths, early tweezers systems followed a time-shared approach

where a rapid switching of the beam direction allows each trap to be created in turn.

Providing that the return interval of the laser to the same trap is less than the diffusion

time (v ω−1
0 ) of the particle then multiple traps can be sustained. This does affect the
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stiffness of the trap which is proportional to the average laser power for the trap.

Ten years after the invention of optical tweezers, a number of groups began exploring

alternative approaches based on diffractive optics. Consider the case of the beam steering

mirror being replaced by a diffraction grating. Each of the diffraction orders has a different

diffraction angle, thereby producing a linear array of optical traps in the sample plane.

Alternative grating designs can be calculated to give different configurations of traps. The

diffractive optic is in the far-field of the trapping plane and hence these calculated optics

are often called “holograms.”

Diffraction gratings can either modulate the phase or the amplitude (or both) of light

incident upon them. Rather than using a pre-fabricated diffractive optic, the development

of programmable Spatial Light Modulators (SLMs) gives an interactive alternative. SLMs

are pixellated liquid crystal devices where each pixel can introduce a phase change to the

incident light between 0 and 2π. The SLMs are typically addressed using the video port

output from a computer and allow rapid (up to 1 kHz [15]) switching between diffractive

patterns and hence configuration of optical traps. The computer control of the SLM also

lends itself to the development of sophisticated interfaces where the multi-trap capability

is reflected in the interface itself.

The relationship between the calculated diffraction pattern and the configuration of

traps is a spatial 2D Fourier transform. However, calculation of simple patterns can be

performed more quickly. If all that is required is a single optical trap, the required pattern

is simply that of a diffraction grating, blazed to concentrate over 95% the diffracted light

in the first order. To move the trap in the x direction requires a vertically striped grating,

where the closer together the stripes are, the further the trap is displaced from the zero

order. To move the trap in y, horizontal stripes are required. To move a trap diagonally,

the diffraction grating is the mod(2π) addition of an x and y grating,

φgrating(u, v) = mod(2π)(αu+ βv), (1.38)

where φ(u, v) is the phase pattern displayed on the SLM (u and v are the horizontal and

vertical coordinates of the SLM), and α and β are constants determining the period of the

grating. Unlike a simple mirror, an SLM can also be encoded with circular lines, acting

as a Fresnel lens to change the wavefront curvature of the laser at the objective lens and

shift the trap in an axial direction,

φlens(u, v) = mod(2π)

(
− k

2f
(u2 + v2)

)
. (1.39)

Thus, unlike a mirror, using an SLM programmed with a suitable hologram gives

3D control of trap position where the combined lens and grating phase pattern is given
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Figure 1.7: a) shows a representation of a blazed grating being displayed on a Spatial
Light Modulators (SLM) (black to white represents phase levels 0 − 2π). The laser is
incident on the SLM from below and some of the light is reflected directly, into the 0th

order, but most is deflected away into the 1st order. In b), a grating is combined with a
lens to focus the diffracted 1st order. c) shows the generation of two 1st order beams by
the complex addition of these two phase patterns.
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by the mod(2π) addition of φgrating(u, v) and φlens(u, v). For multiple traps one could

switch rapidly between holograms, however, two or more holograms can be combined into

a single design [16]. Combining holograms in this way requires pixel by pixel addition,

where each pixel is treated as a complex number (with magnitude, An(u, v), corresponding

to the relative trap strength and argument equal to the phase of the individual hologram,

φn(u, v)),

φmulti(u, v) = arg

(
N∑
n=1

An(u, v)eiφn(u,v)

)
, (1.40)

i.e., the required phase of each pixel in the composite hologram, φmulti(u, v), is the argu-

ment of the complex sum of the individual holograms. Thus the design of the holograms

required to produce arbitrary configurations of optical traps requires nothing more than

the addition of complex arrays of numbers (Fig. 1.7), a task ideally suited to the use of

graphics card processors, which can be connected directly to the SLM. Even consumer-

grade components can calculate and display the required holograms at video frame rates.

The use of spatial light modulators for optical trapping is referred to as “holographic

optical tweezers” [17]. A schematic of such a system is shown in Fig. 1.8.

1.3 Optical tweezers: applications

Since their inception, optical tweezers have been used across disciplines in a host

of different experiments. In particular the fields of biology, microhydrodynamics and

physics have witnessed the benefits of the nanometer positioning and picoNewton force

measurement.

In biology [18], perhaps the greatest achievement of optical tweezers to date has been

the discovery that biological motors, such as kinesin, move along a protein by taking

physical steps. Experimentalists found that by tethering an optically trapped, micron

sized bead to the kinesin molecule, the tiny steps could be detected from slight position

stepping of the trapped bead. Another biophysical application of optical tweezers in-

volved studying force interactions between T-cells [19]. Optical tweezers have also shown

promise in the field of high resolution imaging of delicate biological structures. Here, a

particle is held with optical tweezers and translated to the surface. By measuring the

position of the particle relative to the trap centre, it is possible to determine where the

motion is influenced by the presence of the surface. By mapping out these locations, it

is possible to map out the 3D structure of cell walls. This technique, termed photonic

force microscopy [20], or optical atomic force microscopy, relies heavily on the shape of

the particle (or probe) used, where trapping handles and a sharp tip improve the imaging

16



Optical Tweezers

phase
pattern

SLM

source

condenser 
diaphragm

tube lens

sample

objective

Laser

Fourier  lens

beam
expander

camera

SLM

Laser

ExpanderIllumination

XY stage

Camera

Beam splitter

Tube lens

ObjectiveZ stage

Sample holder

a) b)

c)

d)

e)

Figure 1.8: A 3D model of an example holographic optical tweezers system. a) shows the
inverted microscope structure with positioning stages, sample holder and illumination.
b) shows a close up of the laser, beam expander and Spatial Light Modulator (SLM). c)
shows details of the the laser being incorporated into the imaging of the microscope via a
beam splitter. A fold mirror deflects the beam upwards from underneath the microscope.
d) shows the microscope tube lens and objective lens, used to focus the laser and create
the optical traps, as well as image the sample. e) shows a two dimensional diagram of the
setup.
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Figure 1.9: Various nanofabricated two photon polymerised probes. The trapping spheres
also act as isolated tracking handles due to their symmetry. The tip can be as sharp as
200 nm. Image courtesy of Dr. David Phillips.

speed (as the probe can be more stably trapped) and resolution (as the particle interacts

with a smaller portion of the structure). Both of these requirements have been met with

certain diatoms [21] (an algae, which, as fortune has it, is naturally probe-shaped) and,

more recently, nanofabricated two photon polymerised probes [22, 23, 24] (Fig. 1.9).

Linking biology to mechanical principles has been a major challenge for many years.

Owing to the richness of biology, and the complexity of Brownian dynamics (in terms of

number of interactions), optical tweezers have played a role mimicking biological features

in simplified experimental configurations. For example, the probability that a particle,

or molecule, will jump over an energy barrier, given a certain amount of thermal energy

had been theoretically predicted by Kramers in 1940 [25], but not experimentally demon-

strated until 1999, through the use of optical tweezers [26]. Here, the experiment involved

two optical traps positioned close to each other so that a particle could be stably trapped

in either, yet there existed a small probability that the particle could jump from one trap

to the other. The probability of a transition could be determined directly from the tran-

sition rate of the particle between the traps, and agreed with the predicted probability

given by the underlying energy potential.

Following on from this work, researchers explored the possibility of changing this prob-

ability through cooperative motion of more than one particle [27, 28]. Kotar et al. [29]
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Figure 1.10: An optical tweezer experiment used measure hydrodynamic interactions.
Two bistable traps are positioned adjacent to one another, each with a single trapped
sphere. If one sphere transitions across the bistable trap, there is an increased probability
that the neighbouring sphere will do likewise.

used two sets of switching optical traps, with each set containing one particle. Each

particle was able to diffuse with its trap, but triggered a switch of the trap position if

it moved near to one edge of the trap, inducing a random oscillation on top of the dif-

fusive motion. As the particles oscillated, an entrained flow influenced the neighbouring

particle. This simple set up achieved synchronisation of the two oscillators, and provided

an intriguing mechanism by which biological functions might operate. Other synchroni-

sation experiments have been performed, including rotation of optical “light mills” and

circulating spheres [30]. The synchronisation relies on there being some sort of external

driving force, such as the switching of the position of the traps, or the torque applied to

an object. However, in the case of no driving force, synchronisation still was observed,

not in the position of the particles, but in their displacements, Fig. 1.10. Experimental

evidence of this result is given Chapter 3 of this thesis.

The fluid which gives rise to the hydrodynamic synchronisations is often of interest

in its own right [31]. The field of microrheology concerns the study fluid of flows on a

micron scale and in microlitre volumes. Such scales are important for biological fluids

where small volumes may be all that is available, and microfluidic devices [32] where the

small scales lead to a vast increase in the number of reactions that can be performed

per minute [33]. Of high importance to biophysists is the viscoelastic properties of the

fluid. Optical tweezers provide a procedure to access the viscoelasticity at these crucial
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small scales [34]. In the simplest configuration, all that is required is position tracking

of a micro-sphere trapped in the fluid. In principle, even the optical trap is not required

and particle tracking of a freely diffusing sphere can give measurement of these properties,

however Brownian motion means the sphere is likely to diffuse out of the trackable volume.

Optical tweezers hold the particle in place meaning that small tracking regions can be

used. Particle tracking (in this thesis) has been performed with high speed CMOS cameras

which, with an appropriate Region Of Interest (ROI), can record particle positions at over

kHz rates. Another tracking technology involves looking at the scattered laser light on a

Quadrant PhotoDiode (QPD). This is much faster (MHz rates), although somewhat lacks

the flexibility of camera technology, especially for multiple particles. [35, 36].

From an engineering point of view, the behaviour of a fluid at different time scales,

or frequencies, is the important quantity [37, 38]. For instance, imagine a sphere held in

an optical trap in a viscous fluid. The optical trap is now sinusoidally oscillated, side to

side at a particular frequency, ω. The sphere experiences two forces: an oscillatory force

from the trap, and the random stochastic forces of Brownian motion. By averaging over

many oscillations, the Brownian forces will average out, leaving only the oscillatory force.

For a purely viscous fluid, the sphere’s trajectory will lag behind the trap position by a

phase of π/2. The amplitude of the sphere’s oscillation gives the viscosity of the fluid

at one frequency, namely the frequency that the trap is being driven at. However, it is

possible, due to optical tweezers, to obtain the viscosity of the fluid at all (experimentally

accessible) frequencies [39]. Frequency dependant fluid properties are described by the

complex modulus, G∗(ω), given by,

G∗(ω) =
κ

6πa

(
1

iωÃx(ω)
− 1

)−1

(1.41)

where Ãx(ω) is the Fourier transform of the normalised autocorrelation function (here,

the autocorrelation is single sided). G∗(ω) contains both real and imaginary parts, which

correspond to the elastic and viscous properties of the fluid, respectively, and can be

plotted separately. For optical tweezers, the real (elastic) part is influenced by the trap,

giving a constant response across all frequencies. The imaginary part gives the viscosity.

A Newtonian fluid (such as water) has a constant viscosity for all frequencies. Other

fluids (e.g., paint) have a frequency dependant viscosity. Complex fluids are those with

both a elastic and viscous parts (e.g., oil, saliva). Broadly speaking, however, all fluids

act like solids if observed at extremely high frequencies, and all solids flow like a fluid

if observed at extremely low frequencies, corresponding to very long times [40]. It is

therefore apparent that the larger the frequency range accessed by the experiment, the

more useful the complex modulus becomes. In optical tweezers, high frequencies are
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a) b)

c) d)

Figure 1.11: Intensity and phase cross sections of beams carrying OAM. a) phase cross
section of ` = 3, with white corresponding to 2π, and black corresponding to 0. b)
intensity cross section of ` = 3. c) phase cross section of ` = −5. d) intensity cross
section of ` = −5.

limited by the acquisition rate of the camera or QPD used. The low frequency limit is

given by one over the total length of the the experiment. In some fluids, particularly

colloids or biological samples, there is abundant diffusing material which can diffuse into

the optical trap alongside the probe sphere [41]. This effectively ends the experiment

earlier than may be needed. To mitigate this process, I describe in Chapter 4 an optical

procedure to shield the trap from this diffusing debris.

A further application of optical tweezers is the investigation into the fundamental

properties of light. As already discussed, the optical trap is a demonstration of the

linear momentum of light. However light also has angular momentum. Spin angular

momentum is related to the polarisation of the light. Light can either be left or right

circularly polarised (or a combination of the two). For pure states (i.e., completely left

or right), each photon has ±1
2
~ of angular momentum. If circularly polarised light is

used to trap a birefringent particle, the particle spins on the beam axis. The particle

needs to be birefringent as it effectively is acting like a quarter waveplate, converting

the circular polarisation into linear polarisation by introducing a phase shift between

the horizontal and vertical components of the circular polarsation. In order to conserve

angular momentum, the particle needs to rotate.
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In addition to spin angular momentum, light can also have Orbital Angular Momentum

(OAM) [42]. OAM in light arises from a helically shaped phase front, i.e., in a cross section

of a beam carrying OAM the phase changes by ` full cycles around the beam axis (where

` is an integer). The orbital angular momentum of the beam is given by `~. For example,

for an ` = 1 beam, the cross sectional phase cycles from 0 − 2π once around the beam

axis. As the beam propagates, the phase front (that is, the surface of all points of the

same phase) forms a single helix centred on the beam axis. For an ` = 2 beam, the phase

cycles twice from 0 − 2π around the axis, the phase front is a double helix, and so on.

Negative values of ` are allowed, and indicate the phase cycling in the opposite direction

(e.g. 2π − 0 in the case of ` = −1). The intensity of such beams is that of a dark centre

and an annulus of high intensity, Fig. 1.11. The dark centre can be interpreted from

the cross-sectional phase pattern - on the beam axis, all phases meet giving destructive

interference, and the intensity is zero. When an OAM beam is used in optical tweezers,

the trapped particle is drawn into the high intensity annulus whereupon the particle orbits

around the beam axis. This relies on the nonconservative scattering force. Effectively,

when the trapped sphere is at one angle from the beam axis, the trapping rays are skewed

tangentially. Hence, light reflected by the sphere has an preferred tangential direction,

which pushes the sphere around the annulus.

An orbital angular momentum carrying probe beam has also been been used to mea-

sure the rotation of a macro scale spinning disk, in an angular equivalent to Doppler

velocimetry. The disk was illuminated with a superposition of two beams carrying con-

jugate ` values (i.e., one clockwise beam at +` and the other anticlockwise at −`). If the

disk rotated clockwise, the +` beam was scattered off the disk and increased (blueshifted)

in frequency, in a rotational equivalent of the normal Doppler shift. The −` beam was

correspondingly decreased (redshifted). The two beams together interfere to give a time

varying signal, resulting from the sinusoidal beating of two similar frequencies. The fre-

quency of the beat (ωbeat) is related to the rotation of the disk (Ωrot) by,

Ωrot = 2`ωbeat. (1.42)

In Chapter 5, I give results from an equivalent experiment performed on an optical

trapped rotating microsphere. As the sphere is close to the diffraction limit of the probe

beam, this is an exploration of the fundamental limits of the technique.
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1.4 Summary

Optical tweezers are a demonstration of the momentum carried by light. The mo-

mentum can either be considered through a wave or particle (photon) description. By

tightly focusing a laser beam, the momentum of light can be used to trap micron sized

dielectric objects in three dimensions. The motion of such an object can be described by

the Langevin equation, which can be used to obtain the position autocorrelation function,

characterising the system. Optical tweezers are usually built around an inverted micro-

scope which provides imaging of the microscopic particles, as well as focusing the laser to

create the traps. Holographic optical tweezers use a spatial light modulator to efficiently

create and position many optical traps making optical tweezers a versatile tool. As such,

optical tweezers have been used in biology to measure tiny forces (pN), and map delicate

structures. They have been used to mimic biological processes like synchronisation and

in the study of complex fluids. Finally, they have been used to explore the interaction of

the orbital angular momentum of light with matter.
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SLM Micrcoscopy

In the previous chapter, I discussed Fourier transforms of time varying signals (for

example, the trajectory of a sphere in a optical trap). However, Fourier transforms are

also of use in signals that vary in space. In optics, this is important as a lens (as well as free

space propagation) performs a Fourier transform. For example, a beam with a Gaussian

cross-section, when propagated through a lens, may be focused but remains Gaussian.

when a beam with a sinusoidal cross section (in intensity or phase) is propagated through a

lens, it becomes two focused beams (Fig. 2.1 (top)), just as a sinusoidal signal corresponds

to a positive and negative frequency. In optics, the negative frequency is manifest as a

beam travelling in the negative direction, with respect to an origin on the beam axis.

In general, any beam can be Fourier transformed (Fig. 2.1 (middle)). Physically, this

transformation relates to the plane wave composition of the beam. Each point in the

Fourier transform corresponds to a direction (or angle) that light propagates at from the

image plane. In the case of Fig. 2.1 (top) light propagates at two directions from the

image, giving two points in the Fourier transform. In Fig. 2.1 (middle), light propagates

at a large number of directions, owing to the complexity of the object. The same is true

for Fig. 2.1 (bottom), so much so that the finite aperture of the lenses blocks some of

these directions, resulting in a cut off in the Fourier transform and limited resolution.

2.1 Microscope image formation

In microscopy, increasing the resolution is an active area of research. In order to achieve

high resolution, the number of directions of propagating light collected by the objective

lens must be large. This is because small features scatter light at high angles and this

scattered light must not be lost in order to image small features. Collecting a lot of

angles is primarily achieved by positioning the objective lens close to the sample, Fig. 2.2,

however this also leads to aberrations. Objective lenses are therefore composed of many

correction lenses in order to compensate for the aberrations. An example is chromatic
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Fourier 
Transform

Beam crosssections

Fourier 
Transform

Fourier 
Transform

Figure 2.1: Numerical Fourier transforms of different simulated beam cross-sections (each
beam is given a uniform phase). The situation is similar to a diffraction grating being
placed in a laser beam. Top: a sinusoidal pattern transforms into two focused spots.
Middle: a Scots Pine tree has a complicated Fourier spectrum. Bottom: a microscope
image and its Fourier transform - note the cut off in the frequency spectrum due to the
image being oversampled.
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Figure 2.2: a) Schematic of microscope objective lens. A plane wave illuminates a sample
(i.e. low NA illumination). The sample scatters the light at various angles. The objective
collects as many of these angles as possible by being placed close to the sample. b) The
Numerical Aperture (NA) describes the number of angles that an objective can collect (f
is the focal length of the lens and n is the refractive index of the medium between the lens
and focus). c) The Fourier plane of a microscope image, overlaid with the back aperture
of the objective. If the sample is illuminated with a plane wave the back aperture features
a bright point in the centre, with the scattered light around this. Light scattered outside
the back aperture is not collected by the objective and results in a loss of resolution. Note:
the illumination and scattered light are shown in different colours for clarity only.

aberration, where different colours of light are refracted at different angles through a lens

and therefore each colour forms an image at different distances. Inside an objective there

are combinations of lenses and glasses with different dispersion characteristics which work

together to remove chromatic aberrations. Another example is spherical aberration. This

is where rays going through the edges of a spherical lens are brought to a focus before the

rays going through the centre.

Aberrations lead to a loss of resolution in a different way to the finite aperture, namely

that the imaging rays do not all meet at the same point, which leads to blurring of

fine details. Both the effect of a finite aperture and aberrations are described by the

microscope’s Point Spread Function (PSF). Figure 2.3 shows the effect of a finite aperture

on the PSF. The PSF can be measured directly by imaging a sub diffraction limit object,

but it arises from the circular back aperture of the objective lens. This aperture multiplies
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the Fourier transformed light field of the object, blocking high angles. The image is formed

by another lens transforming the light back to the image plane. Owing to this Fourier

relationship, the image is now convolved with the Fourier transform of the back aperture,

as given by the convolution theorem:

FT(A× B) = FT(A) ∗ FT(B). (2.1)

where ∗ denotes the convolution and A and B represent the sample and aperture structure

respectively. Assuming no other aberrations, the Fourier transform of the back aperture

gives the PSF. The Fourier transform of a circle is an 2D Airy pattern, as shown in

Fig. 2.3 (e), therefore, if the back aperture is a circle, the entire object is convolved with

an Airy pattern PSF to form the image. In general, all other aberrations contribute to

the PSF, and the distance to the first minimum of the PSF gives the resolution.

Defocus is another form of aberration. The effect of defocus depends on the illumina-

tion of the sample. For example, if the sample is illuminated with a single plane wave,

the depth of field is extended. If the sample is illuminated by a range of plane waves, the

depth of field is reduced. Conversely, high NA illumination gives higher lateral resolution,

Fig. 2.4. The resolution of the microscope is given by,

d =
1.22λ

NAobj + NAill

(2.2)

where d is the smallest distance betweens two distinguishable points, λ is the wavelength of

light used, and NAobj and NAill are the NAs of the objective and illumination respectively.

If white light is used, λ is typically set at around 500 nm. Microscope illuminations

usually allow control of the NAill with a variable aperture placed in the Fourier plane of

the sample. The numerical aperture of the illumination is linked to its spatial coherence.

If the NA is high, then light is travelling in many directions and the coherence is low.

Conversely high spatial coherence is achieved with low numerical aperture. How an object

goes out of focus is described by a 3D PSF. In general, aberrations can be described by

a basis set of orthogonal functions known as the Zernike polynomials.

The NA of the objective sets the limit of the resolution, however, contrast is another

important feature of a microscope image. Many biological samples are mostly transpar-

ent, lacking absorbing pigments. Staining biological samples is a commonly used practice

to visualise these features, however, it is also possible to use optical techniques. Despite

not absorbing light, biological samples (like cells) will have a different refractive index

compared to the surrounding medium. This means the cells change the optical path

length and introduce a phase shift to the light in the image. A camera (or a human eye)

can only detect intensity variations, meaning the phase variations are invisible. Phase

27



SLM Micrcoscopy

a) b)

c) d)

e)

Figure 2.3: The effective of a finite aperture on an image. a) shows a test image. b), the
Fourier transform of the test image. c) shows the back aperture of the objective which
multiplies b), blocking high spatial frequencies, d) is the resulting image which is given
by the convolution of the object in a) and the PSF (shown in e)).

contrast microscopy is an optical technique which converts the phase changes into inten-

sity changes. This is done by modifying the back aperture of the objective so that the

illumination light is phase shifted by π
2
. When the image is formed, the illumination light

interferes with the scattered light, and, because of the phase shift, the resulting intensity is

sensitive to phase changes from the sample. To further increase contrast, the illumination

light is attenuated by 50%. The phase change should only be applied to the illumination

light, hence low NA illumination can be used as this focusses to a small area on the back

aperture (meaning that phase shift of scattered light is minimised). This leads to a large

depth of field, and loss of resolution (by Eq. 2.2). To avoid this, Zerinke phase contrast

was developed. This involves illuminating the sample with a narrow hoop (rather than a

filled disk). The phase shift given by the objective’s back aperture then occurs only for a

corresponding hoop. This allows phase contrast to work with a shorter depth of field and

higher axial resolution, although the hoop introduces a halo artefact to the phase objects.
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a)
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Figure 2.4: Ray optical diagrams of different aberrations. a) Chromatic aberration is
where different colours of light are focused differently by a lens. This can be corrected by
an achromatic lens. b) Spherical aberration is where rays going through different positions
of the lens get focused at different distances. c) shows the effect different Numerical
Apertures (NAs) have on defocus. High NA images go out of focus faster than low NA,
meaning the depth of field is reduced, but the lateral resolution is increased. The Depth
of field scales with the square of the NA, while resolution is linear with NA.
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Figure 2.5: A comparison of holographic optical tweezers with SLM microscopy. In SLM
microscopy, the white light illumination is replaced with a monochromatic source such as
a laser. Also, the camera is moved to after the SLM, where it images multiple diffracted
images. The image aperture is used to restrict the field of view so that many images can
be displayed side by side on the same camera chip. Also, because SLMs have a finite
aperture, care must be taken in imaging the back aperture on to the SLM to avoid loss
of resolution.

2.2 SLM microscopy

That modification of the spatial frequencies of a sample gives useful imaging modes is

not limited to phase contrast. In fact, there are numerous modifications, all of which are

designed to meet a specific challenge in microscopy. Recently, spatial light modulators

have been used to give unprecedented control of the spatial frequencies of a microscope

image, in terms of complexity and reconfigurability. In an SLM microscope, each spatial

frequency can be phase shifted by up to a full wavelength [43]. If combined with a grating,

each spatial frequency can also be attenuated by any desired amount. For example, phase

contrast can be emulated by setting the pixels corresponding to the illumination light on

the SLM to π
2
. This can either be a central spot, or a hoop as in Zernike phase contrast.

The experimental configuration of an SLM microscope is similar that of holographic

optical tweezers, with many components in identical locations, Fig. 2.5. The SLM is placed
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in the image plane of back aperture (i.e., the Fourier plane of the sample). In holographic

optical tweezers, the SLM is used to display a diffraction grating and therefore create

many focus beams in the sample. In SLM microscopy, the system is effectively run in

reverse: the diffraction pattern of the sample is in turn diffracted off the SLM to create

many images (Fig. 2.6). Just as in optical tweezers, the images can be at different focal

depths, or be holographically shaped to give different point spread functions [44].

The illumination source in an SLM microscope is required to be monochromic. This is

because different wavelengths will diffract from the SLM at different angles. However, a

small temporal bandwidth is desired as speckle is a problem for high temporal coherence

(as is the case of laser speckle). If a laser is to be used for illumination, a rotating

diffuser is used to destroy the temporal coherence by averaging over many speckles. So

long as the rotation rate is faster than the image acquisition rate then evenly illuminated

images are obtained. In this case, the diffuser is placed at the position of the source in

Fig. 2.6. Another approach is to use a high power LED and a closely matched bandpass

filter. A bandwidth of around 5− 10 nm is suitable for the diffraction angles used in SLM

microscopy. The filter can be placed at any point between the SLM and the camera.

The spatial coherence is also an important consideration for the illumination of the

sample in SLM microscopy. Köhler illumination (Fig. 2.6) gives control of this, as well

as giving even illumination of the sample. Köhler illumination works by imaging the

Fourier transform of the source on to the sample, which means the source is completely

out of focus. The area illuminated is controlled by the field diaphragm. It is important to

illuminate only the region of interest as otherwise light scattered from outside the region

can show up in the image. Prior to illuminating the sample, the source is imaged onto the

condenser diaphragm which is used to control the NA of the illumination and, therefore,

the spatial coherence.

The imaging system after the sample consists of an objective and tube lens. This is

used to form an intermediate image, in which is placed an aperture to restrict the field

of view. This is necessary to ensure the diffracted images do not overlap on the camera

chip. In some instances, only one diffracted image is required, in which case (owing to less

than 100% diffraction efficiency of the SLM) the zero must be blocked by a beam stop.

This allows the full camera chip to be used to record one image. The size of the image

can always be increased by optical magnification (i.e., a longer focal length of lens l2 in

Fig. 2.6). To increase the field of view, however, requires either a higher diffraction angle

from the SLM, or a longer focal length of lens l1. Importantly, increasing the focal length

of l1 magnifies the size of the back aperture on the SLM. This should be done provided

the SLM is not overfilled as clipping of the back aperture results in a loss of resolution

and a distorted point spread function.
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Figure 2.6: The optical layout of an SLM microscope. a) and b) show the same system,
but rays are traced for conjugated planes. The SLM is placed in the Fourier plane of the
sample where it diffracts the image at an angle (shown in red). Köhler illumination is
used to give even illumination of the sample. The image aperture is used to restrict the
field of view so that many images can be displayed side by side on the same camera chip.
Also, because SLMs have a finite aperture, care must be taken when imaging the back
aperture on to the SLM to avoid clipping and a loss of resolution.
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a) b) c)

d) e)

Figure 2.7: Examples of Fouier filters used in SLM micrscopy. a) shows a lens and a
grating combined to give an off axis image, focused at a new focal plane in the sample.
The others are: b) Zernike phase contrast, c) DIC, d) DHPSF, e) Spiral phase contrast.

2.3 Examples of SLM Microscopy

By inserting an SLM into the imaging path, additional aberrations can be introduced

to the image. Fortunately, these can be compensated for by a fixed pattern applied to

the SLM. Other aberrations from lenses or even the sample can be corrected by the SLM

and additional focusing (Fig. 2.7 (a)) can also be performed [45].

Both the π
2

phase shift and 50% attenuation of the illumination light in phase contrast

microscopy can be replicated by an SLM (Fig. 2.7 (b)). Normally, special phase contrast

objectives need to be used which have an in built phase shift hoop. This means that the

system is quite inflexible as the illumination source must image exactly on to that hoop.

In an SLM microscope, the phase shifting hoop is reconfigurable, meaning even regular

objectives can be converted to phase contrast mode. Insightfully, phase contrast has been

performed without a hoop-shaped illumination, but rather a “random dot” distribution

of illumination sources. In this case, an SLM was used in the illumination to create a

small number of random different angles which illuminate the sample. After the sample,

each of these angles corresponds to a position in the Fourier plane, where second SLM

phase shifts the illumination light. Because the structure of the illumination is random,

the halo artefact of Zernike phase contrast is removed [46].

Spatial Light Interference Microscopy (SLIM) takes advantage of an SLM’s ability

to provide a 2π phase shift [47, 48]. In this case, the microscope is set up in Zernike

phase contrast mode, but with an SLM positioned in the Fourier plane. The hoop-shaped
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illumination is imaged on to a corresponding hoop on the SLM where the phase shift

is initially set at 0. An image is recorded on a digital camera, then the phase shift is

increased to π
2
, and another image is recorded. In total, four images are recorded at phase

shifts of 0, π
2
, π, and 3π

2
. From these images it is possible to calculate the optical path

length and, ultimately, the thickness of the sample.

If, instead of phase shifting the illumination light, this light is completely blocked,

darkfield microscopy is effected. Darkfield acts light a high pass filter, giving very good

contrast for weakly scattering objects like nanoparticles. Darkfield images can be pro-

duced either with a physical beam stop in the Fourier plane, or with an SLM displaying

a diffraction grating everywhere except for the illumination.

Differential Interference Microscopy (DIC) is another commonly used imaging tech-

nique which can be replicated with an SLM [49]. In traditional DIC, two Wollaston prisms

are used to create two illumination beams, one of which is phase shifted by π
2
. The two

beams pass through the sample slightly offset to one another. The beams are then over-

lapped with another pair of Wollaston prisms to form the image where each point in the

image is given by the interference of the two beams. As the beams have passed through

slightly different points of the sample, any phase difference between the beams affects

the interference. The effect is that phase gradients of the sample show up as intensity

gradients in the image, giving a pseudo-relief effect. SLM microscopy can reproduce the

relief effect without the need for Wollaston prisms (Fig. 2.7 (c)). Instead, the sample is

illuminated with somewhat coherent light (NA of around 0.5), and the SLM, positioned

in the Fourier plane, diffracts two images at angles which slightly differ from one another.

The phase for one of these gratings is shifted by π
2
. Owing to the coherence of the il-

lumination, the resulting image is the coherent sum of the two diffracted images, giving

the same relief effect to phase objects. The flexibility of SLMs means the displacement

angle and the shear displacement can be tuned to achieve optimal images depending on

the sample and imaging properties.

SLMs have been used to prototype altogether new forms of microscopy. One such

example is Spiral Phase Contrast [50, 51], which is used for edge enhancement of phase

or amplitude objects. In this mode, coherent light (low NA) is used to illuminate the

sample. The SLM is again placed in the Fourier plane of the sample, but this time

displays a spiral phase pattern, i.e., the phase increases from 0−2π in one rotation around

the centre of the SLM (Fig. 2.7 (e)). This pattern is usually used in the generation of

(` = 1) Laguerre-Gaussian laser modes. Here, however, it is the scattered light which

obtains the spiral phase structure. For most points in the image, there will be destructive

interference because as much light has been phase shifted by π as has not. Only at points

which have scattered light inhomogeneously will there be constructive interference. These
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Figure 2.8: The axes defined for stereo microscopy.

points correspond to steep step changes in phase or amplitude in the sample. (E.g., a

prism shaped object will only scatter light to one side of the back aperture, therefore the

phase shift does not cancel with light on the opposite side, and there will be constructive

interference). The edge enhancement provided by spiral phase contrast has now been

transferred from SLM microscopy to regular, white light, microscopy by a refractive spiral

phase plate which is not as severely effected by dispersion.

The Double Helix Point Spread Function (DSPSF) is another form of microscopy

initially prototyped on an SLM [52] (Fig. 2.7 (d)). Here, each point in the sample is

convolved with a three dimensional “Double Helix,” which results in a point like object

appearing as two lobes of intensity which rotate around one another as the point moves

through the focal plane [53]. From image analysis of the two lobes, the z position above or

below the focal plane (as well as the (x, y) position) can be determined. In the initial work,

a series of fork dislocation are displayed on the SLM, where the separation and number

of the forks can be experimentally tuned. Again, a refractive white light alternative has

been developed for use in a wide range of microscopes. The DHPSF has been used in the

super-localisation imaging to determine the full 3D distribution of fluoresent molecular

emitters.

Obtaining 3D position information for 2D images has a number of solutions, each

with advantages and disadvantages. The DHPSF, for example, works over the full field of

view, though has a limited z range (i.e., one rotation of the double helix), as well as giving

distorted images. Holographic microscopy can be used to localise 3D objects, although

requires a large amount of computational load to calculate the images from a recorded

diffraction pattern. If the object to be imaged is known, a series of images can be recorded

of the image at different focal depths. Then, as the object moves in z, a pattern matching

algorithm can be used to determine how far above or below the focal plane the object is.

In addition to these methods, stereo microscopy has been developed. Stereo mi-
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croscopy works by utilising two different viewing angles of the sample to triangulate

the position of an object. Stereo microscopy is a old idea, originally implemented with

two eye pieces. In the new version, high speed cameras and two illumination sources are

used [54, 55]. Effectively, the set up couples the x position of an object to its z posi-

tion, leaving the y position untouched, Fig. 2.8. As there are two images, it is possible

to decouple the x and z position to obtain the 3D positions. The two viewing angles

can be separated by colour, or with a pair of prisms in the Fourier plane. By replacing

the prisms with an SLM, addition benefits can be achieved, such as autofocusing, and

darkfield-stereo. These features are discussed in more detail in Part II of this thesis, where

I describe the development of a compact SLM microscope capable of emulating many of

the above examples of SLM microscopy, and in particular, stereo microscopy.

2.4 Summary

SLMs in microscopy prove useful as they can modify the point spread function, which

governs the resolution of the image formed by a microscope. Owing to the Fourier trans-

form performed by lenses, placing an SLM in the Fourier plane of a sample gives direct

access to the spatial frequencies. By modulating these frequencies, many traditional mi-

croscopy techniques can be emulated, and new ones can be developed. SLM microscopy is

limited to a monochromic light source, as well as a reduced field of view. However, owing

to the flexibility of SLMs, innovative forms of microscopy can be tried out quickly and

easily. SLM microscopes are able to perform numerous forms of microscopy at the same

time, offering unique advantages over traditional microscopy, as well as being dynamically

reconfigurable, capable of responding to the changes in the sample in order to maintain

optimal images.
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Holographic Optical Tweezers
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Synchronisation of stochastic

oscillators

Transition events are ubiquitous in physics, chemistry and biology [25, 56], where

a system fluctuates between states. The states are typically separated by an energy

barrier which is large compared with the average energy of the system. If the system is

perturbed sufficiently, then it will be able to overcome the barrier and change state. The

extra energy needed to overcome the barrier also needs a means of dissipation in order

for the system to relax into the new state. In colloidal science, the solvent fluid provides

the required perturbations to overcome a barrier in the form of Brownian motion. At

the same time, the low Reynolds number environment ensures any motion is damped,

Chapter 1. Optical tweezers can provide an energy landscape whereby a colloidal particle

experiences an energy barrier existing between two spatially separated optical traps. It

has been shown that, given carefully controlled experimental conditions, it is possible for

the particle to randomly hop between the traps, i.e., the potential of the system is bistable

[26, 29, 27]. There are other techniques to achieve bistable traps, including a single beam

aerosol trap [57].

Not only do solvent fluids (at the small length scales of colloidal particles and biological

marcomolecules) play this twofold role of constantly providing a fluctuating force and

viscous dissipation of energy, they also display long range hydrodynamic correlations that

inevitably couple the dynamics of suspended objects. For example, two colloidal particles

in independent optical traps display strong correlations in their Brownian motions [58].

Whether the same hydrodynamic interaction could result in some degree of correlation in

the hopping dynamics of nearby bistable systems is still an open and important question

[59, 60, 61, 62, 63]. For instance, understanding how hydrodynamics can bias activated

jumps over energy barriers can have a potential impact on the study of the slow dynamics

of structural rearrangements in colloidal glasses and gels.

In this work we investigate two colloidal spheres, independently trapped in separate
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bistable optical potentials. We demonstrate the experimental result that the two particles

hop simultaneously more frequently when crossing the barrier in the same rather than

opposite directions. We show that the difference between the number of co-hops and

counter-hops reduces as the inverse separation between the two systems, showing that

the strength of the phenomenon is first order in the hydrodynamic coupling.

In this chapter I acknowledge contributions from Dr Arran Curran who built the op-

tical tweezers and wrote hologram and camera control software. This work was published

in 2012 in Physical Review Letters [64].

W filament, 100 W

CCD CameraSLM

λ/2 plate

Nd:Yag 532 nm

System a

System b

d

Figure 3.1: Holographic optical tweezers. A spatial light modulator is used to generate
multiple traps at the focal plane of the ×100 oil-immersion microscope objective. Silica
spheres are trapped with a frequency-doubled Nd:Yag laser, 5µm above the cover slip.
Left inset shows the hologram used to landscape two side by side bistable potentials. A
schematic of the two optically trapped spheres in independent bistable potentials is inset
on the right.

3.1 Procedure

The bistable optical landscape is achieved holographically, where a phase pattern is

generated by a gratings and lenses algorithm and displayed on a Spatial Light Modulator

(SLM) [65, 66]. Holograms are imaged at the back aperture of a Carl Zeiss ×100 1.3 NA

oil-immersion microscope objective and focused into a multispot array located at the focal

plane (Fig. 3.1). Each bistable potential is constructed by having two individual focal
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spots placed in close proximity, such that a surmountable energy barrier forms between

the two traps. We create two bistable potentials separated by a distance s, which is also

controlled holographically.

Our samples are prepared with silica spheres (of radius, a = 0.4µm, Bangs Labora-

tories) in deionized, distilled water. When preparing our samples we add a weak saline

solution just before sealing so that any free debris is immobilised on the cover slip due to

the reduced Debye length [67]. This process is limited by the sedimentation of the par-

ticles on to the coverslip, which allows enough time to capture the two spheres required

for the experiment. Sample cells are constructed with a single concave microscope slide

(GX Optical, concave depth = 500µm) and a square cover slip (thickness number 1.5),

sealed with UV-curing optical adhesive. Using a few mW of frequency-doubled Nd:Yag

laser light (532 nm), the trap stiffness in each trap is set at κ ∼ 2µNm−1. A fast camera

(Prosilica GC650), operating at a frame rate of 1.37 kHz is used to track the position of

the spheres in the x− y plane.

As the particles are smaller than the typical 2µm diameter bead used in many optical

tweezer experiments, a modification of the centre of mass algorithm described in Ref. [35]

was developed. Here, the term “mass” refers to how much weighting each pixel is given,

which is equal to its intensity. If the particle to be tracked is small, any threshold ap-

plied to the image (in order to remove background pixels) results in only a few pixels

being above the threshold. This means a small displacement can move a pixel above the

threshold, giving a overly large contribution to the centre of mass algorithm. For small

particles, this leads to certain configurations of pixels being on, meaning certain positions

are more likely to be measured than others and, consequently, the histogram appears to

have multiple peaks. In the case of small particles, rather than applying a threshold it is

more appropriate to subtract a background value, then coerce any negative pixel values

to zero. This means that if the value of an edge pixel goes just above the background

value, its contribution to the centre of mass is small, and a more precise measurement of

the position is obtained. For each separation, s, time sequences of the spheres’ centre of

mass, x(t) and y(t), are extracted in blocks of 105 frames (73 seconds) and accumulated

for a total time period of 36 minutes, significantly longer than the average between hops,

which is of order one second.

Care is taken to maintain symmetric bistable potentials by adjusting the optical in-

tensities of each trap. For the results presented here, a sequence of data is recorded, then

analysed in terms of the position histogram. If one side of the bistable potential has been

occupied by the sphere more so than the other, then a proportion of that difference is

used to automatically adjust the power of the two traps, Fig. 3.2. The gain of this closed

loop control was manually calibrated, and gave more consistent potentials compared to
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Figure 3.2: Histograms of a sphere in a bistable optical trap. The position is recorded in
sequences of 100,000 frames (73 seconds). After each sequence, the intensity of the trap
is adjusted to maintain a balanced potential. Five consequent sequences are shown.
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1.6µm 1.8µm 2.2µm 2.6µm

3.0µm 3.4µm 3.8µm 4.2µm

0.5µm

Figure 3.3: Optical potential landscapes experienced by two 800 nm silica spheres. Po-
tential energy distributions are recovered from particle trajectories, x(t) and y(t), as
described in the text. The data is binned into bins of size 20 nm2

no feedback which suffered from drift leading to unbalancing of the potential. This au-

tomated balancing also meant the whole experiment could be automated (i.e., balance

traps, record 105, (repeat), increase the distance between the two systems, balance, ...).

Stilgoe et al. have recently given a report on the complexity of creating optical potentials

using two optical traps, where they identified a third central trapping position for larger

particles [68].
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3.2 Analysis

Since the sampling rate is much greater than the corner frequency in the power spec-

trum of Brownian fluctuations, fc ∼ 40 Hz, the normalised histogram of particle po-

sitions ρ(x, y) provides a direct measurement of the Boltzmann distribution, ρ(x, y) =

Z−1 exp[−U(x, y)/kBT ], where kB, T and Z are respectively the Boltzmann constant,

the temperature of the surrounding fluid and the normalisation constant. By inverting

ρ(x, y) we can directly access the underlying optical potential in units of kBT (Fig. 3.3

and 3.4 (b, d)).

The obtained potentials shown in Fig. 3.3 are for all separations, s, confirming that

the optical landscapes of each system are not significantly changed as they approach. It

is worth noting that, although the optical landscape is made of two optical traps whose

centers are separated by 800 nm, the separation between the minima of the obtained

bistable potential is only d ∼ 500 nm. This is due to the sphere experiencing restoring

forces from both optical traps, leading to an offset in the equilibrium position in each

individual trap and shortening the hopping distance.

Figure 3.4 (a, c) shows a 10 s sample trace of particle position on the x-axis (the axis

along which hopping occurs) taken at large separation, s = 3.6µm. The corresponding

potentials are given in Fig. 3.4 (b, d). A single particle power spectrum is shown in Fig.

3.4 (e) for the shortest separation. Two separated timescales are visible, a low frequency

component describing the hopping dynamics and a high frequency component describing

the fluctuations around the local minima. For an isolated hopping system, the power

spectrum, x̂(ν), of the particle’s x position will be a double Lorentzian spectrum, where

the first term is the standard spectrum for a bead of friction coefficient γ = 6πηa (where

η = 1 mPas is taken as the viscosity) in an optical trap of strength κ, and thus, a corner

frequency given by fc = κ/2πγ. The second term describes hopping events over a distance

d and an average hopping rate (fh), found by first ascertaining the correlation function

of the hops. If the hops occur between two states, d/2 and −d/2 (Fig. 3.5), x(t)x(t + τ)

takes a value of d2/4 when an even number of hops, k, have occurred between t and t+ τ .

This has a probability found through the Poisson distribution:

Prob

(
x(t)x(t+ τ) =

d2

4

)
=

∞∑
k=0,2,4...

(fhτ)ke−fhτ

k!
. (3.1)

Similarly, the probability of x(t)x(t+ τ) having a value of −d2/4 is given when there are

a odd number of hops between t and t+ τ ,
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Figure 3.4: (a, c) 10 s sample of the spheres’ position along the x-axis (black line) for each
system separated by s = 3.6µm. The block filtered (blue line) and digitised traces (red
line) are also shown. (b, d) Corresponding potentials (black ◦) with fitted polynomials
(red line). (e) Single particle power spectrum along with a double Lorentzian fit as dis-
cussed in the text. (f) Correlation spectra for three separations evidencing hydrodynamic
correlations in the high frequency region.

Prob

(
x(t)x(t+ τ) = −d

2

4

)
=

∞∑
k=1,3,5...

(fhτ)ke−fhτ

k!
. (3.2)

The hopping frequency can be anticipated using Kramers’ theory [25], fh = ω0 exp[−∆U/kBT ],

where ∆U is the height of the potential barrier and the prefactor ω0 = m0
√
κiκs depends

on the particle mobility, m0 = 1/γ, and on the curvatures of the underlying potential

at the stationary points, κi,s = |∂2U/∂x2|x=xi,s
. The expectation value of x(t)x(t + τ) is

then,
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d/2
-d/2

t =0 t

Figure 3.5: The notation used for deriving the hopping contribution to the power spec-
trum, Eq. 3.7. The motion of the particle is course grained such that only two states are
possible, d/2 and −d/2. The average waiting time between hops is 1/fh. The correlation
between t and a later time, t + τ , is found by considering the probability of an even or
odd number of hops between these times.

〈x(t)x(t+ τ)〉 =
d2

4

(
∞∑

k=1,3,5...

(fhτ)ke−fhτ

k!
−

∞∑
k=0,2,4...

(fhτ)ke−fhτ

k!

)
, (3.3)

=
d2

4
e−fhτ

(
1− fhτ +

(fhτ)2

2!
− (fhτ)3

3!
+ ...

)
, (3.4)

=
d2

4
e−2fhτ . (3.5)

Using the Wiener–Khinchin theorem, we can find the hopping fluctuation’s contribution

to the power spectrum,

FT(〈x(t)x(t+ τ)〉)(ν) =
d2

4π

2fh
ν2 + (2fh)2

, (3.6)

which is a Lorentzian. Including the term for Brownian fluctuations, the power spectrum

becomes,

〈x̂∗(ν)x̂(ν)〉 =
kBT

πκ

fc
ν2 + f 2

c

+
d2

4π

2fh
ν2 + (2fh)2

. (3.7)

Knowing the temperature, viscosity and particle radius means that all remaining param-

eters can be directly evaluated from the features of the stationary points in the obtained

potential energy. The resulting curve is shown as a solid line in Fig. 3.4 (e) and fits the

measured power spectrum well. Searching for hydrodynamic correlations we plot in Fig.

3.4 (f) correlation spectra 〈x̂∗a(ν)x̂b(ν)〉 normalised by the average single particle power

spectra (1/2)
∑

α=a,b〈x̂∗α(ν)x̂α(ν)〉. A marked positive correlation at high frequencies gets

larger as the two systems approach. This is the well known phenomenon by which the

mobility of rigid motions is higher than that for relative motions so that at short times

the particles tend to move collectively [58]. However, at low frequencies dominated by

hopping dynamics, no sign of correlation is observable even when the two systems are
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close together.

Despite the lack of any obvious sign of collective motion in the low frequency correla-

tions spectrum (Fig. 3.4 (f)), further analysis of our data reveals a more subtle correlation.

Rather than averaging the correlation over all points, we examine only the instances where

both particles hop at the same time, either in the same direction or opposite direction.

To examine these instances we first need to define what is a hop, and what is not. This

is important as high frequency motion at the saddle point can lead to multiple crossings

for each hop. Three possible criteria were looked at: 1) a Schmitt trigger, where a hop

is counted if the bead moves past the mid point of the traps and then past a second

threshold, 2) a gate time set so that each hop has a prescribed duration, during which

time further hops are ignored, 3) a low pass filter, to filter out the high frequency motion.

A Schmitt trigger reduces the number of hops to only those trajectories from one side

of the bistable potential to positions well inside the other. Therefore, the chance of a

return hop immediately after could be reduced as the bead has to undergo a sizeable

displacement (if the trigger is set too large). We want to allow all time intervals to have

equal chance of containing a hop to be consistent with Poission statistics. Also, setting

the value of the Schmitt trigger is somewhat arbitrary. On its own, a Schmitt triggered

hop lasts only one frame, so coincident hops are unlikely. For these reasons, the Schmitt

trigger was not used.

A gate time could be used to both reduce the high frequency hops and allow for more

coincident hops to occur by looking for a hop in the other system during the gate, Fig. 3.6.

The disadvantage is that an even or odd number of crossings of the saddle point could

happen during the gate time, meaning the direction of the hop is ambiguous. Allowing a

gate time of G frames, the probability of K coincideny hops between in system b for each

individual hop in system a is found via the Bionomial distribution:

Prob(K) =

(
2G− 1

K

)(
δt

τb

)K [
1−

(
δt

τb

)]2G−1−K

, (3.8)

where τb is the mean time between hops for system b, i.e., there are 2G− 1 chances of a

coincident hop in system b for every individual hop in system a, each with a probability

δt/τb. A gate time means there exists a probability of more than one coincident hop

occurring per individual hop. In fact, K could be any number from 0 to 2G − 1. The

expectation value of Equation 3.8 is given by:

〈K〉 =
δt

τb
(2G− 1). (3.9)

This is the expected number of coincident hops between systems a and b per individual

hop in system a. To compute the total number of expected coincident hops, 〈N〉, in an
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Figure 3.6: Identification of coincidence hops. A hop is identified in system a as the
frame in which the position of the particle crosses the saddle point in the potential. A
gate time, G, can then be applied such that a coincident hop is identified if a second hop
occurs within either system a’s or system b’s gate time, a total of 2G − 1 frames. The
above figure shows an example with G = 3 frames.

experiment, we need to multiply by the number of hops in system a:

〈N〉 =
Ttotδt

τaτb
(2G− 1), (3.10)

where the total time of the experiment is Ttot, given by δt multiplied by the number of

frames. As can be seen, the longer the gate time, the greater the number coincident hops.

We shall use the simplest case of G = 1, and the above expression simplifies to,

〈N〉 =
Ttotδt

τaτb
(3.11)

A low pass filter provides a better approach to defining a hop. The position time series

can be blocked (coarse grained) into 45 frames (Fig. 3.4 (a, c) blue line). This acts as

a low pass filter with a cutoff frequency of 31 Hz, higher than the trap corner frequency,

filtering out the fast dynamics of fluctuations during a hop, Fig. 3.7. This gives hops

which are independent of each other, and increases dt so that the number of coincident

hops increases. Our definition of a hop is then the bead crossing the saddle point after

the data has been blocked. A coincident hop is a corresponding hop in the neighbouring

system in the same block. We define p hops to be coincident hops in the same direction,

and n hops to be coincident hops in the opposite direction.

The blocked data is then digitised into a two state variable x̄(t) ∈ −1,+1, denoting

the left and right states of the bistable potential (Fig. 3.4 (a, c) red line). For each

system we then extract a time series of hop events from −1 → +1 and +1 → −1.

This data represents a cumulative acquisition of 36 minutes at 1370 Hz, with around

15, 000 transition events. The distributions of intervals between hops are fitted with an

exponential decay, yielding the characteristic dwell time for each state. These measured
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Figure 3.7: The effect of various blocking lengths on the histogram of dwell times for
an individual hopping system. The histogram is binned such that each bin corresponds
to one block. Independent hops would give an exponential decay, the form of which is
shown with a dashed line. Short blocking lengths give non-exponential decays. This is
due to high frequency fluctuations occurring as the particle makes a transition. We chose
a blocking length of 45 fames.
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dwell times are consistent with Kramers’ formula applied to the shape of the underlying

potential. Each bistable potential is fitted with an eighth order polynomial (Fig. 3.4 (b,

d) red line), the second derivative of which gives the Kramers’ prefactor term, ω0, when

evaluated at the stationary points. Numerical results of ω−1
k are given in the third column

of Table 3.1. The dwell times are measured from x(t), the mean of which are given in

the second column. The probability distribution of the dwell times are fitted with an

exponential decay giving the first column in Table 3.1.

Fit Mean ω−1
k

System a 0.54 0.57 0.46

0.66 0.68 0.62

System b 0.48 0.50 0.37

0.74 0.73 0.61

Table 3.1: Characteristic dwell times for each individual potential obtained by exponential
fitting to the probability distributions of the states’ dwell times, along with the mean value
of raw dwell times and from Kramers formula. All numbers are in units of s.

Each transition event is assigned a duration of one blocked sequence of frames, δt =

33 ms, such that, for each frame, δt, there is a probability δtfh of a hop occurring, where

fh is the mean hopping rate in that system. Given two such randomly hopping systems,

we expect that there would be a certain number of coincident hops, 〈N〉, by chance alone,

Fig. 3.6.

For two uncoupled stochastic oscillators we expect an equal probability for symmetric

and antisymmetric simultaneous hops (p = n). Figure 3.8 (a) shows the measured prob-

abilities of p and n coincidences occurring over a range of system separations. With the

two systems placed in close proximity to each other (s ∼ 2a) the probability of observing

a p coincidence is significantly greater than observing a n coincidence (error bars calcu-

lated from the standard deviation of the Binomial distribution,
√
N/4. At increasing

separations, both p and n coincidence probabilities approach 0.5 ruling out the possibility

that the synchronisation could be ascribed to asymmetries in the optical landscapes and

external vibrations. We note that the total number of observed coincidences, (p+n)/〈N〉,
is unchanged with separation (Fig. 3.8 (b)). Coming back to Kramers’ formula for sin-

gle particle hopping rate, we notice that particle mobility appears as a prefactor to an

energetic activation term. We may then conjecture that the rates of symmetric hops and

antisymmetric hops have a similar form with an activation term and a prefactor that would

also depend respectively on the collective and relative mobilities [69, 70, 71]. Moreover,

the splitting between p and n seems to decay with distance as is the case for hydrodynamic

splitting between collective and relative mobilities as shown by the 0.5± (3/4)(a/s) lines

49



Synchronisation of stochastic oscillators

in Fig. 3.8 (a).

3.3 Conclusion

In conclusion, the thermally activated jumps of two 800 nm silica spheres in neighbour-

ing bistable optical landscapes are shown to be coupled via hydrodynamic interactions.

Due to the higher mobility of collective motions, when two systems are in close proximity,

there is a higher probability of observing a symmetric hop whilst antisymmetric hops

are less common. We argue that the experimental environment studied here provides

an idealised representation of interacting stochastic oscillations that occur in nature. It

will be interesting to extend the present study to a larger ensemble of bistable systems.

For example, looking for the emergence of more complex, cooperatively rearranging re-

gions could aid the understanding of the role of hydrodynamic interactions in the glassy

dynamics of concentrated colloidal suspensions [72].
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Figure 3.8: (a) Probability of coincidences over a range of system separations, s. p
and n coincidences are defined by the inset. Coincident events are counted as described
in the text and presented as black � for p and red 4 for n. Data is normalised by
p + n. The solid lines represent the splitting in p and n assuming a linear dependence
on hydrodynamic coupling with a strength of 3a/4s. (b) The total counted coincidences
at each system separation normalised by the expected number, 〈N〉, (Eq. 3.11) with an
error of ±

√
p+ n/ 〈N〉.
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Optical shield

The viscosity of a fluid can be measured by tracking the motion of a suspended micron-

sized particle trapped by optical tweezers. However, when the number of particles is high,

additional particles entering the trap compromise the tracking procedure and degrade the

accuracy of the measurement.

In a typical optical tweezers (OT) set up, the gradient force created by tightly focused

lasers traps particles [5] of a colloidal solution. OT have been used in a host of experiments

across many disciplines as varied as biology [18], micro fabrication [73], and colloidal

science [28]. In each of these areas there is, to varying degrees, a requirement to control

freely diffusing particles of the colloid. For example, Hoogenboom et al. [73] spatially

separated particles in a reservoir, from which they were transported to a substrate using

OT, thus demonstrating a technique for micro fabrication. Another application of OT is

microrheology [74], where it is possible to measure the viscoelasticity of the surrounding

fluid by monitoring the Brownian motion of trapped particles [12, 37]. This technique is

relevant to microfluidics [32], and biology, where changes in viscosity arise from biological

processes [75].

In microrheology, it is necessary to limit the number of freely diffusing particles in

the sample where the measurement is taking place, otherwise, these particles can diffuse

into the trap and compromise the tracking procedure. Long measurements are needed

for good statistics. Local heating of the sample can also create convection currents which

draws additional particles to the optical trap [76]. Controlling the number of particles

or contaminants is not always easy, especially when measurements are made in turbid

environments.

The duration of an experiment depends on the time scales of interest. In the case

of simple, Newtonian fluids (i.e., fluid with a constant viscosity), the size of the particle

(along with temperature) determines the diffusion rate. The diffusion, D, is defined by

the Mean Square Displacement (MSD) of a particle’s trajectory, MSD = Dt. For a non-

Newtonian fluid the same equation is used, but now D becomes a function of time. Each
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point in the MSD is made up of the average of many displacements within a single trajec-

tory. For example, if we record a trajectory for 10 s, we have 10 independent measurements

of 1 s displacements (provided the acquisition is faster than 1 Hz). These displacements

are averaged to obtain the 1 s lag-time point of the MSD. For errors around 1%, we need

of order 1000 independent measurements (the error in mean is given by σ/
√
N). Con-

tinuing the above example, if the acquisition frequency is much faster than 1 Hz then

there are many 1 s displacements (e.g. from 0.1 s to 1.1 s) however these displacements

are no longer independent. These points can still be used, however, care must be taken

when prescribing errors to the averaged data. In a simulation with 106 random steps, an

average error of 10% for a lag-time of 104 steps was found [39]. This suggests that cal-

culating these additional (non-independent) displacements does not improve the error of

the measurement. ei In this chapter, I present a method of optically shielding the region

of the sample where the measurement is taking place. Holographic OT [17] use spatial

light modulators (SLMs) to manipulate many trapped objects independently. In addition

they can be used to create unusual beams, e.g., those with azimuthal phase structure.

Here, a Laguerre-Gaussian (LG) beam [42] is used to create an additional annular ring

of light around the trap. With an azimuthal index of ` = 40, the numerical aperture

(NA) is effectively reduced so that the scattering forces are stronger than the gradient

force. We find that particles in the ring are propelled in the beam propagation direction,

away from the trap. There are many ways to make a ring of intensity (for example, the

Gerchberg Saxton approach [77]), however, LG beams are ideal because they have zero

on axis intensity along the entire length of the beam. Previous work has been done using

LG beams, arrays of Airy beams and inverted axicon beams to clear paths through turbid

samples [41, 78]. Here, we choose the simplicity of encoding the trap and an LG shield

beam on the same SLM and find a considerable increase in the length of time we were

able to successfully measure viscosity.

For this work, I acknowledge contributions from Dr Manlio Tassieri for help interpret-

ing the results. This work led to a 2012 publication in Optics Express [79]

4.1 Measuring viscosity with optical tweezers

In a viscous fluid, the thermal fluctuations cause displacement of a trapped particle

away from the centre of the potential well created by OT. The motion of the particle can

be modelled as a thermally driven, over damped oscillator in a potential well, given in

one dimension by,

E(x) =
1

2
κ〈(x)2〉, (4.1)
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Figure 4.1: Holographic optical tweezers. Laser beam is diffracted by the SLM which
is imaged onto the back aperture of the microscope objective. A diffraction pattern
(represented on the right) is displayed on the SLM to create a trapping beam surrounded
by a LG beam (inset shows a not to scale illustration of this arrangement, with a particle
placed in the trapping beam). The trapping plane is imaged onto a high speed camera.

where κ is the trap stiffness and x is the particle position from the centre of the trap. The

trap stiffness depends on factors such as laser power and the refractive index difference

between fluid and particle. The restoring force exerted by the OT on the particle is

expressed as F = −∇E(x) = −κx, which is linearly proportional to the bead position

for displacements smaller than ∼ 0.8 times the bead radius, a [6]. The trap stiffness, κ,

can be calculated from the equipartition principle, i.e., 1
2
kBT = 1

2
κ〈x2〉, where kB is the

Boltzmann constant, T is the temperature and 〈x2〉 is the time–independent variance of

the bead position from the trap centre. For a Newtonian fluid, the particle’s motion can be

described by means of a Langevin equation [74, 38], with the inertia term typically being

neglected for frequencies up to MHz, as described in Chapter 1. At thermal equilibrium,

the Langevin equation can be solved in terms of the normalised position autocorrelation

function [34], giving,

A(τ)→ exp (−ωcτ) , (4.2)

where ωc = κ/(6πηa) is the characteristic relaxation rate of the system. Once κ and a

are known, this can be used to determine viscosity, η = κ/(6πaωc), Fig. 4.2. Note that
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Eq. (4.1) and Eq. (4.2) are applicable for each Cartesian axis provided that the potential

is quadratic. Other methods using optical tweezers to measure viscosity exist, however, as

we are testing a new procedure using a Newtonian fluid, Eq. (4.2) is the most appropriate

for our purposes.
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Figure 4.2: a) shows the position trace of a block of 2.2 s data of a particle held in optical
tweezers. The acquisition rate is 1.34 kHz. b) Later in the same experiment, with errors
in the tracking due to contamination of the trap. c) shows the normalised autocorrelation
function (NACF) calculated from 2.2 s blocks of data. As this is a relatively small amount
of data, only the first few points are calculated, and a single exponential is fitted. ωc, the
decay rate, is calculated from the fit and used to calculate viscosity as described in the text.
The black shows the erroneous measurement corresponding to sample contamination.

Measuring viscosity with optical tweezers has also been done through rotation of the

particle [80, 37]. Rotation has the advantage of being less affected by nearby surfaces. To

make the particle spin, it is usual to use birefringent spheres such as vaterite or calcite

crystals and a circularly polarised trapping beam. The particle then acts like a quarter

wave plate, converting some of the light’s circular polarisation into linear. Circular polar-

isation is associated with spin angular momentum, a quantity which must be conserved

by the rotation of the particle. Fortunately, the change in polarisation of the light can be

measured and the rotation of the particle can be inferred from this, meaning no involved

particle tracking is required.

Another method to determine viscosity is by observing phase lag whilst applying a
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periodic force [75]. This periodic force can be applied quickly, meaning large areas of a

sample can be mapped. The disadvantage is that the fluid properties are only probed at

one frequency (i.e., the frequency of the periodic force), compared with a Brownian force

which has power across the frequency spectrum.

Relying soley on Brownian motion does give the response for all frequencies, but low

frequencies (corresponding to large motions) take a long time to be explored. Moreover,

the presence of an optical trap acts as a cut off to low frequency motion. Wideband

microrheology has been developed to access a broader frequency range, where high fre-

quencies and low frequencies are pieced together from motion inside an optical trap and

the relaxation of the particle back to equilibrium during stepping motion, respectively [81].

Broadband microrheology is another technique, and shares some similarities with wide-

band microrheology. Instead of flipping the trap position, a near instantaneous flow is

applied to the trapped sphere. The frequency response is given by the combination of

diffusion within a stationary setting and the response to the applied flow [38]. It is worth

noting that neither of these approaches give a direct measurement of the creep compliance

of the fluid, which requires an instantaneous, constant force to be applied to the fluid.

The compliance is useful as it is directly converted to the viscoelastic properties of the

fluid [82]. In the case of wideband microrheology, the force is approximately proportional

to the displacement from the trap centre. In broadband microrheology, a constant flow is

applied, which only corresponds to constant force in the case of a Newtonian fluid.

To obtain the viscoelastic response over the full experimentally accessible frequency

range, a data analysis procedure has been developed, which involves interpolating the

autocorrelation of a trapped bead [39]. This procedure involves two steps, first the au-

tocorrelation is calculated from experimental position data. As is the case for the MSD,

the long lag times in the autocorrelation are more susceptible to noise, on account of

them having fewer independent measurements. The result is that, at long lag-time, the

autocorrelation has oscillation artefacts due to long time correlations which, owing to

the finite length of the experiment, have not averaged to zero. The simplest approach

to removing these points is to logarithmically sample the autocorrelation, then interpo-

late the samples points. This approach was used successfully in various bioengineering

applications [83, 84, 85].

4.2 Experiment

The OT system (Fig. 4.1) is built around a Zeiss inverted microscope using a 100×,

1.3 NA, objective lens. The optical fields are created using a 532 nm laser (Laser Quan-

tum Ltd., excel). The beam is expanded through a telescope, then incident on a SLM
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trap

Figure 4.3: (a) Tracked particle trajectories superimposed on an image of the experiment.
White lines indicate particles in or just above the focal plane, which appear brighter in
the image compared to the background. Dark lines indicate particles below the focal
plane, which appear darker. The tracks appear and disappear as particles go in and out
of focus. On the left is an optical trap surrounded by a optical shield, on the right is an
unshielded trap. The tracks of the freely diffusing particles can be seen to enter the right
hand, unshielded trap, whereas the optical shield around the left hand trap prevents such
an event. (b) and (c) are images of the sample at the time of the measurements with and
without a shield respectively.

(Hamamatsu X8267). Using software written in National Instruments LabVIEW [66], a

phase modulation is calculated by summing a grating (for diffraction angle) and lens (for

defocus). It is also possible to create LG beams simply by adding a phase modulation

that is proportional to the azimuthal angle around the centre of the beam. The optical

shield used here consists of such a beam with ` = 40, which focuses to a ring around 4µm

in diameter, and Rayleigh range ∼ 3µm. The diffracted beams then pass through a 4f

imaging system, such that the SLM is imaged onto the back focal plane of the objective

lens. The objective lens tightly focuses the beams creating optical fields inside the sample,

Fig. 4.3. The sample is a microscope slide with a concave recess, prepared with a solution

of spherical silica particles (a = 0.4µm, Bangs Laboratories) in de-ionised, distilled water

and sealed with a coverslip and secured with UV curing glue. These particles tend to

sediment just above the coverslip, however, we observed that thermal energy is sufficient

for these particles to diffuse up to ∼ 20µm above the coverslip. Within this layer, the con-

centration of spheres was much higher than a typical OT sample, Fig. 4.3 b) and c). The

trapping plane is then imaged on to a high speed CMOS camera (Prosilica GC650). Using

a centre of mass algorithm and reduced region of interest, we can track particle positions

at 1.34 kHz, sufficient to measure the autocorrelation time of the trapped particle [35].
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Figure 4.4: Two examples of viscosity measurements (• points, on the left y-axis) against
time, together with the standard deviation, σ, of pixel intensity (◦ points, on the right
y-axis). The left plot shows results taken with the shield on. Here, after around 100
seconds, the standard deviation of pixel intensity jumps to a higher value, indicating the
arrival of another particle in the optical trap. The measurement of viscosity can also be
seen to be altered, though not as considerably. The right plot shows results where no
shield is used. The viscosity is expected to be 0.89 mPa.s.

The experiment is automated to take 250 measurements with a shield, then the system

is reconfigured to take 250 measurements without a shield. Each measurement involves

tracking a trapped particle for approximately 3 minutes 40 seconds, i.e., 3 × 105 data

points taken at 1.34 kHz. In the configuration with a shield, ∼ 50 mW of laser radiation

is used with the optical power of the shield weighted approximately twice that of the

power in the trap. Without a shield, the laser power is reduced to give a similar trap

strength.

In both configurations, an optical trap is created 5µm above the coverslip in a sample

of highly concentrated particles (Fig. 4.3(b) and (c)). The software then waits for a

particle to diffuse into the trap. This event can be identified computationally by analysing

images recorded by the camera of a small region featuring the trap. Initially there may be

no particle inside the trap, so the average intensity of the brightest pixel is equal to that

of the background, with only camera noise contributing to fluctuations. The standard

deviation of the brightest pixel value is then small. When a particle diffuses into the

empty trap, this standard deviation increases (Fig. 4.4) as the vibrations of the particle

significantly change the brightness of the image. Therefore, we use this criterion (standard

deviation of brightest pixel) to identify the presence of a particle. If the standard deviation

increases further (typically because two or more particles have diffused into the trap) the

trap is switched off, and the software waits 30 seconds before restarting. If the particle

meets the criterion, then, in the case using a shield, the shield is switched on. In the case
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Figure 4.5: Left: the length of time of successfully measuring viscosity in 500 attempts.
250 white bars indicate the use of an optical shield, whereas the 250 black bars indicated
no shield was used. Right: A histogram showing the number of times the arrival of a
particle in the optical trap occurred in time bins of length 7.5 seconds. The exponential
fits are calculated from the mean time until contamination.

without a shield, no change is made to the hologram. 3 × 105 position data and pixel

intensities are saved to file for later analysis. The trap then switches off for 30 seconds and

the experiment repeats, allowing many measurements to be taken with different particles.

Figure 4.3(a) shows tracks of diffusing particles, two of which are trapped in optical traps.

The left hand of these traps is surrounded by an optical shield which is seen to deflect

material from the trap.

4.2.1 Results

In order to obtain time-resolved viscosity information, the 3 × 105 position data are

divided into 100 blocks, each 2.2 seconds (Fig. 4.4). Assuming a temperature of 25◦C, we

calculate the trap stiffness to be around 1.3µNm−1. For each block, an autocorrelation

is calculated, yielding the characteristic decay rate of around ωc = 200 s−1. In our case,

2.2 seconds of data gives a measured fluctuation in the decay rate of 12% causing our

calculation of viscosity to also fluctuate. The uncertainty in particle size (in our case 10%)

gives a systematic error in the viscosity measurement. We found an average viscosity of

(0.88 ± 0.10) mPa.s with shield, and (0.88 ± 0.24) mPa.s without shield, where standard

deviation is larger in the case without a shield as more of the data is excluded due to the

arrival of contaminating particles. These results are in good agreement with each other,

and the expected value of 0.89 mPa.s. This result assures that the presence of the shield

does not effect the measurement of viscosity.
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We determine the arrival time of a contaminating particle as the time when the stan-

dard deviation of the maximum pixel intensity exceeds a predetermined level. Figure 4.5

(left) is a bar chart detailing the arrival time for every measurement. Figure 4.5 (right) is

a histogram of these arrival times, showing an improvement in the length of time the trap

stayed clear of other particles when the shield is used. The mean arrival times with and

without a shield are 23 seconds and 3.8 seconds respectively. The effect of a contaminating

particle typically increases the viscosity measurement by ∼ 25%.

4.3 Discussion

If the particles are more difficult to trap than standard dielectric spheres, the scattering

force provided by the optical shield is greater, and the shield should prove more effective.

If the scattering force on a particle is less than the particle’s weight, the particle will

not be cleared from the region. This can be overcome with increased laser power or, if

possible, reducing the size of particles used. Focusing the shield and trap 5µm above the

coverslip helped prevent particles entering the trap from below, and is far enough from the

coverslip that hydrodynamic influences are small. Using 532 nm laser light helps reduce

the effect of laser heating on the sample [76]. Reference [41] outlines some difficulties of

using LG beams to clear paths through turbid media. The experimental requirements

differ in this work as only a small volume around the trap is required to be kept clear,

rather than a continuous path. We also have no requirement to clear the area inside the

annulus, which is arranged to be clear at the start of the experiment.

In conclusion, we have shown that introducing an LG beam centred around an optical

trap reduces the probability that freely diffusing material will enter that trap. We have

devised a procedure for detecting such an event and find nearly an order of magnitude

increase in arrival time of contaminates compared to standard procedures. We use the

approach to measure viscosity in a turbid sample and obtain the expected value. With the

simplicity of generating the LG beam with holographic OT, we foresee that this approach

may assist measurements in samples which involve a plethora of diffusing material.
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Rotational Doppler velocimetry

Beyond the straight-forward use of the Doppler shift in the measurement of the linear

velocity of an approaching particle, it is also possible to exploit the Doppler shift to mea-

sure its transverse velocity, v. Key to this latter application is that an illuminating beam

diffusely scatters from the translating object. Any light scattered away from the angle

of reflection undergoes a change in its transverse momentum. Scattered light detected at

such an angle has a frequency shift determined by the transverse velocity of the scatter-

ing surface. For example, if the particle is illuminated at incident angle α and viewed

at normal incidence (as shown in Fig. 5.2a), then the Doppler shift is reduced from the

linear case and is given by ∆ω = sinα kov, where ko = 2π/λ. If two beams are incident at

±α, the Doppler shifts are in opposite directions and interference between the two beams

gives an intensity modulation in the back-scattered light of ωmod = 2|∆ω| = 2 sin |α| kov.

This technique is commonly referred to as Doppler velocimetry [86].

A rotational analogue to Doppler velocimetry was recently demonstrated for light

scattered from a spinning disc [87] and also considered for a particle moving through a

structured light field [88]. In addition to spin angular momentum (which has also been

used to probe rotation [89]), light beams can also carry an Orbital Angular Momentum

(OAM) [42]. The helical phase fronts result in a Poynting vector that is skewed with

respect to the beam axis by an angle β = sin−1(`/kor), where r is the radius from the

beam axis [90]. In an analogous way to the translational Doppler shift, an OAM beam

experiences a frequency shift when scattered from a rotating surface. In the rotational

case, the difference in illumination and viewing angles arises from the skewed Poynting

vector around the beam axis (see Fig. 5.2b). This means that any light scattered back

along the beam axis from a rotating object will be shifted in frequency by,

∆ω = sin β kov

= `Ω ,
(5.1)
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Figure 5.1: a) The angle β is the angle between the normal to the wavefront and the
beam axis, shown here for the case of ` = 1. The distance between wavefronts along this
direction is `λ. b) Radial unwrapping of the wavefront shows that sin β = `λ/2πr.

where v = Ωr. This is the same expression that describes the frequency shift when

a helically-phased beam is rotated about its own axis [91, 92]. Similarly to doppler

velocimetry, if two beams are used with opposite values of `, the frequency shifts are in

opposite directions and the two components interfere to give an intensity modulation in

the on-axis scattered light of,

ωmod = 2|∆ω|

= 2|`|Ω .
(5.2)

In this chapter I demonstrate the rotational Doppler shift from micron-sized birefrin-

gent calcite particles trapped and spinning in a circularly polarised optical trap [93]. We

are exploring the fundamental limits of the technique, as the particle size is of the same

scale as the diffraction limited beam waist. In this case the rotational Doppler effect

arises from anisotropy in particle shape as well as surface roughness. The particle is also

subject to Brownian motion, making the measurement of the effect more challenging.

Nevertheless, by taking these factors into account, I show that illumination of the particle

with two beams of opposite OAM can be used to unambiguously recover information on

the particle’s rotation rate. This measurement is independent of intensity fluctuations

arising from linear motions and is performed using just a single photodetector, making it

applicable to the measurement of high angular velocities.

My individual contribution to this work was writing the data acquisition software,

development of the experiment procedure, building and designing the OAM attachment

to the optical tweezer system, taking data and interpreting the results. Dr David Phillips

and Dr Graham Gibson contributed to interpretation of results, data acquisition, analysis,
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Figure 5.2: a) Transverse Doppler effect. The frequency shift of the back-scattered light
is determined by the transverse velocity of the scattering surface and angle between the
illumination and detection axis. b) Rotational Doppler effect. Helical phase fronts of
a beam containing OAM result in a difference in the illumination and detection angles.
Here the frequency shift is determined by the rotational velocity of the object and the
OAM mode. c) Experimental setup. The system is adapted from that described in [35].
A solid state laser (Laser Quantum, Opus) provides a trapping beam, which is circularly
polarised using a quarter waveplate. A titanium sapphire laser (M2, SolsTiS) provides
a probe beam. The probe beam is shaped using an SLM (Boulder Nonlinear Systems,
XY-Series), and focussed into the sample to the same plane as the calcite particle, with
the optical axis collinear with the rotation axis of the particle. In the detection arm a
high-speed CMOS camera (Dalsa Genie, HM1024) is used to observe the trapped particle
and an amplified silicon photodetector (Thorlabs, PDA36A-EC) monitors the intensity
modulation of probe beam light that is back-scattered from the particle (shown in dashed
red). A 532 nm block filter and an IR long pass filter prevents any unwanted light from
reaching the photodetector.

and helped build the experiment. Prof. S. Barnett developed the analytical model of the

experiment.

5.1 Apparatus

Figure 5.2 shows a schematic of the experiment. It consists of an inverted microscope

integrated with a single beam circularly polarised optical tweezers (shown in green) to

trap and spin birefringent calcite particles. A probe beam (shown in red) is also coupled

into the microscope. The probe beam is shaped holographically [94] into two overlapping

beams carrying opposite handedness of OAM. These interfere to produce a “petal” shaped

intensity pattern, where the number of petals (and therefore rotational symmetry) is given
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by 2|`| [95]. Figure 5.3a shows example of the intensity cross section through these patterns

for different values of `. Light from the probe beam is scattered from the rotating particle

back onto the optical axis, collected by the objective lens and imaged onto a photodetector.

A laser power of 50 mW was sufficient to optically trap and to spin a micron-sized

calcite particle at a rate between 20 and 30 Hz. When trapped, the particle experiences

an optical torque from the circularly polarized trapping beam, hydrodynamic drag from

the surrounding fluid, and a stochastic torque due to Brownian motion. The balance

of these effects results in the particle rotation rate fluctuating a small amount about its

mean value. We independently measured the rotation rate of the particle by tracking

its orientation from a sequence of high-speed camera images (10,000 images recorded at

2786 Hz, sample images shown in Fig. 5.3b), using the methods described in [96]. This

method of video particle tracking converts the 8-bit images obtained from the camera in to

a binary image through thresholding. The centre of mass of these pixels gives the position

of the particle. The orientation of the particle is calculated from the inertia tensor. Both

terms “mass,” and “inertia,” are meant analogously, and are simply calculated from the

intensity of the pixels in the image of the object. The eigenvectors of this tensor are

parallel to the principal axes of the particle. The mean rotation rate was calculated from

the average time for one cycle (based on 100 cycles). These cycles occurred at 25.6 Hz,

and found to vary by a standard deviation of 1.1 Hz owing to stochastic effects. These

calculations were preformed by Dr David Phillips.

The particle was then illuminated with the probe beam, the total optical power of

which was reduced to a level such that it had a negligible effect on the rotation rate,

estimated to be less than 1 mW reaching the sample. The calcite particle was raised by

approximately 20µm above the sample bottom to reduce the amount of probe beam light

scattered from the coverglass to the detector. Figure 5.3c shows a segment of the time

varying signal measured by the photodetector for an ` = ±1 probe beam. 30 data runs,

each consisting of 20,000 measurements at a sampling rate of 20 kHz, were recorded for

` = 0, ` = ±1, ` = ±2 and ` = ±3. In each case the data was Fourier transformed to

produce a power spectrum, with the average power spectrum for each mode ` shown in

Fig. 5.4.

5.2 Results

The average power spectra show growth in peaks corresponding to 2|`|Ω (marked with

arrows), as found for the case of light scattered from a spinning disk [87]. The power

spectra also feature frequencies other than that of the rotational Doppler modulation

frequency, because the photodetector signal is not purely sinusoidal. There are no other
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Figure 5.3: a) “Petal” shaped intensity patterns of the probe beams when focussed on
the coverglass. b) Selected images of the calcite particle rotating in the optical trap. c)
A small segment of the time varying signal measured by the photodetector for an ` = ±1
probe beam. The beat frequency at 2|`|Ω can be seen (period ∼ 0.02 s), along with noise
introduced by Brownian motion.
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Figure 5.4: Power spectra for probe beams consisting of `= 0, ±1, ±2 and ±3. The
fundamental rotation frequencies for a), b), c) and d) are 23.9, 25.3, 25.5 and 25.5 Hz
respectively, which compares well with the rotation rate determined using video tracking.
Arrows indicate frequencies of 2|`| times the fundamental. The high on-axis intensity of
the ` = 0 probe beam results in a slight reduction in the rotation rate of the particle.

66



Rotational Doppler velocimetry

resonant signals present, i.e., all pronounced peaks in the power spectra are harmonics of

the particle’s fundamental rotation rate, due to the fact that our system is heavily over

damped. However, it is the scaling of the harmonic at 2|`|Ω with the OAM content of the

probe beam that provides a signature of rotational motion.

Periodic time varying intensity modulations can be interpreted in two equivalent ways:

in the time domain, intensity modulation is a consequence of the scattering object rotating

through a light field of spatially varying intensity; in the frequency domain, intensity

modulation can be interpreted as a beat frequency due to the interference of light beams

of different frequency. The presence of harmonics at frequencies other than 2|`|Ω (and in

particular the presence of the lower harmonics we observe) is predicted by considering the

situation in the time domain (a model developed by Prof. Stephen Barnet). This takes

into account the influence of alignment, the particle’s geometry and how it scatters light

in the presence of Brownian motion.

First consider a particle rotating about a fixed axis. We take the particle rotation

axis as the origin, which is not necessarily perfectly coincident with the centre of the

illuminating light. We can expand the complex amplitude of the light illuminating the

particle, u, as a Fourier series in cylindrical coordinates: u(r, φ) =
∑∞

n=0 un(r)einφ, where r

is the radial coordinate, φ is angular coordinate, and n the mode number of the expansion.

The particle will scatter this light in a spatially dependent manner. We can express the

scattered field as s(r, φ, t) = u(r, φ)f(r, ϕ(t)), where f is a function that depends upon the

properties of the scatterer, such as its geometry and reflectivity. Function f also encodes

the orientation of the particle at time t, which is given by ϕ(t) = φ0−Ωt+θ(t). Here φ0 is

the initial orientation of the particle, Ω is the average angular velocity as above, and θ(t)

is a zero-average fluctuating angle, driven by Brownian motion. We can also expand f as

a Fourier series in cylindrical coordinates, f(r, φ0 −Ωt+ θt) =
∑∞

m=0 fm(r)eim[φ0−Ωt+θ(t)],

where m is the mode number of the expansion. The measured photocurrent, i(t), is

proportional to the intensity of the backscattered light integrated over the on-axis detector

area A (here we assume A(r) = 1 for a radius r less than the radius of the detector, and

0 otherwise). Therefore, the expected frequency spectrum, S`(ν), of the detector signal

for light scattered by a particle illuminated with a probe beam of dominant modes ±`,
can be found from the Fourier transform of the autocorrelation function of i(t), using a

simple diffusion model for Brownian motion [97]. This results in

S`(ν) = 2T
∞∑
q=0

|G(`, q)|2
[

2Dq2

(qΩ− ν)2 +D2q4

]
, (5.3)

where ν is the angular frequency of the power spectrum, T is the length of the measure-
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ment, D is the rotational diffusion coefficient of the particle, and q is the azimuthal mode

number of each expansion (equivalent to the harmonic number in Fig. 5.4). Equation 5.3

indicates that we can expect peaks in the power spectrum at harmonics of the rotation

rate, as observed. G(`, q) contains information about the angular Fourier components of

the scatterer f , and of the illuminating beam u. It encodes the weighting of each har-

monic: the greater the overlap integral between angular Fourier components of f and u,

the greater the power in harmonics of those modes. Therefore, as would be expected, the

shape of both the light field and the particle itself play a role in determining the spectra.

By illuminating with beams carrying defined OAM modes (±`), we effectively boost the

overlap integral between the particle and the light field at mode |`|. It is because of this

that we observe a significant increase in the power in peaks at 2|`|Ω, shown in Figure 5.4.

Any small aberrations in the illuminating probe beam, or slight misalignments between

the rotation axis of the particle and the optical axis of the probe beam, act to broaden

the Fourier components of u (when decomposed about an origin taken as the particle’s

rotation axis), and result in a spread of power into nearby harmonics. As the size of each

peak is governed by the overlap integral of u and f , even a small amount of optical power

into neighbouring modes can result in large peaks if the Fourier components of f at this

mode have a large amplitude.

The analytical model also captures the effect of Brownian motion on the measured

spectra, given by the Lorentzian term in square brackets in Eq. 5.3. As the particle

rotates, it experiences a stochastic Brownian torque causing the rotation rate to fluctuate

with a characteristic variance. These fluctuations cause a spread in each peak of the power

spectrum, an effect that becomes increasingly severe for higher frequency harmonics, as

can be seen from Eq. 5.3. The Lorentzian term modulates the shape of each harmonic

so that the width increases as ∼ q2, and hence the height decreases as ∼ q−2. We clearly

observe this effect in our measured spectra in Fig. 5.4. Therefore, even if power is spread

symmetrically into adjacent harmonics, the resultant spectral density of the peaks is

asymmetric, resulting in the magnitude of harmonics higher than 2|`|Ω rapidly falling off.

In our experiment, increasing ` also increases the diameter of the petal pattern, therefore

reducing the overlap integral with the particle, and hence the power in the rotational

Doppler shift peak.

The presence of the additional harmonics in the power spectra can also be understood

in the frequency domain: a spread in the OAM mode content will result in a different

Doppler shift for each mode, as each is incident from a different angle (see Eq. 5.3). In-

terference between all combinations of these frequencies results in the harmonics in the

power spectrum.
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5.3 Discussion

In summary, I have shown that it is possible to observe the rotational Doppler effect for

a microscopic calcite particle spinning in an optical trap. As the OAM mode of the probe

beam is increased, a significant increase in power in the harmonic at 2|`|Ω was observed,

corresponding to the rotational Doppler effect. It is the scaling of the harmonic at 2|`|Ω
with the OAM content of the probe beam that provides a signature of rotational motion.

Also, how additional harmonics in the power spectra arise from any small misalignments

between the beam and rotation axes, and the geometry of the particle itself has been

shown. The measurement was performed on a particle of five orders of magnitude smaller

in size than that used in the recent discovery of the rotational Doppler shift from a macro-

scale spinning disk [87]. The work shows the method to be robust to Brownian noise, and

allows us to distinguish the rotation of the particle from the fluctuations arising from

linear motions.

As these measurements are performed using a photodetector, the technique may also

be important in discerning the high-frequency motion (beyond video tracking rates) of

particles that are trapped at low pressure where translational resonances are also present,

a field attracting significant interest due to its applications to mesoscale preparation of

quantum state objects [98].
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Image multiplexing

Optical microscopes are indispensable equipment in a range of laboratories [99]. Spa-

tial Light Modulators (SLMs) offer remarkable control over a given light field. The com-

bination of these instruments has led to the creation forms of new types of microscopy,

and may well give rise to the next generation of microscopes [100]. SLMs (positioned

in the Fourier plane of a sample) bring a flexibility to optical microscopy which would

be difficult to realise with traditional techniques [43, 49, 45, 51, 101, 102, 103]. In this

chapter, I build an SLM microscope which is compatible with various filters, such as spiral

phase contrast [51], double-helix point spread functions [52], Spatial Light Interference

Microscopy (SLIM) [48, 47], depth of field multiplexing [45, 104] and Gabor filters [105]

amongst others [106, 107, 108].

Not only can different filters be applied without changing any hardware, but several

filters can be applied at the same time to give multiple modalities simultaneously, offering

a unique advantage over any traditional optical element.

In this chapter I acknowledge contributions from Dr Graham Gibson who designed

and built the electronics for the system, as well as machining mechanical parts. This

work was part of a publication in Optics Express [44].

6.1 Design

The inverted microscope design, Figs. 6.1 and 6.2, is similar to that of my groups

recent work developing a compact optical tweezer system [109]. Focussing is achieved

by moving the objective lens on a motorised stage (LS-50-M, ASI) which is mounted

vertically within the aluminium frame of the microscope. Similarly, translation of the

microscope sample is achieved using a motorised X-Y stage (MS-2000, ASI). Both these

stages are controlled with the ASI MS-2000-WK Multi-Axis Stage Controller. High power

red LEDs (LUXEON Rebel) coupled through the condenser using a short length of acrylic

fibre (core diameter = 1.5 mm) provide the illumination. A critical illumination condenser
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Figure 6.1: The configuration of our SLM microscope. Shown at 45◦ is the z-axis with
the inverted microscope and illumination. The polarising beamsplitter is used so that
the vertical polarisation of the light goes through the intermediate image iris and on to
the SLM, where the Fourier filter is displayed. There is then a 10 nm bandpass filter so
that dispersion is kept to a minimum in the sample images recorded by the camera. The
horizontally polarised light forms the full image of the sample on the wide angle camera.
Inset shows a 3D drawing of the system.
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Figure 6.2: Photograph of the system. Visible is the optical fibre illumination, motorised
stage, SLM and CMOS cameras. The footprint of the system is 45 cm × 30 cm, and the
height is approximately 35 cm.
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provides a uniform illumination of the sample. The output face of the fibre is imaged on

to the sample, with a variable aperture to give brightness and spatial coherence control.

A polarising beamsplitter (PBS) splits the light between two arms, one containing

a camera for wide field viewing of the sample and the other arm containing the SLM

(Boulder Nonlinear Systems, X-Y Series (512× 512 pixels)). The reflected light from the

PBS is the correct polarisation for the SLM. In order to avoid problems with dispersion

when illuminating the SLM using an LED, a bandpass interference filter (636 nm, 10 nm)

is placed in the optical path after the SLM. The light diffracted from the SLM is imaged

on to a second CMOS camera (Dalsa Genie, HM1020) which has a large sensor area,

capable of imaging all diffracted images simultaneously. The overall optical configuration

is similar to that of holographic optical tweezers [17, 4], where the diffraction from the

SLM creates multiple, laterally displaced trapping beams. Here, the SLM now produces

displaced images and, just as the trapping beams can be of different beam types, the

images can correspond to different Fourier filter functions.

6.2 SLM Fourier filters

Fourier filtering is a common technique applied to images to enhance desired informa-

tion of a sample object [111]. The role of the SLM in our system is to generate different

imaging modalities by modulating both the phase and amplitude of the light in the Fourier

plane. For example, Fig. 6.3 shows the image intensity as a function of defocus whilst dis-

playing a darkfield filter, an annular filter or a cubic filter on the SLM. The annular filter

is useful as it gives an extended depth of field [112], while the cubic filter produces an Airy

point spread function [113]. For each of the following patterns, I use a grating to diffract

an image far enough from the zero order (undiffracted) image so that the diffracted image

does not overlap with zero order image. For this to be possible, intermediate image iris

needs to be partially closed so that the cone angle of each diffracted image is less than

the diffraction angle given by the SLM. As with holographic optical tweezers, where the

effective pixel size of the SLM sets an upper limit to the field of view over which traps

can be positioned [13], the SLM resolution sets the maximum field of view of the images

not to overlap in the camera plane.

As previously reported [66], the ideal phase pattern to be displayed on the SLM for a

particular imaging mode, φm, is given by,

φm = arg[ei(αu+βv+φfilter)], (6.1)

where u and v are, respectively, the vertical and horizontal distances from the centre of
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Figure 6.3: Illustrative intensity distributions of a 5µm silica particle in water. The
particle is stuck to the coverslip and is moved through the focus of the microscope. A
series of images were recorded at 0.5µm spacing in the axial direction, then four intensity
isosurfaces were interpolated from the data (shown in shades of red). In the x− y plane
of each plot is an illustrative phase hologram used to Fourier filter the image. A darkfield
filter has been used in (a), an annulus filter has been used in (b) and a cubic filter has been
used in (c). The annular filter extends the depth of field of the imaging system. The cubic
filter also extends the depth of field but in addition introduces a curved intensity profile.
All these point spread functions were introduced by the SLM. Plotted with software
developed by Dr Neal Radwell [110].
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Combine
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Figure 6.4: Shown here are results from combining the Fourier filters as described in the
text while imaging three 5µm silica spheres suspended in optical adhesive. (a) - (c) Shows
individual phase patterns for three imaging modes, namely, double-helix point spread
function, defocus and darkfield, respectively. Aberration correction has been incorporated
with these filters and each also includes a grating to diffract the image. The greyscale
corresponds to 0−2π phase changes. (d) The SLM display, showing the combined filter as
described by Equation 6.2. (e) The resulting image detected by the camera. Subregions
of the image are extracted, each 220 × 220 pixels. The subregions correspond to each
filter; top left: double helix, bottom left: defocus, right: darkfield, centre: undiffracted
zero order image.
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the SLM, α and β are constants which define the angle of diffraction and φfilter is the

phase of the filter function. There are a wide range of different filter types ranging from

simple implementations of defocus [45] and darkfield to more elaborate phase contrast

techniques [48, 114, 46] and vortex phase masks [51].

One advantage of the SLM implementation is that it is possible to diffract several

image modalities at different angles by combining their phase patterns. Several images

can be produced simultaneously by the complex addition of individual kinoforms, the

argument of which gives the combined kinoform and the simultaneous images,

φcombined = arg

[
M∑
m=1

Rme
iφm

]
, (6.2)

where m is the imaging mode produced by the SLM, M is the number of diffracted

images, and Rm
2 is the relative intensity of the image. The potential interference between

overlapping images is minimised by suppression of ghost diffraction orders by directing

unwanted light into the zero order [16]. That is, as the combined phase pattern is a

complex function, some of the amplitudes may be zero. As the SLM is a phase only object,

such amplitude modulation is only achievable by greying out those areas - effectively

reducing the diffraction efficiency by sending the light from these regions to the zero

order. This multi-modal approach is made possible by the availability of large camera

sensor arrays capable of working over a large dynamic range inherently arising from the

different filter types. The design of the SLM filter to produce these images is exactly the

approach used in holographic optical tweezers to produce multiple trapping beams, where

each beam type can be different. Figure 6.4 shows a set of multi modal images.

Other approachs do exist for the calculation of the combined phase pattern, such as

simply randomly assigning each pixel on the SLM to one individual pattern [115]. This

method is computationally efficient but has been reported to suffer from a quadratic

decrease in diffraction efficiency as M increases. Another approach is the weighted

Gerchberg-Saxton algorithm. This is an iterative computer algorithm which finds a phase

only hologram to display on the SLM that creates the diffracted image. This approach

may not be suitable for phase contrast techniques, but works well for brightfield images,

and even defocus [45].

A possible drawback of a microscope incorporating an SLM in the optical path is that

the SLM itself introduces aberrations as it is not optically flat. However, this can be

corrected for with a corresponding phase pattern displayed on the SLM. Not only can

aberrations be corrected by the SLM itself, but also other aberrations in the optical train

or even within a sample. I do this by manually tuning coefficients of Zerinke polynomials

whilst imaging a known object, typically a 2µm silica bead. By adjusting the focus
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Figure 6.5: (a) A darkfield image of a dry sample of 200 nm diameter gold particles stuck
to a coverslip. (b) and (c) show images of a two photon polymerised star shape in water,
where (b) has had no aberration correction, while (c) has had aberration correction. (d)
is a cross section throughout the point spread function of the microscope, obtained by
imaging a 200 nm gold particle in darkfield. Aberration correction is seen to improve
contrast by 30%. The insets in (d) show contrast enhanced lateral point spread functions
where (e) is aberration corrected and (f) uncorrected. A horizontal line indicates the cross
sections in (d).

of the microscope and iterating the coefficients, I was able to dramatically improve the

image and remove the worst of the system’s aberration [116]. Figure 6.5 gives details

of the aberration correction. Whilst it was possible to correct the system aberrations,

imaging an unknown object through a dynamic aberrating layer would require some kind

of reference, such as a focused laser spot in the object plane. The system could then be

used as a SLM-based Shack-Hartman wavefront sensor [117].

6.3 User interface

I developed a user interface to control the microscope, Fig. 6.6. This software was

written in National Instruments LabVIEW. The software was designed to be easy to use

by non experts. The interface consists of two main tab structures, one for displaying

images and the other for choosing various settings. The images tab structure contains

thee tabs, one for the wide field and two for the SLM camera. The wide field tab simply
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displays the images obtained by the camera in that arm of the microscope. The SLM

camera has two options. Either the full camera image can be displayed, or subimages can

be extracted and displayed individually.

The full image is useful for setting the positions of the subimages. Up to 4 subimages

can be set, although it is usual for one of those subimages to record the zero order image.

Once the subimages have been set, they can be extracted so that SLM settings for each of

these images can be selected. For each subimage, there is drop down menu where the user

can select which imaging mode is required. The preset options are: Brightfield, Darkfield,

Phase Contrast, Spiral Contrast, Spiral Shadow, Stereo, Cubic, DHPSF and DIC. A

settings button, which when pressed, brings up a new window which contains relevant

settings for that image mode. For example, the additional settings for spiral contrast are:

Centre (sets the position of the fork relative to the centre of the SLM), Attenuation (sets

the fraction the on axis light is attenuated by), Illumination spot (sets the area of the

SLM to attenuate), and ` index (which sets the number the of azimuthal index of the

filter, usually ` = 1). There is also a control for the relative intensity and defocus of that

subimage. The SLM camera has a large dynamic range, and, since some imaging modes

are inherently dimmer than others (for example darkfield), there is a control to rescale

the pixel values for display purposes. This means that different subimages can be set to

a particular dynamic range for optimal images.

Figure 6.6: Screen shots of the SLM microscope user interface showing various tab con-
trols. In the subimages tab, there is a drop down menu for each diffracted image containing
a list of preset filter types. There is then a settings button which opens a window in which
relevant settings for that filter can be adjusted. Various camera controls are also present
(such as exposure time).
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The second tab structure has additional settings and functions which are applied to all

the diffracted orders. In the Hologram tab, there is a display of the 8-bit pattern which is

displayed on the SLM. There are also Basic settings, which controls the position of each

diffracted image, as well as the overall phase of the diffracted image. Once initialised,

these settings rarely need changing. Further Hologram settings include the size of the

SLM dimension (in pixels). In our system, a 512 × 512 pixel SLM is used. As the SLM

is addressed as a second monitor, the position of the SLM display relative to the primary

monitor needs to be set. In the Adv. tab, more advanced settings can be adjusted. These

include the Aberration, and Blazing Table. The aberration settings consist of adjusting

the coefficients of Zernike polynomials (such as spherical aberration, astigmatism, and so

on). This correction is applied globally to the SLM. The Blazing Table (also called a look

up table) sets the mapping of 8-bit values to phase shifts on the SLM. Manual tuning of

this can be helpful in controlling the amount of light is various orders. The Save Images

tab allows the user to quickly save a number of images to a specified location on the hard

disk. It does this by first storing the images in RAM to obtain the maximum acquisition

rate. There is also an LED control tab, used to set the power of the LED light source.

6.4 Commercialisation

The intellectual property for system described above was transferred to Boulder Non-

linear Systems, Ltd (BNS). As part of the exchange, I spent two months at BNS in

Colorado, USA. This was done as a secondment from my PhD and was funded by the

Scottish Universities Physics Alliance (SUPA). The outcomes of the visit were comparison

images betweens our SLM microscope and a commercial microscope, along with a new

version of the microscope control software. I also delivered a user manual for the SLM

microscope.
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Holographic stereo microscopy

Independently of the development of the SLM microscopy, Bowman et al. reported a

new approach to stereo microscopy [54]. Normally, a stereo microscope comprises of two

objective lenses and a single light source. In the new approach, a single objective lens

was used with two light sources illuminating the sample at two distinct directions. The

images from these direction were separated with a bi-prism in the Fourier plane. This

has also been achieved with two different colours of illumination [118]. More recently,

the bi-prism was replaced by an SLM, albeit with a conventional light source [55]. In

this chapter, I use an alternative illumination for the SLM microscope, which consists of

three acrylic fibres positioned 2 mm from the sample: one on axis, and two at ±30◦ for

stereoscopic operation. The SLM acts as the bi-prism to create a stereo microscope that

is also capable of darkfield and defocus in conjunction with stereo microscopy. This new

technique improves 3D visualisation, extends the depth of field and could allow stereo

microscopy to be used for more weakly scattering objects.

In this chapter, I acknowledge the contribution of Dr R. Bowman for help in design

of the stereo apparatus. The design of the holograms and the measurements are my own

work. This work is part of a publication in Optics Express [44].

The stereo microscopy approach uses a single microscope objective lens and a custom

illumination consisting of two optical fibres at an angle around 30◦ to the optical axis,

yielding two views of the sample. This method enables the three dimensional tracking

of particles without the need for complex beam steering optics or the requirement for

pre-recorded template images. It is also easily scaled to track multiple particles simulta-

neously, and has been employed to track the motion of non-spherical particles in a novel

form of scanning probe microscopy [22].

The two images are from different angles of illumination and, just as binocular vision

gives humans depth perception, depth information can be obtained from the images. A

particle moving in the z direction will move from left to right in one image and from right

to left in the other. It is simple then to attain the z displacement, δz, as,
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Figure 7.1: 3D position coordinates can be obtained using the software’s particle tracking
capabilities. (a) An image of the SLM display where the greyscale represents 0 − 2π
phase change. Two apertures can be seen corresponding to the two views of the sample,
each with a different grating so that the images from these angles don’t overlap in the
image plane. (b) and (c) The different images extracted from an image recorded on the
CMOS camera. The images are of the same object, 2µm polystyrene spheres undergoing
Brownian motion in water. (d) Stereo visualisation of particle positions. The images (b)
and (c) are colour coded and overlapped. With 3D stereo glasses, the user can visualise
the scene with depth perception. Images (e) and (f) are of the same cheek epithelial cell
nucleus as viewed with the stereo microscope. Viewing the sample from two directions
affords additional geometric information about the cell structure. g) shows the e) and f)
colour coded and overlapped for stereo visualisation.
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Figure 7.2: Set up of our holographic stereo microscope. The two red lines represent
the optical fields from the two light sources. The SLM introduces an angular deflection
between these two fields.

δz =
δx

2tanθ
, (7.1)

where δx is the difference in the x position of the particle in the two images and θ is the

angle of the optical fibres to the vertical axis (i.e., the fibres are separated by 2θ).

Illuminating at two angles corresponds to two positions in the Fourier plane and around

these positions is the scattered light from the particles in the sample. For each of these

light fields, a wedge prism deflects the light so that they do not overlap in the image plane.

Also, a twin circular aperture needs to be placed just in front of the prisms in order to

restrict high angled scattering from one view contributing to the image for the other

view. In [55], Hasler et al. an SLM was used to create stereo images with just a single,

on axis, illumination. As discussed by the authors, this approach leads to an inversion

of the image for some samples owing to the division of the scattered field in the Fourier

plane. By using two light sources there are effectively two separate light fields which, in

the Fourier plane, only overlap at high spatial frequencies. By blocking these areas with

the twin circular aperture images can be obtained which are suitable for particle tracking

and free from inversion, albeit with a high frequency cutoff.

The twin aperture needs to be designed for a particular magnification or illumination

angle, θ, as these set the position of the light fields in the Fourier plane. With the use

of an SLM here, the stereo microscope is made more flexible, see Fig. 7.1. With no
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mechanical change to the system described in Section 6.1, the SLM can be used in place

of the twin apertures and prisms. The size and position of the apertures on the SLM

are now reconfigurable, meaning it is possible to switch between microscope objectives

and have corresponding SLM phase patterns ready to compensate for the new position

and size of light fields for each view. It is also possible to experiment with different

angles of illumination and adjust the SLM display accordingly, which may be more suited

to particular applications. The approach works well for particle tracking spheres, but

it’s also possible to image extended objects, Figs. 7.1(e) and 7.1(f). Viewing from two

different directions can give additional information of the shape of the structure, however,

the large separation angle between the two views means 3D visualisation of such objects

is difficult (if the images were to be colour coded and overlapped).

7.1 Holographic stereo microscopy and holographic

lenses

As a demonstration of the flexibility of the system, holographic stereo microscopy is

combined with holographic lenses and darkfield imaging. Images of a 5µm silica bead

viewed with stereo illumination and an objective 100×, NA = 1.3 (Zeiss) are shown in

Figs. 7.3(a) and 7.3(b). With stereo microscopy, particle tracking accuracy and precision

is limited by the defocusing of the tracked object: the more the particle moves away from

the focal plane, the less reliably can its position can be measured. Adjusting the focus

of the objective lens to keep the particle in focus during a measurement is not always

desirable. Adjusting the focus holographically has the advantage of having no mechanical

movements, as well as maintaining the parallax displacement if separate lenses are aligned

to the axis of each view. This means the image can be focussed without causing a lateral

shift, i.e., the measured x position in each view is unchanged. The range of this technique

is now limited by the field of view, rather than the depth of focus of the microscope. In

Fig. 7.4, the improvement to the accuracy of the z position measurement as a function

of distance from the focal plane is shown. Without the lens correction, the tracking error

increases quickly outside of the depth of focus of the microscope [54]. However, with the

application of holographic lens correction, the error falls to a mean of 5.5 nm across a

50µm range.

This stereo visualisation approach has parallels with human vision, where each eye has

its own lens. This addition of a lens could be of benefit to 3D tracking with a adjustment

of the focus to optimise the trackability of a particle without changing its position in the

image.
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Figure 7.3: Recorded images of a 5µm silica bead fixed in position on a microscope slide.
The bead was illuminated with stereo illumination, so that the bead translates as the focus
of the microscope objective is adjusted over a 35µm range. The left and right views are
diffracted to different positions on the camera then extract, colour and overlap the images.
(a) The SLM display along with stereo images as the bead goes through the focus of the
microscope. (b) the SLM display used to refocus the bead as the focus is changed. The
holographic refocusing does not change the position of the bead. A different holographic
lens is needed for each focal position, shown is an example of the lens used at the 10µm
position. (c) Darkfield stereo images. (d) Darkfield stereo with focus correction.
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Figure 7.4: Measurement of the accuracy of z position measurement as a function of dis-
tance from the focal plane. The error is calculated from measuring the standard deviation
of a series of position measurements of a 5µm silica particle stuck on the coverslip. The
improvement is due to the increased contrast brought about by keeping the particle in
focus.

Again, the flexibility of the SLM implementation means that I could introduce a

darkfield filter to the stereo imaging with no additional system complexity, Figs. 7.3(c)

and 7.3(d). A use of the dark-field stereo could be to improve the contrast for the 3D

trajectory tracking of individual water-borne single-celled organisms. In principle, all the

benefits of using an SLM in the Fourier plane can be transferred to the stereo microscope,

however care may be needed regarding the coherence of the illumination.

To check the calibration of the system, I studied the motion of a 5µm silica particle

optically trapped in water. The trap was positioned 20µm above the coverslip which

reduces the influence of boundary effects to below 10%. Incorporating the optical tweezer

into the SLM microscope is described in more detail in Chapter 8. The camera used a

reduced region of interest which allowed a frame rate of 600 frames per second. The Mean

Square Displacement (MSD) of the position measurements is shown in Figure 7.5. The

MSD increases linearly for free diffusion until it reaches a plateau due to the influence of

the trap. The x and y MSDs agree closely due to the trap stiffnesses, κx and κy, being

similar in these directions (κx = 3.9µN/m and κy = 3.7 pN/µm). The MSD in z reaches

a plateau later due to the trap stiffness being weaker in z (κz = 1.3 pN/µm), yet, the fact

that the slope agrees with x and y shows that the system is calibrated.
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Figure 7.5: The Mean Square Displacement (MSD) of a 5µm silica bead in water in an
optical trap. The particle tracking ran at 600 Hz for 100 k frames, and the particle was
held 20µm above the coverslip, so that boundary effects were reduced. The plot shows
the MSD in each axis. At short times, the bead is freely diffusing and the MSD increases
linearly. At longer times, the presence of the trap inhibits diffusion and the MSD reaches
a plateau region. For the x and y data, this cross over point occurs at the same time,
corresponding to the trap stiffness being the same in x and y. In z, however, the trap is
weaker and the particle is seen to be freely diffusing for longer.

7.2 Conclusions

I have developed a multi-modal microscope capable of stereo imaging, aberration cor-

rection and a range of other imaging modalities. The microscope uses a spatial light

modulator to Fourier filter the images and generate different imaging modalities later-

ally displaced on the same camera. Depending on the application, existing filters can

be optimised, or new filters created, and combined with stereo imaging. Novel Fourier

filters can be developed with software and implemented out without additional hardware

components. As an example, I demonstrated holographic stereo microscopy, and used

the flexibility of the SLM to improve the range of the technique with the addition of a

holographic lens, and holographic stereo darkfield microscopy, which could allow stereo

microscopy to be used with weakly scattering objects.
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Dynamic stereo microscopy

As described in the previous Chapter, the use of Spatial Light Modulators (SLMs) in

microscopy allows the interactive control of the image Point Spread Function (PSF) [43].

This is achieved by placing the SLM in the Fourier plane of the sample, where a phase

pattern can be applied to the spatial frequencies of the image. In recent years, the

versatility of SLMs has allowed new forms of microscopy to be developed [48, 50, 53].

In this work, I adopt a Fourier filter that changes in real time, based on information

obtained from images taken by a camera. In particular, I use an SLM based stereo

microscope [118, 54] to measure the sedimentation of a silica bead immersed in water. The

experimental configuration is such that the sedimenting bead falls towards the inverted

microscope objective. I recorded the bead’s 3D position over tens of µm via a stereo video

particle tracking procedure. The bead position is used to continually update the focal

power of a Fresnel lens on the SLM, so that the bead is always in focus. This extends the

range of the procedure beyond the depth of field of standard microscopes [44], yet does

not require computational deconvolution [119].

Acknowledgements for this chapter go to Dr David Phillips and Dr Richard Bowman

for writing the fast hologram software. The design of the experimental procedure, running

the experiment, data analysis was entirely my own work.

In absence of external flow and at low volume fractions, the bead’s sedimentation is

governed only by the balance between two body forces and one surface force, respectively,

the gravity force (ρsVsg), the buoyancy force (ρfVsg, where Vs is the volume of the sphere),

and the viscous force (6πaη dz
dt

):

ρsVsg − ρfVsg − 6πηa
dz

dt
= 0 (8.1)

4

3
πa3g(ρs − ρf )− 6πηa

dz

dt
= 0. (8.2)
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Rearranging gives,

dz

dt
=

4
3
πa3g(ρs − ρf )

6πηa
(8.3)

=
2ga2(ρs − ρf )

9η
, (8.4)

where dz/dt is the sedimentation rate, g is the acceleration due to gravity, a is the bead’s

radius, ρs and ρf are, respectively, the density of the bead and of the fluid and η is the

fluid viscosity (in this case a Newtonian fluid, i.e., a fluid with a constant viscosity).

Sedimentation is ubiquitous in nature, from river bed formation to direction sensing in

the roots of plants [120]. Sedimentation is an active area of research, with applications in

many industrial processes [121, 122, 123]. It can also be used as a tool to probe physical

properties of complex fluids, such as liquid crystals [124].

In this work I demonstrate a new technique to measure sedimentation rates. I use

Optical Tweezers (OT) [5] to trap and raise a silica bead above a microscope coverslip.

As described in Chapter 1, OT work by tightly focusing a laser beam with an inverted

microscope objective, which is also used to visualise the sample. Once raised, I switch

the laser beam off to allow the particle to sediment from a known height. I then use a

dynamic version of Stereo microscopy [118, 54] to measure the three dimensional thermal

fluctuations, along with the sedimentation. No changes are needed for stereo microscopy’s

implementation with OT, two light sources are positioned above the sample, illuminating

it from two different angles as before. The difference in this work is that the stereo filters

in the Fourier plane are dynamically updated to keep the bead in focus.

8.1 Experiment

The experimental set up is similar to that described in Chapter 7 and is shown in

Fig. 8.1 a). A sample of silica beads, of mean radius a = 2.37µm from Bangs Lab Inc,

diluted in distilled water was used. The sample is prepared in a welled microscope glass

slide and sealed with a 150µm thick coverslip. The sample is illuminated with two optical

fibres (acrylic, 1.5 mm diameter) held at an angle of α = ±30◦ to vertical in the x − z
plane. These fibres are positioned in a custom 3D printed mount about 2 mm from the

top of the slide. A drop of water between the fibres and slide gives brighter illumination

by reducing refraction at the exit plane of the fibre. Each fibre is coupled to a high power

red (637 nm, 20 nm bandwidth) LED light source (Luxeon Rebel). This light is filtered

with a 636 nm, 10 nm bandwidth interference filter prior to the camera.
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Figure 8.1: a) Schematic view of the experimental setup. The red shaded area shows the
path of the trapping laser, while the two red lines show the paths of the light from the two
illumination fibres. The bottom-left image shows the SLM pattern that diffracts the light
at a different angle for each illumination. The bottom-right image shows an example of
a stereo image taken by the camera, from which the 3D position is obtained. b) The full
position trace of the bead’s centre recorded during sedimentation. The green (dashed),
blue (dash-dot) and red (dot) lines show positions recorded from a single sedimentation
run. I recorded up to 50 runs. The averaged result, shown in grey, is normalised such
that z = 0µm being the bead on the coverslip, its centre being one particle radius higher.
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The objective is a Zeiss 63×, 1.2 NA water immersion lens which is mounted on a linear

stage (LS-50-M, ASI) for focusing and positioning of the optical trap. The trapping laser

is a 671 nm DPSS laser from Changchun New Industries Optoelectronics Technology Co.,

Ltd. which has a maximum power output of 300 mW. The beam is expanded and directed

in to the back aperture of the objective. The expanded beam is slightly diverging such

that the laser focus is 7µm above the image plane.

A polarising beam splitter is used to separate image light from the light of the trapping

laser. An image of the sample is formed 2 cm from the beam splitter and here is placed an

adjustable aperture to reduce the field of view. A Fourier lens images the back aperture

of the objective on to a 512 × 512 SLM (Boulder Nonlinear Systems XY series). The

filter can be quickly updated by calculating the desired pattern on the graphics card [94].

Images are recorded with a Dalsa Genie GM1020 CMOS camera, which with a reduced

region of interest, can capture images at 500 Hz. The camera is aligned such that the

apparent x motion, resulting from z displacement, corresponds to pixel rows. This allows

a higher acquisition rate.

8.2 Procedure

In order to perform the measurement, a bead was loaded into the trap and positioned

32µm above the coverslip. The laser is then switched off via USB control and the bead

position recorded until it sediments onto the coverslip. This is a small delay of 1.5±0.1 ms

between the command signal and the laser beam shut-off. This was measured by observing

laser light reflected by the coverslip and by adopting a very small region of interest such

that the frame rate was greater than 1 kHz. The calibration of the experiment starting

time allowed us to determine exactly at which frame the laser was switched off; this

being an important feature that relates to future microrheology measurements. The bead

trajectory was measured by means of a video particle tracking procedure based on a

centre of symmetry algorithm [125] applied separately to each view of the bead. With

the stereo microscopy there are two independent measurements of the displacement in

the y direction; one measurement of the displacement in the x direction, which is given

by the average of the two measured x positions on the camera, and the displacement in

the z direction, as deduced from the separation of the images, given by z = δx
2tanα

, where

δx is the difference between the two x measurements on the camera, and α is half angle

between the fibres. As these coordinates are calculated in real time, the calculated z

position can be used to update the SLM with a Fresnel lens pattern, which refocusses

the bead. The SLM is updated at 100 Hz. The linear relationship between Fresnel lens

power and imaged focal height was empirically found. I achieved this by measuring
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Figure 8.2: During each sedimentation run, the x and y are also recorded position of
the bead. Shown in a) is the x (blue, dashed) and y (green, solid) for an example run
using a particle with diameter of 4.84µm. The Mean Square Displacement (MSD) of this
trajectory can then be calculated. By averaging the MSD for 50 repeats, the data shown
in b) is obtained. Here, the error bars are the standard error of the mean. The MSD(x)
data (5) has been shifted from the MSD(y) data (�) for clarity. The fits do not intercept
zero owing to the tracking error and finite exposure time in the acquisition [126]. From
the slope of the linear fits of MSD(x) (blue, dashed) and MSD(y) (green, solid) a particle
diameter of 4.77µm and 4.90µm is obtained, respectively

the change in observed height of a bead adhered to the coverslip, moved by a known

vertical distance with the translation stage. A scaling factor can then simply multiply

the measured z displacement from the focal plane to obtain the focal length needed to

refocus the image. Once the auto-focussing procedure has been calibrated, a bead remains

in focus without adjustment of any optics. In principle, this procedure does not affect

the position measurements described above, but only the precision of the measurement

as the position of a more in focus bead suffers less from camera noise. In practice, as a

bead goes out of focus, it may also obtain asymmetric distortions which will lead to large

errors in the centre of symmetry algorithm, i.e., the accuracy may also be more reliable

for an in focus bead. In a previous work, I found that the lens correction procedure gave

the position of a bead with an error of 5.5 nm over a 50µm range [44].

8.3 Results

Typical z position traces are shown in Fig. 8.1 b). These data are from the same bead,

and I average multiple sedimentations (up to 50 runs) to average out Brownian noise.
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Figure 8.3: a) The average initial part of sedimentation shown for three different beads.
Over this range, the viscosity is nearly constant. With a linear fit, knowing the viscosity,
the bead size can be extracted and vice versa. b) The effective viscosity experienced by
a sedimenting bead approaching a boundary.

8.3.1 Particle sizing by sedimentation

The distance to the bounding coverslip decreases as the particle descends, resulting

in the drag coefficient of the bead increasing according to Faxén’s correction. However,

during the initial part of the descent, from 32− 28µm, this effect is small, less than 1%,

and below the 4% standard deviation for repeated measurements. Therefore, only this

part of the trajectory is used to calculate the bead’s diameter. These measurements are

shown in Fig. 8.3 a). The bead size is determined by fitting Eq. 8.4 to the data. Notably,

equation ?? has a square dependence on the bead size, which enhances the sensitivity of

the measurement. By averaging the measurements, the standard error in the bead sizing

reduces to around 1%. The parameters used in the fitting procedure are: a temperature

of 22◦C, density of silica of 2.0×103 kg/m3, density of water of 1.0×103 kg/m3 and water

viscosity of 0.96 mPas.

8.3.2 Particle sizing by diffusion

The particle tracking procedure is also able to provide the x and y coordinates. Far

from the coverslip, these data are independent from the sedimentation process and there-
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Sedimentation (µm) MSD(x) (µm) MSD(y) (µm)
Particle 1 4.50 4.51 4.81
Particle 2 4.82 5.28 5.06
Particle 3 4.97 4.66 4.73
Particle 4 4.95 4.93 4.60
Particle 5 4.88 5.07 4.71
Particle 6 4.86 4.99 4.77
Particle 7 4.53 4.85 4.52
Particle 8 4.84 4.77 4.90

Mean 4.79± 0.18 4.87± 0.22 4.74± 0.18

Table 8.1: Results comparing the diffusion method with the sedimentation method for
particle sizing. The beads used come from a population with mean diameter of 4.72µm.
For each particle, the standard deviation in sizes from the different methods is on average
3.5%.

fore can be used to estimate the bead size by means of its Mean Square Displacement

(MSD) (computed as MSD =
〈
[x(t+ τ)− x(t)]2

〉
, where τ is the time interval or lag-

time). For Newtonian fluids (e.g. water) the bead’s MSD is expected to grow linearly

with time, MSD = Dt, where D is the diffusion coefficient given by kBT/6πηa, where kB

is Boltzmann’s constant and T is absolute temperature. Again, only the initial part of the

data can be used, owing to the increase in drag coefficient closer to the coverslip. Once

the MSD is calculated, a linear fit was used to obtain the diffusion coefficient from which

the particle size can be found. An example x and y position measurement is shown in

Fig. 8.2 a), from which the MSD is calculated. I average the MSD for the many runs and

fit to obtain the diffusion coefficient, Fig. 8.2 b). There exists an offset to the data which

is due to a finite exposure time (2 ms) and localisation error (σ = 5 nm)[126]. Comparing

the different methods (sedimentation and MSD) of finding bead size I found that the

mean deviation between techniques is 3.5%. The mean size closely matches the given

value from the manufacturer, Table 8.1. The MSD method is expected to be less reliable

as the statistical averaging typically requires a long measurement, which is unavailable

in this case as the bead is approaching the coverslip. Nonetheless, it provides additional

information and acts as a good check that the system is calibrated.

8.3.3 Faxén’s correction

In this section I show the Faxén’s effect as manifested by a change in mobility expe-

rienced by a sedimenting bead. The change in mobility acts in the same way as a change

in effective viscosity η(z), which can be found as a function of distance from the coverslip

is given by rearranging Eq. 8.4:
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η(z) =
2gr2(ρs − ρf )

9dz
dt

. (8.5)

The change in effective viscosity is given by Faxén’s correction is,

η(z) = η0

[
1− 9

8

r

z
+

1

2

(r
z

)3
]−1

, (8.6)

where η0 is the viscosity far from any boundary [32]. I differentiate the average data shown

in Fig. 8.1 b) to compute dz
dt

using finite differences. Using the bead size found previously

η(z) can be calculated, shown in Fig. 8.3 b). The fit is the equation for perpendicular

Faxén’s correction given in [74]. Owing to the numerical differentiation, the data is quite

noisy, however there is a clear trend in agreement with theory.

8.4 Conclusion

I have demonstrated a new technique to measure the bead diameter and diffusion

coefficient of microspheres by observing their sedimentation trajectory with a three di-

mensional SLM microscope. I used an algorithm which automatically updates the SLM

Fourier filter to increase the tracking range, allowing results to be recorded over both an

initial range and while approaching a boundary. The bead diameter is found using the

initial data, far from the coverslip using two methods: sedimentation and mean square

displacement. I then use this result to find how Faxén’s correction affects the sedimen-

tation process and show good agreement with theory. I foresee this procedure to be of

interest in the study of the sedimentation process itself, or in using sedimentation as a

tool to study complex fluids.
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Conclusion

It could be said, with the impressive control we have over the optical field, that optical

systems are truly coming of age. At present, with liquid crystal SLMs, there is 10µm

spatial resolution, and 1 kHz temporal resolution. These devices can efficiently change

the phase of an input light field, however amplitude modulation is inefficient (as the light

can only be attenuated). Nonetheless, SLMs have been used in a large number of optics

experiments, from blue sky research to practical applications. The aim of this thesis was

to explore one such practical application, namely, optical microscopy. In particular, I

have attempted to answer questions in optical tweezers and SLM microscopy.

In optical tweezers, I applied SLMs to investigate the processes of hydrodynamic

coupling between particles in bistable potentials, Chapter 3. The experiment consisted of

two bistable optical traps each containing a single particle. I was interested in what form

the hydrodynamic coupling between these spheres took. This work involved recording long

measurements of the particles positions, and there were a number of problems that had

to be solved. I found that 0.8µm diameter silica spheres were easier to create bistable

potential traps for, but these required a new tracking procedure to be developed. I

found that the long time needed for measurements often led to the experiment being

contaminated with a freely diffusing particle, or that the laser would drift making the

bistable trap unbalanced. I compensated for these effects by adding some salt to the

sample which stuck down most particles to the coverslip. I also introduced a closed loop

feedback system which automatically corrected for laser drift. I derived the mathematical

expression for the power spectrum of a fluctuating particle, and the expected number of

coincident hops between two randomly fluctuating systems. An analysis procedure was

developed in which a low pass filter was applied to the data to remove high frequency

vibrations. Also, a practical definition of what a constitutes a hop in a bistable system

was developed.

With these procedures in place, I was able to record sufficient data to conclude that

the probably of a symmetric (p) hop significantly outweighed the probability of an anti-
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symmetric (n) hop when the two systems were placed in close proximity. As a control, I

found that as the separation increased this biassing reduced, meaning that the effect was

due to the coupling between the spheres, rather than any external vibration.

In Chapter 4, I used holographic optical tweezers to create an intricate energy poten-

tial to provide an alternative solution to a problem encountered in the previous chapter.

Rather than adding salt to the sample (which may not always be desirable) I sought

to reduce freely diffusing material entering the trap by introducing a Laguerre Gaussian

beam around the trap. If this worked, there would be an all optical means to perform

long measurements in colloids or biological samples, where diffusing material really com-

promises measurements. To test the approach I compared the length of time I were able

to successfully measure the viscosity of water with and without the Laguerre Gaussian

beam, which I called an “optical shield.” This experiment was performed in a sample

with a large number of diffusing 0.8µm silica beads (much larger than in a typical optical

tweezer experiment). To identify when the trap was compromised, I used the variance of

the brightest pixel in the recorded images. If two particles are in the same trap, I observed

them to jostle for position, leading to large fluctuations in the brightness of the image.

I recorded 250 measurements of time until contamination, together with viscosity, which

was obtained from the standard autocorrelation method. I found an order of magnitude

increase in the time until contamination when using the optical shield. In addition, there

was no significant difference between the viscosity measured with and without the optical

shield.

In Chapter 5, I used a holographic tweezer system as a measurement device, rather

than for generation of optical force. The system used a circularly polarised laser beam

to trap and spin a birefringent particle. A beam was shaped holographically using a

superposition of OAM modes, which illuminated the particle with a circularly symmetric

petal pattern. The aim of the experiment was to find out if intensity fluctuations in

the reflected probe beam could be used to infer the rotation of the particle. This was

expected as OAM modes of the light beam should be frequency shifted by the rotation

of the particle. The beat frequency between the these modes had been shown to give an

intensity modulation at 2|`|Ω for a macroscopic spinning disk (where ` is the OAM mode,

and Ω is the rotation rate of the disk), but it was an open and interesting question whether

this would hold for a particle the same size the as diffraction limit of the measurement

beam.

I measured the intensity modulation with a photo diode, and changed the OAM modes

of the illumination between ` = ±0,±1,±2, and ±3. The rotation rate of the particle

was independently verified using video particle tracking. I then looked at the power

spectrum of the intensity reflected off the particle. By changing the ` mode of the probe
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beam, a significant boost in power was detected in the corresponding harmonic at 2|`|Ω,

implying the Doppler shift of the illumination beam. There are also other peaks in the

power spectrum corresponding to undertones of the Doppler frequency. These peaks were

attributed to misalignment of the probe beam to the rotation axis of the particle. In fact,

the rotation axis of the particle was ill defined due to Brownian motion. The peaks are

also broadened by the effect of Brownian motion. This procedure is robust to these effects

and, therefore, provides a measurement which can unambiguously determine rotational

motion from translation.

The second half of the thesis concerns SLM microscopy. Chapter 6 describes the

development of an SLM microscope, the intellectual property of which was transferred to

a small enterprise in the USA. This chapter had the aim to design and characterise the

system. I developed a compact design, which was simple to align and allowed access to the

adjustable mirrors. Other design features include two cameras to make use of all the light

from the sample, an adjustable iris to control field of view/number of diffracted images

trade off, and an interchangeable illumination for various imaging modes. I created a user

interface which was designed to be flexible and easy to use. The system was characterised

in terms of its point spread function, and found the resolution to be 200 nm, which was

improved by aberration correction. I provided examples of the microscope’s multimodal

capabilities such as the double helix point spread function, darkfield, and defocus.

In Chapter 7 I demonstrated new forms of imaging, by combining SLM microscopy

with stereo microscopy. Here, I replaced the twin aperture and prism with an SLM. The

advantage of this was that alignment on to the twin aperture is easier, as the aperture can

be precisely positioned. Furthermore, the size of the aperture can be controlled, meaning

the optimum size for a particular sample can be used without changing any physical

components. As an additional benefit, the SLM displayed a lens on top of each aperture

meaning that as a sample moves in three dimensions the focus can be retained as well as

the parallax measurement of stereo microscopy.

In the final chapter (Chapter 8), I developed a new form of microscopy, named dynamic

stereo microscopy. This is where the lens applied to stereo microscopy is constantly

updated based on information obtained from the image of the sample. In the application

used to illustrate the technique, the position of a micron sized sphere sedimenting in water

is used to update the focus of the lens applied to each view of the sample. This allows the

position of the sphere to be tracked over a much larger range than would otherwise be

possible. The experiment used optical tweezers to initially levitate the sphere in the fluid,

bringing together the different aspects of my thesis. From the results of the experiment,

I could quickly and accurately size the particles, as well as map surface effects from the

coverslip.
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In all, this thesis demonstrates new applications of SLMs in microscopy. The ability

to control the wavefront of an optical field has greatly enhanced the functionality of

microscopes and it seems inevitable that SLMs will feature in the future generations of

research microscopes. Both holographic optical tweezers and SLM microscopy are likely

to see further development and usage in and outside of optics laboratories. In the first half

of the thesis, I have used optical tweezers to discover subtle hydrodynamic effects, and a

rotational equivalent of linear doppler velocimetry at the micro-scale. I also extended the

range of environments where optical tweezers could be used by investigating an “optical

shield” to protect the trap from diffusing material. In the second half , I developed a

new, compact SLM microscope and created novel modes of microscopy which I used to

measure the sedimentation of a micron sized sphere. This work combined optical tweezers

with SLM microscopy, an idea in which I am excited to see further research.
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