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Abstract

This thesis presents an approach for interpreting range images of known

subject matter, such as the human face, based on the extraction and match-

ing of local features from the images. In recent years, approaches to inter-

pret two-dimensional (2D) images based on local feature extraction have

advanced greatly, for example, systems such as Scale Invariant Feature

Transform (SIFT) can detect and describe the local features in the 2D im-

ages effectively. With the aid of rapidly advancing three-dimensional (3D)

imaging technology, in particular, the advent of commercially available sur-

face scanning systems based on photogrammetry, image representation has

been able to extend into the third dimension. Moreover, range images con-

fer a number of advantages over conventional 2D images, for instance, the

properties of being invariant to lighting, pose and viewpoint changes. As a

result, an attempt has been made in this work to establish how best to rep-

resent the local range surface with a feature descriptor, thereby developing

a matching system that takes advantages of the third dimension present in

the range images and casting this in the framework of an existing scale and

rotational invariance recognition technology: SIFT.

By exploring the statistical representations of the local variation, it is pos-

sible to represent and match range images of human faces. This can be

achieved by extracting unique mathematical keys known as feature descrip-

tors, from the various automatically generated stable keypoint locations of

the range images, thereby capturing the local information of the distribu-

tions of the mixes of surface types and their orientations simultaneously.

Keypoints are generated through scale-space approach, where the (x, y)

location and the appropriate scale σ are detected. In order to achieve in-

variance to in-plane viewpoint rotational changes, a consistent canonical



orientation is assigned to each keypoint and the sampling patch is rotated

to this canonical orientation. The mixes of surface types, derived using

the shape index, and the image gradient orientations are extracted from

each sampling patch by placing nine overlapping Gaussian sub-regions over

the measurement aperture. Each of the nine regions is overlapped by one

standard deviation in order to minimise the occurrence of spatial aliasing

during the sampling stages and to provide a better continuity within the

descriptor.

Moreover, surface normals can be computed from each of the keypoint lo-

cation, allowing the local 3D pose to be estimated and corrected within the

feature descriptors since the orientations in which the images were captured

are unknown a priori. As a result, the formulated feature descriptors have

strong discriminative power and are stable to rotational changes.
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Chapter 1

Introduction

The main aim of this research project is to develop a methodology for the interpretation

of 2.5D range images by extracting stable feature descriptors, which serve to provide

point-based correspondences between compared range surfaces. This can be achieved

by capturing the underlying surface information from the range images at a set of key

correspondences known as keypoints. The methodology adopted here has been inspired

by the two-dimensional (2D) Scale Invariant Feature Transform (SIFT) (Lowe, 2004)

in which descriptors, comprising the local distribution function of the image gradient

orientations, are extracted at each sampling keypoint location over a local measurement

aperture. Following an investigation into 2.5D local feature representations, the 2D

SIFT concept has been adapted to the 2.5D domain in this work by concatenating

the histogram of the range surface topology types and the histogram of the range

gradient orientations to form a feature descriptor. These histograms are sampled within

a measurement window centred over each mathematically derived keypoint location.

Furthermore, the local slant and tilt at each keypoint location is estimated by extracting

range surface normals, allowing the three-dimensional (3D) pose of each keypoint to be

estimated and used to adapt the descriptor sampling window to potentially provide a

more reliable match under out-of-plane viewpoint rotation.

1.1 Aims and Objectives

A range image comprises a 2D matrix in which each element encodes not the intensity

of the light focused on an optical imaging sensor, but the distance (or range) of the

nearest world surface to each element in the imaging plane (Besl, 1998). Due to this
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availability of measurements in the third dimension, this imaging modality provides di-

rect and explicit geometric information, thereby allowing users to interpret the shape of

the imaged surfaces directly. Moreover, range images are partially invariant to lighting,

pose and viewpoint changes (Gordon, 1992), which confers a number of added advan-

tages over an analysis based on 2D images alone (Bowyer et al., 2006). Accordingly,

range images can capture surface shape variation, irrespective of illumination varia-

tions (Hesher et al., 2003). These predominant properties have therefore motivated the

goals of 2.5D machine understanding of human faces in this research project.

1.1.1 Scientific Questions

At the beginning of this research project, the following questions were posed:

• How to represent local features on a range map?

– The goal is to formulate a stable feature descriptor that is suitable for rep-

resenting the range images.

– A number of representation could be used here, for example the surface types

derived from the signs of the mean (H) and Gaussian (K) curvatures, the

principal (k1 and k2) curvatures or the shape index.

• What architecture would best serve local feature based matching in the 2.5D

domain?

– The Elastic Bunch Graph (Wiskott et al., 1997) approach or SIFT algorithm

are both potential choices.

• Can local feature matching be achieved in the 2.5D domain?

• Validation of the engine:

– What methodology to adopt in order to validate matching 2.5D descriptors

within a system?

– To what degree is the system invariant to viewpoint rotational and scale

changes?

– What benefits does this 2.5D technique give over the traditional 2D inter-

pretations?

2
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1.1.2 Motivation

There is currently increasing interest in the use of 3D models for clinical photography,

for example, clinical applications now include surface anatomy visualisation and as-

sessment (pre and post surgery intervention) for the face, breast, foot, hand and spine.

Conventional methods of surface anatomy assessment are based on the subjective in-

terpretation of the individual surgeons on either the 2D photographs or directly on the

patients. With the advent of commercially available surface scanning systems1 (Fig-

ure 1.1) based on digital photogrammetry, clinical photography has been extended into

the third dimension. An example of a practical ongoing 3D medical imaging project

includes the extraction of geodesic curves on 3D models of children who have had facial

deformity, compared to curves extracted from 3D models of children of the same age

group who have not had any facial surgery. This process determines the symmetry

between the groups, thereby allowing the surgeons to refine their surgical techniques

and improve the quality of medical services provided.

(a) 3D Capture System (b) Foot Scanner

Figure 1.1: Examples of 3D scanners: (a) 3D capture system developed by Dimensional
Imaging Ltd. (b) Foot scanner developed by Precision 3D Ltd.

Conventional approaches to interpret 2D or 2.5/3D images of surface anatomy are

traditionally based on manual landmark placement. Landmarks can provide identifica-

tion of different anatomical features, for instance on a human face, where examples of
1For example: Dimensional Imaging Ltd. (http://www.di3d.com), Precision 3D Ltd.

(http://www.precision3d.co.uk), 3dMD Inc. (http://www.3dmd.com)
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useful anatomical landmarks include the corner of the eyes and the tip of the nose etc.

Given a set of landmarks it becomes possible to compute the Euclidean or Geodesic

distances between pairs of landmarks and then to characterise this information in terms

of a distance matrix. This distance matrix is capable of capturing the essential config-

uration statistics of the landmarks. Hence the normal and pathological distributions

of the variation of a biological structure can be characterised using multivariate statis-

tical approaches, for example, Principal Components Analysis (PCA). Unfortunately

manual designation of landmarks is error prone and subjective, requiring considerable

clinical skill. Since manual landmark placement is labour intensive and time consum-

ing, it represents a bottleneck in terms of throughput and compromises the objectivity,

if not accuracy, of the placed landmarks. An automated means of locating these key

locations would therefore enable large numbers of images to be processed to support

large scale clinical protocols such as screening, assessment and diagnosis.

The aim of this research project is to progress machine point-based interpretation

of range images of human faces. Initially, these images were captured under highly

constrained conditions, where images have been captured with a specific pose and at a

specific orientation. These constrains were subsequently relaxed to allow interpretation

of a wider range of poses and orientations as the project matured.

1.2 Background

Traditional approaches in machine interpretation of 3D surface manifolds have been

based on the classification of the different types of surface topology using differential

geometry (do Carmo, 1976). This approach has been widely used since the 1980s,

where the signs of the H and K curvatures are used to segment any smooth and

differentiable surface into eight surface types (Besl and Jain, 1985; Ittner and Jain,

1985). This approach forms the basis of 3D shape analysis using differential geometry

that is now used widely. In the 1990s, Gordon (1992) and Lee and Milios (1990)

reported 3D shape analysis based methods to achieve face recognition by means of

range images. In this period, the use of local feature descriptors formed by extracting

the surface curvatures from 3D images for facial recognition, was also widely reported

and examples include work by Chen and Bhanu (2004); Dorai and Jain (1997b); Hetzel

et al. (2001); Moreno et al. (2003); Wang et al. (2002); Xu et al. (2004a). However, most
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of the methods mentioned above are limited to the categorisation of single surface types

only and typically require a user-defined threshold in order to segment the object with

respect to the H, K, the k1 and k2 curvatures. Since different thresholds are usually

required for different types of image, this process falls short of providing fully automated

interpretation. Furthermore, little work, until recently (Akagündüz and Ulusoy, 2007;

Li and Guskov, 2007; Lo et al., 2006, 2007; Norman et al., 2006; Pansang et al., 2005),

has been reported on the invariance limits of viewpoint rotational changes achieved

using the above techniques. A more in-depth discussion can be found in Chapter 2.

1.2.1 Local Measurement Technique

In the range image analysis approach presented in this work, a feature descriptor, com-

prises a histogram of the local shape information, based on differential geometry and

a histogram of the local image gradients orientation, is extracted over an appropriate

measurement aperture (sampling window). This feature descriptor is a distinct mathe-

matical key that must be capable of encapsulating the predominant “shape signature”

of the underlying surface and be capable of providing sufficient descriptive richness

to discriminate between different local surface shapes, while retaining invariance to

changes in viewpoint rotation. The size of the measurement aperture is the vital key

to the discrimination between feature descriptors, for example if the support region

is too small, it may not be capable of capturing enough information to represent the

underlying surface, whereas if the support region is too large, the localisation of the

feature descriptors could be compromised. Moreover, the sampling measurement aper-

ture is expected to capture a mixture of surface types in this work. For instance, the

descriptor extracted from the pronasale (tip of the nose) keypoint will be dominated

by a single surface type whereas the descriptor extracted from the exocanthion (outer

corner of the eye) keypoint location will be expected to contain a wider mix of surface

types. This concept is illustrated in Figure 1.2, showing the unique mixtures of surface

types and their relative frequencies (normalised to probability densities for matching

purposes) captured at three different locations on a 2.5D face image. Therefore, instead

of attempting to segment surfaces into a piecewise patchwork of single surface types,

the distributions of the underlying surface topology types are extracted.

By extracting distinct feature descriptors from keypoints locations on a 2.5D range

image, it is possible to conduct comparison between and within the population of human
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Figure 1.2: Surface types and their histograms (illustrated as bar graphs) extracted
from three different keypoint locations on a face range data.

faces depict viewpoints rotational and scale changes, providing an initial matching

between the range images based on the descriptors. More information on the rationale

and methodology can be found in Chapters 5 and 7 of this thesis. The next section

outlines the general approach taken for this work.

1.3 Overview of the General Approach

Figure 1.3 illustrates the overview of the 2.5D SIFT system developed here, from the

image capture process to the keypoint matching process.

Stereo-pair images are captured using a single pod system and processed using

C3D2 (Ju et al., 2003; Siebert and Marshall, 2000; Siebert and Urquhart, 1994) to

produce range images. These range images are then pre-processed in order to suppress

random noise. Mathematical keypoints, along with their appropriate scale, σ, are

detected on the range images based on Lowe’s SIFT methodology (Lowe, 2004) using

scale-space representation (Lindeberg, 1994a,b). In the basic formulation, a consistent

canonical orientation, θ, is assigned to each keypoint location, based on the local image

gradient orientation properties, following Lowe’s methodology. Subsequently, a more

advanced version of the 2.5D SIFT was developed that allocates a canonical slant

φ and canonical tilt τ to each keypoint location, thereby allowing the local pose to
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Figure 1.3: Overall approach for this research project.

be estimated and the sampling to be adjusted accordingly. Feature descriptors are

then extracted on each (x, y) location, over a measurement aperture of σ defining

the scale of the keypoint, using the appointed canonical orientation and the canonical

slant and tilt to facilitate invariance to 3D rotational changes. Keypoint matching can

then be performed on the extracted feature descriptors from different images, where

a candidate match is found using the nearest-neighbour algorithm. False matches are

initially rejected using the log likelihood ratio test. In order to verify the matches

between two different images, a similarity transform is computed between the two sets

of descriptors by means of a Hough Transform. Clusters of matching features with

a consistent interpretation are identified. If three or more entries are located in each

cluster, an affine transform fitting procedure can be applied to the cluster in order to
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recover the affine pose between the matched features and also identify outliers. The

details for each stage will unfold in later chapters of this thesis.

1.4 Contributions

This thesis makes the following key contributions to the existing literature:

• The formulation of a stable feature descriptor suitable for representing local fea-

tures on range images.

• Integration of this feature descriptor within a standard matching framework

(SIFT), that affords rotation and scale invariance.

• Feature descriptors are rotationally invariant to viewpoint changes to all three

Euler’s angles.

• Improvement of the SIFT matching algorithm.

The work presented in this thesis has appeared in the following publications:

• Tsz-Wai Rachel Lo, J. Paul Siebert, Ashraf F. Ayoub: An Implementation

of the Scale Invariant Feature Transform in the 2.5D Domain. In Proceedings of

MICCAI 2007 Workshop on Content-based Image Retrieval for Biomedical Image

Archives: Achievements, Problems, and Prospects, pages 73-82, 29 October 2007,

Brisbane, Australia.

• Tsz-Wai Rachel Lo, J. Paul Siebert: SIFT Keypoint Descriptors for Range

Image Analysis. Presented in British Machine Vision Association and Society

for Pattern Recognition One Day Symposium: The Inaugural Student Papers

Meeting, 28 March 2007, London, United Kingdom.

• Tsz-Wai Rachel Lo, J. Paul Siebert, Ashraf F. Ayoub: Robust Feature

Extraction for Range Images Interpretation using Local Topology Statistics. In

Proceedings of MICCAI 2006 Workshop on Craniofacial Image Analysis for Biol-

ogy, Clinical Genetics, Diagnostics and Treatment, pages 75-82, 5 October 2006,

Copenhagen, Denmark.
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The following papers have been submitted for consideration of being published:

• Tsz-Wai Rachel Lo, J. Paul Siebert: SIFT Keypoint Descriptors for Range

Image Analysis. Submitted to Annals of the BMVA for consideration.

• Tsz-Wai Rachel Lo, J. Paul Siebert: Local Feature Extraction and Matching

on Range Images: 2.5D SIFT. Submitted to Computer Vision and Image Under-

standing, Special Issue on 3D Representation for Recognition for consideration.

1.5 Hypothesis

This thesis argues that by exploiting statistical representations of local surface prop-

erties, range images can be represented and matched based on direct recovery of the

local surface topology sampled at discrete locations on the range manifold. The use of

range data allows surface normals to be recovered directly, such that the pose of the

locally sampled descriptors can be estimated and corrected. The above advantages,

along with the lighting and pose invariant properties of range images, imply that 2.5D

image interpretation techniques can potentially offer improvements over standard 2D

techniques.

1.6 Overview of Thesis

This thesis is organised as follows:

• Chapter 2 gives the background and the literature review for this research project.

• Range surfaces analysis is discussed in Chapter 3.

• Chapter 4 introduces the different types of feature descriptors investigated in this

thesis.

• The full pipeline of 2.5D SIFT will be introduced and presented in Chapter 5.

• Chapter 6 presents the validation of the 2.5D SIFT.

• The investigation conducted for the 3D pose estimation and correction using

surface normals is discussed in Chapter 7.
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1.6 Overview of Thesis

• Chapter 8 gives the outline and findings for the full validation for this research

project, in particular the validation of the pose corrected 2.5D SIFT.

• Finally, Chapter 9 details the contribution of this research project and draws this

thesis to a conclusion. Potential future work will be suggested and discussed.
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Chapter 2

Background and Literature
Review

This chapter discusses the various existing methodologies in the image representation

of 2D and 3D in the current literature. Existing feature extraction methods based on

shape representation and statistical topology are discussed. Shape analysis is widely

used in different disciplines, from science disciplines, for instance computer vision, image

analysis, medical, biological, geography and genetics to name a few, to art disciplines

in archaeology, theology and museum work etc. In this work, the applications in the

computer vision, image analysis and medical field are of interest. This chapter first

differentiates the differences between the different imaging modalities, then it focuses on

the review of the existing literature on feature extraction of the 3D images, in particular

the 2.5D range images. An abundance of literature relating to feature extraction has

been produced over the last two decades and therefore a selection of literature has been

chosen to be presented in this chapter relating to the feature extraction methodology

based on shape analysis. The advantages and shortfalls of the approaches are discussed

and the chapter concludes by suggesting ways to improve the existing literature, in

order to advance range image feature extraction.

2.1 Image Representation and Interpretations

Traditional image representation is based on 2D intensity images, where the intensity

values of light focused on an optical sensor are stored in a 2D matrix (or array), in

which each value in the matrix is known as a pixel. This image modality is relatively

cheap and easy to come by, offering reasonable results for facial recognition for decades.
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2.1 Image Representation and Interpretations

Zhao et al. gives an extensive review on facial recognition using 2D images (Zhao et al.,

2003). However, 2D images are not invariant to lighting, viewpoint, pose and shape

variations. As a result, researchers have been looking into a different imaging modality

which exploits the third dimension in order to accommodate the shortfalls that 2D

intensity images suffer.

Machine interpretation that exploits the third dimension, based on 2.5D range image

analysis began in early 1980s. A range image (or depth maps) comprises a 2D matrix

in which each element encodes not the brightness or colour information, but records

the depth at which the ray associated with each pixel first intersects the scene observed

by a camera (Forsyth and Ponce, 2003). It is a projection via the perspective centre

and is therefore in register with the 2D image. In other words, a range image is a large

matrix of distance-measurements from the sensor coordinate system to surface points

onto the objects in a scene (Besl and Jain, 1986). The measurement unit is normally

in metres. For the convenience of the discrete representation based on pixels values, a

heightfield can sometimes be used to represent range data in which it describes a surface

in the Cartesian coordinates (i.e. forms a constant grid of consistent incremental values

in the x and y direction, in other words an orthographic projection). Heightfields are

assumed to be a piecewise constant function with every pixel corresponding to a height

values. A number of measurement techniques can be used to generate range images of

human faces, for instance, lasers, depth from shading, texture, motion and stereo. In

this work, stereo-pair images are employed to create the range images, based on the

distances between the cameras to the real-world surface.

2.1.1 Characteristics of Range Map and Assumptions Made

The range map grid, unlike heightfield (Figure 2.1) which contains uniform (x, y), is of

uniform angular sampling (Figure 2.3) and therefore contains perspective in the same

manner as standard 2D image (Figures 2.2).

In the standard camera projection model, the distance Z to a point on the surface

relates non-linearly to the position of the point projected in the imaging place as follows:

x = −f X
Z

y = −f Y
Z

(2.1.1)
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2.1 Image Representation and Interpretations

Figure 2.1: Heightfields.




























Figure 2.2: Formation of a standard image (for illustration purposes only).

In the configuration used in this work, the lenses which are employed to capture the

images have comparatively long focal lengths (180mm, corresponds to a coefficient of

variation of ≈ ±10◦) and the distance between the camera and the imaged world surface

is large (approximately 1.75m), compared to the depth range imaged (≈ ±75mm). This

configuration corresponds to that of a weak perspective where the average variation of
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Figure 2.3: Formation of a range image (for illustration purposes only).

the depth of the object (∆Z) along the line of sight is small compared to the surface

mean depth Z̄ and the field of view is small. Hence the projection model can be

linearised as follows.

Since Z̄ � (∆Z), the weak perspective camera model (linear) applies and therefore

the following equations (Trucco and Verri, 1998) hold:

x = −f X
Z̄

y = −f Y
Z̄

(2.1.2)

Accordingly, the perspective shifts due to surface variation are ignored here. It

should also be noted that the range maps contain exactly the same degree of perspective

distortion as that of the standard 2D images formed from the same imaging geometry.

Therefore the use of range maps is expected to be no more onerous in terms of matching

than standard 2D images.
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2.1 Image Representation and Interpretations

Since range images can provide an extra dimension (third dimension) compared to

2D intensity image, (i.e. it provides the Z, the depth or the height information, which

unlike 2D intensity information, is dependent only on the surface shape (Coombes,

1993)), they are invariant to lighting as each value does not encode the intensity values,

and can overcome viewpoint limitations (Hesher et al., 2003; Medioni and Waupotitsch,

2003). Furthermore, Gordon (1992) stated that by using curvature descriptors ex-

tracted from range images, it is possible to describe the 3D surface, thereby achieving

higher accuracy than using 2D intensity images alone. Given the increasing avail-

ability of this imaging modality as well as range data having an inherently greater

degree of invariance to illumination and greater resilience to variation in facial expres-

sions (i.e. pose), makeup, disguise and aging (Chellapa et al., 1995), a range image

based analysis confers a number of advantages over any analysis based on 2D images

alone (Bowyer et al., 2006; Moses et al., 1997; Xu et al., 2004b).

Further representation of 3D images includes a point cloud, which is a set of Carte-

sian coordinates in a 3D space, derived either from one range image or several range

images once they are transformed into a common coordinate system. A point cloud is

capable of providing a whole view of the 3D object, compared to range images which

show the distance metric. However, the connectivity between the 3D points or the

neighbourhood relationships and the normals are not explicit in a point cloud. There-

fore it is difficult to study the shape of 3D surfaces or extract features, such as curves,

directly from a point cloud. Polygon meshes are another popular method to describe

any 3D object. They can be obtained from range images or point clouds by trian-

gulation. Polygon meshes can describe the shape of any free-form object accurately.

However, polygons are not in a matrix form and do not contain uniform topology,

therefore interpretations using polygons are cumbersome.

Figure 2.4 shows an example of an intensity 2D image, a 2.5D range image and a

3D polygon mesh.

Measurements can be performed directly on the range images using differential

geometry. In order to perform range image analysis, landmarks (or keypoints, see

Section 2.2.2) are usually used to identify areas of interest and subsequently extracting

the relevant information from these locations for further measurements. The next

section details the types of landmarks available.
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2.2 Landmarks

(a) 2D (b) 2.5D (c) 3D

Figure 2.4: Examples of (a) a 2D intensity, (b) a range image and (c) a 3D polygon
mesh (without texture).

2.2 Landmarks

According to Dryden, a landmark is “a point of correspondence on each object that

matches between and within populations” (Dryden and Mardia, 1998). Therefore land-

marks define set locations which provide the means to compare sparse samples on range

surfaces. There exists three types of landmarks: anatomical, mathematical and pseudo

landmarks (Bookstein, 1997).

2.2.1 Anatomical Landmarks

An anatomical landmark is assigned by an expert, usually clinicians, and these cor-

respond between organisms in some biologically meaningful way. Medical terms are

usually used to identify different types of anatomical landmarks, for example pronasale

(tip of the nose) and exocanthion (the outer corner of the eyes). Figure 2.5 shows

an example of a face annotated with anatomical landmarks (Ferrario et al., 1998).

Anatomical landmarks are useful and meaningful, however the placement of anatomi-

cal landmarks is subjective, error-prone and extremely time consuming.

2.2.2 Mathematical Landmarks

Mathematical landmarks are points located on an object according to some mathemat-

ical or geometrical property of the figure, for example, at a point of high curvature,

usually calculated using differential geometry. The use of mathematical landmarks is

extremely useful in automatic recognition and/or analysis. Mathematical landmarks

are also known as keypoints.
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2.3 3D Shape Representation

Figure 2.5: Example of anatomical landmarks.
(Ferrario et al., 1998)

2.2.3 Pseudo Landmarks

Pseudo landmarks are constructed points on the object, either around the outline or in

between anatomical or mathematical landmarks. These are useful in matching surfaces

as it provides statistical analysis of the surface.

Keypoints are useful to provide an initial location of meaningful locations on the

surface, while shape representation can be used to differentiate between different key-

point locations. There are many methodologies for describing a surface using differential

geometry and these are discussed in the next section.

2.3 3D Shape Representation

3D shape-based object and face recognition can be classified into different categories:

1. Curvature based methods

2. Principal Component Analysis (PCA) based methods

3. Point set (or point signature) based methods

4. Feature descriptors based methods

5. Multi-modal using 2D and 3D techniques
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2.3 3D Shape Representation

Combination of different shape-based analysis is often found to be beneficial in 3D

object and face recognition systems. For instance, range images can be segmented

into different sections using differential geometry, allowing feature descriptors to be

extracted from each section, as shown in work of Gordon (1992).

2.3.1 Basic Concepts

From the basic concept of 2D curvature, this can be extended to the 3D domain in

which shape can be represented using curvatures. Figure 2.6 illustrates the definition

of curve curvatures.

(a) Curve Curvature (b) Normal Curvature

Figure 2.6: The definition of curvature: (a) curve curvature; (b) normal curvature.

Definition 2.3.1 Curve Curvature: Let α: I → R3 be a curve parameterised by

arc length s ∈ I. Then |a′′(s)| = k(s) is called the curvature of the curve a at s.

Definition 2.3.2 Normal Curvature: The normal curvature is the curvature of any

curve lying in an intersection plane which contains the surface normal direction at that

given point.

Definition 2.3.3 Principal Curvatures: The principal curvatures (k1 and k2) are

the two extremes of normal curvature at the given point, namely the maximum and

minimum curvatures. Their corresponding directions are known as principal directions

and are orthogonal.
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2.3 3D Shape Representation

Definition 2.3.4 Mean Curvature: The mean curvature (H) is the average of the

principal curvatures:

H =
k1 + k2

2
(2.3.1)

Definition 2.3.5 Gaussian Curvature: The Gaussian curvature (K) is the product

of the principal curvatures:

K = k1× k2 (2.3.2)

In addition, k1 and k2 can be obtained from H and K using Equation 2.3.3:

k1, k2 = H ±
√
H2 −K (2.3.3)

where k1 ≥ k2.

Definition 2.3.6 Umbilical Point: An umbilical point is a point on a surface at

which the curvature is the same in two or more directions. In other words,

k1 = k2 (2.3.4)

Definition 2.3.7 Shape Index: The bounded [−1, 1] shape index, S (Koenderink

and van Doorn, 1992), is used to measure quantitatively the shape of the local surface,

derived by k1 and k2 curvatures and is invariant to curvatures. This representation

is fundamental in this work since it is capable of characterising the underlying shape

and is a pure manifestation of the object, mapping directly to human perspective.

Figure 2.7 shows the nine shapes represented by the shape index scale.

S =
2
π

tan−1

[
k2 + k1
k2− k1

]
(2.3.5)

Definition 2.3.8 Degree of Curvedness: The degree of curvedness (Koenderink,

1990), R, is defined as:
R =

√
2H2 −K, or

R =

√
(k12 + k22)

2

(2.3.6)

More information and details on differential geometry can be found in do Carmo

(1976). The next section discusses the current literature of face recognition of range

images using the above defined curvatures methodologies.
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2.4 Curvature Based Methods in Object Recognition

Figure 2.7: The nine shapes represented by different values of the shape index
. (Dorai and Jain, 1997a)

2.4 Curvature Based Methods in Object Recognition

This section reviews the literature based on curvature measurements of 3D images, in

particular range images of human faces. The description of 3D facial surfaces using

curve curvature dates back to 1926, where the renowned German mathematician Klein

marked out parabolic curves in an attempt to put facial aesthetics on a mathematical

foundation (Hilbert and Cohn-Vossen, 1952). However, these curves are deemed to be

unsuitable for producing a robust description of the face since the extracted curves are

complex (Brady et al., 1985).

2.4.1 Classical Techniques - Prior to this Project

Machine interpretation of 3D surfaces, based on the classification of surface types, has

been widely used since the 1980s. Ittner and Jain (1985) investigated the effectiveness

of six different curvature measurements in view of the identification of four surface

primitives, namely sphere, plane, cylinder and cone. These six measurements involved

were the average curvature, the principal curvatures, the mean curvature, the Gaussian

curvature and the curvature ratio. Fan et al. (1986) calculated the surface curvature

in four arbitrary different directions and obtained the curvature extrema and zero-

crossings for each of these one-dimensional curves, which were used to detect surface

and depth discontinuities. Cartoux et al. (1989) segmented a range image based on the

principal curvature and found a plane of bilateral symmetry through the face in order
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2.4 Curvature Based Methods in Object Recognition

to normalise the pose. Yokoya and Levine (1989) segmented range images using the H

and K curvatures.

In late 1980s, Besl and Jain (1985, 1988) segmented the surfaces into eight types,

namely peak, ridge, saddle ridge, flat (plane), minimal surface, pit, valley and sad-

dle valley, based on the signs of the mean and Gaussian curvatures, as shown in Ta-

ble 2.1 (Jain et al., 1995). These surface types can be used to describe any smooth

and differentiable surface. This method forms the basis of 3D shape analysis using

differential geometry that are now used extensively.

K(i, j) > 0 K(i, j) = 0 K(i, j) < 0
H(i, j) < 0 Peak Ridge Saddle Ridge
H(i, j) = 0 UNDEFINED Flat Minimal Surface
H(i, j) > 0 Pit Valley Saddle Valley

Table 2.1: Eight surface types, based on the signs of H and K curvatures.

Since then, investigation has been conducted on the representation of the human

face using features based on shape and curvature of the face surface. Based on the

surface types derived from the signs of H and K curvatures, Lee and Milios (1990)

segmented the range images of the human face and matched convex regions of different

individuals, instead of using the entire face, for recognition. In early 1990s, Gordon

(1991, 1992) proposed the use of the principal curvatures in order to segment a facial

range image using ridge and valley lines. She defined ridge lines as the local maxima in

the principal curvature along the line of maximum curvature while valley lines as the

local minima in principal curvature along the line of minimum curvature, as shown in

Figure 2.8. Thresholds have been applied to the k1 and k2 curvatures, with k1 greater

than a certain threshold while using k2 less than a certain threshold, producing a much

cleaner and more stable classification, compared to Haralick’s work (Haralick, 1983)

on extracting ridges and valleys on 2D intensity images. Tanaka et al. (1998) used

curvature-based segmentation and represented the face using an extended Gaussian

image (EGI). Wang et al. (2000) presented a new shape-based approach for 3D brain

surface correspondence using geodesic paths and geometrical feature.

More recently, Kim et al. (2001) proposed the use of range image with real-time

normalisation and feature extraction using one of the curvature characteristics, the

principal curvatures. Segmentation on the faces was performed based on thresholded
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2.4 Curvature Based Methods in Object Recognition

(a) Ridge Lines (b) Valley Lines

Figure 2.8: (a) ridge lines, local maxima of k1 and (b) valley lines, local minima of k2.
(Gordon and Vincent, 1992)

principal curvature values as shown in Figure 2.9. Features are then extracted by

matching the templates of mouth, nose and eye filter to the segmented facial range data.

Campbell and Flynn (2002) also segmented 3D objects into different regions in which

the shape index and the degree of curvedness were employed as region attributes in order

to compare a specific object with different prototypes for recognition. In 2003, Moreno

et al. (2003) used the signs of the H and K curvatures as point classification for isolating

regions of pronounced curvatures. They employed three point types, namely hyperbolic

points (K > 0), convex points (H < 0 and K > 0) and elliptic concave points (H > 0

and K > 0). In order to isolate regions of high curvature avoiding points in which low

curvature were obtained, they experimented with different curvature thresholds and

chose to use Ht = ±0.05 and Kt = ±0.005 in which the following segmented regions of

a face was achieved as shown in Figure 2.10.

2.4.2 Contemporary Work Subsequent to the Start of this Project

Lee and Shim (2004) proposed an implementation of 3D recognition based on the

“depth-weighted Hausdorff distance” using the surface curvatures extracted from 3D

images of the human faces. Bhanu and Zhou (2004) used a curvature-based approach

for fiducial extraction while Lu and Jain (2005) used the local shape index to find

similar points between images. Kim et al. (2005) used curvatures to localise the nose.

Colombo et al. (2006) detected salient face features such as the eyes and nose,
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2.4 Curvature Based Methods in Object Recognition

Figure 2.9: Segmentation results of facial range images based on principal curvatures
(k1, k2) (black: k1 > 0.5, grey: k1 < 0 and −0.3 < k2 < 0, white: k1 < 0 and
k2 < −0.3).

(Kim et al., 2001)

Figure 2.10: Segmented regions of a face.
(Moreno et al., 2003)

through an analysis of the curvature of the surface as shown in Figure 2.11. Lu et al.

(2004, 2006) used the shape index to segment the range images of human faces as

shown in Figure 2.12. Lee et al. (2006) employed the signs of the principal curvatures

to detail the characterisation of the face. Chang et al. (2006) detected the nose tip,

eye cavities and the nose bridge using the signs of H and K curvatures and user-

defined thresholds as shown in Figure 2.13. Sun and Yin (2006) selected features from

range images of faces using principal curvatures. Gökberk et al. (2006) reviewed and
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2.4 Curvature Based Methods in Object Recognition

compared a few 3D face registration and recognition algorithms. They compared the

use of 3D point coordinates, surface normals, curvature-based descriptors, range images

and facial profile curves, all extracted from 3D shape information.

Figure 2.11: The analysis of the curvature of the face surfaces for the detection of salient
face features. This first row of this figure illustrates the polygon model, projected range
image and its smoothed version. The second row shows the H and K curvature maps
where the darker the zone, the higher the curvature regions. Third row presents the
thresholded H and K maps and the final row shows the HK-Classification maps where
the face is thresholded into different regions, according to the signs of the H and K.

(Colombo et al., 2006)

Further example of uses of curve curvatures include McFarlane et al. (2005) in which

they used the signs of H and K curvatures in order to segment the range images of

pigs into different regions.

The use of curve curvature based methods to interpret 3D images has many ad-

vantages, for instance measurements can be conducted on the range images directly

and the measurements have the intrinsic properties of describing the local shape. Fur-

thermore, curvature based methods provide a good pictorial descriptor of the surface

segmentation when combined with an appropriate colour coding scheme. However, this

methodology suffers from sensitivity to the noise that exists in the range data and
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2.5 Principal Component Analysis (PCA) Based Methods

Figure 2.12: A face that has been segmented using the shape index. The darker the
regions the lower the shape index value whereas the lighter the regions the higher the
shape index values.

(Lu and Jain, 2006)

Figure 2.13: Using the signs of H and K curvatures to detect area of interests.
(Chang et al., 2006)

therefore pre-processing techniques such as smoothing are carried out on the range

images prior to the calculations of the curvatures.

Apart from using curve curvatures for 3D image interpretations, other methods are

discussed in the following sections.

2.5 Principal Component Analysis (PCA) Based Methods

Other approaches for 3D face recognition include the extension of conventional dimen-

sionality reduction techniques, for instance PCA, to the 3D images or a combination of

2D intensity and 3D images (see Section 2.8). Examples of work that employed PCA
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2.5 Principal Component Analysis (PCA) Based Methods

include Achermann et al. (1997), Mavridis et al. (2001), Chang et al. (2003), Hesher

et al. (2003), Heseltine et al. (2004), Pan et al. (2005) and Russ et al. (2006).

2.5.0.1 Principal Component Analysis

Principal component analysis (PCA) is a vector space transform often used to reduce

multidimensional data sets to lower dimensions for analysis purposes. The new features

are linear functions of the old features designed so that a lower dimensional linear sub-

space contains the majority of variation of the data points from their mean (Forsyth

and Ponce, 2003). It is important for the lower dimensions data set to have an accurate

representation of the original data set so that no important data is lost. This method,

known as the Karhuenen-Loéve transform, is a classical technique from statistical pat-

tern recognition (Duda and Hart, 1973; Duda et al., 2000; Fukunaga, 1990; Oja, 1983).

The method is described as follows:

Let xi be a set of N column feature vectors in Rd. The mean of the dataset, µ, is

obtained:

µ =
1
N

N∑
i=1

xi (2.5.1)

The covariance matrix, Cx, of the population is estimated by:

Cx =
1

N − 1

N∑
i=1

(xi − µ)(xi − µ)T (2.5.2)

The mean can then be used as an origin and the offsets from the mean (xi−µ) can

be studied. Since the PCA features are linear combinations of the original features, it

is possible to consider the projection of these offsets onto various different directions. A

unit vector v represents a direction in the original feature space and it can be interpreted

as a new feature v(x). The value of u on the ith data point is given by v(xi) = vT (xi−µ).

A good feature captures as much of the variance of the original dataset as possible. Note
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that v has zero mean and the variance of v, var(v) is as follows:

var(v) =
1

N − 1

N∑
i=1

v(xi)v(xi)T

=
1
N

N−1∑
i=1

vT (xi − µ)(vT (xi − µ))T

= vT

{
N−1∑
i=1

(xi − µ)(xi − µ)T
}
v

= vTCxv

(2.5.3)

It is necessary to maximise vTCxv subject to the constraint that vT v = 1. This can

be solved by finding the eigenvector of Cx corresponding to the largest eigenvalue. The

data can be projected onto a space perpendicular to the eigenvector and as a result

a collection of d − 1 dimensional vectors are obtained. Therefore the eigenvectors of

Cx, [v1, v2, ..., vd], where the order is given by the size of the eigenvalue in descending

order (i.e. v1 has the largest eigenvalues), gives a set of features with the following two

properties:

1. They are independent as the eigenvectors are orthogonal and

2. Projection onto the basis v1, v2, ..., vk gives the k-dimensional set of linear features

that preserves the most variance.

In MATLAB, the function princomp gives the principal-component vectors and

related quantities (Gonzalez et al., 2004).

2.6 Point Set Based Approaches

In order to standardise face pose, researchers often locate some common features on

the 3D images, this methodology is known as the point-set (or point signatures) based

method. For example, Nagamine et al. (1992) found five feature points around the

face and used these feature points to match various curves or profiles through the face

data. Chua et al. (2000); Chua and Jarvis (1997) used “point signatures” for 3D face

recognition in which they locate reference points on the faces in order to standardise

different pose and facial expressions. Achermann and Jiang (2000) applied an extension

of Hausdorff distance matching for range images matching. Pan et al. (2003) presented
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an automatic 3D face verification approach by first registering and then comparing the

range data using a Hausdorff distance approach and a PCA based approach. Xu et al.

(2004a) converted the original 3D point cloud data into a regular mesh and located the

nose region and used it as an anchor to find other local regions.

More recent and notable 3D face recognition methodologies using point-set based

approach include work by Bronstein et al. (2005) in which they addressed the problem

of facial expressions explicitly. Here, they converted the 3D face data to an eigenform

that is invariant to the type of shape deformation that is modelled. Chang et al.

(2005) described a “multi-region” approach to 3D face recognition in which overlapping

subregions around the nose are independently matched using iterative closest point

(ICP).

The point-set approach is similar to the well known 2D approaches such as SIFT (Lowe,

2004) and Elastic Bunch Graph (EBGM) (Wiskott et al., 1997). However, it is not pos-

sible to apply these approaches directly onto 3D images without any modifications since

the nature of 2D images are very different from 3D images. Al-Osaimi et al. (2007) pre-

sented a methodology for extracting interest-points for range images in which a range

image is represented by two images with blob-like patterns that have easily detectable

peaks and can be efficiently extracted using a convolution kernel.

2.6.1 Scale Invariant Feature Transform

Lowe derived a 2D method for image feature generation called Scale Invariant Feature

Transform (SIFT) (Lowe, 1999, 2001) in which it transforms an image into a large

collection of local feature vectors, each of which is invariant to image translation, scaling

and rotation. This approach was described in details in his later paper (Lowe, 2004).

A feature should be invariant to image scaling and rotation and should also be

partially invariant to changes in illumination and 3D camera viewpoint. In addition,

features should be highly distinctive. There are four major stages in SIFT in order to

generate a set of image features. First of all, a scale-space detection was employed to

identify potential interest points that are invariant to scale and orientation. This can be

achieved using a Laplacian-of-Gaussian (LOG) (Lindeberg, 1994b; Mikolajczyk, 2002;

Mikolajczyk and Schmid, 2004) difference-of-Gaussian (DOG) function. A pyramid

was built for each image in order to obtain a multi-scale representation. The second
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key stage was keypoint localisation in which a detailed fit is performed of the identi-

fied potential candidate to its nearby data for location, scale and the ratio of principal

intensity curvatures. Keypoints were then selected based on measures of stability. The

third step was orientation assignment in which orientation histograms (36-bins) are

computed within a region of the keypoints. The final step was to extract a keypoint

descriptor in which a Gaussian weighing function is used to assign weight to the mag-

nitude of each sample point in order to avoid sudden changes in the descriptor with

small changes in the position of the window. A subregion of a window of size 4×4 and

eight directions was applied to each orientation histogram. As a result, a 128-element

(4×4×128) feature vector was created for each keypoint and this feature vector is in-

variant to image scale and rotation. Figure 2.14 shows a toy example of a keypoint

descriptor extracted from a 2×2 descriptor array computed from an 8×8 set of samples.

Figure 2.14: SIFT Keypoint descriptor created by accumulating image gradient mag-
nitudes and orientations weighted by a Gaussian window. Gradients are binned into
orientation histograms over sub-regions in the descriptor (right).

(Lowe, 2004)

This can be applied to object recognition in which each potential keypoint is

matched independently to a database of keypoints extracted from the training images.

2.6.2 Elastic Bunch Graph

Wiskott et al. (1997) proposed a 2D face representation and recognition system in

which they described manually selected fiducial points on the face as a labelled graph

consisting of N nodes. These nodes are labelled as sets of Gabor jets. A Gabor jet

comprises of responses of local visual content to scale and rotated versions of a mother
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wavelet. The jets are then collected in a stacked data structure called a face bunch

graph. The face bunch graph has a node for every landmark on the face. Every

node is a collection of model jets for the corresponding landmark (a bunch). The face

bunch graph serves as a database of landmark descriptions. Once the face graph is

created, the image is discarded, and the face graph becomes the internal representation

of that image. As a result, the similarity between two face graphs (representing two

face images) can be computed. There are two ways to measure the similarity of the

face graphs, first by comparing the geometry of the graph (landmark locations) and

secondly by comparing the similarity of the Gabor jets (landmark jets). Figure 2.15

shows the location of the fiducial points registered onto a face image and the Elastic

Bunch Graph representation of a face with Gabor jets. This algorithm was tested using

the FERET (Phillips et al., 2000) database of faces with different expression and poses.

(a) Location of fiducial points (b) Elastic Bunch Graph

Figure 2.15: (a) Locations of fiducial points registered on to a face image with different
pose orientations. (b) Elastic Bunch Graph representation of a face with Gabor jet
responses at different orientations and scales centred at fiducial points.

(Wiskott et al., 1997)

2.7 Feature Descriptors Based Methods

In order to characterise and match 3D objects, it is possible to encode information of

the underlying shape surface in the form of a feature descriptor, otherwise known as a

feature vector. A feature descriptor is a numerical representation of the objects, usually

represented in the form of 1D or 2D histograms. For example, curvature information
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can be encoded in the form of feature descriptors in order to characterise and match

3D objects. This section details some of the works in the literature that employ feature

descriptors extracted from 3D images to represent and match 3D objects, in particular

of human faces. The idea of using a feature vector to describe a feature became more

popular in recent years.

2.7.1 Typical Classical Techniques used Prior to the Start of this
Work

Histograms, which are the count of the quantised values of the H and K curva-

tures, were calculated to construct the curvature signature for 3D objects, as presented

by Mustafa et al. (1999). These were combined with surface colour signature to match

the objects in the scene to the training models for identification. Hetzel et al. (2001)

created a set of local features of 3D objects based on the pixel depth, the surface nor-

mals and the shape index, represented in a multi-dimensional histogram. Moreno et al.

(2003) first segmented the face using Gaussian curvatures, as described in Section 2.4

above, then created a feature vector based on these segmented regions.

Further examples of local 3D keypoint descriptors include point signatures (Chua

et al., 2000; Chua and Jarvis, 1997) in which “signatures” are extracted from arbitrary

points and these signatures are used to vote for models with similar signatures. For a

given point, a contour on the surface is defined around the point of interest. Each point

on the contour may be characterised by the signed distance from the point of interest

to a point on the contour and a clockwise rotation from the reference vector about the

normal. However, since local representations of 3D surfaces can be sensitive to noise,

which can affect the features derived from differential quantities such as curvatures and

surface normals. As a result, many new recognition systems have adopted geometric

representations which combine local and global representations together, examples in-

clude spin images (Johnson, 1997; Johnson and Hebert, 1999) and COSMOS (Dorai

and Jain, 1997a).

2.7.2 Contemporary Work Subsequent to the Start of this Project

Chen and Bhanu (2004, 2007) computed 2D histogram consisting of the shape index

and the angles between the normal of a reference point and of its neighbours of 3D

objects. Lee et al. (2005) proposed an approach to 3D face recognition based on the
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curvatures values at eight feature points on the face. Huang et al. (2006) performed

face recognition by combining the global statistics of geometrical features with the local

statistics of the correlative features of facial surfaces (using shape index).

Li and Guskov (2007) tackles the difficult recognition problem caused by viewpoint

rotations by extracting local shape feature descriptors from surface patches detected

by salient features. These feature descriptors were matched with a pyramid kernel

function. Akagündüz and Ulusoy (2007) extracted feature descriptors using the H and

K curvatures from various data points at different scales, allowing face recognition to

be performed at a more accurate level.

The above feature descriptors are based on the use of curve curvature as part of the

feature descriptors. The following describes a few of the works in the literature which

employ other information as part of the feature descriptor. Lee et al. (2003) formed

a feature vector based on the contours along the face at a sequence of depth values,

having first identified the nose tip. As mentioned in Section 2.6, Xu et al. (2004a) first

located the nose region and used it as an anchor to find other local regions of mouth,

nose, left and right eye, and formed a feature descriptor around the these local regions.

Shan et al. (2006) used histograms of shape signature or prototypical shapes called

shapemes to recognise partially observed query objects.

More recently, Mian et al. (2007) first identified stable keypoints on the range images

of faces, then extracted local features by fitting a surface to the neighbourhood of

a keypoint and sampling it on a uniform grid. Huang et al. (2007) performed face

recognition using the statistics of the differences between the pixels values of different

range images.

Feature descriptors play an important role in machine interpretation of 3D images

as it characterises the 3D information into a simple descriptor form which could be used

to represent the surfaces. Since 3D shape does not depend on the illumination and pose,

it allows the interpretation to be conducted directly on the surfaces. However, 2D cues

do have their advantages as they are generally cheaper to compute and easier to come

by. The next section describes some of the existing literature in the attempt to combine

2D and 3D modalities together to achieve machine interpretation of images.
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2.8 2D and 3D Multi-modal/Fusion Methods

Research for machine interpretation of 3D images of human faces dates back to 1980s,

however the combination of 2D and 3D methodologies did not appear until around 2000.

By using the geometry information available in 3D data along with 2D information, it is

possible to cope with the pose and illumination variations that inhibit the performance

of 2D face recognition (Malassiotis and Strintzis, 2005). This section discusses some of

the methodologies in combining 2D and 3D algorithms together.

Following from the work conducted on real-time profile recognition by Beumier and

Acheroy (1997), they used a central profile and a lateral profile in both 2D and 3D and

approached multi-modal recognition by using a weighted sum of 3D and 2D similarity

measures (Beumier and Acheroy, 2001).

Moving away from profile measurements, Wang et al. (2002) combined features

extracted from both range data and intensity images together, where feature points

were described by Gabor filter responses in the intensity images and point signatures

in the range data. Bronstein et al. (2003) proposed the use of multi-modal 3D and 2D

recognition using eigen decomposition of flattened textures and canonical images. This

approach used an isometric transformation to 3D face analysis in order to cope with

the variation due to facial expression. Tsalakanidou et al. (2003) used range images

combined with colour images (instead of using intensity alone) to attempt multi-modal

face recognition. Chang et al. (2003) reported on a PCA-based recognition by combing

2D and 3D using a weighted sum of the distances from the individual 3D and 2D face

spaces. Similarly, Godil et al. (2004) employed PCA for the matching of 2D and range

image together while Papatheodorou and Reuckert (2004) conducted multi-modal 2D

and 3D face recognition using a generalisation of ICP based on point distances in a

4D space of (x, y, z,intensity). This approach integrated shape and texture information

at an early stage as opposed to other work presented hitherto, where the decision was

made independently for each modality and these were then combined together.

Heseltine (2005) introduced a 3D face database providing 3D texture mapped face

models, as well as 2D images captured at the same instant, allowing a direct comparison

of 3D and 2D techniques. Different methodologies in system combination were tested,

including combination by dimensional accumulation, elimination and genetic selection.
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As a result, 2D and 3D data can be combined effectively and producing good error

rates, with a clear advantage over single subspace systems.

Hüsken et al. (2005) presented strategies for the fusion of 2D and 3D face recognition

algorithms. Here the matching of each modality is conducted independently and the

fusion of the results from the two modalities is done at the score level. They claimed

the benefit of this approach is determined by two aspects: the accuracy of the single

algorithms to be combined and their statistical independence as the error in one of

the algorithms could be counterbalanced by the other modality. Maurer et al. (2005)

combined 2D and 3D face recognition by means of a weighted sum rule to fuse the

results from each modality, with one exception that if the shape score is very high, the

texture score is subsequently disregarded.

Most recently, Mian et al. (2008) presented a feature-based algorithm for the recog-

nition of textured 3D faces where they have combined features extracted from 2D and

3D domain. 2D features were extracted using standard SIFT while 3D features were

extracted by fitting a surface to the neighbourhood of a keypoint and sampling it on a

uniform grid. These features are combined at the feature and score-level.

Building from the previous work with ICP style matching of 3D shape by Lu and

Jain (2005), they created a 2D and 3D multi-modal system using linear discriminant

analysis (LDA) for the 2D matching component. BenAbdelkadera and Griffin (2005)

demonstrated that by using both 2D texture and 3D depth modality improved recog-

nition rate. However, these results were based on high-resolution data captured within

a controlled environment and on manual marked facial feature points.

J. Cook et al. (2006) combined 2D and 3D face recognition by using Log-Gabor

Templates for decomposing the image into different sub-regions. Mian et al. (2006a)

presented an algorithm which used 2D and 3D multi-modal local features. 3D local

features were extracted based on their previous work on tensor representation (Mian

et al., 2006b) which makes the features invariant to pose, while the 2D local features

were extracted using Lowe’s SIFT (Lowe, 2004). The results of the 2D and 3D local

features are fused at the rank level using a confidence weighted sum rule.

More recently, Riccio and Dugelay (2007) claimed that working in 3D is more costly,

compared to using 2D alone, therefore they proposed the enrolment in 3D but iden-

tification performed from 2D images. Ansari et al. (2008) presented a multi-modal

approach for 3D face modelling and recognition using 2D and 3D information. They
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used the 2D data to compute the disparity map and extracted facial features points and

used these information to build a 3D model which incorporated the depth information

with the facial features labels, as well as the profile information.

In order to combine 2D and 3D analysis together, most of the work presented here

separated each of the modality and the fusion occurred at the matching stage with the

exception of work by Godil et al. (2004). Moreover, since the different modality can

offer different information, a fusion rule is often applied at the matching stage. For

instance, in the work by Maurer et al. (2005), if the score from the shape (3D) modality

is particularly high, the score from the texture (2D) modality is discarded since shape

analysis is more reliable than texture analysis.

2.9 Summary and Discussions

In this chapter, the different image representation and interpretation methods have

been discussed. While 2D can provide a cheaper means of representing an object, it

does not overcome problems caused by viewpoint and light illumination. With the

advance of technology, it is now possible to obtain 3D images relatively cheaply. In

particular, the use of 2.5D range images have been popular over the last two decades.

This imaging modality can provide direct and explicit representation of the objects,

and are invariant to lighting, pose and even viewpoint rotations.

The different methodologies in representing 3D shapes were also discussed in this

chapter. These were separated into different categories, namely curvature-based method-

ologies, PCA based methods, point set (or point signature) based methods, feature

descriptors based methods and finally multi-modal by combining 2D and 3D tech-

niques together. While sometimes these techniques are used on their own to represent

and/or match any 3D shapes, often a mixture of techniques are employed. For instance,

curve curvature based methodologies are useful in segmenting the surface into differ-

ent regions, thereby allowing features descriptors to be extracted from each region for

matching purposes. Similarly, keypoints can be located on the 3D images followed by

the extraction of features descriptors. This concept is demonstrated in Lowe’s state-of-

the-art 2D SIFT in which keypoints are located and features are extracted from the 2D

images and similarly in Wiskott’s Elastic Bunch Graph. However, these systems only
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apply to 2D images and no attempts have been made to extend these systems onto the

range surface.

In order to provide a full and in depth representation of 3D surfaces, it is necessary

to understand and categorise the underlying surface information. The most popular 3D

shape representation methodology lies within the extraction of curve curvatures based

on differential geometry, which is a popular choice since the 1980s. This is because

measurements can be made directly onto the surfaces, especially with the availability

of range images. However, this method is prone to the sensitivity of noise that exists

in the data and as a result, the range images are normally pre-processed in order to

suppress this noise. Moreover, a manually-defined threshold is typically assigned to

the H, K, k1 and k2 curvatures, in order to segment the images into different regions,

meaning different types of images may require different manually-defined thresholds.

Furthermore, from the image representation point of view, any surface (in particular of

a human face), is expected to contain mixes of surface types, but not the typical crude

methodology of attempting to segment a surface into a piecewise patchwork of single

surface types, thereby preventing a true and accurate representation of a surface to be

made.

Current state-of-the-art methodologies on feature extraction of 3D images are based

on differential geometry and local statistics of the surface, using either the H and K

or the k1 and k2 curvatures. The feature vector extracted usually captures only the

surface types or in the case of Lowe’s 2D SIFT, the distribution of the orientation of

the 2D images at keypoint locations, but not taking both information into account

simultaneously. To this end, at the beginning of this research project, the following

gaps in the current literature of local feature representation and matching of 3D images

were identified: firstly, the important factor of distinguishing a wide range of pattern

types present at any surface. Secondly, the scale and rotation invariant properties in

which any feature descriptor is expected to have. For example, Rao (1994) investigated

feature vectors at multiple scales and orientations in 2D images and has shown that

they have useful properties such as rotation (in-plane) and scale invariance.

In order to advance the current state-of-the-art research and address the short-

fall of the current feature extraction of 3D images, it is proposed in this project to

firstly investigate the representation of a surface, by encapsulating the underlying sur-

face topology and their orientations simultaneously to form a feature descriptor which
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captures both the topology and the orientation of the surface. These are discussed in

Chapters 3 and 4. Secondly, since the shape of an image surface should remain constant

under viewpoint changes, the local distribution of curvatures observed on its surface

should therefore also remain constant. Therefore it is proposed in this project to inves-

tigate the invariance properties of the extracted feature descriptors to all three Euler’s

viewpoints rotational changes. Finally, it is important to be able to match the feature

descriptors extracted from range images of different sizes and depicting the same target

objects at different scales. As a result, scale issues are addressed in this project.

In the next chapter, a pilot investigation conducted on the extraction of feature de-

scriptors from known keypoint locations is detailed and discussed. Here, the underlying

surface information of the range images are determined and the surface types and their

orientations are extracted from each manually defined keypoint locations, allowing the

features descriptors to be matched and compared.
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Chapter 3

Range Surface Analysis

Following the literature review, this chapter is devoted to a pilot investigation into the

extraction of local feature descriptors from range images of human faces. This chapter

will first provide a detail description of the data collection process used in this research

project. The rationale and methodology of the feature descriptor extraction process

will be presented later in this chapter, where feature descriptors were extracted from

known locations of the range images based on the anatomical landmarks placed on the

3D models.

3.1 Motivation

The objective of this pilot investigation is to determine a useful way to describe a

surface sampled at a landmark location on a range image, thereby allowing effective

interpretations of 2.5D range images. As outlined in Chapter 2, it is possible to extract

different forms of information based on differential geometry, that could be used to

characterise the local range image surface.

The data used in this pilot study were computed from stereo-pair images captured

using 13.5 Mpixel digital cameras and processed using a stereo-photogrammetry pack-

age, C3D2 (Ju et al., 2003). There are two main outputs from C3D2: the range image

and the 3D polygon model in VRML format. The VRMLs can be loaded into the

Facial Analysis Tool (Mao, 2005) where anatomical landmarks (used in this pilot in-

vestigation) were placed on the models by a professional clinician. While it would be

sensible to use the 2D images, which are in line with the range maps, for the placement

of these landmarks, the clinicians do require a full 3D interpretation and interaction on
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the 3D models in order to place landmarks accurately. These placed landmarks can be

related onto the range images using Barycentric Coordinates and Texture Coordinates

(see Appendix B for details). Investigation and interpretation of the properties of the

local surfaces defined by landmarks can be performed directly on the range images once

the landmarks have been related onto them from the 3D polygon meshes. By fitting

a finite support region (window) over each landmark location, predominant signature

of the finite support region can be identified by means of a feature descriptor. The

support region is expected to contain mixtures of surface types, and their statistics

(surface type distributions) are predicted to capture the semantics of the underlying

surfaces. The size of this finite support region depends entirely on the characteristics

of the landmarks, if the support region is small, it may not be capable of capturing

enough information to describe uniquely the surface associated with a particular land-

mark, whereas if the support region is too large, the localisation of the landmark will

be compromised.

Once the range images have been pre-processed, different types of information can

be obtained from the range images at set landmark locations: First of all, shape in-

formation can be obtained based on the signs of the mean (H) and Gaussian (K) cur-

vatures. Secondly, it is possible to determine the orientation of the underlying surface

(i.e. direction) and use this information to categorise the underlying surface. By ex-

tracting features based on the histograms that characterise the local surface curvature,

it is possible to create a composite 16-element feature descriptor (eight for the surface

types and eight for the orientation) that contains a histogram of the relative frequencies

of the mixes of different surface types (peak, ridge, saddle ridge, flat, minimal surface,

pit, valley or saddle valley) and the orientation obtained from the direction of the prin-

cipal maximum curvature (k1), based on differential geometry. This proposed feature

descriptor is potentially capable of discriminating the landmarks by characterising the

local surface shape on which they have been located based on these features.

Figure 3.1 shows the steps involved to extract a feature descriptor from the regu-

larised range image. Each step involved in the process will be described in detail in

the remainder of this chapter as follows: Section 3.2 details the data collection process

involved in this work. Section 3.3 describes the data regularisation process taken in

this work in order to pre-process the range data. The pilot investigation conducted in
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devising a suitable feature descriptor for range image representation is detailed in Sec-

tion 3.4. Section 3.5 outlines the validation for this pilot study. Section 3.6 presents the

initial results obtained from the matching of the feature descriptors. Finally, Section 3.7

concludes this chapter.

3.2 Data Collection

The data set used in this research project comprises 2.5D range images and their

corresponding 2D stereo-pair images. The data set employed for the pilot study contains

60 range images of female faces, captured at a fixed pose similar to a standard passport

photograph, except subjects have their eyes closed and facial muscles relaxed. This

data set was captured at different time points at the Southern General Hospital as part

of a longitudinal study (i.e. a study of changes over time) investigating the properties

of collagen injections (Downie et al., 2008).

The process in deriving the range images is described in this section. Figure 3.2

shows the steps involved in the capturing and the building of 3D models.

3.2.1 Image Capturing

The configuration of the stereo-pair cameras are illustrated in Figure 3.3, showing the

single pod system mounted on a camera rig, attached with two portable flash units and

connected to a PC computer. The cameras are of the following specifications: DCS

14N Pro Kodak Digital Cameras and each picture is of 4500×3000 pixels resolution.

Image capture is manually initiated via a user interface, that synchronises simultane-

ous capture of the stereo-pairs. The stereo-pair images are then transferred from the

cameras to the computer where models can be built. The program, Capture Control,

developed by Ewan Borland at the University of Glasgow, is used to capture all the

images (as well as the images used for the calibration of the system).

A dental chair with adjustable height and headrest is placed in front of the digital

cameras. Subjects are asked to sit on the dental chair and the height of the seat can

be adjusted to ensure the subject’s face is in line with the cameras. The adjustable

headrest enables the distance of the subject to the cameras to be standardised. A

sequence of facial exercises is then undertaken by each subject in order to help them

relax their facial expression to ensure the fixed pose criteria is met. The resulting images
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Figure 3.1: Feature descriptor extraction pipeline.
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Figure 3.2: Pipeline for building a 3D model.

have the appearance of a standard passport photograph, except the subjects have their

eyes closed and all facial muscles relaxed. These images are captured using Capture

Control and then checked visually on the camera display before being transferred onto

the computer. Multiple images are taken in order to accommodate pose and acquisition

errors and the most suitable set of images with clear focus and subject’s pose relaxed

are selected. Once the images have been captured and checked, they are exported

as HIPS format images (Landy and Sperling, 1984), ready for the corresponding 3D

models to be built using C3D2.

3.2.2 Models Building: C3D2

C3D2 was initially developed by Turing Institute, Glasgow (Siebert and Marshall,

2000; Siebert and Urquhart, 1994), and was later improved by Ju et al. (2003). This

software is used for the calculation of the calibration error of the system as well as the

construction of range images and 3D polygon models from the stereo-pair of 2D images.

There are three steps in the building of 3D models: 1) stereo matching, 2) surface re-

section (photogrammetry) and 3) polygonisation. The models are built using the direct

range mesh method. The settings used for the data set used in this work can be found

in Appendix A.
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Figure 3.3: Single pod stereo-pair system with two cameras mounted on a rig, along
with two portable flash units.

3.2.2.1 Calibration

In order to recover the metric range values, a calibration procedure is required. The

calibration target is captured in 13 different orientations within the field of view of the

cameras and these images are used to calculate the geometry of the cameras and their

relative orientations by means of bundle adjustment (Urquhart, 1997). This information

is used to recover the range values from the disparity maps produced from the stereo-

pairs, thus enabling a 3D model to be built. The calibration target used in this work,

type Plane Domino 48 (illustrated in Figure 3.4), is placed on the dental chair in front

of the camera. Figure 3.4 shows the images captured from the calibration target by

the left (a) and the right (b) cameras. The captured calibration image is projected

onto a virtual plane and is called the virtual back-projected image. The calibration

error is computed by calculating the minimised sum of the root-mean-square (RMS)

between the 12 dark circles on the virtual back-projected image and the circles on the

real back-projected image. Values less than 1.5 pixels of RMS error are acceptable.
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(a) Left (b) Right

Figure 3.4: Calibration images from (a) left camera and (b) right camera

3.2.2.2 Range Surface

The starting point for building a 3D model is the stereo-pair of photographs captured

from the high-resolution digital cameras. A scale-space based matching algorithm in

C3D2 computes the dense disparity map from the stereo-pair. This map can be dis-

played as vertical (Figure 3.5(a)) and horizontal (Figure 3.5(b)) disparity maps. In

addition, a confidence map (Figure 3.5(c)) is produced which indicates the reliability

of each match value, the lighter the shading, the greater the confidence. The calibra-

tion data is used to transform the match data to produce depth values for each pixel.

This is summarized in a range map as shown in Figure 3.6. From the range map, the

3D coordinates for the model are constructed and the model is built. The model is a

triangulated mesh with 2D photographic texture superimposed onto the mesh. This

can then be exported as a VRML file (as shown in Figure 3.7) which is a commonly

used format for 3D files and can be viewed with 3D viewer, for example, GLView.

3.2.3 Manual Landmark Placements

Anatomical landmarks have been placed on the 3D polygon mesh models by a profes-

sional clinical expert using Facial Analysis Tool, developed by Zhifang Mao and Zhili

Mao (Mao, 2005), to provide set locations on the face from which subsequent analy-

sis can provide standardised measurements. A total of 28 landmarks were placed on
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(a) Vertical (b) Horizontal

(c) Confidence

Figure 3.5: (a) Vertical disparity; (b) horizontal disparity; (c) confidence map.

each model, as shown below in Figure 3.8. Table 3.1 details the information for each

landmark.

Once the landmarks have been placed on the 3D polygon model, they are saved

to a text file which contains the x, y and z coordinates of the landmarks and their

corresponding normal vectors. This data can be read into the Facial Analysis Tool at a

later time point. By relating the landmarks from the 3D model onto the corresponding

2.5D range image, subsequent analysis on the discrimination of the landmarks can be

calculated. This process is described in Section 3.3.3 below.

3.3 Data Regularisation and Representation

By manipulating on the range image directly, it potentially allows interpretation to be

performed at full resolution, as opposed to approximately 5% of the available infor-

mation as is the case for the (highly decimated) polygon meshes models used by the

clinicians. Noise removal on the range images is vital due to the inherent range noise

present of the order of ±0.2-0.3mm RMS, determined by C3D2. This has been achieved

using one of the available built-in functions in the Heritable Image Processing System

(HIPS) (Landy and Sperling, 1984). HIPS, first developed in the 1980s, is a image
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Figure 3.6: Range image.

Figure 3.7: Examples of VRMLs.

processing package written in C that provides several hundred useful image processing

filter processes.

3.3.1 Noise Removal

Each range image contains a header which provides information regarding the data,

for example, the number of pixels contained in the range image and the pixel format.

However, these must be eliminated prior to reading into MATLAB for analysis since

MATLAB can only deal with matrices but not matrices with headers. This can be

achieved by using two of the built-in HIPS functions, ptoa and stripheader, which

would convert the pixel values to ASCII and remove the header from the range image

respectively.

Moreover, HIPS also provides an effective noise removal function, using the Adaptive-

Surface-Labelling (ASL) technique (Mowforth and Jin, 1986) in which a smoothing filter

is applied to each image of the input sequence to suppress random noise.
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No. Label Anatomical Name
1 exR right exocanthion
2 enR right endocanthion
3 enL left endocanthion
4 exL left exocanthion
5 sbalR right subalare
6 sbalL left subalare
7 chR right cheilion
8 chL left cheilion
9 n nasion
10 prn pronasale
11 acR right alar
12 acL left alar
13 cphR right crista philtri
14 cph crista philtri
15 cphL left crista philtri
16 li labiale inferius
17 sto stomion
18 sto stomion (open mouth)
19 liUR mid-point right upper lip
20 liUL mid-point left upper lip
21 liLLR lateral one third right lower lip
22 liMLR medial one third right lower lip
23 liMLL medial one third left lower lip
24 liLLL lateral one third left lower lip
25 exR-chL mid-point on the surface curve joining landmarks 1 and 7
26 exR-chR mid-point on the surface curve joining landmarks 4 and 8
27 men menton
28 colm subnasal point

Table 3.1: Anatomical landmarks placed by a professional clinician.

Further noise removal can be achieved using a Gaussian Pyramid (Burt and Adelson,

1983). The Gaussian Pyramid also offers a multi-scale representation of the image.

The original size of the range image is 1498 pixels by 2249 pixels and at this scale,

representative features are extremely difficult to detect as the support region required

to sample local surface structure will vary significantly for different types of anatomic

structure. Using the Gaussian Pyramid, analysis can be performed on different scales

simultaneously by applying the same extraction window to each level of the pyramid.
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3.3 Data Regularisation and Representation

Figure 3.8: Anatomical landmarks (red dots) placed on a 3D model.

3.3.2 Gaussian Pyramid

The Gaussian pyramid contains a hierarchy of low-pass filtered versions of the original

image, such that successive levels comprise smaller images containing correspondingly

lower frequency information. Each layer is smoothed by a symmetric Gaussian kernel

and re-sampled to compute the next layer. As a result, noise can be further suppressed

using a Gaussian pyramid as well generating a multi-scale representation. Figure 3.9

illustrates an image pyramid, where Level 1 corresponds to the original image and each

subsequent level contains a low-pass filtered versions of the original image.

For the purpose of this work, a half-octave Gaussian pyramid is used to reduce the

size of the range images. Table 3.2 shows the image size at each of the half-octave

Gaussian pyramid, where Level 1 represents the original range image and Levels 2 to 9

represent the down-scaled images and their respective sizes.

3.3.3 Relating Landmarks on Range Images

As mentioned in Section 3.2.3, anatomical landmarks have been assigned by a clinical

professional on the 3D polygon meshes using the Facial Analysis Tool. In order to
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Figure 3.9: Example illustrating a Gaussian pyramid.

perform investigation and surface analysis of the characteristics of the landmarks and

their surrounding pixels, the location of the landmarks must be identified on the range

image. This can be achieved using Barycentric coordinates which allows the Texture

Coordinates of the landmarks to be located. Texture coordinates are the means by

which texture image positions are assigned to vertices. The details for the methodology

in relating landmarks on the range images can be found in Appendix B.

The feature extraction process around each landmark can begin once the data has

been pre-regularised and the Gaussian pyramid for the range image has been built. The

methodology taken to extract the feature descriptor is described in Section 3.4 below.

3.4 Feature Extraction

This section describes the methodology and the steps taken in building a feature de-

scriptor for each of the landmarks and their surrounding pixels, over a finite support

region.
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Level size (pixels)
1 1498×2249
2 995×1495
3 746×1121
4 494×744
5 370×557
6 244×369
7 182×275
8 119×181
9 88×134

Table 3.2: Size of the image at each pyramid level.

3.4.1 Methodology

In order to compute a feature descriptor which contains a predominant signature of

each landmark, it is important to identify the underlying surface types and orientation

of the landmarks and their surrounding pixels. Thereby the underlying surface can

be expressed in terms of statistical descriptions of the surface shape. These can be

calculated based on differential geometry. The steps that lead to the formation of the

histograms, which contains the relative frequencies of the underlying surface types and

the principal directions of the range image, are as follows:

1. Calculate the first partial derivatives with respect to x and y axis of the range

image (Jain et al., 1995):

fx =
∂F

∂x
= F (i+ 1, j)− F (i, j) (3.4.1a)

fy =
∂F

∂y
= F (i, j + 1)− F (i, j) (3.4.1b)

where (i, j) is the ith and jth pixel value for the range data F .

2. Calculate the second partial derivatives with respect to x and y axis of the range

image (Jain et al., 1995), based on the first derivatives:

fxx =
∂2F

∂x2
= F (i+ 1, j) + F (i− 1, j)− 2F (i, j) (3.4.2a)

fyy =
∂2F

∂y2
= F (i, j + 1) + F (i, j − 1)− 2F (i, j) (3.4.2b)
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fxy =
∂2F

∂x∂y
= F (i+1, j+1)+F (i−1, j−1)−F (i+1, j−1)−F (i−1, j+1) (3.4.2c)

where (i, j) is the ith and jth pixel value for the range data F .

3. The mean curvature (H) can be computed based on the first and second deriva-

tives:

H(i, j) =
(1 + f2

y (i, j))fxx(i, j) + (1 + f2
x(i, j))fyy(i, j)− 2fx(i, j)fy(i, j)fxy(i, j)

2(
√

1 + f2
x(i, j) + f2

y (i, j))3

(3.4.3)

4. Similarly, the Gaussian curvature (K) can be computed based on the first and

second derivatives:

K(i, j) =
fxx(i, j)fyy(i, j)− f2

xy(i, j)
(1 + f2

x(i, j) + f2
y (i, j))2

(3.4.4)

5. Generate the surface types for the 3D surface, based on the signs of the H and

K curvatures, using Table 2.1 as shown in Section 2.4. There are eight types

available from this representation, namely one of peak, ridge, saddle ridge, flat

(plane), minimal surface, pit, valley and saddle valley. Eight different colours

can be assigned to each of the surface types, as shown in Figure 3.10 below.

Figure 3.11 illustrates a face that has been categorised into the eight surface

types.

6. Compute the degree of curvedness of the surface, which is used as a weight to

indicate how strong the curvature is at that particular point:

curvedness =
√

2H2 −K (3.4.5)

7. Calculate the principal curvatures (maximum and minimum curvatures k1 and

k2 respectively), using Equation 2.3.3 as shown in Section 2.3.1.

8. Calculate the maximum curvature orientation (k1 direction), as shown in Equa-

tion 3.4.6. This can then be used to categorise the surface into eight orientations,

covering the full 360◦ of orientation, as shown in Figure 3.12.

θk1 = tan−1 ∂y

∂x
(3.4.6)
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Figure 3.10: Colour assigned to the eight different surface types derived from the signs
of H and K curvatures.

Figure 3.11: Example of a face that has been categorised into the eight surface types.
The colouring of this figure corresponds to the colour scheme showed in Figure 3.10.

where ∂y and ∂x are the first derivatives of the k1 curvatures.

9. Compute a normalised isotropic value, which can be used to favour the surface

contributions where the rate of orientation change (of the curvature) is changing

dynamically. This value can then be employed as a weight in the histogram and
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Figure 3.12: Orientations can be separated into eight sections, covering the full 360◦ of
orientation.

is potentially more diagnostic/descriptive of the sample patch:∣∣∣∣∂2θ

∂x2
+
∂2θ

∂y2

∣∣∣∣√(
∂2θ

∂x2

)2

+
(
∂2θ

∂y2

)2
(3.4.7)

where θ is the k1 orientation.

10. Fit a finite support region (window) over the landmark and compute the his-

tograms of the surface types and orientations within that window respectively,

using the curvedness and the isotropic values for the k1 direction as the weights of

the histograms respectively. The histogram for the surface types over the support

region is computed by accumulating the frequencies of each of the surface types

based on the signs of H and K. There are a total of eight bins in the histogram,

one for each surface type. Each sample added to the histogram is weighted by

the curvedness which provides an indicator of how strongly a particular surface

type is occurring at that point. Similarly, compute the histogram for the ori-

entation using eight bins, each sample added to the histogram weighted by the
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isotropic value which indicates the orientation strength. The resulting histograms

are presented as follows, for surface type and orientation, respectively:

S = (s1, s2, s3, s4, s5, s6, s7, s8)

D = (d1, d2, d3, d4, d5, d7, d7, d8)

11. Normalise the histograms locally by the sum of counts in its corresponding his-

togram.

12. A feature descriptor can be computed by combining the histograms of the surface

types and the orientations together to form a single vector of length 16, the first

eight elements represents the histogram from the surface types and the latter eight

represents the elements from the histogram of the orientation. The structure of

the feature descriptor can be found in the next section.

3.4.2 Structure of the Feature Descriptor

By combining the histogram for the surface type and the histogram for the orientation

over a landmark together, a single 16-element feature descriptor which provides infor-

mation about a landmark and its surrounding pixels over a finite support region can

be computed and represented as follows:

Feature Descriptor = (s1, s2, s3, s4, s5, s6, s7, s8, d1, d2, d3, d4, d5, d7, d7, d8)

where s1, ..., s8 is the histogram of the surface types and d1, ..., d8 is the histogram of

the orientation. This feature descriptor has been locally normalised individually.

Such a feature descriptor is computed for each of the landmarks and their surround

pixels over a finite support region of 5×5, 7×7, 11×11, 13×13 and 17×17 for each of

the nine levels in the Gaussian pyramid. This offers a multi-scale representation and

the aim is to locate the level and the size of the finite support region which exhibits

the best discrimination value between the 28 landmarks.

Definition 3.4.1 Z-normalisation:

sdata =
cdata −mean(cdata)

std(cdata)
(3.4.8)
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where mean(cdata) and std(cdata) is the mean and the standard deviation across the

entire population. This offers a global normalisation of the data set.

A pilot investigation was conducted on the feature descriptors using two sets of

data, firstly a synthetic set of range data of an orthogonal spatial sine waves, generated

using MATLAB and secondly 60 test data comprising 60 range images of human faces.

The 60 test data are divided into two groups: the training (known) data and the

testing (unknown) data. Each group comprises 30 faces, each of which has 28 landmark

classes, representing the 28 different landmarks. By knowing in advance which feature

descriptor is used to represent a particular landmark, it becomes possible to compute

the matching properties of the formulated descriptor, using the K-nearest-neighbour

(KNN) algorithm.

3.5 Validation of the Feature Descriptor on Synthetic Data

A 2.5D synthetic range image, created from orthogonal spatial sine waves, has been

designed and generated in order to validate the feature extraction process (See Fig-

ure 3.13). By knowing in advance which surface types are present in the synthetic test

data, it becomes possible to validate the surface curvature and surface type labelling

process and also the construction and utility of the feature descriptor. The surface

types present in the synthetic test data would be ‘peak’ where the sine waves are at

their peaks, ‘pit’ where the trough of the waves appear and saddle ridge and saddle

valley in between, as shown in Figure 3.14.

Moreover, the stability of the calculations of the curvatures, including their ability

to cope with variation in surface pose with respect to the camera, can be determined

by rotating the 2.5D synthetic range data (Figure 3.15). Experiments show that the

calculation of the surface types can manage with rotation up to
π

4
degrees.

3.6 Validation of the Feature Descriptor

K-nearest-neighbour method can be used to estimate the matching properties of the

feature descriptors. This can be achieved by measuring the Euclidean distance between

the test data and the training data. The test data consists of feature descriptors of

unknown landmarks whereas the training data consists of the feature descriptors of

known landmarks. The smaller the distance between the test data and the training
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3.6 Validation of the Feature Descriptor

Figure 3.13: Orthogonal spatial sine waves.

Figure 3.14: Surface types of synthetic waves. The colouring of this figure corresponds
to the colour scheme showed in Figure 3.10.

data, the more likely it is that the test data is correctly labelled as the landmark

represented by the feature descriptor in the training data. By knowing in advance the

correct landmark associated with a feature descriptor in the test data, it is possible

to identify the number of correctly labelled landmarks in the test data, based on the

training data. Each of the testing data and training data contains 30 faces each with

28 landmarks. The methodology is:

1. Read the training data into MATLAB. The training data consists of the locally
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3.6 Validation of the Feature Descriptor

Figure 3.15: Surface types of synthetic waves with out-of-plane orientation of
π

8
. The

colouring of this figure corresponds to the colour scheme showed in Figure 3.10.

normalised feature descriptors of 30 faces, each with 28 landmarks (i.e. a total of

840 feature descriptors).

2. Find the mean and standard deviation for each landmark across the population.

3. Normalise the training data globally using z-normalisation (as described in Equa-

tion 3.4.8).

4. Read the testing data into MATLAB. The testing data comprises of feature de-

scriptors of 30 different faces to the training data, each with 28 landmarks in

which it is not known a-priori the association between the landmark class and

the feature descriptors.

5. Normalise the testing data individually using the mean and standard deviation

of the training data. This ensures both set of data are projected onto the same

space.

6. Compute the Euclidean distance between the testing data and the training data,

using the following equation:

Distance =
√

(Datatest −Datatraining)2 (3.6.1)

7. Rank the results in ascending order (i.e. the smallest distance ranks first).
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3.6 Validation of the Feature Descriptor

8. Extract the top k values, providing a label to the unknown landmark in the testing

data feature descriptor. k is selected to be 1, 3, 5, 7 and 9 for this experiments.

9. Label the unknown feature descriptor with a landmark class, using the majority

voting scheme. If the vote is tied, then repeat using k = k − 1, until one single

label has been identified.

10. Compute a confusion matrix (of size 28× 28) based on the assigned labels. Each

entry in the matrix represents the number of feature descriptors identified as that

particular landmark for each of the testing class against the training class. For

instance, entry (23,23) will represent the number of feature descriptors identified

as landmark 23 from the population.

11. Compute the percentage of correctly labelled landmarks for each k using the

following:

% of correctly labelled landmarks =
#correctly labelled

#sample
× 100 (3.6.2)

The above algorithm is performed on all nine levels and on different finite support

regions (5 × 5, 7 × 7, 11 × 11, 13 × 13 and 17 × 17) over the landmarks. The results

are then analysed by finding the percentage of correctly labelled landmarks for the test

data, generated using the above algorithm which can be viewed visually using the built-

in MATLAB function bar(KNN) as shown in Figure 3.16 below. Ideally, all k labels

should be correctly labelled. However, this is extremely difficult to achieve because of

the nature of the surface types and orientations could be quite similar between two

landmarks, for instance the corner of the eyes. Each landmark result can be examined

individually visually using the built-in MATLAB function bar(KNN(i,:)) as shown in

Figure 3.17 below. The peak should ideally represent the correctly labelled landmarks.

In this particular example, (k = 7), which was extracted from landmark number nine

from level nine with a finite support region of 5 × 5, 15 out of 30 feature descriptors

were labelled correctly. The results are presented in the next section.

3.6.1 Results

Following from the algorithm described in the previous section, the matching ability

of the feature descriptors can be investigated using different values of k, where k =
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Figure 3.16: Percentage of correctly labelled landmarks using the k-nearest-neighbour
algorithm.

Figure 3.17: Labels assigned to feature descriptor whose true class is landmark 9.
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1, 3, 5, 7 or 9. The data set was separated into two subsets: the training data, containing

840 feature descriptors of the landmarks in which the position of the landmarks are

known to the system and 840 feature descriptors of unknown location of landmarks as

the testing data. This experiment was carried out on all nine levels of the half-octave

Gaussian pyramid and over different sizes of finite support region. The aim of this

investigation is to determine the level and the size of the finite support region which

provides the most correctly labelled landmarks.

The average percentage of the correctly labelled landmark for each of the k value

can be computed and ranked in descending over all nine levels and different sizes of the

finite support region, for each k.

Figure 3.18: Percentage of the correctly labelled keypoints in the data set: Level 9 with
window 5× 5, k = 1

By ranking the percentages in descending order over all nine levels and different

finite support region sizes, at level 9 with a finite support of 5× 5 region with k equals

1 yields the best result, with an average of 15% of the testing data being correctly

labelled, as shown in Figure 3.18 above. Level 9 with a finite support of 5 × 5 region

yield the best average results, ranging from 14.04% to 15%. Overall, more labels
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are correctly identified when the image size is smaller. This is because features are

extremely difficult to detect when the image is at its full size.

This experiment provides a preliminary evaluation to the classification of landmarks

only and the resulting classifier is regarded as low to weak in terms of recognition power.

In addition, different landmarks may require to be detected at different levels, de-

pending on the nature of the landmark. For example, the number of correctly labelled

landmarks for landmark 9, representing the tip of the nose, was achieved optimally at

level 9 of the Gaussian pyramid, with a finite support of 5× 5 region and k = 7, with

16 being correctly labelled out of 30 (over 53% of accuracy) as shown in Figure 3.17.

Furthermore, the properties of mirroring landmarks could have provided the am-

biguities in locating the landmarks successfully. For instance, the surface types sur-

rounding the landmark which represents the left outer corner of the eye may be similar

to the surface types surround the right outer corner of the eye.

3.7 Summary and Discussion

This chapter explores the pilot investigation conducted in this research project on the

derivation of the feature descriptor in which a basic structure was formed for fixed

landmarks. The statistics of the local topology was considered, a methodology that

is away from the classical single surface type classification present in the typical lit-

erature. Here, the underlying surface types of the range images are categorised and

histogrammed into eight types, allowing the mixtures of surface types to be presented

for each landmark location. Furthermore, the orientation of the sampling window was

histogrammed into eight bins, covering the full 360◦ of rotations. As a result, by taking

the relative frequencies of the surface types and their orientations into account simulta-

neously, it is possible to encapsulate the underlying signature of a local surface within

a measurement aperture that samples an anatomic landmark location.

Whilst it is potentially useful to take the surface types and their orientations into

account simultaneously, capturing both the quantisation and the nature of the under-

lying surface, there are several deficiencies in this derived feature descriptor: firstly,

it does not differentiate well between mirrored landmarks. For instance, the classifier

potentially gets confused between the left exocanthion (outer corner-of-the-eye) land-

mark and the right exocanthion landmark. Furthermore, using the eight surface types
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derived by the signs of H and K curvatures are not adequate as a representation of

the range images of human faces. This is because no surface on the face is flat unless a

user-defined threshold is introduced and therefore not all the surface types represented

by the signs of H and K curvatures are explored fully. Ideally, in order to categorise

a range image of a human face to full effect, a classification that is more continuous is

required and as a result, the shape index should be considered instead.

In order to address these deficiencies, the next chapter examines alternative means of

deriving a more suitable feature descriptor for range image representation of a human

face where the signs of H and K curvatures will be replaced by the shape index,

a continuous representation of a surface along with other means of representing the

orientations. Different formulations and combination of the feature descriptor will be

investigated. Moreover, in order to couple the information obtained from the surface

types and their orientations together, a 2D feature descriptor is investigated and the

results are addressed in the next chapter.
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Chapter 4

Formulation of the Feature
Descriptors

The concept of building a feature descriptor for range image analysis based on its local

surface information was discussed in the previous chapter, where the frequencies of the

mixes of surface types and their orientations were taken into account simultaneously.

The surface types was presented by means of the signs of the mean (H) and Gaussian

(K) curvatures while the orientations were represented by the gradients of the max-

imum principal (k1) curvatures. Despite the concept of combining the surface types

and their orientations having the potential to express the richness of the representa-

tion, the obtained results were poor. One major deficiency is the lack of continuity in

the quantisation stage of the surface types, since no surface is flat in a range image

of a human face, unless an user-defined threshold is introduced. Therefore, it is nec-

essary to address this issue by exploring alternative methodologies in extracting the

surface information. This chapter will explore the different possible structures for a

stable feature descriptor for range image analysis, demonstrating the invariance and

discriminability of the basic feature descriptor to viewpoint rotational changes.

4.1 Objectives

Following the previous chapter where a feature descriptor was formulated in order to

capture the underlying surface, the use of histograms appears to be able to capture

the surface information. However, there was a flaw in the quantisation part of the

feature descriptors, resulting in the matching ability of the feature descriptors being

comparatively weak. As a result, an alternative representation of the surface types that
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avoids explicit quantisation was formed by using the shape index as detailed in this

chapter.

The two core elements in the feature descriptors are concatenated together and

therefore, the resulting feature descriptors are decoupled (i.e. not correlated). As a

result, a 2D feature descriptor has been proposed in order to improve and capture the

association between the components and is detailed in Section 4.3.1.

In order to study the invariance and discriminability properties of the feature de-

scriptors, rotational changes have been applied to the range images and feature descrip-

tors have been extracted from the rotated images at standard locations. The vector dot

product between the rotated feature descriptors and the original (un-rotated) feature

descriptors can be measured and hence the invariance measure can be determined. The

discriminability of the feature descriptors extracted from the rotated range data can

be measured using the KNN algorithm, both outlined in Sections 4.4.2 and 4.4.3.

4.2 Surface Features Representations

The characteristic of the feature descriptor is its ability of capturing not only the

mixes of surface types but also the orientation extracted from the landmarks and their

surrounding pixels. This section details an investigation conducted on the surface

types and orientation components of the feature descriptor in order to observe their

contribution towards the feature descriptor.

4.2.1 Gaussian Derivatives

In order to suppress further the random noise produced in the calculations of the H, K,

k1 and k2 curvatures, Gaussian derivatives can be used, presenting with more robust

and less noisy results (Marr, 1982). A 2D Gaussian kernel (Equation 4.2.1) with the

appropriate sigma (σ) in both directions is applied to the range image in order to

smooth the first (Equation 4.2.2) and second (Equation 4.2.3) derivatives.

G(x, y) =
1

2πσ2
e
−

x2 + y2

2σ2


=

 1√
2πσ2

e
−

 x2

2σ2

×
 1√

2πσ2
e
−

 y2

2σ2

 (4.2.1)
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G′(x, y) =
−
√
x2 + y2

2πσ4
e

−(x2 + y2)
2σ2 (4.2.2)

G′′(x, y) = − 1
2πσ4

e

−(x2 + y2)
2σ2

[
1− x2 + y2

σ2

]
(4.2.3)

(a) 2D image (b) 1D slice through (c) 3D view

Figure 4.1: A Gaussian kernel displayed as (a) an image, (b) a 1D slice through and
(c) a 3D view.

4.2.2 Quantisation of the Shape Analysis

In Chapter 3, the relative frequencies of the surface types and their orientations were

taken into account simultaneous in order to form a feature descriptor. The surface types

were defined by the signs of H and K curvatures, where eight surface types were rep-

resented as peak, ridge, saddle ridge, flat, minimal surface, pit, valley or saddle valley.

The orientation component was obtained from the direction of the principal maximum

curvature (k1), based on differential geometry. Whilst the idea of combining the rela-

tive frequencies of the surface types and their orientations had the potential to improve

the richness of the representation, the lack of continuity in the histogram of the surface

types was noticed. Therefore, in the following sessions, alternative methodologies to

extracting the surface types and orientations are presented.

4.2.2.1 Surface Types

It is observed that a number of the defined surface types do not contribute towards

the feature descriptor after close examination. For instance, the definition of “flat” is

when both H and K curvatures have zero values which is impossible to meet under the
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defined modality here. H and K will only have zero values if and only if a user-defined

threshold is introduced to the modality, taken into account the biological form (human

face) and the constraints of the subjects under this investigation, i.e. “flat” is not a

suitable surface type to use with this type of biological form. In other words, the user

will have to define a particular threshold in which all values below it will, by default,

have zero value. However, a user-defined threshold is impractical as it varies according

to the subject matter. As a result, alternative methods in deriving the different surface

types have been investigated, in particular the [-1,1] bounded shape index introduced

by Koenderink and van Doorn (1992), in the following form as shown in Equation 4.2.4.

This can be used to classify into nine surface types, namely cup, through, rut, saddle

rut, saddle, saddle ridge, ridge, dome and cap, as shown in Figure 4.2. The surface type

“flat” is considered undefined in this representation. The nine surface types defined by

shape index are of similar nature to the eight surface types described by the surface

types using signs of H and K curvatures with the exception of the “flat” type and with

a more refined ranges of saddles, which is highly suitable under the defined constraints

and purposes of this investigation. Hence, shape index is a more suitable and a better

candidate for consideration in terms of the construction of the feature descriptor under

the current circumstances, constraints and purposes of the investigation.

s =
2
π
tan−1

[
(k2 + k1)
(k2− k1)

]
(4.2.4)

where k1 > k2.

Figure 4.2: Surface types defined using shape index.

4.2.2.2 Orientation

The orientation component presented in the feature descriptor, described in Chapter 3,

consists of the maximum k1 curvature orientation, covering the 360◦ of orientation,

along with the isotropic value which indicates the relative signal strength of the ori-

entation as the weight. The principal curvatures are calculated using the H and K

curvatures as shown in Equation 2.3.6 in Section 2.3.1, which consists of the first and
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Figure 4.3: Example of a face that has been categorised into the nine surface types
derived using the shape index. The colouring of this figure corresponds to the colour
scheme showed in Figure 4.2.

second order derivatives of the range image itself. The isotropic value used as the

weight is in form of the second derivatives of the maximum curvature, as shown in

Equation 3.4.7 in Section 3.4.1 and is therefore a fourth order derivatives of the range

image. Concerns have been raised at the high degree of derivatives taken into account.

The aim of the feature descriptor is to be able to capture the orientation information

of the range image and therefore, it is possible to compute the orientation based on the

range image using the first derivatives of the range images as an alternate methodology

in extracting the orientation components instead. Eight bins can be used, covering the

360◦ or 2π orientation.

Furthermore, in order to confer viewpoint rotation invariance, the highest peak

of the orientation histogram is detected and the histogram is then normalised to its

canonical (orientation) form by rotating the orientation histogram until the peak is

situated at the first histogram position.

4.3 Representation Properties

The feature descriptor derived for this work comprises two core elements: the dis-

tribution of the relative frequencies of the surface types and the distributions of the

frequencies of the orientation. Based on these two core elements, it is possible to exploit

different combinations for the feature descriptor, containing surface types and orien-

tation. For instance, surface types can be derived using signs of H and K curvatures

(into eight types) or using the shape index (into nine types). Orientation can be de-
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rived using the high order k1 curvature or based on the first Gaussian derivatives of the

image itself. Furthermore, the weighting system applied to the feature descriptor can

be separated into different categories: no weighting (i.e. add one to each appropriate

bin), the curvedness as a weight for the surface type histogram or the isotropic value

derived in Section 3.4.1 for the orientation histogram.

4.3.1 Coupled Histogram

The feature descriptor described hitherto has been a single one-dimensional 16-element

feature descriptors, constructed by concatenating the histogram of the mixes of surface

types and the histogram of the distribution of the orientation components. However,

the combination of these two local histograms results in a decoupled feature descriptor.

As a result, a two-dimensional feature descriptor, using mixes of surface types and

orientation as bins, has been formulated.

4.3.1.1 Methodology of the Construction of the 2D Feature Descriptors

The calculations for the derivation of the surface types and orientation are identical

to the process described in Section 3.4.1. When constructing the histograms for the

2D feature descriptors, an eight by eight matrix has been formed (or in the case of

using the surface types derived from the shape index, a nine by eight matrix is used),

with the individual rows representing the eight (or nine) surface types and the columns

representing the eight-binned orientation histogram. Each pixel within the sampling

aperture is examined and its representing surface types bin (x) and orientation bin (y)

have been identified and the product of the weights of these two components is added

to the (x, y) position of the matrix. The orientation component is rotated, as before,

by locating the highest peak of the orientation (for each column) and is normalised to

canonical (orientation) form by rotating the entire column until the peak is located at

the first position of the column. Finally, the feature descriptor is normalised locally by

the sum of all its bins in order to produce a standard unit vector.

Shown in Figure 4.4 is the 2D feature descriptor extracted from the face range image

sample 1, with sample aperture size 17× 17 pixels, on landmark 10 (tip of the nose).

68



4.3 Representation Properties

Figure 4.4: 2D feature descriptor for face sample 1 on LM10 (tip of the nose), with
sampling aperture 17x17.

4.3.2 Combinations of the Feature Descriptors

Surface properties can be explored using surface types, derived from 3D shape analysis.

For example, it is possible to use the values of the H or K curvatures, derived using the

first and second derivatives of the image, and produce a histogram of the distribution

of the relative frequencies of the values. Similarly a histogram of the distribution

of the frequencies of the principal curvatures can be obtained and included as the

feature descriptor. Many combinations can be employed to create a feature descriptor,

however, the properties and aim of the feature descriptor must be examined: it should

be invariant to rotational changes. As a result, the search for a suitable candidate for

the feature descriptor can be reduced and examined by investigating the individual

candidates and their invariance properties with respect to viewpoint rotational changes

on the landmark locations over a measurement aperture (support region).

The candidates to be considered are degree of curvedness, H, K, k1 and k2 cur-

vatures. By extracting these properties from each landmark location, using different
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support regions, over rotational changes, it is possible to identify the candidates which

are suitable to be considered as a component in the feature descriptor by taking the

average of the values over the population (50 samples). The suitable candidates have

to be invariant to viewpoint rotational changes. This investigation uses in-plane rota-

tion (about the z-axis) up to and including 90◦ and the obtained graphs are shown in

Figure 4.5.

(a) Avg H vs orientation (b) Avg K vs orientation

(c) Avg k1 vs orientation (d) Avg k2 vs orientation

Figure 4.5: (a) Average of H; (b) average of K; (c) Average of k1; (d) average of k2
taken over 50 samples, extracted from different landmarks with support region 5 × 5.
Each different coloured line represents the results obtained from different landmarks,
over in-plane rotational changes.
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(e) Avg curvedness vs orientation

Figure 4.5: (e) Average of curvedness taken over 50 samples, extracted from different
landmarks with support region 5 × 5. Each different coloured line represents results
obtained from different landmarks, over in-plane rotational changes.

As shown from the graphs in Figure 4.5, the average of the H curvature over the

population against rotational changes is stable (Figure 4.5a), therefore, H can be taken

into consideration as part of the feature descriptor. Similarly, degree of curvedness

(Figure 4.5e) is stable against degree of rotation as well and as a result, it can be

considered as a component for the feature descriptor, as well as acting as a weight for

the surface types classification. Shown in the following sections are the combinations

of the feature descriptors that have been investigated in this work.

4.3.2.1 1D Feature Descriptor Combinations

Shown in the Table 4.1 is the combinations investigated for 1D feature descriptor

(i.e concatenated statistics).
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Components Weighting
used for
Surface types

Weighting
used for
Orientation

Length

1 (HK)T +1 N/A 8
2 (HK) Curvedness N/A 8
3 (k1 Orientation)T N/A +1 8
4 (k1 Orientation)T N/A Isotropic

Value
8

5 (Shape Index)T +1 N/A 9
6 (Shape Index)T Curvedness N/A 9
7 (Image Orientation)T N/A +1 8
8 (HK+k1 Orientation)T +1 +1 16
9 (HK+k1 Orientation)T Curvedness Isotropic

Value
16

10 (HK+k1 Orientation)T Curvedness +1 16
11 (HK+Image Orientation)T +1 +1 16
12 (HK+Image Orientation>)T Curvedness +1 16
13 (Shape Index+k1 Orientation)T +1 +1 17
14 (Shape Index+k1 Orientation)T Curvedness +1 17
15 (Shape Index+k1 Orientation)T Curvedness Isotropic

Value
17

16 (Shape Index+Image Orientation)T +1 +1 17
17 (Shape Index+Image Orientation)T Curvedness +1 17

Table 4.1: Combinations for the construction of 1D feature descriptors.

Note: In Table 4.1, HK denotes the surface types extracted using signs of H and

K; k1 orientation denotes the orientation extracted from the k1 curvature; Shape Index

denotes the surface types extracted using shape index and Image Orientation denotes

the orientation extracted from the first Gaussian derivatives of the range image.

4.3.2.2 2D Feature Descriptor Combinations

Table 4.2 shows the combinations of the 2D feature descriptor (i.e. joint probability

density functions pdfs) investigated in this work:
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Components Weighting
used for
Surface types

Weighting
used for
Orientation

Length

1 (HK,k1 Orientation)T +1 +1 8× 8
2 (HK,k1 Orientation)T Curvedness Isotropic

Value
8× 8

3 (HK,k1 Orientation)T Curvedness +1 8× 8
4 (HK,Image Orientation)T +1 +1 8× 8
5 (HK,Image Orientation)T Curvedness +1 8× 8
6 (Shape Index,k1 Orientation)T +1 +1 9× 8
7 (Shape Index,k1 Orientation)T Curvedness Isotropic

Value
9× 8

8 (Shape Index,k1 Orientation)T Curvedness +1 9× 8
9 (Shape Index,Image Orientation)T +1 +1 9× 8
10 (Shape Index,Image Orientation)T Curvedness +1 9× 8

Table 4.2: Combinations used for 2D feature descriptors.

All of the feature descriptors shown in the Table 4.2 are tested using the bounded

[0,1] vector dot product for their invariance against in-plane rotational changes and

also their discriminability using the KNN algorithm.

In-plane rotational data are simulated using MATLAB’s built-in function, imrotate,

in which the range images are rotated about the z-axis with bicubic interpolation.

4.4 Validation

The methodology in extracting the 1D and 2D feature descriptors has been described

in the previous sections. Alternative methods, and more appropriate to the task of

landmark automation using surface analysis, namely the shape index, has also been

introduced the previous section. This section details the validation process involved in

this investigation.

4.4.1 Data

Similar to the data set used in the pilot investigation detailed in Chapter 3, a data set

comprising 50 female frontal facial range images has been employed in this investigation.

For the purposes of this investigation, experiments were conducted on a single-scale

image representation, where the range image is of size 88×134 pixels, corresponding to

Level 9 of the Gaussian half octave pyramid.
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4.4.2 Invariance - Vector Dot Product

The invariance properties of the feature descriptors can be validated using the vector

dot product, bounded to [0,1], in which the cosine angle between two descriptors are

computed (Equation 4.4.1), 1 being the two descriptors are identical. The vector dot

product between the feature descriptors extracted from the rotated data and those

extracted from the un-rotated data is computed and indicates the similarity between

these vectors and as a result the invariance to viewpoint rotational changes to the

surface image.

cosθ =
a.b

|a||b|
(4.4.1)

where θ is the angle between the two vectors a and b, |a| and |b| denote the length of

a and b. If both a and b have length one (i.e. they are unit vectors), their dot product

simply gives the cosine of the angle (bounded [0,1]) between them.

The invariance of the feature descriptors with respect to in-plane rotation has been

investigated using different combination of feature descriptors based on the relative

frequencies of surface types and their relative frequencies of the orientation, using the

bounded [0,1] vector dot product. The results are presented as follows:

4.4.2.1 Results - In-plane Rotation, 1D Feature Descriptors

The average invariance of the entire sample set (50 faces) and all 28 anatomical land-

marks, over in-plane anticlockwise rotational changes up to and including 90◦ of rota-

tion, are presented here.

The results for the invariance measure of different feature descriptors combinations

are shown in Figure 4.6. The invariance of each of the combinations is good, with

all maintaining over 0.75 in invariance (1 being identical). In all cases, measurement

aperture size 17 by 17 pixels remains the most invariant over the rotation.
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(a) (HK(+1)+k1(+1))T (b) (HK(+curvedness)+k1(+1))T

(c) (HK(+curvedness)+k1(+isotropic val))T (d) (HK(+1)+Image direction(+1))T

(e) (HK(+curvedness)+Image(+1))T (f) (Shape Index(+1)+k1(+1))T

Figure 4.6: Invariance of 1D feature descriptors w.r.t. in-plane rotations.
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(g) (Shape Index(+curvedness)+k1(+1))T (h) (Shape Index (+curvedness)+ k1 (+isotropic
value))T

(i) (Shape Index(+1)+Image direction(+1))T (j) (Shape Index (+curvedness)+ Image
direction(+1))T

Figure 4.6: Invariance of 1D feature descriptors w.r.t. in-plane rotations (cont.).

4.4.2.2 Results - In-plane Rotation, 2D Feature Descriptors

The average results for the invariance of different feature descriptors have been obtained

using 50 face samples and 28 anatomical landmarks. In-plane rotational changes up to

and including 90◦ of rotation has been performed.
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(a) (HK(+1),k1(+1))T (b) (HK(+curvedness),k1(+1))T

(c) (HK(+curvedness),k1(+isotropic value))T (d) (HK(+1),Image direction(+1))T

(e) (HK(+curvedness),Image(+1))T (f) (Shape Index(+1),k1(+1))T

Figure 4.7: Invariance for 2D feature descriptors w.r.t. in-plane rotations.
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(g) (Shape Index(+curvedness),k1(+1))T (h) (Shape Index (+curvedness), k1 (+isotropic
value))T

(i) (Shape Index(+1),Image direction(+1))T (j) (Shape Index (+curvedness), Image
direction(+1))T

Figure 4.7: Invariance for 2D feature descriptors w.r.t. in-plane rotations (cont.).

The average invariance for 2D feature descriptors extracted from un-rotated and

rotated images shows that it remains over 0.7, using support region 17×17, in all cases.

4.4.3 Matching of the Feature Descriptors using K-Nearest-Neighbour

The matching ability of the feature descriptors can be obtained using the KNN algo-

rithm in which the process was described in Section 3.6. The data set is separated into

training and testing data subsets where the Euclidean distance between the training

and testing data are computed and a landmark label is provided for each of the testing
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data using the majority voting system with k selected to be 1, 3, 5, 7 and 9 respectively.

Mirrored landmarks are investigated by separating the landmarks into left and right

sections, depending on the location on the face, using the mid-line drawn from the

image, i.e. landmarks representing the nasion, pronasale and stomion. All landmarks

which are located to the left of these landmarks are categorised into the left section

and similarly, all the landmarks situated on the right of the midpoints are included in

the right section. All the landmarks located on the mid-line are included in both left

and right sections.

4.4.3.1 Results - In-plane Rotation, 1D Feature Descriptors

Based on the initial findings from the invariance of the feature descriptors in the pre-

vious section, shown in the following are a selection of the discriminability graphs

obtained using different combination of the 1D feature descriptors.

First of all, Figure 4.8(a) shows the average recognition accuracy of a feature descrip-

tor comprised of the surface types, derived from the signs of the H and K curvatures,

with the degree of curvedness as weighting system. On average, just over 30% of the

landmarks were correctly labelled. Figure 4.8(b) and (c) show the average percentage

of the correctly labelled landmarks obtained from the landmarks extracted from the

left and right side of the face respectively.

Secondly, Figure 4.9(a) shows the average matching accuracy of a feature descriptor

comprised of the surface types, derived from the signs of H and K curvatures, with

the degree of curvedness as a weighting system, concatenated with the k1 orientation

histogram, with the isotropic value as a weighting system. The average percentage of

the correctly labelled landmarks is approximately 50%, at window size 17 by 17 pixels

when 28 landmarks are taken into consideration. This is an improvement compared to

using only one component in the feature descriptors.

Figure 4.10(a) shows the average percentage of correctly labelled landmarks of a

feature descriptor comprised of the relative frequencies of the surface types, derived

from the shape index, weighted by the degree of curvedness, concatenated with the dis-

tribution of the relative frequencies of the orientation, derived using the first Gaussian

derivatives of the image. This combination of the 1D feature descriptors demonstrates

an improvement in terms of percentage of correctly labelled landmarks. On average,

taken over 28 landmarks, approximately 60% of the landmarks were labelled correctly.
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(a) Average of all landmarks

(b) Average of all left landmarks (c) Average of all right landmarks

Figure 4.8: Matching accuracy of feature descriptor (HK with curvedness only) against
in-plane rotational changes.
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(a) Average of all landmarks

(b) Average of all left landmarks (c) Average of all right landmarks

Figure 4.9: Percentage of correctly labelled landmarks for feature descriptor comprised
surface types obtained using signs of H and K, concatenate with the k1 orientation
(with curvedness and isotropic value as weights respectively).
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(a) Average of all landmarks

(b) Average of all left landmarks (c) Average of all right landmarks

Figure 4.10: Percentage of correctly labelled landmarks for feature descriptor comprised
surface types derived from the shape index, weighted by the degree of curvedness,
concatenated with the distribution of the relative frequencies of the orientation, derived
from the first Gaussian derivatives of the image.
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4.4.3.2 Results - In-plane Rotation, 2D Feature Descriptors

Based on the initial findings from the 1D feature descriptors, the results of two of

different combinations of the 2D feature descriptors are presented here. Figure 4.11(a)

shows the average percentage of correctly labelled landmarks of a 2D feature descriptor

comprised of the relative frequencies of the surface types derived from the signs of

H and K curvatures, combined with the k1 orientation, taken over 28 landmarks is

approximately 45% using a measurement aperture of 17×17.

(a) Average of all landmarks

(b) Average of all left landmarks (c) Average of all right landmarks

Figure 4.11: Average percentage of correctly labelled landmarks of a 2D feature descrip-
tor: Surface types (based on the signs of H and K) combined with the k1 orientation
(with curvedness and isotropic value as weight respectively).
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Another combination of the feature descriptor, comprised the nine surface types

derived using shape index and the orientation extracted from the first derivatives of

the image, provides, on average when taken over 28 landmarks, over 60% of correctly

labelled landmarks. When taking 17 landmarks into account (from the right side of the

image), approximately 70% of the landmarks are correctly labelled. These are shown

in Figure 4.12.

(a) Average of all landmarks

(b) Average of all left landmarks (c) Average of all right landmarks

Figure 4.12: Average percentage of the correctly labelled landmarks for a 2D feature
descriptor comprising the surface types (derived from shape index) and image orienta-
tion.
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4.5 Summary and Discussions

An in depth investigation for a suitable feature descriptor for range image representation

was discussed in this chapter, based on the basic structure of the feature descriptor

described in Chapter 3, where the underlying information of the mixes of surface types,

along with their mixes of directional/orientations are captured simultaneously. The

orientation component of the feature descriptor was normalised to its canonical form in

order to achieve the viewpoint invariant properties. This was accomplished by rotating

the orientation histogram until the peak is located at the first histogram position.

This normalisation process is not required in the surface types histogram because the

underlying surface does not change over rotations. By normalising the orientation

histogram to its canonical form, the pattern of the orientation distribution histogram

will remain constant over rotational change and therefore potentially improves the

viewpoint rotational invariant properties that a feature descriptor should have.

In this chapter, alternative structures of the feature descriptors were explored in

which shape index was used as the representation of the different underlying surface

types of the image as opposed to the signs of the H and K curvatures. Results show

that the use of shape index was more appropriate for range image representation of

a human face, since every surface types defined by the shape index can be captured

and represented within the feature descriptor. Furthermore, the idea of coupled feature

descriptors was explored in which a 2D feature descriptors were devised based on the

initial findings. While the results obtained for the 2D feature descriptors were more

stable, the performance was only marginally better. This could be explained by the

“curse of dimensionality” (Bellman, 1957; Duda and Hart, 1973) - the higher the di-

mension of the feature descriptor, the less discriminable it becomes. Moreover, it was

noted that there were many zero entries within the 2D feature descriptor, meaning not

every bin was quantised. The results are summarised in Table 4.3 below.

Different combinations of the feature descriptors were explored in this chapter as

well. It is noticed that the surface types derived using shape index and orientation

derived using the first Gaussian derivatives provide, on average, 60% of discriminability

over rotational changes. This is because the surface types defined using the shape index

are more suitable for classifying face range data as the shape index provides a wider

mixes of surface types, compared to using the signs of H and K curvatures alone.
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Dimension Avg Invariance
Discriminability

<HK> <HK,k1>
<Shape Index,

Image Orientation>

1D >0.75 30% 50% 60%
2D >0.7 N/A 45% 60%

Table 4.3: Summary of results obtained from this chapter, addressing the invariance
and discriminability of different combinations of feature descriptors, against in-plane
rotational changes.

Furthermore, the orientation estimates obtained from the range image are based on the

first Gaussian derivatives, whereas the direction estimates obtained from k1 curvature

are based on the second order Gaussian derivatives, resulting in a lower error rate.

Therefore, the combination of the histogram of surface types derived from the shape

index and the orientation histogram by means of the first image gradient component

provides a stronger feature descriptor.

From the findings derived from this chapter, it was noted that a feature descriptor

containing either only the surface types or the orientations alone was not enough for

range image analysis. Moreover, it was noted that the 1D feature descriptor (containing

the information of the relative frequencies of the shape index and the relative frequencies

of the image gradient orientations) was the most suitable candidate for a range image

representation.

At this stage, a suitable architecture was required to incorporate this feature descrip-

tor so that a complete range image analysis system can be developed. Two predomi-

nant systems were considered: SIFT (Lowe, 2004) or the Elastic Bunch Graph (Wiskott

et al., 1997). While the Elastic Bunch Graph algorithm was potentially less complex

and it has been well validated on the face data, the applied algorithm was very specific

to the face only. Since the aim of this work was to provide a potential means to inter-

pret other anatomical surfaces, a more general purpose system was therefore required.

Even though the SIFT platform did not have the in-built ability to cope with different

biological forms in its existing form, it was believed that it could potentially be adapted

to apply to different parts of the body (or even objects). Moreover, as the code to im-

plement standard 2D SIFT was available (El-Maraghi, 2004; Lowe, 2005) and given the

time scope of this research project, it was felt that SIFT was a better candidate. As a
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result, the decision was made to extend SIFT into the 2.5D domain, providing a more

direct route to completing and validating a full 2.5D matching system.

The next chapter will investigate the incorporation of the feature descriptor, derived

from the shape index and the image gradients of the range image, into a 2.5D SIFT

platform where keypoints and their appropriate scales will be defined on the range

images automatically.
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Chapter 5

Building a Scale and Rotation
Invariant Framework – 2.5D
SIFT

A feature descriptor suitable for range image analysis has been devised from the pre-

vious two chapters where the underlying surface information is captured by means of

the surface types and their orientations simultaneously. The extraction of the feature

descriptor described hitherto has been reliant on manual placement of landmarks on

the range images and the use of a fixed scale measurement aperture size. However, the

process of manual placement of landmarks are subjective, time consuming, error-prone

and requires a considerable amount of clinical skills. Therefore, it is necessary to de-

rive an alternative method of localisation of the landmarks by means of mathematical

keypoints. This is then followed by the feature extraction process, thereby allowing a

fully automatic range image analysis to be conducted. Since the form of the devised

feature descriptors is analogous to the structure of Lowe’s 2D SIFT (Lowe, 2004), it is

possible to incorporate the 2.5D feature descriptor extraction process into a framework

similar to Lowe’s SIFT. To this end, this chapter will address the extension of standard

2D SIFT into the 2.5D domain.

5.1 Objectives

Feature descriptors are distinctive mathematical keys, capable of providing sufficient

descriptive richness to discriminate between different descriptors. Therefore, a feature
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descriptor should encapsulate the key characteristics and provide a predominant sig-

nature of the underlying surface information and is also expected to be invariant to

viewpoint rotational changes. A feature descriptor has been derived from Chapters 3

and 4, which is suitable for range image analysis as it can capture the underlying shape

signature together with its orientation. In order to extract feature descriptors from

range images, it is necessary to define the locations at which the feature descriptors

will be extracted. These locations could be anatomical landmarks, where each land-

mark will correspond to a certain meaningful biological representation of the feature,

for instance the corners of the eye, tip of the nose etc. These landmarks are tradi-

tionally placed by professional clinicians since the placement of landmarks require an

extensive knowledge of the anatomy of the human body. However, the manual des-

ignation of landmarks is labour intensive, time-consuming, error-prone and subjective

and therefore an alternative means of deriving key locations for feature extraction is

required.

Moreover, following from the previous chapter, in order to accomplish the viewpoint

rotational invariant properties for the feature descriptor, the orientation component of

the feature descriptor is required to be normalised to its canonical form, i.e. rotated to

its peak orientation. Currently, the canonical orientation is defined at the extraction

of the feature descriptors stage where eight histogram bins are used to cover the full

360◦ of rotation. Therefore, the canonical orientation is only accurate to approximately

45◦. While eight bins is sufficient for distributing the values in a feature descriptor, it

does not provide an accurate measurement of the canonical orientation. As a result,

an extra stage is required prior to the feature extraction process, where the canonical

orientation of the patch can be determined more precisely.

The aim of this chapter is present the methodology employed to extend the existing

2D SIFT platform into the 2.5D domain, incorporating the 2.5D feature descriptor

derived from Chapter 4. There are four main stages in 2.5D SIFT, as follows:

1. Keypoint localisation, where the position (x, y) of any stable keypoints, along

with their appropriate scale σ, are detected on the range images using scale-space

representation.

2. Canonical orientation(s) assignment, where a consistent canonical orien-

tation θ, is assigned to each keypoint landmark location, based on the local image

89



5.2 Canonical Orientations

gradient orientation properties. Multiple canonical orientations can be assigned

to a keypoint location, resulting in multiple descriptors for the keypoint.

3. Extraction of feature descriptor, based on the keypoints locations, along with

their appropriate scale and their canonical orientation(s) information.

4. Keypoint matching, where different range images can be matched.

Figure 5.1 illustrates the steps taken for the a full 2.5D SIFT to be accomplished.














Figure 5.1: Flowchart illustrating the stages involved in 2.5D SIFT.

The remainder of this chapter is organised in the chronological order in which each

step in the 2.5D SIFT was investigated. Firstly, following the previous chapter in

which the orientation component of the feature descriptor was normalised to its canon-

ical form, Section 5.2 details the steps involved in deriving the canonical orientation(s)

from known keypoint locations, prior to the feature extraction stage. Section 5.3 dis-

cuss the methodology taken in order to strengthen the discriminative power of the

feature descriptor and the incorporation of this feature descriptor to the 2.5D SIFT.

Section 5.4 outlines the steps taken to derive the stable keypoints locations and their

appropriate scale, which defines the magnitude of the finite support region. Finally,

Section 5.5 presents a matching algorithm used to compare and match the individual

feature descriptors between images.

5.2 Canonical Orientations

It was deduced from Chapter 4 that the invariance of the feature descriptor improved

significantly when the orientation component of the feature descriptor was normalised to

its canonical form, i.e. the orientation component histogram was rotated until the peak
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is situated at the first histogram position. Since each sampling window will contain a

mix of orientations, it is important to identify the most commonly occurring orientation,

providing a standardised description of the sampling window over rotational changes.

In Chapter 4, this process is conducted during the feature descriptor extraction

stage where eight histogram bins are used to define the orientation component of the

feature descriptor. Therefore, the canonical orientation is accurate to 45◦, or 1-bin,

accuracy. In order to improve this accuracy, a canonical orientation, which is accurate

to ≈ ±1◦ degree using 360 sampling histogram bins, can be assigned prior to the feature

extraction stage. Upon the assignment of the canonical orientation to each keypoint,

by rotating the measurement aperture sampling patch to its canonical orientation at

the feature extraction stage, the same effect can be achieved.

Multiple canonical orientations can also be assigned to a keypoint, resulting in sev-

eral descriptors for the keypoint, each rotated to align to different orientated structures,

and therefore potentially improving the recognition rate. A modified version of Lowe’s

orientation assignment algorithm has been used for this work. The steps involved in

the orientation assignment for each keypoint location over a measurement aperture

(round(4σ), where σ is the scale at which the keypoints are detected) are as follows:

1. A circular Gaussian mask, set to the detected measurement aperture scale σ, is

used to sample the image and the Gaussian is centred on the keypoint location

with sub-pixel accuracy (See Section 5.2.1 for more details on sub-pixel accuracy).

2. The local image gradient orientations (Equation 5.2.1) and magnitude (Equa-

tion 5.2.2) within the sampling mask are computed using the Gaussian first deriva-

tives (Equation 4.2.2) of the image. A histogram is formulated that comprises 360

bins, each bin containing a relative frequency entry for each of the 360◦ poten-

tially detectable orientations. Each detected orientation entry is weighted by its

corresponding Gaussian derivative magnitude value prior to being accumulated

in the appropriate histogram bin. The magnitude is used to provide a measure

of the signal strength of the orientated features.

θlocal = tan−1 ∂y

∂x
(5.2.1)

| θlocal |=
√
∂2x+ ∂2y (5.2.2)
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3. The values of the orientation histogram are stabilised, in terms of orientation

continuity, by distributing each entry over a number of bins by means of a 1D

symmetric Gaussian convolution kernel of σ ≈7-bins. This step anti-aliases the

orientation histogram and stabilises the keypoint canonical orientation allocation

process by providing estimates of orientation that change smoothly as the input

visual stimulus changes in orientation.

4. The orientation peaks in the filtered histogram are located and each peak within

80% of the magnitude of the largest peak is deemed to represent a keypoint. Sub-

bin orientation precision is obtained by interpolation. A quadratic polynomial

is fitted to the three histogram values closest to the peak, as shown in Equation

5.2.3 below: (θpeak −∆θ)2 θpeak −∆θ 1
θ2
peak θpeak 1

(θpeak + ∆θ)2 θpeak + ∆θ 1

 a
b
c

 =

 H (θpeak −∆θ)
H (θpeak)

H (θpeak + ∆θ)

 (5.2.3)

where H(θpeak) is the histogram value at θpeak.

5. The canonical orientation of the descriptor is given by:

θcanonical = − b

2a
(5.2.4)

5.2.1 Sub-Pixel Accuracy

The keypoint locations can be generated at floating points coordinates (xi, yi) in order

to achieve sub-pixel accuracy. Sampling image pixels (x, y) with a kernel based on

the keypoints centred at (xi, yi) requires the calculation of the horizontal and vertical

sub-pixel offset (offsetx, offsety) of the centre of the floating point position from the

actual kernel integer location. The equation for a symmetric two-dimensional Gaussian

square kernel with scale σi used to place Gaussian support regions on an image with

sub-pixel accuracy is as follows:

G =
1

2πσ2
e
−(xi − round(xi)− offsetx)2 + (yi − round(yi)− offsety)2

2σ2 (5.2.5)

As a result, the centre of the measurement aperture window is required to be ad-

justed to the sub-pixel offsets accordingly. The computation of the sub-pixel offset
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depends on whether the rounded integer size of the support region (round(4σ)) is odd

or even. The change (error) in the position of the centre of the keypoint by the round-

ing operation can be significant. Figure 5.2 illustrates the calculation of the centre of

a support region for even and odd sized kernels.


























Figure 5.2: Calculating the centre of the support region for even and odd kernel. In
the example illustrated here, the kernels are square, not circular.

In order to generate a Gaussian circular support region, apply the equation of an

unit circle to the Gaussian square support region to filter any region outwith the circle

to zero. In other words, if the location of the pixel within the square kernel satisfies

the following equation:

(xi − offsetx)2 + (yi − offsety)2 >
(

kernel size
2

)2

(5.2.6)

Finally, the filter coefficients of the Gaussian support region G are normalised to

sum to unity to satisfy the following equation:

∑
∀x,∀y

G = 1 (5.2.7)
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Number of bins Precision to nearest ◦

8 45
10 36
18 20
36 10
360 1

Table 5.1: Table showing the different numbers of bins used to derive the optimal
number of bins for the categorisation histogram.

Number of bins
0
3
5
7
9

Table 5.2: Table showing the different number of bins tested to derive the optimal
number of bins used for the smoothing of the categorisation histogram with 360-bins.

5.2.2 Validation

In order to validate the canonical orientation assignment process, a set of synthetic

2.5D data simulated with known in-plane orientations are used for the validation. The

synthetic range data of an orthogonal spatial sine waves is once again employed by

firstly locating the fixed keypoints locations on the image and then rotating it with

known amount of in-plane orientation. The set of un-rotated and rotated images are

then feed into the canonical orientation algorithm where the canonical orientation is

estimated and recovered.

The purpose of this experiment is twofold: it first tests the sub-pixel accuracy

algorithm to shift the Gaussian centre kernel accordingly and secondly it tests the

robustness of the recovery of the canonical orientation from known amount of rotations.

The experiment was conducted repeatedly using different numbers of histogram bins

for the categorisation (Table 5.1) as well as the smoothing of the histogram (Table 5.2)

stages. Experiment shows that by using 360 bins covering the full 360◦ of rotation and

using seven bins to smooth the histogram in this case yields the best results where the

recovered canonical orientation is corrected to ±1.0◦.

Figure 5.3 gives the results from a pilot investigation conducted in which a patch

is synthetically rotated to a known orientation (denoted as black ◦ in the graph) and
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the orientation is subsequently recovered using the orientation recovery algorithm as

described above, shown as red + on the graph, illustrating the accuracy of the canonical

orientation recovery algorithm.

Figure 5.3: This graph shows the recovered orientation of a synthetically rotated patch
using the orientation recovery algorithm (red +), against known orientation (black ◦).

5.3 Keypoint Descriptors

For each keypoint (x, y) location, a feature descriptor is extracted over a measurement

aperture of σ defining the scale of the keypoint, using the appointed canonical orien-

tation(s) θ. The keypoint location can be a floating point and therefore appropriate

adjustment is required to be made in order to place the measurement aperture over the

keypoint to sub-pixel accuracy.

In order to incorporate the feature descriptor described hitherto into a suitable 2.5D

SIFT framework, the following steps are proposed:

1. The image patch, comprises the Gaussian circular measurement aperture placed

over the keypoint, is rotated to its canonical orientation in order to achieve view-
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point rotation invariance. Differential geometry is used to compute the signs of

the H, K, k1 and k2 curvatures from the first and second Gaussian derivatives

(see Chapter 4), which provide more stable and accurate estimates. Thereby it is

possible to categorise the underlying distribution of the surface types, using the

bounded [−1, 1] local shape index (Equation 4.2.4). The degree of local curved-

ness (Equation 2.3.6), along with the local image gradient orientation (Equa-

tion 5.2.1) and the corresponding local magnitude estimate (Equation 5.2.2) can

also be computed from the first and second Gaussian derivatives.

2. Nine Gaussian weighted sub-regions (Balasuriya and Siebert, 2006; Balasuriya,

2005) are placed over the sampling patch, as shown in Figure 5.4. Each of the

nine regions is overlapped by one standard deviation in order to minimise the

spatial aliasing occurred during the sampling stages and to provide greater con-

tinuity within the descriptor. Since overlapping the Gaussian sub-regions results

in the feature descriptors extracted from adjacent subregions being correlated,

this reduces spatial aliasing and also enforces spatial continuity that occurs dur-

ing sampling. For example, small shifts in the location of the keypoint will now

result in small (continuous) changes in the magnitude of the composite keypoint

descriptor (and its component vectors). The choice of how many sub-regions to

employ is a trade-off between excessive dimensionality and feature discriminabil-

ity, particularly to symmetric patterns. A sampling configuration comprising

3×3 overlapped matrix had been found by Balasuriya to achieve a good working

compromise.

3. For each of the nine sub-regions placed over the sampling patch, a local distribu-

tion histogram of the relative frequencies of the nine surface types is computed,

weighted by the degree of curvedness. Similarly, an eight-element histogram, cov-

ering the 360◦ range of orientations, can be formulated, weighted by the magni-

tude. Each histogram is normalised to unity magnitude (i.e. to a unit vector) and

the influence of large histogram values in each normalised histogram is reduced

by clipping the value at a threshold of
1√
a

where a is the number of bins in the

histogram. This means that the distribution of orientations has greater emphasis.

The histograms are then concatenated to form Hi, which is then normalised to
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Figure 5.4: Placement of the nine sub-regions, with the spatial support at one standard
deviation, over the keypoint location.

unity magnitude.

̂LocalHisti =
(
Ĥsurface

)(
̂Horientation

)
(5.3.1)

This normalisation step provides invariance to curvature scale (used for weights).

The clipping (as per Lowe (2004)) prevents range surface outliers, i.e. spikes, from

affecting the local signatures.

4. The nine normalised histograms LocalHisti are concatenated to form the final

feature descriptor:

Descriptorθcanonical
=
(

̂LocalHist1 + ̂LocalHist2 + ...+ ̂LocalHist9

)
(5.3.2)

Figure 5.5 illustrates a selection of feature descriptors extracted from four different

keypoints on the face range image. The keypoints selected are shown in Figure 5.5(a),

where the corresponding descriptor number have been labelled accordingly. This figure

illustrates the uniqueness of the feature descriptors extracted from different locations

on the face.
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(a) Selected keypoints

(b) Descriptor extracted from keypoint 1

(c) Descriptor extracted from keypoint 2

(d) Descriptor extracted from keypoint 3

(e) Descriptor extracted from keypoint 4

Figure 5.5: A selection of descriptors extracted from four different keypoints on the face
range image, over nine overlapping sub-regions. The colours correspond to the different
surface types the underlying information have been assigned to (see Figure 4.2 for the
colour chart), along with the orientation (shown as purple bars).
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5.4 Keypoint Localisation

The (x, y) location of stable keypoints are detected on the range images using a mod-

ification of Lowe’s keypoint localisation algorithm, in order to accommodate the 2.5D

modality accordingly. A Gaussian-tapered segmentation mask is applied to the range

image in order to isolate the area of interest while avoiding sharp boundaries which

would result in providing false keypoints, and the image is then z-normalised to mean

µ = 0 and standard deviation σ = 1 to standardise the (potentially large) dynamic

ranges of values present in range image. The z-normalised image is then blurred with

a factor of 0.5 to suppress aliasing and is then up-sampled by a factor of two using

linear interpolation. Linear interpolation was selected for this work because the com-

putational effort taken for bicubic interpolation is too expensive for the size of images

used in this work.

This is followed by the creation of a discrete scale-space representation (Lindeberg,

1994a,b; Mikolajczyk, 2002; Mikolajczyk and Schmid, 2004) of the range image using

the Gaussian and the Difference-of-Gaussian (DOG) pyramids (Lowe, 2004) with sub-

interval layers. The signal maxima and the minima are detected within the DOG scale-

space and potential keypoints with a low contrast (compared to a user-defined contrast

threshold of 0.003) are rejected. The H, K, k1 and k2 curvatures are then computed

for each sub-level using the first and second Gaussian derivatives parameterised with

σ corresponding to that of the scale-space. This process provides more stable range

surface gradient estimates by employing Gaussian smoothing in the calculation of the

derivatives. By comparing the ratio of the principle curvatures
k1
k2

to a curvature

threshold r = 5, spatially compact feature locations are successfully located. As a

result, a set of (x, y, σ) values to each keypoint location are detected.

Figure 5.6(a) shows a set of keypoints located on a range image using the 2.5D key-

point localisation algorithm and Figure 5.6(b) illustrates the position, scale (shown as

the magnitude of the arrows) and the canonical orientation(s) (shown as the directions

of the arrows) for each keypoint.

5.5 Keypoint Matching

The discriminability of the extracted feature descriptors against viewpoint rotational

changes can be determined by matching the feature descriptors extracted from differ-
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(a) Keypoints located (b) Keypoints, scale and orientations

Figure 5.6: (a) Keypoint locations (shown as +) extracted using the modified SIFT
keypoint localisation algorithm. (b) The scale (demonstrated by the magnitude of the
arrows) and the canonical orientation(s) (the directions of the arrows) for each keypoint
locations.

ent set of images, captured at different angles. Following the methodology proposed

by Lowe (2004), by using the nearest neighbour algorithm, a candidate is located by

computing and ranking (in ascending order) the angle between the descriptors using

vector dot product. False matches can be initially rejected using the likelihood ra-

tio test if the ratio between the potentially best matched descriptor to its next best

matched descriptor is above a distRatio threshold of 0.8 (Equation 5.5.1).

Match =

1, if
val1
val2

< distRatio

0, otherwise
(5.5.1)

In order to verify matches between two different range images (captured at different

angles), a similarity transform is computed between the two sets of descriptors by means

of the Hough Transform. Clusters of matching features with a consistent interpretation

(i.e. matches between features exhibiting the same relative shift in orientation, transla-

tion and scale) are identified, in other words, a similarity transform between a test set

of descriptors and an image in the database is computed using the Hough transform. If

three or more entries are located in each cluster, it is possible to apply a robust affine

transform fitting procedure to the cluster in order to recover the affine pose between

the matched features and also identify outliers. This process matches reliably a set of
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extracted feature descriptors to sets of feature descriptors contained in a database and

extracted from range images captured at different angles.

Figure 5.7(a) shows a self-matching range image at the same scale while Fig-

ure 5.7(b) shows the same range image being matched to an enlarged version of the

image.

(a) Self-matching, fixed scale (b) Self-matching, varied scale

Figure 5.7: Examples of point-to-point matching of the range images where (a) shows a
self-matching range image and (b) shows the same image being matched to an enlarged
version of the image.

5.5.1 Hough Transform

The Hough transform (Ballard, 1981; Duda and Hart, 1972) is used to identify clusters

of features that have a consistent interpretation of an object hypothesis by a voting

procedure, where the object hypothesis contains not only the object label but also its

position, scaling and rotation (in this work). The Hough transform is especially useful

when there are a high proportion of outliers in the matched feature descriptors.

The Hough transform maps descriptor matches from spatial coordinates in the visual

scene to a hypothesis voting accumulator space to eliminate outlying object, position

or pose hypotheses which accumulate fewer votes. Feature descriptor matches vote

into the Hough accumulator space which is parameterised by the underlying degrees

of freedom considered within the problem domain: translation (in plane), rotation (in

plane) and scale in size.
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5.5.2 Affine Transformation

Lowe’s methodology (Lowe, 2004) is applied directly for the estimation refinement here.

Once the Hough transform has identified three or more entries in each cluster, the affine

pose between the matched features can be recovered, thereby allowing outliers to be

located, using affine transformation.

If f(x, y) and f ′(x′, y′) are the feature descriptors from training and test respectively,

the transformation of the object from the training image to the test image may be

accurately given as follows:

[
x′

y′

]
=
[
m1 m2

m3 m4

] [
x
y

]
+
[
tx
ty

]
(5.5.2)

where m1, m2, m3, m4 and tx, ty are the parameters of the affine transformation

of the object from the training appearance view to the test scene. These may be

determined by solving the following the least squares system where a single match

f(x, y) and f ′(x′, y′) is indicated. Since there are six unknowns, at least three match

pairs (six equations) will be needed to determine transformation parameters.

x
′

y′

...

 =


x y 0 0 1 0
0 0 x y 0 1

· · ·
· · ·




m1

m2

m3

m4

tx
ty

 (5.5.3)

5.6 Summary and Discussions

This chapter presents a complete implementation of the SIFT algorithm in the 2.5D

domain. The aim was to incorporate the feature descriptor devised from the previous

two chapters into a suitable framework, thereby allowing range images to be represented

and matched. The nature of the devised feature descriptor inspired the idea of the 2.5D

SIFT implementation since the structure of the feature descriptor is analogues to Lowe’s

2D SIFT feature descriptors. Similar to standard SIFT, there are four main stages in the

2.5D SIFT: keypoint localisation, canonical orientation assignment, feature descriptor

extraction and finally the keypoint matching.
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By adopting statistical normalisation of the input range images it becomes possible

to set a consistent set of parameters appropriate to detecting stable keypoint locations

and their appropriate scales (independently of the dynamic range of the input range

maps or their content). In the standard SIFT formulation, viewpoint rotation invari-

ance is achieved by rotating the range image patch sampled at a keypoint location to

its canonical orientation. The stability and accuracy of this keypoint orientation esti-

mator was improved in this work by increasing the orientation histogram resolution,

smoothing this histogram in line with the increased angular resolution and then, by

applying polynomial interpolation, to recover the canonical orientation with sub-bin

(±1◦) precision.

In order to capture a perceptually significant description of the local surface patches

sampled at keypoint locations, the 2.5D keypoint descriptors had been formulated to

sample the underlying relative frequencies of surface types present. The feature de-

scriptor is based on histogramming the shape index computed over the sampled patch

and is weighted by the degree of local surface curvedness. A second component of the

keypoint descriptor comprises the histogrammed local orientations within the patch

weighted by the local gradient magnitude values. Thereby the keypoint signatures

based on surface shape, degree of curvature and the relative orientations have been

captured. Furthermore, potential sampling effects caused by spatial aliasing within

the standard SIFT keypoint descriptor have been minimised by placing nine Gaussian

weighted sub-regions, with spatial support of one standard deviation, over each sam-

pled keypoint location at the detected scale. The aim of this feature descriptor is to

increase the invariance properties of the feature descriptor to both Euler’s in-plane and

out-of-plane rotations.

The next chapter will present the validation on this 2.5D SIFT system using range

images of a human face and a mannequin head captured at different angles, in order

to determine the invariance properties of the feature descriptors against rotational

changes. The validation will therefore be broken down into two main categories: a)

in-plane and b) out-of-plane rotational changes. The in-plane rotational changes can be

simulated synthetically using MATLAB’s built-in imrotate function, along with the

bicubic interpolation in order to avoid aliasing of the resulting rotated images. The

out-of-plane rotational data used in the validation consists of real data captured by the

single-pod stereo-pair system described in Chapter 3.
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Keypoints are then located within each of the data set, followed by the canon-

ical orientation assignment, thereby allowing feature descriptors to be extracted for

each keypoint from each of the test images. These feature descriptors, along with

the (x, y, σ, θ) information, are recorded in a database where each of the descriptors

extracted from the baseline range image can be compared to each of the feature de-

scriptors extracted from the testing images, resulting in an estimation of the stability

of the feature descriptors against rotational changes.
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Chapter 6

Keypoint Matching Validation

The theory and methodology of the 2.5D SIFT system was presented in Chapter 5

where stable keypoints are located at various locations in the range images, followed by

the recovery of the canonical orientation(s) of surface patches, thereby allowing feature

descriptors to be extracted at each keypoint location using the (x, y, σ, θ) information.

This chapter will validate the invariance properties for the extracted feature descriptors

from the 2.5D SIFT system.

6.1 Objectives

The aim of this chapter is to investigate and address the invariance properties of the

feature descriptors extracted from the 2.5D SIFT system against rotational changes.

For the purposes of this validation, the investigation was to be conducted on fixed scale

images (i.e. images of fixed size). The scale of the image chosen for this investigation is

approximately of size 244×369 pixels, which is similar to the standard scale Lowe used

in his experiments for 2D SIFT (Lowe, 2004).

A set of stereo-pair images (of a human face and a mannequin face respectively) have

been captured and processed where the resulting range images are employed as the test

data for this investigation. The process involved in capturing and processing stereo-pair

images was described in Section 3.2. The data set comprises images captured face-on

and then at approximately 10◦ intervals in both clockwise and anticlockwise directions

up to approximately 90◦ of rotation (where the profile of the face will be captured by

the cameras) in order to generate Euler’s out-of-plane rotations about the yaw axis.
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In order to simulate Euler’s in-plane rotational changes, the range images have been

rotated synthetically using MATLAB’s standard imrotate function at 10◦ intervals.

Once the range images have been pre-processed and standardised, including the size

reduction of the range images using an half-octave Gaussian pyramid and the derivation

of the resulting Gaussian mask image, they can be passed into the 2.5D SIFT system

described in the previous chapter where feature descriptors are extracted from each

keypoint location. In order to determine the invariance properties of the 2.5D SIFT

system, the feature descriptors extracted from each range image are compared against

the feature descriptors extracted from the range images captured at a different angles.

The Hough Transform (HT) is then used to detect potential matches and a match

is confirmed by fitting an affine transform on each cluster of three or more potential

matches where outliers can be identified and rejected.

The results obtained can then be represented in a match-matrix showing the per-

centages of matched and filtered keypoints obtained for matches between range images

depicting all combinations of viewpoints. An initial indication of the performance of

the system can therefore be established by noting the degree of invariance to rotation

attained for each acquired viewpoint.

The remainder of this chapter is organised as follows: Section 6.2 details the plan

for the validation of the 2.5D SIFT system, in particular the invariance of the fea-

ture descriptors against rotational changes. Section 6.3 presents the validation results

obtained for this investigation and finally Section 6.4 concludes this investigation.

6.2 Validation Plan and Methodology

This section presents the proposed plan to validation the 2.5D SIFT system with respect

to rotational changes. It is important for a feature descriptor to represent the distinct

surface shape signature in order to differentiate between surface locations, it is also vital

for the feature descriptor to exhibit strong invariance under rotational changes about

all three Euler’s exes. However, in this pilot investigation, only the Euler’s in-plane

rotation and out-of-plane rotation about the yaw axis were taken into consideration.

The invariance of the feature descriptors against rotational changes can be measured

by attempting to match the feature descriptors extracted from a certain range image

against a set of feature descriptors extracted from another (rotated) range image. The
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percentage of matched keypoints can be determined and as a result, the invariance can

be measured.

6.2.1 Data Set

It was possible to capture only a modest data set within the scope of this research

project in order to validate the 2.5D SIFT system. This data comprises two sets of

range images captured at different viewpoint angles (one set of range images of a human

face and one set of range images of a mannequin head). The aim of the validation is

to test the invariance of the feature descriptors against viewpoint rotational changes,

therefore two main types of data set have been used for this investigation, namely the

range images simulating the Euler’s in-plane and out-of-plane rotational changes. A

total of 38 captured out-of-plane images (2×19) and 72 synthetically generated in-plane

(2×36) rotational images are used for this investigation.

The range images of a human face and a mannequin head, captured face-on (i.e. at

0◦), are referred to as the baseline images here. These have been generated from

the stereo-pair images captured using a single pod stereo-pair capturing system and

processed by a stereo-pair package, C3D2, where the details can be found in Section 3.2.

The range images are pre-processed using HIPS in order to eliminate the header

and suppress any random noise using ASL (see Section 3.3.1). Furthermore, for the

purposes of this investigation, the images are down-scaled from 1498×2249 pixels to

244×369 pixels (equivalent of Level 6 of the half-octave pyramid) using an half-octave

Gaussian pyramid.

The baseline images are then used to generate a set of in-plane rotated images,

detailed in the next section.

6.2.1.1 In-Plane Rotational Changes

Based on the baseline images, in-plane rotational changes can be simulated using MAT-

LAB’s built-in imrotate, along with the bicubic interpolation option in order to re-

duce aliasing caused by the rotation of images. Since MATLAB’s built-in rotation

function is efficient, it can provide a faster and an accurate means to generate in-plane

rotated range images. As a pilot investigation, each baseline (face-on) range image

is rotated at 10◦ intervals (clockwise) up to 350◦ of rotation. Figure 6.1 illustrates a

selection of the baseline range image of a mannequin head rotated to different angles.
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(a) 0◦ (b) 40◦ (c) 120◦ (d) 200◦ (e) 320◦

Figure 6.1: A selection of in-plane rotated range images of a mannequin head, captured
at (a) 0◦ (baseline), and then rotated synthetically using MATLAB at (b) 40◦, (c) 120◦

(d) 200◦ and (e) 320◦ in the clockwise direction.

6.2.1.2 Out-of-Plane Rotational Changes

The out-of-plane test data set comprise range images captured at baseline (i.e. face-on

at 0◦) and then at approximately 10◦ intervals about the yaw axis in both clockwise

and anticlockwise directions (i.e. the face is rotated left/right horizontally) up to and

including 90◦.

Here, in order to capture the different rotational images, each subject (i.e. a human

and a mannequin head respectively) was located on a seat placed over a reticule marked

in polar degrees of 10◦ intervals, allowing the seat to be rotated to ±90◦. The seat is

rotated accordingly and the images are taken at different angles, producing a set of

stereo-pair images of Euler’s out-of-plane rotations about the yaw axis. While this is

a comparatively crude method for estimating the rotation about the yaw axis, it is

adequate as a proof-of-concept at this stage of the work.

Figure 6.2 shows a selection of out-of-plane rotated range images of a mannequin

head, captured using the methodology named above. Figure 6.3 illustrates the same

images with a Gaussian mask, normalised to [0,1], placed over the range images in order

to segment the area of interest.

(a) -90◦ (b) -40◦ (c) 0◦ (d) 40◦ (e) 90◦

Figure 6.2: A selection of out-of-plane rotated range images of a mannequin head,
captured at (a) 90◦ clockwise, (b) 40◦ clockwise, (c) 0◦ (baseline), (d) 40◦ anticlockwise
and (e) 90◦ anticlockwise.

The next section outlines the overall approach taken for the validation.
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(a) -90◦ (b) -40◦ (c) 0◦ (d) 40◦ (e) 90◦

Figure 6.3: A selection of out-of-plane rotated range images of the mannequin head
with masking, captured at (a) 90◦ clockwise (b) 40◦ clockwise, (c) 0◦ (baseline), (d)
40◦ anticlockwise and (e) 90◦ anticlockwise.

6.2.2 Overall Approach

This section outlines the overall approach taken to validate the 2.5D SIFT system

against rotational changes. Given a set of (pre-processed) range images captured at

different angles, the (x, y, σ, θ) information can be extracted using a scale-space keypoint

localisation approach, followed by the extraction of the feature descriptor for each

keypoint. Thus, the (x, y, σ, θ,Descriptor) can be recorded in a local database for each

range image. The steps for feature extraction and matching are as follows:

1. For each range image, detect the stable keypoints (i.e. their real-value (x, y) loca-

tion) and their appropriate scale σ using the methodology outlined in Section 5.4.

2. Canonical orientation(s) can be determined for each keypoint using its appropriate

σ based on the methodology shown in Section 5.2 with sub-pixel accuracy. The σ

determines the size of the overall circular Gaussian measurement aperture (size =

4σ).

3. Extract the feature descriptors from each of the keypoint location using the ap-

propriate σ, and its canonical orientation(s) θ, using the method shown in Sec-

tion 5.3.

4. Create a database with n entries, where n is the number of range images em-

ployed for the test data set, one for each range image for each rotational change.

The database can be created within MATLAB using the cell array data struc-

ture, allowing multiple information to be stored simultaneously, where each level

created contains one range image corresponds to each viewpoint captured.
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5. Store the relevant information, each of the corresponding (x, y, σ, θ,Descriptor),

into the database for each range image, along with the corresponding normalised

image.

6. The discriminability of the feature descriptors can be calculated by the match-

ing algorithm (using log-likelihood), given in Section 5.5, between the feature

descriptors extracted from the baseline and the test range images in the Hough

Transform space. Initial putative matches between the images are detected us-

ing the nearest-neighbour algorithm, and these potential matches are confirmed

as either positive matches or outliers within the HT. While the HT itself is

not infallible in recovering outliers, its use allows a more accurate calculation of

the discriminability. The positive matches cannot be guaranteed to be all correct.

However, from visual inspection of the outliers, the HT appears to be effective.

7. The final results contain the number of keypoints in the tested range image, the

number of potential matches between the tested range image and the baseline

image, the number of positive matches and the number of outliers. This can

then be used to determine the percentage of matched keypoints (Equation 6.2.1),

which are then presented in a match-matrix used to represent all combinations

of the matching of the images. See Section 6.2.3.1 for details.

% of positive (filtered) matches =
# of positive matches
# of potential matches

× 100 (6.2.1)

8. The results can also be presented in a Receiver Operating Characteristics (ROC)

space, providing a visual interpretation of the rate of classifications. Details of

ROC can be found in Section 6.2.3.2

6.2.3 Presentation of Results

Each percentage in the match-matrix illustrates the percentage of the positive and

filtered matches between two range images, indicating the invariance of the feature

descriptors between these two range images under rotation. The matching results

obtained for every possible combination between the rotated range images can be pre-

sented mathematically as well as visually. This section details two of the methodologies

used in this research work.
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6.2.3.1 Match-Matrix

A match-matrix is a summary of results typically used in an unsupervised learning en-

vironment and is similar to the confusion matrix used in Section 3.6, where it was used

in a supervised learning environment. The match-matrix used in this work comprises

the percentages of positive matches obtained for matches between range images depict-

ing all combinations of viewpoint (i.e. it covers all possible rotational viewpoints used

in the data set). The main (or leading) diagonal entries correspond to the percentage

of matched keypoints between self-matching images (i.e. an range image matching with

itself).

Table 6.1 illustrates a toy-example of a match-matrix obtained for all the possible

combinations of the out-of-plane rotational results from -30◦ to 30◦. Each row corre-

sponds to an image stored in the database and each column corresponds to the tested

image. For example, entry M2,3 of this match-matrix corresponds to the percentage of

positive matches between range images captured at -20◦ and -10◦, which is 95% in this

particular toy-example.

Test Image
-30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦

-30◦ 100 90 75 0 0 0 0
-20◦ 85 100 95 80 0 0 0

Reference -10◦ 54 75 100 85 62 0 0
Image 0◦ 0 32 65 100 82 68 0

10◦ 0 0 27 67 100 74 52
20◦ 0 0 0 43 76 100 87
30◦ 0 0 0 0 23 46 100

Table 6.1: A toy-example of a match-matrix for all the possible combinations of the
out-of-plane rotational results.

The match-matrix can also be represented visually using bar charts. Each height

of the columns represent the percentages of matched keypoints, as a result, the higher

the column, the better the results. Figure 6.4 shows the graph obtained from the

toy-example match-matrix in Table 6.1.
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Figure 6.4: Match-matrix results represented in a graph obtained from the toy-example
in Table 6.1.

6.2.3.2 Receiver Operating Characteristics (ROC)

Receiver Operating Characteristics (ROC) is a graphical plot of the true positive rate

(TPR) versus the false positive rate (FPR). The TPR is also known as the sensitivity

whereas the FPR is also known as 1-specificity. TPR determines a classifier or a

diagnostic test performance on classifying positive instances correctly among all positive

samples available during the test. FPR, on the other hand, defines how many incorrect

positive results occur among all negative samples available during the test. As a result,

ROC graphs are useful for comparing classifiers as well as providing a meaningful

visualisation tool. ROC are commonly used in medical decision making (Altman and

Bland, 1994; Bewick et al., 2004; Egan, 1975; Park et al., 2004; Zou, 2002), but in recent

years has been used increasingly in machine learning and data mining research (Fawcett,

2006; Spackman, 1989). ROC is also similar to the Precision-Recall (PR) graph in

Information Retrieval (IR) (Belew, 2000; van Rijsbergen, 1979). The subtle difference

between ROC and PR is that ROC curves are commonly used to present results for

binary decision problems in machine learning whereas PR curves are normally employed

to deal with highly skewed datasets in order to obtain a more informative picture of the
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algorithm’s performance (Davis and Goadrich, 2006). As a result, it is more suitable

to use ROC as opposed to the PR curve in this work, since the results will be a binary

decision (i.e. either it is a match or it is not a match) . This section describes how to

derive an approximate ROC from the 2.5D SIFT matching algorithm.

The TPR and FPR, along with the precision and recall values, can be determined

from a confusion matrix containing information about the true positive (TP), false

positive (FP), false negative (FP) and true negative (TN) rates, illustrated in Table 6.2.

The TPR and FPR can then be determined as shown in Equation 6.2.2.

Correct results/classification

Obtained results/

True Positive False Positive

classification

(TP) (FP)
False Negative True Negative

(FN) (TN)

Table 6.2: Confusion matrix for the four possible outcomes: true positive (TP), false
positive (FP), false negative (FN) and false positive (FP). This can then be used to
calculate the TPR and FPR, as well as the precision/recall value.

TPR =
TP

TP + FN
=

TP

Total Positives

FPR =
FP

FP + TN
=

FP

Total Negatives

(6.2.2)

Similarly, the precision and recall values can be determined from the confusion

matrix table, as shown in Equation 6.2.3. Note that recall is the same as sensitivity,

which is equivalent to the TPR.

Recall =
TP

TP + FN

Precision =
TP

TP + FP

(6.2.3)

A ROC space is defined by the FPR and TPR as the x and y axes respectively

(i.e. plotting TPR against FPR), which depicts relative trade-offs between the true

positive and the false positive. Since TPR is equivalent to sensitivity and FPR is equal

to 1-specificity, the ROC graph is sometimes called the sensitivity vs 1-specificity plot.

Each prediction result or one instance of a confusion matrix represents one point in the

ROC space.
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Figure 6.5 illustrates the ROC space with two toy example prediction points (blue

points). The diagonal line (red line), known as the line of no discrimination, divides

the ROC space in areas of good or bad classification, where points above the diagonal

line indicate good classification results (i.e. better than random guessing), while points

below the line indicate wrong results. The best possible prediction method would yield

a point in the upper left corner or coordinate (0, 1) of the ROC space, representing a

100% sensitivity (all true positives are found) and 100% specificity (no false positives

are found), known as a perfect classification. A completely random guess would give a

point along the line of no-discrimination from the left bottom to the top right corners.

In other words, the closer the points are to the y-axis (i.e. smaller FPR) and the closer

the points are to the top left hand corner (where TPR=1), the better and more reliable

the classifications are.

Figure 6.5: A graph demonstrating the ROC space. The diagonal (red) line shows the
line of no discrimination (i.e. random guess) and any points located above the line is
considered to be a good classification whereas any points below the line is consider a
bad classification.
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In this work, for each pairing of the test range images, the probability of the TP,

FP, TN and FN can be obtained as follows:

TP =
# of positive matches

total # of keypoints detected

FP =
# of false matches

total # of keypoints detected

TN =
total # of keypoints detected−# of potential matches

total # of keypoints detected

FN = 1− TP − FP − TN

(6.2.4)

It is not necessary to convert the TP, FP, TN and FN into probabilities in ROC.

However, the number of keypoints detected for each image is unique in this work, it is,

therefore, better to convert the values of TP, FP, TN and FN into probabilities for a

consistent representation, as shown above.

The TPR and FPR for each possible image pairing can be calculated using Equa-

tion 6.2.2 and then plotted within a ROC space, thereby providing a visual means of

interpreting the classification results.

6.3 Validation Results

This section presents the matching results obtained for both in-plane and out-of-plane

images based on the methodology outline in the previous section. The purpose of this

validation of the 2.5D SIFT system is twofold: firstly to test the invariance properties

on Euler’s in-plane rotational changes and secondly to test its invariance to the Euler’s

out-of-plane rotations. Results are presented in both the match-matrix forms and in

the ROC space.

6.3.1 In-Plane Rotations

There are two sets of in-plane rotation data: range images of a human face and range

images of a mannequin head. The baseline (no rotation) image was rotated synthetically

using MATLAB in clockwise direction increments of 10◦ up to 350◦ (i.e. a full circle).

Keypoints and feature descriptors were then extracted from each range image and were

then stored in a database for matching. Results are shown below.
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Table 6.3 presents the match-matrix obtained by exploring all the combinations of

the feature descriptors extracted from the synthetically in-plane rotated range images

from 0◦ at increments of 10◦ in a clockwise direction up to 350◦. This match-matrix is

presented visually in Figure 6.6(a). There are some instances in the matrix where 0%

of matched keypoints are returned. This is caused by the insufficient putative matches

between the images. Based on the obtained results, the feature descriptors showed

promising self-matching properties. Moreover, close examination of the results reveals

over 68.7% of the test images are matched at over a 50% keypoint matching rate, while

over 46.8% of the test images are matched at over 60% keypoint matching rate. The

results are plotted in a ROC space as shown in Figure 6.6(b), showing the majority of

the matches are above the line of no discrimination.

(a) Match-matrix (b) ROC

Figure 6.6: (a) Graph illustrating the match-matrix results of the percentage of matched
keypoints, produced from the in-plane rotational data of a mannequin head (from 0◦

at 10◦ clockwise increments up to 350◦). (b) Results plotted in ROC space.
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0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦

0◦ 100 83.78 88.24 60 58.33 0 0 0 0 0 50 0 0 0 62.5 0 0 100
10◦ 87.5 100 85.71 93.75 66.67 100 0 0 57.14 75 0 0 0 0 0 75 62.5 63.64
20◦ 87.5 84.38 100 72.73 55.56 57.14 0 0 60 66.67 25 0 0 75 0 75 0 0
30◦ 54.55 89.47 73.08 100 73.33 66.67 66.67 75 55.56 57.14 0 57.14 60 66.67 71.43 75 66.67 63.64
40◦ 55.56 40 66.67 68.42 100 63.64 70 87.5 0 0 66.67 0 0 0 66.67 66.67 60 77.78
50◦ 57.14 57.14 84.62 57.14 67.65 100 80.77 66.67 54.55 57.14 57.14 60 75 55.56 83.33 62.5 60 66.67
60◦ 100 60 53.33 55.56 57.14 72.73 100 72.22 75 60 60 25 0 66.67 57.14 71.43 0 71.43
70◦ 60 70 62.5 60 60 84.21 68.97 100 71.43 62.5 62.5 66.67 0 57.14 100 100 0 61.54
80◦ 0 0 0 0 66.67 57.14 66.67 76.67 100 78.26 57.14 66.67 0 0 75 57.14 0 66.67
90◦ 0 0 0 0 60 70 66.67 53.33 65.52 100 78.95 62.5 57.14 75 62.5 0 0 66.67
100◦ 16.67 53.85 62.5 60 80 60 60 63.64 73.68 82.61 100 78.57 60 0 70 70 75 56.25
110◦ 0 0 0 0 0 75 55.56 87.5 57.14 63.64 81.82 100 92.86 72.73 66.67 66.67 0 66.67
120◦ 57.14 0 75 60 55.56 66.67 60 71.43 83.33 0 76.92 79.17 100 69.57 71.43 60 66.67 60
130◦ 0 70 75 66.67 66.67 0 66.67 60 62.5 57.14 0 60 65 100 88.46 69.23 53.85 75
140◦ 55.56 55.56 33.33 60 58.33 72.73 72.73 62.5 77.78 0 0 66.67 57.14 65.38 100 74.36 71.43 66.67
150◦ 57.14 85.71 100 100 62.5 60 62.5 0 0 60 60 100 60 58.33 74.19 100 81.25 73.33
160◦ 62.5 62.5 60 75 55.56 55.56 57.14 66.67 75 75 75 0 0 70 75 83.33 100 78.05
170◦ 70 66.67 60 66.67 57.14 0 57.14 62.5 57.14 57.14 0 0 0 53.85 62.5 87.5 73.68 100
180◦ 75 20 57.14 62.5 75 0 57.14 66.67 75 0 0 60 0 62.5 0 80 85.71 63.16
190◦ 62.5 60 55.56 57.14 66.67 71.43 66.67 75 84.62 63.64 0 0 57.14 70 70 91.67 70 82.14
200◦ 60 57.14 55.56 57.14 0 55.56 100 0 60 60 100 0 0 70 83.33 57.14 55.56 100
210◦ 62.5 0 55.56 66.67 66.67 0 0 0 0 0 57.14 0 66.67 66.67 66.67 60 54.55 63.64
220◦ 66.67 66.67 66.67 60 62.5 100 0 60 0 0 0 75 60 0 0 75 62.5 63.64
230◦ 75 60 57.14 62.5 63.64 66.67 55.56 66.67 50 0 0 0 0 100 60 50 0 55.56
240◦ 88.89 57.14 60 60 70 66.67 75 0 0 66.67 0 100 0 100 62.5 66.67 0 66.67
250◦ 0 0 100 100 100 71.43 57.14 0 60 0 60 100 100 100 55.56 66.67 57.14 0
260◦ 0 0 60 70 83.33 60 50 87.5 60 0 0 0 0 66.67 0 0 0 0
270◦ 55.56 66.67 0 0 0 62.5 100 75 0 75 0 75 0 0 0 0 60 90
280◦ 71.43 60 0 60 75 60 100 62.5 60 0 0 75 0 0 0 0 0 20
290◦ 0 80 75 0 0 0 62.5 0 0 0 0 66.67 66.67 66.67 0 0 0 100
300◦ 0 62.5 0 0 0 0 0 0 0 0 0 57.14 0 57.14 0 0 60 62.5
310◦ 60 0 66.67 0 0 0 0 75 0 0 0 0 60 0 57.14 54.55 100 55.56
320◦ 0 75 20 71.43 60 66.67 0 75 0 0 0 0 0 62.5 57.14 60 55.56 66.67
330◦ 55.56 0 75 66.67 55.56 57.14 0 0 0 0 83.33 0 0 66.67 0 40 71.43 90.91
340◦ 73.91 80 66.67 66.67 0 55.56 66.67 20 0 0 0 0 0 66.67 60 62.5 88.24 70
350◦ 78.79 72 100 66.67 75 57.14 83.33 57.14 0 0 0 0 0 0 64.71 66.67 54.55 66.67

180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

0◦ 90.91 57.14 72.73 62.5 66.67 75 0 0 0 100 57.14 0 0 66.67 66.67 63.64 66.67 70.97
10◦ 80 75 57.14 57.14 57.14 60 0 66.67 57.14 0 0 0 0 100 0 0 75 63.16
20◦ 100 62.5 93.33 60 60 0 0 0 62.5 57.14 0 83.33 0 66.67 0 66.67 0 88.89
30◦ 66.67 75 57.14 62.5 0 40 0 75 0 0 66.67 0 0 0 75 66.67 62.5 53.85
40◦ 100 75 40 61.54 66.67 70 0 0 66.67 0 60 0 0 60 66.67 70 75 85.71
50◦ 60 0 40 55.56 91.67 75 62.5 62.5 75 0 0 80 20 66.67 75 66.67 60 62.5
60◦ 84.62 66.67 0 66.67 100 75 66.67 75 75 0 0 100 60 55.56 60 0 0 66.67
70◦ 77.78 72.73 71.43 83.33 62.5 100 57.14 75 62.5 0 0 75 0 66.67 75 62.5 57.14 63.64
80◦ 66.67 72.73 66.67 0 66.67 0 66.67 0 0 71.43 83.33 0 40 85.71 66.67 75 0 25
90◦ 60 62.5 60 100 57.14 60 0 0 0 0 100 50 0 66.67 0 0 75 60
100◦ 0 75 66.67 0 62.5 71.43 60 60 0 0 0 0 80 60 71.43 100 55.56 54.55
110◦ 0 0 0 0 75 0 0 57.14 0 60 0 0 0 83.33 60 0 0 66.67
120◦ 50 66.67 66.67 55.56 0 60 75 60 66.67 0 100 0 57.14 58.33 75 57.14 0 57.14
130◦ 66.67 100 71.43 60 66.67 0 0 66.67 57.14 57.14 85.71 0 66.67 57.14 66.67 57.14 57.14 0
140◦ 60 57.14 75 75 0 100 75 75 60 66.67 60 57.14 0 70 61.54 63.64 62.5 64.29
150◦ 70 0 0 0 66.67 60 0 0 0 0 0 66.67 50 66.67 60 75 66.67 75
160◦ 85 66.67 100 0 60 60 66.67 0 62.5 0 0 0 0 62.5 72.73 54.55 60 84.62
170◦ 72.22 68.42 55.56 57.14 0 60 62.5 0 57.14 60 57.14 0 0 66.67 100 77.78 60 57.14
180◦ 100 76.92 80.77 72.73 66.67 60 0 0 0 60 60 0 0 83.33 62.5 0 60 100
190◦ 80 100 83.33 100 57.14 66.67 0 75 0 0 0 0 0 66.67 60 57.14 66.67 100
200◦ 80.95 80.56 100 81.08 63.64 75 0 0 57.14 20 0 75 0 60 77.78 62.5 66.67 58.33
210◦ 57.14 88.24 88.57 100 68.97 100 62.5 57.14 57.14 0 57.14 53.33 0 57.14 0 75 0 57.14
220◦ 60 60 88.89 67.74 100 72 100 60 60 0 0 0 0 0 0 0 0 55.56
230◦ 71.43 60 92.86 52.94 61.54 100 73.08 71.43 55.56 100 0 0 0 0 66.67 62.5 55.56 75
240◦ 90 60 62.5 25 80 70.83 100 72.73 75 71.43 0 0 20 0 0 75 0 60
250◦ 0 75 60 100 57.14 60 67.86 100 78.26 63.64 71.43 0 71.43 88.89 60 0 14.29 0
260◦ 100 0 75 62.5 57.14 58.33 76.92 76 100 62.96 80 60 75 75 0 0 66.67 40
270◦ 83.33 0 0 0 28.57 66.67 55.56 69.23 75 100 83.33 83.33 66.67 60 0 0 60 66.67
280◦ 63.64 57.14 40 66.67 60 66.67 0 70 70 82.61 99.38 88 63.64 60 0 60 62.5 57.14
290◦ 80 57.14 100 60 62.5 90 62.5 100 60 87.5 69.7 100 77.27 22.22 60 60 62.5 66.67
300◦ 83.33 80 0 57.14 0 57.14 71.43 0 75 57.14 76.92 77.78 100 76 70 57.14 33.33 83.33
310◦ 55.56 66.67 55.56 70 66.67 66.67 66.67 54.55 62.5 66.67 60 70 84.62 100 57.14 80 66.67 54.55
320◦ 60 0 71.43 60 20 60 66.67 0 0 0 0 57.14 66.67 73.08 100 94.74 69.23 60
330◦ 66.67 57.14 57.14 55.56 10 54.55 0 0 0 0 0 66.67 57.14 61.54 78.79 100 80 75
340◦ 66.67 100 60 66.67 0 66.67 60 62.5 0 100 0 71.43 75 75 78.57 73.08 100 87.88
350◦ 66.67 66.67 14.29 75 80 57.14 57.14 57.14 0 60 0 0 75 75 57.14 72.73 84.85 100

Table 6.3: Match-matrix results of the percentage of the matched and filtered keypoints
by HT, produced from the in-plane rotational data of a mannequin head (from 0◦ at
10◦ clockwise increments up to 350◦).
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Table 6.4 presents the match-matrix obtained by exploring all the combinations of

the feature descriptors extracted from the in-plane rotated range images of a human

face from 0◦ at 10◦ increments in the clockwise directions up to 350◦. The examination

of this matrix illustrates over 79.9% of the images are matched at over 50% keypoint

matched rate while over 55% of the test images are matched at 60% keypoint matching

rate. Once again, the feature descriptors show strong self-matching properties. Note

that there are fewer zero entries in this match-matrix, compared to the match-matrix

obtained from the mannequin head data (Table 6.3). This is because there are more

depth features within a human face whereas the depth features in a mannequin head is

much smoother. Figure 6.7(a) shows this match matrix in a graph and Figure 6.7(b)

illustrates the results in ROC space, demonstrating the majority of the matches are

above the line of no discrimination.

(a) Match-matrix (b) ROC

Figure 6.7: (a) Graph showing the match-matrix results of the percentage of matched
keypoints, produced from a set of in-place rotational data of a human face (from 0◦

at 10◦ increments in the clockwise direction up to 350◦). (b) Results plotted in ROC
space.
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0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦

0◦ 98.15 75.44 65 90 100 83.33 66.67 0 62.5 0 66.67 0 60 60 81.82 0 55.56 55.56
10◦ 81.03 100 71.7 71.43 75 57.14 0 50 80 37.5 62.5 0 0 66.67 54.55 85.71 66.67 63.64
20◦ 92.59 66.67 100 63.64 92.86 75 54.55 0 0 0 60 60 66.67 57.14 100 60 63.64 58.33
30◦ 69.23 78.95 79.59 100 69.64 76.19 86.67 0 0 0 0 0 62.5 0 66.67 75 75 70.59
40◦ 66.67 83.33 77.78 77.55 99.63 66.67 65 55.56 57.14 60 60 60 100 75 66.67 0 0 0
50◦ 28.57 58.33 100 69.23 66.67 100 71.43 80 66.67 0 25 0 0 66.67 57.14 83.33 63.64 87.5
60◦ 83.33 0 57.14 86.67 70.83 68.18 100 80 58.33 66.67 0 0 100 0 60 16.67 0 75
70◦ 80 55.56 66.67 14.29 90.91 80 77.78 100 83.78 53.33 57.14 57.14 0 0 20 57.14 75 100
80◦ 70 66.67 62.5 60 83.33 66.67 81.82 78 100 65.85 61.11 54.55 0 66.67 80 63.64 60 0
90◦ 66.67 72.73 71.43 61.54 70 42.86 100 70 78.79 100 88.24 94.12 71.43 71.43 60 54.55 64.71 53.85
100◦ 66.67 66.67 53.85 0 62.5 75 55.56 75 95 86.96 100 79.63 63.64 66.67 66.67 85.71 60 60
110◦ 60 57.14 55.56 69.23 55.56 66.67 0 57.14 77.78 94.44 72.34 99.62 80 69.23 60 66.67 75 60
120◦ 88.89 57.14 57.14 25 60 66.67 0 0 0 75 75 87.1 100 78.85 75 61.54 63.64 57.14
130◦ 55.56 0 66.67 60 69.23 100 62.5 0 0 60 0 78.57 85.37 100 78.72 61.9 66.67 81.82
140◦ 69.23 62.5 66.67 75 75 60 100 57.14 0 0 0 60 73.68 73.47 100 70.91 66.67 55.56
150◦ 70 61.9 78.57 60 78.57 73.33 66.67 77.78 70 88.24 0 0 75 59.09 76.36 100 70.97 60.71
160◦ 55.56 75 54.55 80 53.33 73.33 55.56 0 0 87.5 0 0 0 57.14 70.59 72.73 100 79.66
170◦ 57.14 75 55.56 54.55 20 55.56 0 66.67 0 0 75 0 0 57.14 71.43 53.33 82.69 100
180◦ 86.36 75 66.67 57.14 62.5 77.78 80 0 66.67 0 0 0 0 57.14 0 66.67 78.95 75.76
190◦ 66.67 58.82 55.56 0 68.75 70 62.5 66.67 0 0 0 66.67 66.67 0 100 90.91 75 78.38
200◦ 100 58.33 75 52.63 58.33 70 90 57.14 80 0 75 0 62.5 0 0 66.67 60 57.14
210◦ 54.55 68.75 64.29 87.5 66.67 57.14 90 55.56 57.14 90 0 0 60 75 60 0 62.5 75
220◦ 62.5 100 87.5 62.5 100 66.67 66.67 55.56 62.5 62.5 0 0 0 60 0 85.71 100 75
230◦ 62.5 53.85 63.64 90 52 73.08 75 60 66.67 55.56 71.43 0 0 57.14 66.67 66.67 58.33 70
240◦ 60 0 81.82 53.85 54.55 93.33 60 0 70 0 100 0 80 60 0 0 0 75
250◦ 60 66.67 100 60 56 57.89 60 100 55.56 75 77.78 0 100 90 60 57.14 20 75
260◦ 57.14 60 60 0 60 0 25 75 60 0 0 0 0 66.67 55.56 0 55.56 72.73
270◦ 0 60 75 75 55.56 75 55.56 0 57.14 71.43 0 60 100 80 100 83.33 66.67 60
280◦ 72.73 57.14 62.5 62.5 40 75 60 63.64 66.67 88.89 0 80 100 60 70 60 60 55.56
290◦ 55.56 55.56 80 60 57.14 60 0 57.14 71.43 66.67 57.14 75 100 0 0 62.5 75 55.56
300◦ 100 70 60 66.67 66.67 60 80 0 0 57.14 77.78 88.89 100 75 0 57.14 55.56 66.67
310◦ 62.5 100 0 62.5 0 66.67 0 0 75 66.67 66.67 0 0 72.73 100 100 62.5 64.29
320◦ 80 58.33 58.33 60 57.14 0 0 60 66.67 0 0 0 83.33 91.67 80 50 55.56 81.82
330◦ 64.29 66.67 80 85.71 66.67 55.56 0 60 60 57.14 75 75 100 57.14 80 81.82 62.5 86.67
340◦ 73.68 52.94 56.25 57.14 66.67 75 60 60 66.67 0 50 57.14 62.5 100 88.89 54.55 71.43 100
350◦ 70.97 69.7 66.67 70 54.55 54.55 0 57.14 62.5 100 0 0 66.67 0 66.67 57.14 100 61.54

180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

0◦ 82.35 85.71 100 93.75 57.14 66.67 60 66.67 57.14 66.67 75 60 0 75 60 54.55 68.18 77.78
10◦ 92.31 53.85 88.89 53.85 57.14 57.14 85.71 16.67 85.71 100 100 0 57.14 60 75 66.67 66.67 77.27
20◦ 57.14 73.33 66.67 80.95 78.95 80 90 0 0 0 66.67 33.33 0 54.55 64.71 60 75 71.43
30◦ 55.56 61.11 60 72 100 75 0 62.5 0 0 0 0 66.67 75 55.56 62.5 80 60
40◦ 100 83.33 85.71 100 58.33 100 60 66.67 57.14 62.5 0 0 62.5 62.5 0 66.67 0 75
50◦ 66.67 55.56 78.57 61.54 63.16 78.95 93.75 72.73 60 66.67 0 0 0 62.5 62.5 75 55.56 100
60◦ 90 54.55 53.85 100 83.33 55.56 100 62.5 53.85 60 66.67 75 71.43 0 0 0 0 53.85
70◦ 55.56 57.14 80 100 62.5 64.29 72.73 60 75 0 0 60 0 57.14 70 0 55.56 57.14
80◦ 44.44 66.67 61.54 100 80 0 54.55 100 57.14 66.67 83.33 60 75 75 66.67 66.67 60 0
90◦ 58.33 75 60 62.5 28.57 0 75 75 75 73.33 57.14 66.67 66.67 66.67 55.56 57.14 83.33 54.55
100◦ 0 0 0 28.57 60 66.67 66.67 75 0 0 50 88.89 87.5 100 75 62.5 50 0
110◦ 60 60 62.5 66.67 55.56 66.67 60 55.56 0 100 0 75 87.5 60 62.5 60 70 100
120◦ 66.67 0 0 75 60 0 66.67 60 0 0 57.14 60 62.5 66.67 0 60 88.89 60
130◦ 52.94 58.33 66.67 66.67 0 60 55.56 75 66.67 40 0 55.56 57.14 100 69.23 83.33 100 66.67
140◦ 61.54 0 57.14 63.64 54.55 60 57.14 0 0 0 0 57.14 57.14 57.14 100 57.14 81.82 50
150◦ 57.89 63.64 53.33 75 56.25 28.57 60 16.67 60 83.33 60 60 63.64 60 90.91 87.5 54.55 66.67
160◦ 70.97 81.25 77.78 26.67 0 75 57.14 0 0 0 0 0 57.14 83.33 0 70 63.64 87.5
170◦ 77.78 66.67 57.14 100 69.23 75 75 66.67 0 0 0 83.33 0 60 75 50 0 57.14
180◦ 100 77.03 80.95 100 66.67 0 57.14 62.5 0 0 62.5 62.5 0 0 66.67 80 62.5 89.47
190◦ 78.87 100 72.92 95.45 69.23 66.67 66.67 0 0 0 60 60 62.5 57.14 70 55.56 81.82 71.43
200◦ 71.43 75.47 100 71.43 63.89 60 55.56 0 55.56 0 66.67 50 100 57.14 57.14 0 62.5 53.85
210◦ 71.43 60.87 82.22 100 72 70 53.85 60 80 71.43 66.67 0 0 54.55 75 0 66.67 60
220◦ 100 92.31 82.35 74.6 99.65 79.03 65.22 57.14 0 0 66.67 62.5 0 66.67 75 55.56 60 57.14
230◦ 66.67 75 81.82 64.29 75.38 100 73.17 70 0 57.14 60 66.67 100 0 57.14 60 54.55 57.14
240◦ 100 81.82 100 66.67 75 71.74 99.63 78.72 54.55 66.67 0 0 100 0 60 100 0 75
250◦ 60 60 66.67 88.89 75 72 72.22 100 85 78.57 55.56 25 0 62.5 60 57.14 55.56 62.5
260◦ 0 66.67 0 86.67 83.33 71.43 72.73 84.21 100 73.33 80.95 77.78 0 88.89 62.5 57.14 100 66.67
270◦ 75 57.14 0 0 0 57.14 57.14 76.92 80.65 100 81.25 81.25 55.56 75 66.67 0 0 70
280◦ 62.5 60 20 40 75 57.14 60 80 72.73 92.59 99.6 74.42 64.71 66.67 75 75 75 54.55
290◦ 66.67 75 66.67 60 0 60 0 0 62.5 92.31 81.08 100 78.43 60 60 60 0 66.67
300◦ 55.56 0 77.78 60 55.56 66.67 0 75 0 75 72.73 84.85 100 78.95 75 55.56 70 66.67
310◦ 58.33 66.67 60 70 0 57.14 75 0 75 50 75 75 84.44 100 77.78 83.33 55.56 66.67
320◦ 87.5 85.71 75 0 0 77.78 0 0 75 0 60 75 70 79.66 100 73.21 72.73 70
330◦ 53.85 83.33 60 80 83.33 100 57.14 66.67 66.67 60 75 57.14 63.64 66.67 75 100 70.91 70.59
340◦ 55.56 100 60 66.67 53.85 60 83.33 0 60 85.71 100 57.14 75 66.67 78.95 74.14 100 68.85
350◦ 55.56 66.67 80 62.5 55.56 55.56 60 0 40 71.43 40 57.14 0 75 90 85 80 100

Table 6.4: Match-matrix results of the percentage of matched and filtered keypoints,
produced from the in-plane rotational data of a human head (from 0◦ at 10◦ clockwise
increments up to 350◦).
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6.3.2 Out-of-Plane Rotations

Table 6.5 illustrates the match-matrix obtained by exploring all the combinations of

the feature descriptors extracted from the out-of-plane rotated range images of a man-

nequin head from -90◦ to 90◦. This match-matrix is presented in Figure 6.8(a). Closer

examination of the matrix shows that not only do the feature descriptors have per-

fect self-matching properties (100% recognition rate), over 46.8% of the test images

are matched at over 50% of the keypoints matching rate while over 35.2% of the test

images are matched at over 60% of the keypoints matching rate. Figure 6.8(b) shows

the results in ROC space, illustrating that the majority of the results are above the

line of no discrimination.

(a) Match-matrix (b) ROC

Figure 6.8: (a) Graph illustrating the match-matrix results of the percentage of the
matched keypoints, produced from a set of out-of-plane rotational data of a man-
nequin head (from -90◦ to 90◦). (b) Matching results plotted in a ROC space.

120



6.3 Validation Results

-90◦ -80◦ -70◦ -60◦ -50◦ -40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

-90◦ 100 0 0 0 0 0 0 0 0 0 0 75 0 0 0 0 0 0 0
-80◦ 0 100 55.56 57.14 40 55.56 60 0 60 0 0 66.67 0 0 0 0 0 0 0
-70◦ 0 66.67 100 69.23 66.67 100 0 80 40 66.67 57.14 0 0 0 0 50 62.5 0 0
-60◦ 0 75 83.33 100 86.67 62.5 57.14 75 66.67 60 0 0 0 0 0 0 0 0 0
-50◦ 0 0 0 84.62 100 81.25 91.67 72.73 75 66.67 0 75 0 0 0 0 0 0 0
-40◦ 0 55.56 57.14 72.73 68.42 100 81.48 94.74 94.12 60 40 0 0 0 66.67 75 75 0 0
-30◦ 0 60 0 70 69.23 66.67 100 70 70 62.5 66.67 66.67 0 0 100 0 0 0 0
-20◦ 0 0 0 57.14 77.78 94.12 77.27 100 80.77 80 0 75 75 0 0 0 75 0 0
-10◦ 0 0 0 0 0 62.5 92.86 87.5 100 57.14 66.67 66.67 60 0 0 0 0 0 0
0◦ 0 0 0 66.67 66.67 57.14 60 81.82 85.71 100 76.47 75 60 0 0 0 0 0 0
10◦ 0 57.14 0 0 0 0 75 60 69.23 72.22 100 66.67 66.67 0 0 75 75 0 0
20◦ 0 0 0 0 60 0 0 0 66.67 100 66.67 100 79.17 66.67 57.14 0 0 0 0
30◦ 0 0 0 60 60 0 66.67 66.67 66.67 70 60 72.22 100 62.5 100 0 0 0 0
40◦ 0 0 0 0 0 0 66.67 66.67 60 60 57.14 75 81.82 100 66.67 0 66.67 0 0
50◦ 60 0 55.56 0 57.14 75 0 55.56 85.71 62.5 55.56 60 60 66.67 100 80 73.33 0 0
60◦ 0 0 0 0 0 0 0 0 0 60 0 75 75 0 85.71 100 85.71 75 0
70◦ 0 0 66.67 0 66.67 0 0 0 0 0 0 100 55.56 60 54.55 78.26 100 66.67 0
80◦ 0 0 0 66.67 0 0 0 75 0 57.14 0 60 66.67 0 62.5 60 85.71 100 0
90◦ 0 0 0 0 75 0 100 0 28.57 0 0 75 0 0 0 75 0 0 100

Table 6.5: Match-matrix results of the percentage of matched and filtered keypoints,
produced from the out-of-plane rotational data of a mannequin head, from -90◦ to
90◦ of rotations.

Table 6.6 presents the match-matrix obtained by exploring all the combinations of

the feature descriptors extracted from the out-of-plane rotated images of a human face

from -90◦ to 90◦. This match-matrix is also shown in Figure 6.9(a). This shows that

over 51.8% of the test images are matched at over 50% of recognition rate, with over

36.3% of the images are matched at over 60%. Figure 6.9(b) illustrates the results in

ROC space, showing the majority of the results are above the line of discrimination.

(a) Match-matrix (b) ROC

Figure 6.9: (a) Graph showing the match-matrix of the percentage of matched key-
points, produced from a set of out-of-plane range images of a human face from -90◦

to 90◦. (b) Matching results plotted in ROC space.
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-90◦ -80◦ -70◦ -60◦ -50◦ -40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

-90◦ 100 58.33 60 0 0 0 54.55 0 57.14 0 66.67 0 0 57.14 75 0 75 0 0
-80◦ 0 100 80 57.14 0 66.67 57.14 66.67 66.67 0 0 0 0 66.67 75 0 66.67 57.14 0
-70◦ 57.14 93.33 100 75 70 0 0 0 0 0 0 0 0 60 0 0 75 60 0
-60◦ 0 0 0 100 66.67 60 0 0 0 60 62.5 71.43 0 75 0 0 0 0 60
-50◦ 0 60 57.14 55.56 100 86.67 80 0 87.5 0 60 0 0 0 60 0 0 0 0
-40◦ 57.14 57.14 75 70 80 100 94.12 66.67 60 0 0 100 0 60 0 0 66.67 0 0
-30◦ 0 60 66.67 0 62.5 88.89 100 85.71 66.67 71.43 75 100 0 0 0 0 0 0 0
-20◦ 0 0 75 0 66.67 60 87.5 100 80 91.67 0 60 60 57.14 0 0 75 60 0
-10◦ 0 71.43 55.56 0 60 66.67 88.89 81.82 100 100 83.33 100 60 100 0 0 66.67 0 0
0◦ 0 0 0 0 75 0 75 66.67 90 100 90.91 72.73 87.5 55.56 57.14 0 0 0 0
10◦ 0 0 0 0 0 66.67 83.33 100 60 83.33 100 88.89 90 60 66.67 75 40 50 0
20◦ 100 0 0 0 0 0 83.33 100 75 83.33 75 100 84.21 85.71 100 75 0 0 66.67
30◦ 60 0 75 0 0 0 62.5 0 20 66.67 100 90.48 100 80 78.57 0 0 0 62.5
40◦ 75 0 0 0 0 0 0 0 66.67 0 87.5 0 82.35 100 100 0 55.56 0 66.67
50◦ 80 75 0 0 0 0 0 0 0 0 60 75 55.56 86.67 100 60 0 0 0
60◦ 0 60 0 0 0 0 0 0 0 75 75 60 60 66.67 0 100 60 0 62.5
70◦ 57.14 71.43 0 0 71.43 0 71.43 0 57.14 11.11 60 66.67 0 66.67 0 60 100 66.67 0
80◦ 0 60 83.33 0 0 0 60 0 0 0 0 0 0 0 0 0 90.91 100 76.92
90◦ 0 0 40 60 0 0 0 0 66.67 57.14 75 0 66.67 57.14 60 75 0 55.56 100

Table 6.6: Match-matrix results of the percentage of matched and filtered keypoints,
produced from the out-of-plane rotational data of a human head, from -90◦ to 90◦ of
rotations.

6.4 Summary and Discussions

This chapter presents the results and findings from the validation of the 2.5D SIFT

system, using both in-plane and out-of-plane range images of a human face and a

mannequin head. The images were first captured at the baseline (face-on, no rotation)

position and then at 10◦ intervals up to and including 90◦ of rotation in both clockwise

and anticlockwise directions (i.e. fully lateral) to create a set of data to simulate out-of-

plane images. In-plane rotational images were generated synthetically using MATLAB

where each of the images is rotated clockwise at 10◦ interval up to 350◦ (i.e. a full

circle). In order to suppress noise introduced in the synthetic rotation algorithm, the

bicubic interpolation was used on each rotational image.

The positions of the keypoints, along with their appropriate scale, were located on

each of the range images. The canonical orientation(s) were then subsequently assigned

to each keypoints based on the image gradients. Based on the (x, y, σ, θ) information,

feature descriptors were extracted from each keypoint location. Matching can then be

conducted on the images by comparing the feature descriptors using nearest-neighbour-

algorithm where potential matches were identified and then verified using the Hough

Transform.

Each pairwise combination of images is compared, thereby formulating a match-

matrix which can be used to interpret the obtained results. The match-matrix contains

the percentage of positive and filtered matches for each pairing. Furthermore, the
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results can be plotted within a ROC space and if they appear above the line of no

discrimination, the results are acceptable.

Table 6.7 summaries the results obtained in this chapter. This shows that the fea-

ture descriptors demonstrates a good self-matching properties and have a good recogni-

tion rate at over 50% of keypoint matching rate, in particular with respect to in-plane

rotational changes. These results were also reflected within the ROC space, concluding

there are few FP results, illustrating the feature descriptors are stable to rotational

changes.

Subject Rotations # pairings
Images Achieving

Self-Matching Rate >
matching %

50% 60%
Human In-plane 1369 >79.9% >50.1% >99.9%

Face Out-of-plane 361 >51.8% >36.3% 100%
Mannequin In-plane 1369 >68.7% >46.8% >99.9%

Head Out-of-plane 361 >46.8% >35.2% 100%

Table 6.7: Summary of the results obtained using 2.5D SIFT on in-plane and out-of-
plane images.

The results obtained in this chapter shows that the feature descriptors shows an

useful degree of invariance to in-plane rotations, however the robustness of the feature

descriptors against out-of-plane rotational would benefit by improvement. Since 2.5D

data are reliable, there is the potential to exploit the 3D surface information afforded

by the range imaging modality by finding local pose of keypoint sampling patches and

expressing this information within the feature extraction framework to improve (out-

of-plane) classification. To this end, the slant and tilt information can be deduced by

calculating the surface normals on the range images and thereby allow the extraction

of the canonical normals in the form of the canonical slant and canonical tilt. Having

computed the slant and the tilt at each keypoint location over a measurement aperture,

the current circular Gaussian window used for feature extraction can be warped to the

shape of an elliptical window. By this means it is possible to correct the 3D pose,

allowing matching of the 2.5D keypoints to be more stable to changes in pose angle.

The methodology is proposed and outlined in the next chapter.
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Chapter 7

Local Pose Estimation

An implementation of a 2.5D SIFT framework has been described in Chapter 5, in which

the invariance properties of the feature descriptors were investigated in Chapter 6. In

order to fully exploit the 3D information afforded by the range imaging modality,

it is possible to deduce the local slant and tilt information from the range images,

enabling the interpretation of the three Euler angle viewpoint rotational changes. To

this end, this chapter is devoted to the theory and methods for deriving the slant and tilt

information from the surface normals of the range images, and the integration of this

information into the existing feature extraction framework by means of the concepts of

canonical slant and canonical tilt. Thereafter it becomes possible to adapt the circular

Gaussian measurement aperture described in Section 5.3 into an elliptical window, in

order to facilitate invariance to 3D rotational changes.

7.1 Objectives

The implementation of the 2.5D SIFT framework described hitherto has focused on

local feature matching that relies on estimating and recovering the in-plane rotation

at each sampling keypoint. However, it is necessary to take into account the degree of

out-of-plane rotation exhibited at each keypoint as well, since the relative viewpoint

orientation at the keypoint sampling location (compared to that of the matching key-

point extracted from a different view) is not known a priori with respect to the range

image capture device gaze direction. For instance, as an approximately planar surface

patch is rotated to a different viewpoint orientation, the area representing this rotated

patch will be reduced (or enlarged, depending on the degree of orientation), compared
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to the original patch. Hence, if no estimation of the local slant and tilt is taken into

account, the keypoint matching will result in comparing different regions of the surface.

This concept is illustrated in Figures 7.1 and 7.2 where Figure 7.1 shows a 20×20 patch

extracted from a synthetic sinusoid range image. The sinusoid range image is then ro-

tated to a different viewpoint, where the same fixed 20×20 measurement aperture is

applied to the rotated image, resulting in a different patch (Figure 7.2) from the base-

line image being extracted. However, if the local slant and tilt are taken into account,

and the circular measurement aperture is adapted to an elliptical shape, the extracted

patches sample the same underlying surface information. As a result, it is necessary to

estimate and recover the 3D pose of the keypoints by estimating their local slant and

tilt. Thereafter it becomes possible to take the canonical surface orientation direction

of each keypoint into account and correct this in order to allow 2.5D SIFT keypoints

representing the same range surface patch, but captured from different viewpoints, to

be matched.

Figure 7.1: A 20×20 patch is extracted from the original image, using the Gaussian
circular measurement aperture.

Two basic assumptions are made here: firstly the local (x, y) spacing is sufficiently

uniform to allow normals to be calculated directly on the range map without transfer-

ring to X, Y , Z space coordinates; and secondly, the assumption of approximate local

planarity in this work implies there is only one canonical slant and one canonical tilt

assigned for each keypoint location at this stage of the work. Accordingly, there could

be more than one dominant direction of the population of the surface normals (i.e. the

canonical normals), and therefore represents a limitation of the pose corrected version

of 2.5D system. Further investigation is required in order to address this issue fully.
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Figure 7.2: A rotated version of the original image, where a 20×20 patch is extracted
using a Gaussian circular measurement aperture, resulting in a different patch to be ex-
tracted. This can be corrected by applying a Gaussian elliptical measurement aperture,
according to the local slant and tilt, as shown in the bottom right diagram.

The slant and tilt can be derived from the surface normals of the range images and

the canonical slant and canonical tilt can subsequently be determined for each keypoint

using a similar methodology to that used for the calculation of the canonical orienta-

tions described in Section 5.2. Once the slant and tilt have been computed for each

keypoint location, the circular Gaussian support region used for the feature extraction

can be warped into the shape of an elliptical measurement aperture, according to the

magnitude of the slant and tilt. If zero slant and tilt is present for a particular keypoint,

the measurement aperture will remain circular (i.e. no adjustment is required). The

slant determines the aspect ratio of the projected ellipse, whereas the tilt determines

the orientation of the ellipse. By this means it is possible to correct the 3D pose (to

incorporate orientation, slant and tilt), allowing matching of the 2.5D keypoints to be

more stable to changes in pose angle.

This chapter investigates the derivation of the slant and tilt, and the methodology
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used to incorporate this extra information into the existing feature extraction frame-

work. This enables the local 3D pose to be estimated and corrected, hence providing

a better framework for range image analysis. This chapter contains only the theory

and methodology for the estimation along with the correction of the 3D pose, where

validation of the process will be addressed and investigated in the next chapter. The

remainder of this chapter is organised as follows: Section 7.2 presents the theory and

algorithms used to derive the slant and tilt from range images; Section 7.3 details how

the canonical slant and canonical tilt components are incorporated into the feature

extraction process by adapting the circular Gaussian window into an elliptical window.

7.2 Local Surface Pose Estimation

This section describes the algorithm employed to calculate the slant and tilt from range

images based on the surface normals. Having computed the slant and tilt, it is possible

to derive the canonical slant and tilt for each keypoint location. The methodology used

to calculate the slant and tilt is presented in this section.

7.2.1 Basic Concepts

Figure 7.3 illustrates the three Euler angle viewpoint rotational changes. The in-plane

(roll) rotation can be estimated by means of the local image gradient orientations, as

discussed in Section 5.2. The out-of-plane (yaw and pitch) rotations can in turn be

estimated by the slant and tilt angles. Table 7.1 details the different types of angles

that can be extracted from the three Euler viewpoint rotational changes.

Rotation Angle
In-plane roll orientation θ

Out-of-plane
yaw slant φ
pitch tilt τ

Table 7.1: The different angles that can be extracted from the three Euler angle view-
point rotations.

7.2.1.1 Calculations of Slant and Tilt

The surface normals [Nx,Ny,Nz] can be computed from the first Gaussian derivatives

of the range images, with the appropriate σG within the scale-space (Section 5.4), as
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Figure 7.3: Diagram illustrating the three Euler angle viewpoint rotational changes.
These are the in-plane roll rotation, out-of-plane yaw (left/right) rotation and out-
of-plane pitch (up/down) rotation. Different angles can be estimated accordingly, as
shown in Table 7.1.

shown in Equation 7.2.1 (Sze et al., 1998) where fx and fy are the first Gaussian

derivatives of the range images in the x and y direction respectively.

[Nx,Ny,Nz] =
[−fx,−fy, 1]

(1 + f2
x + f2

y )
1
2

(7.2.1)

The slant φ and tilt τ can then be computed using Equations 7.2.2 and 7.2.3 (Nor-

man et al., 2006) respectively:

φ = tan−1


√
N2
x +N2

y

Nz

 (7.2.2)

τ = tan−1

(
Nx

Ny

)
(7.2.3)

The next section outlines the derivation of the canonical slant and tilt, by incor-

porating these basic concepts into the canonical orientation assignment stage, thereby

providing a vector describing the state of a sampled keypoint patch in terms of the

(x, y, σ, θ, φ, τ) information.
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7.2.2 Derivation of the Canonical Slant and Canonical Tilt

Based on the position (x, y) and scale σ of each keypoint location, a consistent canon-

ical slant and tilt is assigned using the surface normals [Nx,Ny,Nz], as shown in

Equation 7.2.2 and Equation 7.2.3.

Similar to the canonical orientation assignment, described in Section 5.2, two his-

tograms of 360-bins each are employed to record the values of the slant and tilt from

each keypoint with respect to its appropriate scale σ. Each item within the slant and

tilt histogram is weighted by a standard Gaussian envelope (of sigma σ) in order to

preserve continuity at the centre weight. In other words, the centre of the measurement

aperture (i.e. the sub-pixel location corresponding the keypoint itself) has the strongest

weight. The further away from the centre of the measurement aperture, the smaller

the weight.

Once the slant and tilt histograms have been derived, the values of the histograms

are smoothed and stabilised by distributing each entry over a number of bins, by means

of a 1D symmetric Gaussian convolution kernel of σ ≈ 7-bins. The peaks are then

located and filtered to sub-bin precision using interpolation, where a quadratic poly-

nomial is fitted to the three histograms values on the peak and either side of the peak,

thereby formulating the canonical slant and tilt respectively, as shown in Equation 7.2.4

and 7.2.5 below.

 (∠peak −∆∠)2 ∠peak −∆∠ 1
∠2
peak ∠peak 1

(∠peak + ∆∠)2 ∠peak + ∆∠ 1

 a
b
c

 =

 H (∠peak −∆∠)
H (∠peak)

H (∠peak + ∆∠)

 (7.2.4)

where ∠ represents either φ or τ . H(∠peak) is the histogram value at ∠peak.

The canonical slant and tilt of the sampling patch is given by:

∠canonical = − b

2a
(7.2.5)

where ∠canonical is either the φcanonical or τcanonical.

From the above, the derived (x, y, σ, θ, φ, τ) information is used to extract feature

descriptor(s) at each keypoint location using the canonical slant and tilt to correct the

3D pose. This is detailed in the next section.
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7.3 Pose Correction

In order to conduct a full 3D pose estimation and correction for range image analysis, it

is necessary to take into account all three of the Euler’s rotations, namely the in-plane

(roll) and out-of-plane (yaw and pitch) rotations. The in-plane rotational changes have

already been taken into account, as shown in Chapter 5, where each range image patch

has been rotated to its canonical orientation at the feature extraction stage. Here, it

is essential to incorporate the canonical slant and tilt into the feature extraction stage,

thereby completing the full 3D pose correction. This section details the methodology

developed to extend the current feature extraction stage to include the slant and tilt

information.

7.3.1 Incorporation of the Slant and Tilt into the Feature Descriptors

The slant and tilt information can be expressed within the feature extraction stage

by means of warping the circular Gaussian measurement aperture into an elliptical

window, depending on the degree of the local slant and tilt presented within each

individual keypoint sampling patch, using the following approximation. The elliptical

regions are formed based on the canonical slant and canonical tilt, where the slant gives

the aspect ratio of the projected ellipse and the tilt determines the orientation of the

ellipse (Norman et al., 2006).

In order to generate a Gaussian elliptical measurement aperture at a keypoint lo-

cation (xi, yi), first create a symmetric two-dimensional Gaussian square kernel with

scale σi corresponds to the keypoint scale used to place the Gaussian support region on

an image with sub-pixel accuracy as shown in Equation 5.2.5, where the centre of the

measurement aperture is adjusted to the sub-pixel x and y offsets accordingly. Then

apply the equation of an ellipse to the Gaussian square kernel to adjust the aspect ratio

of the measurement aperture, in order to satisfy the following equation:

(xi − offsetx)2

a2
+

(yi − offsety)2

b2
− 1 ≥ 0 (7.3.1)

where b
a = aspect ratio. Therefore, a = radius = width of kernel and b = acos(φ).

If a = b = 1, the Gaussian measurement support region will remain circular. Similar

to the computation of the Gaussian circular measurement aperture, the filter coefficients
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of the Gaussian elliptical support region G are normalised to sum to unity to satisfy

Equation 5.2.7.

Figure 7.4(a)-(g) illustrate seven examples of the Gaussian elliptical measurement

apertures (with no offsets), comprising of different values of slant and tilt, where Fig-

ure 7.4(a) illustrates an unit circular Gaussian support region, obtained when the values

of the slant and tilt are both zero.

(a) Tilt=0◦, slant=0◦

(b) Tilt=0◦, slant=30◦ (c) Tilt=0◦, slant=60◦ (d) Tilt=0◦, slant=90◦

(e) Tilt=30◦, slant=30◦ (f) Tilt=30◦, slant=60◦ (g) Tilt=30◦, slant=90◦

Figure 7.4: A few examples showing the Gaussian elliptical windows of different values
of slant and tilt. Each measurement aperture is of size 17× 17, with σ = 4.25.

The new feature descriptor extraction process, which incorporates the slant and

tilt information to express a feature descriptor with the ability to correct the 3D pose

fully, is slightly altered from the standard 2.5D feature descriptor extraction process

presented in Section 5.3. The process is presented as follows:
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1. Similar to the feature descriptor extraction methodology outlined in Section 5.3,

the sampled range image patch is rotated to its canonical orientation in order to

facilitate viewpoint rotational invariance. The values of H, K, k1 and k2 curva-

tures can be computed from the first and second Gaussian derivatives, with the

appropriate σ. It is then possible to categorise the underlying distribution of the

surface types, using the bounded [−1, 1] shape index (Equation 4.2.4). The de-

gree of the local curvedness (Equation 2.3.6), can be computed from the first and

second Gaussian derivatives and is used as a weight for the shape index. More-

over, the local image gradient orientation (Equation 5.2.1) and the corresponding

local magnitude estimate (Equation 5.2.2) can also be computed.

2. Nine elliptical Gaussian weighted sub-regions, overlapped by one standard devi-

ation, are placed over each sampling patch, according to the appropriate scale,

as shown in Figure 7.5. The elliptical regions are formed based on the canonical

slant φ and tilt τ , where φ gives the aspect ratio of the projected ellipse and

τ determines the orientation of the ellipse. In other words, if the value of the

calculated slant and tilt are both zero, then the Gaussian measurement aperture

will remain circular. This elliptical measurement aperture, along with the rota-

tion of the sampling patch, accommodates the three Euler’s viewpoint rotational

changes. Overlapping of the Gaussian sub-regions reduces the spatial aliasing

that occurs during the sampling stages and also enforces the spatial continuity

of the sampling patch. For example, a small shift in the location of the keypoint

should result in small (continuous) changes in the magnitude of the extracted

keypoint descriptor.

3. Following from Section 5.3, for each of the nine elliptical sub-regions placed over

the sampling patch, the local distribution of the relative frequencies of the nine

surface types is represented within a histogram, weighted by the degree of curved-

ness. Similarly, an eight-element histogram, covering the 360◦ range of orienta-

tions, can be formulated, and is weighted by its magnitude. Each histogram is

normalised to unity magnitude (i.e. to a unit vector) and the influence of large

histogram values in each normalised histogram is reduced by clipping the value

at a threshold of
1√
a

, where a is the number of bins in the histogram. The his-

tograms are then concatenated to form Hi, and the combined histogram is then
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Figure 7.5: Placement of the nine elliptical sub-regions, with the spatial support at one
standard deviation, over the keypoint location is illustrated.

normalised to unity magnitude.

̂LocalHisti =
(
Ĥisurface

)(
̂Hiorientation

)
(7.3.2)

4. The nine normalised histograms LocalHisti are juxtaposed to form the final fea-

ture descriptor for each keypoint location:

Descriptorθcanonical
=
(

̂LocalHist1, ̂LocalHist2, ..., ̂LocalHist9

)
(7.3.3)

7.4 Summary and Discussions

This chapter presents the methodology used to adapt the 2.5D feature descriptor de-

scribed in Section 5.3 to accommodate pose estimation involving out-of-plane rotations.

Local pose estimation plays an important role in feature extraction since the orientation

in which the image was captured at is not known a priori. By computing the canonical

slant and the canonical tilt, along with the canonical orientation at each keypoint lo-

cation, the (x, y, σ, θ, φ, τ) sextet can be extracted, thereby allowing feature descriptors

to be extracted from each keypoint location. Feature descriptors are extracted at each
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keypoint location by fitting nine elliptical sub-regions, overlapped by one standard de-

viation, over the keypoint. The image patch used to sample each keypoint for the range

image is rotated to its canonical orientation prior to this feature extraction process. The

canonical slant and tilt provides the aspect ratio and the orientation of the projected

sampling Gaussian ellipsoid respectively. This process potentially allows the 3D pose

to be estimated and corrected for each keypoint on the range image, since it ensures

that the underlying surface patches are being compared consistently, which cannot be

accomplished by using a fixed window sampling technique. Moreover, this local pose

estimation and correction technique can potentially be applied to 2D sampling windows

in order to improve 2D matches, provided the corresponding range images are available

to allow the estimation of the local slant and tilt.

However, there are limitations to the pose corrected version of the 2.5D SIFT: firstly

it only allows local pose estimation to be conducted at this stage of the work. Fur-

thermore, due to the local planarity assumption adopted here, only one canonical slant

and one canonical tilt are assigned to each keypoint location and further investigation

is required to determine if this assignment is sufficient. Otherwise, it may be necessary

to extend the system to employ multiple canonical slants and tilts, which was beyond

the scope of the current investigation.

The next chapter will investigate the invariance properties of the pose corrected

version of 2.5D SIFT system by firstly validating the incorporation of the canonical slant

and tilt into the feature descriptor. Furthermore, it is important to be able to match

feature descriptors extracted from range images of different sizes and depicting the same

target object at different scales. As a result, the main validation is divided into three

parts: firstly, the viewpoint rotational invariant properties of the pose corrected version

of the 2.5D SIFT system is investigated. Secondly, the scale invariance properties of

the feature descriptors by matching images at different scales is investigated. Finally,

performance comparisons between standard 2D SIFT on 2D images and 2.5D SIFT on

2.5D images, against rotational, changes will be made.
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Chapter 8

Validation

In the previous chapter, an adapted version of the 2.5D SIFT system was devised where

the local slant and tilt information was taken into account by means of the canonical

slant and canonical tilt, thereby allowing the local pose of each keypoint location to be

estimated and corrected. This is achieved by firstly calculating the canonical slant and

tilt for each keypoint, followed by the incorporation of this information into the feature

descriptor extraction process, where the circular Gaussian support region is warped into

an elliptical measurement aperture. The canonical slant and tilt determines the aspect

ratio and the orientation of the ellipse respectively. The purpose of this chapter is

twofold: it firstly addresses the performance rate of this pose estimated and corrected

version of the 2.5D SIFT system against all three Euler angle changes, as well as

investigating the performance of the system when applied to range images of different

sizes and depicting the same target object at different scales. Secondly, this chapter

will compare the performance rate between standard 2D SIFT on 2D images and the

pose corrected version of 2.5D SIFT with range images.

8.1 Objectives

The aim of this chapter is to validate the pose corrected 2.5D SIFT system (denoted

2.5Dpc) against all three Euler’s rotational changes. Table 8.1 shows the list of exper-

iments conducted in this chapter. The adopted 2.5D SIFT system has been extended

to estimate and adapt to the local 3D pose at each keypoint location, using the slant

and tilt information, and therefore can potentially improve the matching performance

of images expressing out-of-plane rotations. Apart from the invariance properties of
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the feature descriptors to rotational changes, it is important to address scale issues,

since the range images to be compared can be of different sizes. Accordingly, the stan-

dard scale extraction mechanisms of the 2.5D SIFT algorithm will be applied to range

images to estimate the scale of local structures represented as keypoints. Moreover,

a comparison between the performance of the standard 2D SIFT and the 2.5D SIFT

is conducted in this validation. The results for each validation will be presented in

two ways: the match-matrix illustrating the percentage of matched keypoints and the

matches plotted in a ROC space, showing visually the TPR versus the FPR.

System Images Scale Rotations

2.5Dpc SIFT Range Images

Fixed
In-plane (Synthetic)
Out-of-plane (Real)

Out-of-plane (Synthetic)

Variable
In-plane (Synthetic)
Out-of-plane (Real)

Out-of-plane (Synthetic)

2D SIFT Intensity Images

Fixed
In-plane (Synthetic)
Out-of-plane (Real)

Out-of-plane (Synthetic)

Variable
In-plane (Synthetic)
Out-of-plane (Real)

Out-of-plane (Synthetic)

Table 8.1: Table illustrating the experiments involved in this chapter.

The validation of the 2.5Dpc system conducted in this chapter will follow closely

to the protocol outlined in Section 6.2.2, where feature descriptors are extracted from

the scale-space defined keypoint locations. The canonical orientation, canonical slant

and canonical tilt are all taken into account during the feature descriptor extraction

stage, where the sampling patch is rotated to its canonical orientation and the cir-

cular Gaussian sub-sampling regions are adapted into elliptical apertures defined by

the canonical slant and canonical tilt accordingly. In order to be able to compare the

performance of the originally proposed 2.5D SIFT with this 2.5Dpc SIFT, the data set

employed for the first part of the investigation is identical to the data set described in

Section 6.2.1 (i.e. synthetic in-plane rotated range images are simulated using MATLAB

and out-of-plane images are captured using the stereo-pair imaging system described

in Section 3.2.). A further data set simulating out-of-plane viewpoint changes (about
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both the yaw and pitch axes) is generated synthetically using MATLAB based on the

methodology detailed in Appendix C, for rotations up to ±40◦.

A MATLAB version of the standard 2D SIFT, released by Lowe (2005), is used in

this work to investigate the performance rate between the standard 2D SIFT and 2.5D

SIFT. The standard 2D SIFT provides the (x, y, σ, θ, 128-element descriptor) for each

2D image processed. The feature descriptors extracted from 2D SIFT encapsulate the

image gradient orientation information only. The (x, y, σ, θ, 128-element descriptor),

along with the image itself, can be recorded in a database, where the images can be

matched using the Hough Transform (HT) as in the 2.5D SIFT system. As a result,

the performance rate can be obtained for each of the Euler rotations.

It is worth noting that the majority of the range image matching methodologies in

the existing literature, in particular with respect to the out-of-plane rotational changes,

cite the acceptable range (degrees) where matching can be sustained to be ≈ ±20◦

about the yaw axis and ≈ ±15◦ about the pitch axis (Akagündüz and Ulusoy, 2007;

Pansang et al., 2005). Moreover, synthetically rotated range images will potentially

lose information at over 30◦ of out-of-plane rotations (Li and Su, 2006).

The remainder of this chapter is organised as follows: Section 8.2 describes the

data set used for the different experiments conducted in this chapter. Section 8.3

investigates and addresses the performance rate of the 2.5Dpc SIFT system against

rotational changes on a) single-scale 2.5D range images (Section 8.3.1) and b) range

images of different scales (Section 8.3.2). Section 8.4 determines the performance rate

of standard 2D SIFT on 2D images against rotational changes and finally, Section 8.5

summaries the findings of the validation.

8.2 Data Set

In order to validate the 2.5D SIFT system, there are three different sets of data used

for this investigation, namely the images that simulate the Euler’s in-plane rotations

(i.e. about the roll axis), the real out-of-plane (about the yaw axis) images captured us-

ing the stereo-pair system described in Section 3.2 and finally the images simulating the

out-of-plane (about both the yaw and pitch axis) rotations, derived using the algorithm

outlined in Appendix C. Table 8.2 details the data sets used in this validation.
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Type Method Modality Degrees of
rotation

Subjects

In-plane
(about roll
axis)

MATLAB sim-
ulated using
imrotate from
baseline (0◦)
images

2D & 2.5Dpc 0◦ − 350◦ 1×Human Face &
1×Mannequin Head

Out-of-
plane
(about yaw
axis)

Real data cap-
tured using
stereo-pair sys-
tem

2D & 2.5Dpc −90◦ − 90◦ 1×Human Face &
1×Mannequin Head

Out-of-
plane
(about yaw
axis)

MATLAB simu-
lated using algo-
rithm described
in Appendix C
from baseline (0◦)
images

2D & 2.5Dpc −40− 40◦ 1×Human Face &
1×Mannequin Head

Out-of-
plane
(about
pitch axis)

MATLAB simu-
lated using algo-
rithm described
in Appendix C
from baseline (0◦)
images

2D & 2.5Dpc −40− 40◦ 1×Human Face &
1×Mannequin Head

Table 8.2: Data sets employed for the validation conducted in this chapter.

Each of the 2.5D images used in this validation is pre-processed to suppress the

random noise that exists in the data and furthermore the range images are reduced

to approximately 244×369 pixels from 1498×2249 pixels using an half-octave Gaussian

pyramid. Similarly, the corresponding 2D images are pre-processed using an half-octave

pyramid to reduce the image sizes.

Apart from the rotation invariance properties, a feature descriptor should also be

scale invariant. Thus, the investigation of the scale invariance properties of the 2.5Dpc
SIFT is conducted by matching the feature descriptors extracted from images of differ-

ent sizes. This is achieved by enlarging and reducing the size of the range images using

a half-octave Gaussian pyramid. Table 8.3 shows the size of the range images generated

in this work and the images that are used in this experiment are marked with a ?. For

the purposes of this experiment, the baseline image will be at a scale that corresponds

to Level 6 of the half-octave Gaussian pyramid (marked as bold in the table) and the

images between Levels 4 and 8 will be used in order to keep the computational costs
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to a minimum.

Levels Size of images
1 1498×2249
2 995×1495
3 746×1121
4? 494×744
5? 370×557
6? 244×369 (Baseline)
7? 182×275
8? 119×181
9 88×134

Table 8.3: Size of the range images produced from each of the half-octave Gaussian
pyramid level. Level 1 corresponds to the original range image size. The baseline image
is selected to be of size 244×369 pixels and is used to compare to range images of other
sizes (the entries marked with a ? are used in this experiment).

Using the feature descriptors extracted from the 244×369 pixels range images as

the baseline here, the feature descriptors extracted from the remainder set of data

(i.e. same viewpoint angles but of different sizes) can be compared to the baseline

images, thereby forming a match-matrix that shows the percentage of the matched

and filtered keypoints at each scale. The protocol follows the methodology outlined in

Section 6.2.2.

The next section outlines the results obtained using the pose corrected version of

the 2.5D SIFT system on both in-plane and out-of-plane range images.

8.3 Performance Rate of 2.5Dpc SIFT

This section presents the results obtained from the validation of 2.5Dpc SIFT system

against Euler angle changes on a) images of fixed scale and b) images of different

scales. In order to compare the performances between the originally proposed 2.5D

SIFT (without the 3D pose estimation and correction) and the updated version of

the 2.5D SIFT (with the 3D pose estimation and correction built-in the system), the

validation process will follow closely to the protocol detailed in Section 6.2.2, with the

appropriate adaptation to allow the incorporation of the local 3D pose estimation and

correction. The results are presented in two ways: firstly the percentages of the matched

and filtered keypoints are presented in a match-matrix, showing all the combinations of
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the range image pairings (between rotated images). This will be presented in a match-

matrix table as well as visually by means of a 3D bar chart. Secondly, the results will

be presented in a ROC space, thereby providing a visual measure of the reliability of

the matches between the feature descriptors extracted from range images with different

rotational changes.

The results are also summarised for each experiment and the statistical significance

of differences, using the Wilcoxon Matched-Pairs Signed-Rank test, between the perfor-

mance of the 2.5Dpc SIFT and the baseline 2.5D SIFT (where appropriate) is presented

by means of one of the following symbols:

• �: This result is significantly worse (p < 0.01) than the baseline.

• <: This result is significantly worse (p < 0.05) than the baseline.

• =: This result has no statistically significant difference (p > 0.05) from the

baseline.

• >: This result is significantly better (p < 0.05) than the baseline.

• � This result is significantly better (p < 0.01) than the baseline.

Stable keypoints are located on each of the range images, along with their appro-

priate scale σ, thereby allowing the canonical orientation(s) θ and the canonical slant φ

and canonical tilt τ to be identified. Therefore, feature descriptors can be extracted for

each (x, y, σ, θ, φ, τ) accordingly by firstly rotating the sampling patch to its θ followed

by the extraction of the surface types and orientation histograms from each of the nine

overlapping Gaussian elliptical sub-regions.

The resulting (x, y, θ, φ, τ,descriptor), along with the normalised range image, are

stored within a database. A similarity transform is computed between the sets of feature

descriptors extracted from one range image and the feature descriptors extracted from

a different range image (captured at a different viewpoint angle or at different image

scale) by means of the Hough Transform. As a result, clusters of matching features with

a consistent interpretation (i.e. matches between features exhibiting the same relative

shift in orientation, translation and scale) are identified. If three or more entries are

located in each cluster, it is possible to apply a robust affine transform fitting procedure

to the cluster in order to recover the affine pose between the matched features and also
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identify outliers. Note that the use of HT as a filtering process is itself not 100% reliable

and is a known limitation of this work. However, it is difficult to establish ground truths,

even if the rotations between matched range images are known in advance, therefore as

an approximation of the matched keypoints, the use of the HT as a filtering process is

deemed adequate at this stage of the work. The percentage of the matched and filtered

keypoints (Equation 6.2.1) can be determined, along with the approximation of the

true positive rate and the false positive rate (Equation 6.2.2). This step is performed

repeatably for each pairing of the range images (of different viewpoint angles or different

sizes) and as a result, a match-matrix and a graph plotted within a ROC space can be

formed.

The remainder of this section is organised into two major parts: firstly the inves-

tigation conducted on fixed scale images (of size 244×369 pixels), against rotational

changes (both in-plane and out-of-plane); Secondly, the investigation conducted range

images of different scales, against rotational changes, will be presented.

8.3.1 Fixed Scale 2.5Dpc SIFT

The performance of the 2.5Dpc SIFT system against rotational changes on fixed scale

range images (of size 244×369 pixels) is analysed here. Feature descriptors are ex-

tracted from each of the test range images, thereby allowing feature descriptors ex-

tracted from range images captured at a different angle to be matched. Every pairing

of the feature descriptors extracted from range images captured at different angles will

be compared, resulting in a match-matrix of results. For each bar graph representing

the match-matrix, the lower axes of the graph show the viewpoint angles of each pair

of the compared range images, while the height of the columns shows the percentage of

matched keypoints. A total of 72 range images simulating in-plane rotations (2×36),

38 captured out-of-plane images (2×19) and 36 range images simulating out-of-plane

rotations (2×9 rotated images about the pitch axis and 2×9 rotated images about the

yaw axis) are used in this experiment.

8.3.1.1 Synthetic In-plane Rotations

There are two sets of 2.5D in-plane rotation data: range images of a human face and

range images of a mannequin head. The baseline (no rotation) image was rotated

synthetically using the MATLAB function imrotate, with the bicubic interpolation
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methodology. It was rotated in clockwise direction in increments of 10◦ up to 350◦

(i.e. a full circle, 37 images per set of data). Keypoints and feature descriptors were

then extracted from the range images and stored in a database for matching. Results

are shown here.

Table 8.4 summarises the results obtained by exploring all combinations of the

feature descriptors extracted from the synthetically in-plane rotated range images of a

mannequin head and a human face respectively. Statistically significant improvements

from the baseline (2.5D SIFT) are shown using one of these five symbols to denote

significance: �, <, =, >, �.

System Subject Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 50% 60%

2.5Dpc

Mannequin
1369 45.3%� 64.1% 43%

Table 8.5
Figure 8.1

head Figure 8.1
Human

1369 64.9%� 88% 63.6%
Table 8.6

Figure 8.2
face Figure 8.2

Table 8.4: Summary of results obtained by exploring all pairwise combinations of the
feature descriptors extracted from the rotated in-plane range images of a mannequin
head and a human face, using the 2.5Dpc SIFT system.

(a) Match-Matrix (b) ROC

Figure 8.1: (a) The match-matrix results of the percentage of matched keypoints,
produced from a set of in-plane rotational data of a mannequin head (from 0◦ at
10◦ increments in the clockwise direction up to 350◦), using the 2.5Dpc SIFT system.
(b) The matching results presented in a ROC space. This figure can be compared with
Figure 6.6, where the results were obtained from the same data using the 2.5D SIFT.
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0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦

0◦ 100 74.36 96 75 90.91 0 60 62.5 75 0 66.67 0 0 66.67 60 75 60 60
10◦ 71.79 100 88.1 86.67 66.67 0 0 69.23 0 0 0 0 0 57.14 0 55.56 100 66.67
20◦ 70.59 82.35 100 67.44 73.33 77.78 75 71.43 0 0 0 0 0 75 60 66.67 0 72.73
30◦ 60 78.57 65.79 100 70 70.59 57.14 0 57.14 0 0 85.71 66.67 0 66.67 66.67 0 75
40◦ 63.64 54.55 61.54 70 99.38 66.67 70 55.56 20 60 0 0 75 0 66.67 57.14 60 66.67
50◦ 55.56 77.78 54.55 76.47 63.16 100 72.41 65 77.78 0 0 60 57.14 0 0 57.14 60 54.55
60◦ 71.43 75 70 80 58.82 66.67 100 78.38 63.64 60 62.5 75 57.14 66.67 66.67 0 62.5 53.85
70◦ 60 75 55.56 60 66.67 72.22 71.43 99.43 87.5 71.43 57.14 60 0 0 57.14 66.67 0 57.14
80◦ 66.67 66.67 66.67 66.67 62.5 66.67 66.67 75 100 85.71 63.64 60 0 75 60 60 0 75
90◦ 0 75 0 66.67 0 87.5 71.43 93.33 84 99.38 69.23 63.64 57.14 75 0 75 0 66.67
100◦ 62.5 66.67 66.67 0 75 62.5 75 62.5 60 70.83 100 90.91 61.54 0 60 62.5 0 55.56
110◦ 69.23 60 60 63.64 57.14 57.14 55.56 70 60 62.5 69.57 100 80 60 57.14 53.85 37.5 66.67
120◦ 0 0 0 0 0 75 0 66.67 66.67 100 55.56 80.95 100 73.91 82.35 83.33 60 0
130◦ 66.67 70 0 50 71.43 61.54 83.33 60 57.14 57.14 0 63.64 66.67 100 79.31 54.55 69.23 53.85
140◦ 100 55.56 55.56 62.5 63.64 57.14 80 70 66.67 66.67 0 100 66.67 74.19 100 74.19 60 90
150◦ 0 60 75 0 75 71.43 62.5 60 0 0 0 0 0 63.64 78.05 100 75 80
160◦ 75 55.56 87.5 66.67 0 57.14 55.56 58.33 60 60 0 0 0 66.67 68.75 81.08 100 82.22
170◦ 66.67 55.56 60 71.43 60 40 57.14 62.5 66.67 66.67 0 0 42.86 66.67 0 72.73 76.74 99.43
180◦ 77.78 60 57.14 55.56 40 60 0 60 0 0 0 0 0 0 83.33 66.67 81.82 70.59
190◦ 57.14 75 57.14 60 62.5 71.43 75 60 58.33 0 75 0 57.14 0 60 57.14 78.57 84
200◦ 66.67 85.71 80 63.64 66.67 57.14 57.14 0 66.67 77.78 66.67 0 0 28.57 83.33 63.64 57.14 60
210◦ 66.67 57.14 25 0 0 60 66.67 0 60 0 66.67 75 66.67 100 75 0 0 66.67
220◦ 60 62.5 83.33 66.67 81.82 0 0 0 0 0 0 57.14 0 57.14 0 0 75 52.94
230◦ 80 66.67 66.67 66.67 66.67 60 0 0 0 0 0 0 0 0 0 0 60 62.5
240◦ 60 0 0 60 62.5 55.56 71.43 0 0 0 0 0 66.67 57.14 55.56 66.67 71.43 60
250◦ 0 75 0 57.14 62.5 60 57.14 0 66.67 0 75 0 0 83.33 0 66.67 66.67 71.43
260◦ 62.5 57.14 60 58.33 83.33 60 88.89 66.67 0 0 0 0 0 40 20 0 75 66.67
270◦ 71.43 0 60 0 0 0 0 0 0 0 0 0 100 0 0 0 20 60
280◦ 57.14 55.56 75 57.14 0 0 100 62.5 0 0 40 0 60 75 0 77.78 0 71.43
290◦ 60 80 0 60 100 16.67 100 100 100 0 0 0 60 0 0 0 0 100
300◦ 0 55.56 0 0 0 0 0 0 0 0 0 0 57.14 66.67 0 60 60 66.67
310◦ 57.14 0 62.5 62.5 80 0 0 0 0 0 0 0 0 66.67 66.67 75 66.67 62.5
320◦ 60 75 33.33 0 100 60 0 0 0 0 0 0 0 53.85 66.67 57.14 63.64 75
330◦ 66.67 60 75 66.67 0 66.67 66.67 0 0 0 0 0 0 60 60 0 57.14 60
340◦ 76.92 57.14 57.14 55.56 57.14 66.67 60 75 0 0 0 0 0 0 0 80 55.56 84.62
350◦ 78.79 93.33 80 0 66.67 66.67 0 60 0 0 0 0 0 0 62.5 60 60 55.56

180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

0◦ 69.23 55.56 85.71 66.67 57.14 66.67 0 75 75 66.67 0 0 0 0 62.5 55.56 70 83.33
10◦ 55.56 100 100 0 100 0 0 0 0 0 0 75 0 10 66.67 57.14 100 78.57
20◦ 77.78 66.67 60 81.82 0 0 0 0 0 0 0 66.67 75 0 0 55.56 57.14 57.14
30◦ 60 25 55.56 66.67 0 0 0 0 0 0 0 0 57.14 60 0 75 60 60
40◦ 83.33 100 0 91.67 55.56 53.85 0 0 0 0 0 0 0 66.67 57.14 66.67 66.67 54.55
50◦ 83.33 83.33 0 57.14 76.92 66.67 57.14 0 60 0 75 100 75 0 62.5 0 0 62.5
60◦ 81.82 57.14 66.67 100 55.56 76.92 57.14 0 60 60 0 0 60 0 77.78 60 75 66.67
70◦ 66.67 0 0 0 0 0 0 0 0 60 0 0 60 66.67 66.67 57.14 0 0
80◦ 0 55.56 66.67 62.5 75 83.33 0 54.55 62.5 0 0 75 60 83.33 60 75 57.14 66.67
90◦ 75 60 0 0 0 0 0 0 0 0 60 0 57.14 66.67 0 0 75 62.5
100◦ 62.5 0 0 83.33 62.5 54.55 60 60 0 0 0 0 75 0 66.67 75 0 0
110◦ 70 62.5 62.5 85.71 0 60 0 100 0 0 83.33 0 0 66.67 62.5 75 0 55.56
120◦ 75 0 0 0 0 0 0 57.14 75 0 0 0 0 0 40 0 0 0
130◦ 66.67 100 66.67 60 66.67 0 0 100 75 60 0 0 60 0 20 62.5 75 75
140◦ 66.67 57.14 60 0 57.14 0 60 75 66.67 75 100 0 0 66.67 66.67 80 58.33 66.67
150◦ 70 0 66.67 60 0 66.67 0 0 0 0 0 0 0 100 58.33 75 90 57.14
160◦ 82.35 70 75 57.14 0 0 0 60 0 0 0 0 0 66.67 62.5 62.5 55.56 83.33
170◦ 70.59 64.29 60 0 57.14 0 0 0 60 0 0 0 0 0 60 0 57.14 60
180◦ 100 85 96.3 57.14 57.14 0 0 0 75 0 0 60 0 75 0 0 71.43 70
190◦ 83.33 100 77.14 87.5 66.67 0 20 75 0 0 0 0 0 0 66.67 0 57.14 55.56
200◦ 75 82.61 100 72.22 81.82 66.67 0 0 0 0 0 0 66.67 66.67 55.56 60 66.67 66.67
210◦ 62.5 57.89 76.32 100 65.22 55.56 57.14 60 75 60 75 0 66.67 0 0 0 55.56 0
220◦ 76.92 55.56 78.57 76.92 100 63.33 80 60 85.71 0 0 0 0 57.14 62.5 83.33 0 100
230◦ 83.33 0 63.64 66.67 78.57 99.38 80 80 92.86 0 0 0 0 0 0 0 0 0
240◦ 83.33 60 57.14 66.67 66.67 66.67 99.32 60.87 60 75 0 0 60 60 0 55.56 0 60
250◦ 0 66.67 66.67 62.5 60 62.5 82.61 100 80.95 60 62.5 0 0 60 0 0 0 0
260◦ 100 0 0 0 60 100 75 76.19 100 70.83 62.5 75 0 0 66.67 0 0 75
270◦ 100 0 0 0 66.67 62.5 75 76.92 74.07 99.4 77.27 54.55 75 0 0 66.67 83.33 0
280◦ 62.5 66.67 0 60 62.5 75 0 69.23 60 86.96 100 70.83 72.22 60 75 83.33 75 62.5
290◦ 77.78 57.14 0 57.14 60 0 100 100 62.5 66.67 70.83 100 66.67 66.67 0 55.56 0 0
300◦ 0 100 0 0 0 57.14 60 0 0 57.14 87.5 79.17 100 69.57 85 52.63 83.33 0
310◦ 0 60 62.5 0 75 75 0 57.14 0 60 75 69.23 70.83 100 75 63.64 78.57 75
320◦ 54.55 66.67 55.56 60 71.43 66.67 0 60 0 0 0 0 62.5 60.87 100 81.48 55.56 66.67
330◦ 58.33 0 60 33.33 100 62.5 60 0 0 0 0 0 50 77.78 75.86 100 82.14 70
340◦ 0 60 58.33 0 60 57.14 71.43 57.14 0 0 0 80 66.67 53.85 57.14 80 100 78.57
350◦ 80 57.14 57.14 0 85.71 40 0 40 0 0 0 0 0 57.14 66.67 69.23 78.13 100

Table 8.5: Match-matrix results of the percentage of matching keypoints, produced
from the in-plane rotational data of a mannequin head (from 0◦ at 10◦ clockwise
increments up to 350◦), using the 2.5Dpc SIFT system.
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0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦

0◦ 100 76.74 87.5 84.62 92.86 100 57.14 0 0 60 0 75 60 62.5 60 100 62.5 95.45
10◦ 83.33 100 79.59 80.95 100 100 0 0 0 0 0 75 100 57.14 66.67 66.67 90 95
20◦ 80 73.91 100 83.72 76.67 75 62.5 75 0 0 0 0 66.67 55.56 55.56 63.64 75 57.14
30◦ 88.24 78.26 80.49 100 85.11 58.82 60 71.43 80 0 62.5 0 100 57.14 62.5 62.5 100 100
40◦ 75 77.27 81.82 79.07 100 73.47 66.67 53.33 0 0 0 60 66.67 57.14 100 75 62.5 75
50◦ 55.56 66.67 80 71.43 73.58 100 75.76 66.67 66.67 83.33 0 0 0 60 0 0 100 75
60◦ 66.67 62.5 81.82 73.91 80 72.22 100 82.14 87.5 62.5 57.14 66.67 80 57.14 83.33 57.14 75 55.56
70◦ 100 62.5 66.67 58.33 59.09 77.27 79.41 100 83.33 80 90 60 75 83.33 80 75 66.67 58.33
80◦ 71.43 75 60 62.5 66.67 63.64 60 77.14 100 80.77 78.57 92.86 100 60 62.5 57.14 71.43 77.78
90◦ 62.5 75 53.85 100 50 100 75 75 74.19 100 77.78 82.14 80 85.71 58.33 71.43 0 58.33
100◦ 57.14 60 55.56 66.67 75 57.14 62.5 66.67 77.78 75 100 77.78 84.21 55.56 62.5 55.56 57.14 70
110◦ 66.67 66.67 66.67 60 77.78 70 0 54.55 54.55 87.5 78.13 100 90.32 88.24 63.64 62.5 0 66.67
120◦ 77.78 100 66.67 66.67 0 60 0 66.67 60 93.33 86.36 82.76 100 83.72 76.67 70.59 100 70
130◦ 54.55 61.54 54.55 57.14 66.67 60 0 75 0 57.14 71.43 70.83 86.84 100 73.58 72 62.5 80.95
140◦ 81.82 62.5 58.33 66.67 75 100 75 0 0 57.14 60 78.57 84 81.25 100 78.38 59.09 68.18
150◦ 33.33 87.5 77.78 75 0 66.67 57.14 0 57.14 0 62.5 66.67 60 73.33 86.05 100 78.05 69.7
160◦ 100 66.67 70 100 57.14 83.33 0 66.67 0 0 0 60 57.14 72.73 75 72.5 100 74.51
170◦ 75 62.5 66.67 70 72.73 90 57.14 75 0 0 0 40 75 57.14 62.5 80 84.62 100
180◦ 52.94 88.89 62.5 0 83.33 53.85 0 55.56 0 75 0 75 100 71.43 75 66.67 88.89 79.17
190◦ 58.33 78.57 60 77.78 78.57 76.92 66.67 0 60 0 66.67 60 57.14 60 70 100 71.43 80.56
200◦ 71.43 86.67 75 75 57.14 72.73 62.5 66.67 0 66.67 71.43 60 88.89 75 66.67 57.14 66.67 76.19
210◦ 60 100 100 71.43 60 66.67 0 100 0 75 25 0 66.67 75 60 0 62.5 78.57
220◦ 61.54 100 78.57 60 100 92.31 55.56 75 0 0 100 60 0 66.67 57.14 55.56 0 90
230◦ 57.14 54.55 63.64 93.33 100 95 75 57.14 66.67 88.89 0 75 100 60 100 0 71.43 55.56
240◦ 53.85 87.5 81.25 55.56 60 100 60 100 66.67 60 0 100 60 57.14 90 0 57.14 100
250◦ 57.14 54.55 75 66.67 56.25 62.5 0 60 66.67 75 0 75 60 83.33 81.82 0 62.5 62.5
260◦ 56.25 60 62.5 54.55 54.55 75 60 0 62.5 0 60 80 60 66.67 77.78 66.67 57.14 0
270◦ 91.67 57.14 55.56 100 57.14 66.67 55.56 0 75 66.67 71.43 50 100 85.71 100 20 60 55.56
280◦ 0 76.47 60 64.29 0 62.5 60 0 0 0 40 60 20 83.33 0 66.67 70 57.14
290◦ 63.64 63.64 57.14 58.33 60 80 66.67 57.14 71.43 0 62.5 60 60 70 55.56 57.14 54.55 58.33
300◦ 55.56 60 71.43 55.56 11.11 66.67 62.5 75 60 60 0 60 66.67 55.56 60 71.43 85.71 73.33
310◦ 83.33 100 12.5 62.5 66.67 60 54.55 66.67 66.67 66.67 55.56 62.5 87.5 66.67 100 87.5 88.89 66.67
320◦ 55.56 60 87.5 100 75 60 0 0 66.67 62.5 77.78 55.56 100 81.82 66.67 92.86 100 76.92
330◦ 68.42 80 55.56 55.56 62.5 66.67 75 0 75 60 0 100 63.64 100 61.11 94.74 100 100
340◦ 74.36 85.71 55.56 66.67 0 66.67 0 0 62.5 60 0 66.67 100 75 80 100 100 70
350◦ 79.25 87.88 73.91 66.67 92.86 70 66.67 60 75 75 75 60 55.56 57.14 60 66.67 55.56 92.86

180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

0◦ 93.33 80 54.55 100 100 90.91 66.67 50 0 40 60 0 66.67 55.56 55.56 60 80 78.72
10◦ 62.5 100 82.35 85.71 100 61.9 100 83.33 75 0 0 25 57.14 60 100 78.57 86.67 81.08
20◦ 77.78 56.25 94.74 100 73.33 76.47 80 66.67 0 60 0 83.33 66.67 85.71 75 55.56 63.64 72.22
30◦ 100 62.5 100 100 100 100 63.64 66.67 66.67 57.14 66.67 60 100 57.14 75 66.67 77.78 56.25
40◦ 80 87.5 57.14 71.43 94.74 100 71.43 62.5 57.14 77.78 20 85.71 62.5 62.5 60 0 75 57.14
50◦ 78.57 62.5 73.33 56.25 100 96.3 66.67 54.55 87.5 0 62.5 60 66.67 60 63.64 55.56 62.5 87.5
60◦ 80 100 100 100 61.54 81.25 57.14 66.67 60 66.67 0 57.14 83.33 60 63.64 60 57.14 71.43
70◦ 84.62 88.89 60 61.54 91.67 35.29 88.89 60 60 100 0 83.33 100 66.67 53.85 60 66.67 55.56
80◦ 50 66.67 62.5 75 71.43 77.78 54.55 66.67 57.14 0 75 57.14 53.33 69.23 21.43 71.43 71.43 91.67
90◦ 70 62.5 55.56 53.85 58.33 70 60 75 57.14 75 0 66.67 60 77.78 100 57.14 75 63.64
100◦ 78.57 63.64 55.56 55.56 80 77.78 0 0 66.67 57.14 57.14 75 71.43 72.73 70 62.5 57.14 66.67
110◦ 0 57.14 62.5 54.55 57.14 62.5 75 75 57.14 0 60 66.67 90 72.73 100 66.67 66.67 66.67
120◦ 55.56 66.67 66.67 66.67 66.67 62.5 75 75 66.67 62.5 66.67 0 57.14 62.5 78.57 63.64 57.14 56.25
130◦ 52.94 57.14 66.67 58.33 100 71.43 60 0 0 75 71.43 66.67 75 60 100 62.5 100 100
140◦ 87.5 66.67 66.67 0 60 57.14 0 0 57.14 66.67 60 57.14 81.82 54.55 100 62.5 100 33.33
150◦ 96.3 83.33 81.82 57.14 62.5 55.56 0 0 60 57.14 60 62.5 91.67 76.92 57.14 100 90.91 90.91
160◦ 78.38 76.92 66.67 62.5 80 63.64 60 0 60 66.67 0 0 57.14 100 77.78 66.67 100 71.43
170◦ 84.91 83.33 80 87.5 66.67 80 77.78 75 14.29 0 60 66.67 60 100 100 92.86 100 66.67
180◦ 100 90.24 82.14 75 57.14 55.56 0 66.67 55.56 75 0 55.56 55.56 0 83.33 100 100 94.44
190◦ 86.67 100 80.39 76 61.54 58.82 66.67 100 75 40 60 55.56 100 75 100 80 90.91 85.71
200◦ 91.3 80.43 100 86 69.7 89.47 100 60 0 66.67 83.33 0 62.5 66.67 55.56 57.14 75 62.5
210◦ 93.75 81.82 86.05 100 76 72.41 58.82 63.64 55.56 0 66.67 60 0 60 75 57.14 57.14 60
220◦ 58.33 69.23 79.49 70.73 100 71.93 77.78 60 57.14 0 60 66.67 57.14 100 60 62.5 75 100
230◦ 62.5 80 66.67 70.83 81.63 100 80.56 71.43 66.67 66.67 0 57.14 0 75 66.67 87.5 57.14 57.14
240◦ 61.54 70 100 59.09 76.32 80.43 100 76.92 78.26 100 57.14 60 60 60 53.85 55.56 60 83.33
250◦ 54.55 70 84.62 85.71 61.9 67.5 77.14 100 88.46 94.44 78.57 75 60 75 66.67 55.56 57.14 75
260◦ 0 57.14 75 62.5 57.14 58.82 78.26 70 100 80.77 78.26 70.59 0 55.56 66.67 100 60 58.33
270◦ 71.43 80 60 60 57.14 56.25 76.92 86.36 83.33 100 94.44 81.48 87.5 66.67 72.73 71.43 57.14 20
280◦ 77.78 66.67 40 55.56 62.5 50 57.14 92.31 94.44 84 100 87.88 82.61 70 88.89 57.14 66.67 87.5
290◦ 81.82 83.33 87.5 0 55.56 60 75 83.33 73.33 73.68 86.21 100 78.43 74.07 78.57 72.73 66.67 75
300◦ 90.91 66.67 62.5 62.5 77.78 78.57 0 0 62.5 83.33 75 83.33 100 77.78 71.88 66.67 66.67 66.67
310◦ 70 55.56 83.33 58.33 57.14 57.14 71.43 0 0 57.14 80 65.22 85.42 100 80 81.25 64.71 64.71
320◦ 66.67 66.67 57.14 57.14 75 57.14 60 60 60 0 66.67 71.43 77.78 81.63 100 73.81 74.19 95.65
330◦ 80 69.23 66.67 46.15 60 54.55 83.33 60 60 0 55.56 62.5 68.75 78.79 80.43 100 85.29 82.86
340◦ 91.67 100 62.5 75 85.71 57.14 0 100 75 0 75 60 62.5 68.42 67.65 73.91 100 92.59
350◦ 90 54.55 55.56 60 66.67 66.67 60 71.43 71.43 60 75 33.33 66.67 71.43 70.59 72.73 84.44 100

Table 8.6: Match-matrix results of the percentage of matched keypoints, produced from
the in-plane rotational data of a human face (from 0◦ at 10◦ clockwise increments up
to 350◦), using the 2.5Dpc SIFT system.
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(a) Match-Matrix (b) ROC

Figure 8.2: (a) The match-matrix results of the percentage of matched keypoints,
produced from a set of in-plane rotational data of a human face (from 0◦ at 10◦

increments in the clockwise direction up to 350◦), using the 2.5Dpc SIFT system. (b)
The matching results presented in a ROC space. This figure can be compared directly
with Figure 6.7, where the results were obtained from the same data using the 2.5D
SIFT.

The matching results obtained by employing the 2.5Dpc SIFT system on in-plane

range images are comparable to the matching results obtained by using the original

2.5D SIFT as shown in Table 6.3 of Chapter 6. Moreover, when the results are plotted

in a ROC space, the majority of the results are above the line of no discrimination,

indicating the obtained matching results are reliable.

8.3.1.2 Out-of-plane Rotations on Real Data

This section presents the results obtained by comparing all pairwise combination of the

feature descriptors extracted from the out-of-plane rotated images of a mannequin head

and a human face respectively, using the 2.5Dpc SIFT system. The images are captured

from -90◦ to 90◦ at 10◦ intervals, i.e. full lateral, using the methodology described in

Section 6.2.1.2. Table 8.7 summarises the results obtained from this investigation.

Statistically significant improvements from the baseline (2.5D SIFT) are shown using

one of these five symbols to denote significance: �, <, =, >,�. The test of significance

was conducted using Wilcoxon Matched-Paired Signed-Ranked test.
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System Subject Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 50% 60%

2.5Dpc

Mannequin
361 54.9%� 72.7% 55.7%

Table 8.8
Figure 8.3

head Figure 8.3
Human

361 37.0%= 48.5% 35.5%
Table 8.9

Figure 8.4
face Figure 8.4

Table 8.7: Summary of results obtained by exploring all pairwise combinations of the
feature descriptors extracted from captured out-of-plane range images of a mannequin
head and a human face, using the 2.5Dpc SIFT system.

-90◦ -80◦ -70◦ -60◦ -50◦ -40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

-90◦ 100 0 62.5 57.1 57.1 0 71.4 62.5 100 100 0 0 0 0 0 0 0 0 0
-80◦ 0 100 85 91.3 69.6 85.7 94.4 75 23.1 62.5 0 0 0 0 0 66.7 0 60 0
-70◦ 66.7 80 100 77.8 81.3 100 69.6 60 92.9 61.5 53.3 75 75 60 100 66.7 40 0 0
-60◦ 60 81.8 90.9 99.4 75 92.9 84.2 56.3 82.4 25 100 0 0 0 60 60 0 0 0
-50◦ 57.1 85.7 77.8 94.7 68.5 79.2 87.1 100 76.9 66.7 60 0 60 57.1 62.5 0 0 0 0
-40◦ 0 53.8 100 73.7 82.8 100 88.4 82.8 100 100 75 12.5 71.4 0 54.5 57.1 60 60 0
-30◦ 0 71.4 66.7 53.8 58.3 82.4 100 78.6 94.4 75 66.7 66.7 57.1 0 62.5 66.7 83.3 75 0
-20◦ 100 75 80 60 93.5 76.9 86.8 60.4 83.3 61.5 68.8 87.5 54.5 62.5 72.7 0 0 0 0
-10◦ 0 100 62.5 0 61.5 76.5 67.7 88.6 100 70.4 72.2 66.7 69.2 0 70 87.5 0 0 66.7
0◦ 100 100 57.1 100 28.6 88.9 83.3 70 71.4 100 76 60 77.8 70 57.1 55.6 0 60 0
10◦ 83.3 0 0 60 55.6 57.1 69.2 63.6 87.5 82.4 100 78.1 72 60 70 61.5 0 0 0
20◦ 0 57.1 0 62.5 57.1 0 70 77.8 54.5 95.2 89.7 100 77.8 75 57.1 75 0 0 0
30◦ 75 85.7 75 0 57.1 0 61.5 100 100 89.5 82.4 71.4 100 81.3 57.1 0 66.7 0 0
40◦ 0 75 0 0 100 60 87.5 100 53.3 58.3 58.3 60 66.7 100 55.6 71.4 55.6 0 0
50◦ 0 85.7 66.7 66.7 75 60 54.5 81.3 59.1 61.5 100 63.6 81.3 68.8 100 76 77.8 63.6 0
60◦ 0 100 75 0 75 100 66.7 60 57.1 60 78.6 88.9 76.5 76.9 79.2 73.3 78.8 62.5 0
70◦ 0 75 0 57.1 57.1 66.7 75 60 80 55.6 70 78.6 72.7 60 68.4 91.2 100 94.1 60
80◦ 0 75 0 0 0 66.7 50 83.3 60 72.7 62.5 57.1 66.7 0 77.8 77.8 71.4 99.3 0
90◦ 0 100 0 50 75 0 66.7 0 0 60 0 0 75 0 66.7 80 75 0 51.5

Table 8.8: Match-matrix results of the percentage of matched keypoints using the
2.5Dpc SIFT system, produced from the out-of-plane rotational data of a mannequin
head.
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(a) Match-Matrix (b) ROC

Figure 8.3: 2.5Dpc SIFT system: (a) The match-matrix results of the percentage of
matched keypoints, produced from a set of out-of-plane rotational data of a man-
nequin head (captured from -90◦ at 10◦ increments up to 90◦). (b) The matching
results presented in a ROC space. This figure can be compared with Figure 6.8, where
the results were obtained from the same data set using 2.5D SIFT.

(a) Match-Matrix (b) ROC

Figure 8.4: 2.5Dpc SIFT system:(a) The match-matrix results of the percentage of
matched keypoints, produced from a set of out-of-plane rotational data of a human
face. (b) The matching results presented in a ROC space. This figure can be compared
with Figure 6.9, where the results were obtained from the same data set using 2.5D
SIFT.
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-90◦ -80◦ -70◦ -60◦ -50◦ -40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

-90◦ 100 60 75 66.7 0 0 55.6 0 66.7 66.7 62.5 60 75 0 0 57.1 0 66.7 75
-80◦ 60 100 78.6 62.5 0 0 0 0 80 20 57.1 71.4 40 66.7 75 0 66.7 75 0
-70◦ 60 85.7 100 75 55.6 66.7 60 75 75 0 0 0 0 0 0 0 0 0 0
-60◦ 60 0 0 100 71.4 75 0 0 0 57.1 55.6 66.7 0 100 0 0 0 0 75
-50◦ 0 0 60 80 100 81.8 72.7 83.3 0 0 71.4 0 0 0 0 0 0 0 0
-40◦ 57.1 0 57.1 55.6 75 100 92.9 75 0 60 0 100 0 57.1 0 0 0 0 0
-30◦ 0 0 0 100 66.7 94.4 100 93.3 66.7 60 57.1 100 0 83.3 60 0 0 0 0
-20◦ 0 0 0 0 0 100 80 100 78.9 90 54.5 100 66.7 57.1 0 0 60 0 0
-10◦ 0 57.1 83.3 0 66.7 0 100 75 100 78.6 75 0 0 66.7 0 0 0 0 0
0◦ 0 0 0 87.5 0 0 0 88.9 60 100 73.3 66.7 90 75 0 0 75 0 0
10◦ 0 0 0 75 0 57.1 87.5 60 66.7 84.6 100 100 80 60 0 0 0 0 0
20◦ 0 0 0 25 0 0 0 0 40 100 73.3 100 87 93.3 90 0 0 0 60
30◦ 0 0 60 57.1 0 0 83.3 0 75 60 88.9 88 100 72.2 81.8 0 57.1 0 0
40◦ 75 0 0 0 0 0 0 60 66.7 0 55.6 75 92.9 100 75 0 62.5 0 0
50◦ 0 0 0 0 0 0 0 0 0 0 55.6 81.8 80 85.7 100 71.4 60 0 0
60◦ 0 0 0 0 0 0 0 0 0 0 0 0 0 62.5 57.1 100 71.4 75 75
70◦ 0 0 0 0 0 75 60 0 0 55.6 60 71.4 25 57.1 0 60 100 87.5 0
80◦ 0 66.7 66.7 0 0 0 50 0 0 0 0 0 0 0 66.7 100 85.7 100 57.1
90◦ 83.3 60 66.7 0 0 0 0 0 66.7 0 66.7 0 62.5 66.7 66.7 75 0 60 100

Table 8.9: Match-matrix results of the percentage of matched keypoints using the
2.5Dpc SIFT system, produced from the out-of-plane rotational data of a human face
(from -90◦ to 90◦ of rotations).

Comparing the results obtained using the original 2.5D SIFT (summarised in Ta-

ble 6.7 in Chapter 6) and the results obtained using the 2.5Dpc SIFT system, it is

noted that the average percentages of matched keypoints for the out-of-plane rotated

range images of a mannequin head has increased by approximately 25% at 50% key-

point matching rate. The average percentages of the matched and filtered keypoints of

the out-of-plane rotated images of a human face has decreased by approximately 2%.

However, examining the results plotted in a ROC space reveals that the matches are

more stable and reliable when using the extended version of the 2.5Dpc SIFT, with a

smaller FPR.

8.3.1.3 Synthetic Out-of-plane Rotations

This section presents the results obtained by matching synthetically rotated range

images, where the images are rotated about the yaw and pitch axis (±40◦)respectively,

at 10◦ intervals.

Table 8.10 summaries the results obtained by exploring all pairwise combinations

of the feature descriptors extracted from the synthetically rotated range images of a

mannequin head and a human face respectively, about the yaw and pitch axes.

The results obtained from synthetically rotated range images about both the yaw

and pitch axis shows that the feature descriptors extracted from the 2.5Dpc SIFT
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Subject Axis Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 50% 60% 70%

Mannequin
yaw 81 80.0% 100% 96.3% 82.7%

Table 8.11
Figure 8.5

head Figure 8.5
Human

yaw 81 81.2% 100% 95.1% 81.5%
Table 8.12

Figure 8.6
head Figure 8.6

Mannequin
pitch 81 83.7% 100% 96.3% 86.4%

Table 8.13
Figure 8.7

head Figure 8.7
Human

pitch 81 84.2% 100% 98.8% 92.6%
Table 8.14

Figure 8.8
head Figure 8.8

Table 8.10: Results obtained by exploring all pairwise combinations of the feature
descriptors extracted using the 2.5Dpc SIFT system on synthetically rotated out-of-
plane range images of a mannequin head and a human face.

-40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦

-40◦ 100 82.1 76.9 75 65 58.8 62.5 100 91.7
-30◦ 71.4 99.1 63.6 78.9 67.9 79.3 69.2 73.7 95.7
-20◦ 66.7 65.9 100 84.4 74.4 86.8 73.1 78.6 80
-10◦ 75 77.1 82.2 100 75 78.4 89.7 68.4 71.4
0◦ 86.4 71 70.7 77.1 97.1 86 61.3 70.8 86.7
10◦ 73.7 80.8 78.8 79.5 84.6 100 76.9 64.3 65.6
20◦ 81.3 73.9 79.2 80.8 82.1 85.3 98.4 85.3 80.8
30◦ 91.7 91.7 77.3 60 83.3 75.6 86.7 98.5 73.7
40◦ 100 95.2 75 57.1 76.5 81.3 73.1 87.5 99.3

Table 8.11: Match-matrix results of the percentage of matched keypoints, produced
from the synthetically rotated out-of-plane (about yaw axis) data of a mannequin
head, from -40◦ to 40◦ of rotations, using the 2.5Dpc SIFT system.

system show excellent invariance to Euler’s out-of-plane rotational changes. The next

section will address the scale invariant properties of the 2.5D SIFT.
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-40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦

-40◦ 100 75.7 70.5 67.9 78.3 68 73.9 100 100
-30◦ 69 99.3 79.7 76.8 72.2 94.5 70.7 100 85.7
-20◦ 77.1 76.6 96.8 84.1 84.9 73.7 65.8 100 63.2
-10◦ 79.3 86.8 80.6 97.7 88.2 70.2 73.3 88.9 100
0◦ 75 70 85.2 79.8 99.2 77.3 69.1 70.8 92.3
10◦ 68.4 71.4 72.1 80 88.5 98.1 73.3 80.8 64.5
20◦ 61.5 73.9 54.1 72.2 62.5 80.4 98.7 89.3 88.9
30◦ 100 91.7 92 96.8 95.8 84.2 60 98.6 71.2
40◦ 55.6 53.8 85.7 91.7 91.7 82.9 84.6 78.7 98.7

Table 8.12: Match-matrix results of the percentage of matched keypoints, produced
from the synthetically rotated out-of-plane (about yaw axis) data of a human face,
from -40◦ to 40◦ of rotations, using the 2.5Dpc SIFT system.

-40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦

-40◦ 99.2 66.7 67.7 81 62.5 100 100 91.7 84.2
-30◦ 70.4 97.3 83.9 91.3 68.8 72.7 80 73.3 68.8
-20◦ 76.9 84.8 100 93.3 80 75.9 83.3 77.3 81
-10◦ 86.4 92 90.5 100 75.8 87.8 89.3 100 70
0◦ 77.8 57.1 75 76.5 97.1 76.7 90.5 92.3 57.1
10◦ 62.5 94.7 88.5 80.5 85.7 98.3 89.1 95 80.6
20◦ 92.3 73.3 80.8 86.2 77.8 91.1 98.1 91.7 78.4
30◦ 100 78.6 81.8 82.6 75.8 90.9 84.8 99.1 68
40◦ 100 55.6 94.4 78.9 84.2 96.4 82.4 79.1 97.6

Table 8.13: Match-matrix results of the percentage of matched keypoints, produced
from the synthetically rotated out-of-plane (about pitch axis) data of a mannequin
head, from -40◦ to 40◦ of rotations, using the 2.5Dpc SIFT system.

-40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦

-40◦ 98.7 75 74.3 87 94.1 87.5 77.3 60 77.3
-30◦ 85.1 98.2 90.7 86.7 83.3 85.7 77.4 80 88.9
-20◦ 68.3 79.7 98.8 84.1 86.7 77.8 75.7 79.3 86.4
-10◦ 88.5 76.4 78.8 97.9 87.5 86.3 76.2 82.1 85.7
0◦ 80 77.1 93.9 95.1 99.2 74.4 89.1 91.4 71
10◦ 81.3 86.2 90.3 90.2 81.5 94.3 74.5 86.7 88.9
20◦ 63.2 82.9 90.3 86.4 81.4 79.3 98.6 88.1 87.2
30◦ 68.4 72.2 92 88.9 89.5 87.5 84.4 99.3 83.7
40◦ 100 72.2 94.1 64.3 81.6 88.6 83 67.3 95.2

Table 8.14: Match-matrix results of the percentage of matched keypoints, produced
from the synthetically rotated out-of-plane (about pitch axis) data of a human face,
from -40◦ to 40◦ of rotations, using the 2.5Dpc SIFT system.
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(a) Match-Matrix (b) ROC

Figure 8.5: 2.5Dpc SIFT: (a) The match-matrix of matched keypoints, produced from
a set of synthetically rotated out-of-plane (about the yaw axis) range images of a
mannequin head. (b) The matching results presented in a ROC space.

(a) Match-Matrix (b) ROC

Figure 8.6: 2.5Dpc SIFT: (a) The match-matrix of matched keypoints, produced from a
set of synthetically rotated out-of-plane (about the yaw axis) range images of a human
face. (b) The matching results presented in a ROC space.
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(a) Match-Matrix (b) ROC

Figure 8.7: 2.5Dpc SIFT: (a) The match-matrix of matched keypoints, produced from
a set of synthetically rotated out-of-plane (about the pitch axis) range images of a
mannequin head. (b) The matching results presented in a ROC space.

(a) Match-Matrix (b) ROC

Figure 8.8: 2.5Dpc SIFT: (a) The match-matrix of matched keypoints, produced from
a set of synthetically rotated out-of-plane (about the pitch axis) range images of a
human face. (b) The matching results presented in a ROC space.
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8.3.2 Scale Invariant 2.5Dpc SIFT

This section presents the results obtained by extracting feature descriptors from range

images of different sizes using the 2.5Dpc SIFT. By using the feature descriptors ex-

tracted from the baseline image of size 244×369 pixels and comparing to the feature

descriptors extracted from the remainder set of data (i.e. of the same viewpoints but of

different sizes), a match-matrix that shows the percentage of matched keypoints at each

scale can be formulated. The match-matrix can be plotted in a bar graph, illustrating

the results visually. The lower left axis of the graph represents the viewpoint angles of

each pair of the compared range images, while the lower right axis shows the size of

the range images used for the comparison (where the numbers at the axis correspond

to the level indicator in Table 8.15.). Similar to the investigation conducted on the

single-scale 2.5D SIFT feature descriptors, the results can also be presented in terms

of a ROC space, providing a visual aid as to the reliability of the matches.

A total of 360 range images of different sizes simulating in-plane rotations (2×180),

190 range images of captured out-of-plane images of different sizes (2×95) and 180

range images of different sizes simulating out-of-plane rotations (2×90) rotated images

about the pitch axis and (2×45) rotated images about the yaw axis are used in this

experiment.

Levels Size of images
1 494×744
2 370×557
3 244×369 (Baseline)
4 182×275
5 119×181

Table 8.15: Size of the range images (in pixels) used in this experiment in order to
determine the stability of the feature descriptors against scale issues.

8.3.2.1 Synthetic In-plane Rotations

This section presents the results obtained by comparing the feature descriptors ex-

tracted from the unrotated and in-plane rotated images of size 244×369 pixels and the

feature descriptors extracted from the range images of different sizes (but of the same

rotational changes), using the 2.5Dpc SIFT system.
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Table 8.16 summaries the results obtained by exploring all pairwise combinations

of the feature descriptors extracted from the baseline images (of size 249x336 pixels

and at different angles about the roll axis) to the feature descriptors extracted from

the range images of the same viewpoint angle but at a different scale.

System Subject Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 70% 80% 90%

2.5Dpc

Mannequin
185 82.7% 87.0% 58.9% 34.6%

Table 8.17
Figure 8.9

head Figure 8.9
Human

185 85.0% 96.2% 93.5% 67.6%
Table 8.18

Figure 8.10
head Figure 8.10

Table 8.16: Results obtained by matching the feature descriptors extracted from differ-
ent sized synthetically rotated in-plane range images of a mannequin head and a human
face and feature descriptors extracted from the baseline images, using the 2.5Dpc SIFT
system.

(a) Match-matrix (b) ROC

Figure 8.9: (a) The match-matrix results of the percentage of matched keypoints, pro-
duced by comparing the feature descriptors extracted from a set of in-plane rotational
data of a mannequin head of size 244×369 pixels and the range images captured at
a different scale, using the 2.5Dpc SIFT system. (b) The matching results illustrated
in ROC space.

The results obtained illustrate the feature descriptors extracted using the 2.5Dpc
SIFT show good invariance to scale changes.

8.3.2.2 Out-of-plane Rotations on Real Data

The results obtained by exploring the feature descriptors extracted from out-of-plane

rotated range images of a human face and a mannequin head of size 244×369 pixels and
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494×744 370×557 244×369 182×275 119×181

0◦ 67.9 74.4 100 90.9 75
10◦ 78.9 80 100 83.9 78.6
20◦ 76.2 82.5 100 75 85.7
30◦ 73.3 92.3 100 83.8 90
40◦ 63 77.8 100 80.6 100
50◦ 75 92.1 100 82.9 75
60◦ 77.3 76.7 100 90.3 90.9
70◦ 84.4 78.6 100 80 83.3
80◦ 91.3 79.3 100 75 0
90◦ 71.4 73.7 100 86.7 66.7
100◦ 73.5 72 100 85.7 0
110◦ 88.9 76.9 100 94.4 66.7
120◦ 78.9 100 100 91.7 57.1
130◦ 90.9 81.5 100 85 66.7
140◦ 95.7 90 100 93.8 84.6
150◦ 79.3 83.9 100 71.4 100
160◦ 79.1 86.7 99.4 73 80
170◦ 75 90.6 100 90.9 83.3
180◦ 66.7 67.6 100 80 91.7
190◦ 88 73.7 100 90.9 88.9
200◦ 94.1 77.4 100 88.9 75
210◦ 91.3 67.7 100 80.6 100
220◦ 72.2 78.9 100 85.2 85.7
230◦ 86.7 78.8 100 89.3 57.1
240◦ 87.5 88.9 100 92.6 60
250◦ 78.3 96.2 99.4 77.3 60
260◦ 78.9 81.5 100 86.4 75
270◦ 77.8 89.3 100 83.3 66.7
280◦ 86.7 84 100 90.9 0
290◦ 75 73.3 100 91.7 75
300◦ 80.8 82.9 100 91.2 0
310◦ 79.2 80.6 100 83.9 80
320◦ 76.9 80.8 100 88.2 80
330◦ 88.9 87.1 100 80.8 57.1
340◦ 65.5 71.4 100 86.1 70
350◦ 66.7 69.7 100 75 57.1
360◦ 67.9 74.4 100 90.9 75

Table 8.17: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from the in-plane rotational data of a mannequin
head (from 0◦ at 10◦ clockwise increments up to and including 360◦) of size 244×369
pixels and the feature descriptors extracted from the same viewpoint but of different
scales, using the 2.5Dpc SIFT system.

155



8.3 Performance Rate of 2.5Dpc SIFT

494×744 370×557 244×369 182×275 119×181

0◦ 88.5 76.4 100 80 81.8
10◦ 82.1 82.8 100 91.2 78.6
20◦ 83.3 87.5 100 82.1 100
30◦ 94.7 97.9 100 92.1 100
40◦ 72.4 76.7 100 93 83.3
50◦ 80 84.1 100 87.1 100
60◦ 76.7 83.3 99.6 76.9 58.3
70◦ 90.6 78.6 100 88.6 66.7
80◦ 91.7 74.5 100 85 66.7
90◦ 82.6 91.2 100 79.4 92.3
100◦ 91.9 97 100 90.3 100
110◦ 86.2 96.8 100 81.3 75
120◦ 77.1 77.1 100 84.6 57.1
130◦ 93.5 85.4 100 88.1 77.8
140◦ 78.7 73.3 100 85.2 72.7
150◦ 75 71.8 100 79.6 72.2
160◦ 76.9 72.7 100 83 71.4
170◦ 73.3 72.9 100 91.1 90.9
180◦ 76.9 85.4 99.6 81.8 83.3
190◦ 86.7 71.4 99.6 82.8 73.3
200◦ 80 81.4 100 88.9 91.7
210◦ 83.3 75.5 100 80.6 80
220◦ 81 76.3 100 84.8 63.6
230◦ 82.1 71.7 100 72.7 72.7
240◦ 73 82.9 100 85.3 75
250◦ 81.5 85.4 100 90.6 25
260◦ 66.7 83.8 100 90.3 66.7
270◦ 84.6 89.2 100 90.3 80
280◦ 71 92.3 100 85.3 55.6
290◦ 90 85.3 100 86.8 60
300◦ 81.8 80.5 100 88.9 83.3
310◦ 78.3 82 100 86.5 90.9
320◦ 84 74.6 100 83 60
330◦ 89.7 86.5 99.6 83.7 55.6
340◦ 76.5 82.2 100 74 100
350◦ 71.4 80.4 100 90 100
360◦ 88.5 76.4 100 80 81.8

Table 8.18: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from the in-plane rotational data of a human face
(from 0◦ at 10◦ clockwise increments up to and including 360◦) of size 244×369 pixels
and the feature descriptors extracted from the same viewpoint but of different scales,
using the 2.5Dpc SIFT system.
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(a) Match-matrix (b) ROC

Figure 8.10: (a) The match-matrix results of the percentage of matched keypoints, pro-
duced by comparing the feature descriptors extracted from a set of in-plane rotational
data of a human face (from 0◦ at 10◦ increments in the clockwise direction up to
350◦) of size 244×369 pixels and the range images captured at a different scale, using
the 2.5Dpc SIFT system. (b) The matching results illustrated in ROC space.

the feature descriptors extracted from the same viewpoint rotation but of a different

sized images are presented in this section. Table 8.19 summaries the results.

System Subject Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 70% 80% 90%

2.5Dpc

Mannequin
95 83.2% 80% 65.3% 42.1%

Table 8.20
Figure 8.11

head Figure 8.11
Human

95 87.8% 91.6% 77.9% 53.7%
Table 8.21

Figure 8.12
head Figure 8.12

Table 8.19: Results obtained by matching the feature descriptors extracted from dif-
ferent sized rotated out-of-plane range images of a mannequin head and a human face
to their baseline images, using the 2.5Dpc SIFT system.

The results obtained in this section indicate that the feature descriptors demonstrate

good invariance to scale changes, with respect to out-of-plane rotational changes.
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494×744 370×557 244×369 182×275 119×181

-90◦ 66.7 80 100 70 0
-80◦ 78.9 91.7 100 88.5 0
-70◦ 90.9 86.7 100 100 60
-60◦ 78.6 81 100 94.7 57.1
-50◦ 86.7 75.9 100 85.7 100
-40◦ 76.9 79.3 100 93.8 100
-30◦ 83.3 87.5 100 85 69.2
-20◦ 84.6 91.7 100 82.6 70
-10◦ 94.1 90 100 96.2 77.8
0◦ 93.3 100 100 95.5 57.1
10◦ 92.9 80 100 85.7 81.8
20◦ 75 81.5 100 78.3 88.2
30◦ 68.8 91.3 100 87.5 77.8
40◦ 83.3 95.8 100 84.6 75
50◦ 100 100 100 95.8 70
60◦ 75 88.9 100 85 66.7
70◦ 92.3 88.9 100 66.7 60
80◦ 71.4 93.3 100 83.3 57.1
90◦ 66.7 66.7 100 66.7 0

Table 8.20: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from the out-of-plane rotational data of a mannequin
head (from -90◦ at 10◦ clockwise increments up to and including 90◦) of size 244×369
pixels and the feature descriptors extracted from the same viewpoint but of different
scales, using the 2.5Dpc SIFT system.

494×744 370×557 244×369 182×275 119×181

-90◦ 81.8 75 100 100 81.8
-80◦ 90.9 88.9 100 81.8 0
-70◦ 91.7 87.5 100 94.1 85.7
-60◦ 100 95.5 100 92.6 66.7
-50◦ 100 90 100 87 90.9
-40◦ 100 93.1 100 91.7 90.9
-30◦ 88.9 80 100 95.2 75
-20◦ 81.3 82.6 100 95.5 100
-10◦ 81.3 90.6 100 89.3 75
0◦ 95.5 90.9 100 87.5 90
10◦ 94.4 90.6 100 89.3 92.3
20◦ 93.3 83.3 100 85.2 55.6
30◦ 72.7 94.7 100 90.5 92.3
40◦ 66.7 76.7 100 100 75
50◦ 84.6 75 100 87.5 60
60◦ 100 76.9 100 100 66.7
70◦ 64.3 93.3 100 95.7 87.5
80◦ 93.8 77.8 100 87 75
90◦ 78.6 85 100 73.3 66.7

Table 8.21: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from the out-of-plane rotational data of a human face
(from -90◦ at 10◦ clockwise increments up to and including 90◦) of size 244×369 pixels
and the feature descriptors extracted from the same viewpoint but of different scales,
using the 2.5Dpc SIFT system.
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(a) Match-matrix (b) ROC

Figure 8.11: 2.5Dpc SIFT: (a) The match-matrix results of the percentage of matched
keypoints, produced by comparing the feature descriptors extracted from a set of out-
of-plane rotational data of a mannequin head (from -90◦ at 10◦ increments in the
clockwise direction up to 90◦) of size 244×369 pixels and the range images captured at
a different scale. (b) The matching results illustrated in ROC space.

(a) Match-matrix (b) ROC

Figure 8.12: 2.5Dpc SIFT: (a) The match-matrix results of the percentage of matched
keypoints, produced by comparing the feature descriptors extracted from a set of out-
of-plane rotational data of a human face (from -90◦ at 10◦ increments in the clockwise
direction up to 90◦) of size 244×369 pixels and the range images captured at a different
scale. (b) The matching results illustrated in ROC space.

The next section will presents the results obtained by comparing feature descriptors

extracted from different sizes of range images simulating synthetically about the out-

of-plane axes.
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8.3.2.3 Synthetic Out-of-plane Rotations

This section investigates the matching performances of synthetically rotated range im-

ages of different sizes against out-of-plane rotations. Here, the feature descriptors

extracted from the baseline images (of size 244×369 pixels) are matched to the feature

descriptors extracted from images of the same viewpoint angle but of a different size.

Table 8.22 summarises the results.

Subject Axis Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 70% 80% 90%

Mannequin
yaw 45 76.6% 75.6% 55.6% 37.8%

Table 8.23
Figure 8.13

head Figure 8.13
Human

yaw 45 74.9% 68.9% 44.4% 33.3%
Table 8.24

Figure 8.14
head Figure 8.14

Mannequin
pitch 45 85.0% 77.8% 68.9% 46.7%

Table 8.25
Figure 8.15

head Figure 8.15
Human

pitch 45 77.4% 75.6% 60% 33.3%
Table 8.26

Figure 8.16
head Figure 8.16

Table 8.22: Results obtained by matching the feature descriptors extracted from dif-
ferent sized synthetically rotated out-of-plane range images of a mannequin head and
a human face and the feature descriptors extracted from the baseline images, using the
2.5Dpc SIFT system.

494×744 370×557 244×369 182×275 119×181
-40◦ 92.3 73.3 100 88.9 0
-30◦ 69.2 84.6 100 80 100
-20◦ 82.4 92.3 95.3 88.9 60
-10◦ 100 70.6 96.7 89.5 71.4
0◦ 93.3 100 100 95.5 57.1
10◦ 86.7 75 100 90.9 85.7
20◦ 58.3 84 100 80 60
30◦ 75 80 98.9 60 0
40◦ 70.6 60 98.9 0 0

Table 8.23: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from synthetically out-of-plane rotational data (about
the yaw axis) of a mannequin head (from -40◦ at 10◦ clockwise increments up to and
including 40◦) of sized 244×369 pixels and the feature descriptors extracted from the
same viewpoint but of different scales, using the 2.5Dpc SIFT system.
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(a) Match-matrix (b) ROC

Figure 8.13: 2.5Dpc SIFT system: (a) The match-matrix results of the percentage of
matched keypoints, produced by comparing the feature descriptors extracted from a
set of synthetically out-of-plane rotational data (about the yaw axis) of a mannequin
head (from -40◦ at 10◦ increments in the clockwise direction up to 40◦) of size 244×369
pixels and the range images captured at a different scale. (b) The matching results
illustrated in ROC space.

(a) Match-matrix (b) ROC

Figure 8.14: 2.5Dpc SIFT system: (a) The match-matrix results of the percentage of
matched keypoints, produced by comparing the feature descriptors extracted from a
set of synthetically out-of-plane rotational data (about the yaw axis) of a human face
(from -40◦ at 10◦ increments in the clockwise direction up to 40◦) of size 244×369 pixels
and the range images captured at a different scale. (b) The matching results illustrated
in ROC space.
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494×744 370×557 244×369 182×275 119×181
-40◦ 66.7 78.6 99.3 76.9 0
-30◦ 55.6 76 98.4 75 60
-20◦ 66.7 80 97.1 95.7 71.4
-10◦ 66.7 79.3 99.3 78.9 60
0◦ 100 87.2 100 96.4 93.8
10◦ 0 73.7 98 70 100
20◦ 100 78.3 100 78.9 83.3
30◦ 0 88.2 96.4 84.6 57.1
40◦ 60 81.5 100 62.5 0

Table 8.24: Match-matrix results of the percentage of the matched keypoints by com-
paring the feature descriptors obtained from synthetically out-of-plane rotational data
(about the yaw axis) of a human face (from -40◦ at 10◦ clockwise increments up to
and including 40◦) of size 244×369 pixels and the feature descriptors extracted from
the same viewpoint but of different scales, using the 2.5Dpc SIFT system.

494×744 370×557 244×369 182×275 119×181
-40◦ 70 100 99.2 80 66.7
-30◦ 88.9 90.5 98.2 86.7 60
-20◦ 61.5 95.2 100 88.9 60
-10◦ 69.2 100 98.9 78.6 60
0◦ 93.3 100 100 95.5 57.1
10◦ 86.7 100 100 85.7 100
20◦ 100 83.3 97.8 70.6 40
30◦ 90 95.5 100 83.3 75
40◦ 93.3 88.9 100 81.3 57.1

Table 8.25: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from synthetically out-of-plane rotational data (about
the pitch axis) of a mannequin head (from -40◦ at 10◦ clockwise increments up to
and including 40◦) of size 244×369 pixels and the feature descriptors extracted from
the same viewpoint but of different scales, using the 2.5Dpc SIFT system.
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(a) Match-matrix (b) ROC

Figure 8.15: 2.5Dpc SIFT: (a) The match-matrix results of the percentage of matched
keypoints, produced by comparing the feature descriptors extracted from a set of syn-
thetically out-of-plane rotational data (about the pitch axis) of a mannequin head
(from -40◦ at 10◦ increments in the clockwise direction up to 40◦) of size 244×369 pixels
and the range images captured at a different scale. (b) The matching results illustrated
in ROC space.

(a) Match-matrix (b) ROC

Figure 8.16: 2.5Dpc SIFT: (a) The match-matrix results of the percentage of matched
keypoints, produced by comparing the feature descriptors extracted from a set of syn-
thetically out-of-plane rotational data (about the pitch axis) of a human face (from
-40◦ at 10◦ increments in the clockwise direction up to 40◦) of size 244×369 pixels and
the range images captured at a different scale. (b) The matching results illustrated in
ROC space.

The results obtained indicates the feature descriptors extracted using the pose cor-

rected version of the 2.5D SIFT show a good invariance to scale changes.
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494×744 370×557 244×369 182×275 119×181
-40◦ 0 61.5 98.7 83.3 0
-30◦ 66.7 100 96.2 84.2 100
-20◦ 0 88.9 97.5 83.3 87.5
-10◦ 66.7 70.6 100 78.3 75
0◦ 100 87.2 100 96.4 93.8
10◦ 0 66.7 97.1 76.5 86.7
20◦ 100 72.2 95.2 82.8 66.7
30◦ 66.7 82.4 100 74.1 76.9
40◦ 66.7 85.7 99.2 88.2 83.3

Table 8.26: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from synthetically out-of-plane rotational data (about
the pitch axis) of a human face (from -40◦ at 10◦ clockwise increments up to and
including 40◦) of size 244×369 pixels and the feature descriptors extracted from the
same viewpoint but of different scales, using the 2.5Dpc SIFT system.

The next section will repeat the experiments conducted in this section using stan-

dard 2D SIFT on 2D images. A comparison can then be made on the performance rate

of the 2D SIFT and 2.5D SIFT.

8.4 Comparison between 2D and 2.5Dpc Frameworks

A comparison between the performance of standard 2D SIFT on 2D images and the

performance of the 2.5Dpc SIFT on range images is essential in order to validate the

2.5D SIFT system. This section addresses the performance rate of standard 2D SIFT

on 2D images against rotational changes. A MATLAB version of standard 2D SIFT

is available online (Lowe, 2005) where stable keypoints are located on the 2D images,

along with their appropriate scale σ. The output of the standard 2D SIFT comprises

the image itself, the (x, y, σ, θ) information and the feature descriptors extracted for

each (x, y, σ, θ). Therefore, the resulting (x, y, σ, θ,descriptor) can be stored within a

database for each 2D image of different rotational changes.

By comparing all the combinations of the feature descriptors extracted from 2D

images captured at different angles using the standard 2D SIFT algorithm, it is possible

to determine the performance rate of standard 2D SIFT. The next section presents

the results obtained for the performance rate against both in-plane and out-of-plane

rotational changes.
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8.4.1 2D SIFT on Intensity Images: Fixed Scale

This section investigates the matching performance of standard 2D SIFT on 2D in-

tensity images at a fixed scale. In order to be able to compare the performance rates

between the standard 2D SIFT and the proposed 2.5D SIFT, the data and the size of

the images used are identical. To this end, the 2D images used for this experiments are

of size 244×369 pixels.

A total of 72 2D images simulating in-plane rotations (2×36), 38 images of captured

out-of-plane rotations (2×19) and 36 images simulating the out-of-plane rotations about

the yaw (2×9) and pitch (2×9) axes respectively are used in this experiment.

8.4.1.1 Synthetic In-plane Rotations

The performance rate of the feature descriptors extracted from in-plane rotated 2D

images using standard 2D SIFT is addressed in this section. Table 8.27 summarises the

results obtained by exploring all combinations of the feature descriptors extracted from

the synthetically in-plane rotated 2D images of a mannequin head and a human face

respectively, from 0◦ at increments of 10◦ in the clockwise direction up to 350◦. Beside

each average matching rate is two symbols, denoting the statistically significant, using

the Wilcoxon Matched-Paired Signed-Ranked test, when compared to the two baseline

methods (2.5D SIFT and 2.5Dpc SIFT respectively). Each symbol can be one of �,

<, =, >, �. For example, consider the average matching result of the mannequin

head using 2D SIFT: 83.7%��, the first symbol indicates that the average matching

result is significantly better (p < 0.01) than the average matching result obtained

using 2.5D SIFT; and the second symbol indicates that the average matching result is

again significantly better (p < 0.01) than the average matching rate obtained using the

2.5Dpc SIFT.
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System Subject Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 50% 60%

2D

Mannequin
1369 83.7%�� 98.4% 94.1%

Table 8.28
Figure 8.17

head Figure 8.17
Human

1369 84.2%�� 98.97% 96.4%
Table 8.29

Figure 8.18
face Figure 8.18

Table 8.27: Results obtained by exploring all pairwise combinations of the feature
descriptors extracted from rotated in-plane 2D images of a mannequin head and a
human face, using 2D SIFT.

(a) Match-matrix (b) ROC

Figure 8.17: (a) Match-matrix obtained by exploring all pairwise combinations of the
feature descriptors extracted from rotated in-plane 2D images of a mannequin head,
using standard 2D SIFT. (b) Results presented in a ROC space. This figure can be
compared with Figure 6.6 and Figure 8.1, where the results were obtained from the
same data set using 2.5D SIFT and 2.5Dpc SIFT respectively.
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0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦

0◦ 100 95.7 90.2 93.3 84.8 96.7 81.3 55.6 75 18.2 88.9 77.8 57.1 92.9 94.1 91.3 82.1 91.3
10◦ 93.5 100 84.8 87.1 90.6 93.1 75 66.7 75 87.5 57.1 83.3 87.5 90 76.9 83.3 86.2 83.3
20◦ 93.5 88.1 100 97.2 91.2 86.7 100 100 80 80 55.6 75 87.5 63.6 66.7 82.4 88 91.9
30◦ 90.5 92.7 86.7 100 82.1 85.4 91.3 92.9 77.8 72.7 87.5 55.6 77.8 75 81.3 89.5 85.7 87.9
40◦ 92.3 88.9 82 86.5 100 85.4 94.1 81 87.5 55.6 75 83.3 57.1 90 90 85.7 94.7 100
50◦ 88.9 92.9 83.8 87.8 85.4 100 88.4 89.7 87.5 100 66.7 66.7 88.9 62.5 68.8 100 89.5 84.6
60◦ 96.9 96.9 93.9 84.8 85.7 90.7 100 86.1 93.8 70.6 80 87.5 75 83.3 100 94.1 78.6 95.5
70◦ 96.4 92.6 93.8 87.1 86.5 88.1 90.5 100 93.5 81.8 62.5 100 88.9 61.5 82.4 94.1 85.7 95
80◦ 80 89.3 90 87.1 79.4 86.2 86.5 92.3 100 94.7 53.8 66.7 62.5 92.3 73.3 92.3 68.8 94.4
90◦ 94.4 89.7 86.7 85.7 90.9 96.9 96.3 100 96.7 90.5 88 76.9 76.9 85.7 94.4 100 87.5 100
100◦ 82.8 70.8 93.3 88 87.5 87 82.6 93.8 95.2 90.9 0 90.9 83.3 72.2 90.5 66.7 93.8 80
110◦ 77.8 90.5 88 92 87 84.2 64.3 83.3 92.9 68.4 95.5 100 87.5 80 80 77.3 84.2 91.3
120◦ 91.2 87 92.3 95.2 85 72.2 81.8 80 80 70 80 75 100 79.3 83.3 86.4 83.3 80
130◦ 85.7 84.6 77.8 85 90.5 76.2 80 63.6 84.6 72.7 80 69.2 82.6 95.8 94.3 82.6 88.9 88.2
140◦ 85 93.1 93.3 96 81.8 81.8 76.9 57.1 75 90.9 57.1 72.7 89.5 96.8 100 85.4 89.7 82.1
150◦ 88.2 96.2 92.9 93.3 91.3 95 100 63.6 88.9 63.6 55.6 66.7 100 86.4 84.6 100 89.1 87.5
160◦ 86.4 100 80.6 93.3 93.1 94.7 64.3 57.1 57.1 55.6 62.5 77.8 70 88.9 78.6 93.5 100 91.5
170◦ 87.8 83.3 93.9 96.3 96.3 96 92.3 55.6 77.8 60 81.8 87.5 57.1 75 75 77.4 90.2 94
180◦ 91 95.7 87.8 87.1 85.7 96 80 55.6 57.1 100 88.9 77.8 75 61.5 86.4 85 90 93.9
190◦ 89.8 92.1 80 84.8 87.5 90 75 72.7 60 70 83.3 57.1 77.8 83.3 94.1 82.4 85.2 84.2
200◦ 86.7 86 87.7 91.9 84.8 84.8 82.4 63.6 70 77.8 55.6 60 77.8 100 87.5 80 95.5 85
210◦ 93 86.8 85.1 90.4 79.5 86.1 81 83.3 91.7 72.7 55.6 77.8 66.7 75 100 76.5 94.7 91.7
220◦ 89.7 92.1 83.3 89.2 5.71 90.2 94.1 83.3 88.9 55.6 62.5 66.7 57.1 80 81.8 83.3 87.5 92.3
230◦ 92.3 100 84.8 95 88.1 44.6 89.1 95.5 94.4 100 70 87.5 66.7 88.9 70.6 71.4 80 90.5
240◦ 94.1 100 84.2 84.4 85 88.6 90.6 91.9 94.7 81.8 100 75 85.7 100 100 80 100 95.5
250◦ 96.8 96.3 87.9 90.6 86.5 87.5 88.1 43.1 95.2 81.8 55.6 75 87.5 92.3 93.8 82.4 89.5 88.9
260◦ 81.5 92.6 90.3 86.2 79.4 86.2 84.8 84.2 52.2 84.2 58.3 77.8 66.7 66.7 84.6 100 76.9 100
270◦ 9.09 89.3 96.6 85.7 91.7 100 96.6 100 95 96.6 90.5 75 83.3 92.9 94.7 87.5 81.3 100
280◦ 86.2 73.9 89.7 92 80 82.6 84.2 53.3 95.2 100 93.7 90.9 82.4 88.2 85.7 88.9 94.1 81.8
290◦ 89.7 78.3 91.7 95.7 90.9 100 53.3 91.7 100 76.5 84.2 92.6 91.3 84.2 73.7 95 94.7 91.3
300◦ 96.9 87.5 89.7 95.5 90 72.2 63.6 92.3 100 72.7 71.4 75 13 81.5 95.8 90 90.9 89.7
310◦ 77.1 92 82.1 87 90.9 90.5 81.8 70 76.9 72.7 77.8 75 90 8.33 97 92.3 81 88
320◦ 84.6 82.1 89.7 96.2 83.3 85 85.7 66.7 77.8 91.7 75 70 87 82.8 87.9 84.1 85.4 82.1
330◦ 85.7 92.3 93.1 88.9 91.3 95.2 100 66.7 88.9 63.6 55.6 88.9 83.3 94.7 85.7 85.5 91.5 84.6
340◦ 93.3 94.9 81.8 93.1 92.6 95.2 69.2 66.7 62.5 70 57.1 90 90 87.5 88.5 95.1 91.5 89.4
350◦ 91.1 88.9 86 96.4 96.4 91.7 91.7 62.5 87.5 66.7 75 66.7 71.4 72.7 78.3 81.3 92.7 90.3

180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

0◦ 91 95.7 88.6 90 80 88.9 100 70 75 0 55.6 87.5 80 92.9 93.3 95.7 90.7 87.5
10◦ 95.7 91.9 84.4 88.6 93.5 85.2 76.5 0 62.5 62.5 66.7 75 55.6 90.9 100 77.8 84.8 75.6
20◦ 90.5 88.6 29.6 92.1 88.9 83.3 87.5 63.6 90 75 75 62.5 77.8 78.6 66.7 71.4 75.9 89.1
30◦ 94.7 92.5 89.1 2.82 85 87.5 68.4 93.3 90 70 75 62.5 90 75 92.9 93.3 87.5 82.9
40◦ 94.4 91.7 84.1 86.8 90 87 93.8 83.3 91.7 66.7 75 83.3 85.7 100 90 93.8 82.1 82.8
50◦ 87.5 93.1 88.2 89.7 85.7 92.1 93.2 96.2 100 100 66.7 77.8 80 81.8 73.3 73.3 82.6 87.1
60◦ 94.1 87.5 90.6 83.9 87.5 89.8 90.8 88.6 87 75 76.9 87.5 100 88.9 100 93.3 95.5 89.7
70◦ 90.3 88.9 88.6 82.1 84.4 82.9 88.9 70.3 84.8 93.3 88.9 80 91.7 90.9 93.8 95 88.5 88.9
80◦ 85.7 72 89.7 84.8 75 89.3 92.6 91.9 92.8 90.5 81.3 81.8 75 84.6 78.6 84.6 84.6 78.1
90◦ 97.1 96.2 87.1 96 90 96.4 95.8 91.3 93.5 95.1 88.9 84.6 78.6 92.9 87.5 93.3 100 90.3
100◦ 87.5 85 85.7 87 90.5 91.3 95.2 61.1 90 91.7 1.56 85.2 83.3 83.3 88.9 80 85 80.8
110◦ 76 85.7 75 94.1 94.4 73.3 58.3 100 94.1 88.2 91.7 35.8 92 84.2 70.6 78.9 85.2 79.3
120◦ 90.3 84 89.3 95 81.3 64.3 90 80 80 100 80 83.3 91.5 78.6 81.5 87.5 85.7 84.6
130◦ 79.3 90.9 80 80 88.2 82.4 90.9 70 72.2 81.8 75 81.3 79.2 83.6 89.2 86.7 80 87.1
140◦ 83.3 92.9 77.8 85.7 82.4 83.3 54.5 83.3 72.7 84.6 66.7 92.9 94.1 93.1 89.4 82 81.4 81
150◦ 93.5 92.6 92.9 92.9 88.9 94.1 100 83.3 87.5 70 90 66.7 100 93.8 94.3 15.9 91.7 81.8
160◦ 88.6 94.7 96.7 90 91.7 100 75 57.1 62.5 87.5 75 90 81.8 88.9 85.3 91.5 52.2 88.9
170◦ 91.5 86.5 80 100 86.7 87 92.3 33.3 60 90 80 66.7 80 66.7 86.4 84.2 85.4 86.7
180◦ 100 95.8 93.3 94.1 86.1 88.9 100 57.1 71.4 90.9 85.7 71.4 55.6 91.7 87.5 89.3 88.9 86
190◦ 89.6 100 90.7 82.4 91.2 85.2 70.6 71.4 57.1 66.7 83.3 60 88.9 83.3 100 76 84.2 71.8
200◦ 91.5 90.7 100 91.7 89.5 81.8 73.3 62.5 63.6 80 66.7 75 90 70 87.5 83.3 85.3 86.7
210◦ 89.7 88.4 80 100 86.5 87.5 90.9 85.7 72.7 72.7 60 75 88.9 75 66.7 73.7 83.3 86.1
220◦ 90.6 91.2 87 89.2 0 89.7 94.1 85.7 77.8 55.6 62.5 40 100 66.7 83.3 71.4 81.5 84.8
230◦ 86.1 88.9 85 90.5 90.2 56.6 92.1 90 85 92.3 75 87.5 87.5 81.8 73.3 78.6 95.5 84.2
240◦ 92.9 93.5 90.9 82.4 87.5 90.5 100 93.9 91.7 76.5 90 75 100 88.9 100 87.5 96.4 86.7
250◦ 89.7 85.2 85.3 81.8 82.9 86.4 92.1 100 82.4 100 55.6 62.5 77.8 90.9 100 78.6 85.7 90.3
260◦ 96.2 75 89.3 89.7 78.9 86.2 93.5 86.1 100 90 94.7 90 75 92.3 84.6 100 86.4 87
270◦ 87.9 96.7 84.4 91.7 86.7 93.3 95.8 100 94.4 98.7 90 83.3 78.6 92.9 93.3 64.3 100 96.6
280◦ 86.2 70.8 80.6 100 78.3 88 95.5 95.5 95 88 96.6 84 94.4 77.8 72.2 75 73.7 74.1
290◦ 81.8 90 87 95.8 90 88.9 61.5 54.5 80 88.9 92 100 95.7 85 88.9 81.8 90.5 95.8
300◦ 93.3 84.6 92.3 95 87.5 64.3 63.6 66.7 90.9 100 75 85.7 100 78.8 90.9 96.2 90.9 87.1
310◦ 80 81.5 80 85.7 69.2 66.7 91.7 63.6 78.6 72.7 72.7 77.8 79.2 100 92.5 89.7 90.9 91.7
320◦ 86.1 93.3 90.3 91.3 78.3 83.3 100 57.1 77.8 92.9 63.6 54.5 95 90.9 100 81.3 84.4 83.9
330◦ 96.9 88.9 87.1 92 85 88.2 66.7 75 57.1 60 55.6 75 86.7 93.3 84.6 100 93.9 84.4
340◦ 88.1 94.3 73.7 87.1 85.7 100 100 0 77.8 87.5 55.6 77.8 75 83.3 89.7 95.8 100 83
350◦ 91.8 84.2 90.9 96.7 88.9 85 92.3 85.7 66.7 88.9 70 100 57.1 66.7 83.3 85.7 90.7 100

Table 8.28: Match-matrix results of the percentage of matched keypoints, produced
from the in-plane rotational 2D data of a mannequin head (from 0◦ at 10◦ clockwise
increments up to 350◦), using 2D SIFT.
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0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ 100◦ 110◦ 120◦ 130◦ 140◦ 150◦ 160◦ 170◦

0◦ 100 93.9 86.1 95.5 100 81.8 61.5 73.3 82.4 0 64.3 54.5 75 61.5 73.7 93.9 96.6 100
10◦ 88.9 100 91.9 90.3 95 82.4 72.7 80 76.9 53.3 58.3 62.5 87.5 76.9 88.2 76 96.4 93.1
20◦ 87.5 91.7 100 94.1 90 92.9 73.3 76.9 78.9 70.6 73.3 68.8 100 83.3 61.5 95.5 92.6 97
30◦ 93.3 93.8 93.3 98.8 82.1 71.4 70.6 82.4 73.3 64.7 69.2 58.3 84.6 55.6 100 95.7 96.3 96.2
40◦ 96.7 93.3 82.9 91.4 0 78 74.1 68.4 77.3 71.4 85.7 73.3 81.8 76.9 91.7 80 95.7 96.4
50◦ 90.3 96.3 87.1 94.3 89.2 100 84.6 82.6 79.2 68.2 93.3 92.3 90.9 83.3 93.3 81.8 91.3 100
60◦ 100 92 96.3 94.7 80.6 88.9 35.6 89.2 89.7 72.7 81.8 64.7 81.3 76.9 76.9 100 95.2 100
70◦ 100 81 86.4 90.5 80 88 81.6 100 72.7 80 72.7 71.4 86.7 72.7 100 100 85 95.7
80◦ 91.7 85 89.5 70.6 88.2 88.2 86.4 78.1 97.6 69.2 80 90 87.5 76.9 100 80 83.3 96.2
90◦ 75 95 89.5 93.3 90 93.3 85 87.5 77.4 100 91.7 92.3 72.2 69.2 87.5 86.4 86.4 88.9
100◦ 100 81.3 95.5 100 77.8 71.4 66.7 72.7 92.3 85.2 100 82.4 81.5 94.7 95 96 91.7 100
110◦ 96.2 88.2 93.8 94.1 66.7 75 73.3 60 69.2 75 89.3 79 89.6 86.1 88.5 88.9 96.4 96
120◦ 95.8 100 82.4 87.5 69.2 72.7 83.3 64.3 78.9 69.6 84 87.5 100 81.8 83.9 77.3 92.9 96
130◦ 100 91.3 100 87.5 60 80 83.3 71.4 80 81 80 90.6 80 100 85.4 94.1 93.1 100
140◦ 82.1 90.9 85.7 100 88.9 81.8 72.7 80 72.2 75 75 59.1 81.8 89.4 100 95.5 90.6 96.4
150◦ 100 87.5 95.7 95.5 77.8 54.5 66.7 66.7 68.4 68.4 80 68.4 87 80.5 89.2 100 93 94.7
160◦ 97.1 96.3 96 80 92.9 66.7 75 66.7 66.7 64.7 68.8 76.5 78.9 79.2 86.8 87 100 93.8
170◦ 94.3 96.3 92 90.9 83.3 81.8 55.6 80 73.3 76.5 70.6 85.7 92.9 78.9 95.7 90.2 93.2 100
180◦ 13.1 94.6 86.1 95.8 93.3 72.7 66.7 91.7 66.7 84.2 64.3 64.3 75 75 90.9 87.5 94.4 94.9
190◦ 90 5.08 87.2 93.9 89.5 92.3 90 90.9 57.9 70.6 58.3 60 73.3 66.7 83.3 91.7 87.1 91.9
200◦ 97.4 89.5 0 82.9 88.5 81.3 53.3 82.4 77.8 55.6 72.7 73.3 75 75 94.1 100 96.3 100
210◦ 100 93.1 88.2 80.6 82.1 68.2 80 82.4 70 68.4 66.7 58.3 72.7 66.7 93.8 96.2 100 96.2
220◦ 100 90 90.6 92.5 76.8 82.5 74.1 81.8 75 76.5 78.6 92.9 81.8 90.9 100 100 95.5 96.3
230◦ 87.9 95.8 88.5 89.7 86.4 34.6 86.5 79.2 88.5 63.6 71.4 66.7 66.7 83.3 86.7 90.9 90.5 96.6
240◦ 100 95.7 92.3 84.2 91.7 92.1 47.1 88.6 85.2 72.7 86.4 61.1 92.3 73.3 60 94.1 94.7 100
250◦ 91.3 91.3 90.5 95.8 90 85 82.4 75.4 69.7 69.2 77.8 64.3 86.7 90 93.8 100 80 96
260◦ 95.2 87 89.5 78.9 87.5 82.4 81.8 77.4 78.9 84.6 81.8 89.5 89.5 71.4 100 90.9 92.6 96
270◦ 70.4 89.5 94.4 100 90.9 86.7 89.5 78.3 83.9 79.2 96.6 85.7 80 66.7 94.7 100 95 100
280◦ 100 94.1 100 100 81.8 72.7 66.7 72 78.6 86.2 27.9 85.3 95.7 88.9 100 91.7 96.3 100
290◦ 84.2 87.5 92.9 66.7 80 92.3 69.2 81 66.7 65.4 80 80.3 91.7 83.3 91.3 87 91.7 90.9
300◦ 95.7 100 94.4 87.5 60 66.7 73.3 70.6 68.2 68.2 84 86.5 18.1 81.3 88.5 87.5 92.6 96.2
310◦ 100 85 100 66.7 77.8 66.7 81.8 75 87 81 75 82.1 77.1 74.7 84.8 87.5 90.3 96.2
320◦ 92.6 90.9 90.5 100 55.6 58.3 77.8 85.7 81 81 81.3 55.6 79.3 84.3 81.1 92.7 93.1 90
330◦ 100 88.9 92 100 100 66.7 69.2 80 66.7 76.5 73.3 75 95.5 74.1 89.2 75 97.4 97.2
340◦ 100 96.6 95.8 79.2 91.7 66.7 63.6 72.7 81.8 60 80 64.7 93.8 88.9 90 92.7 77.5 97.8
350◦ 87.2 92.9 88.5 100 100 91.7 75 62.5 73.3 72.2 68.8 58.3 69.2 73.3 92.3 96.9 85.1 75

180◦ 190◦ 200◦ 210◦ 220◦ 230◦ 240◦ 250◦ 260◦ 270◦ 280◦ 290◦ 300◦ 310◦ 320◦ 330◦ 340◦ 350◦

0◦ 84.2 89.2 86.1 93.5 100 91.7 63.6 73.3 72.2 76.2 72.2 70.6 66.7 80 95.2 96.9 97.3 93.9
10◦ 85.7 71.7 92.1 91.4 93.1 100 68.4 80 73.3 73.3 60 71.4 78.6 71.4 77.8 81 92.9 90.3
20◦ 88.6 89.7 80.9 87.2 94.1 70 87.5 76.2 90.5 65 75 72.2 80 76.9 81.8 95.7 96.2 100
30◦ 92.9 93.9 88.9 72.5 89.1 88.9 75 90 71.4 70 81.3 57.1 76.9 80 89.5 100 96 96
40◦ 89.7 93.1 83.9 83.7 67.1 85.7 77.4 73.9 81 76.2 81 83.3 83.3 80 85.7 76.2 100 100
50◦ 87.1 96.3 93.5 88.6 84.4 38.2 84.4 76 76 78.3 72.7 83.3 93.3 90.9 90.9 100 95.7 100
60◦ 100 96.2 96 88 93.5 89.5 68.6 86.1 85.7 84 88 81 100 75 91.7 100 100 100
70◦ 86.4 87 95 70.8 80.8 78.6 80.5 77 75 75 72 76.5 80 84.6 76.9 100 90 100
80◦ 90 83.3 90.5 88.5 94.1 91.7 85.7 70.6 78.6 82.8 85.2 73.9 88.2 78.6 91.7 85 88 90.5
90◦ 100 95.2 92.6 83.3 95.5 70 73.1 86.7 87.1 32.7 86.7 84.6 70 63.2 75 85.7 95.7 87
100◦ 95.5 90.5 100 94.1 100 90.5 85 83.3 82.6 80.6 53.7 80 86.4 83.3 76.2 89.3 96.4 100
110◦ 95.7 90.9 95 90 86.7 92.9 85.7 65.2 73.1 80 85.3 79.7 87.2 74.2 83.3 95.7 90.3 96
120◦ 91.3 100 81 86.7 85.7 83.3 81.3 72.7 73.9 79.2 88 94.4 77.1 77.1 81.8 96.2 89.3 92.6
130◦ 96.6 83.3 100 87.5 100 81.8 68.8 81 88.5 83.3 88.5 84.4 82.9 74.1 83.3 93.8 91.4 96
140◦ 96.6 92.3 83.3 90 84.6 85.7 87.5 81.8 90.9 85.7 79.2 85.2 79.3 87.5 79.2 90 94.1 77.8
150◦ 96.8 96.2 100 95.8 76.9 100 68.8 68.8 73.7 72.7 76.2 72.7 95.2 80.6 88.4 78.1 95.2 94.1
160◦ 93.9 84.4 96.4 84 60 81.8 75 58.8 73.7 68.4 78.9 76.2 84.2 92 93.1 97.6 74 88.6
170◦ 97.1 90.9 96.6 92 87.5 92.3 69.2 58.3 81.3 75 65 94.1 100 86.7 84 93.8 95.6 76.2
180◦ 100 91.7 92.3 89.7 100 69.2 66.7 76.5 82.4 78.9 72.2 66.7 69.2 78.6 77.8 93.9 94.1 91.4
190◦ 86.5 100 92.7 94.7 93.8 75 52.9 66.7 70 71.4 76.2 68.8 92.3 83.3 82.4 92.6 91.4 93.5
200◦ 97.2 91.7 74.4 89.5 92.5 89.5 80 77.8 72.2 71.4 66.7 76.5 71.4 83.3 84.6 96 100 93.3
210◦ 86.2 94.4 84.4 100 80 79.2 77.3 78.3 75 70 80 80 83.3 60 93.8 95 92 96.2
220◦ 82.8 93.9 92.3 82.9 100 86 74.3 71.4 78.3 82.6 83.3 82.4 83.3 70 82.4 100 96.2 100
230◦ 84.4 93.5 93.5 80.5 80.9 100 80.4 76.9 82.6 80 75 78.9 84.6 78.6 70 82.4 92 96.4
240◦ 100 92.3 96.4 84 83.8 82.9 100 84.6 85.7 82.6 72 60.9 88.2 75 90.9 100 100 89.5
250◦ 90.9 87.5 91.7 87.5 81.5 85.7 84.6 100 74.2 71.4 78.3 70 81.3 83.3 81.3 95 79.2 100
260◦ 96 92.3 95.8 90 96.2 94.7 87.1 69.7 100 85.7 88.5 81.8 88.9 75 86.7 90.9 66.7 100
270◦ 78.6 95.7 96.2 88.2 100 83.3 91.7 81.8 89.7 100 90 70.4 78.9 75 87.5 100 95.2 95.7
280◦ 81.8 95.2 100 88.2 92.3 78.9 77.8 76 89.7 80 100 86.8 92 65 84.2 91.7 100 100
290◦ 95 89.5 92.3 92.3 70 92.9 73.7 87 70.4 73.1 87.9 100 93.6 81.6 84 95.5 87.5 95.2
300◦ 91.7 100 95.5 86.7 83.3 83.3 85.7 70 94.7 70.4 90 91.7 98.9 81.6 85.7 84.6 90.9 96
310◦ 96.4 96 95.2 87.5 83.3 90 64.7 82.4 87.5 84 72 87.9 75.5 100 83.6 94.1 93.1 96.3
320◦ 96.4 91.7 95.8 88.9 83.3 92.9 76.9 86.7 90.9 72.4 70.4 80.8 79.4 80.7 100 82.6 91.9 85.2
330◦ 96.9 96.3 100 100 72.7 75 64.3 78.6 66.7 76.2 66.7 71.4 91.3 86.1 85.1 100 95.7 97.1
340◦ 93.9 79.3 100 83.3 93.8 63.6 71.4 64.7 73.7 70.6 73.7 70 73.7 91.3 90 100 100 87.8
350◦ 91.7 96.9 89.7 95.8 84.6 60 76.5 86.7 81.3 70 61.9 85.7 94.1 82.4 80 96.9 80.9 100

Table 8.29: Match-matrix results of the percentage of matched keypoints, produced
from the in-plane rotational 2D data of a human face (from 0◦ at 10◦ clockwise
increments up to and including 360◦), using 2D SIFT.
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(a) Match-matrix (b) ROC

Figure 8.18: (a) Match-matrix obtained by exploring all pairwise combinations of the
feature descriptors extracted from rotated in-plane 2D images of a human face, using
standard 2D SIFT. (b) Results presented in a ROC space. This figure can be compared
with Figure 6.7 and Figure 8.2, where the results were obtained from the same data
set using 2.5D SIFT and 2.5Dpc SIFT respectively.

The results obtained from the feature descriptors extracted from in-plane rotated

2D images using standard 2D SIFT illustrate that they are robust to in-plane rotational

changes, with over average of 90% of the test images matched at over 50% of keypoint

matching rate. However, it is noted that when the results are plotted within a ROC

space, the FPR are larger than that obtained with 2.5Dpc SIFT for range images,

indicating the results are not as reliable as 2.5D SIFT.

8.4.1.2 Out-of-plane Rotations on Real Data

This section investigates the invariance properties of the feature descriptors extracted

from the out-of-plane rotated 2D images captured using the stereo-pair system. The

feature descriptors were extracted from standard 2D SIFT and Table 8.30 shows the

results obtained from a set of 2D human face data and a set of 2D mannequin head

data. Beside each average matching rate is two symbols, denoting the statistically

significant, using the Wilcoxon Matched-Paired Signed-Ranked test, when compared

to the two baseline methods (2.5D SIFT and 2.5Dpc SIFT respectively). Each symbol

can be one of �, <, =, >, �. The results show that the performance of 2D SIFT on

intensity images is significantly worse (p < 0.01) than the performance of the 2.5Dpc
SIFT on range images (i.e. 2.5Dpc SIFT outperforms 2D SIFT).
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System Subject Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 50% 60%

System

Mannequin
361 41.6%>� 55.1% 43.8%

Table 8.31
Figure 8.19

head Figure 8.19
Human

361 27.7%�� 35.5% 30.1%
Table 8.32

Figure 8.20
face Figure 8.20

Table 8.30: Results obtained by exploring all pairwise combinations of the feature
descriptors extracted from captured 2D out-of-plane range images of a mannequin head
and a human face, using 2D SIFT.

(a) Match-Matrix (b) ROC

Figure 8.19: (a) The match-matrix results of the percentage of matched keypoints,
produced from a set of out-of-plane rotational 2D data of a mannequin head (captured
from -90◦ at 10◦ increments up to 90◦), using 2D SIFT. (b) The matching results
presented in a ROC space. This figure can be compared to Figure 6.8 and Figure 8.3,
where the results were obtained from the same data set using 2.5D SIFT and 2.5Dpc
SIFT.

By comparing the matching results obtained by extracting the feature descriptors

from out-of-plane rotated 2D images using standard 2D SIFT, and by extracting feature

descriptors from out-of-plane rotated range images using the 2.5Dpc SIFT shown in

Table 8.7, it can be deduced that the performance of 2.5Dpc SIFT is, on average,

approximately 15% better than the performance of standard 2D SIFT with out-of-

plane 2D rotated images, at 50% keypoint matching rate.
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-90◦ -80◦ -70◦ -60◦ -50◦ -40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

-90◦ 100 60 0 57.1 75 0 0 0 0 0 0 0 60 0 0 0 0 0 0
-80◦ 75 100 68.8 61.5 60 57.1 0 0 0 0 0 0 0 0 0 0 0 0 0
-70◦ 0 61.1 100 81.5 77.8 55.6 55.6 57.1 0 0 0 0 0 0 0 0 0 0 0
-60◦ 0 60 86.4 100 66.7 72.2 77.8 62.5 75 63.6 0 0 0 0 0 0 0 0 0
-50◦ 0 57.1 66.7 73.3 84.3 76.5 96.4 87.5 77.8 83.3 75 62.5 0 0 0 0 0 0 0
-40◦ 0 75 62.5 80 86.8 100 97.4 86.7 86.7 64.7 90 60 75 0 0 75 0 0 0
-30◦ 0 0 0 76.9 65.4 90.3 100 95.5 84.8 82.1 78.6 66.7 72.7 75 0 0 0 0 0
-20◦ 0 0 57.1 63.6 83.3 82.8 77.6 100 95.2 74.1 80 78.6 60 66.7 0 0 0 0 0
-10◦ 100 0 0 72.7 84.6 77.8 75 95.3 100 96.9 84.2 61.5 66.7 66.7 0 0 0 0 0
0◦ 0 0 0 71.4 58.3 68.8 80.6 80.8 93.3 100 96.4 64.7 73.3 77.8 87.5 83.3 0 0 0
10◦ 0 0 0 75 77.8 62.5 88.9 93.3 89.5 91.2 100 72.4 72.7 92.9 55.6 75 57.1 0 0
20◦ 0 60 0 0 60 62.5 58.8 66.7 71.4 69.6 84.4 100 78.4 85.7 83.3 88.9 70 66.7 0
30◦ 0 0 0 0 0 55.6 63.6 62.5 66.7 60 68.4 82.4 100 76.2 91.7 62.5 80 75 0
40◦ 0 0 60 66.7 57.1 57.1 62.5 77.8 55.6 72.7 84.6 79.2 76 93.9 65 66.7 55.6 0 0
50◦ 0 0 0 0 0 0 0 0 0 88.9 90 88.2 94.1 85 100 83.3 80 57.1 0
60◦ 0 0 0 0 66.7 0 62.5 85.7 57.1 54.5 60 60 85.7 95.2 84.2 100 66.7 70 0
70◦ 0 0 0 0 0 0 100 0 60 57.1 66.7 58.3 56.3 55.6 66.7 73.7 100 55.6 0
80◦ 0 0 0 0 0 0 0 0 0 60 62.5 55.6 90.9 57.1 55.6 66.7 70 100 0
90◦ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Table 8.31: Match-matrix results of the percentage of matched keypoints, produced
from the out-of-plane rotational 2D data of a mannequin head, from -90◦ to 90◦ of
rotations, using 2D SIFT.

-90◦ -80◦ -70◦ -60◦ -50◦ -40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

-90◦ 100 66.7 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-80◦ 60 77.2 91.3 66.7 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-70◦ 0 82.1 100 72.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-60◦ 0 60 54.5 76 73.9 81.3 66.7 66.7 0 0 0 0 0 0 0 0 0 0 0
-50◦ 0 0 60 66.7 100 80 66.7 62.5 0 0 0 0 0 0 0 0 0 0 0
-40◦ 0 0 0 75 88.9 100 66.7 63.6 0 0 0 0 0 0 0 0 0 0 0
-30◦ 0 0 0 66.7 73.1 90.3 100 80 75 0 60 0 0 0 0 0 0 0 0
-20◦ 0 0 0 62.5 57.1 75 66.7 99.2 72.7 57.1 66.7 75 0 75 0 0 0 0 0
-10◦ 0 0 0 0 66.7 0 70 79.2 100 55.6 75 0 0 0 0 0 0 0 0
0◦ 0 0 0 0 0 0 0 66.7 57.1 100 64 80 69.2 72.7 60 0 0 0 0
10◦ 0 0 0 0 0 0 60 57.1 60 68 6.25 78.8 80.6 70.8 77.8 0 0 0 0
20◦ 0 0 0 0 0 0 60 75 83.3 73.3 76.5 100 100 100 92.9 66.7 0 0 0
30◦ 0 0 0 75 0 0 0 0 75 78.6 75 98 100 72.7 81 70 75 0 0
40◦ 0 0 0 0 0 0 0 0 75 76.9 84.2 71.4 66.7 100 82.9 75 90 0 0
50◦ 0 0 0 0 0 0 0 0 0 57.1 91.7 96 93.3 90.7 100 77.8 71.4 0 0
60◦ 0 0 0 0 0 0 0 0 0 0 75 60 88.9 85.7 75 100 85 100 0
70◦ 0 0 0 75 0 0 0 0 0 0 75 0 57.1 70 92.9 91.7 100 95 81.8
80◦ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 88.2 100 94.7
90◦ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 81 100

Table 8.32: Match-matrix results of the percentage of matched keypoints, produced
from the out-of-plane rotational 2D data of a human face, from -90◦ to 90◦ of rotations,
using 2D SIFT.
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(a) Match-Matrix (b) ROC

Figure 8.20: (a) The match-matrix results of the percentage of matched keypoints,
produced from a set of out-of-plane rotational 2D data of a human face (captured
from -90◦ at 10◦ increments up to 90◦), using 2D SIFT. (b) The matching results for
presented in a ROC space. This figure can be compared to Figure 6.9 and Figure 8.4,
where the results were obtained from the same data set using 2.5D SIFT and 2.5Dpc
SIFT.

8.4.1.3 Synthetic Out-of-plane Rotations

This section presents the results obtained by matching synthetically rotated 2D images,

where the images are rotated about the yaw and pitch axis (±40◦) respectively, at 10◦

intervals.

Table 8.10 summaries the results obtained by exploring all pairwise combinations

of the feature descriptors extracted from the synthetically rotated 2D images of a

mannequin head and a human face respectively, about the yaw and pitch axes, using

standard 2D SIFT. Shown next to the average matching rate is a symbol (one of�, <,

=, >, �), showing the statistical significance difference, using the Wilcoxon Matched-

Pair Signed-Rank test, to the average matching rate of 2.5Dpc SIFT.

The performance rate of the feature descriptors extracted from synthetically rotated

range images (about the yaw and pitch axes) using 2.5Dpc SIFT is better than the

performance rate of the feature descriptors extracted from the equivalent 2D images

using 2D SIFT. Examination of the two sets of results (by taking the averages between

the subjects) show that at 70% keypoint recognition rate, the obtained 2.5Dpc results

for out-of-plane images rotated about the yaw axis (Table 8.10) were approximated

1.5% better than the results obtained from 2D SIFT. The results obtained for 2.5Dpc

172



8.4 Comparison between 2D and 2.5Dpc Frameworks

Subject Axis Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 50% 60% 70%

Mannequin
yaw 81 81.7%< 98.8% 92.6% 86.4%

Table 8.34
Figure 8.21

head Figure 8.21
Human

yaw 81 74.9%� 97.5% 93.8% 66.7%
Table 8.35

Figure 8.22
head Figure 8.22

Mannequin
pitch 81 82.4%= 100% 97.5% 87.7%

Table 8.36
Figure 8.23

head Figure 8.23
Human

pitch 81 75.9%� 97.5% 87.6% 69.1%
Table 8.37

Figure 8.24
head Figure 8.24

Table 8.33: Results obtained by exploring all pairwise combinations of the feature
descriptors extracted from synthetically rotated out-of-plane 2D images of a mannequin
head and a human face, using standard 2D SIFT.

-40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦

-40◦ 100 97.7 75.7 92.7 80.6 79.3 82.6 75 54.5
-30◦ 89.8 100 85.1 83 79.6 72.2 81.3 74.1 57.9
-20◦ 76.2 85.7 100 67.3 69.6 75.6 81.6 74.2 57.9
-10◦ 83.8 85.4 69.8 46.8 55.9 71.7 91.3 80.6 73.9
0◦ 87.9 82.2 72.5 56.7 100 75.9 82.6 77.8 78.3
10◦ 81.3 74.4 69.6 81.5 83.3 100 82.2 83.7 62.5
20◦ 78.6 87.9 89.5 91.8 90 84.1 100 95.1 74.1
30◦ 87.5 81.5 76.7 85.7 95.5 84.4 91.1 100 75.9
40◦ 100 94.4 100 73.9 82.1 75.9 93.3 87.1 100

Table 8.34: Match-matrix results of the percentage of matched keypoints, produced
from the synthetically rotated out-of-plane (about yaw axis) 2D data of a mannequin
head, from -40◦ to 40◦ of rotations, using 2D SIFT.

out-of-plane range images rotated about the pitch axis (Table 8.10) were approximately

18% better than the results obtained from 2D images using 2D SIFT.

The next section presents the results obtained by extracting feature descriptors

from 2D images of different scales using 2D SIFT.
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-40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦

-40◦ 100 68.2 73.7 70 70 73.1 53.3 63.6 92.3
-30◦ 71.1 100 71.4 70.7 71.4 86.1 65.2 80 64.3
-20◦ 70 67.3 10.1 70 80 85.7 69 85.7 62.5
-10◦ 69.7 71.1 68.6 2.7 70.9 73.3 71 91.3 70
0◦ 70.4 76.7 77.8 68.6 100 76.8 87.2 78.6 69.6
10◦ 61.9 80.6 81.1 79.5 77.6 53.8 89.5 75 76.9
20◦ 68.8 69.6 72.7 68.8 91.1 90.2 100 71 78.6
30◦ 57.1 73.7 77.3 88.5 79.4 73.7 68.8 100 87.5
40◦ 92.9 68.8 76.5 71.4 74.1 93.5 78.8 77.8 100

Table 8.35: Match-matrix results of the percentage of matched keypoints, produced
from the synthetically rotated out-of-plane (about yaw axis) 2D data of a human
face, from -40◦ to 40◦ of rotations, using 2D SIFT.

-40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦

-40◦ 94.5 89.2 81.8 100 84.6 80 75 75 85.7
-30◦ 93.5 100 85.7 90.6 81.5 79.2 80 81.3 78.9
-20◦ 78.6 89.1 100 76.5 88.2 81.3 80.6 70.4 77.3
-10◦ 89.5 85.7 82.7 100 81.3 76.7 77.8 80.6 84.4
0◦ 54.5 100 75 80.9 100 67.7 77.8 74.4 89.7
10◦ 57.1 87.5 80.6 81.4 68.9 100 66.7 69.8 80
20◦ 76.9 83.3 97 75.6 72 72 100 91.5 75
30◦ 72.7 87.5 92.9 91.9 77.5 66.7 74.5 100 89.2
40◦ 100 66.7 69.2 91.7 85.7 76.9 71.7 67.6 100

Table 8.36: Match-matrix results of the percentage of matched keypoints, produced
from the synthetically rotated out-of-plane (about pitch axis) 2D data of a mannequin
head, from -40◦ to 40◦ of rotations, using 2D SIFT.

-40◦ 30◦ -20◦ -10◦ 0◦ 10◦ 20◦ 30◦ 40◦

-40◦ 100 75 72 90 90 65 70 66.7 75
-30◦ 60 100 92.6 78.6 82.8 66.7 72.2 100 66.7
-20◦ 88.9 82.9 100 79.4 77.8 74.3 78.3 78.6 66.7
-10◦ 100 77.8 77.4 100 90.7 88.6 74.1 85 58.3
0◦ 69.2 65 81.3 88.1 100 87 63.2 77.8 68.8
10◦ 85.7 58.8 86.7 88.2 84 0 63.2 75 81.3
20◦ 55.6 82.4 72 75 82.5 92.3 57.3 83.3 80
30◦ 0 80 69.2 80 62.5 81.5 73 95.5 79.3
40◦ 60 71.4 61.5 64.3 58.8 55.6 77.4 74.1 100

Table 8.37: Match-matrix results of the percentage of matched keypoints, produced
from the synthetically rotated out-of-plane (about pitch axis) 2D data of a human
face, from -40◦ to 40◦ of rotations, using 2D SIFT.
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(a) Match-matrix (b) ROC

Figure 8.21: (a) Match-matrix of matched keypoints, derived from a set of synthetically
rotated 2D images of a mannequin head, about the yaw axis, using 2D SIFT. (b)
The matching results presented within a ROC space. This figure can be compared with
Figure 8.5, where the results were obtained from the same data set using 2.5Dpc SIFT.

(a) Match-matrix (b) ROC

Figure 8.22: (a) Match-matrix of the matched keypoints, derived from a set of syn-
thetically rotated 2D images of a human face, about the yaw axis, using 2D SIFT.
(b) The matching results presented within a ROC space. This figure can be compared
with Figure 8.6, where the results were obtained from the same data set using 2.5Dpc
SIFT.
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(a) Match-matrix (b) ROC

Figure 8.23: (a) Match-matrix of matched keypoints, derived from a set of synthetically
rotated 2D images of a mannequin head, about the pitch axis, using 2D SIFT. (b)
The matching results presented within a ROC space. This figure can be compared with
Figure 8.7, where the results were obtained from the same data set using 2.5Dpc SIFT.

(a) Match-matrix (b) ROC

Figure 8.24: (a) Match-matrix of matched keypoints, derived from a set of synthetically
rotated 2D images of a human face, about the pitch axis, using 2D SIFT. (b) The
matching results presented within a ROC space. This figure can be compared with
Figure 8.8, where the results were obtained from the same data set using 2.5Dpc SIFT.
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8.4.2 2D SIFT on Intensity Images: Vary Scale

Similar to the experimental setup outlined in Section 8.3.2, the performance rate of

2D SIFT on 2D images of different scales will be investigated and addressed in this

section. Here, the feature descriptors extracted from the baseline 2D images (of size

244×369 pixels) are compared to the feature descriptors extracted from 2D images

of the same viewpoint but of a different scale (See Table 8.15 for the sizes of images

used). The results are presented in a match-matrix, illustrating the percentage of

matched and filtered keypoints. Moreover, the results are also presented in a ROC

space, demonstrating the reliability of the matches.

In each summary table, there is a symbol next to the average matching rate, indi-

cating the statistical significance using the Wilcoxon Matched-Pair Signed-Rank test

when compared to the results obtained using the 2.5Dpc SIFT system. Each symbol

can be one of the following: �, <, =, > and �.

A total of 360 2D images of different sizes simulating the in-plane rotations (2×180),

190 captured out-of-plane images of different sizes (2×95) and 180 images of different

sizes simulating the out-of-plane rotations about the yaw (2×45) and pitch (2×45) axes

respectively are used in this experiment.

This section is separated into three parts, where the invariance of the feature de-

scriptors extracted from 2D images using 2D SIFT against scale changes will be tested

against a) in-plane rotated images, b) real out-of-plane images and finally c) syntheti-

cally rotated images.

8.4.2.1 Synthetic In-plane Rotations

The results obtained by comparing the feature descriptors extracted from the baseline

images and the feature descriptors extracted from the same viewpoint but of a different

sized images are presented in this section where Table 8.38 summarises the results.
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System Subject Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 70% 80% 90%

2D

Mannequin
185 88.1%� 100% 84.9% 32.4%

Table 8.39
Figure 8.25

head Figure 8.25
Human

185 84.7%= 97.3% 67.6% 22.7%
Table 8.40

Figure 8.26
head Figure 8.26

Table 8.38: Results obtained by matching the feature descriptors extracted from differ-
ent sized synthetically rotated in-plane 2D images of a mannequin head and a human
face, to the feature descriptors extracted from the baseline images, using 2D SIFT.

(a) Match-matrix (b) ROC

Figure 8.25: 2D SIFT: (a) The match-matrix results of the percentage of matched
keypoints, produced by comparing the feature descriptors extracted from a set of 2D
in-plane rotational data of a mannequin head (from 0◦ at 10◦ increments in the
clockwise direction up to 350◦) of size 244×369 pixels and the range images captured
at a different scale. (b) The matching results illustrated in ROC space. This figure
can be compared to Figure 8.9, where the results were obtained from the same data set
using 2.5Dpc SIFT.

Comparing these results with the results obtained by matching the feature de-

scriptors extracted from in-plane rotational 2.5D images of different sizes using the

2.5Dpc SIFT (Table 8.16), the performance of 2.5Dpc SIFT is, on average, approxi-

mately 23.6% better than the performance of 2D SIFT at 90% of matched keypoint

recognition rate. This shows that the 2.5Dpc SIFT is more stable to scale changes

(w.r.t. in-plane rotations).
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494×744 370×557 244×369 182×275 119×181

0◦ 85 77.8 100 82.4 89.5
10◦ 83.9 87.3 100 88.9 76.5
20◦ 88.7 86.7 100 75 94.1
30◦ 86.2 86.2 100 86.1 88.2
40◦ 84.6 75.4 100 85.7 76.2
50◦ 91.4 89.5 100 83.9 81.3
60◦ 84.6 80.4 100 85.2 80
70◦ 84.4 85.7 100 81.3 93.8
80◦ 84.3 98 100 88 100
90◦ 89.3 93 100 88.5 86.7
100◦ 88.2 84.9 100 80.6 85.7
110◦ 95.7 86.4 100 81.5 91.7
120◦ 85.7 80.8 100 72.4 87.5
130◦ 76.5 83.3 100 87.5 77.8
140◦ 78.9 86.8 100 88 87.5
150◦ 82.1 84.6 100 72 78.6
160◦ 85.5 85.7 100 76.9 85.7
170◦ 81 83.8 100 83.3 95.8
180◦ 85.1 79.6 100 88.2 94.4
190◦ 89.5 86 100 90.9 93.3
200◦ 89.7 90 100 77.4 94.1
210◦ 78 82.1 100 87.9 88.2
220◦ 85.9 73 100 72.2 72.7
230◦ 93.3 82.8 100 90 77.8
240◦ 86.5 83.7 100 88.9 85.7
250◦ 92.2 87.8 100 78.1 88.2
260◦ 89.6 90 100 83.3 91.7
270◦ 89.2 81.6 100 96 81.3
280◦ 91.1 87.5 100 82.4 87.5
290◦ 91.5 90.5 100 77.8 91.7
300◦ 83.6 87.5 100 76.9 93.3
310◦ 83.9 81.8 100 74.1 85.7
320◦ 82 85.7 100 85.7 75
330◦ 85.7 78.2 100 78.3 81.3
340◦ 84.5 84.7 100 85.2 84.6
350◦ 87.1 81.9 100 89.5 92
360◦ 85 77.8 100 82.4 89.5

Table 8.39: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from the 2D in-plane rotational data of a mannequin
head (from 0◦ at 10◦ clockwise increments up to and including 360◦) of size 244×369
pixels and the feature descriptors extracted from the same viewpoint but of different
scales, using 2D SIFT.
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494×744 370×557 244×369 182×275 119×181

0◦ 83.1 74.5 100 75.6 87.5
10◦ 80 73.6 100 88.4 80
20◦ 82 84.2 100 86.3 85.2
30◦ 75 86.7 100 82.9 82.9
40◦ 81.3 80.6 100 88.4 72.7
50◦ 86.7 77.2 100 88 81.3
60◦ 82.3 76.3 100 83.7 88.5
70◦ 88.2 76.5 100 81.6 76.5
80◦ 83.6 75.9 100 81.6 78.3
90◦ 71.2 70.9 100 83.8 63.2
100◦ 87.5 84.3 100 89.7 94.4
110◦ 82.4 90.6 100 87.8 90.9
120◦ 80.6 85.7 100 77.3 80.8
130◦ 80.9 80.9 100 84.4 80.8
140◦ 80.7 83.6 100 88.4 78.9
150◦ 79.1 81 100 80 81.8
160◦ 86.3 85.2 100 78 69.2
170◦ 84.1 76.8 100 77.8 88.5
180◦ 79.7 84.2 100 88.1 75
190◦ 83.1 76.3 100 79.5 71.4
200◦ 77.8 84.5 100 81.6 80.6
210◦ 74.3 81 100 79.5 84.4
220◦ 77.1 77.9 100 76 76.5
230◦ 87.9 78 100 83.3 96.2
240◦ 78.8 72.7 100 77.1 84
250◦ 83.9 80.3 100 84.2 69
260◦ 80.7 70.2 100 86.5 78.3
270◦ 67.9 72.5 100 80.5 70.8
280◦ 78.3 86.8 100 83.8 93.3
290◦ 82.4 83.6 100 84.2 84.2
300◦ 83.8 81.8 100 70.2 78.6
310◦ 83.6 82.9 100 78.7 77.8
320◦ 82.1 74.6 100 88.6 63.2
330◦ 77.9 80.6 100 83 79.3
340◦ 87.2 82.7 100 78.9 73.1
350◦ 84.4 77.3 100 81 86.4
360◦ 83.1 74.5 100 75.6 87.5

Table 8.40: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from the 2D in-plane rotational data of a human face
(from 0◦ at 10◦ clockwise increments up to and including 360◦) of size 244×369 pixels
and the feature descriptors extracted from the same viewpoint but of different scales,
using 2D SIFT.
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(a) Match-matrix (b) ROC

Figure 8.26: 2D SIFT: (a) The match-matrix results of the percentage of matched
keypoints, produced by comparing the feature descriptors extracted from a set of 2D
in-plane rotational data of a human face (from 0◦ at 10◦ increments in the clockwise
direction up to 350◦) of size 244×369 pixels and the range images captured at a different
scale. (b) The matching results illustrated in ROC space. This figure can be compared
to Figure 8.10, where the results were obtained from the same data set using 2.5Dpc
SIFT.

8.4.2.2 Out-of-plane Rotations on Real Data

Table 8.41 summarises the results obtained by matching the feature descriptors ex-

tracted from the baseline 2D images (of size 244×369 pixels) with the feature descrip-

tors extracted from the 2D images of the same out-of-plane rotations but of different

scales.

System Subject Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 70% 80% 90%

2D

Mannequin
95 85.7%= 95.8% 65.3% 31.6%

Table 8.42
Figure 8.27

head Figure 8.27
Human

95 84.6%� 91.6% 62.1% 29.5%
Table 8.43

Figure 8.28
head Figure 8.28

Table 8.41: Results obtained by exploring matching the feature descriptors extracted
from different sized rotated out-of-plane 2D images of a mannequin head and a human
face, compared to the baseline images, using 2D SIFT.
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494×744 370×557 244×369 182×275 119×181

-90◦ 84.8 88.6 100 90.5 78.6
-80◦ 76.5 92 100 83.3 75
-70◦ 77.3 76.3 100 85.2 69.2
-60◦ 77.4 84.4 100 72.5 88.9
-50◦ 74.6 72.7 100 89.5 75
-40◦ 81.7 77.3 100 78 91.7
-30◦ 82.1 84.6 100 80.4 76
-20◦ 78.6 77.6 100 88.1 77.3
-10◦ 82.3 78.6 100 87.9 73.9
0◦ 85 79.6 100 82.4 89.5
10◦ 80.5 92.9 100 89.3 100
20◦ 79.6 69.4 100 83.8 85.7
30◦ 80 83.3 100 86.2 90.9
40◦ 76.1 91.3 100 94.7 86.7
50◦ 76.4 83.6 100 77.8 69.2
60◦ 78.7 78 100 77.8 100
70◦ 81.6 83 100 85 84.6
80◦ 78 82.5 100 66.7 75
90◦ 91.2 84.6 100 92.3 84.6

Table 8.42: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from a set of 2D out-of-plane rotational data of a
mannequin head (from -90◦ at 10◦ clockwise increments up to and including 90◦) of
size 244×369 pixels and the feature descriptors extracted from the same viewpoint but
of different scales, using 2D SIFT.

494×744 370×557 244×369 182×275 119×181

-90◦ 81.8 75 100 100 81.8
-80◦ 90.9 88.9 100 81.8 0
-70◦ 91.7 87.5 100 94.1 85.7
-60◦ 100 95.5 100 92.6 66.7
-50◦ 100 90 100 87 90.9
-40◦ 100 93.1 100 91.7 90.9
-30◦ 88.9 80 100 95.2 75
-20◦ 81.3 82.6 100 95.5 100
-10◦ 81.3 90.6 100 89.3 75
0◦ 95.5 90.9 100 87.5 90
10◦ 94.4 90.6 100 89.3 92.3
20◦ 93.3 83.3 100 85.2 55.6
30◦ 72.7 94.7 100 90.5 92.3
40◦ 66.7 76.7 100 100 75
50◦ 84.6 75 100 87.5 60
60◦ 100 76.9 100 100 66.7
70◦ 64.3 93.3 100 95.7 87.5
80◦ 93.8 77.8 100 87 75
90◦ 78.6 85 100 73.3 66.7

Table 8.43: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from a set of 2D out-of-plane rotational data of a
human face (from -90◦ at 10◦ clockwise increments up to and including 90◦) of size
244×369 pixels and the feature descriptors extracted from the same viewpoint but of
different scales, using 2D SIFT.
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(a) Match-matrix (b) ROC

Figure 8.27: 2D SIFT: (a) Match-matrix showing the results obtained by comparing the
feature descriptors extracted from a set of 2D out-of-plane data of different sizes to the
feature descriptors extracted from their respective baseline images of a mannequin
head. (b) The results shown in a ROC space. This figure can be compared with
Figure 8.11, where the results were obtained from the same data set using 2.5Dpc
SIFT.

(a) Match-matrix (b) ROC

Figure 8.28: 2D SIFT: (a) Match-matrix showing the results obtained by comparing the
feature descriptors extracted from a set of 2D out-of-plane data of different sizes to the
feature descriptors extracted from their respective baseline images of a human face.
(b) The results shown in a ROC space. This figure can be compared with Figure 8.12,
where the results were obtained from the same data set using 2.5Dpc SIFT.

By comparing the performance rate of the 2D SIFT to that of the 2.5Dpc SIFT

against scale (Table 8.19), on average, 2.5Dpc outperform 2D SIFT by approximately

17.4% at 90% of keypoint recognition rate. This demonstrates that the feature descrip-

tors extracted from 2.5D SIFT show a higher invariance to scale changes, w.r.t. out-of-

plane rotational images.
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8.4.2.3 Synthetic Out-of-plane Rotations

Table 8.44 summarises the results obtained by matching the feature descriptors ex-

tracted from different sized synthetically rotated (about yaw and pitch axes respec-

tively) 2D images of a mannequin head and a human face to the feature descriptors

extracted from the baseline 2D images.

Subject Axis Pairings
Average Images Achieving

Match- ROCMatching Matching Rate >
MatrixRate 70% 80% 90%

Mannequin
yaw 45 80.3%= 71.1% 44.4% 28.9%

Table 8.45
Figure 8.29

head Figure 8.29
Human

yaw 45 83.2%> 88.9% 60% 28.9%
Table 8.46

Figure 8.30
head Figure 8.30

Mannequin
pitch 45 84.8%= 88.9% 71.1% 42.2%

Table 8.47
Figure 8.31

head Figure 8.31
Human

pitch 45 85.8%= 91.1% 66.7% 40%
Table 8.48

Figure 8.32
head Figure 8.32

Table 8.44: Results obtained by matching the feature descriptors extracted from dif-
ferent sized synthetically rotated out-of-plane range images of a mannequin head and
a human face and the feature descriptors extracted from the baseline images, using 2D
SIFT.

(a) Match-matrix (b) ROC

Figure 8.29: 2D SIFT: (a) Match-matrix showing the percentage of matched keypoints,
produced by comparing the feature descriptors extracted from a set of different sized
2D synthetically out-of-plane rotational data (about the yaw axis) of a mannequin
head (from -40◦ at 10◦ increments in the clockwise direction up to 40◦) and the feature
descriptors extracted from their baseline images. (b) The matching results illustrated
in ROC space. This figure can be compared with Figure 8.13, where the results were
obtained from the same data set using 2.5Dpc SIFT.
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494×744 370×557 244×369 182×275 119×181
0◦ 71.8 66.7 100 65.4 60
0◦ 76.7 92.6 100 85.3 77.8
0◦ 90.4 83 100 79.4 66.7
0◦ 75 81.4 100 79.3 75
0◦ 85 77.8 100 82.4 89.5
0◦ 68.6 59.1 100 93.1 60
0◦ 78.7 84.4 100 71.4 66.7
0◦ 93.3 66.7 100 68.8 60
0◦ 65.9 74.4 100 64.3 75

Table 8.45: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from 2D synthetically out-of-plane rotational data
(about the yaw axis) of a mannequin head (from -40◦ at 10◦ clockwise increments
up to and including 40◦) of sized 244×369 pixels and the feature descriptors extracted
from the same viewpoint but of different scales, using 2D SIFT.

494×744 370×557 244×369 182×275 119×181
-40◦ 62 81.4 100 85.2 75
-30◦ 84.6 91.8 100 77.4 83.3
-20◦ 73.3 76 100 85.7 88.5
-10◦ 72.6 84.1 100 82.9 86.4
0◦ 75.4 76.9 100 80 84
10◦ 66.1 71.2 100 95.5 73.9
20◦ 72.7 85.4 100 92.6 66.7
30◦ 73 85.3 100 83.3 92.3
40◦ 63.9 82.4 100 78.9 55.6

Table 8.46: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from 2D synthetically out-of-plane rotational data
(about the yaw axis) of a human face (from -40◦ at 10◦ clockwise increments up to
and including 40◦) of size 244×369 pixels and the feature descriptors extracted from
the same viewpoint but of different scales, using 2D SIFT.
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(a) Match-matrix (b) ROC

Figure 8.30: 2D SIFT: (a) The match-matrix results of the percentage of matched
keypoints, produced by comparing the feature descriptors extracted from a set of 2D
synthetically out-of-plane rotational data (about the yaw axis) of a human face (from
-40◦ at 10◦ increments in the clockwise direction up to 40◦) of size 244×369 pixels and
their 2D images of a different scale. (b) The matching results illustrated in ROC space.
This figure can be compared to Figure 8.14, where the results were obtained from the
same data set using 2.5Dpc SIFT.

By comparing the performance rates between the 2D SIFT and 2.5Dpc SIFT against

scale changes using synthetically rotated images about the yaw axis (Table 8.22) show

that the performance rates of the two systems are comparable. However, closer exam-

ination of the matrices reveal that 2.5Dpc SIFT outperforms 2D SIFT marginally, by

approximately 6.8% at 90% keypoint recognition rate.

The performance of the feature descriptors extracted from synthetically 2D rotated

(about the pitch axis) images using 2D SIFT against scale changes are comparable to

the performance of the feature descriptors extracted from the range data using 2.5Dpc
SIFT. Close examination shows that, on average, 2D SIFT outperforms 2.5Dpc SIFT

(Table 8.22) by 0.4% at 90% keypoint recognition rate.
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494×744 370×557 244×369 182×275 119×181
-40◦ 97.1 97.7 100 82.1 0
-30◦ 92.5 93.3 100 93.8 66.7
-20◦ 88.9 89.1 100 96.3 71.4
-10◦ 90.7 82.1 100 87.2 68.4
0◦ 85 77.8 100 82.4 89.5
10◦ 87.3 92.3 100 94.9 72.2
20◦ 88.2 92.9 100 86.1 76.5
30◦ 73.7 75.9 100 84.6 60
40◦ 77.1 88.9 100 78 57.1

Table 8.47: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from 2D synthetically out-of-plane rotational data
(about the pitch axis) of a mannequin head (from -40◦ at 10◦ clockwise increments
up to and including 40◦) of size 244×369 pixels and the feature descriptors extracted
from the same viewpoint but of different scales, using 2D SIFT.

494×744 370×557 244×369 182×275 119×181
-40◦ 88.4 71.7 100 65.2 75
-30◦ 75 79.1 100 96.6 62.5
-20◦ 91.1 88.9 100 72.5 86.7
-10◦ 83.9 90.4 100 92.5 100
0◦ 75.4 76.9 100 80 84
10◦ 70.7 81.4 100 85.4 91.3
20◦ 85.7 89.6 100 92.3 91.7
30◦ 88.1 78.6 100 100 66.7
40◦ 73.3 80.5 100 81.1 69.2

Table 8.48: Match-matrix results of the percentage of matched keypoints by comparing
the feature descriptors obtained from 2D synthetically out-of-plane rotational data
(about the pitch axis) of a human face (from -40◦ at 10◦ clockwise increments up to
and including 40◦) of size 244×369 pixels and the feature descriptors extracted from
the same viewpoint but of different scales, using 2D SIFT.
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(a) Match-matrix (b) ROC

Figure 8.31: 2D SIFT: (a) Match-matrix showing the percentage of matched keypoints,
produced by comparing the feature descriptors extracted from a set of different sized
2D synthetically out-of-plane rotational data (about the pitch axis) of a mannequin
head (from -40◦ at 10◦ increments in the clockwise direction up to 40◦) and the feature
descriptors extracted from their baseline images. (b) The matching results illustrated
in ROC space. This figure can be compared with Figure 8.15, where the results were
obtained from the same data set using 2.5Dpc SIFT.

(a) Match-matrix (b) ROC

Figure 8.32: 2D SIFT: (a) The match-matrix results of the percentage of matched
keypoints, produced by comparing the feature descriptors extracted from a set of 2D
synthetically out-of-plane rotational data (about the pitch axis) of a human face (from
-40◦ at 10◦ increments in the clockwise direction up to 40◦) of size 244×369 pixels and
their 2D images of a different scale. (b) The matching results illustrated in ROC space.
This figure can be compared with Figure 8.16, where the results were obtained from
the same data set using 2.5Dpc SIFT.
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8.5 Summary and Discussions

The validation process and results of the pose estimated and corrected version of 2.5D

SIFT are presented in this chapter, in which the aim of the validation was to investigate

the invariance properties of the feature descriptors to rotational and scale changes.

If any planar surface patch is rotated to a different viewpoint orientation, the area

representing this rotated patch will be reduced (or enlarged, depending on the degree

of orientation), compared to the original patch. As a result, by warping the circular

Gaussian measurement aperture into an elliptical shape, according to the local slant and

tilt of the keypoint location, it allows the same underlying surface area to be sampled.

The validation of the 2.5Dpc SIFT was separated into two main categories: firstly

the invariance properties of the extracted feature descriptors against in-plane and out-

of-plane rotational data was addressed. Here, the data sets employed were of fixed

size (244×369 pixels), where each range images was rotated about all three Euler’s

axes. Secondly, the invariance properties of the extracted feature descriptors against

scale changes was addressed, in which the feature descriptors extracted from different

sized range images were matched to the feature descriptors extracted from the baseline

(244×369 pixels) images of the same viewpoint orientation. Each pairwise combination

of the extracted feature descriptors were examined in this validation, providing a match-

matrix of results presenting the percentage of correctly matched keypoints for each

pairing. Moreover, these results were presented in a ROC space, thereby providing a

visual measurement of the reliability of the matches.

Apart from the validation of the 2.5Dpc SIFT, the performance rate between this

system on range images and the performance rate of standard 2D SIFT on 2D images

were compared. Similar to the validation of the 2.5Dpc SIFT, the standard 2D SIFT

was applied to the 2D images captured at different viewpoint orientations, as well as

of different sizes, allowing comparison of the two platforms to be made.

Table 8.49 summarises the results obtained in this chapter in which the average

results obtained from the human face and the mannequin head data are presented. Here,

the symbols next to the average matching rate obtained from the 2.5Dpc SIFT system

denotes the statistical significance differences to the 2D SIFT and 2.5D SIFT (where

applicable) respectively. The statistical significance tests were conducted using the
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Wilcoxon Matched-Pair Signed-Rank test and the symbols denote one of the following:

�, <, =, > and �.

This table illustrates that 2.5Dpc SIFT outperforms the standard 2D SIFT, with

respect to out-of-plane viewpoint rotational and scale changes. Moreover, when the

results were plotted in a ROC space, it can be deduced that the performance of 2.5Dpc
SIFT is more reliable than the performance of 2D SIFT, where the FPR of the 2.5Dpc
SIFT is smaller, compared to the FPR of the 2D SIFT.

By taking averages of the match-matrices of the matched keypoints, the perfor-

mance rate of the standard 2D SIFT against in-plane rotational changes outperforms

the performance of 2.5Dpc SIFT against in-plane rotational changes. However, closer

examination of the results plotted in a ROC space illustrates that the FPR rate is

higher in the 2D SIFT.

Fixed Scales Vary Scales

Rotation Modality
Average Images Achieving Average Images Achieving

Matching Matching Rate > Matching Matching Rate >
Rate 50% 60% Rate 70% 80% 90%

Synthetic In-Plane
2D 84.0% 98.7% 95.6% 84.6% 98.7% 76.3% 27.6%

2.5D 53.4% 74.3% 48.5% N/A N/A N/A N/A
2.5Dpc 55.1%�� 76.1% 53.3% 83.9%� 91.6% 76.2% 51.1%

Real Out-Plane
2D 34.6% 45.3% 36.6% 85.2% 93.7% 63.7% 30.6%

2.5D 37.0% 49.3% 35.7% N/A N/A N/A N/A
2.5Dpc 46.0%�� 60.6% 85.5%= 45.6% 85.8% 71.6% 47.9%

Synthetic Out-Plane 2D 78.3% 98.2% 93.2% 81.7% 80% 52.2% 28.9%
(about yaw axis) 2.5Dpc 80.6%= 100% 95.7% 75.7%= 72.3% 50% 35.7%

Synthetic Out-Plane 2D 79.2% 98.8% 92.6% 85.3% 90% 68.9% 41.4%
(about pitch axis) 2.5Dpc 83.9%� 100% 97.55% 81.2%= 75.6% 60% 33.3%

Table 8.49: Summary of the results obtained of the performance rate of the pose
estimated and corrected version of the 2.5D SIFT and standard SIFT, against rotational
and scale changes.

These results illustrate the feature descriptors extracted from the 2.5Dpc SIFT

are more stable to out-of-plane rotational changes than 2D SIFT whereas the feature

descriptors extracted from 2D SIFT are more stable to in-plane rotational changes.

This suggests that combining 2D and 2.5Dpc methodologies together could potentially

provide a feature descriptor that is robust to both in-plane and out-of-plane rotational

changes. For instance, the global pose could be estimated from the local pose by noting

the common rotation difference between matching keypoints. As a result, the global

pose could be determined prior to the feature descriptors extraction, thereby allowing
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the system to choose between the use of 2D SIFT or 2.5Dpc SIFT for the feature

descriptor extraction process accordingly.

The next chapter will draw conclusions from this research project and give sugges-

tions as how to improve and extend this work.
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Chapter 9

Conclusions and Future Work

This chapter serves to summarise the research conducted in this thesis and indicate the

significance of this work in light of the current literature. The achievements and limi-

tations of this work are addressed and the chapter concludes with potential directions

for future work in which this thesis initiated.

9.1 Objectives and Thesis Hypothesis Revisited

The goal of this work is to build and validate a system to interpret range images

by matching local features. Initially, no assumptions were made as to what types

of features are required for the representation. The broader goal of this work is to

progress towards working in the context of medical surface anatomy assessment, thereby

potentially providing a system applicable to 3D clinical photography.

The following objectives were set for this work:

• To determine what local surface representation to adopt for the range manifold,

in order to progress automatic analysis of the surface anatomy based on local

descriptors matching.

• To improve the stability of the matches obtained by exploiting the potential for

invariance to illumination variations and pose that the use of range maps might

confer.

• To construct a complete engine in which the above concepts have been embodied,

where the performance can be measured and validated against 2D approaches.
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To this end, this thesis presents a methodology for extracting stable feature descrip-

tors from 2.5D range images in order to provide point-based correspondences between

range surfaces. Lowe’s 2D SIFT (Lowe, 2004) has been adapted into the 2.5D domain

in which feature descriptors comprising local topological information are extracted.

Figure 9.1 illustrates the 2.5D SIFT system presented in this thesis.





































Figure 9.1: Implemented 2.5D SIFT.

At the beginning of the this thesis, the following hypothesis was made:

“This thesis argues that by exploiting statistical representations of local

surface properties, range images can be represented and matched based on

direct recovery of the local surface topology sampled at discrete locations

on the range manifold. The use of range data allows surface normals to be

recovered directly, such that the pose of the locally sampled descriptors can

be estimated and corrected. The above advantages, along with the lighting

and pose invariant properties of range images, imply that 2.5D image inter-

pretation techniques can potentially offer improvements over standard 2D

techniques.”

The objectives have been achieved and the hypothesis has been verified in the course

of this thesis. These are summarised in the next section.
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9.2 Contributions

The following contributions of this work addressed the initial objectives and hypothesis:

• Major Contributions:

– Formulation of a feature descriptor, comprising local surface topologies using

the shape index and the local surface orientations using image gradients, for

range image analysis;

– Formulation and investigation of a 2.5D SIFT range image matching algo-

rithm, where the aforementioned feature descriptor is embedded;

– Development of a pose estimated and corrected version of 2.5D SIFT system,

thereby potentially improving the invariance of the feature descriptors to

range images exhibiting out-of-plane viewpoint rotational changes.

• Minor Contributions:

– Improvement of the accuracy of the keypoint localisation of the SIFT system;

– Improvement of the in-plane orientation estimates of the SIFT system.

9.2.1 A Novel Feature Descriptor for Range Image Analysis

Traditionally the extraction of 3D surface types, derived by either the signs of H

and K curvatures or the shape index, are used to categorise the underlying surface

for a range image. This is an effective approach since measurements can be made

directly on the range images. Moreover, since the shape of an imaged surface remains

constant under viewpoint changes, the local distribution of the curvatures observed

on its surface should therefore remain constant, thereby providing a feature descriptor

that is potentially invariant to viewpoint changes. In this work, the traditional feature

extraction technique was extended by taking the local distributions of the surface types,

along with the local distributions of the orientations, into account simultaneously.

Initially, the signs of H and K curvatures were employed to categorise the surface

into eight surface types. However, it was noted that these eight surface types were not

exploited fully, since no surface on a human face is truly “flat” unless an user-defined

threshold is introduced to the assignment of the H and K curvatures. As a result,

alternative methodology in extracting the surface types was required. The shape index
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was considered, where the surfaces were classified into nice surface types. This is more

suitable for face analysis, due to the continuity typical of facial surfaces.

The second component in the feature descriptor takes the orientation of the range

images into account. Initially, the direction estimates obtained from the k1 curva-

ture were employed, however, these estimates were based on the second order Gaussian

derivatives and thus the error rate introduced is higher than the direction estimates ob-

tained from lower order derivatives. Therefore, the orientation estimates, derived from

the image first order gradients, were employed. In order to achieve viewpoint rotational

invariance, the orientation component histogram was normalised to its canonical form

(i.e. rotating the orientation histogram until the peak is located at the first histogram

position).

By capturing the underlying information of the surface types and their orienta-

tions simultaneously, a basic feature descriptor was formulated. Different formulations

of the feature descriptor were investigated, including a coupled 2D feature descriptor.

However, it was noted that the performance of the 2D descriptor was only marginally

better than the basic 1D feature descriptor. This could be explained by the “curse of

dimensionality” (Bellman, 1957; Duda and Hart, 1973). As a result, the final structure

of the feature descriptor employed in this work is based on histogramming the shape

index of the underlying surface and is weighted by the degree of local surface curved-

ness. A second component of the keypoint descriptor comprises the histogrammed

local orientations within the same patch, weighted by the local gradient magnitude

values. Therefore the keypoint signatures based on surface shape, degree of curvature

and the relative orientations have been captured simultaneously. This form of feature

descriptor was validated on range images of human faces. However, it has not been

validated on range images of other types of subjects except for synthetic data created

from orthogonal spatial sine waves.

9.2.2 Development of a 2.5D SIFT System

Given the availability of the 2D SIFT system, where feature descriptors comprising the

image gradients of the image are extracted from each keypoint location, the develop-

ment of a 2.5D SIFT system by incorporating the 2.5D feature descriptor comprising

the local topological information of the surfaces was discussed in this thesis. This de-

velopment is believed to be the first in the current literature, since no other such system
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has been reported to date. Figure 9.2 recapitulates the stages involved in the proposed

2.5D SIFT system.














Figure 9.2: Pipeline of the 2.5D SIFT system.

By adopting statistical normalisation of the input range images, it becomes possible

to set a consistent set of parameters appropriate to detecting stable keypoint locations

and their appropriate scales (independently of the dynamic range of the input range

maps or their content).

A canonical orientation (to the nearest degree) at each keypoint sampling location

can then be extracted, and by rotating the sampling patch to this canonical orienta-

tion, viewpoint rotation can be achieved. Therefore, each individual histogram of the

orientation component will no longer be required to be normalised to its canonical form.

In order to capture a perceptually significant description of the local surface patches

sampled at keypoint locations, the 2.5D keypoint descriptors had been formulated to

sample the underlying relative frequencies of surface types present. This form of feature

descriptor is capable of capturing not only the topological information of a surface, but

also capable of differentiating between mirror keypoints on a range image, thereby

providing an unique identification to represent the underlying surface at each keypoint

location. Furthermore, potential sampling effects caused by spatial aliasing within

the standard SIFT keypoint descriptor have been minimised by placing nine Gaussian

circular sub-regions, with spatial support of one standard deviation, over each sampled

keypoint location at the detected scale. The aim of this feature descriptor is to increase

the invariance properties of the feature descriptor to both Euler’s in-plane and out-of-

plane rotations.

This basic 2.5D SIFT system was validated using both in-plane and out-of-plane ro-

tated range images. Each pairwise combinations of the images were compared, thereby
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formulating a match-matrix used to interpret the obtained results. The results obtained

showed that the feature descriptors show good invariance to in-plane and out-of-plane

rotations.

9.2.2.1 The Development of a Pose Estimated and Corrected Version of
2.5D SIFT

The standard 2D SIFT relies only on the in-plane orientation to estimate and correct

object pose. However, with the availability of 2.5D range images, it is possible to

estimate the 3D pose based on computing the local slant and tilt. Since the relative

viewpoint orientation at the keypoint sampling location is not known a priori, it is

necessary to take the degree of out-of-plane rotation exhibited at each keypoint into

account. Moreover, if an approximately planar surface patch is rotated to a different

viewpoint orientation, the area representing this rotated patch will be reduced (or

enlarged, depending on the degree of orientation), compared to the original patch.

Hence, if no estimation of the local slant and tilt is taken into account, the keypoint

matching will result in comparing different regions of the surface. To this end, the

thesis also developed a pose estimated and corrected version of the 2.5D SIFT based

on the local slant and tilt information extracted at each sampling location.

By warping the circular Gaussian measurement aperture into an elliptical shape

based on the local slant and tilt, it ensured the same consistent patches were extracted

from different viewpoint orientated images of the same surface, resulting in a more

reliable matching between feature descriptors extracted from out-of-plane rotated range

images.

The pose estimated and corrected version of the 2.5D SIFT was validated using

both in-plane and out-of-plane rotational images. The out-of-plane invariance of the

feature descriptors were noticed to have improved. The scale invariance properties were

addressed as well. Moreover, a comparison between the performance of the standard

2D SIFT and the pose corrected version of the 2.5D SIFT was made. Whilst the

performance of feature descriptors extracted from this pose estimated and corrected

version of 2.5D SIFT outperforms the feature descriptors extracted from the standard

2D SIFT with respect to out-of-plane viewpoint rotated images, the performance of 2D

SIFT on in-plane rotated images slightly outperformed the performance of the 2.5D

SIFT.
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9.2.3 The Improvement of the Keypoint Localisation Technique

In order to extend the 2D SIFT scale-space keypoint localisation stage into the 2.5D

domain, necessary adaptation was made to accommodate the range imaging modality.

Furthermore, the accuracy of the curvatures extraction within the keypoint localisation

stage was improved by using the first and second Gaussian derivatives parameterised

with the corresponding σ, instead of using the Hessian matrix. This provided a more

stable range surface gradient estimates by employing the Gaussian smoothing in the

calculation of the derivatives.

However, the computational cost of deriving the curvatures using the Gaussian

derivatives is slighter higher than that computed from the Hessian matrix, since it

requires a 2D image filtering process using convolution.

9.2.4 The Improvement of In-plane Orientation Estimates of SIFT

The accuracy of the in-plane orientation estimates of SIFT was improved in the 2.5D

SIFT by employing 360 bins in the formulation of the orientation histogram, instead of

using 36 bins as proposed by Lowe (2004). This allows the estimated orientation to be

made accurate to within ≈ ±1.0◦. Moreover, the values of the orientation histogram

were stabilised, in terms of orientation continuity, by distributing each entry over a num-

ber of bins by means of a 1D symmetric Gaussian convolution kernel of σ ≈7-bins. This

step anti-aliased the orientation histogram and stabilised the keypoint canonical orien-

tation allocation process by providing estimates of orientation that change smoothly as

the input visual stimulus changes in orientation and is confirmed by experiment.

9.3 Future Work

This work provides an initial investigation into the development of a 2.5D SIFT sys-

tem to present and analyse range images of human faces. Further development could

be made to improve the stability and accuracy of the system and also to widen its

application, as proposed below:

9.3.1 Global Pose Estimator

The latter part of this work has been focused on local pose estimation and correction.

However, it is possible to recover the global pose of an object depicted within a range
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image w.r.t. a set of exemplars . The global pose could be estimated from the local

pose by noting the common rotation difference between the matching keypoints of the

unknown instance and those of the exemplar. In other words, each keypoint recovered

from a range image might each have a different local slant and tilt, however, the domi-

nant difference in the slant and tilt between matching keypoints between range images

would give the relative pose between them, hence the global pose could be recovered,

with the use of the Hough Transform.

9.3.2 Invariance of the Feature Descriptors to Noise

It was outwith the scope of this work to address the sensitivity of the feature descriptors

w.r.t. noise. In order to deduce the susceptibility of the feature descriptor to noise, a

known amount of random noise could be added to the range images. The 2.5D SIFT

system could then be applied to the images to determine the keypoint matching rate

by plotting ROC curves w.r.t. the signal-to-noise ratio (SNR). Thereby a comparison

between the baseline (original, no noise added) image and the noise-induced images

could be made.

Moreover, the robustness of the 2.5D matching process could be determined by

collecting a data set comprising images captured under different lighting settings, re-

sulting in 2D images that are affected by lighting whereas the range images should

remain unchanged.

9.3.3 Improving the 2.5D SIFT System

This section provides a few suggestions to improve the current 2.5D SIFT system.

9.3.3.1 Multiple Canonical Slant and Tilt

One of the limitations of the current version of the 2.5D SIFT is that it contains only one

canonical slant and one canonical tilt for each keypoint location by the assumption of

the approximate local planarity in this work. Further investigation is therefore required

to address this issue, where multiple canonical slants and canonicals tilt may potentially

improve the matching performances of the feature descriptors. The multiple canonical

slants and canonical tilts would result in multiple feature descriptors for each keypoint

location.
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Multiple canonical slants and tilts could be assigned to each keypoint location by

means of iterating each slant and tilt histograms peak to within 80% (similar to the

assignment of the canonical orientation).

9.3.3.2 Independent Means of Verifying Keypoint Matches

Currently, the keypoint matches are verified by computing a similarity transform be-

tween the two sets of descriptors by means of the Hough Transform. However, the HT

itself is not the only methodology for verifying keypoint matches. Therefore an inves-

tigation could be conducted using other means of verifying the keypoint matches. For

example, the location of the keypoints on the rotated images could be computed (by

rotating the baseline image), thereby the potential matches between the baseline and

rotated images could be verified (Lowe, 2004). If the matched keypoint locations are

within 1σ of the predicted keypoint locations, then the matches are verified. However,

this methodology was not applied in this work, since one of the data sets employed in

this work was captured using the stereo-pair system, where the orientation were only

an estimate, hence an accurate rotation estimate was unavailable.

9.3.3.3 Extend the Hough Transform to include 3D Pose

Investigation is required in order to extend the HT used in this work to include the

slant and tilt information. Currently, the Hough accumulator space is parameterised

by the underlying degrees of freedom, namely translation (in plane), rotation (in plane)

and scale in size. In order to parameterise the underlying degrees of freedom accurately,

the slant and tilt rotation would need to be taken into account as well as the range

estimate scaled by translation.

9.3.3.4 Grouping of 2D and 2.5D Feature Descriptors

Based on this work, it is possible to extend the architecture to combine 2D and 2.5D

analyses by grouping keypoints from each modality within the Hough Transform. Key-

points from 2D and 2.5D images could be grouped together, resulting in the contri-

butions from each imaging modality being combined automatically. A weight which

indicates the contribution of their confidence could be included in some manner, for in-

stance in range images, the scale properties could be included, whereas in the intensity

images the contrast properties could be considered. This could potentially improve the
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9.3 Future Work

significance of the contributions from each modality and could provide a more stable

interpretation than using single imaging modality alone. The trade-off between the

2.5D keypoints being more stable while 2D SIFT yielding more keypoints could be

reached.

Moreover, this multi-modal integration strategy could potentially switch modes as

they become available to the system by accumulating Hough votes from keypoints of

whichever modality is present.

It might even be possible to incorporate different cues, such as colour, at the key-

point detection stage to cue keypoint sampling diagnostic of a particular object or

anatomic feature (determined by training samples).

9.3.4 Extend 2.5D SIFT to Accommodate Different Biological Forms

Finally, this work has the potential to be extended to allow different biological forms to

be interpreted by taking both the local and global variability of keypoint descriptors into

account. For example, local variabilities could be taken into account in PCA SIFT (Ke

and Sukthankar, 2004) where natural variabilities have been projected onto the PCA

space. Alternatively, a different yet effective approach, the bag of words model (Sivic

et al., 2005), could be applied where similar keypoints are clustered together using

k-means clustering. Variations in the locations of the keypoints themselves might be

accommodated by PCA projection into the Hough space (Li and Zhao, 2001).

201



Appendix A

Settings Used for Model
Matching and Building in C3D2

Shown in this appendix is the settings used for model matching and building in C3D2

for the data set. The algorithm used was direct range mesh which produces a more

uniform 3D polygon model for this data set, compared to using the marching cube

algorithm. These settings were derived especially for the building of face models for

the cameras set up described in Section 3.2 and were used to produce the data set

used for this work, as well as the data set derived as part of a longitudunal study to

investigate the properties of collagen (Project ID: TSL PIN6001).

A.1 Settings for Models Matching

Match Size: 2250
Normal Iteration: 15
Hard Iteration: 15
Match Smoothing: 5
Minimum Pyramid Size: 32
Use default MSSM98 Matching: false
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A.2 Settings for Models Building

A.2 Settings for Models Building

Voxel Size: 0.001
Merge: false
Mesh Reduction Fraction: 1
Fill Holes: true
Reverse Fill: false
Smoothing Iteration: 1
Dot Render: false
Direct Range Mesh: true
Range Mesh Decimator: 10
Tolerated for Overlap: 0.002
Export Raw XYZ: false
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Appendix B

Relating Landmarks on Range
Images using Barycentric
Coordinates

The per-vertex assignment of texture coordinates is the key to mapping a texture

image to rendered geometry. Each landmark point (L) lies within a certain triangle

with vertices p1, p2 and p3 as shown in Figure B.1 below.

The Facial Analysis Tool records and saves the x, y, and z coordinates (Lx, Ly, Lz)

of each landmark to a text file as soon as the landmarks have been assigned on the 3D

model. This text file can be viewed or used to load the landmarks on the appropriate

3D model at a later time point. The algorithm in Facial Analysis Tool searches all of

the triangles in the 3D model in order to locate the appropriate triangle in which the

landmark belongs to, hence providing the vertices information including the (x, y, z)

coordinates of the vertices (p1, p2, p3) and their corresponding Texture Coordinates.

The Barycentric Coordinates of the landmark (L) can be obtained once the vertices

coordinates are known. Having obtained the Barycentric Coordinates of the landmark,

it is possible to compute the Texture Coordinates of the landmark and as a result,

landmarks can be related on the range image directly and successfully.

B.0.0.1 Barycentric Coordinates

Triangles are an important primitive in computer graphics since they can represent a

planar face effectively. Barycentric coordinates are a fundamental tool for dealing with
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Figure B.1: Barycentric Coordinates of Landmark L, with respect to a triangle with
vertices p1, p2 and p3.

triangles. A Barycentric combination of three points (in a triangle) takes the form:

L = up1 + vp2 + wp3 (B.0.1)

where p1, p2, p3 are the vertices of the triangle and u+ v + w = 1.

Therefore (u, v, w) is the Barycentric coordinates of point L in which L lies within a

triangular plane. Equation B.0.2 represents three equations, and hence can be formed

as a linear system for the unknown u, v and w.

[
p1 p2 p3

] uv
w

 = L (B.0.2)

In order to obtain (u, v, w), the areas of the triangles A, A1, A2 and A3 must be
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calculated.

A =
∣∣p1 p2 p3

∣∣
A1 =

∣∣L p2 p3

∣∣
A2 =

∣∣p1 L p3

∣∣
A3 =

∣∣p1 p2 L
∣∣ (B.0.3)

As a result, the Barycentric representation can be presented as follows:

u =
A1

A
, v =

A2

A
, w =

A3

A
(B.0.4)

B.0.0.2 Texture Coordinates

Following from the previous section, the Texture Coordinates of the landmark (L′x, L
′
y)

can be computed from the Barycentric Coordinates of the landmark and the vertices

coordinates:

L′x = x′1u+ x′2v + x′3w
L′y = y′1u+ y′2v + y′3w

(B.0.5)

where (x1, y1) is the texture coordinates of vertice p1 etc.

Using the texture coordinates, it is possible to locate the landmark on the range

image. This can be achieved by multiplying the width of the range image by L′x and

the height by L′y. This would provide the coordinates of the landmark on the range

image correctly.
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Appendix C

Rotating Range Image
Synthetically

The section presents a methodology in generating synthetically rotated range images

about the Euler’s out-of-plane yaw and pitch axes, where the aliasing of the images due

to rotational changes are minimised. It is possible to simulate out-of-plane (about the

pitch and yaw axes) rotations of a range image by re-projecting the data into a new

image, thereby providing a data set of range images with known rotation relative to

the camera. The steps are detailed here.

Based on the assumption that the range images used in this work are planar, the

range image can therefore be re-written as a vector:

V =
[
x y z 1

]
(C.0.1)

where z is the normalised range image (to [0, 100]).

A scaling matrix can also be defined as:

S =


1 0 0 0
0 Sy 0 0
0 0 1 0
0 0 0 1

 (C.0.2)

where Sy is the scaling factor. In other words, if Sy = 1, the output image size remains

the same.

A combined rotational matrices for the out-of-plane rotational changes (Pansang
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et al., 2005) can be formed, as shown in Equation C.0.3 below:

R =


cos(β) 0 −sin(β) 0

0 cos(α) sin(α) 0
sin(β) −sin(α) cos(α)cos(β) 0

0 0 0 1

 (C.0.3)

where α corresponds to the rotation in the pitch axis (i.e. up/down) whereas β corre-

sponds to the rotation in the yaw axis (i.e. left/right, lateral).

The rotated version of the range image can then be defined as follows:

V 1 = R ∗ S ∗ V (C.0.4)

where R is the rotation matrix, S is the scaling matrix and V is the original range

image vector.

Figure C.1 illustrates a selection of range images of a mannequin head, synthetically

rotated about the yaw axis, while Figure C.2 shows a selection of range images of a

mannequin head, synthetically rotated about the pitch axis.

(a) -40◦ (b) -20◦ (c) 0◦ (d) 20◦ (e) 40◦

Figure C.1: A selection of synthetically rotated out-of-plane range images (about the
yaw axis) of a mannequin head, generated at (a) -40◦, (b) -20◦, (c) 0◦, (d) 20◦ and (e)
40◦.

(a) -40◦ (b) -20◦ (c) 0◦ (d) 20◦ (e) 40◦

Figure C.2: A selection of synthetically rotated out-of-plane range images (about the
pitch axis) of a mannequin head, generated at (a) -40◦, (b) -20◦, (c) 0◦, (d) 20◦ and (e)
40◦.

This methodology is effective in rotating the original range image about the pitch

and yaw axis to ±40◦ of the original input image. Moreover, the 2D intensity images
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can be warped onto the range image to achieve the same rotated view. However, the

resulting rotated range images are not equivalent to re-projecting the true range maps

from the real world coordinates system. Nevertheless, the rotations are consistent and

therefore the resulting images are believed to be sufficient to the purposes of this work.
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