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Abstract 

Chemokines are the principle regulators of leukocyte migration in vivo and function during 

both normal (homeostatic) and inflammatory conditions to direct leukocytes to appropriate 

tissue locales. Chemokines mediate their affects by binding to their cognate G-protein 

coupled receptors (GPCRs) which are expressed on the surface of cells, and generate a 

signal upon ligand binding resulting in the initiation of a response such as chemotaxis. As 

well as the classical chemokine receptors which generate a conventional GPCR signal 

upon ligand binding, there exists a small family of atypical chemokine receptors that are 

characterised by an inability to mount classical receptor signalling. One of the most 

prominent members of this family is the atypical chemokine receptor, D6, which can bind 

at least 14 inflammatory CC chemokines with high affinity, but instead of the generation of 

a classical G-protein signalling response, D6 internalises ligands and targets them for 

lysosomal-mediated degradation.  This functional attribute makes D6 a highly efficient 

binder, internaliser and scavenger of inflammatory CC chemokines that has been shown to 

be important for the resolution of inflammatory responses in vivo. Despite its well-studied 

biological role, very little is known about the structure/function relationships within and 

around D6 which regulate ligand binding and scavenging.  

 

Glycosaminoglycans have been demonstrated to be important for chemokine sequestration 

and presentation to many of the conventional chemokine receptors. Consequently, the role 

of glycosaminoglycans (GAGs) in chemokine presentation to D6 was studied using a cell 

line which is deficient in the synthesis of proteoglycans (CHO 745). Transfection of these 

cells with D6 and comparison to transfected WT CHO cells revealed that D6-mediated 

uptake and internalisation of chemokine is significantly reduced in the absence of GAGs.  

 

The N-terminus of D6 is thought to be the principle site for ligand binding, and the ability 

of D6 to bind all inflammatory CC chemokines makes this region an attractive target for 

therapeutic manipulation. Therefore a sulphated peptide representing the first 35 amino 

acids of D6 (D6-N (s)) was synthesised and investigated for its ability to bind D6 ligands. 

D6-N (s) was shown to neutralise the activity of the inflammatory CC chemokine CCL2 

and prevent its interaction with its cognate receptor CCR2 in vitro. Importantly D6-N (s) 

was active, only in a specifically sulphated form, highlighting the importance of sulphated 

tyrosines for ligand binding.  
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Considering the functional significance of the synthetic D6 peptide, attempts were made to 

identify a naturally ‘shed’ D6 N-terminal peptide which had been reported previously. 

Further study demonstrated the ability of the bacterial protease staphopain A, released 

from Staphylococcus aureus, to cleave the N-terminus of D6 and suppress its ligand 

internalisation activity.  

 

Finally, the conserved tyrosine motif present on the N-terminus of D6 was investigated 

more closely. Site-directed mutagenesis and sulphation inhibition of this region revealed 

the importance of post-translational tyrosine sulphation for ligand binding, internalisation 

and scavenging of inflammatory chemokines and alluded to the existence of an optimal 

sulphation pattern for ligand binding.  

 

Overall the results presented in this thesis shed new light on the nature of the molecules 

around, and the structural features within D6 that contribute to ligand binding and function 

of this extraordinary receptor. Furthermore, it was shown that a sulphated peptide derived 

from the N-terminus of D6 has the potential to be used therapeutically as a broad-based 

chemokine scavenger, which may be useful for dampening the effects of excessive 

chemokine production in chronic inflammatory conditions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

Contents 

Abstract ................................................................................................................. 2 
Contents ................................................................................................................ 4 
List of Tables ....................................................................................................... 10 
List of Figures ..................................................................................................... 11 
List of accompanying material .......................................................................... 14 
Acknowledgements ............................................................................................ 15 
Author's declaration ........................................................................................... 17 
Abbreviations ...................................................................................................... 18 
 

Chapter 1: Introduction 
1.1 Chemokines ............................................................................................... 22 

1.1.1 Structure and Characterization of Chemokines .................................... 22 
1.1.1.1 Post-translational modification of chemokines ............................... 23 
1.1.1.2 Chemokine dimerisation and aggregation ...................................... 25 

1.1.2 Chemokine nomenclature and classification......................................... 26 
1.1.2.1 The CC chemokines ...................................................................... 27 
1.1.2.2 The CXC chemokines .................................................................... 28 
1.1.2.3 XC and CX3C chemokines ............................................................. 28 
1.1.2.4 Viral chemokines and chemokine receptor blockers ...................... 29 
1.1.2.5 Chemokine binding proteins (CHBPs) ........................................... 29 

1.1.3  Homeostatic vs. Inflammatory Chemokines.......................................... 31 
1.1.3.1 Homeostatic chemokines ............................................................... 31 
1.1.3.2 Inflammatory chemokines .............................................................. 32 

1.1.4  Glycosaminoglycans and chemokine presentation .............................. 33 
1.2  The Chemokine Receptors ........................................................................ 37 

1.2.1  General structure and characterisation ................................................ 37 
1.2.1.1 Evolutionary origin ......................................................................... 37 
1.2.1.2 Ligand binding ................................................................................ 38 
1.2.1.3 Dimerisation ................................................................................... 40 

1.2.2  Post-translational modification ............................................................. 41 
1.2.2.1 Tyrosine sulphation ........................................................................ 41 
1.2.2.2 Palmitoylation ................................................................................. 44 
1.2.2.3 Cleavage by proteases .................................................................. 45 

1.2.3  Viral chemokine receptors .................................................................... 46 
1.2.4  Chemokine receptor signalling ............................................................. 46 

1.2.4.1 Ligand binding and signalling ......................................................... 46 
1.2.4.2 Receptor internalisation and desensitisation .................................. 48 

1.3 Chemokines and chemokine receptors in disease ..................................... 49 
1.3.1   Human immunodeficiency virus (HIV) ................................................. 49 
1.3.2  Cancer ................................................................................................. 52 
1.3.3   Psoriasis .............................................................................................. 53 
1.3.4  Rheumatoid arthritis ............................................................................ 55 
1.3.5  Pharmaceutical targeting of the chemokine system ............................ 57 



5 

1.5 Atypical chemokine receptors .................................................................... 58 
1.5.1  DARC .................................................................................................. 59 
1.5.2  CCR11 ................................................................................................. 61 
1.5.3  CXCR7 ................................................................................................ 62 

1.6 The atypical chemokine receptor: D6 ......................................................... 63 
1.6.1  D6 identification and characterisation .................................................. 63 
1.6.2  D6 structure and biochemistry ............................................................. 63 
1.6.4  D6 ligands ............................................................................................ 67 
1.6.5  D6 expression ...................................................................................... 67 
1.6.5  Pathophysiological role of D6 .............................................................. 68 

1.6.5.1 D6 and the skin .............................................................................. 68 
1.6.5.2 D6 and the placenta ....................................................................... 70 
1.6.5.3 D6 and the lung and heart .............................................................. 70 
1.6.5.4 D6 and the gut ............................................................................... 71 
1.6.5.5 D6 and cancer ................................................................................ 71 
1.6.5.6 D6 function on LEC’s ..................................................................... 72 

1.7 Thesis aims and objectives ........................................................................ 75 
 

Chapter 2: Materials and Methods 
2.1 General solutions and consumables .......................................................... 77 

2.1.1  Composition of chemical solutions ...................................................... 77 
2.1.2  Plastic lab-ware ................................................................................... 78 
2.1.3  Bacterial culture media ........................................................................ 79 

2.2 Cell culture methods .................................................................................. 79 
2.2.1  Cell line maintenance .......................................................................... 79 
2.2.2  Thawing of cell lines from frozen stocks .............................................. 80 
2.2.3  Cell counting ........................................................................................ 80 
2.2.4  Maintenance of cell lines in culture ...................................................... 80 
2.2.5  Passage of adherent cell cultures ........................................................ 80 
2.2.6  Passage of suspension cell cultures .................................................... 81 
2.2.7  Freezing down of cell lines .................................................................. 81 

2.3 Plasmid manipulation ................................................................................. 81 
2.3.1  Generation of HA-tagged human D6 (HA-D6) ..................................... 81 
2.3.2  Site-directed mutagenesis ................................................................... 82 
2.3.3  Bacterial Transformation with plasmid DNA ........................................ 83 
2.3.4  Plasmid cloning, purification and sequencing ....................................... 84 

2.4 Transfection of plasmids into mammalian cell lines ................................... 84 
2.4.1  Transfection of adherent cells .............................................................. 84 
2.4.2  Obtaining clonal populations of transfected cells ................................. 85 
2.4.3  Surface receptor assessments of transfected cells ............................. 85 

2.4.3.1 Antibody staining for flow cytometry ............................................... 85 
2.4.3.2 Flow cytometry ............................................................................... 86 

2.5  Cell based assays ..................................................................................... 86 
2.5.1  Chemokine uptake assay .................................................................... 86 
2.5.2  Chemokine uptake assay with D6-N* as a competitor ......................... 87 
2.5.3    Chemokine degradation assay .............................................................. 87 



6 

2.5.4  Protease cleavage assays ................................................................... 87 
2.5.5  Chemokine uptake assay after staphopain A treatment ...................... 88 
2.5.6  Chemokine fluorescence assay following staphopain A treatment ...... 88 
2.5.7  Sodium chlorate treatment of cells ...................................................... 89 
2.5.8  siRNA and D6 transfection .................................................................. 89 

2.6 Molecular Biology: RNA ............................................................................. 89 
2.6.1  Isolation of RNA from cells .................................................................. 90 
2.6.2  cDNA synthesis from RNA ................................................................... 90 

2.7 Molecular Biology: QPCR by absolute quantification ................................. 90 
2.7.1  Primer Design ...................................................................................... 91 
2.7.2  Generation of Standards ..................................................................... 92 
2.7.3  Gel Electrophoresis ............................................................................. 93 
2.7.4  Gel extraction ...................................................................................... 93 
2.7.5  Standard Verification ........................................................................... 94 
2.7.6  Polymerase Chain Reaction (PCR) ..................................................... 94 
2.7.7  QPCR Assay ....................................................................................... 94 
2.7.8  Analysis of QPCR Data ....................................................................... 95 

2.8 Molecular biology: Protein .......................................................................... 96 
2.8.1  Synthesis of D6-N peptide ................................................................... 96 
2.8.2  Chemokine - D6-N binding assay using nickel beads .......................... 96 
2.8.4  Preparation of protein cell lysates ........................................................ 97 
2.8.5  Sodium Dodecyl sulphate polyacrylamide gel electrophoresis (SDS 
PAGE).. ............................................................................................................. 98 
2.8.6  Western blotting ................................................................................... 98 
2.8.7  Estimation of protein loading ............................................................... 99 
2.8.8  Protein band staining ......................................................................... 100 
2.8.9  Silver Staining .................................................................................... 100 
2.8.10 Enzyme-linked immunosorbent assay (ELISA) ................................... 101 
2.8.11 Immunoprecipitation of HA-positive material from media ................... 101 
2.8.12 Immunoprecipitation of HA-D6 ............................................................ 102 
2.8.13 Streptavidin bead pull down assay ..................................................... 102 
2.8.14 Protein binding assessments using BIAcore....................................... 102 

2.9  Statistical analysis .................................................................................... 103 
 

Chapter 3: Results 
3.1 Introduction .............................................................................................. 105 
3.2 CHO K1 hD6 and CHO 745 hD6 cell lines ............................................... 108 

3.2.1  The absence of GAGs reduces chemokine immobilisation by CHO 
cells....... .......................................................................................................... 108 
3.2.2  Stable transfection of CHO K1 and CHO 745 cells ............................ 110 
3.2.3  Enrichment for D6 positive cells ........................................................ 112 
3.2.4  Obtaining clonal populations of CHO K1 hD6 and CHO 745 hD6 ..... 115 

3.3 Cis-presentation of chemokines by glycosaminoglycans increases D6 
activity ................................................................................................................. 118 

3.3.1  CHO K1 hD6 and CHO 745 hD6 have different ligand uptake 
capability.. ....................................................................................................... 118 



7 

3.3.2  CHO 745 hD6 display reduced ligand uptake compared to CHO K1 
hD6....... ........................................................................................................... 120 
3.3.3  The efficiency of chemokine degradation by D6 is affected by the 
absence of GAGs ............................................................................................ 122 

3.4 Summary of Chapter 3 ............................................................................. 125 
 

Chapter 4: Results 
4.1 Introduction .............................................................................................. 127 
4.2 The D6-N peptide ..................................................................................... 129 

4.2.1  Synthesis and biochemistry ............................................................... 129 
4.2.2  Visualisation of D6-N ......................................................................... 131 
4.2.3  D6-N forms dimers and higher-order aggregates with increasing 
temperature ..................................................................................................... 133 

4.3 D6-N binding to chemokines .................................................................... 135 
4.3.1  D6-N peptide binding experiments utilising the HIS-tag .................... 135 
4.3.2  Modification of binding experiments using labelled chemokines........ 137 

4.4 D6-N binding experiments utilising streptavidin beads ............................. 139 
4.4.1  D6-N (s) binds to CCL22 ................................................................... 139 
4.4.2  D6-N(s) binds CCL2 and CCL22, but not CCL19 .............................. 144 
4.4.3  D6-N (s) binds with high affinity to CCL2, as determined by Biacore 147 

4.5 Addition of D6-N to cells blocks interaction of CCL2 with cognate 
receptors... .......................................................................................................... 149 

4.5.1  D6-N (s), but not D6-N (non-s) inhibits AF-CCL2 uptake by D6 
expressed on HEK D6 transfected cells .......................................................... 150 
4.5.2  D6-N inhibits AF-CCL2 uptake by CCR2 expressed on THP1 cells .. 152 
4.5.3  D6-N inhibits AF-CCL2 uptake of chemokines in a dose-dependent 
manner. ........................................................................................................... 154 

4.6 The pattern and degree of sulphation of D6-N (s) is crucial to its binding 
capability to inflammatory chemokines ............................................................... 156 

4.6.1  D6-N (s) and D6-N (s) NEW contain different sulphation patterns ..... 156 
4.6.2  D6-N (s) NEW does not bind to the inflammatory CC chemokines CCL2 
or CCL22 ......................................................................................................... 159 

4.7 Summary of Chapter 4 ............................................................................. 161 
 

Chapter 5: Results 
5.1 Introduction .............................................................................................. 164 
5.2 Seeking evidence for a ‘shed’ D6 N-terminal peptide ............................... 166 

5.2.1  HEK 293 cells .................................................................................... 166 
5.2.2  Western Blot antibodies ..................................................................... 166 
5.2.3  Transfection of HEK 293 cells with HA-D6 ........................................ 166 
5.2.4  Detection of an N-terminally ‘shed’ D6 peptide .................................. 168 
5.2.5  Detection of truncated D6 protein ...................................................... 171 

5.3 Seeking mechanisms of cleavage of D6 .................................................. 173 
5.3.1  Treatment of HEK D6 cells with proteases ........................................ 173 
5.3.2  Analysing the activity of staphopain A ............................................... 175 
5.3.3  The effect of staphopain A on D6 ...................................................... 176 



8 

5.3.4  Attempts to purify the D6 N-terminal cleaved peptide ........................ 180 
5.3.5  D6 activity decreases when treated with staphopain A ...................... 182 

5.4 Chapter 5 Summary ................................................................................. 185 
 

Chapter 6: Results 
6.1 Introduction .............................................................................................. 187 
6.2 Inhibition of tyrosine sulphation by sodium chlorate treatment ................. 188 

6.2.1 Inhibition of protein sulphation reduces D6 activity ................................. 188 
6.2.1.1 Temporal analysis of sodium chlorate treatment .......................... 188 
6.2.1.2 Increasing concentration of sodium chlorate ................................ 191 

6.3 Site directed mutagenesis of D6 .............................................................. 193 
6.3.1  Stable transfection of HEK 293 cells with mutant 1 ........................... 195 
6.3.2  Sulphation of the D6 N-terminus is reduced in mutant 1 ................... 196 

6.4 Analysis of TPST 1 and TPST 2 expression ............................................ 198 
6.4.1  TPST-1 and TPST-2 expression in different tissue / cell types .......... 198 
6.4.2  TPST-1 and TPST-2 expression in HEK 293 cell lines ...................... 200 
6.4.3      TPST-1 and TPST-2 are involved in D6 sulphation ........................... 202 

6.5  Ligand binding by D6 is greatly enhanced by receptor sulphation ........... 204 
6.5.1  Mutant 1 has reduced ability to uptake ligand.................................... 204 
6.5.2  Mutant 1 has a reduced ability to degrade ligand ............................... 207 
6.5.3  Chemokine uptake is not blocked in mutant 1 ................................... 209 

6.6 Investigating the effect of single tyrosine mutations ................................. 213 
6.6.1  Generation of different sulphation mutants ........................................ 213 
6.6.2  No single tyrosine residue on the D6 N-terminus is essential for ligand 
binding.. ........................................................................................................... 216 

6.7 Generation of a catalogue of D6 mutants ................................................. 217 
6.8 Investigating the activity of different D6 mutants ...................................... 219 

6.8.1  Analysis of mutant cell lines for D6 expression .................................. 219 
6.8.2  Mutant 5 has enhanced ability to uptake CCL22 compared to WT 
D6......... ........................................................................................................... 221 
6.8.3  The presence of a single tyrosine residue rescues D6 activity .......... 223 

6.9 Summary of Chapter 6 ............................................................................. 225 
 

Chapter 7: Discussion 
7.1 Introduction .............................................................................................. 227 
7.2 Discussion of Chapter 3 ........................................................................... 228 

7.2.1  The use of CHO cells ........................................................................ 228 
7.2.2   Chemokine presentation to D6 is facilitated by GAGs ...................... 228 
7.2.3  How do these findings relate to current knowledge of D6 and GAG 
function? .......................................................................................................... 229 

7.3 Discussion of Chapters 4, 5 and 6 ........................................................... 231 
7.3.1  A conserved tyrosine cluster on the N-terminus of D6 is a key 
determinant for ligand binding ......................................................................... 231 
7.3.2  Shedding and cleavage of the D6 N-terminus ................................... 233 
7.3.3  A sulphated peptide representative of the D6 N-terminus has 
therapeutic potential ........................................................................................ 237 



9 

7.4 Future directions and considerations ....................................................... 238 
7.4.1      GAG studies ...................................................................................... 238 
7.4.2  D6 N-terminal peptide studies ........................................................... 239 
7.4.3  Further functional characterisation of the D6 N-terminus .................. 240 

7.5 Conclusions .............................................................................................. 241 
 
Appendix 1: Publications arising from this work ........................................... 242 
 
Bibliography ...................................................................................................... 275 
 



10 

List of Tables 

Chapter 1: 
Table 1-1: Structural categorization and nomenclature of the four chemokine 
subfamilies. ........................................................................................................... 23 
Table 1-2: Systematic nomenclature and classification for chemokines ............... 31 
Table 1-3: Chemokine ligands for the atypical chemokine receptors .................... 67 
 
Chapter 2: 
Table 2-1: Composition of solutions ...................................................................... 77 
Table 2-2: Composition of bacterial culture media ................................................ 79 
Table 2-3: Primer sequences used to generate each mutant. .............................. 83 
Table 2-4: Antibodies for surface receptor assessment of HA-D6 transfected cells.
 .............................................................................................................................. 86 
Table 2-5: Inner and outer primer sequences used in PCR and QPCR reactions 92 
Table 2-6: Western blotting primary and secondary antibodies ............................ 99 
 
Chapter 6: 
Table 6-1: Description of versions of D6 mutants with variations of the conserved 
tyrosine motif....................................................................................................... 213 
Table 6-2: Description of all the D6 mutants generated with variations of the 
conserved tyrosine motif. .................................................................................... 218 
 
 



11 

List of Figures 

Chapter 1: 
Figure 1-1: Two-dimensional representation of chemokine structure within the four 
subfamilies. ........................................................................................................... 24 
Figure 1-2: Tertiary structure of a chemokine ....................................................... 24 
Figure 1-3: Leukocyte migration from blood to extravascullar tissue. ................... 36 
Figure 1-4: Birds-eye representation of chemokine receptor structure. ................ 39 
Figure 1-5: Sulphation of a tyrosine residue ......................................................... 42 
Figure 1-6: Immune cell recruitment to sites of inflammation requires post-
translationally sulfated proteins. ............................................................................ 44 
Figure 1-7: G protein coupled receptor signalling ................................................. 47 
Figure 1-8: D6 within the plasma membrane ........................................................ 66 
Figure 1-9: D6-deficient mice show disrupted antigen presentation ...................... 74 
 
Chapter 3: 
Figure 3-1: The envisaged role of GAGs in chemokine presentation. ................. 107 
Figure 3-2: CHO K1 and CHO 745 chemokine binding affinity ........................... 109 
Figure 3-3: D6 expression of CHO cell lines after transfection............................ 111 
Figure 3-4: Enrichment of D6 expressing cells from CHO K1 hD6 and CHO 745 
hD6. .................................................................................................................... 113 
Figure 3-5: Enrichment for D6+ cells................................................................... 114 
Figure 3-6: D6 expression of CHO cells lines. .................................................... 116 
Figure 3-7: CHO K1 hD6 and CHO 745 hD6 express D6 at very similar levels. . 117 
Figure 3-8: Uptake ability of CHO K1 hD6 and CHO 745 hD6 with increasing AF-
CCL2 concentration. ........................................................................................... 119 
Figure 3-9: Uptake of AF-CCL2 by CHO K1 hD6 and CHO 745 hD6 at different 
time points........................................................................................................... 121 
Figure 3-10: Uptake of AF-CCL2 by CHO K1 hD6 is more efficient than CHO 745 
hD6 ..................................................................................................................... 121 
Figure 3-11: D6-mediated degradation of CCL22 is reduced when GAG’s are 
absent. ................................................................................................................ 124 
 

Chapter 4: 
Figure 4-1: The envisaged potential of using D6-N therapeutically. .................... 128 
Figure 4-2: D6-N (s) is a mixture of differentially sulphated peptides. ................. 130 
Figure 4-3: Visualisation of D6-N. ....................................................................... 132 
Figure 4-4: D6-N (s) forms dimers and higher order aggregates with increasing 
temperature......................................................................................................... 134 
Figure 4-5: CCL19 and CCL2 are not detected in complex with D6-N. ............... 136 
Figure 4-6: Biotinylated chemokines are not ‘pulled down’ by D6-N attached to 
nickel beads. ....................................................................................................... 138 
Figure 4-7: Streptavidin bead pull-down assay. .................................................. 141 
Figure 4-8: D6-N (s) preferentially binds to biotinylated chemokines CCL22 and 
CCL2. .................................................................................................................. 143 



12 

Figure 4-9: D6-N (s) binds to the inflammatory CC chemokines, CCL2 and CCL22 
but not the non-D6 ligand CCL19. ....................................................................... 146 
Figure 4-10: Sensorgram displaying results from Biacore experiment. ............... 148 
Figure 4-11: Gating strategy for chemokine uptake assays. ............................... 149 
Figure 4-12: D6-N (s) prevents uptake of AF-CCL2 by HEK D6 cells. ................ 151 
Figure 4-13: D6-N prevents uptake of AF-CCL2 by CCR2 expressed on THP1 
cells. .................................................................................................................... 153 
Figure 4-14: D6-N (s) decreases the uptake of AF-CCL2 by THP1 cells in a dose 
dependent manner, while D6-N (non-s) has no effect. ........................................ 155 
Figure 4-15: Different batches of D6-N (s) contain differently sulphated peptide 
species. ............................................................................................................... 158 
Figure 4-16: D6-N (s) NEW does not bind to inflammatory chemokines. ............ 160 
 

Chapter 5: 
Figure 5-1: Examples of chemokine receptor cleavage and its biological 
consequences. .................................................................................................... 165 
Figure 5-2: D6 expression of the HEK 293 cell line before and after transfection.
 ............................................................................................................................ 167 
Figure 5-3: Detection method for ‘shed’ D6 N-terminal peptide. ......................... 169 
Figure 5-4: Detection of a shed N-terminal peptide derived from D6. ................. 170 
Figure 5-5: Detection of a truncated D6 protein. ................................................. 172 
Figure 5-6: Treatment of HEK D6 cells with different proteases. ........................ 174 
Figure 5-7: Staphopain A treatment of CXCR2-expressing THP-1 cells. ............ 175 
Figure 5-8: Staphopain A treatment of HEK D6 cells in PBS. ............................. 179 
Figure 5-9: Supernatants of cells before and after IP. ......................................... 181 
Figure 5-10: Staphopain A treatment of HEK D6 cells reduces D6 activity. ........ 184 
 

Chapter 6:  
Figure 6-1: Evolutionary conservation of the tyrosine motif on the D6 N-terminus.
 ............................................................................................................................ 188 
Figure 6-2: Inhibition of protein sulphation over time reduces D6 activity. .......... 190 
Figure 6-3: D6 activity decreases as sodium chlorate concentration increases. . 192 
Figure 6-4: Site-directed mutagenesis ................................................................ 194 
Figure 6-5: Comparing wildtype D6 and mutant 1 D6. ........................................ 194 
Figure 6-6: HEK D6 wt and mutant 1 (pool 1) express D6 at very similar levels. 195 
Figure 6-7: Sulphation of Mutant 1 is reduced compared to wildtype D6. ........... 197 
Figure 6-8: TPST-1 and TPST-2 expression in different tissues / cells. .............. 199 
Figure 6-9: TPST-1 and TPST-2 are expressed by HEK 293 cells. .................... 201 
Figure 6-10: D6 activity is reduced by simultaneous down-regulation of TPST-1 
and TPST-2......................................................................................................... 203 
Figure 6-11: Mutant 1 has greatly reduced chemokine binding capability. .......... 206 
Figure 6-12: The speed of D6-mediated degradation of CCL2 is reduced in mutant 
1. ......................................................................................................................... 208 
Figure 6-13: Surface expression levels of mutant 1 decrease over time in cell 
culture. ................................................................................................................ 211 
Figure 6-14: Mutant 1 is functional at high CCL2 concentrations. ....................... 212 



13 

Figure 6-15: Enrichment for D6 (mutant) expressing cells after transfection. ..... 215 
Figure 6-16: No single tyrosine residue on the D6 N-terminal is essential for ligand 
binding. ............................................................................................................... 217 
Figure 6-17: Percentage and level of D6 expression shown by mutant cell lines.
 ............................................................................................................................ 220 
Figure 6-18: Ligand uptake capability is enhanced in Mutant 5. ......................... 222 
Figure 6-19: The presence of a single tyrosine residue partially rescues D6 
activity. ................................................................................................................ 224 
 

Chapter 7: 
Figure 7-1: Consequences of GAG deficiency for D6 binding and internalisation of 
chemokines. ........................................................................................................ 230 
Figure 7-2: Proposed functional consequences for N-terminal cleavage of D6 by 
the bacterial protease staphopain A .................................................................... 235 
Figure 7-3: Alternative hypothesis on the effect of D6 cleavage for virulence of S. 
aureus. ................................................................................................................ 236 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

List of accompanying material 

Appendix 1: Publications arising from this work: 
 

MCKIMMIE, C. S., SINGH, M. D., HEWIT, K., LOPEZ-FRANCO, O., LE BROCQ, M., 
ROSE-JOHN, S., LEE, K. M., BAKER, A. H., WHEAT, R., BLACKBOURN, D. 
J., NIBBS, R. J. B. & GRAHAM, G. J. (2013) An analysis of the function and 
expression of D6 on lymphatic endothelial cells. Blood, 121, 3768-77. 

 

HEWIT, K. D., FRASER, A., NIBBS, R. J. & GRAHAM, G. J. (2014) The N-terminal 
region of the atypical chemokine receptor ACKR2 is a key determinant of ligand 
binding. J Biol Chem. 289, 12330-42. 

 
 
LE BROCQ, M. L., FRASER, A. R., COTTON, G., WOZNICA, K., MCCULLOCH, C. 

V., HEWIT, K. D., MCKIMMIE, C. S., NIBBS, R. J. B., CAMPBELL, J. D. M. & 
GRAHAM, G. J. (2014) Chemokines as novel and versatile reagents for flow 
cytometry and cell sorting. J Immun, 192, 6120-30.  



15 

Acknowledgements 

Firstly I would like to thank my supervisor, Professor Gerry Graham, for giving me the 

great opportunity to do a PhD in the Chemokine Research Group. Thank you for showing 

me your support both academically and personally through good and difficult times, for 

keeping me focussed and motivated throughout my research, and for providing me with the 

opportunity to work in the group post-PhD. I am extremely grateful for all your help, 

advice and mentorship. I would also like to thank my advisor Professor Rob Nibbs for your 

interest in my work and for your critique and encouragement. Thank you to my assessors 

Professor Iain McInnes and Dr Pasquale Maffia for reading my reports and for offering 

your support and advice. I must also say a huge thank you to my lab mentor and friend Dr 

Alasdair Fraser. Thank you so much for taking the time to listen to my ideas and for 

offering your words of wisdom and assistance throughout my PhD. 

 

I would also like to thank my family; firstly my mum Greta for always believing in me and 

supporting me throughout my university career. I know times have been tough through the 

years but you have done your best and I hope I have made you proud. Thanks to my dad 

Billy for always showing an interest in my work and for your encouragement and support. 

Special thanks to my little sister Cara, and big brother Craig for all your help along the 

way, I’m proud to be your sister. Lastly thank you to Jamie for being such a special little 

person in my life! 

 

I’d also like to thank my friends, both within the GBRC and out with. Thanks especially to 

my oldest and dearest friend Jade, for being there for me day and night, year after year, 

drama after drama. Thanks to my best friend in the lab; Kenny Pallas. I would not have had 

nearly as much fun doing my PhD if you had not been here! Hopefully we will stay friends 

even when you’re a golfing mega-star! I also have to thank Dr Samuel Curran for your 

exceptional and entirely bizarre friendship. You have been sorely missed since you left to 

become a corporate colossus!  

 

I’d also like to thank every member of the Chemokine Research Group (past and present) 

and my friends from the other labs on level 3, for your friendship, help and advice. You are 

a great bunch of people to work with, and I will miss you all when I leave..... Tea and 

lunch breaks will never be the same!  

 



16 

Lastly I’d like to thank my boyfriend and best friend Zander; without your belief in me, 

and your unconditional love and support, I would not be the person I am today. I am so 

grateful to have you in my life, and I know it would have been a thousand times more 

difficult without you!  

 

‘The future belongs to those who believe in the beauty of their dreams’ Eleanor Roosevelt 



17 

Author's declaration 

I declare that, except where explicit reference is made to the contribution of others, that 

this thesis is the result of my own work and has not been submitted for any other degree at 

the University of Glasgow or any other institution. 

 

Signature .................................................... 

 

Printed name: Kay Deborah Hewit 

 

 



18 

Abbreviations 

ACKR   Atypical chemokine receptor 
AF-CCL2  Alexafluor labelled CCL2 
AF-CCL22  Alexafluor labelled CCL22 
AIDS   Acquired immunodeficiency syndrome 
APC   Antigen presenting cell 
APC dye  Allophycocyanin  
bp   base pairs 
Bio-   Biotinylated 
BLAST  Basic local alignment search tool 
BSA   Bovine serum albumin 
CD4   Cluster of differentiation 4 
CD8   Cluster of differentiation 8 
cDNA   Complimentary deoxyribonucleic acid 
CHBP   Chemokine binding protein 
CHO   Chinese hamster ovary 
CIA   Type II collagen-induced arthritis 
CNS   Central nervous system 
CT   Cycle threshold 
D6-N (s)  Sulphated D6 N-terminal peptide 
D6-N (s) NEW Sulphated D6 N-terminal peptide (New batch) 
D6-N (non-s)  Non-sulphated D6 N-terminal peptide 
DARC   Duffy antigen receptor for chemokines 
DC   Dendritic cell 
DMEM  Dulbecco’s minimal essential medium 
DMSO   Dimethylsulphoxide 
DNA   Deoxyribonucleic acid 
dsDNA  Double-stranded deoxyribonucleic acid 
EAE   Experimental autoimmune encephalitis 
ECL   Extracellular loop 
EDC   ethyl(dimethylaminopropyl) carbodiimide 
EDTA   Ethylenediaminetetraacetic acid 
ELISA   Enzyme-linked immunosorbent assay 
ER   Endoplasmic reticulum 
FACS   Fluorescence activated cell sorting 
FCS   Fetal calf serum 
FDA   Food and drug administration 
FITC   Fluorescein isothiocyanate 
GAG   Glycosaminoglycan 
GCSF   Granulocyte colony stimulating factor 
GDP   Guanosine diphosphate 
GPCR   G-protein coupled receptor 
GTP   Guanosine triphosphate 
HA   Haemagglutinin 

http://en.wikipedia.org/wiki/1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
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HD LEC  Human dermal lymphatic endothelial cell 
HEK   Human embryonic kidney (cells) 
HEPA   High efficiency particulate air 
HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HEV   High endothelial venule 
HHV6   Human herpes virus 6 
HIS   Histidine 
HIV   Human immunodeficiency virus 
HPC   Haematopoietic progenitor cell 
HPLC   High-performance liquid chromatography 
IBD   Irritable bowel disease 
IFNγ   Interferon gamma 
IP   Immunoprecipitation 
iDC   Immature dendritic cell 
IgG   Immunoglobulin G 
IL-6   Interleukin 6 
IL-12   Interleukin 12 
IL-17A  Interleukin 17A 
JAK/STAT  Janus kinase / signal transducer and activator of transcription 
KO   Knock-out 
LEC   Lymphatic endothelial cell 
LN   Lymph node 
LPS   Lipopolysaccharide 
MCS   Multiple cloning site 
MCV   Molluscum contagiosum 
MFI   Mean fluorescence intensity 
MI   Myocardial infarction 
MMP   Matrix metalloproteinase 
NFκB   Nuclear factor kappa B 
NHS   N-Hydroxysuccinimide 
NMR   Nuclear magnetic resonance 
NK   Natural killer 
NS   Not significantly different 
NTP   Non-template control 
PAD   Peptidylarginine deiminase 
PAPS   3’-phosphoadenosine 5’-phosphosulfate 
PBS   Phosphate buffered saline 
PBST   Phosphate buffered saline with 0.05% Tween 20 
PCR   Polymerase chain reaction 
PE   Phycoerythrin 
Ptx   Pertussis toxin 
QPCR   Quantitative polymerase chain reaction 
RA   Rheumatoid arthritis 
RBC   Red blood cell 
RNA   Ribonucleic acid 
RPM   Rotations per minute 
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RPMI   Roswell park memorial institute (media) 
RT   Reverse transcription 
RU   Response units 
SDS PAGE  Sodium Dodecyl sulphate polyacrylamide gel electrophoresis 
siRNA   Small interfering ribonucleic acid 
SIV   Simian immunodeficiency virus 
SPR   Surface Plasmon Resonance 
TAE   Tris acetate ethylenediaminetetraacetic acid 
TBP   Tata binding protein 
Th1   Type 1 T helper 
Th2   Type 2 T helper 
Th17   Type 17 T helper 
THP-1   Tamm-horsfall protein 1 (cells) 
TNFα   Tumour necrosis factor alpha 
TPA   12-O-tetradecanoylphorbol-13-acetate 
TPST-1  Tyrosylprotein sulphotransferase 1 
TPST-2  Tyrosylprotein sulphotransferase 2 
UV   Ultra violet 
WT   Wildtype 
(w/v)   Weight/volume 
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1.1 Chemokines 

The immune and inflammatory response works as an intricately regulated system involving 

a wide array of different signalling molecules and receptors. In the late 1980’s, a specific 

subset of  cytokines was discovered that regulate immune cell migration (Rot and von 

Andrian, 2004) . These chemotactic molecules were originally referred to as ‘chemotactic 

cytokines’ but are now collectively known as chemokines (Luster, 1998). One way in 

which chemokines can be distinguished from other cytokines is that they work through G-

protein coupled receptors (GPCRs). The primary immunological role of chemokines is to 

co-ordinate the  migration of leukocytes in both physiological and pathological contexts 

(Rollins, 1997). Chemokines and their receptors are therefore essential to the orchestration 

and regulation of immune cell movement, and it comes as no great surprise that they play 

an important role in several diseases characterised by inflammation and cell infiltration, 

including many autoimmune diseases and cancer (Rossi and Zlotnik, 2000). 

 

Despite their function as trafficking molecules, chemokines have also been assigned many 

other important functional attributes, such as the regulation of angiogenesis (Belperio et 

al., 2000), cell proliferation (Coussens and Werb, 2002), apoptosis susceptibility (Luster, 

1998), and stem cell mobilisation and quiescence (Lapidot and Petit, 2002, Graham et al., 

1996, Graham et al., 1990). These pleiotropic molecules are therefore essential to normal 

immune function, yet there is much about their roles still to be elucidated.  

 

1.1.1  Structure and Characterization of Chemokines 

Chemokines are a group of small (8-12kDa) proteins which can be divided into four 

subfamilies based upon their structure, and specifically, the composition of a conserved 

cysteine motif that is present in the mature sequence of all chemokines. Most chemokines 

have two cysteine residues in the N-terminal motif, however there are exceptions to this 

rule. Chemokine genes possess a high degree of homology, suggesting that they arose by 

duplication of an ancestral gene. For example, in humans, the inflammatory CC chemokine 

genes are mostly located on chromosome 17, whereas the inflammatory CXC chemokine 

genes are found on chromosome 4, suggesting a translocation event resulting in divergence 

into the two main chemokine subfamilies (Baggiolini et al., 1994, Murphy et al., 2000).  
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Table 1-1: Structural categorization and nomenclature of the four chemokine subfamilies.  
Created using information from (Zlotnik et al., 2006). 

Table 1-1 describes the four chemokine subfamilies detailing the nature of the cysteine 

motif in each. Disulphide bonding between the first and third cysteine residues and the 

second and fourth cysteine residues respectively stabilise the tertiary structure of 

chemokines, which accounts for the exceptionally analogous tertiary structure observed 

throughout the chemokine family, despite their limited amino acid sequence similarity 

(Zlotnik et al., 2006). Figure 1-1 illustrates the structure of the chemokine classes. 

 

1.1.1.1 Post-translational modification of chemokines 

Isoforms, splice variants, polymorphisms and enzymatically processed forms all increase 

the number of different chemokine molecules that can naturally influence the activity of 

immune and stromal cells (Struyf et al., 2003).  

 

The flexible N-terminal region of the chemokine contains both activation and binding 

domains, critical for effective chemokine interaction with their cognate receptors. 

Mutagenesis studies have demonstrated the importance of the N-terminal region for 

binding to receptors, as well as an ‘N-loop’ which has also been emphasized as a receptor 

binding region (Campanella et al., 2003, Clarklewis et al., 1995). See Figure 1-2. 

 

 

 

 

 

Family 

Name 

Description  Nomenclature of 

Chemokines in 

Family 

CC Juxtaposition of the first two cysteines CCL1 to CCL28 

CXC Single variable amino acid between first two cysteines CXCL1 to CXCL17 

CX3C Three amino acids between the first two cysteines CX3CL1 

XC Lacks the first and third cysteines seen in the other 

family members.  

XCL1 and XCL2 
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Figure 1-1: Two-dimensional representation of chemokine structure within the four 
subfamilies. 
Note the structural features of CX3C chemokines are described in section 1.1.2.3. Created using 
information from (Zlotnik et al., 2006). 

 

Figure 1-2: Tertiary structure of a chemokine 
Diagrammatical representation of a chemokine which highlights typical structural features including 
the positioning of the disulphide bridges and the N-loop. Taken from (Galzi et al., 2010). 
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Proteolytic cleavage of the N-terminal region by proteases including matrix 

metalloproteinases (MMPs) has been shown to exert specific functional effects on many 

chemokines (Parks et al., 2004, Mortier et al., 2011). For example MMP2 can act 

antagonistically by cleaving the first four amino acids from the N-terminal of CCL7, 

creating a truncated form that is still able to bind to, but not activate, its cognate receptors 

(McQuibban et al., 2000). In contrast, CXCL8 processing by MMP9 has been shown to 

distinctly increase its chemotactic activity (Van den Steen et al., 2000). Proteolytic 

cleavage of CCL4 and CCL5 by another protease, CD26; which is a leukocyte activation 

marker that possesses dipeptidyl peptidase IV activity, also results in changes in 

chemokine activity. Truncation of CCL4 expands its receptor reactivity, rendering it 

capable of activating CCR1 and CCR2, as well as its natural receptor CCR5 (Guan et al., 

2002), whereas truncation of CCL5 results in reduced activity via CCR1, but not CCR5 

(Oravecz et al., 1997). 

 

Citrullination is also a natural post-translational modification of many chemokines which 

can alter their biological activities (Mortier et al., 2011). This involves the conversion of a 

specific arginine residue to citrulline by the enzyme peptidylarginine deiminase (PAD). 

Importantly, citrullination also occurs on peptides which are implicated as autoantigens in 

driving the pathology of rheumatoid arthritis (RA) (Suzuki et al., 2003). Citrullination was 

first demonstrated in the chemokine system with CXCL8, whereby site-specific 

citrullination of arginine in position 5 of the CXCL8 amino acid sequence inhibits 

proteolytic processing by MMP9. This reduces the affinity of CXCL8 for binding to 

glycosaminoglycans (GAGs), its efficiency to signal through CXCR2, and ultimately its 

ability to induce neutrophil extravasation, therefore dampening the inflammatory response 

(Proost et al., 2008). Immunoregulation by citrullination of CXCL10 and CXCL11 (Loos 

et al., 2008) and more recently CXCL5 (Mortier et al., 2010)  has also been demonstrated, 

suggesting the possibility that many more chemokines are also processed in this way. 

 

1.1.1.2 Chemokine dimerisation and aggregation 

Chemokines, although often thought to exert their functions while in monomeric form, are 

also capable of forming dimers and higher order oligomers. This was first shown with 

CCL3 which can form extensive higher order aggregates (Graham et al., 1994). Notably, 

chemokine dimerisation and aggregation often involves their initial mobilisation to 

glycosaminoglycans (GAGs), a topic which will be discussed further in section 1.1.4.  For 
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example CCL5 forms higher-order oligomers after its initial immobilisation by 

glycosaminoglycans (GAGs) on the surface of endothelium, and this is crucial for CCR1-

mediated leukocyte arrest (Proudfoot et al., 2003, Baltus et al., 2003). Chemokine 

dimerisation is thought to play specific and differential roles related to leukocyte function. 

Recent studies have demonstrated that CCL2 dimers, which were created artificially by the 

introduction of a disulphide bond at the dimer interface, cannot bind nor activate CCR2 

(Tan et al., 2012). Conversely, CXCL1 dimers, that were created using similar methods, 

can potently activate CXCR2 (Ravindran et al., 2013). Interestingly oligomeric CXCL12 

variants, are able to halt chemotaxis due to inducing differential signalling pathways upon 

binding to CXCR4. This had consequences in a murine metastasis model whereby 

CXCR4-mediated metastasis was inhibited by exogenous administration of high 

concentrations of dimeric CXCL12 (Drury et al., 2011). Following this, synthetic 

covalently locked dimers of CXCL12 have been engineered which show enhanced stability 

in serum compared to wtCXCL12 and which have been suggested as potential anti-

metastatic drugs (Takekoshi et al., 2012). 

 

Heterodimerisation, whereby two different chemokines join, has also been shown to occur 

with important functional significance. In an atherosclerosis mouse model, CXCL4 and 

CCL5 heterodimers enhanced CCL5’s ability to attract monocytes. This effect was shown 

to be abrogated with the introduction of peptides to block the CXCL4-CCL5 

heterodimerisation interface, thereby attenuating monocyte recruitment (Koenen et al., 

2009). Conversely numerous studies have reported that mutating sites on chemokines to 

abrogate dimer formation does not alter their ability to bind and activate their cognate 

receptors (Gong and Clarklewis, 1995, Gong et al., 1996, Fernando et al., 2004). Therefore 

this aspect of chemokine biology is still an area of debate and may be chemokine specific. 

 

1.1.2  Chemokine nomenclature and classification 

Chemokines were originally named based upon their observed functional characteristics; 

for example CCL3 was originally termed Macrophage inflammatory protein 1 alpha (Mip-

1α) because of its ability to elicit macrophage movement towards sites of inflammation 

(Sherry et al., 1988). However as the number of newly discovered chemokines increased, 

the variety of different names to describe them became increasingly confusing. The 

situation was exacerbated still during the ‘data-mining’ era when single chemokines were 

given multiple names by different research groups. The systematic nomenclature system 
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described in Table 1-1 and Table 1-2 was implemented in 2000 to simplify the 

considerable, and confusing, collection of names that were being employed to define 

chemokines. The number at the end of the name corresponds to the order of classification 

of that chemokine family member; consequently CXCL1 is the first CXC chemokine to be 

recognized and CXCL17 is the latest. The nomenclature is based upon structure, so 

chemokines are defined independently of their function (Graham, 2009, Lukacs and 

Harrison, 2007). Table 1-2 summarises each chemokine and cognate receptor. 

 

1.1.2.1 The CC chemokines 

The CC chemokine subfamily contains the largest number of members, with 28 identified 

to date. The majority of CC chemokines are functionally associated with inflammatory 

conditions, e.g. are secreted by damaged or infected tissue to encourage migration of 

leukocytes to the site of insult. For instance, CCL3 and CCL4 have been shown to be 

important during a murine model of cutaneous granuloma formation. During this model, 

neutrophils are recruited to sites of skin injury and release CCL3 and CCL4 which in turn 

were observed to be crucial for the influx of macrophages to the site of inflammation (von 

Stebut et al., 2003). These chemokines, along with CCL5, have also been implicated in 

inflammatory responses against infectious pathogens. For example, in Toxoplasma gondii 

infections, the binding of CCL3, CCL4 and CCL5 to CCR5 promotes the release of the 

cytokine IL-12 from dendritic cells, which results in an enhanced Th1 immune response. 

This response is important for the development of cellular immunity to infectious agents 

and demonstrates the importance of the chemokine system, not just for the recruitment of 

immune cells, but also for the initiation of adaptive immunity (Aliberti et al., 2000). 

 

Homeostatic CC chemokines include CCL19 and CCL21, which are constitutively 

produced and are not normally induced by inflammation. Both are produced by stromal 

cells within T-cell areas of lymphoid tissue, and CCL21 is also produced by high 

endothelial venules (HEVs) and lymphatic endothelial cells (LECs). Together with their 

receptor CCR7, CCL19 and CCL21 promote the homing of T cells and dendritic cells 

(DCs) to lymphoid T zones where T cell priming occurs. Therefore their function is critical 

for bringing antigen presenting cells (APCs) and lymphocytes together for the initiation of 

adaptive immune responses (Luther et al., 2002, Comerford et al., 2013). 
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1.1.2.2 The CXC chemokines 

The CXC chemokine subfamily is the second largest, with 17 members to date. Some of 

the CXC chemokines display diverse roles, one of which is the regulation of angiogenesis. 

In keeping with this, the CXC chemokines can be divided into two groups based on the 

presence, or absence, of a specific sequence motif known as the ‘ELR motif’. This motif 

occurs before the first N-terminal cysteine residue and is a sequence of 3 amino acids; 

glutamic acid (E), leucine (L) and arginine (R). CXC chemokines that contain this motif 

(CXCL1, 2, 3, 5, 6, 7 and 8) tend to be angiogenic, whereas members that lack the motif 

(CXCL4, 9, 10, 11 and 14) tend to be angiostatic (Belperio et al., 2000). Mutagenic studies 

on CXCL8 have demonstrated loss of angiogenic function when the ELR motif is 

removed. Conversely a mutant of CXCL9 expressing the ELR motif is able to induce 

angiogenic activity (Strieter et al., 1995). It must be noted, however, that not all CXC 

chemokines follow the rule that ELR motif presence/absence equals angiogenic/angiostatic 

activity. CXCL12 lacks the ELR motif but can still act as an angiogenic factor, however 

the way in which it does so differs from classical angiogenic activity exerted through 

CXCR2  (Strieter et al., 2005). The presence of the ELR motif in CXC chemokines is also 

required for neutrophil activation and recruitment. This was demonstrated experimentally 

when a CXCL4 ELR+ mutant was shown to be capable of initiating neutrophil recruitment 

by binding to CXCR2, whereas wildtype CXCL4 could not (Clarklewis et al., 1993).  

 

1.1.2.3 XC and CX3C chemokines 

Despite being thought of as minor components of the large chemokine family, XC and 

CX3C chemokines possess unique features and generally have less overlapping 

functionality than the other chemokine subfamilies (Stievano et al., 2004). The XC 

subfamily has two members; XCL1 and XCL2, which are highly homologous and only 

differ in two amino acids at positions 7 and 8 of the full length protein (Yoshida et al., 

1996). XCL1 is produced by T lymphocytes and natural killer (NK) cells in response to 

infection or inflammation (Lei and Takahama, 2012). CX3CL1  is the only member of the 

CX3C chemokine family and unlike the majority of chemokine proteins, with the exception 

of CXCL16 (Matloubian et al., 2000), CX3CL1 is not typically secreted, but rather 

expressed on the cell surface, anchored to the membrane via a mucin-like stalk which 

contains a transmembrane domain (Bazan et al., 1997). CX3CL1 therefore acts as a cell-

adhesion receptor, able to arrest cells under physiological flow conditions (Haskell et al., 
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1999, Fong et al., 1998). However, a soluble chemo-attractant version of CX3CL1 can also 

be released from the cell surface following enzymatic cleavage of the mucin stalk (Tsou et 

al., 2001). Soluble CX3CL1 triggers migration of natural killer (NK) cells, cytotoxic T 

lymphocytes and macrophages, whereas the membrane-bound form arrests and captures 

these cells, which in turn augments their migratory response upon secondary stimulation 

by other chemokines (Umehara et al., 2004).  

 

1.1.2.4 Viral chemokines and chemokine receptor blockers 

 Viral genomes often express proteins which act as chemokine homologs and this is usually 

advantageous to the virus and enhances its ability to cause disease (Alcami, 2003). The 

human herpesvirus 6 (HHV6) infects mononuclear cells and encodes a CCL3 homolog; 

U83 which is capable of calcium mobilization and chemotactic activation (Zou et al., 

1999). This has been postulated to aid virus production by activating and trafficking 

mononuclear cells to sites of viral replication. Conversely, the human pox virus Molluscum 

contagiosum (MCV), encodes a highly selective viral CC chemokine homolog; MC148 

that binds to CCR8 but does not induce activation or migration and antagonistically blocks 

CCL1 (Luttichau et al., 2000). This emphasizes the importance of normal chemokine-

induced receptor signalling for host defence against viral pathogens. 

 

1.1.2.5 Chemokine binding proteins (CHBPs) 

Interestingly, various pathogens have developed broad specificity chemokine antagonists 

that are able to destabilize the natural host immune and inflammatory responses. For 

example the murine gamma herpesvirus MHV-68 encodes a protein named M3 which 

binds chemokines from all four subfamilies. Such binding blocks the interaction of host 

chemokines with their receptors (Parry et al., 2000, Epperson et al., 2012). A variety of 

chemokine binding proteins (CHBPs) are also secreted in the saliva of blood-sucking 

parasites such as ticks. These proteins have been termed Evasins, and subsequent structural 

analysis has revealed novel folds in these proteins which are distinct from those of viral 

CHBPs. Importantly, in vivo analyses provided evidence that such chemokine blockers are 

capable of repressing inflammatory disease (Deruaz et al., 2008).  
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CC Chemokine Family 

Systematic Name Alternative name(s) Receptor(s) 
CCL1 I-309, TCA-3 CCR8 
CCL2 MCP-1, MCAF, JE CCR2 
CCL3 MIP-1αS, MIP-1α CCR1, CCR5 
hCCL3L1 MIP-1αP, MIP-1α CCR1, CCR3, CCR5 
CCL4 MIP-1β CCR5 
CCL5 RANTES CCR1, CCR3, CCR5 
mCCL6 C10, MRP-1 CCR1 
CCL7 MCP-3, MARC CCR1, CCR2, CCR3, CCR5 
CCL8 MCP-2 CCR2, CCR3 
mCCL9 MIP-1γ, MRP-2, CCF18 CCR1 
mCCL10 MIP-1γ, MRP-2, CCF18 CCR1 
CCL11 Eotaxin CCR3, CXCR3 
mCCL12 MCP-5 CCR2 
hCCL13 MCP-4 CCR2, CCR3 
hCCL14 HCC-1 CCR1 
hCCL15 HCC-2, Lkn-1, MIP-1δ CCR1, CCR3 
hCCL16 HCC-4, LEC, LCC-1 CCR1, CCR2, CCR5 
CCL17 TARC CCR4 
hCCL18 DC-CK1, PARC CCR8 
CCL19 ELC, MIP-3β, exodus-3 CCR7 
CCL20 MIP-3α, LARC, exodus-1 CCR6 
CCL21 SLC, 6Ckine, exodus-2 CCR7 
CCL22 MDC, STCP-1, ABCD-1 CCR4 
hCCL23 MPIF-1 CCR1 
CCL24 Eotaxin-2, MPIF-2 CCR3 
CCL25 TECK CCR9 
CCL26 Eotaxin-3 CCR3, CCR1, CCR2, CCR5, CX3CR1 
CCL27 C-TACK, PESKY, Eskine CCR10 
CCL28 MEC CCR3, CCR10 
 

CXC Chemokine Family 

Systematic Name Alternative name(s) Receptor(s) 
CXCL1 GROα, KC CXCR1, CXCR2 
CXCL2 GROβ, MIP-2 CXCR2 
CXCL3 GROγ, DCIP-1 CXCR2 
CXCL4 PF4 CXCR3B 
CXCL5 ENA-78, GCP-2, LIX CXCR2 
hCXCL6 GCP-2 CXCR1, CXCR2 
hCXCL7 NAP-2 CXCR2 
hCXCL8 IL-8 CXCR1, CXCR2 
CXCL9 Mig CXCR3, CCR3 
CXCL10 IP-10 CXCR3, CCR3 
CXCL11 I-TAC CXCR3, CXCR7, CCR3 
CXCL12 SDF-1 CXCR4, CXCR7 
CXCL13 BCA-1, BLC CXCR5 
CXCL14 BRAK, Bolekine unknown 
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mCXCL15 Lungkine, WECHE unknown 
CXCL16 SCYB16, SRNM-PSOX CXCR6 
CXCL17 VCC-1, DMC unknown 
 

XC Chemokine Family 

Systematic Name Alternative name(s) Receptor(s) 
XCL1 Lymphotactin, SCM-1α XCR1 
hXCL2 SCM-1β XCR1 
 

CX3C Chemokine Family 

Systematic Name Alternative name(s) Receptor(s) 
CX3CL1 Fractalkine, neurotactin CX3CR1 

 
Table 1-2: Systematic nomenclature and classification for chemokines  
Names of chemokines as per systematic nomenclature, with alternative/previous name(s) and 
cognate receptor(s). Chemokines present only in humans are prefixed with ‘h’. Chemokines 
present only in mice are prefixed with ‘m’. Chemokines are also classified as inflammatory (pink), 
homeostatic (blue) function as both (green), or currently unknown or conflicting classification 
(white). Adapted from (Nomiyama et al., 2013, Comerford and Nibbs, 2005, Moser et al., 2004, 
Burkhardt et al., 2014) 
 

1.1.3  Homeostatic vs. Inflammatory Chemokines 

As well as classification according to the cysteine motif, chemokines can also be classified 

according to the context in which they function, and are thus often described as being 

either homeostatic or inflammatory, although some can fall into both categories in different 

contexts.  

 

1.1.3.1 Homeostatic chemokines 

Homeostatic chemokines, as the name suggests, are expressed at fairly constant levels and 

expression does not generally increase in response to infection or inflammation. They, 

along with other molecules such as selectins (capture receptors) and integrins (adhesion 

receptors), operate to control basal leukocyte movement and can form parts of a very 

specific tissue ‘address code’ to instruct the delivery of particular leukocytes to specific in 

vivo sites. This constitutive expression of specific chemokines ensures the correct 

organisation and compartmentalisation of immune cells during development and 

homeostasis (Springer, 1995, Zlotnik and Yoshie, 2000).  
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Naive B and T lymphocytes can gain entry into lymph nodes by expressing the correct 

entry code reader (including chemokine receptor CCR7), which will recognize the entry 

signals CCL19 and CCL21; homeostatic chemokines that are expressed on the luminal side 

of high endothelial venules (HEVs) of the lymph node. Conversely, antigen-experienced B 

cells leave the lymph node and migrate to specific niches such as the spleen and bone 

marrow, via up-regulation of CXCR4. In this context, CXCR4 acts as an endothelial entry 

code reader (Parsonage et al., 2005). 

 

The CXCL12/CXCR4 pairing is perhaps the most studied chemokine ligand/receptor 

combination. Knock-out mice, lacking either CXCL12 or its receptor CXCR4, die during 

embryogenesis, or shortly after birth, and exhibit marked defects in B lymphopoiesis, 

myelopoieisis, and heart and brain development (Ma et al., 1998, Nagasawa et al., 1996). 

CXCL12 is the most ancient chemokine and is often referred to as the primordial 

chemokine (Mithal et al., 2012). Homeostatic chemokine activity is epitomized by 

CXCL12, as it is constitutively produced by stroma in the bone marrow, supporting the 

proliferation of B cell progenitors and acting to recruit haematopoietic precursors to the 

bone marrow (Nagasawa et al., 1998). The CXCL12/CXCR4 axis is also required for the 

normal migration and survival of primordial germ cells in development (Molyneaux et al., 

2003).  

 

1.1.3.2 Inflammatory chemokines 

In contrast, inflammatory chemokines are only expressed during the response to a stimulus 

such as infection or damage within the tissue. They are expressed by many different cell 

types and in various tissues in order to generate a quick and effective inflammatory 

response and to direct leukocytes to the site of infection or damage (Rollins, 1997). There 

exists an array of different inflammatory chemokines. Most bind to more than one 

receptor, therefore individual functions for each are difficult to define. For example, a 

multiplicity of CXC chemokines, including CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, 

CXCL7 and CXCL8 attract neutrophils to infected sites by binding to either CXCR1 or 

CXCR2, the major neutrophil receptors. Likewise, monocytes are recruited into inflamed 

tissues by various CC chemokines, including CCL2, CCL3, CCL4, CCL6, CCL7, CCL8, 

CCL9, CCL15 and CCL20 (Charo and Ransohoff, 2006), which target many different CC 

chemokine receptors. 
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It is thought that this extensive collection of inflammatory chemokines is an example of 

biological redundancy, and exists to increase the robustness of the chemokine system and 

ensure that if one mechanism fails, another is available that can exert the equivalent 

response (Mantovani, 1999). However, with a scarcity of examples of true redundancy in 

biology, it may also be possible that the extensive inflammatory chemokine network is not 

redundant, and exists to provide a complex and exquisite regulation of leukocyte 

movement during inflammation (Proudfoot, 2002, Johnson et al., 2005, Schall and 

Proudfoot, 2011). This conundrum has perplexed chemokine biologists since chemokines 

were discovered, and it seems only with revolutionary experimental techniques, will the 

individual roles for inflammatory chemokines, or indeed their redundancy, be established. 

Table 1-2 lists the chemokines and defines them as being homeostatic, inflammatory or 

both. 

 

1.1.4  Glycosaminoglycans and chemokine presentation 

Chemokines are secreted by many cell types and are often found attached to endothelial 

cells through association with glycosaminoglycans (GAGs). GAGs are long, linear and 

highly negatively charged heterogeneous polysaccharides which are generally sulphated. 

They can be expressed as soluble GAGs, such as heparin and hyaluronic acid, or attached 

to a protein core to form structures called proteoglycans, which decorate the surface of 

most mammalian cells. As well as chemokines, these GAGs interact with a variety of 

proteins, including growth factors, enzymes and cytokines (Proudfoot et al., 2003). 

 

It has been demonstrated that the composition of different GAGs coating the cells and 

tissues of an organism can reflect a high degree of specificity, and is dependent on a 

number of factors, including cell type, developmental stage and the pathophysiological 

state of the cell (Turnbull et al., 2001, Couchman and Pataki, 2012). Indeed GAGs exhibit 

the largest diversity among biological macromolecules, vastly exceeding that of protein 

and DNA (Laine, 1994), and chemokines themselves display a degree of selectivity when 

binding to different types of GAGs (Kuschert et al., 1999, Adage et al., 2012). This makes 

carbohydrate biology notoriously difficult to study and, as a consequence, the importance 

of GAGs has been historically overlooked (Johnson et al., 2005).  

 

Initially chemokine binding to GAGs was thought to be the result of a non-specific 

electrostatic interaction; however mutagenesis studies have defined specific GAG binding 
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sites on many chemokines (Proudfoot et al., 2001, Lau et al., 2004, Koopmann and 

Krangel, 1997, Campanella et al., 2003). GAG binding epitopes vary depending on the 

chemokine and some epitopes overlap with sites required for the interaction with 

chemokine receptors (Graham et al., 1996). It is not known whether chemokines can 

simultaneously bind to GAGs and their cognate receptors, or whether the interactions 

involve a sequential ‘hand-over’ method; however the general model for GAG presentation 

of chemokines encompasses to both possibilities. The involvement of GAGs in the process 

of leukocyte migration from blood to extravascular tissue is summarised in Figure 1-3. 

Many different molecules, expressed on both leukocytes and endothelial cells are involved 

in this multistep process. Selectins expressed on the surface of leukocytes interact with 

addressins on endothelial cells and allow them to ‘roll’ along blood vessel walls. The 

presentation of chemokines by GAGs on the apical surface of endothelial cells prevents the 

diffusion of chemokines away from sites of production and is thought to encourage the 

binding of chemokines to chemokine receptors expressed on the leukocyte. This interaction 

between receptor and chemokine leads to a change in conformation of surface integrins on 

leukocyes, which can then bind cell adhesion molecules on endothelial cells. This 

interaction promotes firm adhesion of rolling leukocytes in the blood vessel and allows the 

extravasation and entrance of leukocytes into the tissues secreting the chemokines 

(Johnson et al., 2005, Proudfoot, 2006).  

 

The interaction between chemokines and immobilised GAGs has been shown to have 

crucial importance for the migration of inflammatory leukocytes. Mutants of CCL2, CCL3, 

CCL5 and CCL7 engineered to have impaired GAG-binding capacity, have all 

demonstrated an inability to induce cell migration in vivo (Proudfoot et al., 2003, Ali et al., 

2005), despite showing only minor effects in vitro, where blood and tissue flow forces are 

not operative (Ali et al., 2000). Likewise lymphocyte homing to lymph nodes relies on 

GAG presentation of CCL21 and this was demonstrated in vivo by a murine model 

whereby heparan sulphate GAGs were temporarily removed from endothelial cells 

enzymatically by injecting a mixture of heparinase and heparitinase intravenously (Bao et 

al., 2010, Alon, 2010). 

 

The idea that GAG-bound chemokines form gradients to direct the movement of 

leukocytes is considered crucial for chemokine-directed migration. This phenomenon has 

been shown in vitro (Rot, 1993, Haessler et al., 2011), and more recently in vivo, with 

evidence from quantitative imaging showing the presence of endogenous CCL21 gradients 

within mouse skin that lead dendritic cells towards lymphatic vessels (Weber et al., 2013). 
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As touched upon previously, the oligomerisation of particular chemokines, such as CCL5, 

is important for cell recruitment activity. Many studies have focused on the possibility of 

modulating the inflammatory process therapeutically through administration of variant 

chemokines that are incapable of GAG-binding. For example, generation of a CCL5 

variant by mutating the heparin binding site abrogated its ability to form higher order 

oligomers, and in turn, impaired cellular recruitment to sites of inflammation in a range of 

murine inflammation models (Johnson et al., 2004). 

 

In some cases chemokine interactions with soluble GAGs may prevent inappropriate 

engagement of chemokines with their receptors. For example particular T lymphocytes 

secrete CCL3, CCL4 and CCL5 as a complex with proteoglycans in vivo (Wagner et al., 

1998). Indeed this type of system has been utilized artificially for some time, with the use 

of soluble heparin to inhibit the biological effects of chemokines, thereby creating anti-

inflammatory effects both in animal models and in patients suffering from inflammatory 

conditions such as allergies and irritable bowel disease (Lider et al., 1989, Ahmed et al., 

2000, Lever and Page, 2002).  
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Figure 1-3: Leukocyte migration from blood to extravascullar tissue.  
Migration of leukocytes from the blood into tissue in response to infection or inflammation is a multi-
step process involving many different molecules. (i) Selectins and chemokine receptors are 
expressed on the endothelial cell surface. (ii) Selectins interact with mucin-like addressins on the 
leukocyte causing reversible tethering and a ‘rolling’ behaviour of the leukocyte. The chemokine 
receptor comes into contact with its chemokine ligand, presented on endothelial surfaces via 
GAGs. (iii) The interaction between receptor and chemokine leads to a change in conformation of 
surface integrins, which can then bind cell adhesion molecules. (iv) This causes leukocyte arrest 
and extravasion through either paracellular (as depicted) or transcellular routes. Figure adapted 
from (Handel et al., 2005, Johnson et al., 2005).  
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1.2  The Chemokine Receptors 

1.2.1  General structure and characterisation 

Chemokine receptors belong to the large superfamily of G protein-coupled, seven-

transmembrane spanning receptors, forming part of the Rhodopsin family of GPCRs. 

These molecules span the plasma membrane of cells and share a common structure of 

seven transmembrane alpha helices, an extracellular N-terminus, an intracellular C-

terminus, and three inter-helical loops on each side of the membrane. Other important 

shared structural features of chemokine receptors relate to signalling, including the 

presence of a DRYLAIV amino acid sequence motif, or a similar variation, on the second 

intracellular loop which is the main site for G protein-coupling, and many serine and 

threonine residues on the C-terminus which act as phosphorylation sites (see section 

1.2.4.2) (Oldham and Hamm, 2008, Murphy et al., 2000, Bachelerie et al., 2014). To date, 

18 signalling chemokine receptors, as well as 4 ‘non-signalling’ or atypical chemokine 

receptors (see section 1.4) have been identified, all of which help to govern immune and 

developmental processes.  

 

Recently three-dimensional structures have been elucidated for CXCR4, CXCR1 and 

CCR5. The CXCR4 structure was determined by X-ray crystallography, with CXCR4 

bound to either an antagonistic small molecule, or a cyclic peptide, and confirmed many 

supposed structural characteristics, including its tendency to form homodimers (Wu et al., 

2010). Likewise the CCR5 structure was determined by X-ray crystallography while in 

complex with the HIV drug Maraviroc (Tan et al., 2013b) (see section 1.3.5 for more 

details on pharmaceuticals). In contrast, the CXCR1 structure was determined by NMR 

spectroscopy, whereby the receptor is contained within crystalline phospholipid bilayers, 

under physiological conditions (Park et al., 2012). These studies have provided invaluable 

templates that should facilitate the clarification of yet more chemokine receptors, and 

improve our understanding of the nature of interactions between chemokine receptors, 

ligands, and indeed antagonistic therapeutics designed to modulate the chemokine system.  

 

1.2.1.1 Evolutionary origin 

Members of the chemokine receptor family share 25 to 80% amino acid homology, 

however many other G protein-coupled receptors also have around 25% amino acid 
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identity with chemokine receptors, indicating a hazy structural boundary. Their origin 

seems fairly recent in evolutionary terms, with chemokine receptor-like sequences having 

been identified in mammals, birds and fish (Gupta et al., 1998, Daniels et al., 1999, 

Nomiyama et al., 2013, DeVries et al., 2006). Phylogenetic analysis indicates that, similar 

to its ligand CXCL12, CXCR4 likely represents the earliest ancestral chemokine receptor. 

Surprisingly, it seems that the ancestral role of CXCR4 pre-dates the evolution of a 

sophisticated immune system, and instead,  is thought to be within the central nervous 

system, as determined by comparison of the phylogenies of fish and mammals (Huising et 

al., 2003). CXCL12 and CXCR4 are also crucial to the migration of primordial germ cells 

to the gonads, as determined by studies in mice and zebrafish (Doitsidou et al., 2002, 

Knaut et al., 2003). An ancestral role for CXCR4 in stem cell trafficking during 

embryogenesis has also been established (Mithal et al., 2012). 

 

1.2.1.2 Ligand binding 

Studies investigating the mode of binding between chemokines and chemokine receptors 

support a two-site model involving the N-terminal region of the chemokine receptor along 

with one or more of the extracellular domains (Monteclaro and Charo, 1996, Rajagopalan 

and Rajarathnam, 2006). The N-terminal region of the chemokine receptor is crucial for 

high-affinity ligand binding (Blanpain et al., 1999a, Monteclaro and Charo, 1997), whereas 

one or more extracellular domains are thought to strengthen ligand binding and are also 

necessary for transmembrane signalling (Han et al., 1999, Peeters et al., 2011). The 

presence of two disulphide bonds between the N-terminus and the extracellular loops of 

GPCRs are important for the conformational integrity of the extracellular domains and are 

thought to create a ‘binding pocket’ to which the ligand can attach (Allen et al., 2007) 

(Figure 1-4).  
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Figure 1-4: Birds-eye representation of chemokine receptor structure.  
(i) Schematic diagram illustrating transmembrane domains as green circles and extracellular 
domains (labelled ELC1, ELC2 and ELC3) as grey lines. The two disulphide bonds are represented 
as red lines. The grey dots characterize the flexible nature of the M-C region of the N-terminus. (ii) 
X-ray structure of CXCL12 detailing the alpha-helices of the transmembrane domains and again 
the disulphide bonds (in red). H1 – H7 – alpha helices 1 to 7. Figure adapted from: (Szpakowska et 
al., 2012). 
 

On every chemokine receptor, except for CXCR6, the N-terminus contains a conserved 

cysteine residue which is likely to be engaged with the third extracellular loop (ECL3) in a 

disulphide bond. This demarcates two regions in the N-terminus; the M-C domain from the 

first methionine residue to the cysteine residue, and the C-TM domain, from the cysteine 

residue to the first transmembrane segment. The M-C domain is the least conserved 

domain of chemokine receptors and has a fairly flexible structure. It also holds a net 

negative charge and typically contains multiple tyrosine and asparagine residues that can 

be post-translationally modified. These different features are thought to contribute to the 

high degree of ligand selectivity exhibited by chemokine receptors (Szpakowska et al., 

2012).  

 

In addition to chemokines, there is evidence that other types of molecule have chemokine 

receptor binding affinity, including pathogen-derived peptides (section 1.1.2.5), viral 

chemokines (section 1.1.2.4) and autoantigens (Aliberti et al., 2003, Howard et al., 2005). 

Furthermore, numerous studies examining HIV pathogenesis demonstrate the importance 

of chemokine receptors for viral entry into cells (Berger et al., 1999) (section 1.3.1). 

 



Chapter 1 - Introduction  40 

1.2.1.3 Dimerisation 

A single cell may express various chemokine receptors during different stages of its life 

cycle, or indeed, simultaneously. Although historically assumed to exist, and function, as 

monomeric species, it is now the general consensus that chemokine receptors, analogous to 

other GPCRs, function primarily as dimers or even higher-order functional units (Springael 

et al., 2007, Thelen et al., 2010). Furthermore the current hypothesis suggests that GPCRs 

assemble into dimers shortly after synthesis in the endoplasmic reticulum (ER) and traffic 

as such throughout their lifespan within the cell, suggesting that receptor oligomerisation 

has a role in receptor trafficking and may also regulate receptor expression at the cell 

surface (Bulenger et al., 2005, Thelen et al., 2010). 

  

Experimental evidence, although somewhat contentious, supports chemokine receptor 

dimerisation, whereby a number of chemokine receptors have been shown to form both 

homo- and heterodimers. For example CCR2 and CCR5 are preferentially expressed as 

homodimers (Rodriguez-Frade et al., 1999, Issafras et al., 2002), however co-expression of 

CCR2 and CCR5 in transfected cell lines can result in heterodimerisation of these two CC 

chemokine receptors and this has been shown to have functional consequences for cross-

ligand competition and prevention of activation of these receptors (El-Asmar et al., 2005). 

Similarly stabilisation of CCR2-CCR5 and CCR2-CXCR4 heterodimers was reported to 

inhibit HIV-1 infection through trans-inhibition of CCR5 and CXCR4 (Rodriguez-Frade et 

al., 2004), although this effect has been disputed elsewhere (Percherancier et al., 2005).  

It has also been demonstrated that chemokine receptor oligomerisation is not specific to 

just the signalling receptors, with heterodimerisation having also been shown between 

signalling receptors and atypical chemokine receptors, and even other GPCR family 

members such as glutamate receptors (Chakera et al., 2008, Vinet et al., 2013, Levoye et 

al., 2009, Lax et al., 2002). These interactions often exhibit antagonistic signalling effects 

and add further complexity to an already complicated system.  

 

Altogether the true consequences of receptor dimerisation need more complete 

characterisation, with the existence of many conflicting data sets and limitations on 

experimental techniques making assessment difficult. The recent advancements in the 

elucidation of CXCR4, CXCR1 and CCR5 structures (Wu et al., 2010, Park et al., 2012, 

Tan et al., 2013b) (see section 1.2.1), and the models that are likely to be available in the 

future, should provide novel structural information about different chemokine receptors 

and their natural stoichiometry within the cell membrane. This will be fundamental in 
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unravelling the significance of chemokine receptor dimerisation and its effects on ligand 

binding, intracellular signalling and function.  

 

1.2.2  Post-translational modification 

The expression and function of many molecules, including chemokine receptors, is 

controlled at both transcriptional and translational levels, as well as by post-translational 

modification. Post-translational modifications of chemokine receptors include N-linked 

and O-linked glycosylation and tyrosine sulphation on the extracellular domains, as well as 

the possibility of palmitoylation, phosphorylation and ubiquitination on the intracellular 

domains. Receptors can also be cleaved once expressed on the surface of cells. All such 

modifications can play major roles in receptor functionality and a select few will be 

discussed in this thesis. 

  

1.2.2.1 Tyrosine sulphation 

Tyrosine residues, particularly those following a neutral or acidic amino acid, can be post-

translationally sulphated, in the Golgi apparatus, by two broadly expressed enzymes called 

tyrosyl-protein sulphotransferases-1 and -2 (TPST-1 and TPST-2) (Kehoe and Bertozzi, 

2000). These enzymes catalyze the transfer of a sulphate group from the universal donor 

3’-phosphoadenosine 5’-phosphosulphate (PAPS) to the hydroxyl group of a tyrosine 

residue (Figure 1-5). Approximately 1% of the eukaryotic genome is thought to encode 

proteins which undergo tyrosine sulphation, including many GPCRs and adhesion 

molecules required for cell recruitment (Danan et al., 2008). Studies in which TPST-1 and 

TPST-2 were disrupted in mice demonstrate important and distinct roles for these enzymes 

in different biological processes such as cardiovascular development, reproduction and 

metabolism. TPST-1 KO mice display reduced body weight and increased foetal death 

post-implantation (Ouyang et al., 2002), whereas TPST-2 KO males have reduced fertility 

(Borghei et al., 2006). TPST-1 and TPST-2 double KO mice are born alive, however most 

pups die in the early postnatal period with cardiopulmonary deficiencies and also display 

disrupted retinal anatomy and function (Westmuckett et al., 2008, Sherry et al., 2010).  
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Figure 1-5: Sulphation of a tyrosine residue 
Transfer of a sulphate group from the universal donor PAPS to the hydroxyl group of a tyrosine 
residue catalysed by either TPST-1 or TPST-2. Adapted from (Monigatti et al., 2006). 

 

A conserved structural feature of the chemokine receptors is the incidence of clusters of 

tyrosine residues in the M-C domain (the domain preceding the first cysteine on the N-

terminus). Evidence from studies on various chemokine receptors suggests that these 

tyrosine residues can be sulphated and that this sulphation is important, and, often 

essential, for activation and function (Seibert et al., 2002). This is exemplified by CCR5, 

where sulphation of N-terminal tyrosine residues is essential for ligand binding, and 

importantly, the entry of HIV into the cell (Cormier et al., 2000, Farzan et al., 1999). 

Mutation of tyrosine residues in the N-terminal regions of numerous chemokine receptors, 

including CCR2, CCR5, mCCR8, CXCR3, CXCR4, CX3CR1 and Duffy antigen receptor 

for chemokines (DARC) (see section 1.5.1), has been shown to reduce the level of 

metabolic sulphate labelling of these receptors, which subsequently reduces the binding 

affinity for many of their chemokine ligands (Preobrazhensky et al., 2000, Seibert et al., 

2002, Gutierrez et al., 2004, Colvin et al., 2006, Farzan et al., 1999, Fong et al., 2002, 

Choe et al., 2005). Similarly, the chemokine binding affinities of N-terminal peptides from 

receptors CCR2, CCR3, CCR5 and CXCR4 are enhanced by sulphation of tyrosine 
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residues in these peptides (Tan et al., 2012, Veldkamp et al., 2006, Simpson et al., 2009, 

Duma et al., 2007). Interestingly, studies using sulphated CCR2 N-terminal peptides also 

highlighted a preference to bind monomeric CCL2, as opposed to its dimeric form. This 

has been suggested to assist in the destabilisation of the inactive dimeric form of CCL2 and 

induce dissociation to its active monomeric state (Tan et al., 2013a), implicating tyrosine 

sulphation of chemokine receptors as a prerequisite for chemokine activation and 

subsequent downstream consequences, such as an inflammatory response. 

  

Indeed tyrosine sulphation of chemokine receptors has been implicated in inflammatory 

conditions including atherosclerosis and lung disease (Liu et al., 2008, Westmuckett and 

Moore, 2009). Figure 1-6 illustrates the possible mechanisms whereby tyrosine sulphation 

of chemokine receptors and cell adhesion molecules may influence disease pathology in 

inflammatory diseases.  

 

Metabolic sulphate labelling studies have indicated that the sulphation of particular 

tyrosine residues is incomplete and therefore there may not be an exact sulphation pattern 

of tyrosines in chemokine receptors, rather a heterogeneous assortment of different 

sulphation states.  In addition TPST-1 and TPST-2 catalyse at different rates depending 

upon the sequence they are working on, and gene expression of the two TPST isoforms 

varies significantly between different tissues (Mishiro et al., 2006). As a result it is 

possible that differentially sulphated forms of the same chemokine receptor can exist in 

different cell types, and in different environments (Stone et al., 2009). In this way the 

sulphation state of a chemokine receptor corresponding to the cell it is expressed in could 

regulate the responsiveness of the chemokine receptor to its cognate chemokines (Zhu et 

al., 2011). 
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Figure 1-6: Immune cell recruitment to sites of inflammation requires post-translationally 
sulfated proteins.  
During inflammatory cell infiltration, immune cells such as monocytes express chemokine receptors 
such as CX3CR1 and CCR2 and migrate towards ligands such as CX3CL1 and CCL2 respectively. 
The expression of the adhesion molecule; P-selectin glycoprotein ligand-1 (PSGL-1), allows the 
infiltrating monocyte to form transitory bonds with P-selectin molecules expressed on endothelial 
cells, inducing leukocyte ‘rolling’. Post-translational tyrosine sulphation is crucial for both (i) 
chemokine/chemokine receptor binding and (ii) rolling adhesion. Both processes lead to infiltration 
of leukocytes during the inflammatory response. Adapted from: (Koltsova and Ley, 2009). 

 

1.2.2.2 Palmitoylation 

Many GPCRs are palmitoylated on cysteine residues located on the C-terminus of the 

receptor. This lipid-based post translational modification is a result of the esterification of 

cysteine residues by palmitate and leads to structural changes of the cytoplasmic tail and 

the formation of a fourth cytoplasmic loop. Palmitoylation is thought to be involved in 

various different functional attributes, including G protein-coupling efficiency, control of 

receptor phosphorylation and desensitization, and regulation of intracellular trafficking of 

the receptor (Qanbar and Bouvier, 2003). Many chemokine receptors have clusters of 

cysteine residues in their C-terminal regions and therefore have the potential to be 

palmitoylated. This is the case with CCR5, which has been shown to be palmitoylated at a 

three-cysteine cluster in its C-terminus. Studies whereby CCR5 palmitoylation was 

inhibited resulted in deficient receptor trafficking to the cell membrane (Blanpain et al., 

2001). Palmitoylation of CCR5 has also been implicated in the regulation of the receptor 



Chapter 1 - Introduction  45 

life span (Percherancier et al., 2001), although there is currently no evidence that this post-

translational modification has functional significance in other chemokine receptors. 

 

1.2.2.3 Cleavage by proteases 

The regulation of chemokine receptors by post-translational modification also includes the 

proteolytic cleavage of some chemokine receptors after expression on the cell surface. The 

receptors CXCR1, CXCR2 and CXCR4 have all been reported to be cleaved 

extracellularly in response to the enzymatic action of proteases, thereby removing the 

ligand binding site and rendering the receptor inactive.  

 

In the case of CXCR4, specific serine proteases released by neutrophils; namely neutrophil 

elastase and cathepsin G, cleave the receptor at its N-terminus and leave it unresponsive to 

its ligand, CXCL12 (Valenzuela-Fernandez et al., 2002). This was thought to coincide with 

the mobilization of hematopoietic progenitor cells (HPCs) in response to treatment with 

either granulocyte colony stimulating factor (G-CSF) or cyclophosphamide (Levesque et 

al., 2003). It was hypothesized that treatment with G-CSF or cyclophosphamide results in 

the accumulation of active neutrophil proteases in bone marrow tissue, thereby inducing 

cleavage of CXCR4 expressed on HPCs and allowing mobilization from the bone marrow. 

This study was performed using human samples, but the same results could not be repeated 

using a murine model (Levesque et al., 2004).  

 

Interestingly a study, again involving neutrophil elastase and cathepsin G, demonstrated 

their ability to cleave two distinct, but nearby, sites on the second extracellular loop of 

CXCR1. Cleavage of CXCR1 is particularly noteworthy, as the resulting cleaved peptide is 

itself bioactive, and its downstream effects include stimulation of the production of 

CXCL8, a CXCR1 ligand (Hartl et al., 2007). This process was implicated in chronic 

neutrophilic lung diseases such as cystic fibrosis, whereby the lung environment is 

characterised by elevated proteolytic activity and is often colonized by many different 

bacterial pathogens (Greene and McElvaney, 2009).  

 

The other main neutrophil chemokine receptor, CXCR2 can also be cleaved at the N-

terminus by the enzyme staphopain A; a cysteine protease secreted by the bacterial 

pathogen Staphylococcus aureus. Staphopain A is thought to act as an immune evasion 

factor by inactivating CXCR2 expressed on neutrophils, thus increasing bacterial virulence 

(Laarman et al., 2012). 
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These separate examples highlight the importance of chemokine receptor modulation and 

its functional consequences in disease. It seems likely that as further studies are 

undertaken, additional proteases may be implicated in the cleavage of various other 

chemokine receptors.  

 

1.2.3  Viral chemokine receptors 

Virus-encoded 7-transmembrane-spanning chemokine receptors have been identified in the 

genomes of many large DNA viruses, in particular herpes- and poxviruses (Alcami, 2003). 

These molecules are thought to have been duplicated from host genomes long ago, and 

have been through intense rates of mutation, resulting in molecular mimics that can subvert 

and exploit the host immune system, as well as influencing other important biological 

processes that are crucial to the virus life-cycle (Rosenkilde, 2005). Viral chemokine 

receptors share general features, including high promiscuity for both host and virally 

expressed chemokines, the ability to activate an exhaustive number of signalling pathways, 

and constitutive activity (McLean et al., 2004, Holst et al., 2003). For example the γ2-

Herpesvirus HHV8, encodes a viral chemokine receptor that shares homology with 

mammalian CXCR2 and can bind a plethora of CXC chemokines as well as an 

endogenously expressed chemokine – vCXCL2. This receptor is able to exploit various 

types of G-protein, with the potential to activate an abundance of down-stream signalling 

pathways, which ultimately contributes to the pathogenicity of the virus (Arvanitakis et al., 

1997, Bais et al., 1998, Rosenkilde et al., 1999).  

 

1.2.4  Chemokine receptor signalling 

1.2.4.1 Ligand binding and signalling 

Classical chemokine receptors are coupled to G proteins which act as molecular switches 

to activate intracellular signalling cascades in response to ligand binding. Heterotrimeric G 

proteins are made up of three subunits α, β and γ. In its inactive state, guanosine 

diphosphate (GDP) remains bound to the Gα subunit, however upon ligand binding, the 

conformation of the receptor changes leading to the release of GDP and the formation of a 

stable complex between the receptor and the G protein. This interaction is rapidly 

destabilised by the binding of guanosine triphophate (GTP) to the Gα subunit. The 
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activated Gα-GTP subunit and the Gβγ subunit are now capable of triggering or 

modulating the activity of many downstream signalling cascades (Oldham and Hamm, 

2008). These events are summarized in Figure 1-7.  

 

 

Figure 1-7: G protein coupled receptor signalling  
(i) Before activation, the G protein heterotrimer, composed of the Gα, Gβ and Gγ subunits, is 
associated with the receptor. GDP is bound to the Gα subunit. (ii) Ligand binding results in release 
of GDP and the formation of a stable, high-affinity complex between the receptor and the G protein 
complex. (iii) GTP rapidly binds to the Gα subunit leading to (iv) destabilisation of the heterotrimer 
complex into Gα-GTP and Gβγ subunits. Both subunits can interact with downstream effector 
proteins. (v) The signal is terminated on hydrolysis of GTP to GDP by Gα. The Gα subunit re-binds 
to the Gβγ, re-forming the inactive heterotrimer complex that can again associate with the receptor. 
Created using information from (Oldham and Hamm, 2008). 

 

The signalling pathways induced and the resulting changes in the cell which are brought 

about by chemokine receptor signalling can differ depending on the chemokine receptor, 

the ligand, the cell and the context of the interaction (Thelen, 2001). Ligand binding can 

induce activation of a multitude of downstream effector proteins including members of the 

Janus kinase/signal transducer and activator of transcription (JAK/STAT) family (Soriano 

et al., 2003, Wong and Fish, 2003). There are also four main classes of G protein 

heterotrimer based on the primary sequence similarity of the Gα subunit, these are denoted 

Gs, Gi/o, Gq/11 and G12/13 (Cotton and Claing, 2009). Cell migration is usually facilitated 

through Gi/o activation and interestingly the various α subunits of this G protein subtype are 
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all inactivated by pertussis toxin (Ptx), which irreversibly blocks the α subunit from 

coupling to the receptor (Katada, 2012). 

 

1.2.4.2 Receptor internalisation and desensitisation 

Chemokine receptors undergo a basal level of internalisation and either recycling or 

lysosome-mediated degradation, however ligand-induced activation can greatly enhance 

the internalisation and trafficking of chemokine receptors. Internalisation after ligand-

induced activation is thought of as a feedback mechanism to protect cells from 

overstimulation and is referred to as receptor desensitisation (Rose et al., 2004, Bennett et 

al., 2011). 

 

The fate of the receptor after internalisation may affect the strength, type and duration of 

signal that is generated. Internalisation of GPCRs is mediated by either clathrin-mediated 

endocytosis or caveolae-dependent pathways. Clathrin-mediated endocytosis involves the 

recruitment of adaptin 2 (AP-2) and β-arrestin; adaptor molecules that function to link the 

receptor to a lattice of clathrin that facilitates internalisation. Ligand-induced 

phosphorylation of serine and threonine residues in the intracellular loops and on the C-

terminus of the chemokine receptor is thought to facilitate this process, with β-arrestin 

having a stronger association to phosphorylated receptors. The recruitment of clathrin and 

the formation of clathrin-coated pits ensues from the association of the receptor with AP-2 

and β-arrestin, leading to the ‘pinching off’ of the receptor associated membrane. 

Dynamin, a large GTPase, is a key regulator of the ‘pinching off’ process which leads to 

the formation of clathrin-coated vesicles within the cell. The clathrin-coated vesicle then 

fuses with endosomal vesicles leading to either receptor recycling to the cell surface 

following dephosphorylation, or targeting of the receptor to the lysosomal compartment, 

where it will undergo degradation (Neel et al., 2005, Claing et al., 2002). Clathrin-

independent internalisation is most often mediated by caveolae. Caveolae are cholesterol-

rich, highly organised membrane invaginations that contain a specific set of proteins called 

caveolins which self-assemble as high mass oligomers to form a cytoplasmic coat on the 

membrane invaginations. Once the membrane invagination is ‘pinched off’, similarly 

involving the action of dynamin, the intracellular caveosome compartment fuses with 

endosomal vesicles and the receptor can either be recycled or targeted for degradation as 

described previously (Borroni et al., 2010, Neel et al., 2005). 
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Particular chemokine receptors have been shown to use both clathrin- and caveolae-

mediated internalisation pathways, while others may preferentially use only one (Signoret 

et al., 2005, Borroni et al., 2010, Comerford et al., 2006). The cell type in which the 

chemokine receptor is expressed is often critical as to which method of internalisation is 

favoured; therefore care must be taken when analysing such mechanisms, and indeed, 

chemokine receptor signalling in general, with use of transfectant cells, as these cells may 

not be representative of the regulation of such chemokine receptors in vivo, as different cell 

types express varying levels of intracellular modulators of receptor function. (Borroni et 

al., 2010, Neel et al., 2005). 

 

1.3 Chemokines and chemokine receptors in 
disease 

Leukocytes are typically and fundamentally involved in disease biology. Since the primary 

function of chemokines, and their receptors, is to direct the recruitment and infiltration of 

leukocytes, it is not unexpected that chemokines are implicated in many diseases and 

pathologies, including chronic inflammatory and autoimmune diseases, pathogenic 

infections and cancers (Gerard and Rollins, 2001), some of which will be discussed further. 

 

1.3.1  Human immunodeficiency virus (HIV) 

The intense escalation of research in the chemokine field over the past 15-20 years is 

largely attributable to the discovery that certain chemokines can specifically block human 

immunodeficiency virus type 1 (HIV-1) infection. This is because particular chemokine 

receptors, together with CD4, are required by HIV-1, HIV-2 and simian immunodeficiency 

virus (SIV) for cellular entry (Berger et al., 1999). HIV was identified in 1983, as a 

retroviral pathogen, with infection eventually leading to acquired immunodeficiency 

syndrome (AIDS) (Barresinoussi et al., 1983, Costin, 2007). The virus infects CD4 

expressing cells, initially CD4+ macrophages, and advanced HIV-mediated disease is 

characterised clinically by a fall in the number of circulating CD4+ T cells (Gallo and 

Montagnier, 2003).  

 

The model of HIV-1 binding and entry into a host cell is a two-step process involving a 

120kDa glycoprotein (gp120) subunit expressed on the viral envelope. Firstly gp120 binds 
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to CD4 expressed on the host cell. This results in rearrangement of the viral envelope and 

the exposure of a conserved chemokine receptor binding site. Secondly the engagement of 

the chemokine receptor by gp120 generates further changes in conformation, ultimately 

allowing viral entry into the cell (Dimitrov, 1997, Wilen et al., 2012). For the vast majority 

of HIV-1 and HIV-2 strains, entry is facilitated by either CCR5 (R5 strains) or CXCR4 

(X4 strains), or by both (R5X4 strains); however a number of other chemokine receptors, 

including CCR2b, CCR3, CCR8, CX3CR1 and D6, have been shown to assist the entry of 

particular strains of HIV-1 in vitro (Neil et al., 2005, Gorry et al., 2007). 

 

The idea of targeting CCR5 as a treatment for HIV-1 was particularly attractive because of 

the observation that CCR5 ligands such as CCL3, CCL4 and CCL5 can all competitively 

block the binding and subsequent entry of most R5 strains into cells (Cocchi et al., 1995). 

Similarly, high serum levels of CCR5 ligands are associated with slower disease 

progression (Ullum et al., 1998). Also, individuals homozygous for a genetic 

polymorphism in the CCR5 gene, resulting in complete ablation of CCR5 expression, are 

highly resistant to HIV-1 infection (Liu et al., 1996). This mutation is a 32-base-pair 

deletion; referred to as CCR5 Δ32, and 1% of the Caucasian population are homozygous 

for this mutation. Individuals heterozygous for the CCR5 Δ32 mutation can still be 

infected with HIV-1, however their rate of progression to AIDS is predictably slower than 

WT individuals (De Roda Husman et al., 1997). This crucial discovery further encouraged 

efforts to therapeutically block CCR5-mediated entry of HIV-1 and in 2005 a small 

molecular antagonist, termed Maraviroc, was approved by the FDA as an antagonistic 

blocker of CCR5. Maraviroc is capable of preventing the interaction between gp120 and 

CCR5, and therefore the membrane fusion events necessary for viral entry (Dorr et al., 

2005, Fatkenheuer et al., 2005). See section 1.3.5 for more detail.  

 

Other genetic variations are also associated with disease caused by HIV-1, including 

variation in copy number of CCL3L1, resulting from duplicated non-allelic variations of 

the gene which encodes CCL3. Individuals with low CCL3L1 copy numbers seem to be 

more susceptible to HIV-1 infection, and this has been attributed to the fact that CCL3L1 is 

a potent ligand for CCR5 (Gonzalez et al., 2005). 

 

HIV-1 tropism refers to the ability of different strains of virus to infect different cell types 

and HIV-1 isolates were originally classified in this way as being either M-tropic, T-tropic 

or dual tropic. Simplistically, M-tropic strains are able to infect macrophages and CD4+ 

lymphocytes and primarily use CCR5 as a means of entry, whereas T-tropic strains infect 
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CD4+ T cells but not macrophages and preferentially use CXCR4.  Dual tropic strains are 

capable of infecting both cellular targets and can use either co-receptor for cell entry 

(Moore et al., 2004, Unutmaz and Littman, 1997, Gray et al., 2005). At present HIV-1 

strains are classified according to the co-receptor they exploit rather than the cell type they 

infect, for example the R5 strains preferentially target CCR5, whereas the X4 strains 

principally utilize CXCR4, and the R5/X4 strains can employ both (Berkowitz et al., 1998, 

Berger et al., 1998, Soulie et al., 2012). During the early stages of infection, R5 viral 

strains predominate, whereas X4 strains are not frequently transmitted and often fail to 

replicate (Gray et al., 2005, Regoes and Bonhoeffer, 2005). The underlying mechanisms 

for this are yet to be clarified, but most likely involve a combination of both host and viral 

factors that give an advantage to R5 strains during the initial stages of infection. 

Interestingly, HIV-1 strains have been shown to phenotypically switch from R5 to X4 

during the course of infection, and this is very important in the progression from HIV to 

AIDS (Hartley et al., 2005, Regoes and Bonhoeffer, 2005, Shankarappa et al., 1999). X4 

strains start to appear after about 5 years in 40-50% of infected individuals and this is 

associated with rapid CD4+ lymphocyte decline. This effect is thought to be attributed to 

the high levels of expression of CXCR4 on lymphocyte precursors in the thymus and on 

circulating CD4+ lymphocytes, increasing the infection potential of the X4 strain (Connor 

et al., 1997, Glushakova et al., 1998).  

 

The chemokine receptor binding domains utilized by gp120 are similar but not identical to 

those employed by chemokines and involve conserved sites on the chemokine receptor N-

terminus and extracellular loops 2 and 3 (ECL2 and ECL3 respectively) (Atchison et al., 

1996, Alkhatib et al., 1997). Certain extracellular mutations on CCR5 have been shown to 

ablate chemokine binding but only partially reduce HIV-1 entry (Blanpain et al., 1999b). 

Similarly, studies involving monoclonal antibodies directed at either the N-terminus or 

ECL2 of CCR5 demonstrated that gp120 and chemokines have different binding site 

preferences (Lee et al., 1999). As touched upon previously, tyrosine sulphation of the N-

terminus of CCR5, and, to a lesser extent, CXCR4, is important for the binding of many 

HIV-1 isolates (Farzan et al., 1999). Intriguingly, the removal of a single N-linked 

glycosylation site located on the CXCR4 N-terminus allowed it to bind both R5 and X4 

strains (Chabot et al., 2000). These observations demonstrate the importance of post-

translational modifications to chemokine receptor biology and in this case, viral 

pathogenicity.  
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1.3.2  Cancer 

Cancer is a disease brought about when the normal growth control mechanisms of cells are 

lost, leading to the formation of a tumour which has escaped detection by the many anti-

cancer mechanisms managed by the immune system. The migration of tumour cells to 

secondary sites, in organs distant from the primary tumour, is termed metastasis and it is 

this ability of tumour cells to establish themselves, survive and proliferate in new 

environments, that correlates with poor clinical outcome and often ultimately leads to 

death of the individual (Hanahan and Weinberg, 2000). 

  

The chemokine network is intricately involved in the many stages of cancer formation, 

from tumour cell growth and leukocyte infiltration into tumours, to angiogenesis and 

metastatic behaviour (Balkwill, 2012). Tumours are composed not just of cancerous cells, 

but also a wealth of different stromal cells such as endothelial cells and fibroblasts, and 

leukocytes such as macrophages and lymphocytes (Talmadge, 2011). The chemokine 

expression profile of both tumour cells and stromal cells within the tumour environment, is 

responsible for the type of leukocytes that infiltrate the tumour, with different tumours 

often producing different chemokines and therefore attracting different cell infiltrates 

(Balkwill and Mantovani, 2001). For example an assortment of both CC and CXC 

chemokines, especially CCL2 and CCL5, were associated with epithelial ovarian cancer 

tumours and were thought to be responsible for the infiltration of different inflammatory 

cells, including T lymphocytes and macrophages (Negus et al., 1997). These cells can be 

stimulated to generate inflammatory cytokines and additional chemokines, contributing to 

processes such as angiogenesis and protease production, and ultimately ensuring growth 

and success of the tumour (Scotton et al., 2001a).  

 

Chemokine production can be induced by the expression of oncogenes themselves. Ras 

proteins are GTPases which are often mutated in human cancer, resulting in their 

constitutive activation (Takashima and Faller, 2013). Downstream signalling pathways 

induced by oncogenic Ras promote the production of chemokines such as CXCL8 and 

CXCL1. Expression of such chemokines in the tumour environment has been shown to 

promote neutrophil recruitment and angiogenesis (Sparmann and Bar-Sagi, 2004). 

 

Unlike the cells within benign tumours, which are encapsulated, malignant cells are able to 

invade the tissues surrounding the primary tumour, which can ultimately lead to metastasis 
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to secondary sites; a process crucial in disease progression (Joyce and Pollard, 2009). The 

chemokine receptor expression profiles of various malignant cancer types have highlighted 

CXCR4 and CCR7 as contributing to the process of metastasis (Scotton et al., 2001b, 

Mashino et al., 2002, Muller et al., 2001). For example in breast cancer, hypoxia-induced 

CXCR4 expression allows malignant cells to metastasize towards sites of CXCL12 

production, typically the lymph nodes, lungs, liver and bone marrow (Muller et al., 2001). 

Similarly transfection of CXCR4 into a melanoma cell line was shown to increase its 

migration and establishment in the lungs (Murakami et al., 2002). Most if not all 

haematological malignancies begin in the stem cell compartment, and since the 

CXCL12/CXCR4 axis is a crucial regulator of many types of stem cells, it is not surprising 

that organs which constitutively express CXCL12 are common sites of metastasis (Kucia et 

al., 2005, Ratajczak et al., 2006).  

 

Likewise CCR7 expression on the malignant cells of various types of cancer, including 

squamous cell, colorectal and gastric carcinomas, are associated with metastasis to the 

lymph nodes; a site of constitutive CCL19 and CCL21 production (Ding et al., 2003, 

Gunther et al., 2005, Mashino et al., 2002). The exact up-regulation mechanisms of certain 

chemokine receptors by tumour cells have yet to be clarified, however it is thought that 

common features associated with most tumours such as a highly hypoxic environment and 

the constitutive expression of transcription factors such as nuclear factor kappa B (NFκB), 

may act as triggers or regulators of chemokine receptor expression (Schioppa et al., 2003, 

Helbig et al., 2003).  

 

1.3.3  Psoriasis 

Psoriasis is a chronic inflammatory skin disease and can exist in many forms with plaque 

psoriasis, known medically as psoriasis vulgaris, being the most common form and 

affecting 80% of psoriasis patients. Psoriasis vulgaris is the most prevalent T-lymphocyte 

mediated disease in humans and is characterised by red and scaly plaques which are 

sharply demarcated on areas such as the elbows, knees and scalp (Perera et al., 2012).  

 

Psoriasis is a multifactorial disease involving a number of different cells and immune 

regulators. The activation of T lymphocytes by Langerhan’s cells, which are APCs resident 

in the skin, results in the release of inflammatory cytokines, such as tumour necrosis factor 
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alpha (TNF-α) and interferon gamma (IFNγ); ultimately leading to the disregulation of 

keratinocyte proliferation (Krueger, 2002).  

 

Since the chemokine system is intricately involved in the migration of immune cells 

including T-cells, during both homeostasis and inflammation, many chemokines and their 

receptors have been implicated as important contributers to the inflammatory processes 

which persist in psoriasis and indeed in many other chronic inflammatory diseases 

(Nickoloff et al., 2007).  

 

A number of different chemokines and chemokine receptors have been linked to the 

recruitment of T-cells to the skin; a process which is crucial to the pathophysiology of 

psoriasis. For example CCL20 and CCR6 are both markedly upregulated in psoriasis, with 

keratinocytes expressing high levels of CCL20 to attract CCR6 expressing Th17 cells 

(Homey et al., 2000). Likewise, skin infiltrating T-lymphocytes which express CCR10 are 

characteristic of psoriasis and other dermatological disorders, and one of its ligands, 

CCL27 is commonly expressed by keratinocytes, indicating that the CCR10/CCL27 

network is significant in skin inflammation mediated by T-cells (Homey et al., 2002).  

 

CCL2 and its receptor, CCR2 are also substantially involved in the pathogenesis of 

psoriasis. Studies show that CCL2 is expressed by basal keratinocytes upon stimulation 

with TNF-α and IFN-γ in psoriatic lesions (Vestergaard et al., 2004). This results in the 

infiltration of macrophages into the dermal-epidermal junction of the skin, which is a 

hallmark of psoriatic disease (Gillitzer et al., 1993). Over-expression of CCL2 on 

keratinocytes in a murine model has also been implicated in the recruitment of dendritic 

and Langerhan’s cells to the skin; an event thought to be critical in the establishment of 

psoriasis in humans (Nakamura et al., 1995). In addition, CCR2 is up-regulated on the 

peripheral blood monocytes of psoriatic patients, and CCR2 positive cells are also found 

within psoriatic plaques (Vestergaard et al., 2004). Interestingly D6; an atypical chemokine 

receptor that scavenges CC-chemokines including CCL2 (section 1.5) is up-regulated in 

the un-involved skin of psoriatic patients. The up-regulation of D6 in such areas is thought 

to act as a protective mechanism to scavenge inflammatory chemokines and prevent the 

infiltration of leukocytes (Singh et al., 2012). 
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1.3.4   Rheumatoid arthritis 

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by synovial 

inflammation, increased cell proliferation and neovascularisation. These processes involve 

a complexity of immune regulators and lead to damage of bone and cartilage, ultimately 

resulting in the destruction of the joints (Firestein, 2003). Synovial fluid from joints 

affected by RA contains a mixed inflammatory cell infiltrate, involving the action of many 

chemokines and chemokine receptors (Szekanecz et al., 2010), some examples of which 

will be briefly discussed.  

 

The type II collagen-induced arthritis (CIA) model in the arthritis-susceptible DBA/1j 

mouse strain is the most commonly used immunization-based model of RA and a lot of 

what is currently known about the disease has come from research using these mice 

(Anthony and Haqqi, 1999, Luross and Williams, 2001, Schurgers et al., 2011).  

 

The complexity of RA can be demonstrated by analysis of previous studies on the role of 

CCL2 and its receptor CCR2 in the pathology of this disease. CCR2 positive mononuclear 

cells are found in the inflamed joints and the synovial fluid of RA patients and also in 

rodent models of RA (Bruhl et al., 2001, Haas et al., 2005). Correspondingly, CCL2 is 

present in the synovial fluid and sites of bone remodelling of RA patients as well as in the 

inflamed joints of CIA mice (Volejnikova et al., 1997, Koch et al., 1992, Thornton et al., 

1999). Neutralising CCL2, with use of CCL2 analogues or monoclonal antibodies, has 

been shown to prevent disease initiation and progression in different animal models (Gong 

et al., 1997, Ogata et al., 1997). Taking these findings into account, it is reasonable to 

predict that blocking CCR2 may have a similar effect.  In fact the opposite is true, with 

disease progression and severity highly augmented in CCR2-null mice compared with 

controls (Quinones et al., 2004). On the contrary, blocking CCR2 with antibodies during 

the early stages (0 to 15 days) of CIA significantly reduced the severity of arthritis, 

whereas blocking at later stages (21 to 36 days) distinctly increased the severity of 

symptoms, in concordance with the CCR2-KO mouse studies (Bruhl et al., 2004). This 

discrepancy between the CCR2 KO mouse data and early stage antibody-induced blocking 

of CCR2 is thought to be due to the phenotype of the KO mouse before disease has been 

initiated rather than the effect that blocking CCR2 has on disease pathology. These studies 

highlight the importance of CCR2 in the down-regulation of the inflammatory response in 
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later stages of CIA, and also the potential pitfalls associated with use of knock-out mice 

when studying the initiation and progression of a disease. 

 

More recently CCR1 has come to the forefront as an important mediator of RA. Both 

CCR1 and CCR2 are expressed on monocytes, macrophages and T-cells which infiltrate 

into the synovial fluid of RA patients, however a study using a CCR1 antagonist 

demonstrated that monocyte infiltration was mediated by CCR1 and not CCR2 (Dairaghi et 

al., 2011). Furthermore potent CCR1 ligands activated by proteolytic processing are found 

in the synovial fluid of RA patients (Berahovich et al., 2005), and monocytes isolated from 

RA patients showed preferential activation of CCR1, compared with CCR2 and CCR5 in 

order to migrate towards the synovial compartment (Lebre et al., 2011). CCR1 therefore 

remains a primary target in the therapeutic treatment of RA (Szekanecz et al., 2011). 

 

Activated T cells with the ability to infiltrate into inflammatory sites express high levels of 

CXCR3 and CCR5. These cells are found in the synovial fluid of RA patients and are 

associated with high levels of IFN-γ, implying a Th1 phenotype and implicating CXCR3 

and CCR5 expression in RA pathogenesis (Qin et al., 1998). Blocking CCR5 and CXCR3 

using a non-peptide agonist resulted in a reduction in clinical symptoms of CIA (Yang et 

al., 2002, Gao et al., 2003). Controversy exists regarding individuals with the Δ32-CCR5 

homozygous genotype and whether or not a lack of CCR5 expression confers protection 

against the development of RA. Indeed some studies fully support this notion (Gomez-

Reino et al., 1999, Prahalad, 2006, Lee et al., 2013b) and others find no correlation 

(Lindner et al., 2007, Garred et al., 1998, John et al., 2003). Preventing the action of CCR5 

in vivo has also had conflicting results, with studies using CCR5 peptide blockers on mice 

and rhesus monkeys showing a decrease in CIA-induced pathology (PlaterZyberk et al., 

1997, Vierboom et al., 2005), whereas CCR5-KO CIA-induced mice showed similar 

symptoms to WT mice (Bao et al., 2005).  

 

More recently Th17 cells expressing CCR6 have been shown to be preferentially recruited 

to inflamed joints in both RA patients and in a T-cell mediated murine model of RA. The 

production of CCL20 by synoviocytes in inflamed joints recruit such T-cells and this can 

be blocked by a monoclonal antibody against CCR6, resulting in a substantial decrease in 

arthritis progression in mice and implicating CCR6 expression in disease pathology (Hirota 

et al., 2007). Moreover a polymorphism in the CCR6 gene has been associated with 

rheumatoid arthritis susceptibility (Kochi et al., 2010). Individuals with this polymorphism 

have enhanced expression of CCR6, and an increased susceptibility to rheumatoid arthritis. 
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1.3.5  Pharmaceutical targeting of the chemokine 
system 

Chemokines and their receptors are integrally involved in driving inflammation, therefore 

it is extremely attractive to target the chemokine system when designing therapeutics for 

treatment of inflammatory or auto-immune diseases. GPCRs are known to be very 

‘druggable’ molecules, with ~30% of all FDA-approved small molecule drugs thought to 

target GPCRs (Hopkins and Groom, 2002). However, despite many promising in vitro 

studies and clinical trials using different strategies to target the chemokine system, only 

two drugs which block the action of chemokine receptors have been approved by the FDA 

to date. One of these is Maraviroc; a CCR5 inhibitor which prevents HIV infection (see 

section 1.3.1 for details on HIV) (Dorr et al., 2005, Fatkenheuer et al., 2005), and the other 

is AMD3100 (also known as Mobozil and Plerixafor); a CXCR4 inhibitor which was 

originally developed for use as another anti-HIV drug (Hendrix et al., 2004). Problems 

with dosage and effectiveness ceased its development as an anti-retroviral drug, however 

its ability to rapidly mobilize haematopoetic stem cells made it attractive for use on 

patients requiring transplants, e.g. during cancer therapy (Broxmeyer et al., 2005).  

 

Although the approval and effective use of such antagonistic drugs generates hope for 

future success in this field, other clinical trials using this approach for the treatment of 

autoimmune diseases such as rheumatoid arthritis and multiple sclerosis have been 

disappointing (Horuk, 2009). This has been attributed to the multifaceted complexity of 

such immune diseases, in which an assortment of immunological factors, including 

chemokines and their receptors, are implicated in the development and progression of the 

disease. Chemokine receptor promiscuity may also contribute to the difficulty in 

developing therapies as more than one chemokine receptor is likely to be implicated in the 

disease pathophysiology; therefore it is more difficult to inhibit the activation of all such 

receptors (Mantovani, 1999, Ribeiro and Horuk, 2007).  

 

More recently it has been proposed that the concept of redundancy is inappropriate, and 

that it may be more accurate to describe the chemokine system as being under both 

temporal and spacial control in vivo. Indeed, it has been demonstrated that binding of 

different chemokines to a given receptor can elicit distinct signalling responses, and also 

that heterodimerization of chemokine receptors can have considerable implications for 

signal generation after ligand binding. In this way, structural features of chemokines and 



Chapter 1 - Introduction  58 

their receptors, the cell type they are expressed by, and timing of expression, all help to 

determine different biological outcomes in separate tissues. (O'Hayre et al., 2010, Schall 

and Proudfoot, 2011, Proudfoot, 2002).  

 

Shortcomings of previous clinical trials with small molecular antagonists against 

chemokine receptors have highlighted incorrect dosage as a contributing factor to the 

failure of such compounds to reduce inflammation. It is widely known that small molecular 

compounds have a tendency to bind to serum proteins and lipids in the blood, which can 

dramatically decrease drug availability. In cases such as this; where dosage of an inhibitor 

is not sufficient to impede the activity of all the receptors it is targeting, a very small 

amount of residual chemokine activity can still be enough to set up a positive feedback 

loop that drives inflammation. Therefore future clinical trials that target the correct 

receptor at the right time with the optimal dose may be more successful (Schall and 

Proudfoot, 2011). 

 

1.5 Atypical chemokine receptors 

In addition to the ‘classic’ chemokine receptors described throughout this chapter, there 

exists a small family of ‘atypical’ chemokine receptors (ACKRs) that are also able to bind 

chemokine ligands with high affinity. However, ACKRs do not generate a conventional, 

G-protein coupled signal after ligand binding, nor mediate a typical cellular response, such 

as cell migration; which is a hallmark of the other chemokine receptors (Ulvmar et al., 

2011, Nibbs and Graham, 2013). However recent studies have suggested that ACKRs may 

be able to use alternative signalling pathways, for example through β-arrestins, in order to 

exert their functional effects (Rajagopal et al., 2010, Borroni et al., 2013). Therefore 

signalling induced by these ‘silent’ atypical receptors, might in fact have important 

consequences for their function.  

 

ACKRs have a similar structure to other chemokine GPCRs, with an extracellular N-

terminus, seven helical domains spanning the cell membrane, and an intracellular C-

terminus. The inability to signal through classical means is thought to be brought about by 

alterations in the DRYLAIV amino acid motif which is found in the second intracellular 

loop of signalling chemokine receptors (Graham et al., 2012). Since this motif is required 

for G protein-coupling, ACKRs are incapable of initiating the key event required for the 

cascade of downstream signalling processes that occur in GPCRs and ultimately lead to 



Chapter 1 - Introduction  59 

processes such as cell migration. However, other than this change in the DRYLAIV motif, 

ACKRs are only loosely related to each other and do not share many other structural or 

functional similarities. At present there are four ‘atypical’ chemokine receptors that fit this 

description; DARC (Duffy antigen receptor for chemokines), CCR11, CXCR7 and D6. 

Because signalling is a requirement for a molecule to be classed as a receptor, these 

proteins (with the exception of CXCR7 for historical reasons) have not been appointed 

names under the systematic nomenclature assigned to the ‘classic’ chemokine receptors. 

Instead the name ‘Atypical chemokine receptor’ has recently been formalized in the new 

Nomenclature Committee of the International Union of Pharmacology and therefore 

DARC is now known as ACKR1, D6 as ACKR2, CXCR7 as ACKR3 and CCR11 as 

ACKR4 (Bachelerie et al., 2014). Despite this, for reasons of consistency, the former 

names will be used in this thesis.  

 

Regardless of the ACKRs inability to signal conventionally after ligation, it has been 

shown that ACKRs can influence immune and inflammatory responses in other ways. This 

includes acting as decoy and scavenger receptors (Mantovani et al., 2006).  

 

1.5.1  DARC 

DARC was originally identified as a molecule located on the surface of red blood cells 

(RBCs) through which the malaria parasites Plasmodium vivax and Plasmodium knowlesi 

can enter (Horuk et al., 1993, Miller et al., 1975). DARC was later found to be able to bind 

both CC and CXC inflammatory chemokines (Gardner et al., 2004) see Table 1-3, and has 

unique features that set it apart from both the ‘classical’ and ‘atypical’ receptors. For 

example, the gene encoding this protein is situated in a separate chromosomal location 

different from the other receptors, and its sequence bears little resemblance to the other 

receptors (Rot, 2005).  

  

DARC is expressed on RBCs and endothelial cells, as well as in tissues such as the brain, 

lungs and kidney (Graham, 2009, Mantovani et al., 2006). Since RBCs are considered 

incapable of endocytosis, chemokines associated with DARC on RBCs stay on the cell 

surface, and have the potential to be displaced by other chemokines, or different molecules 

such as heparin and activated coagulation factors (Schnabel et al., 2010).  In contrast, 

DARC expressed on nucleated cells can internalise bound chemokines; a characteristic 

associated with the other ACKRs (Nibbs et al., 2003).   
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The idea that DARC expressed on RBCs acts as a negative regulator or ‘chemokine sink’ 

to mop up excess inflammatory chemokines in the blood has long been postulated.  

Accordingly, DARC null mice exhibited exaggerated inflammatory responses upon 

exposure to the bacterial toxin lipopolysaccharide (LPS) (Dawson et al., 2000). DARC is 

also thought to play a role in the inhibition of tumourogenesis in prostate and breast cancer 

(Wang et al., 2006, Shen et al., 2006) and this may relate to the ability of DARC to bind 

pro-angiogenic CXC chemokines.  

 

Conversely, DARC may also be important in maintaining chemokine levels in the blood. 

Chemokine concentrations are rapidly depleted when injected into DARC-null mice, 

however concentrations of chemokine can be preserved at a measurable quantity in 

wildtype. Despite this, the purpose of sustaining inflammatory chemokines in the blood is 

still unclear (Jilma-Stohlawetz et al., 2001, Fukuma et al., 2003). 

 

Remarkably, the expression of DARC on RBCs has been selected against in over 95% of 

West Africans in areas where malaria is prevalent, although these individuals still express 

DARC in non-erythroid sites (Zimmerman et al., 2013). This lack of DARC expression 

was thought to provide resistance to Plasmodium vivax, although recent studies have 

shown that the relationship between P. vivax and DARC is more complex and DARC-null 

populations have been identified that can be infected by the parasite (Menard et al., 2010). 

Various suggestions have been put forward as to why such a huge selection pressure exits 

despite the ability of P.vivax to infect DARC-null individuals. It may be the case that P. 

vivax has recently evolved alternative RBC invasion pathways that do not rely on DARC.  

Equally, an inability of DARC-null individuals to infect the anopheles vector with P.vivax 

parasites may also be an important component, and would help to explain the resistance to 

P.vivax-induced malaria of this population as a whole. Surprisingly, unlike previous 

studies investigating CCR5-null individuals, investigation into the consequences of having 

DARC-null RBCs with regards to the immune response and inflammation have not 

provided any convincing results relating to the function of DARC.  

 

Recent studies investigating the function of DARC expressed on endothelial cells 

highlighted its importance for supporting chemokine activity. Both in vitro and in vivo 

experiments confirmed DARC-mediated binding and unidirectional transport of 

chemokines from the baso-lateral to the apical side of venular endothelial cells, 

establishing DARC as a transcytosis receptor, functioning to support optimal chemokine-
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induced leukocyte migration (Pruenster et al., 2009). This is in contrast to the earlier 

assumptions that DARC acts as a decoy receptor. 

1.5.2  CCR11 

The atypical chemokine receptor CCR11 (also known as CCRL1 and CCX-CKR) is 

thought to be widely expressed in several tissues including the skin, intestine, heart, lung 

and lymph nodes and is able to bind three homeostatic chemokines; CCL19, CCL21 and 

CCL25, see Table 1-3 (Ulvmar et al., 2011). Again, signal transduction through typical G-

protein mechanisms does not seem to occur after ligand binding, however a recent study 

suggests that CCR11 can couple to a certain class of G-protein (Gs), and this interaction 

induces an increase in cAMP levels in response to chemokine stimulation (Watts et al., 

2013). However, this interaction may not be physiologically relevant because such a 

response was only observed upon treatment with pertussis toxin, which inhibits the higher 

affinity Gi protein-CCR11 interaction and therefore allows coupling to Gs.  

 

Studies in vitro have revealed CCR11 to act as a ‘decoy’ or ‘scavenger’ receptor, with an 

ability to internalise bound chemokines and target them for lysosomal degradation, 

however whether CCR11-internalisation requires the recruitment of β-arrestin remains 

contentious (Comerford et al., 2006, Watts et al., 2013). A recent in vivo study has 

corroborated CCR11’s scavenging function by demonstrating that CCR11-deficient mice 

have increased levels of CCL21 in the blood, and increased levels of CCL21 and CCL19 in 

lymph nodes. CCR11 knock-outs also exhibited enhanced pathology in the murine 

experimental autoimmune encephalitis (EAE) model, which is a model of CNS 

autoimmunity. Surprisingly this increase in disease symptoms was not due to more 

efficient priming in the draining lymph node, but seemed to be linked to enhanced Th17 

responses. CCR11-deficient mice with EAE also had increased levels of CCL21 in the 

CNS, suggesting a possible role for CCR11 in the brain (Comerford et al., 2010).  

 

CCR11-deficient mice have also been reported to exhibit a higher incidence of 

spontaneous autoimmunity; similar to Sjogren’s syndrome in humans. These abnormalities 

in self-tolerance have been attributed to defects in thymic development (Bunting et al., 

2013). 

 

CCR11 expression has been suggested to affect a variety of diseases, one of which is breast 

cancer, whereby a significant correlation between over-expression of CCR11 and more 
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favourable clinical outcome was reported, suggesting that increased CCR11 expression 

inhibits cancer cell progression (Feng et al., 2009). Conversely up-regulation of CCR11 

was measured in transcripts from the epithelial cells of patients with pulmonary 

sarcoidosis, however the way in which CCR11 modulates the inflammatory response in 

this disease is not yet known (Kriegova et al., 2006) 

 

These studies clearly indicate that CCR11 influences adaptive immune responses, but the 

way in which it does this must be further investigated to gain a more thorough 

understanding of CCR11 function.  

 

1.5.3  CXCR7 

CXCR7, like the other ACKRs mentioned, does not mount classical G protein-mediated 

signalling responses upon activation by its ligands CXCL11 and CXCL12, see Table 1-3. 

In contrast, recent studies have demonstrated that when cells are transiently transfected 

with CXCR7, the addition of ligand activates MAP kinases through β-arrestins, suggesting 

that CXCR7 is an example of an endogenous seven transmembrane receptor that signals 

through β-arrestins instead of G-proteins (Rajagopal et al., 2010).  

 

Unlike most ‘classical’ chemokine receptors, CXCR7 activation does not promote cell 

migration, but is thought to play roles involved in cell survival and tumour progression 

(Burns et al., 2006). CXCR7 also differs from the other ‘atypical’ receptors in that it is 

primarily expressed during multiple steps of development, and has a clear lack of 

expression in adult tissues (Naumann et al., 2010). In addition to CXCR4, CXCR7 binds 

the primordial chemokine CXCL12, and studies in mice and zebra fish have confirmed a 

particular importance for CXCR7 in cardiac and vascular development, with CXCR7-null 

mice dying shortly after birth due to defective ventricle and valve formation in the heart 

(Sierro et al., 2007, Gerrits et al., 2008). Furthermore, CXCR7 is involved in the regulation 

of primordial germ cell migration through its ability to internalize CXCL12 and therefore 

control CXCL12 concentrations during development, enhancing the sensitive organisation 

of this process (Valentin et al., 2007). 

 

Interestingly, although adult tissues generally do not express CXCR7, it is widely 

expressed in a multiplicity of tumour cells, including tumours of the breast and lung, and 

seems to provide cells with a growth and survival advantage and increased adhesion 
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properties (Miao et al., 2007). Studies on active CXCR7 in breast cancer cells have 

highlighted its ability to act as a scavenger receptor, mediating the internalisation and 

lysosomal degradation of CXCL12. It seems CXCR7 is constitutively internalised and 

recycled to the cell surface in these cells, even in the absence of ligand (Luker et al., 2010). 

It is not clear how CXCR7-mediated scavenging of CXCL12 would promote tumour 

growth or metastasis, or if CXCR7 has other distinct roles within the tumour environment. 

Despite the poorly defined mechanisms, an important role for CXCR7 expression in cancer 

survival and proliferation is clear, and thus opens up the possibility of developing 

antagonistic therapeutics against CXCR7 in order to limit the survival of tumour cells 

(Burns et al., 2006).   

 

1.6 The atypical chemokine receptor: D6 

1.6.1  D6 identification and characterisation 

D6 (gene name Ccbp2), is one of the most widely studied ‘atypical’ chemokine receptors 

and was identified in 1997 by two separate groups using various cloning strategies (Nibbs 

et al., 1997, Bonini et al., 1997). The gene encoding D6 is positioned within a major 

chemokine receptor-coding chromosomal locus in both the mouse (chromosome 9) and 

human (chromosome 3), and its closest homologues are other chemokine receptors, 

suggesting that it has evolved from within this family of proteins (Nomiyama et al., 2013).  

 

1.6.2  D6 structure and biochemistry 

D6 is a 7-transmembrane spanning receptor which has a fairly similar structural homology 

to classical G-protein-coupled chemokine receptors, see Figure 1-7. The canonical 

DRYLAIV motif associated with G protein coupling exists as DKYLEIV in D6, and this is 

the case with all mammalian forms of D6, indicating that the altered DRYLAIV motif is 

not simply a loss of function mutation, but a conserved feature of the D6 protein with 

functional importance (Graham, 2009). Studies investigating the structure of the D6 

protein using heterologous transfectants have identified a protein of ~49kD which has 

various post-translational modifications, including a phosphorylated C-terminal (see 

section 1.6.3) and N-linked glycosylation on the N-terminal. Glycosylation of the N-

terminal was postulated to enhance ligand binding, however a non-glycosylated mutant of 

D6 still binds its ligands with high affinity, therefore the functional significance of D6 N-
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terminal glycosylation still remains to be determined (Blackburn et al., 2004). Imaging of 

D6-expressing heterologous transfectant cells demonstrated an unusual distribution of the 

protein, with > 95% of D6 being present in intracellular vesicles, and only low levels of D6 

being seen on the cell surface (Weber et al., 2004, Blackburn et al., 2004).  

 

Similar to the other atypical receptors described, D6 crucially does not display classical G 

protein-coupled signalling upon ligand binding, but rather internalises the bound 

chemokine and targets it for degradation by lysosomes (Fra et al., 2003). This has led to its 

classification as a scavenger or decoy receptor for chemokines. Its ability to scavenge 

chemokines far exceeds that of CCR11 and is linked to its ability to constitutively travel to 

the cell surface and rapidly internalize back into the cell. This cyclic trafficking is catalytic, 

in that D6 can recycle many times to and from the cell surface without being degraded 

(Weber et al., 2004). This process is also ligand-independent, and unlike many signalling 

chemokine receptors, the receptor is not desensitized in the presence of a high chemokine 

concentration, but rather increases D6 expression on the cell surface (Comerford and 

Nibbs, 2005, Bonecchi et al., 2008). Internalisation of D6 is associated with β-arrestin re-

localisation (McCulloch et al., 2008, Galliera et al., 2004) and is mediated in Rab5-positive 

vesicles through clathrin-coated pits. Following internalisation, D6 is targeted to early 

endosomes before Rab4 and Rab11-dependent recycling pathways are incorporated to 

traffic this internalised D6 back to the plasma membrane (Bonecchi et al., 2008).  

 

The C-terminal tail of D6 is interesting in that it bears little resemblance to other 

chemokine receptors. Controversy exists regarding the biochemical features of this region 

and their consequences for receptor internalisation and recycling. On one hand the serine 

cluster in the C-terminal region of D6 was shown to be constitutively phosphorylated in 

both the presence and absence of ligand. It was initially thought that this phosphorylation 

drives the recycling of D6 to and from the cell surface; however this unexpectedly did not 

seem to be essential for D6 internalization and the scavenging of chemokine ligands. On 

the other hand, when the last 58 amino acids of the C-terminal tail were deleted, D6 could 

be internalized but could not recycle back to the cell surface, indicating that the C-terminus 

is necessary for the recycling function of D6 (McCulloch et al., 2008). Conversely, in a 

separate study, D6 was shown to undergo internalisation in a β-arrestin-dependent and 

receptor-phosphorylation independent manner, with a complete absence of either 

constitutive or ligand-induced phosphorylation (Galliera et al., 2004). A recent study has 

reported the ability of D6 to activate a β-arrestin2-dependent signalling pathway which 

ultimately leads to the phosphorylation of cofilin, and subsequent cytoskeletal 
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reorganisation (Borroni et al., 2013). This signalling pathway has been postulated to 

increase the abundance of D6 on the cell surface upon chemokine stimulation and also aid 

the chemokine scavenging function of D6. 
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Figure 1-8: D6 within the plasma membrane  
2-dimensional diagrammatic representation of D6 showing the predicted arrangement of the 
transmembrane domains, the intra- and extracellular loops, and the N-terminus and C-terminus. 
Amino acids are represented by their coding letters. Possible post-translational modifications are 
shown. Phosphorylation of serine and threonine residues is represented by an orange P, 
sulphation of tyrosine residues is represented by a green S and N-linked glycosylation is 
represented by a sugar molecule on the first asparagine residue (N) on the N-terminus. Possible 
disulphide bonds between cysteine residues are represented by red dashed lines, with the cysteine 
residues thought to be involved are circled in red. The residues making up the DKYLEIV motif on 
the 2nd extracellular loop are circled in yellow. 
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1.6.4  D6 ligands 

D6 is highly promiscuous in that it is able to bind at least 14 different chemokines from the 

CC subfamily; all of which are inflammatory, see Table 1-3. However despite this broad 

specificity, structural observations indicate that in order for D6 to efficiently bind and 

target ligands for degradation, they must have a proline residue in position 2 of their 

protein sequence. This has been illustrated in studies of variants of CCL3 and CCL22, 

where the P2 residue is either changed to another amino acid or is missing (Bonecchi et al., 

2004, Nibbs et al., 1999). More recently, studies on D6 binding capability to CCL14 have 

highlighted three CCL14 isoforms that exert different responses upon binding to D6. Full 

length CCL14 (1-74) is physiologically inactive and can be cleaved under inflammatory 

conditions to the biologically active form CCL14 (9-74), a potent agonist for CCR1, CCR3 

and CCR5. Interestingly, the truncated N-terminus of CCL14 (9-74) is recognised and 

further processed by CD26 to generate CCL14 (11-74), which is biologically inactive. All 

CCL14 variants are capable of binding to D6, however only CCL14 (9-74), which has a 

proline residue in position 2 of its protein sequence, induces increased cell-surface 

expression of D6 and is properly degraded after binding (Savino et al., 2009). Interestingly, 

cleavage of chemokines by CD26 has differential effects on their potency depending on the 

chemokine, and the functional significance of such interactions is very complex (Wolf et 

al., 2008). In the context of D6, such findings demonstrate that chemokine binding alone 

does not always induce adaptive up-regulation, or efficient targeting of ligands for 

lysosomal degradation. Instead the chemokine-scavenging function of D6 is regulated by 

the chemokine sequence itself, and possibly by CD26, which may help to fine-tune a more 

effective inflammatory response or have consequences for the resolution of inflammation.  

 

Atypical Receptor Ligands 
DARC CCL1, 2, 5, 7, 8, 11, 13, 14, 16, 17, 18; CXCL5, 6, 8, 9, 10, 11, 13 
CCR11 CCL19, 21, 25 
CXCR7 CXCL11, 12 
D6 CCL2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 22, 23, 24 
 

Table 1-3: Chemokine ligands for the atypical chemokine receptors 
 

1.6.5  D6 expression 

D6 is expressed predominantly on lymphatic endothelial cells (LECs) in ‘barrier’ sites of 

the body such as the skin, gut and lung, and is also expressed on LECs in lymph nodes. 
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Expression of D6 on LECs can be up-regulated by pro-inflammatory mediators including 

IL-6 and IFN-γ, implicating D6 in both inflammatory and tumour contexts (McKimmie et 

al., 2013, Nibbs et al., 2001). D6 is also highly expressed on syncytiotrophoblasts in the 

placenta (Madigan et al., 2010) and on subsets of leukocytes (McKimmie et al., 2008, 

Hansell et al., 2011). Both in vitro and in vivo studies of D6 have highlighted its 

significance in the removal of chemokines from inflamed sites, which is thought to be 

crucial for the resolution phase of inflammation (Graham, 2009). Several hypotheses 

concerning D6 expression on leukocytes during inflammation have been proposed. 

Because leukocytes can move directly to sites of chemokine expression or deposition, it 

was thought that D6-expressing leukocytes are ideally suited to a role in the targeted 

removal of inflammatory CC-chemokines from inflamed tissue. However, surprisingly it 

has been found that D6 expression is low on ‘classical’ inflammatory leukocytes such as 

macrophages and neutrophils, but high on DCs and B cells (McKimmie et al., 2008, 

Hansell et al., 2011). This suggests additional roles for D6 in the coordination of the 

immune response. The possible roles for D6 expression, particularly on LECs will be 

discussed further in section 1.6.5.6. 

 

1.6.5  Pathophysiological role of D6 

D6 expression has been knocked out in mice to examine D6 function in vivo. D6-null mice 

develop normally and have no obvious physiological abnormalities under resting 

conditions; however the immune system is affected by this knockout with D6-deficient 

mice displaying an exaggerated inflammatory response to various types of inflammatory 

stimuli. These key observations, along with in vitro data generated from transfected cells, 

led to the proposal that D6 acts as a ‘scavenger’ or ‘decoy’ receptor to mop up superfluous 

inflammatory chemokines and target them for degradation, thereby providing protection 

against excessive inflammatory responses and ensuring the normal resolution of 

inflammation (Graham and Locati, 2013). D6 function has also been studied with emphasis 

on different tissues and organs such as the skin, lung, gut and placenta, and in diseases 

such as cancer. Key findings are discussed below. 

 

1.6.5.1 D6 and the skin 

Compared to WT mice, D6-null mice display an exaggerated inflammatory response to 

stimuli such as treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or the 
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injection of immunopotentiators such as Freund’s complete adjuvant (Jamieson et al., 

2005, Martinez de la Torre et al., 2005). In both models, D6-null mice demonstrate an 

impaired ability to remove inflammatory CC chemokines from inflamed skin, resulting in 

increased inflammatory cell infiltrates and a less effective and extended resolution phase. 

Interestingly in the TPA model, whereby phorbol ester was topically applied to the skin, 

D6-null mice developed a psoriasis-like pathology. This was characterised by the 

recruitment of T-cells and the accumulation of dermal mast cells in the inflamed skin, 

leading to hyperproliferation of the epidermis and altered differentiation and angiogenesis 

throughout the dermis (Jamieson et al., 2005).  

 

Notably, in this model, neutrophil accumulation in both WT and D6-deficient skin is 

similar, although more recent studies using the same model demonstrated that neutrophil 

localisation is altered in the D6-deficient mice, with an increase in neutrophil positioning at 

the dermal/epidermal junction. This abnormal neutrophil positioning is thought to result in 

destruction of the dermal/epidermal barrier and epidermal shedding in D6-deficient mice. 

Further characterisation of this phenotype revealed that both WT and D6-deficient 

neutrophils express CCR1 and migrate towards CCL3; however the D6-deficient 

neutrophils displayed a significantly more marked migration. This study suggests a novel 

function for D6 expression on hematopoetic cells to act in a cell-autonoumous manner to 

limit the movement of these cells towards inflammatory ligands. Curiously this effect was 

overcome by exposure to very high levels of chemokine, suggesting that under conditions 

of extreme inflammation, the control of neutrophil migration by D6 can be overcome (Rot 

et al., 2013). 

 

Expression of D6 has also been associated with impaired lesion development in human 

psoriasis. Strikingly D6 expression in uninvolved psoriatic skin is eight times higher than 

that seen in healthy control skin, however this expression level drops at sites within the 

lesion or at the lesion border. D6 expression in uninvolved psoriatic skin is thought to 

maintain ‘normal’ skin histology, despite the presence of low-grade inflammation in such 

areas. Remarkably induction of minor tissue insults, by tape-stripping of uninvolved 

psoriatic skin, reduced D6 expression in such areas compared with untouched uninvolved 

psoriatic skin. This relates to the ‘Koebner phenomenon’ observed with some psoriatic 

patients whereby plaques develop in areas that have suffered mild trauma, and further 

suggest a role for D6 expression in the prevention of plaque formation (Singh et al., 2012). 

Elevated D6 expression in the peripheral blood leukocytes of patients with psoriasis and 

systemic sclerosis; an autoimmune disease characterised by thickening of the skin, has also 
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been reported. In the case of systemic sclerosis, D6 expression by leukocytes correlated 

negatively with levels of circulating inflammatory chemokines, suggesting that D6 on 

leukocytes scavenges inflammatory chemokines present in the blood of patients with this 

disease (Codullo et al., 2011). Recent studies on leukocytes from the blood of RA patients 

also demonstrated elevated D6 expression, suggesting this to be a common theme on 

leukocytes in a wide range of chronic inflammatory diseases (Baldwin et al., 2013). 

  

1.6.5.2 D6 and the placenta 

In the placenta D6 confers protection against inflammation associated miscarriage, with D6 

knockout mice showing an increased vulnerability to miscarriage when inflammatory 

agents such as LPS were administered. This is thought to be associated with higher levels 

of inflammatory CC chemokines (compared to WT mice) and therefore an increased 

infiltration of leukocytes into the placenta (Garlanda et al., 2008). Additionally, studies 

whereby either D6+/+, D6+/- or D6-/- embryos were transferred into fully allogeneic 

recipients demonstrated a higher incidence of resorption of foetuses with the D6-/- 

genotype, indicating a critical role for fetal D6 in limiting resorption (Madigan et al., 

2010). 

 

1.6.5.3 D6 and the lung and heart 

Lung inflammation also seems to be affected in D6 null mice, with exaggerated 

inflammatory responses in models of pulmonary airway disease and Mycobacterium 

tuberculosis infection (Whitehead et al., 2007, Di Liberto et al., 2008). D6-deficient mice 

infected with M. tuberculosis display a striking phenotype, with a rise in the numbers of 

infiltrating macrophages, DCs and both CD4 and CD8 T lymphocytes migrating to 

inflamed lung tissues. This is thought to be associated with increased numbers of 

inflammatory CC chemokines in the bronchiolar lavage and serum. Augmented 

inflammatory cytokine production, presumably as a secondary effect of increased 

inflammatory leukocyte infiltration, resulted in liver and kidney damage, ultimately 

leading to increased fatality. Such results suggest that M. tuberculosis lung infection in D6-

deficient mice creates a cascade of inflammation-associated events which dramatically 

enhances susceptibility to tuberculosis-induced death in these mice (Di Liberto et al., 

2008). 
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More recently increased D6 expression has been identified on alveolar macrophages in 

patients with chronic obstructive pulmonary disorder and is positively correlated with 

markers of immune activation, however its role during this disease needs further 

clarification (Bazzan et al., 2013). 

 

A role for D6 expression in the heart has also been proposed, particularly during 

myocardial infarction (MI). D6 was shown to be expressed in human and murine infarcted 

myocardium and is thought to control levels of inflammatory CC-chemokines after MI. 

D6-deficient mice displayed increased pathogenic inflammation, cardiac rupture and 

adverse left ventricular remodelling after MI (Cochain et al., 2012). 

 

1.6.5.4 D6 and the gut 

In humans, D6 is expressed both in healthy control patient samples from the gut, and those 

from patients with inflammatory bowel disease and colon cancer (Vetrano et al., 2010). 

Similarly in mice, D6 is expressed on B cells and stromal cells of the resting colon and is 

up-regulated during colitis (Bordon et al., 2009). The role of D6 in the gut is still unclear, 

with contradictory studies in the literature. On one hand, an enhanced susceptibility to 

colitis and to colitis-associated cancer has been shown in D6-deficient mice. From such 

results it was postulated that D6 expression in the gut may prevent irritable bowel disease 

(IBD) and IBD-associated cancer in humans (Collins et al., 2010, Vetrano et al., 2010). On 

the other hand, an earlier study reported a reduced susceptibility to colitis in D6-deficient 

mice that were treated using the same colitis-inducing model. This reduced susceptibility 

was associated with increased numbers of IL-17A secreting gamma-delta T cells in the 

lamina propria, resulting in enhanced IL-17A activity. Interestingly, treatment with 

antibodies against IL-17A worsened clinical symptoms of colitis in D6-deficient mice, 

suggesting a role for D6 in contributing to colitis (Bordon et al., 2009). 

 

1.6.5.5 D6 and cancer 

The close association between inflammation and cancer has led to the hypothesis that a 

molecule like D6, capable of scavenging inflammatory chemokines may also play a 

protective role in the inhibition of inflammation-induced cancer. A study investigating this 

demonstrated that D6 knockout mice are more likely to develop cancer after being treated 

with a mutagen and inflammatory agent to induce skin tumours, compared with WT mice. 

Likewise, a mouse strain that does not normally exhibit any susceptibility to such treatment 
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has been shown to develop cancer when D6 is knocked out (Nibbs et al., 2007). These 

findings highlight the significant role of inflammatory chemokines in the development and 

progression of cancer, and the potential importance of D6 acting as a ‘decoy’ receptor in 

order to sequester such chemokines, and as a consequence, prevent tumour formation 

(Nibbs et al., 2007). Similarly, clinical studies support such findings, showing that D6 

expression is positively correlated with disease-survival in a variety of different cancers, 

including breast, gastric and cervical cancers (Wu et al., 2008, Zeng et al., 2011, Hou et al., 

2013, Zhu et al., 2013). 

 

1.6.5.6 D6 function on LEC’s 

Taking into account that D6-expressing trophoblasts in the placenta have been shown to 

protect against excess inflammation during pregnancy (Garlanda et al., 2008); it was 

proposed that LEC-D6 may act in the same way to regulate chemokine concentration in 

surrounding tissues and protect against an extreme inflammatory response. It was also 

suggested that LEC-D6 acted as a ‘gate-keeper’ to prevent inflammatory CC-chemokine 

drainage to lymph nodes (Locati et al., 2005). At first glance both hypotheses seem 

plausible, however closer examination of LEC physiology does not support these ideas: 

Firstly, lymphatic vessels are separated by large distances (100-500µm), therefore 

chemokines residing within tissue spaces are unlikely to come into contact with LEC-D6 

and be degraded, as the lymphatic vasculature is too sparse for such a function. Secondly, 

lymphatic vessels are permeable meaning that a ‘gatekeeper’ role is unlikely as proteins 

and particulate matter, including inflammatory chemokines, are known to be able to flow 

freely into the lymphatic vasculature. Finally, D6 ligands have been detected in draining 

lymph nodes and seem to have a functional significance whereby they can drain from 

inflamed peripheral tissues and appear presented on the luminal surface of high endothelial 

venules in draining lymph nodes (LNs); a phenomenon described as ‘remote control’. Such 

characteristics of the lymphatic system make the role of LEC-D6 difficult to define 

(McKimmie and Graham, 2006). 

 

It is well documented that initiation of adaptive immune responses at inflamed sites 

involves the maturation of antigen presenting cells (APCs) such as dendritic cells (DCs), 

during which time they down-regulate inflammatory chemokine receptors and up-regulate 

the expression of CCR7. This changes their status from an immature dendritic cell (iDC) to 
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a mature dendritic cell and enables them to migrate towards lymphatic vessels, where 

LECs selectively present the CCR7 ligands; CCL19 and CCL21 (Forster et al., 2008).  

This interaction is responsible for moving APCs from the damaged or infected site to the 

draining LNs where a substantial immune response can be generated. Despite this 

established mechanism, it is still unclear how GAGs on LEC surfaces selectively present 

only CCR7 ligands. Evidently, inflammatory chemokines are also produced at very high 

concentrations during inflammatory responses; therefore accumulation of such chemokines 

at this site would also be expected. However, very little inflammatory leukocyte or iDC 

accumulation is apparent on LEC surfaces, thus alluding to a mechanism whereby LEC 

surfaces are ‘swept clean’ of inflammatory chemokines (Graham and McKimmie, 2006). 

 

Observations using D6-deficient mice have shown that in the absence of D6, LEC surfaces 

in inflamed tissues are characterised by the accumulation of large numbers of 

inflammatory leukocytes including iDCs. This leads to congestion of the lymphatic system, 

with implications for fluid drainage and APC migration, resulting in an extended period of 

inflammation (Lee et al., 2011, McKimmie et al., 2013). It appears, therefore, that D6 

expressed on LECs has a distinct role in controlling cellular migration to draining lymph 

nodes, most likely by acting as a scavenger to keep an inflammatory chemokine-free 

surface on the LECs. In this way, D6 acts as a key regulator of lymphatic function, and 

importantly plays a role in the integration of innate and adaptive immune responses (Lee et 

al., 2013a), see Figure 1-9.  
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Figure 1-9: D6-deficient mice show disrupted antigen presentation 
During inflammation, antigen presentation involves the maturation of APCs, whereby the lymph-
node homing chemokine receptor CCR7 is up-regulated and inflammatory chemokine receptors 
are down-regulated. (i) In WT mice CCR7 ligands (CCL19 and CCL21) are presented on the 
surfaces of LECs, facilitating the interaction between CCR7 and its ligands and ensuring APC 
migration from inflamed tissues into lymph nodes. Notably the selective presentation of CCR7 
ligands takes place against a background of inflammatory CC chemokines. (ii) In D6-deficient mice 
the process of antigen presentation is dis-regulated. Lack of D6 leaves LECs unable to scavenge 
inflammatory CC chemokines, resulting in inappropriate presentation of inflammatory chemokines, 
thus attracting inflammatory leukocytes to the lymphatic vessel surface. The resulting congested 
lymphatic vessel cannot drain fluid or mature APCs as effectively, resulting in decreased efficiency 
of antigen presentation and an extended period of inflammation. Adapted from (Lee et al., 2013a). 
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1.7 Thesis aims and objectives 

As detailed in this introduction, previous in vitro and in vivo studies support the hypothesis 

that D6 functions to minimise the inflammatory response by acting as an inflammatory CC 

chemokine scavenger. Inflammatory chemokines are often thought of as the initial driving 

force of various chronic inflammatory and auto-immune diseases, therefore modulation of 

inflammatory chemokines may provide a novel approach to treatment of such conditions. 

The N-terminus of D6 is thought to be a major component of the binding site for 

inflammatory chemokine ligands. A synthetic peptide analogue of the D6 N-terminus (D6-

N) may have the ability to target a broad spectrum of inflammatory chemokines, and 

consequently inhibit cognate receptor binding. Thus D6-N may have the potential to be 

used therapeutically as a non-immunogenic, broad-based chemokine scavenger that would 

be beneficial in the treatment of chronic inflammatory conditions.  

 

This thesis aims to determine the biochemical properties of both synthetic and naturally 

derived molecules of D6-N in order to define its therapeutic usefulness. The importance of 

post-translational sulphation of the D6 N-terminus and the role of GAG molecules in 

chemokine presentation to D6 will also be investigated.  

 

In Chapter 3 the role of GAGs in chemokine presentation will be investigated, with 

specific emphasis on its requirement for D6-mediated chemokine internalisation and 

scavenging.  

 

In Chapter 4 a chemically synthesized D6-N peptide will be analysed for its biochemical 

properties and its ability to bind D6 ligands. 

 

Chapter 5 the natural processing of the D6 N-terminus is examined, with attempts to 

characterise an N-terminal cleavage product. Protease-mediated cleavage of the D6 N-

terminus is also addressed.  

 

In Chapter 6 the functional role of post-translational sulphation of the N-terminus of D6 is 

explored. 
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2.1 General solutions and consumables 

2.1.1  Composition of chemical solutions 

The composition of chemical solutions that were used in experiments detailed in this thesis 

is given in Table 2-1. All laboratory chemicals were supplied by Sigma-Aldrich (Poole, 

Dorset, UK) unless otherwise stated. 

 

Solution  Component Concentration 
1 x PBS NaCl 

KCl 
Na2HPO4 

KH2PO4 

137mM 
2.7mM 
10mM 
1.76mM 

PBST (0.05%) PBS 
Tween 20 (Polyoxyethylene sorbitan monolaurate) 

1x 
0.05% (v/v) 

5-10% Milk 
PBST 

PBS 
Tween 20 
Skimmed milk powder (Marvel)* 

1x 
0.05% (v/v) 
5-10% (w/v) 

Fixative  Ethanol 
Acetic acid 
Ultrapure water 

40% (v/v) 
10% (v/v) 
50% (v/v) 

Fluorescence-
activated cell 
sorting (FACS) 
buffer 

PBS 
Foetal calf serum 
Ethylenediaminetetraacetic acid (EDTA) 
Sodium-Azide 

1x 
3% (v/v) 
2mM 
0.01% (v/v) 

‘Freezing 
down’ buffer 

Foetal calf serum 
Dimethylsulphoxide (DMSO) 

90% (v/v) 
10% (v/v) 

Binding buffer RPMI 
FCS 
L-glutamine 
Penicillin 
Streptomycin 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES) 

1x 
10% (v/v) 
4mM 
100U/ml 
100mg/ml 
5mM 

Tris-acetate-
EDTA (TAE) 
Buffer 

Tris-acetate 
EDTA 

40mM 
0.05M 

 

Table 2-1: Composition of solutions 
* Marvel; Chivers, Dublin, Republic of Ireland 
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2.1.2  Plastic lab-ware 

Plastic lab-ware and other consumables were obtained from a variety of suppliers. 

Manufacturers and suppliers of equipment, reagents and commercially produced kits are 

detailed in the main body of the text. 

 

Thin walled 0.2ml and 0.5ml PCR tubes 

ABgene (Vancouver, Canada) 

 

BD FalconTM conical tubes, 15ml and 50ml 

Polystyrene 2054 5ml round-bottomed FACS tubes 

BD PlastipakTM syringes (1ml, 2ml, 5ml, 10ml, 20ml, and 50ml) 

Becton-Dickinson Labware (Le Pont de Claix, France) 

 

Tissue culture plates (6-well, 12-well, 24-well and 96-well) 

Tissue culture flasks with filter cap (25cm2, 75cm2 and 175cm2) 

Corning Inc (Poole, UK) 

 

Black 96-well tissue culture plates 

Greiner Bio One (Stonehouse, UK) 

 

Microcentrifuge tubes (1.5ml and 2ml) 

Eppendorf (Hamburg, Germany) 

 

2.0ml cryo-tubes 

Nunc International (Thermo-Fisher Scientific, Roskilde, Denmark) 
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2.1.3  Bacterial culture media  

The composition of the bacterial culture media and agar is listed in Table 2-2.  

Medium Component Concentration  
Luria-Bertani (LB) Broth Tryptone 

Yeast extract 
NaCl 
Sterilize by autoclaving 

1% (w/v) 
0.5% (w/v) 
1% (w/v) 

LB agar plates Agar 
LB-broth 
When cool add ampicillin 

15 g/L 
1x 
50μg/ml 

Table 2-2: Composition of bacterial culture media 
 

 

2.2 Cell culture methods 

2.2.1  Cell line maintenance 

The many cell lines utilised in this thesis, as well as their routine culture conditions, are 

detailed below. All procedures involving cell culture were carried out using sterile 

techniques i.e. all manipulations were performed in a laminar flow hood with HEPA 

filtration along with use of pre-sterilised equipment and sterile reagents. All surfaces and 

equipment were sprayed with 70% ethanol prior to work. Centrifuge steps for cell culture 

were performed at 300 x g for 5 minutes using a Biofuge primo centrifuge (Thermo 

Scientific) unless otherwise stated. All cultures were incubated at 37°C / 5% CO2 / 95% 

humidity. 

 

Human embryonic kidney (HEK) 293 cells were maintained in Dulbecco’s minimal 

essential medium (DMEM) (Sigma Aldrich, Poole, Dorset, UK) plus 10% FCS, 4mM 

glutamine and streptomycin and penicillin (all Invitrogen, Paisley, UK). 

 

Chinese hamster ovary (CHO) cells (both wildtype and GAG deficient, denoted K1 and 

745 respectively) were a kind gift from Professor Simi Ali (Newcastle University). Cells 

were maintained in RPMI-1640 (Sigma), 10% FCS, 4mM glutamine and streptomycin and 

penicillin (all Invitrogen). 
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The human acute monocytic leukaemia cell line (THP-1) was maintained in RPMI-1640 

(Sigma), 10% FCS, 4mM glutamine and streptomycin and penicillin (all Invitrogen). 

 

2.2.2  Thawing of cell lines from frozen stocks 

Cell lines were grown up from stocks stored in liquid nitrogen. Recovery of cells from 

liquid nitrogen was performed by rapid thawing in a 37°C water bath. Thawed cells were 

washed in 5ml of the appropriate culture medium (warmed to 37°C) by gently adding 

medium, 500μl at a time, followed by centrifugation (200 x g for 5 minutes). The 

supernatant was discarded and the cell pellet re-suspended in 5ml of fresh warmed culture 

medium before transfer to an appropriate tissue culture flask. 

 

2.2.3  Cell counting 

Live cells were counted using a Neubauer Haemocytometer (Hawksley, Sussex, UK). 

Dead cells were excluded using trypan blue (Sigma): 2μl of trypan blue was added to 8μl 

of cell suspension, incubated at room temperature for 5-15 minutes and then the sample 

was loaded into the haemocytometer chamber. The number of live cells in the 4 x 4 grid 

was counted, with dead cells being easily distinguishable from live cells because they were 

stained blue. This number was then multiplied by the dilution factor and then by 104
 to give 

the number of cells per ml of suspension.  
 

2.2.4  Maintenance of cell lines in culture 

Cell lines were routinely passaged when they reached 70-80% confluency. Methods 

differed depending on whether cells grew as adherent or suspension cultures. In order to 

minimise acquisition of new mutations, low passage cells were used whenever possible.  

Cultures were visually inspected daily using an inverted microscope to assess confluency 

and rule out infection.  

 

2.2.5  Passage of adherent cell cultures 

Media were aspirated and adherent cells were washed with 5-10 ml of the appropriate 

warmed culture media. Cells were removed by either mechanical scraping or the media 

was replaced with 0.05% trypsin (w/v) (Invitrogen) (1ml for 25cm² flask, 3ml for 75cm² 
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and 5ml for 175cm²) warmed to 37°C. After incubation for 2-5 minutes at 37°C the cells 

were examined using an inverted microscope to ensure adequate detachment. 

Trypsinisation was stopped by addition of 3-7ml of warmed media and the cells were re-

suspended by pipetting. The resulting suspension was centrifuged and supernatant 

discarded. Cells were re-suspended in an appropriate volume of fresh culture media and 

transferred to a new flask. In general, cells were split between 1:5 and 1:10.  

 

2.2.6  Passage of suspension cell cultures 

Suspension cultures were centrifuged and re-suspended in 3-10 ml of fresh culture medium 

and a proportion of this was transferred to a sterile tissue culture flask depending on the 

split required, as detailed for adherent cells above. 

 

2.2.7  Freezing down of cell lines 

Frozen stocks of early passage cells were established for all cell lines. Cells were washed 

in PBS, spun down and re-suspended at a concentration of approximately 

1x107 cells/ml, in ‘freezing down’ buffer (see Table 2-1). 1.6ml aliquots were transferred 

to 2ml cryo-vials and placed in a freezing vessel (Nalgene, Hereford) containing room 

temperature isopropanol. The container was placed at -80°C overnight to allow gradual 

cooling (1°C per minute), then transferred to liquid nitrogen tanks the following day. 

 

2.3 Plasmid manipulation  

2.3.1  Generation of HA-tagged human D6 (HA-D6)  

Previously in the laboratory a haemagglutinin (HA) epitope-tagged plasmid encoding 

human D6 was generated: Nucleotides encoding N-terminal HA, protein sequence: 

MYPYDVPDYAG, were introduced into human D6 cDNA by PCR to generate HA-D6. 

Products were verified by sequencing (MWG Operon, London, UK) and cloned into 

pcDNA3.1 (MWG Operon).  
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2.3.2  Site-directed mutagenesis 

The previously described HA-D6 pcDNA3.1 plasmid (see 2.3.1) was manipulated using 

the QuikChange Lightning Multi Site-Directed Mutagenesis Kit (Stratagene, Agilent 

Technologies, La Jolla, CA, USA) and primers encoding tyrosine to phenylalanine 

mutations were designed and used to generate point mutations in the D6 sequence. All 

primers were from IDT, Interleuvenlaan, Belgium, and were designed with the primer 

design guidelines detailed in the kit instruction manual. Design considerations were as 

follows and were adhered to as much as possible; (i) forward and reverse primers must 

contain the desired mutation and anneal to the same sequence on opposite strands of the 

plasmid (ii) primers should be between 25 and 45 bases in length with a melting 

temperature of ≥78°C (iii) the desired mutation should be in the middle of the primer with 

~10-15 bases of correct sequence on either side (iv) primers should have a minimum GC 

content of 40% and should terminate in one or more C or G bases (v) Primers must be 

HPLC purified. Primer sequences for each mutant are detailed in Table 2-3 and cycling 

parameters are detailed later in this section. 

  

The mutant strand synthesis reaction was performed using guidelines from the 

QuikChange Lightning Site-Directed Mutagenesis kit protocol. This involves primers 

annealing to the plasmid DNA and being extended during a thermal cycling reaction using 

a high fidelity DNA polymerase. A series of sample reactions were set up using various 

amounts of dsDNA template: 10ng, 50ng and 100ng. The cycling parameters used are 

outlined below. 

 

After the mutant strand synthesis reaction, the parental (i.e., non-mutated) supercoiled 

dsDNA was digested by the restriction enzyme Dpn I. This enzyme only recognises 

methylated DNA therefore degrades only the parental plasmid because almost all E.coli 

strains that are used to produce plasmid preparations Dam methylate DNA. 
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Mutant 

Name 

Primer Sequences 

Mutant 1 5-'ATGCCGATTCTGAGAATAGCAGCTTCTTTTTCTTTGACTTCCTGGATGAAGTGG-3' 

3'-TACGGCTAAGACTCTTATCGTCGAAGAAAAAGAAACTGAAGGACCTACTTCACC-5' 

Mutant 2  5'-ATGCCGATTCTGAGAATAGCAGCTTCTTTTACTATGACTACCTGGATGAAGTGG-3' 

3'-TACGGCTAAGACTCTTATCGTCGAAGAAAATGATACTGATGGACCTACTTCACC-5' 

Mutant 3 5'-ATGCCGATTCTGAGAATAGCAGCTTCTATTACTTTGACTACCTGGATGAAGTGG-3' 

3'-TACGGCTAAGACTCTTATCGTCGAAGATAATGAAACTGATGGACCTACTTCACC-5' 

Mutant 4 5'-ATGCCGATTCTGAGAATAGCAGCTTCTATTACTATGACTTCCTGGATGAAGTGG-3' 

3'-TACGGCTAAGACTCTTATCGTCGAAGATAATGATACTGAAGGACCTACTTCACC-5' 

Mutant 5 5'-ATGCCGATTCTGAGAATAGCAGCTTCTATTTCTATGACTACCTGGATGAAGTGG-3' 

3'-TACGGCTAAGACTCTTATCGTCGAAGATAAAGATACTGATGGACCTACTTCACC-5' 

Mutant 6 5'-ATGCCGATTCTGAGAATAGCAGCTTCTATTTCTTTGACTTCCTGGATGAAGTGG-3' 

3'-TACGGCTAAGACTCTTATCGTCGAAGATAAAGAAACTGAAGGACCTACTTCACC-5' 

Mutant 7 5'-ATGCCGATTCTGAGAATAGCAGCTTCTTTTACTTTGACTTCCTGGATGAAGTGG-3' 

3'-TACGGCTAAGACTCTTATCGTCGAAGAAAATGAAACTGAAGGACCTACTTCACC-5' 

Mutant 8 5'-ATGCCGATTCTGAGAATAGCAGCTTCTTTTTCTATGACTTCCTGGATGAAGTGG-3' 

3'-TACGGCTAAGACTCTTATCGTCGAAGAAAAAGATACTGAAGGACCTACTTCACC-5' 

Mutant 9 5'-ATGCCGATTCTGAGAATAGCAGCTTCTTTTTCTTTGACTACCTGGATGAAGTGG-3' 

3'-TACGGCTAAGACTCTTATCGTCGAAGAAAAAGAAACTGATGGACCTACTTCACC-5' 

 
Table 2-3: Primer sequences used to generate each mutant.  
Primers are the total complement of each other, bases to be changed are underlined and base pair 
changes from the original plasmid are coloured in red.  

 

Segment Cycles Temperature (°C) Time 
1 1 95 2 minutes 
2 18 95 20 seconds 

60 10 seconds 
68 2 minutes 45 seconds* 

3 1 68 5 minutes 
* Note the extension time was worked out by having 30 seconds/Kb of plasmid, therefore for a 
5.4Kb plasmid, 2 minutes 45 seconds was deemed to be correct. 

 

2.3.3  Bacterial Transformation with plasmid DNA 

Chemically competent XL10-Gold cells were stored at -80°C and single use aliquots 

thawed on ice prior to use. Cells were transferred to pre-chilled 1.5ml microtubes and 2μl 

β-mercaptoethanol was added to cells and incubated for 2 minutes on ice. The mutagenized 

plasmid DNA to be transformed was added to the ultracompetent cells and gently mixed. 

Cells were left on ice for 30mins before being heat-shocked in a thermomixer set to 42°C 
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for 30 seconds. Tubes were placed on ice for 2 minutes before addition of 0.5ml LB Broth 

(without antibiotic) and incubation on the thermoshaker at 37°C for 1 hour with shaking at 

300 rpm. 100μl of each transformation reaction was plated and spread onto pre-made LB 

agar plates containing 50μg/ml ampicillin (Sigma). Plates were inverted and incubated at 

37°C for >16 hours. During all work using microorganisms, sterile conditions were 

maintained. 

 

2.3.4  Plasmid cloning, purification and sequencing 

Colonies were picked from plates using sterile pipette tips and placed into ‘Universal’ 

tubes with 5ml LB broth supplemented with 50μg/ml ampicillin. Tubes were incubated 

overnight at 37°C with constant shaking. The following day the cells were pelleted by 

centrifugation at high speed for 5 minutes using a standard benchtop centrifuge.  A 

QIAprep mini kit (Qiagen, Crawley, UK) was used to purify plasmids from overnight 

cultures of XL10-Gold cells according to manufacturer’s instructions. This method relies 

on the alkaline lysis of bacterial cells followed by adsorption of DNA to a silica membrane 

in high salt conditions. This is followed by washing and finally elution of plasmid DNA.   

Resulting plasmid preparations were sequenced across the multiple cloning site (MCS) in 

both directions using both T7 and BGH reverse primers (MWG Operon). Sequences were 

verified using online programs BLAST (http://blast.ncbi.nlm.nih.gov/) and ORF finder 

(http://www.ncbi.nlm.nih.gov/projects/gorf/).  

 

2.4 Transfection of plasmids into mammalian cell 
lines 

2.4.1  Transfection of adherent cells 

Plasmids were stably transfected into HEK 293 cells and both CHO K1 and CHO 745 cells 

using the Effectene® transfection reagent kit (Qiagen). The night before transfection, cells 

were seeded into 6-well plates at a concentration of 5 x 106 cells per well. The plasmids to 

be used in the transfection reaction were diluted to a concentration of 0.4μg per 100μl of 

DNA-condensation buffer with 3.2μl enhancer. This was incubated for 5 minutes at room 

temperature before addition of 10μl effectene transfection reagent. The DNA: effectene 

complex was incubated for 10 minutes at room temperature to allow transfection 
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complexes to form. After incubation, 600μl of complete growth media was added to the 

DNA: effectene mixture and this was subsequently added to the appropriate wells in a 

drop-wise manner. Cells were incubated with the transfection complexes under their 

normal growth conditions for 24 hours, after which cells were passaged 1:10 into complete 

growth media containing the selective agent G418 (Promega, Southampton, UK). Stable 

colonies were grown up and maintained in complete growth media containing 0.8mg/ml 

G418.  

 

2.4.2  Obtaining clonal populations of transfected 
cells 

The D6 (clone 4A5) antibody was biotinylated using the EZ-Link® Micro-PEO4-

Biotinylation Kit (Pierce, Rockford, USA). High D6 expressing cells were separated from 

low and non-expressing cells by adding the biotinylated D6 (clone 4A5) antibody to cells 

suspended in FACS buffer and mixing with Streptavidin MicroBeads (Miltenyi Biotec, 

Gladbach, Germany). Cells were ‘run through’ MACS separation columns (Miltenyi 

Biotec) attached to a MidiMACSTM separator (Miltenyi Biotec) and eluates collected.  

To obtain clonal populations of high D6-expressing cells, cells were seeded at a very low 

density and colonies isolated by ring cloning using borosilicate glass cloning rings 

(SciQuip, Shropshire, UK). Populations as low as two or three cells were isolated and 

grown up to confluency before their D6 expression was assessed by flow cytometry with 

the methods described in section 2.4.4.2. Populations of cells with almost identical levels 

of D6 expression were chosen for further analysis. 

 

2.4.3  Surface receptor assessments of transfected 
cells  

2.4.3.1 Antibody staining for flow cytometry 

Approximately 1 x 107 freshly isolated cells were harvested by centrifugation for 5 minutes 

at 4oC, 300 x g, washed with FACS buffer and re-suspended in ice-cold FACS buffer. 

Cells were then incubated with primary antibodies or isotype controls in ice-cold FACS 

buffer for 15 minutes with occasional gentle agitation. Samples were washed twice with 

2ml chilled FACS buffer before being incubated with fluorescently-labelled secondary 
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antibodies in FACS buffer on ice for 15 minutes with occasional gentle agitation. Cells 

were again washed twice with 2ml chilled FACS buffer and re-suspended in 200μl FACS 

buffer. Viaprobe (BD Biosciences, San Jose, CA, USA) was added to each cell suspension 

to identify non-viable cells. Samples were analysed on the MACSquant analyser (Miltenyi 

Biotec). As a negative control, samples of un-transfected cells were used alongside test 

samples. The antibodies used are detailed in Table 2-4 and were all used at concentrations 

between 1 - 5μg/ml. 

 

Epitope Primary antibody or isotype Secondary antibody 

D6 mouse anti-human D6 antibody (4A5 clone) anti-mouse FITC (R&D 

Systems)* mouse IgG2a isotype control (Dako)** 

HA anti-HA-biotin (Miltenyi) PE-streptavidin (R&D 

Systems) mouse IgG1- isotype control biotin (R&D 

Systems) 

 
Table 2-4: Antibodies for surface receptor assessment of HA-D6 transfected cells.  
* R&D systems (Abington, UK), ** Dako (Cambridgeshire, UK) 

 

2.4.3.2 Flow cytometry 

Stained cells or cells from binding and competition assays were analysed using a 

MACsquantTM analyser. Acquisition parameters were established using unstained and 

untransfected cells. Data were analysed subsequent to acquisition using MACSquantifyTM 

software (Miltenyi Biotec), using unstained samples and un-transfected cells to set gates. 

 

2.5  Cell based assays 

2.5.1  Chemokine uptake assay 

Adherent cells were trypsinised, or scraped, from culture dishes and re-suspended in a 96-

well plate at a concentration of 0.5 x 105 cells per well in 100μl binding buffer. Alexafluor-

647 labelled CCL2 (AF-CCL2) (Almac) was added to cell suspensions at varying 

concentrations ranging from 1nM to 20nM or where otherwise stated. In some cases a 20-

fold molar excess (400nM) of unlabelled CCL22 (Peprotech, Rockyhill, NJ, USA) was 
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also added to cells. Cells were incubated for various time periods ranging from 30 minutes 

to 2 hours at 37°C in 5% CO2. Subsequently cells were washed twice in ice cold FACS 

buffer. Cells were then re-suspended in FACS buffer and viaprobe (BD Biosciences) was 

added to each cell suspension to identify non-viable cells. Fluorescence intensity of the 

cells was measured on a MACSquant analyser (Miltenyi Biotec). 

 

2.5.2  Chemokine uptake assay with D6-N* as a 
competitor 

Cells were manipulated as detailed in section 2.5.1; however differing quantities of D6-N 

(s) or D6-N (non-s) (Almac) ranging from 0.5μg to 4μg were added to wells at the same 

time as 60ng per well of AF-CCL2 before incubation for 1 hour at 37°C in 5% CO2. In 

similar experiments 60ng AF-CCL2 was incubated with D6-N (s) or D6-N (non-s) in a 

total volume of 20μl PBS for 15 minutes at room temperature before addition to wells. 

Cells were subsequently analysed on a MACSquant analyser (Miltenyi Biotech) as detailed 

in section 2.4.3.2. Mean fluorescence intensity (MFI) values for the alexa-fluor 647 

positive gate were recorded for each sample. 

*Details on the synthesis of the D6-N peptides can be found in section 2.8.1. 

 

2.5.3    Chemokine degradation assay  

Cells were plated out the night before the assay into a 96-well plate to ~80% confluency (2 

x 104 cells per well) in regular media. The following day, human biotinylated CCL2 (bio-

CCL2) (Almac) was added to the media at a concentration of 50μg/ml and cells incubated 

at 37°C in 5% CO2. Media was collected at different time points from 0 hours to 30 hours 

after addition of bio-CCL2 and stored at -20°C before being analysed by Western blotting 

(section 2.8.6). 

 

2.5.4  Protease cleavage assays 

Cells were plated out the night before the assay into 6-well plates to about 80% confluency 

(2 x 105 cells per well) in regular media. The following day one of either elastase (Sigma), 

at 10nM, 30nM, or 300nM, cathepsin G (Sigma), at 10nM or 70nM or staphopain A 

(Sigma) at 0.5μM or 2μM, was added to wells and cells incubated for either 15 minutes 
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(elastase and staphopain A) or 2 hours (cathepsin G), (unless otherwise stated), at 37°C in 

5% CO2. Afterwards media was taken and stored for further analysis. Cells were scraped 

and cell lysates were prepared (section 2.8.4). Both media and lysate samples were then 

analysed using Western blotting (section 2.8.6).  

 

2.5.5  Chemokine uptake assay after staphopain A 
treatment 

Cells were plated out the night before the assay into 6-well plates to about 80% confluency 

(2 x 105 cells per well) in regular media. The following day 2μM staphopain A (Sigma) 

was added to wells and cells incubated for 15 minutes at 37°C in 5% CO2. Cells were 

washed twice with PBS before scraping off and re-suspending in complete media and 

adding 25nM AF-CCL22. Cells were incubated for 1 hour at 37°C in 5% CO2 and 

subsequently washed twice in ice cold FACS buffer. DRAQ7 (BioStatus) was added to 

each cell suspension to identify non-viable cells. Fluorescence intensity of the cells was 

measured on a MACSquant analyzer (Miltenyi Biotec). 

 

2.5.6  Chemokine fluorescence assay following 
staphopain A treatment 

Chinese hamster ovary (CHO K1) cells expressing D6 cells were plated out the night 

before on black 96-well plates to ~80% confluency. The following day, cells were given 

staphopain A (Sigma) in PBS at concentrations of 0.5μM and 2μM and incubated for 15 

minutes at 37°C in 5% CO2. Cells were washed twice in PBS and put back into cell growth 

media supplemented with 10% FCS. Human alexa-fluor-647 labelled CCL22 (AF-CCL2) 

(Almac) was added to the media at a concentration of 20nM and cells incubated at 37°C in 

5% CO2 for 1 hour. Cells were washed 3x with PBS and then analysed on a PHERAstar FS 

fluorescence plate reader (BMG Labtech, Ortenberg, Germany). Media was transferred to a 

new black 96-well plate and analysed on the fluorescence plate reader. The raw data 

generated was calculated using the integrated MARS data analysis software (BMG 

Labtech). 
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2.5.7  Sodium chlorate treatment of cells 

Cells were grown in complete media supplemented with concentrations of sodium chlorate 

(Sigma) ranging from 30mM to 150mM for various time periods before performing 

chemokine binding / uptake assays as detailed in 2.5.1. Sodium chlorate was used to 

competitively inhibit the formation of PAPS, the high energy sulphate donor in cellular 

sulphation reactions.  

 

2.5.8  siRNA and D6 transfection  

HEK 293 cells were plated out the night before on 12-well plates to ~80% confluency. The 

following day cells were transfected with TPST-1 siRNA (5nM), TPST-2 siRNA (5nM), 

both TPST-1 and TPST-2 (2.5nM each), or negative control siRNA (5nM) using HiPerFect 

Transfection Reagent and guidelines (All Qiagen). Briefly, on the day of transfection, 

siRNA was diluted to a concentration of 5nM (or 2.5nM) in culture medium without 

serum. 6μl of HiPerFect Transfection Reagent was added and mixed by vortexing. Samples 

were incubated at room temperature for 5-10 minutes to allow the formation of transfection 

complexes. Complexes were then added drop wise to the cells. 24 hours later cells were 

transiently transfected with the HA-D6 plasmid described previously (section 2.3.1) using 

the Effectene® transfection reagent kit (Qiagen). The following day cells were tested for 

their ability to uptake AF-CCL22 using chemokine uptake assays (section 2.5.1). Cell 

lysates were also prepared (section 2.8.4), and analysed by Western blotting (section 

2.8.6). 

 

2.6 Molecular Biology: RNA 

While performing all methods involving RNA, RNA degradation by environmental 

RNases was kept to a minimum by various means. All plasticware and glassware was 

either supplied guaranteed RNase free or was autoclaved. Sterile filter tips were used 

throughout and RNase / DNase free water (Ambion) was used in all solutions. Before 

starting work, all surfaces, pipettes and equipment were sprayed with RNAzap RNase 

decontamination solution (Ambion).  
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2.6.1  Isolation of RNA from cells 

RNA was isolated from cell lines using an RNeasy® Mini Kit (Qiagen). Cells were pelleted 

and re-suspended in 350-600μl RLT Buffer and homogenized using a QIAshredder spin 

column. RNA extraction was performed according to the Qiagen RNeasy® Mini Kit 

instruction manual. This included the optional on-column DNase digestion step using the 

Qiagen RNase-Free DNase Set. The RNA concentration of each sample was determined 

using a ThermoFisher Nanodrop 1000™ spectrophotometer.  

 

2.6.2  cDNA synthesis from RNA 

A kit comprising of a two-step Reverse transcription (RT) process was used to make 

complementary DNA (cDNA). Firstly the ‘annealing’ step anneals the RT primer to the 

denatured RNA, and secondly in the ‘extension’ step the RNA is reverse transcribed to 

make cDNA. The Precision nanoScript Reverse Transcription kit (Primerdesign, 

Southampton, UK) was used for all RT reactions according to manufacturer’s instructions. 

Briefly, 300ng of starting RNA for each sample was added to a 0.2ml PCR tube and made 

up to 10μl with RNAse/DNAse free water and with 1μl random nonamer primermix. 

Samples were then incubated at 65°C for 5 minutes and immediately cooled in an ice water 

bath. To each sample, a 10μl mix of the following components was added: 2μl nanoScript 

10X Buffer, 1μl of dNTP mix (10nM of each), 2μl of 100mM DTT, 4μl RNAse/DNAse 

free water, and 1μl nanoScript enzyme. For -RT controls, 1μl of nuclease-free water was 

added in place of nanoScript enzyme. Samples were incubated at 25ºC for 5 minutes and 

then 55ºC for 20 minutes. The reaction was then heat inactivated by incubation at 75ºC for 

15 minutes. cDNA samples were stored at -20°C until they were used for QPCR.  

 

2.7 Molecular Biology: QPCR by absolute 
quantification 

QPCR by absolute quantification allows the quantification of the total number of gene 

copies of a gene of interest in a given sample. This technique utilizes SYBR green, an 

asymmetrical cyanide dye which preferentially binds to double stranded DNA. The 

resulting DNA-dye complex emits green light and the amount of green light emitted relates 

to the amount of double stranded DNA present in a given well after a QPCR reaction. 



Chapter 2 – Materials and Methods  91 

There are many pre-assay steps that need to be taken before a QPCR reaction can be set up. 

There are also post-assay analysis steps that must be taken to gain meaning from the data. 

All the steps involved in a QPCR experiment are detailed below. 

 

2.7.1  Primer Design 

Two sets of primers specific to the gene of interest need to be designed. These two sets of 

primers are referred to as standard primers and quantification primers. Standard primers 

were designed to be able to amplify a product which is typically 700-800 basepairs (bp) in 

length. This product was used as the template in order to generate standards (section 

2.7.2). The quantification primers are used to identify and amplify a smaller (100-200bp) 

product from the gene of interest to allow quantification.  In order to design appropriate 

primers, genetic sequences were obtained using Ensembl computer software 

(www.ensembl.org). ‘Primer 3’ computer software (http://frodo.wi.mit.edu/) was used to 

design efficient and accurate primer pairs. The attributes required for ideal primer design 

are given below: 

 

Attribute Optimal Value Acceptable Range 
GC Content 50% 40-65% 
Sequence Length N/A 18-23base pairs 
Melting Temperature (Tm) 60°C 59.5 - 61°C 
Maximum Self Complimentarity N/A 2 
Maximum 3’ Self Complimentarity N/A 1 
Amplified Product Size: Inner 
                                       Outer 

150 basepairs 
750 basepairs 

<150 basepairs 
between 700-800 basepairs 

 

Both sets of primers were checked using the Basic Local Alignment Search Tool (BLAST) 

from NIH PubMed (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to confirm that the primers 

recognise only the gene of interest. Primer sequences are listed in Table 2-5. Primers for 

D6 and TATA binding protein (TBP) are used regularly in this laboratory and were 

designed previously. Primers for TPST 1 and TPST 2 were designed for this study. 

 

 

 

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Primer Name Primer sequences Product 
length (bp) 

D6 quantification Forward 5’-AGGAAGGATGCAGTGGTGTC-3’ 
Reverse 5’-CGGAGCAAGACCATGAGAAG-3’ 

98 

D6 standard Forward 5’- TCACCTTGTTTCTGCACTCG -3’ 
Reverse 5’- GTGGAAGTGGAGGGAGATCA -3’ 

531 

TATA Binding 
Protein (TBP) 
quantification 

Forward 5’- TGCTGTTGGTGATTGTTGGT -3’ 
Reverse 5’- AACTGGCTTGTGTGGGAAAG -3’ 

99 

TATA Binding 
Protein standard 

Forward 5’- GAGTTGCTTGCTCTGTGCTG -3’ 
Reverse 5’- ATACTGGGAAGGCGGAATGT -3’ 

274 

TPST-1 
quantification 

Forward 5’- GCTGGGGGAGTGTCTCTGT -3’ 
Reverse 5’- TCCGTAGTTAGGTGGGTTGG -3’ 

186 

TPST-1 standard Forward 5’- CTGAACGGTGGATGAGAACA -3’ 
Reverse 5’- TCAAAAGGAGACTGCCCACG -3’ 

756 

TPST-2 
quantification 

Forward 5’- TCGGACCTCTAATCCAAGCA -3’ 
Reverse 5’- TCCATACCCTTCATTCTCTACCC -3’ 

160 

TPST-2 standard Forward 5’- TGGAGGTAGGCAAGGAGAAGT -3’ 
Reverse 5’- GGGTCAATAGGAGAGGCACA -3’ 

836 

 

Table 2-5: Inner and outer primer sequences used in PCR and QPCR reactions 
 

2.7.2  Generation of Standards 

In absolute QPCR, standard amounts of cDNA template, in which the total number of 

copies of the gene of interest is known, are what allow us to generate a standard curve. 

Standards for both TPST-1 and TPST-2 were generated by using their specific standard 

primers in a simple PCR reaction with cDNA generated from HEK cell lines, primary 

keratinocytes and primary HD LECs. cDNA from keratinocytes and HD LECs was kindly 

provided by Mark Singh, University of Glasgow, and was generated using similar methods 

described in section 2.6. 2µl of cDNA was added to a pre-made Red PCR master mix 

(Rovalab, Teltow, Germany) (see 2.7.6 for master mix compositions) along with 1µl of 

forward/reverse outer primer mix (1μM). Reactions were performed on a Veriti thermal 

cycler (Applied Biosystems, Paisley, UK). The PCR cycling parameters used are described 

below: 
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Step Temperature (°C) Time 
1 95 3 minutes 
2 95 15 seconds 
3 60 20 seconds 
4 72 40 seconds 
Repeat steps 2-4 for 40 cycles 
5 72 7 minutes 
6 4 Indefinitely 
 

Standards for D6 and TBP have been generated previously in the lab using similar methods 

(McKimmie et al., 2008). 

 

2.7.3  Gel Electrophoresis 

Products of the reaction were run out on a 2% agarose gel made by mixing 2g agarose 

(Sigma) with 100ml of TAE buffer and heating in the microwave until dissolved. Upon 

partial cooling, 0.5μg/ml ethidium bromide (Sigma) was added to allow visualisation of 

DNA under UV light. The gel was cast in a tray using sample-combs to create wells to 

insert samples. Once set, the gel was placed in a horizontal electrophoresis tank. Combs 

were removed and the tank was filled with TAE buffer until just covering the surface of the 

gel. Samples were loaded to the gel alongside a type IV hyperladder (Biolegend, San 

Diego, CA, USA), used to gauge the size of the PCR product. Electrophoresis was 

performed at 90V until the band of visible loading dye reached near the end of the gel. The 

gel was imaged under UV light using an AlphaImager (Alpha Innotech, ProteinSimple, 

Santa Clara, California). 

 

2.7.4  Gel extraction 

The gel was exposed to the minimum duration of UV light at reduced wavelength (304nm) 

to prevent damage of DNA. Gel fragments containing bands that corresponded to the PCR 

products were cut out with a clean scalpel blade and placed in a microcentrifuge tube. The 

DNA in the gel fragments was obtained by DNA extraction using a QIAquick gel 

extraction kit (Qiagen). This kit was used according to manufacturer’s instructions and 

utilises spin column technology and a silica membrane column to which DNA can bind. 
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2.7.5  Standard Verification 

The product from gel extraction was used as a template for making standards for QPCR. 

The above set of protocols produces a concentrated solution of DNA, which after a set of 

serial dilutions, gives a useable set of standards that can be accurately quantified.  

In order to quantify the absolute copy number in each of the serial dilution the optical 

density (O.D.) had to be measured using a nanodrop (ThermoFisher). Quantification 

primers were verified by PCR to test their ability to recognise the newly produced 

standards.  

 

2.7.6  Polymerase Chain Reaction (PCR) 

PCR was performed using Red PCR Mastermix (Rovalab); a commercially available pre-

mixed master mix made up of 1.1x buffer, MgCl2, 1mM dNTPs and Taq DNA polymerase. 

This was supplied as 45μl pre-aliquoted PCR tubes, to which 2.5μl template and 1.25μl of 

each quantificaion primer (10μM), was added. Reactions were performed on a Veriti 

thermal cycler (Applied Biosystems, Paisley, UK) and cycling parameters are described 

below: 

  

Step Temperature (°C) Time 
1 95 3 minutes 
2 95 15 seconds 
3 60 20 seconds 
4 72 40 seconds 
Repeat steps 2-4 for 40 cycles   
5 72 7 minutes 
6 4 Indefinitely 
 

Products were run on a gel as described previously and imaged under UV light. A strong 

band of ~100-200bp in length is expected with no other bands or primer dimers. This result 

is indicative of well designed primers. 

 

2.7.7  QPCR Assay 

Following verification of the quantification primers, the QPCR was set up to assess the 

expression of a given gene in a sample. The assay was performed on an Applied 
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Biosystems 7900HT Fast Real-Time system. All sample assays were performed in 

triplicate and normalised to TATA binding protein transcript levels, which were also 

assayed in triplicate. A ‘no template control’ (NTC) was also run for each primer pair in 

which nuclease free water is added in place of the cDNA sample. All master mix and plate 

preparations were carried out on ice. 

 

Master mix was prepared as follows: 

 

Ingredient Volume (µl/well) 
SYBR© Green Fast Mix 2.5 
Nuclease Free Water 2  
Primer Mix (equal volumes of forward and reverse primer) 0.1 
  

To perform the assay in triplicate, 3x template mix (1.5μl) and 3x master mix (13.8μl) 

were mixed thoroughly in the wells of a ‘set-up’ plate and 5μl was transferred to each of 

the 3 wells on a 384 well thin-walled PCR plate. Once all the samples were loaded in this 

way, the plate was sealed with a protective plastic film (Applied Biosystems), spun down 

briefly in a refrigerated centrifuge and run on a 7900HT thermal cycler (Applied 

Biosystems). The machine was run on the programme as follows: 

 

Step Temperature (°C) Time (s) 
1. 95 20 
2. 95 3 
3. 30 30 
Repeat steps 2-3 40 times   
4. 95 15 
5. 60 15 
6. 95 15 
 

2.7.8  Analysis of QPCR Data 

Cycle threshold (CT) is a measure of the cycle of PCR in which the product becomes 

detectable to the machine reader. A higher expressing sample will have a lower CT value.  
Before data analysis, key checks were performed to make sure the data could be counted as 

valid. Firstly the R2 value was checked. This value relates to the quality of the standard 

curve and depends upon how similar replicates are to each other and how each standard’s 

mean CT value relates to each other. The closer the R2 value is to 1, the higher quality the 
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standard curve and therefore the more reliable the sample data will be using the standard 

curve as a guide for quantification. Secondly, non-template control (NTC) wells, where 

template is not added to wells, were checked to eliminate the possibility of contamination. 

The CT values for these wells should be very high or undetectable as replication should be 

nil. 

 

Following the key data checks, all the sample data was exported into a Microsoft Excel 

spreadsheet. Data for genes of interest were normalised against TATA binding protein, 

which showed little variation in expression across different samples.  

 

2.8 Molecular biology: Protein 

2.8.1  Synthesis of D6-N peptide 

Peptides comprising the first 35 amino acids of the N-terminus of the D6 protein (D6-N) 

have been chemically synthesized (Almac Scotland, Edinburgh, UK). Two versions of D6-

N were generated, with either sulphated or non-sulphated tyrosine residues. These will be 

denoted as D6-N (s) and D6-N (non-s) respectively. D6-N (s) was synthesized in two 

batches, with differing degrees of sulphation recorded between each batch. 

A hexa-histidine tag was incorporated onto the end of both D6-N (s) and D6-N (non-s). 

Peptide sequences are detailed below:  

 

Peptide Amino Acid Sequence 
D6-N (s) MAATASPQPLATEDADSENSSFY(SUL*)Y(SUL*)Y(SUL*)DY(SUL*)LDEVAFML

HHHHHH 
 

D6-N (non-s) MAATASPQPLATEDADSENSSFYYYDYLDEVAFMLHHHHHH  
 

sul* indicates a potential sulphate group. It is impossible to determine exactly which and 
how many tyrosine residues have been sulphated in a single peptide, however information 
from mass spectrometry of each batch indicates the abundance of different species of 
sulphated tyrosine, i.e. mono, di, tri or tetra-sulphated species. 
 

2.8.2  Chemokine - D6-N binding assay using nickel beads 

To assess the ability of D6-N peptide to bind to chemokines; 10µg of either D6-N (s) or 

D6-N (non-s) peptide was incubated with 2µg/ml recombinant murine CCL2, human 
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CCL22 or murine CCL19 (all Peprotech), or biotinylated human CCL2 (bio-CCL2), 

biotinylated human CCL3 (bio-CCL3) or biotinylated human CCL19 (bio-CCL19) (all 

Almac) in PBS / 5mM imidazole (Sigma) for 10mins at room temperature. 50μl 

PureProteomeTM Nickel Magnetic Beads (Millipore, Temecula, CA, USA) were added to 

the tube and vortexed. Nickel magnetic beads were used because they can bind to the hexa-

histidine tag present on both D6-N peptides. The D6-N - chemokine mixture was incubated 

for 30mins at room temperature with regular re-suspension. Controls without addition of 

chemokine were run alongside the experimental tubes. Tubes were spun down in a 

centrifuge at 18407 x g for 2mins. Beads sink to the bottom of the tube and form a pellet. 

Supernatant was taken off and stored and beads were washed 2x in PBS / 5mM imidazole. 

Elution buffer (PBS / 400mM imidazole) was added to the beads and incubated for 2mins 

at room temperature. This high concentration of imidazole is necessary for recovery of 

captured HIS-tagged D6-N, and any chemokine binding to D6-N. Tubes were spun down 

again at 14000rpm for 2mins and bead eluate was taken for further analysis. 

 

2.8.4  Preparation of protein cell lysates 

Lysis of Adherent cells 

After removal of medium from culture dishes, cells were washed once with PBS then pre-

cooled (4°C) lysis buffer (150mM NaCl, 1% Triton® X-100, 50mM Tris HCl, pH 8.0; 

Miltenyi) with added protease inhibitors (Pierce) was added to cells. The lysate was 

scraped from the culture dish using a cell scraper and transferred to a 1.5ml 

microcentrifuge tube. Samples were mixed by vortexing and incubated on ice for 30 

minutes with occasional mixing. Samples were then centrifuged for 10 minutes at 10,000 x 

g at 4°C to sediment the cell debris. The supernatants were transferred to fresh tubes and 

either used immediately or stored at -80°C until use. 

 

Lysis of suspension cells 

Media containing cells was transferred to a tube and centrifuged for 5 minutes at 300 x g. 

Cell pellets were washed by re-suspending in PBS and re-centrifuged to form a cell pellet. 

Pre-cooled (4°C) lysis buffer (150mM NaCl, 1% Triton® X-100, 50mM Tris HCl, pH 8.0; 

Miltenyi) with added protease inhibitors (Pierce) was added to cell pellets. Tubes were 

vortexed and incubated on ice for 30 minutes with occasional mixing. Samples were then 

centrifuged for 10 minutes at 10,000 x g at 4°C to sediment the cell debris. The 
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supernatants were transferred to fresh tubes and either used immediately or stored at -80°C 

until use. 

2.8.5  Sodium Dodecyl sulphate polyacrylamide gel 
electrophoresis (SDS PAGE)  

Samples were mixed 1:4 with NuPAGE® LDS sample buffer (Invitrogen) and either heated 

to 95°C for 5 mins or, when performing D6 assays, incubated at room temperature for 10 

mins. Samples were mixed 1:10 with NuPAGE® Sample Reducing Agent (Invitrogen). 10-

20µl of each sample was loaded onto a pre-cast NuPAGE Novex 4-12% Bis-Tris gel, 

(Invitrogen), in a vertical electrophoresis tank (Xcell Surelock, Invitrogen) filled with 

NuPAGE MES SDS running buffer (Invitrogen). Novex® Sharp Pre-Stained Protein 

standard (Invitrogen) was run alongside samples for size determination. Electrophoresis 

was performed for 1-2 hours at 150V until protein standard bands had separated enough.  

 

2.8.6  Western blotting  

Gels were transferred onto a nitrocellulose membrane using an iBlot® system (Invitrogen) 

according to manufacturer’s instruction. Following transfer, the membrane was washed in 

PBS Tween (PBST) and blocked in 5% Milk PBST for either 1-2 hours at room 

temperature or overnight at 4°C. After blocking, the membrane was washed briefly in 

PBST and incubated with primary antibody overnight at 4°C. The membrane was 

subsequently washed 4x for 5 minutes each in PBST and incubated with secondary 

antibody for 1 hour at room temperature. Blots were developed via a chemiluminescence 

reaction (SuperSignal WestPico kit; Pierce) before being placed between acetate sheets and 

exposed to X-ray film (Kodak, Carestream Health Inc, New York, U.S.A) in a dark room 

for varying time periods. Film was then developed in a developing machine (XOmat, 

Konica-Minolta, Bainbury, UK). A list of all primary and secondary antibodies and 

suppliers are detailed in Table 2-6. 
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Table 2-6: Western blotting primary and secondary antibodies 
1 Abcam, Cambridge, UK.  
2 Amersham, GE Healthcare, Buckinghamshire, UK.  
3 Cell Signalling Technology, Danvers, MA, USA 
 

2.8.7  Estimation of protein loading 

Equal starting amounts of cells were used for protein extraction wherever possible. Equal 

protein loading was either checked by staining the protein on the membrane with Ponceau 

S reagent (Sigma), or confirmed by stripping the membrane and re-probing with a 

housekeeping gene (e.g. beta-tubulin). For Ponceau S staining the membrane was covered 

with stain for 5 minutes with regular shaking at room temperature before being washed 

with distilled water until background was removed and protein bands could be 

distinguished clearly. To strip blots, membranes were immersed in Restore Western Blot 

Primary 
antibody 

Isotype Supplier Concentration 
used 

Secondary 
antibody 

Supplier 

Anti-HA tag 
antibody 

mouse 
IgG3 

Abcam1 1µg/ml 

Anti-mouse 
IgG 
Horseradish 
Peroxidase 

Amersham2 

Anti D6 (clone 
4A5) (human) 

mouse 
IgG 

In-house Hybridoma 
supertatant 
diluted (1:5) 

Anti-
Sulphotyrosine 
(multiple 
species) 

mouse 
IgG2a 

Millipore 1 µg/ml 

Anti-CCL19 
(murine)  

goat 
IgG 

R&D 
systems 

0.1µg/ml Rabbit anti-
Goat IgG 
(H+L) 
Conjugate 
(ZymaxTM 
Grade) 

Invitrogen Anti-CCL2 
(murine) 

goat 
IgG 

R&D 
systems 

0.1µg/ml 

Anti-CCBP2 
(human) 

rabbit  Prestige 
antibodies 
(Sigma) 

1.6 µg/ml 

Anti-rabbit 
IgG, HRP-
linked 
Antibody 

Cell 
Signalling3 

Anti-CXCR2 
(mouse, rat, 
human) 

rabbit Abcam 1.1 µg/ml 

Anti-TPST1 
(human) 

rabbit Abcam 1 µg/ml 

Anti-TPST2 
(human) 

rabbit Abcam 1 µg/ml 

Anti-beta 
tubulin 

rabbit Cell 
Signalling3 

2 µg/ml 
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stripping buffer (Pierce) for 15-20 minutes at room temperature. Blots were then washed in 

PBST before being re-blocked and re-probed with different primary and secondary 

antibodies as described previously.  

 

2.8.8  Protein band staining 

After performing SDS PAGE as described previously, gels were rinsed in ultrapure water 

and stained in 20ml SimplyBlueTM SafeStain (Invitrogen) for 1 hour at room temperature. 

Gels were then washed repeatedly for 1 hour periods with ultrapure water until background 

is reduced and bands become visible. The SimplyBlueTM SafeStain is a type of coomassie 

dye which binds to protein, chiefly arginine residues, although it also binds weakly to other 

amino acid residues. 

 

2.8.9  Silver Staining 

Subsequent to SDS PAGE, gels were stained using the SilverQuestTM Silver Staining kit 

(Invitrogen) according to manufacturer’s instruction. Before starting, reagents provided in 

the kit were used to prepare the following solutions for staining; sensitizing solution, 

staining solution and developing solution. All incubations were performed on a rotary 

shaker at room temperature. Following gel electrophoresis, the gel was fixed in 100ml of 

fixative (Table 2-1) for 20 minutes to remove interfering ions and detergent from the gel 

and help restrict movement out of the gel matrix. The gel was then washed in 30% ethanol 

for 10 minutes and incubated in 100ml of sensitizing solution for 10 minutes. Sensitizing 

solution is used to increase the sensitivity and contrast of the stain. The gel was then 

washed again for 10 minutes with 30% ethanol, and for 10 minutes with ultrapure water to 

remove excess sensitizer and rehydrate the gel before staining. The gel was then stained for 

15 minutes with stainer solution which binds silver ions to the protein and forms a latent 

image. After staining, the gel was washed with ultrapure water for 20-60 seconds before 

being incubated with 100ml of developing solution for 4-8 minutes or until bands start to 

appear and the desired band intensity is achieved. Developing solution works by reducing 

the silver ions to metallic silver resulting in development of the protein bands. Once the 

appropriate staining intensity was reached, 10ml of stopper was immediately added 

directly to the gel still immersed in the developing solution. The stopper solution 

complexes with any free silver still present to prevent further reduction. Finally the gel was 

washed again in ultrapure water for 10 minutes.   
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2.8.10 Enzyme-linked immunosorbent assay (ELISA) 

Samples were analysed with the Quantikine® Human MDC (CCL22) immunoassay (R&D 

Systems, Abington, UK) as per manufacturer’s instruction. Briefly, a pre-coated plate, to 

which a monoclonal antibody specific for CCL22 has been immobilised, is provided with 

the kit. Standards were made up using a serial dilution method and both standards and 

samples were pipetted into the wells of the pre-coated plate. Standards and samples were 

measured in triplicate. Any CCL22 present in the standards or samples binds to the 

antibody. Washing was performed to remove any un-bound molecules and a monoclonal 

antibody specific for CCL22 is added to the plate. This second antibody is linked to an 

enzyme, which induces a colour change when a substrate is added. Colour develops in 

proportion to the amount of CCL22 bound in the initial step, until the reaction is stopped 

by adding a stop solution. The optical density of the solution in each well was measured 

using a microplate reader set to 450nm (SunriseTM, Tecan). A best fit curve was 

constructed by plotting the mean absorbance for each standard on the y-axis against its 

CCL22 concentration on the x-axis. A line was drawn through the points and the equation 

of the line was worked out using standard spreadsheet software (Excel, Microsoft). The 

concentration of CCL22 in each sample was worked out using the equation of the line and 

substituting for X. 

 

2.8.11 Immunoprecipitation of HA-positive material 
from media 

HEK cells transfected with D6 were seeded at low density in a minimal volume of growth 

media that could support regular growth and proliferation. Cells were grown in standard 

conditions (at 37°C in 5% CO2) and left to proliferate until 100% confluent. Conditioned 

media from these cells was taken and a μMACSTM Epitope Tag Protein Isolation Kit 

(Miltenyi) with anti-HA MicroBeads was used to isolate any HA-tagged material from the 

media. Magnetic labelling was performed by adding 50μl anti-HA MicroBeads to 1ml 

conditioned media and incubating for 30 minutes on ice with regular gentle agitation. 

Separation was carried out as per manufacturer’s instructions and, subsequent to elution, 

samples were analysed by SDS-PAGE as described in section 2.8.5. 
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2.8.12 Immunoprecipitation of HA-D6 

HA-D6 was immunoprecipitated from transfected HEK D6 cells using the μMACSTM 

Epitope Tag Protein Isolation Kit (Miltenyi Biotech) with anti-HA MicroBeads. Cell 

lysates were prepared before magnetic labelling was performed by adding anti-HA 

MicroBeads to the cell lysates and incubating for 30 minutes on ice with regular gentle 

agitation. The mixture was run through a μcolumn suspended on a magnet as per 

manufacturer’s instructions. The column was rinsed several times with wash buffer 

provided in the kit in order to remove any non-specific material. Subsequently, elution 

buffer (SDS buffer) heated to 95°C was added to the column and samples collected. 

Samples were then analysed by SDS-PAGE as described in section 2.8.5. 

 

2.8.13 Streptavidin bead pull down assay 

The purpose of this assay was to find out if the D6-N peptide could be ‘pulled-down’ on 

the basis of its interaction with biotinylated chemokines. 2µg of D6-N (s) was incubated 

with 0.2μg of either bio-CCL2, bio-CCL22 or bio-CCL19 (Almac), in 100μl PBS for 

15mins at room temperature. Biotinylated IgG (R&D systems), BSA (Sigma) and 

unlabelled chemokines (Peprotech) were used as controls in place of biotinylated 

chemokines. After incubation, samples were mixed with 50μl streptavidin microbeads 

from the µMACSTM Streptavidin Kit (Miltenyi Biotech) and put through a μcolumn 

suspended on a magnet. αHA microbeads were used as a control to count out non-specific 

binding to beads. PBS was washed through the column 4x before elution buffer 

(NuPAGE® LDS sample buffer (Invitrogen) heated to 95°C) was added to the column and 

sample collected. This sample is called the ‘Target’ and refers to anything that is binding to 

the streptavidin-bound molecule. The column was then taken off the magnet and more 

elution buffer added before sample collection again. This sample should contain the 

molecule that was binding to the streptavidin – in this case, the biotinylated chemokine. 

The process is illustrated in Figure 4-7 in Chapter 4 of this thesis. 

 

2.8.14 Protein binding assessments using BIAcore 

BIAcore binding experiments were performed with the assistance of Dr. Sharon Kelly, 

University of Glasgow. Surface Plasmon Resonance (SPR) enables the detection of 

interactants in real time and was used to measure the biochemical affinity of D6-N for 
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CCL2. A BIAcore 2000TM biosensor system with a Series S Sensor CM5 chip (GE 

Healthcare, Buckinghamshire, UK) was used for protein binding assessments. Prior to 

biotinylated chemokine immobilization, the CM5 sensor chip surface was activated with an 

amine coupling kit which consisted of a mixture of 0.4 M 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 0.1 M N-

hydroxysuccinimide (NHS) (GE healthcare) at a flow rate of 5µl/min for 7mins. 

Neutravidin (Sigma), which was used to immobilise the biotinylated CCL2 on the chip, 

was added to the chip at 10µl/ml. Ethanolamine was then added in order to block 

remaining activated carboxymethyl groups. 10µg of Biotinylated CCL2 (Almac) was then 

added to the chip. The analytes were injected at either 0.1mg/ml or 1mg/ml and 

regeneration of the chip was performed before each new analyte injection to remove all 

previously bound analyte. Binding was recorded on a sensorgram which measures response 

units (RU) against time. 

 

2.9  Statistical analysis 

Data were analysed using GraphPad Prism software (San Diego, CA) applying appropriate 

statistical tests as described in figure legends. Probability values of p<0.05 were 

considered statistically significant. 
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The role of glycosaminoglycans 
in chemokine presentation to D6 
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3.1 Introduction 

Glycosaminoglycans (GAGs) are long, linear polysaccharide chains that are typically 

connected to a protein core, thereby forming proteoglycans. They are commonly associated 

with most cell types, including the surface of endothelial cells and the extracellular matrix 

(Johnson et al., 2004). In addition to the high binding affinity that chemokines have for 

their receptors, most chemokines also have a lower-affinity binding interaction with 

GAGs. It is thought that chemokines become immobilized on the surface of cells via 

GAGs and that the interaction between chemokines and their receptors may rely on GAGs 

acting as mediators. This process can involve the presentation of chemokines to their 

receptors on the same cell (cis presentation) or to different cells (trans presentation). 

Figure 3-1 demonstrates both cis and trans presentation of chemokines by GAGs.  

 

A previous study investigating the significance of the chemokine-GAG interaction for 

chemokine activity focussed on the chemokine receptors CCR1 and CCR5. It was shown 

that GAGs expressed on the surface of cells can enhance the activity of low concentrations 

of chemokines, presumably by increased chemokine sequestration onto the cell surface 

(Ali et al., 2000).  The aim of this investigation was to focus on the ‘atypical’ chemokine 

receptor D6 and examine the role of GAGs in its ability to scavenge inflammatory 

chemokines.  

 

To facilitate this investigation, a mutant Chinese hamster ovary (CHO) cell line was used 

which is fully deficient in the synthesis of GAGs (Esko et al., 1985, Graham et al., 1996). 

This mutant cell line is called CHO 745 and the wild type version of this cell line is 

referred to as CHO K1.  

 

Key questions were established that were thought to be critical to research in this area: 

 

- Can D6, expressed on CHO 745 cells (CHO 745 hD6), still scavenge inflammatory 
chemokines and target them for degradation?  

 

- Does D6 expressed on CHO 745 cells (CHO 745 hD6) have reduced functionality 
compared with D6 expressed on CHO K1 cells (CHO K1 hD6) as a result of the 
loss of proteoglycan expression? 
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Taking into account the published literature which suggests that GAGs act as important 

mediators for chemokine presentation to inflammatory chemokine receptors such as CCR1 

and CCR5, it was assumed that this would also be the case for the atypical chemokine 

receptor D6. Therefore it was hypothesized that chemokines would not be immobilised to 

the same extent on CHO 745 hD6, compared to CHO K1 hD6, and thus cis-presentation, 

chemokine uptake and degradation by CHO 745 hD6 would be less efficient compared 

with CHO K1 hD6.  

 

In order to answer similar questions, previous groups working on typical inflammatory 

chemokine receptors used calcium flux assays and cell migration assays to measure the 

activity of the chemokine receptors in question. However, as D6 is an atypical chemokine 

receptor, its activation does not induce a change in calcium levels, nor does it induce cell 

migration, therefore different experimental approaches were taken and optimised in order 

to answer the proposed questions. Such experimental approaches and the results are 

discussed in the following chapter.  

 

Flow cytometry experiments detailed in this chapter measuring uptake of chemokine by D6 

assume that a decrease in uptake is indicative of a decrease in internalisation and 

degradation of chemokine. This is assumption is based on published data.  
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Figure 3-1: The envisaged role of GAGs in chemokine presentation.  
(i) Cis presentation – presentation of a chemokine to a chemokine receptor by GAGs where all 
molecules are on the same cell. This method of presentation will be investigated further in this 
chapter (ii) trans presentation – presentation of chemokines by GAGs on one cell (endothelial in 
this case) to chemokine receptors on another cell (leukocyte in this case).  
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3.2 CHO K1 hD6 and CHO 745 hD6 cell lines 

CHO cells are a widely used research tool in molecular biology and are often used for the 

production of recombinant proteins. The CHO K1 cell line was derived as a sub-clone 

from the parental CHO cell line, which was initiated from a biopsy of an ovary from an 

adult Chinese hamster. CHO cells are epithelial-like and grow as an adherent monolayer in 

culture. The CHO 745 cell line is a mutant generated from the CHO K1 line (Esko et al., 

1985). CHO 745 cells are GAG-deficient because they lack the enzyme xylosyl 

transferase, which is required for the biosynthesis of heparan sulphate and chondroitin 

sulfate in vivo. This makes CHO 745 cells a valuable tool when investigating the 

importance of GAGs for chemokine binding by D6. 

 

3.2.1  The absence of GAGs reduces chemokine 
immobilisation by CHO cells 

Chemokine binding assays were set up in order to determine if a difference exists between 

the GAG-mediated chemokine binding of CHO K1 and CHO 745 cell lines. This involved 

the addition of Alexa-fluor-647 labelled CCL2 (AF-CCL2) to cells and incubation for 1 

hour. Concentrations of AF-CCL2 ranging from 0nM to 20nM were added to cells. Cells 

were then washed twice to remove excess chemokine and subsequently analysed by flow 

cytometry to detect bound AF-CCL2. Viaprobe, a dead cell discriminator containing 7-

amino-actinomycin D (7-AAD), was used to exclude dead cells from the analysis. Figure 

3-2 shows the results of the chemokine binding experiment.   

 

More CHO K1 cells appear fluorescent compared to CHO 745 cells after the addition of 

20nM AF-CCL2 (Figure 3-2 (a)). This difference in the number of fluorescent cells 

between CHO K1 and CHO 745 cells was consistent at every concentration of AF-CCL2 

tested (Figure 3-2 (b)), suggesting that it is a consequence of the absence of GAGs on 

CHO 745 cells. This result further substantiated the use of CHO 745 cells in this 

investigation. 
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Figure 3-2: CHO K1 and CHO 745 chemokine binding affinity  
(a) Flow cytometry profiles of either (i) CHO K1 or (ii) CHO 745 cells after addition of 20nM AF-
CCL2. (b) Concentrations of AF-CCL2 ranging from 1nM to 20nM were added to CHO K1 and 
CHO 745 cells before analysis by flow cytometry. Dead cells were excluded from the analysis with 
the addition of viaprobe. The MFI values obtained for both cell types at each chemokine 
concentration are shown on an X-Y line graph.  
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3.2.2  Stable transfection of CHO K1 and CHO 745 cells 

In order to be able to compare the ability of chemokines to bind to D6 on cells expressing 

GAGs (CHO K1) with GAG-deficient cells (CHO 745), both cell lines were transfected 

with a plasmid containing the D6 gene with an N-terminal HA (haemagglutinin) tag (HA-

D6). This plasmid was previously generated in this laboratory by introducing nucleotides 

encoding an HA tag (amino acid sequence: MYPYDVPDYAG) at the extreme N-terminus 

of human D6 cDNA by PCR.  

 

CHO K1 and CHO 745 cells were stably transfected with pcDNA3.1 HA-D6 using 

effectene (as described in Chapter 2, section 2.4). Transfected cells were analysed by flow 

cytometry to assess their levels of D6 expression. Cell membrane D6 levels were detected 

using the anti-D6 (clone 4A5) antibody and a FITC-conjugated secondary antibody. Flow 

cytometry profiles for both CHO K1 hD6 and CHO 745 hD6, and also the gating strategy 

employed to analyse these cells are shown in Figure 3-3. 

 

Flow cytometry analysis indicated that both transfected cell lines had very low levels of D6 

expression, with ~10% D6 positivity in CHO K1 cells (Figure 3-3 (a) (iii)) and only 

~2.5% positivity in CHO 745 cells (Figure 3-3 (b) (iii)). This was surprising because both 

cell lines grew normally in media supplemented with G418, indicating that they had been 

transfected with a G418-resistant plasmid. This suggested that many of the plasmids may 

not contain the intact HA-D6 gene.  
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Figure 3-3: D6 expression of CHO cell lines after transfection 
Flow cytometry profiles for (a) CHO K1 cells and (b) CHO 745 cells. (i) Forward scatter (FSC) and 
side scatter (SSC) was used to gate the main population of cells (ii) dead cells were excluded from 
the analysis using a dead cell discriminator (DCD) (iii) D6 expression was determined using the 
mouse anti-human D6 antibody (clone 4A5) and an anti-mouse FITC secondary antibody. Cells 
positive for D6 expression are FITC positive. 
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3.2.3  Enrichment for D6 positive cells 

Due to the low transfection efficiency in both CHO K1 and CHO 745 transfectants, D6 

positive cell enrichment was attempted by labelling transfected cells with biotinylated anti-

D6 antibody (clone 4A5), then using anti-biotin beads to select D6 positive cells. Prior to 

this experiment, the D6 antibody (clone 4A5) required biotinylation, which was achieved 

using a commercially available biotinylation kit (see chapter 2, section 2.4.3). The 

enrichment process is illustrated in Figure 3-4. Enrichment of cells was performed twice 

(D6 positive cells from the first enrichment were cultured and left to grow to confluency 

before performing the second enrichment). Aliquots of the cells obtained at each stage 

(pre-sorted cells, unbound cells and D6 positive cells) were analysed by flow cytometry 

and the results of both enrichments are shown in Figure 3-5.  

 

Enrichment for D6 positive cells by this method was successful and eventually resulted in 

populations of both CHO K1 hD6 and CHO 745 hD6 with over 70% of cells expressing 

D6 (Figure 3-5 (c) (iii) and (Figure 3-5 (d) (iii) respectively). Despite this, both cell lines 

displayed considerable variation in levels of D6 expression. This is apparent by examining 

the range of mean fluorescence intensity values for the D6 positive cells. This suggested 

that further development was required.  
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Figure 3-4: Enrichment of D6 expressing cells from CHO K1 hD6 and CHO 745 hD6.  
(i) Anti-D6 (clone 4A5) D6 was biotinylated using a commercially available biotinylation kit (ii) 
Biotinylated anti-D6 (clone 4A5) was added to cells which bound to any cells expressing D6 on its 
surface (iii) magnetic anti-biotin microbeads were added to the mixture which bound to the 
biotinylated antibody (iv) the mixture was passed through a column suspended on a magnet, any 
cells that bound to a microbead remained inside the column (v) after several washes to remove 
unbound cells (which were kept for flow cytometry analysis), the column was removed from the 
magnet and contents were obtained. Cell fractions were mixed with an anti-mouse IgG FITC 
antibody and analysed by flow cytometry.  
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Figure 3-5: Enrichment for D6+ cells.  
Cells were assayed by flow cytometry using either anti-D6 (clone 4A5) or a mouse isotype control 
(not shown) and an anti-mouse IgG FITC secondary antibody. Enrichment 1 for CHO K1 is shown 
in (a) and CHO 745 in (b). Enrichment 2 for CHO K1 is shown in (c) and CHO 745 in (d).  
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3.2.4  Obtaining clonal populations of CHO K1 hD6 
and CHO 745 hD6 

Given the variable expression levels apparent in Figure 3-5, and to allow appropriate 

comparison between CHO K1 hD6 and CHO 745 hD6, it was important to carry out 

further experiments to ensure that the levels of D6 expression for both cell lines were 

similar. To achieve this, ‘ring cloning’ was attempted. This method involves the seeding of 

cells at extremely low density and picking isolated colonies to derive clonal lines of 

transfected cells (for full details see chapter 2, section 2.4.3). Ten separate colonies were 

picked from both CHO K1 hD6 and CHO 745 hD6 lines and grown to confluency. ‘Ring 

cloning’ is technically challenging and requires multiple rounds of sub-cloning in order to 

obtain clonal populations of cells. The cell populations which were obtained after the first 

and second ring cloning experiments are shown in Figure 3-6. The populations of CHO 

K1 hD6 and CHO 745 hD6 obtained after the second round of ring cloning were checked 

for D6 expression by flow cytometry using both the anti-D6 (clone 4A5) antibody and an 

anti-HA antibody. The resulting histograms are shown in Figure 3-7. 

 

The flow cytometry profiles depicted in Figure 3-6 indicate that during the first ‘ring 

cloning’ process, it appeared that cells from at least two different colonies had been picked 

and expanded. This is certainly the case for CHO K1 hD6, where the cells still show a 

substantial range of D6 expression (Figure 3-6 (a) (ii)). After the second ring cloning 

process, there were populations of both CHO K1 hD6 and CHO 745 hD6 where levels of 

D6 expression was more uniform (Figure 3-6 (a) (iii) and (b) (iii) respectively). This is 

indicative that cells from only one colony had been picked to grow up to confluency in 

these populations. Such populations were selected for further analysis.  

   

Figure 3-7 compares D6 expression between the selected populations of CHO K1 hD6 and 

CHO 745 hD6 and shows that these populations express D6 at very similar levels, with 

mean fluorescence intensities (MFIs) of 9.84 and 10.09 for CHO K1 hD6 and CHO 745 

hD6 respectively using the anti-D6 (clone 4A5) antibody (Figure 3-7 (a) (i) and (b) (i)) 

and MFIs of 107.7 and 110.5 for CHO K1 hD6 and CHO 745 hD6 respectively using an 

anti-HA antibody ((Figure 3-7 (a) (ii) and (b) (ii)).  
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Obtaining clonal populations of CHO K1 and CHO 745 transfectants expressing very 

similar levels of D6 was a prerequisite for experiments comparing the ability of D6 to 

uptake chemokine by the two cell lines. 

 

In summary, although ring cloning was a time consuming and challenging technique, it 

allowed the acquisition of clonal populations of both CHO K1 hD6 and CHO 745 hD6 

which express D6 at very similar levels.  

 

 

 

Figure 3-6: D6 expression of CHO cells lines.  
(a) CHO K1 hD6 and (b) CHO 745 hD6 populations after the first and second ring cloning 
experiments. Cells were assayed by flow cytometry using either anti-D6 (clone 4A5) or a mouse 
isotype control (as labelled) and an anti-mouse IgG FITC secondary antibody.  
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Figure 3-7: CHO K1 hD6 and CHO 745 hD6 express D6 at very similar levels.  
(a) CHO K1 hD6 and (b) CHO 745 hD6 cells were assayed using (i) anti-D6 (clone 4A5) or a 
mouse isotype control and an anti-mouse IgG FITC secondary antibody. Cells were also assayed 
using (ii) a mouse anti-HA (biotin) antibody or a mouse IgG (biotin) isotype control and a 
streptavidin conjugated to R-phycoerythin (PE) secondary. Isotype controls are represented in red 
and D6 expression is represented in blue. The MFIs of D6 expressing cells are indicated above 
each flow cytometry profile.  
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3.3 Cis-presentation of chemokines by 
glycosaminoglycans increases D6 activity 

Having already established that GAG-based CCL2 binding is lower in CHO 745 cells 

compared to CHO K1 cells, and with the creation of CHO K1 hD6 and CHO 745 hD6 

stably expressing D6 at similar levels, experiments were set out to determine the 

importance of GAGs for D6-mediated chemokine binding and scavenging.  

 

3.3.1  CHO K1 hD6 and CHO 745 hD6 have different 
ligand uptake capability 

To directly test whether or not the presence of GAGs contributes to chemokine 

presentation to D6, and therefore to D6 function, chemokine uptake assays were performed 

on both CHO K1 hD6 and CHO 745 hD6. This involved the addition of Alexa-fluor-647 

labelled CCL2 (AF-CCL2) to cells and subsequent incubation at 37°C to allow D6 uptake 

and internalisation of chemokine. Concentrations of chemokine ranging from 0nM to 

15nM were added to cells and incubated at 37°C for 1 hour. Cells were then washed twice 

to remove excess chemokine and subsequently analysed by flow cytometry to detect 

internalised AF-CCL2. Viaprobe was used to exclude dead cells from the analysis. Live 

cells that have taken up chemokine have an increase in MFI compared to cells that have 

not, and this is shown by a right shift of cells in the flow cytometry plots. Figure 3-8 

shows the results of the chemokine uptake experiment.  

 
Importantly, CHO K1 hD6 displayed a huge increase in MFI compared with un-transfected 

CHO K1 cells after addition of AF-CCL2 (Figure 3-8 (a) (i) and (ii)). This confirmed that 

uptake of CCL2 by CHO K1 hD6 is D6-dependent. The MFI values resulting from the 

chemokine uptake assay with both CHO K1 hD6 and CHO 745 hD6 are shown in Figure 

3-8 (b). MFI values for AF-CCL2 uptake by both CHO K1 hD6 and CHO 745 hD6 

increased in a dose-dependent fashion. However initial results suggested that CHO K1 hD6 

uptake of AF-CCL2 was increased compared to CHO 745 hD6, and the difference between 

CHO K1 hD6 and CHO 745 hD6 became more apparent as the concentration of chemokine 

increased.  
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In summary, uptake of AF-CCL2 by CHO K1 hD6 and CHO 745 hD6 is D6 dependent. 

CHO K1 hD6 appeared to display enhanced AF-CCL2 uptake compared to CHO 745 

hD6, and the difference between the two cell lines becomes more apparent as the 

concentration of chemokine added to the cells increases.  

 

 

Figure 3-8: Uptake ability of CHO K1 hD6 and CHO 745 hD6 with increasing AF-CCL2 
concentration. 
(a) Flow cytometry profiles of either (i) CHO K1 or (ii) CHO K1 hD6 cells after addition of 15nM AF-
CCL2. (b) Concentrations of AF-CCL2 ranging from 0nM to 15nM were added to CHO K1 hD6 and 
CHO 745 hD6 cells before analysis by flow cytometry. Dead cells were excluded from the analysis 
with the addition of viaprobe. The MFI values obtained for both cell types at each chemokine 
concentration are shown on an X-Y line graph. N=1 
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3.3.2  CHO 745 hD6 display reduced ligand uptake 
compared to CHO K1 hD6 

The initial experiment highlighted a trend suggesting that the chemokine uptake 

capabilities of CHO K1 hD6 and CHO 745 hD6 were different, therefore experiments were 

set up in order to further characterise this. The previous uptake assays revealed that the 

largest difference in MFI values between CHO K1 hD6 and CHO 745 hD6 occurred at the 

highest AF-CCL2 concentration used (15nM), for this reason all subsequent chemokine 

uptake assays were performed with this concentration of AF-CCL2.  

 

To examine different kinetics on the uptake of AF-CCL2 by CHO K1 hD6 and CHO 745 

hD6, chemokine uptake assays were performed for 10 minutes or 60 minutes. MFIs for 

each uptake assay were measured and the results are displayed in Figure 3-9. Further 

assays were performed to determine if and when the uptake of AF-CCL2 plateaus. 

Chemokine uptake assays were performed as before, however this time incubation at 37°C 

was for 20 minutes, 60 minutes or 120 minutes. MFIs for each uptake assay were recorded 

and plotted on a bar chart, which is shown in Figure 3-10. 

 

Figure 3-9 indicates that when cells are incubated with AF-CCL2 at 37°C for as little as 

10 minutes (Figure 3-9 (i)), D6 activity is already significantly different between the two 

cell lines. This difference increases in significance when cells are incubated for 60 minutes 

at 37°C (Figure 3-9 (ii)). This result suggests that D6 expressed on cells which are GAG-

deficient (CHO 745 hD6) cannot take up chemokine as effectively as wildtype cells (CHO 

K1 hD6). Figure 3-10 shows that the mean of MFI values for AF-CCL2 uptake by CHO 

K1 hD6 are similar at 60 minutes and 120 minutes. This suggests that uptake of AF-CCL2 

by CHO K1 hD6 has come to a plateau by 60 minutes. In contrast, the MFIs for CHO 745 

hD6 are still fairly consistent at 120 minutes suggesting that these cells are only capable of 

low level ligand uptake at each of the time points analysed.  

 

In summary, CHO K1 hD6 can bind and internalise AF-CCL2 more readily than CHO 

745 hD6, and this difference in chemokine uptake is most significant when cells are 

incubated for 60 minutes with ligand prior to flow cytometry analysis. Uptake of AF-

CCL2 by CHO K1 hD6 comes to a plateau after 60 minutes.   
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Figure 3-9: Uptake of AF-CCL2 by CHO K1 hD6 and CHO 745 hD6 at different time points.  
Chemokine uptake assays were performed at (i) 10 minutes or (ii) 60 minutes. Cells were analysed 
by flow cytometry and the MFI values for each experiment are plotted. Statistical analysis was 
performed using two-tailed unpaired t tests. Means were found to be significantly different and P 
values are indicated. (i) N=5, (ii) N=10  

 

 
 

Figure 3-10: Uptake of AF-CCL2 by CHO K1 hD6 is more efficient than CHO 745 hD6  
Chemokine uptake assays were performed for 20 minutes, 60 minutes or 120 minutes. Cells were 
analysed by flow cytometry and the MFI values for each experiment are plotted on a bar chart 
showing mean with standard deviation indicated. Statistical analysis was performed using two-
tailed unpaired t tests. Means were found to be significantly different at each time point. P values 
and N numbers are as follows: 20 minutes – P value =0.0093, N=10, 60 minutes – P value 
<0.0001, N=5 120 minutes – P value =0.0419, N=5.  



Chapter 3 – Results  122 

3.3.3  The efficiency of chemokine degradation by D6 
is affected by the absence of GAGs 

As discussed in the introduction (Chapter 1, section 1.6), D6 not only binds to, and 

internalises, most inflammatory CC chemokines, but also efficiently targets them for 

lysosomal degradation, making D6 a highly effective inflammatory chemokine scavenging 

receptor. Having confirmed that the absence of GAGs decreases the ability of D6 to bind 

and internalise AF-CCL2, it was necessary to assess whether the absence of GAGs also 

affected D6-mediated degradation of chemokines. To investigate this, the ability of D6 to 

remove inflammatory chemokine from its environment was examined. 

 

To test whether the absence of GAGs on the cell surface and the resultant impairment of 

D6-mediated ligand uptake affects ligand degradation, a fluorescence assay was set up, 

whereby AF-CCL22 was added to both CHO K1 hD6 and CHO 745 hD6 cells and 

incubated for either 1 hour or 24 hours. Media was collected and both cells and media were 

analysed separately for fluorescence intensity. Un-transfected CHO K1 cells were used as 

a control in these experiments. As a separate control to test degradation of chemokine by 

un-transfected CHO K1 and CHO 745 cells,  biotinylated CCL2 (bio-CCL2) was added to 

both CHO K1 and CHO 745 cells and incubated for either 1 hour or 24 hours. Media were 

then collected and the amount of intact bio-CCL2 remaining in the media was determined 

using Western blotting with streptavidin-HRP. The results of these experiments are 

presented in Figure 3-11.  

 

Figure 3-11 (a) and (b) show the fluorescence of CHO K1 hD6, CHO 745 hD6 and CHO 

K1 after 1 hour and 24 hours respectively. Interestingly the fluorescence of both CHO K1 

hD6 and CHO 745 hD6 increases substantially from 1 hour to 24 hours, suggesting that the 

fluorophore present on AF-CCL22 is not degraded along with the chemokine. In this way 

the data show uptake of AF-CCL22 over a 24 hour period and indicate that the significant 

difference in chemokine uptake between CHO K1 hD6 and CHO 745 hD6 continues over a 

24 hour period and even increases from ~4-fold to ~5-fold. Note the very low levels of 

fluorescence exhibited by un-transfected CHO K1, indicating that the increase in 

fluorescence by CHO K1 hD6 and CHO 745 hD6 is D6-mediated. Figure 3-11 (c) shows 

the fluorescence of the media taken from both CHO K1 hD6 and CHO 745 hD6 after 24 

hours. There is significantly more AF-CCL22 in the media from CHO 745 hD6, suggesting 

D6-mediated uptake and degradation of AF-CCL22 from the media is reduced when GAGs 
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are absent.  A Western blot on media taken from the un-transfected CHO cell lines after 1 

hour and 24 hours is shown in Figure 3-11 (d) and densitometry analysis of the bands 

from the 24 hour incubation is shown in (e). The Western blot and densitometry analysis 

indicates that there is a subtle reduction in the amount of bio-CCL2 left in the media of 

CHO 745 cells compared to CHO K1 cells after 24 hours. 

 

In summary, D6-mediated uptake and degradation of CC-chemokines is hampered in 

the absence of GAGs and this effect is not restricted to shorter incubation times. 
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Figure 3-11: D6-mediated degradation of CCL22 is reduced when GAGs are absent.  
Dot plot of fluorescence measurements from cells after fluorescence assays using CHO K1 hD6, 
CHO 745 hD6 and CHO K1 with the addition of AF-CCL22 and incubation from (a) 1 hour and (b) 
24 hours. (c) Dot plot of fluorescence measurements from media after fluorescence assays using 
CHO K1 hD6 and CHO 745 hD6 with the addition of AF-CCL22 and incubation for 24 hours. N=8 
for CHO K1 hD6 and CHO 745 hD6, N=5 for CHO K1 ((a) and (b) only). Data were analysed by 
unpaired, two tailed student T tests. (d) Western blot using streptavidin-HRP of Bio-CCL2 left in 
media of CHO K1 or CHO 745 cells after 0 or 24 hours (indicated). (e) Densitometry analysis of the 
24h bands from blot the Western blot shown in (d) using image J software.  
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3.4 Summary of Chapter 3  

This chapter describes experiments aimed at investigating the role of GAGs for D6 

function and specifically whether the absence of GAGs on the surface of cells affects the 

ability of D6 to bind, internalise and degrade the inflammatory chemokines CCL2 and 

CCL22.  The inherent difficulty and complexity of trying to block the numerous GAG 

subtypes present on D6-expressing cells such as lymphatic endothelial cells, led to the 

decision to use CHO cells as a surrogate for the investigation of GAG impact on D6 

function. A well-characterised CHO cell line, deficient in the synthesis of GAGs (CHO 

745) was obtained for comparison with WT CHO cells (CHO K1). Transfection of both 

cell lines with a plasmid containing D6, and subsequent manipulation of D6-expressing 

cells was required in order to generate clonal populations of CHO K1 and CHO 745 which 

expressed D6 at very similar levels. Such clones were then used in downstream analysis to 

investigate the role of GAG presentation of chemokines to D6 and the affect of their 

absence on (i) uptake and internalisation of chemokine and (ii) D6-mediated degradation of 

chemokine. The main findings presented in this chapter are the following: 

 

- The efficiency of D6-mediated uptake of CCL2 is reduced in GAG-deficient cells 

(CHO 745 hD6) compared with WT cells (CHO K1 hD6) in vitro. This suggests 

that cis-presentation of ligand by GAGs is important for D6-mediated 

internalisation and scavenging of inflammatory chemokines. 

 

- The efficiency of D6-mediated uptake of CCL22 and scavenging from the 

surrounding media also is reduced in GAG-deficient cells (CHO 745 hD6) 

compared with WT cells (CHO K1 hD6) in vitro.  

 

Such findings are consistent with data generated from studies on the significance of GAGs 

for function of other chemokine receptors and will be discussed further in Chapter 7.  
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and binding properties of D6-N 
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4.1 Introduction 

As with the N-terminal domains of ‘classical’ chemokine receptors, the D6 N-terminus 

(D6-N) is likely to act as a binding site for inflammatory chemokine ligands. Previous 

studies with peptides designed from the sequences of the N-termini of classical chemokine 

receptors, including CCR5, CXCR4, CCR3 and CX3CR1, have highlighted the potential of 

such N-terminally derived peptides to bind to their cognate ligands (Veldkamp et al., 2006, 

Ye et al., 2000, Zhu et al., 2011, Mizoue et al., 1999). In the case of CCR5-mediated HIV 

infection this has been of particular significance, with a tyrosine sulphated peptide based 

on the N-terminus of CCR5 being able to block HIV-1 entry (Farzan et al., 2000). A clear 

theme from such studies is that chemokine and/or pathogen recognition is frequently 

dependent on both the presence and the specific position of sulpho-tyrosine residues on 

both N-terminally derived peptides and full length chemokine receptors (Simpson et al., 

2009).  

 

In keeping with this, it was hypothesised that a peptide analogue of D6-N may have the 

ability to bind to a broad spectrum of inflammatory chemokines with high affinity, in a 

similar way to the full-length D6 molecule. In cases of chronic inflammation, where 

excessive inflammatory chemokine production is a contributing factor to disease, D6-N 

could potentially be used therapeutically as a non-immunogenic, broad-based 

inflammatory chemokine blocker. To achieve this, the peptide should have the ability to 

bind to, and block the action of, inflammatory CC chemokines, and in doing so prevent 

excessive inflammatory cell infiltration to sites of damage. Figure 4-1 illustrates this 

hypothesis. 

 

To examine the importance of sulphated tyrosines for possible D6-N function, and as 

detailed in section 2.8.1 of Chapter 2, both sulphated – D6-N (s) and non-sulphated – D6-N 

(non-s) versions of the D6-N peptide were synthesized and used in experiments to establish 

the binding potential of these peptides to inflammatory chemokines.  

The key questions addressed in this chapter are: 

- Does D6-N bind to inflammatory chemokines (D6 ligands)? 

- Is sulphation of D6-N essential for binding? 

- Can we measure the binding affinity of D6-N for chemokines? 

- Can addition of D6-N peptides inhibit inflammatory chemokines from binding to 

their cognate receptors? 
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Figure 4-1: The envisaged potential of using D6-N therapeutically.  
Chronic inflammation in the tissue results in excessive chemokine production and infiltration of 
leukocytes from the blood. A therapeutic based on D6-N is capable of binding to and neutralising a 
wide range of inflammatory chemokines. The chemokines can no longer bind to their cognate 
receptors expressed on the surface of inflammatory leukocytes, resulting in the inhibition of 
chemotaxis and the discontinuation of cell infiltration and associated inflammatory responses.  
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4.2 The D6-N peptide 

4.2.1  Synthesis and biochemistry  

D6-N (non-s) is a synthetic peptide representing the most N-terminal 35 amino acids of D6 

plus a hexa-His-tag. In order to make D6-N (s), D6-N (non-s) was tyrosine sulphated post 

peptide synthesis. The N-terminus of D6 contains four tyrosine residues, each of which 

may or may not be sulphated during the chemical sulphation process. The degree of 

sulphation of the D6-N peptide is difficult to control or manipulate using this method of 

sulphation (Seibert and Sakmar, 2008). The molecular weights of both D6-N (s) and D6-N 

(non-s) can be estimated based on their amino acid composition, with 4.75kDa having been 

estimated for D6-N (non-s). A differentially sulphated peptide would weigh anything 

between approximately 4.83kDa and 5.07kDa, as a single sulphate group is 80Da and a 

maximum of four tyrosine residues may be sulphated. Mass spectrometry analysis of D6-N 

(s) is shown in Figure 4-2. 

 

The data shown in Figure 4-2 confirm that D6-N (s) is a mixture of differentially 

sulphated peptides with major peaks at 4749, 4829 and 4908Da, corresponding to non-

sulphated, mono-sulphated and di-sulphated peptide species respectively. The Y-axis of the 

mass spectrometry plot represents the intensity of the signal generated by each peptide 

species. This signal correlates loosely with the relative abundance of each peptide species. 

Therefore from the data generated, it seems that the mono-sulphated peptide is the most 

abundant peptide species in this preparation of D6-N (s). The mass spectrometry data does 

not give any indication as to the positions of sulphated tyrosines on the peptides. Therefore 

the peak corresponding to the mono-sulphated peptides may represent a peptide with a 

sulphate group in any of the four possible positions.   

 

In summary, the chemically synthesised D6-N (s) used in these experiments is a mixture 

of non-sulphated and differentially sulphated peptides, with mono-sulphated peptides 

appearing to be the most abundant. 
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Figure 4-2: D6-N (s) is a mixture of differentially sulphated peptides.  
A mass spectrometry plot of D6-N (s) shows it is made up of mostly non-sulphated (4749.05), 
mono-sulphated (4829.02) and di-sulphated (4908.98) peptides. The Y-axis represents signal 
intensity, and this is correlated with relative abundance of each peptide species. 
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4.2.2  Visualisation of D6-N 

Being able to visualise both D6-N (s) and D6-N (non-s) was important when exploring the 

biochemical properties of these novel peptides. We therefore tested available anti-D6 

antibodies to see if they could detect the peptides. To this end, peptides were separated by 

SDS PAGE, and gels were either stained with Coomassie blue dye, or detected by Western 

Blotting using the anti-D6 (clone 4A5) antibody. The results are shown in Figure 4-3.  

 

Coomassie blue staining (Figure 4-3 (a)) revealed that both D6-N (s) and D6-N (non-s) 

form multiple bands on a gradient SDS-PAGE gel. The strongest band for both peptides 

was at ~8-10kDa (**), although bands at both ~4kDa (***) and ~16kDa (*) were also 

present. This result suggested that both peptides form dimers and higher order structures as 

well as existing as monomers when treated with SDS. Interestingly, Western Blotting with 

the anti-D6 (clone 4A5) antibody revealed that only the sulphated peptide is recognised by 

this antibody (Figure 4-3 (b)). This D6 antibody recognises bands corresponding to D6-N 

(s), with a strong band at ~8kDa (**), a fainter band at ~16kDa (*) and a very faint band at 

~4kDa (***). The 8kDa band is presumably a dimer and the ~16kDa band, a tetramer. Cell 

lysates from HEK cells transfected with D6 (HEK D6) and un-transfected HEK cells were 

run alongside samples as a positive and negative control to show the specificity of the anti-

D6 (4A5 clone) antibody for the full length D6 protein (49kDa). Comparison of Figure 4-3 

(a) with (b) when 1μg of D6-N (s) was loaded onto the gel shows that Western blotting 

was as sensitive as Coomassie blue staining for detecting D6-N (s). This suggests that the 

D6 antibody does not bind D6-N (s) with high affinity. 

 

In summary, D6-N (s) and D6-N (non-s) can be visualised by Coomassie staining 

revealing that both peptides exist predominantly as dimers at ~8kDa. In addition D6-N 

(s), but not D6-N (non-s) is detectable by the D6 (clone 4A5) antibody, indicating that 

this antibody detects a sulphated epitope, and suggesting that the full length D6 protein 

must be naturally sulphated on its N-terminus. 
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Figure 4-3: Visualisation of D6-N.  
(a) D6-N (s) and D6-N (non-s) visualised by Coomassie blue staining. (b) Western Blotting the with 
anti-D6 (clone 4A5) antibody. Bands are marked with asterisks. Cell lysates from HEK 293 cells 
and HEK cells transfected with D6 (HEK D6) were used as negative and positive controls 
respectively. The full length D6 protein is highlighted with a red arrow. The blots shown are 
representative of 3 experiments. 
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4.2.3  D6-N forms dimers and higher-order aggregates 
with increasing temperature 

It has been shown previously that the full length D6 receptor forms dimers and higher 

order aggregates when treated with SDS and heated to temperatures exceeding 60°C 

(Blackburn et al., 2004). The presence of more than one band when D6-N is heated with 

SDS and run on a gel suggests that D6-N is also prone to multimerisation. To investigate 

this further, 6 samples of D6-N (s) were mixed with SDS loading buffer and each was 

incubated at a different temperature for 5 minutes. Samples were then run on a gel and 

Western Blotted for detection by the anti-D6 (clone 4A5) antibody. The relative density of 

the bands was calculated using image J software. The data are shown in Figure 4-4. 

 

Western Blot analysis, shown in Figure 4-4 (a) indicated that the density of the ~16kDa 

band (*) of D6-N (s) steadily increased as the incubation temperature of D6-N (s) 

increased, suggesting that the formation of D6-N (s) aggregates occurs, at least partially, as 

a result of heating. The density of the ~8kDa (***) band also increased slightly when D6-N 

(s) was heated to high temperatures, suggesting the incidence of D6-N (s) dimer formation 

increases with increasing temperature. A band of ~12kDa (**) also begins to appear at 

temperatures exceeding room temperature and increases in density with increasing 

temperature, suggesting the formation of a trimeric species. Interestingly when D6-N (s) 

was heated to 95°C then left to cool, the densities of the resulting upper (16kDa) and lower 

(8kDa) bands resembled those of the sample in which D6-N (s) was incubated at room 

temperature. This result implies that the heat-induced aggregation of D6-N (s) is reversible. 

All densitometry analysis is shown in the histogram in Figure 4-4 (b). 

 

This biochemical property of D6-N (s) is important when designing experiments involving 

the action of this novel peptide because D6-N may behave differently while in the form of 

a dimer, or higher order aggregate, as opposed to the monomeric form. 

 

In summary, D6-N (s) exists primarily as a dimer at room temperature and forms higher 

order aggregates when heated. The formation of higher order aggregates is reversible if 

the temperature is adjusted.  
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Figure 4-4: D6-N (s) forms dimers and higher order aggregates with increasing temperature.  
(a) Western Blot for D6 using the anti-D6 (clone 4A5) antibody. D6-N (s) was incubated at different 
temperatures (as indicated) in SDS loading buffer before being run on a gel. Red boxes indicate 
the boundaries of densitometry measurements (b) Relative density plot of bands from blot (a) 
calculated using image J software. 8kDa, 12kDa and 16kDa bands at RT were set to 1. RT = room 
temperature, estimated to be ~22-23°C. Representative of 3 experiments. 
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4.3 D6-N binding to chemokines  

A number of different molecular and cellular techniques were utilized to try to establish if 

either version of the D6-N peptide is capable of binding inflammatory chemokines. The 

peptide’s HIS-tag was pivotal in the design of initial binding experiments because it was 

thought that this epitope tag would make it easier to track the peptide. HIS-tag epitopes 

have a high binding affinity for nickel; therefore nickel beads were used in initial 

experiments. The rationale being that if a chemokine bound to D6-N, the chemokine and 

the D6-N peptide would remain in complex with nickel beads, resulting in ‘pull down’ of 

the chemokine.   

 

4.3.1  D6-N peptide binding experiments utilising the 
HIS-tag  

D6-N (s) and D6-N (non-s) were incubated with CCL2; a high affinity D6 ligand. CCL19 

was also used as a negative control as this is not a D6 ligand. Nickel beads were added to 

the mixture, to bind the poly-HIS tag of the D6-N peptide, before the mixture was 

centrifuged and supernatant collected. After multiple wash steps, the beads were treated 

with a concentrated solution of imidazole to elute any bound material. Next supernatant 

and bead eluate samples were analysed by SDS PAGE with subsequent silver staining or 

Western Blotting. Results are shown in Figure 4-5.  

 

CCL19 was detected in samples by Western blotting using an anti-CCL19 antibody 

(Figure 4-5 (a)). Several attempts to detect CCL2 using two different anti-CCL2 

antibodies were unsuccessful; therefore the presence or absence of CCL2 in samples was 

determined using a silver stain (Figure 4-5 (b)). Disappointingly, the results indicated that 

neither CCL19 nor CCL2 were detectable in supernatants or bead eluates from any of the 

incubations that were set up. This suggested that the chemokine concentrations used in 

these experiments were not strong enough to be detected by the techniques utilized. 

Despite this, silver staining did reveal that D6-N (s) and D6-N (non-s) can be successfully 

coupled to and eluted from nickel beads, as large amounts of both forms of D6-N were 

detected in bead eluates, but the peptides were only barely detectable in supernatants 

(labelled on Figure 4-5 (b)).  
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Figure 4-5: CCL19 and CCL2 are not detected in complex with D6-N.  
(a) Western Blot using anti-CCL19 on samples (listed) from a nickel bead experiment. CCL19 
cannot be detected in supernatants or bead eluates from samples using either D6-N (s) or D6-N 
(non-s). Neat CCL19 (labelled)  was used as a positive control (b) Silver stain on samples (listed) 
from a nickel bead experiment. CCL2 cannot be detected in supernatants or bead eluates from 
samples using either D6-N (s) or D6-N (non-s). Neat CCL2 (labelled)  was used as a positive 
control. D6-N (s) and D6-N (non-s) are present in bead eluates (labelled). Representative of 3 
experiments. 
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4.3.2  Modification of binding experiments using 
labelled chemokines 

Due to the unsuccessful ‘pull down’ of chemokines with either form of D6-N, the assay 

was modified with use of biotinylated chemokines (biotinylated CCL3 and biotinylated 

CCL22, which are high-affinity D6 ligands, and biotinylated-CCL19), and bead eluates 

from such incubations were analysed using Western Blots. It was thought that biotinylated 

chemokines would be more easily detectable on Western Blots, with use of highly sensitive 

streptavidin-conjugated to HRP, rather than having to use individual antibodies for each of 

the chemokines. The resultant blot is displayed in Figure 4-6.  

 

Figure 4-6 (a) showed that no bands corresponding to biotinylated chemokines were 

present in any of the bead eluate samples, suggesting that the use of biotinylated ligands 

did not improve the success of this assay. It was considered that silver staining and 

Western Blot assays may not be sensitive enough to detect minimal amounts of chemokine 

in samples. With this in mind, the assay was performed again using considerably higher 

concentrations of CCL22 (10μg/ml). CCL22 in supernatants and bead eluates was detected 

using an ELISA for CCL22. The results of the ELISA are shown in Figure 4-6 (b) and 

demonstrate the absence of ‘pulled down’ CCL22 in these samples.  

 

On consideration, it was realised that these results may be more to do with the 

experimental process used rather than the binding characteristics of the molecules 

themselves. For example 5mM imidazole is used while incubating D6-N with chemokine 

and the nickel beads. This may potentially interfere with the interaction between D6-N and 

the chemokine, resulting in the chemokine being washed away before the elution step. 

Bearing in mind the small size of the D6-N peptide (estimated at ~4.75kD); it is also 

possible that the interaction between D6-N and the nickel bead causes a conformational 

change of the peptide binding site, thereby preventing it from binding chemokines. 

 

In summary, these results indicate that both versions of D6-N bind to nickel beads but 

that neither D6-N (s) nor D6-N (non-s) binding of chemokines or biotinylated 

chemokines was detectable using this assay.  
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Figure 4-6: Biotinylated chemokines are not ‘pulled down’ by D6-N attached to nickel beads.  
(a) Western Blot probed with streptavidin-HRP on samples (labelled) from nickel bead experiment 
with either D6-N (s) or D6-N (non-s) and a panel of biotinylated chemokines. Neat biotinylated 
CCL19 was used as a positive control and its detection is highlighted by the red arrow. N=1 (b) 
ELISA for CCL22 showing protein levels of CCL22 in both supernatants and bead eluates of 
samples incubated with D6-N (s). ND = not detected. 

 

 

 

 

 

 



Chapter 4 – Results  139 

4.4 D6-N binding experiments utilising 
streptavidin beads 

Given the failure of the HIS-tag based approach, we next tried a different assay in order to 

study D6-N’s binding properties. As D6-N is a small peptide, its strong attraction to the 

nickel beads used in previous binding assays may have compromised its ability to bind to 

chemokines. Therefore it was reasoned that a binding assay in which D6-N is free in 

solution may be more functionally relevant and allow it to retain its natural conformation. 

 

4.4.1  D6-N (s) binds to CCL22 

To test whether keeping D6-N (s) free in solution enhances its ability to bind D6 ligands, 

an assay was developed that utilised streptavidin beads and biotinylated chemokines. 

Biotinylated chemokines (bio-CCL2 and bio-CCL22) were incubated with either D6-N (s) 

or D6-N (non-s) and then streptavidin-linked magnetic beads were added to bind the 

biotinylated chemokine. The mixture was passed through a magnetic column and washed 

several times before samples were eluted. The ‘target’ is eluted first and this sample should 

contain any molecules that bind to the biotinylated chemokine. The biotinylated chemokine 

is then eluted by removing the column from the magnet and passing elution buffer through 

it. The biotinylated chemokine can be thought of as ‘bait’ in this type of assay. A diagram 

of the assay is shown in Figure 4-7.  

 

After elution, samples were analysed by Western Blotting (Figure 4-8 (a)) with antibodies 

for both D6 ((i) and (ii)) and streptavidin (b) to detect D6-N (s) and biotinylated 

chemokines respectively. Figure 4-8 (a) shows the presence of D6-N (s) in the ‘target’ 

sample when D6-N (s) was incubated with bio-CCL22 (i) or bio-CCL2 (ii), however D6-N 

(s) was absent in the ‘target’ sample on both blots when no chemokine was added. This 

result suggests that an association exists between D6-N (s) and both the biotinylated 

chemokines. The Western Blot also again highlights that D6-N (non-s) cannot be detected 

by the anti-D6 (clone 4A5) antibody (see lane 2 of Figure 4-8 (a) (i)), and thus an 

association between D6-N (non-s) and biotinylated chemokines cannot be determined 

using this antibody. The streptavidin Western Blot (Figure 4-8 (b)) confirms the presence 

of biotinylated CCL22 on the beads, with most being eluted in the second elution step as 

expected (described above).  
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In addition, to ensure that the observed association between D6-N (s) and both biotinylated 

CCL2 and biotinylated CCL22 was the result of a D6 ligand – D6-N (s) interaction and 

was not anything to do with the biotin-tag on these chemokines, biotinylated IgG was also 

used as ‘bait’. Subsequent to the binding assay, samples were run on Western Blots 

(Figure 4-8 (c)) using antibodies for D6 (i) and streptavidin (ii) as outlined previously. 

Figure 4-8 (c) (i) shows that biotinylated IgG had no association with D6-N (s), indicating 

that D6-N (s) ‘pull down’ is the consequence of a chemokine specific interaction. Figure 

4-8 (c) (ii) confirms the presence of biotinylated IgG on the beads, with most being eluted 

in the second elution step. 

 

In summary, the streptavidin bead binding assay provides evidence of an association 

between the sulphated D6-N peptide and biotinylated chemokines CCL2 and CCL22. 

The binding properties of D6-N (non-s) could not be determined because the D6 (clone 

4A5) antibody does not detect it. D6-N (s) does not bind biotinylated IgG, suggesting that 

D6-N (s) preferentially binds to chemokines. 
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Figure 4-7: Streptavidin bead pull-down assay.  
This assay uses biotinylated chemokines as probes to specifically isolate a ‘target’ molecule – in 
this case D6-N (s). By magnetic labelling with streptavidin beads, the molecular complex is retained 
in a column placed in a magnetic field. Washing steps remove non-specifically bound molecules, 
and afterwards the non-biotinylated ‘target’ molecules can be eluted with high purity, whereas the 
magnetically labelled biotinylated probe remains bound to the column. Once the column is removed 
from the magnetic field, the biotinylated chemokine can be eluted. 
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Figure 4-8: D6-N (s) preferentially binds to biotinylated chemokines CCL22 and CCL2.  
(a) (i) and (ii) anti-D6 (clone 4A5) Western Blot of samples (labelled) from streptavidin bead 
binding experiments. D6-N (s) is present in the ‘target’ sample when bio-CCL22 and bio-CCL2 is 
incubated with D6-N (s) (red arrows), but is absent when biotinylated chemokine is not incubated 
with D6-N (s). Neat D6-N (s) and D6-N (non-s) were run as positive controls in (i) and neat D6-N 
(s) was run as a positive control in (ii). (b) Western Blot for streptavidin on samples from (a) (i) 
shows the presence of bio-CCL22 in the samples. (c) (i) Western Blot using the anti-D6 (clone 
4A5) antibody of samples (labelled) from streptavidin bead binding experiments with bio-IgG. D6-N 
(s) is not present in either ‘target’ sample. Neat D6-N (s) was run as a positive control (ii) Western 
Blot using streptavidin HRP on samples (labelled) indicates bio-IgG was present mostly in the 
second eluate as expected. Bio- IgG is made up of a light chain ~25kDa and a heavy chain 
~50kDa, as indicated by red arrows. BM = biotinylated molecule. 
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4.4.2  D6-N(s) binds CCL2 and CCL22, but not CCL19 

In order to fully confirm that the observed ‘pull-down’ of D6-N (s) was due to a specific 

interaction with chemokines, and in particular, D6 ligands, the experiment was repeated 

using unlabelled CCL22 as a competitor for D6-N (s) binding.  Unlabelled CCL22 at a 20-

fold molar excess was added to a mixture of D6-N (s) and biotinylated chemokine (either 

CCL2 or CCL19) before the addition of streptavidin microbeads. Biotinylated CCL19 was 

included in the experiment to assess the ability of D6-N (s) to bind to chemokines which 

are not D6 ligands. It was hypothesized that most of the D6-N (s) would bind to the large 

quantities of unlabelled CCL22 in the mixture and this would wash freely through the 

magnetic column, leaving less D6-N (s) binding to the biotinylated chemokines which are 

coupled to streptavidin-linked magnetic beads.  Therefore it was expected that less D6-N 

(s) would be eluted in ‘target’ samples when large quantities of unlabelled CCL22 was also 

added to the incubations. In samples where only the biotinylated chemokines were used, it 

was hypothesised that more D6-N (s) would be ‘pulled down’ by the D6 ligand CCL2 than 

by the non-D6 ligand CCL19.  Western Blots and relative density plots are shown in 

Figure 4-9 (a) and (b) respectively. 

 

Two major themes were apparent from the Western Blots on samples from the competition 

experiment (Figure 4-9 (a)). Firstly biotinylated CCL2 ‘pulls down’ more D6-N (s) than 

biotinylated CCL19 (compare lanes 1 and 3), suggesting that D6-N (s) has a higher affinity 

for D6 ligands than non-D6 ligands. In effect, the addition of CCL19 is negligible as 

similar amounts of D6-N (s) were ‘pulled down’ when no chemokine was added (lane 5, 

negative control). Secondly, in samples where unlabelled CCL22 was added, instead of 

competition, the opposite was apparent whereby the more unlabelled CCL22 that was 

added to the sample, the more D6-N (s) was being ‘pulled down’. For example, when 

unlabelled CCL22 was added at a 20-fold molar excess along with biotinylated CCL19 

(lane 4), the amount of D6-N (s) pulled down is almost 18 times the amount that is pulled 

down by biotinylated CCL19 alone (lane 3), as calculated by the working out the relative 

densities of the bands using image J software (Figure 4-9 (b)).  

 

It was hypothesised that the results observed in lanes 2, 4 and 6 in Figure 4-9 (a) were a 

consequence of adding large quantities of protein to the column, causing such protein to 

get stuck and retain D6-N (s) in the column until the elution steps. In order to test this, 

control experiments were set up, including using anti-HA beads to test if chemokines can 
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bind to any type of bead, and also using large amounts of BSA instead of unlabelled 

CCL22 to find out if D6-N (s) is being trapped in the column through a non-specific 

interaction with excess amounts of protein instead of a specific interaction between D6-N 

(s) and CCL22. The Western Blot on control samples is shown in Figure 4-9 (c). 

 

Figure 4-9 (c) revealed that unlabelled CCL2 (lane 2) and CCL22 (lane 4) added at 0.2μg 

(the same quantity of biotinylated CCL2 and biotinylated CCL22 added in previous 

experiments) pulled down similarly low levels of D6-N (s) as the negative control (where 

D6-N (s) was incubated on its own). This suggested that un-tagged CCL2 and CCL22 are 

not binding to the streptavidin beads. As before, when 0.2μg of bio-CCL19 was used as 

‘bait’, the amount of D6-N (s) pulled down was similar to the negative control (lane 3). 

This substantiated the result observed in Figure 4-9 (a) (lane 3), and suggests that D6-N 

(s) has a much higher affinity for the inflammatory chemokines CCL2 and CCL22, than 

for CCL19. Adding large amounts of BSA (lane 5) pulled down similar amounts of D6-N 

(s) as the negative control (lane 1). This is in contrast to lane 5 of Figure 4-8 (a), whereby 

large amounts of unlabelled CCL22 ‘pulled down’ almost 30 times as much D6-N (s) as 

the negative control. This observation suggests that adding large quantities of protein to the 

column will result in increased non-specific binding of D6-N (s) to the beads, however D6-

N (s) will only remain in the column after washes if there is a specific interaction going on 

(i.e. between D6-N (s) and CCL22). This result may also be due to the natural 

electrostaticity of CCL22 and its tendency to form large oligomers, a characteristic that has 

been observed in radio-ligand binding studies (Viney et al., 2014). Additionally, anti-HA 

beads ‘pulled down’ similar levels of D6-N (s) to the negative control ruling out the 

possibility that there was a problem with non-specificity of the streptavidin beads. 

 

 In summary, D6-N (s) binds the inflammatory CC chemokines CCL2 and CCL22 with 

high affinity, but does not bind to the non-D6 ligand, CCL19, therefore confirming 

specificity of D6-N for inflammatory CC chemokines. The amount of D6-N (s) ‘pulled 

down’ in the binding assay is dependent on the amount of D6 ligand incubated with D6-

N (s). 
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Figure 4-9: D6-N (s) binds to the inflammatory CC chemokines, CCL2 and CCL22 but not the 
non-D6 ligand CCL19.  
(a) anti-D6 (clone 4A5) Western Blot of samples (labelled) from streptavidin bead binding 
experiments with different mixtures of unlabelled and biotinylated chemokines. D6-N (s) is present 
in bead eluates when either CCL2 or CCL22 is included, but is absent otherwise. (b) Bar chart 
showing relative densities of D6-N (s) in each lane. Relative densities were calculated using image 
J software and lane 5 was normalised to 1. (c) anti-D6 (clone 4A5) Western Blot of samples 
(labelled) from control experiments using either streptavidin beads or anti-HA beads. D6-N (s) is 
not retained in the column by unlabelled CCL2 or CCL22 (lanes 2 and 4), biotinylated CCL19 (lane 
3) or large quantities of BSA (lane 5). Streptavidin beads do not non-specifically bind D6-N (s) or 
unlabelled chemokines. Neat D6-N (s) (200ng) was run as a positive control on both (a) and (c). 
Neat CCL22 (4μg) was run on (a) to ensure that the anti-D6 (4A5) antibody does not bind non-
specifically to chemokines.  
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4.4.3  D6-N (s) binds with high affinity to CCL2, as 
determined by Biacore 

Surface plasmon resonance (SPR) using Biacore technology can be used for the assessment 

of interactions between proteins and their ligands. Experiments typically involve 

immobilizing one molecule (referred to as the ligand) of a binding pair onto the surface of 

a sensor chip and passing its partner (referred to as the analyte) across the surface of the 

chip. Changes in the refractive index at the surface where the binding interaction occurs 

are detected by the hardware and recorded as resonance units (RU).    

 

In order to directly measure the binding affinity between both versions of the D6-N peptide 

and CCL2, Biacore technology was used. This was achieved by coating the sensor surface 

of a Biacore chip with neutravidin - a deglycosylated version of streptavidin, and passing 

biotinylated CCL2 over it to immobilise the CCL2 in the correct orientation for binding. 

D6-N (s) and D6-N (non-s) were then passed over the CCL2-coated chip at different 

concentrations, and binding affinity was measured in real time, as response units vs. time 

on a sensorgram. Figure 4-10 shows the data resulting from this experiment.  

 

The sensorgram in Figure 4-10 depicted a large peak of ~900 RU when D6-N (s) was 

injected at a concentration of 1 mg/ml. A change of 900 RU is indicative of a very strong 

attraction between D6-N (s) and CCL2, however, there was no evidence of a threshold 

limit to function, as D6-N (s) injected at a lower concentration of 0.1 mg/ml elicited no 

response. This was unanticipated, as a peak one tenth of the size of the peak observed 

when D6-N (s) was injected at 1 mg/ml would be expected. Regeneration of the chip was 

performed, whereby all analyte is removed from the chip, followed by injection of D6-N 

(non-s) at 1 mg/ml. The sensorgram showed no detectable response in RU when D6-N 

(non-s) was injected at 1 mg/ml, suggesting that D6-N (non-s) does not have a high 

attraction to CCL2. 

 

Although the data from the Biacore experiment looked promising, the peak generated did 

not resemble peaks which are typically generated from high-affinity protein-protein 

interactions. The experiment was not repeated because of uncertainties regarding the 

sensitivity of the Biacore instrument in measuring the binding affinity between small 

proteins. In addition, indications that both forms of the D6-N peptide exist naturally as 

dimers and higher order aggregations (detailed in previous sections in this chapter) 
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discouraged any further use of Biacore to analyse the binding affinity between the D6-N 

peptide and chemokines, as dimerization and/or aggregation of proteins is likely to cause 

problems with Biacore analyses.  

 

In summary, the use of Biacore technology to examine the binding affinity between D6-

N and CCL2 further suggested that a strong interaction exists between D6-N (s) and 

CCL2; however these data cannot fully be relied upon due to complexities of the 

biochemistry of D6-N.  

 

 

 

Figure 4-10: Sensorgram displaying results from Biacore experiment.  
Times of injection for D6-N (s) at both 0.1 mg/ml and 1 mg/ml are indicated in red, and injection of 
D6-N (non-s) is indicated in green. Injection of D6-N (s) at 1 mg/ml causes a net increase of 
approximately 900 RU, whereas injection of D6-N (s) at 0.1 mg/ml or D6-N (non-s) at 1 mg/ml does 
not induce any change in RU. N=1. 
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4.5 Addition of D6-N to cells blocks interaction of 
CCL2 with cognate receptors 

With evidence to suggest that D6-N (s) is able to bind to the inflammatory chemokines 

CCL2 and CCL22, it was important to examine D6-N’s functional effects. To investigate 

this, chemokine uptake assays were performed using different cell lines. This involved 

addition of AF-CCL2 to cells and measurement of AF-CCL2 uptake by flow cytometry. 

Full details of the chemokine uptake assays can be found in Chapter 2, section 2.5.2. The 

gating strategy used for this experiment and similar flow cytometry experiments is shown 

in Figure 4-11. The plot shown is representative of a negative control, where AF-CCL2 

was not added to cells.   

 

 
 

Figure 4-11: Gating strategy for chemokine uptake assays. 
(i) Forward and side scatter was used to gate the main population of cells. (ii) Cell doublets were 
excluded, by gating on only single cells. (iii) Dead cells were excluded using DRAQ7, a fluorescent 
chemical which binds to DNA but only stains the nuclei of dead cells (iv) Cells were analysed on 
the APC channel to detect alexa-fluor-647 fluorescence, as a measure of chemokine uptake. 
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4.5.1  D6-N (s), but not D6-N (non-s) inhibits AF-CCL2 
uptake by D6 expressed on HEK D6 transfected cells 

To explore the effect of D6-N on chemokine uptake by the full length D6 receptor, both 

D6-N (s) and D6-N (non-s) were added along with AF-CCL2 to HEK 293 cells transfected 

with D6 (HEK D6), (see Chapter 2, section 2.4 for details of the transfection process). AF-

CCL2 and either D6-N (s) or D6-N (non-s) were added, either directly to cells, or after pre-

complexing by incubating peptides and chemokine together at room temperature for 

30mins before addition to cells. Cells were incubated at 37°C for 60 minutes before being 

washed and analysed by flow cytometry. Figure 4-12 summarises the results. Figure 4-12 

(a) shows representative flow cytometry profiles from cells only (i), with the addition of 

AF-CCL2 (ii) and with the addition of AF-CCL2 and D6-N (s) (iii). The MFIs of cells 

from each assay were plotted on a dot plot shown in Figure 4-12 (b).  

 

Chemokine uptake assays indicated that when D6-N (s) was added to HEK D6 cells along 

with AF-CCL2 (Figure 4-12 (a) (iii)), the uptake of AF-CCL2 by D6 was significantly 

decreased as compared to cells that were given AF-CCL2 only. Conversely D6-N (non-s) 

had no significant effect on uptake of AF-CCL2 by HEK D6 cells (Figure 4-12 (b)). This 

result suggested that sulphation of the D6 peptide is necessary for binding to CCL2 and 

provides evidence that free D6-N (s) can bind cognate chemokine in solution and inhibit 

binding to full-length D6. The results also showed that pre-complexing AF-CCL2 with 

either D6-N (s) or D6-N (non-s) prior to their addition to cells had no significant effect on 

the inhibition of AF-CCL2 uptake by HEK D6 cells. 

 

In summary, D6-N (s), but not D6-N (non-s), can bind CCL2 in vitro and this binding 

prevents subsequent chemokine uptake by the full length D6 receptor expressed on the 

surface of transfected HEK cells.  
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Figure 4-12: D6-N (s) prevents uptake of AF-CCL2 by HEK D6 cells.  
(a) Representative flow cytometry plots from chemokine uptake assay displaying AF-CCL2 uptake 
by HEK D6 cells with (i) PBS added, (ii) AF-CCL2 added and (iii) AF-CCL2 + D6-N (s) added. AF-
CCL2 uptake is seen as an increase in MFI. (b) Dot plot of MFIs from chemokine binding/uptake 
assay. Samples in which incubation of D6-N and AF-CCL2 took place before addition to cells are 
labelled as ‘complexed’. N=5 per sample. Data were analysed by unpaired, two tailed student T 
tests. ***p<0.0001, **p=0.001, NS= no significant difference. 
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4.5.2  D6-N inhibits AF-CCL2 uptake by CCR2 
expressed on THP1 cells 

Given that D6-N (s) is capable of binding to inflammatory CC chemokines and inhibiting 

uptake of AF-CCL2 by D6, we next examined whether this effect could be repeated using 

cells which naturally express a classical inflammatory chemokine receptor. THP1 cells, 

which naturally express CCR2, were used in these experiments. 

 

Similar experimental procedures were followed as before with the addition of AF-CCL2 

and either D6-N (s) or D6-N (non-s) to THP1 cells. As a separate control, AF-CCL2 was 

added to the cells along with unlabelled CCL2 at a 20-fold molar excess. This control was 

included to demonstrate reduction of uptake of AF-CCL2 in the presence of a competitor. 

All cell samples were incubated for 60 minutes at 37°C, before being washed and analysed 

by flow cytometry to assess AF-CCL2 uptake. Figure 4-13 summarises the results. Figure 

4-13 (a) shows representative flow cytometry profiles from each condition tested. The 

MFIs of cells from each assay were plotted as shown in Figure 4-13 (b).  

 

These assays indicated that the addition of either D6-N (s) or D6-N (non-s) along with AF-

CCL2 to THP1 cells significantly decreased their uptake of AF-CCL2 (Figure 4-13 (a) 

(iv) and (v)). Addition of D6-N (s) to cells decreased their MFI to a greater extent than 

addition of D6-N (non-s) (Figure 4-13 (b)); however the result with D6-N (non-s) refines 

earlier findings suggesting that the addition of D6-N (non-s) had no effect on uptake of 

chemokine by HEK D6 cells.  

 

In summary, addition of either version of D6-N along with AF-CCL2 reduced the uptake 

of AF-CCL2 by CCR2 expressing THP1 cells, although D6-N (s) was more effective. 

This suggests that D6-N could potentially be useful as an inhibitor of inflammatory 

chemokine receptor interactions. 



Chapter 4 – Results  153 

 

 
 

Figure 4-13: D6-N prevents uptake of AF-CCL2 by CCR2 expressed on THP1 cells.  
(a) Representative flow cytometry profiles showing AF-CCL2 uptake by THP1 cells with (i) PBS 
added, (ii) AF-CCL2 added, (iii) AF-CCL2 + unlabelled CCL2 (20 fold molar excess) added, (iv) 
AF-CCL2 + D6-N (s) added, (v) AF-CCL2 + D6-N (non-s) added. AF-CCL2 uptake is seen as a 
‘right-shift’ in flow cytometry profiles. (b) Dot plot of MFIs from chemokine binding/uptake assay. 
N=5 per sample, except in case (iii) (lane 2) where N=2. Data were analysed by unpaired, two 
tailed student T tests. 
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4.5.3  D6-N inhibits AF-CCL2 uptake of chemokines in 
a dose-dependent manner 

Having established that D6-N (s) is capable of inhibiting the uptake of AF-CCL2 by both 

HEK D6 and THP1 cells, we next set out to determine the dose response relationship 

between the amount of D6-N (s) added to cells and the decrease in uptake of AF-CCL2. To 

this end, assays were performed with increasing concentrations of D6-N (s). D6-N (non-s) 

was also re-tested for its ability to decrease uptake of AF-CCL2. Figure 4-14 shows the 

resulting data.  

 

In this assay, the addition of AF-CCL2 to the cells did not induce the same level of uptake 

as observed previously. This is most likely due to the disintegration of the fluorophore on 

CCL2, which can happen as a result of repeated freeze-thaw cycles. In spite of this, the 

addition of D6-N (s) still resulted in a decrease in AF-CCL2 uptake, as shown in the flow 

cytometry profiles (Figure 4-14 (a) (i) and (ii)). This effect was dose dependent, with 

reduction in uptake gradually increasing as the quantity of D6-N (s) increased (Figure 4-

14 (a) (iii)) and the most significant difference in binding/uptake occurring when the 

highest dose of D6-N (s) was added (Figure 4-14 (b)). D6-N (non-s) did not have any 

significant effect on AF-CCL2 uptake in this experiment, but this may be because AF-

CCL2 was not as potent in this experiment, rendering the subtle reduction in uptake 

induced by D6-N (non-s) (observed in Figure 4-13) undetectable in this instance. 

 

In summary, AF-CCL2 uptake by THP1 cells is reduced with the addition of D6-N (s), 

and this reduction in uptake increases as the amount of D6-N (s) added to the cells 

increases. In addition, use of D6-N (s) results in a greater reduction in uptake than use 

of D6-N (non-s), suggesting that D6-N (s) binds to CCL2 with higher affinity than D6-N 

(non-s).  
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Figure 4-14: D6-N (s) decreases the uptake of AF-CCL2 by THP1 cells in a dose dependent 
manner, while D6-N (non-s) has no effect.  
(a) Representative flow cytometry profiles showing AF-CCL2 uptake by THP1 cells with (i) AF-
CCL2 + 0.5μg D6-N (s) and (ii) AF-CCL2 + 4μg D6-N (s). (iii) histogram of data from uptake 
assays using different quantities of D6-N (s) displaying a gradual decrease in uptake of AF-CCL2, 
blue line = AF-CCL2 + 0.5μg D6-N (s), green line = AF-CCL2 + 2μg D6-N (s), red line = AF-CCL2 + 
4μg D6-N (s). (b) Dot plot of MFIs from chemokine binding/uptake assays. Samples are listed 
along with t test results. N=5 or more per sample. Data were analysed by unpaired, two tailed 
student T tests. 
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4.6 The pattern and degree of sulphation of D6-N 
(s) is crucial to its binding to inflammatory 
chemokines  

With evidence indicating that D6-N (s) is able to significantly reduce chemokine uptake by 

cells in vitro, preparations were made to start experimentation in vivo. A new batch of D6-

N (s) peptide was ordered as stocks of the existing D6-N (s) peptide had run out. The new 

batch of D6-N (s) will be referred to as D6-N (s) NEW throughout this thesis.  

 

4.6.1  D6-N (s) and D6-N (s) NEW contain different 
sulphation patterns 

Mass spectrometry analysis of D6-N (s) (i) is shown in comparison with D6-N (s) NEW 

(ii) in Figure 4-15 (a). In order to visualise D6-N (s) NEW and compare it to D6-N (s), a 

Western Blot for D6 was performed following SDS PAGE of both peptides. A cell lysate 

from HEK D6 cells was used as a positive control. The blot is shown in Figure 4-15 (b). 

 

Both mass spectrometry and Western Blot data indicated that D6-N (s) and D6-N (s) NEW 

were different, both in composition and abundance of sulphated peptides and in general 

size and biochemistry. As detailed previously, D6-N (s) was thought to be made up of 

predominantly mono-sulphated peptides and formed a dimer of ~8-10kDa apparent on 

SDS PAGE. Conversely mass spectrometry data of D6-N (s) NEW (Figure 4-15 (a) (ii)) 

indicated that it is a mixture of mono-, di- and tri-sulphated peptides, with the signal 

intensity suggesting that the di-sulphated peptide is most abundant. Western Blot analysis 

of D6-N (s) NEW (Figure 4-15 (b)) showed that, like D6-N (s), it was recognised by the 

anti-D6 (clone 4A5) antibody, however, the antibody did not recognise bands at ~8-10kDa 

and ~16kDa, as observed with D6-N (s). Alternatively D6-N (s) NEW seemed to migrate 

as two bands, one at ~13kDa and one at ~14kDa (indicated by red arrows).  

 

The differences between D6-N (s) and D6-N (s) NEW were not entirely unexpected 

because of the unpredictability of the chemical sulphation process after peptide synthesis. 

It is difficult to determine the exact ratios of the differentially sulphated species of peptide 



Chapter 4 – Results  157 

within the two batches, and hence almost impossible to reproduce precisely the make up 

from one batch to the next.  

 

In summary, D6-N (s) and D6-N (s) NEW represent differentially sulphated peptide 

preparations. Mass spectrometry results suggested that mono-sulphated peptides were 

most abundant in D6-N (s), whereas di-sulphated peptides were most abundant in D6-N 

(s) NEW. The positioning of sulphated peptides in each could not be determined. D6-N 

(s) NEW is slightly larger in size than D6-N (s) when run on an SDS PAGE gel. Both 

peptides are recognised by the anti-D6 (clone 4A5) antibody.     
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Figure 4-15: Different batches of D6-N (s) contain differently sulphated peptide species.  
(a) Mass spectrometry profiles of (i) D6-N (s) and (ii) D6-N (s) NEW show that D6-N (s) contains a 
mixture of non-sulphated, mono-sulphated and di-sulphated peptides (indicated in green), whereas 
D6-N (s) NEW contains a mixture of mostly di-sulphated and tri-sulphated peptides (indicated in 
red). (b) D6-N (s) and D6-N (s) NEW differ in their size and composition under SDS PAGE 
conditions, as determined by Western Blotting using the anti-D6 (clone 4A5) antibody.  
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4.6.2  D6-N (s) NEW does not bind to the inflammatory 
CC chemokines CCL2 or CCL22 

Having established that D6-N (s) and D6-N (s) NEW have different biochemical 

properties, it was necessary to investigate D6-N (s) NEW further to determine its ability to 

bind inflammatory chemokines. Similar assays were undertaken as with D6-N (s) to 

investigate D6-N (s) NEW. This included the binding assay described previously (section 

4.4.1) using streptavidin beads and biotinylated chemokines. In addition, chemokine 

uptake assays were carried out, using similar methods as before (section 4.5.2); to 

investigate whether D6-N (s) NEW affected the ability of THP1 cells to uptake CCL2. In 

each assay, D6-N (s) NEW reconstituted in water or PBS was tested. The results of these 

experiments are shown in Figure 4-16. 

 

Western Blotting of samples from the streptavidin bead binding assay (Figure 4-16 (a) (i)) 

showed that D6-N (s) NEW does not bind biotinylated CCL22 or biotinylated CCL19, as 

indicated by the absence of bands for D6-N (s) NEW in any of the samples. Overnight 

exposure to x-ray film further confirmed that D6-N (s) NEW was not present in the eluted 

samples (Figure 4-16 (a) (ii)). Western Blots using streptavidin-HRP of the material eluted 

after the target samples confirmed the presence of either biotinylated CCL22 or 

biotinylated CCL19 in these samples (Figure 4-16 (a) (iii)); therefore there was no 

problem with the ‘bait’ used in these binding assays. The addition of D6-N (s) NEW to 

cells also did not affect the uptake of CCL2 by THP1 cells in the chemokine uptake assay 

(Figure 4-16 (b)). This was the case even when very large quantities of D6-N (s) NEW 

were added to cells.  

 

In summary, Unlike D6-N (s), D6-N (s) NEW does not bind to CCL2 or CCL22, either in 

binding assays or chemokine uptake assays. These results compared to those obtained 

using the original batch of D6-N (s) strongly suggests that the pattern and degree of 

sulphation of D6-N (s) is crucial to its binding capability to inflammatory chemokines.  
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Figure 4-16: D6-N (s) NEW does not bind to inflammatory chemokines.  
(a) (i) 1 minute exposure and (ii) overnight exposure of Western Blots of samples (listed) using the 
anti-D6 (clone 4A5) antibody. (iii) Western Blotting of ‘bait’ samples using streptavidin-HRP. (b) 
Dot plot of MFIs from chemokine binding/uptake assays as determined by flow cytometry analysis. 
N=5 per sample. Data were analysed by one-way ANOVA tests, no significant difference was 
found between any of the groups, p=0.0839.  
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4.7 Summary of Chapter 4 

This chapter describes experiments designed to investigate (i) the biochemistry of the D6-

N peptides (ii) D6-N’s ability to bind inflammatory CC chemokines (iii) D6-N’s ability to 

reduce the binding of inflammatory CC ligands to their receptors (iv) whether or not the 

sulphation status of D6-N affects its chemokine binding capabilities. Such experiments are 

of value in helping decide if D6-N has the potential to be developed as an anti-

inflammatory drug, with the capability to mop up superfluous inflammatory CC 

chemokines produced during chronic inflammatory diseases. The main findings that are 

presented in this chapter are the following: 

 

- The sulphated D6-N peptide is a mixture of differentially sulphated peptides which 

exists predominantly as a dimer at room temperature and forms higher order 

aggregates when heated. The anti-D6 (clone 4A5) antibody recognises only D6-N 

(s), suggesting that D6 is naturally sulphated on its N-terminus and that the 

antibody recognises a sulphated epitope. This is in agreement with previous 

biochemical studies of D6 which demonstrated it was sulphated (Blackburn et al., 

2004), but extends this by defining the N-terminus as a site of sulphation. 

 

- D6-N (s) binds to the inflammatory CC chemokines CCL2 and CCL22, which are 

natural high-affinity D6 ligands. Preliminary data generated from Biacore 

experiments support this finding by showing D6-N (s) binds to CCL2.  

 

- D6-N (s) can prevent CCL2 binding to either D6 expressed on HEK transfectants 

or CCR2 expressed on THP1 cells. This suggests that the addition of D6-N (s) 

could potentially inhibit inflammatory chemokine/chemokine receptors 

interactions. It also suggests that sulphation of tyrosine residues on the D6-N 

peptide increases its binding affinity for CCL2. 

 

- The pattern and degree of sulphation of D6-N (s) is crucial to its ability to bind 

inflammatory CC chemokines, however unfortunately it is difficult to determine the 

different species of peptide present in either batch of D6-N (s).   
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It is reasonable to assume that the optimum pattern of sulphation for D6-N (s) in order to 

bind chemokines would be that which exists on the full length D6 receptor. Further 

investigation of the consequences of sulphation for the full-length D6 receptor and a 

possible natural version of D6-N will be discussed in the following chapters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Chapter 5 - Results 

N-terminal processing of D6 and 
possible mechanisms of cleavage 
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5.1 Introduction 

In recent years it has become apparent that certain chemokine receptors can be regulated 

by proteolytic cleavage of their extracellular domains. As discussed in section 1.2.2.3, 

CXCR1, CXCR2 and CXCR4 have all been shown to be regulated in this way by the 

action of different proteolytic enzymes (Laarman et al., 2012, Hartl et al., 2007, 

Valenzuela-Fernandez et al., 2002). Interestingly in the case of CXCR1, the resulting 

cleaved peptide has been shown to have biological activity, and its downstream effects 

include inducing the release of CXCL8; a CXCR1 ligand (Hartl et al., 2007). Such studies 

highlight an important role for proteases in the regulation of chemokine receptor function. 

Figure 5-1 summarises some examples of chemokine receptor cleavage.  

 

Previous studies on the characterization of the atypical chemokine receptor D6 revealed 

that the N-terminus of D6 is subject to processing, giving rise to a truncated receptor of 

approximately 38kDa (Blackburn et al., 2004). This suggests that the resultant cleaved N-

terminal peptide should be ~11kDa, and may have post translational modifications 

including glycosylation and sulphation of tyrosine residues. Taking into account the 

previous findings for other chemokine receptors, investigations were initiated to examine 

potential mechanisms involved in N-terminal cleavage of D6 and the nature of the N-

terminal cleavage product.  
 

Key questions were: 

- Can previous studies demonstrating the existence of a truncated D6 protein be 

repeated? 

- Can the mechanism of cleavage be determined and the effect enhanced? 

- Does cleavage of D6 modify its ability to bind inflammatory chemokines? 

- Can the N-terminal cleavage product be identified and isolated, and if so can it be 

characterised? 

In order to confirm previous studies which indicated the existence of a truncated D6 

protein, it was decided that heterologous transfectants expressing the HA-D6 plasmid 

would be employed (see chapter 3, section 3.2.1 for details on this plasmid). Transfected 

cells are able to express extremely high levels of D6; therefore it was thought that such 

cells would provide an effective and valuable resource to study the biochemical properties 

of the D6 protein. 
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Figure 5-1: Examples of chemokine receptor cleavage and its biological consequences. 
Diagram highlighting previous reports of proteolytic processing of CXCR1 and CXCR2, resulting in 
inactivation of the receptor and important downstream effects, including reduced anti-microbial 
activity by neutrophils. Created using information from (Laarman et al., 2012) and (Hartl et al., 
2007).  
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5.2 Seeking evidence for a ‘shed’ D6 N-terminal 
peptide 

5.2.1  HEK 293 cells  

The Human embryonic kidney (HEK) 293 cell line was originally derived from human 

embryonic kidney cells grown in tissue culture and has been experimentally transformed 

with adenovirus 5 DNA. HEK 293 cells are easy to grow and transfect and are commonly 

used as a vehicle to analyse receptor function. For these reasons, HEK 293 cells were used 

to analyse the possible shedding of a D6 N-terminal peptide.  

 

5.2.2  Western Blot antibodies 

Western Blotting was used as the principle means to detect an N-terminally derived D6 

peptide. It was therefore essential that the antibodies used recognised epitopes associated 

specifically with the N-terminus or the C-terminus of D6. Consequently the anti-D6 (clone 

4A5) antibody and an anti-HA antibody were used for detection of the N-terminus, and 

anti-D6 (Sigma) antibody was used for detection of the C-terminus.  

 

5.2.3  Transfection of HEK 293 cells with HA-D6  

HEK 293 cells were stably transfected with pcDNA3.1 HA-D6 using effectene (as 

described in Chapter 2, section 2.4). Cells were selected using G418 and assessed for D6 

expression by quantifying D6 using flow cytometry. Surface expression of D6 was 

confirmed using the anti-D6 (clone 4A5) antibody with a FITC-conjugated secondary 

antibody. Flow cytometry profiles and histograms are shown in Figure 5-2 which 

compares (a) un-transfected HEK 293 and (b) HEK D6. 

 

Flow cytometry analysis indicated that transfection was a success with over 75% of cells 

expressing high levels of D6 (Figure 5-2 (b) (i) and (ii)).  
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Figure 5-2: D6 expression of the HEK 293 cell line before and after transfection.  
D6 expression was determined on (a) HEK 293 and (b) HEK D6 cells by flow cytometry using the 
mouse anti-human D6 antibody (clone 4A5) and an anti-mouse FITC secondary antibody. Flow 
cytometry profiles are shown in (i) and histograms in (ii). Histograms show the isotype controls in 
red and D6 expression in blue. Cells positive for D6 expression are FITC positive and this is shown 
as a right shift on the flow cytometry profiles. 
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5.2.4  Detection of an N-terminally ‘shed’ D6 peptide 

In order to verify previous results which indicated that D6 is subject to N-terminal 

processing, detection methods were employed as outlined in Figure 5-3. 

Immunoprecipitation (IP) assays were performed by mixing the conditioned media with 

magnetic anti-HA microbeads and ‘on-column’ binding. The microbeads are held 

magnetically in the column, and any material binding to the microbeads is also retained. 

Material held in the column can be eluted using hot SDS buffer.  

 

Western Blot analysis of samples of un-immunoprecipitated conditioned media taken 

directly from cultures of both un-transfected HEK and HEK D6 cells is shown in Figure 5-

4 (a). Western blotting using either the (i) anti-HA or the (ii) anti-D6 (clone 4A5) antibody 

did not detect any shed D6-specific peptides. Many of the bands detected seem to be non-

specific and are most likely attributed to proteins in the growth media (indicated as ‘non-

specific’ in Figure 5-4 (a) (i)). Red arrows highlight full length D6 detected in HEK D6 

cell lysates using both antibodies (Figure 5-4 (a) (i) and (ii)). Next samples were subjected 

to IP before SDS PAGE and Western Blot analysis with the anti-D6 (clone 4A5) antibody 

or silver stain analysis (Figure 5-4 (b)). The conditioned media samples labelled HEK D6 

1 and HEK D6 2 are from cell cultures that were 80% confluent and 100% confluent 

respectively. Bands were present in immunoprecipitated HEK D6 conditioned media, but 

absent in HEK media in both the Western Blot (Figure 5-4 (b) (i)) and the silver stain 

(Figure 5-4 (b) (ii)), and are indicated using a red box. These bands are ~15kDa, which is 

near to the expected size of a cleaved D6 N-terminal peptide. Further analysis of this band 

is needed in order to confirm that it is an N-terminal cleavage product of D6.  

 

In summary, cultured HEK D6 cells release a ~15kDa peptide into the growth media, 

which can be enriched by IP using anti-HA beads and detected on Western Blots using 

an anti-D6 antibody which is specific for the D6 N-terminus. This peptide is not released 

by un-transfected cells, and therefore potentially represents a shed N-terminal peptide.  
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Figure 5-3: Detection method for ‘shed’ D6 N-terminal peptide.  
HEK D6 transfectant cells were cultured until highly confluent. The conditioned media from cell 
cultures was collected and either tested directly by Western Blotting or purified using an IP assay, 
whereby anti-HA beads were used to capture any material present in the media which bears an 
HA-tag. Material bound to the anti-HA beads was eluted and resultant samples were subjected to 
SDS PAGE and analysed by Western blotting and/or silver staining. 
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Figure 5-4: Detection of a shed N-terminal peptide derived from D6.  
After collection of conditioned media from HEK and HEK D6 cell cultures, and also HEK D6 cell 
lysates, samples were either (a) analysed directly by SDS PAGE and Western Blots using (i) an 
anti-HA antibody or (ii) the anti-D6 (clone 4A5) antibody. The red arrows indicate full length D6 
detected in HEK D6 cell lysates. (b) Conditioned media was enriched by IP using anti-HA beads 
and resulting samples were analysed by SDS PAGE and (i) Western Blotting using the anti-D6 
(clone 4A5) antibody or (ii) silver staining. HEK D6 1 and HEK D6 2 are from cell cultures that were 
80% confluent and 100% confluent respectively. Red boxes highlight a ~15kDa band present in 
conditioned media from HEK D6 cell cultures after enrichment with anti-HA beads. The Western 
Blot shown in (b) (i) is representative of 3 separate experiments. 
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5.2.5  Detection of truncated D6 protein 

With evidence to suggest that an N-terminally derived D6 peptide is present in conditioned 

media from cultures of HEK D6 cells, we next examined the D6 protein expressed by these 

cells for evidence of truncation. As shown in Figure 5-4 (a) (ii), Western Blot analysis of 

HEK D6 cell lysates using the anti-D6 (clone 4A5) antibody detected a full length D6 

protein of the expected size of ~49kDa. However this antibody only recognises the N-

terminus therefore it is not appropriate for detection of a truncated D6 protein, from which 

the N-terminus has been cleaved. Therefore a commercially available anti-D6 antibody 

(Sigma), which recognises a sequence of amino acids on the C-terminus of D6, was used 

for Western blot analysis (Figure 5-5).  

 

Analysis of D6 species detected using antibodies specific to either the N-terminus (Figure 

5-5 (a)) or the C-terminus (Figure 5-5 (b)) revealed that both antibodies detect full length 

D6 protein (49kDa) (indicated by one asterisk), however the C-terminal antibody also 

detects a ~30kDa truncated D6 protein which is not detected by the N-terminal antibody 

(indicated by 2 asterisks). This suggests that the N-terminus has been cleaved from this 

truncated protein and supports previous studies by Blackburn et al., demonstrating that D6 

is subject to N-terminal processing. The truncated D6 protein detected in Figure 5-5 (b) is 

smaller than the 38kDa protein detected in the previous study, however the recombinant 

D6 protein used in previous studies had a 10-histidine tag at its C-terminus. Therefore the 

discrepancy in size may be partly due to sequence differences in the proteins expressed and 

also differences in the type of gels used to analyse the samples.  

 

In summary, analysis of HEK cells transfected with D6 revealed a truncated version of 

D6 (~30kDa), which can be detected using an antibody which recognises the C-

terminus. This truncated D6 protein is not detected with an antibody that recognises the 

N-terminus, suggesting that the N-terminus has been cleaved. This result, along with the 

detection of a D6-derived ~15kDa peptide in conditioned media from HEK D6 cells, 

confirm previous studies indicating that D6 is susceptible to N-terminal processing. 
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Figure 5-5: Detection of a truncated D6 protein.  
Cell lysates from HEK or HEK D6 cells were analysed by SDS PAGE and run on Western blots 
using (a) the D6 (clone 4A5) antibody which recognises the N-terminus or (b) a commercially 
available (sigma) D6 antibody which recognises the C-terminus.  
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5.3 Seeking mechanisms of cleavage of D6 

Data gathered thus far indicate that N-terminal processing of D6 occurs constitutively 

during cell growth.  We next carried out experiments to determine if cleavage of D6 can be 

enhanced by the addition of proteases.  

 
 
5.3.1  Treatment of HEK D6 cells with proteases 

As mentioned in the introduction to this chapter, the chemokine receptors CXCR1 and 

CXCR2 are susceptible to cleavage by the action of different proteases. The serine 

proteases human neutrophil elastase and cathepsin G, which are commonly released by 

neutrophils, are both able to cleave the extracellular region of CXCR1 (Hartl et al., 2007). 

In addition, the cysteine protease staphopain A, a virulence factor secreted by the bacterial 

pathogen Staphylococcus aureus, is able to cleave the N-terminus of CXCR2 (Laarman et 

al., 2012) . In light of these findings, neutrophil elastase, cathepsin G and staphopain A 

were tested for their ability to cleave D6.  

 

In the initial experiment, various concentrations of each protease were added to HEK D6 

cells and incubated for different time periods (see chapter 2, section 2.5.4 for specific 

details). The conditioned media were collected and stored and the cells were lysed using 

cell lysis buffer. Samples were analysed by SDS PAGE and Western blotting was 

performed using an anti-HA antibody to detect the N-terminus and the anti-D6 (Sigma) 

antibody to detect the C-terminus of D6.  

 

Treatment of HEK D6 cells with neutrophil elastase or cathepsin G at any of the 

concentrations given did not alter the relative balance of full length and truncated D6 

protein, as shown by Western blotting of cell lysates for detection of the N-terminus 

(Figure 5-6 (a)) and the C-terminus (Figure 5-6 (b)). The C-terminal anti-D6 antibody 

(Sigma) once again detected both the full length (~49kDa) and the truncated form of the 

D6 protein (indicated by one and two asterisks respectively). Western blotting of cell 

supernatants with the anti-HA antibody did not detect any D6-specific proteins, but as 

before, albumin from growth media supplemented with serum was detected with this 

antibody (indicated on Figure 5-6 (a) (i) and (ii)). Notably however, after treatment with 

staphopain A, the density of the full length D6 protein was noticeably decreased 

(highlighted by red boxes in Figure 5-6 (a) (ii) and (b) (ii)), while the truncated protein 
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remained detectable (Figure 5-6 (b) (ii)). This result suggested that treatment of HEK D6 

cells with staphopain A induces a change in the D6 protein, presumably by cleavage of the 

N-terminus, making the N-terminally cleaved D6 protein non-detectable with the anti-HA 

antibody but still detectable by the anti-D6 (Sigma) antibody.  

 

In summary, D6 is unaffected when treated with neutrophil elastase and cathepsin G, 

however initial analysis suggested that treatment with staphopain A noticeably reduces 

the amount of full length D6 protein that can be detected on Western Blots.  

 
 
 

 
 
Figure 5-6: Treatment of HEK D6 cells with different proteases.  
Cell lysates and conditioned media (labelled SN for supernatant) from HEK D6 cells treated with 
PBS (labelled control) or different concentrations (indicated) of (i) neutrophil elastase, (ii) cathepsin 
G or staphopain A. Samples were analysed by SDS PAGE and Western blots were performed to 
detect D6 using the (a) anti-HA antibody and (b) the anti-D6 (Sigma) C-terminal antibody. One 
asterisk = full length D6, two asterisks = 30kDa D6 band. Red boxes highlight full length D6.  
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5.3.2  Analysing the activity of staphopain A 

Staphopain A used in the study mentioned previously (Laarman et al., 2012) was purified 

from S. aureus cultures, however the staphopain A used in this study was obtained from 

Sigma. In order to further assess the activity of staphopain A from Sigma, experiments 

were set up to test its ability to cleave CXCR2, a known target. To do this, staphopain A 

was added to CXCR2-expressing THP-1 cells and cell lysates were subsequently analysed 

by Western blotting using an N-terminal specific anti-CXCR2 antibody (Figure 5-7 (a) 

(i)). The blot was stripped and re-probed with an anti-beta actin antibody (Figure 5-7 (a) 

(ii)). The Western blot in Figure 5-7 (a) (i) shows a reduction in CXCR2 after staphopain 

A treatment, which suggested cleavage of CXCR2 by staphopain A. Image J software was 

used to normalise this reduction against the loading control (Figure 5-7 (b)). Image J 

analysis indicated that there was a 50% reduction in the density of the CXCR2 band after 

treatment with staphopain A. This confirms staphopain A’s ability to act on its substrates.  

 
 
 

 
 

Figure 5-7: Staphopain A treatment of CXCR2-expressing THP-1 cells.  
(a) Western blots of cell lysates from THP-1 cells treated with PBS or staphopain A. Samples were 
subjected to SDS PAGE and Western blots were performed to detect (i) CXCR2 using an antibody 
against the CXCR2 N-terminus. Blots were then stripped and re-probed to detect (ii) beta-actin 
using an anti-beta actin antibody. (b) Bands were analysed using image J software and normalised 
against loading controls. Results are presented in a histogram. N=1. 
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5.3.3  The effect of staphopain A on D6  

The result from earlier experiments suggests that staphopain A can cleave D6 at its N-

terminus. To analyse this further, methods were considered that may enhance staphopain 

A’s proteolytic effectiveness. It is widely known that serum proteins can inhibit the action 

of enzymes by competing with the substrate (Shulman, 1952), therefore it was thought that 

staphopain A activity may be affected by the presence of serum proteins, and that their 

removal may therefore increase the activity of staphopain A. Since the previous 

experiment involved the addition of staphopain A to cell cultures incubating in complete 

growth media containing 10% FCS, the effect of incubating cells in PBS for the duration of 

the experiment (15 minutes, 1 hour and 2 hours) was investigated. Staphopain A was used 

at a concentration of 2μM, since in the previous experiment this concentration produced 

the most pronounced truncation of D6. After treatment with staphopain A, cell lysates were 

analysed by Western blotting using both the C-terminal anti-D6 (Sigma) antibody and the 

N-terminal anti-D6 (clone 4A5) antibody. The supernatants were also collected and 

analysed by Western blotting with both D6 antibodies. The results are shown in Figure 5-

8.   

 

The Western blot in Figure 5-8 (a) (i), using the anti-D6 (clone 4A5) antibody, shows that 

the density of the full length D6 protein (highlighted by red arrows) decreases with 

increasing time of staphopain A treatment. Western blotting with the C-terminal anti-D6 

(Sigma) antibody revealed the presence of two truncated D6 proteins (~35kDa and 

~30kDa) (labelled with asterisks in Figure 5-8 (a) (ii)), both of which increased in density 

with increasing time of staphopain A incubation. The change in full length (i) and 

truncated (ii) D6 species after staphopain A treatment was further supported by 

densitometry analysis, shown in Figure 5-8 (b). These results indicated that the N-terminus 

of D6 is cleaved by staphopain A treatment, and that this cleavage may result in two 

products of different sizes.  

 

Western Blots of the supernatants from this experiment are shown in Figure 5-8 (c). The 

N-terminal D6 antibody detects a ~20kDa band in lanes where HEK D6 cells were treated 

with staphopain A, but not in lanes where HEK D6 cells were treated with PBS or where 

un-transfected HEK cells were treated with staphopain A (Figure 5-8 (c) (i)). This blot had 

to be exposed to X-ray film overnight in order to detect any bands; therefore the quality of 

the image is not optimal and contains a lot of background. The C-terminal antibody does 
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not detect any bands, even after overnight exposure to X-ray film ((Figure 5-8 (c) (ii)). 

These results suggest that this band is an N-terminal cleavage product of D6.  

 

In summary, the proteolytic activity of staphopain A was confirmed by its ability to 

cleave CXCR2. D6 is subject to N-terminal enzymatic processing by staphopain A. A 

~20kDa peptide is present in supernatants after HEK D6 cells are treated with 

staphopain A. This peptide is recognised by the anti-D6 (clone 4A5) N-terminal 

antibody, but not the anti-D6 (Sigma) C-terminal antibody, suggesting it may be a 

cleaved N-terminal D6 peptide. 
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Figure 5-8: Staphopain A treatment of HEK D6 cells in PBS.  
Western blots of (a) cell lysates from HEK (negative control) or HEK D6 cells treated with PBS or 
staphopain A for increasing time periods. Cells were incubated in PBS during the time period of 
treatment with staphopain A. D6 was detected using (i) the anti-D6 (clone 4A5) N-terminal antibody 
or (ii) the anti-D6 (Sigma) C-terminal antibody. Blots were also stripped and re-probed using (iii) 
anti-beta-actin as a loading control. Blots are representative of 3 separate experiments. Full length 
D6 is indicated by red arrows. Truncated D6 proteins are indicated by a red box and green arrows. 
(b) Bands from blot (a) were analysed using image J software and normalised against loading 
controls, results are presented in a histogram. S.A. = staphopain A. (c) Supernatants from samples 
in experiment (a) were analysed by Western blotting with (i) the anti-D6 (clone 4A5) N-terminal 
antibody or (ii) the anti-D6 (Sigma) C-terminal antibody. 
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5.3.4  Attempts to purify the D6 N-terminal cleaved 
peptide 

Experimental data from Figure 5-8 suggested that treatment of HEK D6 cells with 

staphopain A results in the cleavage of a peptide of ~20kDa which can be detected by 

Western blotting using the anti-D6 (clone 4A5) N-terminal antibody. If this peptide is 

indeed an N-terminal cleavage product of D6, it should carry an HA-tag. We therefore 

attempted to purify and characterise the peptide from cell supernatants using the HA-bead 

IP method described previously (see section 5.2.4 and Figure 5-3). Supernatant samples 

before and after IP were then analysed by SDS PAGE and Western blots to detect D6. 

Alternatively silver stains were performed.  

 

Both the Western blot and the silver stain shown in Figure 5-9 (a) and (b) respectively 

detect a ~20kDa band in supernatants from staphopain A treated HEK and HEK D6 cells 

before IP, however this band is not present in pre-IP supernatant samples where PBS was 

added to HEK or HEK D6 cells. This result contradicts the Western blot analysis in Figure 

5-8 (c), which did not detect a band in the supernatant from HEK 293 cells treated with 

staphopain A. In all samples that were immunoprecipitated with use of anti-HA magnetic 

microbeads, a strong ~25kDa band can be detected in both the Western blot in Figure 5-9 

(a) and the silver stain in (b). This band is most likely the light chain of the anti-HA 

antibody which is present in large quantities on the anti-HA magnetic microbeads. No 

other bands are visible in the region of ~20kDa in these samples after IP, indicating that IP 

of supernatants was unable to purify any D6-specific peptides.  

 

These results taken together imply that the bands detected in Figure 5-8 (c) were not N-

terminal cleavage products of D6, but more likely to be the result of a non-specific 

interaction between the anti-D6 (clone 4A5) antibody and staphopain A. Correspondingly 

staphopain A has a predicted molecular weight of 19.9kDa. Further support for the idea 

that the band in question is staphopain A comes from comparison of the density of this 

band on the Western blot and the silver stain. The silver stain shows an intense band, 

however the band on the Western blot is very faint, suggesting a non-specific interaction 

with the anti-D6 (clone 4A5) antibody. If the ~20kDa band was an N-terminal cleavage 

product of D6, it would be expected that, given the high density of this protein on the silver 

stain, it would be highly reactive to the anti-D6 (clone 4A5) antibody and would also be 

easily purified by IP with anti-HA microbeads.  
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In summary, attempts to purify an N-terminal D6 peptide using IP were unsuccessful.  

The band previously thought to be an N-terminal cleavage product of D6, is more likely 

to be staphopain A, as this band is also present in supernatants taken from un-

transfected HEK cells treated with staphopain A.  

 
 
 
 

 
 
Figure 5-9: Supernatants of cells before and after IP.  
IP assays using anti-HA magnetic microbeads were performed on supernatants from HEK 293 
(negative control) or HEK D6 cells treated with either PBS or staphopain A. Samples from before 
and after IP were analysed by SDS PAGE and (a) Western blots were performed using the anti-D6 
(clone 4A5) antibody or (b) gels were silver stained.  
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5.3.5  D6 activity decreases when treated with 
staphopain A  

Having established that treatment of HEK D6 cells with staphopain A results in truncation 

of D6, we next examined whether this proteolytic event had effects on the cells’ ability to 

bind and uptake chemokines. To test this, HEK D6 cells were treated with staphopain A or 

PBS, before being washed and used in chemokine uptake assays with AF-CCL22, a high-

affinity D6 ligand with a fluorescent tag. After incubation with AF-CCL22, cells were 

washed and analysed by flow cytometry to measure their MFI.  

 

Treating HEK D6 cells with staphopain A before performing the chemokine uptake assay 

significantly reduced the ability of D6 to uptake AF-CCL22 compared to treatment with 

PBS. This is apparent by comparing flow cytometry profiles (Figure 5-10 (a) (i)) of PBS 

treated and (ii) staphopain A treated cells, and  also by analysis of MFI values on a 

histogram (Figure 5-10 (b)). Notably this was an incomplete inactivation of D6 activity, 

suggesting that functional D6 molecules were left on cell surfaces after treatment with 

staphopain A.  

 

Upon consideration, the assay was further developed to allow adherent D6-expressing cells 

to remain attached to the surface of a tissue culture plate throughout the assay. This was 

thought to be closer to an in-vivo situation because D6 is mostly expressed on stromal cells 

such as LECs, therefore an assay whereby cells expressing D6 are not floating in 

suspension but remain adhered to a surface was thought to be more physiologically 

relevant. Consequently a fluorescence-based assay was developed as an alternative method 

in order to measure D6-mediated binding and uptake of AF-CCL22 after exposure to 

staphopain A (see Chapter 2, section 2.5.6 for details of the assay). CHO K1 hD6 cells 

were used in place of HEK D6 as these cells are more adherent to the plates required for 

this assay. Cells were treated with staphopain A and washed before adding AF-CCL22 and 

incubating for 1 hour at 37°C to allow uptake and internalisation of ligand. Cells were 

washed and then analysed using a plate reader detecting fluorescence at the appropriate 

wavelength (650-690nm).  

 

Figure 5-10 (c) shows the results of the fluorescence assay. Addition of staphopain A to 

CHO K1 hD6 cells resulted in a more marked inhibition of ligand uptake and 

internalisation than observed with the HEK D6 cells. This inhibition was dose dependent; 
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with 2μM staphopain A causing the greatest reduction in ligand binding by D6-expressing 

CHO K1 cells (approximately 50%).  

 

In summary, treatment of two separate D6-transfected cell lines with staphopain A 

significantly reduces the ability of D6 to bind and take up ligand. These data therefore 

suggest that D6 is a natural substrate for staphopain A, which results in cleavage of the 

D6 N-terminus. 
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Figure 5-10: Staphopain A treatment of HEK D6 cells reduces D6 activity.  
(a) Representative flow cytometry plots displaying AF-CCL22 uptake by HEK D6 cells treated with 
(i) PBS and (ii) 2μM staphopain A. AF-CCL22 uptake is seen as a ‘right-shift’ in flow cytometry 
profiles. (b) Dot plot of MFI measurements from chemokine uptake assays using HEK D6 cells 
treated with and without 2μM staphopain A prior to addition of AF-CCL22, as determined by flow 
cytometry. N=4 per group. Data were analysed by unpaired, two tailed student T tests. (c) Dot plot 
of fluorescence measurements from fluorescence assays using CHO K1 hD6 cells treated with and 
without different concentrations (indicated) of staphopain A prior to the addition of AF-CCL22. N=7 
or more per group. Data were analysed by unpaired, two tailed student T tests. 
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5.4 Chapter 5 Summary  

This chapter describes experiments designed to (i) examine the existence of a truncated D6 

protein, produced after the N-terminal peptide has been shed, (ii) investigate the 

mechanism of cleavage of D6 and its biological consequences, and (iii) detect and study 

the N-terminal cleavage product of D6. These experiments were important to find out if, 

like other chemokine receptors, D6 can be modified by post-translational proteolytic 

cleavage, which may have significant consequences for its biological function in vivo. The 

main findings that are presented in this chapter are the following: 

 

- HEK D6 cells release a ~15kDa peptide into growth media which can be detected 

by the N-terminal-specific anti-D6 (clone 4A5) antibody. 

- A truncated D6 protein can be detected in cell lysates from HEK D6 cells using the 

C-terminal D6 antibody (sigma). 

- N-terminal processing of D6 on HEK D6 cells is enhanced by treatment with 

staphopain A. 

- Staphopain A treatment of HEK D6 or CHO K1 hD6 cells significantly reduced the 

ability of D6 to uptake ligand. 

 

It was hoped that purification and analysis of the N-terminal cleavage product of D6 would 

provide new information regarding its biochemical properties, including its sulphation 

pattern and ability to bind chemokines. Since this was not possible, different experimental 

approaches were employed to analyse the biochemical features of the D6 N-terminus. Such 

investigations are described in the final results chapter (Chapter 6). 
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6.1 Introduction  
 

As described in section 1.2.2.1 of the Introduction, a conserved structural feature of 

chemokine receptors is the incidence of clusters of tyrosine residues at the N-terminus. 

Tyrosine residues, particularly those following a neutral or acidic amino acid, can be post-

translationally sulphated by tyrosyl-protein sulphotransferases 1 and 2 (TPST -1 and 

TPST-2) in the Golgi apparatus. Evidence from studies on many different chemokine 

receptors suggests that such tyrosine sulphation is important, and often essential, for ligand 

binding and function (Cormier et al., 2000, Fong et al., 2002, Gutierrez et al., 2004). For 

example sulphation of CCR5 is essential for ligand binding and importantly for the entry of 

HIV into the cell (Cormier et al., 2000, Farzan et al., 1999). Mutation of tyrosine residues 

in the N-terminal regions of many chemokine receptors including CCR5 (Seibert et al., 

2002), CCR8 (Gutierrez et al., 2004), CXCR4 (Veldkamp et al., 2006) and DARC (Choe et 

al., 2005) has been shown to reduce the level of metabolic sulphate labelling of these 

receptors, which subsequently reduces the binding affinity they have for their ligands.  

 

D6 has a cluster of four tyrosine residues at its N-terminus, and it has been shown 

previously that D6 is sulphated (Blackburn et al., 2004). Three out of the four tyrosine 

residues present in this motif, as well as the neighbouring acidic amino acids, are highly 

conserved throughout various mammalian species, as shown by alignment of the primary 

amino acid sequences of the N-terminus of D6 from different species (Figure 6-1).  

 

The aim the work described in this chapter was to examine the functional significance of 

tyrosine sulphation for D6. Key questions were: 

 

- Are tyrosine residues on the N-terminus of D6 required for binding of ligands? 

- Does sulphation of tyrosine residues on the N-terminus enhance the binding affinity 

of ligands for the N-terminus of D6? 

- Does D6 have a particular sulphation pattern that is essential for ligand binding? 

- Is D6 sulphated by TPST-1 or TPST-2? 

The results presented in this chapter shed new light on this topic and provide evidence to 

show that the N-terminal region of D6 is a key determinant of ligand binding.   
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Figure 6-1: Evolutionary conservation of the tyrosine motif on the D6 N-terminus.  
The amino acid sequences of D6 from different species are aligned showing the conservation of 
tyrosine residues (Y) which are highlighted in red. The acidic amino acids aspartic acid (D) and 
glutamic acid (E) are also conserved in this motif and are highlighted in green.   

 

6.2 Inhibition of tyrosine sulphation by sodium 
chlorate treatment 

Post-translational sulphation can be inhibited by decreasing the availability of the universal 

sulphate donor PAPS, thereby inhibiting tyrosine sulphation in the Golgi apparatus. This is 

achieved by growing cells in the presence of sodium chlorate, which competitively inhibits 

the formation of PAPS (Safaiyan et al., 1999). This method has been employed previously 

to examine the effect of decreasing sulphation on CCR2 function (Tan et al., 2013a). 

Therefore HEK D6 cells (see Chapter 2, section 2.4.1, and Chapter 5, section 5.2.3 for 

details on HEK transfection with D6) were grown in complete growth media supplemented 

with sodium chlorate over increasing time periods.  

 

6.2.1 Inhibition of protein sulphation reduces D6 activity 

6.2.1.1 Temporal analysis of sodium chlorate treatment 

Detection of D6 activity after sodium chlorate treatment involved the addition of AF-

CCL22 to cells and their subsequent incubation at 37°C for 1 hour to allow D6-mediated 

uptake and internalisation of chemokine. Afterwards cells were washed twice to remove 

excess chemokine and subsequently analysed by flow cytometry. DRAQ7 was used to 
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exclude dead cells from the analysis. D6 expression on HEK D6 cells was also measured 

throughout the experiments by flow cytometry in order to ensure that D6 expression levels 

were not affected by sodium chlorate treatment. Figure 6-2 shows the results of these 

experiments.  

 

The flow cytometry profiles in Figure 6-2 (a) show that the fluorescence of cells was at its 

highest for untreated cells (i). The fluorescence of cells decreased with increasing time 

periods grown in sodium chlorate, with the greatest reduction after growth in sodium 

chlorate for 6 days (iii). MFI measurements from the chemokine uptake assay (Figure 6-2 

(b)) show that chemokine uptake by HEK D6 cells grown in the presence of sodium 

chlorate was significantly reduced compared to the control, and the size of this reduction 

was time dependent, with the largest reduction in chemokine uptake being seen after 6 

days of sodium chlorate treatment. This result suggests that the sulphation of tyrosine 

residues on D6 is important for its binding affinity and ability to uptake CCL22. Despite 

the significant reduction in chemokine uptake, the effect of sodium chlorate treatment was 

modest, with approximately a 30% reduction in D6 activity after 6 days of sulphation 

inhibition. This suggested that the concentration of sodium chlorate given (30mM) may not 

be adequate to completely inhibit tyrosine sulphation.  

 

In summary, D6 activity is reduced when HEK D6 cells are grown in media 

supplemented by sodium chlorate, indicating that sulphation is important for D6 

function.  
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Figure 6-2: Inhibition of protein sulphation over time reduces D6 activity.  
(a) Flow cytometry profiles of HEK D6 cells after the addition of AF-CCL22 (i) in complete growth 
media or (ii) complete growth media supplemented with sodium chlorate for 2 days and (iii) 6 days. 
(b) Dot plot of MFI values from chemokine uptake assay, as determined by flow cytometry. N=5 per 
group. Data were analysed by unpaired, two tailed student T tests. (c) Flow cytometry histogram 
showing D6 expression of HEK D6 cells grown in normal growth media (cyan line) or media 
supplemented with sodium chlorate for 6 days (magenta line). D6 expression was measured using 
an anti-HA biotin antibody and streptavidin-PE secondary.  
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6.2.1.2 Increasing concentration of sodium chlorate 

To further examine the ability of sodium chlorate to reduce ligand binding and 

internalisation by D6, HEK D6 cells were grown for 2 days in complete growth media 

supplemented with increasing concentrations of sodium chlorate. Firstly, to confirm the 

inhibition of sulphation by high concentrations of sodium chlorate, cell lysates from 

untreated HEK D6 cells and cells grown in 150mM sodium chlorate were analysed by 

Western blotting with an antibody that is able to detect sulphated tyrosines (Hoffhines et 

al., 2006) (Figure 6-3 (a)). Subsequent densitometry analysis using image J software 

(Figure 6-3 (b)) confirmed that sulphation of total cell protein was inhibited by growth in 

media supplemented with 150mM sodium chlorate.  

 

Next, cells grown in different concentrations of sodium chlorate were used in chemokine 

uptake assays, as described previously (section 6.2.1.1) to measure D6-mediated binding 

and internalisation of AF-CCL22.  As shown in Figure 6-3 (c) (i), whilst concentrations of 

sodium chlorate as high as 100mM partially reduced ligand uptake by D6, concentrations 

of 150mM induced a considerably more marked, and significant, reduction compared to 

untreated cells. This was also shown by comparison of the flow cytometry profiles 

generated by untreated and 150mM sodium chlorate treated cells (Figure 6-3 (c) (ii)), 

which shows a considerable ‘left shift’ in cells treated with 150mM sodium chlorate. This 

result suggested an involvement of sulphation in ligand binding and internalisation by D6. 

 

In summary, post-translational tyrosine sulphation in HEK D6 cells is inhibited by 

growth in high concentrations of sodium chlorate. This, in turn, reduces the chemokine 

uptake capability of D6. 
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Figure 6-3: D6 activity decreases as sodium chlorate concentration increases.  
(a) Western blot of HEK D6 lysates after growth in normal or sodium chlorate supplemented media 
for 2 days using (i) anti-tyrosylsulphate and (ii) anti-beta actin. (b) Histogram showing absolute 
density of protein. Bands were analysed using image J software and normalised against loading 
controls. (c) (i) Dot plot of MFI values from chemokine uptake assay, as determined by flow 
cytometry. N=5 per group. Data were analysed by unpaired, two tailed student T tests. (ii) Flow 
cytometry profile comparing uptake of AF-CCL22 by non-treated cells (cyan line) and cells grown in 
150mM sodium chlorate (magenta line).  
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6.3 Site directed mutagenesis of D6 

With evidence to suggest that sulphation of tyrosine residues on the D6 N-terminus is 

important for ligand binding, conventional mutagenesis was employed as an alternative 

experimental approach in order to examine this further.  

 

Site-directed mutagenesis (described fully in chapter 2, section 2.3.2) was used to mutate 

the four tyrosine residues present on the N-terminus of D6. Phenylalanine was chosen to be 

substituted in place of tyrosine because both amino acids are similar in structure, with both 

containing a phenyl group; however the absence of a hydroxyl group in phenylalanine 

means it cannot be post-translationally sulphated.  

 

Site-directed mutagenesis was performed using the original HA-D6 plasmid (described in 

chapter 2, section 2.3.1) as a template. In order to make the tyrosine to phenylalanine 

substitutions, the codon requires only one base pair change. Primers were designed which 

incorporated these base pair substitutions and the mutated plasmid was generated using 

PCR and cloning techniques. Figure 6-4 summarizes the site-directed mutagenesis 

process. Subsequently the plasmid sequence containing mutated D6 was verified and 

transfected into HEK 293 cells in order to generate cells expressing a mutated version of 

D6 (henceforth referred to as mutant 1). Figure 6-5 compares wildtype D6 with mutant 1.  
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Figure 6-4: Site-directed mutagenesis  
Site directed mutagenesis is achieved by using primers which incorporate nucleotide substitutions 
into the coding sequence of the DNA. By use of PCR techniques and cloning, these substitutions 
result in the production of a new plasmid with amino acid changes, in this case tyrosine to 
phenylalanine.  

 

 
 

Figure 6-5: Comparing wildtype D6 and mutant 1 D6.  
The human D6 N-terminus contains a tyrosine motif (YYYDY) which is thought to be post-
translationally sulphated, although whether or not every tyrosine residue is sulphated is unknown. 
After site-directed mutagenesis, all the tyrosines have been substituted to phenylalanine, making 
this site biochemically unavailable for sulphation. Yellow circles are representative of possible 
sulphate groups (SO4). 
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6.3.1  Stable transfection of HEK 293 cells with mutant 1 

HEK 293 cells were stably transfected with the pcDNA3.1 plasmid encoding mutant 1 

using effectene (as described in Chapter 2, section 2.4). Transfected mutant 1 cells were 

enriched for D6 positivity using the same method outlined in Figure 3-3, chapter 3. Two 

pools of mutant 1 cells resulting from enrichment were analysed alongside HEK D6 wt 

cells to assess their levels of D6 expression. Extracellular D6 levels were detected by flow 

cytometry using both an anti-HA biotin antibody followed by a secondary streptavidin-PE 

antibody, and the anti-D6 (clone 4A5) antibody followed by a secondary antibody 

conjugated to FITC. Flow cytometry plots for HEK D6 wt and the two different pools of 

mutant 1 transfectants are shown in Figure 6-6. 

 

Figure 6-6 shows flow cytometry profiles of HEK D6 wt and the pools of mutant 1 cells 

using (a) anti-D6 and (b) anti-HA antibodies and shows that D6 expression was high in all 

three populations of cells. Mutant 1, pool 1 displayed very similar levels of D6 expression 

to HEK D6 wt, as shown by the MFI values from analysis using two different detection 

antibodies for D6.  

 

 

Figure 6-6: HEK D6 wt and mutant 1 (pool 1) express D6 at very similar levels.  
Cells were assayed using (a) a mouse anti-HA (biotin) antibody or a mouse (biotin) isotype control 
and a streptavidin conjugated to R-phycoerythin (PE) secondary, or (b) the D6 (clone 4A5) 
antibody or a mouse isotype control and an anti-mouse FITC secondary antibody.  The mean 
fluorescence intensities (MFIs) of D6-expressing cells are indicated underneath each flow 
cytometry plot.  
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6.3.2  Sulphation of the D6 N-terminus is reduced in 
mutant 1 

Mutation of all tyrosine residues to phenylalanine on the N-terminus of D6 should, in 

principle, block post-translational sulphation, however in order to confirm this, cell lysates 

were prepared from HEK D6 wt, mutant 1 and un-transfected HEK 293 cells and subjected 

to SDS PAGE before Western blotting with the anti-tyrosylsulphate antibody. The 

resulting Western blot is shown in Figure 6-7 (a). Sulphated tyrosines are present on many 

proteins expressed by HEK 293 cells and transfectants, as shown by the multitude of bands 

present on the Western blot in Figure 6-7 (a). No conclusions could be drawn regarding 

the sulphation of D6 from this Western blot, as the blot highlighted every protein that 

possessed sulphated tyrosines, and D6 could not be distinguished from other proteins. 

 

In order to improve comparisons of sulphation of D6 in the different cell lines, HA-tagged 

D6 was immunoprecipitated from HEK D6 wt and mutant 1 cell lysates using anti-HA 

magnetic microbeads (methods detailed in chapter 2, section 2.8.12). Samples were then 

analysed by SDS PAGE and Western blotting using both an anti-HA antibody to detect D6 

and the anti-tyrosylsulphate antibody to detect sulphated tyrosines. Such Western blots are 

shown in Figure 6-7 (b). Western blotting with an anti-HA antibody (Figure 6-7 (b) (i)) 

shows that D6 was successfully immunoprecipitated from HEK D6 wt and mutant 1 cell 

lysates. Probing immunoprecipitated D6 with the anti-tyrosylsulphate antibody (Figure 6-7 

(b) (ii)) confirmed that wildtype D6 is sulphated, however sulphation of mutant 1 was 

considerably reduced and this was evident using two different pools of mutant 1, as shown 

on the anti-tyrosylsulphate Western blot.  

 

In summary, mutation of all four tyrosine residues to phenylalanine on the N-terminus 

of D6 inhibits post-translational sulphation of this protein.  

 



Chapter 6 – Results  197 

 

Figure 6-7: Sulphation of Mutant 1 is reduced compared to wildtype D6.  
(a) Western blot of cell lysates from HEK 293, HEK D6 wt and Mutant 1 cells using the anti-tyrosyl 
sulphate antibody. (b) Western blot of immunoprecipitated D6 from different cell lysates (labelled) 
using (i) an anti-HA antibody which detects HA-tagged D6 and (ii) the anti-tyrosyl sulphate 
antibody.  
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6.4 Analysis of TPST 1 and TPST 2 expression  

Tyrosine sulphation is dependent on the action of specific enzymes called tyrosylprotein-

sulphotransferases (TPSTs). Two different TPSTs (TPST-1 and TPST-2) are known to be 

expressed, and functioning, in mammalian cells.  

 

6.4.1  TPST-1 and TPST-2 expression in different 
tissue / cell types 

To gain insights into which of these may be involved in the post-translational sulphation of 

D6, their expression was examined in tissues either associated with, or not associated with, 

D6 expression using QPCR (details on relevant methods can be found in chapter 2, 

sections 2.6 and 2.7). Briefly, RNA from different tissues or cell types was extracted and 

converted to cDNA and used in QPCR assays to determine the expression of TPST-1 and 

TPST-2 in these cell types. TATA-binding protein (TBP) was used as the house-keeping 

gene in this assay and expression of TPST-1 and TPST-2 is reported as numbers of 

transcripts per 10,000 copies of TBP. The cDNA from tissues or cell types used that are 

associated with D6 expression included keratinocytes (Singh et al., 2012), human dermal 

lymphatic endothelial cells (HD LECs) (Nibbs et al., 2001, McKimmie et al., 2013), 

placenta and trophoblasts (Madigan et al., 2010). Monocyte and osteoclast cDNA was used 

to represent cell types that are not associated with D6 expression. The resulting data are 

shown in Figure 6-8.  

 

Figure 6-8 shows that although both TPST-1 and TPST-2 genes are expressed in every cell 

type, very little expression of TPST-1 was detected in any of the cell types examined. 

TPST-2, however, was expressed most strongly in HD LECs and placenta, which are both 

sites of high D6 expression. This suggests that TPST-2 may be more likely to contribute to 

tyrosine sulphation of D6 than TPST-1.   
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Figure 6-8: TPST-1 and TPST-2 expression in different tissues / cells.  
QPCR analysis of the expression of TPST-1 and TPST-2 in the indicated cell types. Expression is 
reported as numbers of transcripts per 10,000 copies of Tata-binding protein (TBP). N=3 per 
sample, standard error of the mean (SEM) is plotted.  
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6.4.2  TPST-1 and TPST-2 expression in HEK 293 cell lines 

As this study has used HEK D6 cells throughout, we next examined TPST-1 and TPST-2 

in this cell line. The expression of TPSTs by transfected and un-transfected HEK 293 cells 

was examined at both the mRNA and protein level. THP1 cells are a type of monocyte that 

do not express D6 and were used as a control in these assays. RNA was extracted from 

HEK 293, HEK D6 wt and THP1 cells, converted to cDNA and used in QPCR assays to 

detect transcripts of TPST-1, TPST-2 and D6. Subsequently, cell lysates were produced 

from HEK 293, HEK D6 wt and THP1 cells and protein expression analysed by Western 

blotting using antibodies for TPST-1 and TPST-2. The data generated from such 

experiments are shown in Figure 6-9.  

 

QPCR analysis revealed that TPST-1 and TPST-2 expression was detected in both 

transfected and un-transfected HEK 293 cells and in THP1 cells as shown in Figure 6-9 

(a). Notably D6 is strongly expressed in HEK D6 wt. The Western blots shown in Figure 

6-9 (b) confirm that TPST-1 and TPST-2 proteins are expressed by HEK 293 cells and that 

transfection with D6 does not seem to alter the level of expression. Interestingly the 

Western blot suggests that both TPSTs are more highly expressed by THP1 cells than HEK 

293 cells, although the QPCR data does not reflect this. 
 
In summary, TPST-1 and TPST-2 are differentially expressed in all the tissues and cell 

types tested. Cell types and tissues that naturally express D6 at high levels also express 

high levels of TPST-2, suggesting that this may be the preferred enzyme for D6 

sulphation. Both TPSTs are expressed by HEK 293 cells and transfection of these cells 

with D6 does not alter their expression of TPSTs. This indicates that HEK 293 cells 

grown in cell culture are likely to be capable of post-translational sulphation of proteins.   
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Figure 6-9: TPST-1 and TPST-2 are expressed by HEK 293 cells.  
(a) QPCR analysis of the expression of TPST-1, TPST-2 and D6 in HEK 293, HEK D6 wt and 
THP1 cells. Expression is reported as numbers of transcripts per 1000 copies of Tata-binding 
protein (TBP). N=3 per sample, standard error of the mean (SEM) is plotted. (b) Western blot of 
cell lysates from HEK 293, HEK D6 wt and THP1 cells using antibodies for TPST-1, TPST-2 and 
beta tubulin. Beta tubulin was used as a housekeeping gene to show the equal protein loading to 
each well. Western blots are representative of 3 separate experiments. 
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6.4.3 TPST-1 and TPST-2 are involved in D6 sulphation 

Having shown that TPST-1 and TPST-2 in HEK and HEK D6 cells have equivalent 

expression at the mRNA and protein levels, the importance of these enzymes for D6 

sulphation and function in transfected HEK cells was examined. To do this, HEK 293 cells 

were pre-treated with TPST-1 siRNA, TPST-2 siRNA, or a mixture of both for 24 hours 

before transient transfection with D6 using the HA-D6 plasmid described previously. After 

another 24 hours cells were assayed for their ability to bind and internalise AF-CCL22 in 

chemokine uptake assays (Figure 6-10 (a)). D6 expression of each of the cell groups was 

also assessed by Western blotting and densitometry analysis (Figure 6-10 (b)).   

 

Chemokine uptake assays, shown in Figure 6-10 (a), revealed that treatment with TPST-1 

siRNA or TPST-2 siRNA alone had no significant effect on ligand binding and uptake by 

D6, however simultaneous treatment with siRNA to both enzymes significantly reduced 

ligand binding. Western blotting of cell lysates from each of the treatment groups (Figure 

6-10 (b) (i)) and subsequent densitometry analysis against a loading control (ii) showed 

that D6 expression was similar in all transfected cell groups, suggesting that the effect of 

siRNA treatment was not associated with any change in D6 protein expression. Together 

these results suggest that both TPST-1 and TPST-2 are independently able to contribute to 

sulphation of D6. The efficiency of siRNA to knockdown TPST 1 and TPST 2 was not 

assessed directly in this assay; therefore the result could also be due to off target effects of 

siRNA transfection.  
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Figure 6-10: D6 activity is reduced by simultaneous down-regulation of TPST-1 and TPST-2.  
(a) Scatter plot indicating the results of multiple chemokine uptake experiments with AF-CCL22. 
Cells were analysed by flow cytometry and the MFI values for each experiment are plotted. 
Statistical analysis was performed using two-tailed unpaired t tests. N=4 or more per sample. ns = 
not significantly different. (b) Cell lysates from each treatment group were analysed by (i) Western 
blotting using an anti-D6 (Sigma) antibody and an anti-beta actin antibody. (ii) Densitometry 
analysis of bands from (i) using image J software.  siRNA knockdown efficiency was not directly 
assessed in these experiments.  
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6.5  Ligand binding by D6 is greatly enhanced by 
receptor sulphation 

Having obtained populations of HEK D6 wt and mutant 1 which express similar levels of 

D6, and having established that mutant 1 is not post-translationally sulphated, experimental 

procedures were implemented in order to establish whether the ability of D6 to uptake 

chemokine was affected by a lack of sulphation.  

 

6.5.1  Mutant 1 has reduced ability to uptake ligand  

To directly compare the ligand binding capabilities of HEK D6 wt and mutant 1, 

chemokine uptake assays were performed. AF-CCL2 was added to cells which were then 

incubated at 37°C for 1 hour to allow uptake and internalisation of fluorescently-labelled 

chemokine. Subsequently cells were washed twice to remove unbound chemokine, and 

DRAQ7 was added to cells before flow cytometry analysis in order to detect and exclude 

dead cells. Figure 6-11 shows analysis and results of the chemokine uptake experiments. 

 

Typical flow cytometry plots for HEK D6 wt and mutant 1 are shown in Figure 6-11 (a) 

after the addition of 0.6μg/ml AF-CCL2. The plots demonstrated that whilst HEK D6 wt 

can uptake fluorescently-labelled chemokine avidly, uptake of AF-CCL2 is greatly reduced 

in mutant 1. The histogram in Figure 6-11 (b) shows uptake of AF-CCL2 at a 

concentration of 0.6μg/ml by HEK 293, HEK D6 wt and mutant 1 cells, and allows easy 

comparison of the chemokine uptake capabilities of all three cell lines. This histogram 

clearly shows the increased capability of HEK D6 wt cells to uptake chemokine compared 

to cells expressing mutant 1. Figure 6-11 (c) shows the results from multiple repeat 

chemokine uptake experiments using increasing concentrations of AF-CCL2. MFI values 

of HEK D6 wt increase in a dose-dependent fashion after addition of AF-CCL2, however it 

was clear that mutant 1 displayed a significantly reduced ability to uptake ligand at each of 

the chemokine concentrations tested. There was no difference between mutant 1 and HEK 

293 when 0.2 or 0.4μg/ml AF-CCL2 was added to cells. Even at the highest chemokine 

concentration (0.6μg/ml), mutant 1 displayed limited chemokine uptake capabilities, and 

this was greatly impaired compared to HEK D6 wt.  
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In summary, chemokine uptake capabilities are greatly reduced in a tyrosine-

phenylalanine mutated version of D6 compared to wildtype. This suggests that post-

translational sulphation of the D6 N-terminus is an important requirement for function 

of D6.  
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Figure 6-11: Mutant 1 has greatly reduced chemokine uptake capability.  
(a) Flow cytometry profiles of (i) HEK D6 wt and (ii) mutant 1 after the addition 0.6μg/ml AF-CCL2 
(b) Flow cytometry histogram allowing easy comparison of AF-CCL2 binding and uptake between 
HEK 293, HEK D6 wt and mutant 1. (c) Bar chart indicating the results of multiple chemokine 
uptake experiments using 0.2, 0.4 and 0.6μg/ml of AF-CCL2. Cells were analysed by flow 
cytometry and the MFI values for each experiment are plotted showing mean with standard 
deviation indicated. Statistical analysis was performed using two-tailed unpaired t tests. Means 
were found to be significantly different where indicated. N=5 per sample.  
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6.5.2  Mutant 1 has a reduced ability to degrade ligand  

D6 is a highly effective scavenger of inflammatory CC chemokines and as well as binding 

to and internalising its ligands it also targets them for lysosomal degradation. Having 

confirmed that mutant 1 has a reduced ability to uptake ligand, we next tested the ability of 

HEK D6 wt and mutant 1 to degrade ligand. To investigate this, the ability of wildtype D6 

and mutant 1 to remove CCL2 from its environment was examined. A chemokine 

degradation assay was performed whereby biotinylated CCL2 (bio-CCL2)  was added to 

HEK D6 wt and two different pools of mutant 1 cells and incubated over a time course. 

Media were then collected and the amount of bio-CCL2 left in the media determined using 

Western blotting with streptavidin-HRP and measuring the relative density of each bio-

CCL2 band using image J software.  

 

Western blotting, shown in Figure 6-12 (a), indicated that bio-CCL2 was degraded over 

time by HEK D6 wt cells and both pools of mutant 1 cells; however after 24 and 30 hours 

of incubation, there was a considerable difference in the extent of degradation between 

HEK D6 wt and the mutant 1 pools. Western blots showed that HEK D6 wt had degraded 

much more bio-CCL2 than cells expressing mutant 1 after incubation for 24 and 30 hours, 

indicating that wildtype D6 was able to degrade chemokine at a faster rate than non-

sulphated D6. Figure 6-12 (b) shows the relative densities of bio-CCL2 bands in each of 

the media samples, further emphasizing the decreased rate of degradation by mutant 1 

expressing cells compared with cells expressing wildtype D6.  

 

In summary, the rate of D6-mediated degradation is reduced in a tyrosine-phenylalanine 

mutated version of D6 compared to wildtype. This is most likely due to the reduced 

ligand uptake capabilities of this mutant.  
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Figure 6-12: The speed of D6-mediated degradation of CCL2 is reduced in mutant 1.  
(a) Western blot using streptavidin-HRP of samples from a chemokine degradation assay. Bio-
CCL2 was added to HEK D6 wt or different pools of mutant 1 cells and samples collected at 
different time points (indicated). (b) The relative density of bands from the Western blot shown in 
(a) were analysed using image J software and results are presented in a histogram. N=1. 
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6.5.3  Chemokine uptake is not blocked in mutant 1  

Previous experiments established that inhibiting post-translational sulphation of D6 

drastically decreased its ability to uptake CCL2, even when relatively high concentrations 

of chemokine were tested. In further experiments, levels of D6 expression were re-

analysed by flow cytometry with an anti-HA antibody to ensure that each cell line was still 

expressing similar levels of D6 protein (Figure 6-13). Next, more chemokine uptake 

experiments were performed with HEK D6 wt and the two different pools of mutant 1 

cells, however this time the cells were exposed to extremely high concentrations of AF-

CCL2 (1.2μg/ml) in order to test if the mutant receptor was fully incapable of chemokine 

uptake even at super-physiological chemokine levels. MFI values were recorded and the 

resultant data, as well as representative flow cytometry plots, are displayed in Figure 6-14. 

The data plotted in Figure 6-14 (c) have been normalised by taking into account the 

relative D6 expression levels in the cell lines.  

 

Interestingly, the flow cytometry plot shown in Figure 6-13 revealed that levels of D6 

protein on the surface of cells expressing the D6 mutant (pools 1 and 2 of mutant 1) had 

both decreased almost 3 fold compared to levels that were previously recorded (Figure 6-

6), however the levels of D6 expression in HEK D6 wt had slightly increased in this period 

of time. This observation suggests that as well as being important for ligand binding, 

tyrosine residues on the D6 N-terminus may also be an important pre-requisite for optimal 

trafficking of the protein to the cell surface. However it could also be a consequence of 

expression levels of transfected cells drifting over time. 

 

Typical flow cytometry plots for HEK D6 wt (i) and the two different pools of mutant 1 

(ii) and (iii) are shown in Figure 6-14 (a) after the addition of 1.2μg/ml AF-CCL2. The 

histogram shown in Figure 6-14 (b) allows easy comparison of the chemokine uptake 

capabilities of all three cell lines at this high chemokine concentration. Figure 6-14 (c) 

shows the resulting MFI values of multiple repeat chemokine uptake experiments. The 

results again demonstrate that both pools of mutant 1 had significantly reduced uptake 

capabilities compared to wildtype D6, however the difference between uptake values for 

HEK D6 wt and mutant 1 decreased compared to the values recorded in the previous 

uptake experiment from a ~10-fold difference at 0.6μg/ml AF-CCL2 (see Figure 6-11 (c)) 

to a ~2.3-fold difference at 1.2μg/ml AF-CCL2 (Figure 6-14 (c)). This result suggests that 

mutant 1 is not incapable of binding and taking up CCL2, however it is less equipped to do 
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so compared to wildtype D6, presumably as a result of a weaker binding affinity between 

un-sulphated D6 and CCL2.   

 

In summary, mutant 1’s chemokine uptake capability was consistently reduced 

compared to wildtype D6; however it was not completely incapable of taking up 

chemokine when exposed to very high concentrations. The amount of mutant 1 protein 

present on the cell surface decreased over time in cell culture, suggesting that tyrosines 

on the N-terminus of D6 may also contribute to optimal trafficking of the receptor to the 

cell surface. 
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Figure 6-13: Surface expression levels of mutant 1 decrease over time in cell culture.  
Cells (indicated) were assayed using a mouse anti-HA (biotin) antibody or a mouse (biotin) isotype 
control and a streptavidin conjugated to R-phycoerythin (PE) secondary. The mean fluorescence 
intensities (MFI’s) of each cell type are indicated beside the flow cytometry plot.  
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Figure 6-14: Mutant 1 is functional at high CCL2 concentrations.  
(a) Flow cytometry profiles of (i) HEK D6 wt (ii) mutant 1, pool 1 and (iii) mutant 1, pool 2 after the 
addition 1.2μg/ml AF-CCL2. (b) Flow cytometry histogram allowing comparison of AF-CCL2 
binding and uptake between HEK D6 wt (blue), mutant 1, pool 1 (orange) and mutant 1, pool 2 
(pink). (c) Dot plot indicating the results of multiple chemokine uptake experiments using 1.2μg/ml 
of AF-CCL2. Cells were analysed by flow cytometry and the MFI values for each experiment were 
normalised against the D6 and Mutant 1 expression measurements shown in Figure 6-13. 
Statistical analysis was performed using two-tailed unpaired t tests. N=5 per sample.  
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6.6 Investigating the effect of single tyrosine 
mutations 

As detailed in the introduction to this chapter, D6 has a conserved tyrosine motif 

(YYYDY) at its N-terminus which is thought to be sulphated, although it is not known if 

all four tyrosine residues are sulphated or if there is a specific pattern of sulphated residues. 

Results presented in Chapter 4 regarding the sulphated D6 peptide and the previous results 

in this chapter indicate that sulphation of the D6 N-terminus enhances ligand binding; 

however the optimal pattern of sulphation for ligand affinity is unknown.  

 

6.6.1  Generation of different sulphation mutants 

In order to try to establish if a single tyrosine residue is essential for ligand binding, more 

specific mutagenesis studies were performed, in which individual tyrosines within the 

conserved motif were mutated to phenylalanines. Previous analysis of the evolutionary 

conservation of the tyrosine motif confirmed that the first, third and fourth tyrosines are 

highly conserved within higher order primates (see Figure 6-1), therefore mutants were 

generated in which either the first, third or fourth tyrosine in the motif were substituted 

with phenylalanine. Table 6-1 summarises these new mutants, which are referred to as 

mutant 2, mutant 3 and mutant 4 throughout this thesis.  

 

 

Table 6-1: Description of versions of D6 mutants with variations of the conserved tyrosine 
motif. U = un=sulphated, S = sulphated. 
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Plasmids encoding the different D6 mutants were generated by site directed mutagenesis of 

the original wildtype-D6 encoding plasmid, similar to processes described in section 6.3. 

Subsequently the plasmids were transfected into HEK 293 cells using methods detailed in 

chapter 2, section 2.4. After transfection, D6 expression was assessed by flow cytometry 

using an anti-HA biotin antibody followed by a secondary streptavidin-PE antibody. 

Levels of D6 expression were variable for each mutant; overall, however D6 expression 

was low, with ~20% of cells expressing D6 mutants on their surface. In order to increase 

the number of D6 (mutant) expressing cells to correspond with HEK D6 wt levels, several 

rounds of D6+ cell enrichment were performed with the use of the anti-HA biotin antibody 

and anti-biotin microbeads (Figure 3-3 in chapter 3 illustrates this process). The cells 

collected after the enrichment process were cultured and left to grow to confluency before 

performing the next enrichment. Figure 6-15 shows representative flow cytometry profiles 

of mutant 2 after the initial transfection and subsequent to each enrichment step, which 

resulted in almost 80% of cells expressing D6 following the final enrichment. Mutants 2, 3 

and 4 were enriched in this manner, with similar purities of D6+ cells being obtained for 

each.  
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Figure 6-15: Enrichment for D6 (mutant) expressing cells after transfection.  
Cells were assessed for D6 expression using a mouse anti-HA (biotin) antibody or a mouse (biotin) 
isotype control and a streptavidin conjugated to R-phycoerythin (PE) secondary. Flow cytometry 
plots after transfection and subsequent to each enrichment are shown. The percentage of D6 
positive cells increases from ~20% after transfection to ~80% after enrichment 3. The profiles 
shown are from mutant 2 but were very similar for each mutant.  

 

 

 

 

 

 

 

 

 



Chapter 6 – Results  216 

6.6.2  No single tyrosine residue on the D6 N-terminus 
is essential for ligand binding 

To directly compare the ligand binding capabilities of HEK D6 wt and each of the single 

tyrosine mutants (mutants 2, 3 and 4), chemokine uptake assays were performed on each 

cell line as detailed previously (section 6.5.1). In order to ensure comparisons could be 

made between each cell line, D6 expression of HEK D6 wt and mutants 2, 3 and 4 was 

assessed shortly before the chemokine uptake assay by flow cytometry. The resultant flow 

cytometry plots are shown in Figure 6-16 (a). Ligand uptake capability was then assessed 

with the use of high concentrations of AF-CCL2 (1μg/ml). Figure 6-16 (b) shows the 

results of several repeat chemokine uptake experiments.  
 

The flow cytometry plots in Figure 6-16 (a) confirm that D6 expression levels were 

similar for each of the D6 expressing cell lines cell lines ((ii), (iii), (iv) and (v)), at the time 

of experimentation. The data presented in Figure 6-16 (b) show that CCL2 uptake by 

mutant 2, 3 and 4 was not significantly different from that of HEK D6 wt. The scatter plots 

do draw attention to a trend suggesting that there was a slightly decreased MFI for each 

mutant compared with wildtype D6, although these differences were not significant. This 

result demonstrated that mutation of only one of the three conserved tyrosines to 

phenylalanine did not significantly impair ligand binding compared to wildtype D6.  

 

In summary, mutation of individual tyrosine residues in positions 1, 3 or 4 of the 

conserved tyrosine motif on the N-terminus of D6 does not impair the ability of D6 to 

uptake CCL2.  
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Figure 6-16: No single tyrosine residue on the D6 N-terminal is essential for ligand binding.  
(a) Flow cytometry profiles of (i) un-transfected HEK 293 cells, (ii) HEK D6 wt, (iii) Mutant 2, (iv) 
Mutant 3, (v) Mutant 4. Cells from each cell line were assayed for D6 expression using a mouse 
anti-HA (biotin) antibody or a mouse (biotin) isotype control and a streptavidin conjugated to R-
phycoerythin (PE) secondary. (b) Dot plot indicating the results of multiple chemokine uptake 
experiments using 1μg/ml of AF-CCL2. Cells were analysed by flow cytometry and the MFI values 
for each experiment are plotted. Statistical analysis was performed using two-tailed unpaired t 
tests. N=5 per sample. NS = not significantly different. 

 
 

6.7 Generation of a catalogue of D6 mutants 

Having already established that Mutant 1’s capability to uptake ligand is greatly reduced 

compared to wildtype D6, and with data to suggest that mutation of only one tyrosine 

residue does not alter the ability of D6 to uptake CCL2; it was decided that the reciprocal 

experiment should be performed, in order to establish if the presence of a single tyrosine 

residue at any of the four positions is sufficient to rescue ligand binding capability. In order 

to achieve this, cell lines were generated which expressed mutant versions of D6 with only 

one of the four tyrosine residues retained on the D6 N-terminus. These were named 

mutants 6-9, with mutant 6 retaining only the first tyrosine residue and mutant 7 retaining 

only the second tyrosine residue etc. Similar to the generation of previous mutants of D6, 
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site-directed mutagenesis of a plasmid encoding D6 was performed before sequence 

verification and transfection into HEK 293 cells. As all but one tyrosine residue was 

mutated to phenylalanine in each of these new mutants, the plasmid encoding Mutant 1 

was used as the template for the site-directed mutagenesis reaction as this plasmid required 

only one base-pair change in order to make mutants 6-9. A mutant was also generated in 

which the non-conserved tyrosine in position 2 was mutated to phenylalanine but tyrosines 

in positions 1, 3 and 4 were retained. Originally this mutant was not thought to be 

important because of the absence of this tyrosine in non-primate mammals, however upon 

consideration the mutant was generated in order to ascertain if the gain of a tyrosine in 

position 2 of the highly conserved motif had any functional significance for higher order 

primates. The plasmid encoding wildtype D6 was used as the template for this mutant; 

named Mutant 5. All the mutants generated in this study are summarised in Table 6-2.  

 

 

Table 6-2: Description of all the D6 mutants generated with variations of the conserved 
tyrosine motif. 
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6.8 Investigating the activity of different D6 
mutants 

6.8.1  Analysis of mutant cell lines for D6 expression 

In order to obtain populations of cells expressing similar levels of each D6 mutant, 

Mutants 5-9 were enriched by the same method detailed previously (section 6.6.1) with the 

aim of isolating D6 expressing cells. Following the enrichment process, all mutant cell 

lines and HEK D6 wt were analysed by flow cytometry using an anti-HA biotin antibody 

followed by a secondary streptavidin-PE antibody.  The data are presented in the 

histograms in Figure 6-17.  

 

Both histograms in Figure 6-17 are set out in such a way to group mutants with similar 

tyrosine patterns together, therefore HEK cells expressing wildtype D6 and Mutants 2, 3, 4 

and 5, which each have only one tyrosine substituted to phenylalanine, are side by side. 

Likewise Mutant 1, which has all its tyrosines substituted to phenylalanine, and Mutants 6, 

7, 8 and 9, which each have all but one tyrosine substituted to phenylalanine, are depicted 

side by side. Figure 6-17 (a) demonstrates that all the cell lines have a high percentage 

(>75%) of D6-expressing cells. Figure 6-17 (b) shows that despite all cell lines displaying 

high levels of transfection, the levels of cell surface D6, as measured by mean fluorescence 

intensity, are reduced in the cell lines expressing mutants of D6 with only one or no 

tyrosine residues on the N-terminus.  

 

In summary, all cell lines showed high levels of transfection with D6; however there was 

a marked difference in cell surface D6 expression between cell lines and this seemed to 

correlate with the number of tyrosines present on the D6 N-terminus. 
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Figure 6-17: Percentage and level of D6 expression shown by mutant cell lines.  
Each cell line was assayed for D6 expression using a mouse anti-HA (biotin) antibody or a mouse 
(biotin) isotype control and a streptavidin conjugated to R-phycoerythin (PE) secondary. (a) 
Histogram showing the percentage of D6-expressing cells of each cell line. (b) Histogram showing 
the level of extracellular D6 expression shown by each cell line measured by their mean 
fluorescence intensities. 1 x 107 cells analysed per mutant.  

 

 

 

 



Chapter 6 – Results  221 

6.8.2  Mutant 5 has enhanced ability to uptake CCL22 
compared to WT D6 

Previous experiments using chemokine uptake assays to compare Mutants 2, 3 and 4 to 

WT D6 revealed that the ligand uptake and scavenging phenotype of WT D6 is unaffected 

by individually altering three out of the four tyrosine residues on the N-terminus. In further 

experiments, the newly generated Mutant 5 was tested alongside WT D6 and Mutants 2, 3 

and 4 for its ability to uptake fluorescently labelled chemokine. In these experiments AF-

CCL22 was used in place of AF-CCL2 in order to compare different D6 ligands for their 

ability to bind and be taken up by the different D6 mutants. Figure 6-18 shows the results 

of the chemokine uptake assay as well as flow cytometry profiles displaying the D6 

expression levels of each mutant compared to WT D6. 

 

The flow cytometry profiles depicted in Figure 6-18 (a) show that the cell lines expressing 

WT D6 or Mutant 2, 3, 4 and 5 had very similar levels of cell surface D6 expression at the 

time of experimentation and could therefore be compared. The data presented in Figure 6-

18 (b) show that AF-CCL22 uptake by Mutant 2 was slightly reduced compared to WT D6 

but this difference was not significant. On the other hand, uptake of AF-CCL22 by Mutant 

3 and Mutant 4 was significantly reduced compared to WT D6, and this result is in contrast 

to the data generated while using AF-CCL2, where the reduction in uptake capability by 

Mutant 3 and Mutant 4 was not significant (see Figure 6-16). Most surprisingly however, 

AF-CCL22 uptake by Mutant 5 was enhanced compared to WT D6, and this result was 

highly significant. Interestingly, the tyrosine mutated to phenylalanine in Mutant 5 is not a 

conserved tyrosine in non-primate mammals and may therefore represent an evolutionary 

adaptation in human and primate D6 that alters the ability of D6 to bind CCL22. The 

contrasting results for Mutants 3 and 4 with CCL2 and CCL22 demonstrated that there 

may be subtle differences in ligand binding affinity and uptake capability depending on the 

ligand and depending on peptide sequence of the mutant in question.  

 

In summary, Mutant 5 has an enhanced ligand binding and uptake capability compared 

to WT D6. The differences in ligand binding and uptake capability between each mutant 

may be altered depending on the ligand in question.  
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Figure 6-18: Ligand uptake capability is enhanced in Mutant 5.  
(a) Flow cytometry profile of each cell line (indicated in different colours). Each cell line was 
assessed for D6 expression using a mouse anti-HA (biotin) antibody or a mouse (biotin) isotype 
control and a streptavidin conjugated to R-phycoerythin (PE) secondary. (b) Dot plot indicating the 
results of multiple chemokine uptake experiments using 0.6μg/ml of AF-CCL22. Cells were 
analysed by flow cytometry and the MFI values for each experiment are plotted. Statistical analysis 
was performed using two-tailed unpaired t tests. N=5 per sample. 
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6.8.3  The presence of a single tyrosine residue 
rescues D6 activity  

As demonstrated in previous experiments, Mutant 1 cannot be post-translationally 

sulphated because all the tyrosine residues on its N-terminus have been mutated to 

phenylalanine. Mutants 6, 7, 8 and 9 each have only one tyrosine residue remaining (see 

Table 6-2 for details), and were generated to find out if the presence of a single tyrosine 

residue in any of the four possible positions was sufficient to rescue ligand binding 

capability in D6. To investigate this, similar chemokine uptake experiments were 

performed as before with AF-CCL22. The results of the chemokine uptake assays, as well 

as flow cytometry data showing the level of cell surface D6 expression of each mutant, are 

displayed in Figure 6-19.  

 

The D6 expression of each mutant was measured by flow cytometry, and histograms 

representing each mutant’s MFI are shown in the flow cytometry profile in Figure 6-19 

(a). This data demonstrated that Mutant 1, and Mutants 6 – 9 had similar levels of cell 

surface D6 expression at the time of experimentation and could therefore be compared. It 

was clear from the chemokine uptake assay (Figure 6-19 (b)) that the introduction of a 

single tyrosine residue in any position is sufficient to partially rescue ligand binding by D6. 

As well as the highly significant increase in uptake between Mutant 1 and each of the 

single tyrosine knock-ins, there are also significant differences in chemokine uptake 

capabilities between Mutant 6 and Mutant 8, Mutant 7 and Mutant 9, and Mutant 8 and 

Mutant 9, as highlighted on the dot plot in (b). These data suggest that sulphation of 

tyrosines in position 1 and position 4 of the conserved motif may be more important than 

sulphation of tyrosines in position 2 and 3, although no single tyrosine residue is 

indispensible for rescuing the ligand binding capability of D6. Comparison of Mutants 6 – 

9 with WT D6, shown in Figure 5E of Hewit et al, 2014, demonstrated that the single 

tyrosine knock-ins did not fully restore D6 chemokine uptake capabilities, indicating a 

requirement for multiple N-terminal tyrosine residues for full D6 function (Hewit et al., 

2014) 

 

In summary, the presence of a single tyrosine in any of the four possible positions on the 

N-terminus of D6 is sufficient to partially rescue the ligand binding and uptake 

capability of D6.  
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Figure 6-19: The presence of a single tyrosine residue partially rescues D6 activity.  
(a) Flow cytometry profiles of each cell line (represented in different colours). Each cell line was 
assessed for D6 expression using a mouse anti-HA (biotin) antibody or a mouse (biotin) isotype 
control and a streptavidin conjugated to R-phycoerythin (PE) secondary. (b) Dot plot indicating the 
results of multiple chemokine uptake experiments using 0.6μg/ml of AF-CCL22. Cells were 
analysed by flow cytometry and the MFI values for each experiment are plotted. Statistical analysis 
was performed using two-tailed unpaired t tests. N=5 per sample. Mutant 1 was found to be 
statistically different to Mutant 6, 7, 8 and 9, p<0.0001 for each. p values for the other t tests are 
indicated. For a comparison of Mutant 6 – 9 with Mutant 1 and WT D6 see (Hewit et al., 2014). 
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6.9 Summary of Chapter 6 

This chapter describes experiments designed to investigate (i) the role of sulphation of the 

N-terminus for ligand binding by the atypical chemokine receptor D6, (ii) the processes 

involved in post-translational sulphation, including the expression of enzymes critical to 

this process and the inhibition of the sulphation pathway, (iii) how mutation of the 

conserved tyrosine motif on the N-terminus of D6 affects ligand binding and uptake 

capability of this receptor.  

 

D6 and the other atypical chemokine receptors are biochemically distinct from typical 

chemokine receptors, therefore these experiments were important to find out if D6 shared 

this conserved structural feature of tyrosine sulphation. The experiments in this chapter 

also led on from the findings presented in Chapter 4 which described a synthetically 

derived N-terminal D6 peptide which was able to bind ligand only in a chemically 

sulphated form. The main findings that are presented in this chapter are:  

 

- Post-translational sulphation of a conserved tyrosine motif on the N-terminus of D6 

is an important requirement for optimal ligand binding and uptake; however no 

single tyrosine residue present on the N-terminus of D6 is essential for ligand 

binding. 

- Mutation of all tyrosine residues to phenylalanine inhibits post-translational 

sulphation and in turn, the chemokine uptake and degradation capability of D6 is 

greatly reduced.  

- The re-introduction of a single tyrosine residue in any of the four possible positions 

on the N-terminus is sufficient to partially rescue the ligand binding and uptake 

capability of D6.  

- Both TPST-1 and TPST-2 are required to retain the ligand uptake capability of D6, 

suggesting both enzymes are capable of D6 sulphation. 

 

Such findings shed new light on the significance of the D6 N-terminus for D6 function and 

specifically the importance of post-translational sulphation for binding and uptake of 

inflammatory CC chemokines.  
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7.1 Introduction  

The atypical chemokine receptor, D6 is biologically distinct from classical chemokine 

receptors and has been shown to be a key regulator of chemokine-driven inflammatory 

responses. Despite the pivotal findings that D6 is a highly efficient binder, internaliser and 

scavenger of inflammatory CC chemokines (Fra et al., 2003, Weber et al., 2004), and that 

D6 is fundamentally important for the resolution of inflammatory responses (Codullo et al., 

2011, Jamieson et al., 2005, Martinez de la Torre et al., 2005, Nibbs et al., 2007), little is 

known about the structure/function relationships that exist within and around D6 that 

contribute to binding of ligand. 

 

Many conventional chemokine receptors have been shown to rely on GAGs for the 

sequestration and subsequent presentation of chemokines (Handel et al., 2005, Proudfoot, 

2006). In contrast, different biochemical features have been identified on conventional 

chemokine receptors themselves that are required for or involved in ligand binding. 

Important among these is the N-terminus and in particular tyrosine sulphation at this region 

(Farzan et al., 1999, Choe et al., 2005, Veldkamp et al., 2006, Simpson et al., 2009, Tan et 

al., 2013a, Zhu et al., 2011). 

 

Therefore in an attempt to determine whether certain biochemical features that contribute 

to chemokine interactions with conventional chemokine receptors are also important for 

the function of the atypical chemokine receptor, D6, we have developed and utilized many 

molecular and cell based assays to analyse structural moieties that contribute to chemokine 

internalisation by D6, and therefore D6 function. The importance of proteoglycans for 

chemokine presentation to D6 was investigated with use of a proteoglycan-deficient cell 

line and the establishment, and optimisation of, novel assays to measure D6 activity. 

Various aspects of the N-terminus of D6 have been investigated, including its chemokine 

binding ability and its tendency to be ‘shed’ from the full length D6 protein. Importantly, 

for the first time, we have synthesized a peptide consisting of the first 35 amino acids of 

the D6 N-terminus, and tested its ability to bind and neutralise the activity of D6 ligands. 

Additionally, the action of proteases in cleaving the D6 N-terminus has been explored. 

Finally, the functional significance of tyrosine sulphation at the D6 N-terminus has been 

investigated. 
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In this chapter the main findings of this thesis will be summarized and discussed, and 

possible future directions highlighted.  

 

7.2 Discussion of Chapter 3  

7.2.1  The use of CHO cells 

The role of GAGs for D6 function was investigated by utilising the CHO 745 cell line 

which is deficient in the initiation of GAG chain formation on proteoglycan core proteins 

(Esko et al., 1985). Wild type CHO cells (CHO K1) express heparan sulphate, which is the 

most ubiquitous class of GAG and comprises 50-90% of total endothelial proteoglycans 

(Proudfoot, 2006). Heparan sulphate has also been shown to be expressed on LECs 

(Rutkowski et al., 2006) and trophoblasts (Van Sinderen et al., 2013) which are naturally 

D6-expressing cells. Therefore CHO cells were thought to be a good surrogate for the 

primary cells that normally express D6 in vivo, as these cells, e.g. LECs, are often 

problematic and lose D6 expression quickly in vitro (McKimmie et al., 2013).  

 

7.2.2   Chemokine presentation to D6 is facilitated by 
GAGs 

The main finding presented by Chapter 3 was that D6, expressed on GAG-free cells, binds 

and internalises the inflammatory CC chemokines CCL2 and CCL22 less efficiently than 

cells expressing GAGs (McKimmie et al., 2013). This finding was not unexpected because 

previous studies utilizing CHO 745 transfected cells for the study of conventional 

chemokine receptors have shown that GAGs improve the sensitivity of cells to chemokine 

stimulation (Ali et al., 2000). This study in particular focussed on the receptors CCR1 and 

CCR5 and showed that CCL3 stimulation of these receptors was less efficient when they 

were expressed on CHO 745 as opposed to CHO K1 cells. The effect observed in this 

study was chemokine-specific however, as CCR1 and CCR5 stimulation by CCL4 or 

CCL5 did not seem to be affected by the absence of GAGs on the cell surface. More 

recently, the differences in chemokine binding patterns between CHO K1 and CHO 745 

cell lines have been compared using fluorescence microscopy (Kawamura et al., 2014). 

This study produced images of both cell types after transfection of fluorescently tagged 

CCR7 and CXCR4, and after the addition of their fluorescently labelled ligands, CCL21 
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and CXCL12 respectively. The images generated show that when fluorescent chemokine is 

added to CHO K1 cells, small punctuate staining can be observed, which is not present on 

CHO 745 cells. This pattern of staining may be the result of chemokine oligomerisation, 

which is known to be facilitated by GAGs, and has been shown to be important for the 

activation of certain chemokine receptors both in vitro and in vivo (Proudfoot et al., 2003). 

CHO 745 hD6 cells are not incapable of CCL2 or CCL22 uptake (see Figure 3-8), 

suggesting that oligomerisation of CCL2 or CCL22 is not essential for D6-mediated 

binding and internalisation of these chemokines in vitro. This is consistent with previous 

studies on CCL2 which showed that it is the monomeric form of CCL2 which is believed 

to bind to CCR2 to induce cell migration in vitro (Paavola et al., 1998), however 

oligomerisation of CCL2 seems to be required for in vivo activation of CCR2 (Proudfoot et 

al., 2003, Handel et al., 2008). Whether this is also the case with D6, has yet to be 

elucidated. 

 

Chemokine-binding to GAGs has also been shown to protect them from degradation by 

proteases in their surrounding environment; thereby increasing their lifespan and 

increasing the time they have to exert their biological effects (Wagner et al., 1998, Sadir et 

al., 2004, Adage et al., 2012). Similarly, in the current study there was a subtle reduction in 

chemokine levels in the media of un-transfected CHO 745 cells compared with un-

transfected CHO K1 cells (Figure 3-11 (d) and (e)). These data add further significance to 

the lower amount of chemokine present in media from CHO K1 hD6 compared with CHO 

745 hD6 after 24 hours (Figure 3-11 (c)), and emphasize that D6-mediated scavenging of 

chemokine from the media by CHO K1 hD6 was still more efficient than CHO 745 hD6, 

despite the lack of protection from protease-mediated degradation of chemokine in GAG-

deficient CHO 745 cells. 

 

7.2.3  How do these findings relate to current 
knowledge of D6 and GAG function? 

Current knowledge of D6 function suggests a requirement for D6 expression on LECs in 

order to support the selective presentation of CCR7 ligands on LEC surfaces in 

inflammatory chemokine-rich contexts (McKimmie et al., 2013). The data presented in 

Chapter 3 suggest that cis-presentation of ligand by GAGs is important for D6-dependent 

internalisation and scavenging of inflammatory chemokines, therefore suggesting a 

requirement for GAGs in this context (see Figure 7-1). In support of this, it has been 
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shown previously that the expression of heparan sulphate based GAGs appears to be a 

hallmark of mature lymphatic vessels (Rutkowski et al., 2006), which is suggestive of their 

functional importance. In addition, GAG-binding of many chemokines has been shown to 

be required for chemokine-driven cell migration in vivo, in the presence of physiological 

flow in blood and lymph vasculature (Proudfoot et al., 2003, Johnson et al., 2005, Wang et 

al., 2005). Our data show that even when flow forces are not operative, GAGs still 

contribute to sequestration of chemokine and subsequent presentation to D6. Therefore it 

seems likely that the effect of GAGs on D6 function in vivo may be even more pronounced 

than that indicated by the in vitro data presented in this thesis. 

 

 

 

Figure 7-1: Consequences of GAG deficiency for D6 binding and internalisation of 
chemokines.  
D6 expressed on GAG-deficient CHO cells (CHO 745 hD6) is hampered in its ability to bind and 
internalise ligand. This is thought to be a result of the loss of GAG-mediated chemokine 
presentation to D6, and may also be partly a consequence of the inhibition of chemokine 
oligomerisation. Protease-mediated degradation of chemokines is also elevated in the media of 
CHO 745 cells, which is thought to be another consequence of the absence of GAGs.  
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7.3 Discussion of Chapters 4, 5 and 6 

Among the conventional chemokine receptors, a number of regions are known to be 

involved in ligand binding. Probably the most important amongst these is the extracellular 

N-terminus, and specifically, clusters of sulphated tyrosines in this region. Chapters 4, 5 

and 6 of this thesis investigated the N-terminus of D6, and its importance for ligand 

binding. The main findings presented in these chapters were: 

 

- Sulphated tyrosine residues at the N-terminus of D6 are required for optimal 

chemokine binding and internalisation by D6.  

- A sulphated peptide representing the first 35 amino acids of the D6 N-terminus is 

capable of neutralising D6 ligands in vitro.  

- The bacterial protease, staphopain A, can cleave the N-terminus of D6 and suppress 

its ligand binding, and internalisation, activity.  

The potential significance of these findings is discussed in the following sections: 

 

7.3.1  A conserved tyrosine cluster on the N-terminus 
of D6 is a key determinant for ligand binding 

Analysis of the amino acid sequences of D6 from many different mammalian species 

highlighted a highly conserved cluster of tyrosine residues within the N-terminus (see 

Figure 6-1). The nature of this motif in D6 is suggestive of post-translational sulphation, a 

common biochemical modification among many of the conventional chemokine receptors, 

and similar to chemokine receptors known to be sulphated such as CCR5, CCR2 and 

CXCR4, the tyrosine motif in D6 is found in the vicinity of acidic residues (aspartic and 

glutamic acid). The conserved cysteine found in the N-terminal of almost all chemokine 

receptors is also present in D6, and notably all these chemokine receptors bear a sulphated 

tyrosine located approximately nine residues before the conserved cysteine (Szpakowska et 

al., 2012). Tyrosine sulphation is thought to be important for binding interactions between 

chemokine receptors and their ligands because many chemokines have a positively charged 

pocket at their surface with which a negatively charged sulphate would interact 

(Hemmerich et al., 1999, Love et al., 2012, Gozansky et al., 2005). Sulphated tyrosines on 

chemokine receptors have also been proposed to keep the N-terminus in an ‘open’ 

configuration, as the negative charges of sulphate groups repel each other and prevent the 
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collapse of this domain, thereby keeping an optimal confirmation for ligand binding 

(Szpakowska et al., 2012). The results presented in Chapter 4 and Chapter 6 both indicate 

that ligand binding by D6 is dependent on receptor sulphation. This was demonstrated by 

both chlorate, and siRNA-mediated, inhibition of sulphation, and tyrosine to phenylalanine 

site-directed mutagenesis in this area, and was further confirmed by the use of peptides 

derived from the N-terminus of D6, which showed that a sulphated D6 N-terminal peptide 

was able to neutralise the activity of D6 ligands in vitro, however a non-sulphated version 

could not (Hewit et al., 2014). Site-directed mutagenesis studies, in particular, highlighted 

the requirement for at least one tyrosine residue to restore ligand binding function which 

was almost completely knocked-out by the complete tyrosine to phenylalanine mutant 

(Figure 6-19), with the first and fourth tyrosine appearing optimal. Previous comparison of 

the N-termini of chemokine receptors have highlighted a conserved tyrosine approximately 

9 residues before the predicted disulphide bond (described in more detail in section 1.2.1.2 

of the Introduction). This conserved tyrosine is also present in D6 (YYYDY), suggesting 

that it is of functional significance. Surprisingly, mutation of the second tyrosine (which is 

only conserved in higher order primates) resulted in significantly enhanced ligand binding 

and internalisation of CCL22 (Figure 6-15). This may represent an evolutionary adaptation 

in humans and higher order primates which reduces the affinity of D6 for CCL22. 

However whether this is also the case with the other D6 ligands has yet to be tested. Site-

directed mutagenesis where all, or all but one, tyrosines were mutated to phenylalanine 

also seemed to decrease trafficking of the receptor to the cell surface over time (Figures 6-

13 and 6-17). This effect was not observed with growth of HEK D6 cells in sodium 

chlorate (Figure 6-2 (c)), suggesting that it may be a consequence of loss of tyrosine 

residues, rather than loss of sulphation.  

 

Tyrosine sulphation in mammals is dependent on the action of two tyrosyl-protein 

sulphotransferases (TPST-1 and TPST-1) (Stone et al., 2009). Previous comparison of 

these enzymes showed that they have different tissue expression patterns and play distinct 

but overlapping roles, as well as exhibiting differences in substrate specificity (Mishiro et 

al., 2006). The results presented in Chapter 6 from studies of TPST-1 and TPST-2 revealed 

that both enzymes are involved in the post-translational sulphation of D6 (Figure 6-

10).Taking this into account, it is possible that the different TPST’s act on different 

tyrosines of the D6 N-terminus, therefore explaining why inactivating only TPST-1 or only 

TPST-2 did not significantly decrease ligand binding by D6, but inactivating both enzymes 

did. This hypothesis is also in agreement with the site-directed mutagenesis data presented 

later in Chapter 6 which showed that the most prominent decrease in ligand binding by D6 
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occurred in mutant 1, where all tyrosines were mutated to phenylalanine, thus inhibiting 

sulphation of the receptor (Section 6-5).  

 

7.3.2  Shedding and cleavage of the D6 N-terminus 

Previous reports from this laboratory analysing the biochemistry of D6 have highlighted 

the existence of, not only the full length D6 receptor, but also a truncated form which 

cannot be detected by D6 antibodies which recognise the N-terminus (Blackburn et al., 

2004). It was proposed that this truncated version of D6 may represent shedding of the N-

terminus from the full length receptor. Shedding of a peptide that is capable of acting as a 

motile blocker of inflammatory CC chemokines may be advantageous in certain cases, and 

studies with the synthetic D6-N peptide support such a function for this peptide.  

 

Unexpectedly, sequence analysis of the N-terminus of chemokine receptors has shown that 

the D6 N-terminus is more similar to the CXC receptors than to the inflammatory CC 

receptors (Szpakowska et al., 2012). Several reports of CXC chemokine receptor cleavage 

by mammalian (Hartl et al., 2007, Levesque et al., 2003, Valenzuela-Fernandez et al., 

2002) or bacterial proteases (Laarman et al., 2012) prompted us to examine whether such 

proteases can also cleave the D6 N-terminus. Western blots presented in Chapter 5, provide 

evidence of D6 truncation by the bacterial protease staphopain A (Figure 5-8), which is 

released by Staphylococcus aureus. Importantly, truncation was also shown to decrease the 

ability of D6 to bind, and internalise, CCL22 (Figure 5-10), further supporting loss of the 

N-terminus. Unfortunately, attempts to identify the released N-terminal peptide by 

immunoprecipitation were unsuccessful, suggesting that the concentration of the released 

peptide was too low to detect by this method, or that the peptide was further degraded in 

the culture medium. Previous studies on the biochemistry of D6 have shown that it is 

glycosylated on its N-terminus (Blackburn et al., 2004). Modifications such as post-

translational glycosylation have been shown to stabilise peptides and inhibit their 

degradation (Ludwig et al., 2000), making the possibility of degradation less likely. 

Assuming that the action of staphopain A can release an intact D6 N-terminal peptide, why 

would this be beneficial to S. aureus? Cleavage of the CXCR2 N-terminus demonstrated 

by Laarman et al makes sense as this will prevent the migration of CXCR2-expressing 

neutrophils to the site of infection. Thus we propose that cleavage of D6 and release of an 

N-terminal peptide capable of blocking the action of inflammatory CC chemokines would 

also be beneficial to a bacterial pathogen trying to escape the inflammatory response 
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because this would result in a decreased recruitment of myelomoncytic inflammatory 

leukocytes to fight the infection. Figure 7-2 illustrates this hypothesis.  

Alternatively, if the D6 peptide is degraded, cleavage and inactivation of full length D6 

may still be beneficial to S. aureus. Recent studies investigating the many virulence factors 

of S. aureus have shown that elusive subpopulations of this bacterial pathogen are able to 

survive inside human macrophages (Kubica et al., 2008, Thwaites and Gant, 2011) and can 

actually exert cyto-protective effects by up-regulating anti-apoptotic factors (Koziel et al., 

2009). Koziel et al hypothesize that this ability may contribute to the survival and 

systematic dissemination of the S. aureus infection. Taking this into account, cleavage of 

D6 by staphopain A would limit inflammatory CC chemokine scavenging thereby 

attracting more macrophages into the area of infection. This would give S. aureus more 

opportunity to infect and persist within macrophages in order to be disseminated later at 

sites distant from the primary infection, see Figure 7-3. Given that S. aureus has evolved 

to be a highly human-specific pathogen, an ideal mouse model for staphylococcal disease 

does not exist (Spaan et al., 2013), therefore it was concluded that testing these different 

hypotheses in vivo would provide little meaningful data.  

 

Comparison of the CXCR2 N-terminus with the D6 N-terminus by BLAST analysis found 

no significant similarities, however the sequence of residues on CXCR2 cleaved by 

staphopain A was found to be LD↓A, with only the leucine residue (L) proven to be 

essential (Laarman et al., 2012). The D6 N-terminus has the sequence LDE at positions 28, 

29 and 30 which could be a potential cleavage site and would result in a shed peptide 

containing the sulphated tyrosine motif shown to be important for ligand binding. Further 

analysis is required to confirm or reject this hypothesis.  
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Figure 7-2: Proposed functional consequences for N-terminal cleavage of D6 by the 
bacterial protease staphopain A 
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Figure 7-3: Alternative hypothesis on the effect of D6 cleavage for virulence of S. aureus.  
(i) S. aureus releases staphopain A. (ii) Staphopain A cleaves D6. (iii) The released D6 N-terminal 
peptide is degraded. (iv) The cleaved D6 receptor is unable to scavenge inflammatory CC 
chemokines. (v) Inflammatory CC chemokines build up at the site of infection. (vi) Macrophages 
expressing receptors such as CCR1, CCR2 and CCR5 travel towards the site of infection. (vii) S. 
aureus is phagocytosed by macrophages but can survive and persist intra-cellularly, for 
dissemination and subsequent infection at a later time point. 
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7.3.3  A sulphated peptide representative of the D6 N-
terminus has therapeutic potential 

Despite the initial cloning of the first chemokine receptor over 20 years ago, there are still 

no chemokine receptor directed therapeutics currently licensed for the treatment of chronic 

inflammatory diseases. This is most likely a consequence of the great degree of overlap 

between the functions of both the inflammatory chemokines and their receptors (Schall and 

Proudfoot, 2011). An appealing alternative to receptor inhibition may be to neutralize the 

chemokine ligands involved in the inflammatory response; however the overall effect of a 

specific blocker against a single chemokine would most likely be lost because of 

redundancy in the system. A molecule that has the ability to block multiple different 

inflammatory chemokines would be a great advantage in this regard, and this is the 

strategy adopted by a number of viral species in order to escape the inflammatory response 

(Webb and Alcami, 2005).  

 

The atypical chemokine receptor D6 has the unique ability to bind and scavenge all 

inflammatory CC chemokines, and the N-terminus of this receptor was thought to be, and 

later confirmed to be (Chapter 6), required for ligand binding. For this reason, Chapter 4 

focussed on the investigation of sulphated and non-sulphated D6-derived peptides, and 

specifically their ability to bind D6 ligands and neutralise their in vitro activity. The 

sulphated D6-N peptide demonstrated binding specificity towards the inflammatory CC 

chemokines CCL2 and CCL22 (section 4.4.2), and was shown to inhibit the binding of 

CCL2 to full length D6 (Figure 4-12) and also to its cognate receptor; CCR2 (Figure 4-13). 

These results suggested a potential therapeutic benefit of sulphated D6-N as a non-

immunogenic, inflammatory CC chemokine scavenger which could dampen the 

inflammatory response during chronic inflammatory diseases. On the other hand, because 

D6-N (s) is likely to be a broad-based inflammatory CC chemokine scavenger, this may 

have implications with regards to its therapeutic usefulness. Previous studies investigating 

inflammatory diseases such as RA and asthma have shown that target specificity is 

crucially important for treatment (Schall and Proudfoot, 2011, Pease and Horuk, 2014). 

Additionally, different viruses have been shown to release chemokine binding proteins that 

are capable of binding inflammatory chemokines and inhibiting their action in order to 

evade the immune system (Deruaz et al., 2008, Epperson et al., 2012). Therefore if D6-N 

(s) were to be used therapeutically, this may have implications for the inflammatory 
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response against infection. Therefore care would have to be taken e.g. to ensure 

immunocompromised patients are not put at risk as a result of treatment with D6-N (s).   

The change in chemokine-neutralising ability between the old and new batches of 

sulphated D6-N peptide was a consequence of differentially sulphated peptides between 

batches (Figure 4-15) most likely caused by the uncontrollable nature of the chemical 

sulphation process. This has also been shown to be the case in other studies utilizing N-

terminally derived peptides from receptors with multiple tyrosines (Choe et al., 2005). 

These studies suggest that artificial in vitro sulphation of N-terminal peptides derived from 

receptors bearing multiple tyrosines, such as D6, give rise to products with a variety of 

sulphation patterns that differentially affect the binding to chemokines.  

 

Whilst the result with the new batch of sulphated D6-N was disappointing, it demonstrated 

that the pattern and degree of tyrosine sulphation on the D6-N peptide is critical for the 

ability to bind its ligands. It also highlighted the importance of study towards finding a 

naturally ‘shed’ D6 N-terminal peptide, as this would contain the native sulphation pattern 

of D6-N and could therefore be exploited when designing potential therapeutics against 

inflammatory CC chemokines for the treatment of chronic inflammatory pathologies. 

 

7.4 Future directions and considerations 

7.4.1 GAG studies 

The results presented in Chapter 3 highlight a number of avenues for further investigation. 

Previous studies in this field have highlighted large discrepancies between in vitro and in 

vivo data for certain chemokines, which is thought to be largely attributable to the 

physiological flow forces experienced in the vasculature in vivo. Therefore to gain a more 

thorough insight into the relationship between GAGs and D6, in vivo models should also 

be considered. In previous studies investigating the role of GAGs on lymphatic 

endothelium, loss-of-function genetic approaches were developed, whereby heparan 

sulphate biosynthesis was conditionally knocked-out on LECs to study the role of 

lymphatic endothelial heparan sulphate in cancer metastasis (Yin et al., 2010). The use of 

this model to study the requirement for GAG-mediated presentation of chemokine to D6 

may be possible, however GAGs are also required for the presentation of CCL21 to CCR7 

on the lymphatic vasculature, therefore the exact consequences of this conditional knock-

out for D6 may be difficult to untangle using this model.  
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The application of primary LECs in vitro, and the use of glycosidase enzymes to remove 

GAGs from the surface of these cells, was also considered to study the relationship 

between GAGs and D6. This method has been used previously in order to study the re-

generation of lymphatic vasculature (Rutkowski et al., 2006). The sensitivity of primary 

LECs in tissue culture, as well as their tendency to lose D6 expression after a small number 

of passages, were serious limitations to their use for these purposes, and therefore the use 

of a GAG-free CHO cell line was deemed to be a more manageable approach to 

investigations in this area. 

 

As mentioned previously, oligomerisation of CCL2 has been shown to be important for its 

activation of CCR2 in vivo, however, in contrast, monomeric CCL2 mutants that are 

unable to form dimers have the same chemotactic properties as wildtype CCL2 in vitro 

(Proudfoot et al., 2003, Handel et al., 2008). It has yet to be discovered whether 

oligomerisation of certain chemokines is required for optimal D6 binding and 

internalisation, however the results presented in Chapter 3 suggest that this is a possibility. 

If the decrease in D6 activity observed on CHO 745 cells was an indirect result of the 

prevention of chemokine oligomerisation on GAG-free cells, this could be confirmed with 

use of monomeric CC-chemokine mutants such as the CCL2 mutant used by Handel et al, 

which has a mutation in a residue that comprises the core of the dimerization interface 

(proline to alanine mutation in position 8 of the N-terminal of CCL2). In this scenario we 

would expect D6 activity to be reduced in cells where the mutant chemokine was used 

compared with wildtype chemokine.  

 

Finally, the CHO K1 hD6 and CHO 745 hD6 clones generated for this study are currently 

being used by our laboratory to develop fluorescence microscopy techniques for the study 

of D6. As a knock-on effect of this future research, more extensive insight into the 

functional relationship between GAGs and D6 should be gained that was not possible in 

the course of this study.  

 

7.4.2  D6 N-terminal peptide studies 

The results presented in Chapters 4, 5 and 6 provide evidence of the importance of N-

terminal tyrosine residues for D6 function. However they also highlight some unanswered 

questions and opportunities for further investigation. The inability of the new batch of 
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sulphated D6-N to bind chemokines emphasizes a requirement to uncover the optimum 

tyrosine sulphation pattern of D6 to allow the design of successful therapeutics based on 

this motif.  The mass spectrum of the new batch of D6-N showed that it is a mixture of 

mostly di- and tri-sulphated peptides (Figure 4-15). Separation of each type of peptide 

based on their degree of sulphation may be possible using reverse-phase chromatography 

and this would help to determine the optimum sulphation pattern required for chemokine 

binding. This approach was initiated but unfortunately could not be followed up because of 

time constraints. 

 

Providing the successful re-synthesis of a D6-N (s) peptide capable of binding chemokines, 

many avenues for further investigation could be followed up, most importantly the testing 

of the D6-N (s) peptide in vivo for its ability to neutralise inflammatory CC chemokines 

during induced inflammatory pathologies.  

 

From a biochemical stand-point, critical information would undoubtedly be gained from 

the crystallization of a D6-N – chemokine complex, such as the binding sites and the role 

of sulphate groups in the D6-N (s) – chemokine interaction. The determination of a three-

dimensional structure would importantly provide a more complete understanding of the 

nature of the interactions between the full length D6 receptor and its ligands, as well as 

facilitating rational drug design. In addition, it has been notoriously difficult to obtain 

crystal structures of chemokine receptors, however obtaining a crystal structure of the N-

terminal peptide should, in theory, be easier and less time consuming.  

 

7.4.3  Further functional characterisation of the D6 N-
terminus 

The current study attempted to elucidate the functional significance of tyrosine sulphation 

on the D6 N-terminus for ligand binding. Interestingly it was noted that mutagenesis of 

three or more of the tyrosine residues to phenylalanine resulted in the expression of less D6 

on the cell surface after a few days in tissue culture (Figure 6-17 (b)), whereas inhibiting 

sulphation did not have any effect on D6 surface expression (Figure 6-2 (c)). These results 

imply that tyrosine residues themselves may also be required for optimal trafficking of D6 

to the cell surface or recycling of the receptor after internalisation, and this may also be an 

additional function common to the tyrosine residues on other conventional or atypical 

chemokine receptors. Further investigation is required to test this hypothesis. 
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7.5 Conclusions 

The aim of this thesis was to investigate the biochemical properties of the D6 N-terminus 

that make it the principle site for binding inflammatory CC chemokines. Post-translational 

tyrosine sulphation has been previously shown to be important for ligand binding in many 

conventional chemokine receptors, and GAGs have been highlighted for their role in 

ligand acquisition and presentation to chemokine receptors, therefore the roles for 

sulphation and GAGs for ligand binding to D6 were focussed on.  

 

The results presented provide evidence that GAGs are involved in the presentation of 

ligand to D6 and, in their absence, D6-mediated internalisation and degradation of 

chemokines is significantly reduced. Confirmation of the importance of N-terminal 

tyrosine residues for D6 function was established through extensive site-directed 

mutagenesis studies. Furthermore, sulphation was implicated as a prerequisite for optimal 

ligand binding by means of sulphation inhibition studies, either by siRNA knock-down of 

TPST-1 and TPST-2, or inhibition of the universal sulphate donor PAPS with the use of 

sodium chlorate. Support for the importance of the N-terminus of D6 was further provided 

with indications that it is a cleavage target of staphopain A, a protease released by the 

bacterial pathogen Staphylococcus aureus. Finally, a sulphated peptide derived from the N-

terminus of D6 was shown, for the first time, to be capable of binding CCL2 in vitro and 

preventing binding to both D6, and its cognate receptor CCR2; however the positioning 

and degree of sulphation of this peptide was shown to be crucial to its ability in this regard. 

These results give further validation to the proposal that a strategically sulphated version of 

D6-N may have the potential to be used therapeutically as a non-immunogenic, broad-

based chemokine scavenger that is likely to be beneficial in the treatment of chronic 

inflammatory conditions. The experiments presented in this thesis also demonstrate the 

importance of studies investigating the biochemical and structural features of proteins and 

how such investigations facilitate a more in-depth understanding of their function.  
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Appendix 1: Publications arising from this work 

The following publications are included in this appendix:  

 

MCKIMMIE, C. S., SINGH, M. D., HEWIT, K., LOPEZ-FRANCO, O., LE BROCQ, M., 
ROSE-JOHN, S., LEE, K. M., BAKER, A. H., WHEAT, R., BLACKBOURN, D. 
J., NIBBS, R. J. B. & GRAHAM, G. J. (2013) An analysis of the function and 
expression of D6 on lymphatic endothelial cells. Blood, 121, 3768-77. 

 

HEWIT, K. D., FRASER, A., NIBBS, R. J. & GRAHAM, G. J. (2014) The N-terminal 
region of the atypical chemokine receptor ACKR2 is a key determinant of ligand 
binding. Journal of Biological Chemistry, 289, 12330-42. 

 
 
LE BROCQ, M. L., FRASER, A. R., COTTON, G., WOZNICA, K., MCCULLOCH, C. 

V., HEWIT, K. D., MCKIMMIE, C. S., NIBBS, R. J. B., CAMPBELL, J. D. M. & 
GRAHAM, G. J. (2014) Chemokines as novel and versatile reagents for flow 
cytometry and cell sorting. J Immun, 192, 6120-30.  
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