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Abstract 

Osteoporosis is a condition that results from substantially weakened bone, increasing an 

individual’s risk of fracture. Post-menopausal osteoporosis is the most common form of 

the condition, affecting 30% of post-menopausal women over the age of 50. Following 

the menopause, female oestrogen levels decline and this perturbs bone homeostasis by 

promoting an environment that is biased towards bone erosion. Osteoclasts are the cells 

responsible for eroding bone and are normally inhibited by oestrogen. However, the 

decline in oestrogen production results in increased osteoclast differentiation and 

activity. This rapidly decreases the bone mineral density and results in fracture-prone 

bone. Osteoclasts are derived from mononuclear myeloid progenitors found in the blood 

and bone marrow, which fuse to form large multinucleated cells that reside in the bone 

cavity. These progenitor cells are also responsible for replenishing monocytes, 

macrophages and dendritic cells. One class of receptors present on the surface of these 

cells, which are capable of dictating a cells function, are Fcγ receptors and modulation 

of Fcγ receptors has been shown to inhibit the differentiation of human monocytes to 

osteoclasts. 

This thesis investigates Fcγ receptor modulation on murine osteoclastogenesis and in 

order to stimulate Fcγ receptors, both IgG and IgG complexes were used. IgG complexes 

were generated using Staphylococcus aureus Protein A (SpA) in combination with IgG to 

form SpA-IgG complexes (SIC). We show that IgG and SIC are capable of engaging with 

Fcγ receptors resulting in the inhibition of osteoclast differentiation. Furthermore, both 

IgG and SIC inhibit the transcription of mRNA essential for the fusion of progenitors and 

enzymes for the erosion of bone matrix. Therefore, IgG and SIC are capable of inhibiting 

murine osteoclastogenesis.   

The murine model of osteoporosis was used to further investigate the ability of SIC to 

inhibit murine osteoclast differentiation. Previous studies have shown that when SpA is 

administered in vivo it is capable of binding circulating IgG to form SIC. We used this 

property to test the ability of SpA to bind to the surface of monocytes. SpA was found 

to bind with highest affinity to blood Ly6Chigh monocytes, which are known to 

differentiate in vitro to OCs. IgG and SIC were also able to inhibit the in vitro 

osteoclastogenesis of Ly6Chigh monocytes. It was hypothesised that SpA would co-opt IgG 

and inhibit the in vivo differentiation of progenitors to osteoclasts in the ovariectomy 

model of osteoporosis. To generate this animal model the ovaries were removed from 

the mice in order to simulate the menopause and induce bone loss. To assess the 

percentage of bone present after ovariectomy, we used micro-computer tomography 

and discovered that SpA was unable to prevent bone loss associated with ovariectomy. 
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Therefore, SpA can bind to the surface of osteoclast progenitors but is unable to inhibit 

bone loss in the model of osteoporosis. 

In addition to studying the role of Fcγ receptor modulation of osteoclastogenesis, the 

role of Bcl-3 (a negative regulator of NF-κB) in osteoclast differentiation and bone 

remodelling was also investigated. NF-κB is an essential signalling molecule and 

transcription factor involved in osteoclast differentiation. Previous research has shown 

that in the absence of Bcl-3 (Bcl-3-/-) aberrant cytokine responses to LPS and TNF- 

occur.  Therefore, RANKL stimulation of WT and Bcl-3-/- osteoclast precursors was done 

to determine whether Bcl-3-/- animals responded aberrantly to RANKL. WT and Bcl-3-/- 

animals were able to generate in vitro osteoclasts, which were phenotypically and 

transcriptionally similar. However, comparison of in vivo osteoclast progenitors revealed 

that Bcl-3-/- animals had reduced CD115+ osteoclast progenitors compared to WT 

animals. Examination of the trabecular bone present in the proximal tibia revealed that 

Bcl-3-/- animals had a higher percentage of bone present that WT controls. Therefore, 

Bcl-3 does not effect in vitro osteoclast differentiation but further work needs to be 

done to understand the role of Bcl-3 in bone remodelling. 

This thesis aimed to investigate whether SpA-IgG complexes or Bcl-3 could represent a 

novel avenue of therapeutic intervention in osteoporotic disease. In summation, SpA is 

able to form IgG complexes that can inhibit the differentiation of OCs in vitro; however, 

treatment of osteoporotic animals with SpA was unable to halt bone loss. This suggests 

that SpA-IgG complexes are able to modulate Fcγ receptors in vitro and skew 

progenitors from differentiation into osteoclasts but cannot overcome the prevailing 

pro-osteoclastogenic environment that results from ovariectomy. The presence of 

osteoclast progenitors was also shown to be partially dependent on Bcl-3 and as such 

Bcl-3 may be a novel target for therapeutic agents to target osteoclast progenitors in 

diseases like osteoporosis. However, the role of Bcl-3 in bone remodelling requires 

further investigation.  
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1 Introduction 

1.1 Osteoimmunology 

Osteoimmunology is the study of the interactions between the immune and skeletal 

system1. Many factors produced by cells of the immune system promote immunity as 

well as being essential in the maintenance of bone integrity1. Evidence is growing that 

the interactions between T cells, B cells, Macrophages (MØ), Osteoclasts (OC) and 

Osteoblasts (OB) within the bone marrow (BM) are vital for homeostatic bone 

remodelling1. T and B cells from the adaptive immune system and MØ which bridge the 

innate and adaptive immune system interact with OCs and OBs, which are involved in 

bone modelling and remodelling1. Despite arising from separate lineages, T cells and 

OCs share the same essential transcription factors2, B cells and OBs secrete negative 

regulators of OC differentiation (see section 1.3.4)3 and MØ and OCs share the same 

progenitors prior to terminal differentiation4. However, this intimate link between the 

immune and skeletal system can become perturbed. In diseases like osteoporosis, 

oestrogen deficiency results in dysregulation of immune cells. This causes the 

production of factors which drive the differentiation of OCs, leading to global bone 

loss5. Therefore, establishing the interactions between immune and skeletal cells allows 

for dissection of osteoporotic pathogenesis.     

In bone biology three main cell types remodel bone: OCs, OBs and osteocytes each play 

a vital role in modelling and remodelling the skeletal system. OCs differentiate from 

precursors of the monocyte lineage that are present in blood and reside within the BM4. 

Following the appropriate stimulation, monocytes will express essential 

osteoclastogenic proteins and begin to fuse (see sections 1.3 and 1.4)6,7. Fusion results 

in the formation of a multinucleated OC which attaches onto the surface of the bone 

matrix7. OCs form a tightly sealed zone and a ruffled border creating an isolated section 

of bone matrix directly beneath the OC8. At this point the OC begins to acidify the 

matrix and secrete enzymes such as Tartrate resistant acid phosphatase (TRAP), Matrix 

Metalloproteinase 9 (MMP9) and Cathepsin K to resorb the bone7–12. 

In contrast, OBs differentiate from a mesenchymal origin and secrete organic 

molecules, such as collagen type I, osteocalcin and osteopontin, as they migrate over 

the surface of eroded bone matrix13. These organic molecules, mainly collagen type I, 

bind extracellular calcium ions (Ca2+) which results in mineralisation and bone 

formation14. OBs can remain on the surface of eroded bone and allow themselves to 

become cocooned in the extracellular matrix. OBs which do this are then known as 

osteocytes13. Osteocytes are immobilised but remain connected to other osteocytes by 
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an extensive series of canals15. This shifts their role from bone formation to mechanical 

stress sensing in order to coordinate the bone remodelling process15. 

Together these three cell types regulate bone homeostasis in a system called the basic 

multicellular unit (BMU)16. The BMU involves a coordinated series of events in which OCs 

differentiate and settle on bone, initiating the erosive phase of the BMU. OCs migrate 

across bone matrix and form trenches of eroded bone13. OCs have an average lifespan of 

12 days before they apoptose allowing OBs to begin the lengthy process of secreting 

new organic matrix16. The bone formation phase of BMU can last as long as 3 months, as 

secreted organic matrix slowly binds circulating Ca2+ for mineralisation13. This temporal 

discrepancy in the bone resorption and formation phases of the BMU can become 

perturbed resulting in bone disorders. Despite, the rate at which bone formation and 

resorption occur, the purpose of bone modelling and remodelling is to maintain bone 

integrity16. Bone modelling occurs in order to respond to changes in mechanical load 

resulting in altered structure, size and shape of bones ensuring that the musculoskeletal 

system is able to meet the physical demands17. While, bone remodelling occurs to 

remove damaged bone and is stimulated by osteocyte death15. However, in diseases like 

osteoporosis bone loss exceeds bone formation resulting in pathologically weakened 

bone16. 

1.2 Post-menopausal osteoporosis 

Osteoporosis is a physical state in which there is sufficient bone loss to pose an 

increased risk of fracture. The disease can be categorised into either primary or 

secondary osteoporosis18. Primary osteoporosis is bone loss due to intrinsic factors such 

as menopause, aging or genetic factors19. While secondary osteoporosis occurs usually 

following medical intervention for other conditions such as Cushing’s disease which 

requires long term glucocorticoid treatment resulting in osteoporotic fractures in 

30-50% of patients20. Osteoporotic fractures in the elderly are a major cause of 

disability and can increase mortality rates21. Clinical osteoporosis is diagnosed by 

measuring the percentage of bone present in femoral head by dual-energy x-ray 

absorptiometry (DXA)22. DXA uses x-ray images of the patient’s femoral head and can 

provide insight into the micro-architecture of a patient’s bones. To make a diagnosis, 

the percentage of bone present in the patient’s femoral head is compared to that of a 

healthy sex-matched individual22. If the patient’s percentage of bone is over 2.5 

standard deviations or more below that of a healthy individual then that patient is 

diagnosed with osteoporosis. This method of diagnosis is referred to as the T score and 

this can be used to diagnose osteoporosis in both sexes22. The potential fracture risk 

increases as the mineral density of the bone decreases and studies have shown that the 
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lifetime risk of a female, aged 50 or over, suffering a hip fracture is 15%22. Thus 

diagnosing osteoporosis prior to fracture allows time for treatments to be initiated to 

slow the rate of bone loss and limit hazards which may lead to fractures. 

Post-menopausal osteoporosis (PMO), or Type I osteoporosis, occurs in 30% of 

post-menopausal women and is caused by a decline in the production of oestrogen by 

the ovaries19. The ovaries are small nodular organs located either side of the uterine 

fallopian tubes which are involved in coordination of menstrual cycle. The release of 

follicle-stimulating hormone (FSH) from the pituitary glands induces oestrogen 

production by the ovaries and rising concentrations of oestrogen mark stages of the 

menstrual cycle23. This cycle prepares the uterus for implantation and pregnancy.  

Several hormones are involved in the monthly cycle including gonadotrophin-releasing 

hormone (GnRH), FSH, luteinizing hormone (LH), oestrogen and progesterone (Table 

1-1)24. Rodents experience similar reproductive cycles to humans requiring the 

aforementioned hormones25. However, unlike human menses, rodents reabsorb the 

uterus, rather than shed their menses, at the end of their oestrous cycles which lasts 

approximately 5-6 days for mice and 4-5 days for rats26,27.  

 

 

Figure 1-1: Synthesis of oestrogens from cholesterol. 
Cholesterol is converted to multiple sex steroids depending on the physiological requirements of 
the body. Enzymes involved in producing sex steroids are in blue. Adapted diagram24,28. 

 

Oestrogen plays a pivotal role in both the menstrual and oestrous cycle. It is synthesised 

from cholesterol by thecal cells in the ovaries in response to FSH. However, oestrogen is 

the collective name given to three related hormones; oestrone, oestriol and the most 
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biologically active form oestradiol28. Hereafter, the term oestrogen will be used to 

encompass all isoforms, unless specifically stated. The levels of oestrogen vary 

throughout the female menstrual cycle from 50ng/ml to 250ng/ml29. The biosynthesis of 

oestrogen is a multi-step process in which cholesterol is converted to progesterone and 

the androgen, androsterodione28. Androsterodione is then converted directly to oestrone 

or oestriol by aromatase or converted to testosterone by 17β hydroxysteroid 

dehydrogenase (HSD)28. Testosterone is then finally converted to oestradiol by 

aromatase (Figure 1-1)28.  

 

 

Table 1-1: Hormones involved in human and rodent reproductive cycles. 

Adapted table24. 

 

1.2.1 Therapies for post-menopausal osteoporosis 

The menopause refers to a period in the female reproductive cycle when the final 

oocyte is released by the ovary and the level of oestrogen decreases. The decline in 

oestrogen results in the commencement of menopausal symptoms such as hot flushes, 

neurological problems, weight gain and bone loss30. In order to combat these symptoms 

and reduce the fracture risk hormone replacement therapy (HRT) is given. This supplies 

the body with oestrogen or oestrogen mimetics with or without progesterone 

derivatives31. These therapies are successful in preventing PMO; however, long term 

exposure to oestrogen and progesterone can increase the risk of cancer, cardiovascular 

disease and neurological issues31. Raloxifene, a non-hormonal selective oestrogen 
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receptor modulator has been shown to decrease fracture risk, however, there remained 

the increased risk of side effects including cramps and thromboembolisms32. Another 

group of drugs which is frequently used to treat osteoporosis are bisphosphonates which 

can bind to the bone matrix and upon resorption are ingested by OCs and induce 

apoptosis33. Bisphosphonates effectively eliminate bone resorption. However, these 

drugs can have adverse side effects such as fever, oesophageal irritation, osteonecrosis, 

severely reduced bone remodelling and increased risk of cancer34. Humanised 

monoclonal antibodies which target RANKL and sclerostin have been shown to be safe 

and effective at increasing bone mass in post-menopausal osteoporosis35,36. However, 

these monoclonal antibodies are costly and must be administered in high doses to be 

effective35,36. This has resulted in research focused at generating small peptides with 

the potential to engage the hinge region of RANK, preventing the conformational change 

which results in intracellular signalling, however, preclinical trials have still to be 

undertaken37. Therefore, there is an absence of a safe, efficacious and ultimately cost 

effective therapeutic designed for the treatment of post menopausal osteoporosis. The 

research presented in this thesis will aim to demonstrate novel avenues of investigation. 

1.2.2 Animal models of osteoporosis 

In order to mimic human osteoporosis, animals are ovariectomised (OVX) thus removing 

the predominant source of oestrogen from their system28. The rodent model of 

osteoporosis was first described by Salville in 196938. OVX surgery results in an oestrogen 

deficient system in which rapid trabecular bone loss is observed39. Inducing osteoporotic 

disease by surgical removal of the ovaries has been studied in a range of mammals 

including monkeys, dogs, rats and mice40. Monkeys in particular appear to be a good 

model organism for studying osteoporosis as they naturally undergo age-related bone 

loss and have a natural menopause40. However, these are costly experiments with large 

waiting times before assessment of bone loss40. Dogs are also used to study osteoporosis 

due to bone morphological similarities to humans40. However, only age-related bone loss 

can be studied in dogs, as they are resistant to OVX induced bone loss40. Rodents (rats 

and mice) are frequently used to study osteoporosis due to the rapid bone remodelling, 

reproducibility and ease of use40. Rodents naturally do not develop ‘osteoporosis’ in a 

similar manner to humans; however, both rodents and humans lose bone mass with 

age41. The main difference is that human age and menopausal related bone loss can 

lead to fractures of the vertebrae and femoral head which does not occur in rodents19. 

Despite this difference both the rodent model and human osteoporotic disease results in 

loss of the trabecular structures of the femur, tibia and vertebrae due to over active 

OCs and an inability of OBs to replace eroded bone.    
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1.2.3 Pathogenesis of oestrogen deficiency 

In recent years, and due to the availability of genetically engineered animals, the 

pathways involved in the rodent model of osteoporosis have been examined. In the rat 

model of OVX, early continuous treatment with oestradiol prevented bone loss by 

reducing OC numbers and stabilising the hormone balance42. Combined treatment of 

oestrogen and PTH was effective in the OVX model by preventing bone loss and 

increasing bone formation42. Administration of oestradiol to OVX mice prevents bone 

loss and as a consequence also decreases bone formation highlighting the tightly 

regulated nature of bone remodelling43,44. Interestingly, OVX mice treated with 

oestradiol have reduced weight gain45. These findings mirror results obtained from 

post-menopausal women receiving long term HRT, who had higher bone mineral density 

and decreased weight compared to placebo controls46,47. Oestradiol also induces OPG 

secretion and as such, during PMO insufficient oestrodiol levels result in lower OPG 

levels and increases the risk of developing osteoporosis48. 

The absence of oestrogen can cause systemic effects and one example of this is that 

oestrogen deficiency increases the number of CD25+ T cells present in the spleens of 

OVX animals, which arise in an IFN-γ dependent manner49. MØ taken from OVX animals 

are highly responsive to IFN-γ, producing pro-inflammatory cytokines IL-12 and IL-18, 

which are known to induce T cell proliferation and survival49. This increase in T cell 

numbers and IFN-γ primed MØ results in an activated immune state, with OVX animals 

possessing more than double the number of TNF-α producing T cells in the BM compared 

to controls49. As previously mentioned, T cells are capable of expressing RANKL and 

initiating osteoclastogenesis50. Interestingly, the roles of IFN-γ and IFN-γ Receptor 

(IFN-γR) have not been fully elucidated. IFN-γR-/- C57Bl/6 animals suffer OVX induced 

bone loss while IFN-γR-/- DO11.10 animals are spared from OVX induced bone loss49,51.  

However, Duque et al (2011) went onto show that IFN-γ given therapeutically can 

increase bone mass in sham and OVX operated C57Bl/6 mice51. This suggests that IFN-γ 

may negatively regulate OCs in a strain specific manner and further work must be done 

to fully elucidate IFN-γ’s effects on bone remodelling. 

The importance of T cells in bone remodelling as already been discussed (see section 

1.4.2), however T and B cells contribute to osteoporosis. T and B cell expansion and 

increased IL-7 production are hallmarks of human and OVX induced osteoporosis52,53. IL-7 

is an important regulator of T and B cell maturation produced by stromal cells and OBs. 

The absence of IL-7 results in significantly reduced T and B cell maturation in vivo52. 

Production of IL-7 by stromal cells and OBs is induced following stimulation by IL-1 and 

TNF-α54. This then acts on T cells to increase production of RANKL and TNF-α and drive 
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bone resorption54,55. IL-7 has been shown to directly act via in vivo T cells in order to 

induce bone erosion55,56. However, IL-7-/- animals develop less trabecular bone with 

increased number of OC under steady state conditions and remain susceptible to OVX 

induced bone loss57. The BM from IL-7-/- animals also has an increased propensity to 

differentiate into OCs while treatment of IL-7 inhibits the differentiation of WT OC 

cultures58.  However, IL-7 neutralizing antibodies used in WT OVX animals were able to 

reduce OVX induced bone loss56. Therefore, it would appear that IL-7 can indirectly 

drive OC differentiation and bone loss in osteoporosis. However, IL-7 has a complex role 

in the maintenance of bone remodelling under homeostasis. 

With increasing age, and menopause, there is an increase in the secretion of IL-6, IL-1 

and TNF-α by PBMCs59. The role that IL-6, IL-1 and TNF-α play in OVX induced bone loss 

has been widely studied. Serum concentration of IL-6 positively correlates with serum 

concentrations of IL-1β, TNF-α and the onset of the menopause59. IL-6 is produced by 

stromal cells and OBs, and induces in vitro OC bone erosion60. Interestingly, oestrogen 

effects on IL-6 production occur at a transcriptional level. Oestrogen binds to the 

oestrogen receptor and forms a complex (E/ER) (see section 1.2.4) which is capable of 

interacting with the promoter region of the IL-6 gene at NF-κB and C/EBP regions to 

prevent the binding of p65 and c-Rel61. Thus in a state of oestrogen deficiency this 

transcriptional repression is lost and IL-6 is produced at higher concentrations. The link 

between IL-6 and OVX-induced bone loss was studied in IL-6-/- mice. IL-6-/- mice have a 

normal bone phenotype with faster remodelling than littermate controls, however OVX 

failed to induce bone loss in IL-6-/- animals62. Therefore, IL-6 has a significant role in 

inducing bone loss following OVX.  

As previously mentioned, TNF-α producing T cells are increased following OVX and the 

importance of this has been studied. TNF-α-/- animals have normal bone physiology but 

do not suffer from OVX induced bone loss63. When soluble TNF-α receptor is used to 

treat OVX animals bone loss is limited, however, bone loss is prevented when 

TNF-binding protein (TNF-bp) is used64. Adoptive transfer of WT T cells into TNF-α-/- 

animals resulted in TNF-α-/- animals becoming susceptible to OVX induced bone loss53,63. 

These studies indicate that TNF-α, and TNF-α producing T cells have a central role in 

OVX induced bone loss. Transgenic mice which express human TNF-α spontaneously 

develop arthritis with increased bone loss. This bone loss can be prevented by 

treatment of OPG, suggesting that this bone loss is RANKL dependent65,66. In addition, 

blockade of IL-6 receptor in TNF-transgenic animals was able to reduce the number of 

OC present in inflamed joints, but could not prevent bone erosion67. Under steady state 

conditions treatment with TNF-α increases OC differentiation in the trabecular bone but 

this occurs in an IL-1 dependent manner68.  



 
 

22 

 

TNF-α induced OC differentiation can be enhanced by treatment with IL-1 which acts on 

OBs to induce a positive feedback and allow secretion of TNF-α to drive 

osteoclastogenesis68. IL-1 also stimulates BM MØ to differentiate into OCs in the 

presence of TNF-α68. In fact, in the BM compartment, oestrogen deficiency in mice 

results in increased secretion of IL-1 and TNF-α by mononuclear cells which acts directly 

on stromal cells increasing their secretion of M-CSF69,70. The concentration of M-CSF 

produced by oestrogen deficient stromal cells positively correlates with the degree of 

ex vivo osteoclastogenesis69. The use of an M-CSF neutralisation antibody prevented OVX 

induced bone loss and inflammatory arthritis induced bone loss71,72. In addition, the 

absence of IL-1 or IL-1 receptor (IL-1R), animals did not suffer OVX induced bone loss73 

and treatment with IL-1R antagonist (IL-1Ra) reduced bone loss after OVX surgery70. 

Oestradiol significantly decreases murine splenic MØ production of TNF-α, IL-6 and IL-1β 

following LPS stimulation by reducing nuclear NF-κB phosphorylation74. In fact, serum 

oestradiol levels are inversely correlated to monocyte TNF-α mRNA transcript and 

oestradiol treatment decreases monocyte secretion of IL-1α and IL-1β75,76. This 

highlights the central role which oestrogen has in maintaining the homeostatic 

production of cytokines which can control bone remodelling. 

1.2.4 Oestrogen inhibits osteoclastogenesis  

Oestrogen can effect a variety of cells; however, it is also capable of directly acting on 

OCs. Interestingly the number of CD14+ monocytes increases during the menopause, 

following a reduction in ER expression, yet this effect was reversed in women using 

HRT77. Thus oestrogen limits the pre-OCs found in the blood limiting the number of 

potential cells which differentiate into OCs. In fact, in vitro experiments using the 

leukemic monocytic cell line, THP-1, showed that treatment with oestradiol decreased 

the anti-apoptotic factor Bcl-2 expression78. Therefore, oestradiol has the ability to 

reduce survival signalling. 

E/ER interactions have genomic and non-genomic function. Oestrogen is able to enter 

the cell and bind intracellular ER where it forms the E/ER complex79. This can then 

translocate to the nucleus for genomic E/ER activity by binding to oestrogen response 

elements (ERE) on the promoters of genes and either activate or inhibit transcription79. 

One notable function of the E/ER complex is its ability to inhibit NF-κB activity. As 

previously mentioned, TNF-α induced NF-κB translocation and IL-6 transcription was 

inhibited by E/ER complex74. As a member of the TNF receptor superfamily, RANK 

signalling via NF-κB is essential in osteoclastogenesis therefore oestrogen may utilise a 

similar mechanism of action and inhibit NF-κB activation. Treatment with oestrogen 

inhibited the activation of p65, RelB, c-Rel and partially blocked p52 in vivo80. However, 
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oestrogen also increases Bcl-3 production which is known to bind and stabilize p50/p52 

dimers on NF-κB sites to modulate transcription80. Treatment of the MCF-7 breast 

cancer cell line with oestrogen increases expression of NF-κB p105 which acts as an IκB 

protein and can block nuclear translocation of NF-κB dimers81. This could be a 

mechanism which oestrogen uses to limit NF-κB activation following RANK mediated 

signalling. 

Oestrogen also exerts non-genomic effects which are due to expression of ERα and ERβ 

on the cell surface82. Ligation of surface ERα results in dimerisation and signalling via 

PI3K/Akt and ERK82, which has been shown to reduce pro-apoptotic factors in 

cardiomyocytes83,84. Oestradiol also has non-genomic effects on OCs by influencing 

potassium (K+) channels, namely the inwardly rectifying K+ channel, and results in the 

depolarisation of the OC membrane within seconds of activation85. Pharmacological 

inhibitors of this channel prevent oestrogen induced depolarisation of the membrane86. 

Oestrogen induced membrane depolarisation may cause the reduction in the secretion 

of H+ by H+ATPase and thus reduce OC activity. In addition, RAW 264.7 cells that were 

treated with oestradiol in RANKL stimulated cultures did not effect the differentiation 

to OCs but inhibited the transcription of Cathepsin K and TRAP, thereby reducing the OC 

capacity to function87.   

In an elegant study, Nakamura et al (2007) used an OC specific ERα KO animal 

(ERαΔOC/ΔOC) to demonstrate that female ERαΔOC/ΔOC had reduced bone volume88. 

Transgenic animals with Cre recombinase under the transcriptional control of 

Cathepsin K where bred with transgenic animals possessing LoxP sites that flanked the 

ERα gene88. This resulted in a transgenic mouse which would only produce the Cre 

recombinase protein in OCs which could ultimately act directly on the LoxP sites to 

remove the ERα DNA from the genome, thus creating an OC specific ERα KO animal88. 

This study demonstrated that oestrogen acts directly on OCs to regulate their in vivo 

function88. Nakamura et al (2007) went onto show that this deficiency did not affect the 

ability of OCs to differentiate in vitro compared to littermate controls, but that 

addition of oestrogen to OC cultures induced the production of Fas Ligand (FasL), which 

could ligate Fas and induce apoptosis88. Therefore, oestrogen is able to directly inhibit 

the function and survival of OCs in vitro and in vivo via production of FasL and induction 

of apoptosis. 
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1.3 Osteoclast differentiation 

1.3.1 Osteoclast progenitors 

Monocytes are typically thought of as the generic precursor of OCs (pre-OC) found in 

both the blood and BM89. However, the view of a homogenous monocyte population has 

changed with recent evidence revealing that the differentiation of monocytes to MØ or 

OCs in health and disease occurs over a series of stages90. Each step of differentiation 

produces a monocyte with a functionally different identity performing a role outlined by 

both the microenvironment and the receptors it expresses91. 

Monocytes arise from haematopoietic stem cells (HSCs) that are self-renewing 

pluripotent progenitors found in the BM90. Depending on the signals received, HSCs can 

differentiate into granulocyte-MØ progenitors (GMPs), common myeloid progenitors 

(CMPs) or MØ/Dendritic cell (DC) progenitors (MDPs)90. However, with each subsequent 

differentiation the stem cell loses pluripotency and becomes more specialised until the 

final cell is terminally differentiated90. In the case of monocytes, MDPs replenish the BM 

with monocytes which can migrate into the periphery to terminally differentiate into 

monocytes/MØ and DCs90. However, prior to terminal differentiation, a number of 

transcription factors control this process. HSCs express high levels of the transcription 

factor promyelocytic leukemia zinc finger (PLZF) which represses myeloid 

differentiation by inhibiting transcription factors involved in stimulating 

monocytopoesis92. However, in response to extracellular stimuli, such as cytokine 

signalling, HSCs can down-regulate PLZF expression allowing the HSC to enter the next 

stage in differentiation92. The repressive activity of PLZF allows HSCs to balance the 

maintenance of progenitors and newly differentiated cells92. Another transcription 

factor which is essential in the differentiation of monocytes, MØ and OCs is PU.1. 

Originally, Scott et al (1994) generated a PU.1 knockout (KO) mouse line and showed 

that PU.1 deletion was embryonic lethal and resulted in abnormal development of 

lymphoid and myeloid compartments93. Tondravi et al (1997) later generated another 

PU.1 transgenic animal with a disrupted gene and demonstrated that PU.1 transgenic 

animals could reach full term but would die of septicaemia within 48 hours. This 

transgenic animal allowed observation of the skeleton which was void of OCs94. These 

results showed that PU.1 was not only vital for the maintenance of the haematopoietic 

compartment but also for the differentiation of OCs. It is believed that this is due to 

PU.1’s ability to control the expression of CD115, which is an essential receptor in 

survival and differentiation of monocytes and OCs (see section 1.3.2)95.    
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The regulation of PLZF and PU.1 allow MDPs to differentiate into monocytes that 

express Ly6C at high levels (Ly6Chigh) prior to their egress, in a CCR2-dependent manner, 

from the BM into the circulation96,97. Ly6Chigh monocytes are known as classical 

monocytes because they are typically involved in inflammatory responses by migrating 

to sites of inflammation and differentiating into MØ to assist the inflammatory 

response98,99. In the absence of inflammatory signals, Ly6Chigh monocytes down-regulate 

Ly6C and become non-classical Ly6Clow monocytes97. Ly6Clow monocytes also 

down-regulate CCR2 and thus lose the capacity to migrate to sites of inflammation97. 

However, Ly6Clow monocytes begin to express high levels of CX3CR1 which enhances 

monocyte survival and promotes Ly6Clow monocyte ‘patrolling’ behaviour100,101. This 

behaviour is thought to allow the surveillance of the vascular system for signs of 

infection and removal of apoptotic cells100. Ly6Clow monocytes are short lived cells and 

they were once believed to migrate into tissue and differentiate into tissue resident 

MØ, however, recently this has been disputed and it is now thought that tissue resident 

MØ are self-renewing and the monocyte compartment does not replenish this MØ 

population97. A third subset of monocyte also exists that has intermediate expression of 

Ly6C (Ly6Cint) and expresses CX3CR1. These cells are believed to be Ly6Chigh monocytes 

which have migrated to the BM and have begun the process of down-regulating Ly6C to 

become Ly6Clow monocytes97. However, there is uncertainty as to whether Ly6Chigh 

monocytes are required to return to the BM for Ly6C down-regulation to occur, as 

intermediary Ly6C monocytes can be found in both the blood and BM97. Human 

monocyte biology is similar to the mouse as classical monocytes are identified by 

CD14bright FcγRIIInegative while non-classical monocytes are CD14+ FcγRIIIbright 99. These cell 

types play similar roles in the human and mice. A similar intermediate monocyte 

population, defined as CD14bright FcγRIII+, is believed to be a classical monocyte 

transitioning to non-classical99. In this manner, Fc γ Receptors (FcγRs) can be used to 

distinguish between human classical and non-classical monocytes and other members of 

the FcγR family are expressed on the surface of monocytes and osteoclast progenitors99.  

An extra layer of complexity is added to the murine system as both Ly6Chigh and Ly6Clow 

monocytes express CD115, the MØ-colony stimulating factor (M-CSF) receptor, which 

promotes monocyte function, survival and is essential in the differentiation of OCs97,102. 

In fact, attempts have been made to determine whether an isolated subset of 

monocytes exist as a defined OC progenitor (OCPs) population and whether these cells 

arise from MDPs. Research by Charles et al (2012) and Jacome-Galarza et al (2013) has 

demonstrated that a separate, but phenotypically similar, cell subset exists in the BM 

which is highly osteoclastogenic when compared to Ly6Chigh and Ly6Clow monocytes 

(Table 1-2)4,103. Charles et al (2013) proposed a novel model for the differentiation of 

OCPs from MDPs based on the expression pattern of receptors essential for MØ and OC 
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function (Figure 1-2)103. Subtle differences in surface receptor expression exist between 

monocytes and OCPs which could reflect their in vivo roles.  

Of particular interest is the expression of CD11b, CD117 and CD135. CD11b is an integrin 

which forms as a heterodimer with CD18 known as the complement receptor 3 (CR3)104. 

CR3 is able to bind the complement factor C3b and activate the complement cascade 

and ligate intravascular adhesion molecue-1 (ICAM-1) to mediate phagocytosis, 

chemotaxis and cytotoxicity104. Both Ly6Chigh and Ly6Clow monocytes require high 

expression of CD11b in order to fulfil their role as phagocytes97. Yet, OCPs have no 

immediate requirement for CD11b, as they are not phagocytes and thus do not require 

CD11b expression. CD117 (c-kit) and CD135 (Flt3) are tyrosine kinase receptors 

expressed on BM progenitors105. The ligand for CD117 is stem cell factor (SCF) which 

maintains the differentiation of progeny from progenitors105. The ligand for CD135 is 

Flt3 Ligand (Flt3L) which is believed to promote progenitor viability in the BM and in 

vitro DC differentiation106,107. Down-regulation of CD117 is typically believed to be 

conducive for maturation of haematopoietic cell yet some non-progenitor cells, for 

example, mast cells, retain high expression of CD117105. However, CD117 expression on 

OCPs can identify CD117high and CD117low populations and when isolated CD117high OCPs 

differentiated to OCs at a faster pace than CD117low OCPs4,103. While MDP expression of 

CD117 is known to identify them as a subset it is not possible to delineate CD117 high or 

low expressing populations of MDPs103. Blocking antibodies against CD117 did not, 

however, inhibit the haematopoiesis or differentiation of stem cells to OCs in vitro108. 

The one discerning difference between MDPs and OCPs is that OCPs lack CD135 (Table 

1-2). Flt3L binds CD135 and induces receptor dimerisation and activation promoting cell 

survival106. CD135 is mainly expressed on haematopoietic BM progenitors but is mostly 

involved in lymphocyte development, as CD135-/- animals have regular peripheral blood 

population but altered B cells compartments109,110. Investigation into BM progenitors 

expanded in the presence of Ftl3L in vitro maintain the ability to differentiate into MØ, 

DCs and OCs111. However, the loss of CD135 on the surface of OCPs in vivo suggests that 

OCPs are a distinct cell type from CD135 positive MDPs. 

Interestingly, OCPs have been shown in vitro to differentiate into MØ and DCs under the 

correct conditions, thus retaining a certain degree of plasticity4. It is also worth noting 

that Ly6Chigh monocytes can differentiate into OCs in vitro unlike Ly6Clow monocytes103. 

Monocytes expressing CX3CR1 also migrate through the blood and relocate to BM prior 

to differentiation to OCs112. In the blood and spleen, Ly6Chigh monocytes which express 

high levels of CD115 and CD11b are highly capable of differentiating into OCs and may 

represent the OCP population present in the periphery4. Despite the current research, 
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further work needs to ascertain the exact origin of OCPs. Whether OCPs can be classed 

as a monocyte subset, arise separately or share the same lineage is yet to be 

established. Regardless of progenitor lineage, the differentiation of monocytes and 

OCPs to OC relies on a number of factors in vivo. The most accepted and researched 

factor is Receptor activator of NF-κB ligand (RANKL) mediated OC differentiation (see 

section 1.3.3)113. 

 

Table 1-2: Expression of surface markers on bone marrow subsets.  

Adapted table90,91,103.  

 

1.3.2 Macrophage-colony stimulating factor  

RANK ligand (RANKL) mediated osteoclastogenesis is driven by two factors: M-CSF and 

RANKL113. Although many factors are known to participate in osteoclastogenesis in vivo, 

the activity of M-CSF and RANKL acting on populations of pre-OCs, from the blood or 

BM, from many species results in OC differentiation in vitro3,114,115. Consequently, we 

will explore the ability of RANKL to induce differentiation of OCs.  

For OC differentiation to occur, M-CSF must be a co-stimulator. M-CSF is a cytokine 

released by monocytes, fibroblasts, T cells and B cells which binds to the receptor 

CD115 on the surface of monocytes/MØ and OCPs1,116,117. The importance of M-CSF in 

bone remodelling was first realised when the op/op mouse was generated. op/op 
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animals produce a non-functioning form of M-CSF which results in osteopetrosis due to a 

lack of functional OCs resulting in short stature, short tail and no tooth eruption in 

vivo118,119. This phenotype is mirrored in the M-CSF deficient rat which has a mutation in 

the Csf1 gene120. These animals are termed toothless (tl/tl) due to the lack of tooth 

eruption and development of osteopetrosis120. In mice, this osteopetrotic phenotype 

plateaus with age suggesting that other mediators of osteoclastogenesis compensate for 

the lack of M-CSF118. In fact, recently IL-34 was shown to ligate CD115 and successfully 

replace M-CSF in generating mature OCs in the presence of RANKL121. Additionally, IL-34 

is up-regulated in aged op/op animals suggesting that IL-34 is able to rescue 

osteopetrosis in op/op animals122. Kodama et al (1991) found that the bone defect in 

op/op animals could be rescued by the daily injection of recombinant human M-CSF into 

young op/op pups123. Mirroring this finding, Wiktor-Jedrzejczak et al (1990) implanted 

L929 (a murine fibroblast cell line that produces biologically active M-CSF) containing 

capsules intraperitoneally (i.p.) into op/op animals which partially restored OC 

populations and bone homeostasis119.  

The M-CSF receptor CD115 is a tyrosine kinase receptor that dimerises upon ligation 

with M-CSF124. The importance of CD115 in bone remodelling was verified by the 

generation of Csf1r-/- mouse (deficient for CD115) which had severe osteopetrosis and 

altered BM cellularity102. Upon ligation, M-CSF induces CD115 dimerisation and 

auto-phosphorylation of seven tyrosine residues on the cytoplasmic tail of the 

receptor125. These have been shown to interact with up to 150 adaptor proteins in a 

macromolecular protein complex125. The most important mediators of CD115 signalling 

are Phosphoinositide 3-kinase (PI3K) and Extracellular signal-regulated kinases 1/2 

(ERK1/2) (Figure 1-3)125. Both of these signalling molecules are essential for M-CSF 

induced MØ proliferation which leads to phosphorylation of glycogen synthase kinase-3 

beta (GSK3β) resulting in inhibition of cell cycle arrest125,126. CD115 mediated signalling 

also induces the transcription factor PU.1 which is essential for the induction of OCs as 

well as self-regulating the expression of CD1151,95. Another transcription factor which is 

known to be essential for osteoclastogenesis is Microphthalmia-associated transcription 

factor (MITF)127. Genetic knockout of the MITF gene, Mitfmi/mi, are unable to 

differentiate OCs in culture because upon ligation, CD115 activation results in MITF 

phosphorylation which has been shown to induce osteoclastogenesis and increase OC 

activity127. M-CSF has also been shown to maintain nuclear integrity and stimulate 

chemotactic behaviour in mature OCs128. Hodge et al (2011) demonstrated that mature 

OCs treated with RANKL alone could form sealing rings, but addition of M-CSF further 

enhanced this ability129.  Arai et al (1999) found that stimulation of BM mononuclear 

cells with M-CSF increased RANK mRNA within 24 hours which continued to increase for 

up to 72 hours6. In addition, Charles et al (2012) demonstrated that OCPs stimulated 
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with M-CSF for two days resulted in an increase in the surface expression of RANK103. 

Taken together studies suggest that M-CSF induces RANK expression via the combined 

binding of PU.1 and MITF to the promoter region of the RANK gene, inducing 

transcriptional activity130. 

 

Figure 1-2: Differentiation of monocytes and osteoclasts from bone marrow progenitors. 
HSCs present in the BM self renew and parent MDPs. MDPs differentiate further into Ly6Chigh 
monocytes which enter the circulation and migrate to sites of inflammation to terminally 
differentiate into inflammatory MØ. In the absence of inflammation, Ly6Chigh monocytes migrate 
to the BM and down-regulated Ly6C expression becoming Ly6Clow monocytes which patrol the 
vasculature. Ly6Chigh monocytes, but not Ly6Clow monocytes, can differentiate into OCs in vitro. 
OCPs are thought to arise from MDPs and can differentiate into OCs. OCPs are also able to 
differentiate into MØ, as are Ly6Chigh/low monocytes in vitro. Solid arrows indicate in vivo 
differentiation pathways; dashed arrows indicate in vitro differentiation. Adapted 
diagram90,96,97,103. 

 



 
 

30 

 

1.3.3 Receptor activator of NF-κB ligand 

RANKL is a cytokine expressed on the surface of OBs, stromal cells and activated T and 

B cells1,131. RANKL present on the surface of cells interacts with the membrane bound 

receptor RANK on the surface of pre-OCs to stimulate osteoclastogenesis1. However, 

RANKL can be cleaved by MMPs to form a soluble ligand, sRANKL, which has reduced 

efficacy at interacting with RANK and inducing osteoclastogenesis132–134. This reduced 

efficacy may be due to other surface molecules on the OBs interacting with OCs and 

thus enhancing osteoclastogenesis, instead of the difference between membrane 

anchored and soluble protein versions. The role of RANKL in vivo was highlighted by the 

creation of the RANKL deficient animal which was incapable of generating in vivo OCs 

and developed osteopetrosis135. RANKL-/- animals also have altered lymphocyte 

development and lymph node formation demonstrating that RANKL has a wider range of 

functions in vivo135.  

RANK is a transmembrane receptor that is part of the TNF-α receptor super family 

(TNFRSF) found on the surface of haematopoietic cells117,136. RANK deficient animals 

have an inability to form OCs in vivo and also suffer from disturbed lymph node 

formation which demonstrates that RANK is essential in both the skeletal and immune 

systems137. Interaction of RANKL and RANK activates TNF related activation factor 

(TRAF) adaptors138, the most important of these adaptors being TRAF6 which forms a 

complex with c-Src promoting actin re-organisation (Figure 1-3)8,139. Actin 

re-organisation is also mediated by CD115 through stimulation of c-Src which alters the 

cytoskeletal structure in preparation for multinucleation and pit formation8. The 

importance of TRAF6 in RANK signalling is highlighted by the perturbed bone 

remodelling in TRAF6-/- animals140. TRAF6-/- animals also show impaired tooth eruption, 

cytokine signalling and OC function, highlighting TRAF6’s essential role in 

osteoimmunology140.  

In addition to TRAF6, RANK activation stimulates mitogen activated protein kinase (MAP 

kinase) activation through transforming growth factor beta- activated protein 1 (TAK1) 

which activates Activator protein 1 (AP1) and MITF, both of which are essential for OC 

gene transcription1,12. In particular p38, a MAP kinase, is vital for RANKL mediated OC 

differentiation, however, studies using pharmacological inhibitors demonstrated that 

inhibition of p38 does not inhibit mature OC activity141,142. Another member of the MAP 

kinase family, ERK1, has been shown to positively regulate OC differentiation as ERK1 

deletion results in reduced in vitro RANKL mediated osteoclastogenesis143. AP1 is a 

heterodimeric transcription factor essential in osteoclastogenesis. Phosphorylation of 

AP1 family member c-fos is mediated by Nuclear factor-κB (NF-κB) signalling and 
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animals deficient for c-fos suffer from severe osteopetrosis due to a deficit in the OC 

population144,145. The most important transcription factor activated by RANK is nuclear 

factor of activated t cells c1 (NFATc1). NFATc1 transcription is up-regulated a few hours 

following RANKL-RANK engagement initiating the transcription of genes such as 

Cathespin K, as well as auto-regulating its own expression in a positive feedback loop146. 

Deletion of NFATc1 is embroynic lethal but to test the effect of NFATc1 deficiency in 

vivo, NFATc1-/- foetal liver cells were adoptively transferred into c-fos-/- osteopetrotic 

animals147. This adoptive transfer did not resolve the osteopetrosis of c-fos-/- animals 

but when NFATc1+/- cells were adoptively transferred into c-fos-/- animals the 

osteopetrotic phenotype was rescued147. This suggests that during osteoclastogenesis, 

NFATc1 is downstream of c-fos activation as NFATc1 activation could rescue 

osteopetrosis while c-fos deficient animals remained osteopetrotic147. This pathway is 

under the regulation of NF-κB (see section 1.3.5) which is activated before downstream 

c-fos and NFATc1 activation145. Taken together, RANK activates a broad signalling 

cascade with a variety of transcription factors that are responsible for the regulation of 

OC differentiation, survival and activity. 

1.3.4 Osteoprotegrin 

RANKL-RANK interactions are regulated by an endogenous competitive inhibitor known 

as osteoprotegerin (OPG)148. OPG is secreted by OB, stromal cells and B cells in response 

to cytokines such as transforming growth factor (TGF-β) and bone morphogenic proteins 

(BMPs) to regulate the number of differentiating OCs149. In fact, B cells are believed to 

responsible for up to 64% of the OPG production in the BM150. OPG is a soluble decoy 

protein which is released into the extracellular fluid to bind to both sRANKL and 

membrane bound RANKL (Figure 1-3)151. In mice, OPG-/- animals develop osteoporosis 

(bone loss) as the increase in uninterrupted RANKL-RANK signalling results in aberrant 

osteoclastogenesis151. Conversely, mice with artificially high levels of OPG in circulation 

have abnormally dense bone tissue48. The use of OPG-Fc fusion protein decreased OC 

activity in vivo following injection of IL-1, TNF-α, parathyroid hormone (PTH), 

parathyroid-related hormone and Vit D3. This cytokine cocktail was designed to simulate 

a pro-inflammatory environment of arthritic disease and treatment with OPG in this 

model was able to decrease OC differentiation and activity152. This study demonstrated 

that OPG is a negative regulator of osteoclastogenesis. 

  



24 
 

 

Figure 1-3: Schematic of synergistic effect of cytokines and interactions involved in osteoclast differentiation.  
Each cytokine acts in synergy to stimulate transcription factors associated with osteoclastogenesis initiating differentiation. M-CSF and RANKL produced by OBs 
interacts with CD115 and RANK on the pre-OC surface signalling to promote differentiation. TNF-α, IL-1 and IL-6 produced by a variety of cells can increase OB 
production of RANKL, in turn driving OC differentiation. TNF-α, IL-1 and IL-6 can also interact directly with pre-OCs to enhance differentiation and activity. 
Vitronectin and Collagen Type I present in the bone matrix can stimulate pre-OC attachment and differentiation via Vitronectin receptor and OSCAR-FcRγ. 
DC-STAMP and OC-STAMP are essential for fusion of pre-OCs, however this mechanism remains to be elucidated. Together, these induce the transcription of genes 
which results in the production of enzymes and acidification of the bone matrix for degradation as well as production of actin ring to secure the resorption lacunae. 
Adapted diagram12,125,153–155.  



33 
 

1.3.5 NF-κB controls osteoclastogenesis 

NF-κB is the ubiquitous signalling molecule and transcription factor that is vital for a 

variety of cellular processes156. NF-κB is pivotal in cell survival, stress responses and 

cytokine and growth factor signalling157. The role of NF-κB in osteoclastogenesis has 

been widely studied and as the name suggests RANK strongly activates NF-κB by 

inducing gene transcription of proteins essential in the differentiation of OCs145,156. 

NF-κB is a dimer consisting of different combinations of five subunits: p105 (p50), p100 

(p52), p65, RelB and c-Rel158–162. These 5 subunits combine to form up to 15 homo- and 

hetero- dimers each with a specific function. Activated NF-κB dimers can directly 

interact with NF-κB sites on the promoter regions of genes to activate or suppress 

transcription163,164.    

The five NF-κB subunits all contain Rel-homology domains (RHD) which enable 

interaction with NF-κB sites on the DNA165. Rel-B, c-Rel and p65 NF-κB subunits all 

contain a transcriptional activation domain (TAD) which allows dimers containing these 

subunits to induce transcription166. However, p50 and p52 NF-κB subunits lack the TAD 

region and thus homo- and hetero- dimers of p50 and p52 repress transcription167. 

However, p50 or p52 can combine with a TAD containing subunit which can induce 

transcription. Under steady state, p50/p52 dimers occupy NF-κB sites. Activation of 

NF-κB pathway, however, results in nuclear translocation of TAD containing dimers 

which replace p50/p52 dimers allowing the transcription of genes167. 

Inhibitors of κB (IκB) regulate NF-κB signalling to prevent the nuclear translocation of 

NF-κB168. IκB proteins have ankryin repeats which are small protein domains that bind to 

the RHD on NF-κB subunits and block translocation168. The most prominent member of 

the IκB family is IκBα which predominantly sequesters p65:p50 NF-κB dimers in the 

cytoplasm169. The IκB Kinase (IKK) complex regulates this process and initiates NF-κB 

signalling166. Activation of IKK results in phosphorylation of IκBs and targets them for 

degradation by the proteasome, allowing activation of NF-κB and translocation to the 

nucleus166. Rel-B, c-Rel and p65 are produced as active proteins: p50 and p52, however, 

are produced as the precursors p105 and p100, respectively166. The degradation of these 

precursors to active NF-κB subunits is a limiting factor in NF-κB signalling and prevents 

aberrant gene transcription. Interestingly, the NF-κB precursors p105 and p100 contain 

ankyrin repeats and have been shown to sequester NF-κB dimers in the cytoplasm until 

the appropriate stimulation results in their degradation and NF-κB activation166. IκB 

proteins can not only sequester NF-κB in the cytoplasm but can prevent transcriptional 

activation by occupation of NF-κB sites. In the case of Bcl-3, an atypical IκB protein, the 

homo- and hetero- dimers of p50/p52 can be maintained on NF-κB sites preventing 
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transcriptional activity of activatory NF-κB dimers170,171. Bcl-3 selectively binds to these 

p50/p52 dimers and forms a stable complex on NF-κB binding sites167. This 

Bcl-3:p50/p52 complex prevents the ubiquitination of p50/p52 halting its degradation 

and thus inhibiting activatory NF-κB dimer binding167. In the absence of Bcl-3, NF-κB 

activity can become aberrant and uncontrolled167. 

NF-κB activation can result in two distinct signalling pathways; the canonical and 

non-canonical pathways166. The canonical pathway is rapid and occurs over a series of 

minutes to hours, while the non-canonical can require up to 8 to 12 hours following 

stimulation to initiate166. This dual signalling is believed to potentiate stimuli responses 

and the signalling via canonical pathway provides the initiating first response166. Once 

the initial response begins to dissipate the non-canonical pathway begins which results 

in long-term re-enforcement of the initial stimulus166. RANKL stimulation of RANK 

activates both the canonical and non-canonical NF-κB pathways166. The canonical 

pathway relies on TRAF6 mediated signal transduction, rapid proteasomal degradation 

of IκBα by IKK complex mediated ubiquitination and freeing of the p65:p50 NF-κB dimer 

for nuclear translocation and gene transcription172. The non-canonical pathway requires 

degradation of TRAF3 before proteasomal processing of p100 which results in the 

production of the active NF-κB subunit p52160. p52 then forms a dimer with RelB and 

translocates to the nucleus for DNA binding and induction of transcription173. Both 

pathways are essential for RANKL-induced osteoclastogenesis and the importance of 

NF-κB in bone remodelling has been evaluated in numerous KO mice. 

Animals deficient for p50 or p52 have no obvious skeletal abnormalities. Iotsova et al 

(1997), however, generated p50/p52 double KO (p50/p52-/-) animal which were highly 

osteopetrotic and lacked in vivo OCs174. p50/p52-/- animals amassed RANK+ splenocytes 

in vivo, which were unresponsive to RANKL and could not differentiate to OCs in 

vitro175. These studies demonstrated that the p50 and p52 subunits were vital in 

activating c-fos and NFATc1 and their absence resulted in the inhibition of 

osteoclastogenesis145,174. Ablation of the p65 subunit is embryonically lethal and to 

overcome this p65-/-TNFRI-/- animals were generated162. p65-/-TNFRI-/- animals have a 

lifespan of approximately 3 weeks and radiation chimeras were created to study the 

effect of p65 deficiency in the haematopoietic cell compartment in wild type (WT) 

animals162. This revealed that there was no effect on bone volume when p65-/- or p65+/+ 

chimeras were used. However, p65-/- animals had half the number of OCs present in 

vivo162. RelB-/- animals could not produce OCs in vitro but had similar bone architecture 

compared to WT animals176. c-Rel is activated by the canonical NF-κB pathway but does 

not translocate to the nucleus following RANKL stimulation and bone abnormalities have 

not been reported in c-Rel-/- animals177. Highlighting that the NF-κB subunit c-Rel may 
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not be necessary for RANKL mediated osteoclastogenesis. In 2010, Muruyama et al 

generated animals deficient for p100 which has similar bone architecture to littermate 

controls and could differentiate to OCs in vitro160. However, alymphoplasia (aly/aly) 

animals possessing an inactive form of the NF-κB inducing kinase (NIK), which is unable 

to process p100 to p52, had less OCs present in the trabecular micro-architecture as 

well as increased bone volume160. BM cells were also unable to differentiate into OCs in 

response to RANKL. This phenotype, however, could be overcome by transfection of 

aly/aly BM cells with p52 and an active form of NIK160. This is believed to occur because 

p100 accumulates in the cytoplasm and prevents nuclear translocation of p65166. 

Overall, this research demonstrates that NF-κB is essential in bone remodelling and 

RANKL-RANK signalling.  

1.4 Osteoclast maturation 

1.4.1 Co-stimulators of osteoclastogenesis 

RANKL is the main mediator of osteoclastogenesis; however, other cytokines are 

capable of working in synergy with RANKL or even directly initiating osteoclastogenesis. 

One example of this is TNF-α, an inflammatory cytokine that can be produced by a 

variety of cells and has been implicated in a number of diseases. TNF-α and its 

receptors TNFR1 and TNFR2, which are expressed on peripheral blood monocytes 

amongst other cells, belong to a superfamily of cytokines and cytokine receptors which 

includes RANKL/RANK136,178. In osteoclastogenesis, TNF-α can work both in synergy with 

RANKL or independently to stimulate in vitro osteoclastogenesis but TNF-α cannot 

commit monocytes to OCs in RANK-/- mice, therefore, in vivo TNFα cannot replace 

RANKL mediated osteoclastogenesis9,179,180. However, low concentrations of TNF-α used 

alongside RANKL can potently increase in vitro osteoclastogenesis, increase actin ring 

formation and bone erosion179. TNF-α binds to TNFR1 on the surface of M-CSF dependent 

BM cells and signals in synergy with RANKL to stimulate MAP Kinases, AP1, MITF and 

NF-κB (Figure 1-3)179. TNF-α  signals, in a similar manner to RANKL, via TRAF6, TRAF5 

and TRAF2 to activate p50/p52 NF-κB to induce c-fos activation and NFATc1 

transcription for OC differentiation145. However, unlike RANKL, TNF-α only activates the 

canonical NF-κB pathway which results in accumulation of the IκB protein p100 which 

negatively regulates in vitro TNF-α induced osteoclastogenesis, therefore TNF-α 

mediated osteoclastogenesis is self-limiting181. 

The synergistic activation of RANKL and TNF-α may explain certain inflammatory 

pathological diseases where the infiltrating MØ respond to the pro-inflammatory 

environment and produce TNF-α leading to increased OC activity182. In fact, the TNF-α 
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transgenic mouse which over-expresses human TNF-α spontaneously develops a bone 

erosive arthritic phenotype66. These animals also have increased number of actively 

proliferating CD11b+ BM cells, which may help to account for the increased 

osteoclastogenesis183. Treatment of WT animals with TNF-α increased the proliferation 

of a blood CD11b+ CD115+ monocyte population that could be used in vitro to 

differentiate OCs 183. Following treatment with TNF-α, the increase in CD115 expression 

could result in an increase in osteoclastogenesis as CD115 stimulation results in 

up-regulation of RANK183. Anti-TNF-α therapies have proved very effective in treating 

inflammatory diseases and creating a less inflammatory milieu184. An example of this is 

Infliximab (anti-TNF-α antibody) which is clinically used to treat patients with 

Rheumatoid arthritis (RA)185. Removal of TNF-α from patients’ systems results in 

decreased IL-6 and IL-1, decreased T cell responses, tissue destruction to bone and 

cartilage and importantly improved patients’ disease severity185. 

Other cytokines which have been implicated in osteoclastogenesis include the 

Interleukin-1 (IL-1) family members, IL-1α and IL-1β. IL-1α/β are both pro-inflammatory 

cytokines which bind to the IL-1R to induce TRAF6 activation resulting in activation of 

NF-κB, AP1 and MAP Kinase p38 (Figure 1-3)186. TRAF6-/- animals have perturbed bone 

remodelling as well as altered IL-1 activation140. Treatment of MØs with TNF-α can 

differentiate OCs, yet IL-1α is also required to stimulate bone erosion187. IL-1 can 

dose-dependently induce the multinucleation of monocytes and bone erosion via 

p50/p52 NF-κB188–190. IL-1 enhances RANKL mediated OC differentiation and extends the 

lifespan of in vitro mature OCs, in a PI3K and ERK dependent manner191. In vivo, IL-1R 

can indirectly induce osteoclastogenesis; IL-1 activates IL-1R on OBs and stromal cells to 

increase RANKL expression while directly interacting with IL-1R on the surface of BM 

MØs stimulating p38 and enhancing RANKL induced osteoclastogenesis68. As well as 

inducing RANKL production by OBs, IL-1 is also known to induce the production of 

pro-inflammatory cytokines. One important pro-inflammatory cytokine in 

osteoclastogenesis is Interleukin-6 (IL-6). 

IL-6 is a pro-inflammatory cytokine produced by a variety of cells to elicit an immune 

response and initiate inflammation192. IL-6 binds to its receptor IL-6Rα which signals via 

the adaptor protein gp130192. IL-6 activated signalling is mediated by JAK/STAT 

transcription factors as well as PI3K, MAP Kinases and Src activation192. The role of IL-6 

in osteoclastogenesis was realised when IL-6 produced by OBs dose-dependently induced 

OC bone resorption when used along with IL-160. There is an interplay between these 

cytokines, as IL-6 can induce the secretion of IL-1 from human BM cells which results in 

the differentiation of OC-like cells in culture193. Synergistic IL-6 and TNF-α treatment of 

BM MØ can differentiate OCs in the absence of RANKL194. However, direct stimulation of 
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BM MØ with IL-6 can suppress RANK signalling and thus inhibit osteoclastogenesis 

dose-dependently190,195. Therefore, IL-6 alone is unable to induce osteoclastogenesis; 

however, in synergy with other cytokines and in the presence of OBs, IL-6 can strongly 

enhance the differentiation and erosive potential of OCs153.   

1.4.2 The role of T cells in osteoclastogenesis 

During inflammation a number of pleiotropic cytokines are produced which can induce 

the production of pro-OC factors. IL-17 is produced by a subset of T cells called Th17 

cells, which are implicated in the pathogenesis of autoimmune diseases196. IL-17 is a 

recently discovered pro-inflammatory cytokine which induces the expression of TNF-α in 

the synovial membrane and stimulates OBs to express RANKL197,198. Osteoporosis has 

been linked to an increase in the Th17 cell population in the BM as well as an increase 

in serum IL-17199. The presence of IL-17 in the serum can induce the secretion of TNF-α 

and IL-1β from human MØ as well as directly inducing osteoclastogenesis and the 

production of MMP9 and Cathespin K197,200. However, IL-17 appears to have a temporal 

effect on osteoclastogenesis: IL-17 treatment prior to RANKL enhances OC 

differentiation while IL-17 treatment after RANKL inhibits osteoclastogenesis190. 

Therefore, IL-17 needs to be further examined to elucidate its role in bone remodelling. 

Another cytokine which is produced by T cells and has biphasic roles in 

osteoclastogenesis is Interferon-γ (IFN-γ)201. IFN-γ is important in mediating adaptive 

immune responses and priming immune cells to initiate the immune response to 

infection202. IFN-γ exists as a biologically active dimer which binds to its receptors 

IFN-γR1 and IFN-γR2 to stimulate JAK/STAT signalling202. IFN-γ is a negative regulator of 

OC differentiation as it directly inhibits MØ differentiation to OCs by preventing RANKL 

signalling and OC inducible genes201. However, pre-treatment of MØ with RANKL can 

render a cell resistant to IFN-γ and allow OC differentiation201. Yet, IFN-γ indirectly 

enhances osteoclastogenesis via T cells activation50. IFN-γ primed T cells produce TNF-α 

and RANKL which can directly interact with pre-OCs to drive in vivo OC differentiation 

in the BM50.  

Recently a novel T cell derived mediator of osteoclastogenesis was discovered. Secreted 

osteoclastogenic factor of activator of T cells (SOFAT) was discovered when 

fractionated supernatants of T cells, stimulated with CD28/CD3, was used in culture 

with OBs and monocytes203. One fraction of this media was shown to induce IL-6 

production by OBs and increase OC differentiation from human monocytes155. SOFAT was 

found to dose dependently induce osteoclastogenesis independent of RANKL, TNF-α and 

IL-6203. However, TNF-α was able to enhance SOFAT induced osteoclastogenesis203. 

SOFAT was also shown to induce the in vitro differentiation of functional OCs from RAW 
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264.7 cells, and in vivo formation of OCs155,203. As yet, a receptor for SOFAT has not 

been identified nor has its mechanism of action. This novel mechanism highlights the 

wide-ranging interplay between the skeletal and immune system that is yet to be fully 

understood. 

1.4.3 ITAM co-stimulation 

A co-stimulatory immunoreceptor which has been implicated in osteoclastogenesis is OC 

associated receptor (OSCAR). OSCAR is a 282 amino acid long immunoglobulin (Ig)-like 

receptor with an Ig domain, an extracellular N terminal and a transmembrane domain 

containing an arginine residue, which binds to an adaptor protein204. The adaptor 

protein is typically either DNAX activating protein 12 (DAP12) or common γ-chain 

(FcRγ), which rely on immunoreceptor tyrosine-based activation motif (ITAM) signalling 

as OSCAR lacks the capacity to signal205. DAP12 and FcRγ are adaptor proteins typically 

found as a dimer which signal via an ITAM on the intracellular tail206. The ITAM motif 

consists of one tyrosine residue (Y) that is separated from a leucine (L) by two amino 

acids in duplicate (YXXL-YXXL)206. Upon stimulation, Src family tyrosine kinases 

phosphorylate the tyrosine residues on the ITAM motifs206. This results in activation of 

SYK leading to signalling via MAP Kinases, CREB, NFATc1 and NF-κB (Figure 1-3, see 

section 1.5.1)207. When DAP12 or FcRγ is genetically ablated, OSCAR expression is 

lowered and osteoclastogenesis is altered but not inhibited208. However, when both 

DAP12 and FcRγ are deficient the result is osteopetrosis and a reduction in 

osteoclastogenic gene transcription208. OSCAR is found expressed solely on murine OCs 

but it is more widely distributed on humans monocytes, MØ, OCs and DCs205,209. A murine 

monoclonal antibody generated against OSCAR is capable of inhibiting OB mediated 

osteoclastogenesis, suggesting that OSCAR has a pivotal role in stimulating 

osteoclastogenesis205.  

The ligand for OSCAR has recently been discovered as collagen type II154. OSCAR 

recognises collagen motifs exposed on the bone surface allowing interaction of pre-OCs 

and bone matrix154. Collagen ligation of OSCAR signals through Ca2+ release causing the 

activation of calcineurin and calcium-calmodium kinase IV (CaMKIV). This in turn causes 

a positive feedback loop amplifying NFATc1 and activating cAMP response element 

binding protein (CREB) (Figure 1-3)1. Collagen interaction with OSCAR increases in vitro 

osteoclastogenesis and increased TRAP and Cathespin K mRNA154. OSCAR expression is 

regulated by NFATc1 and is up-regulated by MITF, PU.1 and NF-κB which are induced by 

M-CSF and RANKL stimulation210. Genetic KO of PU.1 and NFATc1 has been shown to 

reduce osteoclastogenesis and prevent the expression of OSCAR94,210. 
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OSCAR has been implicated in the pathogenesis of human diseases like osteoarthritis, 

osteoporosis and RA. Polymorphisms have been discovered in the OSCAR gene leading to 

increased incidence in osteoporosis in post-menopausal women suggesting that the 

genetic variation in the promoter region of the OSCAR gene was a risk factor in the 

development of osteoarthritis211. Interestingly, OSCAR and NFATc1 mRNA transcripts are 

up-regulated in murine BM cells when they were treated with synovial fluid from 

osteoarthritis patients212. In patients suffering from RA the expression level of OSCAR on 

monocytes correlated with the level of C-reactive protein in the serum, which is used as 

a marker of disease severity213.  

DAP12 is also associated with the surface receptor Triggering receptor expressed on 

myeloid cells 2 (TREM2) which is an Ig like receptor which signals via the ITAM on 

DAP12214. TREM2 or DAP12 mutations in humans results in Nasu-Hakola disease which 

leads to brain abnormalities and osteoporotic fractures215. TREM2-/- animals were 

observed to have an osteoporotic phenotype216. Investigation in vitro showed that 

transcription of TREM2 is induced by treatment with M-CSF and RANKL and may help OC 

multinucleation and migration214. However, DAP12-/- BM mononuclear cells failed to 

generate in vitro OCs following M-CSF and RANKL stimulation217. One reason for this is 

that DAP12 associates with CD115 following stimulation by M-CSF218. CD115 dimerisation 

and auto-phosphorylation of tyrosine 559 activates DAP12 phosphorylation and 

recruitment of SYK leading to reorganisation of the cytoskeleton218. Thus, loss of DAP12 

results in augmented in vitro osteoclastogenesis and in vivo DAP12-/- leads to 

osteopetrosis217. However, in vivo TREM2-/- resulted in enhanced osteoclastogenesis due 

to its ability to negatively regulate proliferation in response to M-CSF and thus 

commitment to the OC lineage216.  

ITAM signalling is classically believed to be a co-stimulator in osteoclastogenesis and it 

can enhance late stage osteoclastogenesis219. OSCAR-Ig fusion proteins (antagonist for 

OSCAR) can inhibit in vitro OC differentiation and suggests that OSCAR-FcRγ/DAP12 

ITAM signalling enhances OC differentiation205. The downstream Ca2+ signalling 

associated with ITAM coordinates with M-CSF and RANKL to potentiate 

osteoclastogenesis as well as aiding in reorganisation of the OC cytoskeleton218. 

However, TREM2-/- animals have an increase in OC differentiation and activity that 

provides evidence that TREM2-DAP12 ITAM signalling may be a negative regulator of 

osteoclastogenesis. 
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1.4.4 Multinucleation  

The fusion of mononuclear pre-OCs into multinucleated OCs results in a higher capacity 

for resorption. Without fusion pre-OCs remain functionally viable but have reduced 

activity7. Initially discovered as a receptor on the surface of DCs, DC-specific 

transmembrane protein (DC-STAMP) expression was believed to be a marker of DC 

activation220. DC-STAMP is a 470 amino acid protein with seven transmembrane domains 

expressed on the surface of the cell220. It was later found expressed on the surface of 

OCs and MØs and is essential in fusion as inhibition of DC-STAMP with siRNA inhibited 

multinucleation of RANKL treated RAW-D cells10. Its role in osteoclastogenesis was first 

highlighted when it was discovered to be a RANKL inducible protein under the control of 

NFATc110,221. However, Mensah et al (2009) published that DC-STAMP was constitutively 

expressed on the surface of BM MØ and that that RANKL induced the generation of two 

separate populations of BM MØ; DC-STAMPlow and DC-STAMPhigh7. Hypothesising that 

RANKL induced the internalisation of DC-STAMP in a group of MØ (DC-STAMPlow) which 

would go onto act as the nuclear acceptors for DC-STAMPhigh cells which are 

mononuclear donors7. DC-STAMP has been shown to traffic between RAW-D cells via 

tunnelling nanotubes (TNTs) and interaction via TNTs is essential of osteoclastogenesis 

in murine BM mononuclear cells thus presenting a mechanism by which DC-STAMPhigh/low 

pre-OCs communicate222. The research focusing of DC-STAMP was based mainly in 

murine studies; however, Zeng et al (2009) showed that human RANKL stimulates 

monocytes to increase DC-STAMP mRNA transcription223. The ligand for DC-STAMP is still 

unknown and the mechanism behind internalisation is yet to be elucidated (Figure 1-3).  

Furthermore, OC-stimulatory transmembrane protein (OC-STAMP) was discovered which 

had sequence homology to DC-STAMP224. Yang et al (2008) found that directly blocking 

translation of OC-STAMP using siRNA reduced the number of multinucleated OCs in 

culture but not the number of TRAP positive (TRAP+) cells and provided evidence that 

OC-STAMP was required for multinucleation of OCs224. OC-STAMP was found expressed 

on tissues throughout the body including lung, brain, heart, liver but absent from the 

ovary225. Interestingly, oestrogen inhibited the expression of OC-STAMP and represents a 

possible mechanism for increased osteoclastogenesis and lowered bone density in 

post-menopausal women225. Another interesting observation regarding OC-STAMP and 

DC-STAMP is that in DC-STAMPlow groups OC-STAMP mRNA is up-regulated7. The 

predominant hypothesis regarding fusion of pre-OCs is that OC-STAMP up-regulation is 

dependent on the internalisation of DC-STAMP, allowing the fusion of DC-STAMPlow 

OC-STAMPhigh and DC-STAMPhigh OC-STAMPlow groups via TNTs (Figure 1-3)7,222. 
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1.4.5 Bone resorption 

In order for an OC to mature it must bind to the surface of the bone matrix and secrete 

enzymes onto the bone surface under its ruffled border. OCs bind the bone matrix via 

integrins to form the sealing zone. An important integrin in this process is αvβ3 

(Vitronectin receptor), which is involved in osteoclastogenesis226. OCs express 

Vitronectin receptor which helps the attachment to matrix226. This results in the 

formation of an actin rich ring which seals the edge of the plasma membrane and bone 

interface in order to create the sealed ruffled border226. Interestingly, Vitronectin 

receptor expression is found on microvilli like structures on the leading edge of the cell, 

providing a possible mechanism for OCs migration prior to pit formation227. Inhibition of 

the Vitronectin receptor results in altered OC morphology227. Chin et al (2003) found 

that over expression of αv subunit of Vitronectin receptor stimulated the in vitro 

differentiation of OCs, while Faccio et al (2003) found that β3 deletion decreased OC 

activity228,229. M-CSF is believed to act in synergy with the Vitronectin receptor as they 

share similar MAP kinase pathways and M-CSF treatment can restore β3
-/- deficient OC 

activity229. Therefore, the Vitronectin receptor is responsible for attachment and 

possible migration of OCs on bone matrix.    

After attachment to the bone the formation of the actin ring results in a controlled 

microenvironment between the plasma membrane and the bone matrix. The 

polarisation of OCs allows the targeted secretion of enzymes and acidification into the 

microenvironment. This allows the mineralization of bone by secreted enzymes and the 

subsequent degradation of the organic matrix230. An essential regulator of the 

acidification process is cytosolic carbonic anhydrase (CAII), which hydrates CO2 to form 

H+ and HCO3
- 231. The H+ are then secreted via the vacuolar H+ ATPase proton pump 

(H+ATPase) into the resorption lacunae232. CAII and H+ATPase are both regulated by 

RANKL activated c-Fos and NFATc1 signalling232,233. The acidification of the bone matrix 

is completed by the HCO3
-/Cl- exchanger which provides extracellular Cl- to be 

transported to the resorption lacunae producing HCl with the H+ present231. The 

inhibition of H+ release and CAII activity inhibits osteoclastogenic differentiation and 

activity on dentine slices proving that this acidification process is essential in bone 

erosion232,233.  

Cathepsin K is a cysteine protease enzyme which is involved in the cleavage of collagen, 

osteonectin, elastin and gelatine234. Cathepsin K in the serum of patients with RA 

positively correlates with the clinical disease235. Inhibitors of Cathepsin K activity have 

been shown to effectively treat osteoporosis, as they reduce the degradation of bone 

matrix236. This has been demonstrated in human clinical trials and in animal models of 
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disease234,236. Regulation of Cathepsin K by the MITF is activated by M-CSF and RANKL 

signalling, as MITF-/- mice have reduced Cathepsin K production237. Interestingly, MITF 

also regulates the transcription of TRAP which is an enzyme which works optimally in 

acidic conditions on a variety of substrates ranging from collagen, nucleotides, 

phosphor-proteins but mainly osteopontin in vivo238–240. OCs secrete the precursor TRAP 

5a into the sealing zone which is cleaved by Cathepsins to produce TRAP 5b, the active 

form of the enzyme240. TRAP 5b is known to leach out of the sealing zone and enter the 

systemic circulation and can be used as a serum marker of bone remodelling in 

animals240.  TRAP-/- animals display a mild osteopetrosis with stunted limb growth, while 

over-expression of TRAP typically leads to osteoporosis with increased bone 

turnover241,242. Due to altered bone remodelling, TRAP-/- animals have altered collagen 

cross-linking which consequently results in perturbed Ca2+/Phosphate (PO4
3-) 

homeostasis238. In addition to Cathepsin K and TRAP, MMP9 is also produced by OCs to 

degrade bone matrix and is responsible for the degradation of collagen type IV and V243. 

MMP9 is expressed in many tissue and is typically responsible for tissue remodelling244. It 

is secreted as a pro-protein and cleaved extra-cellularly to an active form of the 

enzyme244,245. These enzymes work in synergy within the acidified microenvironment to 

decalcify and remove organic proteins from areas of damaged bone in order to maintain 

bone integrity. 

1.5 Fcγ receptors interactions 

1.5.1 Fcγ receptors  

Cells of the myeloid lineage, including monocytes, MØ, DCs and OCs express FcγRs and 

FcγRIII expression is able to delineate human monocyte subsets (see section 1.3.1). One 

method that cells of myeloid lineage use to respond to pathogens is by the interaction 

of Immunoglobulin G (IgG) with FcγR. FcγRs are found on phagocytes and function to 

capture the Fc regions of IgG bound to a antigen246. After engagement of FcγR by IgG, 

cells can then release cytotoxic products to kill a pathogen or phagocytose the 

antigen247. Differences exist between human and murine FcγR biology. Human FcγRs can 

be divided into six types; FcγRI, FcγRIIA, FcγRIIB, FcγRIIC, FcγRIIIA and FcγRIIIB (Table 

1-3)248. However, there are only four members of murine FcγR; FcγRI, FcγRIIB, FcγRIII 

and FcγRIV (Table 1-3)248. Each type of FcγR has a unique signature and can bind IgG 

subclasses with varying affinities (Table 1-3)248. All FcγR have a similar structure in that 

they all have at least two extracellular Ig-like domains responsible for binding to IgG, 

and an intracellular tail, which either maintains the ability to signal or relies on an 

adaptor protein to signal249. However, activation of these receptors can only occur if 

multiple neighbouring FcγRs bind IgG, IgG aggregates or IgG containing immune 
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complexes (IC) simultaneously250. One exception to this rule is FcγRI which has an 

additional extracellular Ig-like domain enabling it to bind with higher affinity to 

monomeric IgG compared to the other FcγRs251.  

 

Figure 1-4: Diagrammatic representation of IgG Fcγ receptor interactions.  
IgG is composed of two regions: F(ab’)2 region which binds antigen and the Fc region which is 
recognised by FcγRs. In mice, four FcγRs exist which have different IgG binding abilities and can 
bind IgG alone, aggregated IgG or IgG in complex with antigen. Activatory FcγRI, FcγRIII and 
FcγRIV signal via ITAM adaptor FcRγ molecule which is phosphorylated upon FcγR ligation. 
Cross-linking and activation of multiple FcγRs induces signalling. Phosphorylated ITAMs signal via 
PI3K, MAP Kinases, and Ca2+ activating effector functions. Inhibitory FcγRIIB contains an 
intracellular ITIM which is phosphorylated to activate phosphatases that remove phosphate 
groups from activated proteins. Thus SHIP is able to regulate SYK, PI3K and MAP Kinase 
activation. Adapted diagram249,252,253. 

FcγRs can be broadly categorised into activatory and inhibitory receptors. Murine 

activatory receptors, FcγRI, FcγRIII and FcγRIV lack the ability to signal and rely on the 

FcRγ ITAM to signal254. As previously mentioned ITAM signalling activates cellular 

responses and can enhance the differentiation of OCs in vivo and in vitro (Figure 1-4, 

see section 1.4.3)206. Unlike activatory FcγRs, FcγRIIB is capable of signalling without 

adaptor molecules250. FcγRIIB does not have the ITAM motif, instead it only has one YXXL 

motif on its intracellular tail, known as an immunoreceptor tyrosine based inhibitory 

motif (ITIM)255. Tyrosine kinases phosphorylate the tyrosine residues on the ITIM motif, 

leading to a signalling cascade which generates phosphatase enzymes like SHP-1, SHP-2 

and SHIP that are able to remove phosphate groups from a large number of proteins 
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involved in cell activation255. In particular, activation of FcγRIIB is capable of inhibiting 

the activation of activatory FcγRs by removal of phosphate groups from ITAM motifs as 

well as inhibiting Ca2+ signalling, SYK and MAP Kinases256. However, recently use of IgG 

and IVIG (see section 1.5.3) have been shown to interact with activatory FcγRIII to 

recruit SHP-1 to the FcRγ resulting in formation of an ‘inhibisome’257,258. This novel 

mechanism has been shown to reduce MØ responsiveness to stimuli, phagocytosis and 

endocytosis and has been termed inhibitory ITAM signalling (ITAMi)257,258. ITAMi signalling 

has also been shown to occur in IgA and FcαRI-FcRγ interactions and is thought to 

dampen the immune response to prevent aberrant inflammatory responses258. It is 

believed that this is a method of maintaining homeostasis as circulating IgG or IC can 

interact with FcγRIII on the surface of monocytes or MØ and induce the recruitment of 

SHPs to the hypo-phosphorylated ITAMs on FcRγ257. It is thought that for ITAMi signalling 

to occur, activatory and inhibitory FcγRs must be in close proximity, however, once the 

concentration of circulating IgG or IC increases ITAMs are fully phosphorylated and 

return to activatory signalling253,257,258.  

In mice, FcγRs are expressed on the surface of many immune cells. FcγRI has been 

shown to be highly expressed on monocytes, MØ and DCs; FcγRIIB is expressed on all 

myeloid cells as well as being the only FcγR present on B cells; FcγRIII is found to be 

expressed on all myeloid cells and on natural killer cells; FcγRIV is only expressed on 

the surface of Ly6Clow monocytes and MØ259,260. Research regarding mature OC 

expression of FcγRs has caused debate. OCs have been shown to express FcγRs on the 

polarised membrane directly interacting with the bone matrix in vivo, while recently 

they have been shown to express activatory FcγRs in vitro261,262. However, OCs in the 

presence of IgG coated red blood cells (RBCs) failed to induce rosette formation, 

suggesting that FcγRs on OCs are non-functional263. OCs are capable of endocytosing 

particles but are not able to phagocytose via an FcγR mediated pathway264. No evidence 

at presence disproves that FcγR interactions influence mature OCs in vivo. Yet, in vivo 

the role of ITAM bearing adaptor proteins, including FcRγ, in bone biology has been 

investigated (see section 1.4.3). Animals deficient of FcRγ developed mild osteopetrosis 

in steady state but remained susceptible to oestrogen deficient bone loss207. FcRγ is 

required for the expression of activatory FcγRs, however, FcRγ is also associated with 

OSCAR and FcRγ-/- animals suffer osteopetrosis which may result from inhibited OSCAR 

signalling209,265.  

Another human and murine Fc receptor which is essential for IgG homeostasis is the Fc 

neonatal receptor (FcnR) which has a similar structure to MHC Class I receptors and is 

associated with a Beta-2-microglobulin (B2m)266. This structure allows the FcnR to 

interact with albumin and IgG in acidic conditions (pH<6.5) but dissociation occurs in 
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neutral and alkali conditions267. This feature provides FcnR with its main ability, which 

is to transport IgG across epithelial barriers and prevent IgG degradation267. IgG that is 

pinocytosed by epithelial cells can bind FcnR in internalised vesicle which quickly 

becomes acidified267. This allows bound IgG to be secreted at the basolateral cell 

boundary, this process is particularly important for transferring maternal IgG to the 

foetus268. Binding of IgG to FcnR in this process also prevents IgG degradation in 

lysosomes; therefore, the FcnR can greatly increase the half-life of IgG present in 

serum268. FcnR is also expressed on monocytes, MØ and DCs, but has not been observed 

on OCs269.  

 

Table 1-3: Fcγ receptor subclasses, signalling potential and IgG binding affinities.  

Adapted table248,250. 
 

1.5.2 Immunoglobulin G 

Immunoglobulins (Ig) are proteins produced by B cells and one of the main roles of these 

antibodies is to target epitopes on pathogens to aid in their clearance270. In order for B 

cells to produce Ig a series of cellular interactions must occur to facilitate an 

appropriate immune response270. During an infection, professional antigen presenting 

cells (APCs) such as MØ or DCs phagocytose and degrade microbes/pathogens270. A single 

peptide fragment from the degraded pathogens is then presented at the cell surface in 

a complex with MHC II270. For T cell activation to occur, peptide in the context of MHC II 

presented by APCs is recognized by the the T cell receptor (TCR) and is co-stimulated by 

CD4 and CD28 (ligand for CD80/86 on APCs)270. This interaction induces the clonal 

expansion of T cells specific for the peptide270. Cytokines such as IL-6, IL-12 and TGF-β 

are produced by APCs, with the particular cytokines produced influencing the 

differentiation of helper CD4+ T cells into specific T helper (Th) cell subsets. Each Th 

cell subset has differing roles within the immune response and different Th cell types 
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are induced depending on the type of response required270. B cells are also capable of 

presenting antigen in the context of MHC II, however, B cells can only present antigen 

which their BCR recognises270. B cells which have been exposed to BCR specific antigen 

are able to express peptide in MHC II on their surface but require co-stimulation to 

differentiate and produce antibody270. Helper T cells that have been stimulated by APCs 

and recognise the specific peptide can interact with the B cell by engagement of MHC 

II:peptide/TCR, co-stimulation through CD40/CD40L and cytokine release270. This 

initiates the differentiation of B cells into plasma cells which produce high quantities of 

Ig and also differentiates antigen specific memory B cells which will be easily activated 

upon secondary exposure to antigen270. There are 5 classes of Ig; IgD, IgM, IgA, IgE and 

IgG. Ig contains two highly variable F(ab) regions which are specific for an antigen and 

one constant Fc region which varies between subclass and is responsible for binding 

receptors, tissue distribution and mechanism of action (Figure 1-4)271. The subclass of Ig 

produced is reliant on a number of factors including the type of immune response 

required, the Th cell type produced and the co-stimulation which occurs during the T 

and B cell interaction270.   

IgD is the first Ig produced by B cells and it remains membrane bound to detect antigen 

for B cell differentiation250. IgM is the primary Ig produced in response to infection, it 

has a pentameric structure with the five Fc regions of IgM forming a ring and the F(ab) 

antigen binding sites directed outwards250. IgM is capable of initiating complement 

activation and agglutinating antigen for clearance by phagocytosis250. IgA can be 

produced as a dimer, with two IgA monomers binding at the Fc region250. IgA is secreted 

into mucous membranes and its structure allows it to be trafficked across epithelial 

surfaces250. IgE exists as a monomer and represents only a small fraction of the total Ig 

produced250. However, IgE is essential in allergic reactions and clearance of parasites by 

triggering degranulation of mast cells and basophils250. Finally IgG is the most abundant 

Ig present in circulation and has a similar structure to IgM, but exists as a monomer250. 

IgG is capable of binding antigen with high affinity and engaging Fcγ receptors (FcγRs) 

to initiate complement cascade or phagocytosis250. IgG can be further classified into 

subclasses each with more specific functions, however, species specific differences 

exist in these subclasses. Human IgG can be categorised into IgG1 to IgG4, while murine 

IgG exists as IgG1, IgG2a, IgG2b and IgG3248. Each has very specific abilities to activate 

complement cascade, opsonise pathogen and neutralise antigen248,250. 

IgG exists as approximately a 150kDa protein with two light peptide chains and two 

heavy peptide chains linked by disulphide bonds to form the typical Y shape of an 

antibody (Figure 1-4)272. The light chains consist of two domains, one which varies and 

one which remains constant, while the heavy chain has one variable domain and three 
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constant domains250. The variable domains of the heavy and light chains both recognise 

antigen and are responsible for antibody:antigen binding, this is known as the F(ab’)2 

region250. The constant domains provide the structure for the antibody and provide its 

function250. In humans, the lower hinge region which connects the F(ab) and Fc region is 

of the IgG molecule is involved in receptor engagement248. In particularly, residues 

234-237 in this region have been shown to be essential in receptor binding273. Another 

important factor which affects IgG binding abilities are carbohydrate modifications on 

constant heavy chain (CH2) domain of the Fc region of IgG248,274. These are implicated in 

receptor binding affinity and it is thought that these post translation modifications are 

essential for IgG functions248,274. 

1.5.3 Immune complexes and Fcγ receptors 

IC can be the result of multiple IgG molecules binding to one antigen forming a large 

protein complex with multiple IgG Fc regions exposed275. ICs ligate multiple FcγRs on 

the surface of cells, typically MØ or DCs, resulting in phagocytosis of the IC and  

degradation of bound antigen259. The ability of MØs to phagocytose relies on their 

plastic nature which can change depending on the conditions in which they were 

differentiated276. Treatment of MØ with IFN-γ, TLR4 agonists and TNF-α results in 

classically activated MØ which have strong cell-mediated effects allowing protection 

against microbial pathogens276. Classically activated MØ can secrete high levels of IL-1 

and IL-6 which induces inflammatory damage276. MØ that are exposed to IL-4 tend to 

have wound healing properties by promoting extracellular matrix deposition and 

lowering production of inflammatory cytokines277. The final type of MØ is called the 

regulatory MØ which is believed to have a role in finalising the immune response as it is 

typically generated in the presence of TLR agonists and IC278. It is hypothesised that IC 

stimulation occurs towards the end of the adaptive immune response because high 

levels of antigen specific antibody will be present to engage the remaining antigen. This 

could result in the IC formation which would direct the regulatory MØ to produce high 

amounts of the anti-inflammatory cytokine IL-10 to resolve inflammation278. Unlike 

wound healing MØ, regulatory MØ can produce inflammatory cytokines to stimulate T 

cells, but do not contribute to the extracellular matrix276. However, treatment of MØ 

with variations of these stimulants induces hybrid MØ with mixed phenotypes. 

Engagement of FcγRs on the surface of MØ can therefore have multiple effects 

depending on the context of the stimulation.  

The type of IC can also have an impact on the modulatory effect of FcγR stimulation. IC 

can take many forms, such as multiple antibodies bound to a single antigen, 

agglutinated antigens which are multiple antibodies bound to multiple antigens forming 
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a large mass and antibody aggregates which can form IC without the presence of 

antigen275,279. However, artificially generated heat-aggregated antibodies which form IC 

in a denatured structure is used to test in vitro IC interactions280. The size of the heat 

aggregated IgG depends on the initial concentration of protein which can lead to 

ambiguity regarding whether the production of aggregates is consistent between studies 

if different studies use different concentrations280. Research conducted by Torbinejad et 

al (1979) demonstrated that bone loss could be induced by heat-aggregated human IgG 

when injected into the pulp chamber of feline incisors281. In this case heat-aggregated 

human IgG induced inflammation which resulted in rapid bone loss from 7 to 28 days 

following the injection, this demonstrated that immune complexes were capable of 

modulating in vivo OC activity281. More recently, Kuramoto et al (2012) used LPS in 

complex with rat anti-LPS IgG to induce inflammatory bone loss in rat model of 

periodontal disease282. In this example, LPS would have stimulated TLRs and FcγRs to 

elicit inflammatory immune response in gingival tissue282. The size of these 

antibody:antigen complexes can influence the complex’s ability to bind to FcγRs and 

thus the ratio of antigen and antibody must be carefully controlled279. Both Torbinejad 

et al (1979) and Kuramoto et al (2012) indirectly induced bone loss because MØs would 

be the primary effector cells responding to ICs and thus would promote 

inflammation281,282. Antibody:antigen complexes elicit strong responses in human 

monocyte cultures when a similar ratio of antibody and antigen are used283. This drives 

the production of IL-10 which has an autocrine function down-regulating IL-6, IL-1β and 

TNF-α production283. IL-10 pre-treated MØ reduce the expression of FcγRII following 

treatment with heat-aggregated IgG284. However, Ambarus et al (2012) used 

heat-aggregated human IgG prepared in a similar method to show that treatment of 

human MØ cultured in a variety of conditions did not change the baseline production of 

cytokines, while treatment of IgG alone was enough to skew MØ production of IL-10, 

TNF-α and IL-6284.  

Intravenous immunoglobulin (IVIG) is an effective therapeutic which utilises high dose 

IgG to alter patient’s with autoimmune disorders. IVIG is highly concentrated human 

polyclonal IgG purified from hundreds of donors. IVIG is generally injected directly into 

circulation of patients285. It is an expensive treatment and is given at a dose of up to 

2g/kg to treat diseases like RA, immune thrombocytopenic purpura (ITP) and systemic 

lupus erythematosus286. The mechanism by which IVIG induces its anti-inflammatory 

effect is unknown but research has shown that post-translational modifications on 

around 5% of IgG, known as sialylations, may play a role274. Other studies have shown 

that the inhibitory FcγRIIB is required for IVIG induced protection in murine models of 

ITP287, while IVIG induces FcγRIII mediated ITAMi signalling which is thought to inhibit 
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cellular function257. One general theory of IVIGs mechanism is that IVIG floods the 

system with IgG displacing pathogenic IgG and blocking FcγRs from IC activation. It is 

also thought that IVIG co-opts FcnRs and allows the enhanced clearance of pathogenic 

antibodies from patients system relieving patient symptoms288. This therapy is a strong 

immunomodulator; however, extremely high doses are required to observe effects289. 

Therefore, a more precise and cost effective therapy is required to maximise the 

treatment of these diseases. 

Overall, the experiments which use IC tend to use models which cross-link FcγRs in a 

non-species specific manner and use complexes of unknown conformation. However, 

one particular example of IC formation which can reproducibly generate species specific 

IC of a discreet size are produced the bacterial protein; Staphylococcus aureus Protein 

A.   

1.6 Staphylococcus aureus Protein A 

S. aureus is a gram positive, anaerobic bacteria commonly present as part of the normal 

skin flora and due to the rise in drug resistant has become a widespread virulent 

nosocomial bacterium290. S. aureus invades the host and causes a myriad of diseases 

from minor irritations to serious diseases such as skin infections, cellulitis, impetigo, 

pneumonia and endocarditis291. One mechanism S. aureus has evolved to evade the 

hosts immune system is Protein A (SpA), a 47kDa membrane anchored protein that 

targets both the Fc and F(ab) regions of Ig with high affinity291. In its cell bound form, 

SpA has 5 extracellular IgG binding domains (domains E, D, A, B and C), a 

transmembrane domain and a cell wall binding domain292. Each of the 5 extracellular 

domains are able to bind the Fc region of IgG or F(ab) region in a non-competitive 

manner271,292,293.  

S. aureus, expressing SpA, coats itself with circulating Ig masking its presence as only 

host epitopes are exposed294. It has been hypothesised that the ability of S. aureus to 

co-opt IgG evolved to prevent the activation of complement cascade, inhibit 

opsonisation and prevent FcγR mediated phagocytosis290. However, in the recombinant 

soluble form SpA has been used for decades in the purification and production of 

antibodies. In 1978, Ey and Jenkins published a method which has become 

commonplace, in which SpA was conjugated to sepharose and used to isolate purified 

IgG295. This method demonstrated that fractions of IgG1, IgG2a and IgG2b could be 

isolated from mouse serum by incubation with SpA-sepharose and subsequent washes in 

solutions of decreasing pH295. SpA is able to bind to IgG with varying affinities 

dependent on subclass of Ig and host species296,297. SpA binds to murine IgG2a, IgG2b and 
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IgG3 with higher and equal affinity than IgG1296. Naturally occurring IC are also capable 

of binding SpA, which has been immobilised in silica, with high affinity298.   

 

Figure 1-5: Diagrammatic representation of SpAs interaction with IgG. 
Two molecules of SpA bind the CH2/CH3 region of four IgG molecules when IgG is present in 
excess. R denotes radio-labelled IgG. The continuous formation and dissociation of SpA and IgG in 
SIC is shown in the equation provided. Adapted diagram299–301. 

1.6.1  SpA immunomodulation 

SpA’s IgG binding ability was utilised in apheresis columns, which were clinically used to 

filter patient plasma and remove IgG and ICs302. In a now discontinued model, 200mg of 

SpA was covalently bound to a silica matrix and was used to remove IgG, and some IgA 

and IgM, from circulation302–304. Use of SpA apheresis in patients with RA was highly 

effective despite only removing a small amount of IgG from circulation271,305. However, 

other apheresis columns removed larger quantities of IgG and did not impact on 

patients’ disease as effectively as SpA aphresis271. Interestingly, it was discovered that 

during treatment approximately 200µg of SpA could leach from a column into the 

patient by proteolytic cleavage291. This led researchers to investigate how SpA could be 

interacting with the immune system to resolve inflammation.  

One aspect of SpA’s ability to modulate the immune system is its ability to bind the 

F(ab) region of Ig. This is not an IC mediated pathway as SpA directly interacts with the 

B cell to modulate cellular function. SpA specifically interacts with one variant of the 

F(ab) region produced by the VH3 gene family271. In humans this gene encodes 

approximately 14-50% of B cells, while only 3-5% of murine B cells express the 

variant306,307. SpA specifically interacts with the IgM expressed on the surface of B cells 

(BCR) and induces super-antigenic apoptosis308. Once SpA engages the BCR, there is a 

down-regulation of co-stimulatory molecules CD19 and CD21308. This results in B cell 

activation and within hours there is a decrease in the mitochondria membrane potential 

resulting in the production of pro-apoptotic factor Bim which induces B cell 
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apoptosis308,309. SpA induced cell death can be negated by co-stimulation of B cells using 

IL-4, CD40L and BAFF or even Bcl-2 overexpression309. In diseases such as RA, the 

removal of B cells from circulation via a SpA dependent manner may be beneficial as 

VH3 encoded B cells are implicated in producing auto-antibodies responsible for driving 

inflammation271. In fact, Rituximab is an anti-CD20 monoclonal antibody, used clinically 

to deplete B cells in patients and successfully treat diseases like RA310. Therefore, SpA 

mediated removal of B cells from patients maybe a viable treatment; however, it is not 

SpA’s only method of immunomodulation.  

1.6.2 SpA IgG complex immunomodulation 

SpA has long been known to bind to the Fc region of IgG and form IgG complexes 

consisting of IgG bound to SpA at a 4:2 ratio311. These complexes are distinct from 

typical IC because SpA binds to the IgG Fc region and allows the formation of a distinct 

protein conformation311. While typically, IgG binds to an antigen via the F(ab) region 

and in the correct ratio of antibody:antigen results in either multiple antibodies binding 

to a single antigen or multiple antibodies bind to multiple antigens to form a large 

agglutinated mass275. Both of these forms of IC are distinct from the SpA IgG complexes 

(SIC) because these IgG complexes form without F(ab) binding (Figure 1-5). The 

interaction between SpA and IgG is dependent on molarity, because if SpA is in molar 

excess of IgG the ratio of binding becomes 1:1300. SpA binds the Fc portion of IgG at the 

CH2/CH3 hinge region while the hinge section linking the F(ab) and CH2 regions of IgG 

are important in interact with FcγRs292,312. Deisenhofer (1981) used the B domain of SpA 

and Fc fragment of human IgG and demonstrated that the B domain interacted with the 

CH2/CH3 domains311. Further research demonstrated that mutations in murine IgG Fc 

region resides I253, H310, H433 and H434 were all involved in SpA binding, and this 

region overlapped with FcnR interactions313,314. These four amino acid residues have 

been shown to reside in close proximity to the CH2/CH3 domains interface and thus 

provides different binding site from IgG/FcγRs interactions313,314. Therefore, the use of 

SpA does not cause steric hindrance with the IgG Fc region and FcγRs (see section 

1.5.2). The formation of SIC at a 4:2 occurs almost instantaneously upon 

administration299. In fact, SpA added to serum, purified IgG or Fc fragments can 

generate SIC almost instanteously299,300. Administration of radio-labelled SpA alone or in 

complex with IgG revealed an in vivo half life of approximately 9 hours299. However, 

administration of radio-labelled IgG alone or in complex with SpA revealed a half life of 

approximately 110 hours299. This identified SpA’s promiscuous relationship with IgG, as 

it is proposed that SpA continually dissociates from bound IgG to form complexes with 

fresh IgG which accounts for the discrepancy in half lives299. This led to Dima et al 

(1983) proposing a model of SpA:IgG interactions (Figure 1-5)299. 
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However, more recently the ability of SIC to interact with FcγRs on the surface of 

immune cells to modulate cellular function has received attention315. The use of murine 

SIC (SpA with murine IgG) in mouse MØ cultures was shown to skew the MØ from an 

inflammatory phenotype to a regulatory phenotype316. SIC treated MØs produced high 

levels of IL-10 and decreased IL-12 production, as well as down-regulating MHC II 

expression316. This would suggest that the SIC was capable of producing an 

anti-inflammatory MØ. SpA also demonstrated anti-inflammatory properties when used 

in a murine model of arthritis (collagen-induced arthritis - CIA)316. In the murine model 

of CIA, SpA treatment reduced disease severity as measured by joint inflammation and 

reduced the number of OCs present at the inflamed joint316. It remains unclear whether 

in this model, SpA interacted directly with OCs or pre-OCs to reduce OC numbers or 

whether the reduction in inflammation was responsible for the observed decrease in 

OCs. However, use of SIC generated with human IgG, was shown to inhibit the 

differentiation of human monocytes to OCs316. This demonstrates that FcγR modulation 

in human monocytes can inhibit the differentiation of OCs. 

Recently research using murine cultures has confirmed this observation and shown that 

FcγR modulation on pre-OCs can alter osteoclastogenesis. The use of heat aggregated 

rabbit IgG in cultures of pre-OCs was used to inhibit the in vitro differentiation of 

mature murine OCs 317. This result demonstrates that treatment of pre-OCs with FcγR 

stimulation prior to RANKL stimulation lead to a decrease in the cells ability to 

differentiate317. It was also shown that the cross-linking of activatory FcγRI and IV using 

directed monoclonal antibodies leads to an increase in OC differentiation in pre-OCs 

that had already been cultured with RANKL262. This discrepancy in temporal FcγR 

stimulation and lack of physiologically relevant stimulation has resulted in conflicting 

results. In order to understand the role of FcγRs in osteoclastogenesis, species specific 

interactions are vital in elucidating the complexity of FcγR biology. Therefore, IgG 

complexes derived from SpA and murine IgG will be used to examine the role of FcγRs in 

murine osteoclastogenesis. 

1.7 Hypothesis and aims 

The use of SpA to generate IgG complexes with human IgG can inhibit the 

differentiation of human OCs316. Recently, the participation of FcγRs in murine 

osteoclastogenesis has received attention, however, these studies did not use 

species-specific IgG and thus conflicting results were achieved262,317. To expand on this 

research IgG complexes were generated using murine IgG and SpA alongside murine 

osteoclast cultures. IC interactions with FcγRs have been well studied and are 

commonly used to treat a variety of inflammatory disease286. SpA is able to form IC in 
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vivo with endogenous IgG and engage monocytes and MØ to reduce inflammatory 

disease316. However, the effect of SpA and FcγRs in non-inflammatory diseases has not 

been defined. Oestrogen deficiency induces excessive osteoclastogenesis resulting in 

lowered bone density and osteoporosis - which can be mimicked in vivo by removal of 

the ovaries40. Monocytes and monocyte subsets express FcγRs and can differentiate into 

OCs in vitro and in vivo and play a central role in OVX mouse model of osteoporosis318. 

Therefore, the use of SpA-IgG complexes may have potential in targeting osteoclast 

progenitors, via FcγRs, in osteoporotic diseases. 

The differentiation of OCs relies heavily on RANKL mediated NF-κB activation156. NF-κB 

activation results in nuclear translocation of activatory NF-κB dimers and gene 

transcription164. However, recently Bcl-3 has been discovered as a regulator of cytokine 

stimulated NF-κB induced gene transcription167. Bcl-3 prevents removal of p50/p52 

NF-κB dimers from gene promoters preventing activatory NF-κB dimer gene 

transcription167. As RANKL strongly activates both canonical and non-canonical pathways 

of NF-κB signalling Bcl-3 may regulate of this pathway. Therefore, as a negative 

regulator of NF-κB, Bcl-3 may potentially be a valid target in the search for novel drugs 

to treat osteoporotic diseases via disrupted RANKL signalling. 

Aim: Do SpA-IgG complexes or Bcl-3 represent novel avenues of investigation in 

therapeutic intervention in osteoporotic disease?  
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2 Materials and methods 

2.1 Animals 

C57Bl/6 mice, between the ages of 6-24 weeks old, were either bred by the University 

of Glasgow’s Central Research Facility or purchased from Harlan UK or Charles River UK. 

Bcl-3 deficient (Bcl-3-/-) mice (C57Bl/6 background) between the ages of 6-24 weeks old 

were provided by Dr. Ruaidhri J. Carmody. Bcl-3-/- C57Bl/6 / 129/SV mice originally 

obtained from Jackson Laboratory were backcrossed to C57Bl/6 mice for 12 generation 

and maintained at the University of Glasgow’s Central Research Facility167. Bcl-3-/- were 

generated by selective deletion of the ankyrin repeats in the Bcl-3 genomic DNA of 

129/SV mice which was replaced with a hygromycin resistance gene319. This construct 

was then electroporated into embryonic stem cells before antibiotic selection with 

hygromycin319. Embryonic stem cells with the disrupted bcl-3 gene survived hygromycin 

selection and were injected into C57Bl/6 blastocytes and transferred to surrogate 

C57Bl/6 mice319. Fcγ receptor III deficient (FcγRIII-/-) mice on a C57Bl/6 background 

were purchased from Charles River UK and bred by University of Glasgow’s Central 

Research Facility. FcγRIII-/- mice were generated in a similar manner to Bcl-3-/- animals, 

except the exons encoding the extracellular and transmembrane domains were replaced 

with hydromycin resistance genes320. Mutant mice were then maintained on a C57Bl/6 

background320. All animals were maintained at University of Glasgow’s Central Research 

Facility and procedures were performed according to Home Office Regulations and the 

Animal (Scientific Procedures) Act 1986. 

2.2 Osteoclast differentiation  

2.2.1 RAW 264.7 cell differentiation to osteoclasts 

The murine MØ cell line, RAW 264.7, was kindly provided by Dr. R. Carmody. Cells were 

maintained in complete Dulbeccos Minimum Essential Media (D-MEM, Gibco, Life 

Technologies, UK; see Appendix) at 37oC and 5% CO2 in 75cm2/mm tissue culture flask 

(BD Biosciences, UK). RAW 264.7 cells were split once 80% confluent. To split RAW 264.7 

cells, a cell scraper (Greiner Bio-one, UK) was used to dislodge adherent cells before 

transfer of non-adherent cells to a 50ml falcon tube and centrifugation at 400g for 5 

minutes. Supernatant was aspirated and cells were re-suspended in 10ml of complete D-

MEM, 1ml of cell suspension was added to 12ml of complete D-MEM and placed in a 

clean 75cm2/mm tissue culture flask.  
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To differentiate RAW 264.7 cells to OCs, RAW 264.7 cells were seeded onto tissue 

culture plates at differing cell densities in complete D-MEM. Cells were then incubated 

with 0, 50 or 100ng/ml RANKL (Peprotech, UK) for varying lengths of time with cultures 

being fed every third day. 

2.2.2 Osteoclast differentiation from murine bone marrow  

Mice were either euthanized by rising concentration of carbon dioxide (CO2) or by 

cervical dislocation, in accordance to Home Office regulations. Reflexes were tested to 

ensure death before the long bones (femurs and tibias) were harvested and/or blood 

was removed via puncture of the exposed vena cava using a 23 gauge (23g) needle and 

20μl of 0.5mM EDTA. Excess flesh was removed from the femurs and tibias. These bones 

were sprayed with 70% ethanol before storing in sterile phosphate buffered saline (PBS). 

In a sterile class II fume cabinet, the epiphysia were dissected and using a 23g needle 

and syringe with complete alpha-Minimum Essential Medium (α-MEM, Gibco, Life 

Technologies, UK; see Appendix), bone marrow (BM) was flushed from the bones into a 

9cm Petri dish. The BM was then aspirated using the needle and syringe to create a 

single cell suspension. The suspension was passed through a 70µm cell strainer (BD 

Bioscience, UK) into a 50ml falcon tube to remove debris. The cell suspension volume 

was increased to 50ml with complete α-MEM and centrifuged at 400g for 5 minutes. 

Medium was removed and the cell pellet re-suspended in 10 ml of complete α-MEM. To 

count the number of cells obtained, 50µl of cell suspension was added to 200µl of 

complete α-MEM. This was further combined with 50µl of trypan blue at a 1:1 ratio. This 

mixture was then loaded onto a haemocytometer and the 16 squares from each of the 

four corners of the haemocytometer were counted and averaged. The value obtained 

was equal to the number of cells x 106 in the 10ml single cell suspension.  

2.2.3 Monocyte enrichment 

BM was prepared as described in Section 2.2.2. To lyse red blood cells (RBCs), 1ml of 

Akt Lysis Buffer (Gibco, Life Technologies, UK) was added to pelleted BM cells and 

incubated at RT for 1 minute. Complete medium was then used to inactivate the lysis 

buffer and cells were centrifuged at 400g for 5 minutes prior to counting with trypan 

blue. With RBCs lysed, BM samples were negatively sorted by magnetic separation using 

Monocyte Enrichment Kit according to manufacturer’s instructions (StemCell 

Technologies, UK).  Briefly, BM cells were counted and re-suspended at a cell density of 

1x108 cells/ml in Separation Media (see Appendix) in a 6ml tube to which 50μl/ml of 

normal rat serum was added. 50μl/ml of mouse monocyte enrichment cocktail was 

added and incubated for 15 minutes at 4oC. Cells were centrifuged at 300g for 10 
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minutes and subsequently re-suspended at 1x108 cells/ml. 60μl/ml of Biotin Selection 

Cocktail was added to cells for 15 minutes at 4oC. Cells were vortexed before 150μl/ml 

of magnetic beads were added and incubated for 10 minutes at 4oC. The cell suspension 

volume was increased to 2.5ml and placed inside a magnet for 5 minutes. Unwanted 

cells remained bound in the tube to the magnet, while monocytes were poured off. 

Purity of the total monocyte population was assessed by flow cytometry (described in 

2.9). Purified monocytes were plated out into tissue culture plates at a density of 1x105 

or 1x106 cells/ml in complete α-MEM with 30ng/ml M-CSF (Peprotech, UK) and either 50 

or 100ng/ml RANKL for 10 days, with media refreshed every third day. 

2.2.4 Blood and bone marrow mononuclear cell isolation 

For isolation of mononuclear cells, blood and BM was prepared as previously described 

(Section 2.2.2). Blood and BM cells were combined and this cell suspension was 

centrifuged once with room temperate (RT) PBS at 400g for 5 minutes before 

re-suspending in 1.5ml of PBS. This was layered onto 1.5ml of histopaque and 

centrifuged at 300g for 30 minutes without a centrifuge brake. Following centrifugation, 

the thin white layer (‘buffy coat’), containing mononuclear cells was removed and these 

cells washed with PBS once more before counting using trypan blue and re-suspension at 

1x105 cells/50μl. 50μl of this suspension was added to each well of a 96 well tissue 

culture plate and allowed to adhere for 2 hours before non-adherent cells were gently 

washed off using warm PBS. Adherent cells were cultured with complete α-MEM with 

10ng/ml M-CSF and either 50 or 100ng/ml RANKL for 7 days. 

2.2.5 Isolation of non-adherent bone marrow 

BM was obtained as previously described in Section 2.2.2 and the suspension of murine 

BM cells was re-suspended to a cell density of 1x106 cells/ml in complete α-MEM. 9ml of 

this suspension was cultured overnight at 37oC with 30ng/ml M-CSF in a sterile 9cm non-

tissue cultured treated Petri dish. Non-adherent (NA) BM cells were removed following 

the overnight incubation and these cells were centrifuged at 400g for 5 minutes and the 

cell pellet re-suspended in 10ml of complete α-MEM and counted using trypan blue as 

previously described (Section 2.2.2). The NA BM cells were then re-suspended at a cell 

density of 5x105 cells/ml and 200μl cell suspension containing 1x105 cells were cultured 

at 37oC in 96 well tissue culture plates along with M-CSF and/or RANKL at stated 

concentrations. Complete α-MEM was changed every 3rd day and experiments were 

terminated on various days (see results Section 3.2). In some experiments IL-1β 

(Peprotech, UK) was added to cultures at a concentration of 10ng/ml. 
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L929 cell supernatant which contains M-CSF was used to differentiate OCs. L929 is a 

fibrosarcoma cell line that secretes M-CSF into the cell culture supernatant and this 

supernatant can be used to differentiate MØ321–323. To generate L929 supernatant, L929 

cells were cultured in 100ml of complete Roswell Park Memorial Institute Medium (RPMI, 

Gibco, Life Technologies, UK; see Appendix) until confluent. Cells were cultured for a 

further 4 days to increase the concentration of M-CSF in the supernatant at which point 

supernatants were removed and centrifuged at 400g for 5 minutes to remove cellular 

debris. Supernatant was aliquoted and frozen at -20oC until required. Once thawed, 

L929 cell supernatant was double filtered using a 0.2μm filter (Sartorius Stedim biotech, 

UK) before being diluted in complete α-MEM at a ratio of 2 parts L929 to 8 parts 

complete α-MEM. At this dilution, aliquots of 1x106 cells/ml were plated out in tissue 

culture plates with or without 50 or 100ng/ml RANKL. Cells were cultured till day 7 with 

media refreshed every third day. 

In order to maximise osteoclastogenesis careful screening of FBS was undertaken to 

ensure the terminal differentiation of cells. Ultimately, this involved the use of twice 

filtered FBS using 0.2μm filters in all OC culture media. Additionally, OC differentiation 

in various 96 well flat bottom tissue culture plates (Costar, Corning, UK) was also 

optimised in order to gain maximum OC differentiation.  

2.3 Tartrate resistant acid phosphatase staining 

To assess OC differentiation, cultures were stained for TRAP using Leukocyte Acid 

Phosphatase Kit (Sigma-Aldrich, UK) pre-warmed to RT and following manufacturer’s 

instructions. Briefly, media was removed from cultures and cells were fixed with TRAP 

fixative solution (prepared following manufacturer’s instructions, see Appendix), for 30 

seconds. The fixative was then washed off three times with dH2O at 37oC. The TRAP 

staining solution was prepared using the reagents provided in the kit (see Appendix) and 

warmed to 37oC. TRAP staining solution was incubated on fixed cells for 1 hour at 37oC. 

After incubation, the staining solution was removed and cultures were counter-stained 

with haematoxylin solution for 1 minute. The stained cells were rinsed in cold running 

water until water ran clear and plates were allowed to air dry. 

2.4 Assessing osteoclastogenesis 

TRAP stained OC cultures were imaged on an Olympus IX51 microscope (Olympus, UK) 

using Olympus TL4 Lamp (Olympus, UK) at 10x magnification. Images were captured 

using Cell^D Software (Olympus, UK) and four random images were taken of each well, 

which were then counted for the number of TRAP positive cells containing 3 or more 
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nuclei. The sum of each well was then averaged from the duplicates/triplicates of each 

condition to assess the level of osteoclastogenesis. ImageJ Analysis software (ImageJ, 

National Institute of Health, USA - http://imagej.nih.gov/ij/) was also used to calculate 

the size of OCs present in each field of view. 

2.5  Bone resorption assay 

NA BM cells were isolated as previously described (Section 2.2.5). NA BM cells were 

cultured in complete α-MEM with 75ng/ml M-CSF and 50ng/ml RANKL in 96 well plates 

on slices of bovine cortical bone (ImmunoDiagnostic Systems plc., UK). Bone slices were 

marked on their underside with pencil prior to culture and incubated at 370C in 

complete α-MEM for an hour to equilibrate the bone.  Cultures were maintained for 10 

or 14 days with media refreshed every 3rd day. On the 10th day, bone slices were 

removed and stained for TRAP as previously described (Section 2.3). On the 14th day, 

media was removed and replaced with tap water for 2 hours at  (RT) to lyse cells. A 

black marker pen was used to dye the non-pencilled side before quickly wiping off ink 

using tissue paper. Areas of erosion remain stained with ink while non-eroded areas 

wipe clean. For bone erosion analysis, five images of the bone slices were taken at 4x 

magnification and analysed using Image J software to calculate the area of erosion per 

bone slice and the area of the slice in the field of vision. The percentage area of erosion 

was then calculated. 

2.6  SpA immunoglobulin complexes 

SpA Immunoglobulin Complexes (SIC) were generated by incubating SpA (recombinant 

Staphylococcus aureus Protein A, rPA-50, RepliGen, USA) with ChromPure Murine IgG 

(Jackson ImmunoResearch, UK), at a molar ratio of 1:4 (37.5μM SpA: 150μM IgG). 

ChromPure Murine IgG is a preparation of whole IgG that has been isolated from 

non-immunised mice and therefore the composition of IgG subclasses present is 

representative of a healthy animal. For 3ml of media, 1.175µl SpA (4mg/ml) and 13.16µl 

Mouse IgG (5.7mg/ml) were incubated at 37oC for 1 hour to allow the formation of SIC 

after which, 15.6μl of PBS was added. SpA or OVA (Chicken Ovalbumin, Sigma, UK) 

alone (1.175µl SpA/OVA and 28.76 µl PBS) were used to control for SpA. OVA with 

polyclonal mouse IgG (1.175µl OVA, 13.16µl Mouse IgG and 15.6µl of PBS) were used as a 

control for SIC. IgG alone was also used as a control which was used at 5.7mg/ml 

(13.16μl) in 16.84μl of PBS. Each treatment was made up to a volume of 30μl in PBS. Of 

which, 10μl was added to 1ml of culture medium which maintained IgG at a constant 

concentration of 25μg/ml. The research presented throughout this thesis utilised SpA in 

all in vivo experiments, while in vitro assays use SIC. IgG was centrifuged at 4000rpm 
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for 5 minutes prior to use to prevent naturally forming IgG aggregates interfering with 

the formation of complexes or interacting with cultures. 

2.6.1 BS3 cross-linking 

SIC was generated as mentioned in Section 2.6. 1.175µl SpA (4mg/ml) and 13.16µl 

Mouse IgG (5.7mg/ml) were incubated at 37oC for 1 hour in an eppendorf tube. This 

allowed sufficient time for complexes to form. At the same time OpIg, IgG, SpA, OVA 

and PBS controls were generated. Following the 1 hour incubation, protein interactions 

were fixed using BS3 cross-linker (ThermoScientific, UK). 1mM of BS3 cross-linker was 

added to each condition and incubated at RT for 30 minutes. 0.5M Tris-HCl was added 

to each condition to terminate the reaction. 

2.6.2 Coomassie stain 

In order to visualise cross-linked proteins, each sample was mixed with 4x LDS sample 

loading buffer (Invitrogen, UK) 15μl was loaded onto a 4-12% Bis-Tris gel (Invitrogen, UK) 

along with 10μl of Pre-stained protein standard (Invitrogen, UK). 1x MOPS running buffer 

(Invitrogen, UK) was added to the central reservoir of an electrophoresis gel tank and 

samples electrophoresed at 200V for 1 hour. Gels were cracked open and washed in 

dH2O before addition of 20ml of Simply Blue SafeStain (Invitrogen, UK) and incubated 

with agitation at RT for 1 hour. Simply Blue SafeStain was washed off with dH2O for 1 

hour to remove background and enhance visualisation. Gels were imaged using an HP 

desktop scanner.    

2.6.3 Size exclusion chromatography 

To show the formation of SIC complexes from SpA and IgG, samples were run through a 

Sephacryl s-400 column (GE Healthcare, UK) using an ÄKTAprime plus (GE Healthcare, 

UK) to discriminate molecules based on size. Filtered PBS was used to wash the 

Sephacryl s-400 column prior to processing. 0.5ml of SIC was generated at 4mg/ml 

following 1 hour incubation at 37oC: 32.5μl SpA and 364μl IgG and loaded onto a column 

under the following conditions; flow rate - 0.2ml/ml; pressure limit – 0.5mPA; fraction 

size – 5ml; equilibrate volume – 120ml; sample injection - 0.5ml; elution volume - 

200ml. The resulting readout shows protein concentration (UV - A280) versus time. OpIg, 

IgG, SpA, OVA and PBS were also run under the same conditions as SIC. Sephacryl s-400 

was cleaned using 20% ethanol in dH2O. Results were visualised using PrimerView (GE 

Healthcare, UK) to establish the concentration and the time at which protein exited the 

column.  
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2.7 Polymerase chain reaction 

2.7.1 RNA isolation 

Murine NA BM derived OCs were differentiated as previously described (Section 2.2.5) 

until day 3. At this time, culture plates were centrifuged at 400g for 5 minutes, cell 

media removed and 700μl QIAzol Lysis Reagent (QIAGEN, UK) was added to each well to 

lyse cells. The lysates were transferred to 1.5ml eppendorfs and either immediately 

using for RNA extraction or stored at -20oC for later purification. RNA was isolated from 

lysates used a miRNeasy Mini Kit (QIAGEN, UK), as per manufacturer’s instructions, 30μl 

of RNase free water was used in the final elution. 

To ensure purified RNA had been isolated the samples were kept on ice and a Nanodrop 

1000 (ThermoScientific) was used to detect the concentration of RNA present in each 

sample. Once the purity and concentration of RNA had been determined the samples 

were stored at -20oC. 

2.7.2  cDNA generation 

Purified RNA was used to generate cDNA using Affinity Script cDNA synthesis kit (Agilent 

Technologies, UK) following manufacturer’s instructions. Using a PCR machine (Applied 

Biosystems 2720 Thermal Cycler, UK), random primers in the Affinity Script cDNA 

synthesis kit transcribed the RNA and generated cDNA. 200ng of RNA was used to 

generate cDNA and this was diluted in 50μl to give 4ng/μl cDNA template and stored 

at -20oC. 

2.7.3 Primer design 

A set of primers (forward and reverse) to generate a PCR product of 100-150 base pairs 

were designed using Primer3 Software (National Institute of Health, USA) and the NCBI 

nucleotide database (National Centre for Biotechnology Information, USA). Primers were 

designed to be between 18-23 base pairs in length have, a 40-60% GC nucleotide 

content, a melting temperature of between 59.5 and 61oC, a maximum self 

complementarity of 2 and a maximum 3’ self complementarity of 1. Once primers had 

been designed and met these specific criteria, Primer BLAST software (National Centre 

for Biotechnology Information, USA) was used to determine their specificity of the 

primers and predict non specific amplification. Once a primer set had met all these 

criteria they were purchased from Integrated DNA Technologies Ltd. (IDT) and tested 

for specificity by end point PCR (Table 2-1). Primers for GM-CSF, Bcl-2 and Bcl-XL were 

obtained from QIAGEN and have been optimised for use with SYBR green. 
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2.7.4  End Point PCR 

To ensure successful generation of cDNA and to test the specificity of primers, end point 

PCR was undertaken. A standard protocol was followed for the generation of a PCR 

master mix; the components of which were 

 Nuclease free water   - 35.5μl 

 5x GoTaq Buffer (Promega)  - 10μl 

 10mM dNTPs (Promega)  - 1μl 

 Primer 1 (Forward)   - 1μl 

 Primer 2 (Reverse)   - 1μl 

 Go Taq Polymerase (Promega) - 0.5μl 

 cDNA (4ng)    - 1μl 

 

 

Each sample was made up in a 0.2ml PCR tube and run on a PCR machine. The following 

thermal cycle was used; an initial 94oC for 5 minutes step followed by 35 cycles of 94oC 

for 10 seconds, 55oC for 30 seconds and 72oC for 30 seconds, terminating the reaction 

with 10 minutes at 72oC before holding at 4oC. After termination of the PCR, the 

samples were loaded into a 2% Agarose gel (see Appendix) with 5μl ethidium bromide 

added prior to pouring the solution onto the flat bed electrophoresis tank. Once the gel 

had cooled and set, 1Kb DNA ladder (Invitrogen, Life Technologies, UK) and PCR samples 

were loaded and the tank attached to a power pack set at 100V for 60 minutes. Gels 

were visualised using a UV light (Alpha Innotech, UK) to detect the presence of PCR 

products at correct molecular weight. 

2.7.5 Quantitative PCR 

For a 96 well qPCR plate (Starlabs, UK), each sample was run in triplicate with a master 

mix comprising of 10.4μl PerfeCTa SYBR Green FastMix (Quanta Bioscience, USA) or 

POWER SYBR Green (Life Technologies, UK), 0.8μl primer mix (0.4μl/primer) and 8.4μl 

nuclease free water per well. 56μl of this reaction mixture was then added to mixing 

wells along with 6μl of appropriate cDNA. This was mixed by pipette 20 times and 19μl 

was added to each of the triplicates. A non-template control (NTC) was used which 

contained nuclease free water in place of cDNA to ensure no contamination of the 

reagents. After loading, the plate was sealed using an adhesive PCR plate cover 

(Starlabs, UK) and centrifuged at 300g for 1 minute. A 9700HT qPCR machine (Applied 

Biosystems) was used to run the samples; the qPCR temperature cycle was 10 minutes 

at 94oC, followed by a 40 cycles of 94oC for 3 seconds and 60oC for 30 seconds. The final 

stage in this process is a dissociation curve which is an incremental increase in 
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temperature from 65oC up to 94oC which is designed to test the specificity of the 

primers in generating only one product. All genes were normalised to housekeeping 

gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH). ΔCt was measured for each 

sample by subtracting the gene of interest ΔCt of an individual sample from the 

corresponding housekeeping gene ΔCt sample. ΔΔCt was calculated by subtracting the 

ΔCt of a sample of interest from the control sample ΔCt. Fold change was measured by 

inserting the ΔΔCt of a sample into the power equation (2-ΔΔCt).  

Target 
Name 

Direction Tm ( oC) Product Size 
(bp) 

Sequence 

GAPDH F 56.2 100 ACGCAAGGACACTGAGCAAG 

R 53.5 TATTATGGGGGTCTGGGATG 

CD115 F 55 126 TGAAGGTGGCTGTGAAGATG 

R 58.2 AGGCTCCCAAGAGGTTGACT 

RANK F 53.2 102 TTTGTGGTTTTGGCATCCTT 

R 54.3 CTGGCACCTTCATTTTGTCC 

NFATc1 F 54.1 133 ACGCAAGGACACTGAGCAAG 

R 56.1 TATTATGGGGGTCTGGGATG 

DC-STAMP F 56.3 139 TCTGCTGTATCGGCTCATCTC 

R 56.6 ACTCCTTGGGTTCCTTGCTT 

TRAP F 56.4 102 GGTATGTGCTGGCTGGAAAC 

R 59.0 GGTAGTAAGGGCTGGGGAAGTC 

MMP9 F 57.6 128 TCTACTGGGCGTTAGGGACA 

R 58.0 AGGAGTCTGGGGTCTGGTTT 

Cathepsin K F 54.9 122 GGAACGAGAAAGCCCTGAA 

R 56.0 CACACCTCTGCTGTAAAACTGG 

OSCAR F 54.2 109 GTTTTGGGGGTTTGTTCGTT 

R 53.9 TTACCTGGGAGATGGGATTG 

Bcl 3 F 62.9 102 CCGGAGGCCCTTTACTACCA 

R 62.8 GGAGTAGGGGTGAGTAGGCAG 

RANKL F 56.0 100 ATGAAAGGAGGGAGCACG 

R 57.4 AGCAGGGAAGGGTTGGAC 

Primers Ordered from QIAGEN 

Name Product Code 

GM-CSF PPM02990F-200 (csf2) 

Bcl-2 PPM02918F-200 (bcl2) 

Bcl – XL PPM02920F-200 (bcl2l1) 

Table 2-1: List of primers sequences ordered from Integrated DNA Technologies Ltd and 

QIAGEN for qPCR analysis. 
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2.8 Osteoporosis surgical model 

OVX or sham operations were performed on 8 week old anaesthetised female C57Bl/6 

mice by Charles River UK. Mice were laid prone rostro-caudally away from the surgeon. 

The dorso-lumbar region was shaved, and sterilised with 70% ethanol before a ~20mm 

skin incision was made along the vertebral column. Approximately 10mm long incisions 

were made through the muscle wall on either side of the vertebral column and the 

peritoneal cavity exposed. The ovaries, located in a fat pad, were carefully excised. 

Once both ovaries were removed the skin incision was closed using wound clips. If Alzet 

PumpsTM (model 2004) were to be used; Alzet pumpsTM were inserted into the peritoneal 

cavity prior to closing the incision with wound clips. The animals were allowed to 

recover for 7 days and subsequently delivered to the University of Glasgow’s Central 

Research Facility. Sham and OVX animals were used in three treatment regimes. 100μg 

of SpA or OVA was given i.p. to animals in the Therapeutic Treatment Regime starting 

two weeks after surgery. This dose was given every second day up until week 6 when 

the experiment was terminated. The second treatment regime was the Continuous 

Treatment Regime in which 100μg of SpA or OVA was given i.p. to animals from the day 

of surgery until the termination of the experiment at week 6. The final treatment 

regime was the Alzet PumpTM Treatment Regime, in which Alzet PumpsTM containing 

1.4mg of SpA or OVA was inserted into the peritoneal cavity at the point of surgery. 

Alzet PumpsTM secrete SpA/OVA over the course of 4 weeks. All operated mice were 

maintained for 6 weeks after surgery and after which they were euthanized by rising 

concentration of CO2 according to Home Office regulations. 

2.9 Flow cytometry 

Blood and BM were harvested for analysis of cellular populations by flow cytometry. 

200μl of blood was taken using EDTA flushed needles and RBCs lysed using ammonium 

chloride (1 part blood to 9 parts NH4Cl - Stem Cells Technologies, France) on ice for 15 

minutes. BM was prepared and lysed as previously described (Section 2.2.3). Lysis 

buffers were washed off by addition of excess complete media and centrifuged at 400g 

for 5 minutes. Cells were re-suspended in FACs Buffer (See Appendix). Cell numbers 

were determined by either the haemocytometer trypan blue method (Section 2.2.2) or 

by using a MACsQUANT (Miltenyi Biotec, Germany). After counting, 1x106 cells were 

added to each FACs tube in technical duplicates and 1ml of FACS buffer added before 

centrifugation at 400g for 5 minutes. The buffer was aspirated off, tubes vortexed and 

non-specific binding by Fcγ receptors were blocked by using 50μl of 5% normal rat serum 

in FACS Buffer and incubating at 4oC for 15 minutes. Primary antibodies were used at 

stated concentrations and added to a master mix (Table 2-2). 50μl of master mix was 
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then added to each tube and cells stained for 15 minutes at 4oC. Antibody was washed 

off by addition of 1ml of FACS buffer and centrifugation at 400g for 5 minutes. 

Supernatant was aspirated and cell pellets were vortex and re-suspended in 300μl of 

FACS buffer for acquisition on the MACsQUANT (Miltenyi Biotec, Germany) or LSRII (BD 

Bioscience). If a secondary antibody step was required, the cells were stained with 50μl 

of diluted streptavidin conjugated fluorophore in FACS buffer and incubated for 15 

minutes at 4oC, before being washed and re-suspended in 300μl of FACS buffer for 

acquisition. Prior to acquisition, cells were passed through Nitex to prevent cell 

aggregates blocking or interfering with the acquisition and analysis of the cell 

populations. In certain experiments dead cells were excluded from analysis, in order to 

do this, 3μl of DAPI (diluted 1/100 in FACS buffer – Sigma, UK) was added to 300μl of 

cells samples and briefly vortex prior to acquisition. Another method to exclude dead 

cells, which involved staining cells with Live/Dead Aqua Stain (Molecular Probes, 

Invitrogen, UK). Live/Dead Aqua Stain was prepared according to manufacturer’s 

instructions, briefly, 50μl of DMSO was added to lyophilized dye and 1μl/ml of this 

solution was incubated with 1x106cells/ml in PBS for 30 minutes on ice but protected 

from light. Cells were subsequently centrifuged for 5 minutes in excess FACS Buffer and 

re-suspended in FACS Buffer for acquisition. Analysis of FACs data was done using 

FlowJo software (TreeStar Inc., USA). This protocol was also used to examine purity 

following monocyte enrichment (outlined in Section 2.2.3). 

A FACS Aria was also used to sort CX3CR1 GFP+ Ly6Chigh/low monocytes for in vitro 

culturing. Blood and BM were isolated from CX3CR1 GFP animals after which cells were 

prepared for FACS. Dr. J. Montgomery stained and acquired cells on the FACS Aria, after 

which Ly6Chigh and Ly6Clow monocytes were used for culturing. Sorted cells were used in 

an OC assay (as previously described in Section 2.2.5). 
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Table 2-2: List of flow cytometry reagents used. 

 

2.10 ELISA 

IFN-γ, TNF, IL-6, IL-1β, Osteocalcin and CTX-1 ELISAs were performed on mouse plasma. 

Plasma was obtained at the time of culling by exsanguinating the mouse via the vena 

cava using a 23g needle flushed with 0.5M EDTA (see Appendix) and blood was kept on 

ice. Blood was centrifuged at 4,000rpm for 10 minutes and the clear plasma layer 

removed and stored at -20oC.  

IFN-γ, TNF-α, IL-1β and IL-6 ELISA kits (BD Bioscience, UK) were used and 

manufacturer’s instructions were followed. Micro half-well high binding ELISA plates 

(Fisher Scientific) were used to reduce the volume of reagents required. Briefly, ELISA 

plates were coated with specific capture antibody diluted in appropriate coating buffer 

(see Appendix) overnight at 4oC. Plates were washed with PBS 0.05% Tween-20 (Sigma, 

see Appendix) a minimum of 3 times. Plates were then blocked with 5% FBS in PBS 

(Assay Diluent, see Appendix), to reduce non-specific binding, for 1 hour at RT. Plates 

were washed prior to incubation with protein appropriate standards and samples, 

diluted with assay diluents at appropriate dilution, and incubated at RT for 2 hours. 

Plates were washed using PBS 0.05% Tween-20 a minimum of 3 times. A detection 

antibody and a streptavidin-HRP were then used separately or in a working detector 

solution in assay diluents according to manufacturer’s protocol. After 1 hour incubation 

at RT, plates were washed before tetramethylbenzidine (TMB, Kirkegaard & Perry 
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Laboratories, Inc., USA) solution was added to develop the ELISA and the reaction 

stopped using stop solution (2M H2SO4). The plate was read at 450nm using an ELISA 

reader (Sunrise ELISA Reader, Tecan, Switzerland) and a standard curve generated for 

each plate and sample concentrations calculated from the curve. 

Osteocalcin and CTX-1 were both pre-coated ELISA plates purchased from Biomedical 

Technologies Inc., and Immunodiagnostic systems Ltd., respectively. Manufacturer’s 

instructions were followed for both ELISAs. All samples and standards were run in 

duplicate and plasma samples were added at a 1:10 dilution with assay diluents 

provided (Osteocalcin) or added neat (CTX-1) to the appropriate pre coated ELISA 

plates. ELISA plates were read at 450nm on an ELISA plate reader and standard curves 

generated in order to calculate the concentration of protein in each sample. CTX-1 was 

an inverse competitive ELISA and required the use of a 4 way parameter logistic 

standard curve to calculate the sample concentrations of CTX-1. 

2.11 Biomechanical testing 

Left femurs were removed from OVX/Sham mice 6 weeks post surgery. Femurs were 

stored in 70% ethanol and stored at 4oC. Prior to biomechanical testing, femurs were 

rehydrated in PBS overnight and allowed to equilibrate to RT. All tissue was thoroughly 

removed from the femur to ensure that periosteum would not interfere with the 

strength of the bone. Three point bend testing was used as a measure of biomechanical 

integrity of bone using femurs loaded onto an Instron Dynamite hydraulic tester with 

data collected using Bluehill Software. Three point bend testing was performed under 

the supervision of Dr. N. Horwood at the Kennedy Institute of Rheumatology, Imperial 

College London. Femurs were placed ventral side down on two supports and a third 

support was slowly lowered from above to determine the force and time required to 

break the femur. Using this data, Bluehill software calculated Maximum Load 

(Neutrons), Extension at Maximum Load (mm), Load at Break (N), Extension at Break 

(mm), Energy at Break (J) and Modulus (MPa – Mega Pascal’s). 

2.12 Micro-computer tomography 

Tibiae were harvested from 12 week old C57Bl/6 or Bcl-3-/- mice and C57Bl/6 mice 6 

weeks post OVX/Sham surgery. Bones were fixed overnight in 4% formaldehyde in PBS 

(Fisher Chemicals, UK) before being stored in 70% ethanol at 4oC. To assess the 

micro-architecture of the trabecular bone in tibiae and vertebrae, the bones were 

scanned using a micro-computer tomography (μCT) system (Skyscan 1172 X-Ray 

microtomograph or Skyscan 1174 X-Ray microtomography, Aarteselaar, Belgium). μCT 

analysis was performed at the Institute of Genetics and Molecular Medicine, University 
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of Edinburgh, UK under the supervision of Dr. R. Van’t Hof. Scans were obtained with an 

isotropic voxel size of 4.6μm on a Skyscan 1172 or 8.3μm on a Skyscan 1174 (60kV, 

150μA, 0.5mm aluminium filter, 0.5 rotation angle). NReconn software (Skyscan, 

Belgium) was used to reconstruct the X-Ray images into a 3D structure.  

To analyse the trabecular bone of the tibiae, the growth plate of the tibia was used as a 

reference point in all samples. 20 sections below this reference point, 200 further 

sections were selected for analysis in CTAn software (Skyscan, Belgium). Using CTAn the 

trabecular regions underwent thresholding which was set at 80 - 255. The sample 

thresholds were set and analysed using CTAn software. The following parameters were 

analysed; bone volume (BV; μm3), tissue volume (TV; μm3), the percentage of trabecular 

(Bone volume/Tissue Volume; BV/TV; %), tissue surface (μm2), bone surface (μm2), bone 

surface density (BS/TV; μm), trabecular thickness (Tb.Th; μm), trabecular separation 

(Tb.Sp; μm), trabecular number (Tb.No; 1/μm), structural model index (SMI), 

connectivity (Conn.), degree of anisotropy (DA) and connectivity density (1/μm3).        

2.13 Histology 

Following euthanization, C57Bl/6 and Bcl-3-/- animals had hind legs removed for 

histological analysis. Legs were fixed overnight in 4% formaldehyde in PBS and 

subsequently washed in PBS to remove any fixative. 15ml of decalcification solution 

(14% EDTA pH 8, see Appendix) was then added and agitated at 4oC. Decalcification 

solution was changed every week until legs were pliable to touch. Pliable legs were 

subsequently dissected and tibiae then embedded in paraffin wax using Shandan Citadel 

1000 Tissue Processor (Fisher Scientific) and subsequently 20μm sections cut (VWR, UK) 

using a Shandon Finesse 325 Microtome (Fisher Scientific) placed onto super frost glass 

slides. 

2.13.1 Haematoxylin and eosin staining 

Sections of paraffin embedded mouse legs were stained for H&E. Sections were heated 

to 65oC for 1 hour and then de-waxed in two changes of xylene for 3 minutes. Sections 

were then rehydrated in 100%, 90% and 70% ethanol for 5 minutes each, sections were 

subsequently rinsed in cold running tap water. Rehydrated sections were stained with 

haematoxylin for 2 minutes, and washed for 3 minutes in cold running tap water. 

Sections were immersed in 1% acid/alcohol (see Appendix) for a few seconds before 

rinsing in cold running water. Sections were immersed in Scotts Tap Water Substitute 

(see Appendix) for 30 seconds and then stained with 1% Eosin for 2 minutes. Excess stain 

was rinsed off using cold running tap water. Sections were dehydrated through graded 

alcohol (70%, 90% and 100%) for 5 minutes each and then placed in two changes of 
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xylene for 5 minutes each. Sections were mounted with coverslips using DPX (Leica 

Biosystems, UK). Stained sections were imaged on an Olympus IX51 microscope 

(Olympus, UK) using Olympus TL4 Lamp (Olympus, UK).   

2.13.2 Histological TRAP staining 

Coronal sections of the paraffin embedded proximal tibiae were cut and stained to 

determine the presence of OCs in the tibial trabeculae. Slides were heated to 65oC for 1 

hour and de-waxed in Xylene for 10 minutes and re-hydrated in graded ethanol steps 

(100%, 90% and 70% ethanol for 5 minutes) followed by 2 minutes in 37oC dH2O). 

Rehydrated sections were incubated in TRAP staining solution (see Appendix) for 4 

hours. After incubation TRAP stain was rinsed off in 37oC dH2O and counterstained with 

Meyer’s Haematoxylin (CellPath, UK) for 1 minute. The excess haematoxylin was rinsed 

off in dH2O and slides were allowed to air dry, removing excess dH2O, prior to mounting 

in Vectashield mounting medium (Vector Laboratories, UK) and sealed with nail varnish. 

An Olympus IX51 microscope (Olympus, UK) using Olympus TL4 Lamp (Olympus, UK) was 

used to visualise OCs which were stained red/purple. 

2.14  Statistical analysis 

Statistical analysis was performed using GraphPad Prism4 software (GraphPad, USA). 

One Way ANOVA was used to compare more than two groups of data with Bonferroni’s 

post hoc tests used to test for significance. Two Way ANOVAs were used to compare two 

sets of animals within two treatment groups and Bonferroni’s post hoc tests were used 

to determine the significance between groups. Student’s unpaired two-tailed t-tests 

were used to compare the results from two groups of animals. 95% confidence intervals 

were selected and p-values of < 0.05 were deemed significant. The appropriate 

statistical test used is described in the figure legends. 
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3 Fcγ receptor interactions inhibit osteoclastogenesis 

3.1 Introduction 

OCs are large multinucleated cells responsible for eroding the bone during skeletal 

remodelling1. OCs originate from monocytes, MØ and OCPs found in the blood and BM 

and in situ differentiation can be driven by a number of cytokines and interactions1. 

However, in vitro M-CSF and RANKL are known to be sufficient for OC differentiation324. 

M-CSF and RANKL act on their respective receptors, CD115 and RANK, on the surface of 

monocytes, MØ and OCPs to commit these cells to the OC lineage324. Stimulation via 

CD115 results in pro-survival signals128 and increased expression of surface RANK leading 

to an increased potential for RANKL binding and signalling to promote 

osteoclastogenesis6,325.  

A myriad of factors are capable of driving/enhancing OC differentiation. Factors such as 

TNF-α326,327, IL-1328, IL-6329 and the presence of Collagen Type I in the bone matrix acting 

through OSCAR and the FcRγ154,330 are known to enhance the in vitro differentiation of 

OCs. However, RANKL is mainly responsible for the differentiation of OCs through NF-κB 

activation328,331. NF-κB is an umbrella term for five subunits which combine to form a 

combination of homo- and hetero- dimers each with distinct activities332. RANKL 

mediated NF-κB activation results in the p50 and p65 subunits forming a heterodimer 

which rapidly translocates to the nucleus331, signalling the up-regulation of essential 

osteoclastogenic genes and activating NFATc1, which strongly induces 

osteoclastogenesis333. Up-regulated OC specific genes encode proteins like DC-STAMP7, 

OSCAR213, MMP9334, TRAP239,335 and Cathepsin K336,337 which govern OC fusion and enzyme 

production required for the degradation of the bone matrix and bone resorption. 

Monocytes and MØs are known to express FcγR that bind IgG in complex with antigen249. 

Mature murine OCs have also been shown to express all subsets of murine FcγRs: FcγRI, 

FcγRIIB, FcγRIII and FcγRIV259,262.  FcγRI, the high affinity receptor, can bind monomeric 

IgG and signals via the FcRγ251. FcγRIIB, FcγRIII and FcγRIV are only able to bind IgG that 

has formed an IC with several IgGs bound to a single antigen, resulting in cross-linking of 

FcγRs and intracellular signalling338. The effects of these interactions can range from 

phagocytosis of the bound antigen and production to cytokines to enhance the immune 

response339.  

OCs are known to express activatory FcγRI, FcγRIII, FcγRIV and are able to phagocytose 

inert particles264 independently of FcγRs262. Therefore the role of these receptors on 

OCs is unknown. However, recent work by Seeling et al (2013) demonstrated that 
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cross-linking of activatory FcγRI or FcγRIV on RANKL stimulated MØ was able to increase 

differentiation to mature OCs by two fold262. Grevers et al (2012) showed that 

treatment with heat-aggregated rabbit IgG could inhibit the differentiation of murine 

BM into mature OCs in a FcRγ dependent manner340. Seeling and Grevers both 

demonstrated that activatory FcγRs were able to respond differently to ligation. The 

mode of stimulation and differentiation state of the pre-OCs can cause the resulting 

effect to differ markedly262,340.  

In this study, IgG complexes generated by the combination of SpA and IgG will be 

investigated. SpA’s natural ability to form a SIC at a ratio of two SpA to four IgG has 

been widely studied299–301,341–343. Research investigating the potential of SIC to engage 

FcγRs on myeloid cells has shown that SIC can (a) modulate the polarisation state of the 

murine and human MØ, and (b) inhibit the in vitro differentiation of human OCs316. 

Administration of SpA alone, in vivo, was also shown to reduce inflammation in the 

mouse model of CIA, and subsequently reduce the number of OCs in the inflamed 

joint316. These effects are thought to be mediated via FcγRs; in particular, FcγRI. 

MacLellan et al (2011) showed that in the absence of FcγRI, SIC was unable to interact 

with in vitro MØ and pre-OCs316. Thus SIC and heat-aggregated rabbit IgG used by 

Grevers et al (2012) would appear to utilise a similar mechanism of action340. FcγRI is an 

activatory receptor which depends on signal transduction through the FcRγ265. The FcRγ 

and a fellow adaptor protein DAP12 are both activatory ITAM signalling molecules and 

have been shown to regulate the differentiation and activity of OCs in vitro and in 

vivo344. Animals deficient for both the FcRγ and DAP12 become osteopetrotic due to 

deficient OSCAR stimulation154,330. Despite research into the vital role of the FcRγ 

signalling pathways in OC differentiation, the effect of FcγRs has not been greatly 

studied.  

The goal of the research presented in this chapter was to examine the effect of SIC on 

in vitro murine osteoclastogenesis. The principal aims were to: 

1. Determine the optimal conditions for OCs’ differentiation in a murine in 

vitro system. 

2. Examine the effect of SIC on osteoclastogenesis. 

3. Examine whether SIC has an effect on the transcription of OC specific 

genes. 
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3.2  Results 

3.2.1 Optimisation of in vitro osteoclastogenesis 

In order to examine the effect that SIC has on osteoclastogenesis, an in vitro assay had 

to be optimised due to marked variation in existing published data7,69,345. In all 

instances, M-CSF and RANKL are necessary and sufficient to drive osteoclastogenesis324 

but the exact concentrations needed to be empirically determined due to variations in 

published protocols. To define the appropriate amount of RANKL required, studies were 

initiated with a standard assay using immortal murine MØ cell line, RAW 264.7. The 

ability of RAW 264.7 cells to respond to RANKL and differentiate into OCs has been 

widely published346–348. The differentiation of OCs was assessed by the ability of RAW 

264.7 cells to differentiate into large multinucleated OCs (greater than 3 nuclei) which 

stain positive for TRAP349. Stimulation of RAW 264.7 cells at 1x105 cells/ml in a 24 well 

plate while increasing the concentration of RANKL from 50 to 100ng/ml failed to 

differentiate OCs after 5 days of culture (data not shown). In order to further 

investigate RAW 264.7 cells differentiation into OCs, RAW 264.7 cell densities were 

changed from 7x104 up to 1x106 cells/ml while terminating the experiment at different 

time-points. Varying these factors failed to induce full osteoclastogenesis: RAW 264.7 

cells would become TRAP positive but would not fuse and become multinucleated (data 

not shown). Due to the failure of RAW 264.7 cells to respond to RANKL, use of this cell 

line was discontinued to optimise the conditions for osteoclastogenesis using primary 

cells. 

The generation of human OCs relies on the differentiation of purified CD14+ monocytes 

isolated from PBMCs. In contrast to this the published literature regarding murine OCs 

has shown that OCs can be differentiated from BM. Previous work in the lab using OC 

cultures has been conducted on human CD14+ monocytes. Accordingly, to comply with 

previous human studies, purified murine BM monocytes were isolated using negative 

magnetic selection, gaining approximately a 92% pure monocyte population. These 

monocytes were cultured at 1x105 and 1x106 cells/ml in the presence of either 50 or 

100ng/ml RANKL alongside 30ng/ml M-CSF for 10 days. TRAP staining showed 

osteoclastogenesis in this purified population was low and cells did not appear to thrive 

(Figure 3-1). Due to the lack of OCs in the purified BM monocyte population, it was 

decided to isolate circulating murine mononuclear cells in a similar manner to the 

isolation of human CD14+ monocytes from blood. Murine blood was harvested in the 

presence of EDTA and combined with BM samples. The blood and BM mixture was 

subsequently centrifuged on a histopaque layer and the mononuclear cells isolated. 

When 1x105 mononuclear cells were cultured in the presence of 10ng/ml M-CSF and 0, 
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50 and 100ng/ml RANKL for 7 days there was a small degree of osteoclastogenesis 

(Figure 3-2) compared to the monocytes isolated from BM alone (Figure 3-1). However, 

the proportion of OCs that differentiated was minor and the number of mononuclear 

cells isolated from murine blood and BM was minute. This method of OC generation was 

considered unfeasible for the undertaking of larger scale OC assays. Consequently, a 

different method was sought. 

To investigate an alternative method of inducing OC differentiation the literature was 

once again examined. According to Burger et al (1982) the optimal conditions for 

murine osteoclastogenesis involved using murine whole BM as a source of OCs 

progenitors alongside M-CSF and RANKL to stimulate osteoclastogenesis345,350. An initial 

experiment which replicated these conditions was conducted. Murine BM was taken 

from C57Bl/6 animals and flushed from the long bones and cultured overnight at 1x106 

cells/ml with 30ng/ml M-CSF. Following the overnight incubation, non-adherent (NA) BM 

cells were cultured at a cell density of 1x106 cells/ml until day 7 with 30ng/ml M-CSF 

and 50ng/ml RANKL. Assessment by TRAP staining showed very few OCs present in 

RANKL treated cultures (Figure 3-3). Due to the absence of osteoclastogenesis and lack 

of distinction between the RANKL treated positive control cultures and M-CSF alone 

negative control cultures, further investigation into the conditions which differentiate 

murine BM into OCs was needed. 

To investigate these conditions, pro-OC factor IL-1β was used to aid the induction of 

osteoclastogenesis using murine BM. IL-1β is a known activator of OC activity and 

maturation351. This activatory cytokine has been shown to stimulate osteoclastogenesis 

and multinucleation351. NA BM cells were generated as previously described and cells 

were cultured with 30ng/ml M-CSF and 0, 50 or 100ng/ml RANKL, with or without 

10ng/ml IL-1β. The addition of IL-1β in this culture system had no effect on the level of 

osteoclastogenesis (Figure 3-4). Interestingly, it was observed that increasing RANKL 

concentration had no added effect on osteoclastogenesis. Increasing RANKL 

concentration from 50ng/ml to 100ng/ml in cultures of purified monocytes and whole 

BM had no effect on the number of OCs differentiated (Figure 3-1, Figure 3-2 and Figure 

3-4). Hence, RANKL was not the limiting factor in this culture system, so M-CSF was 

investigated to determine whether it could be a limiting factor in osteoclastogenesis. 

Treatment with purified recombinant mouse M-CSF was compared to treatment with 

L929 cell supernatant. L929 is an immortal fibroblast cell line which secretes M-CSF and 

can be used to differentiate MØs in culture321,323,352. Supernatant from these cultures 

was kindly provided by Dr. J. Montgomery. As previously described, murine NA BM at 

1x106 cells/ml were cultured in the presence of L929 supernatant or M-CSF at 30ng/ml 
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with 0, 50 or 100ng/ml RANKL for 7 days. Cells differentiated in the presence of L929 

supernatant did not become OCs and only a small number of OCs differentiated with 

M-CSF at 30ng/ml in both 50 and 100ng/ml of RANKL (Figure 3-5). When 50ng/ml RANKL 

was used, there were, on average, 10 times more OCs present in M-CSF treated cultures 

than L929 cell supernatant cultures. While there were 14 times more OCs present in 

M-CSF treated cultures compared to L929 cell supernatant when used along with 

100ng/ml RANKL. This stark difference indicated that purified recombinant mouse 

M-CSF was superior to L929 cell supernatant for the in vitro differentiation of OCs.  

The generation of OCs in this culture system relied on the use of purified recombinant 

mouse M-CSF and the optimal concentration of M-CSF required for the differentiation of 

OCs was investigated. NA BM cells were cultured at 1x105 cells in 200μl of complete 

α-MEM in 96 well tissue culture plates. Cells were cultured with 50ng/ml RANKL and 

increasing concentrations of M-CSF (30ng/ml, 50ng/ml, 75ng/ml and 100ng/ml) for 5 

days at 37oC. There was a dramatic increase in the size and multinucleation of OCs 

differentiated in 75ng/ml and 100ng/ml M-CSF compared to 30ng/ml and 50ng/ml 

(Figure 3-6A). Interestingly, this huge difference in appearance was not as obviously 

mirrored in the number of OCs enumerated. When compared, there was no difference 

between the M-CSF concentrations used (Figure 3-6B). However, due to the intensely 

TRAP+ multinucleated large OCs present in cultures treated with >75ng/ml M-CSF, this 

concentration of M-CSF in conjunction with 50ng/ml RANKL was chosen as the optimal 

conditions for the generation of OCs and future experiments were modelled on this 

system.  
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Figure 3-1: Enrichment of bone marrow monocytes does not induce the differentiation of 
osteoclasts. 
Murine BM cells were harvested and RBCs were lysed using Akt Lysis Buffer. Monocytes were then 
enriched using EasySep Mouse Monocyte Enrichment Kit. Flow cytometry confirmed a 92.4% 
purity post separation. Purified monocytes (either 1 x105 or 10x105 cells) were cultured with 
30ng/ml M-CSF and either 50 or 100ng/ml RANKL for 10 days in 37oC with media renewed every 
third day. Cultures were stained for the presence of TRAP. A) Representative images of TRAP 
stained cultures. B) TRAP+ OCs with >3 nuclei were counted and the sum total of 8 fields of view 
per condition, in duplicate. Data represents mean ± SD of experimental duplicates. Scale bar; 
200μm. 
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Figure 3-2: Isolated blood and bone marrow monocytes respond to high concentrations of 
RANKL. 
Murine blood was taken using EDTA and BM was taken as previously described. Mononuclear cells 
were isolated using gradient centrifugation on a histopaque layer. The resulting ‘buffy coat’ was 
removed and 1x105 mononuclear cells in 50μl was allowed to adhere to tissue culture plate wells 
at 37oC for 2 hours. Non-adherent cells were gently washed using warm PBS. Complete α-MEM 
with 10ng/ml M-CSF and 0, 50 or 100ng/ml RANKL were added to cultures in duplicate. Cultures 
were maintained at 37oC for 7 days with media refreshed on day 3. Cultures were stained for the 
presence of TRAP. A) Representative images of TRAP stained cultures. B) TRAP+ OCs with >3 
nuclei were counted and the sum total of 4 fields of view per condition, in duplicate. Data 
represents mean ± SD of experimental duplicates. Scale bar; 200μm. 
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Figure 3-3: 30ng/ml M-CSF and 50ng/ml RANKL is not sufficient to differentiate osteoclasts. 
1x106 murine NA BM cells were cultured with 30ng/ml M-CSF and 50ng/ml RANKL for 7 days in 
37oC with media renewed on day 4. A) Cultures were stained for the presence of TRAP; 
representative images of cultures are shown. B) TRAP+ OCs with >3 nuclei were counted and the 
sum total of 4 fields of view per condition, in duplicate. Data represents mean ± SD of 
experimental duplicates. Scale bar; 200μm.  
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Figure 3-4: Addition of IL-1β does not promote osteoclastogenesis. 
1x106 murine NA BM cells were cultured with 30ng/ml M-CSF and 0, 50 or 100ng/ml RANKL. 
10ng/ml IL-1β was also added to cell media. Cultures were maintained for 7 days in 37oC with 
media renewed every third day. Cultures were stained for the presence of TRAP. A) 
Representative images of TRAP stained cultures. B) TRAP+ OCs with >3 nuclei were counted and 
the sum total of 5 fields of view per condition were used. Data represents mean ± SD of 5 fields 
of view in one experiment. Scale bar; 200μm. 
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Figure 3-5: Comparison of L929 culture media or M-CSF to differentiate osteoclasts. 
1x106 murine NA BM cells were cultured with either L929 (2 parts L929 to 8 parts media) or 
30ng/ml M-CSF and 0, 50 or 100ng/ml RANKL for 7 days in 37oC with media renewed every third 
day. Cultures were stained for the presence of TRAP. A) Representative images of TRAP staining. 
B) TRAP+ OCs with >3 nuclei were counted and the average number of OCs in 5 fields of view per 
condition. Data represents the mean ± SD of experimental duplicates of one experiment. Scale 
bar; 200μm. 
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Figure 3-6: Increasing concentrations of M-CSF induce osteoclastogenesis.  
1x105 murine NA BM cells were cultured with 30, 50, 75 or 100ng/ml MCSF and either 0 or 
50ng/ml RANKL for 5 days in 37oC with media renewed on day 4. Cultures were stained for the 
presence of TRAP. A) Representative images of TRAP stained cultures. B) TRAP+ OCs with >3 
nuclei were counted and the sum total of 4 fields of view per condition in duplicate were used.  
Data represents mean ± SD of experimental duplicates of one experiment. Scale bar; 200μm. 
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3.2.2 Fcγ receptor mediated inhibition of osteoclastogenesis 

The optimised OC culture system was used to test the affect that SIC could exert on the 

differentiation of OCs. 1x105 NA BM cells in 200μl were cultured with 75ng/ml M-CSF 

and 50ng/ml RANKL for 5 days. In conjunction with the addition of M-CSF and RANKL, 

the cells were treated with SIC or control treatments OpIg and SpA. SIC, OpIg and SpA 

were generated as described in section 2.6 and added to cultures at a concentration 

which reflected 25μg/ml of IgG per condition. A significantly high level of 

osteoclastogenesis was observed in the M-CSF and RANKL treated cultures (mean OCs ± 

SD; 115.6 ± 23.6) compared to the M-CSF alone treated control (0 ± 0; p<0.001) (Figure 

3-7B). The differentiated OCs in the M-CSF and RANKL treated positive control cultures 

were large multinucleated and stained intensely for TRAP (Figure 3-7A). Treatment of 

these cultures with SpA alone did not alter osteoclastogenesis (114.6 ± 14.3) and did not 

affect the appearance of the differentiated OCs. Interestingly, a significant inhibition of 

osteoclastogenesis was observed in cultures treated with OpIg (36 ± 10; p<0.001) and 

SIC (27 ± 8.1; p<0.001) compared to M-CSF and RANKL treated positive controls (Figure 

3-7B). The OCs that differentiated in the presence of OpIg and SIC were not only scarce, 

but smaller in size compared to the M-CSF and RANKL treated positive control (Figure 

3-7A). Thus, in this culture system OpIg and SIC are able to inhibit osteoclastogenesis.     
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Figure 3-7: SIC and OpIg inhibit the differentiation of TRAP+ osteoclasts.  
1x105 murine NA BM cells were cultured with 75ng/ml M-CSF and/or 50ng/ml RANKL for 5 days in 
37oC with media renewed on day 4. Treatment with SpA, OpIg and SIC was given at day 1 and 4 
alongside M-CSF and RANKL. Cultures were stained for the presence of TRAP. A) Representative 
images of TRAP stained cultures. B) TRAP+ OCs with >3 nuclei were counted and the sum total of 
4 fields of view per condition in triplicate. One way ANOVA with Bonferroni’s post tests; p<0.001 
(***). Data represents pooled mean ± SD of three individual experiments. Scale bar; 200μm. 
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3.2.3 Comparison of OpIg and SIC 

OpIg and SIC can both inhibit in vitro osteoclastogenesis. Examination of whether the 

generation of OpIg created IC formation between OVA and IgG in a similar manner to 

SpA generated complexes was conducted. To ensure complexes were generated, protein 

interactions were cross-linked using a BS3 (Bis-sulfosuccinimidyl suberate) cross-linking 

reagent. BS3 contains two amine reactive esters that are able to covalently bind amine 

groups on proteins that are within close proximity353. Samples of SpA, OVA, IgG, OpIg 

and SIC were either cross-linked with BS3 or incubated with PBS. Samples were then 

loaded onto a gel, electrophoresed in non-reducing conditions and coomassie stained. 

All samples that had not been cross-linked migrated through the gel to the same extent 

as their constituent parts (Figure 3-8). OVA (42kDa), SpA (47kDa) and IgG (150kDa), as 

well as the OVA, SpA and IgG within OpIg and SIC samples, all migrated to their 

appropriate protein size as demarked by a protein ladder (Figure 3-8). Without 

cross-linking OpIg and SIC any protein interactions were separated; when the samples 

were cross-linked using the BS3 cross-linking reagent there was a large molecule 

observed at the top of the SIC lane (Figure 3-8). At a predicted size of approximately 

694kDa, SIC was unable to migrate through the gel and remained close to the well at 

the top of the gel (Figure 3-8). However, protein aggregates appear in both cross-linked 

IgG and OpIg samples (Figure 3-8). It is unclear whether these are cross-linked IgG 

aggregates or whether IgG molecules have become cross-linked due to their close 

proximity, both explanations would account for the visible protein smear (Figure 3-8). 

The use of western blots could identify whether OVA and SpA are present in the large 

molecule weight cross-linked proteins present in these samples.  

In order to verify that SpA, and not OVA, is able to form large molecular weight IgG 

complex, samples underwent size exclusion fractionation. OVA, SpA, IgG, OpIg and SIC 

were individually loaded into an ÄKTAprime and processed through a Sephacryl column 

under pressure. When using this method, samples do not require cross-linking as the 

forces used in this process will not separate interacting molecules. This process allows 

for the discrimination of proteins based on molecular weight as indicated by the length 

of time the protein requires to move through the column. Larger molecules are able to 

pass through the column more quickly than smaller molecules which become trapped in 

the column resin. The concentration of protein was measured by UV280 as samples exit 

the column. OVA and SpA are 42 and 47kDa, respectively and required ~400 minutes in 

order to pass through the column, while 150kDa IgG molecules required ~350 minutes to 

exit the column (Figure 3-9). OpIg passed through the column and was observed to exit 

the column between 350-400 minutes (Figure 3-9). This indicates that both IgG and OVA 

exit the column at the same speed as the individual constituents (Figure 3-9). 
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Interestingly, SIC only required 200 minutes for the sample to begin its exit and had 

fully left the column by 400 minutes (Figure 3-9). This demonstrates that SIC can form a 

large molecular weight complex without protein cross-linking, unlike OpIg. However, in 

the SIC sample there is excess IgG which is also present in the OpIg samples (Figure 3-8 

and Figure 3-9). Prior to use, all IgG samples were centrifuged to remove protein 

aggregates, however, the IgG present may still form small molecular weight complexes 

that could interact with cells in culture media. Despite this disparity SIC and OpIg were 

both able to inhibit osteoclastogenesis. 

 

 

Figure 3-8: Cross-linking protein interactions between SpA and IgG results in IgG complex 
formation; OVA and IgG do not form complexes.  
PBS, OVA, SpA, IgG, OpIg and SIC were incubated at 37oC for 1 hour. Protein interactions were 
cross-linked in the samples by addition of 1mM BS3 cross-linker for 30 minutes at RT. The 
reaction was quenched by incubation for 15 minutes in 0.5mM Tris-HCl. Samples that were not 
cross-linked had equivalent volumes of PBS added. 4x LDS sample buffer was added and samples 
were run on a 4-12% Bis-Tris gel with a protein ladder for 2 hours at 200V. Gel was subsequently 
stained using Simply Blue SafeStain and de-stained in dH20. Image represents one experiment.  
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Figure 3-9: Fractionation of SpA, OVA and IgG using Sephacryl chromatography column 
demonstrates that OVA and IgG do not form complexes.  
OVA, SpA, IgG, OpIg and SIC samples were individually processed through a Sephacryl column 
which discriminates protein size into separate fractions for collection – large proteins move more 
quickly through the medium. 2mg of OVA, SpA, IgG, OpIg and SIC in 500μl of PBS were used. 
Graphs represent the concentration of protein, measured by UV (at A280), in each fraction 
collected over time (minutes). Graphs shown are from one experiment.   
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3.2.4 IgG inhibits osteoclastogenesis 

FcγRI has the ability to engage monomeric IgG251, so, it was decided to test whether the 

inhibition associated with SIC and OpIg could be due to the excess IgG present in both of 

these treatments. SpA, IgG, OpIg and SIC were prepared as previously described and 

added to cultures of 1x105 NA BM cells in 200μl alongside 300ng/ml M-CSF and 50ng/ml 

RANKL. Following 5 days of culture, cells were stained for TRAP and it was shown that 

IgG, OpIg and SIC were all able to significantly inhibit osteoclastogenesis (Figure 3-10). 

Despite the supra-physiological concentrations of M-CSF, treatment with IgG was able to 

inhibit osteoclastogenesis by 48.9% (p<0.05), while addition of OpIg could inhibit 

osteoclastogenesis by 68.9% (p<0.01). As previously shown the only constituents of OpIg 

are IgG and OVA which do not interact. Therefore, the difference in inhibition may be 

due the large variation in data spread in IgG treated groups (mean OC number ± SD; 39 

± 24.9) compared to OpIg (23.6 ± 9.0). Consequently, treatment of NA BM with SIC was 

able to significantly inhibit osteoclastogenesis by 80.3% (p<0.001; 15 ± 3.6 - Figure 

3-10). To verify whether the presence of OVA in OpIg was having an effect on 

osteoclastogenesis, NA BM was cultured for differentiation into OCs in the presence of 

SpA, OVA, OpIg and SIC. The presence of OVA in these cultures had no effect on the 

level of osteoclastogenesis, while treatment with OpIg and SIC significantly inhibited 

osteoclastogenesis (Figure 3-10). It remains to be elucidated whether OVA present in 

OpIg can interact with IgG and contribute to OpIg inhibitory capacity; however OVA 

alone cannot alter osteoclastogenesis (Figure 3-10).  

Despite the differences in efficacy of IgG, OpIg and SIC to inhibit osteoclastogenesis, 

the presence of IgG (at 25μg/ml) is able to inhibit osteoclastogenesis. Nevertheless, 

treatment with ICs in the form of SIC was most successful at in vitro OC inhibition. 

Subsequent experiments were undertaken using OpIg as both a control for SIC and also a 

treatment to test the effect of monomeric IgG. 
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Figure 3-10: Murine IgG inhibits the differentiation of TRAP+ osteoclasts. 
A) 1x105 murine NA BM cells were cultured with 300ng/ml M-CSF and 50ng/ml RANKL for 5 days 
in 37oC with media renewed on day 4. Treatment with SpA, IgG, OpIg and SIC was given at day 1 
and 4 alongside M-CSF and RANKL. Cultures were stained for the presence of TRAP. TRAP+ OCs 
with >3 nuclei were counted and the sum total of 4 fields of view per condition, in triplicate. 
One way ANOVA with Bonferroni’s post tests used; p<0.05 (*), p<0.01 (**) p<0.001 (***). Data 
represents mean ± SD of one experiment. B) 1x105 murine NA BM cells were cultured with 
75ng/ml M-CSF and 50ng/ml RANKL for 5 days in 37oC with media renewed on day 4. Treatment 
with OVA, SpA, OpIg and SIC was given at day 1 and 4 alongside M-CSF and RANKL. Cultures were 
stained for the presence of TRAP. TRAP+ OCs with >3 nuclei were counted and the sum total of 4 
fields of view per condition, in triplicate. One way ANOVA with Bonferroni’s post-hoc tests; 
p<0.001 (***). Data represents mean ± SD of three separate experiments.  
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3.2.5 Functional consequence of Fcγ receptor inhibition 

IgG, in the form of OpIg and SIC, has been shown to inhibit the differentiation of OCs 

from murine BM on tissue culture plates. This is a convenient medium to culture cells; 

however, it is an isolated environment in terms of cell growth. Culturing OCs on bone 

discs provides a valid growth platform resembling the physiological microenvironment of 

the bone. Present on the bone surface are stromal factors, among these is Collagen 

Type II which is able to promote osteoclastogenesis via the OSCAR receptor on 

pre-OCs154. Therefore, the effect of OpIg and SIC on the differentiation of OCs on bovine 

bone discs was investigated. NA BM cells were cultured with 75ng/ml M-CSF and 

50ng/ml RANKL with the addition of SpA, OpIg and SIC on bovine bone discs. After 10 

days of culture, bone slices were removed and stained for TRAP (Figure 3-11A). This 

revealed that there was a large variation in the number of OCs present on the surface of 

the bone slices (Figure 3-11C). It also showed that OpIg and SIC were both unable to 

stop the differentiation of OCs cultured on bone discs (Figure 3-11C).  

In parallel with this study, OCs were cultured on bone slices until day 14 in order to 

maximise their erosive capacity. Bone slices were then washed with dH20 to remove any 

cells before areas of erosion were visualised (Figure 3-11B). This showed that the area 

of erosion varied markedly between experimental and biological triplicates, resulting in 

a large data spread. Cells grown in the presence of M-CSF and RANKL alone (mean % of 

erosion ± SD; 14.9 ± 11.2) had similar erosive capacity to cells grown in the presence of 

SpA (12.3 ± 11.2) and OpIg (13.9 ± 11.3) (Figure 3-11D). Interestingly, cells grown in the 

presence of SIC appeared to have a substantial reduction in the percentage of erosion 

(5.4 ± 4.4). However, a comparison of all data sets revealed that there were no 

significant differences in the groups treated with SpA, OpIg and SIC compared to M-CSF 

and RANKL positive control group. However, when a less stringent method of analysis 

was used SIC treated samples have significantly reduced bone erosion ($<0.05) 

compared to positive controls. Further work needs to be done to increase the replicates 

and determine conclusively whether SIC can inhibit in vitro bone erosion. This suggests 

that SIC may limit the activity, but not differentiation, of OCs cultured on bone discs. 

Therefore, SIC may able to overcome the additional stimulation that OCs receive when 

cultured on bone discs that monomeric IgG in OpIg cannot overcome. 
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Figure 3-11: SIC inhibits the activity of osteoclasts on bovine cortical bone slices.  
1x105 murine NA BM cells were cultured on bone slices with 75ng/ml M-CSF and 50ng/ml RANKL 
for 10 to 14 days in 37oC with media refreshed every 3rd day. Treatment with SpA, OpIg and SIC 
was given at day 1 alongside M-CSF and RANKL and upon every media change. A) Representative 
images of TRAP staining on bone slices at day 10 and C) TRAP+ OCs with >3 nuclei were counted 
at day 10 and the sum total of 4 fields of view per condition, in triplicate. One way ANOVA with 
Bonferroni’s post-hoc tests used; p<0.001 (***). B) Representative images of areas of bone 
erosion at day 14. D) 5 images per bone slice were taken and % area of erosion was measured by 
calculating the area of the image over the eroded area per field of view. One way ANOVA with 
Bonferroni’s post-hoc tests; p<0.05 (*). Data represents C) pooled median and range of data of 
three experiments, n=3, and D) pooled median and range of data of three experiments, n=9. 
Scale bar; A) 200μm and B) 500μm. $ represents unpaired two tailed t tests between M+R and SIC 
treated samples; p<0.05. 
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3.2.6 The role of FcγRIII in Fcγ receptor mediated inhibition 

To further investigate the differences between OpIg and SIC, their role in inhibiting 

osteoclastogenesis using FcγRIII-/- BM was investigated. NA BM from FcγRIII-/- mice was 

cultured with 75ng/ml M-CSF and 50ng/ml RANKL in the presence of SpA, OpIg and SIC. 

FcγRIII deficiency had no impact on osteoclastogenesis observed in the M-CSF and 

RANKL treated positive control group (mean OCs; 85.3 ± 11.5) (Figure 3-12). Treatment 

of FcγRIII-/- cultures with SpA (95.3 ± 17.4) and, importantly, OpIg (49.6 ± 19.1) had no 

significant effect on osteoclastogenesis, while treatment with SIC (25.3 ± 5.5) was able 

to significantly inhibit osteoclastogenesis (p<0.01). This accounts for a 70.3% inhibition 

of osteoclastogenesis in FcγRIII-/- cultures which is comparable to the 76.6% inhibition of 

osteoclastogenesis observed in WT cultures treated with SIC (Figure 3-10 and Figure 

3-12). FcγRIII is mainly involved in IC interactions249 and the inability of OpIg to inhibit 

osteoclastogenesis in FcγRIII-/- cells suggests that it may be small IgG aggregates present 

in OpIg which are responsible for this inhibition. This also demonstrates that SIC can 

inhibit osteoclastogenesis independently of FcγRIII. It is likely that other FcγRs 

(including FcγRIII) are involved in this inhibitory effect. Without investigation into the 

interaction of other FcγRs this inhibitory effect will not be fully understood. 

 

Figure 3-12: SIC inhibits the differentiation of TRAP+ FcγRIII-/- osteoclasts.  
1x106 murine NA BM cells from FcγRIII-/- mice were cultured with 75ng/ml M-CSF and 50ng/ml 
RANKL for 5 days in 37oC with media renewed on day 4. Treatment with SpA, OpIg and SIC was 
given at day 1 and 4 alongside M-CSF and RANKL. Cultures were stained for the presence of 
TRAP. TRAP+ OCs with >3 nuclei were counted and the sum total of 4 fields of view per condition 
in triplicate used. One way ANOVA with Bonferroni’s post test; p<0.01 (**). Data represents 
pooled mean ± SD of three experiments.  
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3.2.7  Fcγ receptor modulation down-regulates osteoclast essential gene 
transcription 

SIC and OpIg have been shown to inhibit the differentiation of murine BM into OCs. SIC 

limits the activity of OCs when cultured on bone. In order to understand the further 

potential differences between these treatments, OCs were differentiated in the 

presence of these treatments for 3 days and mRNA extracted. cDNA was synthesised 

from the mRNA and the presence of specific target mRNA was examined.  

In order to do this, suitable primers against mRNA were designed. mRNA of genes which 

were of interest to us were located in the NCBI database and Primer 3 software was 

utilised to design primers that could potentially amplify a specific PCR product. Table 

2.1 lists all the primers designed and used in this study. To test the specificity of the 

designed primers, end-point PCR was used to detect a PCR product of known size 

(Figure 3-13). Equal levels of mRNA for CD115, RANK, NFATc1 and Bcl-3 were present in 

MØ (M-CSF treated) and OC (M-CSF and RANKL treated) samples, while mRNA for OC 

specific genes TRAP, Cathepsin K, MMP9, DC-STAMP and OSCAR were only present at 

detectable levels in OC samples as they require RANKL for their induction (Figure 3-13). 

Firstly the genes involved in the induction of osteoclastogenesis were examined. 

Transcription of CD115 and RANK mRNA play vital roles in the differentiation and 

survival of OCs and transcription of these genes was shown to be unaffected by 

treatment with SpA, OpIg and SIC (Figure 3-14).  As mentioned, RANK signals via NF-κB 

and one important inhibitor of NF-κB signalling is Bcl-3167,331. If NF-κB activation is 

inhibited by OpIg or SIC then Bcl-3 transcription may be up-regulated. Following three 

days of RANKL stimulation, Bcl-3 mRNA levels were increased compared to M-CSF alone 

treated samples (p<0.05), however treatment with SpA, OpIg or SIC did not affect Bcl-3 

transcription (Figure 3-14). Another transcription factor of interest is NFATc1 which is 

activated by NF-κB and strongly induces OC differentiation333. Interestingly, the data 

suggests that SIC, and to a small degree OpIg, were able to down-regulate NFATc1 

mRNA compared to M-CSF and RANKL positive control; however this was shown to be not 

significant (Figure 3-14).  

After three days of RANKL stimulation, mRNA transcripts were examined and treatment 

with SIC and OpIg down-regulated the transcription of OC genes. mRNA transcript levels 

of Cathepsin K, TRAP, DC-STAMP and OSCAR were all strongly increased in the M-CSF 

and RANKL treated positive control compared to M-CSF alone (Figure 3-15). This 

induction of mRNA was significantly inhibited when cells were cultured in the presence 

of SIC and OpIg (Figure 3-15). mRNA transcript level for MMP9 appeared to be reduced 
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following treatment with OpIg and SIC, however, this failed to reach significance (Figure 

3-15).  

Therefore, M-CSF and RANKL treatment in cultures committed to the OC lineage 

up-regulate transcription of genes essential for osteoclastogenesis. FcγR modulation 

inhibits this effect preventing the differentiation of mature OCs from murine BM.  

 

Figure 3-13: Primers designed for qPCR are specific for their target gene.  
1x106 murine NA BM cells were cultured with 75ng/ml M-CSF and/or 50ng/ml RANKL for 5 days in 
37oC with media renewed on day 4. Cultures were lysed using QIAzol Lysis Reagent, mRNA was 
extracted using QIAgent miRNEasy mini kit and cDNA generated. cDNA was added to a PCR 
master mix, with specific primer sets, using Go Taq Polymerase and end point PCR was used to 
amplify the PCR product. All odd numbered lanes are M-CSF treated MØ, while even numbered 
lanes are M-CSF and RANKL treated OCs. A) Primer sets used are 1+2) GAPDH, 3+4) CD115, 5+6) 
RANK, 7+8) NFATc1, 9+10) Bcl-3. B) Primer sets used are 1+2) GAPDH, 3+4) TRAP, 5+6) Cathepsin 
K, 7+8) MMP 9, 9+10) DC-STAMP ,11+12) OSCAR.  
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Figure 3-14: Fcγ receptor modulation of transcription in pre-osteoclasts.  
1x106 murine NA BM cells were cultured with 75ng/ml M-CSF and 50ng/ml RANKL for 3 days in 
37oC. Treatment with SpA, OpIg and SIC was given at day 1.  Cultures were lysed on day 3. For 
qPCR, all samples were run in triplicate. GAPDH was used as the housekeeping control and non-
template controls were run for each gene. Fold Change (2(-ΔΔCT)) was measured by normalising 
samples of each primer to the housekeeping control and subsequently normalising all samples to 
M-CSF alone to obtain the ΔΔCT. This was then used to obtain the fold change. One way ANOVAs 
with Bonferroni’s post tests were performed on ΔCT values; p<0.001 (***).  Data represents 
pooled mean ± SD of three experiments.  
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Figure 3-15: IgG inhibits pre-osteoclasts transcript levels of osteoclast specific genes.  
1x106 murine NA BM cells were cultured with 75ng/ml M-CSF and 50ng/ml RANKL for 3 days in 
37oC. Treatment with SpA, OpIg and SIC was given at day 1.  Cultures were lysed on day 3. For 
qPCR, all samples were run in triplicate. GAPDH was used as the housekeeping control and 
non-template controls were run for each gene. Fold Change (2(-ΔΔCT)) was measured as previously 
mentioned. One way ANOVAs with Bonferroni’s post tests were performed on ΔCT values; p<0.01 
(**), p<0.001 (***). Data represents pooled mean ± SD of three experiments.  
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3.3 Discussion  

SIC formed by incubation of SpA with IgG has been shown to inhibit human 

osteoclastogenesis316 and now we show that SIC will inhibit murine osteoclastogenesis. 

Optimisation of an assay to differentiate murine OCs was undertaken and revealed that 

culturing BM with 75ng/ml M-CSF and 50ng/ml RANKL optimal (Figure 3-6). Treatment 

of BM cells with SIC or OpIg, a control treatment, could inhibit the differentiation of 

TRAP+ OCs. While, the generation of SIC produced large protein complexes this did not 

occur with OpIg. Subsequently, IgG was shown to be capable of inhibiting the in vitro 

differentiation of OCs. However, SIC, and not OpIg, inhibited the activity of OCs on 

bone slices. Transcription of OC specific mRNA transcripts (Cathepsin K, DC-STAMP, 

OSCAR and TRAP) were down-regulated following treatment with SIC when compared 

with untreated cultures. Importantly, the effects seen with SIC treatment were also 

observed with OpIg. This indicates that IgG alone could be mediating the observed FcγR 

mediated inhibition. 

In this chapter the ability of SIC to inhibit murine osteoclastogenesis was tested. This 

required the optimisation of an in vitro protocol for the generation of OCs which had 

previously not been done in the lab. Early experiments demonstrated that murine 

osteoclastogenesis was unlike human osteoclastogenesis where MacLellan et al (2011) 

used purified human CD14+ monocytes in the presence of M-CSF and RANKL to 

differentiate OCs316. Murine monocytes purified from BM using a commercially available 

kit (Figure 3-1); monocytes isolated from blood and BM using gradient centrifugation 

and histopaque (Figure 3-2); treatment of NA BM cells with 30ng/ml M-CSF and 

increasing concentrations of RANKL (Figure 3-3); treatment of NA BM cultures with IL-1β 

alongside M-CSF and RANKL (Figure 3-4); culture of NA BM in L929 supernatant and 

RANKL to test the source of M-CSF all failed to induce osteoclastogenesis (Figure 3-5). It 

was not until the concentration of M-CSF added to cultures of NA BM was increased that 

osteoclastogenesis became evident (Figure 3-6).  

The standard protocol that was developed used murine whole BM to derive a population 

of pre-OCs. Treatment of murine BM with 30ng/ml M-CSF overnight was able to induce 

the proliferation of NA mononuclear phagocytes with high OC potential354,355. This 

generated NA BM which could be cultured with 75ng/ml of M-CSF and 50ng/ml RANKL 

for five days to generate OCs. When the concentration of M-CSF was increased from 30 

to 100ng/ml it was shown that higher concentrations of recombinant M-CSF could 

increase osteoclastogenesis and impact on the cells ability to fuse. M-CSF interacts with 

CD115 on the surface of monocytes and without additional stimulation directs the 

monocyte to proliferate and differentiate into a MØ356. A higher concentration of M-CSF 
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may have lead to heightened signalling via CD115 resulting in phosphorylation of the 

transcription factor MITF which is known to increase pre-OC fusion and activity127. In 

op/op mice, a dysfunctional M-CSF protein is produced resulting in decreased in vivo 

monocyte, MØs and OCs numbers119. These op/op mice become osteopetrotic due to a 

lack of OC differentiation123. An increase in M-CSF will result a greater stimulation of 

PU.1, the transcription factor activated by CD115 which can enable the initiation of 

commitment to the OC lineage and has a major role in osteoclastogenesis as PU.1 

deficient animals are osteopetrosis94,357. This is because CD115 signalling through PU.1 

directly interacts with the RANK promoter increasing RANK expression358. The role of 

M-CSF in mature OCs has also been observed as M-CSF is required to increase OC 

motility and prevent apoptosis128,129. Therefore in this culture system M-CSF was the 

limiting factor affecting osteoclastogenesis. 

An optimised OC culture assay allowed the effect of SIC to be investigated. OCs 

differentiated from NA BM in the presence of 75ng/ml M-CSF and 50ng/ml RANKL were 

treated with SIC. This treatment was shown to inhibit of differentiation of OCs (Figure 

3-7). However, treatment of NA BM with OpIg also resulted in inhibition of 

osteoclastogenesis. OpIg consists of IgG and OVA, which is a non-reactive protein of a 

similar molecular weight as SpA. OVA is intended to be a control of the SpA present in 

SIC and should not interact or aggregate with IgG, yet OpIg has the ability to inhibit 

osteoclastogenesis. Therefore, to confirm that OVA was not inducing IgG aggregation in 

the OpIg samples we examined the constituents of OpIg and SIC.  

SpA binds IgG from many mammalian species and forms both soluble and insoluble 

complexes by Fc and Fab mediated interactions294,295,301,343,359. Atkins et al (2008) 

proposed a mechanism of SpA and IgG binding in a 2:4 ratio via the Fc region301. SpA 

bound IgG is still able to interact with FcγRs in the form of this IgG complex that has 

been named SIC316. Cross-linking of protein interactions showed that SIC but not OpIg 

could form large molecular weight complex (Figure 3-8). Another finding observed in 

this experiment, was that cross-linking of IgG and OpIg resulted in proteins larger than 

150kDa. This may indicate that cross-linking has allowed IgG to form protein aggregates. 

Therefore investigation into whether IgG was able to form complexes in these samples 

using size exclusion chromatography was undertaken. By fractionating samples based on 

size it was shown that IgG and OpIg failed to make naturally occurring large molecular 

weight complexes. SIC was able to form a large IgG complex that rapidly exits the 

column (Figure 3-9). Despite the lack of large molecular weight protein aggregates the 

IgG present in OpIg may still interact and form low molecular weight proteins which 

could be responsible for the observed inhibition of osteoclastogenesis. Langone et al 

(1985) used a similar technique to demonstrate that SpA can form large complexes with 
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human purified IgG and serum300. Using both gel electrophoresis and size exclusion 

chromatography it was shown that in the samples of SIC there was an excess amount of 

unbound IgG. This suggests that it is the presence of excess IgG in SIC and OpIg that 

inhibits osteoclastogenesis and that the SIC may not be required for this effect.   

To robustly test whether IgG alone could inhibit murine osteoclastogenesis, OCs were 

differentiated in the presence of IgG, OpIg or SIC. This demonstrated that alone IgG 

could inhibit osteoclastogenesis (Figure 3-10A). IgG, OpIg and SIC all significantly 

inhibited osteoclastogenesis, however, SIC was shown to be superior in this ability. This 

suggests that an IC is able to interact with FcγRs inhibiting osteoclastogenesis to a 

greater extent than IgG alone. Interestingly, investigation into whether OpIg and SIC 

could influence the bone erosion capacity of OCs proved insightful. Neither OpIg or SIC 

were able to prevent the differentiation of OCs when cultured on bone. However, 

importantly only SIC was able to reduce the OCs capacity to erode bone. SIC was able to 

overcome co-stimulatory signals that the OCs were receiving while differentiating on 

bone, which OpIg could not. In a similar experiment, Grevers et al (2012) differentiated 

OCs from murine BM on bone slices and was able to inhibit the erosive capacity of OCs 

using heat-aggregated rabbit IgG while monomeric IgG did not inhibit bone erosion340. 

Thus FcγR modulation is capable of inhibiting murine osteoclastogenesis in an FcRγ 

dependent manner. 

The method used to generate SIC resulted in an IgG complex of defined size and 

conformation in an excess of IgG. Dima et al (1983) demonstrated that SpA was able to 

continually bind and dissociate IgG to form SIC in a dynamic process both in vitro and in 

vivo299. Therefore, SpA requires excess IgG for the formation of SIC. This method of IC 

formation differs from the heat-aggregated rabbit IgG which Grevers et al (2012) 

demonstrated could inhibit osteoclastogenesis340. Heat-aggregated rabbit IgG is a large 

IC with an indefinable conformation340. Heat treatment of IgG is commonly used to 

denature the IgG and allow the individual molecules to interact and form an IC which 

remains able to engage FcγRs360. However, both SIC and heat-aggregated rabbit IgG 

inhibit osteoclastogenesis when BM cultures are treated from initiation of culture340. In 

contrast, Seeling et al (2013) used streptavidin linked biotinylated antibodies specific 

for FcγRI and FcγRIV to bind the FcγRs and induce cross-linking262. This method of IC 

formation resulted in enhanced osteoclastogenesis in cells which had previously been 

stimulated with M-CSF and RANKL262. Could, as Seeling demonstrated, the addition of 

SIC to cells that had previously received M-CSF and RANKL inhibit or enhance 

osteoclastogenesis? Likewise, could cross-linking of activatory FcγRI and FcγRIV from 

initiation of culture inhibit or enhance osteoclastogenesis? As interesting as these 
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differences are, the message from both these studies remains constant; activatory 

FcγRs can be used to modulate the differentiation of OCs262,316,340.   

Differences between IgG and SIC interactions with FcγRs exist between human and 

murine monocytes316. OpIg was incapable of inhibiting human CD14+ monocytes from 

differentiating into OCs while SIC inhibits human osteoclastogenesis316. In these human 

studies, SIC and OpIg were generated in the same manner as the murine studies except 

with use of species specific IgG. The reason for the difference observed when OpIg is 

used in human and murine OC studies is most likely due to IgG and FcγR biology 

differences in these species. Human monocytes express activatory FcγRI, FcγRIIA, 

FcγRIIC and FcγRIIIA with an inhibitory FcγRIIB receptor; murine monocytes express 

activatory FcγRI, FcγRIII and FcγRIV with an inhibitory FcγRIIB260. These receptors can 

be further classified by their ability to bind to IgG; in mice and humans FcγRI is the high 

affinity receptor capable of binding monomeric IgG260. The other FcγRs, in mice and 

humans, can only bind IC in conjunction with neighbouring FcγRs260. To further 

complicate this classification, murine and human IgG subclasses are also variable, in 

that murine IgG consists of IgG1, 2a, 2b and 3, while human IgG subclasses include IgG1, 

2, 3 and 4260. In mice IgG2a binds with the highest affinity to FcγRI, while IgG1 fulfils 

this role in the humans260. SpA has been shown to bind to all subclasses of murine and 

human IgG with high affinity296. Thus, depending on the composition of IgG subclasses 

interacting with SpA, the addition of murine IgG to murine monocytes may well have a 

different effect than human IgG with human monocytes. The composition of IgG used is 

dependent on the batch which was purchased. As differences between preparations of 

IgG exist this too may be another reason for the differences observed in human and 

murine OpIg treated samples. 

Another difference that has been observed is that in the absence of FcγRI, fluorescently 

labelled SpA in complex with murine IgG could not bind to monocytes/pre-OCs316. 

Importantly, fluorescently labelled OVA in the presence of IgG could not bind to either 

WT or FcγRI-/- monocytes/pre-OCs316. This marries with the idea that the OVA present in 

the OpIg treatment had no effect on osteoclastogenesis because OVA could not interact 

with the cell surface and again suggests that it is IgG which is interacting with the cells. 

FcγRI is capable of binding monomeric IgG, as well as ICs in conjunction with other 

FcγRs, it can be assumed that the IgG present in OpIg and SIC is interacting with this 

receptor leading to an activatory signal skewing the cell from OC differentiation251. 

Repeating a similar experiment to MacLellan et al (2011) and using fluorescently 

labelled IgG alone, or in the presence of OVA or SpA would allow the identification of 

the monomeric IgG or SIC ability to bind monocytes/pre-OCs316. 
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Studies contained within this chapter also investigated the role of activatory FcγRIII in 

OCs differentiation in the presence of OpIg and SIC. SIC maintained the ability to inhibit 

osteoclastogenesis in FcγRIII-/- cultures, while OpIg could not inhibit osteoclastogenesis, 

highlighting that FcγRIII is not required for SIC’s mechanism of action. Thus suggesting 

that in WT cultures engagement of FcγRIII in conjunction with FcγRI may be sufficient 

for inhibition but is not necessary. This data also demonstrates that OpIg may require 

FcγRIII in order to inhibit OC differentiation. As mentioned, FcγRIII is a low affinity 

receptor for IgG and is only known to ligate ICs339. Therefore, the presence of small IgG 

aggregates could be acting via FcγRIII and thus inhibiting osteoclastogenesis which may 

account for the effects of OpIg.  

In order to elucidate which FcγRs SIC and OpIg require for OC inhibition the use of 

genetic KO or siRNA could be utilised. SIC requires FcγRI to bind to the surface of MØ 

and pre-OCs316, but the differentiation of FcγRI-/- OCs in the presence of SIC is yet to be 

done and therefore it remains to be determined whether SIC requires FcγRI to inhibit 

osteoclastogenesis. Importantly, the use of FcγRI-/- pre-OCs could determine further 

differences between SIC and OpIg’s ability to inhibit osteoclastogenesis. Another 

receptor which is of interest is FcγRIIB, the inhibitory receptor, which negatively 

regulates effector functions, yet, ligation of FcγRIIB was shown to be insufficient for 

inhibiting murine osteoclastogenesis using heat-aggregated rabbit IgG340,361. It would be 

interesting to differentiate FcγRIIB-/- OCs in the presence of OpIg and SIC and determine 

whether murine IgG alone or in the form of SIC could still prevent osteoclastogenesis. 

However, it was not possible to obtain these transgenic animals. The use of FcγRs siRNA 

to elucidate the interactions which underpin SIC’s mechanism of inhibition were the 

next experiments to be undertaken.    

To evaluate the mechanisms of action associated with inhibition of osteoclastogenesis 

via SIC and OpIg we evaluated the effect of mRNA transcription essential for 

osteoclastogenesis. Treatment with IgG in the form of SIC or OpIg was able to 

down-regulate the transcription of DC-STAMP, Cathepsin K, OSCAR and TRAP, all of 

which are necessary for OC function7,154,242,336. Animals which are deficient for TRAP and 

DC-STAMP develop osteopetrosis due to the differentiation of non-functioning OC242,362. 

The down-regulation of mRNA transcripts for DC-STAMP could prevent OC fusion as 

DC-STAMP interacts with OC-STAMP allowing RANKL stimulated mononuclear cells to 

fuse and become multinucleated220,363.  

Recently, it was shown that the ligand for OSCAR is Collagen Type II, as SIC 

down-regulates OSCAR mRNA transcript it is also able to inhibit the erosive capacity of 

OCs on bone154. The data would suggest that SIC is able to interfere with 
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OSCAR/Collagen Type II signalling which is known to aid OC differentiation154. OSCAR 

signals through the FcRγ or DAP12154,330. FcγRI also signals through the FcRγ and is 

required for SIC interaction on monocytes316. This demonstrates that despite the 

similarities between OSCAR and FcγR signalling, SIC may co-opt this pathway and inhibit 

the differentiation of OCs. As the FcRγ is required for the surface expression of 

activatory FcγRI and FcγRIII, an interesting experiment would have been to evaluate the 

effect of SIC on OCs in FcRγ-/- animals. FcRγ-/- animals have normal bone architecture 

and OC function, but would only express the FcγRIIB which would allow investigation 

into whether SIC could inhibit osteoclastogenesis in the absence of activatory FcγRs265. 

The ability of FcγR modulation to inhibit osteoclastogenesis did not affect the 

transcription of CD115, RANK, NFATc1 or Bcl-3 mRNA after three days of culture. 

Previous work demonstrated that human monocytes stimulated with M-CSF and RANKL 

and treated with SIC for 24 hours, down-regulated RANK mRNA (unpublished data). This 

time point may have been too late to observe the effect SIC or OpIg treatment may 

exert on transcription of genes which induce osteoclastogenesis. Earlier time points may 

provide a better representation of how FcγR modulation changes mRNA transcription. As 

shown, SIC and OpIg were unable to influence the expression of CD115. It was not 

expected for SIC or OpIg to influence the expression of this factor greatly as M-CSF 

mediated signalling through CD115 is integral to cell survival128. However, MacLellan et 

al (2011) observed that following 6 hours of treatment SIC the surface expression of 

CD115 was down-regulated in human monocytes stimulated with M-CSF and RANKL316. 

Due to time constraints it was not possible to focus on the earlier time-points and 

surface expression of CD115 on murine cells in order to verify this effect in the mouse. 

As has been previously stated, there are caveats regarding the comparison of human 

and murine cells which are most likely due to species differences FcγR biology. Despite 

the observations in human OCs of CD115 surface expression down-regulation, RANK 

mRNA transcript level down-regulation and inability of OpIg to inhibit 

osteoclastogenesis, a fresh insight has been gained regarding the interaction between 

FcγR modulation and murine OC differentiation.  

A hypothesis which may explain the observations described in this chapter is that in vivo 

monomeric IgG is found in abundance at concentrations of 10mg/ml in the blood299 as 

well as in the extracellular space (Figure 3-16A). The constant interaction between IgG 

and FcγRs on monocytes as well as stimulation within the microenvironment may not 

stimulate monocyte’s differentiation but could contribute to a ‘threshold’ level of 

activation by FcγRs364 (Figure 3-16B). However, removal of cells from this natural 

environment results in a homogeneous population of cells in culture media stimulated 
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only by M-CSF and RANKL (Figure 3-16C-D). In this culture system, the ‘threshold’ for 

FcγR activation may have been lowered. As a result stimulation by monomeric IgG, in 

the form of OpIg (Figure 3-16E) can activate an effector function which can skew the 

monocyte from differentiation into an OC, by preventing transcription of OC essential 

genes. In this system, addition of SIC results in enhanced FcγR activity and further 

inhibition of osteoclastogenesis (Figure 3-16F). Together, the data presented in this 

chapter demonstrates that the presence of IgG alone or in complex is able to inhibit the 

differentiation, activity and mRNA transcription of OCs in an optimised in vitro culture 

system. 
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Figure 3-16: Diagrammatic representation of in vitro osteoclast inhibition. 
A) In vivo, monocytes exist in a microenvironment containing, amongst other factors, IgG, which 
interacts with monocytes constantly. B) In vivo, monocytes are able to bind free IgG which 
creates a high threshold for cellular activation. C) Monocytes removed from animals are used to 
create a homogeneous population of cells in an artificial culture system, which does not 
generally have large amounts of IgG. D) In vitro, the monocytes only exogenous stimuli include 
M-CSF and RANKL in order to differentiate cells to OCs, thus creating a low threshold of 
activation. E) Addition of IgG in the form of OpIg, results in FcγR ligation and due to the low 
threshold of activation results in inhibition of osteoclastogenesis and decreased OC specific 
mRNA production. F) Addition of SIC, further enhances FcγR ligation and in the lower threshold 
of activation state further allows interactions between free and IgG complexes to alter the 
differentiation of monocytes, thus inhibiting osteoclastogenesis. 
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4 SpA treatment in a murine model of bone loss  

4.1 Introduction 

OCs differentiate from circulating monocytes in the blood and BM89. As previously 

mentioned, in vitro stimulation of monocytes/MØ with pro-osteoclastogenic factors 

M-CSF and RANKL differentiates OCs113,324,365,366. However, other factors can act in 

synergy with M-CSF and RANKL to enhance the differentiation of OCs. Cytokines like 

IL-6193, TNF-α187,367, IL-1191, and TGF-β368, produced by a variety of cells, including 

stromal cells found in the BM, can stimulate pre-OCs alongside M-CSF and RANKL to 

drive OC differentiation367. Upon stimulation pre-OCs commit to the OC lineage by 

expressing DC-STAMP and OC-STAMP allowing mononuclear precursor cells to fuse, 

forming large multinucleated bone eroding OCs7,10,220,362.  

Although, blood and BM derived monocytes have the ability to differentiate into OCs, 

they are a heterogeneous population97. Subsets of monocytes have different phenotypes 

and functions depending on their anatomical position and immune status369,370. The 

integrins Ly6C and CD11b can be used to identify Ly6Chigh CD11bhigh classical monocytes 

(hereafter known as Ly6Chigh monocytes); circulating Ly6Chigh monocytes migrate into 

inflamed tissue to resolve infection98,99. However, in the absence of inflammation, 

circulating Ly6Chigh monocytes down-regulate their surface expression of Ly6C371. 

Ly6Chigh monocytes differentiate into Ly6Clow CD11bhigh non-classical monocytes 

(hereafter known as Ly6Clow monocytes) which ‘patrol’ the peripheral vasculature 

before exiting circulation and terminally differentiating into tissue MØs372. These two 

subsets have definable in vivo phenotypes as Ly6Clow monocytes producing higher levels 

of TNF-α than Ly6Chigh monocytes in response to TLR4 stimulation373. Ly6Chigh monocytes 

have also been shown to express higher levels of CCR2 than Ly6Clow monocytes which is 

essential for migration to sites of inflammation96. When Ly6Chigh monocytes 

down-regulate expression of Ly6C to become Ly6Clow monocytes they up-regulate 

expression of CX3CR1100. CX3CR1 is an essential adhesion molecule, not only promoting 

monocyte survival, but also adhesion and rolling on the vascular endothelium101. 

Recently, a third population of monocyte, Ly6Chigh CD11blow, has been shown to be 

highly responsive to M-CSF and RANKL stimulation compared to both Ly6Chigh and Ly6Clow 

BM monocytes4. Interest in identifying a specific monocyte subset as an in vivo OC 

progenitor (OCP) population arose from recent work undertaken by Jacquin et al (2006), 

Jacome-Galarza et al (2013) and Charles et al (2012) which demonstrated that the 

Ly6Chigh CD11blow monocytes present in BM were a definable OCP population capable of 

reconstituting nfatc1Δ/Δ animals with functional OCs4,103,116. This population of OCPs in 



 
 

103 

 

the BM also express high levels of OC specific proteins like TREM-2, MDL-1 and 

PIR-A/B103. Thus, in the murine system, the Ly6Chigh, Ly6Clow and OCP populations 

represent three potential sources of pre-OC each with distinct properties and 

responsiveness to M-CSF and RANKL stimulation whose role in bone disorders has not 

been fully elucidated. 

Oestrogen is an umbrella term for three related sex steroids which can regulate bone 

remodelling. Normally, oestrogen acts on OBs and OCs to regulate bone integrity; 

increasing OB activity374 and inducing OC apoptosis375. However, in post-menopausal 

women the ovarian production of oestrogen declines, causing a multitude of immune 

factors to become dysregulated leading to bone loss and the development of 

osteoporosis376. The murine model of ovariectomy-induced osteoporosis (OVX) is 

commonly used to interrogate the effect of oestrogen deficiency on bone 

remodelling377. In health, oestrogen enters cells and forms a complex with the oestrogen 

receptor (ER) which translocates to the nucleus allowing for activatory or inhibitory 

genomic effects. In the absence of oestrogen, many systems are perturbed. OBs 

increase production of TNF-α, IL-6, M-CSF, RANKL, and IL-7 while decreasing OPG and 

TGF-β secretion55. T cells respond to IL-7 and produce IFN-γ which stimulates monocytes 

and MØ to increase MHC II expression resulting in co-stimulation of T cells49,378. 

Consequently, there is an increase in circulating TNF-α+/RANKL+ activated T cells and 

activated MØ which produce IL-12, IL-6, IL-1, TNF-α49,54,62,63,378,379. Monocytes of the 

blood and BM become primed by the production of the numerous osteoclastogenic 

cytokines which leads to increase in OC differentiation, survival and bone resorption 

(Figure 4-1). Oestrogen deficiency observed in the OVX model rapidly increases OC 

activity resulting in loss of trabecular bone from the tibia similar to that seen in human 

osteoporosis39. The increase in bone resorption results in decreased bone strength and 

trabecular bone which, in human osteoporosis, leads to an increased risk of fracture380. 

ERs are expressed in myeloid cells of the blood and BM381, yet the effect of oestrogen 

deficiency on monocyte populations has not been well characterised. Menopause has 

been associated with an increase in the number of circulating monocytes which express 

both ERα and ERβ77. In vitro models of oestrogen withdrawal have shown that E/ER 

complex can negatively regulate FcγRIII expression on monocytes and in the absence of 

oestrogen expression of FcγRIII is heightened382. This increase in FcγRIII may allow 

additional interaction with IC. However, as a heterogeneous population, monocyte 

expression of FcγRs varies383. In mice FcγRI, RIIB, RIII and RIV are expressed at varying 

levels on circulating monocytes and OCs259,262. However, expression of FcγRs on the OCP 

population has not been investigated, nor has the effect of oestrogen on the monocyte 

populations.  
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Thus the effect of SpA derived IgG complexes in a model of oestrogen deficiency was 

examined. SpA forms ICs with IgG (SIC) upon injection and has been shown to reduce 

the number of OCs present in the inflamed joints of CIA animals299,316. Previously, SIC 

was shown to inhibit the differentiation of murine BM cells to OC in an FcγRIII 

independent manner, however, SIC may work in concert with multiple FcγRs including 

FcγRIII. This inhibition also resulted in the down-regulation of OC essential genes such 

as DC-STAMP, OSCAR, Cathepsin K and TRAP. Research has also shown that SIC reduces 

MØ responsiveness to IFN-γ and down-regulated surface expression of MHC II, while 

increasing the production of IL-10 compared to IL-12 which is perturbed in the OVX 

model316. SIC down-regulates the surface expression of CD115316 and RANK on human 

pre-OCs and inhibits RANK mediated p38 signalling (unpublished observations) which are 

highly important in oestrogen deficient bone loss. These observations provide evidence 

for the potential of SpA to interfere with OC differentiation in this model. Models of 

inflammatory diseases have been associated with an increased presence of OCPs, yet 

the OCP population has not been studied in the oestrogen deficiency model103,183. 

Likewise, the effect of SpA on pre-OCs has not been examined in a non-inflammatory 

disease, like the oestrogen deficiency model of osteoporosis. 

With a diverse range of potential targets in the OVX induced oestrogen deficiency 

model, the use of SpA focuses on the pool of monocytes in the blood and BM. It is 

hypothesised that treatment with SpA will induce the formation of IC that will interact 

with monocytes in the blood and BM. This will ultimately prevent the differentiation of 

OCs in OVX animals and rescue the bone loss observed in this model (Figure 4-1). The 

research presented in this chapter examines the effect of SpA on murine monocytes and 

monocyte subsets during homeostasis and the OVX mouse model of oestrogen 

deficiency. The principal aims were to: 

1. Determine which monocyte populations SpA interacts with in blood and 

BM. 

2. Investigate whether SpA affects the phenotype of circulating monocytes 

and monocyte subsets in the blood and BM. 

3. Investigate whether SpA can prevent the bone loss observed in the OVX 

mouse model of oestrogen deficiency. 

4. Determine whether oestrogen deficiency and treatment with SpA has an 

effect on circulating populations of monocytes. 
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Figure 4-1: Diagram representing oestrogen deficiency induced bone loss and treatment with 
SpA IgG complexes. 
Following OVX-induced oestrogen deficiency, IL-7 is produced by OBs and stromal cells. This 
induces T cell proliferation leading to MØ activation. The overall effect is the production of IL-6, 
TNF-α, IL-1, M-CSF and RANKL which induce osteoclastogenesis from monocytes leading to 
increased OC activity and thus bone loss. In this microenvironment, it is hypothesised that SIC 
will prevent the differentiation of monocytes to OCs and reduce MØ responiseness to IFN-γ 
stimulation. Overall, SpA treated oestrogen deficient animals should not loss bone mass. 
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4.2 Results 

4.2.1 SpA interacts with blood and bone marrow monocytes 

In order to examine the ability of SpA to bind blood and BM monocyte subsets, a flow 

cytometry gating strategy, based on previous research, was developed. Due to accepted 

nomenclature, a naming system was used which reflected the definition of Ly6Chigh and 

Ly6Clow monocytes, while both expressing high levels of CD11b99. The gating strategy 

isolated monocyte subsets ex vivo which could also identify Ly6Chigh monocytes 

expressing low levels of CD11b4,384; this monocyte subset was termed the OCP after the 

observed functions of the BM population. In the blood, Jacquin et al (2006) 

demonstrated that Ly6Chigh monocytes were more responsive to M-CSF and RANKL 

compared to Ly6Clow monocytes4. However, the osteoclastogenic potential of Ly6Chigh 

CD11blow monocytes found in the blood has not been determined. Despite this, these 

cells were referred to as OCP as demarked by their expression of Ly6C and CD11b, with 

note that in the blood Ly6Chigh monocytes have been shown to differentiate into OCs. 

During the isolation of these monocyte subsets, a Ly6Cnegative CD11bnegative population was 

present, however, Charles et al (2012) showed that this population has no osteogenic 

potential therefore this double negative population was not included in data analysis103. 

This strategy of identification allowed analysis of monocytes free from contamination 

with neutrophils (Ly6G+), T cells (CD3+) or B cells (B220+) in the blood (Figure 4-2A) and 

BM (Figure 4-2B).  

Using this flow cytometry panel, the ability of SpA to bind monocytes in vivo was 

investigated. SpA, or the control protein OVA, was conjugated to the fluorescent dye 

Alexa Fluor 488 (AF488). Fluorescently labelled OVA-488 or SpA-488 was then injected 

i.p. into C57Bl/6 mice, after 2 hours blood and BM was taken and prepared for FACS 

analysis (Figure 4-2A). Injection with SpA-488 resulted in a large percentage of AF488+ 

monocytes in the blood compared to OVA-488 (Figure 4-3A). The absolute number of 

AF488+ monocytes and monocyte subsets in the blood was calculated from the 

percentage of AF488+ monocytes. It was shown that in the blood Ly6Chigh and Ly6Clow 

monocytes were interacting with SpA-488 (Figure 4-4A). However, the average intensity 

of SpA binding in the AF488+ cells remained equal with that of OVA-488 treated animals 

(Figure 4-4C). This suggests that even although there were a higher number of SpA-488+ 

cells, there was a low level of binding to these cells (Figure 4-3 and Figure 4-4). 

Importantly, SpA did not interact with OCP population (Figure 4-4A). However, due to a 

lack of biological replicates in the SpA-488 treatment group statistically analysis of the 

blood could not be done (Figure 4-4A).  
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Treatment with OVA-488 and SpA-488 did not affect percentage of AF488+ monocytes in 

the BM (Figure 4-3). This was reflected in the absolute cell numbers of AF488+ 

monocytes and monocyte subsets of OVA-488 and SpA-488 treated animals (Figure 4-4B). 

Yet, OVA-488 treated animals had significantly increased AF488 MFI on total monocytes 

compared to SpA-488 (Figure 4-4D). This revealed that Ly6Clow and OCP populations 

were responsible for the increased interactions of OVA-488 in the BM (Figure 4-4D). OVA 

protein is inert and thus should not bind to cells. However, resident MØ and phagocytic 

cells in the BM were not excluded from analysis due to exclusion of F4/80 from gating 

strategy. These phagocytic cells may have ingested OVA-488 inorder to clear it from the 

system. While SpA-488 has already been co-opted by circulating monocytes and so will 

not be found at the same concentrations as OVA-488 in the BM. This demonstrates that 

within the total monocyte population, subsets are able to interact with SpA-488 IC and 

OVA-488 within their microenvironment to delineate these populations. Previous work 

done in the lab demonstrated that SpA-488 interacted highly with monocytes in the 

blood and BM 2 hours following i.p treatment316. The present results show a limited 

level of interaction with Ly6Chigh and Ly6Clow monocytes in the blood and BM. However, 

there appeared to be no interaction between OCPs and SpA-488 in this study in the 

blood and BM. 
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Figure 4-2: Gating strategies for the identification of monocytes and monocyte subsets. 
Representative FACS plots of gating strategies employed to distinguish monocytes. A) Blood and 
B) BM cells were isolated from C57Bl/6 mice and FACS stained for CD3, B220, Ly6G, Ly6C and 
CD11b. Doublets were isolated from single cells by exclusion of events which had a non-linear 
relationship with Side Scatter Area versus Side Scatter Height, T and B cells were excluded by 
their expression of CD3 and B220, and Neutrophils were excluded by their expression of Ly6G. 
Total Monocytes (CD3-B220-Ly6G-) and their subsets were analysed by their expression of CD11b 
and Ly6C; Ly6Chigh CD11bhigh (1 – Ly6Chigh Monocytes), Ly6Clow CD11bhigh (2 – Ly6Clow Monocytes) and 
Ly6Chigh CD11blow (3 – OCP population).  
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Figure 4-3: Representative FACS plots of AF488+ monocytes and monocyte subsets. 
SpA and OVA were conjugated to fluorescent dye AF488. 600μg of OVA-488 or SpA-488 in PBS was 
injected i.p. into C57Bl/6 mice. After 2 hours, blood and BM were isolated and prepared for flow 
cytometry. The gating strategy previously shown (Figure 4-2) was used to isolate total monocytes 
and their subsets for analysis of OVA-488 and SpA-488 binding. Representative FACS plots of 
OVA-488+ and SpA-488+ cells in blood and BM monocytes and monocytes subsets is shown from 
one individual experiment.  
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Figure 4-4: Fluorescent SpA binds to Ly6Chigh monocytes in the blood. 
C57Bl/6 mice were injected i.p. with 600μg of OVA-488 or SpA-488 in PBS. After 2 hours, blood 
and BM were isolated and prepared for flow cytometry. Gating strategy previously shown (Figure 
4-2) was used to isolate total monocytes and their subsets for analysis of OVA-488 and SpA-488 
interactions (Figure 4-3). The number of AF488+ cells in A) Blood and B) BM monocytes and 
monocyte subset populations was calculated from the % of AF488+ cells and the total number of 
cells isolated from each animal. C) Blood and D) BM MFI of AF488 in OVA-488 and SpA-488 on 
monocytes and monocytes subsets in treated animals. Two way ANOVA’s with Bonferroni’s 
post-hoc tests used to test BM OVA versus SpA monocyte subsets; p<0.01 (**), p<0.001 (***). Data 
represents mean ± SD, blood OVA-488 (n=2) and SpA-488 (n=3) and BM OVA-488 (n=3) and 
SpA-488 (n=3). Data represents one individual experiment. 

 

 

 

 

 

 

 

 



 
 

111 

 

4.2.2 SpA and monocyte FcγRI 

Due to the documented ability to SpA to interact with FcγRI316, the expression of FcγRI 

was investigated. Following OVA-488 and SpA-488 treatment, the percentage of FcγRI+ 

monocytes and monocyte subsets in the blood and BM was evaluated (Figure 4-5). In the 

blood, SpA treatment had no effect on the number of FcγRI+ cells in total monocytes or 

subsets. Yet, the absolute number of FcγRI+ cells showed that Ly6Chigh monocytes were 

the most abundant FcγRI+ monocyte subset (Figure 4-6A), and upon treatment with 

SpA-488, the expression of FcγRI was reduced (42%) (Figure 4-6C). The expression of 

FcγRI on the surface of Ly6Clow monocytes was also reduced (49%). Interestingly, OCPs 

do not appear to express FcγRI, this may account for the lack of interaction in SpA-488 

binding (Figure 4-4C and Figure 4-6C).  

A similar effect in FcγRI expression was observed in the BM with the number of FcγRI+ 

monocyte population significantly reduced following SpA-488 treatment (37.5%, p<0.01) 

(Figure 4-6B). Upon further examination, Ly6Chigh, Ly6Clow and OCP all had significantly 

reduced FcγRI expression following SpA-488 treatment (38%, p<0.001, 34%, p<0.001 and 

25%, p<0.05, respectively) (Figure 4-6D). The reduction in FcγRI expression on 

monocytes may be a by-product of SpA-488 IgG complexes co-opting FcγRI and thus 

masking the epitope for antibody binding. Therefore, after 2 hours of treatment, SpA 

was able to bind to monocytes in the blood and BM. Down-regulation of FcγRI on the 

surface of all monocyte subsets in the BM suggests that SpA is present in the BM and 

interacting with monocytes despite the obvious presence of SpA-488 binding to these 

cells (Figure 4-3 and Figure 4-4). BM OCPs express FcγRI, while in the blood OCPs don’t 

express FcγRI, demonstrating that these cells are phenotypically different.  
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Figure 4-5: Representative FACS plots of FcγRI expression on monocytes and monocytes 
subsets. 
600μg of OVA-488 or SpA-488 in PBS was injected i.p. into C57Bl/6 mice. After 2 hours, blood and 
BM was isolated and prepared for flow cytometry. Gating Strategy previously shown (Figure 4-2) 
was used to isolate total monocytes and their subsets for analysis of FcγRI expression. 
Representative FACS plots of FcγRI+ cells in blood and BM monocytes and monocytes subsets are 
shown from one individual experiment. 
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Figure 4-6: FcγRI expression is reduced on monocytes and monocyte subsets following SpA 
treatment. 
600μg of OVA-488 or SpA-488 in PBS was injected i.p. into C57Bl/6 mice. After 2 hours, blood and 
BM was isolated and prepared for flow cytometry. Gating strategy shown (Figure 4-2) was used to 
isolate total monocytes and monocyte subsets for analysis of FcγRI (Figure 4-5). The number of 
FcγRI+ cells in A) Blood and B) BM monocytes and monocyte subset populations was calculated 
from the % of FcγRI+ cells and the total number of cells isolated from each animal. C) Blood and 
D) BM MFI of FcγRI in OVA-488 and SpA-488 on monocytes and monocytes subsets in treated 
animals. Two way ANOVA’s with Bonferroni’s post-hoc tests used on BM OVA versus SpA 
monocyte subsets; p<0.05 (*), p<0.01 (**) and p<0.001 (***). Data represents mean ± SD, blood 
OVA-488 (n=2) and SpA-488 (n=3) and BM OVA-488 (n=3) and SpA-488 (n=3). Data represents one 
individual experiment.  
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4.2.3 SIC inhibits Ly6Chigh monocyte differentiation to osteoclasts 

To investigate the effect of SpA on monocyte populations, Ly6Chigh and Ly6Clow 

monocytes were isolated from blood and BM of CX3CR1-GFP C57Bl/6 animals. Using a 

FACS Aria, monocytes were isolated based on their expression of CX3CR1-GFP, Ly6C, 

Ly6G, CD11b and CD117 (Figure 4-7A). Monocyte sorting on a FACS Aria was performed 

by Dr. J. Montgomery. Single cells which were CD11b+ CD117- Ly6G- CX3CR1+ Ly6Chigh or 

Ly6Clow were sorted. Ly6Chigh and Ly6Clow monocytes were cultured using 75ng/ml M-CSF 

and 50ng/ml RANKL to differentiate cells to OCs. SpA, OpIg and SIC were added to 

Ly6Chigh monocyte cultures in triplicate. Due to the low number of cells isolated, Ly6Clow 

monocytes could only be cultured in duplicate and only with or without SIC treatment. 

Following 5 days of culture, cells were stained for TRAP, revealing that Ly6Chigh 

monocytes cultured in the presence of M-CSF and RANKL could differentiate into OCs 

(Figure 4-7B). Ly6Chigh monocytes differentiation into OC was inhibited by treatment 

with OpIg (96% - p<0.001) and SIC (85% - p<0.001) (Figure 4-7B). Previously, it was 

shown that IgG alone present in the OpIg, as well as IgG complexes in SIC, could inhibit 

osteoclastogenesis. This demonstrates that these cell populations are prevented from 

differentiation to OCs in the presence of M-CSF and RANKL by addition of IgG alone or in 

complex. Treatment of Ly6Chigh monocytes with SpA alone resulted in a slight but 

significant increase osteoclastogenesis (p<0.01). Comparison between Ly6Chigh and 

Ly6Clow monocytes differentiation wasn’t analysed due to a lack of experimental 

replicates (Figure 4-7C). However, the data would suggest that Ly6Clow monocytes are 

far less osteoclastogenic than Ly6Chigh monocytes as there were a third of cells produced 

when differentiated in the same conditions. 

SIC has been used to inhibit the in vitro differentiation of OCs from pre-OCs by 

preventing the transcription of OC specific genes and now has been shown to directly 

prevent Ly6Chigh monocytes from differentiating to OCs. SpA can bind to the surface of 

Ly6Chigh and Ly6Clow monocytes in the blood and reducing the expression of FcγRI in the 

BM. As monocytes are important pre-OCs, the ability of SpA to interact with these cells 

and prevent the in vivo differentiation and function of OCs was examined using a 

murine model of disease.  
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Figure 4-7: Ly6Chigh monocytes are inhibited from differentiating to osteoclasts following Fcγ 
receptor modulation. 
Blood and BM was isolated from CX3CR1 GFP C57Bl/6 mice and prepared for flow cytometry. 
Ly6Chigh and Ly6Clow monocyte subsets were sorted based on their expression of CD11b+ CD117- 
Ly6G-, CX3CR1 GFP. Monocyte cells were isolated by Dr. J. Montgomery. A) Representative FACS 
plots of the monocyte sort on the FACS Aria. B) and C) Isolated Ly6Chigh and Ly6Clow monocytes 
were cultured at 1x105 cells in 200μl of complete α-MEM with 75ng/ml M-CSF and 50ng/ml RANKL 
for 5 days at 37oC with media refreshed on day 4. SIC (and controls) were added on day 1 and 4. 
Cultures were stained for TRAP and TRAP+ cells with >3 nuclei were counted. The sum total of 4 
fields of view per culture well were recorded. Ly6Chigh monocytes were cultured in triplicate and 
Ly6Clow monocytes were cultured in duplicate. One Way ANOVA with Bonferroni’s post-hoc test 
were used on Ly6Chigh monocytes only; p<0.01(**) and p<0.001 (***). Data represents mean ± SD 
from one experiment. Scale bar; 200μm. 
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4.2.4 Murine model of ovariectomy induced bone loss  

The effect of SpA was examined in a non-inflammatory model of bone loss. The OVX 

model of oestrogen deficiency results in an increase in pro-osteoclastogenic factors 

enhancing the differentiation of OCs thus promoting bone loss69. SpA’s ability to alter 

the disease severity in the OVX model was examined.  

Three separate methods of SpA administration were investigated (Figure 4-8). These 

regimes were designed to test the potential of SpA to influence disease progression. The 

Therapeutic Treatment Regime was designed to test the ability of SpA to recover the 

initial bone loss incurred 2 weeks following surgery (Figure 4-8A). The Continuous 

Treatment Regime was considered to be a ‘prophylactic’ regime to test whether SpA 

treatment from initiation of disease could overcome OVX induced bone loss (Figure 

4-8B). The third treatment regime was designed to test the method of administration; 

Alzet PumpsTM (model 2004) with SpA or control protein OVA were inserted i.p at the 

time of surgery thus allowing the secretion of SpA/OVA at a constant rate of 

0.25μl/hour over a 4 week period (Figure 4-8C).  All treatment regimes lasted 6 weeks 

following surgery at which time the experiments were terminated. 

Following surgery, animal’s weights were monitored weekly ensuring that no treatment 

caused detrimental effects beyond those observable in the model (Figure 4-9). The 

weights of all animals steadily increased over the 6 week period. The difference in 

weight (Δ weight change) from the initiation to termination was calculated to evaluate 

weight gain over the treatment course. This revealed that oestrogen deficient animals 

in the Therapeutic and Continuous Treatment Regimes significantly increased weight 

compared to their sham operated counterparts (Figure 4-9C, F). Treatment with SpA 

had no additional effect on the weights observed in these treatment regimes (Figure 

4-9). No difference in weight was observed in animals in the Alzet PumpTM Treatment 

Regime (Figure 4-9I). Following termination of the treatment regimes each animal had 

their uterus removed and weighed. In the event of a successful ovariectomy, oestrogen 

deficiency will cause the uterus to atrophy, as shown in the representative image 

(Figure 4-10A). Uterine weights revealed that the OVX groups had significantly lighter 

uteri when compared to sham operated animals regardless of treatment regime (Figure 

4-10B-D). Treatment with SpA had no additional effect on the weight of the uteri.  
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Figure 4-8: Diagrammatic representation of the OVX treatment regimes. 
All animals were OVX or sham operated at week 0. Disease onset began from point of surgery and 
all animals were sacrificed at week 6. Three treatment regimes were utilised to test the effect 
of SpA on this model. A) Therapeutic Treatment Regime; 100μg of SpA or OVA in 100μl of PBS 
was injected i.p. every 2nd day two weeks after surgery - and the onset of disease - until the end 
of the experiment. B) Continuous Treatment Regime; 100μg of SpA or OVA in 100μl of PBS was 
injected i.p. every 2nd day from the point of surgery until the end of the experiment. C) Alzet 
PumpTM Treatment Regime; Alzet PumpsTM (model 2004) containing 1.4mg of SpA or OVA was 
inserted into the peritoneal cavity at the point of surgery. The Alzet PumpTM secretes at a rate of 
50μg over the course of a day (100μg every 2nd day) for 4 weeks after which point animals were 
allowed to recover prior to the end of the experiment. 
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Figure 4-9: OVX surgery increased animal’s weight. 
Therapeutic Treatment Regime. A) Start weights (g) recorded at the time of surgery. B) Final 
weights of animals recorded 6 weeks after surgery. C) The change in weight (g) from start to the 
end was calculated (Final weight – Start weight = Delta Weight Change). Continuous Treatment 
Regime. D) Start weights (g) recorded at the time of surgery. E) Final weights of animals 
recorded 6 weeks after surgery. F) The change in weight (g) from start to the end was calculated 
(Final weight – Start weight = Delta Weight Change). Alzet PumpTM Treatment Regime. G) Start 
weights (g) recorded at the time of surgery. H) Final weights of animals recorded 6 weeks after 
surgery. I) The change in weight (g) from start to the end was calculated (Final weight – Start 
weight = Delta Weight Change). Two Way ANOVAs with Bonferroni’s post-hoc tests used to 
compare treatment groups; p<0.05 (*) and p<0.01 (**). Data represents means ± SD, n=7-8. 
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Figure 4-10: Oestrogen deficiency decreases uterine weight. 
Six weeks after OVX/sham surgery, uteri were removed from animals. Excess fat and tissue was 
removed from each uterus prior to desiccation overnight. A) Representative image of uterus 
removed from sham and OVX operated animal prior to desiccation. B) Dry weights (mg) of uteri 
from animals in the Therapeutic Treatment Regime. C) Dry weights (mg) of uteri from animals in 
the Continuous Treatment Regime. D) Dry weights (mg) of uteri from animals in the Alzet PumpTM 
Treatment Regime. Two Way ANOVA with Bonferroni’s post-hoc tests used to compare treatment 
groups; p<0.001 (***). Data represents mean ± SD, n=7–8. 
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4.2.5 CTX-1 is a marker of bone resorption 

The effect of SpA treatment on OVX induced bone remodelling was evaluated by 

examining two proteins; Osteocalcin and C-telopeptide fragment of Collagen Type 1 

(CTX-1). Plasma from sham and OVX animals was taken at the termination of treatment 

regimes. OBs secrete Osteocalcin as part of the bone formation process, however, a 

small quanity is leached into circulation as a by-product385. Measurements of 

Osteocalcin concentration by ELISA showed that OVX and treatment with SpA had no 

effect on the rate of bone formation in either the Therapeutic or Alzet PumpTM 

Treatment Regimes (Figure 4-11A, C). Bone resorption was measured by the plasma 

concentration of CTX-1 which is released into circulation as a by-product of bone 

erosion386. The concentration of CTX-1 was measured by ELISA and in the Therapeutic 

and Alzet PumpTM Treatment regimes, oestrogen deficiency increased CTX-1 in plasma 

compared to sham operated animals (Figure 4-11B, D). SpA treatment in both sham and 

OVX animals had no effect on the level of CTX-1 in circulation (Figure 4-11B, D). Due to 

availability of these ELISA reagents, it was not possible to use plasma samples from the 

Continuous Treatment Regime. The detection for pro-OC cytokines TNF-α, IL-6, IL-1β 

and IFN-γ was performed in all treatment regime samples. However, the concentration 

of these cytokines in all samples remained below the limit of detection and thus no 

conclusions could be drawn from these experiments (data not shown). Overall results 

show that in the context of the whole animal bone resorption is increased while the 

bone formation rate remains stable.  
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Figure 4-11: OVX increases the plasma concentration of CTX-1. 
Plasma was collected from animals six weeks after OVX/sham surgery by draining blood from the 
vena cava with a needle and 20μl of 0.5M EDTA. Blood was centrifuged at 4,000rpm for 10 
minutes and the clear plasma layer removed. Plasma concentration of Osteocalcin and CTX-1 
were measured by ELISA. A) Osteocalcin and B) CTX-1 were measured from plasma collected 
from the Therapeutic Treatment Regime and measured by ELISA. C) Osteocalcin and D) CTX-1 
were measured from plasma collected from the Alzet PumpTM Treatment Regime by ELISA. Two 
way ANOVA with Bonferroni’s post-hoc tests were used to compare all treatment groups; p<0.01 
(**) and p<0.001 (***). Data represents mean ± SD, n=5-8. 
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4.2.6 Biomechanical testing of OVX femurs 

Oestrogen deficiency is known to induce bone loss which can result in a decrease in 

bone strength387 and as such the biomechanical properties of OVX animal’s femurs were 

tested. Femurs from the Therapeutic Treatment Regime were taken at termination and 

exposed to three point bend testing. Three point bend testing is used to determine the 

integrity and overall strength of bone as measured by the Maximum Load - the peak 

Newtons of force (N) exerted on the bone before it breaks387–389. This process also 

records the Modulus (MPa – MegaPascals) - a measure of intrinsic stiffness in the bone 

regardless of size; Extension at Max Load (mm - millimetre) – the displacement required 

to reach the peak force necessary to break;  Load at Break (N) – this is the force exerted 

when the bone fractures; Extension at Break (mm) – The displacement required to reach 

the Load to Break; Energy at break (J - Joules) – the energy the bone can absorb prior to 

fracture and is an indication of toughness. These parameters were shown to be 

unchanged following OVX or treatment with SpA (Figure 4-12). Three point bend testing 

is a destructive method to measure bone strength and can only provide limited data 

regarding cortical bone strength. Therefore, another more accurate method of 

measuring the effect of oestrogen deficiency on bone loss was required. 
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Figure 4-12: The effect of OVX and treatment with SpA on bone integrity measured by 
three-point bend testing. 
Femurs were taken from Therapeutic Treatment Regime animals six weeks after OVX/sham 
surgery. Femurs were stripped of flesh and were stored in 70% ethanol at 4oC. The bones then 
underwent three-point bend testing by carefully mounting femurs on an Instron Mechanical 
Testing Stage using a third pressure point lowered slowly to the top of the femur. The force 
exerted on the bone and resistance of the bone were measured and the following parameters 
were calculated by Bluehill software. A) Maximum load (N), B) Extension at Maximum Break 
(mm), C) Load at Break (N), D) Extension at Break (mm), E) Energy at Break (J) and F) Modulus 
(MPa).Two Way ANOVAs with Bonferroni’s post-hoc tests were used to compare all treatment 
groups. Data represents mean ± SD, n=4–6 from one experiment. 
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4.2.7 OVX bone loss measured by micro computer tomography 

The most sensitive method for examining bone micro-architecture is micro computer 

tomography (μCT) which uses a series of X-ray images of a rotated structure to create a 

3 dimensional image that can be manipulated and examined. Using this technology, 

tibias from sham and OVX animals were analysed (Figure 4-13). The trabecular sections 

of the proximal tibias (shown in coronal cross-section) were isolated and analysis was 

focused on a standardised region of interest of trabecular bone shown in the black box 

(Figure 4-13). μCT allows for the analysis of a number of parameters including; 

percentage of trabecular bone, a commonly used parameter to measure the degree of 

osteoporotic disease in this model390. The percentage of trabecular bone examines the 

bone tissue volume (BV) in the trabecular section and normalises it for the overall tissue 

volume (TV) in the section (also known as BV/TV). OVX animals were shown to have 

approximately 30% less trabecular bone present when compared with sham operated 

animals (p<0.001), which treatment with SpA was unable to alter. This was seen in all 

three treatment regimes (Figure 4-14A, E, I). Oestrogen deficiency also induced a 

decrease in bone volume in OVX groups compared to sham operated animals in all 

treatment regimes (Figure 4-14B, F, J).  

Another measure of bone disease in the OVX model is trabecular number, the average 

number of trabeculae present in the trabecular bone section. Increased OC activity 

erodes trabeculae and thus decreases the number of trabeculae. In all treatment 

regimes, the number of trabeculae was significantly decreased in OVX compared to 

sham operated animals and treatment with SpA was unable to rescue this decrease 

(Figure 4-14C, G, K). As trabecular number decreases with OVX disease, the separation 

between each trabeculum increases and this parameter was shown to significantly 

increase by approximately 20% in OVX animals in the three treatment regimes (Figure 

4-14D, H, L). The observed decrease in trabecular bone volume, trabecular number and 

increase in separation between trabeculae all demonstrate that each of the OVX 

surgeries successfully induced bone loss (Figure 4-14). A number of other parameters 

were also measured which all verify that OVX reduced the animals tibial bone volume 

(data not shown). OVX induced oestrogen deficiency resulted in bone loss in the 

proximal tibia that SpA treatment was unable to prevent. 
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Figure 4-13: Representative images of μCT trabecular bone reconstructions from proximal 
tibia of sham and OVX animals. 
The left tibia of each animal was taken six weeks after OVX/sham surgery. Tibias were fixed 
overnight in 4% para-formaldehyde before being stored in 70% ethanol. Bones were scanned using 
a SkyScan 1172 μCT scanner. This generated a series of X-ray images which could be manipulated 
using NReconn software to create a 3D structure of the tibia (shown in the coronal cross-section 
of the proximal tibia). The trabecular bone present in this tibia could be further examined by 
isolating the specific region of interest using CTAn software to create a 3D model of the 
trabecular bone (shown in the dorsal transverse section - black box) which can be processed to 
give a number of measureable parameters. 
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Figure 4-14: μCT analysis of trabecular bone of proximal tibia of sham and OVX animals. 
As described in Figure 4-13, trabecular bone was identified and the properties of which 
quantified by SkyScan CTAn software. The three treatment regimes are shown above. A), E) and 
I) Bone volume / tissue volume (BV/TV); the percentage of trabecular bone present. B), F) and J) 
Bone Volume (μm3) present in the trabecular region. C), G) and K) The number of trabeculae 
present in the trabecular region, normalised to the trabecular volume. D), H) and L) The 
trabecular separation represents the average distance between each trabeculae in the 
trabecular region. Two Way ANOVA with Bonferroni’s post-hoc tests were used to compare all 
treatment groups; p<0.05 (*), p<0.01 (**), p<0.001 (***) Data shown represents mean ± SD, n=7-8. 
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4.2.8 Oestrogen, SpA and monocyte composition 

SpA was unable to prevent OVX induced bone loss, however the effect of oestrogen 

deficiency on monocytes was evaluated. FACS analysis was done to analyse the effect 

that oestrogen deficiency exerts on monocytes and their subsets in blood and BM. Blood 

and BM was taken from animals and the total number monocytes was determined by 

flow cytometry (Figure 4-15). Each treatment regime required a slightly altered method 

of gating to isolate monocytes, but, this did not impact on the ability to isolate 

monocytes and their respective subsets within each sample.  

Analysis revealed that the BM monocyte compartment was unaffected by oestrogen 

deficiency in all of the treatment regimes (Figure 4-16B, D, F). Interestingly, circulating 

monocytes from animals in each treatment regime vary. In the Therapeutic Treatment 

Regime, oestrogen deficiency had no effect on the number of total monocytes (Figure 

4-16A). In the Continuous Treatment Regime oestrogen deficiency doubled the number 

of monocytes (p<0.05) (Figure 4-16C), while the Alzet PumpTM Treatment Regime OVX 

groups had a decreased percentage of blood monocytes compared to sham controls 

(Figure 4-16E). In the Alzet PumpTM model, cell counts were not performed on the 

blood, so the total number of monocytes could not be quantified. Beyond the effects 

oestrogen exerts on monocytes, treatment with SpA in all treatment regimes had no 

impact on the number of monocytes in the blood or BM (Figure 4-16). 

To further investigate the effect that oestrogen deficiency has on monocytes the 

composition of subsets was evaluated. Using the gating strategy previously outlined 

(Figure 4-15), monocyte subsets were isolated and the number of cells present within 

each group was quantified. In the Therapeutic Treatment Regime, SpA increased the 

number of Ly6Clow monocytes present in the blood of sham and OVX animals (p<0.05 and 

p<0.001, respectively) and BM of sham operated animals (p<0.001) (Figure 4-17A-B). 

Analysis of the Continuous Treatment Regime demonstrated that oestrogen deficiency 

and treatment with SpA had no effect on blood monocytes, however, both oestrogen 

deficiency and treatment with SpA could increase the number of Ly6Chigh monocytes in 

the BM compared to sham operated animals (p<0.01) (Figure 4-17C-D).  The BM of the 

Alzet PumpTM Treatment Regime showed no change on monocyte subset numbers, while 

oestrogen deficiency decreased the percentage of monocytes in the blood (p<0.05) 

(Figure 4-17E). Overall, oestrogen deficiency did not exert any consistent effect on 

monocyte composition from one predominant cell type to another in any treatment 

regime (Figure 4-17). 
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Figure 4-15: Representative FACS plots of three OVX treatment regimes. 
A) Blood from Therapeutic Treatment Regimes were isolated from C57Bl/6 mice and FACS 
stained for Live/Dead, CD3, B220, Ly6G, Ly6C and CD11b. Representative FACS plots of gating 
strategies employed to distinguish monocytes. Doublets were isolated from single cells, Live 
Cells were selected on low expression of Live/Dead exclusion marker, T and B cells were 
excluded by their expression of CD3+ and B220+, and Neutrophils were excluded by their 
expression of CD3-B220-Ly6G+. Total Monocytes (CD3-B220-Ly6G-) and their subsets were 
analysed by their expression of CD11b and Ly6C. B) Blood from Continuous Treatment Regimes 
were isolated from C57Bl/6 mice and FACS stained for CD3, B220, Ly6G, Ly6C and CD11b. 
Representative FACS plots of gating strategies employed to distinguish monocytes and their 
subsets. C) Blood from Alzet PumpTM Treatment Regimes were isolated from C57Bl/6 mice and 
FACS stained for CD3, B220, Ly6G, Ly6C and CD11b. Representative FACS plots of gating 
strategies employed to distinguish monocytes. Monocyte subset populations were identified as 
described in Figure 4-2.  
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Figure 4-16: Number of total monocytes following OVX and treatment with SpA. 
Blood and BM was isolated from animals six weeks after surgery and prepared from analysis by 
flow cytometry. Red blood cells were lysed using ammonium chloride or Akt Buffer. Cells were 
counted then stained for FACS and a gating strategy previously shown (Figure 4-15) was used to 
isolate the number of total monocytes. The % of monocytes defined by FACS analysis was used to 
calculate the absolute number of monocytes present in both the blood and BM. The number of 
total monocytes from the Therapeutic Treatment Regime in A) Blood and B) BM are shown. The 
number of total monocytes from the Continuous Treatment Regime in C) Blood and D) BM are 
shown. The percentage of and number of total monocytes from the Alzet PumpTM Treatment 
Regime in E) Blood and F) BM are shown. Two Way ANOVAs with Bonferroni’s post-hoc tests were 
used to compare treatment groups; p<0.05 (*). Data represents mean ± SD, n=7–8. 
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Figure 4-17: Monocyte subset cell numbers following OVX and treatment with SpA. 
Continuing on from the data shown in Figure 4-16, the expression profiles of Ly6C and CD11b 
were used to identify monocyte subsets as described in Figure 4-15. The % of cells in each 
monocyte subset was used to calculate the absolute number of monocytes present in both the 
blood and BM. The subsets of interest were Ly6Chigh, Ly6Clow and OCP. The absolute numbers of 
cells constituting these subsets in A) Blood and B) BM for the Therapeutic Treatment Regime is 
shown. The absolute numbers of cells constituting these subsets in C) Blood and D) BM for the 
Continuous Treatment Regime is shown. The percentage of, and absolute number of cells 
constituting these subsets in E) Blood and F) BM for the Alzet PumpTM Treatment Regime is 
shown.  Two Way ANOVAs with Bonferroni’s post-hoc test were used to compare individual 
monocyte subsets across treatment groups; p<0.05 (*), p<0.01 (**) and p<0.001 (***). Data 
represents mean ± SD, n=7–8. 
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4.2.9 Fcγ receptor profiles and oestrogen deficiency  

Previously SpA has been shown to bind the monocytes in vivo (Figure 4-3) mediated by 

FcγRs316. The effect of long term treatment with SpA and the absence of oestrogen 

could impact on the expression of FcγRI or II/III on the surface of monocyte subsets and 

this was examined. 

First, expression of FcγRI on monocytes following OVX was examined. The Therapeutic 

Treatment Regime showed that OVX significantly decreased the expression of FcγRI on 

the surface of total monocytes in the blood (p<0.05), but not on individual subsets 

(Figure 4-18A).  In BM, OCP FcγRI expression was decreased following OVX (Figure 

4-18B). Oestrogen deficiency was shown to have no effect on the expression of FcγRI on 

the surface of monocyte subsets in the blood and BM of Continuous or Alzet PumpTM 

Treatment Regimes (Figure 4-18C-F). This suggests that oestrogen deficiency had no 

overall effect on the expression of FcγRI as there was no consistent result. 

Upon examining the expression pattern of FcγRII/III, OVX was shown to have no effect 

on the expression of FcγRII/III on monocytes in the Therapeutic Treatment Regime 

(Figure 4-19A-B). The Continuous Treatment Regime showed that Ly6Clow blood 

monocytes significantly decreased expression of FcγRII/III (p<0.05) (Figure 4-19C).  

While in the Alzet PumpTM Treatment Regime, Ly6Clow BM monocytes had an increased 

expression of FcγRII/III following OVX (Figure 4-19F). These results show that oestrogen 

deficiency does not have a distinct effect on the expression of FcγRI or FcγRII/III on 

monocyte subsets. The control groups of each treatment regime are similar and 

comparison between OVA treated sham and OVX animals should be identical. Therefore, 

no conclusive effects have been shown.  

Evaluation of SpA treatment showed that it had minimal effects on the expression of 

FcγRs. In particular, the expression of FcγRI and FcγRII/III on monocytes in Alzet 

PumpTM Treatment Regime was unaffected. A minor increase in FcγRII/III expression was 

observed in the Therapeutic Treatment Regime on Ly6Clow blood monocytes following 

treatment with SpA in OVX animals (p<0.05) (Figure 4-20A). In the same treatment 

regime, SpA was able to decrease the surface expression of FcγRI on blood Ly6Clow 

monocytes and both BM Ly6Chigh and Ly6Clow monocytes (Figure 4-20B-C). In the 

Continuous Treatment regime, SpA significantly increased the expression of FcγRII/III on 

BM Ly6Chigh monocytes and OCP (Figure 4-20D). Examination of the expression patterns 

of FcγRI and II/III have shown that oestrogen deficiency does not conclusively alter the 

expression of these receptors on the surface of monocyte subsets and no reproducible 

effect was observed following SpA administration.       



 
 

132 

 

 

Figure 4-18: Expression of FcγRI on monocyte subsets in blood and bone marrow following 
OVX. 
Continuing on from Figure 4-16, the expression of FcγRI was examined on the monocyte subsets 
identified (Figure 4-15). The subsets of interest were Ly6Chigh, Ly6Clow and OCP and the 
expression of FcγRI on these subsets was recorded as MFI. The expression of FcγRI on monocyte 
subsets in A) Blood and B) BM for the Therapeutic Treatment Regime is shown. The expression of 
FcγRI on monocyte subsets in C) Blood and D) BM for the Continuous Treatment Regime is shown. 
The expression of FcγRI on monocyte subsets in E) Blood and F) BM for the Alzet PumpTM 
Treatment Regime is shown.  Two Way ANOVAs with Bonferroni’s post-hoc test were used to 
compare the effect of all treatment groups on individual monocyte subsets; p<0.05 (*). Data 
represents mean ± SD, n=7–8. 
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Figure 4-19: Expression of FcγRII/III on monocyte subsets in the blood and bone marrow 
following OVX. 
Continuing on from Figure 4-16, the expression of FcγRII/III was examined on the monocyte 
subsets identified (Figure 4-15). The subsets of interest were Ly6Chigh, Ly6Clow and OCP and the 
expression of FcγRII/III on these subsets was recorded as MFI. The expression of FcγRII/III on 
monocyte subsets in A) Blood and B) BM for the Therapeutic Treatment Regime is shown. The 
expression of FcγRII/III on monocyte subsets in C) Blood and D) BM for the Continuous Treatment 
Regime is shown. The expression of FcγRII/III on monocyte subsets in E) Blood and F) BM for the 
Alzet PumpTM Treatment Regime is shown.  Two Way ANOVAs were used to compare the effect of 
all treatment groups on individual monocyte subsets; p<0.05 (*) and p<0.01 (**). Data represents 
mean ± SD, n=7–8. 
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Figure 4-20: SpA modulates Fcγ receptors on monocytes. 
Continuing on from Figure 4-16, the expression of both FcγRI and FcγRII/III was examined on the 
monocyte subsets identified (Figure 4-15). The subsets of interest were Ly6Chigh, Ly6Clow and OCP 
and the expression of FcγRI and FcγRII/III on these subsets was recorded as MFI. The expression 
of FcγRI on monocyte subsets in A) Blood and B) BM and FcγRII/III in C) Blood in the Therapeutic 
Treatment Regime is shown. The expression of FcγRII/III on monocyte subsets in D) BM for the 
Continuous Treatment Regime is shown.  Two Way ANOVAs were used to compare the effect of 
all treatment groups on individual monocyte subsets; p<0.05 (*), p<0.01 (**) and p<0.001 (***). 
Data represents mean ± SD, n=7–8. 
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4.3 Discussion 

Osteoporosis is a pathology associated with the menopause and is an accumulation of 

multiple factors resulting in weakened bone integrity and increased risk of fracture380. 

PMO occurs in 30% of post-menopausal women and is a major cause of femoral head and 

vertebral fractures in the elderly391. Animal models used to study PMO involve removal 

of the ovaries to simulate the oestrogen deficiency in humans40. In the present study, 

the C57Bl/6 mouse model of osteoporosis was used as this strain is prone to oestrogen 

deficient bone loss39. The mouse model of osteoporosis results in the rapid resorption of 

trabecular bone from the femur, tibia and vertebrae but does not resemble human 

disease because mice do not become prone to fractures40. In mice, increasing age 

increases trabecular bone resorption and is more prominent in females than males due 

to an alteration in the pre-OC pool41,392,393. However, as a model system, the OVX mouse 

model allows for the identification of potential drug targets to inhibit the rapid bone 

erosion in a non-inflammatory environment. As SpA has previously been shown to 

decrease the number of OCs in inflamed joints316, it was hypothesised that SpA could 

reproduce this effect in the OVX model. 

Monocytes are of particular interest as the different monocyte subsets have different 

roles during homeostasis and, when stimulated, are a potential pool of pre-OCs89. 

Ablation of the monocyte lineage by clodronate has also been shown to halt 

osteoporotic disease in OVX animal models, highlighting not only that OCs are central to 

this disease pathology but also highlighting monocytes as a reservoir of pre-OCs318. 

Research has already shown that the OCP population in the BM is a subset of monocytes 

which can repopulate OC deficient animals with mature functional OCs4. While in the 

blood, the same role was undertaken by Ly6Chigh monocytes4. In the present study, we 

observed the effect of oestrogen on the regulation of these populations. It was also of 

interest to examine whether SpA could alter these pre-OC populations and prevent them 

from differentiation into OCs. 

SpA is able to enter both the blood and BM following i.p. injection and interact with 

monocytes, possibly via FcγRI316. Previously, SpA has been shown to bind highly to 

monocytes in the blood and BM and the low level of binding observed in this study may 

be due to a number of reasons. One particular example is that the conjugation of SpA 

and OVA to AF488 may have been unequal. A conjugation kit is used which can 

conjugate AF488 to proteins. However, each reaction varies slightly and as such the 

yield of labelled protein can differ between conjugations. The reaction can also produce 

proteins which have differing number of AF488 molecules conjugated to proteins; 

proteins with a high number of AF488 molecules conjugated to them fluoresce more 
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intensely than those with a low number of AF488 molecules. The ratio of AF488 

molecules bound to OVA and SpA was normalised for in this study, however, if the 

previous studies had a high ratio of conjugation this may account for the heightened 

binding of SpA to monocytes. One important control which should be used in future 

experiments with these reagents is the use of a naive mouse which would have allowed 

the identification of the baseline expression of fluorescence, thus allowing 

determination of the effects of OVA-488 and SpA-488. Another discrepancy in this study 

was that OVA-488 was found to highly interact with BM Ly6Clow and OCP populations. 

This interaction was unexpected; however, it may be due to OVA-488 deposition in the 

tissue and uptake by phagocytes which have not been gated out using our gating 

strategy. This may also represent a clearance of OVA from the system, and had the 

spleen been examined it is likely that OVA-488 would be found at a high concentration. 

However, to fully determine whether this is a physiologically relevant interaction or due 

to phagocytosis, these cells would need to be viewed under a confocal microscope to 

observe whether the fluorescence was on the cell surface or within intracellular 

vesicles. This would also allow observation of SpA-488 treated cells and could provide 

evidence to demonstrate that SpA-488 IgG complexes interact with surface receptors on 

these cells. The difference in OVA-488 and SpA-488 interactions in blood and BM could 

also be examined by measuring their protein concentration within the tissue. 

Examination of protein concentration using western blots could demonstrate the protein 

concentration present in the BM and provide insight into the pharmacokinetics and 

distribution of SpA in the mouse.  

In order to investigate whether monocyte subsets responded differently to ligation by 

FcγRs, Ly6Chigh and Ly6Clow monocytes were sorted from the blood and BM. Because the 

BM provides a limited supply of Ly6Clow monocytes, blood was also used as a source of 

monocytes to increase the yield. Unfortunately, the OCP population could not be 

isolated at the same time. Had this population been cultured in the same conditions, 

published research suggests that it would have been highly osteoclastogenic103. 

However, in comparison, Ly6Chigh monocytes were more osteoclastogenic than Ly6Clow 

monocytes, and were inhibited from differentiation by FcγR modulation. As previously 

demonstrated, OC cultures derived from BM could be inhibited by addition of IgG or IgG 

complexes. The addition of OpIg and SIC to cultures of Ly6Chigh monocytes was able to 

also inhibit OC differentiation. However, in vivo IgG is continually present and in its 

monomeric form has limited ability to influence cellular activity. Yet, IC have been 

shown to have a multitude of effects. In particular, IC have been shown to either inhibit 

or enhance osteoclastogenesis in vitro depending on the type of IC used262,317. IC are 

also known to directly induce disease pathology, an example of this is systemic lupus 

erythematosus in which antibodies against DNA form IC and propagate the autoimmune 
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inflammation resulting in dysfunction of the kidney and neurological issues394,395. 

Therefore, IC can have a multitude of effects in vivo and as SpA has been shown to be 

effective in reducing inflammatory derived OCs in vivo, the effect of SpA on pre-OC 

populations of the blood and BM was examined. 

Oestrogen deficiency was shown to have inconsistent effects on the monocytes of the 

blood and BM. Over the course of three treatment regimes, oestrogen deficiency had 

alternating effects on the total monocytes present in the blood, while not effecting BM 

monocytes. In the rat OVX model, Erben et al (1998) showed that the ED1+ BM cells, 

which represent CD68+ myeloid cells were increased in OVX animals compared with 

sham as well as observing enhanced B cell lymphogenesis396. In rats, ED1 is a membrane 

marker found on monocytes and is also expressed on OCs397,398. Research into the effects 

of oestrogen on monocytes is limited, however, the effects of oestrogen on other BM 

populations has been investigated. Katavic et al (2003) showed that in murine BM, 

CD45R+ B cells were increased two-fold following OVX compared to sham operated 

controls and that BM leukocytes were unaffected by OVX399. In the present study, 

CD45R/B220 was used in conjunction with CD3 to eliminate B and T cells from analysis 

of the monocyte subsets therefore analysis of the B cell compartment could not be done 

to verify this effect.  

This study showed that OVX increased the number of Ly6Chigh monocytes observed in the 

BM, but the OCP population was unaffected. The OCP population has been shown to be 

increased in a model of inflammatory bone loss103. However, this present study suggests 

that the OCP population is not affected by oestrogen deficiency. SpA treatment 

increased Ly6Chigh monocyte numbers in BM and Ly6Clow monocyte numbers in the blood. 

However these effects were not consistent across treatment regimes. One explanation 

for this inconsistency is that the dose of SpA given may not have been large enough to 

influence the disease progression. In the OVX models, SpA was injected i.p. at a dose of 

100μg while to observe SpA-488 binding to monocytes, a dose of 600μg was used. This 

allowed determination of how SpA interacted with cells in vivo, but it can also result in 

rapid clearance of circulating immunoglobulin. SpA immediately engages with IgG in 

circulation, but it continually dissociates and reforms complexes with free IgG with a 

half life of 9 hours299. As a result, SpA given at high doses is able to reduce the 

concentration of IgG present in the serum299. However, a dose of 100μg of SpA per 

animal per 48 hours was chosen for long term studies because previously this 

concentration had been effective in treating the inflammatory model of disease CIA316.       

The effect of oestradiol on the expression of FcγRs has received some attention. 

Previous work has shown that oestrogen and ERα signalling complexes engage the 
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oestrogen response element (ERE) on the FcγRIII promoter and removal of this signal 

up-regulates FcγRIII transcription beyond untreated controls382,400. Kramer et al (2004) 

also went onto demonstrate that direct ligation using mAb directed against the 

up-regulated FcγRIII resulted in heightened TNF-α, IL-6 and IL-1β secretion in human 

monocytes400. As mentioned, TNF-α, IL-6 and IL-1β are pro-OC cytokines which are 

up-regulated in the oestrogen deficiency model (Figure 4-1). Previous research on SIC 

showed that it can bind to the surface of MØ and increase the production of IL-10, while 

decreasing IL-12316,380. This switch from IL-12 production to IL-10 is believed to identify 

a regulatory phenotype instead of inflammatory phenotype276. However, production of 

TNF-α, IL-6 and IL-1β was not investigated as part of that study and as such it is 

unknown whether SIC affects production of these inflammatory cytokines316. This could 

have provided insight regarding the effect of SIC interactions with FcγRIII on monocytes 

and also indicate whether in the OVX model SIC could be interacting with monocytes to 

produce these inflammatory cytokines. In the OVX model, the concentration of TNF-a, 

IL-6, IL-1β and IFN-γ was examined in the serum of OVX and sham animals treated with 

SpA, however, the levels remained below the limit of detection. In order to fully 

evaluate the effect SIC exerts, SIC treated monocytes/MØ could have their production 

of TNF-a, IL-6 and IL-1β tested in vitro. This would be particularly interesting in 

FcγRIII-/- cultures, as SIC does not require FcγRIII to inhibit osteoclastogenesis but may 

have an effect on MØ cytokine production.  

The effect of the OVX model on the in vivo expression of FcγRs has not been previously 

addressed and so the present study examined whether oestrogen deficiency affected 

the expression of FcγRs. It was observed that in a state of oestrogen deficiency the 

expression of FcγRI and FcγRII/III remained relatively unchanged. However, the loss of 

distinction between FcγRII and FcγRIII due to use of an antibody which recognises both 

receptors could have masked any subtle changes that have been occurred in this model. 

The FcγRIII promoter is known to interact with the E/ER complex in human MØ and 

following removal of oestrogen from cultures FcγRIII transcription is up-regulated382. 

Removal of oestrogen has also been shown to enhance the response of FcγRIII ligation 

and cytokine production382. However, Kramer et al (2007) only used short term human 

cultures in vitro and there may also be species differences therefore this phenomenon 

must be verified in the murine system382. The results of this present study would suggest 

that any increase in FcγRIII expression on monocytes that Kramer et al (2007) observed 

is short lived and in a model of oestrogen deficiency the expression levels of FcγRs 

remains unchanged382. However, use of antibodies against FcγRII and FcγRIII would allow 

for distinct identification of changes in surface expression of these receptors. SpA 

treatment was also observed to have varied effects on monocyte subsets with the 

overall trend observed that FcγRI was down-regulated after SpA treatment and 
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FcγRII/III was up-regulated. The SpA IgG complexes may be interacting with FcγRI and 

thus masking its expression and increasing FcγRII/III in an attempt to clear IgG 

complexes from the system, however, these results were inconsistent across treatment 

regimes suggesting that overall long-term SpA treatment had no effect on the 

expression of FcγRs.  

To assess whether SpA could alter bone metabolism in the OVX model, the 

concentrations of both Osteocalcin and CTX-1 were measured in the animal’s plasma401. 

It was found that oestrogen deficiency or treatment with SpA had no effect on the level 

of Osteocalcin in animal’s plasma. Whereas animals undergoing oestrogen deficiency 

increased plasma CTX-1, which treatment with SpA did not effect. These results would 

indicate that bone resorption is increased in OVX animals, while bone formation remains 

unchanged. Published work has shown that due to the intimate nature of bone 

remodelling, an increase in bone resorption inherently results in an increase in bone 

formation402. Yet, in osteoporosis bone resorption occurs at a faster rate than bone 

formation resulting in bone loss. This data suggests that the ELISA used to detect 

Osteocalcin was not sensitive enough to detect changes in the plasma samples. The use 

of serum may have provided a more concentrated sample for analysis however due to 

the technical requirements serum could not be used. EDTA was used to collect blood to 

allow analysis of cells by flow cytometry and also collection of plasma. EDTA chelates 

Ca2+ to prevent coagulation thus plasma contains extra proteins compared to serum. The 

results of the CTX-1 analysis showed that bone erosion was increased in these models 

while bone formation, as measured by Osteocalcin, was unaffected by OVX and SpA was 

unable to impact on these bone remodelling.  

Three point bend testing was performed on the right femurs of sham and OVX operated 

animals. The results showed that there was no difference in bone strength, or quality, 

following OVX or treatment with SpA. However, this method of analysis is crude and 

destructive. Unfortunately, this experiment was underpowered with an ‘n’ of 4-6 which 

was too small to demonstrate any meaningful difference. Jämsä et al (1998) 

demonstrated that three point bend testing directly correlated with the cortical 

thickness and strength which requires up to 28 weeks following OVX to become notably 

altered387,403,404. The observed results would therefore suggest that the cortical strength 

of bone has been unaffected by six weeks of oestrogen deficiency or treatment with 

SpA. A more sensitive method of analysing the bone integrity was required to assess the 

effect of oestrogen deficiency on the micro-architecture of the tibial bone and to 

observe trabecular bone lost following oestrogen deficiency. 
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μCT was utilized to interrogate the micro-architecture of the trabecular bone in the 

proximal tibia and assess the presence of bone following oestrogen deficiency. A 

standardarized method for the assessment of bone loss by μCT was followed for each 

treatment regime405. As expected in all treatment regimes, OVX animals had less 

trabecular bone present than sham operated controls. The loss of oestrogen resulted in 

bone loss and treatment with SpA in OVX animals had no impact on the degree of bone 

loss. In this model of oestrogen deficiency an overall increase in pro-OC cytokines are 

produced which inadvertently drive monocytes to differentiate into OCs406. In this study, 

the data would suggest that SpA IgG complexes could interact with the monocytes but 

were unable to overcome the prevailing environment, which was driven towards 

osteoclastogenesis. Therapeutic treatments used to treat PMO, which have also been 

tested in OVX animal models, include denosumab (mAb direct to RANKL)407 and 

bisphosphonates (induce OC apoptosis)33. These therapies have a direct effect on 

reducing osteoporotic disease408,409, however, SpA had no effect on osteoporotic disease 

in the murine OVX model. Recently, SpA has been used in a safety trial, which provided 

evidence that SpA at low doses is safe for human use and could have beneficial effects 

in treating the disease410. This finding couples with the CIA model of disease where 

treatment with SpA could reduce disease progression316. Thus SpA appears to have the 

potential to become a therapeutic agent. However, the target diseases may remain 

inflammatory disorders as SpA could not alter disease progression in the OVX model of 

bone loss.      

In summary, SpA passes into circulation via i.p. injection, and can interact with blood 

and BM monocytes which act as the pre-OC pool in homeostasis. However, SpA can not 

intervene to prevent bone loss during from oestrogen deficient OVX model.  More 

research is required to determine whether SpA could be used as a therapeutic in 

treating PMO. 
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5 NF-κB inhibitor Bcl-3 modulates bone remodelling 

5.1 Introduction 

Bone remodelling refers to the dynamic and tightly regulated process by which OCs 

erode bone matrix and OB’s secrete new bone matrix13. OC’s are large multinucleated 

cells which secrete enzymes such as MMP9, Cathepsin K and TRAP to erode the bone 

matrix240,264,336. Cells of the monocyte/MØ cell lineage are pre-OCs366 and recent 

research has shown that certain subsets of monocytes found in the blood and BM are 

highly osteoclastogenic4,103,116. Fusion of pre-OCs occurs following commitment to the 

OC lineage after stimulation with M-CSF and RANKL, acting via CD115 and RANK, 

respectively, on the cell surface6,324. In fact animals deficient for M-CSF, CD115, RANKL 

or RANK develop osteopetrosis and fail to produce in vivo OCs102,119,137,411. For effective 

osteoclastogenesis to occur, CD115 provides the survival signal which also up-regulates 

RANK expression on the surface of pre-OCs6. RANKL can then engage RANK allowing for a 

number of signalling molecules to be activated. One of the most important of these is 

NF-κB, a ubiquitous signalling molecule vital for a variety of cellular functions. RANK is 

named for the receptor’s ability to drive osteoclastogenesis via NF-κB signalling145,156. 

NF-κB comprises of 5 subunits; p105 (p50), p100 (p52), p65, RelB and c-Rel158–162. These 

subunits can form 15 combinations of homo- and hetero- dimers which can translocate 

to the nucleus and engage NF-κB binding sites on the promoter regions of genes either 

activating/suppressing transcription163,164.  

In order to regulate this process, Inhibitor of κB (IκB) proteins sequester NF-κB dimers in 

the cytoplasm and nucleus and suppress activation. Of particular interest is IκBα which 

binds to the p65 subunit of the NF-κB p50:p65 heterodimer and prevents activation of 

the canonical NF-κB pathway169. Interaction between RANKL and RANK on the surface of 

pre-OCs results in activation of the canonical NF-κB pathway leading to rapid 

degradation of IκBα and translocation of NF-κB p50:p65 to the nucleus (Figure 5-1)172. 

There also exists a non-canonical NF-κB pathway which upon activation leads to a 

gradual degradation and processing of the IκB-like protein p100 into the NF-κB subunit 

p52 (Figure 5-1)160. p52 forms a heterodimer with RelB translocating to the nucleus for 

transcriptional activity173. Bcl-3 is an IκB-like protein which resides in the nucleus and is 

capable of binding homo- and hetero- dimers of p50 and p52170,171. p50 and p52 are 

unlike other NF-κB subunits because they lack transcriptional activation domains 

(TAD)167. This results in homo- and hetero- dimers of p50 and p52 occupying NF-κB sites 

on gene promoters suppressing transcription167. Bcl-3 selectively binds to these 

complexes, stabilizing the dimers on NF-κB binding sites, preventing their degradation 

and inhibiting activatory NF-κB binding and transcription167. The role of NF-κB has been 
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studied extensively and demonstrated that p50, p52, p65 and RelB but not c-Rel are 

essential for osteoclastogenesis (see Section 1.2.4)145,162,174–177.        

Studies investigating the atypical IκB protein, Bcl-3, have shown that in the absence of 

Bcl-3 MØ/DCs were highly responsive to TLR-4 stimulation as a result of aberrant NF-κB 

activity due to the lack of p50 or p52 dimers in the nucleus167. In addition, Bcl-3-/- 

animals have altered immune responses because secondary lymphoid organs do not 

develop412. These animals develop advanced diabetes compared to WT animals in both 

spontaneous and induced diabetes models which results from Bcl-3’s ability to control 

transcription of cytokine and chemokine mRNA in inflammatory conditions413. Thus in 

the absence of Bcl-3, there is higher production of inflammatory cytokines which 

worsens the progression of inflammatory diseases413. However, the role of Bcl-3 as an 

inhibitor of NF-κB in osteoclastogenesis has not been investigated. Furthermore, it 

remains to be elucidated whether Bcl-3 deficiency has any impact on in vivo bone 

remodelling. It is proposed that the absence of Bcl-3 will allow transcription of OC 

essential genes to continue without regulation and result in excessive osteoclastogenesis 

(Figure 5-1). Another, yet to be defined, aspect of interest is how Bcl-3 deficient 

pre-OCs respond to IC mediated inhibition of osteoclastogenesis. As previously shown, 

SIC is able to inhibit in vitro osteoclastogenesis by FcγR engagement and examination 

into the role of Bcl-3 in this inhibitory mechanism is required.  

The research presented in this chapter examines the role of Bcl-3 in osteoclastogenesis 

and phenotypes Bcl-3-/- animals for skeletal abnormalities. The principal aims were to: 

1. Investigate whether Bcl-3-/- pre-OCs could differentiate into OCs in vitro. 

2. Test the ability of SIC to inhibit osteoclastogenesis in Bcl-3-/- cultures. 

3. Determine whether Bcl-3-/- animals have osteoimmune abnormalities in 

vivo. 
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Figure 5-1: Schematic of Bcl-3’s hypothesised role in RANKL-RANK mediated signal 
transduction. 
Upon RANKL-RANK interaction, both the canonical and non-canonical pathways are activated by 
TRAF6 and TRAF3, respectively. Canonical signalling rapidly occurs and relies on TRAF6 mediated 
degradation of IκBα which allows for nuclear translocation of NF-κB heterodimer p50:p65 to bind 
NF-κB binding domains in the nucleus. TRAF3 is degraded following RANK activation which allows 
processing of the p100 to the p52 NF-κB subunit which dimerises with RelB and translocates to 
the nucleus. The non-canonical pathway requires hours to potentiate signalling and continues 
long term transcriptional processes after the canonical pathway ends. In this pathway, the 
proposed role of Bcl-3 is that it binds non-activatory homo- and hetero- dimers of p50 or p52 
blocking NF-κB domains on the promoters of essential osteoclastogenic genes (A). In the absence 
of Bcl-3 a shift in the ratio of non-activatory to activatory NF-κB binding dimers occurs resulting 
in excessive transcription of osteoclastogenesis (B). Thus Bcl-3 is hypothesised to be a regulator 
of osteoclastogenesis. 
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5.2 Results 

5.2.1 RANKL induces Bcl-3 mRNA transcription 

Bcl-3 is known to be under the transcriptional control of NF-κB414 and to verify that 

Bcl-3 is involved in RANKL mediated signalling, the level of Bcl-3 mRNA was measured in 

OCs. NA BM cells were cultured with 75ng/ml M-CSF and/or 50ng/ml RANKL for 5 days. 

mRNA was extracted from cultures and probed for the presence of Bcl-3 mRNA by qPCR. 

M-CSF and RANKL treated cultures were compared to M-CSF alone cultures, revealing 

that OCs had significantly more Bcl-3 mRNA than MØs (p<0.001) (Figure 5-2). This 

method of analysis shows that OCs have a higher level of Bcl-3 mRNA than MØ and 

provides evidence that Bcl-3 is involved in RANKL mediated osteoclastogenesis.     

 

 

Figure 5-2: RANKL stimulation up-regulates Bcl-3 mRNA.  
1x105 murine WT and Bcl-3-/- NA BM cells were cultured with 75ng/ml M-CSF (M) and/or RANKL 
(M+R) for 5 days at 37oC. Media was refreshed on day 4. Cultures were lysed, mRNA extracted, 
cDNA generated and qPCR performed on all samples which were run in triplicate. GAPDH was 
used as the housekeeping control and non-template controls were run for each gene. Fold 
Change (2(-ΔΔCT)) was measured by normalising samples of Bcl-3 primers to the housekeeping 
control (ΔCT). Subsequently M+R Bcl-3 ΔCT’s were normalised to the average M ΔCT to obtain the 
ΔΔCT. This was then used to obtain the fold change (2(-ΔΔCT)). To obtain the spread of M data, 
each M ΔCT was compared to the average M ΔCT and fold change calculated. Bcl-3 mRNA in M 
and M+R samples were compared using an unpaired two-tailed t test; p<0.001 (***).  Data 
represents mean ± SD, n=3. 
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5.2.2 Bcl-3 deficient osteoclastogenesis 

To investigate the effect of Bcl-3 deficiency on osteoclastogenesis, BM cultures were set 

up to differentiate non-adherent BM (NA BM) from C57Bl/6 (WT) or Bcl-3-/- animals on a 

C57Bl/6 background. OCs were differentiated as previously described in the presence of 

75ng/ml M-CSF and 50ng/ml RANKL. After 4, 5, 6 and 7 days of culture, cells were 

stained for the presence of TRAP. TRAP was used as an indicator of osteoclastogenesis 

and cells that were TRAP+ with 3 or more nuclei were considered as an OC. WT and 

Bcl-3-/- OCs were present at each day examined (Figure 5-3). Interestingly, in WT and 

Bcl-3-/- cultures the size of OCs appears to increase from day 4 to day 5, but then 

decrease on days 6 and 7 (Figure 5-3). Following the 5th day of culture there was 

evidence of cell death in the form of large cellular debris. The number of OCs was 

counted on each day which demonstrated that WT and Bcl-3-/- NA BM cultures were able 

to differentiate into OCs at the same rate up until 6 days of culture (Figure 5-4A). At 

day 7, WT cultures had significantly more OCs present than Bcl-3-/- cultures (p<0.01). 

Due to the multinucleated nature of OCs, the average size of OCs was calculated to 

ensure that the difference in number was not due to a discrepancy in the size of the 

OCs. The average size of OCs over the course of experiment remained equal between 

WT and Bcl-3-/- cultures, however, larger OCs were observed at day 5 compared to other 

days (Figure 5-4B). Differences between the numbers of OCs present over the course of 

this experiment may be due to differences in the pre-OC populations present in the BM. 

The BM contains a large number of myeloid precursors at a variety of differentiation 

stages and as such stimulation with M-CSF and RANKL could result in terminal 

differentiation to OCs occurring over a series of days. This could also account for the 

difference observed at day 7 between WT and Bcl-3-/-, as it is possible that there are 

differences between the progenitors present in the BM of each animal and this could 

ultimately affect the OC differentiation (Figure 5-4). However, WT and Bcl-3-/- NA BM 

cells are able to respond to RANKL and differentiate into OCs in vitro.   



 
 

146 

 

 

Figure 5-3: TRAP staining of osteoclast differentiation kinetics in WT and Bcl-3-/- cultures. 
1x105 NA BM cells from WT and Bcl-3-/- animals were cultured, in triplicate or quadruplicate, in 
the presence of 75ng/ml M-CSF and 50ng/ml RANKL. Cells were maintained at 37oC in 5% CO2 
with media refreshed on day 4. Cultures were stained for the presence of TRAP at days 4, 5, 6 
and 7. Representative images of WT and Bcl-3-/- OC cultures are shown at each of these days. 
Scale bars; 200μm.   
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Figure 5-4: Osteoclast differentiation kinetics in WT and Bcl-3-/- cultures. 
1x105 NA BM cells from WT and Bcl-3-/- animals were cultured, in triplicate or quadruplicate, 
alongside 75ng/ml M-CSF and 50ng/ml RANKL. Cells were maintained at 37oC in 5% CO2 with 
media refreshed on day 4. Cultures were stained for the presence of TRAP at days 4, 5, 6 and 7. 
Cells that stained positive for TRAP with > 3 nuclei were defined as an OC and counted. A) OCs 
were counted and the sum total of 4 fields of view per condition, in triplicate or quadruplicate. 
B) Each OC that was counted had their size measured using Image J software and the mean size 
of OCs (mm2) was calculated. Two-way ANOVAs with Bonferroni’s post-hoc tests were used to 
compare WT and Bcl-3-/- cultures on each day; p<0.001 (***). Data represents mean ± SD, n=3.   
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5.2.3 RANKL induced transcription in Bcl-3 deficient animals 

RANKL can induce the terminal differentiation of OCs in Bcl-3-/- NA BM. However, the 

transcriptional profile of Bcl-3-/- OCs was examined to confirm that differentiation of 

mature OCs. OCs present at day 5 were selected because this time point was the first 

point at which a significant degree of osteoclastogenesis is observed. This will also 

eliminate the possibly of the cell death observed at later time points influencing the 

results. 

In order to examine differences in transcriptional profile between WT and Bcl-3-/- OCs, 

mRNA was extracted from day 5 cultures. Bcl-3-/- OC culture mRNA was compared to 

that of the WT OC cultures. This revealed that at day 5 there was no difference in the 

transcription of CD115 or RANK, the two main inducers of osteoclastogenesis (Figure 

5-5A, B). The transcription of two anti-apoptotic genes were also examined; Bcl-2 and 

Bcl-XL are responsible for preventing apoptosis and modulating OC differentiation415,416. 

Both Bcl-2 and Bcl-XL were unaffected by the absence of Bcl-3 (Figure 5-5C, D). The 

effect of Bcl-3 deficiency on the levels of mRNA essential for osteoclastogenesis was 

also examined. mRNA for MMP9, Cathepsin K, DC-STAMP and TRAP, essential for 

multinucleation of pre-OCs10 and degradation of the bone matrix336, were all unchanged 

when Bcl-3-/- OC were compared to WT (Figure 5-6A-D). This data suggests that at day 5 

WT and Bcl-3-/- OCs have a similar transcriptional profile, however, further work may be 

required to fully determine if any differences exist in the transcription of other genes. 

Comparison between WT and Bcl-3-/- at day 6 and 7 in culture could also prove 

interesting as subsequent waves of osteoclastogenesis are evident from the kinetic 

experiments. Microarray analysis could provide insight into why there are less Bcl-3-/- 

OCs present in day 7 cultures. However, further work would need to be done to dissect 

possible differences. However, the data presented here shows that by day 5 Bcl-3-/- NA 

BM can differentiate mature OCs that are transcriptional similar to WT OCs. 
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Figure 5-5: Osteoclast survival signals are unaffected in the absence of Bcl-3.  
1x105 murine WT and Bcl-3-/- NA BM cells were cultured with 75ng/ml M-CSF and RANKL for 5 
days at 37oC to differentiate OCs. Media was refreshed on day 4. Cultures were lysed, mRNA 
extracted, cDNA generated and qPCR performed on all samples which were run in triplicate. 
GAPDH was used as the housekeeping control and non-template controls were run for each gene. 
Fold Change (2(-ΔΔCT)) was measured by normalising samples of each primer to the housekeeping 
control (ΔCT). Subsequently Bcl-3-/- ΔCT’s were normalised to the average WT ΔCT to obtain the 
ΔΔCT. This was then used to obtain the fold change (2(-ΔΔCT)). To obtain the spread of data, each 
WT ΔCT was compared to the average WT ΔCT and fold change calculated. WT and Bcl-3-/- 
samples were compared using an unpaired two-tailed t-test.  Data represents mean ± SD, n=3. 
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Figure 5-6: The transcription of osteoclast specific mRNA is unaffected in Bcl-3-/- osteoclasts.  
1x105 murine WT and Bcl-3-/- NA BM cells were cultured with 75ng/ml M-CSF and RANKL for 5 
days at 37oC to differentiate OCs. Media was refreshed on day 4. Cultures were lysed, mRNA 
extracted, cDNA generated and qPCR performed on all samples which were run in triplicate. 
GAPDH was used as the housekeeping control and non-template controls were run for each gene. 
Fold Change (2(-ΔΔCT)) was measured by normalising samples of each primer to the housekeeping 
control (ΔCT). Subsequently Bcl-3-/- ΔCT’s were normalised to the average WT ΔCT to obtain the 
ΔΔCT. This was then used to obtain the fold change (2(-ΔΔCT)). To obtain the spread of data, each 
WT ΔCT was compared to the average WT ΔCT and fold change calculated. WT and Bcl-3-/- 
samples were compared using an unpaired two-tailed t-test.  Data represents mean ± SD, n=3 
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5.2.4 Fcγ receptor mediated osteoclast inhibition 

To determine whether Bcl-3-/- OCs could be inhibited by engagement of FcγRs, cultures 

of NA BM were incubated in the presence of 75ng/ml M-CSF and/or 50ng/ml RANKL for 5 

days. SpA, OpIg and SIC were generated as previously described and cultured with OCs 

from day 1. When the number of TRAP+ OCs present in cultures were counted it was 

shown that with SIC treatment, WT and Bcl-3-/- OC differentiation was inhibited (63%; 

p<0.001 and 62%; p<0.001, respectively) (Figure 5-7 and Figure 5-8A, B). Bcl-3-/-, but not 

WT, cultures were inhibited by OpIg treatment (42% reduction; p<0.05) (Figure 5-8B). 

Previously, OpIg has been shown to inhibit the differentiation of WT OC cultures. 

However, OpIg contains monomeric IgG which is not capable of interacting with FcγRs in 

the same way as the IgG complexes which SIC generates. These results also demonstrate 

that the inhibitory potential of OpIg is not as consistent as SIC and as such shows that 

IgG complex interactions can consistently inhibit osteoclastogenesis. Overall, these 

results demonstrate that IgG and IgG complex interactions with FcγR do not require 

Bcl-3 to inhibit osteoclastogenesis.   
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Figure 5-7: Representative TRAP staining for WT and Bcl-3-/- osteoclasts.  
1x105 murine NA BM cells from WT and Bcl-3-/- were cultured with 75ng/ml M-CSF and/or 
50ng/ml RANKL for 5 days in 37oC with media renewed on day 4. Treatment with SpA, OpIg and 
SIC was given at day 1 and 4 alongside M-CSF and RANKL. Cultures were stained for the presence 
of TRAP and representative images of TRAP stained cultures are shown. Scale bar; 200μm.   
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Figure 5-8: Fcγ receptor modulation inhibits WT and Bcl-3-/- osteoclast differentiation.  
1x105 murine NA BM cells from WT and Bcl-3-/- were cultured with 75ng/ml M-CSF and/or 
50ng/ml RANKL for 5 days in 37oC with media renewed on day 4. Treatment with SpA, OpIg and 
SIC was given at day 1 and 4 alongside M-CSF and RANKL. Cultures were stained for the presence 
of TRAP (Figure 5-7). TRAP+ OCs with >3 nuclei were counted in A) WT and B) Bcl-3-/- cultures 
and the sum total of 4 fields of view per condition in triplicate. Mean values of each condition 
were compared using a one way ANOVA with Bonferroni’s post-hoc test; p<0.05 (*), p<0.001 (**). 
Data represents pooled mean ± SD of three individual experiments. 
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5.2.5 Bcl-3 is required for osteoclast precursor homeostasis 

To evaluate the pre-OC populations present in Bcl-3-/- animals we examined the 

monocyte subsets of the blood and BM from WT and Bcl-3-/- animals. Monocytes are 

known to differentiate into OCs, however recent research has shown that 

subpopulations of monocytes can respond with greater efficacy to M-CSF and 

RANKL4,103,116. Therefore, ex vivo analysis of blood and BM was done to examine these 

populations. 200μl of blood and BM from one femur were taken from WT and Bcl-3-/- 

animals and stained for FACS analysis with CD3, B220, Ly6G, Ly6C, CD11b and CD115. 

This panel allowed the total population of blood and BM cells to be interrogated for the 

percentage of total monocytes (Ly6C+Ly6G-) and neutrophils (Ly6C+Ly6G+) (Figure 5-9A, 

B and Figure 5-10A). This also allowed the examination of the monocyte subsets 

present; Ly6Chigh classical monocytes (Population 1 - Ly6Chigh CD11bhigh), Ly6Clow 

non-classical monocytes (Population 2 - Ly6Clow CD11bhigh) and osteoprecursors (OCPs – 

Population 3 Ly6Chigh CD11blow) (Figure 5-10B). All three subsets are able to differentiate 

to OCs, however, in the BM, the OCP population is considered the most proficient 

pre-OC, while in the blood the Ly6Chigh monocyte population is considered the most 

osteoclastogenic4,103,116.     

The percentage of cells obtained from FACS analysis was used to calculate the total 

number of cells present in each sample from cell counts. It was shown that the total 

number of monocytes present in the blood and BM was unaffected by the absence of 

Bcl-3 (Figure 5-10A and Figure 5-11A, B). Interestingly, the number of neutrophils in the 

blood and BM were significantly reduced in Bcl-3-/- animals compared to WT animals 

(Figure 5-10A and Figure 5-11C, D). This data suggests that Bcl-3 might play a role in 

neutrophil biology, however, this is outwith the focus of this study and merits separate 

investigation. 

The three monocyte subsets in the blood and BM of WT and Bcl-3-/- animals were 

examined. In the blood, Bcl-3 deficiency had no effect on the number of circulating 

monocyte subsets (Figure 5-12A). However, Bcl-3-/- had fewer Ly6Chigh and Ly6Clow 

monocytes in the BM (Figure 5-12B). In the BM, the OCP population is predominantly 

thought to be the main pre-OC4,103, however, it has previously been observed that 

Ly6Chigh BM monocytes can differentiate into OCs in vitro103. Therefore, Bcl-3-/- animals 

may have fewer pre-OCs present in vivo than WT controls.  

The examination of CD115 expression on these pre-OC populations was also examined 

because CD115 is essential in the up-regulation of RANK and thus osteoclastogenesis6. 

Populations of CD115+ monocytes and monocyte subsets were identified based on their 
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forward scatter and expression of CD115 (Figure 5-13) and the percentage CD115+ cells 

was used to calculate the total number of CD115+ cells in each population. This revealed 

that Bcl-3-/- animals had fewer CD115+ monocytes in the blood and BM, especially fewer 

Ly6Chigh CD115+ monocytes when compared to WT controls (Figure 5-14A, B). As CD115 

has an essential role in the differentiation of OCs in vivo, this data supports the idea 

that Bcl-3-/- animals may have fewer pre-OCs present in vivo.  

In order to ascertain whether the overall milieu of the BM was altered in Bcl-3-/- animals 

mRNA was extracted from whole BM. mRNA for RANK and RANKL was quantified and 

revealed to be unchanged in Bcl-3-/- animals compared to WT controls (Figure 5-15A, B). 

This would suggest that as an inducer of osteoclastogenesis the RANKL-RANK axis may 

be unaffected by Bcl-3 deficiency, however, further work needs to be done to validate 

this observation. At the same time, evaluation of the GM-CSF mRNA transcript level was 

examined. GM-CSF is a vital cytokine in the differentiation, chemotaxis and function of 

neutrophils417,418 and as such it was hypothesised that as the number of neutrophils 

present in the blood and BM are lower in Bcl-3-/- animals the GM-CSF production may be 

altered. However, examination of GM-CSF mRNA showed that in Bcl-3-/- BM had a slight, 

but significant, increase in the mRNA present compared to WT controls (p<0.01) (Figure 

5-15C). This increase could be due to any population present in the BM up-regulating 

GM-CSF mRNA and due to the large number of cells present this increase has become 

diluted. Therefore, dissemination of which population up-regulates GM-CSF mRNA is 

required. Examination of day 5 OC mRNA showed that GM-CSF mRNA from WT and 

Bcl-3-/- cultures were identical (Figure 5-15D). Thus, OCs are unlikely to be the cell 

responsible for this increase, however, further work will be required to determine if the 

increase in GM-CSF mRNA is physiologically relevant. An increase in GM-CSF is unlikely 

to induce the neutropenia observed in Bcl-3-/- animals therefore further work must be 

done to understand this phenotype.     
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Figure 5-9: Gating strategy to identify blood and bone marrow monocytes. 
A) Blood and B) BM cells were isolated from WT and Bcl-3-/- animals. Per animal, 1x106 BM cells 
and the cells present in 200μl of blood were stained with CD3, B220, Ly6G, Ly6C and CD11b for 
FACS analysis. Representative FACS plots of gating strategies employed to distinguish monocytes 
are shown. Doublets were isolated from single cells by exclusion of events which had a non-linear 
relationship with Side Scatter Area versus Side Scatter Height and T and B cells were excluded by 
their expression of CD3 and B220. Monocytes and Neutrophils could then be identified based on 
their expression of Ly6C and Ly6G. Neutrophils express Ly6G and Ly6C, however, monocytes do 
not express Ly6G and can express Ly6C at high or low levels. Representative FACS plots shown 
are based on WT blood and BM cells. Percentages shown in FACS plots are of the percentage of 
cells present in the current gate.   
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Figure 5-10: WT and Bcl-3-/- blood and bone marrow monocyte and neutrophil populations. 
FACS analysis was performed as previously described (Figure 5-9). A) A comparison of 
representative FACS plots depicting monocyte (Ly6C+/-Ly6G-) and neutrophil (Ly6C+ Ly6G+) 
populations of the blood and BM from WT and Bcl-3-/- animals. B) A comparison of representative 
FACS plots showing the three monocyte subset populations of the blood and BM based on their 
expression of Ly6C and CD11b. Ly6Chigh classical monocytes (Population 1), Ly6Clow non-classical 
(Population 2) and OCP (Osteoprecursor - Population 3). Percentages shown are of the 
percentage of cells present in the current gate. All FACS plots are representative of one 
experiment.  
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Figure 5-11: Number of total monocytes and neutrophils in WT and Bcl-3-/- animals. 
Blood and BM were taken from WT and Bcl-3-/- animals and prepared from analysis by flow 
cytometry. Cells were counted prior to staining for FACS analysis and a gating strategy previously 
shown (Figure 5-9) was used to isolate the number of total monocytes (Ly6C+/- Ly6G-) and 
neutrophils(Ly6C+ Ly6G+)  (Figure 5-10A). The % of monocytes or neutrophils defined by FACS 
analysis were used to calculate the absolute number of monocytes present in blood and BM. The 
number of monocytes from WT and Bcl-3-/- animals in A) Blood and B) BM are shown. The number 
of neutrophils from WT and Bcl-3-/- animals in C) Blood and D) BM are shown. WT and Bcl-3-/- 
animals were compared using an unpaired two-tailed t-test; p<0.05 (*). Data represents mean ± 
SD, n=3. Data representative of two separate experiments. 
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Figure 5-12: Monocyte subsets cell number in WT and Bcl-3-/- animals. 
Continuing on from the data shown in Figure 5-11, the expression of Ly6C and CD11b was used to 
identify monocyte subsets as described in Figure 5-10B. The % of cells in each monocyte subset 
was used to calculate the absolute number of monocytes present in both the blood and BM. The 
subsets of interest were the Ly6Chigh monocytes, Ly6Clow monocytes and the OCP population 
(Ly6Chigh CD11blow). The absolute numbers of cells constituting these subsets in A) Blood and B) 
BM for WT and Bcl-3-/- animals were calculated. Individual monocyte subsets from WT and Bcl-3-/- 
animals were compared using a Two Away ANOVAs with Bonferroni’s post-hoc test; p<0.05 (*). 
Data represents mean ± SD, n = 3. 
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Figure 5-13: Representative FACS plots of CD115 expression on monocytes and monocytes 
subsets. 
FACS analysis was performed on blood and BM from WT and Bcl-3-/- animals. Monocytes and 
monocyte subsets were identified as previously described (Figure 5-9 and Figure 5-10). 
Fluorsecence minus one (FMO) control was used to identify the CD115 expressing cells in each 
monocyte population. Representative FACS plots of CD115+ cells in blood and BM monocytes and 
monocytes subsets are shown from WT and Bcl-3-/- animals. Percentages shown are of cells 
present in the current gate. All FACS plots are representative of one experiment.  
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Figure 5-14: CD115 expressing monocytes in WT and Bcl-3-/- animals. 
Blood and BM taken from WT and Bcl-3-/- animals were isolated and prepared for flow cytometry. 
The gating strategy shown (Figure 5-9 and Figure 5-10) was used to isolate total monocytes and 
monocyte subsets for analysis of CD115 (Figure 5-13). The number of CD115+ cells in A) Blood and 
B) BM monocytes and monocyte subset populations was calculated from the % of CD115+ cells and 
the total number of cells isolated from each animal. Individual monocyte populations of WT and 
Bcl-3-/- animals were compared using a two way ANOVA’s with Bonferroni’s post-hoc tests; 
p<0.05 (*) and p<0.001 (***). Data represents mean ± SD, n=3. Data represents one experiment.  
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Figure 5-15: GM-CSF mRNA transcript is up-regulated in Bcl-3 bone marrow.  
A-C) 1x106 murine WT and Bcl-3-/- BM cells were lysed, mRNA extracted, cDNA generated and 
qPCR performed on all samples which were run in triplicate. D) NA BM cells cultured for 5 days in 
the presences of 75ng/ml M-CSF and 50ng/ml RANKL were lysed, mRNA extracted, cDNA 
generated and qPCR performed on all samples which were run in triplicate. For all samples, 
GAPDH was used as the housekeeping control and non-template controls were run for each gene. 
Fold Change (2(-ΔΔCT)) was measured by normalising samples of each primer to the housekeeping 
control (ΔCT). Subsequently Bcl-3-/- ΔCT’s were normalised to the average WT ΔCT to obtain the 
ΔΔCT. This was then used to obtain the fold change (2(-ΔΔCT)). To obtain the spread of WT data, 
each WT ΔCT was compared to the average WT ΔCT and fold change calculated. WT and Bcl-3-/- 
samples were compared using an unpaired two-tailed t-test; p<0.01 (**).  Data represents mean ± 
SD, n=3. 
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5.2.6 Bcl-3 deficiency results in perturbed bone remodelling 

Although we observed no overt difference in osteoclastogenesis, due to the previously 

described role of NF-κB signalling in bone remodelling the in vivo architecture of the 

tibial trabecular bone was examined. Tibias were removed from 12 week old WT and 

Bcl-3-/- male mice. The age of the animals was selected because at this point male mice 

have a fully mature skeletal system which removes any variance that younger mice 

might introduce into the study as their skeletal system develops at a rapid rate419. Male 

mice have higher bone mass than female mice and also less variance due to limited 

exposure to oestrogen which can influence bone remodelling41.  

μCT was used to interrogate the trabecular bone present in the proximal tibia (Figure 

5-16A). Analysis of the trabecular region revealed that Bcl-3-/- animals had significantly 

more bone present than WT, as measured by BV/TV (WT – 18.9% versus Bcl-3-/- - 23.1%; 

p<0.001) (Figure 5-16B). Further analysis of the trabecular bone showed that the 

number of trabecular structures was increased (p<0.05) and the space between 

trabeculae was decreased (p<0.05) when compared to WT controls (Figure 5-16C, D). 

Interestingly, there was no difference in the structural model index, thickness of 

trabeculae or the intersection surface (Figure 5-16E-G). Other parameters of trabecular 

structure were measured to examine the differences between WT and Bcl-3-/- animals 

(Table 5-1). These results revealed that Bcl-3-/- animals had normal trabecular structure 

compared to WT, yet the increase in bone volume suggests that there is an uncoupling 

in the bone remodelling process between WT and Bcl-3-/- animals.        

In order to test whether the increase in bone volume in Bcl-3-/- animals was due to a 

deficiency in in vivo OCs, histology was undertaken on μCT scanned tibias. Sections 

were stained with haematoxylin and eosin (H&E) which showed that WT and Bcl-3-/- 

tibias had a similar trabecular bone and growth plate structure (Figure 5-17A). TRAP 

staining was performed on these sections which revealed the presence of OCs in Bcl-3-/- 

tibias (Figure 5-17B). Therefore, the increase in bone present in the trabecular region of 

the tibia in Bcl-3-/- animals was not due to an absence of OCs. In order to fully examine 

the histomorphometry of these animals more research needs to be done to count the 

number of OCs and OBs present in the trabecular bone. This could provide insight in the 

in vivo differentiation of OCs and OBs in the Bcl-3-/- animals and using a larger sample 

size could definitively prove whether Bcl-3-/- animals have differences in bone 

remodelling. 
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Figure 5-16: μCT analysis of trabecular bone of proximal tibia from WT and Bcl-3-/- animals. 
The left tibias of WT and Bcl-3-/- animals were taken at 12 weeks of age. Tibias were fixed 
overnight in 4% para-formaldehyde before storing bones in 70% ethanol. To analyse the bone 
volume in the tibia, bones were scanned using a SkyScan 1172 μCT scanner. Trabecular bone was 
identified and analysed using SkyScan CTAn software. A) Representative images of trabecular 
bone reconstructions of WT (top panel) and Bcl-3-/- (bottom panel animals), B) % of Trabecular 
bone (BV/TV), C) Trabecular number (1/μm), D) Trabecular separation (μm), E) Structural Model 
Index (SMI), F) Trabecular thickness (μm) and G) Intersection surface (μm2). WT and Bcl-3-/- 

animals were compared using an unpaired two-tailed t-test; p < 0.05 (*), p < 0.001 (***). Data 
shown represents mean ± SD, n=6. 
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Table 5-1: All μCT analysis parameters of trabecular bone of the proximal tibia in WT and 
Bcl-3-/- animals. 
As previously outline (Figure 5-16), all μCT analysis parameters are provided. Unpaired 
two-tailed t-tests were used to compare WT and Bcl-3-/- animals; p<0.05 (*), p<0.01 (**) and 

p<0.001 (***). Data shown is the mean ± SD, n=6. 
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Figure 5-17: The presence of osteoclasts in Bcl-3-/- tibias. 
The left tibias of WT and Bcl-3-/- animals were taken at 12 weeks of age. Tibias were fixed 
overnight in 4% para-formaldehyde before decalcification in 14% EDTA pH 8 until bones were 
pliable. 20μm coronal sections of the proximal tibia were following paraffin wax embedding. A) 
Representative images of Haematoxylin and Eosin (H&E) staining of tibial sections. Scale bar is 
500μm. B) Representative images of TRAP staining of tibial sections (Purple – TRAP and Blue – 
Haematoxylin). Negative control for TRAP stain was included. 3-5 serial sections per tibia, n=3. 
Scale bar; 200μm. 
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5.3 Discussion 

NF-κB is an essential regulator of osteoclastogenesis via the roles of p50, p52, p65 and 

RelB145,162,176. These components bridge both the canonical and non-canonical NF-κB 

pathways which are essential in the in vitro and in vivo differentiation of fully 

functional OCs. Following stimulation of RANK by RANKL, these subunits translocate to 

the nucleus and initiate transcription of OC essential genes164. The role of the negative 

regulator of NF-κB signalling, Bcl-3, has not been examined as an osteoclastogenic 

regulator. Thus this investigation aimed to examine whether Bcl-3 influenced in vitro 

and in vivo osteoclastogenesis.  

In response to stimuli, various receptors can activate NF-κB signalling resulting in the 

transcription of a huge number of genes167. As Bcl-3 is under NF-κB control, 

transcription of Bcl-3 acts in a negative feedback loop to dampen the primary response 

and limit a possible secondary response from stimuli420. Therefore, the absence of Bcl-3 

can result in uncontrolled NF-κB mediated transcription. In the present study, RANKL 

was used as the activator of NF-κB and as such, was shown to induce Bcl-3 transcription 

(Figure 5-2). However, RANKL stimulation of WT and Bcl-3-/- NA BM induced the 

differentiation of OCs (Figure 5-4). This differentiation of OCs was also inhibited by 

stimulation of FcγRs by IgG alone and in IgG complexes with SpA (Figure 5-8). This 

suggests the mechanism used by FcγRs to inhibit osteoclastogenesis in response to IgG 

does not utilise Bcl-3 and that WT and Bcl-3-/- pre-OCs respond in a similar manner to 

stimulation. Evaluation of essential OC mRNA transcription failed to show any 

differences between WT and Bcl-3-/- in vitro cultures (Figure 5-5 and Figure 5-6). 

Importantly, WT and Bcl-3-/- cultures were not tested for OC activity on bovine bone, 

therefore it remains to be confirmed whether Bcl-3-/- pre-OCs differentiate into 

functional OCs.  

One noticeable difference between WT and Bcl-3-/- OC cultures was that by day 7, there 

were nearly twice as many OCs present in WT than Bcl-3-/- cultures (Figure 5-4). One 

possible explanation for this is the variety of progenitors present in the BM at different 

differentiation stages responding to M-CSF and RANKL over a series of days. This would 

suggest that Bcl-3-/- cells have a deficit in one of these progenitor populations and thus 

could not differentiate into OCs to the same degree as WT cells. Further work would 

need to be done to evaluate the effect of Bcl-3 on myelopoiesis and whether there was 

a defect in the BM progenitor populations. In order to do this, FACS analysis could 

investigate the populations of progenitors which are lineage negative and CD117 and 

CD135 positive. This would give a good insight into the progenitor populations present. 

These differences may also be caused by Bcl-3’s ability to act as a pro-survival factor, 
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as Bcl-3 can enhances adjuvant driven T cell proliferation and survival421. In the absence 

of Bcl-3, stimulated T cells have increased levels of the pro-apoptotic factor Bim, while 

over expression of Bcl-3 lowers the concentration of Bim present and enhances T cell 

survival422. Due to the availability of reagents examination of anti-apoptotic mediators, 

Bcl-2 and Bcl-XL, was done and showed that at day 5 there was no difference between 

WT and Bcl-3-/- OCs. However, examination of pro- and anti-apoptotic factors at later 

time points, day 6 and 7, could provide insight into Bcl-3’s role as a survival factor in 

OCs. Examination of Bim on these days could demonstrate whether there are 

differences in the ability of Bcl-3 to act as a survival factor in T cells and myeloid cells. 

Interplay may exist following OC stimulation, whereby Bcl-3 enhances the survival of 

OCs in long term cultures; however, this remains to be investigated.  

To fully evaluate the role of Bcl-3 in the differentiation of OCs it would be essential to 

investigate the early response of cells to RANKL. This is possible by culturing NA BM cells 

and examining the effect of RANKL induced p50:p65 nuclear translocation and the 

processing of p100:RelB to p52:RelB. ChIP analysis could also be conducted to examine 

the ability to Bcl-3:p50/p52 and NF-κB subunits to bind to NF-κB sites on the gene 

promoters of OC essential genes such as NFATc1 following RANKL stimulation. The 

transcription of mRNA at an earlier time point could indicate whether Bcl-3 acts as an 

osteoclastogenic regulator. Further examination gene promoters like nfatc1, rank and 

even OC specific genes like dc-stamp and trap may reveal potential Bcl-3:NF-κB binding 

sites and infer an activatory or suppressive activity of this complex423. This could be 

done using ChIP analysis to reveal which NF-κB subunits bind to amplified regions of the 

gene promoters. It should be appreciated that the view of Bcl-3 as an NF-κB regulator is 

evolving. Bcl-3 is capable of interacting with AP1 to drive expression of AP1 specific 

targets424. Deletion of c-fos, a component of AP1, results in osteopetrosis and 

prevention of RANKL induced osteoclastogenesis144. AP1 promotes cell survival425 and 

drives the differentiation of OCs144, thus Bcl-3 may have a role in this interaction. 

Examination of these interactions following RANKL stimulation would reveal whether 

Bcl-3 has a role in regulating the initial stages of osteoclastogenesis.                   

Monocytes serve as a pool of pre-OCs and can be used ex vivo to generate OCs366. 

Therefore, examination of Bcl-3-/- animals for defects in this population was 

undertaken. Blood and BM monocytes were identified on the basis of their expression of 

Ly6C+/- Ly6G- 384 allowing discrimination with Ly6C+ Ly6G+ neutrophils. Interestingly, 

identification of the neutrophil population revealed fewer blood and BM neutrophils in 

Bcl-3-/- animals compared to WT counterparts (Figure 5-11). Bcl-3 may also have an 

effect at an early stage of differentiation and influence the myelopoiesis of neutrophils 

from progenitors in the BM. As mentioned, identification of BM stem cells would allow 
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further comparison of the effects that the absence of Bcl-3 incurs. The presence of 

GM-CSF mRNA present in BM was examined, because of its pleitropic effects on 

neutrophils and bone biology. GM-CSF is involved in stimulating neutrophil 

differentiation from BM progenitors and acts as a chemotactic during inflammation417,418. 

It is also a known pro-OC factor and stimulates the differentiation and activity of OCs426, 

but it also increases the proliferation and activity of OBs427,428, enhancing bone 

remodelling. When examined there was an increase in GM-CSF mRNA in the BM of 

Bcl-3-/- animals was observed compared to WT animals. This is counter-intuitive as an 

increase in GM-CSF should result in the production of neutrophils. It could be speculated 

that the gene encoding GM-CSF, csf2 is transcribed under NF-κB or AP1 control and thus 

in the absence of Bcl-3, csf2 transcription becomes dysregulated leading to an increase 

in transcription. Cultured OCs do not alter expression of GM-CSF mRNA, therefore 

another cell type may be responsible for this increase in vivo. Protein concentration of 

GM-CSF needs to be examined to ensure that the difference in mRNA relates to a 

physiologically relevant change. Another cytokine that is known to influence neutrophil 

differentiation is G-CSF and this could also be investigated to further elucidate the link 

between Bcl-3 and neutrophil biology. 

However, following examination of neutrophils, the number of monocytes and monocyte 

subsets in WT and Bcl-3-/- animals was examined.  This revealed that there were fewer 

Ly6Chigh and Ly6Clow monocytes present in the BM of Bcl-3-/- animals (Figure 5-12). 

Following further examination of this population, the number of CD115+ monocytes were 

deficient in the blood and BM of Bcl-3-/- animals compared to WT controls. As the 

receptor for M-CSF, CD115 can be used as an identifier of pre-OCs4 and has been shown 

to be essential in driving RANK expression in pre-OCs6. With a decrease in the cells 

expressing this receptor there is the potential for an in vivo defect in the cells 

differentiating to OCs. This may itself provide an explanation for the difference in bone 

volume observed in WT and Bcl-3-/- animals’ trabecular bone and the difference in in 

vitro OC numbers at day 7. 

Following the observation that there was a defect in the CD115+ monocytes the 

micro-architecture of the tibial bone was examined to determine whether Bcl-3 had an 

effect on bone remodelling. This revealed that Bcl-3-/- animals had increase in bone 

volume in the trabecular region of the proximal tibia (Figure 5-16).  This increase in 

bone density would indicate that bone remodelling had become perturbed in Bcl-3-/- 

animals, suggesting that Bcl-3-/- may have roles in bone remodelling beyond OCs. 

Further work needs to be done to fully identify further changes in trabecular and 

cortical bone architecture, as well as the potential gender and age differences. 

However, this increase in bone volume was not due to an absence of OCs in vivo (Figure 
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5-17). Further work would need to be undertaken to determine the number of TRAP+ 

cells present in the tibial trabecular region of WT and Bcl-3-/- animals, this would have 

shown if Bcl-3-/- animals had a deficit in the number of in vivo OCs.  Bcl-3-/- BM also had 

similar levels of RANK and RANKL mRNA present compared to WT, suggesting that this 

axis is unaffected by Bcl-3 deficiency (Figure 5-15). However, the presence of OPG 

could be measured to ensure that there was no increase in OPG which would inhibit OC 

differentiation and could account for the increase in bone volume.    

The Bcl-3-/- animals have a global deletion of the bcl3 gene which will exert effects on 

all cell types. Therefore, to dissect the effect that Bcl-3 has on bone remodelling, OBs 

must also be examined. The role of NF-κB in the differentiation of OBs is complex as 

activation of NF-κB during differentiation inhibits maturation429. However, OBs require 

the NF-κB subunit p50 for TNF-α mediated secretion of M-CSF430. Yet, Yao et al (2014) 

demonstrated that RelB was a negative regulator of OB differentiation and function429. 

Indicating that the role of Bcl-3 in regulating OBs may be complex and the 

differentiation of OBs from WT and Bcl-3-/- animals would dissect the differences 

between these genotypes. The differentiation of OBs and OCs in co-cultures could also 

reveal if there are cell specific abnormalities. By using cultures of mixed genotype WT 

or Bcl-3-/- OBs could be co-cultured with WT or Bcl-3-/- pre-OCs. The level of 

osteoclastogenesis could demonstrate if the absence of Bcl-3 alters the relationship 

between these cell types. To further examine the capacity of OBs to function in vivo, 

bone formation can be measured by use of calcein double labelling, as calcein only 

binds to newly formed matrix. By administering two doses of calcein and visualisation of 

the bone matrix by histology the rate of bone formation can be measured by the 

distance between layers of calcein. This would indicate whether OBs from Bcl-3-/- 

animals can form bone at a higher rate than WT animals and may be the reason for the 

increased tibial bone volume in Bcl-3-/- animals.  

However, as a global gene deletion the Bcl-3-/- genotype is known to effect the activity 

of a number of other cells including B cells. B cells are known to be a major contributor 

to OPG production within the BM and if Bcl-3 were to influence B cell production of OPG 

there could be ramifications on bone remodelling. As such, the generation of two 

transgenic mouse strains with OC and OB specific Bcl-3 gene deficiencies would allow 

absolute observation of the effect of Bcl-3 in these cells in vivo. The use of Cre-lox 

technology to generate an OC specific Bcl-3 deletion under the control of the Cathepsin 

K promoter and osteocalcin promoter for OBs would be an excellent tool to examine the 

effects of Bcl-3 deficiency in an otherwise ordinary environment.  
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Studies have shown that Bcl-3 modulates NF-κB activation by sequestering p50/p52 

homo- and hetero- dimers on NF-κB sites and the absence of Bcl-3 can result in 

enhanced production of pro-inflammatory cytokines following stimulation with TNF-α or 

LPS167. This present study demonstrated that RANKL could induce Bcl-3 transcription and 

result in the differentiation of OCs in Bcl-3-/- cells. The role of Bcl-3 in vivo was shown 

to influence CD115+ monocytes and neutrophils numbers, however further work is 

required to examine this observation. Interestingly, Bcl-3 deficiency increased 

trabecular bone volume compared to WT animals. This confirmed that Bcl-3 had an 

impact on bone remodelling, however further work is required to understand the role of 

Bcl-3 in this process. 
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6 General discussion  

This thesis examined the potential for SpA IgG complexes as a novel therapeutic in 

osteoporotic disease. Osteoporosis is a condition resulting from a disruption between 

the immune and skeletal system due to menopausal oestrogen deficiency380. The animal 

model used to study this disease was the OVX model which was induced by the removal 

of the ovaries to simulate the menopause40. The result is a species and strain specific 

bone loss in the femur, tibia and vertebrae, emulating human disease39. Every second 

day following surgery animals were treated with 100μg SpA or OVA. We observed that 

SpA had no effect on the bone loss in the OVX model. Previous work had shown that 

100μg SpA was able to reduce inflammation and OCs numbers in inflamed joints of CIA 

animals316. A dose of 100μg SpA may have been optimal for treating inflammation in the 

CIA model, however, we hypothesis that a higher dose may be required to combat 

osteoclastogenesis in the OVX model. Further research is required to discover the 

optimal dose of SpA to exert an in vivo anti-osteoclastogenic effect. It has been shown 

that high doses of SpA (1.5mg) can reduce the serum IgG concentration299, thus the dose 

must be carefully monitored to ensure that there is no detrimental effects on serum IgG 

concentration following long term treatment. These pharmacokinetic experiments could 

inform the correct dose to test SpA’s ability to treat the OVX model of disease and 

determine whether SpA mediated FcγR modulation is capable of treating osteoporotic 

disease. 

The bioavailability of SpA is also an important factor as SpA can induce B cell apoptosis 

via the Fab VH3 domain of surface IgM271,308,309. However, SpA’s ability to interact with 

von Willebrand factor and, in particular, TNFRI is also important431,432. TNFRI is 

expressed on multiple cell types including epithelial cells, keratinocytes and 

OBS431,433,434. In animals models, S. aureus interacts directly with OBs in an SpA 

dependent manner435. This interaction can result in enhanced RANKL production and 

decreases OPG secretion by OBs435. It is currently believed that SpA triggers TNFRI NF-κB 

signalling, resulting in secretion of inflammatory cytokines and contributing to diseases 

like osteomyelitis435,436. However, this particular interaction requires the IgG binding 

domain and as SpA treated systemically co-opts circulating IgG, the interaction between 

SpA and OBs may not be physiologically relevant, but may require further 

investigation316,431.  

Recently, a highly purified form of SpA (PRTX-100) has been used in clinical trials410. In 

these safety trials, intravenous low doses of SpA (0.3-0.45μg/kg) were safe with only a 

small number of individuals presenting with adverse effects, while individuals given 

higher doses (5,10 and 20μg/kg) were more likely to suffer side effects410. Side effects 
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included headaches, myalgia and nausea410. At low doses, patients given SpA had a 

decrease in circulating lymphocytes, however, the effect on monocyte populations were 

not studied410. Clinical trials are on-going and aimed at determining the effect of 

PRTX-100 in RA patients410. It should be appreciated that this study observed the 

production of anti-SpA antibodies after treatment with PRTX-100, which resulted in 

enhanced clearance of SpA following administration410. To use SpA clinically a novel SpA 

mimetic needs to be developed that can engage FcγRs, while removing SpA’s 

immunogenicity.  

The inability of SpA to alter disease progression in the OVX model was not mirrored in 

vitro because SpA was able to form IgG complexes that inhibit murine 

osteoclastogenesis. The differentiation of OCs from BM cells isolated from mice and 

cultured with M-CSF and RANKL could be inhibited by treatment with SIC or OpIg. 

Importantly, SIC was able to inhibit osteoclastogenesis in an FcγRIII independent 

manner. Yet, OpIg required the presence of FcγRIII to inhibit osteoclastogenesis 

suggesting that aggregates are present in the OpIg preparation that have the capacity to 

interact with this low affinity receptor to inhibit osteoclastogenesis. Importantly, SIC 

but not OpIg, was able to limit in vitro OC-mediated bone erosion.  

Although in the murine system, both OpIg and SIC were able to inhibit 

osteoclastogenesis, previous studies have demonstrated that OpIg could not inhibit the 

differentiation of human OCs316. Why there is a difference between murine and human 

in vitro systems is not fully understood. The only constituents of OpIg are IgG and OVA, 

and OVA should be an inert protein in this system: unable to be bound by polyclonal IgG 

and unable to bind to any monocyte receptors. Given the unexplained result, even 

though the combination of OVA and IgG might seem to be the ideal control, further 

studies should be undertaken to categorically determine the effect of purified 

polyclonal IgG in the murine system. In addition, use of antibody:antigen complexes 

provide a more physiologically relevant method of FcγR engagement. Complexes 

consisting of OVA and anti-OVA IgG would have the ability to interact with FcγRs and 

the ratio of antigen to antibody would inform the FcγR binding affinity279. Therefore, 

studies using SpA IgG complexes, OVA immune complexes and monomeric polyclonal IgG 

(OpIg) to modulate OC differentiation would yield valuable insight into effect of FcγR 

modulation during osteoclastogenesis.  

FcγR modulation alters the mRNA transcription of pre-OC resulting in decreased levels 

of mRNA for genes such as Cathepsin K, DC-STAMP, OSCAR and TRAP which are required 

for the maturation of OCs7,154,242,336. Studies that examined siRNA mediated 

down-regulation of DC-STAMP mRNA revealed that DC-STAMP is essential for the fusion 
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of pre-OC220,363. Treatment with SIC and OpIg prevented RANKL induced DC-STAMP 

up-regulation and thus pre-OC fusion was inhibited. However, to confirm that the 

observed changes in mRNA transcription represented a physiological change the protein 

level of each corresponding mRNA transcript should be quantified. In this thesis, only 

OC specific mRNA transcription was investigated, yet, examination of MØ specific mRNA 

levels may identify the differentiation pathway FcγR modulated cells undertake. 

Previously, Grevers et al (2013) used heat-aggregated rabbit IgG to inhibit murine 

osteoclastogenesis while demonstrating that this form of FcγR modulation 

down-regulated mRNA transcription for DC-STAMP, TRAP and Cathepsin K, but also 

increased F4/80 mRNA317. F4/80 is a MØ marker associated with MØ maturation, 

suggesting that heat-aggregated rabbit IgG can skew the differentiation of progenitors 

from OCs to MØ317,437. Examination of this marker and others could identify similarities 

between SIC/OpIg and heat-aggregated rabbit IgG modulation of FcγRs. 

The final section of this thesis was an examination into the role of Bcl-3, a negative 

regulator of NF-κB, on bone remodelling. NF-κB is essential for osteoclastogenesis and 

the subunits p50, p52, p65 and Rel-B have been identified as mediators in OC 

differentiation145,162,176. Bcl-3-/- animals are highly responsive to TLR4 and cytokine 

stimulation and produce aberrant and excessive responses to stimulation167. We 

hypothesised that due to Bcl-3’s regulatory role in NF-κB signalling, it would regulate 

RANKL-RANK signalling and influence OC differentiation. Examination of day 5 OCs 

produced by WT and Bcl-3-/- animals showed that the OCs were similar in number, 

appearance and transcriptional profile, however, by day 7 there were fewer Bcl-3-/- OCs 

than WT OCs. There may be intrinsic differences in the progenitor populations present 

in the BM resulting in varied responses to M-CSF and RANKL. As such, examination of the 

BM monocyte subsets revealed that Bcl-3 deficient animals had fewer CD115+ 

monocytes. These cells are able to differentiate into OCs4 and may be responsible for 

the difference in OC numbers in vitro. Further examination of progenitor populations to 

identify HSCs, MDPs, and CMPs in Bcl-3 deficient animals would provide information 

regarding the involvement of Bcl-3 in myelopoiesis. This would not only help understand 

Bcl-3’s role in monocyte homeostasis but also our understanding of Bcl-3’s role in 

neutropenia, as Bcl-3 deficiency resulted in fewer neutrophils in the blood and BM. Due 

to the decrease in CD115+ monocytes in Bcl-3-/- animals, further studies were 

undertaken to assess the role Bcl-3 has in bone remodelling. The trabecular bone 

microarchitecture was examined by μCT and Bcl-3-/- animals were discovered to have 

increased bone compared to WT controls. This data suggests that there may be defect 

in OC erosion or OB bone formation that remains to be elucidated, however, Bcl-3 

appears to have a role in bone remodelling. 
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6.1 Future work 

It was shown in Chapter 3 that SpA IgG complexes are able to engage FcγRs and inhibit 

osteoclastogenesis. Yet, the signalling mechanism utilised by these complexes remains 

undefined. Activatory FcγRs signal via the FcRγ which has been implicated in OSCAR 

signalling along with the DAP12 adaptor protein. Classically, FcRγ and DAP12 signal via 

ITAM motifs and are regarded as an activatory signal enhancing osteoclastogenesis 

through Ca2+ responses and NFATc1154. Yet, TREM2-DAP12 ITAM signalling negatively 

regulates osteoclastogenesis and bone remodelling216, providing evidence that ITAM 

signalling can activate and inhibit cellular functions. Recently, ITAMi signalling has been 

shown to inhibit cellular abilities; one example of this is the interaction between 

monomeric IgG and FcγRIII which inhibits MØ Ca2+ responses, endocytosis and 

phagocytosis257. Typically FcγRIII-FcRγ signal via SYK which activates Ca2+ responses and 

NFATc1, yet, ITAMi signalling by FcγRIII-FcRγ can result in SHP-1 activation which is 

associated with the inhibitory FcγRIIB ITIM signalling257,330. In our system, SIC treatment 

is believed to act through FcγRI-FcRγ316. Examination of the molecular machinery 

associated with FcRγ following SIC engagement would reveal the initial signalling events 

resulting in the inhibition of OC differentiation. To do this, SIC treatment of pre-OCs 

followed by co-immunoprecipitation to ‘pull-out’ FcγRI would reveal the identity of 

receptors and signalling molecules associated with the FcγRI/SIC complex. Co-

immunoprecipitation allows a molecule to be targeted by antibody and subsequently 

removed from the sample. This isolated molecule can then be run on a gel and probed 

to determine which proteins it associates with. This could indentify whether SIC can 

induce FcγRI-FcRγ to signal via ITAM, ITIM or ITAMi pathways. This could reveal the 

signalling pathway used by SIC to inhibit osteoclastogenesis and also provide further 

targets which could be used to prevent osteoclastogenesis. 

The results from Chapter 5 demonstrate that in vitro WT and Bcl-3-/- OCs are 

fundamentally similar. However, these animals differ in their bone structure revealing 

that Bcl-3 has a role in bone remodelling. In order to continue this research further 

work must be undertaken to characterise the erosive potential of in vitro OCs. While in 

vivo examination of OCs could reveal whether there is a deficit in the number of OC 

present in the trabecular region. Examination of cortical and trabecular bone in the 

femur or vertebrae could be used to verify that the increase in bone is observed at 

other anatomical sites. As demonstrated, oestrogen has a marked effect on bone 

remodelling and its effect in Bcl-3-/- animals must be examined. Oestrogen deficiency 

has been shown to increase Bcl-3 mRNA and thus inhibit NF-κB activity438. The bone 

microarchitecture of Bcl-3-/- animals was only studied in male mice as female mice are 

exposed to higher levels of oestrogen. It is hypothesised that female Bcl-3-/- mice would 
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be more responsive to NF-κB activation than males, resulting in female Bcl-3-/- mice 

with more severe osteopetrosis. The examination and comparison of OCs and OBs 

produced from male and female animals would be useful in identifying interplay 

between oestrogen and Bcl-3 in bone remodelling. The use of OB maturation and nodule 

formation assays would provide insight in the role of Bcl-3 in osteoblastogenesis. 

Analysis of the secreted extracellular matrix would provide clues to the functionality of 

Bcl-3-/- OBs and thus allude to whether in vivo Bcl-3-/- OBs are dysfunctional. These 

studies would demonstrate the extent to which Bcl-3 is involved in bone remodelling 

and provide necessary information to determine whether Bcl-3 has therapeutic 

potential. 

6.2 Conclusion 

SpA IgG complexes and Bcl-3 were investigated to determine their potential as novel 

avenues of therapeutic intervention in osteoporotic disease. In vitro, SpA generating IgG 

complexes of a discreet size that interacted with FcγRs on the surface of murine 

pre-OCs inhibiting their differentiation to mature OCs in the presence of M-CSF and 

RANKL. Treatment of animals with SpA induced the formation of IgG complexes in 

circulation with the ability to interact with monocyte subsets in the blood. However, in 

the murine model of osteoporosis, therapeutic and prophylactic treatment of animals 

with SpA failed to prevent oestrogen deficient bone loss. Thus further work must be 

done to determine whether SpA at higher doses has the potential to prevent oestrogen 

deficient bone loss, yet, the data presented in this thesis demonstrates that SpA is 

unable to treat osteoporotic disease.  

The role of Bcl-3 in bone remodelling is yet to be fully elucidated; current observations 

demonstrate that Bcl-3 deficiency perturbs the intimate nature of bone remodelling 

resulting in increased trabecular bone. This novel target could potentially be used to 

treat osteoporotic diseases, however, whether the increase in bone in Bcl-3-/- mice is a 

result of increased bone formation or decreased bone erosion remains to be verified. 
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Appendix - Media, buffers and reagents 

Roswell Park Memorial Institute Medium (RPMI 1640) 

500 ml of RPMI 1640, 50 ml Fetal Bovine Serum (FBS), 5 ml L-glutamine and 5 ml 

Penicillin/Streptomycin. 

Complete Dulbecco’s Modified Eagle Medium (D-MEM) 

500 ml of D-MEM, 50 ml Fetal Bovine Serum (FBS), 5 ml L-glutamine and 5 ml 

Penicillin/Streptomycin. 

Complete alpha Minimum Essential Media (α-MEM) 

500 ml of α-MEM, 50 ml Fetal Bovine Serum (FBS), 5 ml L-glutamine and 5 ml 

Penicillin/Streptomycin. 

1x Phosphate Buffered Saline pH 7.4 (PBS)  

8 g NaCl, 0.2 g KCl, 0.2 g KH2PO4 and 1.74 g Na2HPO4  in 1 litre dH2O. 

Separation Media 

500 ml 1x PBS, 10 ml Fetal Bovine Serum (FBS) and 0.146g EDTA.  

PBS – 0.01% Tween-20 (PBST 0.01%) 

100 μl Tween-20 in 1 litre 1x PBS. 

FACS Buffer  

10 ml Foetal Bovine Serum (FBS, PAA Cell Culture Company), 2 g NaN3 and 1.68 g EDTA 

in 1 litre 1x PBS. 

0.5M EDTA Solution 

168.12 g EDTA in 1 litre dH20. 

Tris-Acetate-EDTA (TAE) pH 8 Buffer  

4.84 g Tris Base, 1.14 ml glacial acetic acid and 0.37 g EDTA in 1 litre dH20. 

TRAP Fixative Solution (Acid Phosphatase Leukocyte (TRAP) kit, Sigma-Aldrich) 

12.5 ml Citrate Solution, 32.5 ml Acetone and 4 ml 37% formaldehyde. 
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TRAP Staining Solution (Acid Phosphatase Leukocyte (TRAP) kit, Sigma-Aldrich) 

125 μl Fast Garnet GBC Base solution and 125 μl NaNO2 solution, mixed for 2 minutes. 

11.25 ml 37oC dH20 with 250 μl Fast Garnet/NaNO2 mixture, 125 μl Napthol As-Bi 

Phosphoric acid solution, 250 μl Acetate solutions and 250 μl Tartrate solution.  

Decalcification Solution (14% EDTA pH 8) 

140 g EDTA in 1 litre dH20 with pH adjusted to 8 using NaOH. 

ELISA Assay Diluent – 1x PBS (10% FBS) 

5 ml FBS in 50 ml 1x PBS. 

Sodium Carbonate Coating Buffer (pH 9.5) 

7.13 g NaHCO3 and 1.59 g Na2CO3 in litre of dH2O and pH to 9.5 with NaOH 

Sodium Phosphate Coating Buffer (pH 6.5)  

12.94 g Na2HPO4 and 15.47 g NaH2PO4 in 1 litre of dH2O and pH to 6.5 

Scott’s Tap Water Substitute 

2 g NaHCO3 and 20 g MgSO4 in 1 litre of dH2O. 

1% Acid/Alcohol Solution 

700 ml Ethanol, 10 ml concentrated HCl and 290 ml dH2O. 

2% Agarose Solution 

2 g Agarose in 100 ml 1x TAE, heated to dissolve agarose. 
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