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Abstract 

The aims of the studies reported in this thesis were to investigate the possible effects of 

changes in dietary electrolyte balance (dEB) levels on phytase efficacy on growth 

performance, bone mineralisation and nutrient utilisation; and the effects of phytase 

supplementation, alone or in combination with xylanase, on growth performance, bone ash, 

volatile fatty acids (VFA) and pH at different parts of the gastrointestinal tract (GIT) in 

diets marginally deficient in dEB. Two experiments were performed and each experiment 

used 336 day-old Ross 308 male broiler chicks which were allocated to 7 treatments in a 

randomised complete block design. The dietary treatments were corn-soybean meal based 

and were fed in a mash form. For both experiments, each treatment had 6 replicate pens 

with 8 birds each. A 3×2 factorial arrangement of treatments was used in each experiment 

along with a positive control (PC) with nutrient levels meeting breeder recommendation. 

Data in both experiments were analysed using the linear mixed model of GenStat. In 

experiment 1, three levels of dEB (214, 234 and 266 mEq/Kg) and 2 levels of phytase      

(0 FTU/Kg and 1500 FTU/Kg) were used. Birds and feed were weighed on day 0 and 21. 

Excreta were collected from pens on days 19 and 20. On day 21 one randomly selected 

bird from each pen was killed, blood was collected from the jugular vein and blood pH 

measured. The remaining birds in each pen were euthanised and ileal digesta were 

collected from each pen. The left tibia bones from two randomly selected birds in each 

raised pen were collected for bone mineralisation study. There were no dEB × phytase 

interactions for any of the growth performance and bone mineralisation responses.  But an 

interaction (P<0.05) was observed for ileal digestibility and total tract retention for most of 

the nutrients. Increasing dEB from 214 to 266 mEq/Kg had no effect on growth 

performance or tibia bone mineralisation. Phytase supplementation increased (P<0.05) 

broilers growth performance and tibia bone mineralisation responses relative to the diets 

without phytase. Growth performance and bone mineralisation responses were greater 

(P<0.05) in PC compared with NC, except for feed intake. There were no differences in the 

response between PC and the diets containing equivalent dEB (234 mEq/Kg) but broilers 

fed the corresponding diets with phytase outperformed NC and PC broilers. Ileal and total 

tract P utilisation were greater (P<0.05) in birds fed NC and phytase-supplemented diets 

than the PC birds. Utilisation of DM, Ca, K, and P was also greater (P<0.05) in       

phytase-supplemented diets at 234 mEq/Kg but for P and K was greater in phytase-

supplemented diets when dEB was 266 mEq/Kg. In Experiment 2, the factors included 3 

levels of enzyme (no enzyme, phytase alone or combination of phytase and xylanase)    



ii 
 

and 2 types of negative control (NC1 and NC2). All the birds and feed were weighed on 

day 0 and 21. After slaughter on day 21, the left tibia bones were collected and the pH of 

the gizzard, jejunum and caeca (left and right) were taken. Caecal content were collected 

into tubes to be analysed for volatile fatty acids content. There were no significant     

matrix × enzyme interactions for any of the responses. Reducing the dietary levels of P and 

Ca in both NC1 and NC2 reduced (P<0.05) gain:feed compared with PC but had no 

significant effect on the other growth performance responses. Phytase alone had no effect 

on growth performance compared to diets with no enzyme supplementation, but when 

phytase was combined with xylanase an increase (P<0.01) in gain:feed was observed. 

Tibia ash was lower (P<0.01) in NC1 and NC2 compared to PC and improved (P<0.05) 

with supplementation of phytase alone or combined with xylanase. The treatments had no 

effect on the digesta pH or caeca VFA. It was concluded from experiment 1 that phytase 

promoted growth and tibia bone mineralisation independently of the dEB levels and that 

the extent of phytase effect on nutrient utilisation differs depending on dEB content of the 

diets, which indicates that treatments effects seen in nutrient utilisation do not always 

reflect effects observed in growth performance. It was concluded from the second 

experiment that dietary reductions of Ca and P negatively affected tibia mineralisation and 

gain:feed which were counterbalanced by supplementation of phytase plus xylanase . 
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1. Introduction 

In the animal production industry, feed is the biggest factor in production costs 

representing around 60 to 75% of total costs (Ligeiro, 2007) therefore, small improvements 

in the efficiency and utilisation of nutrients and the use of alternative ingredients might 

result in great savings (Ligeiro, 2007). Animals depend on nutrients from the diet to 

maintain normal physiological activities. To access these nutrients, animals have digestive 

systems that break down ingested feed into smaller particles for digestion and absorption 

into the body. The major purpose of the digestive system is the assimilation of nutrients 

required for maintenance, growth (including bone mineralization), reproduction and meat 

or egg production (Stevens & Hume, 2004).  Due to the inferior diversity and amounts of 

certain microbial species in their gut compared to other species like cattle, the simplicity of 

poultry’s digestive system in structure and function, demands that the diets formulated for 

poultry use must be high in quality and digestibility in order to expedite absorption. 

Exogenous enzymes have been available for use in the feed industry for a number of years 

but their use has increased in the last few years due to the increase of feed costs (Hahn, 

2010) and the use of more unconventional feedstuffs. Exogenous enzymes will improve 

their nutrient and energy availability by reducing the action of anti-nutritive factors and by 

increasing their digestibility and improving their nutritive value (Ravindran, 2013). 

Several studies have shown the importance of exogenous enzymes in reducing the effect of 

anti-nutritional factors (Meng & Slominski, 2005; Hruby & Pierson, 2009) and improving 

feed efficiency (Wyatt & Goodman, 1993) and these enzymes have proven to be valuable 

due to their lower cost, as well as environmental and productivity benefits. The global feed 

enzyme market can be broadly divided into phytase (approximately 60%) and non-phytase 

(40%) enzymes segments and is worth in excess of  $550 million US dollars, saving the 

global feed market an estimated $3 to $5 billion per year (Adeola & Cowieson, 2011). 

Over two-thirds of phosphorus (P) in cereals and legumes, the main ingredients of poultry 

diets, are contained in chemical structures called phytic acid or its salts, collectively known 

as phytates. Phytate-P is not available for poultry unless at least one of the phosphate 

groups is removed from the inositol molecule, by intrinsic feed phytase, intestinal phytase 

or microbial phytase. Non-ruminant animals do not produce phytase in significant quantity 

and therefore exogenous phytases are routinely added to their feed to enable better 

utilisation of phytate-P. Phytase does not just increase the digestibility of phytate-P in 

poultry but may improve the digestibility of other minerals like calcium (Ca), as well as 
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other micro minerals and energy (Kornegay, 2001). Phytate is often considered an anti-

nutrient because of its ability to chelate with dietary cations, rendering the chelated cations 

partially or completely unavailable to the animal. It has been shown that phytase and 

phytate influence the secretion patterns of sodium (Na) at the ileal level in broilers; 

whereas phytate increases but phytase reduces Na losses (Ravindran et al., 2006; Cowieson 

et al., 2004). 

In relation to acid-base homeostasis, the physiological importance of the combined intake 

by broiler chickens of Na, potassium (K), and chloride (Cl), or the dietary electrolyte 

balance (dEB), has been recognized for some time and can be used as an indicator of the 

acid or base forming properties of a diet and also as a contributor to performance. By 

definition, Na affects the dEB levels and by compromising Na secretions into the gut 

lumen, it is implicit that phytate might be influencing the digesta electrolyte balance and 

also, might be compromising the Na-dependant transport mechanisms involved in the 

intestinal uptake of some nutrients, including amino acids (AA), which negative effect is 

counteracted by phytase. Because of the possibility for phytase to reduce endogenous Na 

losses, but also reduce dietary need for Na, Ca, P and other minerals, a matrix is usually 

included for these in diet formulation. Matrix is defined as the amount of inorganic-P or 

any other nutrient that can be produced by a given amount of added phytase in the diet 

(Shelton et al., 2004). When nutritionists do not make use of such matrix values, there are 

potentials for imbalance in dEB.  

Apart from phytate, the majority of poultry feed ingredients also contain considerable 

amounts of non-starch polysaccharides (NSP’s). These are cell constituents mostly made of 

cellulose, hemicellulose and pectin (Smits & Annison, 1996) with varying degrees of water 

solubility, size and structure. They cannot be degraded by endogenous enzymes and reach 

the end of the digestive tract almost indigested (Caprita et al., 2010). Ingestion of water 

soluble NSP increases digesta viscosity in broilers (Annison & Choct, 1991) but through 

the knowledge of their chemical structure, enzymes have been developed to overcome their 

anti-nutritional effects. Nutrient utilisation in poultry has been shown to increase with the 

supplementation of NSP-degrading enzymes due to elimination of the nutrient 

encapsulating effect of cell walls and reduction of digesta viscosity (Kim et al., 2005). 

Debon & Tester  (2001) observed in an in vitro study that NSP have the capacity to bind 

cations but that the components in the diet and the different physiological conditions in the 

gastro-intestinal tract (GIT) of the different animals can potentially interfere with this 

binding capacity.  
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This nutrient encapsulating effect of cell walls seems to also affect phytate-P release by 

phytase, since it has been shown that the amount of phytate-P released by phytase depends 

on the amount of phytase added to the feed but there is some of this phytate-P that remains 

undigested even when considerable amounts of phytase are used. This might be an 

indication that phytate might be “locked” away in intact cells (Karimi et al., 2013). 

Therefore, the addition of NSP enzymes such as xylanase may increase the efficacy of 

phytase by breaking down the cell walls and releasing phytate-P for phytase hydrolysis and 

by eliminating the phytate chelating effects of NSP in both, feed stuff and digesta (Kim et 

al., 2005).  

Therefore, the present MSc study objective was the investigation of the impact of changes 

in dEB levels on phytase efficacy in growth performance, bone mineralisation and nutrient 

utilisation in broilers up to 21 days old, as well as to assess the effects of phytase 

supplementation, alone or in combination with xylanase, on growth performance, bone 

mineralisation, volatile fatty acids production and pH at different parts of the GIT  in diets 

marginally deficient in dEB. 
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2. Literature Review 

2.1 Phytic acid 

Phytic acid (C6H18O24P6) is also known as inositol hexaphosphate (IP6) and consists of a 

myo-inositol ring associated with up to 6 phosphate ions (Figure 1) mainly present in 

grains and seeds as a mixed salt of mineral cations including zinc (Zn2+) and iron (Fe3+) 

known as phytate (Raboy, 1997). Phytate is present in cereal grains and oil seeds and its 

primary physiological role is to store nutrients, mainly P that will be released with the help 

of endogenous phytases when germination occurs (Ligeiro, 2007). Although the term 

phytate is the most frequently used in the literature to refer to phytase substrate, phytin can 

also be used and represents the deposited complex of IP6 with Ca, K  and magnesium (Mg) 

present in plants (Khalid et al., 2013). 

 

 

Figure 1 – Phytic acid molecule 

The main ingredients used in poultry feeds are plant-based and for the animals to have 

access to the P from phytic acid it is necessary that they are able to hydrolyse the ester 

bonds between the phosphate groups and the inositol ring before P becomes available for 

absorption in the GIT (Cowieson et al., 2004). Phytate stores up to 80% of the total P 

present in plant seeds (Ravindran et al., 1995) but the P in the form of phytate-P is 

generally not available to monogastric animals due to a lack in the intestinal digestive 
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enzyme, phytase, needed to hydrolyse the ester chemical bonds and release P from the 

phytate molecule (Ravindran et al., 1995). 

It is known that the capacity of chelation that phytic acid possesses is far more 

encompassing than simply limiting the P and minerals availability. Because of their 

negative charges, phytate molecules can bind to positively charged molecules like 

nutritionally important minerals (e.g. Ca, Mg, Zn and Fe), proteins (including enzymes) 

and starch (Figure 2), making them less soluble or completely insoluble (De Boland et al., 

1975) and affecting their absorption and digestion. Therefore phytate has been described in 

animal nutrition as “an anti-nutritional factor and an indigestible nutrient” (Swick & Ivey, 

1992). 

 

 

Figure 2 - Phytate-protein-starch complex molecule: a potential structure (Jongbloed et al., 

2000) 

2.1.1 Phytate and P interactions 

Phosphorus is an essential mineral for animals and it plays a critical role in cellular 

metabolism, cellular regulatory mechanisms, and in bone. Bone stores the majority of P 

present in the body containing 85% of the body’s total P (McDonald et al., 2011). The 

digestibility of phytate-P in broilers can be as low as 10% (Rutherfurd et al., 2004) and 
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therefore, the poor digestion of phytate-P in monogastric animals, due to insufficient 

amount of phytase, can lead to an increase in P in excreted faeces and, as a consequence, 

lead to environment pollution (Knowlton et al., 2004). The non-renewability of rock 

phosphate reserves can also be a problem in the near future when trying to fulfilling the 

high demand for inorganic-P (Abelson, 1999). Concerns with P and reduction of animal 

feed costs production without loss of their nutritional value have been concepts that, 

although not new, are still subject of study.  

2.1.2 Phytate and minerals interactions  

The digestibility of minerals can also be reduced by phytate. The absorption of minerals 

takes place in the upper part of the intestine (Khalid et al., 2013). The phosphate groups 

present in the phytic acid molecule have one or two oxygen atoms that, by being negatively 

charged can bind to cations at neutral pH. This liaison can be stronger or weaker according 

to the number of phosphate groups involved from the same or different phytic acid 

molecule (Sebastian et al., 1998) and can form insoluble complexes  with these cations 

reducing their availability for absorption (Maenz et al., 1999). A result of these insoluble 

complexes and interference in mineral absorption was observed by Sandberg et al. (1993) 

when feeding pigs a rapeseed diet supplemented with Ca. Zinc is another mineral that can 

also form an extremely insoluble complex with phytate in the upper part of the intestine 

where the pH is around 6, leaving broiler with a Zn deficiency when they are fed diets high 

in phytate (Maddaiah et al., 1964). On the other hand, in alkaline pH, phytate will form 

complexes with proteins in the presence of  divalent cations (Ca2+, Mg2+, Zn2+) which will 

function as a bridge between the carboxylic group charged negatively and phytate 

(Cousins, 1999). Furthermore, Woyengo et al. (2009) reported a 2% reduction in apparent 

ileal digestibility of Ca, Mg, Na and K when feeding piglets a casein maize starch base diet 

with phytate (as sodium phytate). Ravindran et al. (2006) also observed a reduction in Ca 

and Fe ileal digestibility when broilers were fed a corn-soybean meal diet with phytic acid 

(as rice bran) supplementation. Apart from high amounts of phytate, rice bran also contains 

high amounts of NSP’s. These increase the viscosity of digesta and intestinal contents, and 

can have a negative effect on the digestion of some dietary components due to a reduction 

in enzyme activity and nutrient absorption (Smits & Annison, 1996). They can also 

enhances bacterial overgrowth (Salih et al., 1991) and bacterial fermentation due to 

undigested material accumulation in small intestine (Smits et al., 1997). 
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2.1.3 Phytate and amino acids interactions 

Phytate chelating effect depends on pH conditions to exist. At low pH, phytate can bind to 

basic residues like arginine, lysine and histidine resulting in an insoluble complex (Kumar 

et al., 2010). Ravindran et al. (2000) observed a decrease in ileal digestibility of all 

essential AA when broilers were fed a wheat-sorghum-soybean meal based diet with 

phytate at 3 different levels (manipulated by the inclusion of rice pollards). Later on, 

Ravindran et al. (2006) also observed a decrease in apparent ileal digestibility of AA in 

broilers fed a corn-soybean meal based diet due to an increase in dietary phytate 

concentration. Similarly, in a precision feeding study, Cowieson et al. (2006) observed a 

compromise in growing broilers ileal AA digestibility when fed with phytic acid and 

casein supplementation. As for minerals, the reduction of apparent AA digestibility and 

absorption can possibly be explained by the reduction in dietary AA availability from 

phytic acid which is, in its natural state, complexed with AA in protein bodies (Joyce et al., 

2005; Lin et al., 2005) or it could bind to dietary proteins in the stomach and small 

intestine and reduce their digestion and increase endogenous losses (Liu et al., 2009).  

In poultry, the protein-phytate complexes are more likely to occur in the proventriculus due 

to the low pH observed in this part of the GIT (Selle et al., 2012). Because exogenous 

phytase is mainly active in the crop (Liebert et al., 1993), phytase prevents the formation 

of protein-phytate complexes by hydrolysis of phytate. On the other hand, the high pH in 

the crop can also lead to an increase in the formation of mineral-phytate complexes which 

will reduce phytase capacity to degrade phytate (Maenz et al., 1999). Therefore, the pH 

changes observed in different parts of the gut can have trade off effects on phytate and are 

not necessarily indicative of the hydrolysis of phytate (Campbell & Bedford, 1992). 

2.2 Phytase 

Enzymes are one of the many types of proteins that are produced by an organism. They 

have a three-dimensional conformation made from one or more strings of AA and it is the 

specificity of this three dimensional form that makes enzymes so unique (Bregendahl, 

2007). Enzymes can break down products such as nutrients that can then be easily 

absorbed. Enzymes are biological catalysts and are some of the most notable biomolecules 

due to their extraordinary specificity and catalytic power (Rastogi, 2006). They are 

considered the functional units of the cellular metabolism since they are able to accelerate 

the velocity of a reaction without participating in the reaction itself as a substrate or 
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product. When they catalyse, they are not altered but they chemically modify the 

substances (substrate) that are affected by their action  (Khattak et al., 2006). Each enzyme 

has an optimal temperature and pH and the structure can be altered, sometimes 

irreversibly, by excessive heat (Bregendahl, 2007). 

Because certain animals do not have the necessary enzymes to degrade some of the plant 

compounds, nutritionists have been able to identify these indigestible compounds and feed 

a suitable enzyme or a combination of enzymes to the animals. These feed added 

exogenous enzymes come from carefully selected microorganisms and are grown under 

controlled conditions (Wallis, 1996). 

Exogenous feed enzyme usage has been studied and reported since the 1950s (Jensen et al., 

1957; Arscott & Rose, 1960). Their effects on animals are assessed through growth 

performance responses, nutrient utilisation, evaluation of plasma composition, analysis of 

whole-body nutrient utilisation and carcass quality. Although the use of exogenous 

enzymes in the animal industry has grown considerably and with success, the wide range 

of published work about animal nutrition and other relative areas brings vast product 

choices and also formulation strategies that the normal end user can find challenging 

(Adeola & Cowieson, 2011).   

One of these exogenous enzymes that is widely used in animal feeds is phytase. Phytase is 

vital in feed formulation for non-ruminant animals like poultry because of the reasons 

mentioned before; namely lack of phytase to hydrolyse phytate and release P for 

absorption; scarcity of and non-renewable nature of environmental sources of inorganic-P 

which together, make P an expensive ingredient in the feed industry.  

Phosphorus is also an environmental concern by being unavailable to monogastric animals 

and excreted in large amounts in their faeces. Excessive P concentrations can occur either 

by extra supplementation of inorganic-P in poultry and pig diets or by phytate-P that can 

run off to the environment creating an environment P burden and leading to soil pollution 

and eutrophication of rivers and lakes (Correll, 1999) which may result in appearance of 

toxic algae and lead to fish kills (Sharpley, 1999). Therefore, by including exogenous 

phytases into poultry and pig diets, a reduction in P excretion is of benefit to both the 

environment and sustainable production.  

 



 

9 
 

2.2.1 Phytase activity 

Phytase activity was first detected in 1907 but it was just in 1962 that first attempts to 

develop a phytase feed enzyme were made and only in 1991 that it first became 

commercially available (Selle & Ravindran, 2007). Phytase activity is defined as phytase 

units (FTU). One FTU will release 1µmol of inorganic orthophosphate/min from 0.00512 

mole per litre of sodium phytate at pH 5.5 and at 37◦C of temperature (Selle & Ravindran, 

2007).  

2.2.2 Sources of phytase 

For poultry to use P or any other minerals bound to phytate complexes, phytate needs to be 

hydrolysed by the enzyme phytase. Phytase is present in nature in several microorganisms, 

plants and animals (intrinsic phytase) (Ravindran et al., 1995; Lei et al., 2007). 

2.2.2.1 Microbial phytase  

There are several of these phytases that can be commercialised and used as feed additives 

and they have been isolated from fungi, yeast and bacteria. Fungi and bacteria are the most 

important sources but the different sources of phytase have different physical and chemical 

properties, which give them different enzyme activities and result effects when used in 

monogastric animals. These commercial products are added to the feed of monogastric 

animals to hydrolyse phytate within their digestive tract and improve the utilisation of 

dietary phytate-P (Beutler, 2009). 

Aspergillus species are fungi (Konietzny & Greiner, 2002) and A. niger, A. fumigatus and  

A. ficuum are the most commonly used in genetics to further improve these Aspergillus 

enzymes (Wyss et al., 1999). Saccharomyces cerevisiae is yeast phytases for bread 

making. Pichia anomala phytase have potential application in food processing because 

they remain stable even at high temperatures and acidity (Vohra & Satyanarayana, 2002). 

Among bacteria sources, enzymes from Bacillus (Kim et al., 1998) and Escherichia coli 

(Greiner et al., 1993) have been characterized and can degrade phytate during growth 

through production of extracellular phytases. The way fungal and bacterial phytases are 

produced is also different. Fungal phytases are produced extracellularly while bacterial 

phytases are produced intracellularly (Rao et al., 2009). 
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2.2.2.2 Plant phytase 

Phytase activity has been found and phytase enzymes have been isolated from cereals, 

legumes, and oil seeds (Viveros et al., 2000) such as corn (Maugenest et al., 1999), barley 

(Greiner et al., 2000), rice (Hayakawa et al., 1989), canola seed (Houde et al., 1990) and 

soybean (Hamada, 1996). The ability to hydrolyse phytate and the level of phytase varies 

between plants (Eeckhout & De Paepe, 1994). While soybean meal have been found to 

have low phytase levels (Eeckhout & De Paepe, 1994), cereal grains like wheat, barley and 

triticale can reach phytase activity levels of 5,000 units/kg and by-products from these 

cereals have been used in animal feeds as a source of plant phytase. A rapid increase of 

phytase activity was observed during corn germination (Chang, 1967) and fermentation. 

Soaking processes have also shown to be efficient in improving intrinsic phytase activity 

present in plant foods (Lei et al., 2007).  

2.2.2.3  Animal phytase  

Phytate-degrading enzymes have been isolated from tissues of several monogastric animal 

species and ruminants (Bitar & Reinhold, 1972) but in comparison with the investigation 

of phytases in plants and microorganisms, animal phytase investigation is limited 

(Konietzny & Greiner, 2002). Phytase is present in the digestive tract of chickens but the 

levels of this enzyme are not enough to effectively hydrolyse phytate (Maenz & Classen, 

1998). In pigs, the mucosal production of this enzyme is also minimal however, 

endogenous phytases might complement the use of exogenous phytase (Selle & Ravindran, 

2008). An increase in intestinal phytase activity has been observed in chickens fed P 

deficient diets (Davies & Motzok, 1972). The phytase found in the large intestine or rumen 

is mainly of microbial origin (Yanke et al., 1998) and a phytate-degrading enzyme has also 

been purified and characterized from the protozoan Paramecium (Freund et al., 1992). 

2.2.3 Classification of phytase 

Depending on where the hydrolysis of phytate begins, phytases can be classified into 3-

phytase (EC 3.1.3.8 myo-inositol hexakisphosphate 3-phosphohydrolase) and 6-phytase 

(EC 3.1.3.26 myo-inositol hexakisphosphate 6-phosphohydrolase). Enzymes are classified 

according to the chemical reactions they catalyse. Each enzyme has a set of four numbers, 

called an EC (Enzyme Commission) number that define the classes and sub-classes of 

enzyme it belongs to. Both of them remove the phosphate groups, what differs in the 
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starting place of the de-phosphorylation (carbon 3 or 6 respectively) (Selle & Ravindran, 

2007). The most commonly used phytase feed enzymes are derived from A. niger, which 

shows 3-phytase activity and Peniophora lycii and E. coli, which shows 6-phytase activity 

(Selle et al., 2007a). 

The same category of phytases can present optimum activity at different pH (Bohn et al., 

2008) and can also present different substrate specificity. Phytate degrading enzymes can 

be divided into alkaline phytases (maximum activity at pH around 8) and acid phytases 

(maximum activity at pH around 5) (Baruah et al., 2007). Most microbial phytases are acid 

phytases with the exception of the ones from Bacillus group which are alkaline phytases 

(Selle et al., 2007a). Fungal phytases seem to have a broad substrate specificity while 

bacterial phytases exhibit high substrate specificity (Rao et al., 2009). Nevertheless, the 

effectiveness of both fungal and bacterial phytase on improving P and Ca digestibility has 

been demonstrated (Guggenbuhl et al., 2007).  

When comparing a A. niger 3- phytase with a E. coli 6-phytase (Rodriguez et al., 1999) 

noted that A. niger phytase was more resistant to trypsin while E. coli phytase was more 

resistant to pepsin which showed that the E. coli phytase had the potential of being more 

resistant to pepsin activity in the stomach and therefore more likely to survive longer in the 

digestive tract than A. niger phytase.  

2.3 The use of phytase in the feed industry  

The usage of phytase feed enzymes was initially confined to the Netherlands due to a 

demanding anti-pollution legislation but, since 2000 that phytase has been globally 

accepted in the majority of poultry and pig feeds due to several factors mainly; the 

prohibition of meat-and-bone meal in pig and poultry diets; the declining costs of 

exogenous phytases together with increasing prices of feed ingredients; the introduction of 

phytases from bacterial origin which proved to be more effective than the original fungal 

phytases, and the high costs of inorganic-P supplements (Selle et al., 2012). 

The poor utilisation of phytate P by monogastric animals is of importance because 

inorganic-P is an expensive ingredient in poultry industry that is facing a supply crisis in 

the near future (Selle & Ravindran, 2007). Crop seeds can incorporate, worldwide, around 

14 million tonnes of phytate-P (Lott et al., 2000) and on average, commercial poultry feed 

contains 2.5 to 4 g/Kg of phytate-P (Ravindran, 1995). Phytase is able to break down the 
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phytic acid molecule and release P for absorption. This will reduce the need of inorganic-P 

in the diet and reduce the amount of P being released to the environment. Phytase releases 

not just P but also other cations or AA that are bound to phytic acid. Phytase can increase 

the digestibility of phytate in poultry from around 25% to 70% and can also improve the 

digestibility of other nutrients as well as energy (Ravindran et al., 1999a; Kornegay, 2001). 

2.4 Benefits of the use of phytase 

Although phytase is mainly used to increase the availability of P and by that, reduce the 

addition of inorganic-P to the feed which have positive effects on the environment, phytase 

supplementation can be also beneficial in other areas. Some of these benefits are described 

below.   

2.4.1 Improvement in growth responses 

Phosphorus is an essential mineral for animal performance since it is one of the most 

abundant elements in bone composition and therefore, one of the most important elements 

for body growth. Consequently, if animals are fed a P deficient diet their growth and 

performance might be compromised. Phosphorus is a component that is present in the vast 

majority of poultry diets products as phytate–P (Selle et al., 2007b) and exogenous 

phytases are normally added to diets in order to increase the availability of phytate-P. Feed 

addition of phytases has shown the same or better results in restoring the production 

performance criteria and growth of birds than the simple feed supplementation of P 

(Simons et al., 1990). This positive response to phytase on growth and feed conversion 

ratio might be explained by a release of minerals from complexes with phytic acid and/or 

by the use of inositol after phytic acid hydrolysis and/or by increased starch digestibility 

(Simons et al., 1990). Adeola et al. (1995) also suggested that phytase influence in pig 

growth might be related to an increase in the availability of minerals. A study performed 

by Hussein (2006) showed that the supplementation of phytase to broiler diets significantly 

improved growth performance and bone mineralization of birds when they were fed a 

balanced starter diet with no phytase supplementation and a low-P finisher diet 

supplemented with phytase enzyme. In general, feed intake and weight gain responses to 

phytase are more robust and consistent than feed efficiency responses (Selle & Ravindran, 

2007) which is probably attributed to the fact that broilers strains are under constant 

genetic improvement as are their management techniques and feeds (Rosen, 2003).   

Shirley & Edwards (2003) observed that, when feeding broilers with a  maize-soybean 
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meal diet, increasing phytase inclusions from 0 FTU/Kg to a maximum of 12000 FTU/Kg 

increased the total tract phytate degradation (from 40.3% to 94.8% respectively). 

Moreover, this increase in phytase inclusion levels increased P retention, tibia ash, weight 

gain, feed intake, nitrogen (N) retention, feed efficiency and Ca retention. It is likely that 

increased bone mineralisation in phytase-supplemented diet makes birds legs stronger thus 

enabling them to stand and feed or that positive effects on electrolyte balance improves 

birds appetite (Olukosi et al., 2013). 

Olukosi et al. (2007b) reported positive effects on broiler growth when phytase was added 

to diets that were marginally deficient in P. Similarly, Woyengo et al. (2010) showed that 

phytase alone can improve growth performance of broilers fed a P-deficient diet. However, 

the growth responses obtained for the supplemented diets were lower than the ones 

obtained  in the diets adequate in P (positive control (PC) diets), in comparison to Olukosi 

et al. (2007b) study that observed a similar response between PC and P deficient phytase 

supplemented diets. This could be due to the fact that the levels of P between both studies 

were different; 0.1% non-phytate P deficiency in Olukosi et al. (2007b) study compared 

with 0.18% non-phytate P deficiency in Woyengo et al. (2010). Moreover, Denbow et al. 

(1995) who used seven different levels of phytase in soybean meal diets with three levels 

(0.2, 0.27 and 0.34%) of non-phytate P deficiency, observed an improvement in body 

weight gain and feed intake at all non-phytate P levels but with a better response observed 

for the diets with lower non-phytate P. Pillai et al. (2006) also reported growth 

performance improvements in broilers when fed P deficient phytase supplemented diets 

and same improvements in growth were observed by Baker et al. (2007) when fed broiler 

chicks a low-phytate corn diet supplemented with phytase. These growth performance 

improvements might be explained by phytase activity that will release and increase the 

utilisation of P from phytate-mineral complexes (Qian et al., 1996b) or by an increase in 

the utilisation of protein and AA (Ravindran et al., 2000) and, as a result, originate an 

increase in feed intake and feed efficiency.  

However, a study performed by Perney et al. (1993) showed that the addition of phytase to 

a corn-soybean meal diet with low P did not make any significant improvements on weight 

gain, feed intake or feed conversion of broiler chicks. This was attributed to the level of Ca 

and phytase used (1% and 750 FTU/Kg respectively) in the study that could have resulted 

in a lower phytase effect on P retention and consequent improvement of growth 

performance. 
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Therefore, the results from these studies suggest that phytase supplementation can reduce 

the adverse effect of phytic acid (Ravindran et al., 2000) and that the increase in phytase 

supplementation levels can improve growth and weight gain rate in broilers (Khan et al., 

2013). 

2.4.2 Effects of phytase on nutrients utilisation 

Phosphorus is an important mineral in bone composition and therefore, excessive P levels 

are normally incorporated (inorganic-P) in poultry diets to guarantee skeletal integrity and 

growth performance (Waldroup, 1999). Nelson et al. (1968) observed that hydrolysed 

phytate-P is as efficient as P from inorganic sources when, in the referred study, he 

incubated soybean meal with phytase before feeding chicks. A lot of studies have been 

performed to improve the nutrient utilisation of nutrients bound to phytate and some of 

these studies have demonstrated that exogenous phytase improved P utilisation in broilers 

and pigs (Simons et al., 1990; Selle & Ravindran, 2008). As a consequence, P reduction in 

excreta will benefit the environment and a more sustainable animal production. Phytase 

supplementation benefits to P availability are normally in the range of 20 to 40%. In a 

study with broilers Simons et al. (1990) observed an increase of 60% in the bioavailability 

of P and a decrease of 50% in the levels of P in broilers excreta in a low-P corn-soybean 

diet supplemented with phytase. Nevertheless, the P amount released from phytate when 

hydrolysed by phytase can depend on the phytase source and concentration (Simons et al., 

1990; Yi et al., 1996) and also from the source of phytate (Ravindran et al., 1994). 

Waldroup et al. (2000), based on tibia ash results, reported that broiler diets based on 

normal corn had a requirement of 3.9g/Kg of non-phytate-P while, if supplemented with 

phytase, the non-phytate-P requirement was reduced to 2.9g/Kg. Phosphorus retention in 

broiler chickens was increased when fed a low-P corn-soybean meal diet supplemented 

with phytase (Ahmad et al., 2000) as well as P availability in broilers was increased in 

wheat-sorghum-soybean meal diets with low, medium or high phytate-P levels in diets 

supplemented with phytase (Ravindran et al., 2000). 

Calcium is another important mineral in bone composition and, therefore, is one of the 

biggest concerns in animal nutrition because, even if it is not one of the strongest inorganic 

elements that can bind to phytate (e.g. cations like Zn), due to the high amounts of Ca 

present in common diets, this element can easily chelate with phytate and precipitate in the 

GIT. When phytate hydrolysis by phytase occurs, phytate capacity to chelate with Ca 

reduces, leaving Ca available for absorption in the small intestine (Selle et al., 2009a).      
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A few studies have been developed and can corroborate the idea that phytase has the 

capacity to improve Ca digestibility. When using a corn-soybean meal base diet with low, 

medium and high concentrations of phytic acid, Ravindran et al. (2006) observed that 

increasing phytase inclusion levels (0 to 1000 FTU/Kg) increased Ca ileal digestibility in 

broilers. Calcium and P total tract digestibility was also improved and Ca excretion 

reduced in weaned piglets when Guggenbuhl et al. (2007) included three different phytases 

into the diets containing P exclusively from plant origin. Later on, Ravindran et al. (2008) 

reported an increase in broilers ileal digestibility of Ca when phytase was added to a corn-

soybean meal and canola meal based diet. Therefore, the referred and other studies 

demonstrate that phytase can enhance Ca digestibility in poultry and pigs.  

Moreover, not just Ca but also endogenous Na excretion was affected with the ingestion of 

phytate in a study with broilers (Cowieson et al., 2004) suggesting that Na levels are also 

affected by phytate ingestion and which will, as a consequence, compromise the Na-

dependant transport systems and the Na pump activity (Selle et al., 2012).  Therefore, 

phytate might be limiting intestinal absorption of Ca by compromising the Na-dependant 

transport system and phytase has shown to be able to counterbalance this effect by 

increased Na digestibility in broilers (Ravindran et al., 2006; Ravindran et al., 2008; Selle 

et al., 2009b) and by ameliorating Na secretion into the gut which can improve Ca 

absorption. By compromising the Na-dependant transport systems into the gut, this might 

reduce the uptake of dietary AA and endogenous AA by the animal (Selle et al., 2012) as 

Cowieson et al. (2004) reported in his study when he observed that broilers excretion of 

total endogenous AA was increased by phytate dietary inclusion and decreased by phytase 

supplementation. 

Phytase has shown to be effective in altering AA digestibility (Ravindran et al., 1999a; 

Ravindran et al., 2006) even if this effect can be variable and dependent on factors such as 

the type of phytate complexes, the type of ingredients in the diet and the location of 

phytate in those ingredients as well as species and age of the animals (Cowieson et al., 

2004). Discrepancies in results might also be attributed to the type of marker used in the 

study (Selle & Ravindran, 2007) as observed by Olukosi et al. (2012) whose results 

showed that, independently of the level of phytase used, ileal AA digestibility in broilers 

can be improved when using Titanium (Ti) instead of Chromium (Cr) as a dietary marker. 

Moreover Cowieson et al. (2008) reported that the use of two different sources of phytase 

(bacterial and fungal) reduced the flow of N and AA in broilers. Although, there were 

differences in flow values between the sources of phytase suggesting that the capacity of 
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counteracting phytate anti nutritive properties can vary according to the source of phytase 

used.  

When broilers were fed diets rich in phytates it was observed that the absorption of Zn and 

other minerals like Mg and Copper (Cu) was decreased (Maddaiah et al., 1964; Davies & 

Reid, 1979). At the upper part of the intestine Zn can form an insoluble complex with 

phytate which will lead to a deficiency in Zn if broilers are fed a diet rich in phytate. When 

Kornegay et al. (1998) fed a low-protein  corn-soybean meal diet supplemented with 

phytase to broilers, he observed an increase in protein utilisation and an improvement on 

breast weight probably due to an effect of phytase in increasing the AA availability for 

lean tissue deposition. Later on, when using a wheat based diet deficient in lysine and with 

different levels of phytase supplementation, Ravindran et al. (2001) observed a significant 

effect on ileal AA digestibility. More recently, Cowieson & Ravindran (2007) also 

reported an improvement in AA digestibility upon phytase supplementation which 

corroborates the findings in the previously mentioned studies and indicates that phytase 

can improve AA digestibility and protein utilisation in broilers by counteracting the anti-

nutritive effect of phytate. 

2.4.3 Effects of phytase on energy availability 

Selle & Ravindran (2007) reported on the influence of exogenous phytase on dietary 

apparent metabolisable energy (AME) in a number of studies. In general, it was observed 

in these studies that phytase supplementation increased AME by 2.8% when compared to 

non-supplemented diets. Moreover, the dietary AME energy was improved when phytase 

was supplemented to wheat based diets (Selle et al., 2006b).  

Ravindran et al. (2000) supplemented phytase to wheat-sorghum-soybean meal diet and 

observed an increase in dietary AME. This increase was greater for diets adequate in non-

phytate P and phytase also improved digestibility of other nutrients. Moreover, when the 

non-phytate P in the diet content was increased with the addition of di-calcium phosphate, 

the levels of dietary AME reduced significantly and this effect was overcome by phytase 

supplementation. This suggests that the high molar ratio of Ca to phytate in diets adequate 

in non-phytate-P leads to the formation of Ca-phytate complexes (Ravindran et al., 2000) 

and that these, with lipids, might be forming insoluble metallic soaps in the gut lumen 

limiting the utilisation of energy derived from fat (Atteh & Leeson, 1983; Atteh & Leeson, 

1984). While feeding broilers a basal diet supplemented with a source of fat (oleic acid, 
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palmitic acid or a combination of both) at different levels of Ca, Atteh & Leeson (1984) 

reported an increase in birds feed intake and weight gain. Mineral metabolism can be 

compromised during digestion since the fat source can form insoluble soaps of fatty acids 

and minerals and therefore having a detrimental effect on mineral absorption (Atteh & 

Leeson, 1983).  

When using a corn-soybean meal diet supplemented with phytase, Camden et al. (2001) 

reported an increase in fat ileal digestibility and also an increase in AME and apparent ileal 

digestibility in broilers. Santos et al. (2008) observed the effects of phytase on corn-

soybean diets low in AME, Ca and P where a constant 5.5% of rice bran was added to 

increase  the levels of phytate-P. In Santos et al. (2008) study, phytase increased AME, 

mineral absorption and ileal AA and crude protein digestibility. Phytase also improved 

nutrient digestibility and body weight and improved bone strength. Overall, phytase 

activity improved performance and bone mineralization. Moreover, Olukosi et al. (2008b) 

reported an increase in broiler performance and energy utilisation when phytase was 

supplemented to a corn and soybean based diet deficient in energy and P. 

As reviewed by Selle et al. (2000), there is an increase on energy utilisation when phytase 

is added to poultry diets and this increase is probably related with an increase in protein 

digestibility. Although, it might be possible that, not just the concentration of phytate is 

relevant for phytase activity, but also the source of phytate and protein and their structural 

end chemical properties might be contributing to the observed differences in energy 

responses form phytase use.  

2.4.4 Whole body nutrient accretion or nutrient partitioning 

Another positive effect of phytase is the diminution of the gastrointestinal system which 

augments the partitioning of the nutrients in the gut. Their use also alters the microbial 

fermentation affecting the availability of nutrients and the health status of the animal and 

increases energy digestion (Bedford & Partridge, 2001). 

Weight gain is a product of an increase of fat and protein and is a good indicator of phytase 

efficacy. However, because weight gain is a consequence of fat and protein accretion, there 

is the need to partition weight gain into accretions of fat and protein because these have 

different efficiencies. 
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A combination of phytase with other enzymes like xylanase has been shown to reduce 

relative weight and length of small intestine and benefit nutrient digestibility and retention 

in broilers (Wu et al., 2004). Olukosi et al. (2008a), reported an increase in carcass nutrient 

accretion with age (0 to 21 days) for broilers fed diets supplemented with phytase or a 

cocktail of xylanase, amylase and protease (XAP), individually or in combination. This 

increase was observed for dry matter, fat, protein, ash, P and Ca and there was an inverse 

relationship on fat gain and protein use according to age. There was also a decrease in 

whole body ash, P and Ca with age observed in Olukosi et al. (2008a) study that possibly 

occurred because of a decrease in the contribution of these minerals to the whole body 

nutrient accretion instead of a decrease in the minerals accreted while broilers grew. 

Later on Olukosi & Adeola (2008a) reported an improvement in birds growth performance 

when fed a wheat based diet supplemented with phytase and xylanase. There was also an 

improvement in whole body dry matter accretion that revealed to be mainly composed by 

protein (58%) rather than fat (32%) for the phytase supplemented treatments. Pillai et al. 

(2006) also reported that broiler carcasses characteristics and yields were improved with 

phytase supplementation. These observations might suggest that, when supplemented with 

phytase, the increase in broiler weight could maybe be more related to an improvement in 

protein deposition rather than fat deposition. 

2.4.5 Economical and environmental impact of phytase 

The economic benefits from the use of phytase includes feed costs reduction, allowing 

flexibility in diets formulation a more optimum growth performance as well as better litter 

quality and bird health (Costa et al., 2008). 

The cost of supplementing P is the third largest cost in poultry feeds after the cost of 

providing protein and energy (Ligeiro, 2007; Teichmann et al., 1998). The high price of 

inorganic-P is due to the fact that it is a non-renewable mineral in nature and, in a long 

term, its sources might all be used up (Selle & Ravindran, 2007). Apart from this, there is 

also an environmental aspect added to the economical one which is the fact that, when P is 

added to feeds, a big part of this P can contaminate the water and soil when the excreta are 

added to fertilisers (Ligeiro, 2007). Therefore, animal production is suffering an increasing 

pressure when it comes to the control of their effects on the environment. 
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There has been a profound change in the management of feed P since the dietary 

supplementation of meat and bone meal (as a cheap source of P) was banned in Europe to 

prevent possible transfer of diseases such as the bovine spongiform encephalopathy (BSE). 

This, together with the low availability of phytate by monogastric animals, has also given 

phytase a new social-economic impact. Phytase is a cost effective alternative that can be 

used to ensure animals obtain adequate available P from the plant based diets (Lei et al., 

2007).  

2.5 Factors affecting phytase efficacy 

The phytate content of the raw materials used in the feeds can vary and, as a consequence, 

so does its availability after being hydrolysed by phytase. This and other factors such as the 

source of phytase; the age and species of the animals; the level of intrinsic phytase activity 

present in the ingredients used; temperature; pH; humidity and the dietary content of Ca, P 

and vitamin D can influence phytase activity and therefore give variable results. 

Several studies have shown that phytase is more efficient in diets that contain low 

concentrations of inorganic-P (Qian et al., 1996b; Kornegay et al., 1996; Ahmad et al., 

2000; Kornegay, 2001). This might be due to the fact that higher concentrations of 

inorganic-P might make phytase activity less pronounced because the animal’s 

requirements for P have been met (Beutler, 2009). 

2.5.1 Level of anti-nutritive factors in the cereal  

Phytate predisposition to form complexes with proteins at different pH can affect the 

protein structure and can decrease phytase activity, the protein solubility and digestibility 

(Greiner & Konietzny, 2006). At low pH, phytate can bind to proteins through electrostatic 

charges and at high pH the binding is made through salt bridges (Graf, 1986). Because 

phytate function at abroad range of pH and because of its strong negative charge it can 

easily chelate to positively charged components such as minerals which will compromise 

the nutritional value of the feed ingredients (Greiner & Konietzny, 2006). Therefore, the 

degree of ionization of the phytate-minerals complex can potentially change the efficacy of 

different phytases (Angel et al., 2002).  
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2.5.2 Dietary calcium level and Ca:P ratio 

It was previously mentioned that phytate has the capacity to strongly bind to cations due to 

the compound being a polyanionic molecule. Within these possible bounds, calcium is no 

exception and these phytate-Ca complexes might be detrimental to phytate-P utilisation 

and to phytase activity (Taylor, 1965; Wise, 1983). One phytate molecule can bind with up 

to five Ca atoms thus forming a complex, when such complexes formed along the GIT, 

they might bind up large amounts of Ca from the diet which makes phytate a limiting 

factor for not just P but also Ca (Selle et al., 2009a).  

Several studies in broilers, turkeys and pigs have demonstrated that high levels of Ca in 

diets can inhibit phytase activity (Lei et al., 1994; Qian et al., 1996a; Qian et al., 1997; 

Tamim et al., 2004). In a study with turkeys Qian et al. (1996b) reported that when feeding 

a corn-soybean meal diet with two levels of non-phytate-P (0.27 and 0.36%) and with 

phytase supplementation, the increase of Ca:P ratio from 1.4:1 to 2:1 decreased phytase 

activity by 4.9 and 7.4% respectively, for 0.27 and 0.36% non-phytate-P diets. This is an 

indication that the dietary Ca concentration and the overall Ca:P ratio are important factors 

affecting the efficacy of phytase in the digestive tract (Beutler, 2009). In another study 

with broilers fed a corn-soybean meal diet supplemented with 4 different levels of phytase, 

Qian et al. (1997) observed improvements in Ca and P retention, weight gain and feed 

intake in broilers fed diets with phytase supplementation but, as the ratio of Ca:P increased 

from 1.4:1 to 2:1, all these measurements were negatively influenced. Moreover, when 

pigs were fed a corn-soybean meal diet supplemented with phytase and with high Ca:P 

ratios (1.5:1 to 2:1) the utilisation of P in weanling (Qian et al., 1996a) and 

growing/finishing pigs (Liu et al., 1998; Liu et al., 2000) decreased. 

Despite the results obtained in these studies, several conflicting or inconsistent results from 

different studies on Ca influence on the efficacy of exogenous phytases have been obtained 

through the years. Scott et al. (1999) investigated the effect of Ca:P in layers and reported 

that phytase compensated for reduced available P levels in the diets with high Ca levels 

resulting in an improvement in egg production, egg weight and feed intake. However, 

when the Ca levels were low, the effect of phytase and available P on the referred 

parameters was lower. Moreover, when broilers were fed diets with Ca:P ratios            

from 1:1 to 2:1 and suplemented with phytase, Singh & Sikka (2006) reported that weight 

gain and feed intake responses to phytase were not affected by Ca:P ratios and that there 

was also no affect on the retention of Ca, P and N. In a study on weanling pigs,         
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Adeola et al. (2006) observed that weight gain and feed efficiency increased when Ca:P 

ratio was decreased from 1.8 to 1.2. However, there were no significant interactions 

between Ca:P and phytase for weight gain and feed efficiency responses, but there was an 

enhanced growth performance with phytase supplementation when Ca:P ratio values were 

reduced. Driver et al. (2005) also observed that broilers growth and bone quality responses 

were higher for diets supplemented with phytase, with higher Ca levels and low non-

phytate-P. Also, growth performance and bone quality responses to phytase decreased 

when Ca level was reduced and non-phytate-P levels increased.  

These results suggest that phytase efficacy at different Ca:P levels can be variable and are 

still not very clear. Although, when phytase is supplemented in diets, it might be important 

to consider a narrow Ca:P ratio. Phosphorus absorption and availability might be 

compromised when high dietary Ca levels might form an insoluble complex with P and/or 

phytate-P, leaving phytate-P less available for degradation by phytase. This might lead to a 

limit or decrease in P bioavailability and absorption (Wise, 1983; Fisher, 1992), especially 

if the dietary P used is below the levels recommended by the NRC (National Research 

Council, 1994). Moreover, the use of limestone as dietary Ca supplement can increase the 

pH in the crop (Shafey et al., 1991) which is the main site for phytate degradation by 

phytase (Liebert et al., 1993). The high crop pH can also lead to an increase in the 

formation of mineral-phytate complexes (including Ca) which will reduce phytase capacity 

to degrade phytate (Maenz et al., 1999). 

2.5.3 Effect of other exogenous enzymes 

Combination of exogenous enzymes has been used in monogastric animals to increase 

nutrient digestibility and bird performance and also to decrease nutrients excretion as well 

as cost of production. These enzymes have a variety of nutritional benefits which include, 

apart from releasing of P from phytate, the hydrolysis of plant cell walls non-starch 

polysaccharides (NSPs) and the elimination of certain anti-nutrients like NSPs and phytate 

from the diets (Costa et al., 2008; Slominski, 2011). 

Certain types of grains are prompt to induce more viscosity of the intestinal contents which 

will reduce the nutrient diffusion and absorption in the gut and compromise birds 

performance (Bedford, 1996) by altering endogenous enzyme synthesis rates, microfloral 

and coccidial populations and litter quality. Non-starch polysaccharides are present in 

many plant foods but are normally not degraded by monogastric animals. The presence of 
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NSP’s in the intestinal lumen promotes the viscosity of digesta due to the formation of 

polymers or gels with water. This compromises the digestion and absorption of nutrients 

because these polymers restrict the action of the digestive enzymes and the diffusion of the 

substances related with the digestion and absorption. Increase in the viscosity of the 

intestine can affect the starch, the protein and the lipids digestibility (Choct et al., 2001). 

Moreover, they can also increase litter moisture and thickness of excreta (Hayat et al., 

2005; Buchanan et al., 2007). To reduce the digest viscosity it’s necessary that the NSP’s 

are degraded by NSPs degrading enzymes in small parts, losing the capacity of water 

retention. With reduction in the digesta viscosity and by releasing nutrients encapsulated in 

the cell walls, the enzyme activity is improved which will lead to improvement in nutrient 

digestibility, increase on intestinal transit rate and reduction of water in the faeces (better 

litter quality) (Opalinski, 2006). These enzymes however, can also improve release of P 

from phytate by phytase (Slominski, 2011) by exposing phytate and making it available for 

phytase hydrolysis  (Bedford, 2000). This has been demonstrated with the combination of 

phytase and xylanase in broilers (Ravindran et al., 1999b; Selle et al., 2003). 

Glycanases are the type of enzymes normally used to break the NSP’s. They have shown to 

be able to reduce the digesta viscosity up to 50% and improve the apparent metabolisable 

energy (AME) and feed conversion ratio by 24% and 31% respectively (Choct, 1997). It 

has also been observed that different types of glycanases can give different results when it 

comes to excreta moisture. Three different glycanases commercial products all proved 

efficiency in improving birds performance but they all showed, although positive, different 

results for moisture levels of excreta (10 to 29%) which gives thought that the breakdown 

site of the NSP’s might be different (Choct, 1997). 

Juanpere et al. (2005) observed that phytase can increase intestinal viscosity in corn diets 

and that glycosidases decreases intestinal viscosity in corn, wheat and barley diets. When 

combined, phytase and glycosidases reduced the excretion of Ca and P and increased the 

retention of these two minerals. The combination of these two types of enzymes was, in 

general, positive and beneficial for the broilers since they improve energy values and 

nutrient bioavailability, resulting in better growth performance and intestinal viscosity. 

Moreover, the combination of multiple carbohydrases: xylanase, amylase, and        

protease (XAP) have shown to be more beneficial than these enzymes acting individually 

(Olukosi et al., 2007b). Cowieson & Adeola, (2005), using a corn-soybean meal based 

diet, nutritionally marginal in Ca and P, observed that phytase combined with XAP was 

effective in improving birds performance. Olukosi et al.  (2007b) also showed that phytase 
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and XAP, when added to a  maize-soybean meal diet, improved growth performance in 

broilers but the same results were not observed in another study (Olukosi et al., 2010) 

when phytase and xylanase were added to a diet with the same basal composition. 

Woyengo et al. (2010) study reported that phytase alone improved growth performance 

and tibia ash in a P-deficient diet for broilers and that there was a significant improvement 

in growth performance and nutrient digestibility and retention when phytase was combined 

with multi-carbohydrase enzyme. In contrast, in a previous study, Wu et al. (2004) added 

phytase and xylanase,  individually or in combination, to a wheat-soybean meal diets and 

observed that phytase (500 FTU/Kg) improved broiler performance by 17.5% when added 

alone but that there was no improvement in birds performance when phytase was added in 

combination with xylanase. The authors explained these results with the fact that the 

production of phytase was made through solid state fermentation that contained significant 

amounts of xylanase and glucanase. Moreover, Wu et al. (2004) also reported that the  

addition of phytase combined with xylanase to the wheat basal diet reduced significantly 

the viscosity of the digesta at the duodenum, ileum and jejunum level and that phytase 

individual addition reduced viscosity at the duodenum and ileum but not at the jejunum. A 

combination of phytase and xylanase might be beneficial since xylanases can increase the 

permeability of the aleurone layer of wheat which is the site of phytic acid storage (Adeola 

& Cowieson, 2011).  

Exogenous enzymes, including phytases, can increase and retain the availability of 

nutrients in the diets such as P. Nevertheles, if what is limiting the animal performance are 

not these “stored” nutrients then the response to enzyme supplementation will be small or 

null (Wyatt et al., 2008). 

2.5.4 Dietary Electrolyte Balance (dEB) 

Minerals have important roles in biological functions since they play a role in cellular 

functions, osmotic balance and acid base balance. They are also involved in the expression 

and regulation of genes, detoxification systems and enzyme systems and structurally in 

bone metabolism. All these physiological processes operate in different conditions and are 

sensitive to pH (McDonald et al., 2011). 

To keep the acid base homeostasis close to normal, the animal has to regulate the input or 

the output of acidity or both (Mongin, 1981) otherwise the metabolic and biochemical 

pathways will be compromised and the animal resources will be diverted towards 
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homeostasis balance instead of growth (McDonald et al., 2011). The diet is extremely 

important in the maintenance of cellular acidity or alkalinity in view of the diet levels of 

anions and cations that are consumed or produced during metabolism (McDonald et al., 

2011).  

Consumption of diets with high anion content decreases blood pH and causes academia in 

broilers whereas diets with high cations content increases blood pH and causes alkalemia. 

The performance of broilers under thermo neutral environments can be affected in any of 

these situations (Ahmad & Sarwar, 2006). When the intake of acid and the endogenous 

acid production equal the acidic values of urine excreted, the animal is said to be in a 

steady state and the blood pH under this condition is in the range of 7.3-7.5 (Mongin, 

1981). If pH deviates from this range, the bird corrects the imbalance by excreting 

bicarbonate in the urine and retaining H+ (Ahmad & Sarwar, 2006). 

Minerals with electrolytic properties are considered functionally as separate entities 

(McDonald et al., 2011). Electrolytes are chemical compounds that dissolve into positive 

(cations) and negative (anion) compounds in solution and have the inherent ability to 

conduct electric current (Mushtaq et al., 2013). Sodium (Na+), Potassium (K+) and 

Chloride (Cl-) are the main ions that are fundamental in the maintenance of osmotic 

pressure and acid-base equilibrium of the body fluids (Borges et al., 2003c). The dietary 

amount and ratio of these monovalent minerals summarizes the dietary electrolyte balance 

(dEB) which has been recognized for some time (Nesheim et al., 1964; Mongin, 1980) and 

is calculated using the formula: dEB=Na++K+−Cl- (McDonald et al., 2011). These minerals 

are essential for synthesis of tissue protein, maintenance of cellular acid-base balance and 

cellular homeostasis (Shahsavari et al., 2012) and need to be supplied consistently to meet 

the desired production levels in all classes of poultry (Mushtaq et al., 2013). A dEB level 

of 250 mEq/Kg has been suggested as satisfactory for optimal broiler growth and litter 

quality (Mongin, 1981) but some authors suggested a range between 100-250 mEq/Kg 

(Hooge, 2003) or even 290-330 mEq/Kg (Borgatti et al., 2004) as also beneficial for 

broilers performance. It has been suggested that each individual electrolyte can have its 

own individual role but its function can be changed by the cation or anion present in its 

supplemental salt (Mongin, 1981).  
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2.5.5 Role of Na+, K+ and Cl- in the body 

Sodium (Na+), potassium (K+) and chloride (Cl−) play important roles in nutrition due to 

their physiological functions namely maintenance of acid-base balance, osmotic control of 

water distribution within the body, synthesis of tissue protein, maintenance of intracellular 

and extracellular homeostasis (Borges et al., 2003a; Kurtoglu et al., 2007). Broilers have a 

minimum requirement for these minerals and their supplement is necessary at balanced and 

adequate levels to acquire optimum growth, bone development, and good litter quality 

(Murakami et al., 2001).  

Sodium is present in the soft tissues and body fluids and is the main cation present in the 

plasma. Sodium concentration in the blood is regulated by the kidneys via elimination in 

the urine and perspiration. A deficiency in Na in the diets can lead to adrenal malfunction 

and into an increase in uric acid levels which can lead to a physiological shock and even 

death (Mushtaq et al., 2013). The main role for Na is in controlling broilers basal 

metabolism and the distribution of water throughout the body and maintenance of a normal 

fluid balance (Mongin, 1981; Ahmad, 2004). If the balance is not achieved the cell can 

become dehydrated or there may be fluid retention. Sodium also plays an important role in 

the transmission of nerve impulses and in the absorption of sugars and AA from the 

digestive tract (McDonald et al., 2011). Therefore, inadequate Na levels in the diets can 

compromise the utilisation of digested protein and carbohydrates and influence the 

absorption of AA and sugars in the small intestine (Mushtaq et al., 2013). Sodium levels 

for broilers diets are recommended to be used at 0.2% for the starter phase (1 to 3 weeks) 

and 0.15% for the finisher phase (4 to 6 weeks) (NRC, 1994).  

Just as Na is the main cation of the extracellular fluids, K is the main cation of the 

intracellular fluids. It is one of the main electrolytes in the body as it plays an important 

role in the nerve impulses and is essential to the body homeostasis such as acid-base 

balance, osmotic pressure regulation, glucose and AA absorption and transport (Leeson & 

Summers, 2001). Potassium is essential for the proper functioning of the heart, kidneys, 

muscle contraction, and digestive system (Ahmad, 2004).  

Most cells in the body need to have a high concentration of K+ and a low concentration of 

Na+ than their surroundings. The balance between these two ions is extremely important 

and in order to achieve this balance, cells constantly pump these ions in and out of the cells 

through a biological mechanism called the “sodium and potassium pump”.              
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Because the transport of the ions is made against the concentration gradient of the cell, 

energy is requires to help the transport of Na+ out of the cell and the K+ into the cell (active 

transport). This transport is made by a heterodimeric membrane protein (ATPase) that uses 

the energy from ATP hydrolysis to transport the ions through the cell membrane. The ATP 

hydrolysis and the   phosphorylation of “the pump” promotes the change of the transporter 

protein and facilitates the transport of the ions in and out of the cell (Janovska, 2010). 

Sodium is a cation that has strong affinity for water and is normally found in the 

extracellular fluid while K+ is, in its majority in the intracellular fluid. If, for some reason 

there is an increase in the intracellular fluid, Na+ can transport the excess water out of the 

cell and thus reduce the pressure inside the cell. If on the contrary, the cell is dehydrated, 

Na+ can transport water into the cell thus rehydrating the cell (Campbell & Reece, 2005).  

In combination with Na and Cl, K is necessary to maintain growth performance, nutrient 

utilisation and bone development (NRC, 1994) and is recommended for poultry diets at a 

level of 0.3% (NRC, 1994) but studies using broilers from 7 to 21 d estimated 0.824% K as 

the requirement for optimum broiler weight gain. This suggests that the K levels 

recommended by the NRC (1994) is lower than the levels normally present in commercial 

diets (Hooge & Cummings, 1995). 

Chloride is the main anion found in the extracellular tissue and, associated with Na+ and 

K+, plays a critical role in maintaining the body’s acid balance and osmotic regulation 

(McDonald et al., 2011). By travelling primarily with Na and water, Cl helps generate the 

osmotic pressure of body fluids and also helps in maintaining the body acid-base balance. 

Like Na, the excretion or retention of Cl takes place at the kidney level depending on the 

body need to increase or decrease acid levels. If Cl- increases, HCO3
- reabsorption 

decreases resulting in metabolic acidosis associated with hyperchloremia. The inverse 

process results in a decreased reabsorption of Cl- and Na+ which can result in 

hypochloremic metabolic alkalosis (Powers, 2001). Chloride also plays an important role 

in gastric secretion and is excreted from the body in the urine and also in perspiration along 

with Na and K (McDonald et al., 2011). Chloride levels for broilers diets are 

recommended to be at 0.2% for the starter phase (1 to 3 weeks) and 0.15% for the finisher 

phase (4 to 6 weeks) (1994). 

 

 



 

27 
 

2.5.6 dEB and growth performance 

The acid-base balance can be influenced by the environment and by the diet as well as by 

the animal metabolism (Olanrewaju et al., 2007). The proportion of certain added ions 

(Na+, K+ and Cl-) to the diet will maintain this equilibrium and the input of these cations 

and anions will prevent an electrolyte unbalance and therefore, contribute for a better bird 

performance (Mongin, 1981). The growth performance can be affected if there is a change 

in blood pH, either by acidemia (high content of Cl-) or alkalemia (high content of Na+ 

and/or K+) in the diet (Ahmad & Sarwar, 2006). 

Melliere & Forbes (1966) showed that the anion to cation ratio of the diet is important for 

the growth and feed consumption of young chickens. (Johnson & Karunajeewa (1985) 

observed that a dEB lower than 180 mEq/Kg and higher than 300 mEq/Kg depressed birds 

weight at 42 days of age and that dEB levels between 250 mEq/Kg to 300 mEq/Kg were 

within the range for maximum growth of broilers. Murakami et al. (2001) also established 

that the ideal dEB value for broilers between 21-42 d of age was between 249 and 261 

mEq/Kg. In addition, Borges et al, (2002) evaluated dEB in broilers pre-starter diets based 

on corn and soybean meal and observed that dEB interferes with chick performance during 

the first week of life and that the ideal dEB obtained by level manipulation of Na and Cl 

was 246 and 277 mEq/Kg for feed:gain ratio and weight gain, respectively. The authors 

also showed that there is the need to avoid high concentrations of Cl (0.77%) and K 

(1.05%) when manipulating dEB. Creating dEB higher or lower than 240 mEq/Kg 

decreased growth performance of birds which suggests that the metabolic pathways might 

be altered when acid-base balance deviates from homeostasis and conditions of alkalosis or 

acidosis is precipitated and that the ions are likely more involved in the regulation of 

homeostasis than in animal growth (Mongin, 1981). In Borges et al. (2004), a dEB of      

40 mEq/Kg reduced feed intake and weight gain in broilers aged 21 to 42 d old and this 

loss was attributed to an imbalanced Na+ and Cl- ratio (0.15:0.7 respectively). Feed 

efficiency and weight gain were higher for diets at dEB between 202 and 235 mEq/Kg and 

with manipulation of Na and Cl whereas feed intake was highest at 264 mEq/Kg when Na 

was increased in the diet and at 213 mEq/Kg when Na and K were increased in the diet 

which indicates that broilers are sensitive to the association of high levels of Na and K in 

the diets. 

Borges et al. (2003a) recommended dEB in the range of 240-250 mEq/Kg as the optimum 

level for promoting growth performance in broilers under hot summer conditions and 
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levels between 200-235 mEq/Kg for broilers kept under moderate temperatures (Borges et 

al., 2004). Moreover, a study by Borgatti et al. (2004) on broiler performance under 

summer conditions observed that the greatest rate of body weight gain for broilers aged 1 

to 21 days old was obtained at a dEB of 290 and 330 mEq/Kg. This dEB value contradicts 

the one advised by Borges et al. (2003a) but it is in the range of the value of dEB advised 

by Johnson & Karunajeewa (1985). Later on, (Ahmad et al., 2009) reported levels between 

150 and 250 mEq/Kg for better performance in broiler chicks kept during a 6 week feeding 

trial under tropical summer conditions (26 to 37.5ºC). Therefore, it is suggested, form the 

different results observed in these referred studies, that a range of different dEB levels is 

recommended for broilers under heat stress conditions. Moreover, levels between 200 to 

300 mEq/Kg of dEB are suggested as adequate in situations that cover a broad range of 

high temperatures and the use of high levels of electrolytes, particularly cations, are also 

recommended under these circumstances (Mushtaq et al., 2013).  

2.5.7 Influence of dEB on phytase efficacy in poultry 

Exogenous phytase is known to release not just P but also other nutrients such as AA and 

minerals from phytic acid (Ravindran et al., 2006). More recently it has also been 

mentioned that phytase might have an effect on Na metabolism (Cowieson et al., 2004; 

Ravindran et al., 2008; Goodgame et al., 2011). Because of the effects of phytase and 

phytate on Na secretion in the gut (phytate increases Na loses, whereas phytase reduces it) 

it can be reasoned that the digesta dEB might be influenced by phytate. By compromising 

the Na-dependent transport mechanisms, phytate might be also compromising the intestinal 

uptake of some nutrients, including AA, which can be counterbalanced by phytase 

(Ravindran et al., 2008). Moreover, the impact of phytate and phytase on Na might also 

influence acid-base homeostasis (Selle & Ravindran, 2007).  

A study with pigs performed by Haydon & West (1990) reported that AA digestibility was 

increased with an increase in dEB (from -50 to 400 mEq/Kg). Moreover, Selle & 

Ravindran, (2007) suggested that dEB may influence the magnitude of AA response to 

exogenous phytase while Ravindran et al. (2008) demonstrated that phytase has a greater 

capacity to enhance AA digestibility in diets with low Na concentration and/or dEB due to 

its Na sparing effect. These findings suggest the possibility that phytate might be 

compromising the “sodium and potassium pump” by limiting Na-transport systems which 

will, in turn, limit the intestinal uptakes of nutrients and AA (Selle & Ravindran, 2007). 



 

29 
 

Acid base balance can have an influence in pig growth (Patience et al., 1987), broilers 

response to heat stress (Ahmad & Sarwar, 2006) as well as the metabolism of certain 

nutrients such as AA (Brake, 1998; Adedokun & Applegate, 2013). The effect of changing 

animal’s acid base balance through the diet is of importance due to its influence and 

repercussion in animal performance and production. Austic & Calvert, (1981) suggested 

that lysine can contribute to the regulation of acid-base homeostasis and Selle et al. (2005) 

reported that lysine increased the digestibility of certain AA from the gut. The dEB used in 

the later study was 155 mEq/Kg, which is lower than the recommended (250 to 300 

mEq/Kg) by Johnson & Karunajeewa, (1985), and phytase supplementation of lysine-

deficient diets increased AA digestibility. The interactions observed in the referred study 

on the AA digestibility could have been explained by an influence of phytase on the acid-

base balance. Through an impact of phytase on the Na movements into the gut (Cowieson 

et al., 2004), the intestinal uptake of AA via the Na-dependant transport systems could 

have been influenced. Therefore, it is suggested that phytase supplementation might 

influence dEB since phytate and phytase influence Na secretions in the gut (Cowieson et 

al., 2004; Ravindran et al., 2006) and these changes to acid–base homeostasis and/or Na-

dependent transport systems can influence intestinal uptakes of glucose and certain AA 

(Selle & Ravindran, 2007; Ravindran et al., 2008).  

There are, however, inconsistent findings about the influence of dEB in AA digestibility. A 

study by Ravindran et al. (2008) reported that dEB improved the ileal digestibility of 13 

AA out of the 17 AA assessed, but a study by Balnave & Oliva, (1991), reported that by 

increasing dEB from 180 to 380 mEq/Kg, no effect on AA ileal digestibility was observed. 

Moreover, Blank et al. (1999) reported a decrease in AA ileal digestibility in weanling pigs 

upon an increase on dEB (225 to 640 mEq/Kg) while Haydon & West, (1990) had reported 

an increase in AA ileal digestibility in weanling pigs as a response to an increase in      

dEB (-50 to 400 mEq/Kg). Reasons for this discrepancy in the results have been discussed 

(Selle et al., 2006a) and include, among others; marker used, ingredient type, dietary levels 

of Ca, non-phytate-P, and phytate and inclusion levels and source of phytase. Phytase 

influence on AA digestibility has also been inconsistent (Selle et al., 2006a).  

As mentioned earlier, Na plays an important role in the intestinal uptake of AA due to its 

participation in the Na-dependent transport systems and in the Na/K Pump. Therefore, Na 

dietary deficiencies can have a detrimental effect on the animal’s wellbeing and 

performance since it will limit their nutrient uptake (Sklan & Noy, 2000). Although not 

clear how phytate draws Na into the gut lumen, it has been shown that phytate depresses 
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Na availability. A reduction of broilers ileal Na availability was observed by Ravindran et 

al. (2006) upon an increase in dietary phytic acid but this reduction was counterbalanced 

with the supplementation of phytase (1000 FTU/Kg). Similar results were observed by 

(Ravindran et al., 2008) suggesting that, if Na can affect dEB levels, phytase can modify 

the dEB. Moreover, if phytate draws Na into the gut lumen, the dEB of the digesta is being 

influenced by phytate. Phytase supplementation increased ileal Na availability in 

Ravindran et al. (2008) study and these results were higher at lower dEB levels (150 and 

225 mEq/Kg) and less pronounced at the higher dEB level (375 mEq/Kg), suggesting that 

phytase is more likely to improve broilers performance in diets with low dEB. Similar 

finding were made by (Shahsavari et al., 2012) when he observed that phytase (500 

FTU/Kg) was more effective in promoting growth performance in broilers at a dEB of 200 

mEq/Kg. Moreover, in the later study, an interaction between phytase and dEB was 

observed for all parameters tested.  

The overall objective of this study was to investigate nutritional factors that can improve 

the performance of broilers. Manipulations of dEB have been shown to influence broilers 

growth with Na levels playing an important role. Because phytase and phytate compromise 

Na secretions into the gut lumen it is implicit that this might influence the dEB levels. 

Moreover, there seems to be a considerable amount of phytate-P that remains 

“encapsulated” in the cell walls and that is undigested, even when high amounts of phytase 

are used. Supplementation of NSP degrading enzymes like xylanase may increase the 

efficacy of phytase. 
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2.6 Objectives  

The main objectives of this MSc study were: 

 Assess the impact of changes in dEB levels on phytase efficacy in growth 

performance, bone mineralisation and nutrient utilisation in broilers up to 21 days 

old. 

 Assess the effects of phytase supplementation, alone or in combination with 

xylanase, on growth performance, bone mineralisation, volatile fatty acids 

production and pH in different parts of the GIT of broilers at 21 days of age. 

The study specific hypotheses are mentioned in each chapter.  
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3. Assessment of the effect of dietary electrolyte balance 

on the efficacy of a microbial phytase 

3.1 Introduction  

Phytic acid or phytate is a naturally occurring organic complex that is found in plants. The 

majority of the P found in cereal grains and oilseeds exists as phytic acid (phytate-P) 

(Simons et al., 1990). P is an essential mineral for animal’s cellular metabolism and 

regulatory mechanisms and for skeletal development (McDonald et al., 2011).  

The use of plant based ingredients in poultry feeds is very common and for the animals to 

have access to the P from phytate –P it is necessary that they possess endogenous phytases 

that hydrolyse phytate. Due to the insufficient amount of phytase present in monogastric 

animals, the ability to use the P present in the grains and seeds is limited for these animals 

(Cowieson et al., 2004; Selle et al., 2000; Denbow et al., 1995) which leads to the need for 

adding phytase to the feeds in order to increase P availability. The phytic acid molecule is 

broken down by phytase and the P is released for absorption, reducing the need for 

inorganic-P supplementation in the diet and reducing the amount of P being released to the 

environment. The partial availability of phytate P to monogastric animals assumes 

importance due to the fact that inorganic-P is an expensive ingredient in poultry feed and it 

might be facing a supply crisis in the near future (Selle & Ravindran, 2007). Apart from P, 

phytase can also release any other cation or AA that is bound to phytic acid. Phytase 

increases the digestibility of phytate in poultry from around 25% to 50-70% and can 

improve the digestibility of other nutrients as well as energy (Ravindran et al., 1999a; 

Kornegay, 2001). 

A combined intake of minerals is important for the physiological functions of broilers 

(Ravindran et al., 2008; Shahsavari et al., 2012) as it constitutes the acid-base balance of 

the diet and body. Because cells require a specific balance of anions and cations to function 

efficiently, minerals with electrolytic properties are important and considered functionally 

as separate entities because, cells are able to maintain voltages across their membranes and 

to carry electrical impulses (nerve impulses, muscle contractions) across themselves and to 

other cells (McDonald et al., 2011). 
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The amount and ratio of the monovalent minerals Na, K and Cl is summarized as dEB and 

are essential for synthesis of tissue protein, acid-base balance and cellular homeostasis 

(Shahsavari et al., 2012).  

Several studies involving dEB manipulation showed that it can influence growth 

performance (Ahmad & Sarwar, 2006; Ravindran et al., 2008) but Johnson & Karunajeewa 

(1985), demonstrated that there is a specific cation (Na+ and K+) effect in growth 

regardless of the dEB levels.  

In more recent studies (Cowieson et al., 2004; Ravindran et al., 2006) it was shown that 

phytase and phytate influence the secretion patterns of Na at the ileal level in broiler chicks 

(phytate increases Na losses but phytase reduces Na losses). By definition, Na affects the 

dEB levels and phytate and phytase influence the Na status in the GIT. Because phytate 

may compromise Na secretions into the gut lumen it is implicit  that it may influence the 

digesta dEB and also, consequently might be compromising the Na-dependant transport 

mechanisms involved in the intestinal uptake of some nutrients,  including AA, but these 

negative effects are countered by phytase (Ravindran et al., 2008). A study with pigs 

(Haydon & West, 1990) showed that an increased dEB (450 mEq Kg-1) increases  AA 

digestibility. Consequently Selle and Ravindran (2007) proposed that dEB may influence 

the magnitude of AA response to exogenous phytase. 

3.1.1 Objective 

The present study was undertaken to more fully investigate the possible effects of dEB on 

phytase activity with a focus on animal growth performance and nutrient utilisation.  

3.1.2 Hypothesis 

It is hypothesised that lowering or increasing the levels of dEB from the recommended 

level (250 mEq/Kg) will reduce the efficacy of phytase in improving growth performance 

and nutrient utilisation and will increase water content of excreta.   
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3.2 Material and Methods 

3.2.1 Experiment Design 

A total of 336 day-old male Ross 308 broilers were used in this study. On the day of arrival 

(day 0), all birds were allocated to 7 treatments in a randomised complete block design 

(diets were randomly allocated within blocks) with a 3x2 + 1 factorial arrangement, using 

initial body weight as the blocking criterion to ensure that the treatments had the same 

average body weight at day 0. A positive control diet (PC) was formulated to meet the 

NRC nutrient requirements and was designed to meet the dEB recommended level of 250 

mEq/Kg. The remaining negative control (NC) diets were formulated to have 3 levels of 

dEB (214, 234 and 266 mEq/Kg) and 2 levels of phytase (0 FTU/Kg and 1500 FTU/Kg). 

Each treatment had 6 replicate modified raised floor pens and 8 birds per replicate pen. 

Titanium dioxide (TiO2) was added as an indigestible marker to the diets to enable 

determination of energy and nutrient digestibility by the index method.  

3.2.2 Diets 

The diets used in this experiment were corn-soybean meal based and were fed in mash 

form. A PC diet that was adequate in all nutrients and was designed to meet the dEB 

recommendation level of 250 mEq/Kg. The NC diets were formulated to have 0.30% non-

phytate P, 0.85% Ca and 0.3% less Na. These reductions were made to make room for the 

supplemented phytase which is expected to release the amount of P, Ca and Na that were 

reduced from the positive control diet. The diet formulas are presented in Table 3.1. 

 

 

 

 

 

 

 



 

35 
 

Table 3.1 - Ingredient composition (g/Kg) of the experimental diets 

Description of diets 

PC NC1 NC2 NC3 

NC1      

+ 

phytase 

NC2     

+ 

phytase 

NC3      

+ 

phytase 

Phytase (FTU/Kg) 0 0 0 0 1500 1500 1500 

Ingredients g/kg / Diet n° => 1 2 3 4 5 6 7 

Corn 451 462 459 453 462 459 453 

Wheat 63 63 63 63 63 63 63 

Soybean meal 350 350 350 350 350 350 350 

Methionine 5 5 5 5 5 5 5 

Lysine 4 4 4 4 4 4 4 

Soybean oil 50 50 50 50 50 50 50 

DCP(A) 22.0 12.9 12.9 12.9 12.9 12.9 12.9 

Limestone (B) 9 8 11 15 8 11 15 

Titanium  dioxide premix (C) 25 25 25 25 25 25 25 

Corn gluten meal  10 10 10 10 0 0 0 

Enzyme premix (D) 0 0 0 0 10 10 10 

Vitamin-mineral premix (E) 5 5 5 5 5 5 5 

NaHCO3 2.4 1.0 1.5 4.0 1.0 1.5 4.0 

NH4Cl 0.2 1.0 0.2 0.0 1.0 0.2 0.0 

Salt NaCl 3 3 3 3 3 3 3 

Total 1000 1000 1000 1000 1000 1000 1000 

Calculated Nutrients & Energy 

Protein,  g/kg 232 233 232 232 233 232 232 

ME, kcal/kg 3007 3043 3034 3013 3043 3034 3013 

Ca, g/kg 10.0 7.2 8.4 10.0 7.2 8.4 10.0 

P, g/kg 7.0 5.4 5.4 5.4 5.4 5.4 5.4 

Available P, g/kg 5.1 3.5 3.5 3.5 3.5 3.5 3.5 

Na 2.0 1.6 1.7 2.4 1.6 1.7 2.4 

K 8.6 8.6 8.6 8.6 8.6 8.6 8.6 

Cl 2.2 2.7 2.2 2.1 2.7 2.2 2.1 

Mg 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

S 1.4 1.4 1.4 1.4 1.4 1.4 1.4 

dEB (expected), mEq/Kg 243.7 213.5 233.5 266.2 213.5 233.5 266.2 

dEB (analysed), mEq/Kg 206.0 164.3 238.3 246.2 190.6 221.1 254.4 
 

PC – Positive Control diet - adequate in all nutrients and designed to meet the dEB recommendation level of 

250mEq/Kg; NC – Negative Control diet - formulated to have 0.30% non-phytate P, 0.85% Ca and 0.3% less 

sodium (Na); A. 16% Ca, 21% P; B. 38% Ca; 

C. Prepared as 1.1 Kg titanium dioxide (TiO2) added to 4.4 Kg corn gluten meal; 

D. Enzyme premix to be made to desired enzyme activity unit (1500FTU/Kg) and added at the rate of 10 

g/kg; 

E. Supplies the following per kg DIET: Vit. A, 5484 IU;  Vit. D3, 2643 ICU; Vit E,11 IU; Menadione 

sodium bisulfite,4.38 mg;  Riboflavin, 5.49 mg; d-pantothenic acid, 11 mg; Niacin, 44.1 mg; Choline 

chloride, 771 mg;   Vit B12, 13.2 ug; Biotin, 55.2 ug; Thiamine mononitrate, 2.2 mg; Folic acid, 990 ug; 

Pyridoxine hydrochloride, 3.3 mg; I, 1.11 mg; Mn, 66.06 mg; Cu, 4.44 mg; Fe, 44.1 mg; Zn, 44.1 mg; Se, 

300 ug. Also contains per g of premix: Vit. A, 1828 IU; Vit. D3, 881 ICU; Vit E,3.67 IU; Menadione sodium 

bisulfite,1.46 mg;  Riboflavin, 1.83 mg; d-pantothenic acid, 3.67 mg; Niacin, 14.69 mg; Choline chloride, 

257 mg;   Vit B12, 4.4 ug; Biotin, 18.4 ug; Thiamine mononitrate, 735 ug; Folic acid, 330 ug; Pyridoxine 

hydrochloride, 1.1 mg; I, 370 ug; Mn, 22.02 mg; Cu, 1.48 mg; Fe, 14.69 mg; Zn, 14.69 mg; Se, 100 ug. 
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3.2.3 Husbandry  

On the day of arrival (day 0), the birds were housed in modified raised floor pens where 

they remained until the end of the experiment, 21 days. Water and experimental diets were 

provided ad libitum during the experimental period. The birds were housed in an 

environmentally controlled room. The lighting regimen followed the breed specification 

and the temperature was controlled using automated temperature regulation. The 

temperature was maintained at 31°C on day 1 and then gradually reduced to 22°C by day 

21. The relative humidity was kept below 70% during the 21-day trial. 

3.2.4 Sample collection 

Samples of each of the 7 diets and of the enzyme premix were collected and stored in a 

refrigerator until chemically analysed. Birds were weighed per pen on day 0 and 

individually on day 21 and feed weight data were recorded on days 0 and 21 for 

measurement of growth performance responses. Excreta were collected from each raised 

floor pen on days 19 and 20 to determine total tract nutrient retention. On day 21 one 

randomly selected bird from each pen was stun-killed and blood was collected immediately 

after from the jugular vein to heparinised, blood pH readings were taken and tubes were 

then stored in the freezer. The remaining birds in each pen were killed and ileal digesta 

samples were collected from all the remaining birds by gently flushing the ileum with 

water for subsequent determination of ileal nutrient digestibility. The left tibia bones from 

two randomly selected birds per pen were collected (pooled per pen) and frozen prior to 

ashing for determination of bone ash and bone mineralisation. Ileal and excreta samples 

were pooled within a pen and oven dried in forced air oven at 80°C after collection and 

prior to chemical analysis for minerals, Ti, N, phytate-P, dry matter and energy. 

3.2.5 Chemical analysis 

Prior to analysis, all diets, ileal and excreta samples were ground to pass through 0.5 mm 

sieve using a mill grinder. The diets, excreta and ileal digesta samples were analysed for 

Ti, dry matter, gross energy, N, phytate-P and minerals as described by Olukosi et al. 

(2008a) for digestibility and total tract nutrient retention determination. Bone ash was 

determined and the bones were analysed for Ca and P contents.  
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3.2.5.1 Ti analysis 

Determination of titanium concentration in all samples was performed as described by 

Short et al. (1996). 

3.2.5.2 Dry matter 

Dry matter content was determined as described by Olukosi et al. (2007a) on all dried and 

ground diets, ileal digesta and excreta samples.  

3.2.5.3 Gross energy 

Gross energy content of diets, ileum digesta and excreta samples were determined in 

duplicates using an adiabatic oxygen bomb calorimeter (Parr Instruments, Moline IL) using 

benzoic acid as a calibration standard.  

3.2.5.4 N analysis 

Diets, excreta and ileal digesta were analysed for N using the combustion method (method 

968.06; AOAC, 2006). 

3.2.5.5 Mineral analysis 

Minerals content was determined using Inductively Coupled Plasma – Optical Emission 

Spectroscopy (method 990.08; AOAC, 2006). 

3.2.5.6 pH 

Blood pH was measured using a sterile glass pH electrode (HI 99163, HANNA 

Instruments, Romania). 

3.2.5.7 Bone mineralisation 

The procedure for bone mineralisation was as described by Olukosi et al. (2008b). The left 

tibia was collected from two randomly selected birds from each metabolism cage and all 

attached muscle, tendon and cartilages was removed. The bones were then dried in an oven 

set to 80-100oC overnight, to allow the bone to be defatted by ether extraction and dried 
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again. Following this, samples were placed in a Muffle furnace for 24 hours at 500-600oC 

and weighed and analysed for DM, P, Ca and ash content. 

3.2.6 Calculations 

Using the excreta, ileal and feed Ti content analysis, the apparent dry matter digestibility 

(or total tract retention) were calculated using the following formula: 

DMD  = [1 – (Ti feed / Ti excreta)]  

Where DMD is coefficient of dry matter digestibility; Ti feed is the concentration of the 

titanium dioxide (TiO2) in the feed and Ti excreta is the concentration of the marker in the 

excreta. 

Coefficients of apparent nutrient digestibility or total tract retention were calculated using 

the following formula: 

ND  = {1 – [(Ti feed / Ti excreta) x (N excreta / N feed)]} 

Where ND is coefficient of nutrient digestibility; N feed is the concentration of the nutrient 

in the feed and N excreta is the concentration of the nutrient in the faeces.  

3.2.7 Statistical analysis 

The diets were analysed as a 3×2 factorial plus 1. The data on the growth performance and 

nutrient utilisation were analysed using the generalized linear model of GenStat program 

(11th edition, VSN International, 2008). The model included block and diet to test for the 

effect of the diets on the response criteria. Factorial analysis was used on the six diets to 

test for main effects (effect of dEB and phytase separately) and interactions. The reference 

diet (PC) was not included in this factorial arrangement. Because of the hierarchical order 

of factorial arrangement, only the main effects (i.e. of dEB levels (3) or phytase levels (2)) 

are discussed below when there were no interactions whereas simple effects (effects of 

individual treatments) are discussed when there were factor interactions. Tukey's test 

(Snedecor & Cochran, 1989) was used to separate significantly different means for the 

main effect of dEB whereas pre-planned pair-wise orthogonal contrasts were used to 

separate the means for the simple effects. Significance was set at P ≤ 0.05. 
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3.3 Results  

Based on the results of the diets analysis for Na, K, Cl, Mg and S the dEB calculated 

values varied from the expected (23% lower than expected). In spite of the differences 

between analysed and formulated values, the anticipated variability in dEB values were 

observed and the expected values for dEB are used in consequent writing below.  

3.3.1 Growth performance and bone mineralisation 

The data on the growth performance and blood pH responses of broilers receiving the 

experimental diets are presented in Table 3.2. As expected, initial weights of the birds were 

not statistically different among all treatments. There were no dEB × phytase interactions 

for any of the responses. Reducing the dietary levels of P reduced (P<0.05) weight gain, 

gain:feed and final body weight. Increasing dEB from 214 to 266 mEq/Kg had no 

significant effect on growth performance but increased (P<0.05) blood pH. Phytase 

supplementation increased (P<0.05) weight gain, gain:feed and final body weight but had 

no effect on blood pH.  

Table 3.3 shows the effect of the dietary treatments on bone mineralisation. Reducing the 

level of dietary P and Ca reduced (P<0.05) all the tibia bone mineralisation responses. 

There were no dEB × phytase interaction on bone mineralisation responses. Increasing the 

dEB from 214 to 234 mEq/Kg had no effect on bone ash but further increase to 266 

mEq/Kg tended (P<0.10) to reduce bone ash but dEB had no effect on the other bone 

mineralisation criteria. Phytase supplementation increased (P<0.05) all the tibia bone 

mineralisation responses relative to the diets without phytase. 
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Table 3.2 - Growth responses of broilers to dietary phytase supplementation at 

different dEB levels 

Diets WG, g FI, g 
Gain:feed 

g/kg 
FBW, g 

Blood 

pH 

Main effect means: dEB (mEq/Kg) 

214 921 1292 716 960 7.5a 

234 897 1357 666 935 7.6ab 

266 861 1323 652 899 7.6b 

SEM 31.0 27.0 26.3 31.0 0.03 

P-value for dEB effect 0.396 0.253 0.215 0.396 0.011 

Main effect means: Phytase (FTU/Kg) 

0 (NC) 804 1334 606 843 7.6 

1500 981 1314 749 1020 7.6 

SEM 25.3 22.0 21.5 25.3 0.02 

Main effect of phytase <.001 0.510 <.001 <.001 0.607 

dEB × phytase interaction  0.560 0.756 0.395 0.559 0.727 

Simple effects means* 

1   Positive control (PC) 929 1319 712 968 7.5 

2   Negative Control 1(NC1)   857 1286 672 896 7.5 

3   NC2  807 1371 591 846 7.6 

4   NC3  749 1346 556 787 7.7 

5   NC1  + Phytase 985 1297 760 1024 7.5 

6   NC2 + Phytase 986 1343 740 1025 7.6 

7   NC3 + Phytase 973 1301 748 1012 7.6 

Pooled SEM 41.2 39.3 36.4 41.2 0.04 

P-values for contrasts 

PC vs NC (1 vs 3) 0.045 0.356 0.026 0.045 0.547 

2 vs 5 (phytase) 0.035 0.847 0.095 0.035 0.717 

3 vs 6 (phytase) 0.005 0.618 0.007 0.005 0.763 

4 vs 7 (phytase) <.001 0.422 <.001 <.001 0.384 

2 vs 4 (dEB extremes) 0.074 0.291 0.033 0.073 0.012 

5 vs 7 (dEB extremes) 0.829 0.948 0.812 0.830 0.039 
 

*Note – data represents average of 6 replicate pens per treatment 

WG – weight gain; FI – feed intake; Gain:Feed – body weight gain to feed intake; FBW – final body weight; 

PC – positive control; NC – negative control; NC1, 2 and 3 had dEB levels of 214, 234 and 266 mEq/Kg, 

respectively 
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Table 3.3 - Bone mineralisation responses of broilers to dietary phytase 

supplementation at different dEB levels 

Diets Ash, g P, g Ca, g Zn, mg 
Weight, 

g 

Main effect means: dEB (mEq/Kg) 

214 1.906 0.340 0.710 0.787 3.832 

234 2.004 0.360 0.750 0.811 3.875 

266 1.771 0.310 0.640 0.743 3.519 

SEM 0.07 0.02 0.03 0.03 0.14 

P-value for dEB effect 0.078 0.105 0.108 0.283 0.165 

Main effect means: Phytase (FTU/Kg) 

0 (NC) 1.526 0.260 0.560 0.635 3.126 

1500 2.261 0.410 0.840 0.925 4.358 

SEM 0.06 0.01 0.03 0.02 0.11 

Main effect of phytase <.001 <.001 <.001 <.001 <.001 

dEB × phytase interaction  0.306 0.691 0.702 0.819 0.410 

Simple effects means* 

1   Positive control (PC) 2.053 0.370 0.770 0.814 3.900 

2   Negative Control 1 (NC1)   1.628 0.280 0.590 0.656 3.370 

3   NC2  1.596 0.280 0.590 0.654 3.199 

4   NC3  1.354 0.230 0.490 0.595 2.811 

5   NC1  + Phytase 2.183 0.410 0.830 0.917 4.294 

6   NC2 + Phytase 2.413 0.430 0.900 0.968 4.551 

7   NC3 + Phytase 2.187 0.380 0.800 0.890 4.228 

Pooled SEM 0.11 0.02 0.05 0.05 0.21 

P-values for contrasts 

PC vs NC (1 vs 3) 0.005 0.007 0.012 0.020 0.022 

2 vs 5 (phytase) <.001 <.001 0.002 <.001 0.003 

3 vs 6 (phytase) <.001 <.001 <.001 <.001 <.001 

4 vs 7 (phytase) <.001 <.001 <.001 <.001 <.001 

2 vs 4 (dEB extremes) 0.080 0.123 0.141 0.352 0.065 

5 vs 7 (dEB extremes) 0.981 0.523 0.584 0.685 0.822 

*Note – data represents average of 6 replicate pens per treatment 

Bone mineral contents are the absolute weight of ash or individual minerals present in the bone collected. 

These can be related back to bone weight to determined % minerals in the bone 
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3.3.2 Digestibility and total tract retention 

Table 3.4 show the ileal nutrient digestibility response of broilers to the dietary treatments. 

There were significant dEB × phytase interaction (P<0.01) for all the nutrients and energy 

except phytate P and hence the simple effects are presented. Decreasing the dietary P and 

Ca increased (P<0.05) ileal phytate-P disappearance. In the diets with 214 mEq/Kg dEB, 

phytase supplementation decreased (P<0.01) ileal DM, energy and N utilisation. In the 

diets with 234 mEq/Kg dEB, there were no phytase effects. However, in the diets with 266 

mEq/Kg dEB, phytase supplementation increased ileal nutrient and energy utilisation. In 

the diets without phytase, increasing dEB from 214 to 266 decreased (P<0.01) ileal 

nutrient digestibility except for phytate-P whereas in the diets with phytase, increasing the 

dEB from 214 to 266 mEq/Kg increased (P<0.01) ileal nutrient digestibility with the 

exception of ileal digestible energy and phytate-P. 

Table 3.5 shows the ileal mineral digestibility of the broilers to the experimental diets. 

Reducing the dietary P and Ca increased (P<0.05) digestibility of Ca, Mg, Zn, and P. In the 

diets with 214 mEq/Kg, phytase supplementation decreased (P<0.01) ileal mineral 

digestibility. In the diets with 234 mEq/Kg phytase supplementation increased (P<0.05) 

ileal digestibility of Fe, Zn and P while in the diets with 266 mEq/Kg, phytase 

supplementation increased (P<0.01) Mg, K and P. In the diets without phytase, increasing 

dEB from 214 to 266 mEq/Kg decreased (P<0.01) ileal mineral digestibility whereas in the 

diets with phytase supplementation, increasing dEB from 214 to 266 mEq/Kg increased 

ileal digestibility of Mg, Fe, Zn, and K but had no effect on Ca and P. 
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Table 3.4 - Coefficients of ileal nutrient digestibility in broilers fed dietary phytase 

supplementation at different dEB levels  

Diets IDE, kcal/Kg Energy DM N Phytate-P 

Main effect means: dEB (mEq/Kg) 

214 3019ab 0.732ab 0.725 0.696 0.847b 

234 3129b 0.753b 0.742 0.724 0.762ab 

266 2903a 0.713a 0.704 0.667 0.740a 

SEM 26.7 0.01 0.01 0.01 0.03 

P-value for dEB effect <.001 <.001 0.001 0.010 0.034 

Main effect means: Phytase (FTU/Kg) 

0 (NC) 3035 0.739 0.728 0.703 0.749 

1500 2999 0.726 0.719 0.688 0.817 

SEM 21.8 0.01 0.01 0.01 0.02 

Main effect of phytase 0.265 0.112 0.206 0.272 0.052 

P-value for dEB × phytase 

interaction  

0.001 <.001 <.001 <.001 0.649 

Simple effects means* 

1   Positive control (PC) 3119 0.732 0.709 0.698 0.529 

2   Negative Control 1 (NC1)   3127 0.777 0.772 0.764 0.834 

3   NC2  3117 0.746 0.733 0.718 0.712 

4   NC3  2860 0.694 0.680 0.628 0.701 

5   NC1 + Phytase 2912 0.686 0.677 0.628 0.859 

6   NC2 + Phytase 3140 0.761 0.751 0.730 0.812 

7   NC3 + Phytase 2946 0.732 0.728 0.705 0.778 

Pooled SEM 35.2 0.009 0.008 0.016 0.057 

P-values for contrasts 

PC vs NC (1 vs 3) 0.961 0.248 0.054 0.371 0.030 

2 vs 5 (phytase) <.001 <.001 <.001 <.001 0.750 

3 vs 6 (phytase) 0.638 0.245 0.127 0.596 0.223 

4 vs 7 (phytase) 0.092 0.004 <.001 0.002 0.346 

2 vs 4 (dEB extremes) <.001 <.001 <.001 <.001 0.110 

5 vs 7 (dEB extremes) 0.488 <.001 <.001 0.002 0.321 
 

*Note – data represents average of 6 replicate pens per treatment 

IDE – ileal digestible energy; DM – dry matter; PC – positive control; NC – negative control; NC1, 2 and 3 

had dEB levels of 214, 234 and 266 mEq/Kg, respectively
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Table 3.5 - Coefficients of ileal mineral digestibility in broilers fed dietary phytase 

supplementation at different dEB levels  

Diets 

 

Ca Mg Fe Zn K P 

Main effect means: dEB (mEq/Kg) 

214 0.518ab 0.422ab 0.262 0.153a 0.744 0.546b 

234 0.604b 0.477b 0.355 0.276 0.760 0.565b 

266 0.476a 0.381a 0.261 0.088a 0.725 0.442a 

SEM 0.01 0.01 0.02 0.01 0.01 0.01 

P-value for dEB effect <.001 <.001 <.001 <.001 0.099 <.001 

Main effect means: Phytase (FTU/Kg) 

0 (NC) 0.600 0.454 0.338 0.184 0.748 0.503 

1500 0.466 0.400 0.247 0.161 0.738 0.533 

SEM 0.01 0.01 0.01 0.01 0.01 0.01 

Phytase effect <.001 <.001 <.001 0.110 0.473 0.005 

dEB × phytase interaction  <.001 <.001 <.001 <.001 <.001 <.001 

Simple effects means* 

1   Positive control (PC) 0.349 0.327 0.242 0.050 0.732 0.410 

2   Negative Control 1 (NC1)   0.619 0.543 0.410 0.273 0.798 0.581 

3   NC2  0.627 0.464 0.304 0.210 0.754 0.522 

4   NC3  0.554 0.354 0.301 0.071 0.691 0.404 

5   NC1 + Phytase 0.418 0.301 0.115 0.034 0.690 0.511 

6   NC2 + Phytase 0.581 0.491 0.405 0.342 0.766 0.608 

7   NC3 + Phytase 0.399 0.409 0.222 0.106 0.759 0.480 

Pooled SEM 0.013 0.017 0.028 0.020 0.015 0.014 

P-values for contrasts 

PC vs NC (1 vs 3) <.001 <.001 0.128 <.001 0.293 <.001 

2 vs 5 (phytase) <.001 <.001 <.001 <.001 <.001 0.001 

3 vs 6 (phytase) 0.016 0.269 0.016 <.001 0.564 <.001 

4 vs 7 (phytase) <.001 0.028 0.053 0.222 0.003 <.001 

2 vs 4 (dEB extremes) 0.001 <.001 0.01 <.001 <.001 <.001 

5 vs 7 (dEB extremes) 0.300 <.001 0.011 0.015 0.002 0.126 
 

*Note – data represents average of 6 replicate pens per treatment 

PC – positive control; NC – negative control; NC1, 2 and 3 had dEB levels of 214, 234 and 266 mEq/Kg, 

respectively 
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Table 3.6 shows the effect of the dietary treatments on total tract nutrient and energy 

utilisation. dEB × phytase interaction was significant (P<0.01) for all the nutrients and 

energy and tended to be significant for phytate-P. Decreasing the dietary Ca and P 

increased (P<0.05) energy, DM, N and phytate P retention. Supplementing phytase to diets 

with dEB 214 mEq/Kg decreased (P<0.05) total tract utilisation of energy, DM and N. In 

the diets with dEB 234 and 266 mEq/Kg, phytase supplementation increased total tract 

utilisation of DM and phytate-P but increased total tract utilisation of energy only in the 

diets with 234 mEq/Kg and total tract utilisation of N only in diets with 266 mEq/Kg. 

Table 3.7 shows the effects of the dietary treatments on total tract nutrient utilisation of 

broilers. There were dEB × phytase interactions (P<0.01) for all the minerals except Na. 

Decreasing the dietary Ca and P increased (P<0.05) total tract mineral retention, except for 

Fe. In the diets with 214 mEq/Kg dEB, phytase supplementation decreased (P<0.05) total 

tract mineral retention. However, in the diets with 234 mEq/Kg, phytase supplementation 

increased (P<0.05) total tract retention of Ca, Mg, Fe, K, and P; decreased (P<0.05) Cu 

retention but had no effect on Na retention. On the other hand, phytase supplementation to 

diets with 266 mEq/Kg increased (P<0.01) total tract retention of Ca, Mg, K, and P; 

reduced (P < 0.05) retention of Na and Fe, but had no effect on Cu retention. In the diets 

without phytase, increasing dEB from 214 to 266 mEq/Kg decreased (P<0.05) total tract 

retention of all the minerals. On the other hand, in the diets with phytase, increasing dEB 

from 214 to 266 mEq/Kg increased (P<0.01) retention of Mg, Cu, Fe, K, and P but reduced 

(P<0.05) retention of Ca and Na. 
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Table 3.6 - Coefficients of total tract nutrient retention in broilers fed dietary phytase 

supplementation at different dEB levels  

Diets AME,kcal/kg Energy DM N Phytate-P 

Main effect means: dEB (mEq/Kg) 

214 2993a 0.733ab 0.710ab 0.638ab 0.707 

234 3174 0.764b 0.738b 0.684b 0.622 

266 2888a 0.709a 0.681a 0.614a 0.573 

SEM 17.18 0.004 0.004 0.01 0.03 

P-value for dEB effect <.001 <.001 <.001 <.001 0.036 

Main effect means: Phytase (FTU/Kg) 

0 (NC) 3055 0.744 0.717 0.662 0.555 

1500 2982 0.727 0.701 0.628 0.713 

SEM 14.03 0.003 0.003 0.01 0.03 

Main effect of phytase <.001 0.002 0.002 0.001 <.001 

dEB × phytase 

interaction  
<.001 <.001 <.001 <.001 0.071 

Simple effects means* 

1   Positive control (PC) 3090 0.725 0.685 0.632 0.272 

2   Negative Control 1 

(NC1)   
3137 0.779 0.761 0.717 0.693 

3   NC2  3131 0.749 0.722 0.674 0.527 

4   NC3  2898 0.703 0.670 0.595 0.444 

5   NC1 + Phytase 2849 0.688 0.659 0.558 0.721 

6   NC2 + Phytase 3218 0.780 0.754 0.694 0.716 

7   NC3 + Phytase 2877 0.715 0.691 0.633 0.703 

Pooled SEM 24.28 0.005 0.006 0.011 0.052 

P-values for contrasts 

PC vs NC (1 vs 3) 0.250 0.006 <.001 0.011 0.002 

2 vs 5 (phytase) <.001 <.001 <.001 <.001 0.704 

3 vs 6 (phytase) 0.016 0.001 <.001 0.220 0.015 

4 vs 7 (phytase) 0.558 0.158 0.011 0.020 0.001 

2 vs 4 (dEB extremes) <.001 <.001 <.001 <.001 0.002 

5 vs 7 (dEB extremes) 0.415 0.003 <.001 <.001 0.810 
 

*Note – data represents average of 6 replicate pens per treatment 

ME – metabolisable energy at excreta level; DM – excreta dry matter; N - Nitrogen; PC – positive control; 

NC – negative control; NC1, 2 and 3 had dEB levels of 214, 234 and 266 mEq/Kg, respectively 
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Table 3.7 – Coefficients of total tract mineral retention in broilers fed dietary phytase supplementation at different dEB levels  

Diets Ca  Na  Mg  Cu Fe K P 

Main effect means: dEB (mEq/Kg) 

214 0.507b 0.653b 0.187ab 0.099a 0.209 0.242ab 0.594ab 

234 0.544b 0.716b 0.295b 0.292 0.288 0.303b 0.645b 

266 0.402a 0.515a 0.095a 0.096a 0.227 0.172a 0.543a 

SEM 0.01 0.02 0.01 0.01 0.01 0.01 0.01 

P-value for dEB effect <.001 <.001 <.001 <.001 <.001 <.001 <.001 

Main effect means: Phytase (FTU/Kg) 

0 (NC) 0.478 0.662 0.214 0.205 0.278 0.251 0.587 

1500 0.491 0.594 0.171 0.120 0.204 0.227 0.601 

SEM 0.005 0.02 0.01 0.01 0.01 0.01 0.01 

Main effect of phytase 0.069 0.019 0.016 <.001 <.001 0.233 0.075 

dEB × phytase interaction  <.001 0.421 <.001 <.001 <.001 <.001 <.001 

Simple effects means* 

1   Positive control (PC) 0.382 0.527 0.078 0.186 0.254 0.178 0.425 

2   Negative Control 1 (NC1)   0.544 0.679 0.355 0.192 0.352 0.396 0.654 

3   NC2  0.501 0.734 0.246 0.319 0.215 0.248 0.600 

4   NC3  0.389 0.574 0.041 0.103 0.268 0.109 0.505 

5   NC1 + Phytase 0.469 0.628 0.018 0.007 0.065 0.088 0.533 

6   NC2 + Phytase 0.588 0.699 0.345 0.264 0.360 0.357 0.689 

7   NC3 + Phytase 0.415 0.456 0.149 0.089 0.185 0.234 0.583 

Pooled SEM 0.008 0.031 0.020 0.014 0.017 0.024 0.010 

P-values for contrasts 

PC vs NC (1 vs 3) <.001 <.001 <.001 <.001 0.112 0.044 <.001 

2 vs 5 (phytase) <.001 0.253 <.001 <.001 <.001 <.001 <.001 

3 vs 6 (phytase) <.001 0.433 0.001 0.012 <.001 0.003 <.001 

4 vs 7 (phytase) 0.028 0.011 <.001 0.479 0.002 <.001 <.001 

2 vs 4 (dEB extremes) <.001 0.023 <.001 <.001 0.002 <.001 <.001 

5 vs 7 (dEB extremes) <.001 <.001 <.001 <.001 <.001 <.001 0.002 
*Note – data represents average of 6 replicate pens per treatment 

PC – positive control; NC – negative control; NC1, 2 and 3 had dEB levels of 214, 234 and 266 mEq/Kg, respectively 
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3.4 Discussion 

This study focused on the effects of three levels of dEB on phytase efficacy with animal 

growth performance and nutrient utilisation as response criteria. The hypothesis was that 

by lowering or increasing the levels of dietary electrolyte balance (dEB) from the 

recommended level of 250 mEq/Kg (Mongin & Sauveur, 1977) this would reduce the 

efficacy of phytase in improving growth performance and nutrient utilisation.  

The experimental diets were formulated to have 3 levels of dEB and 2 levels of phytase. A 

positive control (PC) diet that was adequate in all nutrients, and was designed to meet the 

dEB recommendation level of 250 mEq/Kg, was added for comparison. The NC diets were 

formulated to have lower P, Ca and Na than PC to ensure optimise the effect of 

supplemented phytase which is expected to release the amount of P, Ca and Na that were 

reduced from PC diet. The chemical analysis of the diets showed that the diets mineral 

content was in general higher than planned which caused differences between the expected 

and actual levels of dEB. These differences may be due to errors associated with sampling, 

analysis or combination of both. As done in similar studies where differentials were 

observed between expected and analysed values (Ravindran et al., 2008), references will 

be made to the expected levels of dEB in the discussion.  

3.4.1 Growth performance, bone mineralisation and blood pH 

Overall, results indicated that the different levels of dEB did not have any significant effect 

on growth performance or tibia bone mineralisation which suggests that the birds were able 

to adjust their electrolyte balance or were tolerant to the range of dEB levels used in the 

current study. This adjustment might have occurred because the birds had access to water 

ad libitum during the whole experimental period and this was enough for them to balance 

or counterbalance the possible deleterious effects of the existing electrolyte range. As 

Borges (2001) suggested, an increase in water intake caused by increasing dEB levels is 

required to overcome the osmotic imbalance caused by higher Na+ and K+ levels but, as 

observed by Ravindran et al. (2008), the intake of drinking water electrolytes had no 

impact on dEB levels. A lack of response was also observed by Borges et al. (2003b) who 

observed no effect of  increasing dEB levels from 120 to 240 mEq/Kg for a starter phase (0 

to 21 days old) on broilers performance. At the two levels of dEB, although no effect was 

seen for weight gain, feed intake and FCR, water intake was significantly different which 

might also corroborate the suggestion that the electrolytes present in the water are taking 
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an important part in the bird’s adjustment to the electrolyte imbalance or that, there might 

be a range of optimal dEB levels (Borges et al., 2003b) rather than a single point as 

suggested by Mongin & Sauveur (1977). Nonetheless, water intake was not measured in 

the current experiment.  

Koreleski et al. (2011) observed that a drop from 298 to 274 mEq/Kg of dEB improved 

growth responses in a starter phase (1 to 15 days old) and Murakami et al. (2001) reported 

that dEB between 245 and 315 mEq/Kg gave maximum growth performance in broilers 1 

to 21 days old. Arantes et al. (2013) who used dEB levels between 200 and 320 mEq/Kg 

also reported no effect on broilers performance during the periods of 7 to 21 days of age. 

Different results were observed by Ravindran et al. (2008) who observed significant 

effects of dEB (150, 225 and 300 mEq/Kg) on broiler weight gain and feed efficiency and 

a negative impact on weight gain and feed conversion ratio at 375 mEq/Kg of dEB. 

Considerable differences in the results observed from these studies can mean that not only 

dEB, but also other ions, can contribute to changes in the effects of dEB in broilers 

performance (Mushtaq et al. (2013). 

The effects of phytase on body weight gain observed in this study are consistent with 

previous studies (Cowieson & Adeola, 2005; Ravindran et al., 2008; Shahsavari et al., 

2012). In this study phytase and dEB had no influence on feed intake. The same 

observations on the effect of dEB levels on feed intake were made by Ravindran et al. 

(2008) where increasing levels of dEB had no effect on feed intake. However, different 

results were observed for phytase supplementation, which had a positive effect on feed 

intake for all dEB levels, which is not consistent with the findings in the present study. 

This effect could be explained by the differences in Ca:P ratio observed in the two studies. 

Ravindran et al. (2008) maintained a Ca:P ratio at 1.3:1 while in the present study the Ca:P 

ratio increased from 1.3:1 in NC1 to 1.8:1 in NC3 which had been observed could 

compromise feed intake in broilers (Qian et al., 1997).  Also, the fact that dietary Ca levels 

are slightly higher in the present study than in Ravindran et al. (2008)’s study, which 

appears to influence feed intake in broilers (Ferket & Gernat, 2006) and could be another 

reason for the differences in feed intake responses.  The strong effect of C1 on broilers 

chicks feed intake has been observed by Hurwitz et al. (1973) and Murakami et al. (1997b) 

and the higher levels of Cl present in the current study compared with Ravindran et al. 

(2008) study  could also be a reason for the differences observed in the feed intake results. 

Apart from this, the diets in Ravindran et al. (2008) study were pelleted which has been 
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shown to increase density and intake of the ration, and also improves growth and feed 

efficiency (Engberg et al., 2002; Brickett et al., 2007).  

Gain:feed was affected by phytase supplementation and these results are similar to 

Ravindran et al. (2008) and Shahsavari et al. (2012) findings, but there was a tendency 

observed by Ravindran et al. (2008) or an actual dEB × phytase interaction for gain:feed 

observed by Shahsavari et al. (2012) that is not consistent with the findings in the present 

study. Also, phytase addition increased gain:feed in the present study while Ravindran et 

al. (2008) observed a decrease in this response for phytase supplemented diets but, in both 

the present and Ravindran et al. (2008) study, the responses in gain:feed were greater at the 

lowest dEB level which suggests that phytase is more likely to improve gain:feed at lower 

dEB levels.  

Hussein (2006) observed that phytase supplemented starter and finisher diets that had a 

decrease in available P by 40% did not support optimum growth rate of broilers and also 

resulted in a decrease of tibia and toe ash content compared to control diets but when birds 

were fed a normal starter diet without phytase and then a low P diet supplemented with 

phytase there was an improvement on bird performance and bone mineralisation. The level 

of available P reduction used in this study had a negative impact in weight gain, gain:feed, 

final body weight, bone ash and bone mineralisation compared to PC diet but when the 

diets were supplemented with phytase there was a significant improvement in growth 

performance and bone mineralisation of the birds which suggests that phytase can support 

bone mineralisation of low P diets and also works as a growth promoter probably due to 

the improvement of minerals (mainly Ca and P) availability (Shaw, 2010).   

Maiorka et al. (2004) observed that dietary Na levels and different cation/anion balances 

(Na+K-Cl) had a quadratic effect on feed intake and weight gain of birds at 1 to 7 days of 

age. These results are contrary to the observations made in the current study where none of 

these parameters were affected by dEB levels. Murakami et al. (1997a) recommended the 

need of 0.20 to 0.25% of Na for maximum broiler growth performance during the first 21 

days and later on Murakami et al. (2001) suggested 0.28 and 0.25% for broilers 1 to 21 

days old. Sklan & Noy (2000) demonstrated that Na plays an important role in feed intake 

for post hatched birds and Maiorka et al. (2004) observed that maximum responses were 

achieved at Na dietary levels of 0.40% respectively for feed intake and weight gain. 

Nevertheless, the Na values used by Maiorka et al. (2004) were higher than the values 

recommended by the NRC (1994) for birds 1 to 7 days old and also much higher than the 
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ones used in the present study (0.16% to 0.24%) which might explain the differences on 

birds performance observed in the present study and Maiorka et al. (2004) study. 

Ahmad & Sarwar (2006) suggested that growth performance can be affected if there is a 

change in blood pH. It is suggested that the blood pH parameters in broilers should be in 

the range of 7.35 to 7.45 for maintenance of protein structure and function (Carlson, 1997; 

DiBartola, 2011) which is a necessary condition for normal progression of metabolic 

events. A deviation from these parameters can cause metabolic disorders, microbiological 

diseases and loss of productivity (Haskins, 1977; Carlson, 1997; DiBartola, 2011). In the 

present study blood pH increased with increase in dEB levels at the extremity levels of 214 

and 266 mEq/Kg for dEB however it was also observed that the difference in blood pH did 

not compromise growth performance. These findings are not in agreement with Hurwitz et 

al. (1973) who reported  that the growth rate of broilers was higher at blood pH of 7.28 and 

it decreased when blood pH was greater than 7.3 or lower than 7.2 which suggests that the 

responses observed might not be totally related to pH changes but also due to other 

electrolyte or metabolic effects (Ahmad & Sarwar, 2006). Generally the blood pH 

observed in the current study were greater than the levels reported by Hurwitz et al. (1973) 

and thus it may be that the effect of narrow changes in pH is less inhibitory to growth 

performance at the range of pH observed in the current study.  

Tibia weight, ash and mineral content were not affected by changes in dEB levels in this 

experiment. Oliveira et al. (2010) used dEB levels in the range of the ones used in this 

experiment and observed that there was no effect on broilers tibia weight, diameter height 

or length. Also Arantes et al. (2013) observed no effects on tibia density, ash and mineral 

content of broilers fed diets with dEB levels of 200, 240, 280 and 320 mEq/Kg. Bones 

function as a buffer for the electrolyte balance of body fluids and Ca and other cations can 

be released from the bones to the blood to correct pH in case of acidosis. The majority of 

the Ca existing in the body is present in the bone which suggests that bone is the source of 

higher excretion of this mineral by the kidneys (Bushinsky, 2001). Calcium loss should 

result in reduced bone mineralisation and could affect bone density Arantes et al. (2013) 

which was not observed in this study suggesting that the dEB levels used in this 

experiment did not affect bone mineralisation.  

As mentioned before, the reduction of P and Ca had a negative effect on tibia bone 

mineralisation responses but phytase supplemented diets improved tibia bone 

mineralisation responses relative to diets without phytase. Phytase supplemented diets also 
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had better bone mineralisation responses than PC diets with the best phytase response to 

bone mineralisation being observed at the dEB of 234 mEq/Kg. These results are in 

accordance with what was observed by  Selle et al. (2009a) who, in a review of the 

literature, noted that for poultry diets that are supplemented with phytase, the activity of 

the phytase is facilitated when dietary Ca levels are kept to a minimum as long as there is 

no compromise of the animal skeletal integrity or growth. Powell et al. (2011) observed 

similar results to the ones in the present study for diets without phytase supplementation 

where an increase in dietary Ca decreased growth performance and bone mineralisation 

but, on the other hand, for phytase supplemented diets, Powell et al. (2011) reported that 

growth performance and bone mineralisation responses were greater for the diets with 

higher level of dietary Ca, which is not in accordance with the results observed in the 

present study. Similarly to Powell et al. (2011)’s study, Driver et al., (2005) had also 

observed earlier that phytase efficacy was better for growth performance and bone 

responses when dietary Ca was higher and then also concluded that phytase effects are 

different at each concentration of P and Ca and therefore no single efficacy value can be 

attributed to phytase. 

3.4.2 Digestibility and total tract retention 

There was dEB × phytase interaction effect on digestibility and total tract N utilisation. 

Suplementation of phytase improved total tract utilisation and digestibility of N for the 

lower and higher levels of dEB but there was no improvement observed in the diets with 

234 mEq/Kg of dEB. Ravindran et al. (2008) also observed improvements for diets 

suplemented with phytase but in this case the interaction of dEB × phytase was not 

observed for N digestibility and total tract retention. There was no phytase response to 

higher dEB levels (375 mEq/Kg) in Ravindran et al. (2008)’s  study but the lack of reponse 

observed in the present study for dEB at 234 mEq/Kg was not observed for similar levels 

(between 225 and 300 mEq/Kg) by  Ravindran et al. (2008). This could be explained by 

the fact that perhaps at these levels other factors like phytate-P levels might be afecting N 

retention (Manangi et al., 2009). Camden (2001) reported that the addition of phytase to 

diets with low Ca and available P improved apparent N retention in broilers, but more 

recent studies have reported no positive effects of phytase addition on N                 

retention (Silva et al., 2008; Donato et al., 2013). The discrepancy of some of these results 

and the results obtained in the present study sugest that phytase capacity to improve ileal 

digestibility and retention of N (Ravindran et al., 2000) can be inconsistent and that this 

inconsistency might be a reflection of changes in dEB levels.  
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An influence of dietary Ca and P levels on phytate-P retention and digestibility are 

observed in this study. Selle & Ravindran (2007) mentioned in their review that low 

dietary Ca and P levels are more beneficial to phytase activity. Other published work aslo 

reported that cations, including Ca, negatively influenced phytate-P hydrolysis (Gifford & 

lydesdale, 1990; Tamim & Angel, 2003). Lei et al (1994) observed that phytate-P 

hydrolysis was improved by phytase at a low dietary Ca level for weanling pigs fed a corn-

soybean meal based diet. The results in the present study suggest that high dietary Ca 

concentrations can result in insoluble Ca-phytate complexes being formed, leaving 

phytate-P and Ca unavailable for absorption (Wise, 1983).  

In the present study there was no effect of phytase on phytate-P digestibility at the ileum 

level, and increasing dEB levels for diets with and without phytase had no effect on 

phytate-P digestibility. There was no dEB × phytase interaction at ileum level but there 

was an influence of dEB on phytate-P digestibility and a tendency for phytase effect on 

phytate-P digestibility. Furthermore, total tract utilisation of phytate-P was only observed 

in diets supplemented with phytase at higher dEB levels with the greatest utilisation 

observed for the diets with the highest dEB level of 266 mEq/Kg and there was a tendency 

for dEB × phytase interaction for phytate-P utilisation. These results on phytate-P 

digestibility and retention suggest that phytase still had the ability to dephosphorylate 

phytate but the extent of phytase effect might be compromised by dEB levels.  

The effects of dEB and phytase on total tract retention of Ca and P were not consistent 

with Ravindran et al. (2008)’s findings. In the later study it was observed that Ca and P 

retention were influenced by dEB, phytase and dEB × phytase interaction, whereas in the 

present study Ca and P retention were influenced only by dEB levels and by dEB × 

phytase interaction but not phytase. On the other hand, Ca retention was improved by 

phytase suplementation at lower dEB levels which is suported by the findings by 

Ravindran et al. (2008). Also, in the present study, phytase improved P and Ca retention 

and ileal P and Ca digestibility at all dEB levels apart from the lowest dEB level where  

there was a decrease. These results suggest that phytase was effective in releasing the P 

and Ca from phytate but that phytase efficacy was more effective at lower dEB levels, 

which is in accordance with observations made by Ravindran et al. (2008), who observed 

that phytase is more effective at lower dEB levels.  

Total tract retention of Na was influenced by dEB levels with an increase in retention as 

dEB levels increased from 214 to 234 mEq/Kg but then, Na retention decreased with a 
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further increase of dEB from 234 and 266 mEq/Kg. Ravindran et al. (2008) observed a 

decrease in Na retention for levels higher than 225 mEq/Kg as well as an increase in ileal 

Na availability with an increase in dEB levels. It was suggested in Ravindran et al.  

(2008)’s study that there is a clear change in the patterns of absorption and secretion of Na 

by poultry in responses to dEB. In both, Ravindran et al. (2008)’s and the present study, 

there was no dEB × phytase interaction for total tract Na retention, but in the present study 

there was an influence of phytase in Na retention that was not observed in Ravindran et al. 

(2008)’s study. These differences in responses might have been influenced by the use of 

NaHCO3 as source of Na which has been shown to be similar to the use of NaCl 

(Murakami et al., 1997a) but which buffering properties of the bicarbonate may be  

influencing the relationship between phytase and Na in the intestinal tract (Goodgame et 

al., 2011). The results from the present study and Ravindran et al. (2008)’s study suggest 

that Na absorption and retention patterns are dependent on poultry responses to dEB levels 

and also from phytase inclusion, but that phytase and dEB are, independently, influencing 

Na digestibility patterns. 
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3.5 Conclusions  

It can be concluded from this experiment that dEB ranging from 214 to 266 mEq/Kg had 

no negative effect on growth performance and tibia mineralisation and had a general 

positive effect on mineral retention and nutrient digestibility for phytase supplemented 

diets.  

The level of 234 mEq/Kg dEB for phytase supplemented diets seem to be more adequate 

for broilers requirements and performance, since higher dEB levels can sometimes 

compromise phytase efficacy in improving the availability and retention of  important 

minerals like Ca, P and Na.  

The effects of phytase and dEB on nutrient utilisation and growth performance indicates 

that treatment effects seen in nutrient utilisation do not always reflect effects observed in 

growth performance.  
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4. Effects of phytase alone or in combination with 

xylanase on broiler performance, bone ash, caecal 

volatile fatty acids, and pH at different parts of the 

GIT 

4.1 Introduction 

Certain types of cereal grains are more likely to induce greater digesta viscosity, which 

will reduce the nutrient diffusion and absorption in the gut and compromise birds 

performance (Bedford, 1996). This is especially the case for diets containing high levels of 

NSP’s which are not degraded by the animal and increase digesta viscosity (Hayat et al., 

2005). Moreover, the effect of digesta viscosity does not only limit the nutrient digestion 

and absorption. It can also increase fermentation in the small intestine of broilers  due to a 

decrease in oxygen tension (Choct & Hughes, 1996) which will provide a relative stable 

environment for fermentative microflora to become established (Wagner & Thomas, 

1978). Some studies suggest that volatile fatty acids (VFA), mainly acetate, propionate and 

butyrate, play an important role in the development of the microflora of the caeca in broiler 

chicks during growth (Nisbet et al., 1996; van der Wielen et al., 2000) and (Lee & 

Gemmell (1972) reported that increasing concentrations of butyrate in the intestine of mice 

was related with decreasing numbers of Enterobacteriaceae. 

The anti-nutritive effects that are associated with the presence of NSP in feedstuff of plant 

origin can be alleviated with the supplementation of poultry diets with exogenous NSP 

degrading enzymes - such as xylanases (Woyengo & Nyachoti, 2011). Xylanases can 

improve digestibility of nutrients in broilers by lowering the viscosity of intestinal contents 

which will lead to greater apparent metabolisable energy (AME) of wheat-based diets 

(Gehring et al., 2013). Apart from being used as an effective mitigator of the viscosity of 

intestinal contents they also have other benefits to the animal since, by breaking down 

hemicellulose (component of plant cell walls), they can release any nutrients that might be 

encapsulated in these cells. This characteristic of these enzymes is especially important in 

corn based diets where there is no significant amount of soluble NSP and these diets are 

not associated with adverse digesta viscosity (Gehring et al., 2013). 

Phytic acid is an organic complex that occurs in cereal grains and oil seeds, and which 

primary physiological role is to store nutrients, mainly P (phytate-P). Apart from storing P, 
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this molecule  also has the ability to chelate cations and form insoluble mineral-phytate 

complexes (Ravindran et al., 1999b). Phytases are normally added to poultry feeds to help 

the animals break down the phytic acid and release the P and any other nutrients (such as 

starch) bound to the phytic acid molecule. The animal is then able to absorb the P and any 

other “trapped” minerals such as Ca, Cu, and Zn (Ravindran et al., 1999b). 

The portion of phytate-P being released by phytase has been shown to be dependent on the 

amount of phytase added to the feed (Ravindran et al., 1999b; Olukosi et al., 2007b) but 

there seems to be a considerable amount of phytate-P that remains undigested even when 

high amounts of phytase are used. This can be explained by the fact that phytate might be 

“locked” away in intact cells (Karimi, 2013). This encapsulating effect of cell walls can be 

reduced or even eliminated with the supplementation of NSP degrading enzymes, which 

may increase the efficacy of phytase by eliminating the phytate chelating effects of NSP 

(Kim et al., 2005). Non-starch polysaccharides have the capacity to bind multivalent 

cations which are associated with phytate in both feedstuffs and in digesta (Slominski, 

2011). Since the presence of NSP and phytate can reduce the efficiency of nutrient 

utilisation, supplementation of poultry diets with phytase and xylanase may alleviate the 

anti-nutritional effects that are associated with phytic acid and NSP, respectively 

(Woyengo & Nyachoti, 2011). The synergistic effect of phytase and xylanase on broiler 

performance might also be due to increased retention time in the gizzard allowing more 

complete digestion as pointed out by Singh et al. (2013). This is supported by results of 

Zeller et al. (2013) who reported a tendency towards an improved inositol phosphate 

reduction in wheat based diets supplemented with phytase and xylanase compared to 

phytase added diets only.  

The objective of the present study is to determine the influence of xylanase on phytase 

activity and the effects of phytase alone or in combination with xylanase on broiler 

performance, bone ash, VFA and pH in different parts of the gut. The influence of dEB on 

performance as well as the ability of phytase to reverse its possible negative effects are 

already addressed in the first study, hence in the current study, there was only marginal 

differences in dEB and hence the main focus was on the use of phytase alone or in 

combination with xylanase. 
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4.1.1 Objective 

To investigate the effects of phytase, alone or in combination with xylanase, on broiler 

growth performance, bone ash, caeca VFA and digesta pH along the GIT. 

4.1.2 Hypothesis 

The addition of xylanase will improve the efficacy of phytase in promoting growth 

performance, bone ash and VFA production. The impact of marginal dietary differences in 

dEB on growth performance will be reduced by high phytase dosing.  

4.2 Materials and Methods 

4.2.1 Experiment Design 

A total of 336 day-old male Ross 308 broilers were used in this study. On arrival, all birds 

were allocated to 7 treatments in a randomised complete block design (diets were 

randomly allocated within blocks) with a 3x2 + 1 factorial arrangement, using initial body 

weight as the blocking criterion to ensure that the treatments had the same average body 

weight at day 0. A positive control diet (PC) was formulated to meet the Ross 308 

guidelines for energy and nutrient requirements. In the factorial arrangement, the factors 

included 3 levels of enzyme (no enzyme, phytase alone or combination of phytase and 

xylanase) and 2 types of negative control (NC1 and NC2).  Each treatment had 6 replicate 

metabolism pens and 8 birds per replicate pen. All the birds and feed were weighed on day 

0 and 21 for measurement of growth performance responses. On day 21 all the birds were 

euthanised and the left tibia bones from two randomly selected birds per pen were used for 

determination of tibia bone ash and the pH of the gizzard, jejunum and caeca (left and 

right) were taken. Bird’s caeca contents were collected into centrifuge tubes for subsequent 

analysis for volatile fatty acids.  
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4.2.2 Diets 

Phytase alone or combined with xylanase was incorporated into corn-soybean meal based 

control diets. The diets were a positive control diet (PC) formulated to meet the Ross 308 

guidelines for energy and nutrient requirements and the negative control (NC1) diet 

formulated to have 0.16% less Ca, 0.15% less available P and 0.3% less Na than PC (this 

reduction was expected to be counterbalanced by a phytase matrix inclusion of 500 

FTU/Kg), NC2 had 0.22% less Ca, 0.19% less available P and 0.5% less Na than PC (this 

reduction was expected to be counterbalanced by a phytase matrix inclusion of 1000 

FTU/Kg). In addition some AA were reduced in diet NC1 and NC2 to follow the matrix 

recommendations given for the phytase. Diets 4 and 5 were NC1 and NC2, respectively 

supplemented with phytase at the rate of 1500 FTU/kg; and diets 6 and 7 were NC1 and 

NC2, respectively supplemented with phytase at the rate indicated above, plus xylanase 

added at the rate of 16000 BXU/kg. The diet formulas for the control diets are presented in 

Table 4.1. 

4.2.3 Husbandry  

On the day of arrival (day 0), the birds were housed in metabolism pens where they 

remained until the end of the experiment, day 21. Water and experimental diets were 

provided ad libitum during the experimental period. The birds were housed in an 

environmentally controlled room. The temperature was maintained at 31°C on day 1 and 

then gradually reduced to 22°C by day 21. The relative humidity was kept below 70% 

during the 21-day trial. 
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Table 4.1 - Ingredient composition (g/kg) of the experimental diets 

Description of diets 
Positive 

Control 

Negative Control 

1 

Negative Control 

2 

Ingredients 1 2 3 

Corn 453 493 501 

Wheat 50 50 50 

Soybean meal 348 332 328 

Methionine 3.2 2.9 2.7 

Lysine 3.0 2.9 2.9 

Threonine 1.2 0.9 0.8 

Soybean oil 55.0 40.0 39.0 

DCP(A) 21.5 13.1 10.5 

Limestone (B) 9.5 11.0 11.3 

Titanium  dioxide premix (C) 25.0 25.0 25.0 

Corn gluten meal  20.0 20.0 20.0 

Phytase premix (D) 0.0 0.0 0.0 

Xylanase premix (E) 0.0 0.0 0.0 

Vitamin-mineral premix (F) 5.0 5.0 5.0 

NaHCO3 2.5 1.7 1.0 

NH4Cl 0.0 0.0 0.0 

Salt NaCl 2.9 2.9 2.9 

Total 1000 1000 1000 

Calculated nutrients and energy 

Protein,  g/kg 235 231 230 

ME, kcal/kg 3050 3020 3031 

Ca, g/kg 10.0 8.4 7.9 

P, g/kg 6.9 5.4 5.0 

Available P, g/kg 5.0 3.5 3.1 

Na 2.0 1.7 1.5 

K 8.5 8.3 8.3 

Cl 2.0 2.0 2.0 

Mg 1.4 1.4 1.4 

S 1.5 1.4 1.4 

Lysine 12.9 12.5 12.4 

Threonine 8.5 8.1 7.9 

Total sulphur amino acids 9.6 9.2 9.0 

dEB, mEq/Kg 246.9 232.2 222.5 
 

Positive Control - adequate in all nutrients, with recommended dEB of 250mEq/Kg; Negative Control 1 – 

had 0.16% less Ca, 0.15% less available P and 0.3% less Na than Positive Control; Negative Control 2 – had 

0.22% less Ca, 0.19% less available P and 0.5% less Na than Positive Control; 

A - 16% Ca, 21% P; B - 38% Ca; C - Prepared as 2.7Kg titanium dioxide (TiO2) added to 10.8Kg corn gluten 

meal; 

D - Phytase premix to be made to desired enzyme activity unit (1500FTU/Kg); 

E - Xylanase premix to be made to desired enzyme activity unit (16000FTU/Kg); 

F - Supplies the following per kg DIET: Vit. A, 5484 IU; Vit. D3, 2643 ICU; Vit E,11 IU; Menadione 

sodium bisulfite,4.38 mg;  Riboflavin, 5.49 mg; d-pantothenic acid, 11 mg; Niacin, 44.1 mg; Choline 

chloride, 771 mg;   Vit B12, 13.2 ug; Biotin, 55.2 ug; Thiamine mononitrate, 2.2 mg; Folic acid, 990 ug; 

Pyridoxine hydrochloride, 3.3 mg; I, 1.11 mg; Mn, 66.06 mg; Cu, 4.44 mg; Fe, 44.1 mg; Zn, 44.1 mg; Se, 

300 ug. Also contains per g of premix: Vit. A, 1828 IU; Vit. D3, 881 ICU; Vit E,3.67 IU; Menadione sodium 

bisulfite,1.46 mg;  Riboflavin, 1.83 mg; d-pantothenic acid, 3.67 mg; Niacin, 14.69 mg; Choline chloride, 

257 mg;   Vit B12, 4.4 ug; Biotin, 18.4 ug; Thiamine mononitrate, 735 ug; Folic acid, 330 ug; Pyridoxine 

hydrochloride, 1.1 mg; I, 370 ug; Mn, 22.02 mg; Cu, 1.48 mg; Fe, 14.69 mg; Zn, 14.69 mg; Se, 100 ug. 
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4.2.4 Sample collection 

Samples of each of the 7 diets and of the enzyme premix were collected and stored in a 

refrigerator until chemically analysed. Birds were weighed per pen on day 0 and individual 

body weights in each pen were collected on day 21. Feed weight data were recorded on 

day 0 and day 21.  

All the birds were euthanised on day 21 in two stages: in the first stage, 6 randomly 

selected birds were euthanised by cervical dislocation and the left tibia bones from two 

randomly selected birds (among the six euthanised) in each pen were collected, placed in a 

polythene bag, and stored in the freezer prior to bone ash determination.  

Bones were processed as follows: all attached muscle, tendon and cartilage were removed 

and the bones were frozen. Consequently, each of the bones were cut into top 25% 

(epiphysis), middle 50% (diaphysis) and lower 25% (epiphysis). This was done to separate 

the faster (epiphysis) and slower (diaphysis) growing parts of the bone and to determine 

the bone ash in each of the bone regions. 

The remaining two birds per pen were used for determination of digesta pH and VFA 

production. After euthanasia by overdose of sodium pentobarbital, the digestive tract was 

exteriorized, and the digesta pH was measured in situ at the gizzard, jejunum and caecum 

(the pH was measured for both the right and left caeca). The caeca was then removed and 

the contents (both caeca) were squeezed into centrifuge tubes and then stored frozen prior 

to analysis of VFA. 

4.2.5 Chemical analysis  

4.2.5.1 Dry matter 

Dry matter content was determined by drying the samples in an oven (Uniterm, Russel-

Lindsey Enginering Ltd., Birmingham, England, UK) at 80°C for 24 hours (Method 

934.01; AOAC, 2006). 
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4.2.5.2 Bone ashing 

Bone ash content was determined by placing the dried bone samples in a muffle furnace 

(Carbolite Furnace, Bamford, Sheffield, England, UK) for 24 hours at 500-600oC (Method 

934.01; AOAC, 2006). Samples were then weighed and analysed for ash content.  

4.2.5.3 pH 

Digesta pH of the gizzard, jejunum and caeca (both left and right caeca) were measured 

using a sterile glass pH electrode (HI 99163, HANNA Instruments, Romania). 

4.2.5.4 Volatile fatty acids 

The caeca pools of volatile fatty acids (VFAs) were measured following the procedure 

outlined by Choct et al. (1996). 

4.2.6 Statistical analysis 

All the data were analysed using the generalized linear model of GenStat (11th edition, 

VSN International, 2008). The model included block and diets to test for the effect of the 

diets on the response criteria. Factorial analysis was used on six diets to test for main 

effects (effect of enzyme inclusion and phytase matrix separately) and interactions. The 

reference diet (PC) was not included in this factorial arrangement. Because of the 

hierarchical order of factorial arrangement, only the main effects (i.e. of enzyme inclusion: 

no enzyme, XAP alone or XAP + phytase) or phytase matrix levels (500 or 1000 FTU/kg)) 

are discussed below when there were no interactions whereas simple effects (effects of 

individual treatments) are discussed when there were factor interactions. Tukey's test 

(Snedecor & Cochran, 1989) was used to separate significantly different means for the 

main effect of dEB whereas pre-planned pair-wise orthogonal contrasts were used to 

separate the means for the simple effects. Significance was set at P ≤ 0.05. 
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4.3 Results  

4.3.1 Growth performance  

The data on the growth performance of broilers receiving the experimental diets are 

presented in Table 4.2. There were no significant matrix × enzyme interactions for any of 

the responses. Reducing the dietary levels of P and Ca in both NC1 and NC2 reduced 

(P<0.05) gain:feed compared with PC but had no significant effect on the other growth 

performance responses. Phytase supplementation had no effect on growth performance 

compared to diets with no enzyme supplementation but when xylanase was supplemented 

with phytase there was an increase (P<0.01) in gain:feed response and no significant effect 

on any of the other growth performance responses.  

4.3.2 Tibia ash and weight 

Table 4.3 shows the effect of the dietary treatments on the epiphyseal and diaphyseal tibia 

ash and weight. Matrix × enzyme interaction was significant (P<0.05) for epiphysis ash but 

not significant for epiphysis weight or any of the responses at the diaphysis. Epiphysis ash 

was lower (P<0.01) at NC1 compared to PC. Phytase supplementation increased (P<0.01) 

epiphysis ash for NC1 diets but had no effect on epiphysis ash for NC2 diets.         

Xylanase plus phytase supplementation increased (P<0.01) epiphysis ash in NC1 relative 

to the PC diet but had no effect on epiphysis ash for birds receiving NC2 diets. Phytase 

supplementation alone or combined with xylanase increased (P<0.05) epiphysis weight and 

diaphysis ash and diaphysis weight. Xylanase supplementation to diets did not show 

different responses than the ones obtained for phytase supplementation apart from 

diaphysis weight responses where an increase (P<0.05) in weight was observed.  
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Table 4.2 - Growth responses of broilers to dietary xylanase and phytase 

supplementation  

Diets Wt gain, g 
FI,  

g 

G:F 

g/Kg 
Final Wt, g 

Main effect means: Enzyme  

No enzyme 872 1379 633a 914 

Phytase 916 1378 663ab 957 

Phytase + Xylanase 928 1352 686b 969 

SEM 28.1 38.1 9.11 28.0 

P-values for main effect of enzyme 0.358 0.847 0.001 0.358 

Main effect means: Phytase  

500 FTU/kg 928 1383 670 969 

1000 FTU/kg 883 1357 651 924 

SEM 22.9 31.1 7.44 22.9 

P-values for matrix 0.179 0.556 0.09 0.179 

P-values for matrix × enzyme interaction 0.640 0.546 0.988 0.639 

Simple effects means* 

1. Positive control (PC) 928 1356 684 969 

2. Negative control 1 (NC1) (no enzyme) 873 1358 643 914 

3. NC2 (no enzyme) 872 1401 623 913 

4. NC1 + Phytase (500 FTU/Kg) 947 1406 672 988 

5. NC2 + Phytase (1000FTU/Kg) 885 1350 655 926 

6. NC1 + Phytase (500FTU/Kg) + 

Xylanase 
963 1385 696 1004 

7. NC2 + Phytase (1000FTU/Kg) + 

Xylanase 
892 1319 677 933 

P-values for diet effect 0.495 0.905 0.003 0.494 

Pooled SEM 38.6 52.5 12.1 38.6 

P-values for contrasts  

PC vs NC1 0.327 0.977 0.022 0.327 

PC vs NC2 0.314 0.550 0.001 0.315 

2 vs. 4 (phytase) 0.189 0.520 0.106 0.189 

3 vs 5 (phytase) 0.810 0.503 0.068 0.810 

2 vs. 6 (phytase + xylanase) 0.110 0.721 0.005 0.110 

3 vs 7 (phytase + xylanase) 0.714 0.280 0.004 0.715 
 

*Note – data represents average of 6 replicate pens per treatment  

WG – weight gain; FI – Feed intake; G:F - Gain:Feed; Final Wt – final body weight;  

PC – positive control; NC – negative control 
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Table 4.3 – Effect of dietary xylanase and phytase supplementation on broilers tibia 

bone (epiphysis and diaphysis) responses 

Diets 
Epiphysis Diaphysis 

Ash, % Wt, g Ash, % Wt, g 

Main effect means: Enzyme  

No enzyme 42.23a 2.27a 52.09a 1.52a 

Phytase 44.79b 2.54b 56.18b 1.59a 

Phytase + Xylanase 44.74b 2.58b 56.17b 1.86 

SEM 0.43 0.06 0.45 0.07 

P-values for main effect of enzyme <.001 0.002 <.001 0.005 

Main effect means: Phytase  

500 FTU/Kg 43.58 2.48 55.02 1.68 

1000 FTU/Kg 44.26 2.45 54.61 1.64 

SEM 0.35 0.05 0.37 0.06 

P-values for matrix 0.182 0.676 0.443 0.622 

P-values for matrix × enzyme interaction 0.017 0.703 0.279 0.799 

Simple effects means* 

1. Positive control 45.14 2.58 56.37 1.75 

2. Negative control 1 (NC1) (no enzyme) 40.85 2.32 51.72 1.55 

3. NC2 (no enzyme) 43.60 2.21 52.46 1.49 

4. NC1 + Phytase (500 FTU/Kg) 44.75 2.55 56.52 1.57 

5. NC2 + Phytase (1000FTU/Kg) 44.84 2.54 55.84 1.61 

6. NC1 + Phytase (500FTU/Kg) + Xylanase 45.15 2.56 56.81 1.91 

7. NC2 + Phytase (1000FTU/Kg) + Xylanase 44.32 2.59 55.53 1.81 

P-values for diet effect <.001 0.011 <.001 0.031 

Pooled SEM 0.59 0.08 0.65 0.09 

P-values for contrasts  

PC vs NC1 <.001 0.030 <.001 0.141 

PC vs NC2 0.073 0.003 <.001 0.057 

2 vs. 4 (phytase) <.001 0.053 <.001 0.880 

3 vs 5 (phytase) 0.147 0.008 <.001 0.385 

2 vs. 6 (phytase + xylanase) <.001 0.047 <.001 0.012 

3 vs 7 (phytase + xylanase) 0.393 0.002 0.002 0.021 
 

*Note – data represents average of 6 replicate pens per treatment  

Wt – weight; PC – positive control; NC – negative control 
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4.3.3 Digesta pH along the digestive tract 

The data on digesta pH in different sections of digestive tract of broilers receiving the 

experimental diets are presented in Table 4.4. There were no significant matrix × enzyme 

interactions for any of the pH measurements at any part of the gut. Phytase 

supplementation had no effect on pH measurements at any part of the gut but when phytase 

was supplemented with xylanase there was a decrease (P<0.05) in caeca pH (L and R caeca 

respectively). 

4.3.4 Caeca VFA 

Data on caeca volatile fatty acids production by broilers receiving the experimental diets 

are presented in Table 4.5. There were no significant matrix × enzyme interactions for any 

of the VFA. Ethanol production was lower (P<0.05) in NC1 compared to PC. There was a 

tendency (P<0.10) observed for the effect of enzyme supplementation where phytase 

supplementation tended (P<0.10) to increased ethanol production in NC1 diets but not 

NC2 diets. Combination of phytase and xylanase had no effect on VFA production in the 

caeca.  
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Table 4.4 - Effect of dietary xylanase and phytase supplementation in broilers GIT 

pH  

Diets Gizzard Jejunum Caeca L Caeca R 

Main effect means: Enzyme 

No enzyme 1.9 5.9 6.7b 6.6b 

Phytase 2.1 5.9 6.6b 6.5b 

Phytase + Xylanase 2.0 6.0 6.3a 6.3a 

SEM 0.11 0.06 0.05 0.05 

P-values for main effect of enzyme 0.645 0.59 0.001 0.001 

Main effect means: Phytase  

500 FTU/Kg 2.2 6.0 6.6 6.5 

1000 FTU/Kg 1.8 5.9 6.5 6.5 

SEM 0.09 0.05 0.04 0.04 

P-values for matrix 0.007 0.552 0.108 0.149 

P-values for matrix × enzyme interaction 0.870 0.427 0.856 0.775 

Simple effects means* 

1. Positive control 1.8 6.2 6.7 6.8 

2. Negative control 1 (NC1) (no enzyme) 2.1 5.9 6.7 6.7 

3. NC2 (no enzyme) 1.7 6.0 6.6 6.6 

4. NC1 + Phytase (500 FTU/Kg) 2.2 6.0 6.6 6.6 

5. NC2 + Phytase (1000FTU/Kg) 2.0 6.0 6.5 6.5 

6. NC1 + Phytase (500FTU/Kg) + Xylanase 2.2 6.1 6.4 6.4 

7. NC2 + Phytase (1000FTU/Kg) + Xylanase 1.8 6.0 6.3 6.3 

P-values for diet effect 0.108 0.491 0.005 <.001 

Pooled SEM 0.157 0.102 0.080 0.067 

P-values for contrasts  

PC vs NC1 0.145 0.069 0.942 0.195 

PC vs NC2 0.659 0.125 0.483 0.096 

2 vs. 4 (phytase) 0.767 0.610 0.382 0.329 

3 vs 5 (phytase) 0.347 0.845 0.310 0.161 

2 vs. 6 (phytase + xylanase) 0.594 0.199 0.019 0.015 

3 vs 7 (phytase + xylanase) 0.596 0.895 0.003 0.001 

 
*Note – data represents average of 6 replicate pens per treatment  
Caeca L – left caeca; Caeca R – right caeca; PC – positive control; NC – negative control 
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Table 4.5 – Effect of dietary xylanase and phytase supplementation in broilers caeca VFA (mg/Kg) production  

Diets Ethanol Acetic Acid 
Propionic 

Acid 

iso-Butyric 

Acid 

n-Butyric 

Acid 

iso-Valeric 

Acid 

n-Valeric 

Acid 

Main effect means: Enzyme 

No enzyme 74.2 3931 365 70.5 1213 69.3 107.6 

Phytase 83.8 3646 333 62.3 1112 70.2 96 

Phytase + Xylanase 46.9 3506 349 61.6 1007 67.4 96.8 

SEM 

 
10.54 652.6 50.7 10.12 208.6 10.45 15.81 

P-values for main effect of enzyme 0.054 0.896 0.909 0.789 0.784 0.981 0.847 

Main effect means: Phytase  

500 FTU/Kg 68.8 3476 336 60.8 1061 62.2 91.5 

1000 FTU/Kg 67.7 3912 362 68.8 1160 75.8 108.8 

SEM 8.61 532.9 41.4 8.26 170.3 8.53 12.91 

P-values for matrix 0.928 0.568 0.67 0.503 0.684 0.268 0.353 

P-values for matrix × enzyme interaction 0.130 0.496 0.432 0.924 0.397 0.778 0.746 

Simple effects means* 

1. Positive control 113 3635 306 44.2 1268.0 52.3 83.8 

2. Negative control 1 (NC1) (no enzyme) 63.2 3086 305 63.5 1001.0 56.8 91 

3. NC2 (no enzyme) 85.2 4776 425 77.5 1426.0 81.8 124.2 

4. NC1 + Phytase (500 FTU/Kg) 102.2 3850 368 61.0 1292.0 68.2 96.5 

5. NC2 + Phytase (1000FTU/Kg) 65.3 3442 299 63.7 933.0 72.3 95.5 

6. NC1 + Phytase (500FTU/Kg) + Xylanase 41.2 3493 336 58.0 891.0 61.5 87 

7. NC2 + Phytase (1000FTU/Kg) + Xylanase 52.7 3519 361 65.2 1122.0 73.3 106.7 

P-values for diet effect 0.029 0.875 0.821 0.780 0.783 0.781 0.843 

Pooled SEM 15.9 846.0 66.1 13.6 278.3 14.2 20.7 
 

*Note – data represents average of 6 replicate pens per treatment 

Caeca L – left caeca; Caeca R – right caeca; PC – positive control; NC – negative control 
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4.4 Discussion 

After addressing in the first study the influence of dEB in performance and the capacity of 

phytase to reverse dEB possible negative effects, the focus of this second study was to 

determine the effects of phytase alone or in combination with xylanase on broiler 

performance, tibia ash, caeca VFA and digesta pH at different parts of the gut. By reducing 

the impact of marginal dietary differences in dEB on growth performance by high phytase 

dosing we also intended to determine the influence of xylanase on phytase activity.  

4.4.1 Growth performance  

It is well documented that phytase is effective in releasing not just P from phytate, but also 

other nutrients such as minerals, which might limit growth under some circumstances 

(Ravindran et al., 1999b; Selle et al., 2009a). In the present study there was a negative 

effect of dietary reduction of P and Ca as shown in reduced gain:feed in the NC diets 

compared to PC diets, but there was no  effect of phytase on any of the growth 

performance responses. Angel et al. (2002) noted that dietary levels of Ca and Ca:P ratios 

are important aspects to consider in dietary formulation due to their influence on phytase 

efficacy and that low Ca:P ratio should be used in broilers diets.  

When xylanase was supplemented with phytase there was an increase in gain:feed but no 

effect on any of the other growth performance responses. In a study by Yang et al. (2008) 

weight gain and gain:feed ratio were  improved from day 8 to 21 in broilers fed wheat 

based diets supplemented with xylanase. Similar results on FCR of broilers fed a wheat 

based diet were observed by Nian et al. (2011) but no effect on weight gain was observed 

in this study. 

Luo et al. (2009) also observed no effect of wheat based diets with xylanase on broilers 

daily feed intake but an improvement in this response was observed for 1-21 day old and 1-

42 day old broilers. The results on performance observed in the present study for phytase 

and xylanase supplementation can be explained by the fact that the breakdown of the gel-

forming capacity of NSP by xylanases can improve nutrient digestibility and availability 

(Bedford & Classen, 1992). The use of cell wall degrading enzymes like xylanase could 

have exposed phytate to phytase and accelerate its hydrolysis (Bedford, 2000). In the 

current study combination of phytase and xylanase improved gain:feed above the control 
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diet and marginally improved gain:feed beyond the level observed for xylanase alone, 

helping to emphasise the beneficial effect of the use of a combination of the two enzymes.  

4.4.2 Tibia mineralisation 

Reduction in dietary P and Ca resulted in decreased bone ash, but supplementation of NC1 

diets with phytase alone or in combination with xylanase reversed this effect. However, the 

same observations were not made for diets with higher reductions of Ca and P (NC2) 

which may indicate that the enzymes did not contain sufficient activity to reverse the 

negative effect of severe reduction of dietary Ca and P. Powell et al. (2011) observed that 

diets with lower level of Ca (0.33% less than recommended by the NRC (1994) limited 

growth and bone ash responses to phytase supplementation and, more recently, Singh et al. 

(2013) observed that broilers performance was sustained when they were fed diets with 

adequate P but reduced Ca (7.5 g Ca/kg during 0–3 weeks and 6 g/kg during 3–6 weeks of 

age), and that phytase supplementation improved mineral utilisation and therefore tibia 

bone mineralisation. In Hussein (2006)’s study there was a significant decrease in tibia and 

toe ash for birds fed low-P (40% less available P) starter and finisher diets with phytase 

supplementation when compared to PC, but an increase in these responses was observed in 

the later study for birds fed a normal starter diet without phytase a finisher low-P diet with 

phytase supplementation. 

The diaphysis ash responses to enzyme supplementation (phytase alone or in combination 

with xylanase) observed in the present study suggests that the increase in available Ca and 

inorganic-P from phytate hydrolysis by phytase improved bone mineralisation (Pourreza & 

Classen, 2001) at both levels of mineral reduction (NC1 and NC2), which supports the fact 

that phytase can support bone mineralisation at low–P diets (Sebastian et al., 1996). 

Kornegay et al. (1996) observed an influence of dietary level of non phytate-P to phytase 

response and a decrease of released P per unit of phytase as the amount of phytase 

increases per unit of diet. The lack of response observed for epiphysis ash in broilers fed 

NC2 diets compared to PC and to phytase supplementation observed in the present study 

suggests that a reduction of 1.5g/Kg available P and 1.6g/Kg available Ca can sustain 

broiler bone ash at the period of 0-21 days and that phytase supplementation can facilitate 

tibia mineralisation. 

The addition of xylanase to phytase supplemented diets in the present study appeared to be 

marginally effective in improving bone mineralisation in broilers compared to diets 
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supplemented with only phytase. Pourreza & Classen (2001) observed an interaction 

between phytase and xylanase on tibia ash responses but there was no significant responses 

to tibia ash for xylanase supplemented corn-soybean-wheat bran diets. Contrary to these 

results, Conte et al. (2003) observed that phytase supplemented to rice bran diets with 

reduced available P (40% of the recommended) increased ash in tibia bones but xylanase 

had no effect on tibia bone mineralisation. The results obtained in the present study and the 

range of results from the other studies suggest that phytase addition to P deficient diets is 

effective in promoting bone mineralisation but the effectiveness of phytase differs 

according to the content of non phytate-P (Karimi et al., 2013).  

4.4.3 Digesta pH along the digestive tract 

The reduction of Ca and P levels used in the present study did not interfere with the pH at 

any part of the GIT and the same was observed when these diets were supplemented with 

phytase. Supplementation of xylanase and phytase lowered caeca pH. Radcliffe et al. 

(1998) observed an increase in piglet’s stomach pH when they were fed a reduce Ca and P 

corn-soybean meal diet supplemented with phytase. It was suggested by Radcliffe et al. 

(1998)  that this increase in pH could have been caused by an increase in dietary Ca from 

limestone to maintain the Ca:P ratio as phytase supplementation increased. An in vitro 

digestion assay performed by Walk et al. (2012a) suggested that the hydrolysis of phytate 

by phytase could change protein and ion concentration and increase the pH. Walk et al. 

(2012b) observed that the pH at the gizzard and ileum decreased when broilers were fed 

diets with 0.64% Ca, compared to broilers fed with dietary Ca at levels higher than 

recommended by the industry, and that diets supplemented with phytase at levels also 

higher (5000FTU/Kg) than the recommended by industry (500 to 1000FTU/Kg) increased 

pH at the gizzard, duodenum, jejunum and ileum. The results observed in the present study 

do not support these findings, likely because the phytase levels used in Walk et al. (2012b) 

study were higher than the ones used in the present study and therefore, the levels of 

phytase used in the present study were not high enough to allow for the effect of the 

reduced Ca in the diets. On the other hand, the observations in this experiment could also 

mean that although phytate solubility is higher at lower gut pH (Campbell & Bedford, 

1992) phytase presence at different parts of the GIT does not always indicate hydrolysis of 

phytate (Selle & Ravindran, 2007).  

Although, in the present study, there was a reduction of caeca pH for both NC1 and NC2 

diets when phytase was supplemented along with xylanase which suggests that xylanase 
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could have released the encapsulated phytic acid from the cells and therefore expose it to 

phytase hydrolysis and, as a consequence of this, have increased the available Ca from 

phytate and alter the pH patterns in the GIT. There is also the possibility that the 

oligosaccharides released after xylanase degradation of NSP are fermented and this will 

lead to a decrease in pH (Mathlouthi et al., 2002). 

4.4.4 Caeca VFA 

The treatments had no effect on the VFA in the caeca but there was a tendency to increase 

ethanol production with phytase in the NC1 diets. Data on caeca VFA production by 

broilers receiving diets supplemented with phytase is limited (Zaefarian F. et al., 2013) but 

there is evidence that phytate interacts with lipids in corn (Cosgrove, 1966) and that 

hydrolysis by phytase may reduce the formation of metallic soaps in the gut (Ravindran et 

al., 2000). 

Supplementation of xylanase with phytase had no effect on VFA production, contrary to 

results found by Tricarico & Dawson (2005) where the use of xylanase alone affected in 

vitro VFA production in ruminants. Similarly, Choct et al. (1999) observed that broilers 

fed a low metabolisable energy wheat diet supplemented with xylanase had a higher 

concentration of VFA at caeca level compared to PC diets. Diebold et al. (2004) on the 

other hand, observed that xylanase supplemented to wheat based diets for weanling pigs 

tended to lower the total VFA concentration in the faeces. The differences in these results 

could be explained by the nature of the diets and with the concentrations of NSPs whose 

negative effect is related to NSPs ability to increase digesta viscosity and, as a 

consequence,  a change in gut microflora and nutrient utilisation (Choct et al., 1999). 

Wang et al. (2005) observed that broilers fed a wheat based diet supplemented with 

xylanase and ß-glucanase had no effect on VFA at ileum level for birds at 41 days old, but 

there was an increase of VFA production at the caeca that was probably linked to the 

increase in microbial count. Choct et al. (2004) on the other hand did not observe any 

effect on VFA production at the ileum or caeca when feeding broilers a wheat based diet, 

with normal ME and supplemented with xylanase, which suggests that, for  enzyme 

supplemented diets, the decreased viscosity might have led to a decrease in VFA at ileal 

and caeca level (Wang et al., 2005).   
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4.5 Conclusions  

It is concluded from this study that dietary Ca and P reductions caused a decrease in tibia 

mineralisation and gain:feed which were counterbalanced by phytase plus xylanase 

supplementation, but no effect on the rest of the growth performance responses, digesta pH  

or VFA production were observed. 
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5. General Discussion 

In the first experiment it was shown that phytase supplementation has a beneficial effect in 

broiler diets in regards to performance and nutrient digestibility, although phytase efficacy 

seemed to be significantly affected by dEB and Ca levels in this study. Phytase improves 

nutrient digestibility in monogastric animals, but scepticism and concerns about production 

losses due to insufficient P make producers add extra Ca and P to diets to ensure that 

broilers Ca and P dietary requirements are met. In this study, the increase in dietary Ca 

levels in NC diets seemed to have influenced phytase activity and reduced feed intake. 

Moreover, the level of available P reduction used, compared to PC, compromised broilers 

weight gain, gain:feed, final body weight and bone mineralisation, which, as expected, 

were counterbalanced by the addition of phytase. The observations from the present study 

for effects of phytase-supplemented diets on broiler performance and bone mineralisation 

show that the practice of providing excess nutrients in phytase-supplemented diets can be 

deleterious to the animal, causing mineral imbalance and, as a consequence, increase the 

possible negative impact of animal production on the environment by increasing nutrient 

excretion. 

The range of dEB levels used in this study (214 to 266 mEq/Kg) had no influence on 

broiler performance or bone mineralisation, which is contrary to the observations that 

others have made in that increases or decreases in dEB levels influence broiler growth 

performance. The difference in observations  suggest that, although the monovalent 

minerals accounted for in the dEB calculation represent the acid-base balance of the diet, 

there are also other contributing elements for this balance that should be taken in account. 

Patience & Wolynetz (1990)  showed that the balance of fixed inorganic anions (Cl, P, S) 

and fixed cations (Na, K, Mg, Ca) can be used as an indicator of the acid- or base-forming 

properties of a diet and are also contributors to growth performance. The balance of these 

elements is called the dietary undetermined anion (dUA) and has to be carefully controlled 

to avoid acidity or alkalinity effects which can negatively affect animal growth 

performance (Patience & Wolynetz, 1990; McDonald et al., 2011). Although dEB is much 

simpler to use and in many cases adequately describes the acid-base potential of a diet, 

dUA is suggested by some authors as a more precise measure of acid-base balance of diet. 

Although no dEB effect or dEB × phytase interaction was observed for bone mineralisation 

and growth performance responses in this study, and phytase was effective in promoting 

growth and tibia mineralisation at all dEB levels used, it seemed that responses to phytase 
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was higher for bone mineralisation at dEB level of 234 mEq/Kg. The FCR responses were 

also improved at lower dEB levels suggesting that, as long as the dEB levels used are not 

compromising bone mineralisation and growth performance, phytase activity is more 

significant at lower dEB levels. 

It was also found that phytase and dEB responses observed for growth performance are not 

necessarily a reflection of the results obtained for nutrient utilisation. High levels of Ca 

have been shown to compromise phytase efficacy in the GIT and the findings in this study 

showed that phytase was more effective at lower dietary Ca levels. This, as mentioned 

previously, can minimize the deleterious effect for broilers of a dietary nutrient excess and 

bring, as a consequence, economic savings for producers. The decrease in dietary Ca can 

also have an effect on gut pH since there will be less acid secretion into the gut, making 

room for phytase to act in a less fluctuating gut pH, and therefore perform more optimally, 

and for a prolonged period of time, extending the time available for phytate-hydrolysis. 

There is also less chance for phytate-Ca complexes to form and jeopardize phytase 

efficacy. 

Regarding the effectiveness of enzyme, it was observed that phytase, supplemented alone 

or in combination with xylanase, improved tibia mineralisation and gain:feed, which 

indicates a more optimal hydrolysis of phytate and utilisation of other dietary constituents. 

However, there were no effects on the rest of the responses analysed in this study. It has 

been suggested that non-phytate P can reduce phytase efficacy in promoting tibia bone 

mineralisation but the levels of reduction used in this study seemed sufficient to sustain 

broilers bone mineralisation during the 21 day trial period. The marginal efficiency in bone 

mineralisation improvement observed when xylanase was supplemented with phytase, 

compared with phytase alone, suggests that the level of NSPs present in the soybean meal 

were not detrimental to the broiler performance and bone mineralisation which might 

explain the lack of enzyme interaction for the majority of these responses. 

Overall, these studies demonstrated that diet costs and P excretion can be reduced when 

phytase-supplemented diets for broilers are formulated with dEB values in the range of 213 

to 266 mEq/Kg, and dietary levels of non phytate-P and Ca are kept to a minimum as long 

as neither of these values are compromising broilers performance or animal skeletal 

integrity. To minimise costs to producers there might also be the need to find a Na matrix 

for phytase supplemented diets, as well as a more detailed information on the digestibility 

of P along the GIT for various feed ingredients.  Consequently, phytase supplemented diets 
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can be formulated more accurately in order to reduce the diet costs and P excretion. 

Lowering dietary nutrients will contribute to a reduction in dietary costs, and the inclusion 

of phytase and xylanse in broilers diets will lead to a better utilisation of phytate-P and 

other dietary constituents, resulting in broilers that are healthier and more productive.  
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