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Abstract 

Renal cancer is a malignancy which is not only increasing in incidence but there has also 

been an increase in mortality rates. There are various prognostic factors in renal cell 

cancer. We have demonstrated that some of these such as nuclear grading, tumour necrosis 

and systemic inflammatory response can be further refined to aid in prognosis but cannot 

be utilised at present to assess which would benefit from therapeutic agents when 

recurrence occurs. 

We investigated if SFK members are expressed in renal cancer. Eight SFK members were 

found to be expressed in renal cancer and were present to varying degrees. Furthermore, 

expression differed in organ confined disease and metastatic disease. 

Immunohistochemistry was employed to assess protein expression and activation of c-Src 

and SFK activity as well as the downstream marker FAK Y
861

. Analysis demonstrated that 

c-Src expression was associated with improved survival and expression of the downstream 

marker FAK Y
861

 was associated with poor survival and demonstrated a positive 

relationship with known prognostic factors. This would suggest that another SFK member 

was associated with poor survival. Dasatinib, a SFK inhibitor was utilised on renal cell 

lines, demonstrating a dose dependant reduction on cellular metabolic activity as well an 

increase in apoptotic rates. This would support that Dasatinib may be a useful therapeutic 

drug for RCC. Treatment with Dasatinib also demonstrated that expression of c-Src, SFK 

activity and FAK Y
861

 reduced in a dose dependant manner. It was necessary to further 

assess that another SFK member was responsible for poor prognosis and this was 

undertaken by silencing c-Src. Cellular metabolic activity rates increased following 

silencing c-Src and assessment of SFK activity (Src Y
416

) and FAK Y
861

 on cell pellets 

demonstrated no change suggesting that another SFK member is responsible for the 

phosphorylation of FAK Y
861

 and therefore responsible for poor survival. 
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This would suggest that another SFK inhibitor and not c-Src inhibitors may play a role in 

the treatment of renal cell cancer and further work is required to ascertain which SFK 

member is responsible so that this can be targeted for treatment.
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Chapter 1-Renal Cell Cancer 

1.1 Incidence and survival rates in renal cell carcinoma 

Worldwide, renal cancer is the 13th most common malignancy with over 270,000 new 

cases diagnosed in 2008 [1]. In the UK alone, approximately 9000 new cases of renal 

cancer are diagnosed each year [2]. Incidence rates have increased in the UK (Figure 1.1) 

with age standardised incidence rates more than doubling between 1975-1977 and 2007-

2009 [2]. Age standardised ratios for both incidence and mortality is observed  to be 50% 

lower in women compared to men [2]. Renal cell carcinoma (RCC) accounts for nearly 

90% of all renal malignancies. There has been much debate that the increased incidence 

rates is due to the vast improvement and use of imaging modalities such as magnetic 

resonance imaging (MRI) and computed tomography (CT). It has been reported that there 

has been an increased rate of detection of incidental tumours which are asymptomatic and 

localised [3-6] but there has also been an increase detection of more advanced tumours and 

that the increase in incidence is real and cannot be solely accounted by incidentally 

detected tumours [3, 7]. 
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Figure 1.1: Renal cancer incidence rates between 1993-2009 for the UK. 

 

 

Figure 1.1 demonstrates that the incidence rates of renal cancer have increased over the 16 years 

[2]. 

Globally, renal cancer was responsible for over 110,000 deaths in 2008 [1]. Nearly 4000 

patients died from renal cancer in 2008 accounting for 2% of all cancer deaths in the UK 

[2] with mortality rates increasing (Figure 1.2). 20-30% patients present with metastatic 

disease [8] with another 20% of patients undergoing nephrectomy developing metastases 

during subsequent follow up [9]. Various factors contribute to survival such as tumour 

involvement and overall health, but there is still only a 50% chance of survival at five 

years following diagnosis [2]. 
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Figure 1.2: Renal cancer mortality rates between 1993-2008 for the UK. 

 

 

Figure 1.2 demonstrates that mortality rates are increasing [2]. 

1.2 Risk Factors 

Approximately 75% of those diagnosed are over 60 years of age with the disease being 

rare in those under 50 years of age [2] and the disease reaching a plateau around 70-75 

years of age [10]. Incidence rates have increased in all age groups but this increase is 

predominantly in those over 75 years of age (Figure 1.3), in addition mortality rates have 

predominantly increased in those over 75 (Figure 1.4) confirming that renal cancer is 

predominantly a disease of the elderly. 
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Figure 1.3: Kidney cancer incidence rates as shown by various age groups. 

 

 

Figure 1.3 demonstrates that the incidence rates of renal cancer increased in all age groups but 

the largest increase in incidence was in those over 75 years of age [2]. 

Figure 1.4: Kidney cancer mortality rates as shown by various age groups. 

 

 

Figure 1.4 demonstrates that the mortality rates of renal cancer increased in all age groups but the 

largest increase in mortality was in those over 75 years of age [2]. 

Age standardised incidences suggest that men are at an increased risk of RCC [1] with it 

being the 6th most common cancer in men and the 9th most common in women in the UK 

[2]. Whilst there has been an increase in the overall incidence in RCC (Figure 1.1), there 

has been a  higher incidence in males than females (Figure 1.5) accounting for the overall 
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increase in incidence suggesting that there is a higher predisposition of renal cancer in 

males than females. It has been reported that between 2007-2030 there will be a 27% and 

18% increase in the incidence of renal cancer in males and females respectively [11]. In 

2009 the age standardised incidence risk per 100,000 was 15.5% in men compared to 8.2% 

in women [2]. 

Figure 1.5: Renal cancer incidence rates between 1993-2009 according to sex in the UK. 

 

 

Figure 1.5 demonstrates a marked difference in the incidence rates in renal cancer between males 

and females [2]. 

Mortality rates are also higher in males than in females (Figure 1.6), this maybe expected 

given the obvious difference in incidence rates in both sexes. In 2008 the age standardised 

mortality rate per 100,000 was 6% in men compared to 3.1% in women [2]. It has long 

been thought that incidence and mortality rates have been higher in males due to lifestyle 

factors such as cigarette smoking which has been historically higher in males and also 

exposure to industrial carcinogens due to differing occupational bias between the sexes. 
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Figure 1.6: Kidney cancer mortality rates between 1993-2009 according to sex. 

 

 

Figure 1.6 demonstrates that the mortality rates have increased in both sexes over the last 15 year 

[2]. 

Smoking is a well-established risk factor for RCC with a meta-analysis reporting not only a 

difference in a smoker and a non-smoker but also a dose dependant risk with the number of 

cigarettes smoked [12]. Compared to those whom never smoked, there was a 50% increase 

in the risk for males and a 20% increase risk for females [12]. This risk can be reduced 

after smoking cessation for more than 10 years [10, 12, 13]. It is thought that cigarette 

smoking increases the risk of RCC through chronic tissue hypoxia due to carbon monoxide 

exposure [14] as well as evidence suggesting higher levels of DNA damage in peripheral 

blood lymphocytes in those with RCC compared to controls [15]. 

It has been suggested that the different incidence rates observed between males and 

females may be due to exposure to potential occupational carcinogens. The most 

extensively studied is the solvent Trichloroethylene (TCE) which is widely used as a metal 

degreaser and has been considered a human carcinogen by the International Agency for 

Research on Cancer (IARC) as well as a common environmental contaminant [16]. A case 

controlled series in Europe reported an increased risk following exposure to TCE [17] with 

one review reporting increased risk of various malignancies including renal following 
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exposure [18] and a meta-analysis suggesting a weak association with exposure to TCE 

[19] whilst others have reported that given the complexities of TCE pharmacokinetics and 

limitation of studies this prevents a definitive relationship [16, 18, 20]. Various other 

compounds have been investigated with one study reporting an association with lead which 

requires further investigation whilst associations have been reported for glass and wool 

fibres as well as brick dust [21, 22]. Exposure to industrial agents such as cadmium and 

uranium [10, 23, 24] have shown no relationship to RCC risk and neither have arsenic, 

nitrate and radon in drinking water [10]. Interestingly an association between agricultural 

workers and RCC was reported [25] and an inverse relationship between exposure of 

ultraviolet light in men and RCC risk was observed [22]. 

Excess body weight has been established as a risk factor for RCC with it accounting for 

30% of cases in Europe [26]. Various prospective studies conducted worldwide have 

reported that overweight and obese individuals were found to have an elevated subsequent 

risk of RCC [27-30] with a meta-analysis of this work also suggesting that an association 

between body mass index (BMI) and risk of RCC exists [31]. Some have suggested that 

body fat distribution is associated with an increased risk of RCC [28, 30] but evidence is 

limited suggesting that abdominal obesity is independent of BMI with the association with 

RCC. Two factors closely related to each other and obesity are diet and physical activity. 

The majority of studies have demonstrated an inverse relationship between physical 

activity and RCC risk [32-40] with some authors reporting a dose response with further 

reduction of risk with increasing levels of activity [35, 37, 38]. Assessing dietary intake 

has reported mixed results with association with RCC. The role of vitamins that are 

abundant in fruit and vegetables has produced variable results with the risk of RCC with 

some reporting an association with RCC [41] whilst others have reported no correlation 

[42-44] whilst analysis of cohort studies has reported that diets rich in fruits and vegetables 

are inversely related to RCC [45]. High consumption of fat and protein has not been shown 

to be associated with an increased risk of RCC [46-48]. The consumption of alcohol has 
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also been demonstrated to have a negative relationship with risk of RCC in a dose response 

manner [49] whilst in contrast no correlation was demonstrated with total fluid intake from 

any fluids in total or from individual types of fluids [50, 51] suggesting that it is not 

duration of contact with any potential carcinogens which prevents RCC risk with alcohol 

consumption. 

Of the various subtypes of RCC, each has a corresponding hereditary component caused by 

a distinct genetic alteration [52]. The majority of clear cell renal cancer is sporadic with 2-

4% of all RCC being familial [53-55] with a two-fold increase in a first degree relative 

[56]. The most common familial syndrome for RCC is von Hippel Lindau (VHL) 

syndrome [57] which is transmitted in an autosomal dominant manner on chromosome 3p 

which can also cause patients to develop phaeochromocytomas, retinal angiomas and 

haemangioblastomas of the central nervous system [58] with 50% suffering from RCC 

with VHL. It has been demonstrated that inactivation of the VHL gene is an early step in 

the development of clear RCC in those suffering from VHL syndrome [58]. The VHL 

tumour suppressor gene is mutated in all cases of hereditary RCC with 50% of sporadic 

cases also manifesting with this mutation [59]. The VHL gene is responsible for the 

degradation of hypoxia inducible factors [60] without which leads to up-regulation of 

factors which promote angiogenesis and tumour growth such as vascular endothelial 

growth factor (VEGF) and platelet derived growth factor (PDGF) [61-63]. In those with 

VHL syndrome, RCC is the most common cause of death. 

Various medical conditions have been demonstrated to have an association with an 

increased risk of RCC. Types of renal tumours have been shown to cause hypertension 

[64]. Interestingly however, several studies have reported an association with long term 

hypertension and risk of RCC [32, 33, 40, 65] as well as some reporting a dose response 

relationship [32] with the risk of RCC increasing with further elevation of blood pressure 

and decreasing with a reduction in blood pressure [65]. There have been reports that usage 

of anti-hypertensive treatment is also associated with an elevated risk of RCC but it is 
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thought that it is hypertension causing this increased risk and not the actual treatment [32, 

35, 36, 39, 66]. Obesity as a risk factor has already been mentioned but it has been reported 

that despite the relationship between obesity and hypertension, both are independent with 

their association with RCC and risk is higher in amongst those suffering from both 

conditions than those with only one [32, 36, 39, 65]. 

Diabetes mellitus is known to be associated with an increased risk of several cancers. Its 

relationship in RCC has not been demonstrated to be an independent factor but was closely 

associated with obesity and hypertension [35, 36, 40, 66-71]. 

It has been demonstrated that acquired renal cystic disease develops in those with end stage 

renal disease and in those on haemodialysis [72]. The incidence of RCC is higher in those 

with cystic disease [73, 74] but the evidence suggesting that these cysts undergo malignant 

change is not conclusive [74, 75]. Those who are undergoing haemodialysis are at a higher 

risk of RCC [75-77] as well as there being an increased risk of RCC after renal 

transplantation [77-79]. 

There has been some controversy surrounding an association between urinary tract 

infections and RCC, one study suggests that a history of a urinary tract infection increases 

the risk of RCC and this risk is further exacerbated with a history of smoking [80] whilst 

another report has demonstrated that no relationship between these parameters is present 

[81]. 

1.3 Symptoms 

Traditionally the majority of patients presented with the classical triad of flank pain, 

haematuria and abdominal mass with nearly half of these having advanced or metastatic 

disease [82]. Prior to improvements in imaging modalities and the frequency with which 

they were utilised, less than 10% of tumours were incidental findings [83]. This classical 
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triad is now a rare presentation accounting for less than 10% of cases [84, 85] with >50% 

of cancers now being detected incidentally [86-88]. 

The majority of these asymptomatic cancers are detected following ultrasound examination 

of the abdomen following a variety of non-specific symptoms. The difficulty arises trying 

to differentiate between benign and malignant lesions. A classification system was devised 

to outline the features of benign lesions which do not require any further follow up and 

those that require further investigation [89] as renal cysts which are often benign, are the 

most common space occupying lesions and therefore do not require further follow up or 

investigation [90]. For those solid renal masses which require differentiation from 

malignant lesions, the most important way to distinguish between these lesions is the 

presence of enhancement [91]. CT imaging is generally accepted as the imaging of choice 

remaining the most widely available and single most effective modality for staging [92, 93] 

with radiation exposure being the greatest disadvantage. Enhancement is determined by 

comparing Hounsfield Unit (HU) prior and after contrast administration with a change of 

20 HU evidence of enhancement [94] and therefore indicative of malignancy. Where CT 

cannot be utilised due to renal impairment, contrast enhanced ultrasound can be utilised 

with a relative contraindication for contrast [95-97]. MRI can also be utilised in cases of 

renal impairment [98, 99] or with an absolute contraindication to contrast such as 

pregnancy [100]. There have been reports that MRI can potentially improve imaging and 

assessment of a renal mass [101-104] but imaging with CT has the advantages of 

widespread availability, shorter examination time and lower cost in comparison to MRI. 

1.4 Histological Diagnosis 

A percutaneous biopsy is rarely required for large renal masses prior to undergoing 

nephrectomy as the positive predictive value of imaging is so high that a negative biopsy 

would not alter management [105]. Cytology can be obtained via fine needle aspiration 
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(FNA) or with core biopsy. FNA has been demonstrated to provide no additional 

information with large masses as imaging is diagnostic and the low sensitivity also makes 

FNA unreliable [106]. The role of pre-operative biopsy requires further validation before 

becoming a tool that is widely accepted [107]. Despite FNA being considered less invasive 

than percutaneous biopsy, its accuracy and diagnostic yield has not been able to match that 

of a core biopsy utilising an 18Gauge needle [108] whilst another study investigating the 

accuracy of various gauges of core biopsy size in terms of accuracy reported that the 

18Gauge needle was the most accurate in determining histological diagnosis [109]. One 

report demonstrated that biopsies can be utilised safely to distinguish between benign and 

malignant lesions in small asymptomatic cases but biopsies of these small lesions was 

associated with a high rate of technical biopsy failure [110] as well as reports that the rates 

of a biopsy being inconclusive can vary between 3-21% of cases [111]. Despite core 

biopsies being utilised frequently for the purposes of follow up, ablative therapies and 

diagnosis in cases of metastatic disease prior to systemic therapy [105, 106, 110-112], it is 

still not considered a requirement for definitive diagnosis in terms of histology prior to 

nephrectomy as a negative biopsy would not alter treatment in cases where imaging is 

suggestive of a malignancy [105]. 

The histological diagnosis of RCC is confirmed either at time of biopsy or after 

nephrectomy. RCC's are thought to arise from various specialised cells located within the 

nephron with the Heidelberg classification utilised for the various sub-types with clear cell 

and papillary which arise from the epithelium of the proximal tubule being the most 

common whilst those of lesser frequency which includes chromophobe and collecting duct 

RCC arising from the epithelium of the distal collecting duct [59, 113, 114]. Each of the 

different sub-types have different cytogenetic and immunohistochemical profiles as well as 

differing prognoses. Clear cell which accounts for 80-90% of RCC displays large uniform 

cells with abundant clear cytoplasm and is typically highly vascular (Figure 1.7). Papillary 

RCC has small cells with scanty cytoplasm and consists of two sub-types with type I 
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occurring sporadically and metastasising later than type II which are more likely inherited, 

can be multiple and are of a higher grade (Figure 1.8). Collecting duct tumours which arise 

from the medullary collecting duct tend to occur in younger people and have an overall 

poor prognosis. Chromophobe RCC arises from collecting duct epithelium (Figure 1.9) and 

has been demonstrated to have a more favourable prognosis over papillary carcinoma 

which has a favourable prognosis over clear cell cancer [115, 116]. For the purposes of this 

thesis, the main focus will be on clear cell carcinoma as it can account for nearly 90% of 

all renal cancers and will referred to as renal cell cancer (RCC) for the purposes of this 

manuscript from this point.  

Figure 1.7: Histopathological slide of clear cell carcinoma (RCC). 

 

 

Figure 1.7 demonstrates the large uniform cells abundant with cytoplasm associated with clear cell 

carcinoma. 
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Figure 1.8: Histopathological slide of papillary renal carcinoma. 

 

 

Figure 1.8 demonstrates small cells with scanty cytoplasm. 

Figure 1.9: Histopathological slide of chromophobe renal carcinoma. 

 

 

Figure 1.9 demonstrates the abundant pale cytoplasm and prominent cell membrane associated 

with chromophobe carcinoma. 
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1.5 Classification and Prognostic Factors 

1.5.1 Anatomical Factors 

The TNM (Tumour Node Metastases) classification is a global, well established 

classification system accepted for the staging of diverse solid tumours including renal 

cancer. It is recommended for clinical and scientific use, representing anatomical factors 

[117] (Table 1).  
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Table 1.1: The 2009 TNM staging classification system. 

 

 

T - primary tumour 

TX  Primary tumour cannot be assessed 

T0  No evidence of primary tumour 

T1  Tumour < 7 cm in greatest dimension, limited to the kidney 

T1a  Tumour < 4 cm in greatest dimension, limited to the kidney 

T1b  Tumour > 4 cm but < 7 cm in greatest dimension 

T2  Tumour > 7 cm in greatest dimension, limited to the kidney 

T2a Tumour > 7 cm but < 10 cm in greatest dimension  

T2b Tumours > 10 cm limited to the kidney 

T3  Tumour extends into major veins or perinephric tissues but not into the 

ipsilateral adrenal gland and not beyond Gerota’s fascia 

T3a  Tumour grossly extends into the renal vein or its segmental (muscle-containing) 

branches or tumour invades perirenal and/or renal sinus (peripelvic) fat but not beyond 

Gerota’s fascia 

T3b  Tumour grossly extends into the vena cava below the diaphragm 

T3c  Tumour grossly extends into vena cava above the diaphragm or invades the wall of 

the vena cava 

T4 Tumour invades beyond Gerota’s fascia (including contiguous extension into the 

ipsilateral adrenal gland) 

 

N - Regional lymph nodes 

NX Regional lymph nodes cannot be assessed 

N0 No regional lymph node metastasis 

N1 Metastasis in a single regional lymph node 

N2 Metastasis in more than 1 regional lymph node 

M - Distant metastasis 

M0 No distant metastasis 

M1 Distant metastasis 

 

Table 1.1 demonstrates the TNM staging classification with the various breakdown of each clinical 

parameter. 
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The first formal staging system in renal cancer was based on physical tumour 

characteristics and the location of tumour spread [118] which was later modified to include 

vascular involvement [119]. It was based on these characteristics that led to the 

development of the TNM system by the Union Internationale Contre le Cancer (UICC) 

allowing patients to be categorised [120]. The T component reflects the local extension of 

the primary tumour, the N component represents extent of lymphatic involvement and the 

M component indicates distant metastases. The primary size of the tumour is a key 

component of the TNM staging system and has been demonstrated to be one of the most 

prognostic factors for renal cancer [121, 122]. Furthermore there has been a large body of 

evidence demonstrating the prognostic benefit of the various T stage stratifications for T1 

[123], T2 [124], T3 [125, 126] and T4 [127-129] disease. The risk of lymph node 

involvement varies depending on primary tumour stage, vascular involvement, metastases 

and the extent of  lymphadenectomy performed [130, 131]. It has been reported that 

patients without preoperative lymph node involvement had a significantly longer survival 

rate than those with lymph node involvement [132]. It has also been demonstrated that in 

those with metastatic diseases, presence of lymph node involvement resulted in worse 

outcome than presenting with metastases alone [133]. The presence of metastatic disease 

would naturally suggest a poor prognosis. It has been demonstrated that the presence of 

metastases is a predictor of poor survival [134, 135]. 

1.5.2 Histological Factors 

Various grading classifications for RCC based on morphological features have been 

proposed [83, 136-141] and of these the Fuhrman grading system [138] has achieved 

widespread usage in pathology practise. This 4-tiered grading system is essentially based 

on nuclear size and morphology and on the presence or absence of nucleoli. G1 tumours 

consist of cells with small (approximately 10 μm), uniform, round nuclei with 

inconspicuous or absent nucleoli; G2 tumours have irregular morphology, larger nuclei 
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(approximately 15 μm) with small nucleoli when examined under high power (×400 

magnification); G3 tumours have irregular outlines with even larger nuclei (approximately 

20 μm) and large, prominent nucleoli that are evident even at low power (×100 

magnification); and G4 tumours differ from G3 lesions in that they contain bizarre, 

multilobed nuclei and heavy chromatin clumps [138] (Figure 1.10). Nuclear grading is an 

important predictor of survival in RCC with increasing grade a predictor of metastases 

[138]. This grading system has been demonstrated to be an independent predictor of 

survival [127, 142, 143] and acknowledged as optimal for predicting outcome [144]. 

Therefore this has been incorporated into the majority of prognostic algorithms including 

SSIGN [145], UISS [146] and Leibovich [147]. 
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Figure 1.10: Classification of the Fuhrman grading system. 

 

G1 G2

G3 G4

 

Figure 1.10 demonstrates the various grades of clear cell carcinoma as classified by the Fuhrman 

nuclear grading system. 

There has been a suggestion that the Fuhrman grading system has low-moderate inter-

observer agreement [148-151] and that a simplified system improves inter-observer 

agreement [148, 149] as well as demonstrating as much accuracy as the conventional 

grading system [152, 153]. Furthermore there are those suggesting that the ideal grading 

system is yet to be defined and should consist of three tiers [151] whilst a three tired 

system has been shown to be an independent predictor of survival [154, 155].  

Tumour necrosis occurs when tumours outgrow their blood supply therefore reflecting 

aggressive tumour biology and rapid proliferation and progression [156]. Tumour necrosis 

has been investigated in malignancies such as breast, colorectal and renal cancer. It is often 

assessed reviewing haematoxylin and eosin stained sections at low magnification using a 
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semi-quantitative method to classify necrosis as simply being absent or present and is 

demonstrated by an area devoid of recognised pathology (Figure 1.11). 

Figure 1.11: Tumour necrosis on a haematoxylin and eosin stained section. 

 

 

Figure 1.11 demonstrates areas completely devoid of recognised pathology which is the feature of 

tumour necrosis. 

Some studies investigating necrosis in breast cancer have reported that necrosis is 

independently associated with tumour recurrence [157] and overall survival [158] whilst 

others have suggested that necrosis predicts survival but is not an independent factor [159, 

160]. Despite using a quantitative method to classify necrosis in breast cancer with a 15 

year follow up, necrosis was not associated with overall survival [161]. Evidence 

investigating the role of tumour necrosis in colorectal surgery is more supportive. Necrosis 

has been shown to be an independent predictor of disease specific survival in colorectal 

cancer of various stages [162, 163]. Studies investigating the role of necrosis in organ 

confined disease in colorectal cancer, a group that would have the greatest benefit of 

additional prognostic information being utilised, have conflicting results with one study 

observing no relationship between necrosis and survival [164] whilst another reported it as 

an independent predictor of survival [165]. The role of tumour necrosis has been 
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investigated in renal cancer with some conflicting results. The majority of studies have 

reported that necrosis adds prognostic information as it is associated with reduced disease 

specific survival, recurrence and progression to metastatic disease [145, 147, 166-168]. 

Others have shown either no correlation or independent relationship between necrosis and 

outcome [137, 169-172]. Despite conflicting results regarding the significance of necrosis 

in renal cancer, a semi-quantitative method of assessment of this pathological parameter is 

incorporated into prognostic algorithms such as SSIGN [145] and Leibovich [147] scores. 

Necrosis is evaluated on a simple absence/presence basis and this therefore does not take 

into account the extent of necrosis. It has been suggested that an extent based classification 

is superior to a simple absence/presence response and was retained as an independent 

prognostic factor in renal cancer [173]. 

It is now established that disease progression in cancer patients is not solely determined by 

the tumour characteristics but also by the host response. There is increasing evidence that 

both local and systemic inflammatory responses play an important role in the progression 

of various solid tumours [174, 175]. When inflammation does not resolve, it promotes 

tumour cell growth, survival and angiogenesis as well as playing a critical role in the 

metastases of cancers [176]. When attempts are made to reduce this inflammation by the 

administration of non-steroidal anti-inflammatory drugs, it has led to the reduction of 

tumour involvement in colon and lung cancers [174, 177-179]. 

Evidence suggests that intensity of local inflammatory infiltrate within the tumour bed 

predicts prognosis [180]: a pronounced lymphocytic infiltration in colorectal cancer is 

associated with improved survival [181-183]. Also quantifying the degree of infiltration by 

lymphocyte subsets such as CD8+ and CD4+ T cells provides prognostic information in 

various tumour types [184, 185] including renal cancer [186]. Identifying and quantifying 

the various inflammatory cells on haematoxylin and eosin stained sections is a difficult 

process with obvious differing features between the different cells. Neutrophils are 

identified as those inflammatory cells with multi-lobulated nuclei, lymphocytes are those 
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with a thin rim of cytoplasm and macrophages are irregular in shape with a vacculated 

cytoplasm (Figure 1.12). The process of assessing inflammatory cell infiltration is time 

consuming and has not been adopted into routine clinical practice.  

Figure 1.12: Local inflammatory response. 

 

 

Figure 1.12 demonstrates the various inflammatory cells, N-neutrophil, L-lymphocyte, M-

macrophage. 

It is therefore of interest that Klintrup and colleagues have reported a simplified method of 

assessing the inflammatory cell infiltrate at the tumour margin [187], shown on routine 

haematoxylin and eosin stained sections, that tumour inflammatory infiltrate, including all 

white cell types, can be graded high or low grade. It has been shown that a high grade 

infiltrate is associated with improved survival in colorectal cancer [187, 188] and 

gastroesophageal cancer [189]. 

Whilst the systemic inflammatory response is not a histological response per se, peripheral 

blood markers are a systemic response to the histological process. Neutrophil/lymphocyte 

ratio has been demonstrated as a prognostic marker of systemic inflammation in colorectal, 

hepatocellular, ovarian and pancreatic cancers [190-193]. Increasing evidence supports a 

role of the systemic inflammatory response, indicated by elevated levels of C-reactive 

protein (CRP) being an independent predictor of survival in patients with a variety of 
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common solid tumours including gastrointestinal, lung, prostate, bladder and renal cancer 

[194-199]. The modified Glasgow Prognostic Score (mGPS), incorporates CRP and 

albumin serum levels [200]. The mGPS score has provided additional prognostic 

information in patients with various solid malignancies including lung, gastroesophageal 

and colorectal cancers [201-203]. 

1.5.3 Molecular Factors 

It is felt that the incorporation of molecular markers into prognostic algorithms will 

increase their predictive accuracy. A wide variety of molecular markers have been reported 

to influence prognosis in renal cancer including cell cycle regulators, mediators of cellular 

proliferation and apoptosis. 

Vascular endothelial growth factor (VEGF) is an important angiogenic factor with 

significant effects on tumour angiogenesis. In recent years there has been increasing 

evidence showing that treatment with vascular endothelial growth factor-tyrosine kinase 

inhibitors (TKI, e.g Sunitinib, Sorafenib) conveys additional survival benefit in metastatic 

or recurrent renal cancer [204-208]. Studies examining plasma levels of VEGF prior to 

nephrectomy have shown conflicting results. Some studies have shown that plasma levels 

of VEGF as an independent predictor of survival [205] whilst others have suggested that 

VEGF levels might be utilised as a biomarker for clinical efficacy [209]. Others have 

reported that VEGF plasma levels have prognostic significance but failed to be 

independent of other clinic-pathological parameters [210, 211], and  it is also reported to 

have no correlation to survival [212]. One of these studies despite showing that plasma 

VEGF levels were an independent predictor of survival, further demonstrated that those 

patients with both high and low levels of VEGF benefited from treatment with a TKI [205] 

suggesting that plasma levels may not be used as a biomarker for clinical efficacy. Studies 

have examined expression of VEGF in renal cancers with varying results. Some have 

shown that expression of VEGF as an independent predictor of survival [213-216] whilst 
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another showed it to be prognostic but not an independent predictor [217] with another 

study showing no correlation to survival [218]. 

The mammalian target of rapamycin (mTOR) pathway (phosphoinositide 3-kinase/Akt 

pathway, (P13K-Akt-mTOR)) has a central role in the regulation of cell growth and 

survival, playing a critical role in tumour progression [219, 220]. Treatments with 

inhibitors of the mTOR pathway (e.g. temsirolimus, everolimus) have been shown to 

convey additional progression free survival in renal cell cancer [221, 222] and are currently 

utilised to treat recurrence and metastatic disease. Efforts have been made to characterise 

biomarkers such as members of the mTOR pathway which may predict benefit from 

mTOR inhibitors but with little success. Studies have reported that mTOR is more highly 

expressed in renal cancer [223-226] as well as demonstrating that the P13K-Akt-mTOR 

pathway is activated in renal cell cancers [224, 226-229]. Studies examining the activation 

status of the mTOR pathway have observed an association with tumour stage, grade and 

disease specific survival as well as being an independent predictor of disease specific 

survival [226, 230, 231] suggesting that this could allow targeted therapy. 

It is known that inactivation of PTEN (phosphatase and tensin homologue), a tumour 

suppressor gene, results in activation of the P13K-Akt-mTOR pathway [232, 233]. 

Expression levels of PTEN could be assessed with the possibility of expression guiding 

treatment with mTOR inhibitors. Studies have suggested that PTEN levels are reduced in 

clear cell cancer [225, 230, 231, 234-236] and have therefore opened the possibility of 

expression levels being utilised in targeted therapy with mTOR inhibitors. A study 

examined this possibility investigating baseline levels of PTEN in response to therapy with 

temsirolimus and showed no correlation in response to therapy [237]. 

Carbonic anhydrase IX (CA IX) is a protein that is thought to play a key role in 

maintaining cellular pH allowing cell survival in hypoxic conditions [238] allowing cancer 

cells to grow and spread out with the organ [239] and is up regulated when the VHL gene 

is inactivated resulting in accumulation of hypoxia inducible factor [62]. Studies have 
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investigated the role of CA IX in renal cancer with reports showing that it is up regulated 

in renal cancer [240] and is independently associated with survival [241-243] whilst in 

another study it was reported to correlate to cancer staging but not survival [244] and to be 

associated with disease specific survival but not an independent factor [245] and in another 

no correlation was found [216]. 

Markers of cellular proliferation and apoptosis can be utilised to examine if expression 

provides any prognostic information. Ki 67, a marker of active cellular proliferation is a 

nuclear protein expressed during all active phases of the cell cycle (G1, S, G2 and M-

phases) but absent in the resting phase of the cell cycle (G0).  

Ki 67 has been investigated in renal cancer; some studies have shown this marker to be 

associated with increased nuclear grade and a predictor for disease specific survival [216, 

218, 242, 243, 246-251] whilst in other studies it has not been shown to add prognostic 

information [252-255]. Apoptosis on the other hand is also a highly regulated cellular 

process but is involved in maintenance of tissue homeostasis and elimination of unwanted 

cells [256]. Acquired resistance to apoptosis is thought to be one of the salient features of 

cancer [257]. Apoptosis has been shown to be a prognostic marker for survival in renal 

cancer as it has been shown to correlate to tumour grade, stage and size [258-260] as well 

as being independently associated with survival [261]. While it has been suggested that 

apoptosis may be a prognostic marker in its own right, others have shown it to either have 

no correlation to established prognostic factors or it to not be an independent predictor of 

survival [236, 262-265]. 

Despite varying degrees of evidence in the literature showing that molecular markers can 

aid in prognosis and guide treatment strategies, efforts have been made to utilise molecular 

markers in prognostic algorithms [216, 218, 266]. Nevertheless, there are still no 

biomarkers in routine clinical use in RCC [267]. 
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1.6 Treatment of Renal Cell Cancer 

1.6.1 Nephron Sparing Surgery 

Radical nephrectomy has been the standard treatment of renal cell carcinoma [119]. 

Nephron sparing surgery (NSS) has however been accepted as the ideal treatment in those 

with a single functioning kidney or in those at high risk of requiring renal replacement 

therapy [268]. NSS for localised RCC has been demonstrated to have similar oncological 

outcome to radical surgery [269-273]. NSS is not a feasible option in those with locally 

advanced tumour burden, technical unfeasibility due to unfavourable location or when it is 

detrimental to the patients’ health. In this situation, radical nephrectomy either by open or 

laparoscopic surgery remains the gold standard [125, 274-277]. NSS in those with T1a 

disease has been demonstrated to provide similar recurrence free and survival compared to 

those undergoing radical surgery [269-273, 278, 279]. Even in those with T1b disease, 

NSS has also demonstrated that overall and cancer specific survival is not compromised in 

comparison to radical surgery [280-283]. Furthermore studies have demonstrated that renal 

function is preserved with NSS and this would demonstrate improved overall survival 

[284-287]. The complication rates for NSS are higher than those undergoing radical 

surgery [288] especially in those undergoing NSS for solitary kidney [289, 290]. 

1.6.2 Laparoscopic Surgery 

Since its initial introduction, laparoscopic radical surgery has now become standard 

practise for those patients with T2 disease and those with smaller disease not amenable for 

NSS [291-295]. Laparoscopic radical surgery has not only been demonstrated to have 

similar cancer free survival rates to open surgery [274-276, 293, 294] but in a very small 

cohort of patients has been demonstrated to have lower morbidity in comparison to open 

surgery [296]. In certain cases and in experienced hands, laparoscopic NSS is an 

alternative option to open NSS in those with small peripheral tumours [272]. In those 
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undergoing NSS, long term renal function correlates inversely to ischaemia time [297]. In 

those undergoing NSS, intraoperative ischaemia time is longer with laparoscopic surgery 

than with open surgery [272, 298, 299]. Limited evidence is available suggesting similar 

oncological outcomes in those undergoing NSS either with laparoscopic or open surgery 

[272, 300] whilst it has been demonstrated that there is a higher complication rate in those 

undergoing laparoscopic than open NSS [301] especially in those with a solitary kidney 

[272, 297, 302]. 

1.6.3 Metastatic disease 

Performing a nephrectomy is only curative when there is no evidence of metastatic disease 

and therefore is palliative when performed in these patients. Nephrectomy in this group of 

patients is only indicated when patients are suitable and fit for surgery [303]. It has been 

demonstrated that in those patients receiving immunotherapy, there was a modest survival 

in those that had a cytoreductive nephrectomy performed [304]. 

RCC develop from the proximal tubules. These proximal tubules have high levels of P-

glycoprotein which is a multi-drug resistant protein making treatment with 

chemotherapeutic agents not possible and therefore chemotherapy as a single agent is not 

utilised. It has been demonstrated that treatment with the chemotherapeutic agent 5-

fluorouracil when combined with treatment with immunotherapy is moderately effective 

[305]. 

Following disappointing results with hormonal therapy and conventional chemotherapy 

and the notion that spontaneous remission may be immune related, trials investigating 

treatment with immunotherapy were commenced with Interferon -α and Interleukin-2 

[306]. Immunotherapy treatment has demonstrated a decrease in the risk of tumour 

progression as well as increased survival  [306-308] with toxicity of  Interleukin-2 being 

higher than Interferon-α and treatment with Interferon-α as monotherapy demonstrating 

similar efficacy than with combination of the two in addition with chemotherapy [309]. 
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In recent years there have been recent advancements in the molecular aspects of renal 

cancer leading to the development of novel agents in the treatment of metastatic disease 

(Figure 1.13). 

Figure 1.13: Biological pathways allowing targeted therapy in RCC. 

 

 

Figure 1.13 demonstrates the various pathways in the biology allowing targeted therapy. Loss of 

VHL gene results in the accumulation of angiogenic substances such as VEGF and PDGF. The 

mTOR pathway can promote cell survival and growth as well the accumulation of HIF. 

The VHL gene is responsible for the degradation of hypoxia inducible factors [60] and if 

not broken down causes accumulation of  substances which promote angiogenesis [61-63]. 

TKI inhibitors such as Sunitinib  and Sorafenib have been demonstrated to convey 

additional survival in those with metastatic or recurrent renal cancer. Sunitinib, an oxindol 
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TKI which inhibits PDGF-receptor, VEGF-receptor, c-KIT and FLT-3 and has anti-tumour 

and anti-angiogenic activity has been demonstrated to result in longer progression free 

times and higher response rates [206-208]. Sorafenib, an oral multikinase inhibitor with 

activity against Raf-1 serine/threonine kinase, B-Raf, VEGF-receptor-2, PDGF-receptor, 

FLT-3 and c-KIT has been demonstrated to prolong progression free survival [204, 205]. 

Pazopanib and Bevacizumab are another two angiogenesis inhibitors. Pazopanib targets 

VEGF-receptor, PDGF-receptor and c-KIT and has been demonstrated to improve survival 

in those with metastatic cancer [310] whilst Bevacizumab which is a humanised 

monoclonal antibody to VEGF and has been demonstrated an increase in overall response 

in comparison to a placebo [63] and in those when combined with Interferon-α [311]. 

Temsirolimus and Everolimus are mTOR inhibitors. Temsirolimus has been demonstrated 

to improve survival by three months in those that are deemed high risk patients in 

comparison to immunotherapy [221] whilst Everolimus has shown progression free 

survival in comparison to placebo in those patients who have progressed despite 

commencing Sunitinib/ Sorafenib [222].  

1.7 Src kinase family members 

One potential molecular target in those to prevent progression to metastatic disease is the 

non-receptor tyrosine kinase Src, the first identified human proto-oncogene. The origins of 

the discovery of Src began in the 1900's when Rous proposed that viruses could cause 

cancer [312]. Material from centrifuged chicken sarcomas was injected into chicks that 

went on to developing sarcomas. The gene implicated, viral Src (v-Src), was identified 

[313] and it later transpired that this virus actually acquired the cancer causing gene from a 

normal cellular gene, c-Src (referred to as Src) [314-316]. Src has a role in signal 

transduction of multiple oncogenic cellular processes including migration, adhesion, 

invasion, angiogenesis, proliferation and differentiation and has significant interactions 
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with other cellular proteins such as growth factor receptors [317]. Src is the prototypical 

member of the Src kinase family (SFK), There have been 12 SFKs identified: Src, Fyn, 

Yes, Yrk, Lyn, Hck, Fgr, Blk, Lck, Brk, Srm, and Frk, 11 of which are found in humans 

[318-323]. Src, Fyn, and Yes are expressed ubiquitously, with concentration levels of Src 

being five to 200 times higher levels in platelets, neurons, and osteoclasts [324] whereas 

the others are relatively concentrated in hematopoietic cell lineages [325]. 

The role of SFK in various malignancies is well reported. Lyn is the predominant SFK 

expressed in normal B lymphocytes [323, 326] which are required for the production of 

antibodies to allow for the eradication of extracellular pathogens. Lyn has been implicated 

in haematological malignancies where levels of other SFK's were no different in these 

malignant cells in comparison to non-malignant cells [327, 328]. Lyn has also been 

implicated in various other malignancies such as colon, prostate and breast cancer [329-

332] whilst inhibition of Lyn has a negative impact on proliferation on prostate cancer cells 

[333] as well as inhibiting tumour growth and metastases in Ewing's sarcoma [334]. 

It has been demonstrated that increased levels of Src are expressed in breast [335-341], 

pancreatic [342-347] prostate [348-350], colorectal [351-356], bladder cancers [357-362] 

as well as other malignancies such as skin, lung, liver and ovarian [363-369]. Furthermore 

activation of Src is associated with poor prognosis/ metastatic disease in various cancers 

[337, 340, 353, 368, 370-374] whereas in bladder cancer, Src expression and activity 

decreases with tumour stage [357-362]. This would suggest that Src expression/activity 

does not necessarily constitute poor prognosis in all cancers and the utilisation of Src 

inhibitors may not necessarily result in improved survival in patients. Furthermore it has 

been demonstrated that inhibition of Src reduces proliferation, invasion and migration of 

cancer cells [375-378]. 
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1.7.1 Src Structure and Activation 

SFK's share a conserved domain structure. Src kinase is composed of a C-terminal tail, 

kinase domain, two protein-protein interaction domains (SH2, SH3) and a unique amino-

terminal domain that varies between SFK members (Figure 1.14). 

Figure 1.14: Structure of Src. 

 

 

Figure 1.14 demonstrates a basic overview of the structure of Src. 

The four Src homology domains (SH1-4) are involved in auto regulating SFK activity and 

form intracellular signalling complexes following interaction with substrates [379]. The N-

terminal domain contains signals for lipid modification: myristylation (in all SFKs) and 

palmitylation (in all but Src and Blk) signals, both of which are required for membrane 

association of SFK with the N-terminal myristylation of Src, essential for the 

transformation of oncogenic Src mutants [380-382]. 

Activation of Src is highly dependent upon the phosphorylation state of various tyrosine 

residues on the SH domains. Classical activation of Src kinase occurs by an initial 

dephosphorylation of a conserved tyrosine residue in the C-terminal domain known as the 

negative regulatory region (Tyrosine (Tyr) 530) and followed by a subsequent 

autophosphorylation of the Tyr 419 site in the kinase domain [383, 384]. Both these events 

are required to occur before the kinase can be considered fully activated.  In normal cells, 

the kinase activity of SFKs is negatively regulated by the phosphorylation of its C-terminal 
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regulatory Tyr residue by C-terminal Src kinase (Csk) [385, 386] and that Src is activated 

by dephosphorylation [387]. It has been identified that Tyr 527 in chickens (Tyr 530 in 

humans) in the C-terminal is the site of inhibitory phosphorylation [388] and that 

dephosphorylation at this site increases the activity of Src [389-392]. This would suggest 

that Src is normally present in an inactive form in which Tyr 530 site is phosphorylated. 

When Tyr 530 is phosphorylated, Src adopts an inactive configuration which is stabilised 

by binding of the Tyr 530 to its own SH2 domain and binding of SH2 kinase linker to the 

SH3 domain [379, 393-395] adopting a closed confirmation [396] (Figure 1.15). Upon 

dephosphorylation of Tyr 530, Src undergoes a transformational change exposing the Tyr 

419 which is required to undergo autophosphorylation prior to Src being fully active  [383, 

384] (Figure 1.15). 

Figure 1.15: Configuration of Src when inactive and active. 
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Figure 1.15 demonstrates changes in configuration when Src becomes activated following 

dephosphorylation of Tyr 530 and autophosphorylation of Tyr 416. 
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SFK's localisation has a preponderance to the cell cytoplasm with location suggesting Src 

inactivity [397]. Src localisation in the avian sarcoma virus has shown a preponderance to 

the membrane [398]. It has been demonstrated that the SH3 domain of inactive Src is 

localised to the perinuclear region and upon activation this domain is transported to the 

plasma membrane [399]. Furthermore activated Src kinase has been demonstrated to 

translocate to the cell membrane [318, 400-403] and therefore cellular location may also be 

employed as a surrogate marker
 
of activation [404]. It has been demonstrated that 

membrane localisation of Src is associated with poor survival in pancreatic, breast and 

prostate cancers [335-337, 348, 405]. 

1.7.2 Src and tumourgenesis 

Src has a role in multiple cellular processes in normal cells that do not result in 

tumourgenesis. It is through these same processes that results in cancer progression may 

occur through aberrant Src activation [318]. Src kinase has a role in signal transduction of 

multiple oncogenic cellular processes including migration, adhesion, invasion, 

angiogenesis, proliferation and differentiation and has significant interactions with other 

cellular proteins such as growth factor receptors [317]. Some of these cellular processes are 

discussed below. 

1.7.2.1  Migration 

Src is a key component in regulating cell motility as it is involved in the disruption of cell-

cell contacts and increasing focal adhesion turnover [406]. Cortactin, a regulator of cell 

migration is an oncogene that is frequently amplified in a subset of tumours and tumour 

cell lines [407, 408]. Cortactin is a substrate of Src which has not only been demonstrated 

to promote the formation and stabilisation of the actin network that drives protrusion at the 

leading edge of migrating cells [409] but Src itself can directly regulate the activity of 

Cortactin [410]. Inhibition of Src has been demonstrated to decrease the formation of these 
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protrusions [411, 412] and as well as inhibiting the protrusions themselves [348]. 

Furthermore it has been demonstrated that during metastases, the cell-cell, cell-matrix 

contacts undergo changes which allow migration which is a Src dependant process [413]. It 

has been demonstrated that the invasive nature of cancer cells is regulated by Src as it 

inhibits cadherins which stabilise these cell-cell contacts as well as increasing the 

degradation of these proteins [414]. It has been demonstrated that over expressed and 

active Src increases the invasive capability of colon cancer cells and that Src inhibition 

decreased invasion [415]. Active Src results in the phosphorylation of downstream markers 

such as focal adhesion kinase (FAK) and paxillin which play a key role in the regulation of 

proliferation and migration of normal and tumour cells [416-420]. 

1.7.2.2 Angiogenesis 

Vascular endothelial growth factor (VEGF) is an important angiogenic factor with 

significant effects on tumour angiogenesis which is essential for tumour development. The 

role of VEGF inhibitors in renal cancer is well established demonstrating survival benefit 

[204, 206, 310, 311, 421]. Src has been demonstrated to be involved in the regulation of 

VEGF expression [422] and that VEGF is a downstream target of Src suggesting a role of 

Src in promoting angiogenesis [423]. A report has demonstrated that VHL tumour 

suppressor gene is de-stabilised by Src [424]. VEGF has been demonstrated to mediate 

migration of colorectal cancer cells by activation of Src [425]. Src activation has been 

demonstrated to play a role in VEGF production and vascularisation in colon, breast and 

ovarian cancer cells  [424, 426-428] and Src inhibition resulting in reduced VEGF 

expression [429]. Furthermore, VEGF mediated Src results in increased vascular 

permeability [430] as well as tumour cell extravasation and metastasis [431]. 
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1.7.2.3 Proliferation/Apoptosis 

It has been suggested that Src may regulate different stages of tumour growth in different 

tissues [319]. SFK inhibitors in breast cell lines has demonstrated that blocking Src activity 

results in the inhibition of proliferation [412] whilst in the case of prostate cancer, only 

those castrate resistant cell lines demonstrated the inhibition of proliferation following Src 

inhibition [348]. Cell death, termed anoikis, normally occurs following loss of cell-cell 

contact and detachment of these adherent cells from the extracellular matrix [416]. It has 

been demonstrated that Src activated cells do not undergo anoikis, as a result of the 

activation of PI3K and extracellular signal-regulated kinase 1 or 2 (ERK1/2) [432]. 

1.7.3 Src in Renal Cancer 

In renal cancer, Src has been shown to contribute to the appearance of malignant 

phenotypes, particularly due to the resistance against apoptosis by Bcl-xL and angiogenesis 

stimulated by Src-STAT3-VEGF signalling [433]. The pleiotropic effects of Src activity 

are due to the multiple signal pathways engaged by Src and its accompanying kinases. 

Studies investigating the role and expression of Src and the downstream marker FAK are 

very limited. A case report has demonstrated that Dasatinib, a Src inhibitor, reduced the 

viability of a patients cultured renal cancer cells and demonstrated strong staining for Src 

[434] and that Src expression when utilising a random cut off value of 5% was associated 

with poor prognosis in renal cancer and renal cell lines demonstrated sensitivity to 

Dasatinib [435]. Despite these limited studies with obvious limitations, Src inhibitors are 

being utilised in clinical trials in those with renal cancer. We believe that further work is 

required not only to demonstrate if SFK's are expressed in renal cancer, whether 

assessment of the downstream marker FAK and those SFK's that are highly expressed 

correlates to prognosis and to assess if treatment of renal cancer with Src inhibitors causes 

any changes in the expression with those SFK that are highly expressed and the impact on 

the downstream marker FAK. 
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1.7.4 Downstream markers of SFK 

When SFK’s such as Src, Lyn and Fyn are phosphorylated; several downstream markers 

such as FAK are phosphorylated [436-438]. FAK is a non-receptor cytoplasmic tyrosine 

kinase that plays a key role in the regulation of proliferation and migration of normal and 

tumour cells. FAK was first identified in search of proteins that were tyrosine 

phosphorylated where it was demonstrated that they were present in Src transformed 

fibroblasts as a key substrate for Src oncoprotein [439]. It has been demonstrated that FAK 

is up-regulated/ activated in various malignancies by playing a role in cellular processes 

responsible for tumourgenesis [417, 440, 441], whilst several studies have demonstrated a 

further role for FAK in cancer progression and invasion. Elevated FAK phosphorylation 

has been observed in several cancers, including breast, endometrial, colon, thyroid, 

prostate, liver and ovarian [369, 442-444]. Deletion of FAK from cancer cells has resulted 

in decreased tumour progression [445, 446] whilst quantitative real time PCR has 

demonstrated elevated levels of FAK expression in gastrointestinal stromal tumours [447]. 

Increased FAK expression was not found in oesophageal cancer but correlated with tumour 

invasiveness and lymph node metastases [448], whilst in metastatic prostate cancer, it has 

been demonstrated that elevated levels of mRNA of FAK are expressed [449]. In vitro 

evidence has demonstrated that Src-FAK signalling is associated with elevated tumour cell 

metastases and cell invasion [448, 450]. A positive feedback loop exists between Src and 

FAK in which both increase the activation phosphorylation of the other [451] thereby 

demonstrating a relationship between the two. 

Several sites of phosphorylation have been identified in FAK which modulate FAK 

activity including the major autophosphorylation site Y
397

 [452]. Autophosphorylation of 

FAK at the Y
397

 site occurs as a result of many stimuli thereby creating a high affinity 

binding site for the Src homology 2 domain of several proteins including Src kinase [453, 

454]. Src phosphorylates FAK at several other sites as well including Y
407

, Y
576

, Y
577

, Y
861

 

and Y
925

 [453-456] but it has been reported that the Y
861

 is the major site on the FAK 
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domain associated with activation [455, 457, 458], and therefore maybe used as a surrogate 

marker not only for SFK activation but also for SFK function [459]. Furthermore, Src 

inhibition has resulted in significant reduction of FAK at Y
861

 [458] leading to some 

suggest that downstream markers of SFK activation such as FAK could therefore act as 

biomarkers for SFK activation [459]. 

1.7.5 SFK Inhibitors 

Given the role of SFK in tumourgenesis, this has made them important targets for 

therapeutic intervention. Various inhibitors are currently utilised either in trials in those 

with cancer or have demonstrated efficacy in progression free survival. Below is an 

overview of the various inhibitors available. 

Dasatinib is a tyrosine kinase inhibitor of Abl, Src and SFKs [378]. It is approved in those 

with chronic myeloid leukaemia [460] and is utilised as first line therapy. Whilst inhibition 

of lung cancer cell lines has been demonstrated with Dasatinib [461], results of phase II 

trials in lung cancer have demonstrated variable results with some showing a modest result 

at best with clinical activity less than chemotherapy [462, 463] and another phase II trial 

being terminated due to lack of efficacy [464]. Dasatinib has been demonstrated to reduce 

prostatic cancer growth and lymph node metastases in a mouse model [465, 466]. 

Treatment with Dasatinib has demonstrated inhibition of the downstream marker FAK in 

prostate cancer cell lines [459] as well as inhibiting phosphorylation of Src and FAK in 

hormone sensitive and naive cell lines [348]. Dasatinib treatment of those with prostate 

cancer in a phase I/II trial has demonstrated a high objective response [467]. Treatment in 

colorectal cancer cell lines has demonstrated reduced cell growth [468, 469] whilst in a 

phase II trial, patients treated with Dasatinib showed it to be ineffective as a single agent 

[470]. In melanoma cell lines, treatment has demonstrated anti-proliferative and anti-

invasive effects [471, 472] with results from a phase I trial suggesting favourable survival 

to historical data [473]. Treatment of breast cell lines demonstrated inhibition of growth 
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[338, 474, 475] whilst inhibition with Dasatinib in phase II trials demonstrated limited 

activity [476, 477]. Treatment of those with ovarian cancer or intraperitoneal cancer in a 

phase II trial with Dasatinib has demonstrated minimal activity [478] and demonstrated no 

activity in those with mesothelioma in a phase II trial [479]. Results of Dasatinib treatment 

of hepatocellular carcinoma cell lines have demonstrated the induction of cell cycle arrest 

and apoptosis [480, 481] whilst in pancreatic cancer cell lines, treatment resulted in 

inhibition of cellular proliferation, migration and invasion [405]. In regards to RCC, there 

is one case report demonstrating that Dasatinib treatment reduced the viability of the 

patients cancer cells [434]. 

Saracatinib is a dual Src/Abl kinase inhibitor [482]. Treatment on melanoma cancer lines 

has demonstrated an inhibitory effect [483] whilst a phase II clinical trial has demonstrated 

it to have minimal activity on patients [484]. Treatment with Saracatinib on gastric cancer 

cell lines has demonstrated a reduction in anti-tumour activity [485, 486] whilst a phase II 

trial showed it to have insufficient activity [487]. Phase II trials investigating treatment in 

breast and head/neck cancers demonstrated such little efficacy that it was felt that there 

was no justification for continuation [488, 489] whilst a phase I/II trial in pancreatic cancer 

showed no improved efficacy in comparison to current treatment available [490] and a 

phase II trial with prostate cancer demonstrated little clinical efficacy [491]. Saracatinib 

has showed efficacy when utilised on various other cancer cell lines such as biliary tract 

[492], ovarian [366], lung [493] and colorectal cancers [494] whilst evidence has 

demonstrated that it may be of therapeutic benefit in those with metastatic disease [495]. 

Regarding RCC, there is no evidence demonstrating its efficacy, yet a phase II trial 

(COASK) has been undertaken the results of which are not yet available. 

Bosutinib originally identified as a Src/Abl inhibitor is a multikinase inhibitor [496]. 

Bosutinib has been demonstrated to inhibit invasion, growth and metastases in breast 

cancer cells as well as inhibiting the downstream marker FAK [497, 498] whilst a phase II 

trial in those with locally advanced or metastatic breast cancer has demonstrated promising 
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efficacy [499]. Treatment in a mouse model of thyroid cancer demonstrated treatment 

resulted in reduced tumour growth, invasion and metastases [500] whilst treatment of 

prostate cancer cell lines has shown a reduction in cellular migration, proliferation and 

invasion [501] and reduced wound healing in colorectal cancer cell lines [502]. 

KX2-391 is a highly selective Src substrate binding site inhibitor [503]. Studies 

demonstrating its efficacy are limited with evidence demonstrating inhibition of breast 

cancer cell lines [503] as well as a reduction of breast metastases in xenograft models 

[504]. A phase II trial investigating its role in prostate cancer failed to show any anti-

tumour activity [505]. 

AP 23846 is a specific Src inhibitor which has been demonstrated to affect the properties 

of tumour progression in pancreatic and ovarian cancer cell lines [429, 506]. 

1.8 Hypothesis and aims 

The role of SKF's in the development and progression of cancer is well known and 

documented in literature. Despite the evidence of SFK's in malignancies, there is paucity in 

translational evidence in the role in RCC and phase II trials have commenced without 

identification of biomarkers to guide treatment or of the effect of the various SFK's in 

RCC. 

We hypothesise that SFKs are involved in promoting metastatic spread of RCC and that by 

furthering the understanding of their role in RCC we will demonstrate that they are a RCC 

therapeutic target. 

Project Aims 

1. To assess whether utilisation of known prognostic markers in solid malignancies 

can be applied in RCC. 
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2. To identify which Src family kinase is expressed in RCC and assesses their clinical 

significance. 

3.  To select and optimise antibodies for the detection of the Src family kinase that is 

expressed in RCC and the downstream marker FAK utilising full tissue sections and 

assessing if staining intensity and cellular localisation correlate to clinical parameters. 

4. To determine if SFK are associated with promoting proliferation, apoptosis or 

migration in RCC cell lines and assess the effect of inhibition with Dasatinib, a non-

selective SFK inhibitor on Src family kinase expression, expression of the downstream 

marker FAK and the effect on proliferation and apoptosis in RCC cell lines. 

5. To assess if silencing Src kinase in RCC cell lines alters the cells response to 

Dasatinib via expression of downstream marker FAK and the effect on proliferation and 

apoptosis on RCC cell lines. 

By addressing these aims it is hoped that this project will identify novel prognostic markers 

of use in RCC, validation of SFKs as therapeutic targets for RCC and also identify 

predictive markers for Src inhibitors, allowing these drugs to provide maximum patient 

benefit. 
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Chapter 2-Role of prognostic markers used in 

other solid tumours, can they be applied to renal 

cancer? 

Currently, the TNM stage and tumour grade are the most widely used tools to predict 

survival. Various grading classifications for RCC based on morphological features have 

been proposed [83, 136-141] and of these the Fuhrman grading system [138] has achieved 

widespread usage in pathology practise. The Fuhrman grading system has been 

demonstrated to be an independent predictor of survival [127] having been acknowledged 

as optimal for predicting outcome [144] and therefore has been incorporated into the 

majority of prognostic algorithms including SSIGN [145], UISS [146] and Leibovich 

[147]. 

The Fuhrman grading system is based on assessment of the uniformity of nuclear size, 

nuclear shape and nucleolar prominence [138]. The Fuhrman grading system has been 

demonstrated to correlate to metastasis with grade 1 tumours having a statistically 

significant lower metastases rate compared to those with grade 2 to 4 and survival rates 

being distinguished into 3 categories, those with grade 1, those with grade 4 and those with 

grades 2 and 3 [138]. Despite the popularity of this grading system, problems have been 

demonstrated regarding its application [137, 151, 507].  

There have been suggestions that the Fuhrman grading system has low-moderate inter-

observer agreement [148-151] and that a simplified system improves inter-observer 

agreement [148, 149] as well as demonstrating as much accuracy as the conventional 

grading system [152, 153]. Furthermore there are those suggesting that the ideal grading 

system is yet to be defined and should consist of three tiers [151] whilst a three tired 

system has been shown to be an independent predictor of survival [154, 155]. 
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There has been a long standing interest in identifying those patients most at risk of disease 

progression and ultimately dying from their disease. Ideally, a factor or combination of 

factors that could clearly stratify patients into those who do not progress and those that 

progress and are at a higher risk of dying from their cancer would be highly beneficial. 

Currently, the TNM stage which incorporates the size or invasion of the tumour as well as 

evidence of nodal involvement and distant spread of the cancer is amongst the widely used 

tool to predict survival in many cancers including renal cancer. This is utilised with 

surrogate markers and incorporated in prognostic algorithms for renal cancer including 

SSIGN [145], UISS [508] and Leibovich [147]. 

It is now established that disease progression in cancer patients is not solely determined by 

the tumour characteristics but also by the host response. There is increasing evidence that 

both local and systemic inflammatory responses play an important role in the progression 

of various solid tumours [174, 175]. When inflammation does not resolve, it promotes 

tumour cell growth, survival and angiogenesis as well as playing a critical role in the 

metastases of cancers [176]. When attempts are made to reduce this inflammation by the 

administration of non-steroidal anti-inflammatory drugs, it has led to the reduction in colon 

and lung cancers [174, 177-179]. 

Evidence suggests that intensity of local inflammatory infiltrate within the tumour bed 

predicts prognosis [180]: a pronounced lymphocytic infiltration in colorectal cancer is 

associated with improved survival [181-183]. Also quantifying the degree of infiltration by 

lymphocyte subsets such as CD8+ and CD4+ T cells provides prognostic information in 

various tumour types [184, 185] including renal cancer [186]. The process of assessing 

lymphocyte infiltration is time consuming and has not been adopted into routine clinical 

practice. It is therefore of interest that Klintrup and colleagues have reported a simplified 

method of assessing the inflammatory cell infiltrate at the tumour margin [187], showing 

on routine haematoxylin and eosin stained sections, that tumour inflammatory infiltrate, 

including all white cell types, can be graded high or low grade. It has been shown that a 
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high grade infiltrate is associated with improved survival in colorectal cancer [187, 188] 

and gastroesophageal cancer [189]. 

In addition, increasing evidence supports a role of a pre-treatment systemic inflammatory 

response, indicated by elevated levels of CRP being an independent predictor of survival in 

patients with a variety of common solid tumours including gastrointestinal, lung, prostate, 

bladder cancers [194, 196-199]. There is now increasing evidence of the prognostic role 

that preoperative CRP has in renal cancer [509-513]. It has been shown that when CRP is 

combined with tumour stage, ECOG status (Eastern Co-operative Oncology Group) or 

albumin concentrations, the combination of CRP with albumin is more prognostic than the 

combination of CRP with the other two clinical parameters in those with lung cancer [202]. 

This has led to the development to the development of the modified Glasgow Prognostic 

Score (mGPS), which incorporates preoperative CRP and albumin serum levels [200]. This 

score, briefly, comprises a score of 2 in those patients with both an elevated CRP (CRP 

>10mg/l) and hypoalbuminaemia (<35g/l), patients with only an elevated CRP (CRP 

>10mg/l) a score of 1 and in those with a normal CRP (<10mg/l) a score of 0. The mGPS 

score has provided additional prognostic information in patients with various solid 

malignancies including lung, gastroesophageal and colorectal cancers [201-203]. 

Tumour necrosis occurs when tumours outgrow their blood supply therefore reflecting 

aggressive tumour biology and rapid proliferation and progression [156]. Tumour necrosis 

has been investigated in malignancies such as breast, colorectal and renal cancer. It is often 

assessed reviewing haematoxylin and eosin stained sections at low magnification using a 

semi-quantitative method to classify necrosis as simply being absent or present. Some 

studies investigating necrosis in breast cancer have reported that necrosis is independently 

associated with tumour recurrence [157] and overall survival [158] whilst others have 

suggested that necrosis predicts survival but is not an independent factor [159, 160]. 

Despite using a quantitative method to classify necrosis in breast cancer with a 15 year 
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follow up, necrosis was not associated with overall survival [161]. Evidence investigating 

the role of tumour necrosis in colorectal surgery is more supportive. Necrosis has been 

shown to be an independent predictor of disease specific survival in colorectal cancer of 

various stages [162, 163] as well as lung cancer [514]. Studies investigating the role of 

necrosis in organ confined disease in colorectal cancer, a group that would have the 

greatest benefit of additional prognostic information being utilised, have shown conflicting 

results with one study showing no relationship between necrosis and survival [164] whilst 

in another it was shown to be an independent predictor of survival [165]. 

The role of tumour necrosis has been investigated in renal cancer with some conflicting 

results. The majority of studies have shown that necrosis adds prognostic information as it 

is associated with reduced disease specific survival, recurrence and progression to 

metastatic disease [145, 147, 166-168] whilst others have shown either no correlation or no 

independent relationship between necrosis and outcome [137, 169-172]. Despite 

conflicting results regarding the significance of necrosis in renal cancer, a semi-

quantitative method of assessment of this pathological parameter is incorporated into 

prognostic algorithms such as SSIGN [145] and Leibovich [147] scores. 

Necrosis is evaluated on a simple absence/presence basis and this therefore does not take 

into account the extent of necrosis. It has been suggested that an extent based classification 

is superior to a simple absence/presence response and was retained as an independent 

prognostic factor in renal cancer [173]. 

It is felt that the incorporation of molecular markers into prognostic algorithms will 

increase their predictive accuracy. A wide variety of molecular markers have been shown 

to influence prognosis in renal cancer including cell cycle regulators, mediators of cellular 

proliferation and apoptosis.  

Ki 67 has been investigated in renal cancer; some studies have shown this marker to be 

associated with increased nuclear grade and a predictor for disease specific survival [216, 
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218, 242, 243, 246-251] whilst in other studies it has not been shown to add prognostic 

information [252-255]. Apoptosis on the other hand is also a highly regulated cellular 

process but is involved in maintenance of tissue homeostasis and elimination of unwanted 

cells [256]. Acquired resistance to apoptosis is thought to be one of the salient features of 

cancer [257]. Apoptosis has been shown to be a prognostic marker for survival in renal 

cancer as it has been shown to correlate to tumour grade, stage and size [258-260] as well 

as being independently associated with survival [261]. While it has been suggested that 

apoptosis may be a prognostic marker in its own right, others have shown it to either have 

no correlation to established prognostic factors or it to be an independent predictor of 

survival [236, 262-265]. The TUNEL method is a well-established method of assessing 

apoptosis in renal cell cancer [259, 260, 263-265]. 

Despite varying degrees of evidence in the literature demonstrating that molecular markers 

can aid in prognosis and guide treatment strategies, efforts have been made to utilise 

molecular markers in prognostic algorithms [216, 218, 266] but these are not currently 

utilised in clinical practise. 

Given the evidence suggesting that a simplified system improves the prognostic ability of 

the Fuhrman grading, that the inflammatory response could provide prognostic 

information, quantifying the extent of tumour necrosis is superior to a simple 

presence/absence response and that molecular markers of proliferation/apoptosis can aid 

prognosis, we aim to assess these various aspects in renal cancer and to examine for any 

correlations to disease specific survival. 

2.1 Materials and Methods 

Patients with RCC were included for this study. These patients had undergone resection 

based on the surgical findings and the results of CT scans for staging purposes between 
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January 1997 and Dec 2007 in the North Glasgow NHS Trust. The Research Ethics 

Committee of West of Scotland has approved the study. 

Various cohorts were identified to investigate the various prognostic factors. Two hundred 

and thirty seven patients with clear cell renal cancer were identified retrospectively that 

underwent nephrectomy for which nuclear grading was to be investigated. Archival slides 

were not available for all these patients from which the inflammatory response and tumour 

necrosis could be investigated. Seventy nine patients were identified for whom archival 

slides were available for examination as well preoperative CRP and albumin levels 

allowing the inflammatory response to be investigated. Due to time constraints, tumour 

necrosis was only evaluated in forty seven patients. The study cohorts constituted a 

representative sample of all surgically treated patients within this period. 

Clinicopathological data including T stage, nuclear grade assessment [138] and survival for 

each patient was collected. Survival was determined from the time of diagnosis to the time 

of last follow up or death. The cause of death was determined by linkage through the 

Scottish Cancer Registry. In those who were deceased, if the primary cause of death was of 

renal cancer, these were classed as cancer specific and all other causes were non-cancer 

specific deaths. 

The original Fuhrman grading system was investigated as well as various simplified 

systems utilising the Fuhrman grade. Table 2.1 shows the various simplified models that 

were investigated. 
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Table 2.1: Demonstrating the various simplified grading systems investigated. 

 

Fuhrman Grading System 1 2 3 4 

     

Model 1 1 1 2 2 

Model 2 1 2 2 2 

Model 3 1 1 1 2 

Model 4 1 2 3 3 

Model 5 1 1 2 3 

 

Table 2.1 demonstrates how the different simplified grading systems were configured from the 

original Fuhrman grading system. 

For investigating the role of inflammation, diagnostic haematoxylin and eosin sections 

from pathology archives were reviewed. A minimum of three slides from the deepest area 

of tumour invasion were reviewed and were scored according to the Klintrup-Makinen 

criteria (K/M) [187]. This method is based on scoring inflammation at the deepest point of 

invasion identified from the three slides. A four point scale was used. A score of 0 was 

given for no increase of the inflammatory cells at the invasive margin; a score of 1 denoted 

a mild and patchy increase of inflammatory cells. Score 2 was assigned when 

inflammatory cells formed a band-like infiltrate at the invasive margin. A score of 3 was 

given when a prominent inflammatory reaction formed a cup-like zone at the margin. 

Scores of 0 and 1 were combined (low grade inflammation) and scores of 2 and 3 

combined (high grade inflammation). 

Preoperative systemic inflammatory response was assessed using the modified Glasgow 

Prognostic Score (mGPS) [200]. Patients with both elevated C-reactive protein (>10mg/l) 

and hypoalbuminaemia (<35g/l) scored 2.  Patients in whom both were normal scored 0.  

Patients with elevated C-reactive protein alone were scored as 1 while those with 

hypoalbuminaemia alone were scored as 0. 
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Investigating the role of tumour necrosis, routine haematoxylin and eosin stained sections 

were reviewed from pathology archives. Tumour necrosis was evaluated on histological 

sections and was graded accordingly. This was performed according to established 

histological criteria [156, 515]. Necrosis related to haemorrhage and foci of hyalinization 

was not considered. The extent of necrosis was graded with 0 when no necrosis was 

present; a score of 1 given when there was <25% necrosis, a score of 2 when necrosis was 

25-50% and 3 for necrosis >50%. 

Investigating the role of molecular markers, fifty seven patients with RCC were identified 

retrospectively that underwent nephrectomy and for whom pathological blocks were 

available for examination. 

Immunohistochemistry (IHC) was utilised to assess the proliferation and apoptosis indices 

of these renal cell carcinomas. All IHC was performed on 5μm archival formalin fixed 

paraffin embedded full RCC tissue sections. 

2.1.1 Proliferation Assessment 

2.1.1.1 Tissue Preparation 

Sections were dewaxed in xylene (2x4 minutes) and rehydrated through a series of alcohol 

(100 %(2x2minutes), 90 %(1x2minutes), 70 %(1x2minutes)) washes. 

2.1.1.2 Antigen Retrieval 

During the formalin fixation process, methylene bridges form which can cross link proteins 

and mask antigenic sites. By performing antigen retrieval, this allows the cross links to be 

broken exposing the antigen binding site. A heat mediated method was utilised for antigen 

retrieval. A TE buffer (1mM EDTA (Sigma), 5mM Tris (VWR) at pH 8 was utilised. This 

solution were pre-heated for 13.5 minutes to a temperature of 96
o
C prior to the tissue slides 

being placed for 5 minutes in the solution and pressure cooked followed by a cooling down 

period of 20 minutes. 
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2.1.1.3 Reducing Background Staining 

Background staining results due to the presence of endogenous peroxidase activity in 

tissue. This endogenous activity is blocked by incubating the slides in 3% hydrogen 

peroxide (H2O2) for duration of 10 minutes followed by washing the slides in water. 

Another cause of background staining is due to the formation of hydrophobic bonds 

between antibodies and the tissue resulting in non-specific staining between primary and 

secondary antibodies rather than the target protein. To reduce this non-specific staining, 

tissue slides were incubated in 5% horse serum with antibody dilutent for 20 minutes. 

2.1.1.4 Primary Antibody Incubation 

Prior to staining for Ki-67 (a mouse monoclonal antibody (Dako, Cambridgeshire, UK)) at 

a concentration of 1:150, it was imperative to establish optimum conditions for antigen 

staining. This was done by performing a series of investigations on RCC tissue by varying 

various factors such as antigen retrieval, antibody solutions, incubation times, and 

temperatures allowing the strongest specific antigen staining with the lowest background 

staining. It was crucial to have a both a positive and negative control in the chosen 

methodology. The positive control ensured that the methodology was not only working but 

there was limited variation between runs for the same antibody and the negative control 

ensured the specificity of the antibody. 

2.1.1.5 Secondary Antibody Incubation 

Following incubation with the primary antibody or the negative isotype matched control, 

the tissue slides were washed with TBS twice for 5 minutes. Following this, the DAKO 

Envision System was utilising allowing the detection of the protein of interest. The tissue 

slides were incubated with Envision at room temperature for 30 minutes following which 

they were again thoroughly washed with TBS twice for 5 minutes. 
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2.1.1.6 Detection and Visualisation 

The chromagen used for staining the tissue sections was DAB (3,3’-diaminobenzidine)  

which was a combination of 5ml distilled water (dH2O), 2 drops of DAB buffer solution, 4 

drops of DAB substrate solution, and 2 drops of Hydrogen Peroxidase solution (Vector 

Laboratories). Slides were incubated with DAB for ten minutes to allow staining to 

develop and then washed in running water for ten minutes. 

2.1.1.7 Counterstaining 

Tissue sections were counterstained with haematoxylin and Scots Tap Water 

Substitute (S.T.W.S). Slides were submerged in the haematoxylin for approximately 

thirty seconds resulting in a red colour on the tissue section. The slides were then 

submerged in acid alcohol to remove excess colouring. Following this, slides were then 

submerged in S.T.W.S for another thirty seconds producing a blue colour which was in 

contrast to the brown positive staining at the site of the protein. 

2.1.1.8 Dehydrating and mounting of slides 

The last steps result in dehydrating the tissue through a series of alcohol washes, (70% 

(1x1minutes), 90% (1x1minutes), 100 %(2x1minutes)) and xylene (2x1minutes). The 

slides were then mounted onto coverslips using DPX mountant. 

2.1.2 Apoptosis Assessment 

The TUNEL method was utilised for the assessment of apoptosis. This method utilises the 

ability to label free 3’OH termini that are localised in apoptotic bodies. 

2.1.2.1 Tissue Preparation 

Tissue was prepared as described earlier for the proliferation. 

2.1.2.2 Pre-treatment of tissue 

To allow improvement of exposure, slides were incubated with Proteinase K (20μg/mL 

TBS) for 15 minutes thus allowing exposure of DNA by digesting DNA-binding proteins 

after which they were washed in dH2O twice for 2 minutes. 
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2.1.2.3 Reducing Background Staining 

This was performed as described earlier with 3% H2O2 for 5 minutes followed by two 

washes in water for 5 minutes. 

2.1.2.4 Detection of 3’OH termini 

Working strength TdT enzyme is applied to each slide (70% reaction buffer: 30% TdT 

enzyme) and the slides incubated at 37
o
C for one hour followed by incubation with the 

stop/wash buffer for 10 minutes, the negative control is not incubated with the TdT 

enzyme, only with equilibration buffer. Following this, the slides are washed three times in 

TBS for one minute. 

2.1.2.5 Allowing visualisation of staining 

The fragments which have been labelled now require binding to an anti-digoxigenin 

antibody that allows a permanent stain from the chromogenic substrates. The slides are 

incubated for 25
o
C for 30 minutes and then washed four times in TBS for 2 minutes. 

2.1.2.6 Detection and Visualisation 

This was performed as described earlier. 

2.1.2.7 Counterstaining 

This was performed as described earlier. 

2.1.2.8 Dehydrating and mounting of slides 

This was performed as described earlier. 

2.2 Statistical Analysis 

Statistical analysis was undertaken using a statistical software package SPSS (Chicago, IL, 

USA). Correlations with clinical and pathological parameters were performed using a chi 

square test (x
2
). The proliferation index (PI) and apoptotic index (AI) was obtained as a 

ratio of Ki-67 and TUNEL positive cells respectively relative to the total number of 

counted cells and calculated from observations of at least 1000 cells in each section. This 
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was performed by two independent observers (TQ and PM). Agreement between observers 

was excellent and measured in interclass correlation coefficient (ICCC). For the purpose of 

analysis, median values were utilised as a cut-off mark, values below this value were given 

a low score and those equal and above the median a high score. Disease specific survival 

rates were generated using the Kaplan-Meir method. The log rank test was utilised to 

compare significant differences between subset groups using univariate analysis. 

Multivariate analysis was carried out based on the results of the univariate analysis. 

Multivariate Cox regression analysis was performed to identify those factors that were 

independently associated with disease specific death. A stepwise backward procedure was 

utilised to ascertain which of the variables had a significant independent relationship with 

survival. 

2.3 Results 

2.3.1 Nuclear Grading 

Two hundred and thirty seven patients were studied. The patient characteristics are shown 

in Table 2.2. The median follow up was 69 months (range 2.1-181). The median age was 

60 years (range 23-86). Thirty three patients died of their disease. Within this cohort, the 

most common tumour stage was T1 (47%). The most common Fuhrman grades were II 

(36%) and III (41%). 
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Table 2.2: Relationship between clinicopathological characteristics and cancer specific 

survival. 

 

Variable Numbers  

  p-value 

Age (<60/>60) 108/129 0.918 

T Stage (1/2/3/4) 112/35/85/5 <0.001 

Nuclear Grade (1/2/3/4) 25/86/97/29 0.005 

Recurrence (No/Yes) 178/59 <0.001 

 

Table 2.2 demonstrates that pathological characteristics were predictors of cancer specific survival. 

 

Univariate analysis of potential predictors of cancer specific survival showed that the 

majority of the grading models were statistically significant predictors of cancer specific 

survival (Table 2.3). On multivariate analysis of those that were significant on univariate 

analysis, only model 5 which is a modified three tired model combining grades 1 and 2 

whilst grades 3 and 4 are kept as separate was found to be an independent prognostic factor 

in its association with cancer specific survival (p=0.001, HR 2.17, 95% CI 1.37-3.43, 

Table 2.3, Figure 2.1). 
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Table 2.3: Relationship between the various simplified nuclear grading systems and cancer 

specific survival. 

 

Variable Numbers Univariate 
Analysis 

Multivariate 
Analysis 

 

  p-value p-value HR 

Nuclear Grade (1/2/3/4) 25/86/97/29 0.005   

Model 1 ((1+2)/(3+4)) 111/126 0.008   

Model 2 ((1/(2+3+4)) 25/212 0.237   

Model 3 ((1+2+3)/4) 208/29 0.002   

Model 4 (1/2/(3+4)) 25/86/126 0.029   

Model 5 ((1+2)/3/4) 111/97/29 0.002 0.001 2.17 (1.37-3.43) 

 

Table 2.2 demonstrates that the simplified grading system whereby grades 1 and 2 are combined 

and grades 3 and 4 are kept separate was the only independent predictor of cancer specific 

survival. 
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Figure 2.1: Kaplan Meier demonstrating Model 5 of the simplified system of classification for 

nuclear grading. 

 

 

Figure 2.1 demonstrates the most prognostic simplified classification based on the original 

Fuhrman grading system (p=0.002). 

On x
2
 analysis of the various simplified grading models, whilst majority of the grading 

models demonstrated a positive correlation with T Stage (Table 2.4), model 3, which is a 

two tired model combining grades 1, 2 and 3 whilst grade 4 is kept separate demonstrated 

the strongest correlation to T Stage (p<0.001, Table 2.4). When analysing the grading 

models, the majority of these demonstrated a positive correlation to recurrence, whilst 

models 3 and 5 demonstrated the strongest correlation to this clinicopathological factor 

(p<0.001, Table 2.4). 
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Table 2.4: Interrelationships between clinicopathological characteristics of patients and 

various simplified nuclear grading systems. 

 

Variable Numbers T Stage Recurrence 

Nuclear Grade (1/2/3/4) 25/86/97/29 0.001 0.001 

Model 1 ((1+2)/(3+4)) 111/126 0.029 0.01 

Model 2 ((1/(2+3+4)) 25/212 0.07 0.278 

Model 3 ((1+2+3)/4) 208/29 <0.001 <0.001 

Model 4 (1/2/(3+4)) 25/86/126 0.015 0.016 

Model 5 ((1+2)/3/4) 111/97/29 0.001 <0.001 

  

Table 2.4 demonstrates that the various grading systems have relationships to T stage and 

evidence of recurrence at follow up. 

2.3.2 Inflammation 

Seventy nine patients were studied. Median age at diagnosis was 60 years (range 39-82). 

Median follow up was 93 months (range 0.1-152). Nineteen patients died of their disease. 

Forty six patients had T1/2 disease and thirty three patients had T3/4 disease. Forty 

patients had evidence of recurrence on radiological imaging.  

x
2 

demonstrated that mGPS positively correlated with tumour stage, grade and necrosis 

(p=0.001, p=0.044 and p=0.042 respectively, Table 2.5). 
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Table 2.5: Interrelationships between clinicopathological characteristics of patients with 

renal cancer. 

 

Variable Numbers Sex Grade T 
Stage  

Tumour 
Necrosis 

Local 
inflammatory 
cell infiltrate 

mGPS 

Age (<65/>65) 40/39 0.316 0.954 0.423 0.291 0.831 0.054 

Sex (male/female) 47/32  0.15 0.164 0.233 0.241 0.713 

Grade (1/2/3/4) 9/37/21/12   0.005 0.315 0.59 0.044 

T Stage 
(T1/T2/T3/T4) 
 

32/14/29/4    0.166 0.595 0.001 

Tumour Necrosis  
(absence/presence) 
 

39/40     0.194 0.042 

Local inflammatory 
cell infiltrate 
(low/high) 
 

62/17      0.755 

mGPS (0/1/2) 57/19/3       

  

Table 2.5 demonstrates that mGPS had a positive correlation with T stage and nuclear grade, both 

of which are recognised prognostic factors in renal cancer. 

On univariate analysis, T Stage (p<0.001), Grade (p=0.044) and mGPS (p<0.001, Figure 

2.2) were significant predictors of disease specific survival whilst local inflammatory 

response and necrosis did not show significance (p=0.152 and p=0.122, Table 2.6). On 

multivariate analysis of the significant individual covariates, mGPS (HR 8.64, 95% CI 3.5-

21.29, p<0.001) was a significant independent predictor of disease specific survival (Table 

2.6). 
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Figure 2.2: Kaplan Meier survival graph for mGPS against disease specific survival. 

 

 

Figure 2.2 demonstrates that an elevated mGPS was significantly associated with disease specific 

survival (p<0.001). 
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Table 2.6: Relationships between clinicopathological characteristics and disease specific 

survival. 

 

Variable Numbers Univariate 
Analysis 

Multivariate 
Analysis 

 

  p value p value HR 

Age (<65/>65) 
 

40/39 0.838   

Sex (male/female) 
 

47/32 0.259   

Grade (1/2/3/4) 
 

9/37/21/12 0.044   

T Stage 
(T1/T2/T3/T4) 
 

32/14/29/4 <0.001   

Tumour Necrosis 
(absence/presence) 
 

39/40 0.122   

Local inflammatory 
cell infiltrate 
(low/high) 
 

62/17 0.152   

mGPS (0/1/2) 57/19/3 <0.001 <0.001 8.64 (3.5-21.29) 

 

Table 2.6 demonstrates the relationships between clinicopathological characteristics, tumour 

necrosis, local inflammatory response and disease specific survival. 

2.3.3 Tumour Necrosis 

Analysis was based on forty seven patients. Median age at diagnosis was 59 years (range, 

41-80 years). Median follow up was 98 months (range, 0.1-163.3. months). Twenty 

patients died of their disease. Thirty three patients had T1/2 disease and fourteen patients 

had T3/4 disease. Tumour volume was recorded for each case, median 10cm
3
 (range 0.5-30 

cm
3
). Twenty one patients subsequently had evidence of recurrence on radiological 

imaging. 

Necrosis was present in 27 cases (57%). On x
2
 analysis of absence/presence of necrosis, 

there was no correlation with T stage, nuclear grade, recurrence or tumour volume (Table 

2.7). On univariate analysis, absence/presence of necrosis was associated with disease 

specific survival but failed to reach significance with those with necrosis present having a 



72 

mean survival of 90 months in comparison to 130 months for those for whom there was no 

evidence of necrosis (p=0.052, Table 2.8). 

Table 2.7: Interrelationships between clinicopathological characteristics of patients with 

renal cancer and presence and absence of tumour necrosis. 

 

Variable Numbers T 
Stage 

Nuclear 
Grade 

Tumour Necrosis 
(negative/positive) 

Recurrence Tumour 
Volume 

Age (<60/>60) 
 

28/19 0.282 0.353 0.96 0.141 0.372 

T Stage (1/2/3/4) 
 

22/11/12/2  0.001 0.446 0.003 <0.001 

Nuclear Grade 
(1/2/3/4) 
 

8/20/13/6   0.299 0.003 0.074 

Tumour Necrosis 
(negative/positive) 
 

20/27    0.256 0.226 

Recurrence 
(No/Yes) 
 

26/21     0.011 

Tumour Volume 
(<10cm

3
/>10cm

3
) 

21/26      

 

Table 2.7 demonstrates that no relationship was shown between the absence or presence of 

necrosis to other recognised pathological prognostic factors. 
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Table 2.8: Relationships between clinicopathological characteristics, various classifications 

of necrosis and disease specific survival. 

 

Variable Numbers Univariate 
Analysis 

Multivariate Analysis 

  p value p value HR 

Age (<60/>60) 
 

28/19 0.712   

T Stage (1/2/3/4) 22/11/12/2 <0.001 0.006 2.41 (1.28-4.53) 

Nuclear Grade (1/2/3/4) 8/20/13/6 0.008 0.012 2.29 (1.20-4.36) 

Tumour Necrosis 
(negative/positive) 
 

20/27 0.052   

Tumour Necrosis (0/1/2/3) 
 

20/13/10/4 <0.001   

Tumour Necrosis 
(<25%/>25%) 

33/14 <0.001 <0.001 11.84 (3.81-36.75) 

 

Table 2.8 demonstrates that the absence or presence of necrosis was associated with reduced 

disease specific survival but failed to reach significance. Classification of necrosis utilising a 

quantified based system and utilising a two tired classification with 25% as a cut-off value, both 

were associated with reduced disease specific survival with a two tired system of classification of 

necrosis being an independent predictor of disease specific survival. 

When quantifying extent of involvement of necrosis, 43% of cases had no necrosis, 28% 

had <25% involvement of necrosis, 21% of cases had between 25-50% involvement and 

8% had >50% involvement of necrosis. On x
2
 analysis (Table 2.9) using a quantitative 

based classification of necrosis, there was no correlation with T stage or nuclear grade. 

There was a positive correlation with recurrence (p=0.009) and tumour volume (p=0.017). 

On univariate analysis, this quantitative based assessment was associated with disease 

specific survival (p<0.001, Table 2.8, Figure 2.3). 
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Table 2.9: Interrelationships between clinicopathological characteristics of patients with 

renal cancer and quantifying the extent of necrosis. 

 

Variable Numbers T 
Stage 

Nuclear 
Grade 

Tumour 
Necrosis 
(0/1/2/3) 

Recurrence Tumour 
Volume 

Age (<60/>60) 
 

28/19 0.282 0.353 0.514 0.141 0.372 

T Stage (1/2/3/4) 
 

22/11/12/2  0.001 0.371 0.003 <0.001 

Nuclear Grade 
(1/2/3/4) 
 

8/20/13/6   0.28 0.003 0.074 

Tumour Necrosis 
(0/1/2/3) 
 

20/13/10/4    0.009 0.017 

Recurrence 
(No/Yes) 
 

26/21     0.011 

Tumour Volume 
(<10cm

3
/>10cm

3
 

21/26      

 

Table 2.9 demonstrates that a quantitative based assessment of necrosis had a positive correlation 

with recurrence and tumour volume. 
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Figure 2.3: Kaplan Meier survival graph for a quantitative based assessment of necrosis 

against disease specific survival. 

 

 

Figure 2.3 demonstrates that an extent based classification of necrosis was significantly 

associated with disease specific survival (p<0.001). 

Further analysis was performed on the quantitative assessment of necrosis to assess if it 

could be further refined into a simpler two tired system. Analysis of this quantitative 

assessment into a two tired scoring system, <25% and >25% involvement of necrosis 

showed 14 cases (30%) had more than 25% involvement of necrosis. On x
2
 analysis there 

was no correlation with T stage or nuclear grade (Table 2.10). There was a positive 

correlation with recurrence (p=0.003) and tumour volume (p=0.007). On univariate 

analysis, using the simpler 2 tired assessment of <25% and >25% involvement, this was 

associated with disease specific survival (p<0.001, Table 2.8, Figure 2.4). This significance 
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was maintained on multivariate analysis (HR 11.84, 95% CI 3.81-36.75, p<0.001) (Table 

2.8). 

Table 2.10: Interrelationships between clinicopathological characteristics of patients with 

renal cancer and an extent based classification of necrosis with a 25% cut off. 

 

 

Variable Numbers T 
Stage 

Nuclear 
Grade 

Tumour 
Necrosis 
(<25%/>25%) 

Recurrence Tumour 
Volume 

Age (<60/>60) 
 

28/19 0.282 0.353 0.96 0.141 0.372 

T Stage (1/2/3/4) 
 

22/11/12/2  0.001 0.446 0.003 <0.001 

Nuclear Grade 
(1/2/3/4) 
 

8/20/13/6   0.299 0.003 0.074 

Tumour Necrosis 
(<25%/>25%) 
 

33/14    0.003 0.007 

Recurrence 
(No/Yes) 
 

26/21     0.011 

Tumour Volume 
(<10cm

3
/>10cm

3
 

21/26      

 

Table 2.10 demonstrates that when utilising a two tiered system for scoring necrosis with a 25% 

cut off, this had a positive correlation with recurrence and tumour volume. 
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Figure 2.4: Kaplan Meier survival graph using a 25% cut off for necrosis against disease 

specific survival. 

 

 

Figure 2.4 shows that using a 25% cut off for classification of necrosis into a two tired system was 

significantly associated with disease specific survival (p<0.001). 

2.3.4 Molecular Markers 

Analysis was based on fifty seven patients. Median age at diagnosis was 60 years (range 

41-80). Median follow up was 107 months (range 0.1-163). Twenty two patients died of 

their disease. Thirty eight patients had T1/2 disease and nineteen patients had T3/4 disease. 

Tumour volume was recorded for each case; median tumour volume was 9.8cm
3
 (range 1-

30 cm
3
). Twenty five patients subsequently had evidence of recurrence on radiological 

imaging. 
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When assessing proliferation of these tumours, 29 cases (51%) had a high proliferation 

index. On x
2
 analysis, the proliferation index demonstrated a positive correlation with T 

Stage and recurrence (p=0.068, p=0.007 respectively, Table 2.11) but failed to demonstrate 

significance when correlated to grade. On univariate analysis, the proliferation index was 

associated with disease specific survival (p=0.012, Table 2.12, Figure 2.5) but was not an 

independent predictor of survival on multivariate analysis. 

Table 2.11: Interrelationships between clinicopathological characteristics, the proliferation 

and apoptotic indices of patients with renal cancer. 

 

Variable Numbers T 
Stage 

Grade Tumour 
Necrosis 

PI AI Recurrence Tumour 
Volume 

Age (<60/>60) 29/28 0.335 0.316 0.227 0.513 0.675 0.021* 0.692 

T Stage 
(T1/T2/T3/T4) 

26/12/17/2  0.001 0.957 0.068 0.801 0.002 <0.001 

Grade (1/2/3/4) 10/26/15/6   0.443 0.193 0.726 0.01 0.091 

Tumour Necrosis 
(absence/presence) 

32/25    0.083 0.778 0.602 0.15 

PI (low/high) 28/29     0.675 0.007 0.692 

AI (low/high) 33/24      0.19 0.911 

Recurrence 
(No/Yes) 

32/25       0.064 

Tumour Volume 
(<10cm3/>10cm3) 

29/28        

 

Table 2.11 demonstrates that the proliferation index had a positive correlation with recurrence and 

a relationship was demonstrated with T Stage but this failed to reach significance. 
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Table 2.12: Relationships between clinicopathological characteristics and disease specific 

survival. 

 

Variable Numbers Univariate 
Analysis 
p value 

Multivariate 
Analysis 
p value 

HR 

Age (<60/>60) 29/28 0.201   

T stage (T1/T2/T3/T4) 26/12/17/2 0.001 0.005 2.097 (1.256-3.501) 

Grade (1/2/3/4) 10/26/15/6 0.012   

Tumour Necrosis 
(absence/presence) 

32/25 0.092   

PI (low/high) 28/29 0.012   

AI (low/high) 33/24 0.108   

 

Table 2.12 demonstrates that the proliferation index was associated with disease specific survival 

but was an independent factor. 

Figure 2.5: Kaplan Meier for the proliferation index against disease specific survival. 

 

 

Figure 2.5 demonstrates that the proliferation index was associated with disease specific survival 

(p=0.012). 
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When assessing apoptosis of these tumours, 24 cases (42%) had a high apoptotic index. On 

x
2
 analysis, the apoptotic index failed to demonstrate any correlations to other 

clinicopathological parameters (Table 2.11). On univariate analysis, the apoptotic index 

was associated with disease specific survival but failed to reach significance with those 

who had a high apoptotic index having a mean survival of 130 months in comparison to 

those with low apoptotic index who had a mean survival of 100 months (p=0.108, Table 

2.12). 

 

2.4 Discussion 

In these cohorts of those with RCC, a simplified 3-tiered model of nuclear grading where 

grades 1 and 2 are combined whilst grades 3 and 4 were kept separate (model 5) was an 

independent predictor of cancer specific survival on multivariate analysis. Furthermore, 

this modified model was also one of only two to correlate to disease recurrence. It has also 

been demonstrated that an elevated mGPS independently correlates to a poor disease 

specific survival in those undergoing potentially curative treatment for renal cancer. We 

have also demonstrated that an elevated mGPS is directly associated with tumour stage, 

grade and necrosis. We have demonstrated that the prognostic information provided by a 

quantitative based assessment of tumour necrosis classification is superior to a simple 

absence/presence response. Furthermore, when utilising this quantitative assessment in a 

two tired system, <25% and >25% involvement of tumour necrosis, this was retained as an 

independent prognostic factor. We have demonstrated that prognostic information is 

provided by assessing molecular markers such as the tumour proliferation and apoptotic 

indices. In this study, the proliferation index of tumour cells was associated with disease 

specific survival but was not retained as an independent predictor of survival. 
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Several studies have demonstrated that the Fuhrman grading system is capable of 

predicting cancer specific survival independent of pathological stage [85, 145]. Studies 

however have demonstrated that the conventional Fuhrman grading system is complex 

[142, 154] and that a simplified system improves inter-observer agreement [148, 149]. It 

has previously been demonstrated that combining grades 1 and 2 improves the prognostic 

ability of the Fuhrman grading system and a three tiered system combining grades 1 and 2 

whilst keeping grades 3 and 4 separate is an independent predictor of survival [154, 155], a 

finding similar to that reported in this study. There have been reports that this simplified 

three tiered model has a similar performance in multivariate models predicting outcome to 

the conventional 4 tiered Fuhrman system [152, 153]. In terms of cancer specific survival, 

the gap between grades 3 and 4 was more evident than the gap between grades 1 and 2. 

This result is similar to that demonstrated by several other studies [152-155] where a three 

tiered model was proposed [154, 155]. This further shows that grades 3 and 4 would be 

less suitable for combining than grades 1 and 2 and strengthens the argument for a three 

tiered model. 

As with most studies examining the modification of the Fuhrman grading system, this is 

also limited due its retrospective nature with no analysis of inter or intra observer 

variability when assigning the Fuhrman grade and no external review of nuclear grade. In 

our analysis, a simplified version of the Fuhrman grading system whereby grades 1 and 2 

are combined and grades 3 and 4 were kept separate was shown to be an independent 

predictor of cancer specific survival and demonstrated a positive correlation to disease 

recurrence suggesting that this modified model can be considered an option for the 

purposes of prognosis in those with clear cell renal cancer. 

Previous studies have demonstrated that the local inflammatory response plays a 

prognostic role in various malignancies [187, 198]. It has been reported that quantifying 

the degree of infiltration by lymphocyte subsets provides prognostic information in renal 
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cancer [186]. It was therefore of interest that a simplified assessment of the local 

inflammatory cell infiltrate [187] which is not as time consuming as quantifying 

lymphocyte subsets has been shown to prognostic in colorectal cancer [187, 198]. In this 

study the local inflammatory response was not a significant predictor of disease specific 

survival. One of the reasons could be the small cohort study. 

mGPS is a well-established marker of systemic inflammation. The variables used are 

common ones and offer the benefit of being objective and obtainable. We have 

demonstrated an independent association between preoperative systemic inflammation and 

disease specific survival. A limitation of this study is small cohort size, only 79 patients 

were available for analysis and from these 79 only 19 patients had died of their disease. 

Historically, tumour necrosis has been associated with more aggressive tumour activity. 

Studies have produced conflicting results regarding the prognostic significance of tumour 

necrosis in renal cancer, with some showing an association with poor survival [145, 147, 

166-168] whilst others have shown no relationship to outcome [137, 169, 170].
 
It has been 

shown that an extent based classification of necrosis is superior to a simple 

absence/presence response and is retained as an independent prognostic factor [173]. We 

have also demonstrated that a quantitative assessment of necrosis is superior to an 

absence/presence response but is not retained as an independent prognostic factor. Klatte at 

al suggested a cut off of 20% and a 3-tiered system and we used a similar figure of 25% 

but utilised a 2-tiered system. When using the cut off of 25% and only having two groups, 

less than 25% and more than 25% involvement of necrosis, we have shown that this was 

associated as an independent prognostic factor. We felt that using a cut off of 25% and 

maintaining to use a two-tiered system would allow simpler refinement of the necrosis 

parameter in prognostic algorithms where a two tired system is already utilised and to 

examine if this were to increase the predictive accuracy of the entire model but this is yet 

to be tested. 
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Various studies have reported that proliferation and apoptosis are associated with known 

prognostic factors and predictors of survival [216, 218, 242, 243, 246-251, 258-261] whilst 

others have reported no correlation or independence to survival [236, 252-255, 262-265]. 

Other molecular markers have also been reported to offer prognostic information in renal 

cell cancer but these often utilise tumour proliferation and/or apoptosis in the cohorts to 

assess if the molecular markers being investigated offer further prognostic value to 

proliferation and/or apoptosis which are established [216, 236, 243, 251]. Some have 

reported that tumour proliferation when combined with other pathological factors confers 

improved prognostic accuracy in comparison to traditional prognostic algorithms [216, 

218, 242, 247]. 

Tumour proliferation and apoptosis are well recognised prognostic factors for disease 

specific survival. We have demonstrated that although apoptosis was not a significant 

predictor of survival, both tumour proliferation and apoptosis are prognostic to disease 

specific survival which is in keeping with literature.  

Despite limitations to this work such as limited numbers for parts of the analysis and the 

retrospective nature of the work, we have demonstrated that the reclassification of the 

Fuhrman grading system, quantitative assessment of tumour necrosis, the role of 

inflammation and molecular markers are prognostic for clear cell cancer. Despite these 

findings, not all are routinely utilised in the assessment of patients and furthermore and 

more importantly they cannot be used as a guide to which patients may benefit from 

treatment with the various therapeutic agents available when and if recurrence occurs. 
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Chapter 3-mRNA expression of Src kinase family 

members in RCC 

3.1 Introduction 

There is much evidence showing that levels of SFK are elevated in various malignancies 

such as prostate, breast, colon, lung and haematological malignancies [327, 328, 348, 364, 

516-518]. Specifically, elevated levels of Src and Lyn have been observed in breast cancer 

and expression of Src was associated with decreased survival [516] whilst Lyn has been 

implicated in various other malignancies such as colon, prostate and breast cancer [329-

332]. Src expression does not always correlate with poor survival, it has been reported that 

Src expression and activity decreases with bladder tumour stage [357-359, 361, 362] and 

grade [360]. Expression of Lyn has also been associated with malignancies including 

breast, colon and prostate [329, 332]. There is little evidence of the expression of SFK's in 

RCC and furthermore if there is a correlation between expression and pathological 

parameters. The aim of this study was to determine, via real time PCR, if Src and other Src 

family kinase members were at all expressed in RCC tissue specimens and to investigate if 

these expression levels were associated with clinical parameters. 

3.2 Materials and Methods 

Nineteen clinical specimens were utilised for Real time quantitative PCR (RT-PCR) (Table 

3.1). This consisted of malignant tissue taken from RCC patients at the time of resection. 

Those specimens were utilised where all tissue was removed at time of surgery and 

radiological imaging prior to surgery showed no evidence of metastatic spread of disease. 

The Research Ethics Committee of West of Scotland has approved the study. 
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RT-PCR was utilised to determine mRNA expression of the SFK members. At the time of 

resection, representative parts of malignant tissue were identified, snap frozen and stored in 

liquid nitrogen. Total mRNA was extracted from 5-10mg of renal cell cancer tissue using 

the TRIZOL method according to manufacturer’s protocol (Invitrogen, Paisley UK). RNA 

quality and quantity was examined by UV spectrometry (GeneQuant analyser, GE 

Healthcare, Little Chalfont, UK). 

To ensure no DNA was contaminating the extracted RNA, DNA-free DNAse treatment 

and removal reagent kit was added (Applera, Warrington, UK). Prior to incubation for 30 

minutes at 37°C, to ensure that the same amount of template was being utilised, a starting 

concentration of 1000ng of RNA was applied for each sample. Random hexamer primers 

(50ng) were used for First Strand cDNA synthesis using SuperScript II RT according to 

manufacturer‘s instructions (Invitrogen). Before using cDNA for PCR amplification, 2 

units of RNase H were added to samples and incubated for 20 minutes at 37°C to destroy 

any RNA template so that it was only cDNA that is being amplified. 

RT-PCR was performed using an ABI Prism 7900 Sequence Detection System (Applied 

Biosystems, UK) and TaqMan® Gene Expression Assays. For the TaqMan® Gene 

Expression Assays, the manufacturer‘s protocol with recommended 40 rounds of 

amplification was applied. Thermal cycler condition were 50°C for 2 min, 95°C for 10 min 

followed by 40x 95°C for 15 sec and 60°C for 1 min. 

Quantitative values were obtained from the threshold cycle (Ct value) at which the increase 

TaqMan® probe fluorescent signal associated with an exponential increase of each 

individual PCR product reaching a fixed threshold value. Each individual primer had a 

fixed threshold Ct value (Table 3.2). These fixed threshold values were used for every 

cDNA sample. Negative controls for each primer were included in each run on a 96 well 

plate. 

To enable the comparison of different mRNA expression levels, their relation to the 

average expression level of two housekeeping genes (GAPDH, glyceraldehydes-3-
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phosphate dehydrogenase and HPRT, hypoxanthine-guanine phosphoribosyl-transferase) 

were evaluated. The housekeeping gene with the lowest standard deviation (GAPDH) was 

used for evaluation of the mRNA expression levels. Data was analysed using the Sequence 

Detection Software, this calculated the threshold cycle (Ct) value. The expression of the 

target assay was normalised by subtracting the Ct value of the housekeeping gene from the 

Ct value of the relevant target assay. The fold increase, relative to the control, was obtained 

by using the formula 2-ΔCt, and then expressed as a percentage (x100). All samples were 

measured in triplicates. 

3.3 Statistical Analysis 

Differences in expression levels were analysed using the Mann-Whitney U test or Kruskal-

Wallis test, including a Wilcoxon–type test for trends, when appropriate. 

3.4 Results 

The cohort for RT-PCR analysis consisted of nineteen renal cell cancers. Median age of 

diagnosis was 60 years (range 42-72). Table 3.1 demonstrates clinicopathological 

parameters of these patients. 
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Table 3.1: Clinicopathological characteristics of patients utilised for RTPCR. 

 

Variable Numbers 

Age (<60/>60) 10/9 

Sex (M/F) 9/10 

T Stage (T1/T2/T3/T4) 5/3/9/2 

Grade (1/2/3/4) 4/5/6/4 

Tumour Necrosis (absence/presence) 8/11 

Recurrence (No/Yes) 12/7 

Tumour Volume (<10cm3/>10cm3) 7/12 

 

Table 3.1 demonstrates the clinicopathological characteristics of patients. 

The most highly expressed SFK member in renal cell cancer tissue was Src followed by 

Lyn, Hck, Fgr and Fyn (Table 3.2, Figure 3.1). The least expressed SFK member was Blk. 

Table 3.2: Intron-skipping primers used for RTPCR, their fixed threshold Ct values and 

median expression levels in renal cell cancer tissue. 

 

Gene Gene Expression Assay 
ID 

Threshold 
(Ct)Value 

Expression 
Levels 

SRC Hs00178494_m1 0.23 404.9 

LCK Hs00178427_m1 0.17 13.5 

LYN Hs00176719_m1 0.25 233.3 

FYN Hs00176628_m1 0.2 53.2 

FGR Hs00178340_m1 0.2 58.1 

HCK Hs00176654_m1 0.26 75 

BLK Hs00176441_m1 0.19 2.5 

YES Hs00736972_m1 0.26 9.7 

GAPDH N/A 0.2 N/A 

 

Table 3.2 demonstrates the threshold values of the SFK's with Src the highest expressed. 
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Figure 3.1: Graph showing expression of mRNA levels of SFK members in renal cancer 

tissue. 

 

 

Figure 3.1 demonstrates that Src was the highest SFK member expressed in RCC. 

When analysing SFK members, expression of Yes and Blk were significantly different 

across different T stages (p=0.039, p=0.045, Figure 3.2). Interestingly, higher expression 

of all SFK members was observed in T2 stage disease when compared to T3 disease and 

this was observed as significant for Lck, Lyn, Fyn, Blk and Yes (p=0.032, p=0.032, 

p=0.032, p=0.032, p=0.032, Figure 3.2). 
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Figure 3.2: Graphs showing expression of mRNA levels of each SFK member according to T 

stage. 

 

 

Figure 3.2 demonstrates that expression of Blk and Yes were significantly different across all T 

stages whilst a significant difference was demonstrated between T2 and T3 disease for Lck, Lyn, 

Fyn, Blk and Yes. 

When analysing SFK member expression in correlation with tumour grade, no significant 

difference was observed (Figure 3.3). 
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Figure 3.3: Graphs showing expression of mRNA levels of each SFK member according to 

tumour grade. 

 

 

Figure 3.2 demonstrates that no correlation was observed between SFK member expression and 

nuclear grade in RCC. 

3.5 Discussion 

In this pilot study, SFK members are not only expressed in renal cell carcinoma but are 

expressed to varying degrees. Of the SFK members, Src is the most highly expressed 

followed by Lyn, Hck, Fgr and Fyn. Src has a five-fold higher expression than the least 

SFK member expressed. We have also reported that there is a significant fall in expression 

of Lck, Lyn, Fyn, Blk and Yes between T2 and T3 disease. 

Despite having a limited cohort group, we have shown that there is a significant difference 

in expression of several SFK members between T2 and T3 disease. In renal cancer, T2 
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disease is still organ confined with T3 disease invading perinephric fascia and is therefore 

no longer organ confined. Src kinase has a role in signal transduction of multiple 

oncogenic cellular processes including migration and invasion. We hypothesise that SFK 

members are being up-regulated at a time when the cancer is going beyond being organ 

confined and starting to metastasise after which up-regulation is no longer required as the 

cancer has invaded surrounding tissue. 

Expressions of SFK members have been demonstrated in a variety of tumours [348, 364, 

516-518]. Specifically, expression of Src and Lyn has been demonstrated to be elevated in 

breast and colon cancer [329, 332, 516]. When assessing activity of SFK members, it has 

been demonstrated that increased expression of Src is associated with poor survival in 

breast cancer [336, 516] whereas expression of Src is associated with improved clinical 

outcome in bladder cancer [358, 360, 361]. 

Limitations of this study include the method of RT-PCR and cohort size. Tissue that is 

utilised for RT-PCR should be instantly fresh frozen after retrieval to prevent mRNA 

degrading leading to a distortion in mRNA quality and results. We believe that this was 

kept to a minimum given that tissue was frozen at the earliest time possible and UV 

spectrometry demonstrated high quality RNA. Given that the cohort size was limited, 

significant correlations could not be observed between expression of a particular member 

and survival. Even if a SFK member is expressed, this does not necessarily constitute 

activity. Furthermore, mRNA expression does not necessarily correlate with protein 

synthesis and protein expression. Further work is required to assess not only if Src is 

expressed in RCC but also to assess if the downstream marker FAK is expressed and if 

expression/activity correlates to clinicopathological parameters Therefore to gain a better 

understanding of Src and SFK activation we established a cohort of patients samples to 

allow us to assess expression and establish correlations with clinical parameters. 
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Chapter 4-Expression and prognostic significance 

of SFK members in RCC 

4.1 Introduction 

Having established mRNA expression levels of SFK members in RCC and the differing 

expression levels, it was further important to investigate whether Src expression/activity, 

SFK activity or FAK expression/activity correlated to clinicopathological parameters in 

those with RCC. 

As mentioned earlier, Src kinase is composed of a C-terminal tail, kinase domain, two 

protein-protein interaction domains (SH2, SH3) and a unique amino-terminal domain that 

varies between Src family members. Classical activation of Src kinase occurs by an initial 

dephosphorylation of a conserved tyrosine residue in the C-terminal domain known as the 

negative regulatory region (Y
530

) and followed by a subsequent autophosphorylation of the 

Y
419

 site in the kinase domain [383, 384]. Both these events are required to occur before 

the kinase can be considered fully activated. Consequently antibodies to phosphorylated 

Src kinase at the Y
419

 site can be used as a marker for activated Src kinase and related 

family members [519]. In addition, when SFK’s are activated, several downstream markers 

such as FAK are phosphorylated and could therefore act as biomarkers for SFK activation 

[459]. Src phosphorylates FAK at several other sites as well as including Y
397

,Y
407

, Y
576

, 

Y
577

, Y
861

 and Y
925

 [452-456] but it has been reported that the Y
861

 is the major site on the 

FAK domain associated with activation [455, 457, 458]. 

Therefore within this chapter we aim to utilise paraffin embedded clinical samples to 

establish if Src expression, SFK activity and FAK are associated with pathological 

parameters and survival. 



93 

4.2 Materials and Methods 

IHC staining was utilised on full tissue sections in a cohort of 57 patients diagnosed with 

RCC. These patients had undergone complete resection of the tumour at time of 

nephrectomy and pre-operative CT scans showed no evidence of regional or metastatic 

spread. Patients were staged pathologically and graded according to the TNM classification 

and Fuhrman grading respectively. Cancer specific survival rate was the time from 

diagnosis until time of death or last follow up. The cause of death was determined by 

linkage through the Scottish Cancer Registry. In those who were deceased, if the primary 

cause of death was of renal cancer, these were classed as cancer specific and all other 

causes were non-cancer specific deaths. The Research Ethics Committee of West of 

Scotland has approved the study. 

4.2.1 Western Blotting 

Prior to IHC, it was necessary to confirm antibody specificity. This allows the detection 

and quantifies the amount of protein in cells. 

4.2.1.1 Culture of renal cell cancer cells 

Cells were routinely maintained in RPMI 1640 (Invitrogen, UK) containing phenol red and 

supplemented with 10% bovine serum albumin (BSA) (Invitrogen, UK), 2mM L-glutamine 

(Invitrogen, UK), and penicillin/streptomycin (50 units/ml, 50g/ml (Invitrogen, UK)) in 

5% CO2 at 37
o
C. 786-O (ATCC) and 769-P (ATCC) RCC cell lines were seeded in conical 

flasks and left to adhere until 80% confluent. 

4.2.1.2 Cell trypsinisation and lysis 

Once cells were 80% confluent, excess media was removed and the cells gently washed 

twice with hanks balanced salt solution (HBSS) to allow elimination of serum as it 

contains trypsin inhibitors. Cells were then incubated in 3 mls of trypsin for 5 minutes in 
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5% CO2  at 37
o
C, in order to detach the cells from the flask after which 3mls of RPMI was 

added to neutralise the trypsin. Following this, the cell suspension was transferred to a 

15ml centrifuge tube and centrifuged for 2 minutes at 1200rpm. The supernatant was 

poured off and the resulting cell pellet washed twice in ice-cold HBSS followed by further 

centrifugation for 2 minutes at 1200rpm. The cell pellet were re-suspended and lysed by 

adding 200μl of RIPA buffer (Tris 50mM; NaCl 150mM; SDS 0.1%; Na. Deoxycholate 

0.5%; NP40 1% v/v, protease inhibitor (Roche, UK)) in an eppendorf and the solution 

sheared with a needle. This was performed on ice. This re-suspension was then spun at 

14000rpm for 15 minutes at -4
o
C. The resulting supernatant was poured off and the pellet 

discarded. 

4.2.1.3 Quantification of protein 

It was necessary to determine the protein concentration of the cell lysates prior to 

performing Western blot analysis. This ensures that the same concentration of protein is 

utilised in these experiments allowing accuracy. 

The method used to determine protein concentration of cell lysates was the Bio-Rad 

protein assay, which is based on the Bradford dye-binding procedure (Bradford 1976) 

involving a colorimetric assay for measuring the total protein concentration. 

Samples were prepared in triplicates in disposable cuvettes. A standard solution of 200μl 

of Bio-Rad protein assay reagent (Bio-Rad) and 795μl of dH2O to which 5μl of protein 

sample was included to the mix. The solution was thoroughly mixed with a pipette to 

ensure even distribution of the protein for an accurate concentration reading. To allow 

analysis of the protein concentrations, protein standards were prepared using Bovine 

Serum Albumin (BSA). BSA was diluted with dH2O to 1 mg/ml. A reference sample 

consisting of only dH20 and serial dilutions for protein standards from 1-50 µg/ml were 

made. These were utilised to calibrate the spectrophotometer utilising the protein 595 

programme. 
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Optical density for the reference and the seven protein standard samples were measured at 

595 nm. Optical density at 595 nm (O.D. 595) was then read for all other protein samples 

and the concentration of protein present generated from the standards concentration. The 

spectrophotometer calculated at that time the amount of protein (µg/ml) present in the 

sample, plotting a graph of absorbance at 595 nm against the protein concentration of the 

standards that were being utilised. It is this standard curve that is used to determine the 

protein concentration of the measured sample from its O.D. 595 value. The initial protein 

concentration (µl/ml) is calculated from a diluted protein sample (1:200). To determine the 

final protein concentration in mg/ml following formula was used: 

Protein reading (µl/ml) x 0.2 = Final protein concentration (mg/ml) 

For western blot analysis, 20μg of protein was utilised with the volume calculated from the 

final concentration. 

4.2.1.4 Freezing/Storing cells 

By performing this, it allowed the storage of cells in a manner which would allow them to 

be utilised at a later date. Following trypsinisation, the cell suspension was transferred to a 

15ml centrifuge tube and this spun at 1200rpm for 5 minutes. The supernatant was 

discarded and the pellet re-suspended in 1ml of RPMI and 10% dimethyl sulphoxide 

(DMSO) which serves as a cryoprotectant. The cells were then transferred in an alcohol 

bath at -80
o
C for 24 hours prior to be stored in liquid nitrogen at -180

o
C. When cells were 

required, these aliquots were warmed for 1 minute at 37
o
C in a water bath before being 

transferred into 10mls of RPMI otherwise with the DMSO being toxic would result in cell 

death. 

4.2.1.5 Protein denaturation  

To allow the primary antibody access and bind to its epitope, it is necessary to denature the 

protein. Denaturing the protein allows it to unfold and enabling easier access for the 

antibody to the epitope and therefore run more affectively through the gel. Having 

previously measured the concentration of protein in each sample, 20μg of protein was 
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removed for each sample and transferred to a new eppendorf tube and stored on ice. The 

cell lysate of each sample was diluted (1:1 v/v) with Laemli buffer and β-mercaptoethanol 

and boiled for 4 minutes at 100
o
C. The Laemmli buffer aids in the unfolding process. The 

detergent within the buffer has a negative charge which binds with the protein causing 

unfolding of the protein. The β-mercaptoethanol prevents the reformation of disulphide 

bonds helping maintain the protein in a denatured state.  Boiling the samples aids in the 

unfolding process of the proteins. The molecular weight marker (Biotinylated Protein 

Ladder –Cell Signalling Technology) was also boiled. This is utilised to determine the size 

of the detected protein. Once the samples were boiled, they were kept on ice. 

4.2.1.6 Gel electrophoresis 

The principle behind this method is that the proteins move through the polyacrylamide gel 

due to the electrical charge that is utilised. The detergent in the Laemmli buffer results in 

the proteins being negatively charged and is thus attracted to the positive node. 

Electrophoresis separates the proteins by molecular weight. Smaller proteins travel at a 

faster rate through the acrylmide pores of the gel resulting in them being found further 

down the gel. The gel was placed into the electrode assembly and the mini buffer tank was 

filled with running buffer (200mM Tris, 2M Glycine, 1% SDS (For 1* dilute in dH2O)). 

25μg of denatured protein and 10μl of the molecular weight marker was carefully loaded 

into dedicated wells. Once all samples were loaded, the process of electrophoresis was 

undertaken at 120Volts (V) for 90 minutes. 

4.2.1.7 Protein transfer 

To enable detection by antibody exposure, the protein needs to be transferred from the 

polacrylamide gel to a PVDF (polyvinylidene difluoride) membrane. This transfer was 

utilised using the Mini-Trans Blot Cell tank (Bio-Rad Laboratories). 

Fibre pads and 3M Whatmann paper with the PVDF membrane was utilised. The PVDF 

membrane was pre-treated in 100% methanol for five minutes prior to all three constituents 

being treated in transfer buffer (248mM Tris, 1.3M Glycine, 20% Methanol (For 1* dilute 
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in dH2O)). Following this, the gel plates were removed and the stacking gel discarded and 

the remaining resolving gel treated in transfer buffer for five minutes. The 'transfer 

sandwich' was then constituted utilising the fibre pads, 3M Whatmann paper, PVDF 

membrane and the resolving gel (Figure 4.1). 

Figure 4.1: Representation of Western Blot sandwich. 

 

 

Figure 4.1 demonstrates a schematic representation of the various layers for the Western Blot. 

Whilst constructing these various layers it was important that no air bubbles were present 

between the layers as this would prevent efficient transfer. These were removed by gently 

rolling over each layer with a glass rod. The constructed sandwich was then placed in the 

electrode assembly and placed in the tank which was filled with the transfer buffer. To 

maintain buffer temperature ion distribution, the Bio-Ice cooling unit (Bio-Rad 

Laboratories) and a magnetic stirrer were utilised. The protein transfer process from gel 

(negative/cathode) to the membrane was completed after running for sixty minutes at 

100V. 
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4.2.1.8 Blocking of Membrane 

The primary antibody can bind non-specifically to the membrane resulting in non-specific 

staining as well increased background staining. This was prevented by incubating the 

membrane in 2% BSA which was prepared in TBS-Tween (TBST) for one hour at room 

temperature. This step and all future steps were performed on an orbital shaker at 70 rpm. 

4.2.1.9 Incubating of membrane with primary antibody 

Following membrane blocking, the membrane was incubated with the primary antibody 

(1:500). All antibodies were prepared in 10mls of 0.2% BSA to further reduce non-specific 

binding. Membranes were incubated with the primary antibody overnight at 4
o
C. 

4.2.1.10 Incubating of membrane with secondary antibody 

Following incubation with the primary antibody and prior to incubating with the secondary 

antibody, the membrane was washed in TBST three times for ten minutes duration 

allowing the removal any excess antibody. Detection of the primary antibody requires a 

secondary antibody which is bound to either biotin or an enzyme conjugate such as 

horseradish peroxidase (HRP) which is species specific to the primary antibody. The 

secondary HRP linked antibody utilised was anti-rabbit IgG (1:2000, Cell Signalling 

Technology). Anti-biotin HRP linked antibody was added to detect the biotinylated ladder 

(1:20,000, Cell Signalling Technology). As with the primary antibodies, these were 

prepared in 10mls of 0.2% BSA. The membrane was incubated for one hour at room 

temperature. 

4.2.1.11 Protein Visualisation 

A chemiluminescent method was utilised to detect the protein of interest. This involves the 

emission of light due to the dissipation of energy from a substance in an excited state. HRP 

catalyses oxidation of luminol, a chemiluminescent substrate in alkaline conditions. The 

resulting oxidation causes the luminol to be in an excited state which then decays to a 

ground state via emitting light. ECL Plus (Amersham) was utilised for this. The peroxidase 
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conjugated with the antibody oxidises the chemiluminescent component of the ECL Plus 

substrate (Lumigen PS-3 Acridan). This results in the production of thousands of 

acridinium ester intermediates per minute. These intermediates react with the peroxidase 

producing a sustained, high intensity chemiluminescent with a maximum emission at 

430nm. This light was detected on autoradiography film. Following incubation with the 

secondary antibody, membranes were washed again in TBST three times for ten minutes 

duration. During this process of the membranes being washed in TBST, the ECL Plus 

reagents (Solution A and B) were decanted and allowed to warm to room temperature. 

They were mixed in a ration 40:1 (A:B) and given that they are sensitive to light, this was 

performed in semi-darkness. 3mls of solution was utilised per membrane. Membranes were 

placed protein side up on a sheet of cellophane and incubated with the ECL Plus mixture 

for five minutes. Following this, the membrane was transferred into a film cassette. In 

complete darkness, autoradiography films (Kodak Medical X-ray films) were exposed for 

various times (1-15 minutes). The film was then developed using the Kodak X-OMAT x-

ray processor allowing both marker and protein bands to be visualised. 

4.2.1.12 Stripping of membrane 

This process allowed the membrane for further use. Antibodies were removed from the 

membrane by washing the membrane in TBST three times for ten minutes duration. 

Following this the membrane was incubated in 20mls of re-Blot stripping buffer 

(Chemicon) for 15 minutes at 37
o
C followed by a further wash in TBST three times for ten 

minutes. The membrane was then blocked as described earlier and the steps repeated with 

the primary and secondary antibodies. To confirm equal sample lading, the membranes 

after being stripped were further probed with anti-β Tubulin HRP linked antibody (1:1000, 

Abcam) and the membrane visualised as described earlier. 

4.2.2 Immunohistochemistry 

IHC is a method that allows the detection and visualisation of cellular proteins in situ 

utilising an antibody specific for that particular protein investigated. There are two 
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methods for IHC. Direct IHC allows the direct attachment of the primary antibody to the 

protein investigated but in general does not yield a high level of sensitivity. Indirect IHC 

allows a higher level of sensitivity. In this method a second or secondary antibody which is 

labelled with a marker binds to the primary antibody already bound to the protein allowing 

signal amplification and visualisation. The method utilised here involved rabbit and mouse 

monoclonal antibodies and the DAKO Envision System, staining and visualising antigenic 

sites with peroxidase and DAB (diaminobenzidine chromagen). The primary antibody 

recognises the expressed protein, Envision attaches itself as the secondary antibody which 

has built on dextran polymer technology consisting of peroxidase. This secondary antibody 

has been raised in goats and reacts equally well with both rabbit and mouse antibodies. 

Following incubation with the secondary antibody, the tissue is incubated with a substrate 

solution which consists of DAB and H2O2. The peroxidase molecules on the Envision 

interact with this substrate solution producing an insoluble crisp brown precipitate at the 

site of the protein which is then visualised utilising a light microscope. 

c-Src kinase and activated Src kinase expression (Src Y
419

) was investigated using 

antibodies for c-Src kinase (36D10, Cell Signalling Technology, Beverly MA, USA) and 

Src Y
416

 (Cell Signalling Technology). Dephosphorylated Src and FAK were investigated 

using antibodies for Src Y
527

 and FAK Y
861

 respectively (Invitrogen, Paisley, UK). In 

humans the phosphorylation sites that were investigated in the current study are amino 

acids Y
530

 and Y
419

. Antibodies used relate to the rabbit sequence and not the human 

sequence. 

4.2.2.1 Tissue Preparation 

This was performed as described earlier in Chapter 2. 

4.2.2.2 Antigen Retrieval 

This was performed as described earlier in Chapter 2. 

Two solutions were utilised, the first solution was 10mM Citrate buffer  (1:10 dilution of 

pre-made Epitope Retrieval Buffer at pH 6.0) and the second was TE buffer (1mM EDTA 
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(Sigma), 5mM Tris (VWR) at pH 9. Both solutions were pre-heated for 13.5 minutes to a 

temperature of 96
o
C prior to the tissue slides being placed in the solution under pressure 

for 5 minutes followed by a cooling down period of 20 minutes. 

4.2.2.3 Reducing Background Staining 

This was performed as described earlier in Chapter 2. 

4.2.2.4 Primary Antibody Incubation 

Prior to staining for the various proteins, it was imperative to establish optimum conditions 

for antigen staining. This was done by performing a series of investigations on RCC tissue 

by varying various factors such as antigen retrieval, antibody solutions, incubation times, 

and temperatures allowing the strongest specific antigen staining with the lowest 

background staining (Table 4.1). It was crucial to have a both a positive and negative 

control in the chosen methodology. The positive control ensured that the methodology was 

not only working but there was limited variation between runs for the same antibody and 

the negative control ensured the specificity of the antibody. 

4.2.2.5 Secondary Antibody Incubation 

This was performed as described earlier in Chapter 2. 

4.2.2.6 Detection and Visualisation 

This was performed as described earlier in Chapter 2. 

4.2.2.7 Counterstaining 

This was performed as described earlier in Chapter 2. 

4.2.2.8 Dehydrating and mounting of slides 

This was performed as described earlier in Chapter 2. 
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Table 4.1: Overview of IHC staining methods. 

 

Protein Antibody Antigen 
Retrieval 

H2O2 Horse Serum 
Conc. 

Antibody 
Conc. 

Incubation Time and 
Temp 

c-Src Rabbit 
Cell 
Signalling 

Citrate 
Buffer pH 6 

3% 5% 1:200 60 minutes, room 
temp 

Y527 Src Mouse 
Invitrogen 

Citrate 
Buffer pH 6 

3% 5% 1:3000 Overnight, 4oC 

Y416 Src Rabbit 
Cell 
Signalling 

EDTA Buffer 
pH 9 

3% 5% 1:25 Overnight, 4oC 

Y861 FAK Rabbit 
Invitrogen 

Citrate 
Buffer pH 6 

3% 5% 1:200 Overnight, 4oC 

 

Table 4.1 demonstrates an overview of the staining methodologies for the various proteins. 

4.2.3 Weighted Histoscore 

Protein expression for tumour cells was assessed over the full tissue specimen using the 

weighted histoscore method [520]. The weighted histoscore grades staining intensity as 

negative (0), weak (1), moderate (2), and strong (3), then multiplication of the percentage 

of tumour cells within each category. This is calculated using the following formula, 0 

* the % of negative tumour cells + 1 * the % of cells staining weakly positive + 2 * the % 

of cells staining moderately positive + 3 * the % of cells staining strongly positive. 

Two observers (TQ and PM) independently scored tissue sections. Results ranged from 0 

to 300. Results were considered discordant if there was a difference of more than 50 

between the two scores. In this case the tissue section was re-evaluated by both observers. 

Each cellular location was independently assessed for any evidence of expression (Figure 

4.2). Bland-Altman plots were constructed to ensure no bias between observers existed 

(Figures 4.3-4.6) and ICCC's calculated to demonstrate consistency (Table 4.2). 

Tumours were then divided into those with high histoscore (above median) or low 

histoscore expression (below or equal to the median) for the purposes of this analysis as 

has previously been reported [336, 360, 521]. ICCC was utilised to assess agreement 



103 

between observers and this was excellent (>0.8) for all proteins investigated as 

demonstrated in Table 4.2. Given the excellent ICCC for the protein Src when all tissues 

were independently scored at the various cellular locations, it was felt that for the 

remaining proteins that the second observer score performed by PM was only required for 

a third of the patients. 

Figure 4.2: Demonstrating the different cellular locations that were assessed. 

 

 

Figure 4.2 demonstrates positive staining of the various cellular locations that were assessed for 

any evidence of expression. 
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Table 4.2: ICCC scores for each protein expression analysis. 

 

ICCC Nuclear Cytoplasmic Membrane 

c-Src 0.94 0.95 0.95 

Y
527

 Src 0.96 0.94 0.93 

Y
416

 Src 0.94 0.91 0.95 

Y
861

 FAK 0.89 0.88 0.92 

 

Table 4.2 demonstrates excellent agreement between observers as demonstrated by ICCC scores 

>0.8. 

To further ensure the agreement between the two observers, Bland-Altman plot were 

constructed for the different proteins at the various cellular locations (Figures 4.3-4.6). 
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Figure 4.3: Bland-Altman plots for c-Src antibody at the various cellular locations. 

 

 

Figure 4.3 demonstrates excellent concordance between observers for c-Src scoring. 

Figure 4.4: Bland-Altman plots for Y
527

 Src antibody at the various cellular locations. 

 

 

Figure 4.4 demonstrates excellent concordance between observers for Y
527

 Src scoring. 
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Figure 4.5: Bland-Altman plots for Y
416

 Src antibody at the various cellular locations. 

 

 

Figure 4.5 demonstrates excellent concordance between observers for Y
416

 Src scoring. 

Figure 4.6: Bland-Altman plots for Y
861

 FAK antibody at the various cellular locations. 

 

 

Figure 4.6 demonstrates excellent concordance between observers for Y
861

 FAK scoring. 

4.3 Statistical Analysis 

This was undertaken using SPSS (Chicago, IL, USA). Cancer specific survival rates were 

generated using the Kaplan-Meir method. The log rank test was utilised to compare 
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significant differences between subset groups using univariate analysis. Multivariate 

analysis was carried out based on the results of the univariate analysis. Multivariate Cox 

regression analysis was performed to identify those factors that were independently 

associated with cancer specific death. A stepwise backward procedure was utilised to 

ascertain which of the variables had a significant independent relationship with survival. 

Chi squared (x
2
) analysis was utilised to assess relationships between pathological 

parameters and the biomarkers at the various locations. Pearson correlation was utilised to 

assess if relationships could be identified between the various proteins at the various 

cellular locations. p-values < 0.004 were deemed significant according to Bonferronis 

correction. 

4.4 Results 

As mentioned earlier, antibody validation was performed prior to performing 

immunohistochemistry. 
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Figure 4.7: Western Blot specificity for c-Src. 

 

 

Figure 4.7 demonstrates Western Blot for c-Src (60kDa) and β-Tubulin (50kDa) as a protein 

loading control which demonstrates the specificity for the c-Src antibody on renal cell cancer cell 

line lysates. 

Figure 4.8: Western Blot specificity for Y
527

. 

 

 

Figure 4.8 demonstrates Western Blot for Y
527

 (60kDa) and β-Tubulin (50kDa) as a protein loading 

control which demonstrates the specificity for the Y
527

 antibody on renal cell cancer cell line lysates. 
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Figure 4.9: Western Blot specificity for Y
416

. 

 

Figure 4.9 demonstrates Western Blot for Y
416

 (60kDa) and β-Tubulin (50kDa) as a protein loading 

control which demonstrates the specificity for the Y
416

 antibody on renal cell cancer cell line lysates. 

Figure 4.10: Western Blot specificity for Y
861

 FAK. 

 

 

Figure 4.10 demonstrates Western Blot for Y
861

 FAK (118kDa) and β-Tubulin (50kDa) as a protein 

loading control which demonstrates the specificity for the Y
861

 FAK antibody on renal cell cancer 

cell line lysates. 
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IHC analysis was based on 57 clear cell renal cancer patients with full clinical follow up. 

Table 4.3 demonstrates clinicopathological parameters of these patients. Median age at 

diagnosis was 60 years (range 41-80). Median follow up was 107 months (range 0.1-163). 

Twenty two patients died of their disease. Thirty eight patients had T1/2 disease and 

nineteen patients had T3/4 disease. Tumour volume was recorded for each case; median 

tumour volume was 9.8cm
3
 (range 1-30 cm

3
). Twenty five patients subsequently had 

evidence of recurrence on radiological imaging. 
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Table 4.3: Clinicopathological characteristics of patients utilised for IHC. 

   

Variable IHC 

Cohort 

Age (<60/>60) 29/28 

Sex (M/F) 32/25 

T Stage (T1/T2/T3/T4) 26/12/17/2 

Grade (1/2/3/4) 10/26/15/6 

Tumour Necrosis (absence/presence) 32/25 

Recurrence (No/Yes) 32/25 

Tumour Volume (<10cm3/>10cm3) 29/28 

 

Table 4.3 demonstrates the clinicopathological characteristics of the cohort. 

Initial analysis was performed on clinicopathological features which are known prognostic 

indicators for survival in renal cancer. T stage and nuclear grading were significantly 

associated with poor prognosis, thus demonstrating that this cohort was associated with 

classical clinical parameters and validating it for use in a biomarker study (Table 4.4). 
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Table 4.4: Interrelationships between clinicopathological characteristics of patients and 

protein expression/activation to cancer specific survival. 

 

Variable  Univariate 

Analysis 

 Multivariate 

Analysis 

 

 Numbers p value  p value HR 

Age (<60/>60) 29/28 0.201    

T Stage (T1/T2/T3/T4) 26/12/17/2 0.001  0.001 2.35 (1.41-3.91) 

Grade (1/2/3/4) 10/26/15/6 0.012    

Tumour Necrosis 

(absence/prescence) 

32/25 0.092    

c-Src nuc (negative/positive) 31/26 0.437    

c-Src cyto (negative/positive) 32/25 0.95    

c-Src mem (negative/positive) 29/28 0.097    

Y527 Src nuc (negative/positive) 34/23 0.72    

Y527 Src cyto (negative/positive) 31/26 0.968    

Y527 Src mem (negative/positive) 29/28 0.329    

Y416 Src nuc (negative/positive) 29/28 0.799    

Y416 Src cyto (negative/positive) 32/25 0.311    

Y416 Src mem (negative/positive) 29/28 0.79    

Y861 Fak nuc (negative/positive) 29/28 0.489    

Y861 Fak cyto (negative/positive) 36/21 0.001  0.006 3.35 (1.40-7.98) 

Y861 Fak mem (negative/positive) 30/27 0.678    

 

Table 4.4 demonstrates the association of known clinicopathological parameters and protein 

expression/activation to cancer specific survival. 

c-Src kinase 

As c-Src was the highest expressed of all the family members at the mRNA level, 

expression at the protein level was further investigated. Specificity of the antibody was 

tested and confirmed by Western Blot analysis on renal cell cancer cell lines 786-O and 

769-P as described earlier (Figure 4.7). 

Of the tumours investigated, 98% showed some degree of nuclear expression, 100% 

showed some degree of cytoplasmic expression and 97% showed some degree of 

membrane expression. The cellular distribution of c-Src is demonstrated as histograms 

(Figure 4.11). 
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Figure 4.11: Histograms for c-Src expression. 

 

 

Figure 4.11 demonstrates histograms for nuclear, cytoplasmic and membrane c-Src expression 

demonstrating the intensity of staining.  

For the purposes of analysis, the median cut off values of expression at the different 

cellular locations was utilised, those below and equal to the median score were given a low 

expression and those above the median were given a score of high as mentioned in the 

methodology. For nuclear expression this value was 25, cytoplasmic expression was 115 

and membrane 100. x
2
 analysis demonstrated that cytoplasmic c-Src kinase expression 

positively correlated with nuclear grade (p=0.023, Table 4.5) but no correlation was 

demonstrated with age, T stage, tumour necrosis, recurrence or tumour volume. Membrane 

c-Src kinase protein expression negatively correlated with recurrence (p=0.021, Table 4.5) 
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but no relationship was demonstrated with age, T stage, nuclear grade, tumour necrosis or 

tumour volume. These results suggest that membrane c-Src confers good prognosis, 

however on univariate analysis expression of c-Src at the different cellular locations did 

not show significance (Table 4.4). However a trend was observed between high membrane 

c-Src kinase expression and improved disease specific survival, those patients expressing 

high membrane c-Src kinase had a median survival of 130 months compared to 97 months 

for those with low expression, this did not however reach significance (p=0.097, Figure 

4.12). Pearson correlation demonstrated that cytoplasmic c-Src kinase expression 

demonstrated a positive correlation with nuclear c-Src kinase expression (p=0.0022, Table 

4.6).



115 

Table 4.5: Interrelationships between clinicopathological characteristics of patients and protein expression/activation using x
2
 (chi squared) analysis. 

 

Variable Numbers Age T 

Stage 

Grade Tumour 

Necrosis(absence/presence) 

Recurrence 

(No/Yes) 

Tumour Volume 

(<10cm3/>10cm3) 

c-Src nuc (negative/positive) 31/26 0.350 0.187 0.500 0.830 0.196 0.350 

c-Src cyto (negative/positive) 32/25 0.703 0.538 0.023 0.985 0.985 0.703 

c-Src mem (negative/positive) 29/28 0.148 0.205 0.916 0.363 0.021* 0.692 

Y527 Src nuc (negative/positive) 34/23 0.487 0.157 0.793 0.623 0.962 0.487 

Y527 Src cyto (negative/positive) 31/26 0.144 0.447 0.708 0.751 0.749 0.684 

Y527 Src mem (negative/positive) 29/28 0.026 0.335 0.916 0.882 0.358 0.513 

Y416 Src nuc (negative/positive) 29/28 0.692 0.889 0.916 0.227 0.701 0.513 

Y416 Src cyto (negative/positive) 32/25 0.227 0.056 0.443 0.985 0.289 0.083 

Y416 Src mem (negative/positive) 29/28 0.026 0.667 0.686 0.703 0.222 0.897 

Y861 Fak nuc (negative/positive) 29/28 0.897 0.478 0.482 0.703 0.701 0.692 

Y861 Fak cyto (negative/positive) 36/21 0.207 0.023 0.001 0.326 0.036 0.045 

Y861 Fak mem (negative/positive) 30/27 0.150 0.702 0.753 0.540 0.933 0.361 

 

Table 4.5 demonstrates the interrelationships between clinicopathological characteristics of patients and protein expression/activation (* denotes inverse relationship). 
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Figure 4.12: Kaplan Meier plotted for membrane c-Src expression. 

 

 

Figure 4.12 demonstrates that those with high expression of membrane c-Src were associated 

with increased disease specific survival but did not reach significance. 
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Table 4.6: Interrelationships between protein expression/activation at the various cellular locations using Pearson Correlation. 

Correlations 

  

c-Src 
nuc 

c-Src 
cyto 

c-Src 
mem 

Y527 Src 
nuc 

Y527 
Src cyto 

Y527 Src 
mem 

Y416 
Src nuc 

Y416 Src 
cyto 

Y416 Src 
mem 

Y861 
FAK nuc 

Y861 
FAK cyto 

Y861 FAK 
mem 

c-Src nuc PC  0.3973 ns ns ns ns ns ns ns ns ns ns 

 Sig. (2-tailed) 
 

0.0022 ns ns ns ns ns ns ns ns ns ns 

c-Src cyto PC   ns ns 0.3973 ns ns ns -0.4442 ns ns ns 

 Sig. (2-tailed)  
 

ns ns 0.0022 ns ns ns 0.0005 ns ns ns 

c-Src mem PC    ns ns ns ns ns ns ns ns ns 

 Sig. (2-tailed)   
 

ns ns ns ns ns ns ns ns ns 

Y527 Src nuc PC     ns ns ns ns ns ns ns ns 

 Sig. (2-tailed)    
 

ns ns ns ns ns ns ns ns 

Y527 Src cyto PC      ns ns ns ns ns ns ns 

 Sig. (2-tailed)     
 

ns ns ns ns ns ns ns 

Y527 Src mem PC       ns ns 0.5086 ns ns 0.4735 

 Sig. (2-tailed)      
 

ns ns 0.0001 ns ns 0.0002 

Y416 Src nuc PC        ns ns ns ns ns 

 Sig. (2-tailed)       
 

ns ns ns ns ns 

Y416 Src cyto PC         ns ns ns ns 

 Sig. (2-tailed)        
 

ns ns ns ns 

Y416 Src mem PC          ns ns 0.4735 

 Sig. (2-tailed)         
 

ns ns 0.0002 

Y861 Fak nuc PC           ns ns 

 Sig. (2-tailed)          
 

ns ns 

Y861 Fak cyto PC            ns 

 Sig. (2-tailed)           
 

ns 

Y861 Fak mem PC             

 Sig. (2-tailed)            
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Table 4.6 demonstrates the interrelationships between the various cellular locations of protein 

expression/activation. PC-Pearson Correlations, Sig-Significance (2-tailed), ns-non significant p-

values (figures in bold denote significant p values as denoted by Bonferronis correction (p<0.004)). 

Y
527

 Src Kinase 

Phosphorylated Src Y
527

 was investigated. Specificity of the antibody was tested and 

confirmed by Western Blot analysis on renal cell cancer cell lines 786-O and 769-P as 

described earlier (Figure 4.8). 

Of the tumours investigated 47% showed some degree of nuclear expression, 96% showed 

some degree of cytoplasmic expression and 93% showed some degree of membrane 

expression. The cellular distribution of Y
527

 Src is demonstrated as histograms (Figure 

4.13). 
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Figure 4.13: Histograms for Y
527

 Src expression. 

 

 

Figure 4.13 demonstrates histograms for nuclear, cytoplasmic and membrane Y
527

 Src expression 

demonstrating the intensity of staining.  

There was a difference in the expression of Y
527

 at the different cellular locations in 

comparison to c-Src expression with this difference possible as a result of tissue 

heterogeneity and therefore tissue expression variability as well as c-Src expression 

encompassing total expression of c-Src in its various phosphorylated forms. The median 

cut off values for the purposes of analysis were 0 for nuclear expression, 50 for 

cytoplasmic and for membrane 85. x
2
 analysis demonstrated that phosphorylated 

membrane Y
527

 expression positively correlated with age (p=0.026, Table 4.5) but no 

correlation was demonstrated with T stage, nuclear grade, tumour necrosis, recurrence or 
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tumour volume. On univariate analysis, expression of Y
527

 at any of the cellular locations 

investigated was not significantly associated with disease specific survival (Table 4.4). 

Pearson correlation demonstrated that phosphorylated cytoplasmic Y
527

 expression 

demonstrated a positive correlation with cytoplasmic c-Src kinase expression (p=0.0022, 

Table 4.6). 

Y
416

 Src Kinase 

The autophosphorylated status at Y
416

 was investigated. Specificity of the antibody was 

tested and confirmed by Western Blot analysis on renal cell cancer cell lines 786-O and 

769-P as described earlier (Figure 4.9). 

Of the tumours investigated 84% showed some degree of nuclear expression, 100% 

showed some degree of cytoplasmic expression and 81% showed some degree of 

membrane expression. The cellular distribution of Y
527

 Src is demonstrated as histograms 

(Figure 4.14). 
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Figure 4.14: Histograms for Y
416

 Src expression. 

 

 

Figure 4.14 demonstrates histograms for nuclear, cytoplasmic and membrane Y
416

 Src expression 

demonstrating the intensity of staining. 

The median cut off values for the purposes of analysis were 20 for nuclear expression, 100 

for cytoplasmic and for membrane 20.  x
2
 analysis demonstrated that membrane Y

416
 

expression positively correlated with age (p=0.026, Table 4.5) but no correlation was 

demonstrated with T stage, nuclear grade, tumour necrosis, recurrence or tumour volume. 

On univariate analysis, expression of Y
416

 at any of the cellular locations investigated was 

not associated with disease specific survival (Table 4.4). Pearson correlation demonstrated 

that membrane Y
416

 expression demonstrated a negative correlation with cytoplasmic c-Src 
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kinase expression (p=0.0005, Table 4.6) and a positive correlation was demonstrated with 

phosphorylated membrane Y
527

 expression (p=0.0001, Table 4.6). 

Y
861

 FAK 

The autophosphorylated status at Y
861

 FAK was investigated. Specificity of the antibody 

was tested and confirmed by Western Blot analysis on renal cell cancer cell lines 786-O 

and 769-P as described earlier (Figure 4.10). 

Of the tumours investigated 98% showed some degree of nuclear expression, 39% showed 

some degree of cytoplasmic expression and 100% showed some degree of membrane 

expression. The cellular distribution of Y
861

 FAK is demonstrated as histograms (Figure 

4.15). 
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Figure 4.15: Histograms for Y
861

 FAK expression. 

 

 

Figure 4.15 demonstrates histograms for nuclear, cytoplasmic and membrane Y
861

 FAK 

expression demonstrating the intensity of staining. 

The median cut off values for the purposes of analysis were 50 for nuclear expression, 0 

for cytoplasmic and for membrane 50. x
2
 analysis demonstrated that expression of 

cytoplasmic FAK Y
861

 demonstrated a positive relationship with T stage, nuclear grade, 

recurrence and tumour volume (p=0.023, p=0.001, p=0.036 and p=0.045 respectively, 

Table 4.5) but no relationship was demonstrated with age or tumour necrosis. On 

univariate analysis, high expression of cytoplasmic FAK Y
861

 was associated with 

decreased cancer specific survival, (p=0.001, Table 4.4, Figure 4.16).This association was 

also independent on multivariate analysis (HR 3.35, 95% CI 1.40-7.98, p=0.006, Table 
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4.4). Pearson correlation demonstrated that membrane FAK Y
861

 expression demonstrated 

a positive correlation with membrane Y
527

 and membrane Y
416

 expression (p=0.0002 and 

p=0.0002, Table 4.6). 

Figure 4.16: Kaplan Meier plotted for cytoplasmic Y
861

 FAK expression. 

 

 

Figure 4.16 demonstrates that those with high expression of cytoplasmic Y861 FAK were 

associated with decreased disease specific survival. 

4.5 Discussion 

SFK can be localised at different cellular locations with the inactive form localised at the 

perinuclear region of cells [399]. Much work has been conducted in breast cancer which 

has reported high cytoplasmic Src kinase levels being associated with shorter disease 

specific survival [339]
 
and high expression of activated Src kinase being associated with 
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increased risk of recurrence [336]. In addition, prostate cancer studies have demonstrated 

that Src kinase expression and activation is associated in quicker time to relapse and 

shorter disease specific survival [348]. Therefore current literature supports a role for Src 

as a negative prognostic marker in solid tumours. 

In contrast in the current study, x
2
 analysis, demonstrates that membrane Src kinase 

expression was negatively associated with recurrence and a trend towards improved 

survival was also observed. These results require confirming in a larger patient cohort; 

however the combination of reduced recurrence and improved survival being associated 

with Src kinase expression suggests that Src kinase might not be responsible for driving 

progression in renal cancer. Although Src expression itself might not be involved with 

renal cancer progression, activation of the Src or other Src family members might be 

involved. 

It has been suggested that a biomarker for prediction of Src kinase activity would be to 

measure phosphorylation of the protein at a site associated with activity [363, 522]. 

Currently there are two sites within Src known to be associated with activation. 

Phosphorylation of the Y
530

 on the c-terminal tail by Csk tyrosine kinase acts as a negative 

regulatory protein-binding site, keeping Src kinase in a closed confirmation [523]. Upon 

dephosphorylation this allows Src kinase to undergo a transformational change allowing 

the second site of activation, Y
419

, to be accessible which requires to be 

autophosphorylated for full activation of Src kinase. Y
419

 is referred to as the classical site 

and is the most commonly used in cell line studies investigating the functional relevance of 

Src kinase activation [475].
 
In this study, membrane Y

416
 expression demonstrated a 

negative correlation with cytoplasmic Src kinase and a positive correlation with membrane 

Y
527

, confirming validity of results regarding Src kinase needing to undergo 

dephosphorylation at the Y
530

 before autophosphorylation at the Y
419

 can proceed. 

Activated phosphorylated Src kinase at the classical site Y
416

 when assessed at individual 

locations was shown to have no correlation to disease specific survival. This antibody is 
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not specific for one particularly Src family member as this part of the sequence is highly 

conserved between Src family members making it impossible to produce an antibody 

specific for only one member. Therefore as the antibody cross reacts with all family 

members that are phosphorylated at this site, this could account for the lack of correlation 

with disease specific survival. 

Autophosphorylation of FAK at the Y
397

 site occurs as a result of many stimuli thereby 

creating a high affinity binding site for the Src homology 2 domain of several proteins 

including Src kinase [453, 454]. Src phosphorylates FAK at several sites but it has been 

reported that the Y
861

 is the major site on the FAK domain associated with activation [455], 

and therefore maybe used as a surrogate marker not only for SFK activation but also for 

SFK function [459]. 

Expression of cytoplasmic Y
861

 was associated with reduced disease specific survival and 

positively correlated with T stage, nuclear grade, recurrence and tumour volume 

suggesting that the phosphorylation of Y
861

 may be associated with more aggressive renal 

cancers. Expression of membrane Y
861

 positively correlated with membrane Y
416

 further 

suggesting that of the Src kinase family members, c-Src kinase may not be responsible for 

the phosphorylation at the Y
861

 site in clear cell renal cancer, therefore implicating a role 

for an alternative SFK member in renal cancer progression. 

We have demonstrated that activation of c-Src kinase itself is associated with improved 

survival but the presence of the downstream marker FAK Y
861

, a surrogate marker for SFK 

member activation, is associated with decreased cancer specific survival suggesting that 

another of the SFK members is responsible for poor survival in RCC. 

Given the introduction of SFK inhibitors in metastatic/recurrent RCC and the findings that 

c-Src is the most highly expressed SFK in RCC and furthermore expression may confer 

improved survival, it is important to assess the effects of these inhibitors in RCC to ensure 

that they are utilised in a safe clinical manner if at all. To assess this, further work is 

required investigating the functional effect of these inhibitors on renal cell carcinoma cells 
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and establish if they are eliciting their effects via a Src kinase specific mechanism or via 

others SFK's or signalling pathways. In the next chapter we will begin to try and unpick the 

mechanisms by which Src kinase inhibitors are currently being employed in renal cancer 

clinical trials to elicit their effects. 
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Chapter 5-Effects of SFK inhibitor Dasatinib on Src 

expression, SFK activity, FAK expression and 

cellular metabolic activity/apoptosis on RCC cell 

lines 

5.1 Introduction 

The previous chapters have demonstrated that SFK members are not only expressed in 

varying degrees but also that activation correlated to survival. It was demonstrated that 

expression of membrane c-Src was associated with improved survival and expression of 

cytoplasmic FAK Y
861

 was associated with poor survival. This would suggest that another 

SFK member besides c-Src is responsible for the phosphorylation of FAK at Y
861

 and 

therefore associated with poor survival. 

With the introduction of SFK inhibitors being clinically trialled in those with metastatic 

renal cancer, it is important to assess which SFK they should target as c-Src inhibitors 

could be potentially harmful to those with high expression as this may confer improved 

survival. One of the SFK inhibitors is Dasatinib, this drug has been developed and utilised 

in clinical trials by Bristol Myer Squib. Dasatinib is a tyrosine kinase inhibitor of Abl, Src 

and SFKs and is a small molecule ATP competitive multikinase inhibitor [378]. It causes 

cell cycle arrest, prevents cell proliferation as well as inducing apoptosis and inhibiting 

metastases. Dasatinib binds to the SH1 domain of Src and inhibits its activity. Dasatinib is 

not specific to a particular SFK member. Dasatinib has been previously been demonstrated 

to inhibit SFK activity of c-Src , Lyn and FAK in prostate cancer [348] as well as 

inhibiting growth in breast cancer cell lines [475] and inducing cell cycle arrest and 

apoptosis in hepatocellular carcinoma cell lines [480]. 
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To assess SFK inhibitors further, we aim to utilise RCC cancer cell lines (786-O, 769-P) to 

investigate the effects of Dasatinib on cellular metabolic activity and apoptosis as well as 

the impact on levels of c-Src, Y
416

 Src and FAK Y
861

 expression. 

5.2 Materials and Methods 

5.2.1 Culture of renal cancer cells 

As described earlier in Chapter 4. 

5.2.2 Counting of cells 

Once cells were 80% confluent, they were harvested by trypsinisation as described earlier 

in Chapter 4. These cells were then counted utilising a haemocytometer and seeded 

according to assay that was to be performed. For Western blots, cells were seeded in 6-well 

plates with 2 mls of RPMI (5x10
4
 cells/ml) and left to adhere overnight whilst for 

proliferation and apoptotic assays, 96-well plates were utilised where cells were seeded in 

100μl RPMI (5x10
3
 cells/well). Western blots were repeated in triplicates whilst 

proliferation and apoptosis were performed in triplicates and the experiment repeated four 

times. 

5.2.3 Drug treatment of cells 

Following overnight cell adherence, the media was replaced with increasing concentration 

of Dasatinib (Sigma Aldrich). Cells in which the medium alone was replaced and medium 

plus the drug vehicle (DMSO) in which the Dasatinib was reconstituted were utilised as 

controls. These cells were incubated for 48 hours. 

5.2.4 Assessment of cellular metabolic activity 

Cellular metabolic activity was assessed using the WST-1 assay (Water Soluble 

Tetrazolium Salts, Millipore, UK) following the manufacturer's protocol. Following 
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treatment with increasing concentrations of Dasatinib for 48 hours, 10μl of WST-1 was 

added to each well. This measures the metabolic activity of viable cells. Proliferating cells 

cleave the tetrazolium salt to formazan by cellular mitochondrial dehydrogenases. This 

increasing activity of mitochondrial dehydrogenases corresponds to an increase in 

formazan dye metabolism. This colouration is measured at an absorbance of 440nm using a 

standard multiwell spectrophotometer (UVSpectramax Molecular Devices). 

5.2.5 Assessment of cell apoptosis 

Following treatment with Dasatinib for 48 hours, apoptosis was assessed utilising the Cell 

Death ELISA
PLUS

 kit (Roche, UK) based on manufacturer's protocol. Cells were 

centrifuged for ten minutes at 1200rpm. The supernatant was transferred and lysed with 

lysis buffer for 30 minutes at 37
o
C. 200μl was then transferred to a strepadivin coated 

microplate. The immunoreagent was then added to the samples and incubated for two 

hours at 37
o
C on an orbital shaker at 200rpm. This immunoreagent consisted of 

biotinylated anti-histone and peroxidase-coupled anti-DNA antibodies. This allows the 

detection of mono and oligonucleosomes in the cytoplasmic fractions of cell lysates using 

biotinylated anti-histone and peroxidase-coupled anti-DNA antibodies.  The wells are 

strepadivin coated with anti-histone and bind to the biotin coated histone antibodies 

forming the anti-histone and peroxidase complex. This complex only forms if apoptosis 

has occurred. The solution was gently removed from each well and the wells washed three 

times with incubation buffer. 100μl of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic 

acid) (ABTS) was added to each well for fifteen minutes and absorbance measured at 

405nm and 490nm using a standard multiwell spectrophotometer (UVSpectramax 

Molecular Devices). The enrichment factor was calculated as the absorbance of the dead-

dying cells/absorbance of corresponding negative control. 
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5.2.6 Western Blot Analysis 

This was performed as described earlier in Chapter 4. 

5.3 Statistical Analysis 

Cellular metabolic activity and apoptosis were assessed using a 2 way ANOVA followed 

by Bonferronis post hoc test to assess for significant differences and to correct for multiple 

conditions. For the purposes of analysis Western blots, ImageJ software was utilised to 

assess the density of the bands following which a 2 way ANOVA was utilised to asses this 

difference. 

5.4 Results 

5.4.1 Cellular Metabolic Activity and Apoptosis 

As mentioned earlier, two RCC cell lines were utilised, 786-O and 769-P. Metabolic 

activity and apoptotic assays were performed in triplicates and repeated in four 

independent experiments. 
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Figure 5.1: Demonstrating the effect of increasing concentrations of Dasatinib on cellular 

metabolic activity on 769-P and 786-O cell lines. 

 

Figure 5.1 demonstrates that cellular metabolic activity is inhibited with increasing doses of 

Dasatinib in both RCC cell lines and the p-values for those concentration where a significant 

difference was demonstrated between the control and the concentration of Dasatinib. 
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Figure 5.2: Demonstrating the effect of increasing concentrations of Dasatinib on cellular 

apoptosis on 769-P and 786-O cell lines. 

 

Figure 5.2 demonstrates that cellular apoptosis increases with increasing doses of Dasatinib in 

both RCC cell lines and the p-values for those concentration where a significant difference was 

demonstrated between the control and the concentration of Dasatinib. 

It is demonstrated that not only does the SFK inhibitor, Dasatinib, have an effect on the 

metabolic activity and apoptosis on RCC cell lines but furthermore this is a dose dependant 

relationship. This would suggest that SFK inhibitors may have a role to play in those with 

RCC. Various doses of Dasatinib were demonstrated to have a significant impact on 

metabolic activity and apoptosis when comparisons were made to the control (C). Of the 

various doses, 100nM Dasatinib was demonstrated to have a significant impact on both cell 

lines for cellular metabolic activity and apoptosis. At concentrations above this the effect 

appeared to be toxic and was causing the cells to die. 
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5.4.2 Western Blot Analysis 

Figure 5.3: Western Blots for 769-P RCC cell line with increasing concentration of Dasatinib 

assessing c-Src, Src Y
416

 and FAK Y
861

. 

 

Figure 5.3 demonstrates that increasing the concentration of Dasatinib results in a decrease in 

expression of c-Src, Src Y
416

 and FAK Y
861

. 
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Figure 5.4: Western Blots for 786-O RCC cell line with increasing concentration of Dasatinib 

assessing c-Src, Src Y
416

 and FAK Y
861

. 

 

Figure 5.4 demonstrates that increasing the concentration of Dasatinib results in deceasing 

expression of c-Src, SrcY
416

 and FAK Y
861

. 

Western Blots demonstrated increasing the concentration of Dasatinib had an impact on 

expression of Src Y
416

 and FAK Y
861

 with this expression dose dependant. Western Blots 

were performed in triplicates and ImageJ software was utilised to quantify the difference in 

signal, all proteins investigated were normalised to B-tubulin control and compared to 

control to assess if expression was altered following treatment using a 2-way ANOVA test. 
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Figure 5.5: Demonstrating the effect of increasing concentration of Dasatinib on c-Src 

expression. 

 

Figure 5.5 demonstrates that at increasing concentrations of Dasatinib results in a significant 

impact on c-Src expression. 

Figure 5.6: Demonstrating the effect of increasing concentration of Dasatinib on Src Y
416

 

expression. 

 

Figure 5.6 demonstrates that at increasing concentrations of Dasatinib results in a significant 

impact on Src Y
416

 expression. 
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Figure 5.7: Demonstrating the effect of increasing concentration of Dasatinib on FAK Y
861

 

expression. 

 

Figure 5.7 demonstrates that at increasing concentrations of Dasatinib results in a significant 

impact on FAK Y
816

 expression. 

5.5 Discussion 

Dasatinib has been previously demonstrated to inhibit cell cycle growth in prostate, breast 

and hepatocellular cancer cell lines [348, 475, 480]. To determine the effect of these 

inhibitors, reliable biomarkers need to be distinguished allowing activity to be determined. 

Active Src results in the phosphorylation of downstream markers such as FAK and paxillin 

which play a key role in the regulation of proliferation and migration of normal and tumour 

cells [416-420].  As previously stated, the most reliable marker for SFK activation which is 

utilised in cell line studies is Y
419 

[475] which has been demonstrated to be a biomarker of 

activity for Dasatinib [469]. It has been demonstrated that prostate cancer cell lines 

demonstrated reduced expression of Y
419

 and FAK Y
861

 when exposed to Dasatinib [348]. 

When assessing both RCC cell lines, it was demonstrated that Dasatinib reduced the rate of 

cellular metabolic activity and increased the rate of apoptosis in a dose dependant manner. 
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This effect was significant at various concentrations but in general was effective at 50nM 

and 100nM and toxic at 200nM. It has been demonstrated that SFK activity is completely 

inhibited in prostate [348, 459] and colorectal cancer cell lines [469] at a similar 

concentration of Dasatinib with the suggestion that concentrations of 100nM and above 

inhibits multiple targets and therefore exerts a non-specific target response [378]. 

We have previously demonstrated that c-Src, Src Y
416

 and FAK Y
861

 are present in both 

cell lines when antibody specificity was checked prior to immunohistochemistry. Western 

Blot analysis by way of ImageJ analysis has demonstrated that c-Src expression does 

decrease significantly at various concentrations of Dasatinib but it is important to 

remember that expression does not constitute SFK activity. Expression of SFK activity 

(Src Y
416

) which is a reliable biomarker of activity, following treatment with Dasatinib was 

demonstrated to be inhibited. Furthermore, Dasatinib was demonstrated to inhibit 

phosphorylation of FAK Y
861 

which is a downstream marker of SFK activity. 

Dasatinib which is a non-specific SFK inhibitor has been demonstrated to inhibit 

expression of c-Src. We have previously demonstrated that membrane c-Src expression 

correlates to improved survival. Furthermore, Dasatinib inhibits phosphorylation of SFK 

activity and FAK Y
861

 with high expression of the latter having been demonstrated to be an 

independent predictor of poor survival. 

These findings further reinforce that SFK inhibition may play a role in the treatment of 

RCC and that another SFK member and not c-Src itself be responsible for phosphorylation 

of FAK Y
861

. To further investigate this, in the next chapter we aim to silence c-Src and to 

assess the effects of cellular metabolic activity and apoptosis following exposure to 

Dasatinib. We will also assess expression of previously examined markers of activity on 

cell lysates by way of immunohistochemistry and Western Blot analysis following c-Src 

silencing and to see if this affects SFK activity and expression of the downstream marker 

FAK Y
861

. 
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Chapter 6-Effects of SFK inhibitor Dasatinib on Src 

expression, SFK activity, FAK expression and 

cellular metabolic activity/apoptosis on c-Src 

silenced RCC cell lines 

6.1 Introduction 

The previous chapters have demonstrated of the SFK members, c-Src is the highest 

expressed in RCC and high expression is associated with improved survival. This is in 

contrast to FAK Y
861

 (downstream marker of SFK activity) which is associated with a poor 

prognosis. Furthermore, treatment with the SFK inhibitor, Dasatinib, inhibits cellular 

metabolic activity, promotes apoptosis and inhibits phosphorylation of SFK activity and 

FAK Y
861

. 

In the current chapter we aim to investigate the impact of Dasatinib on SFK signalling and 

downstream events in the absence of Src kinase by silencing Src. 

6.2 Materials and Methods 

6.2.1 Culture of renal cancer cells 

This was performed as described earlier in Chapter 4. 

6.2.2 Counting of cells 

This was performed as described in Chapter 5. 
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6.2.3 Silencing of cells 

Once cells were 50% confluent, transfection was performed using Lipofectamine 

(Invitrogen, UK) according to manufacturer’s protocols. Lipofectamine binds the DNA and 

passes the cell membrane by endocytosis. 10μl of Lipofectamine per well was added to 

240μl of Optimem (Invitrogen, UK) and 200nM siRNA (10ul of 20nmol ON TargetPlus 

smartpool Src or a Non-Targeting control; Thermo Fisher Scientific, UK) was added to 

another 240μl of Optimem and incubated at room temperature for 10 minutes. These two 

mixtures were then gently mixed together and left to incubate at room temperature for a 

further 20 minutes. During this incubation period, the RPMI media was removed from the 

cells and replaced with Optimem. For those cells in 6-well plates, 1.5 mls of Optimem was 

utilised and for 96-well plates, 60μl of Optimem was used then cells incubated at 37ºC 

with 5% CO2 in air for 20 minutes. Following incubation, the siRNA was added to the cells 

to give the total volume in 6-well plates of 2mls and 100μl for 96-well plates. Plates were 

then incubated at 37ºC with 5% CO2 in air for 8 hours then Optimem replaced with RPMI 

media.  Cells were then incubated for a further 16 hours prior to incubation with Dasatinib 

for 48 hours. As for earlier experiments, cells in which no drug was added and medium 

plus drug vehicle (DMSO) were utilised as controls. 

6.2.4 Assessment of cellular metabolic activity 

This was performed as described in Chapter 5. 

6.2.5 Assessment of cell apoptosis 

This was performed as described in Chapter 5. 

6.2.6 Western Blot Analysis 

This was performed as described earlier in Chapter 4. 
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6.2.7 Formation of cell line pellets 

For the purposes of construction of the cell pellets, a concentration of 50nM of Dasatinib 

was utilised. This concentration was used as it was observed in the previous chapter that at 

50nM, Dasatinib inhibited phosphorylation of Src Y
416

 and FAK Y
861

 and concentration of 

Dasatinib at 100nM and above hits multiple targets resulting in off target effect [378]. 

Following incubation with Dasatinib, the excess solution was removed and the cells gently 

washed twice with HBBS. Cells were then incubated in 3 mls of trypsin for 5 minutes in 

5% CO2 at 37
o
C, in order to detach the cells from the flask after which 3mls of RPMI was 

added to neutralise the trypsin. This suspension was then gently pipetted to ensure that all 

cells had been dislodged. Following this, the cell suspension was transferred to a 15 mls 

centrifuge tube and centrifuged for 2 minutes at 1200rpm. The supernatant was then 

discarded and the cell pellet re-suspended in 10 mls of RPMI. Each centrifuge was then 

placed on ice and transferred to the in house pathology department for formalin fixation, 

imbedding in individual paraffin wax blocks and cut into sections onto salinised glass 

ready for IHC. This experiment was repeated in triplicates. 

6.2.8 Clot formation of cell lines for immunohistochemistry 

The drug treated solution containing the neutralised trypsin was transferred into a 25 mls 

container to which 15 mls of normal saline was added allowing the cells to be washed. 

Following this, the suspension was placed into a centrifuge for 5 minutes at 1500 rpm. The 

supernatant was discarded leaving the cell pellet to which 2-3 drops of fridge stored human 

plasma was added and the solution gently mixed. 1-3 drops of thrombin working solution 

was then applied gently allowing a clot to form. Formalin was then added slowly to 

prevent clot fragmentation. Fixation of the clot in formalin then occurred overnight before 

being taken to the in house pathology department for imbedding into a paraffin wax block. 
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6.2.9 Immunohistochemistry on cell pellets 

This was performed as described in Chapters 2 and 4 for c-Src, Src Y
416

 and FAK Y
861

. 

6.3 Statistical Analysis 

Cellular metabolic activity and apoptosis were assessed using a 2 way ANOVA followed 

by Bonferronis post hoc test to assess for significant differences and to correct for multiple 

conditions. For the purposes of Western blot analysis, ImageJ software was utilised to 

assess the density of the bands following which a 2 way ANOVA was utilised to assess 

this difference. 

6.4 Results 

6.4.1 Silencing of cell lines 

Immunohistochemistry and Western blotting were employed to assess the level of c-Src 

silencing. Figure 6.1 demonstrated that in both 769-P and 786-O cell lines, a fall in c-Src 

expression was observed in the silenced cells compared to the control cells, however there 

was still low levels of expression remaining in both cell lines. 
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Figure 6-1: Immunohistochemistry of cell line pellets for c-Src following silencing. 

 

Figure 6.1 demonstrates that c-Src expression decreased in both cell lines following transfection. 

Similarly by Western blot analysis although levels of c-Src were significantly lower in the 

transfected cells (Figure 6.2), low levels of c-Src expression remained. These experiments 

were performed in triplicates. 
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Figure 6-2: Western blot analysis of cell lines for c-Src following silencing. 

 

Figure 6.2 demonstrates that c-Src was silenced in both cell lines following transfection as 

expression for c-Src decreased in both cell lines. 

Figures 6.1 and 6.2 demonstrate that c-Src expression was reduced as staining intensity and 

expression decreased in the cell pellets and Western blots respectively. As in Chapter 5, 

Western Blots were performed in triplicates and ImageJ software was utilised to quantify 

the difference in signal, all proteins investigated were normalised to B-tubulin control to 

assess if expression was altered following silencing using a 2-way ANOVA test (Figure 

6.3). In 769-P, 60-70% knockdown was achieved, however this was less in 786-O cells 

where only 30-40% knockdown was achieved. If time had permitted, this would have been 

further optimised to improve the level of knockdown. 
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Figure 6-3: Demonstrates the effect of silencing on c-Src expression. 

 

Figure 6.3 demonstrates expression of c-Src decreased following silencing and there was a 

significant decrease in expression of c-Src in both cell lines (p=0.001). 

Silencing was then performed to assess the effect of reduced c-Src expression +/- Dasatinib 

on proliferation and apoptosis in our RCC cell lines. 

6.4.2 Cellular Metabolic Activity and Apoptosis 

As described in Chapter 5, assessment of cellular metabolic activity and apoptosis was 

performed in triplicates and repeated in four independent experiments. 
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Figure 6-4: Demonstrating the effect of increasing concentrations of Dasatinib on cellular 

metabolic activity on 769-P and 786-O non-silenced and c-Src silenced cell lines. 

 

Figure 6.4 demonstrates that cellular metabolic activity is increased in the c-Src silenced cells with 

increasing doses of Dasatinib in both RCC cell lines. 

Figure 6.4 demonstrates that cellular metabolic activity is inhibited with increasing doses 

of Dasatinib in both RCC cell lines as demonstrated in Chapter 5. Furthermore, there is a 

significant difference in non-silenced and silenced metabolic activity rates. When c-Src 

expression was reduced in the 769-P cells, metabolic activity rates were consistently higher 

in c-Src silenced cells compared to the non-silenced cells, although Dasatinib still inhibited 

metabolic activity under both conditions. This would suggest that Dasatinib was not 

functioning via c-Src. In 786-O cells, no significant difference in metabolic activity rate 

was observed between the silenced and non-silenced cells in the absence of Dasatinib and 

Dasatinib was observed to inhibit metabolic activity in both silenced and non-silenced 

cells. However, following treatment with 50nM Dasatinib and above, the silenced cells, 

although responding to Dasatinib consistently had higher metabolic activity rates than 

those of the non-silenced cells. It was noted that in the untreated cells containing the 
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vehicle, metabolic activity rates were higher in both silenced and non-silenced cells whilst 

no change was observed in the control groups. 

Figure 6-5: Demonstrating the effect of increasing concentrations of Dasatinib on cellular 

apoptosis on 769-P and 786-O non-silenced and c-Src silenced cell lines. 

 

Figure 6.5 demonstrates that cellular apoptosis was induced with increasing doses of Dasatinib in 

both RCC cell lines and furthermore there is a significant difference in non-silenced and silenced 

apoptotic rates when c-Src is silenced in both cellular lines. 

Figure 6.5 demonstrates that apoptosis was induced in both cell lines with increasing doses 

of Dasatinib in both cell lines as described in Chapter 5. Furthermore, there is a significant 

difference in non-silenced and silenced apoptotic rates. When c-Src expression was 

reduced in both cell lines, apoptotic rates were consistently higher in c-Src silenced cells 

compared to the non-silenced cells, although Dasatinib still inhibited apoptosis under both 

conditions. This again suggests that Dasatinib was not functioning via c-Src. 
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6.4.3 Immunohistochemistry 

IHC allows us not to only to assess expression of protein but also cellular localisation, we 

therefore investigated expression and localisation of c-Src, Src Y
416

 and FAK Y
816

 

following silencing for c-Src. Antibody verification for c-Src, Src Y
416

 and FAK Y
816

 had 

already been performed as described in Chapter 4. 

6-6: Demonstrating the expression of c-Src following silencing for c-Src and treatment with 

Dasatinib. 

 

Figure 6.6 demonstrates that there was a decrease in expression of c-Src following silencing of c-

Src in both cell lines. 

In Figure 6.6, membrane expression of c-Src in the 769-P cell line fell from 100 weighted 

histoscore units to 20 in the silenced cells and cytoplasmic expression fell from 80 

weighted histoscore units to 30 in the silenced cells. In the 786-O cell line, membrane 
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expression fell from 150 weighted histoscore units to 40 in the silenced cells and 

cytoplasmic expression fell from 120 weighted histoscore to 10 weighted histoscore units 

in the silenced cells. 

Figure 6-7: Demonstrating the expression of Src Y
416

 following silencing for c-Src and 

treatment with Dasatinib. 

 

Figure 6.7 demonstrates that there was no obvious difference in expression of Src Y
416

 following 

silencing of c-Src in both cell lines suggesting that an alternative SFK is responsible for Src Y
416

. 

Figure 6.7 demonstrates that in both cell lines, membrane and cytoplasmic expression was 

not visually different between the silenced and non-silenced cells. 
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Figure 6-8: Demonstrating the expression of FAK Y
861

 following silencing for c-Src and 

treatment with Dasatinib. 

 

Figure 6.8 demonstrates that expression of FAK Y
861

 did not change following silencing of c-Src in 

both cell lines suggesting that phosphorylation at this site under these conditions is not driven by c-

Src but an alternative SFK. 

Figure 6.8 demonstrates that in both cell lines, membrane and cytoplasmic expression was 

not visually different between the silenced and non-silenced cells. 

Although c-Src expression decreased following silencing of c-Src as would be expected, 

there was no corresponding decrease in expression of Src Y
416

 and FAK Y
861

. 
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6.5 Discussion 

In this chapter we again demonstrated that Dasatinib reduced the rate of cellular metabolic 

activity and increased the rate of apoptosis in a dose dependent manner. Importantly, it was 

furthermore demonstrated that cellular metabolic activity rates were significantly higher in 

the c-Src silenced cells in both cell lines at various concentrations of Dasatinib. In addition, 

c-Src silenced cells also had significantly higher apoptotic rates. Increased metabolic 

activity rates following silencing for c-Src would further reinforce the findings from 

Chapter 4 that the presence of c-Src is associated with increased patient survival; however 

increased apoptotic rates following c-Src silencing demonstrates that the expression of c-

Src would not simply confer improved patient survival by decreasing cellular metabolic 

activity rates but this relationship is more complex. 

We have previously demonstrated in Chapter 5 that a quantitative assessment of c-Src does 

decrease following treatment with Dasatinib but this does not constitute activity. A reliable 

marker of SFK activity is Src Y
416

 as previously mentioned. Following silencing of c-Src, 

there was no change in the expressive assessment of SFK activity in both cell lines 

providing further support that it is not c-Src that constitutes SFK activity. Furthermore, 

following silencing of c-Src, expressive assessment of FAK Y
861

 did not decrease, again 

providing further support that another SFK member is responsible for the phosphorylation 

of FAK Y
861

. 

By performing IHC on cell pellets that have been silenced for c-Src, this allowed analysis 

of expression of SFK activity and the downstream marker FAK Y
861

. Expression of c-Src 

decreased following silencing, this provided evidence that c-Src had successfully been 

silenced. Expression of SFK activity did not demonstrate an obvious difference. 

Furthermore, it did appear that there was no impact on expression of FAK Y
861

 providing 

further support that c-Src is not responsible for the phosphorylation of FAK Y
861

. Although 

expression was assessed in the cell pellets by the semi quantitative weighted histoscore, 



152 

 152 

statistics were not applied due to the qualitative nature of the data. However, if time had 

permitted, the above experiments would have been assessed by western blot to allow a 

quantitative assessment of expression and therefore perform statistical analysis. 

This chapter demonstrates that a level of knockdown was achieved in both cell lines; 

however this did not impact on downstream expression of Src Y
416

 and FAK Y
861

. 
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Chapter 7-Conclusion 

Many prognostic markers are utilised in various malignancies, some of these have been 

demonstrated to have prognostic significance in RCC such as tumour size, nuclear grading 

and tumour necrosis but there is the suggestion that these can be further refined to 

improving the prognostic significance. Furthermore, there is evidence that the local and 

systemic inflammatory response plays a prognostic role in renal cancer and should be 

further investigated. 

We have demonstrated that known prognostic markers such as nuclear grading and tumour 

necrosis can be further simplified or refined and these do confer increased prognostic 

significance. It has also been demonstrated that the systemic inflammatory response is an 

independent prognostic marker associated with poor survival. There were some limitations 

in this work such as the retrospective nature of the work conducted and limited numbers 

and despite these findings, these prognostic markers cannot be utilised to assess which 

patients would benefit from the various therapeutic agents available when recurrence 

occurs. 

It has been more than a hundred years since Rous implicated the role of Src in developing 

sarcomas [312]. Src has a role in signal transduction of multiple oncogenic cellular 

processes including migration, adhesion, invasion, angiogenesis, proliferation and 

differentiation and has significant interactions with other cellular proteins such as growth 

factor receptors [317]. Due to the role of SFK’s in tumourgenesis, they have become 

important targets for therapeutic intervention. There is a large body of evidence regarding 

the role of these inhibitors targeting SFK’s in various malignancies but their role in RCC is 

limited. Despite this limited translational evidence, a phase II trial has finished recruiting 

patients utilising a c-Src inhibitor, Saracitinib, in metastatic RCC, the results of which at 

the time of writing are not available. 
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The aim of this project was to fill that gap in knowledge regarding the expression of 

SFK’s, correlation of expression to survival and the role of SFK inhibitor Dasatinib, on 

RCC. 

Assessing mRNA expression of SFK’s in RCC, we have demonstrated that all SFK’s are 

expressed in RCC and that they are expressed in various degrees. c-Src was the most 

highly expressed in RCC. As mRNA expression does not necessarily correlate with protein 

synthesis and protein expression, further work was required to assess whether c-Src was 

expressed in RCC, if it correlated to other pathological parameters as well as survival and 

the expression of the downstream marker FAK Y
861

. 

In our cohort of patients, it was demonstrated that membrane expression of c-Src was 

associated with improved disease specific survival as well as a significant association with 

patients being free of recurrent disease. This evidence alone would suggest that c-Src is 

associated with improved disease specific survival and utilising treatments such as 

Saractinib may have a negative impact on survival. In contrast, expression of cytoplasmic 

FAK Y
861

 had a positive relationship with known prognostic markers which confer poor 

prognosis such as T stage, nuclear grade, recurrence and tumour volume. Expression of 

cytoplasmic FAK Y
861

 was associated with poor prognosis and was an independent 

predictor of poor survival. Evidence demonstrating that c-Src confers improved survival 

and the  downstream marker of SFK activity, FAK Y
861

, confers poor survival would 

support the theory that another member of the SFK’s besides c-Src is responsible for the 

phosphorylation of FAK Y
861

 and therefore is responsible for poor survival. 

As described in Chapter 1, there is vast evidence supporting the inhibition of cancer cells 

with Dasatinib. With SFK inhibitors being utilised in RCC, it was imperative to assess the 

role of these drugs not only on cellular metabolic activity and apoptosis but also on c-Src 

which had been shown to be the highest expressed SFK in RCC as well as SFK activity 

and the downstream marker FAK Y
861

. 
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Treatment with Dasatinib, which is a non-specific SFK inhibitor, on RCC cell lines 

demonstrated a dose dependant reduction on cellular metabolic activity as well an increase 

in apoptotic rates. This would support that Dasatinib may be a useful therapeutic drug for 

RCC. Furthermore, Western Blot analysis demonstrated that assessment of c-Src, Src Y
416

 

and FAK Y
861

 following treatment with Dasatinib reduced in a dose dependant manner. As 

mentioned earlier, it is important to remember that expression of c-Src does not constitute 

activity. In combination with earlier results of IHC that in those patients with high 

cytoplasmic FAK Y
861

, exposure with Dasatinib may improve their clinical outcome. 

It was further necessary to assess the role of c-Src to support the theory that another SFK is 

responsible for poor prognosis in RCC. This was undertaken by silencing c-Src and 

assessing parameters which had previously been analysed and analysing the impact of 

Dasatinib. Cellular metabolic activity rates increased following silencing further 

supporting that c-Src confers improved survival, however apoptotic rates also increased 

showing that the role of c-Src is a complex one. Src Y
416

 is a marker of SFK activity and 

qualitative assessment of this following silencing c-Src did not demonstrate any change in 

expression and there was also no change in expression of FAK Y
861

. This would suggest 

that c-Src has some form of interaction with another SFK member. This SFK member may 

be responsible for the phosphorylation of FAK Y
861

 and following silencing of c-Src may 

be up regulated thereby c-Src being associated with a good prognosis. Western Blot 

analysis allows a quantitative assessment and by performing IHC this allows us to look at 

the cellular localisation of SFK’s in response to treatment and this demonstrated that 

expression of the downstream marker did not decrease, demonstrating further evidence that 

another SFK member is responsible for the phosphorylation of FAK Y
861

 and therefore 

associated with poor prognosis. 

This research has demonstrated that SFK’s are expressed in RCC, the downstream marker 

of phosphorylation FAK Y
861

 is associated with poor prognosis, another SFK member 

besides c-Src may be responsible for this poor prognosis and SFK inhibitors may have a 
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role to play in RCC. Further work is required to assess which SFK member is associated 

with poor prognosis in RCC and the relationship it has with the downstream marker FAK 

Y
861

. It would be imperative to assess the expression of this SFK member in metastatic 

RCC cell lines as well as the ones that have been utilised. This would allow assessment of 

therapeutic intervention in either anti-metastatic setting or in latter stages of disease 

progression. 
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Abstract 

Context 

Renal cancer is a frequently occurring malignancy with over 270,000 new cases diagnosed 

and it being responsible for 110,00 deaths annually on a global basis. Incidence rates have 

gradually increased whilst mortality rates are starting to plateau. 

Objective 

To review epidemiology and risk factors for renal cancer. 

Methods 

The current data is based on a thorough review of available original and review articles on 

epidemiology and risk factors for renal cancer with a systemic literature search utilising 

Medline. 

Results  

The prevalence of associated risk factors such as genetic susceptibility, smoking, 

hypertension and obesity are changing and could account for the changes in incidence 

whilst the role of diet and occupational exposure to carcinogens requires further 

investigation. 

Conclusion 

Despite the evidence of various associated risk factors, further work is required from well-

designed studies to gain a greater understanding of the aetiology of renal cancer.
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Incidence and survival rates in Renal Cancer 

Worldwide, renal cancer is the 13th most common malignancy with over 270,000 new 

cases diagnosed in 2008 [1]. In the UK alone, approximately 9000 new cases of renal 

cancer are diagnosed each year [2]. Incidence rates have increased in the UK with age 

standardised incidence rates more than doubling between 1975-1977 and 2007-2009 [2]. 

Age standardised ratios for both incidence and mortality is observed  to be 50% lower in 

women compared to men [2]. Renal cell carcinoma (RCC) accounts for nearly 90% of all 

renal malignancies. There has been much debate that the increased incidence rate is due to 

the vast improvement in imaging modalities such as magnetic resonance imaging (MRI) 

and computed tomography (CT) as well as the increased use of this imaging. It has been 

reported that there has been an increased rate of detection of incidental tumours which are 

asymptomatic and localised [3-6] but there has also been an increase detection of more 

advanced tumours and that the increase in incidence is real and cannot be solely accounted 

by incidentally detected tumours [3, 7]. 

 

Globally, renal cancer was responsible for over 110,000 deaths in 2008 [1]. Nearly 4000 

patients died from renal cancer in 2008 accounting for 2% of all cancer deaths in the UK 

[2]. 20-30% patients present with metastatic disease [8] with another 20% of patients 

undergoing nephrectomy developing metastases during subsequent follow up [9]. This can 

account for the increasing mortality rates. Various factors are involved in survival after 

diagnosis such as tumour involvement as well as overall health but there is only a 50% 

chance of survival at five years following diagnosis [2]. 

 

Risk Factors 

Approximately 75% of those diagnosed are over 60 years of age with the disease being 

rare in those under 50 [2] and reaching a plateau around 70-75 years of age [10]. Incidence  

rates have increased in all age groups but this increase is predominantly in those over 75 
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years of age [2]. In addition mortality rates have predominantly increased in those over 75 

[2], confirming that renal cancer is predominantly a disease of the elderly. 

 

Age standardised incidences suggest that men are at an increased risk of RCC [1] with it 

being the 6th most common cancer in men and the 9th most common in women in the UK 

[2]. The increase in overall incidence is replicated in the increase in incidences in both 

sexes with there being an obvious higher occurrence in males accounting for the overall 

increase suggesting that there is a higher predisposition of renal cancer in males than 

females. It has been reported that between 2007-2030 there will be a 27% and 18% 

increase in the incidence of renal cancer in males and females respectively [11]. In 2009 

the age standardised incidence risk per 100,000 was 15.5% in men compared to 8.2% in 

women in the UK [2]. 

Mortality rates are also higher in males than in females as maybe expected given the 

obvious difference in incidence rates in both sexes. In 2008 the age standardised mortality 

rate per 100,000 was 6% in men compared to 3.1% in women in the UK [2]. It has long 

been thought that incidence and mortality rates have been higher in males due to lifestyle 

factors such as cigarette smoking which has been historically higher in males and also 

exposure to industrial carcinogens due to differing occupational bias between the sexes. 

 

Smoking is a well-established risk factor for RCC with a meta-analysis reporting not only a 

difference in a smoker and a non-smoker but also a dose dependant risk with the number of 

cigarettes smoked [12]. Compared to those whom never smoked, there was a 50% increase 

in the risk for males and a 20% increase risk for females [12]. This risk can be reduced 

after smoking cessation for more than 10 years [10, 12, 13]. It is thought that cigarette 

smoking increases the risk of RCC through chronic tissue hypoxia due to carbon monoxide 

exposure [14] as well as evidence suggesting higher level of DNA damage in peripheral 

blood lymphocytes in those with RCC compared to controls [15]. 
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It has been suggested that the different incidence rates observed between males and 

females maybe due to exposure to potential occupational carcinogens. The most 

extensively studied is the solvent Trichloroethylene (TCE) which is widely used as a metal 

degreaser and has been considered a human carcinogen by the International Agency for 

Research on Cancer (IARC) as well as a common environmental contaminant [16]. A case 

controlled series in Europe reported an increased risk following exposure to TCE [17] with 

one review reporting increased risk of various malignancies including renal following 

exposure [18] and a meta-analysis suggesting a weak association with exposure to TCE 

[19] whilst others have reported that given the complexities of TCE pharmacokinetics and 

limitation of studies this prevents a definitive relationship [16, 18, 20]. Various other 

compounds have been investigated with one study reporting an association with lead which 

requires further investigation whilst associations have been reported for glass and wool 

fibres as well as brick dust [21, 22]. Exposure to industrial agents such as cadmium and 

uranium has shown no relationship to RCC risk [10, 23, 24] and neither have arsenic, 

nitrate and radon in drinking water [10]. Interestingly an association between agricultural 

workers and RCC was reported [25] and an inverse relationship between exposure of 

ultraviolet light in men and RCC risk was observed [22]. 

 

Excess body weight has been established as a risk factor for RCC with it accounting for 

30% of cases in Europe [26]. Various prospective studies conducted worldwide have 

reported that overweight and obese individuals were found to have an elevated subsequent 

risk of RCC [27-30] with a meta-analysis of this work also suggesting that an association 

between body mass index (BMI) and risk of RCC exists [31]. Some have suggested that 

body fat distribution is associated with an increased risk of RCC [28, 30] but evidence is 

limited suggesting that abdominal obesity is independent of BMI with the association with 

RCC. Two factors closely related to each other and obesity are diet and physical activity. 
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The majority of studies have demonstrated an inverse relationship between physical 

activity and RCC risk [32-40] with some authors reporting a dose response with further 

reduction of risk with increasing levels of activity [35, 37, 38]. Assessing dietary intake 

has reported mixed results with association with RCC. The role of vitamins that are 

abundant in fruit and vegetables has produced variable results with the risk of RCC with 

some reporting an association with RCC [41] whilst others have reported no correlation 

[42-44] whilst analysis of cohort studies has reported that diets rich in fruits and vegetables 

are inversely related to RCC [45]. High consumption of fat and protein has not been shown 

to be associated with an increased risk of RCC [46-48]. The consumption of alcohol has 

also been demonstrated to have a negative relationship with risk of RCC in a dose response 

manner [49] whilst in contrast no correlation was demonstrated with total fluid intake from 

any fluids or from individual types of fluids [50, 51] suggesting that it is not duration of 

contact with any potential carcinogens which prevents RCC risk with alcohol consumption. 

 

2-3% of all RCC are familial [53, 54] with a two-fold increase in a first degree relative 

[56]. Of the various subtypes of RCC, each has a corresponding hereditary component 

caused by a distinct genetic alteration [52]. The most common familial syndrome for RCC 

is von Hippel Lindau syndrome (VHL) which can also cause patients to develop 

phaeochromocytomas, retinal angiomas and haemangioblastomas of the central nervous 

system with only 40% suffering from RCC with VHL. The VHL gene is responsible for 

the degradation of hypoxia inducible factors without which leads to up-regulation of 

factors which promote angiogenesis and tumour growth such as vascular endothelial 

growth factor. In those with VHL syndrome, RCC is the most common cause of death. 

 

Various medical conditions have been demonstrated to have an association with an 

increased risk of RCC. Types of renal tumours have been shown to cause hypertension 

[64]. Interestingly however, several studies have reported an association with long term 
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hypertension and risk of RCC [32, 33, 40, 65] as well as some reporting a dose response 

relationship [32] with the risk of RCC increasing with further elevation of blood pressure 

and decreasing with a reduction in blood pressure [65]. There have been reports that usage 

of anti-hypertensive treatment is also associated with an elevated risk of RCC but it is 

thought that it is hypertension causing this increased risk and not the actual treatment [32, 

35, 36, 39, 66]. Obesity as a risk factor has already been mentioned but it has been reported 

that despite the relationship between obesity and hypertension, both are independent with 

their association with RCC and risk is higher in amongst those suffering from both 

conditions than those with only one [32, 36, 39, 65]. 

 

Diabetes mellitus is known to be associated with an increased risk of several cancers. Its 

relationship in RCC has not been demonstrated to be an independent factor but was closely 

associated with obesity and hypertension [35, 36, 40, 66-71]. 

 

It has been demonstrated that acquired renal cystic disease develops in those with end stage 

renal disease and in those on haemodialysis [72]. The incidence of RCC is higher in those 

with cystic disease [73, 74] but the evidence suggesting that these cysts undergo malignant 

change is not conclusive [74, 75]. Those who are undergoing haemodialysis are at a higher 

risk of RCC [75-77] as well as there being an increased risk of RCC after renal 

transplantation [77-79]. 

 

There has some been controversy surrounding an association between urinary tract 

infections and RCC, one study suggests that a history of a urinary tract infection increases 

the risk of RCC and this risk is further exacerbated with a history of smoking [80] whilst 

another report has demonstrated that no relationship between these parameters s present 

[81]. 
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Conclusion 

The incidence and mortality rates of renal cancer are starting to stabilise. Despite 

increasing usage of imaging, many tumours present at advanced stages. The rise in 

hypertension and obesity which are well established factors for RCC are likely to have 

contributed to the upward trend in recent years. The impact of smoking on RCC will 

decrease in Western countries but may grow in developing countries. Despite the evidence 

of various genetic, iatrogenic and lifestyle risk factors associated with RCC further work is 

required from well-designed epidemiological studies incorporating these various factors to 

gain further understanding of the aetiology of renal cancer. 
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Purpose 

The aim of this study was to determine whether reclassifying the Fuhrman grading system 

provides further prognostic information. 

Materials and Methods 

We studied the pathological features and cancer specific survival of 237 patients with clear 

cell cancer undergoing surgery between 1997-2007 in a single centre. The original 

Fuhrman grading system was investigated as well as various simplified models utilising the 

original Fuhrman grade. 

Results 

The median follow up was 69 months. On univariate analysis, the conventional Fuhrman 

grading system as well various simplified models were predicative of cancer specific 

survival. On multivariate analysis, only the three tiered modified model in which grades 1 

and 2 were combined whilst grades 3 and 4 were kept separate was an independent 

predictor of cancer specific survival (p=0.001, HR 2.17, 95% CI 1.37-3.43). Furthermore 

this simplified model demonstrated a stronger relationship to recurrence than the 

conventional  4 tiered Fuhrman grading system. 

Conclusion 

A modified, three-tiered Fuhrman grading system has been demonstrated to be an 

independent predictor of cancer specific survival. 
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Introduction 

 

In the UK alone, approximately 9000 new cases of renal cancer are diagnosed each year 

and nearly 4000 die of their disease [2]. Overall survival is poor, even for those patients 

who undergo resection; the estimated 5 year survival rate is only 50%. 

 

Currently, the TNM stage and tumour grade are the most widely used tools to predict 

survival. Various grading classifications for clear cell carcinoma based on morphological 

features have been proposed [83, 136-141] and of these the Fuhrman grading system [138] 

has achieved widespread usage in pathology practise. The Fuhrman grading system has 

been demonstrated to be an independent predictor of survival [127] having been 

acknowledged as optimal for predicting outcome [144] and therefore has been incorporated 

into the majority of prognostic algorithms including SSIGN [145], UISS [146] and 

Leibovich [147]. 

 

The Fuhrman grading system is based on assessment of the uniformity of nuclear size, 

nuclear shape and nucleolar prominence [138]. The Fuhrman grading system has been 

demonstrated to correlate to metastasis with grade 1 tumours having a statistically 

significant lower metastases rate compared to those with grade 2 to 4 and survival rates 

being distinguished into 3 categories, those with grade 1, those with grade 4 and those with 

grades 2 and 3 [138]. Despite the popularity of this grading system, problems have been 

demonstrated regarding its application [137, 151, 507].  

 

There has been suggestions that the Fuhrman grading system has low-moderate inter-

observer agreement [148-151] and that a simplified system improves inter-observer 

agreement [148, 149] as well as demonstrating as much accuracy as the conventional 

grading system [152, 153]. Furthermore there are those suggesting that the ideal grading 
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system is yet to be defined and should consist of three tiers [151] whilst a three tired 

system has been shown to be an independent predictor of survival [154, 155]. Given the 

evidence suggesting that a simplified system improves the prognostic ability of the 

Fuhrman grading, we aim to evaluate which if any simplified system would further aid in 

determining prognosis.    
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Materials and Methods 

Patients with clear cell renal cancer were included for this study. These patients had 

undergone resection based on the surgical findings and the results of CT scans for staging 

purposes between January 1997 and Dec 2007 in the North Glasgow NHS Trust. The 

Research Ethics Committee of West of Scotland has approved the study. 

Two hundred and thirty seven patients with clear cell renal cancer were identified 

retrospectively that underwent nephrectomy. The study cohort constituted a representative 

sample of all surgically treated patients within this period. 

 

Clinicopathological data including T stage, nuclear grade assessment [138] and survival for 

each patient was collected. Survival was determined from the time of surgical treatment to 

the time of last follow up. The cause of death was determined by linkage through the 

Scottish Cancer Registry. In those who were deceased, if the primary cause of death was of 

renal cancer, these were classed as cancer specific and all other causes were non-cancer 

specific deaths. Patients notes were accessed for documented evidence of recurrence 

otherwise they were deemed to have no recurrences 

 

The original Fuhrman grading system was investigated as well as various simplified 

systems utilising the Fuhrman grade. Table 1 shows the various simplified models that 

were investigated. 

 

Statistical analysis was undertaken using SPSS (Chicago, IL, USA). Cancer specific 

survival rates were generated using the Kaplan Meir method. The log rank test was utilised 

to compare significant differences between subset groups using univariate analysis. 

Multivariate analysis was carried out based on the results of the univariate analysis. 

Multivariate Cox regression analysis was performed to identify those factors that were 

independently associated with cancer specific death. A stepwise backward procedure was 
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utilised to ascertain which of the variables had a significant independent relationship with 

survival. 
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Results 

The patient characteristics are shown in Table 2. The median follow up was 69 (2.1-181) 

months. The median age was 60 (23-86) years. Thirty three patients died of their disease. 

Within the cohort, the most common tumour stage was pT1 (47%). The most common 

Fuhrman grades were II (36%) and III (41%). 

 

Univariate analysis of potential predictors of cancer specific survival showed that the 

majority of the grading models were statistically significant predictors of cancer specific 

survival (Table 3, Figure 1). On multivariate analysis of those that were significant on 

univariate, only model 5 which is a modified three tired model combining grades 1 and 2 

whilst grades 3 and 4 are kept as separate was found to be an independent prognostic factor 

in its association with cancer specific survival (p=0.001, HR 2.17, 95% CI 1.37-3.43, 

Table 3). 

On x
2
 analysis of the various simplified grading models, whilst majority of the grading 

models demonstrated a positive correlation with T Stage (Table 4), model 3, which is a two 

tired model combining grades 1, 2 and 3 whilst grade 4 is kept separate demonstrated the 

strongest correlation to T Stage (p<0.001, Table 4). When analysing the grading models, 

the majority of these demonstrated a positive correlation to recurrence, whilst models 3 and 

5 demonstrated the strongest correlation to this clinicopathological factor (p<0.001, Table 

4).      
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Discussion 

In this cohort of patients with clear cell carcinoma, a simplified 3-tiered model where 

grades 1 and 2 are combined whilst grades 3 and 4 were kept separate (model 5) was an 

independent predictor of cancer specific survival on multivariate analysis. Furthermore, 

this modified model was also one of only two to correlate to disease recurrence. 

Several studies have demonstrated that the Fuhrman grading system is capable of 

predicting cancer specific survival independent of pathological stage [85, 145]. Studies 

however  have demonstrated that the conventional Fuhrman grading system is complex 

[142, 154] and that a simplified system improves inter-observer agreement [148, 149]. It 

has previously been demonstrated that combining grades 1 and 2 improves the prognostic 

ability of the Fuhrman grading system and a three tiered system combining grades 1 and 2 

whilst keeping grades 3 and 4 separate is an independent predictor of survival [154, 155], a 

finding similar to that reported in this study. There have been reports that this simplified 

three tiered model has a similar performance in multivariate models predicting outcome to 

the conventional 4 tiered Fuhrman system [152, 153]. In terms of cancer specific survival, 

the gap between grades 3 and 4 was more evident than the gap between grades 1 and 2. 

This result is similar to that demonstrated by several other studies [152-155] where a three 

tiered model was proposed [154, 155]. This further shows that grades 3 and 4 would be 

less suitable for combining than grades 1 and 2 and strengthens the argument for a three 

tiered model. 

As with most studies examining the modification of the Fuhrman grading system, the 

present study is limited due its retrospective nature with no analysis of inter or intra 

observer variability when assigning the Fuhrman grade and no external review of nuclear 

grade. 

In the present study, a simplified version of the Fuhrman grading system whereby grades 1 

and 2 are combined and grades 3 and 4 were kept separate was shown to be an independent 

predictor of cancer specific survival and demonstrated a positive correlation to disease 
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recurrence suggesting that this modified model can be considered an option for the 

purposes of prognosis in those with clear cell renal cancer. Further work is required in 

terms of a prospective study for validation.  
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Table1: Demonstrating the various simplified grading systems investigated. 

 

Fuhrman Grading System 1 2 3 4 

     

Grading System 1 1 2 

Grading System 2 1 2 

Grading System 3 1 2 

Grading System 4 1 2 3 

Grading System 5 1 2 3 
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Table 2: Relationship between clinicopathological characteristics and cancer specific 

survival.  

 

Variable Numbers  

  p-value 

Age (<60/>60) 108/129 0.918 

T Stage (1/2/3/4) 112/35/85/5 <0.001 

Nuclear Grade (1/2/3/4) 25/86/97/29 0.005 

Recurrence (No/Yes) 178/59 <0.001 
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Table 3: Relationship between various simplified nuclear grading systems and cancer 

specific survival. 

 

Variable Numbers Univariate 

Analysis 

Multivariate 

Analysis 

 

  p-value p-value HR 

Nuclear Grade (1/2/3/4) 25/86/97/29 0.005   

Grading System 1 

((1+2)/(3+4)) 

111/126 0.008   

Grading System 2 

((1/(2+3+4)) 

25/212 0.237   

Grading System 3 

((1+2+3)/4) 

208/29 0.002   

Grading System 4 

(1/2/(3+4)) 

25/86/126 0.029   

Grading System 5 

((1+2)/3/4) 

111/97/29 0.002 0.001 2.17 (1.37-3.43) 
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Table 4: Interrelationship between clinicopathological characteristics of patients and 

various simplified nuclear grading systems. 

 

Variable Numbers T Stage Recurrence 

Nuclear Grade (1/2/3/4) 25/86/97/29 0.001 0.001 

Grading System 1 ((1+2)/(3+4)) 111/126 0.029 0.01 

Grading System 2 ((1/(2+3+4)) 25/212 0.07 0.278 

Grading System 3 ((1+2+3)/4) 208/29 <0.001 <0.001 

Grading System 4 (1/2/(3+4)) 25/86/126 0.015 0.016 

Grading System 5 ((1+2)/3/4) 111/97/29 0.001 <0.001 
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Figure legends 

Figure 1: Kaplan Meier graphs demonstrating the conventional 4 tiered Fuhrman grading 

system (p=0.005) and a simplified model where grades 1 and 2 are combined and grades 3 

and 4 are kept separate (p=0.002) against disease specific survival. 
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Introduction 

 

Currently when renal cancer pathology is assessed the presence or absence of necrosis is 

simply reported. It has been suggested that a presence or absence response ignores it 

heterogeneity and a classification based on extent of necrosis involvement would aid 

prognostic value in cancer specific survival. The aim of this study was to determine 

whether a quantitative assessment of tumour necrosis would provide additional prognostic 

information.  

Materials and Methods 

We studied the pathological features and cancer specific survival of 47 patients with renal 

cancer undergoing surgery with curative intent. A quantitative assessment of tumour 

necrosis was compared to the presence or absence of necrosis. 

Results 

Tumour necrosis was present in 27 of 47 cases A simple assessment of presence or absence 

was not associated with cancer specific survival (p=0.052). When assessed quantitatively, 

tumour necrosis was associated with decreased cancer specific survival (p<0.001). A two 

tired assessment, less than 25% and greater than 25% involvement of necrosis, was further 

utilised and shown to predict cancer specific survival (p<0.001). On multivariate analysis, 

using this two tired assessment of less than and greater than 25% involvement of necrosis 

was retained as a significant independent factor for cancer specific survival (HR 11.84, 

95% CI 3.81-36.75, p<0.001).  

Conclusion 

A simple assessment of presence/absence of tumour necrosis is reported to be a prognostic 

factor in renal cell cancer. In this study, the presence/absence was not shown to be a 

significant prognostic marker of cancer specific survival. However, a more accurate 

quantitative assessment of tumour necrosis, whereby a two tired response is still utilised 

but basing this on less than 25% and greater than 25% involvement of necrosis was 

statistically significant and independent in predicting cancer specific survival.
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Introduction 

 

In the UK alone, approximately 8000 new cases of renal cancer are diagnosed each year 

[2] and 3800 die of their disease. Of these cases, nearly 80% are clear cell in origin [2]. 

 
 

Various prognostic indicators consisting of anatomical, histological, clinical and 

immunohistochemical factors are available allowing risk stratification [121, 524].
 
One of 

these indicators is the presence or absence of tumour necrosis and this is incorporated into 

prognostic algorithms such as SSIGN [145] and Leibovich [147] scores. Tumour necrosis 

occurs when tumours outgrow their blood supply therefore reflecting aggressive tumour 

biology and rapid proliferation and progression [156]. Several studies have investigated 

tumour necrosis as a prognostic factor for patients with renal cell cancer and reported 

conflicting results [137, 156, 166, 525].
 
Necrosis is evaluated on a presence or absence 

basis and therefore does not take into account the extent of necrosis. It has been suggested 

that an extent based classification is superior and retained as an independent prognostic 

factor [173]. Given the controversy of the presence/ absence of tumour necrosis being of 

prognostic significance and that an extent based classification being superior, we evaluated 

the role of necrosis on an extent based classification. 
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Patients and Methods 

 

Patients with renal cell cancer were included for this study. These patients had undergone 

resection based on the surgical findings and the results of CT scans for staging purposes 

between January 1998 and Dec 2000 in the North Glasgow NHS Trust. The Research 

Ethics Committee of West of Scotland has approved the study. 

 

Forty seven patients with clear cell renal cancer were identified retrospectively that 

underwent nephrectomy. The study cohort constituted a representative sample of all 

surgically treated patients within this period. Clinicopathological data including T stage, 

nuclear grade assessment [138] disease recurrence and survival for each patient was 

collected. Survival was determined from the time of surgical treatment to the time of last 

follow up. 

 

The routine haematoxylin and eosin slides were reviewed from pathology archives. 

Tumour necrosis was evaluated on histological sections and was graded under the 

supervision of a pathologist (JJG). This was performed according to established 

histological criteria [156, 515]. Necrosis related to haemorrhage and foci of hyalinization 

was not considered. The extent of necrosis was graded with 0 when no necrosis was 

present; a score of 1 given when there was <25% necrosis, a score of 2 when necrosis was 

25-50% and 3 for necrosis >50%.  

 

Statistical analysis was undertaken using SPSS. Disease specific survival rates were 

generated using the Kaplan-Meir method. The log rank test was utilised to compare 

significant differences between subset groups using univariate analysis. Multivariate 

analysis was carried out based on the results of the univariate analysis. Multivariate Cox 

regression analysis was performed to identify those factors that were independently 



220 

 220 

associated with disease specific death. A stepwise backward procedure was utilised to 

ascertain which of the variables had a significant independent relationship with survival. 
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Results 

 

Analysis was based on 47 clear cell renal cancer patients with full clinical follow up. 

Median age at diagnosis was 59 years (range, 41-80 years). Median follow up was 98 

months (range, 0.1-163.3. months).  20 patients died of their disease. 33 patients had T1/2 

disease and 14 patients had T3/4 disease. 21 patients had evidence of recurrence at time of 

follow up. 

 

Necrosis was present in 27 cases (57%). On x
2
 analysis of absence/presence of necrosis, 

there was no correlation with T stage, nuclear grade, recurrence or tumour volume (Table 

1). On univariate analysis, absence/presence of necrosis was associated with poorer 

survival but failed to reach significance (p=0.052) (Table 2).  

 

When analysing extent of involvement of necrosis, 43% of cases had no necrosis, 28% had 

<25% involvement of necrosis, 21% of cases had between 25-50% involvement and 8% 

had >50% involvement of necrosis. On x
2
 analysis (Table 3) using an extent based 

classification, there was no correlation with T stage or nuclear grade. There was a positive 

correlation with recurrence (p=0.009) and tumour volume (p=0.017). On univariate 

analysis, a higher extent of involvement was associated with poor cancer specific survival 

(p<0.001) (Table 2) (Fig 1a).  

 

Further analysis was performed on the quantitative assessment of necrosis to assess if it 

could be further refined into a simpler two tired system. Analysis of this quantitative 

assessment into a two tired scoring system, <25% and >25% involvement of necrosis 

showed 14 cases (30%) had more than 25% involvement of necrosis. On x
2
 analysis there 

was no correlation with T stage or nuclear grade (Table 4). There was a positive correlation 

with recurrence (p=0.003) and tumour volume (p=0.007). On univariate analysis, using the 
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simpler 2 tired assessment of <25% and >25% involvement, this was associated with 

poorer cancer specific survival (p<0.001) (Fig 1b). This significance was maintained on 

multivariate analysis (HR 11.84, 95% CI 3.81-36.75, p<0.001) (Table 2). 

 

Conclusion 

 

We have shown that the prognostic information provided by an extent based classification 

is superior to a simple absence/presence response. Furthermore, when utilising this 

quantitative assessment in a two tired system, <25% and >25% involvement of tumour 

necrosis, this was retained as an independent prognostic factor. 

 

Historically, tumour necrosis has been associated with more aggressive tumour activity. 

Studies have produced conflicting results regarding the prognostic significance of tumour 

necrosis, with some showing an association with poor survival on univariate analysis but 

not being retained as an independent prognostic factor whilst others have shown no link 

with prognosis [137, 145, 156, 166, 525].
 
Klatte et al have shown that an extent based 

classification of necrosis is superior to a simple absence/presence response and is retained 

as an independent prognostic factor [173]. In this study we have also shown that a 

quantitative assessment of necrosis is superior to an absence/presence response but is not 

retained as an independent prognostic factor. Klatte at al suggested a cut off of 20% and a 

3-tiered system and we used a similar figure of 25% but utilised a 2-tiered system. When 

using the cut off of 25% and only having two groups, less than 25% and more than 25% 

involvement of necrosis, we have shown that this was associated as an independent 

prognostic factor. We felt that using a cut off of 25% and maintaining to use a two-tiered 

system would allow simpler refinement of the necrosis parameter in prognostic algorithms 

where a two tired system already is already utilised and to examine if this were to increase 

the predictive accuracy of the entire model but this is yet to be tested. 
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Despite the low number of patients in this study, we were able to show that an extent based 

classification of necrosis was prognostic of survival and furthermore with a cut off of 25% 

it was shown to be an independent prognostic factor for cancer specific survival. We feel 

that further work is required to confirm these findings and to see if this would increase the 

predictive accuracy of prognostic algorithms and therefore become routine when 

examining every pathological specimen of clear cell renal carcinoma.  
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Table 1: Interrelationships between clinicopathological characteristics of patients with 

renal cancer and presence and absence of tumour necrosis. 

 

Variable Numbers T 
Stage 

Nuclear 
Grade 

Tumour Necrosis 
(negative/positive) 

Recurrence Tumour 
Volume 

Age (<60/>60) 
 

28/19 0.282 0.353 0.96 0.141 0.372 

T Stage (1/2/3/4) 
 

22/11/12/2  0.001 0.446 0.003 <0.001 

Nuclear Grade 
(1/2/3/4) 
 

8/20/13/6   0.299 0.003 0.074 

Tumour Necrosis 
(negative/positive) 
 

20/27    0.256 0.226 

Recurrence 
(No/Yes) 
 

26/21     0.011 

Tumour Volume 
(<10cm

3
/>10cm

3
) 

21/26      
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Table 2: Relationships between clinicopathological characteristics, various classifications 

of necrosis and disease specific survival. 

 

Variable Numbers Univariate 
Analysis 

Multivariate Analysis 

  p value p value HR 

Age (<60/>60) 
 

28/19 0.712   

T Stage (1/2/3/4) 22/11/12/2 <0.001 0.006 2.41 (1.28-4.53) 

Nuclear Grade (1/2/3/4) 8/20/13/6 0.008 0.012 2.29 (1.20-4.36) 

Tumour Necrosis 
(negative/positive) 
 

20/27 0.052   

Tumour Necrosis (0/1/2/3) 
 

20/13/10/4 <0.001   

Tumour Necrosis 
(<25%/>25%) 

33/14 <0.001 <0.001 11.84 (3.81-36.75) 
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Table 3: Interrelationships between clinicopathological characteristics of patients with 

renal cancer and quantifying the extent of necrosis. 

 

Variable Numbers T 
Stage 

Nuclear 
Grade 

Tumour 
Necrosis 
(0/1/2/3) 

Recurrence Tumour 
Volume 

Age (<60/>60) 
 

28/19 0.282 0.353 0.514 0.141 0.372 

T Stage (1/2/3/4) 
 

22/11/12/2  0.001 0.371 0.003 <0.001 

Nuclear Grade 
(1/2/3/4) 
 

8/20/13/6   0.28 0.003 0.074 

Tumour Necrosis 
(0/1/2/3) 
 

20/13/10/4    0.009 0.017 

Recurrence 
(No/Yes) 
 

26/21     0.011 

Tumour Volume 
(<10cm

3
/>10cm

3
 

21/26      
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Table 4: Interrelationships between clinicopathological characteristics of patients with 

renal cancer and an extent based classification of necrosis with a 25% cut off. 

 

Variable Numbers T 
Stage 

Nuclear 
Grade 

Tumour 
Necrosis 
(<25%/>25%) 

Recurrence Tumour 
Volume 

Age (<60/>60) 
 

28/19 0.282 0.353 0.96 0.141 0.372 

T Stage (1/2/3/4) 
 

22/11/12/2  0.001 0.446 0.003 <0.001 

Nuclear Grade 
(1/2/3/4) 
 

8/20/13/6   0.299 0.003 0.074 

Tumour Necrosis 
(<25%/>25%) 
 

33/14    0.003 0.007 

Recurrence 
(No/Yes) 
 

26/21     0.011 

Tumour Volume 
(<10cm

3
/>10cm

3
 

21/26      
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Figure 1a: Kaplan Meier survival graph for a quantitative based assessment of necrosis 

against disease specific survival. 
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Figure 1b: Kaplan Meier survival graph using a 25% cut off for necrosis against disease 

specific survival. 
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Background: The local and systemic inflammatory responses provide prognostic 

information in cancer. The modified Glasgow Prognostic Response (mGPS) provides 

additional prognostic information than C-reactive protein (CRP) alone when assessing the 

systemic inflammation in cancer. The aim of this study was to determine the role of local 

and systemic inflammation in renal cancer. 

Methods: The cohort consisted of 79 patients who had undergone potential curative 

resection. Systemic inflammation, mGPS, was constructed by measuring pre-operative 

CRP and albumin concentrations and the Klintrup-Makinen score was evaluated 

histologically for the local inflammatory response. Pathological parameters such as T 

stage, grade and tumour necrosis were also assessed. Preoperative circulating CRP and 

albumin levels were measured. The local inflammatory response was assessed by 

examining all inflammatory cells at the tumour edge on diagnostic haematoxylin and eosin 

slides. 

Results: On univariate analysis, T stage (p<0.001), Grade (p=0.044) and mGPS (p<0.001) 

were significant predictors of cancer specific survival. On multivariate analysis, mGPS 

(hazard ratio 8.64, 95% confidence interval 3.5-21.29, p<0.001) was the only significant 

independent predictor of cancer specific survival. 

Conclusion: A preoperative systemic inflammatory response as measured by the mGPS is 

an independent predictor of poor cancer specific survival in renal cancer in patients 

undergoing potential curative resection. 
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Introduction 

In the UK alone, approximately 8000 new cases of renal cancer are diagnosed each year 

and 3800 die of their disease [2]. Overall survival is poor, even for those patients who 

undergo resection; the estimated 5 year survival rate is only 50% [2].
 

 

There has been a long standing interest in identifying those patients most at risk of disease 

progression and ultimately dying from their disease. Ideally, a factor or combination of 

factors that could clearly stratify patients into those who do not progress and those that 

progress and are at higher risk of dying from their cancer would be highly beneficial. 

Currently, the TNM stage and tumour grade are the most widely used tools to predict 

survival and these are incorporated in the majority of prognostic algorithms including 

SSIGN [145], UISS [508] and Leibovich[147]. 

 

It is now established that disease progression in cancer patients is not solely determined by 

the tumour characteristics but also by the host response. There is increasing evidence that 

both local and systemic inflammatory responses play an important role in the progression 

of various solid tumours [174, 175]. 

 

Recent evidence suggests that intensity of local inflammatory infiltrate within the tumour 

bed predicts prognosis: a pronounced lymphocytic infiltration in colorectal cancer is 

associated with improved survival [181-183]. Also quantifying the degree of infiltration by 

lymphocyte subsets such as CD8+ and CD4+ T cells provides prognostic information in 

various tumour types[184, 185] including renal cancer[186]. The process of assessing 

lymphocyte infiltration is time consuming and has not been adopted into routine clinical 

practice. It is therefore of interest that Klintrup and colleagues have reported a simplified 

method of assessing the inflammatory cell infiltrate at the tumour margin,[187] showing on 

routine haematoxylin and eosin stained sections, that tumour inflammatory infiltrate, 
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including all white cell types, can be graded high or low grade, with a high grade infiltrate 

being associated with improved survival in colorectal cancer[187, 198]. 

 

In addition, increasing evidence supports a role of the systemic inflammatory response, 

indicated by elevated levels of C-reactive protein (CRP) being an independent predictor of 

survival in patients with a variety of common solid tumours including gastrointestinal, 

lung, prostate, bladder and renal cancer[194-199]. The modified Glasgow Prognostic Score 

(mGPS), incorporates CRP and albumin serum levels[200]. The mGPS score has provided 

additional prognostic information in patients with various solid malignancies including 

lung, gastroesophageal and colorectal cancers [201-203].
 

 

The prognostic role of tumour necrosis is well established in malignancies such as lung and 

colorectal [163, 514]. Despite using necrosis in prognostic algorithms in renal cancer, there 

are still some conflicting results regarding its prognostic significance with some showing 

an association with poor survival on univariate analysis but not being retained as an 

independent prognostic factor whilst others have shown no link with prognosis[137, 145, 

156, 167, 525]. 

 

The aim of this study was to assess relationships between a systemic inflammation 

prognostic score (mGPS), the local tumour inflammatory cell infiltrates, tumour necrosis 

and cancer specific survival in patients with renal cancer undergoing potential curative 

resection.
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Materials and Methods 

Patients with clear cell renal cancer were included for this study. These patients had 

undergone complete resection of the tumour at time of nephrectomy and pre-operative CT 

scans showed no evidence of regional or metastatic spread. Patients were staged 

pathologically and graded according to the TNM classification and Fuhrman grading 

respectively. The Research Ethics Committee of West of Scotland has approved the study. 

 

Diagnostic haematoxylin and eosin sections from pathology archives were reviewed. A 

minimum of three slides from the deepest area of tumour invasion were reviewed and were 

scored according to the Klintrup-Makinen criteria (K/M)[187]. This method is based on 

scoring inflammation at the deepest point of invasion identified from the three slides. A 

four point scale was used. A score of 0 was given for no increase of the inflammatory cells 

at the invasive margin; a score of 1 denoted a mild and patchy increase of inflammatory 

cells. Score 2 was assigned when inflammatory cells formed a band-like infiltrate at the 

invasive margin. A score of 3 was given when a prominent inflammatory reaction formed a 

cup-like zone at the margin. Scores of 0 and 1 were combined (low grade inflammation) 

and scores of 2 and 3 combined (high grade inflammation). Scoring was supervised by a 

pathologist (JJG). 

 

Preoperative systemic inflammatory response was assessed using the modified Glasgow 

Prognostic Score (mGPS) [200]. Patients with both elevated C-reactive protein (>10mg/l) 

and hypoalbuminaemia (<35g/l) scored 2.  Patients in whom both were normal scored 0.  

Patients with elevated C-reactive protein alone were scored as 1 while those with 

hypoalbuminaemia alone were scored as 0. 

The presence or absence of tumour necrosis was evaluated on histological sections and 

graded under the supervision of a pathologist (JJG). 
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Statistical analysis was undertaken using SPSS. Disease specific survival rates were 

generated using the Kaplan-Meir method. The log rank test was utilised to compare 

significant differences between subset groups using univariate analysis. Multivariate 

analysis was carried out based on the results of the univariate analysis. Multivariate Cox 

regression analysis was performed to identify factors independently associated with disease 

specific death. A stepwise backward procedure was utilised to ascertain which of the 

variables had a significant independent relationship with survival. 
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Results 

Seventy nine patients were studied. Median age at diagnosis was 60 years (range 39-82). 

Median follow up was 93 months (range 0.1-152). 40 patients had recurrence. 19 patients 

died of their disease. 

 

x
2 

demonstrated that mGPS was positively correlated with tumour stage, grade and necrosis 

(p=0.001, p=0.044 and p=0.042) (Table 1).  

 

On univariate analysis, T stage (p<0.001), grade (p=0.044) and mGPS (p<0.001, Figure 1) 

were significant predictors of cancer specific survival whilst local inflammatory response 

and necrosis did not show significance (p=0.152 and p=0.122) (Table 2). On multivariate 

analysis of the significant individual covariates mGPS (hazard ratio 8.64, 95% confidence 

interval 3.5-21.29, p<0.001) was a significant independent predictor of cancer specific 

survival (Table 2). 
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Discussion 

Results from the present study demonstrate that an elevated mGPS independently 

correlates to a poor cancer specific survival in those undergoing potentially curative 

treatment with renal cancer. We have also demonstrated that an elevated mGPS is directly 

associated with tumour stage, grade and necrosis. 

Previous studies have demonstrated that the local inflammatory response [187, 198] and 

tumour necrosis [163, 514] play a prognostic role in various malignancies. It has been 

reported that quantifying the degree of infiltration by lymphocyte subsets provides 

prognostic information in renal cancer[186]. It was therefore of interest that a simplified 

assessment of the local inflammatory cell infiltrate [187] which is not as time consuming 

as quantifying lymphocyte subsets has been shown to prognostic in colorectal cancer[187, 

198]. The role of necrosis in renal cancer, despite being utilised in prognostic algorithms 

has produced conflicting results [137, 145, 156, 167, 525]. In this study, neither local 

inflammatory response nor necrosis were significant in disease specific survival. One of 

the reasons could be the small cohort study but given previous conflicting results for 

necrosis with larger study numbers, an increase in numbers may still not show necrosis to 

be significant in disease specific survival in this study. 

mGPS is a well-established marker of systemic inflammation. The variables used are 

common ones and offer the benefit of being objective and obtainable. We have 

demonstrated an independent association between preoperative systemic inflammation and 

cancer specific survival.  A limitation of this study is small cohort size, only 79 patients 

were available for analysis and from these 79 only 19 patients had died of their disease.  

We therefore would recommend that this study be expanded to a multi-centre study in 

order to increase cohort size and increase study power. 
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Conclusion 

These results support the evaluation and introduction of the inflammation based (mGPS) 

scoring system as an independent predictor of poor cancer specific survival in those 

undergoing potential curative resection for renal cancer. 
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Table 1: Interrelationships between clinicopathological characteristics of patients with 

renal cancer. 

 

Variable Numbers Sex Grade T 
Stage  

Tumour 
Necrosis 

Local 
inflammatory 
cell infiltrate 

mGPS 

Age (<65/>65) 40/39 0.316 0.954 0.423 0.291 0.831 0.054 

Sex (male/female) 47/32  0.15 0.164 0.233 0.241 0.713 

Grade (1/2/3/4) 9/37/21/12   0.005 0.315 0.59 0.044 

T Stage 
(T1/T2/T3/T4) 
 

32/14/29/4    0.166 0.595 0.001 

Tumour Necrosis  
(absence/presence) 
 

39/40     0.194 0.042 

Local inflammatory 
cell infiltrate 
(low/high) 
 

62/17      0.755 

mGPS (0/1/2) 57/19/3       
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Table 2: Relationships between clinicopathological characteristics and disease specific 

survival. 

 

Variable Numbers Univariate 
Analysis 

Multivariate 
Analysis 

 

  p value p value HR 

Age (<65/>65) 
 

40/39 0.838   

Sex (male/female) 
 

47/32 0.259   

Grade (1/2/3/4) 
 

9/37/21/12 0.044   

T Stage 
(T1/T2/T3/T4) 
 

32/14/29/4 <0.001   

Tumour Necrosis 
(absence/presence) 
 

39/40 0.122   

Local inflammatory 
cell infiltrate 
(low/high) 
 

62/17 0.152   

mGPS (0/1/2) 57/19/3 <0.001 <0.001 8.64 (3.5-21.29) 
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Figure 1: Kaplan Meier survival graph for mGPS against disease specific survival. 
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Purpose 

The aim of this study was to determine whether Src family kinases (SFK) are expressed in 

renal cell cancer and to assess their prognostic significance. 

Materials and Methods 

mRNA expression levels were investigated for the eight SFK members by quantitative 

real-time PCR in nineteen clear cell cancer tissue samples. Immunohistochemical staining 

was utilised to assess expression of Src kinase, dephosphorylated Src kinase at Y
530

 

(SrcY
530

), phosphorylated Src at Y
419

 (SrcY
419

) and the downstream focal adhesion marker 

(FAK) at the Y
861

 site (FAK Y
861

) in a cohort of fifty seven clear cell renal cancer 

specimens. Expression was assessed using the weighted histoscore method.  

Results 

Src, Lyn, Hck, Fgr and Fyn were the most highly expressed in renal cancer. All members 

were more highly expressed in T2 disease and furthermore expression levels between T2 

and T3 disease showed a significant decrease for Lck, Lyn, Fyn, Blk and Yes (p=0.032). 

Assessment of membrane, cytoplasm and nuclear expression of Src kinase, SrcY
530

 and 

SrcY
419

 were not significantly associated with cancer specific survival.  

High expression of cytoplasmic FAK Y
861

 was associated with decreased cancer specific 

survival (p=0.001). On multivariate analysis, cytoplasmic FAK Y
861

 was independently 

associated with cancer specific survival (HR 3.35, 95% CI 1.40-7.98, p=0.006). 

Conclusion 

We have reported that all SFK members are expressed in renal cell carcinoma. SFK 

members had their highest levels of expression prior to the disease no longer being organ 

confined. We hypothesise that that these SFK members are up-regulated prior to the cancer 

spreading out-with the organ and given that Src itself is not associated with cancer specific 

survival but the presence of FAK Y
861

, a downstream marker for SFK member activity is 

associated with decreased cancer specific survival, we hypothesise that another of the SFK 

members is associated with decreased cancer specific survival in renal cell cancer. 
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Introduction 

 

In the UK alone, approximately 8000 new cases of renal cancer are diagnosed each year 

and 3800 die of their disease [2]. Overall survival is poor, even for those patients who 

undergo resection; the estimated 5 year survival rate is only 50%.  

 

Treatment options are limited when there is evidence of inoperable metastatic disease. 

Cytotoxic chemotherapy has a minimal activity and is rarely used [305]. Immunotherapy 

has been demonstrated to provide a modest survival benefit but is associated with high 

levels of toxicity [307, 526]. At present, the mainstay of drug therapy for advanced renal 

cancer involves the sequential use of vascular endothelial growth factor (VEGF) receptor 

tyrosine kinase inhibitors (such as sunitinib, pazopanib and sorafenib) and inhibitors of 

mammalian target of rapamycin (mTOR) (such as everolimus or temsirolimus). Despite 

these recent advances, the outlook for these patients remains poor with little prospect of a 

cure. Sustained efforts continue to identify activated signalling pathways in renal cancer in 

order to develop further appropriate targeted therapies. 

 

One potential molecular target is the non-receptor tyrosine kinase Src, the first identified 

human proto-oncogene. Src kinase has a role in signal transduction of multiple oncogenic 

cellular processes including migration, adhesion, invasion, angiogenesis, proliferation and 

differentiation and has significant interactions with other cellular proteins such as growth 

factor receptors [317]. Src kinase is the prototypical member of the Src kinase family 

(SFK), with a total of 8 members expressed in mammalian cells (Src kinase, Blk, Fgr, Fyn 

Yes, Hck, Lck & Lyn). Src kinase is composed of a C-terminal tail, kinase domain, two 

protein-protein interaction domains (SH2, SH3) and a unique amino-terminal domain that 

varies between Src family members. Src kinase is activated by a number of pathways. Src 

kinase activation involves phosphorylation of a conserved tyrosine residue in the C-
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terminal negative regulatory tail region (Y
530

) and subsequent autophosphorylation of the 

Y
419

 site in the kinase domain [383, 384]. Consequently antibodies to phosphorylated Src 

kinase at the Y
419

 site can be used as a marker for activated Src kinase [519]. In addition, 

when SFK’s are activated, several downstream markers such as focal adhesion kinase 

(FAK) are phosphorylated and could therefore act as biomarkers for SFK activation [459]. 

FAK is phosphorylated at several sites by Src such as Y
397

, Y
576

 and Y
577

 but it has been 

reported that the Y
861

 is the major site of phosphorylation in the carboxyl-terminal domain 

of FAK [453-455]. 

 

There is much evidence showing that levels of SFK are elevated in various malignancies 

such as prostate, breast, colon and lung [348, 364, 516-518]. Specifically, elevated levels 

of Src and Lyn (a SFK member) have been observed in breast cancer and expression of Src 

was associated with decreased survival [516]. Src expression does not always correlate 

with poor survival, it has been reported that Src expression and activity decreases with 

bladder tumour stage [357-359, 361, 362] and grade [360]. Expression of Lyn has also 

been associated with malignancies including breast, colon and prostate [329, 332]. 

 

Previous studies have suggested that the Src kinase family member, Src kinase is involved 

in the progression of urological tumours [348, 527]. Currently Saractinib (AZD05300), an 

oral Src inhibitor, is being utilised in a Phase II trial in renal cancer (COSAK trial). 

The aim of the current study is to investigate which if any of the SFK members are 

expressed in renal cell carcinoma and to assess if Src kinase expression and activation 

status is associated with poor prognosis. 
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Materials and Methods 

Nineteen clinical specimens were utilised for Real time quantitative PCR (RT-PCR). This 

consisted of malignant tissue taken from renal cell carcinoma patients at the time of 

resection. Those specimens were utilised where all tissue was removed at time of surgery 

and radiological imaging prior to surgery showed no evidence of metastatic spread of 

disease. The Research Ethics Committee of West of Scotland has approved the study. 

RT-PCR was utilised to determine mRNA expression of the SFK members. At the time of 

resection, representative parts of malignant tissue were identified, snap frozen and stored in 

liquid nitrogen. Total mRNA was extracted from 5-10mg of renal cell cancer tissue using 

the TRIZOL method according to manufacturer’s protocol (Invitrogen, Paisley UK). RNA 

quality and quantity was examined by UV spectrometry (GeneQuant analyser, GE 

Healthcare, Little Chalfont, UK). 

Once RNA quality and quantity had been assessed, to ensure that no other DNA was 

present, DNA-free DNAse treatment and removal reagent kit was added (Applera, 

Warrington, UK). Prior to incubation for 30 minutes at 37°C, to ensure that the same 

volume of cDNA was being utilised for quantification, a starting concentration of 1000ng 

of RNA was applied for each sample. Random hexamer primers (50ng) were used for First 

Strand cDNA synthesis using SuperScript II RT according to manufacturer‘s instructions 

(Invitrogen). Before using cDNA for PCR amplification, 2 units of RNase H were added to 

samples and incubated for 20 minutes at 37°C. RTPCR was performed using an ABI Prism 

7900 Sequence Detection System (Applied Biosystems, UK) and TaqMan® Gene 

Expression Assays (table 2.1). For the TaqMan® Gene Expression Assays the 

manufacturer‘s protocol with recommended 40 rounds of amplification was applied. 

Thermal cycler condition were 50°C for 2 min, 95°C for 10 min followed by 40x 95°C for 

15 sec and 60°C for 1 min. 

Quantitative values were obtained from the threshold cycle (Ct value) at which the increase 

TaqMan® probe fluorescent signal associated with an exponential increase of each 
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individual PCR product reaching a fixed threshold value. Each individual primer had a 

fixed threshold Ct value (Table 1). These fixed threshold values were used for every cDNA 

sample. Negative controls for each primer were included in each run. 

To enable the comparison of different mRNA expression levels, their relation to the 

average expression level of two housekeeping genes (GAPDH, glyceraldehydes-3-

phosphate dehydrogenase and HPRT, hypoxanthine-guanine phosphoribosyl-transferase) 

were evaluated. The housekeeping gene with the lowest standard deviation (GAPDH) was 

used for evaluation of the mRNA expression levels. Data was analysed using the Sequence 

Detection Software, this calculated the threshold cycle (Ct) value. The expression of the 

target assay was normalised by subtracting the Ct value of the housekeeping gene from the 

Ct value of the relevant target assay. The fold increase, relative to the control, was obtained 

by using the formula 2-ΔCt, and then expressed as a percentage (x100). All samples were 

measured in tripiclates. 

Statistical analysis: 

Differences in expression levels were analysed using the Mann-Whitney U test or Kruskal-

Wallis test, including a Wilcoxon–type test for trends, when appropriate. 

 

Immunohistochemical staining was utilised in a cohort of 57 patients diagnosed with clear 

cell renal cancer. These patients had undergone complete resection of the tumour at time of 

nephrectomy and pre-operative CT scans showed no evidence of regional or metastatic 

spread. Patients were staged pathologically and graded according to the TNM classification 

and Fuhrman grading respectively. Cancer specific survival rate was the time from 

diagnosis until time of death or last follow up. The cause of death was determined by 

linkage through the Scottish Cancer Registry. In those who were deceased, if the primary 

cause of death was of renal cancer, these were classed as cancer specific and all other 

causes were non-cancer specific deaths. 
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Immunohistochemical staining was utilised to assess expression of c-Src kinase, 

phosphorylated Src at Y
530

, phosphorylated Src at Y
419

 and FAK at the Y
861

. Both 

antibodies for dephosphorylated Src and phosphorylated Src are were not specific for only 

c-Src kinase but they also detect other family members including Fyn, Yes and Fgr due to 

high level of conservation between Src family members. 

 

c-Src kinase and activated Src kinase expression (Src Y
419

) was investigated using antibodies 

for c-Src kinase (36D10, Cell Signalling Technology, Beverly MA, USA) and Src Y416 (Cell 

Signalling Technology). Dephosphorylated Src and FAK were investigated using antibodies 

for Src Y527 and FAK Y861 respectively (Invitrogen, Paisley, UK). In humans the activated 

phosphorylation sites that were investigated in the current study are amino acids Y530 and Y
419

. 

Antibodies used relate to the rabbit sequence and not the human sequence. 

 

Tissue sections were dewaxed and rehydrated through graded alcohol. Antigen retrieval was 

performed by heating tissue sections under pressure for five minutes in a pressure cooker using 

citrate buffer pH 6 for c-Src kinase, Src Y527, FAK Y861 and EDTA buffer pH 9 for Src Y416. 

Endogenous peroxidase activity was blocked by incubation in 3% hydrogen peroxide (H2O2). 

To reduce non-specific binding the tissue sections were then incubated with 5% normal horse 

serum (Vector Laboratories, Burlingame, CA, USA) in antibody dilutent (DAKO Cytomation, 

Glostrup, Denmark) for twenty minutes at room temperature. Incubation with primary antibody 

was performed with c-Src kinase (1:200) for 60 minutes at room temperature and overnight at 

4C for antibodies dephosphorylated Src Y
527

 (1:3000), phosphorylated Src Y
416

 (1:25) and 

FAK Y861 (1:200). Signal was amplified and visualised using the DAKO Envision Kit (DAKO 

Cytomation) and the chromagen 3,3’-diaminobenzidine (DAB, Vector Laboratories). Sections 

were counterstained, dehydrated and mounted. In each run a positive and negative isotype-

matched control was included to ensure no false positive staining or intense stromal staining. 
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Immunohistoscore: Protein expression for tumour cells was assessed over the full tissue 

specimen using the weighted histoscore method [520]. The weighted histoscore grades staining 

intensity as negative (0), weak (1), moderate (2), and strong (3), then multiplication of the 

percentage of tumour cells within each category. Two observers independently scored all 

tissue sections. Each cellular location was independently assessed for any evidence of 

expression (Figure 1). Tumours were then divided into those with high (above median) 

histoscore or low (below or equal to the median) histoscore expression as has previously 

been reported [336, 360, 521] for the purposes of analysis. Agreement between observers 

was excellent (>0.9) for all proteins investigated as measured by interclass correlation 

coefficient (ICCC).  

 

Statistical analysis was undertaken using SPSS (Chicago, IL, USA). Cancer specific 

survival rates were generated using the Kaplan-Meir method. The log rank test was utilised 

to compare significant differences between subset groups using univariate analysis. 

Multivariate analysis was carried out based on the results of the univariate analysis. 

Multivariate Cox regression analysis was performed to identify those factors that were 

independently associated with cancer specific death. A stepwise backward procedure was 

utilised to ascertain which of the variables had a significant independent relationship with 

survival. Chi squared analysis was utilised to assess relationships between pathological 

parameters and the biomarkers at the various locations. Pearson correlation was utilised to 

assess if relationships could be identified between the various proteins at the various 

cellular locations. p-values < 0.004 were deemed significant according to Bonferronis 

correction.  
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Results 

The cohort for RT-PCR analysis consisted of nineteen renal cell cancers. Median age of 

diagnosis was 60 years (range 42-72). Table 1 demonstrates clinicopathological parameters 

of these patients.  

The most highly expressed SFK member in renal cell cancer tissue was Src followed by 

Lyn, Hck, Fgr and Fyn (Table 2, Figure 2). The least expressed SFK member was Blk. 

When analysing SFK members in correlation to T Stage, expression of Yes and Blk was 

significant (p=0.039, p=0.045, Figure 3). Interestingly, higher expression of all SFK 

members was observed in T2 stage disease (Figure 3). Expression of Lck, Lyn, Fyn, Blk 

and Yes showed a significant decrease between T2 and T3 disease (p=0.032, p=0.032, 

p=0.032, p=0.032, p=0.032). 

When analysing SFK member expression in correlation with tumour grade, no significant 

difference was observed (Figure 4). 

 

Immunohistochemical analysis was based on 57 clear cell renal cancer patients with full 

clinical follow up. Table 1 demonstrates clinicopathological parameters of these patients. 

Median age at diagnosis was 60 years (range 41-80). Median follow up was 107 months 

(range 0.1-163). Twenty two patients died of their disease. Thirty eight patients had T1/2 

disease and nineteen patients had T3/4 disease. Tumour volume was recorded for each 

case; median tumour volume was 9.8cm
3
 (range 1-30 cm

3
). Twenty five patients 

subsequently had evidence of recurrence on radiological imaging. 

 

Initial analysis was performed on clinicopathological features which are known prognostic 

indicators for survival in renal cancer. T stage and nuclear grading were significantly 

associated with poor prognosis, thus demonstrating that this cohort was associated with 

classical clinical parameters and validating it for use in a biomarker study (Table 3). 
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c-Src kinase 

As c-Src was the highest expressed of all the family members at the mRNA level, 

expression at the protein level was further investigated. Of the tumours investigated, 98% 

showed some degree of nuclear expression, 100% showed some degree of cytoplasmic 

expression and 97% showed some degree of membrane expression. For the purposes of 

analysis, the median cut off values of expression at the different cellular locations was 

utilised, those below and equal to the median score were given a low expression and those 

above the median were given a score of high as mentioned in the methodology. For nuclear 

expression this value was 25, cytoplasmic expression was 115 and membrane 100. x
2
 

analysis demonstrated that cytoplasmic c-Src kinase expression positively correlated with 

nuclear grade (p=0.023, Table 4) but no correlation was demonstrated with age, T stage, 

tumour necrosis, recurrence or tumour volume. Membrane c-Src kinase protein expression 

negatively correlated with recurrence (p=0.021, Table 4) but no relationship was 

demonstrated with age, T stage, nuclear grade, tumour necrosis or tumour volume. These 

results suggest that membrane c-Src confers good prognosis, however on univariate 

analysis expression of c-Src at the different cellular locations did not show significance 

(Table 3). However a trend was observed between high membrane c-Src kinase expression 

and improved disease specific survival, those patients expressing high membrane c-Src 

kinase had a median survival of 130 months compared to 97 months for those with low 

expression, this did not however reach significance (p=0.097, Figure 5a). On univariate 

analysis, expression of Src kinase at any of the cellular locations investigated was not 

significantly associated with disease specific survival (Table 3). Pearson correlation 

demonstrated that cytoplasmic c-Src kinase expression demonstrated a positive correlation 

with nuclear c-Src kinase expression (p=0.0022, Table 5). 
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Y
527

 Src Kinase 

Phosphorylated Src Y
527

 was investigated. Of the tumours investigated 47% showed some 

degree of nuclear expression, 96% showed some degree of cytoplasmic expression and 

93% showed some degree of membrane expression. There was a difference in the 

expression of Y
527

 at the different cellular locations in comparison to c-Src expression with 

this difference possible as a result of tissue heterogeneity and therefore tissue expression 

variability. The median cut off values for the purposes of analysis were 0 for nuclear 

expression, 50 for cytoplasmic and for membrane 85. x
2
 analysis demonstrated that 

phosphorylated membrane Y
527

 expression positively correlated with age (p=0.026, Table 

4) but no correlation was demonstrated with T stage, nuclear grade, tumour necrosis, 

recurrence or tumour volume. On univariate analysis, expression of Y
527

 at any of the 

cellular locations investigated was not significantly associated with disease specific 

survival (Table 3). Pearson correlation demonstrated that phosphorylated cytoplasmic Y
527

 

expression demonstrated a positive correlation with cytoplasmic c-Src kinase expression 

(p=0.0022, Table 5). 

 

Y
416

 Src Kinase 

The autophosphorylated status at Y
416

 was investigated. Of the tumours investigated 84% 

showed some degree of nuclear expression, 100% showed some degree of cytoplasmic 

expression and 81% showed some degree of membrane expression. The median cut off 

values for the purposes of analysis were 20 for nuclear expression, 100 for cytoplasmic and 

for membrane 20.  x
2
 analysis demonstrated that membrane Y

416
 expression positively 

correlated with age (p=0.026, Table 4) but no correlation was demonstrated with T stage, 

nuclear grade, tumour necrosis, recurrence or tumour volume. On univariate analysis, 

expression of Y
416

 at any of the cellular locations investigated was not associated with 

disease specific survival (Table 3). Pearson correlation demonstrated that membrane Y
416

 

expression demonstrated a negative correlation with cytoplasmic c-Src kinase expression 
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(p=0.0005, Table 5) and a positive correlation was demonstrated with dephosphorylated 

membrane Y
527

 expression (p=0.0001, Table 5). 

 

Y
861

 FAK 

Of the tumours investigated 98% showed some degree of nuclear expression, 39% showed 

some degree of cytoplasmic expression and 100% showed some degree of membrane 

expression. The median cut off values for the purposes of analysis were 50 for nuclear 

expression, 0 for cytoplasmic and for membrane 50. x
2
 analysis demonstrated that 

expression of cytoplasmic FAK Y
861

 demonstrated a positive relationship with T stage, 

nuclear grade, recurrence and tumour volume (p=0.023, p=0.001, p=0.036 and p=0.045 

respectively, Table 4) but no relationship was demonstrated with age or tumour necrosis. 

On univariate analysis, high expression of cytoplasmic FAK Y
861

 was associated with 

decreased cancer specific survival, (p=0.001, Table 2, Figure 5b).This association was also 

independent on multivariate analysis (Hazard Ratio 3.34, 95% CI 1.40-7.98, p=0.006, 

Table 3). Pearson correlation demonstrated that membrane FAK Y
861

 expression 

demonstrated a positive correlation with membrane Y
527

 and membrane Y
416

 expression 

(p=0.0002 and p=0.0002, Table 5). 
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Discussion 

We have reported for the first time to our knowledge that SFK members are not only 

expressed in renal cell carcinoma but are expressed to varying degrees. Of the SFK 

members, Src is the most highly expressed followed by Lyn, Hck, Fgr and Fyn. Src has a 

five-fold higher expression than the least SFK member expressed. We have also reported 

that there is a significant fall in expression of Lck, Lyn, Fyn, Blk and Yes between T2 and 

T3 disease. 

Despite having a limited cohort group, we have shown that there is a significant difference 

in expression of several SFK members between T2 and T3 disease. In renal cancer, T2 

disease is still organ confined with T3 disease invading perinephric fascia and/or the 

adrenal gland. Src kinase has a role in signal transduction of multiple oncogenic cellular 

processes including migration and invasion. We hypothesise that SFK members are being 

up-regulated at a time when the cancer is going beyond being organ confined and starting 

to metastasise after which up-regulation is no longer required as the cancer has 

metastasised. 

Expressions of SFK members have been demonstrated in a variety of tumours [348, 364, 

516-518]. Specifically, expression of Src and Lyn have been demonstrated to be elevated 

in breast and colon cancer [329, 332, 516]. When assessing activity of SFK members, it 

has been demonstrated that increased expression of Src is associated with poor survival in 

breast cancer [336, 516] whereas expression of Src is associated with improved clinical 

outcome in bladder cancer [358, 360, 361]. 

Given that the cohort size was limited, significant correlations could not be observed 

between expression of a particular member and survival. Even if a SFK member is 

expressed, this does not necessarily constitute activity. 

Therefore to gain a better understanding of Src and SFK activation we established a cohort 

of patients’ samples to allow us to assess expression and establish correlations with clinical 

parameters. 
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To our knowledge this is the only study investigating the role of Src kinase expression, 

phosphorylated status (Y
527

), auto-phosphorylation status (Y
419

) and the downstream 

marker FAK Y
861

 in clear cell renal cancer. SFK can be localised at different cellular 

locations with the inactive form localised at the perinuclear region of cells [399]. Much 

work has been conducted in breast cancer which has reported high cytoplasmic Src kinase 

levels being associated with shorter disease specific survival [339]
 
and high expression of 

activated Src kinase being associated with increased risk of recurrence [336]. In addition, 

prostate cancer studies have demonstrated that Src kinase expression and activation is 

associated in quicker time to relapse and shorter disease specific survival [348]. Therefore 

current literature supports a role for Src as a negative prognostic marker in solid tumours.
 

In contrast in the current study, x
2
 analysis, demonstrates that membrane Src kinase 

expression was negatively associated with recurrence and a trend towards improved 

survival was also observed. These results require confirming in a larger patient cohort; 

however the combination of reduced recurrence and improved survival being associated 

with Src kinase expression suggests that Src kinase might not be responsible for driving 

progression in renal cancer. Although Src expression itself might not be involved with 

renal cancer progression, activation of the Src or other Src family members might be 

involved. 

It has been suggested that a biomarker for prediction of Src kinase activity would be to 

measure phosphorylation of the protein at a site associated with activity [363, 522]. 

Currently there are two sites within Src known to be associated with activation. 

Phosphorylation of the tyrosine residue 530 on the c-terminal tail by Csk tyrosine kinase 

acts as a negative regulatory protein-binding site, keeping Src kinase in a closed 

confirmation [523]. Upon dephosphorylation this allows Src kinase to undergo a 

transformational change allowing the second site of activation, Y
419

, to be accessible which 

needs to be autophosphorylated before full activation of Src kinase. Y
419

 is referred to as 

the classical site and is the most commonly used in cell line studies investigating the 
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functional relevance of Src kinase activation [475].
 
In this study, membrane Y

416
 

expression demonstrated a negative correlation with cytoplasmic Src kinase and a positive 

correlation with cytoplasmic Y
527

, confirming validity of results regarding Src kinase 

needing to undergo dephosphorylation at the Y
530

 before autophosphorylation at the Y
419

 

can proceed. Activated phosphorylated Src kinase at the classical site Y
416

 when assessed 

at individual locations was shown to have no correlation to disease specific survival. This 

antibody is not specific for one particularly Src family member as this part of the sequence 

is highly conserved between Src family members making it impossible to produce an 

antibody specific for only one member. Therefore as the antibody cross reacts with all 

family members that are phosphorylated at this site, this could account for the lack of 

correlation with disease specific survival. 

Autophosphorylation of FAK at the Y
397

 site occurs as a result of many stimuli thereby 

creating a high affinity binding site for the Src homology 2 domain of several proteins 

including Src kinase [453, 454]. Src phosphorylates FAK at several sites but it has been 

reported that the Y
861

 is the major site on the FAK domain associated with activation [455], 

and therefore maybe used as a surrogate marker not only for SFK activation but also for 

SFK function [459]. 

Expression of cytoplasmic Y
861

 was associated with reduced disease specific survival and 

positively correlated with T stage, nuclear grade, recurrence and tumour volume 

suggesting that the phosphorylation of Y
861

 may be associated with more aggressive renal 

cancers (Table 3). Expression of cytoplasmic Y
861

 positively correlated with membrane 

Y
416

 further suggesting that of the Src kinase family members, c-Src kinase may not be 

responsible for the phosphorylation at the Y
861

 site in clear cell renal cancer, therefore 

implicating a role for an alternative SFK member in renal cancer progression. 

The current study has demonstrated that c-Src is the most highly expressed SFK member in 

renal cell cancer. Activation of c-Src kinase itself is associated with improved survival but 

the presence of the downstream marker FAK, itself a surrogate marker for SFK member 
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activation, is associated with decreased cancer specific survival suggesting that another of 

the SFK members is responsible for poor survival in renal cell cancer.   
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Table 1: Clinicopathological characteristics of patients utilised for RT-PCR and IHC. 

 

 Numbers 

 RT-PCR Cohort IHC Cohort 

Age (<60/>60) 10/9 29/28 

Sex (M/F) 9/10 32/25 

T Stage (T1/T2/T3/T4) 5/3/9/2 26/12/17/2 

Grade (1/2/3/4) 4/5/6/4 10/26/15/6 

Tumour Necrosis (absence/presence) 8/11 32/25 

Recurrence (No/Yes) 12/7 32/25 

Tumour Volume (<10cm3/>10cm3) 7/12 29/28 
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Table2: Intron-skipping primers used for RTPCR, their fixed threshold Ct values and 

median expression levels in renal cell cancer tissue. 

 

Gene Gene Expression Assay 

ID 

Threshold 

(Ct)Value 

Expression 

Levels 

SRC Hs00178494_m1 0.23 404.9 

LCK Hs00178427_m1 0.17 13.5 

LYN Hs00176719_m1 0.25 233.3 

FYN Hs00176628_m1 0.2 53.2 

FGR Hs00178340_m1 0.2 58.1 

HCK Hs00176654_m1 0.26 75 

BLK Hs00176441_m1 0.19 2.5 

YES Hs00736972_m1 0.26 9.7 

GAPDH N/A 0.2 N/A 
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Table 3: Interrelationships between clinicopathological characteristics of patients and 

protein expression/activation with renal cancer (figures in bold denote significant p 

values). 

 

  Univariate 

Analysis 

Multivariate 

Analysis 

 

 Numbers p value p value HR 

Age (<60/>60) 29/28 0.201   

T Stage (T1/T2/T3/T4) 26/12/17/2 0.001 0.001 2.35 (1.41-

3.91) 

Grade (1/2/3/4) 10/26/15/6 0.012   

Tumour Necrosis 

(absence/presence) 

32/25 0.092   

c-Src nuc (negative/positive) 31/26 0.437   

c-Src cyto (negative/positive) 32/25 0.95   

c-Src mem (negative/positive) 29/28 0.097   

Y527 Src nuc (negative/positive) 34/23 0.72   

Y527 Src cyto (negative/positive) 31/26 0.968   

Y527 Src mem (negative/positive) 29/28 0.329   

Y416 Src nuc (negative/positive) 29/28 0.799   

Y416 Src cyto (negative/positive) 32/25 0.311   

Y416 Src mem (negative/positive) 29/28 0.79   

Y861 Fak nuc (negative/positive) 29/28 0.489   

Y861 Fak cyto (negative/positive) 36/21 0.001 0.006 3.35 (1.40-

7.98) 

Y861 Fak mem (negative/positive) 30/27 0.678   
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Table 4: Interrelationships between clinicopathological characteristics of patients and protein expression/activation with renal cancer using x
2
 

(chi squared) analysis (figures in bold denote significant p values). 

Variable Numbers Age T 

Stage 

Grade Tumour Necrosis(absence/presence) Recurrence 

(No/Yes) 

Tumour Volume (<10cm3/>10cm3) 

c-Src nuc (negative/positive) 31/26 0.350 0.187 0.500 0.830 0.196 0.350 

c-Src cyto (negative/positive) 32/25 0.703 0.538 0.023 0.985 0.985 0.703 

c-Src mem (negative/positive) 29/28 0.148 0.205 0.916 0.363 0.021* 0.692 

Y527 Src nuc (negative/positive) 34/23 0.487 0.157 0.793 0.623 0.962 0.487 

Y527 Src cyto (negative/positive) 31/26 0.144 0.447 0.708 0.751 0.749 0.684 

Y527 Src mem 

(negative/positive) 

29/28 0.026 0.335 0.916 0.882 0.358 0.513 

Y416 Src nuc (negative/positive) 29/28 0.692 0.889 0.916 0.227 0.701 0.513 

Y416 Src cyto (negative/positive) 32/25 0.227 0.056 0.443 0.985 0.289 0.083 

Y416 Src mem 

(negative/positive) 

29/28 0.026 0.667 0.686 0.703 0.222 0.897 

Y861 Fak nuc (negative/positive) 29/28 0.897 0.478 0.482 0.703 0.701 0.692 

Y861 Fak cyto 

(negative/positive) 

36/21 0.207 0.023 0.001 0.326 0.036 0.045 

Y861 Fak mem 

(negative/positive) 

30/27 0.150 0.702 0.753 0.540 0.933 0.361 

 

*-Inverse relationship 



263 

 263 

Table 5: Interrelationships between protein markers at the various cellular locations using Pearson Correlation. PC-Pearson Correlations, Sig-

Significance (2-tailed), ns-non significant p-values (figures in bold denote significant p values according to Bonferronis correction).   

Correlations 

  c-Src nuc c-Src 
cyto 

c-
Src 
mem 

Y527 
Src 
nuc 

Y527 
Src 
cyto 

Y527 
Src 
mem 

Y416 
Src 
nuc 

Y416 
Src 
cyto 

Y416 
Src 
mem 

Y861 
FAK 
nuc 

Y861 
FAK 
cyto 

Y861 
FAK 
mem 

c-Src nuc PC   0.3973 ns ns ns ns ns ns ns ns ns ns 

 Sig   0.0022 ns ns ns ns ns ns ns ns ns ns 

c-Src cyto PC     ns ns 0.3973 ns ns ns *0.4442 ns ns ns 

 Sig     ns ns 0.0022 ns ns ns 0.0005 ns ns ns 

c-Src mem PC       ns ns ns ns ns ns ns ns ns 

 Sig       ns ns ns ns ns ns ns ns ns 

Y527 Src nuc PC         ns ns ns ns ns ns ns ns 

 Sig         ns ns ns ns ns ns ns ns 

Y527 Src cyto PC           ns ns ns ns ns ns ns 

 Sig           ns ns ns ns ns ns ns 

Y527 Src mem PC             ns ns 0.5086 ns ns 0.4735 

 Sig             ns ns 0.0001 ns ns 0.0002 

Y416 Src nuc PC               ns ns ns ns ns 

 Sig               ns ns ns ns ns 

Y416 Src cyto PC                 ns ns ns ns 

 Sig                 ns ns ns ns 

Y416 Src mem PC                   ns ns 0.4735 

 Sig                   ns ns 0.0002 

Y861 Fak nuc PC                     ns ns 

 Sig                     ns ns 
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Y861 Fak cyto PC                       ns 

 Sig                       ns 

Y861 Fak mem PC                         

 Sig                         

 

*-Inverse relationship 
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Figure legends 

 

Figure 1: Demonstrates representative images of immunohistochemistry for renal cell 

carcinoma of c-Src kinase, Src Y
527

, Src Y
416

 and FAK Y
861

. Membrane staining denoted 

by M, cytoplasmic staining by C and nuclear staining N. 
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Figure 2: Graph showing expression of mRNA levels of SFK members in renal cancer 

tissue. 
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Figure 3: Graphs showing expression of mRNA levels of each SFK member according to T 

stage. 
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Figure 4: Graphs showing expression of mRNA levels of each SFK member according to 

tumour grade. 
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Figure 5 

Figure 5a: Kaplan Meier plotted for high and low membrane c-Src kinase expression 

against disease specific survival, log rank test p=0.097.  

Figure 5b: Kaplan Meier plotted for high and low cytoplasmic FAK Y
861

 expression 

against disease specific survival, log rank test p=0.001. 

 

 


