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Abstract

Post-production facilities deal with large amounts of digital video, which

presents difficulties when tracking, managing and searching this material.

Recent research work in image and video analysis promises to offer help

in these tasks, but there is a gap between what these systems can provide

and what users actually need. In particular the popular research models

for indexing and retrieving visual data do not fit well with how users

actually work. In this thesis we explore how image and video analysis

can be applied to an online video collection to assist users in reviewing

and searching for material faster, rather than purporting to do it for

them.

We introduce a framework for automatically generating static 2-dimen-

sional storyboards from video sequences. The storyboard consists of a

series of frames, one for each shot in the sequence, showing the principal

objects and motions of the shot. The storyboards are rendered as vector

images in a familiar comic book style, allowing them to be quickly viewed

and understood. The process consists of three distinct steps: shot-change

detection, object segmentation, and presentation.

The nature of the video material encountered in a post-production fa-

cility is quite different from other material such as television programmes.

Video sequences such as commercials and music videos are highly dy-

namic with very short shots, rapid transitions and ambiguous edits.

Video is often heavily manipulated, causing difficulties for many video

processing techniques.

We study the performance of a variety of published shot-change de-

tection algorithms on the type of highly dynamic video typically encoun-

tered in post-production work. Finding their performance disappointing,

we develop a novel algorithm for detecting cuts and fades that operates

directly on Motion-JPEG compressed video, exploiting the DCT coeffi-

cients to save computation. The algorithm shows superior performance

on highly dynamic material while performing comparably to previous

algorithms on other material.
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Within each shot we attempt to identify and segment the important

objects. Our segmentation approach is based on the European COST

211 Group’s Analysis Module, which we examine and attempt to im-

prove. The Analysis Module integrates information from a number of

different segmentation steps such as colour and motion segmentation.

We explore how these individual steps can be adapted to improve per-

formance. Despite producing a small increase in performance over the

previous implementation the segmentations generated by the algorithm

are still far from ideal.

The rendering process produces a single image for each shot in the

sequence, using information gathered by the segmentation phase. Vector

outlines are fit to the objects and they are further segmented into their

major colour regions. The objects are rendered on top of a representation

of the background of the scene which is processed in a similar manner.

The image is annotated to indicate the motion of both the objects and

the camera in the scene, using conventions from comic and storyboard

art.
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1. Introduction
Digital imaging is now prevalent in the wider world beyond the Internet—

much commercial visual media is produced and distributed digitally. A

television program can be produced and distributed completely in digital

form, all the way from the camera to the receiver in the home.

Digital video acquisition and editing has brought huge changes to the

television industry; broadcast standard cameras and editing equipment

are now a fraction of the price they were ten years ago, allowing new

channels and production companies to start up with a minimal outlay.

News operations have changed radically as material from the field can

be transfered back to the newsroom immediately, edited on a desktop

computer together with online archive material, and put on air within

minutes.

The ever decreasing costs of digital storage and communications means

that online digital video is going to play a large part in the future, but

new tools and ways of working are going to be required to take full advan-

tage of all this accessible material. Academic and commercial researchers

have started to tackle these problems, but few solutions have come on

to the commercial market so far. The most successful applications of

the technology have been in specialised application areas, for example

television newsrooms.

Film and video post-production is a growth industry—the power of

digital image manipulation software and the continual efforts of producers

to impact upon an increasingly sophisticated audience means that hardly

any film is made without some form of manipulation in post-production.

This includes not just special effects, but also ‘invisible’ alterations such

as recolouring or the removal of unwanted elements.

The increasing availability of low-cost commercial editing and manip-

ulation packages, such as Adobe’s Premiere and After Effects, means that

a lot of simple post-production tasks can be taken care of in-house. How-

ever there is a market for specialists to do more complex post-production

work, especially for films and television commercials. The large bud-

gets of films and commercials allow the producers to spend considerable

amounts of money achieving exactly the image they want, and a multi-
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million pound industry exists to provide these specialised services.1

This thesis examines how computer processing of video material can

aid in the management of the large amount of video that passes through

a post-production facility. The particular problem we focus on is the

process of searching for material that already exists in the facility. This

occurs in several aspects of post-production work as we detail in Chap-

ter 2.

We propose that storyboards provide a useful abstraction of the con-

tent of video clips. They provide a static 2-dimensional encapsulation

of all the information necessary for the user to quickly understand the

contents of the clip and decide whether it is relevant. The storyboard

format is familiar to many users through the use of storyboards as a

pre-production planning tool, and familiar to people in general due to its

similarity to a comic book format.

We will present a process for generating storyboards from unstruc-

tured video, using computer analysis of video to extract the important

cues that convey the content of the material. A static 2-dimensional

vector representation is produced that can be displayed or printed. The

entire process is intended to be automatic, generating storyboards from

any available online video.

The images produced by the system do a good job of conveying what is

happening in each shot. However the motion analysis stage of the process

is not robust enough for use in an automated system, requiring instead

the manual markup of images in order to produce the final storyboard

image. This has precluded the process being applied to more material.

However as motion analysis techniques improve we anticipate being able

to apply the process automatically to large amounts of video material.

In developing the storyboard process, we have developed a novel

shot detection algorithm that gives improved performance on highly dy-

namic video, improved the performance of an existing object segmenta-

tion framework, and explored methods of presenting movement informa-

tion in a static 2-dimensional context.

1 Television commercials can have enormous budgets, even compared to films. Pearl
Harbour, which was the most expensive film made to date at the time of its release,
cost $140 million and has a running time of 183 minutes [5], while Levi’s recently
spent $2.5 million on a 60 second commercial [4]. Television programmes have much
lower budgets relative to their length.
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The structure of this thesis is as follows: Chaper 2 examines the back-

ground of a post-production facility, the type of work and material they

deal with, and their use of digital video. Chapter 3 outlines the approach

or our storyboarding technique. Chapter 4 investigates the performance

of temporal segmentation algorithms on the type of video encountered

in post-production, and describes our novel shot and fade detection al-

gorithms. Chapter 5 describes how we identify and extract the moving

objects from each shot and Chapter 6 shows how this information is pre-

sented in the storyboard frame. Chapter 7 then examines our results and

outlines possible future work.



2. Post-production
This chapter examines the environment and workflow of a post-production

facility, and the current level of computer-aided asset management (in the

form of the Cakes system). We then discuss how such systems and cur-

rent research in visual information management can be further exploited

to aid the workflow of a post-production facility.

The details in this chapter are based on a single post-production

facility, but are typical of most facilities.

2.1 Inside a post-production facility

Smoke & Mirrors [1] is an independent post-production facility in Lon-

don’s Soho. Positioning itself at the upper end of the market, it spe-

cialises in television commercials, music videos (‘pop promos’) and some

film work.

The clients provide the raw footage and one of the facility’s artists

will manipulate and edit it to produce the desired final result. A variety

of software tools are used, but Discreet’s inferno and flame compositing

systems [3] are the core of the process. The entire process is digital, and

the finished material is returned to the clients in digital form. The audio

track is produced elsewhere and dubbed on at the end of the process.

The clients are closely involved in the post-production process, requiring

regular updates of the work in progress and often sitting in on sessions

in the editing suite.

With five editing suites and numerous clients, scheduling and man-

aging resources is a complex task for the facility. Hardware, software

and artist time are very expensive and must be kept as fully utilised as

possible to earn a return on the investment. Each job also has large

amounts of video material associated with it which must be tracked and

managed. Upon completion of a job, all the source, intermediate and

finished material is archived on tape and stored in the library.
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2.2 Post-production workflow

An independent post-production facility makes its living by handling jobs

for a variety of external clients. In a larger facility there may be many

jobs in progress at any one time, which must be kept separate from each

other.

At the lowest level a job consists of receiving raw footage from the

client, manipulating it according to their wishes, and returning the fin-

ished material to them. However, in reality the process is usually much

more complex than this.

Incoming material does not all arrive at the start of the job as post-

production often begins before photography is complete. Any delays

upstream will cascade down and since post-production is near the end of

the pipeline it suffers compression from upstream delays and inflexible

downstream deadlines. Airtime for commercials is booked far in advance,

and music videos are required by the record’s release date, which is also

fixed in advance—a large amount of production, marketing and other

work revolves around these deadlines and once they are fixed they are

very difficult to change. A post-production facility’s reputation rests to a

large extent on its ability to turn work around quickly close to deadlines.

A facility can at times be a 24-hour operation, and when a courier brings

a tape to the door it may need to be available for an artist to work on

as quickly as possible.

Clients also require regular feedback on the progress of their jobs, and

must approve work at various stages. This gives them many opportunities

to change various parts of the brief, sometimes radically, which the facility

must accommodate.

2.2.1 Anatomy of a post-production facility

The central work of manipulating video is done by compositing artists—

these are highly experienced and highly paid individuals who must be

able to work quickly and expertly with their tools. Artists are known by

their reputations and have their own client base; when attracting work

the reputations of a facility’s artists are as important as the reputation

of the facility itself, and if an artist moves to another facility they will

often take their clients with them. There may also be 3-d artists, who
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produce computer generated imagery.

The artists are supported by a number of other departments. The

production office is responsible for bringing in work and for the admin-

istration of jobs in progress. They need to schedule artist and machine

time, and arrange for receiving raw footage and giving clients feedback

on the progress of their jobs. Due to the highly unpredictable nature of

the business, scheduling is a major problem. Often an artist will have

several jobs ‘pencilled in’ for the same time slot; these are fall back jobs

if for any reason the first job cannot be worked on. This may happen for

any number of reasons, such as late delivery of material from a shoot.

The machine room is the heart of the hardware infrastructure that

underpins the facility. Here tapes are loaded when they arrive, tapes pro-

duced for clients, or electronic transfer arranged via a computer network

or dedicated video transmission lines. A substantial part of the machine

room staff’s job is managing the limited online storage resources; a lot

of video must be transferred between online storage and tape after hours

so that the correct material will be available for the next day.

The library stores archived tapes from all the facility’s past jobs.

These are stored for various reasons such as reference, legal protection,

and because clients often request copies of old jobs, a service for which

the facility can charge a fee. The indexing system is simple, with tapes

being labelled by the client, date and the job name (which may be quite

abstract). These details are stored in a simple database. There is no

indexing of the actual material on the tape, although there may be a

series of still frames at the start of a tape showing keyframes from shots

and their locations on the tape.

The engineering department is responsible for keeping the infrastruc-

ture of the facility operational, and they can be expected to do everything

from electrical repairs to computer and network administration. Larger

facilities may have dedicated software developers or research and devel-

opment teams to work on bespoke software for various jobs.

2.2.2 Types of work

Post-production facilities deal in the manipulation of video images; be-

hind this description there is an almost infinite variety of jobs that a

facility may handle. There are common jobs that are encountered on a
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regular basis; removing wires, harnesses or other equipment from footage,

or compositing elements shot on a blue-screen stage onto a background

plate. However the facility’s ultimate job is to realise the client’s vi-

sion on the screen—a task that requires a large amount of interpretation

and inventiveness. Many effects are achieved in a non-obvious way, and

even when there is an obvious method to do something there is often an

ingenious alternative that requires substantially less effort.

The 3-d department may work on purely computer generated jobs, or

sometimes they may need to produce single elements for incorporation

into live footage.

2.2.3 Systems

Specialist post-production would not exist without modern computer

technology, and understandably computers are a fundamental compo-

nent in the systems that underpin the facility.

An artist spends most of their time in a suite sitting in front of a SGI

workstation running inferno or flame. Each workstation has its own high-

speed disk array for storing video, typically each system can store 2–3

hours worth of uncompressed video at television resolution. Each system

also has video I/O hardware to allow the importing and exporting of

video to a VTR (Video Tape Recorder).

These systems are connected via a fibre-optic HIPPI network which

is used for transferring video between them. They are also connected

to a conventional ethernet network, as are all the various Macintoshes

and PCs in the facility. In parallel to this data networking there is also

a video routing infrastructure—any of the video devices (such as flame

systems or VTRs) can be routed to any of the others via an interconnect.

2.3 The Cakes system

In an effort to assist the management and tracking of the large amount

of material that passes through the facility, Smoke & Mirrors embarked

upon the development of a database system tailored to the needs of a

post-production facility. This led to the setting up of a separate company

called Unique-ID [2] to develop and market the system, which is called

Cakes.
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Fig. 2.1: Architecture of the Cakes system.

Cakes is a web-based system which knows about the various enti-

ties involved in managing a post-production facility, such as clients, jobs,

tapes and dubs (copies of tapes). The architecture is deliberately flexible

to allow multiple relationships between entities instead of the rigid struc-

ture imposed by traditional contact databases, which do not adequately

reflect the nature of the post-production industry. Being web-based it

can be available on every computer in the facility with a web browser,

and even to machines outwith the facility. This means restricted access

can be given to clients to monitor the progress of their jobs.

A block outline of the architecture of the Cakes system is shown

in figure 2.1. A central feature of Cakes is that it is integrated into the

architecture of the facility and can automatically track material. Physical

media such as tapes are labelled with a ‘pill’, a small transponder with

a unique serial number (shown in figure 2.2). A scanner, or ‘pill reader’

(also in figure 2.2) is mounted above each VTR so that whenever a tape

is inserted it can be identified. Each VTR also has a digitiser linked to

its video input and output. The digitiser captures reduced resolution

copies of every frame of video that is either recorded to or played out

from the VTR. The combination of pill readers and digitisers means that

the system can maintain a low resolution online proxy of every frame of

video that resides on a tape in the facility, providing that the tape has

a pill and has been either recorded or played on an equipped VTR. Not

all material exists on tape, so the online framestores are also scanned by

daemon processes looking for frames that have recently appeared or been
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Fig. 2.2: A digitiser and pill reader mounted above a VTR unit, and a

pill attached to a tape.

modified.

Pill readers can also be located in other sections of the facility, so

the system can track tapes that are entering or leaving the building via

reception, or being deposited in the library. The use of pill readers means

most of the tracking is automatic, requiring little or no work on the part

of the operator, so the system is kept consistent even when people are

rushed.

The presence of these online proxies make Cakes a powerful system.

From any machine in the facility with a web browser a user can quickly

scan the contents of any tape. Low resolution video can be streamed over

the internet to clients who can view rough cuts or work in progress. Fig-

ure 2.3 shows a screenshot of the Cakes interface, with several windows

showing streaming proxy video.

The proxies are stored online on a video server in Motion JPEG

format. This format is used because frame level editing is common,

and would require expensive and complicated decoding, splicing and re-

encoding if a temporal redundancy compression system such as MPEG

were used. At a typical proxy resolution of 176 × 144 pixels each frame

requires around 3-4 kilobytes of storage. With 90,000 frames on a one

hour tape the storage requirements are still considerable, but can be ac-

commodated with inexpensive disks. If the facility wishes to keep the

proxies online indefinitely then the storage requirements will grow over

time as more material passes through the facility; however it is antici-

pated that the continuingly falling cost of disk storage means that this
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Fig. 2.3: A screenshot of the Cakes system, with streaming video prox-

ies.
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will not present a problem.



3. Background and proposed

approach
This chapter surveys previous work in automatic analysis and processing

of video information, looking at proposed approaches to video retrieval,

browsing and summarisation. We then describe the different methods

used to store and transmit digital video, and the impact these have on

processing algorithms. We finish the chapter by outlining our video sum-

marisation technique and justifying our pursuit of this approach over

others.

3.1 Video information retrieval

The automatic analysis of the contents of images has long been an area

of active research in Artificial Intelligence, and in the last decade the

techniques developed for computer vision have been used in combination

with those of information retrieval to address the problems of indexing

visual information.

Photographic archives have long been indexed using keyword or cat-

egory based systems, which required users to examine each photograph

and assign keywords or categories. There are many obvious drawbacks

to such a system, such as the overhead of manually assigning metadata,

and misclassification either by accident or due to the subjectivity of the

person entering the data. If a limited set of keywords or categories is in

use then it may turn out to be too limiting for future uses of the database.

The use of Content Based Image Retrieval (CBIR) techniques has ex-

panded the way visual data can be stored, indexed and searched. Many

CBIR techniques (and other image analysis algorithms) use image fea-

tures, which are computed descriptors that represent certain properties

of an image. By precomputing these features for all the images in the

database the system can quickly process queries without having to pro-

cess the actual pixel data of every image for every query.
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3.1.1 Image features

Many image statistics have been used for image indexing, including colour,

texture and shape. The idea of image features is to compute a concise de-

scriptor for the behavior of an image property over a region. For example

a colour histogram can represent with a few values the colour distribution

over hundreds of thousands of pixels. Obviously information is lost in

the process but the descriptor should be designed so that comparing the

descriptors is roughly equivalent to comparing the original images; im-

ages that are considered similar by a human observer should have similar

descriptors.

Colour is typically represented by histograms, which describe the dis-

tributions of different colour values. They discard spatial information,

so it is not possible to know what part of the region contains which

colours. A feature that preserves the spatial relationship of colours is a

co-occurrence matrix, which records the likelihood of two pixels of given

colours being a certain distance from each other [100].

Texture can be represented many ways. One is to record the responses

of a bank of carefully chosen filters such as Gabor filters [25] to the

texture. Another is to transform the texture region into a frequency

domain, for instance with a fourier transform, and record the dominant

frequencies. Tamura et al. [102] define three human-friendly properties of

textures which can be measured: coarseness, contrast and directionality.

The shape of a region is also an important perceptual cue. The out-

line of a region can be represented by locating the zero crossings of its

curvature function [62], which have been identified as important in our

perception of shape. The important zero crossings are located by progres-

sively smoothing the outline to remove noise and recording the locations

along the boundary of the crossings that remain, producing a scale and

rotation invariant feature descriptor.

3.1.2 Query by example

In a query by example system the user provides an image representing

what they are looking for and the system returns images from the col-

lection that it deems to be similar. When images are entered into the

database a number of low-level features are computed over the image and

stored. When a query is made the same features are computed over the
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query image and compared to the database to find the closest entries.

The computed features result in a number of scalar values which are

collected together in a vector that positions the images in a high dimen-

sional feature space. High dimensionality indexing techniques are used

to store the vectors for the indexed images and perform nearest-neighbor

queries.

Once the user has submitted their query image they are returned a

ranked set of images from the database that are considered similar using

the system’s image features and similarity metrics. The user can then

select one of these images as a query image to submit in a new query,

hopefully refining their search.

Nastar et al.’s Surfimage system [66] adds a relevance feedback mech-

anism to this loop. From the returned images the user can mark them

as relevant or not relevant. This information is then used by the system

to modify the weightings of the different image features it uses.

When computed over the whole image image features don’t fully rep-

resent the areas of the image that the user is interested in. Therefore

many CBIR systems, such as the Blobworld system [19], pass images

through a segmentation stage and compute features for the computed re-

gions. Smith and Chang’s VisualSEEk system [91] also takes into account

the spatial relationship between regions.

An interesting approach that attempts to represent many image prop-

erties with a single feature uses the wavelet decomposition of the im-

age [97]. The locations of the n most significant wavelet coefficients for

each image in the database are stored, and compared with the wavelet

transform of the query image.

The major drawback of query by example systems is the need for a

query image. This requires that the user have a concrete idea of what

they are searching for and are able to provide a graphic representation

of it. It also limits the user’s view of the database as images that are not

close to the query image will never be revealed to the user.

3.1.3 Browsing

Browsing systems instead allow the user to explore the database inter-

actively, allowing them to discover images they may not have otherwise

considered, or even known were in the database. Rather than return-
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ing results from searches, browsing systems present a structured view

of the database and provide tools to navigate around this framework.

As image databases are usually stored as a high-dimensional index of

image features browsing systems employ various methods of dimension-

ality reduction to present the feature space in 2 or 3 dimensions, while

attempting to keep images with similar features close to each other.

Craver, Yeo and Yeung [20] use space filling curves to perform dimen-

sionality reduction. By filling the high dimensional space with two curves

each point in the higher space can be represented in 2-d by its position

along each of the curves. The user can explore the space by moving along

either of the curves to find neighboring images.

The El Niño system [81] allows users to control the dimensionality

reduction process. The images from the database are initially projected

in a 2 or 3 dimensional space. The user can then manipulate this space by

moving images around, bringing images that they consider to be similar

close to each other. The system then calculates a new projection to

reflect these changes.

3.1.4 Automatic classification

Content based analysis can also be used in the context of a traditional

classification or keyword based indexing system by training the computer

using example images for each category or keyword.

This can be done by manually marking up a training set of images

using a chosen set of keywords and using it to train a neural network or

other statistical classifier. The Photobook system [73] instead has models

for specific objects, such as faces, and detectors to locate them within an

image. The models are tailored to their objects, and so are better able to

describe and differentiate between examples than generic features such

as colour or texture models.

3.1.5 Video

All of the above approaches have been extended to video by adding fea-

tures based on motion. The extra temporal dimension of video presents

additional difficulties, particularly with the volume of data that must be

processed and with presenting material efficiently.
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A simple approach is to represent each clip with a single static image,

such as a frame from the clip, and apply static image retrieval techniques

to that. There have been many approaches suggested for selecting or

synthesising keyframes for a video sequence, but no static image can

convey all of the information contained in a moving video sequence.

Motion of regions has been added as a feature to query by example

systems, allowing object and camera motions to be indexed. The user can

be provided with a means to sketch approximate motions and retrieve

sequences that contain the same motion, in tandem with other search

criteria, such as in IBM’s QBIC system [29].

Although presenting video in a video indexing system doesn’t present

much of a technical challenge it does cause problems with the efficient

usage of the system. Much attention has thus been given to devising

novel ways to allow a user to efficiently browse a video collection.

Video summarisation

Video summarisation techniques try to preserve the important features

of a sequence in a manner that can be understood by an observer in

less time than it would take to view the video itself. The suggested

approaches can be split into those that create a static representation and

those that produce a shorter moving sequence.

The idea behind producing a reduced time video sequence is that

it can still include the semantically important parts of a sequence, but

be viewed in a fraction of the time of the original sequence. This can

be done through a combination of speeding up video and removing sec-

tions. There are limitations however, as humans have difficulty taking

in information if it is presented too fast, placing a limit on how much

a clip can be temporally compressed. Audio information also becomes

incoherent when sped up or chopped up in this manner. Nam and Tew-

fik [64] produce a temporally compressed video sequence by adaptively

subsampling the original. The sampling rate is determined by an esti-

mation of how important a segment of video is, with more important

parts being sampled at a higher rate. They identify important segments

of video by looking for ‘emotional dialog’ and ‘violent action’, which are

identified through a combination of video and audio analysis. Smith [90]

presents a video browser application that is designed to be used where
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only a low bandwidth connection is available. Initially a reduced spatial

and temporal resolution sequence is displayed, which can be refined by

selecting a segment and viewing it with increased resolution. Multireso-

lution representations such as wavelets are well suited to implementing

such a system.

The other way of temporally compressing video is to select a number

of small clips from the original sequence that will be combined in a sum-

mary. Smith and Kanade [92] produce a ‘skim’ of a video sequence by

looking for a number of visual and audio cues. They also perform speech

recognition on the audio and assign relevances to the words in the tran-

script. A compressed soundtrack is generated by combining important

words from the original audio, and clips are then chosen from the video to

go with the audio. Pfeiffer et al. [74, 53] explore the idea of compressed

video in the context of automatically generating movie trailers. They

identify types of material from the movie that are often used in trailers,

such as actors’ faces, conversations, action sequences and the title. They

then analyse the whole movie looking for examples of this material and

synthesise a new sequence of a specified target length.

Static 2-dimensional summaries have been more popular. These typi-

cally try to produce a collection of still images that represent the contents

of the sequence. These images may be frames from the original sequence,

or synthesised based on the contents of the sequence. Again the aim is

to try and represent the most salient details of the sequence. Often 2-

dimensional summaries also try to show the relative importance of the

different parts of the sequence, or to show the semantic structure of the

sequence. These 2-dimensional summaries have several advantages over

temporally compressed sequences; they can be viewed by a human much

faster, require less storage and network bandwidth and no specialised

equipment to view (such as a computer—a summary can be printed and

distributed on paper).

Such approaches often represent the semantic structure of video on

four levels, as shown in figure 3.1. At the lowest level are the individual

frames. A level above this are shots, which result from individual op-

erations of the camera and can be joined with a variety of transitions.

A scene is a consecutive sequence of related shots, representing a single

situation or location in a larger program. At the top level is the sequence

itself, which may be a single episode in a series, a movie in a database,
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Video

Scenes

Shots

Frames

Fig. 3.1: The hierarchical structure of video.

or any other entity in a video collection. When processing video in a

computer the input is simply a sequence of frames (possibly with an as-

sociated audio channel). The only thing of which we can be certain is

the frames—all structure above this must be inferred from the contents

of the video and possibly audio channel. Shots can be considered as the

syntactical level of video structure and we will examine them further in

Chapter 4.

Static summaries are often referred to as storyboards. A storyboard

is a pictorial representation of a sequence that is used as a planning aid

in production [37]. Based on a script, concept art, and advice from the

director and writer, a storyboard artist will produce a series of small

drawings, each one representing a single shot. A storyboard, such as

shown in figure 3.2, shows the principal contents and actions of each

shot, how they are framed, and how objects and the camera will move.

Storyboards have become an essential part of the pre-production pro-

cess. The storyboards can be filmed along with a scratch soundtrack to

produce an animatic, which can be viewed as a very rough cut of the fi-

nal product and used to identify any script problems. For complex shots,

storyboards show what is going to be within the frame and so can be

used to determine what sets need to be built, and importantly how much

of the set is going to be visible, so there is no need to build anything

that is never within the frame. In modern big-budget productions ani-

mated 3-dimensional visualisations are often used to plan complex action

or special effects shots.

A simple approach to generating a 2-dimensional summary is to take

sample frames at regular intervals and present them as a simple sto-

ryboard, but this has obvious drawbacks. The sampling rate can be

adapted to try and allocate more keyframes to the important parts of

the sequence, and less to parts where relatively little happens. There

are many different ways of deciding how to vary the sampling rate, for
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Fig. 3.2: Part of the storyboard for the film Jurassic Park (1993) [87].
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example based on the length of each shot [75] or using MPEG-7’s motion

activity descriptor [23].

Since a conventional storyboard will usually have one image per shot,

we can use a shot change detection algorithm to identify the shots in

a sequence and use one image per extracted shot. This image can be

a single keyframe selected from the shot. A simplistic approach is to

take the first, last or middle frame from the shot, but this may miss

out important features of the shot because they are not present in that

particular frame. A variety of keyframe selection techniques have been

proposed in the literature [43, 105, 72].

It is also possible that there will be no single frame that adequately

represents a shot. It is instead possible to synthesise an image that

contains the important aspects of all parts of the clip. If the camera

moves during a shot then the movement can be tracked and the different

parts of the background stitched together to create a panorama [104, 103].

Another form of synthesised image is Arman et al.’s ‘R frame’ [12] which

is a single keyframe annotated at the sides with information about motion

and the length of the shot.

Once keyframes are chosen there are different ways they can be pre-

sented in a storyboard format. Different shots can be perceived as more

important than others and be given more space on the storyboard. Uchi-

hashi et al.’s ‘Video Manga’ system [108] presents the story board in a

comic book style. Keyframes for shots that are determined to be more

important are given more space, and a packing algorithm used to arrange

the variably sized images on the page.

The methods discussed so far represent a video sequence as a purely

linear structure, but as we have seen video can also be considered as

hierarchical, with several linked shots constituting a scene. Determining

what shots are in a scene is a subjective process, but there are various

cues that can be exploited. Shots from the same scene will often be set in

the same location and usually have similar colours. If audio is available

then the sound for the scene will usually be unbroken, as the scene occurs

in real time. Such cues are used by Pfieffer et al. [74] in their movie trailer

generator. Ferman and Tekalp [27] attempt to analyse the higher level

structure of a sequence by using the different types of transition and

other cues such as motion continuity over cuts.

Clustering techniques can be used to find similar shots that may con-
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stitute a scene. Yeung and Yeo [117, 116] use such a method, but with

an additional time constraint as only consecutive shots should appear in

a scene. They segment a video sequence into ‘story units’, which are a

semantic level between shots and scenes, and build up a ‘Scene Transition

Graph’, which is a directed graph showing the relationships between the

story units. Clustering can also be applied to the extracted keyframes

from shots to build a hierarchical tree of keyframes [99, 69].

3.2 Digital video

Digital video is now prevalent in the broadcast world but the need to

maintain compatibility and effect change gradually has constrained many

of the decisions in how the digital broadcast chain is implemented.

In the UK broadcast video uses the PAL standard, which defines

interlaced frames of 576 scanlines at a frequency of 25Hz. Interlacing

means that each frame is transmitted as two fields, one consisting of the

even scanlines and one of the odd lines. The fields are captured one after

the other, so the second field represents the scene 1/50th of a second

after the first. This is visible as a tearing beween adjacent lines when a

video frame is frozen, but appears as smooth movement when viewed on

an interlaced display.

Analogue video is transmitted as three components: one of luminance

and two representing colour. This is partly to maintain compatibility

with black and white sets, which only display the luminance component,

but also as a form of compression. The eye is less sensitive to changes

in colour than luminance so the colour components can be allocated less

bandwidth.

Digital video has inherited many of these characteristics. In the

United Kingdom digital video is 720 by 576 pixels at 25 interlaced frames

per second. This is used for both standard 4:3 aspect and 16:9 widescreen

material (almost all new material is widescreen). For widescreen material

the pixels are stretched to an aspect ratio of 1.42.

The SMPTE have defined standards for the interchange of digital

video. The SMPTE 259 M standard defines the transmission of video

over a Serial Digital Interface (SDI) at a rate of 270 Mbit/s. Video is

encoded into a luminance channel Y and two chroma channels Cb and

Cr, and sampled at a ratio of 4:2:2, with two samples of Cb and Cr for



3. Background and proposed approach 22

every four samples of Y . This subsampling is done horizontally along

each scanline.

The Y , Cb and Cr values are calculated from RGB values as


Y

Cb

Cr

 =


16

128

128

+
1

256


65.738 129.057 25.064

−37.945 −74.494 112.439

112.439 −94.154 −18.285

·


R

G

B

 (3.1)

SDI video is used for interconnecting studio equipment but the data

rate is too high for storage and broadcast, so a number of compression

systems have entered use. This is even more so for High Definition (HD)

material, which has resolutions of up to 1920 by 1080 and uncompressed

data rates of 1.5 Gbit/s.

3.2.1 DCT based compression

There are now a plethora of compressed formats in used, mostly used by

different tape formats from competing manufacturers, but all are based

on the Discrete Cosine Transform (DCT). The DCT is a spatial to fre-

quency space transform and its use in compression is based on the as-

sumption that most detail in photographic images is relatively low fre-

quency compared to the resolution of the image, and so high frequencies

can be removed from the image without being noticed.

Figure 3.3 demonstrates the compression of an 8 by 8 pixel block

using the DCT. Although the block is taken from a detailed region of

the image there are no strong edges at this small scale. The pixel values

are transformed to give an 8 by 8 block of frequency coefficients. The

low frequencies are represented in the upper left (with the DC value in

the top left) and the higher frequencies in the lower right. Typically the

lower frequencies dominate. The coefficients are then quantised, which

results in many of the high coefficients having zero value. These quan-

tised values are then reordered into a 1-dimensional array using a zigzag

pattern that puts the coefficients in frequency order. This data is then

compressed with a Huffman compression routine. The efficiency of the

Huffman compression is improved by the grouping of the low valued co-

effiecients by the zigzag reordering. When the inverse process is applied

the important low frequency values are preserved. Many DCT based
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Fig. 3.3: Compression of a 8× 8 pixel block using the DCT.

schemes will additionally subsample the chroma channels at a 4:1:1 ra-

tio, so a 16 by 16 pixel block is represented by a 8 by 8 block in the Cb

and Cr channels.

The JPEG image compression format works like this and many com-

pressed video formats work by applying this compression to each frame

independently, which is commonly called ‘Motion JPEG’. However addi-

tional compression can be gained by exploiting the temporal redundancy

in video.

In most video much of each frame is very similar to the previous frame.

Rather than recoding these areas for every frame, they can be referred

from previous frames. The MPEG system used on DVDs and broadcast

television does this, compressing video and audio to a bandwidth of 8

Mbit/s.

MPEG works with groups of frames, typically 15 at a time. Frames

are encoded one of three different ways. I frames are encoded as JPEG

images. They are independent of other frames and provide an entry point

where a decoder can begin decoding the stream. P frames are encoded

by referring to blocks from a previous I or P frame through a process

called motion estimation. The encoder searches for similar blocks in the

reference frame and encodes the offset vector and (small) error between
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the blocks. Not all blocks have a good match in the reference frame, so

these can be encoded normally. B frames are encoded using two reference

P or I frames, one before and one after the current frame.

Each group of pictures (GOP) is encoded as IBBPBBPBBPBBPBB.

The first frame is encoded as an I frame, then the fourth as a P frame

and the intermediate B frames can then be encoded. The next P and B

frames are then encoded until the end of the group when a new group is

started with another I frame.

Although this results in greater compression than Motion JPEG it

adds considerable complexity. Encoders and decoders need to code frames

out of order and buffer them, which adds delay. Editing an MPEG stream

is difficult as a whole group of frames must be decoded, modified and re-

coded. For these reasons MPEG is rarely used in studio equipment,

but instead for final delivery where bandwidth is scarcer and no further

modification to the stream is required.

3.3 Our approach

Discussions with people at Smoke & Mirrors identified several ways that

video indexing could be utilised. An obvious area is the library, where the

simple indexing system is often insufficient to precisely locate material,

and often several tapes will have to be taken out and viewed manually

to find what is needed. Queries to the library are typically for a whole

video or commercial, which is required for reference, PR purposes, or to

show as an example of previous work to potential clients.

Another potential point of use is when an artist is looking for a video

element to use in a composited shot. The search criteria in these instances

are often very vaugue. Sometimes a specific object or location is required

but more often the artist is seeking something that “fits in” with the

look they are trying to create. It may be a certain kind of texture or

movement, and they are often unable to articulately describe what they

are looking for, although they say they will know it when they see it.

Often the actual footage they select is quite different what what they

express as the search criteria, but they have seen a way that they can

manipulate it to get what they want.

A query system may be suitable for the case of the library, where the

user will have knowledge of what is in the target video and can express
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that as a query. However a browsing system would also bring advantages

to the library. Since the search can already be narrowed down using the

existing metadata (client, job name, date) a browsing or summarisation

system could accelerate the process of reviewing the returned tapes.

The case of the artist looking for elements is much more difficult.

The terms of the query are difficult for a human to express and much

more difficult to quantify in a way that can be communicated to the

computer. The criteria used to judge the suitability of a clip are often

too subtle to be differentiated by the low level image features used by

indexing systems. A browsing system is much more suitable in this case,

allowing the user to make their own judgments about what is suitable,

but assisting them in navigating the database. The user may also only

have a vague idea of what they want, and a browsing system will allow

them to look at what is available.

3.3.1 Storyboards from video

We have decided to focus on developing a video summarisation system

to aid a library-type query. The target sequence is either a self contained

commercial or promo, or a shot within one of these. Our approach will

be to create storyboards from these video sequences. The storyboard

provides a quickly understood overview of a sequence at the shot level;

for the length of sequence we are concerned with the storyboard will fit on

one or two pages. Commercials and promos have little narrative structure

and in the post-production environment it isn’t important anyway, so

there is nothing to be gained from having a structured representation

beyond the shot level. Macer et al. [58] have already pointed out many of

the advantages of a storyboard representation. an additional advantage

is that the storyboard format is already familiar to most users from its

use as a preproduction tool.

The storyboard frames must show the principal attributes of the shot.

These are the main objects and their movement, camera movement, and

the shapes and colours of the principal objects. We believe that a vector

representation is most suitable, as this gives several advantages over the

usual bitmapped keyframe: smaller storage size, resolution independence

and the ability to layer and optionally display different parts of the image.

We develop a system to take an original video sequence, consisting
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of only video frames and without any associated audio or metadata, and

produce a storyboard-style summary of the sequence. We divide this

process into three principle steps:

1. Temporal segmentation (chapter 4): Identification of the individual

shots in a sequence. Existing shot change detection algorithms per-

form poorly on the highly dynamic material typically encountered

in a post-production environment, so we develop new algorithms

for detecting cuts and fades in highly dynamic material.

2. Motion segmentation (chapter 5): Identification of the principal

objects within a shot and their motion. Motion analysis and seg-

mentation is a very difficult problem. We take an existing motion

segmentation framework and improve it by tuning or replacing the

algorithms used in its various stages.

3. Presentation (chapter 6): The rendering of the extracted infor-

mation in a storyboard form. We take the output of the motion

analysis stage and produce a vector drawing representation of the

shot, annotated with motion information.



4. Temporal segmentation
This chapter describes our research into the temporal segmentation (also

called shot change detection) of video material in a post-production envi-

ronment. Structurally a video sequence can be decomposed into scenes,

which can again be decomposed into shots as shown in figure 3.1. A shot

is defined as one uninterrupted operation of the camera [42]. A scene is

a number of conceptually related consecutive shots, for instance show-

ing events located in the same time and location before the next scene

moves on to another time and location. Scenes can be thought of as the

semantic level of the language of film while shots are the syntactic level.

4.1 Types of transition

Shots are joined by transitions and there are a large number of possible

transitions which can join one shot to another. However the majority of

those encountered fall into one of four categories (examples are shown in

figure 4.1):

cuts The simplest transition, where the last frame of one shot is followed

immediately by the first frame of the next. It has an effective length

of zero frames.

fades The first shot fades out to a blank (usually black) screen, and the

following shot fades in.

dissolves The effect of fading out one shot while simultaneously fading

in the next; the first shot ‘dissolves’ into the next.

wipes A wipe is a spatially varying transition between two shots; the

shots themselves may also move, or may be static in the frame.

Many varieties of wipe are possible by changing the pattern used

to make the transition, for example the star shape shown in the

figure.

All transitions except cuts are gradual transitions, they are incremen-

tal changes through a number of consecutive frames.
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Fig. 4.1: Different types of transition.
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Modern digital editing systems make a huge number of transitions

possible, and make it easy to devise novel transitions which may not fall

into the above categories.

4.1.1 Transitions in context

Cuts, fades and dissolves have been achievable with optical printers for

many years, and they have become well established in the film editing

vocabulary. Over time they have acquired certain semantic meanings in

film and video, which audiences understand on a subconscious level.

Gradual transitions are often used to separate scenes, while cuts are

used within scenes to separate shots that are occurring in continuous

time in a single location. Dissolves often indicate the passage of time;

a dissolve between two shots of the same location indicates that we are

returning to the same place, but later in time. Dissolves are also used in

montages, which are sequences of related scenes, often with music, which

show some significant concept or event [42].

4.1.2 A transition model

In understanding transitions, how they are produced and how they can

be detected, it can be useful to use a model. Hampapur, Jain and Wey-

mouth [35] formulate a model of how gradual transitions are produced.

Two shots, S1 and S2, are combined into the transition sequence E by

applying a spatial and chromatic transform to each. Each pixel x, y of

every frame t of the resulting sequence is some chromatic and spatial

combination of pixels from the two original sequences. The chromatic

transform Tc doesn’t change the position of pixels but can modify their

colour values and also assign an alpha value to each pixel which is used

by the compositing operator, ⊗, to mix the transformed pixels [77]. The

spatial transform Ts doesn’t modify the colour but can map pixels from

one position to another within the frame. The transformed shots are

composited to form the final sequence:

E(x, y, t) = (S1 × Ts1 × Tc1)⊗ (S2 × Ts2 × Tc2). (4.1)

The fades, dissolves and wipes can be produced by using fairly simple

transforms. Fades and dissolves are purely chromatic effects, so both
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Ts1 and Ts2 are identity transforms. The chromatic transforms lower

the intensity of S1 over time and increase that of S2. For a fade in/out

the intensity of S1 is lowered completely before that of S2 begins to

increase. The colour used between the shots is usually black, but does

not have to be. During a dissolve the intensities of both shots are adjusted

simultaneously although the transforms of each shot do not have to occur

over the same time scale or at the same rate.

Wipes are spatial edits, with S2 gradually replacing S1 on a pixel by

pixel basis; each pixel in E is from either S1 or S2. Each Tc is an identity

transform, while the Ts transforms map pixels from the source frames to

their new locations. Any number of spatial transformations are possible,

from simple translations to spirals and page curl effects.

Hampapur, Jain and Weymouth suggest the transformations be rep-

resented by matrices which are multiplied by either the spatial vector of

each pixel in the shot, [x, y, t], or the colour vector [r, g, b]. Although this

is sufficient to represent the simple common transitions, modern digital

editing equipment can produce far more complex edits, which can still

be represented by the general model.

Others have suggested similar models, and used them to derive their

own temporal segmentation approaches [30, 96, 118, 36]; however these

are explicit models of individual transitions, unlike the general model

above.

4.2 Previous work

Temporal segmentation is an unavoidable problem in many video pro-

cessing tasks, and there is a large body of work aimed at automati-

cally decomposing a video sequence into its constituent shots. There are

many different ways of building a taxonomy of shot change detection

techniques; important traits are the types of transitions detected and

whether the algorithm processes uncompressed images or works directly

on a compressed format.

Almost all digital video is stored and transmitted in some compressed

format. Many algorithms have been proposed that work directly on

compressed video, saving the computational and memory overheads of

decompression—also, the compression schemes themselves apply signif-

icant analysis to the video, which can be exploited for detecting shot
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changes. MPEG is the most popular format for video compression, and

the compressed data is useful in a number of ways. Firstly, a 1/8 res-

olution subsampled image can be quickly extracted by taking the DC

coefficient from each macroblock; this is called the DC image. The AC

coefficients can also be used to extract edge information without having

to do the full inverse DCT [50]. Algorithms that use motion information

can utilise the MPEG motion vectors. Although these do not necessarily

reflect the true motion of the scene as they are chosen to optimise the

coding, they can save the need to carry out an expensive optical flow

computation.

In this review we will look first at techniques that detect cuts only

and then at those that detect gradual transitions, which build on the

techniques introduced by the cut detectors. Finally we will look at some

of the integrated approaches to detecting multiple types of transition.

4.2.1 Identifying cuts

Cuts are the easiest type of transition to detect, and have received the

most research attention and met with the most success. Almost all cut

detection schemes are based on the assumption that there is more simi-

larity between frames within a shot than between frames from different

shots. The most popular approach therefore is to define some way of mea-

suring the similarity (or conversely the difference) between two frames

and look for pairs of consecutive frames that show a large dissimilar-

ity. Several different methods of measuring similarity and of locating the

peaks that indicate cuts have been proposed.

Similarity metrics

Image similarity is a concept that has been studied in depth in the closely

related area of content based image retrieval, and many of the similarity

metrics developed in this field have also been applied to scene change

detection. Most are based on using low-level features of the image which

are easily computed.

Pixel statistics The simplest similarity metrics are calculated on the

pixel data directly, treating each image as a vector of values and us-

ing vector distance metrics such as the Sum of Absolute Differences,
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SAD =
∑

x,y |I1(x, y) − I2(x, y)| or Sum of Squared Differences, SSD =∑
x,y(I1(x, y)− I2(x, y))2 which can either be calculated on the intensity

image alone, or over all the colour channels. These are very sensitive to

noise so a threshold can be introduced at the pixel level with the thresh-

old chosen to be larger than the amount of intensity variation caused

by noise. The metric then becomes the count of pixels whose change is

above the threshold. Movement also causes pixels to change, and cam-

era motion can cause sizeable pixel differences across the entire image;

prefiltering the images can help reduce the effect of small camera move-

ments [120].

Simple statistical properties of the pixel values such as the mean and

variance of pixel intensity values can also be used, and tests applied to

decide if two frames share the same statistical distribution of intensities.

Ford [30, 31] lists several standard statistical tests including the likelihood

ratio for two images with means µa and µb and standard deviations σa

and σb,

λu =

[
σa+σb

2
+
(

µa−µb

2

)2
]2

σaσb

, (4.2)

or

λn =

(
σ2

0

σ2
a

)(
σ2

0

σ2
b

)
(4.3)

assuming a normal distribution and where σ0 is the standard deviation

of the pooled values from both images. Sethi and Patel [86] also use this

test, and attribute it to Yakimovsky. Other standard statistical tests

suggested by Ford are Snedecor’s F-test,

F =
σ2

a

σ2
b

, where σa > σb and F ≥ 1, (4.4)

and Student’s t-test,

t =
µa − µb√
σ2

a + σ2
b

. (4.5)

Ford also suggests two tests of his own devising,
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λ1 =
|µa − µb| × |σa − σb|

σaσb

(
µa+µb

2

) , λ1 ≥ 0 (4.6)

λ2 =

(
µaσa

µbσb

)2

, where µa > µb, σa > σb and λ2 ≥ 1. (4.7)

Since the mean and standard deviation are global statistics computed

over the whole image they have a certain amount of tolerance to motion.

However such simple statistics are quite a blunt instrument and two very

different distributions can have the same mean and standard deviation.

These statistics also only utilise the intensity information in the image,

making no use of the additional information available in the colour chan-

nels.

Colour Histograms Histograms are a more sophisticated statistical

descriptor of an image. They also introduce a large amount of choice for

the algorithm designer—what data to calculate a histogram of, how to bin

the data, and how to compare two histograms. A number of researchers

have experimented with histogram based techniques, comparing the per-

formance of different established methods from the statistics literature,

and inventing novel techniques tailored for images.

In computing the histograms the main choices are:

Colour space Histograms can be computed on the greyscale pixel inten-

sities, or using all the available colour channels. A colour histogram

can be computed in any colour space; common choices are the RGB

space and the YUV space used in JPEG and MPEG compression.

These colour spaces are very machine orientated and are often crit-

icised for being far removed from how humans perceive colour. For

this reason the more perceptually based HSV and L∗a∗b∗ colour

spaces are sometimes used.

Histograms based on three colour channels are often sensitive to

illumination changes; for instance a person walking out of shadow

into sunlight can have a pronounced effect on the histogram. This

can be countered by using only chroma information to build the

histogram; for instance using only the U and V channels of the

YUV colour space. Wei, Drew and Li [111] compute what they call
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chromaticity histograms by first normalising each of the R, G and

B channels over the frame so that the values in each channel sum to

one, then define two chromaticity components, r = R/(R+G+B)

and g = G/(R + G + B).

Bins To have a histogram bin for each individual possible colour would

require a large amount of storage and not be much use; the his-

tograms would be highly susceptible to noise. Instead the colour

space is quantised first to reduce the number of different colours.

Usually the colours are quantised into evenly distributed bins—if

the number of bins is a power of two then this can be done by

simply taking the most significant bits of each value, for instance

to quantise an 8-bit colour value into 8 bins we take the three most

significant bits.

As observed above the most popular colour spaces are not percep-

tually uniform, so it is possible to use varying sized bins to com-

pensate. However this is more of an issue in content-based image

retrieval than for shot change detection.

Dimensionality Colour images typically have three separate colour chan-

nels, which gives us the choice of computing one 3-dimensional

histogram for the entire colour space, or computing separate 1-

dimensional histograms for each channel. 1-dimensional histograms

have the advantage of being easier to compute and requiring less

storage; 3n bins rather than n3 when each channel is quantised to

n values.

Many different metrics exist for comparing two histograms. If we treat

the histogram as a vector then the usual vector distance metrics such as

the L1 and L2 distance can be used. The normalised inner product of

two histograms has also been used [31]. Histogram differences are well

explored in the field of statistics, and several standard metrics exist such

as the χ2 test (with N degrees of freedom),

χ2 =
N∑

i=1

(H1(i)−H2(i))
2

H1(i) + H2(i)
, (4.8)

and the histogram intersection,
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I =

∑N
i min(H1(i), H2(i))

N
. (4.9)

The Kolmogorov-Smirnov test is another popular statistical test, first

suggested for use in shot change detection by Sethi and Patel [86]. If

CDF (i) is the cumulative distribution function of a histogram up to bin

i, then the Kologorov-Smirnov test is computed as

ks = max
i
|CDF 1(i)− CDF 2(i)|. (4.10)

Many authors have used different combinations of histogram and met-

ric, including comparative studies which have examined the impact of the

different choices [31, 33].

Although these histogram measures can be fairly effective, they still

have some weaknesses. Two neighbouring shots may have similar his-

tograms, particularly if they are of the same location. As cuts are used

between shots within a scene, which is usually restricted to a single phys-

ical location, this is a common occurrence. To counter this researchers

have introduced some spatial information to the histograms by parti-

tioning the frame into subblocks and computing histograms for each

one, the idea being that although two shots may have similar global

histograms the local histograms will be different, due to the different

positions of objects in the frame. Also, object motion will only affect a

subset of the blocks. Nagasaka and Tanaka (cited in [17]) combat prob-

lems caused by object motion by discarding the blocks which show the

largest changes, while Toller, Lewis and Nixon [106] discard the 25%

of blocks with the least change and the 25% with the largest change.

Boreczky and Rowe [17] count the number of subblocks that exceed a

threshold.

Motion features Motion can be an important cue in detecting transi-

tions as motion can be expected to be consistent between frames within

a shot, but not over a shot boundary. Estimating motion within a scene

can help differentiate between camera or object motion and transitions,

which cause problems for many shot change detection techniques. Mo-

tion vectors are expensive to compute, but precomputed motion data

may be readily available in some compressed video formats, in particular

MPEG. It is important to note that the motion vectors used in MPEG
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encoding are chosen to maximise the compression rate and are not de-

signed to reflect the true motion within the scene like the optical flow

algorithms use in computer vision; however MPEG motion vectors do

generally approximate the true motion.

Fernando, Canagarajah and Bull [28] work on the assumption that

motion vectors over a cut will be somewhat random in nature, whereas

within a shot they will be correlated. They compute the mean motion

vector for a pair of frames, and then sum the Euclidean distances of all

the motion vectors from the mean.

Rather than using motion vectors, Xu, Zhu and Stentiford [114] use

a robust M-estimator to find the dominant motion in the shot, modelled

as a 2D affine transformation. For each frame they find the number of

supporting pixels, pixels which fit the computed model. Their hypothesis

is that cuts will produce a change in the proportion of supporting pixels

in the frame. Motion estimation using the robust M-estimator is very

computationally expensive, however. Vasconcelos and Lippman [109] also

compute the dominant affine motion, using it to register the previous

frame to the current frame and taking the residual error between the two

registered frames as a difference measure.

Image features Image detail is something else that is coherent within

a shot but not between shots. Zabih, Miller and Mai [119] track edges

in the image to detect transitions; during a transition a large number of

edges enter and leave the scene. They define the entering edges ρin to be

the fraction of edges that are not within a set distance of any edge in the

previous frame; the threshold distance allows for movement. Similarly

ρout is the fraction of edges in the previous frame that are not within a

set distance of any edge in the current frame. A distance measure is then

defined as D = max(ρin, ρout). Motion compensation can be applied as a

preprocessing step to reduce the effects of motion.

In DCT-based compression schemes detail is represented in the high

frequency DCT coefficients. Lee, Kim and Choi [50] show that an edge

image can be extracted directly from a MPEG compressed stream. Ar-

man, Hsu and Chiu [13] present a distance metric that operates on DCT

coefficients directly; the coefficients for corresponding blocks in two im-

ages are concatenated into vectors and the normalised inner product

between the vectors is computed, with higher values indicating more
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Fig. 4.2: A histogram distance metric applied to an example video se-

quence. The large spikes are cuts.

similarity.

Porter, Mirmehdi and Thomas [76] correlate blocks in the Fourier

domain, doing a block search to find the best match for each block, and

using the mean of the correlations of the best matches as a difference

measure.

Kobla, Doermann and Lin [46] rely on the MPEG encoder to decide

how similar frames are—the MPEG encoder encodes macroblocks one of

three different ways depending on whether it can find a suitably similar

block in a nearby frame. They use the count of each type of block coding

to decide if a cut has occurred.

Locating cuts using a metric

The above techniques provide a similarity (or dissimilarity) measure for

each pair of consecutive frames. Figure 4.2 shows a histogram distance

metric applied to a short video sequence; the cuts are indicated by the

sharp spikes.
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A global threshold could be used to identify these spikes, but different

types of video material can produce very different difference functions,

making it impossible to find a threshold that performs well on all types

of video.

Zhang, Kankanhalli and Smoliar [120] choose a threshold for a se-

quence using the mean and standard deviation of all the frame to frame

differences in the sequence being segmented, deriving the threshold as

T = µ + ασ and choosing a value of α between five and six. This adapts

to the different change characteristics of different types of video, but

requires two passes over the sequence. Yeo and Liu [115] instead use a

sliding window to process a sequence in a single pass; the local maximum

within the window is found, and if it is more than n times larger than

the second largest maximum then the maximum is deemed to be a cut.

Values need to be chosen for the width of the window and the multiplier

n. They report good results for values of n between two and three with

a window 15 frames wide. The width of the window limits the length of

shot that can be detected; if two cuts occur within a 15 frame window,

neither of them may be detected. Gargi, Kasturi and Strayer [33] take

a similar approach, testing if the local maximum is greater than n times

the average over the remainder of the window.

Vasconcelos and Lippman [109] construct a Bayesian test that in-

corporates prior knowledge about the likely shot lengths in the video.

Boreczky and Wilcox [18] use a Hidden Markov Model, modelling the

video as a state machine which moves between states of transitions, cam-

era movements, and regular frames. In addition to histogram differences,

audio and motion features are used as inputs to the system.

Clustering algorithms can also be used to identify potential cuts.

Naphade et al. [65] compute two difference metrics and use them to

represent each frame in a 2-dimensional space. A K-means clustering

algorithm with k = 2 is then used to identify a cluster of potential cuts.

Each potential cut is verified by checking that the frame is a local maxi-

mum for both of the difference metrics.

Llach and Salembier [55] take a technique from 2-dimensional image

segmentation, namely the watershed algorithm, and apply it to segment-

ing the 1-dimensional difference function. The difference values are first

filtered with a morphological closing operator. Seed markers are required

to identify the locations of shots, so markers are placed at the local min-
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imums of the curve. The watershed algorithm is then run to segment the

curve into shots.

4.2.2 Gradual transitions

The detection of gradual transitions is more complex than finding cuts.

There are many variations of transitions, including but not limited to

fades, dissolves and wipes, and the actual inter-frame differences can be

very small.

Initially researchers tried to find gradual transitions by applying more

sophisticated detectors to the output from difference metrics, hypothesis-

ing that a gradual transition will reveal itself as a number of consecutive

frames with differences lower than a cut but higher than regular intra-

frame differences. Zhang, Kankanhalli and Smoliar [120] developed a

twin threshold technique. The first threshold, Ts is set quite low, and

intended to detect the start of a transition. When a frame difference ex-

ceeds this threshold, the succeeding frames are accumulated for as long as

they remain above Ts. If the accumulated total for all the frames above

Ts is greater than a second, higher, threshold Tb the sequence is identified

as a gradual transition. The authors acknowledge problems with their

approach; during some transitions the frame difference can fall below Ts,

and camera motion cause false hits. Yeo and Liu [115] describe a similar

algorithm to locate a ‘plateau’ in the difference curve.

The distance measures used in these papers are somewhat unsophisti-

cated, and have great difficulty differentiating between motion and tran-

sitions. Hampapur, Jain and Weymouth [35] use their transition model to

come up with some smarter detectors. In their model fades and dissolves

are produced by applying a chromatic scaling to both shots. Assum-

ing that the scaling is applied at a constant rate its derivative will be

constant, thus fades and dissolves should reveal themselves as a series

of constant difference images. Song et al. [96] use a similar production

model and observe that the second derivative with respect to time should

be zero. A static shot will also produce a zero second derivative, but can

be distinguished as it will also have a zero first derivative. Therefore they

look for sequences of frames with a small second derivative relative to the

first derivative. Han and Kweon [36] note that due to camera and ob-

ject motion the derivatives are rarely as well behaved as one would like.
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They filter the first derivative and use a Bayesian formulation to decide

if patterns in the derivative are caused by transitions or by motion.

An observable feature of fades and dissolves is that contrast is reduced

during the transition. Zabih, Miller and Mai [119] observe that cuts, fades

and dissolves all result in a high number of entering and exiting edges,

the difference being in how the edge activity is distributed over time.

In a cut all the edge activity happens between a single pair of frames

while in a gradual transition the edges exit over a number of frames,

then enter over several more frames. A fade out/fade in sequence will

have a number of blank frames with no edges between the exiting and

entering edges, a dissolve will not. Yu and Wolf [118] make a similar

observation and compute two edge-based metrics for each frame after

an edge detecting filter has been applied (they use the Haar wavelet

transform); the edge count EC which is the count of edges in the frame

with a strength greater than a threshold, and the edge spectrum average

ESA which is the average strength of the edges above the threshold. Both

of these features exhibit minima during fades and dissolves. The presence

of a dissolve is verified by averaging the last frame of the first shot and

the first frame of the second shot, and comparing this to each frame of

the transition sequence; a dissolve will ideally show a V shaped curve,

with minimal difference at the middle of the transition.

Rather than looking for explicit artefacts caused by dissolves, Lien-

hart [52] uses a machine learning approach. Low level colour and con-

trast based features are used as input to a neural network. Rather than

marking up existing video for use as training data the training set is

synthesised by applying dissolves of various lengths to a library of shots.

Utilising motion information A solution to the motion problem is

to use calculated motion vectors for the sequence to decide if coherent

motion is occurring rather than a transition. Zhang, Kankanhalli and

Smoliar [120] use motion vectors to locate camera pans and zooms and

so discount these sequences from consideration as gradual transitions.

Pans are identified by finding the mean motion vector and summing the

Euclidean distances of all the vectors from the mean; if the sum is below

a threshold, the camera is considered to be panning. Zooms are identi-

fied by comparing the motion vectors at the extremes of the frame and

checking if they are in opposite directions. Toller, Lewis and Nixon [106]
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point out some problems with this approach; motion vectors, especially

those found with a block matching algorithm, may not represent the true

motion in low detail areas, and it cannot detect a zoom combined with

another camera movement. Instead they locate the focus of expansion

of the motion vectors by finding where the majority of vectors intersect.

They use edge information to identify low detail areas and discount mo-

tion vectors from these areas as they may not be reliable. Fernando,

Canagarajah and Bull [28] instead compute the resultant vector for each

frame by summing all the individual motion vectors. The dot product

between the resultant vectors of two frames is computed to find the an-

gle between the vectors, which should be small if the camera is panning.

Zooms are found by calculating the resultant vectors for the top and bot-

tom halves of the screen and checking that they are pointing out of or in

to the frame. Xu, Zhu and Stentiford [114] use the same concept of dom-

inant motion and supporting pixels as they use to detect cuts to detect

dissolves and ‘zoom’ wipes, such as the star transition in figure 4.1.

Wipes The spatially varying nature of wipes means different approaches

are needed from those used for chromatic transitions. Wipes also come in

many different varieties, making their detection harder. Yu and Wolf [118]

describe a method for detecting wipes using difference images between

consecutive frames. In two frames of a wipe, the region covered by the

wipe will have a high difference compared to the rest of the frame. The

first two spatial moments (the centre and variance) of this high differ-

ence region are calculated and used to identify different types of wipes;

A regular wipe will have a constant variance (i.e. a constant sized high-

difference region) and a constant vector between the centres in consec-

utive frame pairs, indicating the direction of the wipe. In ‘zoom’ wipes

the centre is constant and the variance increases.

4.2.3 Integrated approaches

Several authors have attempted to combine detection of different transi-

tions into an integrated scheme. Maybe the most straightforward exam-

ple of this is the temporal subsampling scheme of Xiong and Lee [113]. If

the video sequence is subsampled with a sufficiently large step between

frames gradual transitions will fall between the samples and appear as
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cuts; this part of the sequence can then be examined with successively

smaller sample distances until the transition is isolated. If the transition

can be isolated down to a single frame pair then it is obviously a cut,

otherwise if the transition appears to occur over multiple frames they

examine the edge difference to determine if a gradual transition has oc-

curred. However movement (in particular camera movement) may also

cause two frames drawn from different parts of the same shot to appear

different.

Several other approaches are born out of thinking of video as a three-

dimensional volume with dimensions in x, y and time. Kim et al. [44]

and Ngo [68] subsample a set of pixels from each frame and use them

to form a two-dimensional projection with spatial and time axes (see

figure 4.9). The spatial sampling pattern can be a single horizontal or

vertical line, or more complex. The idea is that transitions will appear

as identifiable artefacts on the time axis; a cut will be a hard edge, a

dissolve a blur between two shots, and a wipe as a non-vertical line. Kim

et al. use this as the basis of a manual markup tool, while Ngo applies

segmentation techniques to the 2-dimensional slice to identify the shots.

Nam and Tewfik [63] and Lin et al. [54] both use wavelet transforms

to get a multi-resolution decomposition of video in the time dimension,

where transitions will show as high-frequency detail.

Kobla, DeMenthon and Doermann’s [45] ‘VideoTrails’ system projects

each frame into three dimensions using the ‘FastMap’ projection, giving

a trail of points. Similar frames project to points near each other so shots

appear as clusters of points joined by transition frames; they suggest that

the type of transition could be determined from the shape of trajectory

joining two shots.

Ford [30] applies several histogram, statistical and pixel difference

metrics to a sequence and uses them as input to a fuzzy logic system

which decides the likelihoods of different (or no) transitions occurring.

4.3 Post-production material

Video material encountered in a post-production environment has some

unique characteristics compared to other types of video material. It is

common for temporal segmentation algorithms to be evaluated on test

sets of material drawn from various domains. These domains include mo-
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tion pictures, broadcast television (programmes, news and commercials),

and in-house material (lectures, presentations, meetings).

The majority of work in an independent post-production facility comes

from commercials and music videos. The aims of these are different from

the other domains listed above, which we will refer to as ‘conventional’

material. Commercials and music videos are designed to attract and hold

the viewers attention over a very short length of time (5 to 60 seconds

for a commercial, around three minutes for a music video). This need

breeds a highly dynamic style of video.

Commercials and music videos also have very high production val-

ues; the importance of advertising in modern society means that a large

amount of money is spent on producing a small amount of video, thus

commercials can have budgets far exceeding television programmes on a

cost/time basis. The high level of resources available means that video

is often manipulated on a very detailed level, with each frame receiving

individual attention.

Table 4.3 shows statistics about the transitions identified in the test

set that will be introduced in the next section. The episode of Frasier

is an example of more typical broadcast material; note that is has much

longer shots than the commercials and music videos. Also dissolves and

fades are used quite heavily in some of the music videos. Frasier uses

fades as an editing device between the different ‘acts’ of the episode—the

music videos do not share the same story structure.

These properties of commercials can be used to differentiate them

from other material. McGee and Dimitrova [60] examine methods for

identifying the advertisements within a television program; such as sys-

tem could be used in the ‘commercial skip’ feature of a video recorder.

Post-production type material also tends to contain effects that are

uncommon in regular material. Video is often subject to heavy process-

ing, such as the colour manipulation in figure 4.3. Also, editing devices

that are traditionally avoided in video editing, such as the jump cut, are

often used. A jump cut is a cut between two shots with very similar or

identical camera setups, such as shown in figure 4.4. This causes a jarring

effect which is usually considered undesirable, but is used in commercials

to grab attention and give a dynamic feel to the video.
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Fig. 4.3: A shot with manipulated colours.

Fig. 4.4: Two examples of a jump cut.

4.4 Evaluation of existing algorithms

As seen in the literature review, many different temporal segmentation

algorithms have been and continue to be proposed; no perfect algorithm

exists. The disagreements between the various published comparative

reviews indicate that no obviously superior algorithm exists either. Per-

formance of segmentation algorithms is highly dependent on the material

it is used on, and as we have shown above our material is substantially

removed from the ‘conventional’ material usually used to evaluate algo-

rithms in the literature.

With this in mind we evaluated a selection of the better algorithms

from the literature on a test set of video sequences more representative

of what is encountered in a post-production environment.

4.4.1 Evaluating algorithms

There are various problems to be faced when doing a comparative eval-

uation of scene change algorithms:

1. Which algorithms to test? A large number of scene change algo-

rithms have been published, and exhaustively testing all of them is

infeasible.
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2. Choosing algorithm parameters? Most algorithms have a number

of parameters that affect performance, often with different optimal

values for different types of material.

3. Choice of thresholding technique—many algorithms produce a per-

frame metric that must be thresholded to locate transitions. The

choice of thresholding technique is to a degree independent of the

algorithm but still has an impact on performance.

4. Implementation details—implementations of published algorithms

are rarely available, and the published sources often omit details of

how the algorithms are implemented.

5. Testset—algorithm performance is highly dependent on the type

of material being processed. The testset should be representative

of the video that is to be processed by the algorithm in actual

use. When using different detectors for different types of transition,

should the test set contain all types of transition, or only the kind

being detected?

6. Quantitatively measuring performance—the performance of each

algorithm needs to be measurable in some quantifiable way that

can be compared across algorithms.

Previous comparative reviews

A number of comparative studies of scene change detection algorithms

have been published [17, 31, 51, 33] which have all had to address these

problems.

All of the comparative studies test algorithms based on colour and

greyscale histograms and DCT-based compressed domain algorithms, al-

though each paper tests different variations. These are the most popular

approaches, and are often used as benchmarks against which new algo-

rithms are tested.

Boreczky and Rowe [17] test both global and local 64-bin greyscale

histograms and use a L1 metric; the local histograms use a second thresh-

old for the number of regions that exceed the metric threshold. They also

test motion compensated pixel difference and a compressed domain al-

gorithm using the inner product of DCT coefficients, based on Arman’s
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technique. They use four testsets, totalling 233 minutes of Motion JPEG

video at a resolution of 320 × 240 and at 30 frames per second, divided

into television programmes (without commercials), news programmes,

films and television commercials. Each algorithm is tested using a range

of thresholds and the resulting precision/recall curves compared graphi-

cally. Gradual transitions are detected using Zhang et al.’s dual threshold

technique with the global histograms and motion compensated pixel dif-

ferences.

Ford [31] uses 64-bin 3-d histograms, presumably computed in RGB

since he doesn’t specify the colour space, and the χ2 metric. He also

tests chrominance histograms using the inner product as a metric, and

the Kolmogorov-Smirnov test on greyscale histograms computed from

the DC image of a MPEG sequence; he does not give any details on the

implementation of these tests. A number of statistical tests are evalu-

ated: the likelihood ratio, Student’s t-test, Snedecor’s F -test and two

tests of his own devising (equations 4.6 and 4.7). Pixel differences are

measured four different ways: as the L1 distance between two images,

a count of pixels with difference above a threshold, the absolute sum of

differences, and the inner product of two frames. They also use Arman’s

inner product of DCT coefficients to work in the MPEG compressed do-

main. Finally they test Zabih et al.’s edge based metric. Their test set

consists of approx 39,000 frames drawn from the Internet in a variety of

formats and frame rates, representing a variety of material. All the tests

are carried out on both colour and greyscale versions of the testset. A

test set consisting of only gradual transitions was used to evaluate the

performance of the different metrics in detecting gradual transitions.

Lienhart [51] tests the L1 distance between global histograms (without

specifying the colour space or size of the histogram) and Zabih’s edge

based algorithm. He also tests two of his own algorithms for detecting

fades and dissolves: a fade detector using the standard deviation of pixel

intensities, and a dissolve detector using an edge based contrast measure.

The histograms are used only for detecting cuts, while the edge based

algorithm detects cuts, fades and dissolves. His test set consists of 173

minutes of Motion JPEG video at 25 fps and a resolution of 360 × 270.

Results are presented as percentages of correct and false hits for a single

set of parameters.

Gargi, Kasturi and Strayer [33] undertake an in-depth analysis of his-
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tograms, testing combinations of 8 colour spaces, four difference metrics,

and 256 bin 1- and 2-d histograms, and 512 bin 3-d histograms. They

test six MPEG based algorithms: one using the inner product of DCT

coefficients, one using statistics of block types, one with statistics of mo-

tion prediction, and three applying each of histograms, pixel differences

and pixel statistics to DC images. They also test two algorithms using

motion compensation on uncompressed video, and one block-matching

without motion compensation. The testset contained 76 minutes of video

at 320× 240 resolution.

Choosing thresholds

Most scene change detection algorithms require some kind of thresholding

method, both for detecting cuts and gradual transitions. Global thresh-

olds are unsuitable, as the cut and non-cut frames are rarely separable

and a threshold that works well for one sequence is unlikely to produce

similar results for another sequence. Zhang [120] preprocesses the entire

sequence to choose a suitable threshold for that particular sequence, but

this will not avoid the separability problem.

Most authors instead use local adaptive thresholds in one of two sim-

ilar configurations: searching for a local maximum that is either more

than a threshold t times greater than either the average over a local

neighbourhood centred in the maximum, or the second highest peak in

the neighbourhood. This leaves two parameters to be chosen: the value

for t, and the size of the local neighbourhood.

The size of the neighbourhood needs to be large enough that it can

be considered representative of the shots on either side of a cut; even a

small movement will appear large if it is only considered within a very

small neighbourhood. However the neighbourhood also needs to be small

enough that it is not going to contain more than one shot boundary at

any time; if the neighbourhood contains two cuts, the second will skew

the neighbourhood so that the other may not be sufficiently large enough

to be detected. Thus the neighbourhood should be no wider than twice

the minimum shot length.

The value for the threshold t controls the trade-off between missing

transitions and detecting false transitions. A lower value of t will detect

more correct transitions, but at the expense of more false hits.
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Measuring performance

Many authors express the performance of algorithms using the classic

information retrieval scores of precision and recall, which are identified

as

precision =
correctly detected transitions

all detected transitions
(4.11)

recall =
correctly detected transitions

total transitions
(4.12)

Precision and recall have been a staple of retrieval evaluation for many

years, and are presented either as a pair of numbers for an algorithm with

fixed parameters, or as a curve showing the trade-off between precision

and recall as the algorithm’s parameters are adjusted; the best compro-

mise performance is usually deemed to be on the knee of this curve.

However precision and recall have been attacked as being a disingenuous

means of evaluating performance on retrieval tasks; Forsyth [32] points

out that the perceived performance depends upon the task in hand. If

it is vitally important that every occurrence of an event be identified

then a larger proportion of false hits may be an acceptable price to pay.

However if the dataset is vast and the user is satisfied to find most of

the occurrences of an event without being swamped in false hits then it

is the algorithm’s performance at the other end of the curve that is of

interest. But precision and recall give us a measurable quantity that we

can use to compare algorithms.

The trade off of precision against recall generally depends upon the

parameters of the algorithm, in particular the threshold used in thresh-

olding algorithms. By testing a large range of thresholds we can produce

a Receiver Operating Characteristic (ROC) curve of precision against re-

call, as shown in figure 4.6 with precision increasing as we increase the

threshold. If we can produce such a curve then we can compare algo-

rithms a number of ways. One is to fix the precision to a given value (such

as 95%) and compare the recall scores that each algorithm can achieve

for this level of precision; this will either involve iteratively searching for

a threshold that produces the desired precision, or interpolating from

neighbouring precision values. If recall is more important for our given

application then we can fix the recall value instead and compare the

precision values.
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Ford [31] proposes two additional metrics; the area above the ROC

curve, which should be minimised, and a total probability of error based

on summing the precision and recall errors. Boreczky [17] compares

precision-recall curves visually. Gargi et al. [33] propose using a local

separability measure to show how well local thresholding will perform in

detecting cuts. They calculate

Msep =
C −NC

µ
, (4.13)

where NC is the average value of the metric for a non-cut frame over

the sequence, C is the average metric value for a cut frame, and µ is the

mean value of the metric for all the frames within a local window. This

value is computed for a local window (in their case 12 frames) centred

on each cut in the sequence, and the mean value used to indicate the

local separability of the metric for the entire sequence—a higher value

indicates better performance with local thresholding.

Another important criteria that affects reported performance is how

correct detection of transitions is classified. Unless the testset is gener-

ated synthetically it must be marked up manually with the locations and

types of transitions. This can lead to ambiguity, as Gargi et al. note. In

particular it is difficult to decide exactly where the start and end of a fade

or dissolve are. We must also set the criteria for which an algorithm is

judged to have correctly detected a transition. Is a detected yet misclas-

sified transition counted as a hit, miss, or ignored? Does the algorithm

have to detect the boundaries of a gradual transition accurately, or do

the estimated bounds merely have to overlap with the actual transition.

Usually authors accept overlapping regions as a hit, and ignore multiple

detections of the same transition. Gargi et al. accept detected events

if they fall within three frames of the actual event—in the case of cuts

we consider this to be a false economy, particularly given the short shot

durations we are dealing with.

4.4.2 Experimental setup

For our own comparison we must also address the problems described

above. We now describe the conditions of our test.
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The test set

To evaluate the suitability of previously published algorithms for use in

segmenting the types of material found in a post-production environment

we experimented with a number of algorithms from the literature. A test

set was drawn together with examples of television commercials, music

videos, and an agency showreel. To represent ‘conventional’ material a

news bulletin and an episode of the sitcom Frasier were also included.

Table 4.3 shows the details of the test set. Most of the material was

sourced from digital cable broadcasts which were recorded onto VHS tape

and then digitised at a resolution of 352×288. The others were obtained

directly from Unique-ID’s demonstration Cakes installation. All clips

were stored in M-JPEG format at a resolution of 176 × 144. Each clip

was examined manually to identify the location, type and duration of

each transition, which was recorded and used as the ground truth data

in evaluating each algorithm.

As some members of the testset are very short we also divide the

testset into larger groups for evaluation purposes. The nine commercials

are grouped together, as are the six music videos. These two groups

together with the ‘arri2’ showreel form a group of ‘post-production’ type

material. We also group the news bulletin and Frasier together as a

‘reference’ group.

The algorithms

As seen in the review of the literature above, temporal segmentation is

an active field, and many different approaches have been proposed. It is

impossible to test them all so in choosing a subset we have been guided

by published comparative reviews, the perceived popularity of algorithms

from their repeated use as benchmarks against which new algorithms are

tested, and by algorithms which have a particularly interesting or novel

approach. Some algorithms detect only one type of transition, whereas

others detect several—however we will examine each type of transition

individually.

It should be noted that there are many disagreements between the

various comparative reviews in the literature over what algorithm per-

forms ‘best’. Performance is affected by the choice of test data and

implementation details, and no one algorithm has a clear lead over the
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others.

Colour histograms The straight-forward colour histogram has a num-

ber of parameters that can be tuned and impact performance. In choosing

configurations of colour histograms to evaluate we turn to the compara-

tive reviews in the literature.

Gargi, Kasturi and Strayer [33] test histograms in a number of colour

spaces and with several different frame difference metrics. They found

that the Munsell colour space gives the best results, but has a signif-

icant computational cost. The L∗a∗b∗ space was found to be the best

compromise between performance and cost, and that using any colour

space was better than using greyscale data alone. Conversely, Ford [31]

finds the use of colour to provide no advantage over greyscale, and often

perform worse. Ford also finds that computing several local histograms

over different blocks of the image outperforms a single global histogram.

Of the different frame difference metrics, Gargi finds the histogram

intersection to be the best, and that the popular χ2 metric is significantly

worse. But again Ford disagrees, finding it to perform quite well, partic-

ularly with global colour histograms. The best metric in Ford’s study is

the Kolmogorov-Smirnov test (equation 4.10).

As there is no clear ‘best’ histogram configuration we will evalu-

ate several, testing colour versus greyscale, local versus global, different

colour spaces, and different histogram difference metrics.

We test four colour spaces: RGB, Greyscale, YUV and L∗u∗v∗. The

greyscale histogram uses the six most significant bits of the Y channel

from the YUV colourspace to quantise the space to 64 levels. The three

channel histograms use the two most significant bits from each channel

for a total of 64 bins. Global and local histograms were tested; the local

histograms are calculated by dividing the frame into 16 subblocks and

using the median value of the metric when calculated on all the subblocks.

Four metrics were tested: the L1 distance, the χ2 metric, the histogram

intersection and the Kolmogorov-Smirnov test.

Pixel statistics We test a number of the greylevel pixel statistics which

are reported to work well by Ford [31]: the F-test (equation 4.4), and

Ford’s own tests λ1 and λ2 (equations 4.6 and 4.7).
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For detecting dissolves we test Lienhart’s algorithm which uses the

standard deviation of the pixel intensities [51].

Edge-based metrics We test Zabih’s edge based metric, but without

the motion compensation step as this adds a significant computational

burden and there is no motion data available in our M-JPEG format

sequences.

Others We also examined the visual rhythm technique suggested by

Kim [44] and Ngo [68].

Evaluation criteria

As mentioned above, there are several ways of measuring the performance

of scene change detection algorithms, using precision/recall values, or

measuring the local separability of metric based techniques.

Local thresholding is done by thresholding each frame pair against

t times the average value of the local window. The choice of window

size presents another trade-off; we tested two window sizes in order to

observe the effect of the window size. As our material has many short

shots, the choice of window size may have a large impact on algorithm

performance. The window sizes we test are two frames either side and

six frames either side.

As mentioned earlier, by adjusting the threshold used with a metric-

based algorithm we can produce a range of precision/recall values. This

is because the cuts and non-cuts are rarely separable—a more typical

distribution is shown in figure 4.5. In this case there is no threshold that

will completely separate the cuts from the rest of the frames. By varying

the threshold between the minimum cut values and the maximum non-cut

value (as shown in the figure) we can generate a range of precision/recall

scores. The lowest threshold value with give us perfect recall at the

expense of precision. The higher value with give better precision (as more

non-cuts are to the left of the threshold), but at the cost of recall. In

the case shown in the figure perfect precision is possible, but if there is a

non-cut value above all the cuts then perfect precision will be impossible.

From such a curve it is possible to determine the precision at a given

level of recall, or vice versa. In our case we will find the precision at 90%
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Fig. 4.5: Histogram of the ratios of a metric for cut and non-cut frames

over their local neighbourhoods, from the whole of the ‘ad-

verts’ part of the testset. If the two distributions don’t overlap

then it is possible to attain perfect precision and recall.

recall and the recall at 90% precision. We calculate these by taking 200

evenly spaced samples in the overlapping region of the distributions and

interpolating between the nearest.

Although the recall is guaranteed to decrease as the threshold is

raised, the precision may vary depending upon the distribution. Thus

it is possible that the precision never reaches 90%, in which case we

record the precision as zero at 90% recall.

Each sequence in the testset was tested individually, which means

that a different thresholds are used for each sequence. In a real ap-

plication we are not able to determine the optimal thresholds in such a

manner, so we also measured the performances for the aggregated groups

of commercials, music videos, post-production material and the reference

set.
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Fig. 4.6: A precision/recall graph generated from figure 4.5.

4.4.3 Results

The tables in appendix B show the results of the tested algorithms on

the five groupings of the testset.

Pixel intensity methods

Despite its simplicity, the sum of pixel differences performs fairly well,

although not as well as the colour histograms. On the reference material

about 95% precision and recall can be achieved. Performance is lower on

the post-production type material, as can be seen in the table.

Histograms

Our choices of colour space, metric and local versus global histograms

gives 32 permutations. The full results for each histogram run on the

testset are presented in appendix B, but we summarise them here.

On the ‘conventional’ material, perfect precision and/or recall is pos-

sible, and all the metrics show good results. This tallies well with the

reported results of other authors, who find colour histogram metrics to
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perform strongly. Surprisingly the better results come from using the

narrower local neighbourhood, which counters the intuition that a wider

neighbourhood will give a better context in which to identify the spike

in the metric caused by the cut.

But what about the post-production material? Performance on the

commercials was generally poor, but the music videos were better. In-

terestingly the commercials and music videos favoured different metrics.

The RGB colour space performed best on the music videos, while YUV

and greyscale histograms were best for the commercials. Using the nar-

rower window was best for the commercials, while the music videos didn’t

show any strong advantage in either size. Overall using local histograms

produced better results, and the best overall was using local RGB his-

tograms and the χ2 metric.

A closer look at one of the commercials reveals some of the problems

with colour histogram techniques. Figure 4.7 shows the output of the

χ2 metric with local RGB histograms for the ‘advert6’ sequence. The

sequence doesn’t involve any particularly complex edits and the only

expected difficult part is the product shot at the end. Looking at the

graph we can see that as well as the spikes corresponding to the cuts, the

metric produces strong responses during three shots, which are shown

in figure 4.8. During the first of these (04:06 to 05:17) the man is large

on the screen and his movement causes large shifts in the histograms of

several sub-regions. These shifts are amplified by the strong contrast of

the shot as the man’s dark shirt moves to reveal the bright background.

In the other two shots (10:14 to 11:19 and 17:05 to 18:08) people move

from light into shadow, producing a similar shift in the histograms.

Visual rhythm

Figure 4.9 shows some of the 2-dimensional slices obtained by using the

visual rhythm technique [44, 68]—each column of pixels in the image is

a sample from a single frame. In the extract from Frasier the cuts are

obvious; the visual content of the neighbouring shots is suitably different

that a clear edge is visible, and the cuts are far enough away from each

other that they are clearly differentiable. The same is not true of the

other two examples. The short shot lengths mean that the edges are

very close to each other and the dynamic nature of the shots means
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Fig. 4.7: Output of the local RGBχ2 histogram metric of the ‘advert6’

sequence.
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04:06 04:08 04:10 04:12 04:14 04:16

04:18 04:20 04:22 04:24 05:01 05:03

05:05 05:07 05:09
����� ���

05:13 05:15

10:14 10:16 10:18 10:20 10:22 10:24

11:01 11:03 11:05 11:07 11:09 11
� ���

11:13 11:15 11:17

17:05 17:09 17:11 17:13 17:15 17:17

17:19 17:21 17:23 18:00 18:02 18:04

Fig. 4.8: Three shots from the ‘advert6’ sequence which produce high

colour histogram responses.
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Advert 6

Music video 6

Frasier

Fig. 4.9: Examples of the visual rhythm technique applied to the test

set (all shown to the same scale).

that there is significant noise within the shots, making it difficult to

determine the edges which indicate the shot boundaries. It is quite clear

that 2-dimensional segmentation techniques will have little success in

determining the shots within such sections.

Inner products

Both of the inner product based metrics performed very poorly. Fig-

ure 4.10 shows the inner products of the pixel intensities for the ‘advert6’

sequence; as can be seen the cuts do have an impact upon the metric,

but it is difficult to distinguish and is not always a spike.
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Fig. 4.10: The inner product of pixel intensities for the ‘advert6’ se-

quence.
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4.4.4 Fade detection

We also examined two fade detection techniques: Zhang’s twin threshold

technique and Lienhart’s technique using the standard deviation of pixel

intensities.

Zhang’s twin threshold technique is not specifically a fade detector,

but rather designed to detect any gradual transition. We use the local

RGB χ2 histogram metric with the detector, as this is the one that per-

formed best detecting cuts. Figure 4.11 shows the output of the metric

for the ‘arri4’ sequence, which contains one fade out to black and one

dissolve. Recall that the twin threshold technique uses two thresholds; a

threshold for detecting cuts, Tb, and a lower threshold for detecting grad-

ual transitions, Ts. To be detected, each frame of a gradual transition

should exceed Ts and the cumulative value of the metric during the tran-

sition exceed Tb. From the graph we can see that this approach is going

to have problems. During the fade the metric is very high, certainly in

excess of the value of Tb required to detect the cuts in the sequence. The

dissolve however produces a very low response. The levels of Ts and Tb

required to detect the dissolve would be so low that several other parts of

the sequence will also be detected as transitions. Figure 4.12 shows the

first 30 seconds of the ‘music4’ sequence, this time using the global RGB

χ2 metric, which contains many fades and dissolves. It is quite clear

that there is too much noise present to distinguish the different types of

transition using such a metric. Many fades are of very short duration,

making if difficult to differentiate them from cuts.

Lienhart’s fade detector detects only fades, identifying them as linear

changes in the standard deviation of pixel intensities. Figure 4.13 shows

the standard deviation of the pixel intensities for the first 30 seconds of

the ‘music4’ sequence. It can be seen on the graph that there are near

linear descents during fade outs. However some of the fades are of very

short duration, and there are also many other events which cause a drop

in the standard deviation.

When we implemented and tested the Lienhart’s detection algorithm

it detected most of the fade outs in our testset; in order to simplify the

results we only look for fade outs. Table 4.2 shows the number of correctly

detected fade outs for each of the sequences in the testset that contained

fades. We deem a fade to have been correctly identified if the estimated
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Fig. 4.11: Output of the local RGB χ2 metric for the ‘arri4’ sequence

with gradual transitions.

fade boundaries overlap with the manually determined fade boundaries.

The algorithm often detected the start of the fade to be some distance

ahead of the start as identified by a human observer. It is possible that

this is because the human eye is less sensitive to changes in intensity at

the start of the fade, where the image is brighter.

The algorithm only managed to successfully detect fades to black,

thus the low scores for the ‘arri5’ and ‘music1’ sequences which contain

many fades to white. The only false positive encountered was at the end

of the ‘arri2’ clip, where a figure retreats through a closing door from a

black room. While this is not strictly a fade, it is a gradual transition to

a black screen.

4.5 A novel algorithm

The performance of the tested algorithms on post-production type ma-

terial prompted us to explore whether we could design a temporal seg-

mentation algorithm specifically tailored for this type of material.
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Fig. 4.12: Output of the global RGB χ2 metric for the first 30 seconds

of the ‘music4’ sequence.

arri2 0/1 (1 false)

arri3 1/1

arri4 1/1

arri5 1/8

music1 0/8

music2 3/4

music3 1/1

music4 18/28

music5 0/2

music6 0/1

frasier 12/13

Tab. 4.2: Number of correctly detected fade outs using Lienhart’s stan-

dard deviation of pixel intensities technique.
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Fig. 4.13: Standard deviation of pixel intensities for the ‘music4’ se-

quence.

A primary criteria of our new algorithm is to be robust to the highly

dynamic characteristics of video that cause problems for the existing

algorithms. We need to be able to handle very short shots, large scale

motion, and illumination changes. Other desirable features are for it to

be fast, operate in a single pass over a stream without needing to see the

entire sequence first, and be applicable to a wide variety of types of video

without needing retuning.

4.5.1 Rationale

Our algorithm is based on the concept of analysing small regions of a

frame in the context of its spatial and temporal neighbourhood, and

making a local observation of the video’s behaviour. A region’s spatial

neighbourhood consists of the regions surrounding it in the frame, and

its temporal neighbourhood is the corresponding regions in the same po-

sition in the preceding and succeeding frames. If a region’s behaviour is

consistent with its neighbourhood we can assume that this is represen-

tative of the true activity occurring on a larger scale. For example if a



4. Temporal segmentation 65

region exhibits fading behaviour, and this is consistent with its temporal

and spatial neighbourhood (the same region in the preceding and suc-

ceeding frames is also fading), then the locally observed fading behaviour

is probably due to a fade transition rather than a transient illumination

change. If a region exhibits a large change that might lead us to think

a cut has occurred, but this behaviour is not reflected in the spatially

surrounding regions then the change was more likely caused by localised

motion rather than a frame-wide cut. If a region exhibits a large change

that might be consistent with a cut but this behaviour also occurs in

its temporal neighbours, then the region is probably in a dynamic shot

rather than a cut.

Once all the local observations have been made, they too can be

analysed in the context of their neighbours to try and identify whether

they are representative of the video’s global behaviour or are merely

undergoing a local change caused by something happening within the

shot.

4.5.2 Operating on JPEG DCT coefficients

As we are operating within the framework of the Cakes system, where

video is stored in a Motion-JPEG format, we have designed the algorithm

to operate directly on JPEG compressed frames. JPEG compresses an

image in 8× 8 pixel macroblocks, which provide us with a natural local

region to operate on.

We build our algorithm on the basis of comparing JPEG macro-

blocks. We can make a number of comparisons by utilising the DCT

coefficients directly, saving the computational cost of the inverse DCT

operation required to decompress the image. From the DCT coefficients

we can extract the following information:

1. The mean values of the Y , U and V channels over the block (from

the DC coefficient).

2. A simple detail or energy measure, calculated by summing all the

AC coefficients from the block.

3. A normalised cross-correlation between two blocks, calculated by

applying the normalised cross correlation operator to the AC coef-

ficients of each block.
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The normalised cross-correlation operator is usually used for template

matching in the spatial domain. It is calculated as

c =

∑
i(ai − a)(bi − b)√∑

i(ai − a)2
∑

i(bi − b)2
(4.14)

where a and b are the mean values of each block. To avoid having to

apply the inverse DCT transform, we instead apply the operation to the

AC DCT coefficients rather than to the actual pixel values. Although

this is not mathematically equivalent to doing the cross-correlation in

the spatial domain, it does give very similar results. On a test using over

18 million block pairs from our test set, the mean difference between the

spatial cross-correlation and the DCT cross-correlation was 0.0128 with

a standard deviation of 0.05. On the basis of this experiment we deemed

the DCT cross-correlation to be satisfactory for our purposes.

DCT coefficients have been used before to compare macroblocks, but

using absolute differences or the inner product of the AC coefficients.

Our testing in the previous section showed the inner product to be a

poor metric. The spatial cross correlation is an accepted and well used

operator for comparing the similarity of two regions, and the closeness of

our DCT cross-correlation to the spatial version makes it preferable to

using the differences or inner product of the DCT coefficients.

The detail measure is a simple calculation of the amount of contrast

in a block. We consider blocks with an energy measure of less than 100 to

be uniform. This value was determined by trial and error to be sufficient

to account for the noise present in uniform areas. The cross-correlation

operator becomes unstable with very low detail frames, and is swamped

by the noise that the JPEG encoding introduces (it will also cause a

division by zero on a perfectly uniform block).

Our implementation uses the freely available JPEG library from the

Independent JPEG group [7]. The library takes care of subsampling,

quantization and huffman encoding used in JPEG compression and allows

us access to the DCT coefficients.

4.5.3 Detecting cuts

In designing our cut detector we need to focus on the types of cuts that

caused difficulty for the shot change algorithms examined in the previous
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section. We can identify the different types of cuts we want to detect:

1. Cuts between two different and relatively static shots. These are

simple to locate, and can be reliably found with techniques such as

colour histograms.

2. Cuts between relatively static, but very similar shots, such as the

jump cuts shown in figure 4.4. These are difficult to differentiate

from object motion as much of the frame may change very little or

not at all.

3. Cuts before or after highly dynamic shots. These are difficult to

identify because all the frame pairs prior to the cut show substantial

changes. For local thresholding techniques this makes the local

neighbourhood around the cut very noisy so the metric response to

the cut is difficult to identify.

We can also identify the kind of events that cause false positives:

1. Large object motion. Large movement of an object that occupies

a significant part of the screen causes significant changes for most

difference metrics.

2. Illumination changes. A change in scene lighting causes a shift in

colours across the whole frame, which causes a large response from

colour histogram based metrics.

3. Post-production effects. Many effects are added synthetically in

post-production that can cause falsely detected cuts. An exam-

ple is colour manipulation such as in figure 4.3, which may cause

histogram based metrics to falsely detect a cut.

In most of these cases there are cues we can examine to differentiate

these cases. Illumination and colour changes can be caught by also look-

ing at the correlation of image detail across two frames. If a normalised

correlation is used the effects of any colour or illumination changes should

be minimised, and we can expect to see a correlation between the two

frames despite a large change in brightness or colour.
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A jump cut appears as a very sudden movement; it will occur over a

single frame pair, unlike object movement which can be expected to last

longer than the 1/25 of a second of a single frame.

A cut between dynamic shots will show poor correlation and changes

in colour and illumination, but so will the frame pairs within the dynamic

shot. However the nature of the changes in the cut will be different from

that caused by the dynamism in the scene. The correlation may be poorer

or the colour change greater than that caused by the dynamic motion in

the shot. By analysing the behaviour of the dynamic shot we may be

able to identify out of character changes that result from a cut. If a cut

joins a dynamic shot to a relatively still shot then we will also observe a

marked decrease in frame changes in the still shot.

DCT behaviour during cuts

We design our cut detector to try and take advantage of these cues using

the statistics we can extract from the JPEG DCT coefficients. First we

examine the behaviour of the DCT coefficients during some representa-

tive cuts and potential false hits, and from these design an algorithm

that can differentiate between them.

Figure 4.14 shows our DCT-based statistics during a fairly simple

cut. Neither of the shots has highly dynamic motion, and although the

two shots are of the same location, there is a large enough change in the

camera positions that the cut is obvious. This cut is reliably detected by

most of the algorithms tested in the previous section.

The close-up shows the same subregion of nine 8× 8 macroblocks for

each frame, and the DCT statistics for these blocks. The correlations are

with the corresponding block in the previous frame, and the other values

are the difference between the value for the current frame and the value

for the previous frame. The U and V differences are common over a 2×2

block region as the means are calculated from the DC coefficients of the

macroblocks in the U and V channels, which are 16 × 16 pixels due to

JPEG’s subsampling.

The intra-shot correlations are mixed; there are a few good correla-

tions (> 0.4), more indeterminate values, and a couple of poor correla-

tions (< 0). There is movement in the scene, which affects the corre-

lations, although it is interesting to note that it does not cause all the
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blocks to correlate poorly; for example the top centre block shows reason-

able correlations despite being in a motion area. The cut frame however

shows more poor correlations, although a couple of the blocks have values

around 0.3. The blocks that were showing good intra-shot correlations

have poor values for the cut though.

The differences between the Y , U and V means show a certain level

of noise during the shots and then larger differences on the cut. Again

this is not universally true for all blocks, but does hold for the majority.

The colour channels in particular can show large differences compared to

their intra-shot behaviour.

Figure 4.15 shows a cut following a highly dynamic shot where an

object that occupies most of the screen is making large movement. The

movement of the nut also causes large changes in illumination as it turns

to reflect the light. As expected the correlations within the dynamic

shot are poor, and the changes in the Y mean and energy on the cut are

difficult to differentiate from those within the shot. However there is a

large change in the U and V channels on the cut, although the change in

colour may not be visible to the naked eye. The first two frames of the

following shot show a marked improvement in the correlations, indicating

that these two frames are more likely to be part of the same shot that

those before.

Figure 4.16 shows six frames from the ‘arri5’ sequence during which

the scene illumination changes. Illumination changes like this cause a

shift in the colour histograms of the frame, which causes colour his-

togram based shot detection algorithms to detect a cut. Looking at the

DCT statistics there are significant changes in the intensity and colour

channels at the two points where the illumination changes. However the

correlations are strong throughout the illumination changes. Some of

the blocks near the centre get completely washed out and so will show

poor correlations, but the majority of the blocks within the frame retain

strong correlations.

Algorithm

Based on the analysis of the behaviour of the DCT-based statistics in the

previous section, we designed a novel cut detection algorithm. Following

our earlier design statement of making decisions on a local basis, we aim
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Fig. 4.14: DCT statistics behaviour during a cut in the ‘advert6’ se-

quence. The cross-correlations and differences between the

Y , U , V and energy means of each frame and the previous

frame are shown for nine DCT macro-blocks.
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Fig. 4.16: DCT statistics for frames during the ‘arri5’ sequence. The

change in illumination causes some shot change detection al-

gorithms to falsely detect a cut.
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Fig. 4.17: Local region behaviour during a cut.

to make a per block decision as to whether there has been a cut or not.

Figure 4.17 shows a summary of the type of block behaviour we are

looking for at a cut. A large change in any of the statistics that is out of

character with the behaviour of that statistic in the immediate past may

be a sign of a cut, although if there is a strong correlation between the

blocks then it is more likely that the changes are a result of illumination

or colour manipulation rather than a cut. We also look for improved

consistent behaviour after a suspected cut, and this can be used to verify

that a cut actually occurred.

We represent the past behaviour of a statistic for a particular block

by keeping a trailing window of the value for the last n frames. The

behaviour of a statistic over this window can be characterised by its mean

and standard deviation. If a value falls outside of a certain multiple of

the standard deviation from the mean, then we can say that the value is

out of character with its past behaviour. When we detect a cut we must

reset the window to start after the cut, so that we only have frames from

a single shot within the window. We set n, the size of the window, to be

5 frames.

The need to determine what multiple of standard deviations consti-

tutes uncharacteristic behaviour introduces a threshold into the system,

along with the various problems associated with thresholds. However
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the threshold is sufficiently decoupled from the actual image data that

we should avoid the main pitfalls of threshold selection.

Labelling blocks For each block i in the current frame f under con-

sideration we compute the following statistics:

Yf,i, Uf,i, Vf,i: The Y , U and V means over the block, taken from the DC

coefficients.

Ef,i: A simple detail measure found by summing the AC coefficients of

the Y channel block. When this value is below 100 we consider the

block to be uniform.

Cf,i The normalised cross-correlation between the AC coefficients of block

(f, i) with those of block (f − 1, i).

In addition to the statistics for the current block we have the means,

Yi, Ui, Vi, Ei, Ci, and the standard deivations, σYI
, σUi

, σVi
, σEi

, σCi
, over

the trailing window for each statistic.

There are three particular block behaviours that we are interested in.

We want to examine each block in the frame and possibly label it as one

of three types:

1. Blocks with a good correlation which is consistent with good cor-

relations in the trailing window.

2. Blocks whose correlation is significantly worse than they have been

in the trailing window.

3. Blocks which show a significantly improved correlation compared

to the previous frame pair.

It is also possible that the block type is inconclusive, in which case we

label it as type unknown. Instances of the first type of block suggests that

the current frame pair are from the same shot. Blocks of the second type

signal that a cut may have taken place. Blocks of the third type suggest

that a cut may have occurred between the previous pair of frames.

Experimentation with a selection of cuts and potential false positives

led to the following rules for labelling blocks as one of the three types.

These rules are applied to each block pair where neither of the blocks are

uniform:
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1. If the block has a good correlation then we disregard any changes

in illumination, colour or energy. We require that the correlation

be in line with the correlations of previous frames in the trailing

window, as a large decrease in correlation would make the block

type 2, and a large increase type 3.

• Cf,i >= 0.3, and σCi
< 0.25, and Cf,i falls within one standard

deviation of Ci.

2. If the block is not of type 1 then we look for a large decrease in

correlation or a large change in intensity, colour or energy that is

outwith the bounds of the block’s past behaviour.

• One block is uniform and the other is not, and the difference

between Ef−1,i and Ef,i exceeds a threshold,

• or the sum of absolute differences for the U and V means

is greater than a threshold and falls outside of two standard

deviations of its past behaviour,

• or Cf,i is more than 0.5 less than Ci.

3. The block may show a significant improvement in correlation com-

pared with the previous frame pair.

• Cf,i > 0.5 and Cf−1,i < 0.3,

• or Cf,i is at least 0.3 greater than Cf−1,i.

If either of the blocks is uniform and the other is not, then we mark is

as type 2. If both blocks are uniform we look for a change in the intensity

or colour; if there is a change, the block is marked as type 2. However

if both the blocks are uniform and the same colour then we discard the

block. This is to cope with shots with very dark or otherwise uniform

backgrounds (we will examine this later).

We also disregard all blocks along the borders of the image. This

is because material that has been stored or transferred in an analogue

format at some stage in its lifetime can pick up noise and artefacts near

the edges of the frame. Figure 4.18 shows the corners of two frames on

either side of a cut in the ‘arri5’ sequence. There are visible bands of

dark pixels along the edges of the frame that are consistent across the
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Fig. 4.18: Detail of the corner of two frames from the ‘arri5’ sequence.

Although the frames are from either side of a cut, there is a

consistent banding along the edge of the frame.

whole sequence and cause strong correlations between blocks, even when

the contents has changed. Although the ‘arri5’ sequence was sourced

digitally from Smoke & Mirrors’s Cakes system it has passed through an

analogue process at some point. For our sequences stored at 176 × 144

resolution this means discarding 76 (or 20%) of the 396 blocks.

Figure 4.20 shows the block labelling in the frames around a straight-

forward cut in the ‘advert6’ sequence. The first frame shows a few

changed blocks caused by movement within the frame, but these are

comparatively few compared to the well correlated blocks (types 1 and

3). In the cut frame there are a large number of changed blocks. The

well correlated blocks along the top and bottom of the image are caused

by the black bands at the top and bottom of the image, which produce

a strong edge that is common across all the frames. This ‘letterbox’

format is commonly used for broadcast in the UK to make the image

suitable for both conventional 4:3 aspect ratio receivers and the newer

16:9 widescreen format that is being phased in.

Figure 4.21 shows the same cut as figure 4.15, with a highly dynamic

shot cutting to a less dynamic one. Using the trailing window means

that many of the blocks in the first frame are not labelled, despite hav-

ing changed from the previous frame (see figure 4.15). The cut frame still

shows many type 2 blocks however, as the nature of the changes is dif-

ferent from that during the previous dynamic shot (the change in the U

and V values as seen in figure 4.15). Also the second frame of the follow-

ing shot shows many improving type 3 blocks (despite the illumination

change caused by the nut’s rotation).
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Fig. 4.19: Two frames from either side of a cut in the ‘arri2’ sequence.

Much of the image in both frames is uniformly black.

Once the blocks in a frame are labelled there will most likely be a

mixture of all three types of blocks, as well as undetermined ones. We

must now aggregate these labelled blocks to decide on the behaviour of

the frame itself—is the frame a cut or not. An obvious criteria for a cut

frame is that there be more type 2 blocks than type 1 and type 3 blocks.

However a highly dynamic shot may cause there to be very few well

correlated blocks (as in figure 4.21). Another problem is with very dark

shots or graphics where much of the frame is black and detected as being

uniform. For example, figure 4.19 shows two frames from either side of a

cut in the ‘arri2’ sequence where many of the blocks are uniform black in

both frames. If the uniform blocks are labelled as being type 1 then they

will outnumber the type 2 blocks, making the cut difficult to identify.

This is the reason we discard all the similarly coloured uniform/uniform

block pairs.

Instead of using a fixed rule to determine whether a cut has occurred

based on the number of each type of block, we use the same technique as

we did for the blocks themselves—compare the current frame with the

behaviour of the previous frames. The count of each type of block over

the trailing window is kept, and again the mean and standard deviation

calculated to represent the past behaviour.

Cuts are identified in two stages; first a potential cut is located by its

count of type 2 blocks, then it is verified using the count of type 3 blocks

in the following frame. A frame pair is marked as a potential cut if all

the following conditions are satisfied:
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Fig. 4.20: Labelled blocks for a simple cut from the ‘advert6’ sequence.
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Fig. 4.21: Labelled blocks for a simple cut from the ‘arri2’ sequence.
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1. The number of type 2 blocks exceeds the total number of type 1

and type 3 blocks.

2. The number of type 2 blocks is greater than one standard deviation

from the mean of its behaviour over the trailing window.

3. The number of type 2 blocks is at least 25% higher than for the

previous frame.

The third rule handles cases where the standard deviation of the count

of type 2 blocks is small and so a small increase in movement could appear

as a cut under rule 2. This is primarily required for relatively static but

dark scenes where many of the blocks are discarded as uniform/uniform

pairs. A small amount of movement will cause a small increase in the

number of type 2 blocks but there are insufficient type 1 or 3 blocks to

discard a cut under rule 1.

Once a potential cut is identified it is verified by examining the count

of type 3 blocks in the following frame, which must meet the following

conditions:

1. There are more type 3 than type 1 blocks.

2. The number of type 3 blocks exceeds the average number of type 3

blocks in the previous two frames.

3. The average of the number of type 3 blocks in this frame and the

number of type 2 blocks in the previous frame is at least 25% of

the total number of blocks in the image (excluding the discarded

border and uniform/uniform blocks).

There are a number of hardwired values in these rules, and the use

of such constants is a source of inflexibility in any algorithm. The val-

ues shown are those that we have determined to perform well on post-

production type material. They are deliberately lenient towards the

changes in illumination and colour that occur regularly in this type of

material, and to cope with highly dynamic shots.

The pseudo code for the cut detection algorithm is presented in ap-

pendix A.
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4.5.4 Detecting fades

Types of fades that cause problems for existing fade detectors are very

short fades and non-linear fades. We wish to design our detector to detect

both these kinds of fades, and fades to any colour.

We focus here on fade outs—fade ins are the same except reversed,

so any technique for detecting fade outs can be easily modified to locate

fade ins (the simplest method being to run the sequence backwards).

DCT behaviour of fades

During a fade the image gradually changes to a uniform frame of a single

colour. Therefore we expect to see a falling level of detail and changing

intensity and colours over the sequence. Correlations will also be affected

by the vanishing detail.

Figure 4.22 shows the behaviour of the DCT statistics during a con-

ventional fade to black. The intensity falls throughout the fade, but not

in a strictly linear manner. Blocks which started out brighter obviously

fall more with each frame, and there is some variation in the rate of in-

tensity change. The colours also change in a fairly consistent manner,

although the direction depends upon the initial colour (as the U and

V values are signed and range from -128 to 127). The energy also falls

with each frame as expected. The correlations are initially good until the

detail starts to disappear, where they get significantly worse.

Figure 4.23 shows a trickier fade from the ‘arri5’ sequence. This

sequence contains many illumination changes which caused problems for

cut detectors; in this case the fade initially looks like an illumination

change but continues until the whole frame is washed out. The fade is

also very short and non-linear in nature (there is a large jump in the final

frame). The behaviour of the DCT statistics is similar, except this time

the illumination increases until each block is fully saturated. Note that

in this sequence the artefacts along the borders of the frame are quite

clear.

We can characterise the behaviour of the DCT statistics during a fade

out as follows (figure 4.24):

1. Energy levels will fall consistently through the fade.
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Fig. 4.22: Behaviour of the DCT statistics during a fade to black.
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Fig. 4.23: Behaviour of the DCT statistics during a fade to white.
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Fig. 4.24: Local region behaviour during a fade out.

2. Intensity and colour values will move consistently towards their

final values (which may not necessarily be black or white).

3. Correlations may start off high, but will break down as detail dis-

appears.

It is possible for a block to reach the end of its fading behaviour before

the end of the fade. Indeed a block may not show fading behaviour at

all if it starts off as uniform with the same colour as the final frame (like

the shadow areas of the sequence in figure 4.22). A frame that starts

off uniform but a different colour will still show changing intensity and

colour but not detail, as it has none to begin with.

Algorithm

Our fade detection algorithm looks for fade-like behaviour in a block and

tracks this behaviour from frame to frame until it decides that a fade

has taken place. There are many other events that can cause a block to

exhibit fade-like behaviour such as motion or illumination changes. To

counter this we add an additional constraint by examining each block’s

spatial neighbours and checking that they exhibit the same behaviour.

For each block we store data on whether the block looks like it is

fading, which fade-like changes it is undergoing, and how long it has
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been fading for. We will ignore the effect of fading on the U and V

channels, as we find that the intensity channel is sufficient.

We initially examine each block i in isolation for three fade like be-

haviours: a decrease in Ei, a decrease in Yi or an increase in Yi. We

ignore any changes in Ei if EI < 100 to avoid the noise present in low

detail blocks. We then examine the eight neighbours of block i and if

any one of them is undergoing one of the changes that i is showing, we

mark i as fading and store the types of change.

If the block was already marked as fading we check if it is undergoing

the same types of changes as it was in the previous frame. If so then

we increment the count of how many frames the block has been fading

for, otherwise we mark the block as non-fading. If a fading block reaches

a uniform state we keep incrementing the counter as long as the block

stays static.

When we reach a frame with at least 80% uniform blocks we make a

decision as to whether we are at the end of a fade. Two conditions must

be met: More than half of the blocks must have been fading for more

than two frames, and the ratio of fading blocks in the current frame to

non-uniform blocks in the previous frame must be greater than 0.75. The

starting frame is found by taking the median age of the fading blocks.

Only requiring 80% uniformity means the algorithm can tolerate a certain

amount of noise and also overlays such as channel logos which do not fade

along with the rest of the image, such as in figure 4.30.

4.6 Evaluation of new algorithm

The new DCT-based algorithm was evaluated on the same testset as

the other algorithms in section 4.4. It must be noted that this is the

same video collection that was used in the design of the algorithm, so

performance against another testset may be poorer.

4.6.1 Cuts

Unlike the metric-based shot change detection algorithms, it is difficult

to produce a range of precision/recall values by merely varying a single

parameter. Instead we can produce a single performance measure us-

ing the various parameter values as they were described in the previous
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01:01:13 01:01:15 01:01:17

Fig. 4.25: An effect from the ‘music1’ sequence which is falsely detected

as a cut.

section.

We compare our new algorithm with the best shot change detection

algorithm from section 4.4, which is the local RGB histogram with the χ2

metric and local thresholding over a window two frames wide to either

side. Since the colour histogram technique offers a trade off between

precision and recall we are able to select a threshold that gives the same

level of recall as our new algorithm. To achieve a recall of 0.978 over the

entire testset the threshold is set to 2.5354; if the metric is greater than

2.5354 times the average over the local window, we detect a cut.

Table 4.3 shows the results for both the new algorithm and colour

histogram. Overall the new algorithm achieves better precision at similar

levels of recall than the colour histogram algorithm.

The ‘music1’ and ‘music4’ sequences produce quite a high proportion

of false hits. Many of the false cuts in the ‘music1’ sequence occur dur-

ing fades or dissolves. There are also a few special effects that trigger

false cuts, such as the sequence shown in figure 4.25. The colour his-

togram technique achieves a higher precision on the ‘music1’ sequence,

but with a lower recall when using a threshold of 2.5354. If we adjust

the threshold to bring the recall up to the same level the precision of

the colour histogram falls to 0.709, narrowing the gap somewhat. In the

‘music4’ sequence the false hits also predominantly occur during fades.

The ‘news’ sequence contains a sports report with footage from a football

match which causes a number of false hits, particularly during close-up

shots of the players while they are running. The combination of object

movement, camera movement and motion blur cause problems for the

new algorithm and the histogram technique alike.
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New algorithm Colour histogram

hits/total false precision recall precision recall

arri2 71/74 6 0.922 0.959 0.563 0.973

arri3 27/27 5 0.844 1.000 0.563 1.000

arri4 20/20 1 0.952 1.000 0.833 1.000

arri5 7/7 6 0.538 1.000 0.200 1.000

advert1 22/30 0 1.000 0.733 1.000 0.967

advert2 40/40 1 0.976 1.000 0.952 1.000

advert3 5/5 0 1.000 1.000 1.000 1.000

advert4 47/47 6 0.887 1.000 0.940 1.000

advert5 4/5 0 1.000 0.800 0.800 0.800

advert6 12/13 8 0.600 0.923 0.706 0.923

music1 82/83 39 0.678 0.988 0.794 0.928

music2 143/147 5 0.966 0.973 0.894 0.973

music3 157/159 5 0.969 0.987 0.888 0.994

music4 110/114 28 0.797 0.965 0.691 0.982

music5 178/179 14 0.927 0.994 0.978 0.994

music6 209/220 5 0.977 0.950 0.887 0.932

news 88/88 25 0.779 1.000 0.715 1.000

Frasier 279/279 12 0.959 1.000 0.663 1.000

All adverts 184/194 27 0.872 0.948 0.749 0.985

All music 879/902 96 0.902 0.975 0.864 0.968

All post 1134/1170 129 0.898 0.969 0.816 0.971

Reference 367/367 37 0.908 1.000 0.675 1.000

All 1501/1537 166 0.900 0.977 0.776 0.978

Tab. 4.3: Performance of the new DCT-based cut detection algorithm

on the testset.
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01:43:09 01:43:11 01:43:13 01:43:15

Fig. 4.26: A very short fade to white from the ‘music4’ sequence.

4.6.2 Fades

Table 4.4 shows the results of the new DCT-based fade detector against

Lienhart’s standard deviation of pixel intensities fade detector for fade

outs only. Overall the new algorithm detects substantially more of the

fades but at the cost of many more false positives. The majority of the

newly detected fades are the fade-to-whites that are entirely missed by

the other algorithm. Also detected are more of the short duration fades.

The marking of fades can become slightly ambiguous with the very short

fades, particularly with the 12.5 frames per second sequences. At this

frame rate a short fade can last as little as two or three frames, such as

the fade from the ‘music4’ sequence in figure 4.26.

The two falsely detected fades from the ‘music1’ sequence are a little

ambiguous—they are both light effects where the shot starts with most

of the frame washed out and the camera then moves to point straight

into the light, further saturating the image and pushing it over the 80%

uniform threshold that triggers the fade detector (figure 4.27). It could

be argued that this is actually a fade, however in the marking up of the

video we have chosen not to interpret it as such.

Another source of falsely detected fades are cuts to a mostly uniform

frame, such as the falsely detected fade from the ‘music3’ sequence in

figure 4.28. If the behaviour of the preceding frames has shown any fade-

like behaviour then the nearly uniform fade can trigger the fade detector.

Since the fade detector sets no age limit on fading blocks, the original

fade-like behaviour may have been many frames before the nearly uniform

frame.

Another source of mostly uniform frames that cause problems for the

fade detector are cartoon style shots or logo shots, such as shown in fig-

ure 4.29. These have enough uniform blocks to trigger the fade detector.
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New algorithm Lienhart’s algorithm

hits/total false hits/total false

arri2 1/1 6 0/1 1

arri3 1/1 0 1/1 0

arri4 1/1 0 1/1 0

arri5 8/8 1 1/8 0

advert1 0/0 0 0/0 0

advert2 0/0 0 0/0 0

advert3 0/0 0 0/0 0

advert4 0/0 0 0/0 0

advert5 0/0 0 0/0 0

advert6 0/0 0 0/0 0

music1 8/8 2 0/8 0

music2 4/4 0 3/4 0

music3 1/1 3 1/1 0

music4 25/28 0 18/28 0

music5 1/2 0 0/2 0

music6 1/1 0 0/1 0

news 0/0 1 0/0 0

Frasier 11/13 0 12/13 0

All adverts 10/10 1 3/10 0

All music 40/44 5 22/44 0

All post 51/55 12 25/55 0

Reference 11/13 1 12/13 0

All 62/68 13 37/68 0

Tab. 4.4: Performance of the DCT-based fade detector against Lien-

hart’s fade detector. Only fade outs are recorded.
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01:05:13 01:05:15 01:05:17 01:05:19

01:05:21 01:05:23 01:06:00 01:06:02

Fig. 4.27: A falsely detected fade from the ‘music1’ sequence.

01:21:17 01:21:19 01:21:21 01:21:23

Fig. 4.28: A cut to a mostly uniform frame in the ‘music3’ sequence,

which is falsely detected as a fade.
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36:14 36:15 36:16 36:17

Fig. 4.29: A sequence of cartoon style frames from the ‘arri2’ sequence

that triggers a falsely detected fade.

00:20:22 00:20:24 00:21:01 00:21:03

Fig. 4.30: A fade from the ‘music4’ sequence that is correctly detected

despite the overlaid graphics.

There is a tradeoff in the amount of uniform blocks required to detect

the final frame of a fade; if we increase the percentage of uniform blocks

required then we can avoid falsely detected fades like that of figure 4.29,

however the more lenient setting we use allows for the detection of fades

in the presence of overlaid graphics such as the fade from the ‘music4’

sequence shown in figure 4.30, which is correctly detected.

4.7 Conclusions

In this chapter we have explored the application of shot change detection

algorithms to the type of material encountered in a post-production envi-

ronment, namely commercials and music videos. This is an area that has

received very little attention in the published research on the temporal

segmentation of video.

We have pointed out that this material is significantly different in na-

ture to the ‘conventional’ material such as regular television programmes

and news bulletins that are usually used in evaluating shot change detec-

tion algorithms. The material is highly dynamic with very rapid transi-
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tions, large amounts of motion and is heavily manipulated, making the

location and type of many transitions ambiguous.

Having evaluated a number of published shot change detection algo-

rithms on samples of this material we found their performance disap-

pointing, and instead designed a novel temporal segmentation algorithm

tailored to handle this type of material. The resulting algorithm was

designed to process the online proxy images stored by the Cakes system,

and exploits the features of the M-JPEG format in order to reduce the

required computation and avoid having to uncompress the video.

Our algorithm outperforms previous algorithms when detecting cuts

and fades on post-production type material, and performs comparably

when processing ‘conventional’ material. It is also fast, running at near

four times real time on a 400MHz PC, due to its use of the DCT data.

However there are still many situations where no algorithm can suc-

cessfully partition the video as a deeper semantic understanding of the

content is required to identify the different elements and transitions. This

task is difficult even for the experienced human observer.
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In this chapter we explore techniques for intra-shot segmentation—we

assume that each video sequence is an uninterrupted sequence of frames

with no transitions. Within the shot we want to identify the primary ob-

jects; objects that a human observer is interested in. We are interested in

determining the location, shape and motion of these foreground objects.

There has been a lot of recent research in this area, much related to the

new MPEG-4 format for video. Among its many other features, MPEG-4

allows a video sequence to be encoded in layers with arbitrarily shaped

regions. For example, a person in a scene can be encoded in a separate

layer from the background, allowing more bandwidth to be dedicated to

the moving person than to the relatively static background. The MPEG-

4 standard does not dictate a method for extracting these layers, only for

encoding them. Therefore researchers and implementers have been free

to explore and compare many different segmentation techniques.

Without a high level semantic understanding of the contents of an

image it is very difficult to separate the foreground from the background

of a static image—indeed the differentiation between what is foreground

and background is somewhat subjective. We shall therefore make two

vital assumptions about what constitutes a foreground object: that ob-

jects are rigid or semi-rigid, and that they move independently of the

background. The rigidity constraint means that we can expect move-

ment to be coherent across the extent of an object. These assumptions

mean we can recast the problem of identifying foreground objects as one

of identifying regions of coherent movement within a shot.

Segmenting moving objects draws from two areas of computer vision

research—spatial segmentation and motion estimation. This chapter is

organised as follows: first we will look at the different methods for de-

scribing and estimating motion within a video sequence. Then we look

at static segmentation techniques which can be applied to a single im-

age. We then look at techniques which draw from both these fields for

segmenting moving objects from a video sequence.
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5.1 Motion models and estimation

The apparent motion in a sequence of images is useful information for

a number of purposes. In video coding and compression motion can be

used to exploit temporal redundancy in the sequence, drastically reduc-

ing the amount of information that needs to be stored or transmitted.

Registering two images can be useful, for example building a panorama

from a number of overlapping images [88]. This requires that the rela-

tion of the images to each other be ascertained so that the overlapping

regions can be aligned. This is similar to a major problem in computer

vision, that of stereo matching. In stereo vision a scene is photographed

from two (or more) different viewpoints, and it is necessary to identify

the corresponding points in the images.

5.1.1 Motion models

There are several ways of modelling the motion between two images. The

simplest is optical flow, where each pixel (x, y) has a unique motion vector

(u, v) describing its translation from the first image to the next. Ideally,

the intensity of each pixel in the second image, I1, can be described from

the first image, I0, as

I1(x + u, y + v) = I0(x, y). (5.1)

This is known as the constant intensity constraint, as it assumes that

changes in pixel brightness are only caused by motion. Optical flow can

also be described on a coarser level, where several pixels share a motion

vector. Such regions of pixels are typically small blocks, such as 4 or 8

pixels wide. This reduces the amount of motion information, exploiting

the fact that neighbouring pixels usually have coherent motion.

A generalisation of this is to use a subsampled grid of motion vectors,

and some form of interpolation to calculate the individual pixel motion

vectors, such as Szeliski and Coughlan’s spline-based system [101].

Parametric motion models

Describing motion on a pixel level or even a reduced resolution grid still

requires a lot of motion data. A lot of this information is redundant, as

the motion of nearby pixels often shows a strong coherency. Therefore it
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is sometimes preferable to describe the motion of a large region of pixels

using a single model that describes the motion of pixels between frames

I0 and I1 using a limited number of parameters.

The simplest parametric transform is a translation, where each pixel

P in the region is translated by the same vector, thus each pixel’s position

in frame I1 is modelled as

P ′ =

[
x′

y′

]
= P + T, where P =

[
x

y

]
, (5.2)

and T is the translation vector. Clearly this model is much more con-

strained than the general optical flow. If the video is of a 3-dimensional

scene, it requires any moving objects to be rigid, flat, and moving parallel

with the image plane.

More general 2-dimensional motion can be described using an affine

transform of the form

P ′ =

[
a1 a2

a3 a4

]
· P +

[
a5

a6

]
(5.3)

This is sufficient to model translation, scaling, rotation and skewing

of 2-dimensional elements. In terms of 3-dimensional objects this allows

us to model planar objects that are not parallel to the view plane, so

long as they are only translated on their own plane, and they can only

be rotated about an axis normal to the image plane [24].

These constraints are necessary because these simple 2-dimensional

transforms are unable to model the parallax effects that result when

points at different depths in the image appear to move by different

amounts. Adding further parameters gives the eight parameter quasi-

quadratic model, where the displacements of each pixel are given by

u = a1 + a2x + a3y + a8xy + a7x
2

v = a4 + a5x + a6y + a7xy + a8y
2 (5.4)

For notational convenience we can gather the parameters together

into a vector θ = [a1, . . . , a8]
T and write[

u

v

]
=

[
1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

]
θ (5.5)
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Fig. 5.1: Two examples of the aperture problem.

5.1.2 Estimating motion

Estimating the motion in a sequence is a well researched problem, and

many techniques have been proposed. All motion estimation algorithms

have to deal with the same problems:

Occlusion Motion in the scene can cause some areas to be occluded, and

others to be revealed. These pixels have no corresponding pixels in

the other frame, and so they have no well defined motion.

The aperture problem Where a portion of the image has a gradient in

only one direction then the motion becomes ambiguous, as shown

in figure 5.1.

Low detail areas Similarly, in low detail areas the motion is ambigu-

ous. Also, when there is little detail, noise can become a problem.

Changing appearance/non-rigid objects If an object’s appearance

actually changes between frames, it can cause problems in deter-

mining the motion.

Block matching

Block matching is a straightforward way of estimating the optical flow.

The second image is partitioned into small blocks and for each the algo-
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rithm seeks the best matching block in the previous frame. The motion

vector for each block is that required to translate the best matching block

in I0 to the position of the block in I1.

Searching for matching blocks is a very compute intensive process, so

the search can be limited to the local neighbourhood around the original

block. However this may cause the algorithm to miss large displace-

ments. A solution to this is to use a multiresolution pyramid, using the

computed flow from the lower resolution levels to seed the search at the

next resolution.

Block matching is popular for video compression as it can be imple-

mented in hardware, and the matching process concentrates on reducing

the error rather than reflecting the true motion in the scene.

The block matching algorithm leaves a large number of choices to

the implementer, such as the metric used to compare blocks and the

search strategy used. Kuhn et al. [48] compare a number of different

implementations for use in MPEG-4 video encoding.

Differential methods

Differential methods compute per-pixel optical flow, and are based on the

assumption that that points in the image maintain a constant brightness

as they move through space and time. Therefore the total derivative of

the intensity with respect to space and time is zero:

δI

δx

δx

δt
+

δI

δy

δy

δt
+

δI

δt
= 0 (5.6)

Rewriting with the flow components u = δx/δt and v = δy/δt gives

us

−δI

δt
=

δI

δx
u +

δI

δy
v (5.7)

There is no single solution for u and v for this equation, so additional

constraints are required in order to determine the flow.

Equation 5.7, known as the optical flow constraint equation, is the

basis for two classic computer vision optical flow algorithms. Lucas and

Kanade’s technique [56] takes groups of neighbouring pixels and assumes

that they share the same motion, giving a set of simultaneous equations

that can be solved with a least squares method. Horn and Schunck’s
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method [39] makes an assumption about the smoothness of the flow field

and uses an iterative method to try and minimise the derivative of the

intensity.

Parameter estimation

If we use a parameterised model then there are are a number of techniques

for estimating the parameters. If we already have per-pixel flow estimates

for the pixels in the region then we can construct an overdetermined

system of equations expressing the flow in terms of the model, and find

a least squares solution to the model parameters.

We do not need flow estimates for every pixel in order to find a least-

square estimate of the parameter. Since many pixel may have inaccurate

flow estimates due to noise, lack of detail or the aperture problem as

described above, it may be advantageous to use a much smaller number

of flow estimates if we can rely on them being fairly accurate. One option

is to use a robust least squares estimator [70], which ignores potential

outliers.

Feature tracking is another technique; we estimate motion for a small

number of points in the image, and use the motion of these points to

estimate the model parameters. Feature tracking is usually done with

block-matching; first a set of suitable features are identified in the first

frame, and then a local neighbourhood search carried out in the next

frame to find the best match. If the tracking is being carried out over

a number of frames then the tracked motion can be filtered to eliminate

probable bad matches. A Kalman filter can be used to model the motion

of each feature, providing a prediction of where the feature will move in

the next frame which can be used to guide the search [93].

A suitable feature for tracking should be a small region with high

detail in both directions. Such features are sometimes called corners,

as a corner is an ideal feature for tracking. Smith [95] provides a com-

prehensive survey of different feature detectors, and also proposes his

own [94].

Parameter estimation is a well known problem in statistics and numer-

ical computing, and there are a number of established methods for esti-

mating a model’s parameters. Sawhney and Ayer [82] use an expectation-

maximization (EM) algorithm with a robust estimator, however the it-
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erative nature of the algorithm makes it more compute intensive than a

least squares solution.

Konrad and Dubois [47] propose a Bayesian approach, modelling mo-

tion as a Markov random field and using either simulated annealing or

a relaxation technique to maximise the probability that the motion is

correct. The technique requires a large number of iterations, and so has

a high computational cost.

5.2 Spatial segmentation

Spatial segmentation is another well researched problem in computer

vision. Segmenting a single image into meaningful units is a very difficult

problem, and so it helps to be able to make as many assumptions about

the image as possible. Single image segmentation has met most success

in application specific tasks such as medical imaging where it is possible

to make many assumptions about the images and there is a restricted

domain of what can appear in the image.

General purpose segmentation has been less successful. If the algo-

rithm has no knowledge of what may appear in the image and what types

of object the user may be interested in it is forced to rely on low level im-

age features to guide the segmentation. Many segmentation algorithms

therefore try to segment an image into regions that are homogeneous

with respect to some feature such as colour or texture. Motion can also

be used as a feature if an optical flow field is available. Homogeneous

regions in the image can be found by looking for transitions between re-

gions, such as using an edge detector to find edges between regions of

different colour or discontinuities in texture [57], and attempting to find

contours that enclose the regions.

Clustering or classification techniques can be used to assign pixels

to regions, particularly if the number and types of the regions is known

beforehand. It is usually also necessary to add a constraint that pixels

in the same region should all be connected. For example the Blobworld

system [19] groups pixels using colour, texture and position features for

each pixel. The use of position as a feature means that pixels will tend

to be grouped in spatially coherent regions.

More common are partitioning approaches, where the image is parti-

tioned into a number of connected regions through a process of splitting
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and merging. Partitioning algorithms can take a top-down or bottom-up

approach. The top-down approach starts with one region that encom-

passes the whole image. This region is then split into two, and the

algorithm then continues by iteratively choosing a region and splitting it

until some stopping criteria is reached. The means of splitting a region

may be based on the pixel features such as colour or texture [26], or on

a fixed geometry such as a quadtree.

Bottom-up algorithms start with small regions and iteratively grow

them by adding pixels to each region. Pure region merging algorithms

start with the image completely partitioned by many small regions, such

as assigning one region per pixel. Other algorithms, such as the water-

shed algorithm [110], start with a small number of regions and merge

neighbouring unassigned pixels into them. Both types of algorithm keep

growing the regions until some stopping criteria is reached. Information

from an edge-detector can be incorporated to guide the region grow-

ing process [89]. Bottom-up algorithms are easier to implement, as no

decision has to be made about how to split a region. However if the

final number of regions is small more iterations will be required. Region

growing can be used after another technique has been used to seed the

regions [22].

The criteria for splitting or merging regions are usually based on some

model of the feature that is expected to be homogeneous over each region.

The suitability of a given partition can then be measured as the error

between the region models and the actual image data. For example, if

regions are expected to be homogeneous in colour then a region can be

modelled by its average colour and the error of the partition is then the

difference in colour between each pixel in the region and the model. The

object of each splitting or merging step is to produce a new partition

that has a lower error.

A useful construct for a bottom-up region merging approach is a span-

ning tree [79, 80]. Figure 5.2 shows how such a tree is constructed, start-

ing with a large number of small regions. The tree in figure 5.2 is in fact

a binary partition tree, as each interior node has exactly two children.

An advantage of constructing such a tree is that once it is constructed,

a number of different partitions of the image can be quickly extracted as

needed. For example if an n region partition is required, only the top n

nodes are required. Salembier and Garrido [80] show how the spanning
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tree can be used in many different image processing, segmentation and

encoding tasks.

The partitions shown in figure 5.2 were built using a simple colour

model operating in the YUV colour space; each region is modelled by

an approximation to the median colour of the pixels in the region, and

the L2 distance between the models is used to decide the merging order.

As can be seen, the extracted regions are not necessarily those we would

desire from this image. We will explore the implications of building the

spanning tree further in section 5.5.1.

5.3 Motion segmentation

As mentioned in the introduction to this chapter there have recently

been many different motion segmentation algorithms proposed, all draw-

ing to some extent on both motion estimation and spatial segmentation

techniques.

5.3.1 Foreground separation

The simplest motion segmentation is to separate a moving foreground

object from a static or quasi-static background. By quasi-static we mean

the background is moving with a single motion that can be estimated

and compensated for.

A basic approach is change detection, where each pixel is labelled as

either foreground or background. A simple frame difference is sufficient to

do this, but is highly susceptible to noise and will not work with a moving

background. To handle a moving background, global motion estimation

can be carried out on the scene and used to align the two images. Since we

want to align the backgrounds we require a motion estimation technique

that will provide a single motion model for the whole frame. A robust

estimator is preferable, as it will ignore the motion of the foreground

object.

A threshold is required to differentiate between truly changing pixels

and noise. There is also the problem of low detail areas on the moving

object, which will not trigger the threshold. To counter this, Aach and

Kaup [9] introduce an adaptive threshold technique based on a Bayesian

formulation of the problem. The algorithm adapts over the course of
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50 pixel regions

10 regions

Original image

Fig. 5.2: A spanning tree constructed from an image using a simple

colour model. Reconstructed images are shown for a segmen-

tation with a minimum of 50 pixels per region and a segmenta-

tion with 10 regions, both constructed from the same spanning

tree. The images on the left use the modelled colour for each

region, while the images on the right use false colours.
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a multi-frame sequence using the assumption that moving objects will

form compact objects with smooth outlines while erroneously detected

changes will appear as small scattered regions. Mech and Wollborn [61]

extend this technique by adding a relaxation step, intended to simplify

the outline of the object, and a memory, used to eliminate transient

errors in the object mask. Neri et al. [67] present a similar approach,

using morphological filters to carry out the regularisation.

5.3.2 Multiple model estimation

A drawback of change detection techniques is that they are unable to

differentiate between multiple moving objects. They produce a binary

mask where multiple objects are all labelled similarly as foreground pix-

els. If the masks of different objects are connected, they will appear as

a single object.

An alternative is to try to estimate more than one motion model for

the scene. This is a top-down approach, where we start with a single

region encompassing the whole image, and estimate the dominant mo-

tion in the region. The dominant motion of the top region should be

the camera motion, as we expect there to be more background pixels

than there are pixels in any one object. Once the dominant motion is

found, the pixels are separated into those which are modelled well by

the dominant motion and those that are not. The region can thus be

split into two—a region that is modelled by the estimated motion, and

a region which is not. The process is then repeated for the region that

did not fit the modelled motion. This can be repeated until all regions

have good motion models, or until the regions are too small to estimate

motion over. The motion models can then be refined by estimating the

motion using only the pixels within each region [41].

Other authors have instead integrated support for multiple motion

models directly into the motion estimation algorithm. For example,

Sawhney and Ayer’s E-M based motion estimation algorithm can be

adapted to support multiple layers of motion [82]. After each iteration

the optimal number of layers is estimated using a minimum descrip-

tion length principle. A drawback, however, is that the regions are not

necessarily spatially coherent. Odobez and Bouthemy [71] use multiple

parametric motion models and a Bayesian scheme for labelling each pixel



5. Spatial segmentation 103

with the most suitable model. They too have a mechanism for adjusting

the number or models, so coping with appearing or disappearing regions

during a sequence.

5.3.3 Segmentation of the optical flow field

As mentioned in section 5.2 motion can be used as a low-level feature

in a spatial segmentation algorithm, so another approach to motion seg-

mentation is to compute the optical flow field for the frame and segment

it into homogeneous regions. This requires a fairly accurate flow field,

but estimated optical flow is often inaccurate around object boundaries.

It also depends on the motion within each object being homogeneous,

which is not necessarily the case for non-rigid objects such as people.

5.3.4 Integrated approaches

A major drawback of segmenting an image using motion alone is that al-

though it is possible to determine the different moving regions the motion

estimates are often poor around the edges of the objects, resulting in the

extracted objects having inaccurate boundaries. In contrast the edges in

a colour based segmentation are quite precise, but it is difficult to decide

which regions are part of which objects. Therefore there have been a

number of efforts to combine both spatial and motion segmentations.

Such techniques are typically initialised with a spatial segmentation

of the first frame, usually based on homogeneous colour regions. The

frame is oversegmented so that the contours of all the important regions

will be preserved. A motion estimation step is then applied, and the

calculated motion used to merge the spatial regions further into regions

of homogeneous motion representing the independently moving regions

of the scene. These regions are then motion compensated to predict their

locations in the following frame, and these are used to seed the process for

the next frame. This provides coherency of the regions between frames,

and allows the tracking of objects throughout the sequence.

A number of systems have been proposed following this framework.

We will focus on the COST 211 Analysis Module (COST AM) [11], which

has been developed by the European COST 211 group for use in MPEG-

4 and MPEG-7 applications, and is currently seen as the benchmark



5. Spatial segmentation 104

Colour
segmentation

Motion
estimation

Motion
segmentation

Change
detection

Motion
compensation

Rule
processor Post-processing

Segmented
regions

Fig. 5.3: Outline of the COST 211 Analysis Module.

against which other segmentation algorithms are compared.

5.4 The COST 211 Analysis Module

The COST 211 Analysis Module incorporates colour and motion based

spatial segmentations and a change detection step, and uses a system of

rules to combine these and identify the different moving regions. The

output from the previous frame is used to assist analysing the current

frame and to track regions throughout the sequence. The basic outline

of the AM is shown in figure 5.3.

The model allows a fair degree of freedom for the implementer, who

can choose between different algorithms for the colour and motion seg-

mentations, and for the change detection. A pre-processing step can be

added to compensate for global camera motion.

A similar framework is proposed by Herrman et al. [38]. Key dif-

ferences between their approach and the COST AM are in the use of a

different colour segmentation technique, and the addition of a shape anal-

ysis module. The aim of the shape analysis is to combine small regions

into a larger region when the larger region has a simple coherent shape

such as a rectangle. This helps to identify parts of occluded objects or

larger objects that comprise of multiple colour regions.

5.4.1 The rule processor

The rule processor expects four inputs, which we will label following the

notation of [11]. These are combined to produce the final segmentation
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RO.

RI The colour segmentation. The different regions of the colour segmen-

tation should be of homogeneous colour. It is expected that the true

contours of the objects in the image are represented by the edges

of some of the regions in RI . The image should be oversegmented

to ensure these contours are preserved.

RM The motion segmentation. This is a segmentation applied on a flow

field, and should consist of a small number of regions with coher-

ent motion. Due to the inherent inaccuracy of motion estimation

techniques around the edges of moving objects, it is expected that

the boundaries of the regions will not be accurate.

RCD The change detection mask. This is a binary mask indicating the

moving and stationary parts of the image (after camera motion

compensation). It is expected that the change detection mask will

be a more reliable indicator of whether a region is moving or sta-

tionary than the motion segmentation.

RMC If the segmentation RO of the previous frame is available, each

region is motion compensated to predict its position in the current

frame, resulting in RMC . This is used to provide continuity between

the segmentations of consecutive frames.

The aim of the rule processor is to produce a segmentation RO of the

principal objects in the scene using RM to identify the different moving

objects and RI to provide accurate boundaries. A system of projections

are used to match regions from the different segmentations using a pro-

jection operator. If Yh is a region in RY then the projection operator

P(Yh,R
X) returns the region in RX that has the greatest overlap with

Yh. It is defined as

P(Yh,R
X)=̇Xg′ , where g′ = arg max

g
(a(Xg ∩Yh)) , (5.8)

where a() is a function that returns the area of a region in terms of

pixels. The projection operator is used for each region Ii in RI to find

corresponding regions in RM and RMC . Regions can be grouped using a

group operator G(Yh,R
X , g) which returns the set of regions Yh in RY

that project onto the same region Xg in RX . It is defined as
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Colour segmentation Motion segmentation

Projection Object boundary

Fig. 5.4: Use of the projection operator to obtain an accurate object

boundary using the colour and motion segmentations.

G(Yh,R
X , g)=̇Yh : P(Yh,R

X) = Xg. (5.9)

Figure 5.4 shows a basic outline of how we can use the projection and

grouping operators to find an accurate boundary for a moving object

using RI and RM . The colour and motion segmentations are produced

independently, and then the motion region is projected onto the colour

segmentation to identify the colour regions that are more than half cov-

ered by the motion region. These colour regions then provide an accurate

boundary for the motion region.

A set of rules are applied to each pair of intersecting groups from RM

and RMC , i.e. for each pair (x, y) where G(Ii,R
M , x)∩G(Ii,R

MC , y) 6= ∅.
An additional set is defined to assist deciding what rules to apply. This
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auxiliary set Bx,y for pair (x, y) is the set of regions from RI that project

onto group y in RMC but not onto the group y in RM . Intuitively, the

set Bx,y represents parts of the tracked object y that do not share the

same motion as the rest of the object.

The following three rules are applied to each pair (x, y) of overlapping

groups:

Tracking an object If Bx,y = ∅ then we are tracking an object that

projects onto a single motion region in the current frame. The object

regions is given by the group G(II ,R
MC , y) and the object’s label from the

previous segmentation can be propagated. This rule covers not only the

tracking of moving objects, but also the background as it continues not

to move. Also, if a previously segmented object starts or stops moving,

it will be covered by this rule.

Newly exposed regions If the set Bx,y is not empty then we project

the previously segmented object y (without motion compensation) onto

the change detection mask RCD for the previous frame. This tells us

whether the object y was previously moving. If it was stationary (RCD

tells us that the region has not changed) then we have a part of a pre-

viously stationary region (such as the background) that has started to

move. In this case we need to split the object y into two parts. The

stationary part retains the label y while the newly moving part is given

a new label.

Articulated motion If the set Bx,y is not empty but the object y

was previously moving, then we have a part of a tracked object that has

started to express a different motion from the rest of the object. This

might be caused by an articulated object such as a person. In this case

the part of the object with the new motion is split from the object to

create a new object with a new label. The relationship between this new

object and its parent can be recorded.

A post-processing step can be applied to handle any small extra re-

gions that are produced as a result of motion compensation errors. Any

regions with an area below a threshold are merged into one of their neigh-

bours. On the initial frame there is no previous segmentation available, so
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we simply label the entire frame as one initial background region—when

objects start to move they will be detected and assigned new labels.

5.5 Implementation of the COST 211 AM

As mentioned above, implementation of the COST 211 Analysis Mod-

ule allows a number of choices in the algorithms used for the different

components. In this section we consider the alternatives and explain the

choices we made for our implementation of the AM.

5.5.1 Colour segmentation

As discussed in section 5.2 the region merging approach to spatial seg-

mentation has several advantages. In this case we desire an oversegmen-

tation of the image in order to preserve the object boundaries. This

leads to a fairly simple implementation of region merging using a span-

ning tree. We want our regions to be small and homogeneous in colour,

so only simple rules are required in the merging process.

We use the algorithm described by Garrido, Salembier and Garcia [34]

to generate a spanning tree from an image. The image is initially parti-

tioned with one region per pixel, with each region’s model being set to

the colour of the pixel. A region adjacency graph is built, with links be-

tween each pixel and its four neighbours. Each link has a value defined

by the merging order of the two regions it joins, and all the links are

placed in a priority queue. The algorithm proceeds by taking the link at

the top of the queue and merging the two regions it joins if they satisfy

the merging critereon. A new region is created, with a model generated

from the two child regions, and inherits the links of the children to their

neighbours (which must have their merging orders updated to reflect the

new region’s model).

Our implementation is quite inefficient, especially when compared to

the runtimes reported in [34]. This is due to our use of the container

classes from the C++ Standard Template Library for managing the data

structures, rather than building custom containers. In particular the

ordered queue of links can become very large at the beginning of the pro-

cess, when there is one region per pixel. The C++ STL implementation

stores the queue as a red-black tree and a major overhead is finding and
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removing links from this tree—each time two regions are merged all the

links from the two regions must be removed from the tree and reinserted

with new values. If there are many links in the tree with the same priority

then the algorithm is reduced to doing a linear search through the links

with the same value to locate the correct link for removal. Performance

can be improved by adding a small random perturbation to the value

whenever the merging order of a link is calculated. This makes most link

values unique and allows them to be located in the tree in O(log n) time.

As mentioned before, the spanning tree algorithm requires us to spec-

ify a model, merging criterion and a merging order. In choosing these

parameters our goals are to produce as coarse a segmentation as possible

(with large regions) while preserving all the important boundaries in the

image. We would like to avoid very small regions, as these will be difficult

to motion compensate and will cause problems in the projection process.

Each region’s model represents the colour of the whole region, which

may range in size from one pixel to thousands. Good choices are the

average or the median colour, as they are easy to compute and provide a

good representation of the region’s colour as long as the region is fairly

homogeneous. This can be represented in any colour space such as the

common RGB space, or the YUV space used by JPEG. The YUV space

may have advantages for colour segmentation, due to its separation of

the luminance and colour information.

The merging order determines the sequence in which regions are

merged, and the objective here is to merge the regions that are most

similar—to merge the pair of regions that will lead to the least degra-

dation in the image after they are merged. It may also be desirable to

use region size in the merging order, so as to guide the segmentation

towards smaller or larger regions as desired. With a colour space such

as YUV weights can be introduced into the merging order to guide the

segmentation along luminance or colour boundaries.

The merging criterion is very important as it decides when the merg-

ing process stops, and can also introduce constraints into the process. If

a minimum or maximum region size is required, it can be enforced by

the merging criterion. Likewise a maximum acceptable error between a

region and the original image can be enforced.

We test several configurations using the two source images shown in

figure 5.5, at 352 × 288 resolution. One image has fairly clear colours
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Fig. 5.5: Two source images for colour segmentation.

and boundaries while the other is quite dark and will be more difficult to

segment. Any size constraints on regions are of course dependent upon

the original resolution of the image.

Figure 5.6 shows the results of using only a minimum region size to

produce the segmentation. The RGB colour space is used, the model

is the median colour of the region, and the L2 distance is used as the

merging order.

With 50 pixel regions almost all the boundaries in the image are

preserved; however the resulting regions are of course very small, and

often an awkward long and thin shape as they follow contours in the

image. Areas of texture, such as the floor and crate in the left-hand

image are also segmented along the lines of texture. As we increase the

minimum region size we start to lose detail. Using 1000 pixel regions

gives very good segmentations of some parts of the image (such as the

clothing in both images), but significant parts start to be lost, such as

the man’s face and the woman’s right hand, which have been merged into

the background as they are too small. A good compromise would appear

to be in the 300–500 pixel range, where the important boundaries are

preserved yet the regions are large enough to be useful. However even

with the larger regions the shapes can be awkward as the regions are still

following contours, such as on the woman’s legs.

An alternative is to instead set a minimum merging order so that all

links below this value are merged. This can be combined with a mini-

mum region size by setting the merging criterion to be true if the merging

order is below the threshold, or either of the regions is smaller than the
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Fig. 5.6: RGB segmentations with different minimum region sizes.
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minimum size. Figure 5.7 shows the results of this dual constraint ap-

proach, using two different thresholds for the L2 distance between regions

models. In this case we are working in the YUV colour space and the Y

channel is given a weighting of 1/4 that of the U and V channels when

calculating the distance between colours. This emphasises differences in

chrominance over differences in intensity. This gives a good compromise,

although if an object region is close to the colour of its background it can

still be merged with it, such as the woman’s right hand. This doesn’t

occur when using the minimum region size alone (providing the object

is larger than this size), as merging will stop once the region reaches the

set size. However large nearly uniform areas (which often occur in back-

grounds) are segmented into a small number of large regions rather than

many small regions, while the important object boundaries are preserved.

We have found this approach, with a minimum region size of 300 pixels

and a colour threshold of 50 to be the best configuration when working

at this resolution.

5.5.2 Global camera motion

In the reference implementation of the Analysis Module [11] camera mo-

tion is modelled by an eight parameter parametric model. This models

the scene as a flat plane that can be moved freely in 3-dimensional space.

It is sufficient to model any camera movement, but will not account for

parallax effects caused by differing depths in the image—however the

amount of camera motion between consecutive frames is usually small

enough that these effects are negligible.

The reference implementation uses Hötter and Thoma’s regression

technique [40], using only the pixels that have been marked as being

part of the background in the previous segmentation.

Robust dominant motion estimation

We instead use the robust M-estimation technique proposed by Sawhney

and Ayer [82, 83]. The use of a robust estimator makes this technique

less sensitive to noise or regions that have been incorrectly labelled as

part of the background.

The motion is represented by eight parameters θ1, . . . , θ8 in a param-

eter vector θ. The flow at each pixel Pi(x, y) is computed as in equa-
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Fig. 5.7: Segmentation using a minimum region size and different mini-

mum merging orders. Three different thresholds are used while

the minimum region size is held at 300 pixels.
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tion 5.5. We will define this as the function u(P ; θ), which takes a pixel’s

position and the parameter vector, and returns the flow at that pixel.

The residual at each pixel is the error when the previous frame, I0, is

warped according to the flow and subtracted from the current frame I1;

the residual ri for pixel i is

ri = I1(Pi)− I0(Pi − u(Pi; θ)). (5.10)

Conventionaly, to find the best model for the motion in the frame we

wish to minimise
∑

i |ri|. Rather than minimising r directly, we use a

robust estimator ρ(r; σ), which requires a scale factor σ and is defined as

ρ(r; σ) = log

(
1 +

1

2

r2

σ2

)
. (5.11)

This is the Lorentzian function; other functions can also be used [83].

Thus the equation we wish to minimise is

min
θ

∑
i

ρ(ri; σ), where ri = I1(pi)− I0(pi − u(pi; θ)). (5.12)

We minimise this equation using an iterative Gauss-Newton method.

Each iteration step attempts to improve upon the current estimate of

the parameters θ(m) by moving along the descent direction δθ(m). A new

estimate of the solution is then given by

θ(m+1) = θ(m) + αδθ(m). (5.13)

The descent direction is given by

δθ(m) = −H−1(θ(m))g(θ(m)), (5.14)

where H(θ(m)) is the first order approximation to the Hessian of the

error function of (5.12), a matrix given by

Hkl =
∑

i

∂2ρ

∂r2
i

∂ri

∂θk

∂ri

∂θl

, (5.15)

and g(θ(m)) is the gradient, a vector given by

gk =
∑

i

∂ρ

∂ri

∂ri

∂θk

. (5.16)
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We can find δθ as the solution to the system of 8 linear equations

∑
l

Hklδθl = −gk, k, l = 1, . . . , 8 (5.17)

which expands to

∑
l

(∑
i

∂2ρ

∂r2
i

∂ri

∂θk

∂ri

∂θl

)
δθl = − ∂ρ

∂r2
i

ri
∂ri

∂θk

. (5.18)

We can substitute the second derivative of ρ(r) with its secant ap-

proximation, ρ̈(r) = ρ̇(r)/r, which has the advantage of being positive

everywhere. For the Lorentzian function this gives

ρ̇(r)

r
=

2

2σ2 + r2
(5.19)

The derivative of r with respect to the model parameters can be

expanded as [83]:

∂r

∂θ
=

∂δu

∂θ

∂r

∂δu
= MT∇I1, (5.20)

where M is the matrix in the quasi-quadratic model of equation 5.5

and ∇I1 is the intensity gradient of the current image. Combined with

equation 5.18 we can now compute the descent direction of the param-

eters, δθ. A line minimisation [78] is performed along this direction to

find the value of α and the estimate of the parameters are then updated

according to equation 5.13.

The robustness of the technique to outliers comes from the use of the

robust estimator ρ(r). In equation 5.18 ρ̇(r)/r is a weighting for each

pixel; pixels with high residuals are considered to be outliers, and have

less influence over the solution. The detection of outliers is dependent

upon the scale factor σ. In early iterations the estimate of the model

parameters is likely to be poor so the residuals will be high, and σ should

be chosen high so all pixels are included. As the solution improves, σ

should be lowered so that pixels that do not fit the emerging model are

discounted. We choose σ automatically, making it dependent upon the

current residuals by defining it as

σ = 1.4826 mediani |ri|. (5.21)
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The scale factor of 1.4826 required because we are taking the median

of the absolute values [83]. By using the robust estimator and calculating

the scale factor this way we can tolerate almost 50% of the pixels being

outliers. A multiresolution pyramid is used so that larger displacements

can be handled, with the solution for each level is projected to the next

and used as the initial estimate.

Figure 5.8 shows the estimated camera motion for a sample sequence,

using consecutive frames and also frames nine frames apart. Three levels

from the multiresolution pyramid are used with six iterations of the algo-

rithm at each level. As can be seen in the figure, the technique correctly

identifies and estimates the background motion. The pixels of the mov-

ing man are discounted by the robust estimator, and the high residuals

caused by them when the camera motion is compensated can be seen in

the frame difference of the warped image. If we already had a segmen-

tation of the man then we could provide a foreground/background mask

so those pixels would be ignored anyway; however the algorithm copes

well even without such a mask.

5.5.3 Optical flow estimation

As seen in section 5.1, there are numerous ways of estimating motion

in a scene. In this case we require a general optical flow field that we

can subject to spatial segmentation, so we can discount those methods

that estimate parametric models for regions as we do not want to make

assumptions about where the regions are, and a single parametric model

will suppress the object motions.

In the reference implementation of the Analysis Module [11] a hierar-

chical block matching algorithm due to Bierling is used [15]. The block

motions are then interpolated to give a per-pixel flow field. We decided

to compare several optical flow algorithms before selecting one for use in

our AM implementation.

As well as Bierling’s hierarchical block matcher we will examine the

Lucas and Kanade algorithm [56], the Horn and Shunck algorithm [39],

Szeliski’s spline-based flow [101] and a second block matching method

implemented by the Intel OpenCV library [8]. The implementations of

the Lucas and Kanade and the Horn and Shunck algorithms are also

from the OpenCV library, while the others were implemented based on
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Fig. 5.8: Dominant camera motion estimation for two different intervals

in a sequence.
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the respective publications.

Figure 5.9 shows five different optical flow techniques applied to two

frames from a sequence (the selected frames are three frames apart in the

sequence—this interval means there is appreciable motion between the

frames). The images are 352× 288 resolution and are ‘clean’—they have

not been compressed at any point. Both the Lucas and Kanade and the

Horn and Shunck techniques produce an overall correct flow field, but

with appreciable noise. In particular the low detail areas are suscepti-

ble and there is evidence of the aperture effect around the edges of the

window on the right, particularly with the Lucas and Kanade method.

The first block matching method is hierarchical block matching as im-

plemented by the Intel OpenCV library. The flow is on the most part

consistent, but low detail areas again cause problems (in particular in the

lower right corner) and there is again evidence of the aperture problem.

An obvious problem is around the edges, where the correct flow should

flow out of the frame, but instead matches are found within the frame,

reversing the direction of the flow. The second block matching technique

is an implementation of hierarchical block matching as described by Bier-

ling [15]. It suffers greatly from noise, and is also limited in that it only

handles integer offsets.

The final two examples are Szeliski’s spline-based technique [101] us-

ing different sizes of spline patch. The use of 16 × 16 pixel patches

produces a clean flow field; the smoothing effect of the larger patches

may result in the loss of detail, but it helps to maintain consistent flow

in the areas that otherwise cause problems. Using 8 × 8 patches pro-

duces overall correct flow, but with more noise. Both patch sizes still

show some difficulties around the borders of the image.

Figure 5.10 shows the same techniques applied to an image more

typical of what would be found on an online proxy server. The resolution

is reduced (176×144) and the image has been heavily JPEG compressed;

all the images are preprocessed with a gaussian blur before the optical

flow calculation in order to reduce the JPEG artefacts. The results are

in line with the previous example, although there is noticeably less noise

present in the flow computed by the Lucan and Kanade and the Horn

and Shunck methods. This may be because the magnitude of the motion

is smaller in this example (it appears amplified in the figure because the

images are at 1/4 of the resolution, and thus the pixels are larger).
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Lucas & Kanade Horn & Shunck

Block matcher (OpenCV library) Block matcher (Bierling)

Spline based (8 pixel patches) Spline based (16 pixel patches)

Fig. 5.9: Different optical flow techniques.



5. Spatial segmentation 120

Lucas & Kanade Horn & Shunck

Block matcher (OpenCV library) Block matcher (Bierling)

Spline based (8 pixel patches) Spline based (16 pixel patches)

Fig. 5.10: Different optical flow techniques with a low resolution and

heavily compressed Cakes proxy.
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Based upon these examples we have chosen to use Szeliski’s spline-

based method, as it produces a smoother and more consistent flow field.

The noise present in the other techniques will cause problems when we

try to segment the flow field in the next section. A drawback of the

spline-based technique is that it is iterative, and not as fast as some

of the others. The results here are produced using two levels from a

multiresolution pyramid and 20 iterations per level, and complete in an

acceptable amount of time.

The flow generated using the spline-based technique is generally smooth

except near the borders where large erroneous flow vectors can be gen-

erated. To remove these we apply a relaxation of the flow field from the

area inside the border into the spline patches on the border, removing

the erroneous flow vectors.

It should be noted that the optical flow calculation takes place af-

ter the camera motion compensation, so the background motion will not

be present. Figure 5.11 shows the flow computed after camera motion

compensation; there is very little flow computed in the background, and

the actual motion of the moving objects relative to the scene is much

clearer. However the interpolation used in the camera motion compensa-

tion causes some blurring, leading to further errors in the flow estimation.

5.5.4 Motion segmentation

The reference implementation [11] segments the flow field in a very similar

way to the colour image, by region merging with a spanning tree, except a

two component motion model is used instead of a three component colour

model, and the L2 distance between models is used as the merging order.

Figure 5.12 shows the results of using this approach to segment the

flow field into six regions. The example on the left uses a dense flow field,

with one sample per pixel. This has produced very small regions around

the larger flow elements and one misshaped (but still connected) region.

Since we are using the spline-based optical flow algorithm the dense field

is actually generated from a coarser mesh of control vertices using a set

of spline basis functions. The example on the right of figure 5.12 shows

the result of applying the segmentation on the grid of control vertices

themselves (which are spaced 16 pixels apart). This gives similar results

to the dense flow except the smallest possible size of a region is larger.
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Fig. 5.11: Optical flow computed with the spline-based technique after

camera motion compensation and border relaxation.
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Fig. 5.12: Segmentations of optical flow into six regions using a span-

ning tree with a simple two parameter model. Dense flow

(left) and sparse flow (right).

In both cases the regions produced are very small, and although they are

mostly located in the area of interest much of the moving man has been

merged into the background region.

A tendency towards small regions is not the only failing of using such

a simple model. Tuncel and Onural [107] point out another weaknesses,

namely that it can only handle 2-dimensional translational motion of

objects. They propose instead that the spanning tree be built using a

six-parameter parametric model. As can be seen from the optical flow in

the example, the motion of the man is not rigid translation.

Tuncel and Onural propose using a six parameter model which can

handle 2-dimensional affine transforms (any combination of translation,

scaling, rotation and skew). The model parameters for a region are found

by a least squares fit of the model to the optical flow in the region. A

least squares fit needs a sufficient number of samples to work, so in cases

where the region is too small for a least squares solution we initialise

the model with translational motion using the average of the optical flow

vectors within the region.

The merging order is calculated by finding the model for the union

of the two regions and finding the error of this model compared to the

actual flow. The errors of the models of the two existing regions are

subtracted from the error of the new region, in effect giving a measure of

how much worse the unified region will represent the flow compared to

the existing situation. More formally, the error of a region Ri is
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Fig. 5.13: Flow segmented with a six parameter model. The flow is

segmented into 30 regions (left) and six regions (right).

ERi
=

∑
(x,y)∈Ri

‖ v(x, y)−wRi
(x, y) ‖2, (5.22)

where v(x, y) is the optical flow at (x, y) and w(x, y) is the flow

computed by the model at (x, y). The increase in error resulting from

merging regions Ri and Rj is

dij = ERi∪Rj
− ERi

− ERj
. (5.23)

This value can also be negative, as it is possible that a least squares

fit of the model over the unified region will produce a model that better

represents both regions. If we set the merging order of each link in the

spanning tree to be −dij then each merging step will merge the two

regions that result in the smallest increase in error. Figure 5.13 shows

the result of using this model and merging order, segmenting the flow into

30 and six regions. In the 30 region segmentation many of the remaining

regions are in the area of interest, and background regions have been

merged together at an early stage (into a region with a near stationary

model). When the segmentation is reduced to six regions the motion of

the man is still segmented, although with a highly inaccurate boundary.

We suspected that since the merging order is summing the error over

the entire region, it may be biased against larger regions as these may

have larger errors. We performed the same segmentations using the mean

squared error, where the error of each region is divided by the size of the
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Fig. 5.14: Flow segmented using the six parameter model, but with

mean squared error.

region. However the results, shown in figure 5.14, were much poorer.

Tradeoffs must be made in choosing the resolution of the optical flow

and the segmentation. In order to get smooth and consistent flow with

the spline based method we chose a fairly coarse grid (16 × 16 pixel

patches). Segmenting this coarse grid leads to very inaccurate bound-

aries, as can be seen figure 5.14. It also limits the smallest size of moving

regions that we can hope to detect—however all optical flow techniques

have difficulties with small regions. If we instead use 8× 8 pixel patches

to compute the flow, allowing smaller regions and more accurate bound-

aries, the greater inaccuracy and noise in the computed flow causes a

poor segmentation, as shown in figure 5.15. When the segmentation

reaches 30 regions the main area of interest is still covered by some of

the regions, but once the segmentation is reduced to 6 regions only one

region remains in the area of interest, covering only a small part of it.

Because the flow is not as smooth as when using larger regions it is more

difficult to model a larger region using the six parameter model. The true

motion of the man is complex and cannot easily be modelled with the six

parameter model either, but the smoothing caused by the larger spline

patches allows us to segment more of the man. Attempting to segment

a dense per-pixel flow field suffers from the same problems, and becomes

computationally infeasible due to the large number of regions, as we have

to recompute several models every time two regions are merged.

An important issue when using a region merging segmentation is de-

ciding at which point to halt the merging process. Various options were
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Fig. 5.15: Spline-based flow using 8× 8 pixel patches.

discussed in section 5.2. The problem of halting the motion segmenta-

tion is more difficult than for the colour segmentation; the level of colour

segmentation is not crucial, as long as it sufficiently oversegments the

image to preserve the boundaries. The motion segmentation however

determines the number and extent of different moving objects that will

be tracked in the final segmentation.

If we decide that we want a fixed number of regions we can simply

stop the segmentation when that number is reached. For example if

we assume that the shot contains one principal moving object then we

can fix the motion segmentation to produce two regions per frame. If

there is more than one moving object in the frame then some are going

to be missed, but a bigger problem is that the segmentation may not

necessarily identify the same object in each frame, instead producing a

segmented object that appears to move wildly about the frame.

Another approach is to use the increase in the error at each merging

stage to determine when to stop. This value is readily available as it is

also used for the merging order. A fixed threshold is unsuitable as the

values can vary largely from shot to shot. Figure 5.16 shows plots of the

increase in error at each of the last 16 merging steps for six example shots.

The top four shots have one significant area of motion—in each case the

moving object is a person, so the object motion cannot necessarily be

well described by a single affine model. The lower left shot contains one

principal object but also has a lot of background motion. The lower right

shot has two moving objects.

We can see from the graphs that a fixed threshold is not suitable as
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Fig. 5.16: Increase in error for each merging step.
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the range of values varies enormously. Instead we should try to identify a

discontinuity in the sequence where the errors suddenly get significantly

larger than they were before. For some shots there appears to be an

obvious point at which the errors become much larger, but for others it

is not so clear.

In the graphs of figure 5.16 the discontinuity is where there is the

largest difference between the error values produced by merging steps.

Figure 5.17 shows the results when we stop the merging at the largest

difference in errors. In the two middle shots the number of regions is

correctly estimated, and the segmented regions are correctly positioned

on the objects although the boundaries are highly inaccurate. The upper

two shots have overestimated numbers of regions; in the first an extra

region is positioned on the man, reflecting that the motion cannot be

adequately described by the affine model. However the upper right shot

has a number of spurious regions in the background, caused by erroneous

optical flow estimates in the low detail areas. The lower two shots suffer

from the same problem; in the lower left shot there is a spurious third

region, but in the lower right shot the error in the flow is so great that

it appear as the only moving region.

As has been mentioned already, the motion between consecutive frames

is often quite small, and can easily be dominated by noise in the image.

The lower right shot contains two moving regions, but has been through

multiple transmission and compression processes and contains significant

noise. When consecutive frames are used to compute the flow the mo-

tion is quite small and the noise causes significant errors, particularly

in low detail areas and near the edges of the image. When the mo-

tion segmentation pass is applied (using the prior knowledge that there

are two moving objects) only one is correctly detected because an area

of erroneous flow has been incorrectly segmented as the second object.

However if we increase the temporal gap to two frames when computing

the flow, as shown in figure 5.18, then the apparent motion is larger, and

the moving regions can be identified against the noise.

5.5.5 Change detection

The change detection mask is used in the rule processor to help differen-

tiate between different cases as described in section 5.4.1. The reference
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Fig. 5.17: Stopping merging at the largest error increase.
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+1 frame

+2 frames

Fig. 5.18: Using a larger gap between frames means the apparent mo-

tion is not swamped by noise.



5. Spatial segmentation 131

Fig. 5.19: Change detection masks computed from three consecutive

frames (after camera motion compensation).

implementation of the Analysis Module [11] uses the change detection

algorithm described by Mech and Wollborn [61].

This change detection algorithm seeks to avoid the problems of fixed

threshold algorithms by using an adaptive threshold and a relaxation

step to remove noise from boundaries and the background, and holes

from objects. It is heavily based on the algorithm described by Aach and

Kaup [9], who provide a more detailed derivation of the how the adaptive

thresholds are chosen.

We have implemented the adaptive threshold algorithm of [9] along

with a temporal memory and smoothing by a morphological closing oper-

ator, both as described in [61]. The memory helps provide stable object

regions by remembering which pixels were changed in the past. If a seg-

mentation of the previous frame is available then every pixel belonging

to a moving region is marked as changed for the current frame—however

to avoid error propagation we only carry over pixels that have also been

detected as changed in the last n frames, where n is a fairly small number

of frames such as 5.

Figure 5.19 shows change detection masks computed for three con-

secutive frames of our example sequence. Much of the man is labelled as

changed in each frame, although the dark regions of his legs are not. Also

some parts of the background have been marked as changed, in particular

high detail areas such as the magazine rack and the edges of the win-

dows. This is due to the camera motion compensation; after the camera

motion is estimated, one frame is warped to the reference frame of the

other using bilinear interpolation. The interpolation causes a blurring of

the image and so causes differences between the two frames (although

much less significant than if the camera motion compensation were not
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+1 frame +3 frames +6 frames

Fig. 5.20: Change detection masks computed for frames one, three and

six frames apart.

carried out at all).

This exhibits a common problem with analysing motion when work-

ing with full frame rate video (25 frames per second in this case)—unless

the scene is highly dynamic then the motion between consecutive frames

is usually very small. In both the motion segmentation and change de-

tection for this particular scene we have seen that it is difficult to dif-

ferentiate between true motion and noise or errors introduced by the

camera motion compensation. For example figure 5.20 shows the change

detection masks computed for different frame intervals on the example se-

quence (with camera motion compensation). When the interval is larger

the motion of the actual moving objects is larger than the noise, and the

change detection algorithm can adapt better to differentiate between the

two.

When we use the change detection mask to determine if a region has

changed a threshold of 10% of the pixels in the regions is used.

5.6 Results

In this section we test our implementation of the Analysis Module on the

example sequence to study its performance. As mentioned in the above

section the different components of the AM allow a large degree of free-

dom in their implementation and configuration, and our implementation

differs in many respects from the reference implementation.
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5.6.1 The Analysis Module: Step by step

Figure 5.21 shows a breakdown of the application of the Analysis Module

to the initial four frames of a sequence. The input sequence is 352× 288

pixels and the colour segmentation is done in the YUV space, stopping

when all regions have at least 300 pixels, and the motion segmentation

produces six regions. Note that in this example the relaxation of the

flow field at the borders has not been applied, so the motion segmenta-

tion often produces small regions at the borders of the image caused by

erroneous flow. This configuration is by no means optimal, but will serve

to illustrate how the Analysis Module works and how it is affected by

the different components.

The initial segmentation at the start of the sequence is a single back-

ground region encompassing the whole of the frame. After the camera

motion compensation the optical flow is computed and the motion seg-

mentation finds three significant regions and three very small regions.

These are projected onto the colour segmentation, and the three small

motion regions disappear as they do not cover the majority of any one

region in the colour segmentation. We now have three regions: the back-

ground, and two regions on the man’s legs. All three regions overlap with

the single region in RMC , so the AM rules will be applied to each of them

in relation to the single background region.

When the two smaller motion regions are compared with RMC the

set B is not empty and the change detection mask indicates that the

background region was stationary in the previous frame, so rule 2 of the

AM is invoked. The change detection mask indicates that the two motion

regions have changed in the current frame so the two regions are detected

as new motion under rule 2 of the AM and labelled as new objects. When

the larger motion region is processed the set B is again non-empty and the

background stationary, but this time the motion region is also stationary

so the other clause of rule 2 is invoked to track the stationary background.

On frame 3 the motion segmentation stage again finds two regions

around the moving figure, however with different boundaries from those

detected in the previous frame. Looking at the final segmentation for

frame 3 we see that the boundaries of these two regions are preserved but

merged together into a larger region, which is perhaps not the expected

behaviour. What has actually happened is that the two regions have
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been labelled more than once.

Initially the two regions are compared with the background region in

RMC with which they both overlap. This results in both being detected

as newly moving regions and given new labels under rule 2. However

both regions also overlap with region 1 of RMC and so are relabelled as

tracking region 1 under rule 3 when compared against it. The small region

2 from RMC is tracked under rule 1 as it is entirely contained within a

single motion region. The erroneous motion region 5 is relabelled as part

of the background under rule 2.

5.6.2 Adapting the colour and motion

segmentations

We now adapt the colour and motion segmentation stages as suggested

in the earlier sections. The colour segmentation uses both region size

and contrast in the merging criterion, maintaining the minimum regions

size at 300 pixels but allowing much larger regions in near uniform areas.

The motion segmentation produces a variable number of regions using the

largest error difference as the stopping criteria for the merging process.

We use every third frame from the shot so that the motion is evident

above any noise.

Figure 5.21 shows the intermediate steps when processing the same

shot with these parameters. The motion segmentation usually identifies

one, but sometimes two, moving regions positioned on the man, and these

are projected and tracked through the sequence. However the inaccurate

boundaries of the motion segmentation are carried through to the output

segmentation. If the moving object was more homogeneous in colour then

this would be alleviated somewhat as the colour segmentation would

produce larger regions and a more accurate object boundary would be

obtained from the projection; unfortunately this is not the case in this

shot.

Figure 5.23 shows the extracted moving objects using this configura-

tion; although the boundary varies greatly from frame to frame, the ob-

ject is partly recognised and segmented. This compares favourably with

the reference implementation of the Analysis Module (available from the

COST group’s web page [6]), which does not identify the man at all and

is instead distracted by erroneous movement around the window area
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Fig. 5.23: Extracted objects from the apated Analysis Module.

Fig. 5.24: Segmentations from the reference implementation of the

Analysis Module.

(figure 5.24).

5.7 Conclusions

Our aim in this chapter was to identify and isolate the principal fore-

ground objects in a single shot from a video sequence. This is a very

difficult problem that has attracted the attention of many researchers

in the past, and will remain a major problem in computer vision for

sometime to come.

We had only limited success in this task; we can identify and segment

part of the foreground object in many cases, but not reliably enough to

be of practical use. Even when the object is identified the outline of the

segmented region varies wildly from frame to frame and so parts of the

object are continually lost and reinstated.

Our approach involved taking an existing framework (the COST 211

Analysis Module) and examining each of the individual components to

see how they could be adapted or tuned to improve the performance

of the system. Although we succeeded in improving the performance

slightly over the reference implementation the results are still far from

ideal.

A number of problems contribute to this disappointing performance.

The first is that the initial constraint we put on objects, that they have

coherent motion over their spatial extent, is not suitable for a large num-
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ber of objects, in particular people. This results in a moving person being

identified as a constantly changing collection of objects, with each frame

segmented into a different number of regions with different boundaries.

Another significant problem is the quality of the optical flow field

which is used to perform the motion segmentation step. We found there

was a marked tradeoff between resolution and noise when computing the

optical flow field; methods that generated a high resolution flow field were

very susceptible to noise. Using the lower resolution spline-based method

eliminated much of this noise due to the smoothing it introduced. This

smoothing also helps the motion segmentation phase as the smoothed

flow is more likely to be well modelled by the affine model. However this

technique severely affects the accuracy of the borders of the identified

regions, and is still susceptible to noise, particularly with video that has

low detail areas and a significant amount of noise introduced by analogue

transmission and digital compression.



6. Presentation
This chapter is concerned with the presentation of a summary of a video

sequence, using the information provided by the techniques of the pre-

vious two chapters. As explained in chapter 3, we have decided on a

storyboard representation as the best way of concisely summarising the

contents of a video sequence.

In a traditional storyboard each shot of a sequence is represented

by a single frame, which is annotated to show the principal objects and

motions in the shot, and also convey the blocking, or layout. We will

assume that the sequence has been temporally segmented into shots,

and that for each shot we have a sequence of bitmapped masks for each

segmented object. We also assume that the estimated camera motion

is available to us. Our aim is now to devise a system for automatically

generating a 2-dimensional storyboard to be displayed on a screen or

page, and from which a human can quickly understand the content of

the original sequence.

The sequences of object masks produced by the technique in chapter 5

are not of sufficient quality for our purposes in this section. The object

masks used in the examples in this chapter have been produced by man-

ually labelling regions from a colour segmentation produced as described

in section 5.5.1, with the exception of the car mattes in figures 6.7, 6.9

and 6.11, which were drawn by a flame artist.

6.1 Camera motion

Camera movement is ubiquitous in video—moving the camera adds dy-

namism and interest to a shot. Camera movement manifests itself as

movement over the entire frame, affecting both the background and mov-

ing objects in the scene.

The camera can be described by its extrinsic parameters, namely its

position and orientation in 3-dimensional space, and its intrinsic param-

eters, which control how the world is projected onto the film plane; we

are typically only interested in one intrinsic parameter, the focal length,

as the others are fixed by the camera. Although the camera can have
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seven degrees of freedom in this parameter space it is rare for all the

parameters to be varied at once. Camera movements are instead usually

restricted to a set of well used and understood movements [16].

Tracking or dollying This is movement of the camera itself parallel to

the ground plane. This motion can be parallel to the camera plane,

or pushing into or pulling out from the scene.

Crane Vertical motion of the camera, typically achieved by mounting

the camera on a crane or even helicopter.

Pan and tilt Horizontal and vertical rotation of the camera. In a pan

the camera rotates around the vertical axis, and in a tilt around

the horizontal axis (parallel to the film plane).

Zoom The camera itself does not move, but the focal length of the lens

is adjusted, changing the magnification of the scene.

Different movements can be combined, for instance a pan may be

required when tracking in order to keep the principal objects within the

frame. If the camera is mounted on a crane or a steadycam then it

can trace more arbitrary paths through space. The same applies to a

handheld camera but with significant noise due to camera shake.

Changes in the camera’s position and orientation can cause very sim-

ilar results. In particular a track and a pan appear similar, as does

zooming into or tracking into a scene. The differences are caused by per-

spective; in a zoom or pan the position of the camera remains the same

so the perspective is unchanged. However if the camera moves then the

perspective changes, which is manifested as a parallax effect where the

foreground appears to move relative to the background.

6.1.1 Previous work

Sudhir and Lee [98] analyse the optical flow field to determine the domi-

nant camera motion from the seven degrees of freedom. The flow field is

separated into horizontal and vertical components and these are tested to

determine whether they are singular or not (whether they disappear at

the centre of the image). A system of rules is used to classify the motion.

They acknowledge the difficulty in differentiating between actual camera



6. Presentation 141

movement and changes in orientation, however they suggest that actual

camera motion such as tracking will produce a greater variance in the

magnitude of flow in the direction of motion. This model is later refined

by Xiong and Lee [113] by separating the frame into eight regions and

applying a system of rules based on the magnitude of the horizontal and

vertical motion in each region.

Akutsu and Tonomura [10] use concepts from the field of computerised

tomography to infer camera motions by analysing cross-sections taken

from a video sequence treated as a 3-dimensional volume.

6.1.2 Camera motion in storyboards

Figures 6.1 and 6.2 show storyboards drawn for the film Jurassic Park

(1993) that feature camera movements. The camera movement is indi-

cated by an arrow either outside of the frame or overlapping the border,

indicating that this is a camera motion and not an object motion. The

arrows are also annotated with the type of motion. In the case of motion

along the camera’s view axis arrows are drawn at the corners pointing

either into or out of the frame.

Figure 6.3 shows an alternative way of representing a long camera

motion, where the viewpoint moves completely from one part of the scene

to another. The frame is elongated and three separate drawings, showing

the contents of different parts of the shot, are rendered within it.

6.1.3 Interpreting camera motion from global

motion

As part of the motion segmentation process described in the previous

chapter we performed a global motion compensation step, which involved

estimating an eight parameter model of the background motion of the

scene—in effect the 2-dimensional motion in the image caused by the

movement of the camera.

We can use the estimated model to generate a flow field, however the

generated field will be an approximation limited by the ability of the

model to represent the actual flow in the image. The eight parameter

model we use is sufficient to represent the apparent 2-dimensional motion

in the frame, but not the parallax effect caused by points of different
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Fig. 6.1: Tracking, panning and a crane movement from the storyboards

of Jurassic Park (1993) [87].
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Fig. 6.2: Storyboards from Jurassic Park (1993) [87], showing camera

movements into and out of the frame.

Fig. 6.3: Another method of portraying a pan [37].
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depth. Thus we will not be able to use the variance of the flow magnitude

to differentiate between tracks and pans.

However it is not essential that we be able to do so. The traditional

role of the storyboard is as a planning and previsualisation tool used

to guide production. Although the storyboard artist will indicate the

anticipated camera motions they do so only in vaugue terms. The actual

camera motions are decided by the director and cinematographer on the

set during the process of blocking each shot, where the final actions of

the camera and objects in the scene are planned before actually being

shot. In our case we are not producing a storyboard as a preproduction

aid, but rather as a quickly understandable visual summary of what has

already been produced. For this purpose we argue that the difference

between a panning or tracking shot is not important—that the camera

is moving from right to left is, and so the contents of the image appear

to move from left to right. If the viewer is interested in the finer points

of the camera motions and perspective in a shot then they require more

information than can be sensibly presented in the storyboard format, and

would be better off viewing the shot itself.

Rather than deconstruct the components of a camera motion, or cal-

culate the camera parameters explicitly, we prefer to present the apparent

2-dimensional motion caused in the frame by the camera motion. We do

so by using the estimated model parameters to calculate the flow at each

corner of the frame. A zoom or track into or out of the scene will produce

vectors either all pointing into or out of the frame, and these arrows can

be used to annotate a storyboard frame by placing arrows at the corners

of the frames as done in the hand drawn storyboards of figure 6.2. Mo-

tion parallel to the film plane will produce corner vectors with consistent

direction, and can be annotated with a single arrow outside the frame.

Figure 6.4 shows two camera motions annotated using the corner

motion vectors. The frame on the left is part of a pan. The directions

of the arrows are basically consistent, although note the inward bias and

the small differences in magnitude between the two sides of the frame—

these are caused by the differing depths of the scene at the edges and

the way the camera lens projects the scene onto the image (lenses with

shorter focal lengths exaggerate this effect more than longer lenses). For

a motion such as this we could choose to label the frame with a single

arrow, which would be sufficient to indicate the direction of motion, or
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(-0.16, -0.27) (1.87, -0.26)

(-0.16, 1.36) (1.87, 1.37)

(3.99, 0.97)

(3.93, -0.49) (2.59, -0.31)

(2.59, 0.62)

Fig. 6.4: Annotation of two camera movement using corner flow vectors.

to label the four corners, which give a cue to an experienced viewer that

the motion is in fact a pan rather than a horizontal track.

This technique also handles more complex camera motions in a straight-

forward and intuitive way. Complex camera movements produce vectors

of different magnitude at the corners, such as the off-centre zoom in the

sequence on the right in figure 6.4. The motion in this sequence is a

zoom (the perspective remains fixed) but the centre of expansion is in

the upper left of the image. A regular lens could not produce this effect

but it could have been created by cropping a larger frame, or though a

non-uniform scaling of the image.

Annotating the corners with arrows gives a quickly understood indi-

cation of the motion. The outward direction of the arrows indicates that

the image is expanding, the directions indicate the centre of expansion

(at the intersection of the vectors), and the differing sizes show that the

motion is greater towards the right of the frame. The other techniques

described earlier would not be able to classify this motion, as the focus

of expansion is not at the centre of the image and so the flow will not

behave as expected in the fixed partitions of the frame.

While using the corner motions to annotate the frame provides a con-

venient way to indicate a single camera motion, they do not provide an

obvious way to show a frame that has a sequence of different motions.

Such compound motions are quite common in post-production type ma-

terial, for instance where a mobile camera is following a moving (and

often dancing) person. We have different options in such a situation; one

is to break the shot into a sequence of consecutive camera movements

and indicate each with a separate storyboard frame. Another option is
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to choose a single motion to display, such as the motion which covers the

largest number of frames or produces the largest overall movement.

6.2 Object outlines

The output from the motion segmentation system is a sequence of bitmap

masks of each detected object. We can produce a vector outline of

the bitmapped object mask; this requires less storage and produces a

smoother contour, reducing the noise of the bitmapped mask, and will

aid the presentation of the object’s motion throughout the shot.

We use the technique of Schneider [84, 85] to produce a closed piece-

wise cubic Bézier curve around the contour of the object mask. The

process begins by running an edge detector on the initial mask (we use

the SUSAN kernel [94]) to produce a bitmapped outline. The outline is

then divided into segments by looking for corners, where there is a dis-

continuity in the outline. These will become discontinuities in the Bézier

curve, and are found by examining the angle between each pixel on the

boundary and its neighbours n pixels away on either side; if the angle is

below a threshold then the pixel is treated as a corner. The boundary

segments between corners are treated independently for the rest of the

curve fitting process.

An intial curve is fit to each boundary segment, as shown in figure 6.5;

since the end points of the segment are known and the tangents at the end

points can be found from the bitmapped boundary (using a least squares

fit in the end points’ neighbourhood), the only unknown that must be

estimated is the lengths, α1 and α2, of the tangents which decide where

the two internal control points are placed. This is done by a chord length

parameterisation of the curve which allows us to associate each point on

the bitmapped boundary with a point on the curve. An error function

can then be defined as the sum of squared differences between each point

on the bitmapped boundary and its corresponding point on the curve. An

algebraic manipulation of the Bézier curve definition yields expressions

for α1 and α2 which allow us to place the two internal control points [84].

If the resulting curve is a poor fit it can be subdivided into two

segments. The point of maximum error between the curve and the

bitmapped boundary is chosen to insert a new control point (reducing

the error for that point to zero). The tangents for the new control point
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a1

a2

Fig. 6.5: Fitting of a Bézier curve to the outline of a bitmapped region.

Fig. 6.6: Bézier outlines fit to segmented objects.

are estimated (the tangents at the join between the new curve segments

must be parallel to preserve the smoothness of the curve) and the fitting

process is repeated independently for each segment.

Figure 6.6 shows Bézier outlines generated for two segmented objects.

The Bézier curve represents the complex outline of the object using a

small number of control points that require little storage. As this is a

vector representation it can be transformed without any degradation in

quality.
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6.2.1 Moving outlines

During a shot objects can move and change shape—in fact they must

move as the segmentation algorithm only detects moving objects—and

we can track the moving object mask with our Bézier outline. Given

the bitmapped boundaries of two consecutive frames we can estimate a

model of the motion required to transform the first boundary into the

second. We use a 2-dimensional affine transform of the form

P ′ =

[
a1 a2

a3 a4

]
P +

[
a5

a6

]
. (6.1)

The use of an affine transform rather than using per-pixel flow helps

preserve coherency between the two outlines. We estimate the parameters

of the transform by a downhill simplex method [78]. An error function is

defined as the sum of the distances between each transformed pixel on the

first boundary and the closest pixel on the second boundary. The simplex

method attempts to minimise this function by adjusting the parameters

of the transform.

The resulting transform is applied to the control points of the Bézier

curve that was fit to the first frame and the resulting curve refined to

fit the outline of the second frame. This produces a coherent animated

Bézier outline rather than the collection of independent outlines that

would result from applying the curve fitting process independently to

each frame.

Figure 6.7 shows a sequence of masks with the corresponding bezier

outlines. In the final frame the original outline is shown in red—the

outline in the last frame has the same control points in the same relative

positions as the original outline. Extra points can be added with each

frame if required, but points are only removed if they actually merge.

Although the wing mirror on the right of the car is absorbed into the

body of the silhouette during this sequence, the control points that were

required to define it in the original frame remain.

The masks in figure 6.7 were drawn by hand, and are smooth and

consistent from frame to frame. However the masks produced by auto-

matic segmentation are not as clean, and can have a significant amount

of noise. For example figure 6.8 shows the outlines of masks produced

from three frames of a sequence by labelling regions produced by a colour

segmentation. As can be seen, the outline wobbles from frame to frame
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Fig. 6.7: A Bézier outline following a sequence of frames.
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Fig. 6.8: Boundaries of the object masks produced using colour segmen-

tation for four consecutive frames.

are significant, particularly around the moving parts of the object; this

is caused because the colour segmentation is independent for each frame,

and so the boundaries of the colour regions are not necessarily consistent

from frame to frame. This causes problems for the motion estimation

because if the shape varies too much then there will not be an affine

transform that takes the mask from one frame to the next. The simplex

solver can then show degenerate behaviour, often collapsing the entire

shape to a point on the boundary, as this is a local minimum in the error

function.

An alternative method for warping the outline to the next frame

is to use active contours, also known as snakes. Active contours are

a technique for fitting an outline to features in an image. An energy

function is defined combining how well the curve approximates the image

features with constraints on the curve itself, such as smoothness and

continuity. By minimising the energy function, the curve adapts to fit

the image features.

We use Williams and Shah’s greedy algorithm to implement active

contours [112]. The energy function we wish to minimise is

E =
∫

(αsEcont + βsEcurv + γsEimage) ds, (6.2)

the integral over the length of the curve of three functions that de-

fine the cost in terms of continuity, curvature and image features. Each

function is multiplied by a weight which can vary over the length of the

curve. In practice we discretise this equation by applying it to the control
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points of the Bézier outline.

The image cost Eimage is what causes the contour to follow the image.

The image cost function is often based on the intensity gradient at that

point on the curve, attracting the contour towards edges in the image.

Since we are using a binary mask we instead define the image cost as the

distance from the edge of the mask.

The continuity cost Econt is intended to stop the points bunching up

on the contour, which was a problem with earlier active contour algo-

rithms [112]. This cost is minimised when the points are evenly spaced

around the contour. If d is the mean distance between neighbouring

points on the contour then we define Econt for point i as d− |pi − pi−1|.
The curvature cost for point i is defined as |pi−1−2pi+pi+1|2. The weight

β can be set to zero on corner points so that they are not penalised for

their high curvature.

The algorithm is iterative. On each iteration, for each point on the

contour, the cost functions is evaluated for each pixel in the 3 × 3 pixel

neighbourhood around the point. The values of the three cost functions

are normalised to the range [0, 1] within the neighbourhood, and the

control points at the end of each curve segment are moved to the point

in the neighbourhood that minimises the cost function.

The contour is initialised with the control points of the previous frame,

and iteration continues until the contour converges. The points on the

active contour are then taken as control points for a new Bézier outline,

tangents at the control points are recomputed and the curve refined as

in the previous section.

The relative values of the weights are important, affecting the trade-

off between a smooth, evenly spaced contour, and one that actually

follows the edge of the mask but can become degenerate, with control

points bunching up on the contour. This is because simply moving each

Bézier control point to the closest point on the new boundary does not

necessarily reflect the true motion of the mask. We found values of

α = 0.5, β = 0.5 (for non-corner points) and γ = 1.2 to produce a good

balance; the image function has the highest weighting, forcing the con-

tour to follow the mask. However there is no combination of weights that

will work in all circumstances. Figure 6.9 shows an example of an incor-

rect contour—one of the control points on the wing mirror has ‘jumped’

across the gap. This causes problems for the curve fitting procedure as
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Fig. 6.9: An adaptive contour where a control point has ‘jumped’ across

a narrow part of the mask.

it expects the curve to continue in the direction of the tangent at each

control point, not to go ‘backwards’. Such problems are avoided using

the affine transform technique as the motion is calculated on a global

rather than a local level.

The active contours can handle the noisier motion of the automati-

cally generated masks, such as shown in figure 6.10. The affine transform

method failed on this sequence, but the active contour manages to track

the outline. However the motion of the tracked contour is not as smooth

as would be expected from the affine transform. Small detail areas are

lost, and there is significant movement of the points along the contour

itself from frame to frame. For example figure 6.11 shows the paths of

the control points in the car sequence when tracked with the affine trans-

form and with the active contours. With the active contours the points

follow fairly smooth and consistent paths and their positioning on the

contour remains consistent, whereas with the active contours there in

considerable noise in the paths.

6.3 Rendering

Although outlines can be a powerful visual cue, they are not always

sufficient to actually convey what an object is. We wish to further en-

hance our simple vector representation with information from the original

frame.
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Fig. 6.10: A sequence tracked using active contours.

Fig. 6.11: The paths of the control points in a sequence tracked with

active contours (left) and an affine transform (right).
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Fig. 6.12: Colour segmenting the interior of an object.

We can find the main coloured sections of an object using the span-

ning tree technique introduced in section 5.5.1. Figure 6.12 shows how a

colour segmentation can be applied to an object area; the segmentation

tree is initialised using only pixels within the object area. The merging

then progresses using a distance threshold as the merging criterion—

this threshold is set high, resulting in a small number of larger regions

with high contrast between them. Any small regions are discarded, the

remaining large regions have Bézier boundaries fit to them, and these re-

gions are used to colour the interior of the object boundary. The interior

regions do not exactly match the extracted outline of the whole object,

as the interior regions are also approximations, so the boundary curve of

the object is used to clip the interior regions so they do not spill out of

the object.

Additional detail can be conveyed by highlighting edges within the

object. The original object is processed with an edge detector to find

high contrast lines. Chains of connected boundary pixels are found and

Bézier curves are fit to them. These curves are drawn in black over the

colour filled regions to provide additional highlights and detail to the

object.

The background can be treated in a similar manner. It is important to

represent the background, as this is the context of the extracted objects

in the shot. If one of the background regions is substantially bigger than

the others we can use it as the background colour for the whole frame, and
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Fig. 6.13: Using an edge detecctor to find additional detail lines within

the object.

place the other background regions on top. Figure 6.14 shows how the

different layers are composited to form a final image, shown in figure 6.15.

To further make the distinction between the moving foreground object

and the background clear we can lighten the background, de-emphasizing

it and focusing attention on the foreground object.

6.3.1 Moving objects

Object motion is one of the most important pieces of information to be

presented in the storyboard. Figure 6.16 shows storyboard frames from

the film Jurassic Park which include annotations of object motion using

arrows. The final frame indicates complex movement—more complex

than can be detected with our 2-dimensional analysis techniques.

Another technique used to indicate motion in 2-dimensional drawings

is speedlines, shown in figure 6.17. These are lines originating from the

object and travelling in the direction opposite to the object’s motion.

A variation is repeated contours, where the trailing contour is repeated

several times in the object’s wake. Masuch [59] synthesised speedlines

and repeating contours to indicate motion in line drawings generated

from moving 3-dimensional models.

Masuch suggests using the control points of a 3-dimensional model as

potential starting points for speedlines; similarly we can use the control

points of the contour of the moving object. The path of the speedlines can

be taken from the actual paths of the control points as the object contour

is tracked through the sequence. We take only the paths that travel

outside the object (so only the rear of the object generates speedlines),

thin out any lines that are clustered together, and smooth the lines.
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Fig. 6.14: The different layers superimposed to form the vector repre-

sentation of a frame.

Fig. 6.15: The layers compositied together, and with the background

de-emphasised.
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Fig. 6.16: Object motion annotations from the Jurassic Park (1993)

storyboards [87].
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Fig. 6.17: Object motion annotated with speedlines and repeated con-

tours, from the storyboards from Toy Story (1995) [49].

The lines are additionally clipped so that they do not actually touch

the object, but rather begin slightly behind it; the lower left frame of

figure 6.18 shows the resulting effect.

Repeated contours can also be produced from the Bézier outline, as

shown in the lower right frame of figure 6.18. A portion of the contour is

extracted, using only segments where the normal of the curve points in

the direction of the paths of the tracked control points (within a given

tolerance). This extracted segment is then repeated at intervals along

the direction of the control point’s path.

Both these techniques are useful for indicating object motion in a

more subtle way than annotating the object with arrows; they do not

attract attention, yet effectively communicate the direction of motion.

One drawback is that they both, speedlines in particular, can convey a

false impression of speed. In the example in figure 6.18 the car is in fact

moving quite slowly whereas the speedlines give the impression that it is

moving at high velocity.

6.4 Conclusions

We have presented here a technique for producing a summary of a single

shot in a video sequence as a 2-dimensional frame, containing a repre-

sentation of the contents of the shot and annotated with the principal

object and camera movements. By applying the technique to each shot

in a larger sequence a storyboard-style summary of the sequence can be

produced.
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Fig. 6.18: Using speedlines and repeated contours to indicate the mo-

tion of an extracted contour.
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Fig. 6.19: Final renderings with speedlines and active contours.
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This 2-dimensional summary has several advantageous properties. It

can be quickly viewed and thus convey the contents of the sequence in

much less time than would be required to view the sequence itself. As

it is 2-dimensional and static it can be viewed on a screen or printed on

paper, so requiring no extra software or equipment. The task of semantic

understanding of the scene is offloaded onto the user, who is far better

equipped for the task than the computer.

That the output is in vector form rather than bitmapped also has

advantages. The frames can be manipulated and transformed without

loss, and additional information can be encoded into the data, such as

by storing the different segmented objects in different layers. A consider-

able amount of compression is also realised. At their original resolution

(352×288) the frames here require 300 kilobytes of storage, or roughly 70

kilobytes if JPEG compressed. The vector summary of the frame shown

in figure 6.19 requires 60 kilobytes as an Acrobat PDF file, or only 17

kilobytes if stored in the compressed SVG format.

There are also drawbacks. The successful annotation of objects and

their motion requires a fairly reliable segmentation as input; better than

is currently produced by the segmentation scheme described in chap-

ter 5. Reasonably simple object or camera motions can be represented

using these annotations, but they are not suitable for complex motion.

Unfortunately a large amount of material encountered in our chosen do-

main, post-production, contains such complex camera and object motion.

The motion of people in particular is complex and difficult to represent.

The rendered summary frames have an interesting visual style. The

look is somewhat cartoon-like, due to the outlining of detail and the use

of speedlines. It is also reminiscent of the style of Richard Linklater’s film

Waking Life (2001), in which live action footage was rotoscoped, redrawn

and recoloured (figure 6.20). Waking Life required a large amount of

manual effort—roughly 250 hours of animator time for each minute on

screen [14]. This suggests that the techniques introduced here may have

an application in the production of such a style of animation.

DeCarlo and Santella [21] have produced similar looking images using

a different technique. They produce a stylised image from a single pho-

tograph, also using colour segmentation and edge detection to generate

a vector representation. The level of detail is varied across the image to

highlight the areas of visual interest; these are identified by tracking the
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Fig. 6.20: Scenes from Waking Life (2001).

eye movements of a human observer as they look at the image.

The technique could be extended to produce animatics ; simple ani-

mations describing the shots. By using a vector animation format such

as Macromedia’s Flash the scene could be animated with the object and

camera motions and stored in considerably less space than the original

video would require.



7. Conclusions
Content based image and video analysis is a rapidly developing field that

has many exciting applications. As the capacity of computers to store

and process large amounts of video material increase we will continue to

see large developments in this field. Digital storage and transmission of

video are already standard practice and it is only a matter of time until

content based indexing and analysis become part of the standard toolset

used to manage digital video.

Despite the many recent advances in image analysis, automatic se-

mantic understanding of images and video is still beyond our reach. In-

dexing and query systems still have a low level pixel-based approach to

visual data, and although these systems can still be very useful in many

circumstances there is still a large subset of image retrieval tasks for

which they are not suitable.

In parallel to research into automatic indexing, querying and classi-

fication there has also been ongoing work on processing visual data to

aid human understanding of it. The focus of this work has not been to

give the computer a complete understanding of visual material, but to

process it in ways so that a human user can manage much larger amounts

of data. This leaves the burden of semantic understanding with the user,

who is far better equipped for the task than the computer.

In this work we have investigated what techniques can assist a specific

group of users—people working in video post-production. Having decided

that current indexing and query based systems are not sufficiently sophis-

ticated to handle many of their tasks we have instead focused on using

video summarisation to aid users in common tasks; in short letting them

deal with large amounts of video without actually having to watch all of

it.

To this end we have developed a technique for generating a 2-dimensional

summary of a video clip, showing the sequence of shots in the clip and

the principal objects and motions of each shot, including the apparent

camera motion. This summary is presented in the form of an annotated

storyboard, which will be familiar to anyone who has worked with story-

boards before, or even to anyone who has read a comic book.
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This summary can be quickly viewed, either on screen or on paper,

and understood by a human user in a fraction of the time it would take to

view the original clip. In this way the summary can assist the process of

searching for material, either allowing a search to be carried out quicker,

or allowing more clips to be reviewed in the same length of time.

This is a way in which computer analysis of stored video material

can be of practical assistance in the management of large online collec-

tions of material. Other approaches, such as those proposed for content

based image retrieval, are hindered by putting the burden of semantic

understanding of content on the computer, which is poorly equipped for

the task. Dealing with such systems can be frustrating for users when

the computer doesn’t appear to understand the task. Summarisation, on

the other hand, leaves such high-level processing to the user and instead

assists them in this task by allowing them to process material faster.

7.1 Contribution

Our technique is a novel approach to video summarisation. Although

several storyboard type summarisation techniques have been presented

before, using keyframes selected from shots, or panoramas generated from

moving cameras, ours is unique in using the visual language of the artist-

drawn storyboard to convey information.

The research of the individual parts of the system also resulted in

smaller contributions in different areas. The evaluation of temporal seg-

mentation algorithms in Chapter 4 spurred the development of new al-

gorithms for the detection of cuts and fades in highly dynamic material.

These algorithms show improved performance over existing techniques

on dynamic material while retaining good performance on more conven-

tional material and runtime efficiency by working directly on compressed

video streams.

Our work on motion segmentation (Chapter 5) used an existing frame-

work, the COST 211 Analysis Module, and concentrated on improving

its performance by manipulating its components. By using different al-

gorithms for motion estimation and segmentation we improve the perfor-

mance over the reference implementation. Our implementation is better

at differentiating the principal moving objects of the scene from noise,

and more consistent at tracking objects from frame to frame.
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In rendering the extracted data into the storyboard form (Chapter 6)

we draw on a number of disparate techniques from graphics and computer

vision. Annotations such as speedlines have been previously used in

rendering synthetic scenes where motion data is readily available, while

we use them to present real scenes. The rendering of the storyboards

can also be seen as a form of non-photorealistic rendering, where the

computer simulates the style of a human artist.

7.2 Evaluation

The final images produced are very satisfactory, concisely representing a

shot in a single frame. However generating these images requires a signif-

icant amount of manual intervention. Unfortunately although the system

works in principal, the individual components are not robust enough for

automatic operation on entire sequences.

Although the temporal segmentation algorithm is an improvement on

previous techniques it can only achieve perfect recall and precision on a

small number of examples; however its overall performance is good. More

limiting is that it currently only detects two types of transitions: cuts

and fades. Commercials and music videos can contain a dazzling range

of transitions. While some complex edits are well beyond automatic de-

tection, dissolves and wipes should be achievable, and our system doesn’t

detect these.

The major weakness of the whole system is the poor performance of

the motion segmentation step, which only produces acceptable results in

a small minority of cases; this prevents the practical use of the system at

present. The general framework of the motion segmentation stage is only

capable of identifying relatively large objects which have coherent motion

independent from the background motion. This presents problems with

complex objects, such as people, or in scenes with complex background

motion such as a crowd. General motion segmentation of non-domain

specific video is still an open and unsolved problem, but if an acceptable

technique is discovered it can be dropped into the system as a replacement

for the current algorithm.

The rendering subsystem is highly dependent on the information pro-

vided to it by the preceding stages. It does an acceptable job of rendering

scenes where the motions are straight forward, but is not so suitable for
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conveying more complex motions. Complex camera moves are difficult

both to identify and to represent in a single storyboard frame. Com-

plex movement of articulated objects, such as people, is also difficult to

represent in a clear manner.

7.3 Future work

Content based image and video analysis is a large and developing field,

and there are many directions for further work.

Further research that would directly benefit this work would be ad-

vances in low level image processing, in particular image segmentation

and motion estimation. Motion estimation algorithms are highly suscep-

tible to noise, and attempts to reduce the influence of noise by integrating

motion over an area result in reduced resolution and less accurate mo-

tion vectors. Motion estimation algorithms have difficulty with object

edges, where there is a discontinuity in the flow field. Motion estimation

is also very computationally intensive. The development of robust, effi-

cient motion estimation techniques would greatly benefit this work and

others.

Image segmentation also suffers problems with noise. In many cases

boundaries that are obvious to the human eye are not really present at

the pixel level due to noise and blurring. The ubiquitous use of lossy

compression techniques only increases this problem. The development

of segmentation algorithms based on research into the how the human

visual system works will be of great use in content based image analysis.

As we have pointed out, we have not yet reached a point where we can

say that computers can represent visual information at a semantic level.

There is a huge amount of work still to be done in building computer

representations of visual data that mirror out own understanding, but

the potential payoffs of such work are huge.

More steps also have to be taken in applying content based image

analysis to practical problems. Many research systems are of little use

outside the lab, yet there are many practical situations where currently

available techniques could be applied to greatly aid users in visual data

management tasks.

On the presentation level we believe this work highlights an interesting

direction in non-photorealistic rendering. Most work in this field has
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concentrated on trying to recreate the physical artifacts of human art; the

effect of brush strokes on canvas or pencil on paper. There has been less

work on emulating the way a human artist chooses to represent images;

what is left in, what is left out, and what is modified in the transition

between the physical world and the artist’s depiction. The cartoon style

of drawing emphasises this as the physical marks (lines, areas of constant

colour are easy to recreate.

Our summarisation framework has potential uses beyond producing

2-dimensional storyboards. As mentioned in chapter 6 other representa-

tions of the original video clip could be produced, such as vector format

animatics. The same breakdown of a sequence could be used to present it

in different formats; as a static 2-dimensional storyboard, as an animated

storyboard, or as an animatic. Information gathered during the analysis

process, such as object characteristics and camera movements could be

indexed and used to support a query or browsing interface.
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A. Pseudocode

A.1 Cut detector

For each frame pair f − 1, f

For each interior block i

Compute differences ∆Ei = |Ef,i − Ef−1,i|, ∆Yi = |Yf,i − Yf−1,i|,
∆UVi = |Uf,i − Uf−1,i| − |Vf,i − Vf−1,i|

Compute cross-correlation Cf,i

If Ef−1,i < Tuniform and Ef,i < Tuniform

If ∆Yi > TY or ∆UVi > TUV 1

Cf,i = 0

else

Cf,i = 1

else if Ef,i < Tuniform and Ef−1,i > Tuniform and ∆Ei > TE

Cf,i = 0

Mark block as type 2

else if Ef−1,i < Tuniform and Ef,i > Tuniform and ∆Ei > TE

Cf,i = 0

Mark block as type 2

Compute mean and standard deviations of past behavious

of Ci and ∆UVi: Ci, σCi
, ∆UVi, σ∆UVi

If Cf,i < 0.8 and |∆UVi −∆UVi| > 2σ∆UVi
and ∆UVi > TUV 2

Mark block as type 2

else if Cf,i >= 0.3 and σCi
< 0.25 and |Cf,i − Ci| < 1.5σCi

Mark block as type 1

else if Cf,i − Ci < −0.5

Mark block as type 2

If (Cf,i > 0.5 and Cf−1,i < 0.3) or Cf,i − Cf−1,i > 0.3

Mark block as type 3

Compute counts of type 1, 2, and 3 blocks: nf,1, nf,2, nf,3
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If previous frame marked as potential cut

a = (nf−1,3 + nf−2,3)/2

b = (nf,3 + nf−1,2)/2

If b > 1/4 of blocks and nf,3 > a and nf,3 > nf,1

Frame f is a cut

Compute mean and standard deviation of n2: n2, σn2

If nf,2 > nf,1 + nf,2 and |nf,2 − n2| > σn2 and nf,2 > 5/4× nf−1,2

Mark frame as potential cut

The thresholds we use are: Tuniform = 100, TY = 48, TUV 1 = 24, TE =

500, and TUV 2 = 12.



B. Evaluation of cut detection

algorithms
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Recall @ 90% precision Precision @ 90% recall
w=2 w=6 w=2 w=6

Global RGB L1 0.874 0.883 0.885 0.898
Chi 0.892 0.920 0.890 0.917
Intersection 0.874 0.883 0.885 0.898
K-s 0.836 0.829 0.831 0.851

YUV L1 0.922 0.888 0.907 0.876
Chi 0.883 0.898 0.878 0.875
Intersection 0.922 0.888 0.907 0.876
K-s 0.827 0.855 0.871 0.849

Luv L1 0.750 0.786 0.816 0.832
Chi 0.770 0.847 0.862 0.805
Intersection 0.750 0.786 0.816 0.832
K-s 0.689 0.762 0.691 0.682

Y L1 0.850 0.824 0.838 0.833
Chi 0.838 0.841 0.833 0.839
Intersection 0.850 0.824 0.838 0.833
K-s 0.676 0.781 0.707 0.725

Local RGB L1 0.944 0.939 0.917 0.922
Chi 0.915 0.926 0.910 0.927
Intersection 0.913 0.923 0.906 0.904
K-s 0.883 0.872 0.890 0.872

YUV L1 0.918 0.862 0.915 0.889
Chi 0.923 0.905 0.907 0.904
Intersection 0.926 0.898 0.922 0.883
K-s 0.918 0.878 0.904 0.889

Luv L1 0.824 0.804 0.880 0.859
Chi 0.886 0.865 0.894 0.868
Intersection 0.804 0.778 0.880 0.851
K-s 0.746 0.811 0.874 0.848

Y L1 0.752 0.763 0.864 0.842
Chi 0.819 0.856 0.850 0.870
Intersection 0.717 0.804 0.874 0.864
K-s 0.740 0.752 0.872 0.846

Pixel difference 0.776 0.689 0.869 0.835
pixel inner product 0.000 0.000 0.041 0.040
Ftest 0.597 0.660 0.162 0.177
Ford 1 0.133 0.149 0.211 0.233
Ford 2 0.597 0.625 0.225 0.252
Zabih 0.528 0.235 0.610 0.515
DCT inner product 0.000 0.000 0.209 0.135
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Recall @ 90% precision Precision @ 90% recall
w=2 w=6 w=2 w=6

Global RGB L1 0.914 0.873 0.924 0.871
Chi 0.918 0.886 0.935 0.893
Intersection 0.914 0.873 0.924 0.871
K-s 0.874 0.835 0.837 0.769

YUV L1 0.916 0.859 0.917 0.850
Chi 0.885 0.858 0.887 0.836
Intersection 0.916 0.859 0.917 0.850
K-s 0.837 0.796 0.791 0.778

Luv L1 0.822 0.796 0.775 0.747
Chi 0.834 0.778 0.807 0.760
Intersection 0.822 0.796 0.775 0.747
K-s 0.785 0.762 0.652 0.653

Y L1 0.895 0.799 0.895 0.834
Chi 0.895 0.844 0.895 0.842
Intersection 0.895 0.799 0.895 0.834
K-s 0.856 0.791 0.782 0.749

Local RGB L1 0.957 0.919 0.960 0.931
Chi 0.963 0.935 0.968 0.942
Intersection 0.958 0.924 0.959 0.927
K-s 0.947 0.921 0.955 0.922

YUV L1 0.955 0.901 0.958 0.901
Chi 0.952 0.923 0.958 0.921
Intersection 0.954 0.896 0.959 0.896
K-s 0.943 0.898 0.948 0.898

Luv L1 0.926 0.891 0.932 0.892
Chi 0.942 0.893 0.946 0.893
Intersection 0.935 0.894 0.922 0.894
K-s 0.925 0.887 0.926 0.891

Y L1 0.930 0.890 0.935 0.896
Chi 0.928 0.901 0.947 0.902
Intersection 0.939 0.904 0.941 0.902
K-s 0.931 0.902 0.935 0.902

Pixel difference 0.963 0.929 0.943 0.915
pixel inner product 0.000 0.000 0.049 0.048
Ftest 0.588 0.637 0.159 0.219
Ford 1 0.089 0.125 0.236 0.249
Ford 2 0.698 0.689 0.222 0.222
Zabih 0.736 0.656 0.808 0.799
DCT inner product 0.000 0.000 0.092 0.093
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Recall @ 90% precision Precision @ 90% recall
w=2 w=6 w=2 w=6

Global RGB L1 0.919 0.881 0.921 0.882
Chi 0.916 0.890 0.924 0.892
Intersection 0.919 0.881 0.921 0.882
K-s 0.875 0.838 0.847 0.814

YUV L1 0.913 0.859 0.912 0.856
Chi 0.885 0.861 0.880 0.842
Intersection 0.913 0.859 0.912 0.856
K-s 0.845 0.806 0.797 0.799

Luv L1 0.824 0.799 0.787 0.770
Chi 0.842 0.804 0.805 0.771
Intersection 0.824 0.799 0.787 0.770
K-s 0.786 0.761 0.635 0.671

Y L1 0.877 0.800 0.881 0.833
Chi 0.875 0.842 0.873 0.832
Intersection 0.877 0.800 0.881 0.833
K-s 0.832 0.788 0.776 0.770

Local RGB L1 0.954 0.920 0.950 0.927
Chi 0.959 0.933 0.956 0.933
Intersection 0.954 0.916 0.949 0.922
K-s 0.940 0.908 0.943 0.909

YUV L1 0.951 0.903 0.947 0.904
Chi 0.950 0.920 0.947 0.917
Intersection 0.950 0.897 0.950 0.896
K-s 0.944 0.890 0.937 0.891

Luv L1 0.927 0.879 0.922 0.886
Chi 0.934 0.886 0.931 0.889
Intersection 0.924 0.876 0.916 0.887
K-s 0.922 0.865 0.916 0.883

Y L1 0.920 0.875 0.915 0.883
Chi 0.919 0.891 0.928 0.893
Intersection 0.930 0.888 0.926 0.892
K-s 0.922 0.867 0.919 0.886

Pixel difference 0.945 0.894 0.925 0.896
pixel inner product 0.000 0.000 0.047 0.047
Ftest 0.597 0.638 0.158 0.215
Ford 1 0.094 0.129 0.231 0.249
Ford 2 0.694 0.677 0.225 0.245
Zabih 0.668 0.585 0.766 0.742
DCT inner product 0.000 0.000 0.085 0.086
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Recall @ 90% precision Precision @ 90% recall
w=2 w=6 w=2 w=6

Global RGB L1 0.997 0.989 1.000 0.985
Chi 1.000 0.997 1.000 1.000
Intersection 0.997 0.989 1.000 0.985
K-s 0.975 0.962 1.000 0.951

YUV L1 0.995 0.989 0.997 0.979
Chi 0.997 1.000 1.000 1.000
Intersection 0.995 0.989 0.997 0.979
K-s 0.951 0.946 0.985 0.932

Luv L1 0.959 0.946 0.985 0.968
Chi 0.981 0.978 0.991 0.988
Intersection 0.959 0.946 0.985 0.968
K-s 0.926 0.917 0.971 0.932

Y L1 0.997 0.989 0.997 0.979
Chi 1.000 0.997 1.000 0.997
Intersection 0.997 0.989 0.997 0.979
K-s 0.973 0.954 0.997 0.951

Local RGB L1 1.000 0.997 1.000 0.994
Chi 1.000 1.000 1.000 1.000
Intersection 1.000 0.997 1.000 0.994
K-s 1.000 0.995 1.000 0.997

YUV L1 1.000 0.997 1.000 0.988
Chi 1.000 1.000 1.000 1.000
Intersection 1.000 0.997 1.000 0.988
K-s 1.000 1.000 1.000 0.988

Luv L1 0.995 0.992 1.000 0.994
Chi 0.995 0.995 1.000 1.000
Intersection 0.997 0.995 1.000 0.994
K-s 0.995 0.990 1.000 0.997

Y L1 0.996 0.989 0.991 0.979
Chi 0.997 1.000 0.991 0.994
Intersection 0.995 0.994 0.982 0.988
K-s 0.995 0.986 0.991 0.979

Pixel difference 0.995 0.981 0.988 0.971
pixel inner product 0.000 0.000 0.053 0.015
Ftest 0.744 0.777 0.151 0.221
Ford 1 0.203 0.295 0.300 0.361
Ford 2 0.723 0.765 0.173 0.203
Zabih 0.880 0.828 0.882 0.819
DCT inner product 0.000 0.000 0.225 0.127

recall

pr
ec

is
io

n

recall

pr
ec

is
io

n



B. Evaluation of cut detection algorithms 176

Recall @ 90% precision Precision @ 90% recall
w=2 w=6 w=2 w=6

Global RGB L1 0.940 0.907 0.949 0.907
Chi 0.940 0.906 0.954 0.909
Intersection 0.940 0.907 0.949 0.907
K-s 0.893 0.863 0.885 0.849

YUV L1 0.939 0.891 0.946 0.890
Chi 0.921 0.894 0.936 0.893
Intersection 0.939 0.891 0.946 0.890
K-s 0.871 0.838 0.848 0.832

Luv L1 0.858 0.834 0.806 0.802
Chi 0.885 0.839 0.874 0.806
Intersection 0.857 0.834 0.806 0.802
K-s 0.821 0.798 0.633 0.707

Y L1 0.920 0.850 0.925 0.863
Chi 0.915 0.878 0.923 0.869
Intersection 0.920 0.850 0.925 0.863
K-s 0.876 0.827 0.830 0.796

Local RGB L1 0.969 0.940 0.968 0.941
Chi 0.972 0.947 0.971 0.948
Intersection 0.967 0.938 0.964 0.946
K-s 0.958 0.929 0.962 0.929

YUV L1 0.969 0.935 0.964 0.927
Chi 0.968 0.946 0.965 0.938
Intersection 0.969 0.937 0.969 0.930
K-s 0.961 0.923 0.958 0.922

Luv L1 0.947 0.914 0.945 0.912
Chi 0.956 0.916 0.956 0.918
Intersection 0.954 0.921 0.947 0.913
K-s 0.944 0.908 0.944 0.906

Y L1 0.945 0.902 0.945 0.902
Chi 0.940 0.909 0.949 0.909
Intersection 0.949 0.914 0.949 0.912
K-s 0.943 0.895 0.946 0.897

Pixel difference 0.963 0.925 0.940 0.912
pixel inner product 0.000 0.000 0.031 0.031
Ftest 0.630 0.673 0.123 0.154
Ford 1 0.119 0.168 0.234 0.253
Ford 2 0.702 0.697 0.169 0.177
Zabih 0.701 0.628 0.741 0.679
DCT inner product 0.000 0.000 0.049 0.048
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Global RGB, L1, w=2 Global RGB, L1, w=6

Global RGB, intersection, w=2 Global RGB, intersection, w=6 Global RGB, K-S, w=2 Global RGB, K-S, w=6
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Tab. B.1: Precision/recall graphs for the whole test set.
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Tab. B.2: Precision/recall graphs for the whole test set (cont.).
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Tab. B.3: Precision/recall graphs for the whole test set (cont.).
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