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Abstract 

 

Northern peatlands play an important role in the cycling of carbon (C) globally, and 

contain up to one third of the world’s soil C despite only covering a small percentage of its 

land surface (Gorham, 1991). Changes in climate and land use are increasing the 

vulnerability of these vast C stocks, by altering the conditions favourable for peat 

accumulation and therefore C sequestration. The establishment of wind farms on peatlands 

is increasing in the UK, as a result of the growing need for sustainable energy and the 

suitably high wind speeds that are typical to these upland ecosystems (Smith et al., 2014). 

There is limited understanding of the impacts of operational wind farms on their host 

ecosystems, but evidence to suggest that wind farms create microclimate conditions by 

altering ground-level temperature is increasing (Armstrong et al., 2014a; Baidya Roy and 

Traiteur, 2010; L. Zhou et al., 2012). The sensitivity of peatland C cycling processes to 

wind farm-induced microclimatic changes represents a considerable gap in knowledge. 

Further, the role that aboveground and belowground peatland communities have in 

mediating the effects of wind farm microclimates on C cycling processes remains 

unknown. By examining plant-soil interactions across a peatland at Black Law Wind Farm 

and under a range of microclimate conditions in the laboratory, this thesis aimed to 

investigate the influence of plant functional type (PFT) and microclimatic conditions on 

physical, chemical and biological peatland properties, greenhouse gas (GHG) emissions 

and litter decomposition. Results show that a PFT legacy in peat plays a mediatory role in 

the response of CO2 and CH4 emissions to microclimatic differences in temperature and 

water table. Mass loss of litter is primarily driven by PFT differences in litter quality, with 

interactions between litter types controlling decomposition of litter mixtures via non-

additive effects, and interactions between litter types and PFT legacies in peat affecting the 

likelihood of home-field advantage and disadvantage (HFA and HFD) litter mass loss. This 

thesis demonstrates that the direct effects of microclimatic changes in temperature and 

water table are important drivers of peatland C cycling processes; however the indirect 

effects of microclimate change on plant community composition e.g. the relative 

proportion of PFTs could influence these processes to a greater extent. Examining the 

importance of PFTs in C cycling processes at wind farm peatlands is important in 

improving predictions of peatland C sequestration under future climate change scenarios, 

and in calculating the C savings achieved by land-based renewable technologies.  

 



 

ii 

 

Declaration 

 

 

I declare that this thesis is the result of my own work. It has not been submitted for any 

other degree at the University of Glasgow or any other institution and all sources of 

information have been acknowledged explicitly.  

 

Signature:  

 

Printed name: Harriett Rose Richardson 

Date: 21/10/2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

 

Acknowledgements 

 

This project would not have been possible without the generous support and wealth of 

knowledge gained from many people, but in particular, my supervisors Prof. Nick Ostle at 

Lancaster University, Dr. Jeanette Whitaker at the Centre for Ecology & Hydrology and 

Prof. Susan Waldron at the University of Glasgow. Thank you for the time that you have 

invested in me. Your advice and encouragement have been a source of great strength.  

I would like to extend my sincerest thanks and appreciation to the Biogeochemistry Group 

at CEH Lancaster. My field sampling assistants Tom Walker and Andy Robertson never 

tired of trampling through bog, but my most heartfelt thanks go to Dr. Mike Whitfield for 

his ‘keep calm and carry on’ approach to the finger incident and his hailstorm 

resourcefulness. To my lab coat companions Dr. Emily Bottoms, Dr. Mike Whitfield, Dr. 

Sean Case, Dr. Rachel Marshall, Kim Parmar, Kelly Mason, Andy Robertson, Hollian 

Richardson and to all of those new or few in their visits to B77, I thank you for your useful 

advice and upbeat attitude. Notably, I am also extremely grateful to Simon Oakley for his 

help and unending patience with all things ‘PLFA’.  For making statistical analysis a friend 

and not a foe, I would like to thank Dr. Mike Whitfield, Dr. Peter Henrys, Dr. Sue Ward, 

Dr. Sean Case and Dr. Rebecca Rowe. I would also like to thank the Scottish contingent, 

Kenny Bryce at Scottish Power and Kenny Roberts at the University of Glasgow for their 

help at Black Law wind farm.  

Dr. Alona Armstrong at Lancaster University deserves a special mention. She has been 

there with me along every step of the way - counting midge bites, elbow-deep in peat, 

practising presentations and helping me to handle Excel. Alona has been a constant source 

of support, but mostly, inspiration. I will always be grateful to my friends, far and wide, for 

knowing just the right thing to say and for making the perfect cup of tea. For believing I 

could succeed, even before I began, I thank my parents – I hope I make you proud. Finally, 

I thank Tom for always keeping my feet firmly on the ground – I couldn’t have done this 

without you.  

This research was supported by a NERC tied PhD studentship, funded as part of the NERC 

Consortium Grant ‘Impact of Spatio-Climatic Variability on Environment-Hosted Land-

Based Renewables: Microclimates’ NE/H010335/1.  

 



 

iv 

 

Table of Contents 

Abstract ................................................................................................................................. i 

Declaration ........................................................................................................................... ii 

Acknowledgements ............................................................................................................. iii 

List of figures ..................................................................................................................... vii 

List of tables ....................................................................................................................... xii 

Abbreviations ................................................................................................................. xviii 

 

Chapter 1: Introduction ...................................................................................................... 1 

1.1  Northern peatlands and global change ........................................................................ 2 

1.2  Carbon cycling in peatlands ........................................................................................ 3 

1.3  The role of aboveground and belowground communities in peatland C cycling ........ 5 

1.3.1   Peatland plant functional types ............................................................................ 5 

1.3.2   Peatland soil microorganisms .............................................................................. 6 

1.3.3   Plant-soil interactions and decomposition processes ........................................... 9 

1.4  Thesis aims and outline ............................................................................................. 13 

1.5  Introduction to study site ........................................................................................... 15 

 

Chapter 2: Spatio-temporal variability of abiotic and biotic properties in a wind farm 

hosting northern peatland 

 .............................................................................................................................................. 18 

2.1  Introduction ............................................................................................................... 19 

2.2  Methods ..................................................................................................................... 21 

2.2.1   Statistical analysis .............................................................................................. 23 

2.3  Results ....................................................................................................................... 24 

2.3.1   Peat properties.................................................................................................... 24 

2.3.2   Litter properties.................................................................................................. 25 

2.3.3   Vegetation properties ......................................................................................... 25 

2.3.4   Water table level ................................................................................................ 33 

2.3.5   Peat microbial community ................................................................................. 36 

2.4  Discussion ................................................................................................................. 55 

2.4.1   Spatial and seasonal effects ............................................................................... 55 

2.4.2   Plant functional type effects .............................................................................. 60 

2.5  Conclusions ............................................................................................................... 62 



 

v 

 

Chapter 3: Microclimate and plant functional type controls on peat greenhouse gas 

fluxes 

 .............................................................................................................................................. 63 

3.1  Introduction ............................................................................................................... 64 

3.2  Methods ..................................................................................................................... 66 

3.2.1   Statistical analysis .............................................................................................. 68 

3.3  Results ....................................................................................................................... 68 

3.3.1   Biochemical peat properties............................................................................... 68 

3.3.2   CO2 fluxes .......................................................................................................... 69 

3.3.3   CH4 fluxes .......................................................................................................... 71 

3.4  Discussion ................................................................................................................. 76 

3.4.1   Microclimate effects .......................................................................................... 76 

3.4.2   Plant functional types......................................................................................... 78 

3.5  Conclusions ............................................................................................................... 79 

 

Chapter 4: Plant functional type controls on litter decomposition rates in peatlands  

 .............................................................................................................................................. 81 

4.1  Introduction ............................................................................................................... 82 

4.2  Methods ..................................................................................................................... 85 

4.2.1   Determining litter decomposition ...................................................................... 85 

4.2.2   Calculating home field advantage and disadvantage ......................................... 86 

4.2.3   Peat and litter properties .................................................................................... 86 

4.2.4   Statistical analysis .............................................................................................. 87 

4.3  Results ....................................................................................................................... 89 

4.3.1   Peat chemistry .................................................................................................... 89 

4.3.2   Water table ......................................................................................................... 89 

4.3.3   Soil temperature ................................................................................................. 93 

4.3.4   Chemical properties of litter .............................................................................. 95 

4.3.5   Litter decomposition .......................................................................................... 95 

4.3.6   Litter decomposition and properties of peat and litter ....................................... 99 

4.3.7   Home-field advantage and disadvantage of litter decomposition ...................... 99 

4.4  Discussion ............................................................................................................... 103 

4.4.1   Controlling factors for litter decomposition .................................................... 103 

4.4.2   PFT determines home-field advantage and disadvantage................................ 106 

4.5  Conclusions ............................................................................................................. 108 



 

vi 

 

Chapter 5: Plant functional type and microlimatic controls on litter decomposition 

 ............................................................................................................................................ 110 

5.1 Introduction .............................................................................................................. 111 

5.2  Methods ................................................................................................................... 116 

5.2.1   Determining litter decomposition .................................................................... 116 

5.2.2   Temperature sensitivity.................................................................................... 117 

5.2.3   Home field advantage and disadvantage ......................................................... 118 

5.2.4   Mixed litter interactions ................................................................................... 118 

5.2.5   Statistical analysis ............................................................................................ 119 

5.3  Results ..................................................................................................................... 121 

5.3.1   Biochemical properties of peat and litter ......................................................... 121 

5.3.2   Litter decomposition ........................................................................................ 124 

5.3.3   Temperature sensitivity of litter decomposition .............................................. 128 

5.3.4   Home field advantage of litter decomposition ................................................. 129 

5.3.5   Interactions between litters .............................................................................. 131 

5.3.6   Heterotrophic respiration ................................................................................. 133 

5.3.7   Temperature sensitivity of respiration ............................................................. 140 

5.3.8   Home field advantage and disadvantage of respiration ................................... 142 

5.4  Discussion ............................................................................................................... 144 

5.4.1   Drivers of decomposition................................................................................. 144 

5.4.2   Litter and peat interactions .............................................................................. 147 

5.5  Conclusions ............................................................................................................. 151 

 

Chapter 6: General discussion ........................................................................................ 152 

6.1  Overview ................................................................................................................. 153 

6.2  Composition of aboveground and belowground communities ................................ 153 

6.3  Plant functional types and their role in peatland C cycling ..................................... 155 

6.4  Peatland ecosystem function: what difference does microclimate change make? .. 157 

6.5  Future work ............................................................................................................. 158 

6.6  Conclusions ............................................................................................................. 160 

 

References ......................................................................................................................... 162 

 

 



 

vii 

 

List of figures 

Chapter 1 

Figure 1.1: Maps to show the location of Black Law wind farm in the context of Great 

Britain and within its immediate surroundings. Red stars indicate the approximate location 

of Black Law wind farm.                  16 

Figure 1.2: Map of Black Law wind farm. Lines represent the road network, green dots the 

wind turbines and red stars labelled 1 to 4 the sampling sites.                                            17 

Figure 1.3: Block and plant functional type plot layout at each sampling site at Black Law 

Wind Farm (see Figure 1.2). B = bryophyte, G = graminoid, S = shrub.            17 

Chapter 2 

Figure 2.1: C:N, total C content and total N content for peat from each site and PFT. Data 

are means ± standard error. B = bryophyte, G = graminoid, S = shrub. Letters below 

legends denote pair-wise significant differences between PFT. Letters on graphs indicate 

pair-wise significant differences between sites.                                                           27 

Figure 2.2: Peat bulk density and pH from each site and PFT. Data are means ± standard 

error. B = bryophyte, G = graminoid, S = shrub. Letters below legends denote pair-wise 

significant differences between PFT. Letters on graphs indicate pair-wise significant 

differences between sites.                                                                                                     28 

Figure 2.3: C stock and N stock for peat from each site and PFT. Data are means ± 

standard error. B = bryophyte, G = graminoid, S = shrub. Letters below legends denote 

pair-wise significant differences between PFT. Letters on graphs indicate pair-wise 

significant differences between sites.                                                                                   29 

Figure 2.4: Total C, total N and C:N of litter from each site and PFT. Data are means ± 

standard error. B = bryophyte, G = graminoid, S = shrub. Letters below legends denote 

pair-wise significant differences between PFT. Letters on graphs indicate pair-wise 

significant differences between sites.                                                                                   30 

Figure 2.5: Litter depth, C stock and N stock for litter from each site and PFT. Data are 

means ± standard error. B = bryophyte, G = graminoid, S = shrub. Letters below legends 

denote pair-wise significant differences between PFT. Letters on graphs indicate pair-wise 

significant differences between sites.                                                                                   31   



 

viii 

 

Figure 2.6: Total C, total N and C:N of vegetation from each site and PFT. Data are means 

± standard error. B = bryophyte, G = graminoid, S = shrub. Letters below legends denote 

pair-wise significant differences between PFT. Letters on graphs indicate pair-wise 

significant differences between sites.                                                                                   32    

Figure 2.7: Mean water table level (mm) (i) beneath each PFT at each site (1, 2, 3 and 4) 

in spring, summer and autumn 2011. Average deviation from the mean water table level 

(ii), for each PFT, site and season. Legend letters indicate pair-wise significant differences 

between seasons, and separately for PFT. Letters on graph (i) indicate pair-wise significant 

differences between sites.                                                                                                     35 

Figure 2.8: Seasonal total PLFAs at each site (1, 2, 3 and 4) and peat PFT (B = bryophyte, 

G = graminoid, S = shrub). Letters below legends denote pair-wise significant differences 

between sites. Pair-wise comparisons between season and peat PFT for total PLFAs are 

shown in Tables 2.5 and 2.13. Data are means ± standard error.                                         42 

Figure 2.9: Seasonal F:B at each site (1, 2, 3 and 4) and peat PFT (B = bryophyte, G = 

graminoid, S = shrub). Letters below legends denote pair-wise significant differences 

between sites. Pair-wise comparisons between season, peat PFT and the interaction of 

season and site for F:B are shown in Tables 2.4, 2.5 and 2.11. Data are means ± standard 

error.                                                                                                                                     45 

Figure 2.10: Seasonal F:B biomass C for each PFT (B = bryophyte, G = graminoid, S = 

shrub) and site (1, 2, 3 and 4). Letters below legends denote pair-wise significant 

differences between sites. Pair-wise comparisons between season, peat PFT and the 

interaction of season and site for F:B biomass C are shown in Tables 2.4, 2.5 and 2.11. 

Data are means ± standard error.                                                                                          49 

Figure 2.11: Mean F:B biomass C and mean peat C:N for each site and PFT (B = 

bryophyte, G = graminoid, S = shrub).                                                                                50 

Chapter 3 

Figure 3.1: CO2 fluxes from all cores across the 4°C temperature range for each water 

table (WT) level treatment: low = -25 cm, intermediate = -15 cm, high = -5 cm. Letters 

indicate pair-wise significant differences between temperature and water table level 

treatments. Data are means (averaged for PFT) ± standard error. CO2 flux expressed as 

CO2 - C in g m
-2

 d
-1

.                                                                                                             72 



 

ix 

 

Figure 3.2: CH4 fluxes from cores of each PFT: i) shrub, ii) bryophyte and iii) graminoid, 

across the 4°C temperature range for each water table level treatment: low = -25 cm, 

intermediate = -15 cm, high = -5 cm. Letters indicate pair-wise significant differences 

between temperature treatments. Data are means ± standard error. CH4 flux expressed as 

CH4 - C in g m
-2

 d
-1

.                                                                                                             73 

Figure 3.3: Mean CH4 flux over 322 day experimental period, showing effects of 

temperature (°C), water table (WT) position (low = -25 cm, intermediate = -15 cm, high = -

5 cm) and PFT (bryophyte, graminoid and shrub). Error bars are standard error. CH4 flux 

expressed as CH4 - C in g m
-2

 d
-1

.                                                                                        74 

Chapter 4 

Figure 4.1: Deviation from mean monthly water table level (mm) beneath each PFT, at 

each site, from March 2012 to April 2013.                                                                          90 

Figure 4.2: Deviation from mean monthly soil temperature (°C) beneath each PFT, at each 

site, from March 2012 to April 2013.                                                                                   92 

Figure 4.3: Litter mass remaining after 1 year for each litter PFT and peat PFT. B = 

bryophyte litter, G = graminoid litter, S = shrub litter. Letters indicate pair-wise significant 

differences between mass remaining of each PFT litter, tested by one-way ANOVA with 

Tukey’s HSD test. Data are means (averaged for site) ± standard error.                             96 

Figure 4.4: Additional litter mass at home and away for each litter PFT at each site across 

the wind farm transect. Positive values correspond to greater than expected litter mass loss 

at home (i.e. HFA), while negative values correspond to lower than expected litter mass 

loss at home (i.e. HFD), and asterisks indicate significant differences from zero (p < 0.05). 

B = bryophyte litter, G = graminoid litter, S = shrub litter. Letters indicate pair-wise 

significant differences between the additional mass loss of each PFT litter, tested by one-

way ANOVA with Tukey’s HSD test. Pair-wise comparisons of additional mass loss at 

home for each PFT for interaction between site and PFT are shown in Table 4.8. Data are 

means ± standard error.                                                                                                      100 

Chapter 5 

Figure 5.1: Mass remaining of single and mixed PFT litters on each PFT peat core, at 

12°C, 14°C and 16°C. Letters indicate pair-wise significant differences between the 

remaining mass of PFT litter treatments. Pair-wise comparisons of remaining mass for 



 

x 

 

each litter PFT at each temperature, and on each peat PFT, are shown in Table 5.7. Data 

are means ± standard error.                                                                                                123 

Figure 5.2: Temperature sensitivity of litter mass loss (% initial dry mass), determined by 

Q10 values, for each peat PFT and litter bag PFT treatment combination. Mean values ± 

standard error.                                                                                                                     125 

Figure 5.3: Additional litter mass at home for each litter PFT (B = bryophyte litter, G = 

graminoid litter, S = shrub litter) at each incubation temperature. Asterisks indicate 

significant differences from zero (p < 0.05). Letters indicate pair-wise significant 

differences between the additional mass loss of each single PFT litter. Pair-wise 

comparisons between each temperature and peat PFT for additional mass loss at home are 

shown in Table 5.11. Data are means ± standard error.                                                     127 

Figure 5.4: CO2 emissions from cores of each peat PFT with litterbags comprised of no 

litter (N), bryophyte litter (B), graminoid litter (G) and shrub litter (S), in monoculture and 

mixtures, incubated at (i) 12°C, (ii) 14°C and (iii) 16°C. Letters indicate pair-wise 

significant differences between CO2 emissions from each litter bag treatment. Pair-wise 

comparisons of CO2 emissions between each peat PFT and each temperature are shown in 

Table 5.16. Mean data (averages taken from 6 sampling dates over 1 year) ± standard  

error.                             132      

Figure 5.5: Difference in CO2 emissions from PFT peat cores without any litter and cores 

with litterbags comprised of bryophyte (B), graminoid (G) and shrub litters (S), in 

monoculture and mixtures. Cores and litterbags incubated at (i) 12°C, (ii) 14°C and (iii) 

16°C. Mean data (averages taken from 6 sampling dates over 1 year) ± standard error.                                                                                                                   

Figure 5.6: CO2 emissions from (i) bryophyte, (ii) graminoid and (iii) shrub peat cores, 

incubated for 1 year at 12°C, 14°C and 16°C. Letters indicate pair-wise significant 

differences between CO2 emissions at each temperature. Pair-wise comparisons of CO2 

emissions for each sampling day, temperature and peat PFT are shown in Table 5.17. Data 

is averaged across all litter bag treatments ± standard error.                                             133   

Figure 5.7: Temperature sensitivity of CO2 emissions, determined by Q10 values, for each 

peat PFT and each sampling day for 1 year. Letters beneath the legend indicate pair-wise 

significant differences between the Q10 values of each peat PFT, whilst letters on the graph 

denote significant differences between peat PFT and sampling day. Mean values (averaged 

over litter PFT) ± standard error.                                                                                        136 



 

xi 

 

Figure 5.8: Mean additional CO2 emissions at home (± standard error) for each single 

litter PFT (B = bryophyte litter, G = graminoid litter, S = shrub litter) at 12°C, 14°C and 

16°C, over 363 days. Asterisks indicate significant differences from zero (p < 0.05). 

Letters indicate pair-wise significant differences between PFT litters. Pair-wise 

comparisons between sampling day and litter PFT are shown in Table 5.21. Mean data is 

not shown for (i) day 363, (ii) day 230 and (iii) day 230 due to missing replicates.         138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

 

List of tables       

Chapter 2 

Table 2.1: Two-way ANOVA results showing site, PFT and site*PFT effects on BD = 

bulk density, C% = total C content, N% = total N content, C:N = ratio of total C and total 

N, LD = litter depth.                                                                                                             26 

Table 2.2: Repeated measures ANOVA results showing season, site, PFT and their 

interactive effects on depth to water table (mm).                                                                 34 

Table 2.3: Repeated measures ANOVA showing season, site, PFT (plant functional type) 

and their interactive effects on peat biotic characteristics: total PLFA (total PLFA 

concentration) = µg g
-1

 dwt soil, fungi = total fungal PLFA, bacteria = total bacterial 

PLFA, F:B = ratio of fungal to bacterial PLFA, F:B biomass C = ratio of fungal biomass C 

to bacterial biomass C, gram +ve bacteria = gram-positive bacteria PLFA, gram –ve 

bacteria = gram-negative PLFA, gram +ve:gram –ve = ratio of gram-positive bacterial to 

gram-negative bacterial PLFA.                                                                                            38 

Table 2.4: Pair-wise comparisons of microbial community composition (PLFAs) between 

each site, analysed by one-way ANOVAs and Tukey’s test post-hoc analyses.                  39 

Table 2.5: Pair-wise comparisons of microbial community composition (PLFAs) between 

each season, analysed by one-way ANOVAs and Tukey’s test post-hoc analyses.            39 

Table 2.6: Pair-wise comparisons of microbial community composition (PLFAs) between 

each peat PFT, analysed by one-way ANOVAs and Tukey’s test post-hoc analyses.         40 

Table 2.7: Pair wise comparisons between site and season, for F:B and F:B biomass C.  41 

Table 2.8: Pair wise comparisons between site and season, for gram +ve:gram -ve.         41 

Table 2.9: Total bacterial PLFA concentration (µg g
-1

 dwt soil) at each peat PFT plot (B = 

bryophyte, G = graminoid, S = shrub) at each site. Mean values ± standard error.             43 

Table 2.10: Total fungal PLFA concentration (µg g
-1

 dwt soil) at each peat PFT plot (B = 

bryophyte, G = graminoid, S = shrub) at each site. Mean values ± standard error.             44 

Table 2.11: Total gram +ve bacterial PLFA concentration (µg g
-1

 dwt soil) at each peat 

PFT plot (B = bryophyte, G = graminoid, S = shrub) at each site. Mean values ± standard 

error.                                                                                                                                     46 



 

xiii 

 

Table 2.12: Total gram -ve bacterial PLFA concentration (µg g
-1

 dwt soil) at each peat 

PFT plot (B = bryophyte, G = graminoid, S = shrub) at each site. Mean values ± standard 

error.                                                                                                                                     47 

Table 2.13: Ratio of gram +ve and gram -ve bacterial PLFA at each peat PFT plot (B = 

bryophyte, G = graminoid, S = shrub) at each site. Mean values ± standard error.             48 

Table 2.14: Results of variance partitioning carried out on individual PLFA concentration 

data following redundancy analysis (Table 2.9) to determine the proportions of variance 

explained by biochemical peat, litter and plant properties.                                                  52   

Table 2.15: Redundancy analysis results showing the biochemical peatland properties 

which cause significant differences in individual PLFA concentrations for all sites and PFT 

plots in winter (February 2011), spring (April 2011), summer (July 2011) and autumn 

(October 2011). Water table data was not available for winter (February 2011) and 

therefore was not included in this analysis.                                                                          53 

Table 2.16: Redundancy analysis results showing the biochemical and physical peatland 

properties which cause significant differences in individual PLFA concentrations for all 

sites and PFT plots in spring (April 2011), summer (July 2011) and autumn (October 

2011). Water table data was included in this analysis because it was available for spring, 

summer and autumn (April, July and October 2011).                                                          54 

Chapter 3 

Table 3.1: Biochemical properties of peat at the sampling area, for each PFT (B = 

bryophyte, G = graminoid, S = shrub). BD = dry bulk density (g cm
-3

), C% = total C 

content, N% = total N content, C:N = ratio of C% and N%, C stock =  g C m
-2

 to a depth of 

15 cm, N stock =  g N m
-2

 to a depth of 15 cm, total PLFAs = total PLFA concentration 

(µg g
-1

 dwt soil), fungi = total fungal PLFAs, bacteria = total bacterial PLFAs, F:B = ratio 

of fungal to bacterial PLFAs, gram +ve bacteria = gram-positive bacterial PLFAs, gram –

ve bacteria = gram-negative bacterial PLFAs, gram +ve:gram –ve = ratio of gram-positive 

bacterial to gram-negative bacterial PLFAs. Data are means ± standard error.  One-way 

ANOVA results showing the effect of PFT:  ns = not significant, * = p < 0.05, ** = p < 

0.01.                                                                                                                                      69 

Table 3.2: Main and interactive effects of time, temperature, water table and PFT on CO2 

fluxes (CO2 -C g m
-2

 d
-1

) analysed by repeated measures ANOVA. D = sampling days 

within the 322 day experimental period, T = temperature (°C), WT = water table position 



 

xiv 

 

(cm below the surface of peat core) and PFT = plant functional type. Df = degrees of 

freedom, F = F value and p = p value.                                                                                  71  

Table 3.3: Main and interactive effects of time, temperature, water table and PFT on CH4 

fluxes (CH4-C g m
-2

 d
-1

) analysed by repeated measures ANOVA. D = sampling days 

within the 322 day experimental period, T = temperature (°C), WT = water table position 

(cm below the surface of peat core) and PFT = plant functional type. Df = degrees of 

freedom, F = F value and p = p value.                                                                                  72 

Chapter 4 

Table 4.1: Linear mixed effects model results showing month, site, PFT and their 

interactive effects on soil temperature and depth to water table (mm). Symbols indicate the 

level of significance within the repeated measures ANOVA: ns = not significant, * = p < 

0.05, ** = p < 0.01.                                                                                                              89 

Table 4.2: Differences in litter properties between each PFT. Litter properties were 

analysed by one-way ANOVA with PFT as the main factor. Pair-wise comparisons were 

performed by Tukey’s HSD (shown in Table 4.3). Symbols indicate the significance of 

litter properties for each PFT within the ANOVA: ns = not significant, * = p < 0.05, ** = p 

< 0.01.                                                                                                                                   94 

Table 4.3: Properties of each PFT litter. B = bryophyte, G = graminoid and S = shrub. 

LCH = total fibre content (lignin + cellulose + hemicellulose). Data are means ± standard 

error. Pair-wise comparisons of litter properties for each litter PFT, analysed by one-way 

ANOVAs and Tukey’s HSD tests (all one-way ANOVAs were significant at p < 0.01, with 

the exception of Lignin:N, see Table 4.2).                                                                           95 

Table 4.4: Three-way ANOVA results showing significant factors and their interactions 

for mass of litter remaining (% initial dry mass) after 1 year of decomposition. PFTP = 

plant functional type of peat and PFTL = plant functional type of litter. Df = degrees of 

freedom, F = F value and p = p value.                                                                                  96 

Table 4.5: Pearson’s correlation between the mass of litter remaining (% initial dry mass) 

and peat and litter properties. Temp = deviation from mean soil temperature over the year 

and water table = deviation from mean water table level over the year. df = degrees of 

freedom, r = Pearson’s correlation coefficient and symbols indicate the significance of the 

correlation: ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p <0.001, **** = p 

<0.0001.                                                                                                                                98 



 

xv 

 

Table 4.6: Linear mixed effects model to determine the relationship between litter mass 

remaining (% initial dry mass) and peat-litter abiotic properties across Black Law Wind 

Farm. Temperature = deviation from mean soil temperature over the year and water table = 

deviation from mean water table level over the year. Symbols indicate the presence or the 

significance of the variable within the refined model: - = not present in refined model, ns = 

not significant, * = p < 0.05, ** = p < 0.01, *** = p <0.001, **** = p <0.0001.  The 

relative contribution (%) of each variable in explaining model variance was calculated as 

% difference in adjusted R
2
 comparing the full refined model and the model with each 

variable removed.                                                                                                                 99 

Table 4.7: Two-way ANOVA results showing significant factors and their interactions for 

additional mass loss at home and away (% initial dry mass) after 1 year of decomposition. 

PFTL= plant functional type of litter. Df = degrees of freedom, F = F value and p = p 

value.                                                                                                                                    99 

Table 4.8: Pair-wise comparisons of additional mass loss at home and away for the 

interaction between litter PFT and site.                                                                              100 

Chapter 5 

Table 5.1: Litter bag treatments comprised of no litter, single litters of each PFT and each 

mixed combination of the three PFTs.                                                                               113 

Table 5.2: Biochemical properties of peat cores collected from beneath each PFT. S = 

shrub, G = graminoid, B = bryophyte. Peat properties were analysed with one-way 

ANOVA with peat PFT as the main factor. S = shrub, G = graminoid, B = bryophyte. 

Symbols indicate significant differences between peat PFTs for each peat property: ns = 

not significant, * = p < 0.05, ** = p < 0.01. Data are means ± standard error.                  118 

Table 5.3: Pair-wise comparisons of peat properties between each peat PFT, analysed by 

one-way ANOVA and Tukey’s HSD test.                                                                         119 

Table 5.4: Properties of litter used for the single and mixed PFT litter bag treatments. 

Litter properties were analysed with one-way ANOVA with litter PFT as the main factor. S 

= shrub, G = graminoid, B = bryophyte. Symbols indicate significant differences between 

litter PFTs for each litter property: ns = not significant, * = p < 0.05, ** = p < 0.01. Data 

are means ± standard error.                                                                                                120 



 

xvi 

 

Table 5.5: Pair-wise comparisons of litter properties between each litter bag treatment, 

analysed by one-way ANOVA and Tukey’s HSD test.                                                     122 

Table 5.6: Three-way ANOVA results showing significant factors and their interactions 

for litter mass remaining (% initial dry litter mass). T = temperature (°C), PFTP = plant 

functional type of peat, PFTL = plant functional type of litter. Df = degrees of freedom, F 

= F value and p = p value.                                                                                                  122 

Table 5.7: Pair wise comparisons between litter PFT and each temperature (T), and each 

peat PFT (PFTP), for percentage remaining litter mass.                                                    124 

Table 5.8: Linear mixed effects model to determine the relationship between litter mass 

remaining (% initial dry litter mass) and properties of peat and litter. Symbols indicate the 

presence or the significance of the variable within the refined model: - = not present in 

refined model, ns = not significant, * = p < 0.05, ** = p < 0.01, *** = p <0.001, **** = p 

<0.0001. The relative contribution (%) of each variable in explaining model variance was 

calculated as % difference in adjusted R
2
 comparing the full refined model and the model 

with each variable removed.                                                                                               124 

Table 5.9: Two-way ANOVA results showing significant factors and their interactions for 

temperature sensitivity of litter mass loss (determined by Q10 values). PFTP = plant 

functional type of peat, PFTL = plant functional type of litter: single and mixed litter bag 

treatments. Df = degrees of freedom, F = F value and p = p value.                                  126 

Table 5.10: Two-way ANOVA results showing significant factors and their interactions 

for additional mass loss at home (HFA). T = temperature (°C) and PFTL = plant functional 

type of litter. Df = degrees of freedom, F = F value and p = p value.                                126 

Table 5.11: Pair wise comparisons between each temperature and litter PFT, for additional 

mass loss at home.                                                                                                              127 

Table 5.12: Three-way ANOVA results showing significant factors and their interactions 

for interaction strength of litters in mixture. T = temperature (°C), PFTP = plant functional 

type of peat and PFTL = plant functional type of litter. Df = degrees of freedom, F = F 

value and p = p value.                                                                                                         128 

Table 5.13: Mean interaction strength values ±standard error (SE) in the PFT litter 

mixtures, on bryophyte, graminoid and shrub peat, at 12°C, 14°C and 16°C. Interactions in 



 

xvii 

 

bold are significantly different from zero (p <0.05). Mixtures contained litters from each 

PFT: B = bryophyte, G = graminoid, S = shrub.                                                                129 

Table 5.14: Pair wise comparisons between each temperature and peat PFT, for interaction 

strength in litter mixtures.                                                                                                  129 

Table 5.15: Linear mixed effects (LME) model results showing significant factors and 

their interactions for CO2 emissions (mg CO2 – C m
-2

 h
-1

). D = days since start of 

experiment, T = temperature (°C), PFTP = plant functional type of peat, PFTL = litter plant 

functional type treatment. Df = degrees of freedom, F = F value and p = p value.           131 

Table 5.16: Pair wise comparisons between each temperature and peat PFT, for CO2 

emissions.                                                                                                                           131 

Table 5.17: Pair wise comparisons between each sampling day and each temperature (T), 

and each peat PFT (PFTP), for CO2 emissions.                                                                 134   

Table 5.18: Linear mixed effects model to determine the relationship between CO2 

emissions and peat-litter properties. Symbols indicate the presence or the significance of 

the variable within the refined model: - = not present in refined model, ns = not significant, 

* = p < 0.05, ** = p < 0.01, *** = p <0.001, **** = p <0.0001. The relative contribution 

(%) of each variable in explaining model variance was calculated as % difference in 

adjusted R
2
 comparing the full refined model and the model with each variable removed. 

                                                                                                                                            134                                                                                                                                                                

Table 5.19: Linear mixed effects (LME) model results showing significant factors and 

their interactions for temperature sensitivity of CO2 emissions (Q10 values). D = days since 

start of experiment, T = temperature (°C), PFTP = plant functional type of peat, PFTL = 

litter plant functional type treatment. Df = degrees of freedom, F = F value and p = p 

value.                                                                                                                                  135 

Table 5.20: Linear mixed effects (LME) model results showing significant factors and 

their interactions for additional CO2 emissions at home and away. D = days since start of 

experiment, T = temperature (°C), PFTL = litter plant functional type treatment. Df = 

degrees of freedom, F = F value and p = p value.                                                              137 

Table 5.21: Pair wise comparisons between each sampling day and each litter PFT 

(PFTL), for additional CO2 emissions at home and away.                                                 137 

 



 

xviii 

 

Abbreviations 

 

ADD  Away Decomposition Difference 

ADF  Acid Detergent Fibre 

ADH  Additional Decomposition at Home 

ADL  Acid Detergent Lignin 

ANOVA Analysis of Variance 

BD  Bulk Density 

C  Carbon 

CH4  Methane 

CO2  Carbon Dioxide 

DL  Decomposition of Litter 

db-RDA Distance Based Redundancy Analysis 

DECC  Department of Energy & Climate Change 

DOC  Dissolved Organic Carbon 

ECD  Electron Capture Detector 

EDTA  Ethylenediaminetetraacetic Acid 

FeCl3  Ferric Chloride   

FID  Flame Ionisation Detector 

GC  Gas Chromatograph 

HDD  Home Decomposition Difference 

HFA  Home-Field Advantage 

HFD  Home-Field Disadvantage 

H2SO4  Sulphuric Acid 



 

xix 

 

ICP-OES Inductively Coupled Plasma-Optical Emission Spectroscopy 

IPCC  Intergovernmental Panel on Climate Change 

IRGA  Infrared Gas Analyser 

K  Potassium 

LCH  Lignin + Cellulose + Hemicellulose (total fibre content) 

LME  Linear Mixed Effects (model) 

N   Nitrogen 

NDF  Neutral Detergent Fibre 

NNR  National Nature Reserve 

NS  Number of Species 

OM   Organic Matter 

P  Phosphorus 

PFT  Plant Functional Type 

PLFA  Phospholipid Fatty Acid 

RCP  Representative Concentration Pathway 

SIR  Substrate-Induced Respiration 

TH  Total HFA 

 

 

 

 

 

 



 

1 

 

Chapter 1 

 

Introduction  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 

 

1.1  Northern peatlands and global change 

Peatlands are areas of land covered by layers of incompletely decomposed organic matter 

(OM), rich in carbon (C), which have accumulated to depths greater than 30 cm (Rydin et 

al., 2006). Net primary production (NPP) has exceeded decomposition in these terrestrial 

ecosystems for millennia, under low oxygen (O2) and waterlogged conditions (Charman, 

2002). As a result, vast quantities of C have been sequestered into peat soils. Globally, the 

majority of peatlands are found at mid to high latitudes in the northern hemisphere, 

covering around 3 % of the world’s land surface but containing up to 30 % of the world’s 

soil C (Gorham, 1991). Thus, their C storage is much larger than their land surface area 

would imply (Wieder and Vitt, 2006). In the UK, peatlands occupy only 10 % of the land 

surface but yet again represent the largest terrestrial C store (i.e. 5162 x 10
9
 kg of C), with 

the majority (i.e. 4523 x 10
9
 kg of C) in Scotland (Dawson and Smith, 2007). Peatlands 

play a vital part in the global C cycle because they act as a sink and a source of carbon 

dioxide (CO2) and methane (CH4). CH4 produces a short but intense greenhouse forcing 

because it is more effective as a greenhouse gas (GHG) than CO2, whereas the release of 

CO2 produces a weaker forcing per molecule, but does so over longer timescales due to its 

greater atmospheric lifetime (IPCC, 2013). Peat accumulation has been sufficiently large 

enough to exceed the warming effect of CH4 emissions from these soils, such that northern 

peatlands have had a net cooling effect of -0.2 to -0.5 Wm
-2

 throughout the Holocene 

(Frolking and Roulet, 2007). The continuation of this cooling effect depends upon the 

preservation of peat C stores, and the amount of CO2 uptake relative to the emission of 

CH4.   

Northern peatlands are vulnerable to climate change effects, as increases in temperature are 

predicted to be greatest in mid to high latitudes (IPCC, 2013). The uncertainty in future 

patterns of precipitation adds further pressure upon peatland C stores, with both increases 

and decreases in rainfall expected for the latitudinal range that they occupy (IPCC, 2013). 

There is mounting concern that changes in temperature and precipitation will destabilise 

peatland C stocks (Dise and Phoenix, 2011; Yu et al., 2011), resulting in a positive 

feedback to climate change by further increasing GHG concentrations in the atmosphere 

(Sirin and Laine, 2008). Moreover, peatland C losses are considered to be effectively 

permanent over timescales relevant to climate change mitigation policy, due to the 

excessively slow rates of C accumulation in these ecosystems (Frolking and Roulet, 2007).   

Peatlands are also the basis for a variety of human activities, including peat extraction for 

horticulture and fuel, livestock grazing, game bird breeding, forestry and recreation 
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(Turetsky et al., 2002; Ward et al., 2007). These land use changes have resulted in the  

rapid loss of C, and together with climate change, represent an uncertain future for the fate 

of peatland C stocks (Ostle et al., 2009). In order to sustainably meet global energy 

demands, the establishment of land-based renewable technologies has increased (DECC, 

2013). In particular, wind power has experienced the greatest growth worldwide (REN21, 

2012). Onshore wind farms in the UK are often sited on peatlands, given the substantial 

wind resource common to these upland ecosystems. The construction of wind farms on 

undegraded peatlands introduces a higher risk of C loss than when constructed on mineral 

soils (Smith et al., 2014), with previous work indicating that when constructed on 

peatlands, the potential C savings from wind farm energy generation are small (Nayak et 

al., 2010). While there is some understanding, the impacts of an operational wind farm on 

the host environment are yet to be fully assessed (Millenium Ecosystem Assessment, 

2005).  

Knowledge of wind farm-induced changes in surface energy fluxes and microclimates is 

growing, effects on local air temperatures within and adjacent to wind farms have been 

observed. In west-central Texas, a 0.72 °C decadal increase in surface temperature was 

evident in eight years of satellite data for an area dominated by wind turbines, with the 

strongest warming during the night-time in summer months (L. Zhou et al., 2012). In 

California, the surface air temperature was significantly warmer downwind of the San 

Gorgonio wind farm at night-time (i.e. warmer by a maximum of 0.7 °C) and was 

significantly cooler during the daytime (i.e. with a maximum cooling of 3.5 °C) (Baidya 

Roy and Traiteur, 2010). In Scotland, air and soil temperature was measured across an area 

of peatland at Black Law Wind Farm. Operational wind turbines were found to increase 

the variability of air, surface and soil temperature diurnally, and raise night-time air 

temperature by 0.22 °C (Armstrong et al., 2014a). These observed wind farm-induced 

temperature changes are of an order of magnitude known to affect C cycling (Dorrepaal et 

al., 2009). Despite this, the effects of wind farm-induced temperature change in the short- 

and long-term are uncertain. Specifically, there still remains a considerable gap in 

knowledge on the effects of wind farm-induced microclimates on plant-soil processes and 

communities, and the implications for GHG emissions and soil C stocks (Armstrong et al., 

2014b).  

1.2  Carbon cycling in peatlands 

The overall effect of climate change and land use change on peatland C stocks depends 

upon the balance between plant productivity and decomposition, which is mediated by 
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multiple abiotic and biotic factors and their feedbacks. The sequestration of C occurs via 

photosynthetic uptake of CO2, inputs of senesced litter to soil, and deposition and turnover 

within the rhizosphere. On the other hand, the main routes of C release is the production of 

CO2 and CH4 through microbial respiration, and the loss of dissolved organic carbon 

(DOC) (Limpens et al., 2008).  

The division of the peat profile into the acrotelm (i.e. near-surface O2 rich layer above the 

water table) and catotelm (i.e. deeper O2 poor layer below the water table), defines the 

nature of gas production with depth (Ingram, 1978).The upper acrotelm is aerated at least 

seasonally and is a more active environment for both growth and decay, and in particular 

the production of CO2. CO2 production occurs from the aerobic decay of organic matter 

(OM), plant respiration at the surface, root respiration within the peat and the oxidation of 

CH4 (Bridgham, 1992). The majority of OM decomposition and related CO2 production 

takes place in the acrotelm, due to higher oxygenation. There is lower potential for CO2 

production in  the permanently saturated catotelm, although this zone is still important in 

terms of the total C budget of the peatland and the production of CH4 by microorganisms 

specifically adapted to the limited availability of O2 (Charman, 2002). CH4 emissions are 

dependent on a complex balance between anaerobic CH4 production and consumption, 

aerobic CH4 consumption and transfer via ebullition, diffusion and plant root aerenchyma 

(Moore and Dalva, 1993).  

Changes to the water table can influence the C balance of a peatland, through the complex 

effects of soil respiration, methanogenesis, and plant productivity (Aerts and Ludwig, 

1997). A higher water table promotes peat accumulation (Weltzin et al., 2003), but 

increases CH4 production (Roulet, 2000). Water table drawdown leads to a larger 

proportion of the peat profile being exposed to aerobic decomposition and can lead to 

short-term losses of C (Alm et al., 1999; Charman et al., 2008; Silvola et al., 1996). 

However, peatland drainage tends to increase C storage in the long-term because soil 

respiration is offset by increased primary production and reduced CH4 emissions (Bubier, 

1995; Holden et al., 2006). The height of the water table is dominated by the balance 

between precipitation and evaporation, with the latter being heavily controlled by 

temperature (Limpens et al., 2008). Consequently, fluctuations in temperature can drive 

fluctuations in the water table (Rydin et al., 2006). Furthermore, evidence suggests that 

lowering of the water table increases the sensitivity of peat decomposition to temperature, 

so that drier conditions are anticipated to accelerate warming-induced losses of peatland C 

(Ise et al., 2008). 
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Temperature is of key importance, not only because it influences the position of the water 

table, but because it drives plant productivity, OM decomposition rates and the uptake and 

release of CO2 and CH4 (Chivers et al., 2009; Dorrepaal et al., 2009; White et al., 2008). In 

arctic and boreal ecosystems, heterotrophic (soil organisms) and autotrophic (plant root) 

peat respiration has been observed to respond rapidly to raised temperatures (Dorrepaal et 

al., 2009). Temperature sensitivity is regularly represented by a Q10 value, which describes 

the response of decomposition process rates to a 10 °C change (Davidson and Janssens, 

2006). Studies have shown that Q10 increases as soil temperature decreases (Kirschbaum, 

1995; Lloyd and Taylor, 1994), with high temperature sensitivities observed by (Chapman 

and Thurlow, 1998) when peats were incubated at 0-15 °C (i.e. the temperature range 

representative of Scottish peatlands). However, the effects of temperature are commonly 

compounded by the effects of moisture availability and litter quality (Kirschbaum, 1995). 

1.3  The role of aboveground and belowground communities in peatland C cycling 

Abiotic factors (i.e. temperature, moisture availability and nutrient availability) are known 

to be the key controls of peatland C cycling processes, but it is apparent that other factors 

such as the composition of aboveground (i.e. plant) communities, and belowground (i.e. 

soil microbial) communities, are also important in driving the response of peatland 

ecosystems to climate change and land use change.  

1.3.1   Peatland plant functional types 

In blanket bog peatlands, plant communities are dominated by three plant functional types 

(PFTs): bryophytes (e.g. Sphagnum sp., feather mosses), graminoids (e.g. Eriophorum 

vaginatum, sedges and rushes) and shrubs (e.g. Calluna vulgaris, Vaccinium sp.). As a 

consequence of their environmental adaptation, there are similarities between PFTs but 

each group has a suite of specific functional traits. Plant functional traits influence the 

relative rate of productivity and decomposition, which in turn determines the net balance of 

C in the ecosystem (Ward et al., 2009). What is more, the physical presence of certain 

PFTs can affect the position of the water table (Robroek et al., 2010), which is known to 

govern the emission of CO2 and CH4 from peat to the atmosphere (Dinsmore et al., 2009). 

Small scale variation in the composition of peatland plant communities has been observed 

to influence C cycling processes (McNamara et al., 2008), by altering the physical and 

chemical characteristics of the peat, and the proliferation of particular microorganisms. 

Therefore, the dominance of different plant functional types (PFTs) within a peatland plant 

community is important (De Deyn et al., 2008).  
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Bryophytes, such as Sphagnum mosses, dominate productivity in peatlands and influence 

nutrient and C cycling unlike any other plant type (Aerts, 2003). Sphagnum moss species 

typically found in blanket bog hollows, such as Sphagnum cuspidatum, contribute to the 

accumulation of peat by retarding rates of decomposition (i.e. moss litters decay slower 

than vascular plant litters in blanket bog) (Bragazza et al., 2007; Moore et al., 2006). 

Sphagnum litter can be highly recalcitrant, despite the lack of lignin, because it contains a 

high proportion of phenolic compounds that provide chemical protection from the activity 

of decomposer enzymes (Freeman et al., 2001; van Breemen, 1995). Furthermore, moss 

litters have very low nutrient concentrations; the absence of a vascular root system means 

nutrients can only be acquired from the atmosphere (Aerts, 1999; Ward et al., 2009). Thus, 

mosses act as a strong filter for nutrient fluxes to other plants and thereby introduce a delay 

in the flux of nutrients through peat (Pastor et al., 2002). However, mosses are highly 

adapted to bog environments (Shaw and Goffinet, 2000). Mosses trap water and can re-

hydrate quickly after drought stress, so can affect other plants by influencing soil moisture 

(Turetsky, 2003). Sphagnum can also form symbiotic associations with highly specific 

bacterial communities that control CH4 cycling (Kip et al., 2010). Graminoids, such as the 

sedge Eriophorum vaginatum, are responsible for a large proportion of the total CH4 fluxes 

from peatlands. Their deep-rooted systems are known to supply labile substrates to the soil, 

stimulating the activity and abundance of methanogenic bacteria (Ström et al., 2012). In 

addition, their aerenchymous tissues serve as direct conduits for the transfer of CH4, from 

root tips in the catotelm to the atmosphere, bypassing the oxidative acrotelm (Greenup et 

al., 2000; Marinier, 2004). In comparison to bryophyte and shrub species, graminoids have 

a short leaf life span and a high leaf nitrogen (N) content, which increases the potential 

decomposability of their plant tissues (Ward et al., 2009). Ericoid shrubs, such as Calluna 

vulgaris, maximise nutrient uptake through associations with mycorrhizal fungi (Read et 

al., 2004), and also restrict the photosynthetic ability of the understory by shading out other 

peatland plant species (Grace and Marks, 1978). The decomposition of shrub litter is 

inhibited, with the retention of C in long-lived, lignin-rich and phenolic-rich tissues (Ward 

et al., 2009).  

1.3.2   Peatland soil microorganisms 

There is growing evidence for linkages between aboveground and belowground 

communities, particularly regarding functional feedbacks between plants and soil microbes 

(Wardle et al. 2004; Bardgett 2005; Bardgett & Wardle 2010; de Vries et al. 2012). 

Microbial communities are an essential component of decomposition, regulating both C 
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and nutrient cycling within peat and influencing peatland C sequestration and storage. In 

turn, the effects of environmental change on the amount and availability of C and nutrients 

is determined by the response seen in the structure of the soil microbial community 

(Allison et al., 2010; J. Zhou et al., 2012).  

 

The two most abundant groups of microorganisms are fungi and bacteria (Bardgett, 2005). 

Fungi and bacteria are both responsible for decomposition of OM (Ayres et al., 2006; 

Bardgett, 2005), but have different functional roles in peat biogeochemical cycling (Myers 

et al., 2012) because of their differing capacities to degrade available and complex forms 

of C and N (McGuire et al., 2010). Fungi are known to have high C:N biomass 

stoichiometry, broad enzymatic capabilities and slower biomass turnover rates than 

bacteria (de Boer et al., 2005; Rousk and Bååth, 2007; Wallenstein et al., 2007). As a 

result, fungi have potentially higher C use efficiency than bacteria (Six et al., 2006) and 

perform the majority of recalcitrant C degradation by breaking down cellulose and lignin 

into simpler C compounds through the production of extracellular enzymes (de Boer et al., 

2005; Thormann, 2006). However some fungi, the mycorrhizae, develop mutualistic 

relationships with plant roots that can be characterised by the transfer of plant-derived C to 

fungi and fungal-acquired nutrients to the plant (Read et al., 2004; Van Der Heijden, 

1988). Bacteria are generally faster-growing and target labile C sources (i.e. hemicellulose 

and root exudates) that are easy to degrade (de Boer et al., 2005), although bacterial 

production of hydrolytic enzymes also contributes to the decomposition of cellulose (Berg 

and Laskowski, 2005). Broad functional groups of bacteria (e.g. gram-positive and gram-

negative) also have different capacities to mineralise C; gram-positive bacteria can 

mineralise recalcitrant organic compounds whilst gram-negative bacteria target labile C 

compounds (Treseder et al., 2011). In summary, bacteria maintain a significant role in the 

degradation of simple substrates whereas fungi are the major decomposers of recalcitrant 

OM (de Boer et al., 2005). In peatlands, fungal biomass and production commonly 

dominates that of bacteria due to their higher tolerance of acidity (Latter et al., 1998). 

Aerobic bacteria and fungi are the most important and effective decomposers of OM above 

the water table, in oxic conditions,  since they are responsible for the final mineral release 

from even the most chemically recalcitrant components (Moore et al., 2006; Myers et al., 

2012; Thormann, 2006). Below the water table, anaerobic bacteria are better suited to 

compete for C resources under anoxic conditions (Myers et al., 2012). 
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Although microbial biomass is relatively low in peatlands, significant differences in both 

microbial diversity and functional activity have been found. Physical, chemical and 

biological parameters vary across peatlands, and are closely linked with changes in the 

composition of soil microbial communities (Andersen et al., 2013; Fisk et al., 2003; 

Jaatinen et al., 2007; Myers et al., 2012). The availability of O2 (i.e. water table level) in 

peat has proven to be a powerful determinant of differences in the soil microbial 

community (Bru et al., 2011; Fierer, 2003; Sundh et al., 1997), together with OM content, 

nutrient concentrations and pH (Artz, 2009; Jaatinen et al., 2007). Increasing pH and 

nutrient concentrations have been shown to increase the relative proportions of bacteria 

and bacterial diversity in peatlands (Hartman et al., 2008; Jaatinen et al., 2007; Opelt et al., 

2007), while the high OM content and low nutrient availability of peatlands generally 

favours a fungal dominated community (Artz, 2009; Van Der Heijden, 1988).  

The height of the water table controls the ratio of aerobic to anaerobic microbial processes 

that lead to the production and consumption of CO2 and CH4, and has been identified as 

the strongest determinant of bacterial abundances (Mäkiranta et al., 2009; Sundh et al., 

1997). Temperature also plays a part in determining the CO2 and CH4 flux rates by 

governing evapotranspiration (therefore water table height), chemical reactions and growth 

and activities of biota in and above soil (Bardgett et al., 2008). Higher temperatures have 

been observed to increase bacterial growth rates, with fungi more adapted to low 

temperatures than bacteria (Høj et al., 2006; Pietikåinen et al., 2005; Thormann, 2006). 

Changes in the soil microbial community composition could also arise from plant-

mediated differences in soil temperature and water table level (McNamara et al., 2008).  

Plant succession can stimulate shifts in microbial community composition (Artz et al., 

2007). The composition of the soil microbial community may adapt in order to optimise 

variations in the quality of the C resource and to optimise the efficiency of decomposition 

(Hooper et al., 2000; Yuste et al., 2007). Thus, the proportion of different plant species 

aboveground will condition the composition of the microbial community belowground, in 

that soil microorganisms are likely to receive varying ratios of labile to recalcitrant 

compounds from different types of plant litter and root exudates (Grayston, 1998; Pendall 

et al., 2008). In addition, mutualistic relationships can exist between aboveground and 

belowground organisms, whereby the host plant is supplied with nutrients made available 

by microbes in the soil (Fisk et al., 2003; Hooper et al., 2000; Orwin et al., 2006). For 

example, methanogen communities have been found in association with tussock tundra and 

mycorrhizal fungi with ericoid shrubs (Galand et al., 2003; Read et al., 2004). Fungi 



 

9 

 

dominate the peat underlying shrub species due to plant-root symbioses, and because of the 

increased C:N and concentrations of phenolic compounds associated with this PFT 

(Freeman et al., 2001; Myers et al., 2012). In contrast, bacteria thrive in moss- and sedge-

derived peat (Winsborough and Basiliko, 2010) due to the presence of more labile C 

substrates (Myers et al., 2012; Ström et al., 2012). Therefore, the identity of plants at the 

PFT group level could be used to predict what lies beneath: the abundance and activity of 

specific soil microorganisms (Hooper et al., 2000; Mitchell et al., 2010). As a result, shifts 

in the structure and function of peatland microbial communities are to be expected with 

local to global changes in climate, due to the interactions between air and soil temperature, 

soil moisture availability (i.e. water table level) and plant community composition 

(Bardgett and Wardle, 2010).  

One of the most commonly used techniques for characterising soil microbial communities 

is phospholipid fatty acid (PLFA) analysis. Due to their presence in microbial cell walls, 

phospholipids are used as biomarkers to provide a metric of the relative abundance of 

broad microbial groups, such as bacteria, fungi, gram-positive and gram-negative bacteria 

(Frostegård and Bååth, 1996). The advantages of this method are that phospholipids are 

relatively simple to extract and interpret, making this a convenient process for 

distinguishing soil microbial community composition and size. Nevertheless, the 

popularity of procedures that use DNA or RNA to identify microorganisms, such as the 

analysis of terminal restriction fragment length polymorphisms (TRFLPs), is increasing.   

1.3.3   Plant-soil interactions and decomposition processes 

Litters of different plant species and functional types vary greatly in their decomposability, 

for example due to differences in lignin and nutrient concentrations (Artz, 2009; Ayres et 

al., 2006; Bardgett, 2005; Winsborough and Basiliko, 2010). These differences influence 

the composition and activity of microbial communities, which mediate litter decomposition 

rates, the release of GHGs and the accumulation of OM to form peat (Moore et al., 2006; 

Ward et al., 2009).  

 

Sugars, amino acids and other water-soluble compounds are metabolised easily by 

microorganisms, which allows the initial decomposition of plant OM to occur rapidly. The 

decomposition of celluloses, hemicelluloses and waxes occurs more slowly. These slower 

to decompose OM fractions require enzymatic breakdown prior to uptake and utilisation by 

microorganisms, which depends on oxygen and nutrient availability and the level of 

inhibitory compounds (i.e. phenolics) (Bragazza et al., 2012b; Freeman et al., 2004). 
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Decomposition of lignins and polyphenols is restricted by the requirement for specialised 

oxidative enzymes. Therefore, decomposition of more resistant C compounds occurs at 

slow rates and is dependent on the degree of aeration in soil (Freeman et al., 2001). 

Therefore decomposition is often, but not always, faster for litters with higher nutrient 

availability and labile compound concentrations in an aerobic environment, but slower for 

litters with greater lignin and phenolic concentrations (Aerts, 1999; Blodau, 2002).  

 

It has been hypothesised that some plants may encourage the development of microbial 

communities suited to the rapid decomposition of their own litter (Wardle, 2002). There is 

mounting evidence that litter decomposition rates are greater beneath the plant species the 

litter derived from, than beneath a different plant species. This effect is referred to as 

home-field advantage (HFA) (Ayres et al., 2006; Vivanco and Austin, 2008). Microbial 

communities are known to locally adapt to the plant species above them, therefore there is 

potential for HFA decomposition to occur (Artz, 2009; Carney and Matson, 2005; Trinder 

et al., 2009). However, differences in plant litter traits could create differences in the 

magnitude of HFA. For example, high quality litter that contains compounds relatively 

easy to degrade might be expected to have little or no HFA, since most microbial 

communities are able to decompose those compounds rapidly (Ayres et al., 2009a). Whilst 

HFA decomposition has been examined in other terrestrial ecosystems, such as forests and 

grasslands (Ayres et al., 2009b; St. John et al., 2011), its influence on peatland C cycling 

dynamics remains unexplored.  

 

Most litter decomposition studies in peatlands have dealt mainly with the decomposition of 

single litter types (Belyea, 1996; Dorrepaal et al., 2005; Laiho, 2006; Latter et al., 1998; 

Moore et al., 2007). However, some peatland decomposition studies, such as (Ward et al., 

2010), acknowledge that these ecosystems, along with most other terrestrial ecosystems, 

are characterised by multiple plant types and a mixed litter layer. Some studies show that 

when litter species are mixed, the properties relating to decomposition appear to be 

additive, such that a mixture behaves as expected based on the average influence of the 

individual species involved (Ball et al., 2008; Wardle et al., 1997). Yet, more frequently, 

the observed decomposition of litter mixtures is different from that expected from the 

additive decomposition of the component litters in the mixture. These differences arise 

from synergistic and antagonistic interactions between different litter types (Ball et al., 

2008; Chapman and Newman, 2010; Gartner and Cardon, 2004; Hättenschwiler et al., 
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2005; Hoorens et al., 2010; Marco et al., 2011); but understanding of the mechanisms 

behind non-additive decomposition is limited, especially in peatlands.  

 

Physical, chemical and biological processes, individually or in combination, can drive the 

interactions that occur among litters from different species during decomposition 

(Bragazza et al., 2007). Mixing litters of different quality and structure can also change the 

physicochemical conditions of the decomposition environment (Aerts, 2003; Ward et al., 

2010), which can influence decomposition rates directly, and indirectly via the response of 

the microbial community (Bragazza et al., 2007). Litter chemistry can influence the overall 

decomposition rate and the individual decay rates of litters within a mixture, as a result of 

nutrient transfer or the activity of specific decomposer organisms (Gartner and Cardon, 

2004). Rapidly decaying litter releases nutrients, which can stimulate the decay of nearby 

recalcitrant litters (Ayres et al., 2009a; Vivanco and Austin, 2008). On the contrary, litter 

decay can be inhibited by the release of phenolics and tannins (Gartner and Cardon, 2004; 

Hector et al., 2000).  

 

Litter decomposition rates are often estimated using measurements of litter mass loss for 

different plant species; however this can prove difficult due to the mixing of litters from 

many species growing in close proximity, and idiosyncratic interactions among those 

litters. In order to overcome species level problems in estimating litter mass loss, studies 

opt to investigate litter mixing effects on litter decomposition rates at the PFT level 

(Hoorens et al., 2010; Ward et al., 2010). To improve ecosystem-level estimates of 

decomposition rates and their sensitivity to local to global climate change, more 

information on interactions amongst litters from different PFTs is needed. The temperature 

sensitivity of decomposition processes can be influenced by the quality of the decomposing 

OM (Conant et al., 2008b; Craine et al., 2010; Davidson and Janssens, 2006; Jones et al., 

2003). Therefore, effects of litter mixing on litter quality have the potential to influence the 

sensitivity of decomposition to changes in temperature. However, at the PFT level, the 

potential for synergistic and antagonistic interactions between litters to balance each other 

has been proposed (Hoorens et al., 2010); therefore an overall additive effect could arise 

(Hoorens et al., 2010). It has become clear that single litter decomposition rates may not 

adequately represent natural ecosystems (Gartner and Cardon, 2004; Hättenschwiler et al., 

2005). Studies that have investigated the response of single litter decomposition to climate 

change may report dynamics different to those observed for litter mixtures (Gartner and 

Cardon, 2004; Hättenschwiler et al., 2005; Hoorens et al., 2010).  
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It is evident that aboveground and belowground communities play a role in regulating 

decomposition rates, the release of GHGs and the formation of peat. Peatlands are C-rich 

ecosystems subject to changes in climate and land use. These changes are expected to 

affect ecosystem C cycling and GHG emissions by influencing biogeochemistry, plant and 

soil ecology. There is considerable uncertainty regarding the nature and magnitude of 

interactions between wind farm-induced microclimatic conditions and peatland plant-soil 

properties and C cycling processes. So, in this PhD research I have aimed to address this 

uncertainty by examining microclimate-peatland interactions across a blanket bog located 

under a wind farm, and in controlled laboratory conditions.  
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1.4  Thesis aims and outline  

The role of abiotic and biotic factors, and their interactions, in regulating peatland C 

cycling is critical. Changes in land use and climate are key determinants of these 

interactions. Specifically, there is a significant gap in knowledge regarding how peatland 

ecosystem function is affected by the establishment and operation of wind farms.  

The overarching hypothesis of this thesis was that peatland PFTs and their interactions 

with a wind farm-induced microclimate explain abiotic and biotic peatland properties and 

C cycling processes. The overall aim of this thesis was to examine the contribution of PFTs 

to differences in physicochemical properties, microbial communities, GHG emissions and 

litter decomposition, at a wind farm.  

To achieve this, field sampling to characterise differences in physicochemical properties 

and microbial communities between plant functional types and across a wind farm was 

conducted, followed by an in situ examination of short-term litter decomposition. 

Alongside, laboratory incubation experiments were used to examine GHG emissions and 

litter decomposition rates under controlled abiotic conditions. 

Specific aims were:  

1. To determine the regulatory role of PFTs on peat properties including microbial 

community abundance and composition (Chapter 2) 

 

2. To investigate the interactive effects of PFT and microclimate on GHG emissions 

from peat (Chapter 3) 

 

3. To examine the importance of abiotic and biotic peatland properties and home-field 

advantage as determinants of PFT litter decomposition (Chapter 4) 

 

4. To test the interactive effects of peatland PFT and microclimate on litter 

decomposition and heterotrophic respiration rates (Chapter 5) 
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The following four chapters examine the interactions between peatland PFTs and 

microclimatic conditions, in order to understand peatland C cycling processes at a wind 

farm. Chapter 2 describes a spatio-temporal survey of soil microbial community abundance 

and composition, and physicochemical properties of peat and plant material at Black Law 

Wind Farm. The influence of PFT on abiotic and biotic parameters is identified, and 

relationships between those parameters examined in order to determine factors influencing 

plant-soil interactions at a peatland under a wind farm (Aim 1). Chapter 3 investigates the 

influence of PFT and small-scale differences in temperature and water table on CO2 and 

CH4 emissions from peat, through a mesocosm experiment. The effects of microclimatic 

manipulations, and their interactions with PFT, were examined in order to explore the 

driving factors for peat GHG emissions under controlled conditions (Aim 2). The influence 

of abiotic and biotic peatland parameters, and the roles of peat and litter PFT in regulating 

litter decomposition at Black Law Wind farm were assessed in Chapter 4, in order to 

examine the influence of home-field advantage on litter mass loss, and with a view to 

improve understanding of the factors controlling peatland litter decomposition at a wind 

farm (Aim 3). The interactive effects of PFT and small-scale differences in temperature 

were investigated through a mesocosm experiment in Chapter 5, to determine the influence 

of litter mixing and home-field advantage on litter mass loss and CO2 emissions under 

manipulated microclimate conditions (Aim 4).  

In summary, this thesis examines the regulatory role of PFTs in peatland C cycling 

processes, and investigates the influence of PFT and hypothesised wind farm-induced 

microclimate interactions on the functioning of a peatland ecosystem. Field and laboratory 

experiments are expected to reveal the importance of microclimate changes in temperature 

and water table level on GHG emissions and litter mass loss in peatlands. PFT differences 

in peat and litter quality are likely to play a part in mediating the effects of microclimatic 

change, as a result of interactions between abiotic and biotic factors. This research 

provides important insights into the ecosystem functioning of a peatland hosting a wind 

farm, specifically the response of peatland C cycling processes to microclimatic 

conditions.  
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1.5  Introduction to study site 

This study was conducted at Black Law Wind Farm, near Forth in Lanarkshire, Scotland 

(55°46′01″N 03°44’20”W) (Figure 1). Black Law Wind Farm is one of the largest in the 

UK, with 54 turbines and the capacity to produce up to 124 megawatts of energy. It has 

been operational since 2005 and covers 18.6 km
2
. The wind farm primarily comprises of 

blanket bog peatland, but there are also areas of grassland and plantation forestry within 

the wind farm. The thickness of the peat layer is variable, ranging from 0.5 – 6 metres 

thick, but typically less than 4 metres. The blanket bog peatland has accumulated since the 

end of the last ice age on an underlying stratum of glacier boulder clay. The boulder clay 

deposits cover the solid geology, known to consist predominantly of limestone coal 

formations and extrusive igneous rock. The elevation of the wind farm ranges from 250 to 

320 metres above sea level, and the climate is described as temperate. The mean annual 

maximum temperature is 10.7 °C, the minimum 4.4 °C, and the mean annual precipitation 

is 1092.7 mm (data from nearest Met Office weather station at Salsburgh). The blanket 

peatland plant community is predominantly classified as National Vegetation Community 

(NVC) M19: Calluna vulgaris – Eriophorum vaginatum blanket mire (Rodwell, 1998). 

Calluna vulgaris and Eriophorum vaginatum form the bulk of the vegetation, with the 

addition of Sphagnum and Polytrichum and Pleurocarpous mosses. E. vaginatum is 

usually tussocky, with C. vulgaris commonly found on hummocks and moss species in 

hollows. Other existing land uses at Black Law Wind Farm comprise of mineral extraction, 

forestry, low density sheep grazing and recreational activities.  

Four sites, coded 1 to 4, were established along a transect that was oriented with the 

principal axis of the wind farm and the dominant wind direction (i.e. SW to NE) (Figure 

1.2). The orientation of the transect was chosen in order to detect a potential wind turbine-

induced microclimate effect, as found in other studies (Baidya Roy and Traiteur, 2010; 

Baidya Roy et al., 2004; Zhou et al., 2012). It was hypothesised that the wind turbine-

induced microclimate effect would increase along the transect, with site 4 having the 

greatest accumulated effect of wind turbines wakes on ground-level atmospheric 

conditions. The sites were selected to be similar, despite differences in micro-topography 

and percentage cover of each PFT between sites, together with the expected spatial 

variation in peat physicochemical properties. Sites 1 and 2 had thinner peat and litter 

layers, featured less hummock-hollow structures and were covered in more shrub than sites 

3 and 4. Each site consists of four replicate blocks and each block is comprised of three 
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plots, one of each plant functional type: bryophyte (Sphagnum cuspidatum), graminoid 

(Eriophorum vaginatum) and shrub (Calluna vulgaris) (Figure 1.3).   

 

 

 

 

Figure 1.1: Maps to show the location of Black Law Wind Farm in the context of Great 

Britain and within its immediate surroundings. Red stars indicate the approximate location 

of Black Law Wind Farm.  
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Figure 1.2: Map of Black Law Wind Farm. Lines represent the road network, green dots 

the wind turbines and red stars labelled 1 to 4 the sampling sites.  

 

 

 

 

Figure 1.3: Block and plant functional type plot layout at each sampling site at Black Law Wind Farm 

(see Figure 1.2). B = bryophyte, G = graminoid, S = shrub.  
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Chapter 2 

 

Spatio-temporal variability of abiotic and biotic properties in a wind farm hosting 

northern peatland  
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2.1  Introduction 

Northern peatlands play an important part in global carbon (C) cycles (Limpens et al., 

2008; Sulman et al., 2013), but both climate change and land use change pose a significant 

threat to the future security of peatland C stocks (Armstrong et al., 2014b; Ostle et al., 

2009; Ward et al., 2013). Warming, shifting patterns of precipitation and extreme weather 

events, such as drought, together with changes in the distribution and type of land use, 

could affect the capacity for C sequestration in peatlands (Ostle et al., 2009). In the UK, 

peatlands have been used for forestry, livestock grazing, game bird breeding and 

recreation, and have been exploited as a source of fuel or horticulture medium (Turetsky et 

al., 2002; Ward et al., 2007). There is evidence to show that these activities affect the C 

sink function of peatlands, with increased C loss caused by alterations to the abiotic and 

biotic components of the ecosystem (Maljanen et al., 2003; Strack et al., 2004; Wardle, 

2002). It is well-known that peatland C dynamics are controlled by climate (Davidson and 

Janssens, 2006; Dorrepaal et al., 2009; Freeman et al., 2004), with rates of decomposition, 

photosynthesis and methane (CH4) emissions likely to increase with rising temperatures. 

However, such effects are also likely to be strongly overshadowed by changes in water 

table level (Gorham, 1991; Moore and Knowles, 1989).    

More recently, to address the need for electricity production from renewable sources 

(DECC, 2013), onshore wind farms are increasingly being constructed on peatlands, owing 

to limited agricultural value and high wind speeds (Clarke, 2009; Ostle et al., 2009). While 

there is some understanding of the impacts of wind farm construction on peatlands (Grieve 

and Gilvear, 2009; Smith et al., 2012; Waldron et al., 2009), knowledge of effects of wind 

farm operation are limited (Baidya Roy et al., 2004; L. Zhou et al., 2012). For example, 

there is no published research on the effects of wind farms on microclimates or peatland C 

cycling. Microclimate effects caused by wind farm land use have the potential to alter 

plant-soil C cycling processes: (1) directly through changes in ground-level temperature 

and soil moisture; (2) indirectly as a result of climate-induced changes in plant and soil 

microbial communities (Armstrong et al., 2014b). There remains, however, considerable 

uncertainty as to the magnitude and timescale of their effects on peatland abiotic and biotic 

properties.  

It is important to consider aboveground and belowground peatland communities (Bardgett, 

2005; Myers et al., 2012) because together they play a part in controlling the C source – C 

sink status of a peatland (De Deyn et al., 2008; Ward et al., 2009) and can vary across 

different spatial and temporal scales (Artz et al., 2007; Riutta et al., 2007; Schadt et al., 
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2003; Schmidt et al., 2007; Weltzin et al., 2003). Peatland plant communities are 

dominated by three plant functional types (PFTs): bryophytes (e.g. Sphagnum sp., feather 

mosses), shrubs (e.g. Calluna vulgaris, Vaccinium sp.) and graminoids (e.g. Eriophorum 

vaginatum, sedges, and rushes) (Ward et al., 2009). PFTs are defined by their functional 

traits: bryophytes are slow growing and have low N litters, graminoids are faster growing, 

have high root biomass and litter quality, whilst shrubs have woody tissues rich in lignin 

and phenolic compounds (De Deyn et al., 2008; Dorrepaal et al., 2005; Turetsky, 2003). 

These traits can influence physical and biochemical properties of the underlying peat (Artz 

et al., 2007; Jobbágy and Jackson, 2000; Pendall et al., 2008) such as soil moisture, peat 

C:N and microbial community composition and size (Carrillo et al., 2012; Laiho et al., 

2003; Weltzin et al., 2001).  

Microbial communities are an essential component of biogeochemical cycling in peatlands, 

with fungi and bacteria responsible for degrading different available and complex forms of 

C and N (Bardgett, 2005; McGuire et al., 2010; Myers et al., 2012). Fungi have slower 

biomass turnover rates and broader enzymatic capabilities than bacteria (de Boer et al., 

2005; Rousk and Bååth, 2007), which results in fungi having greater carbon use efficiency 

(Six et al., 2006). Fungi are known to dominate shrub-derived peat, due to their ability to 

degrade complex organic substrates (i.e. lignin) and litter with high C:N and concentrations 

of phenolic compounds (Freeman et al., 2001; Myers et al., 2012; Read et al., 2004). In 

contrast, bacteria are faster growing and target easily degraded substances composed of 

labile C (de Boer et al., 2005), which means that they thrive in moss- and sedge-derived 

peat because litter from those PFTs contains a higher proportion of less recalcitrant C 

compounds (Myers et al., 2012; Winsborough and Basiliko, 2010). In peatlands, significant 

differences in both microbial diversity and functional activity have been found in relation 

to the quality and quantity of plant litter, soil temperature, water table and nutrient 

concentrations (Bragazza et al., 2007; Fisk et al., 2003; Jaatinen et al., 2007; Myers et al., 

2012). Therefore, the composition and function of peatland microbial communities are 

expected to shift with direct effects of climate and indirectly as a result of climate-induced 

effects upon abiotic soil properties and plant species composition (Bardgett and Wardle, 

2010).  

 

A significant gap in knowledge is how wind farms will affect peatland plant-soil 

interactions and the processes that they govern. Specifically, improved understanding of 

the influence of variation in PFTs upon peat properties and soil microbial communities is 

important to predict peatland biogeochemical functions. To address this, the spatial and 
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seasonal controls on abiotic and biotic peatland properties were examined at Black Law 

Wind Farm (Lanarkshire, Scotland). It was hypothesised that (1) peatland plant functional 

types and their traits will relate to differences in the abiotic and biotic properties of surface 

peat and litter; (2) these properties will vary spatially across the wind farm; (3) microbial 

community composition will vary seasonally due to interactions between water table depth 

and PFT-derived differences in peat properties.  

2.2  Methods 

This study was conducted using a fully factorial experimental field design comprising four 

blocks of three PFT plots (bryophyte, graminoid and shrub), at four sites across a blanket 

bog peatland at Black Law Wind Farm (Lanarkshire, Scotland), in February 2011 (Figures 

1.1, 1.2 and 1.3, Chapter 1). Peat, litter and vegetation samples were collected from each of 

the 48 plots. At each sampling area, litter depth was measured three times within a 400 cm
2
 

quadrat before removing plant material. Vascular plant litter samples comprised of 

senesced, undecomposed leaves. Leaves that were not shed were only selected if they had 

already lost their green colour. Calluna vulgaris leaves were harvested with brown shoots 

to which they were attached.  Eriophorum vaginatum leaves were collected by loose 

shaking of the plant and gentle separation by hand. The decomposition of Sphagnum litter 

can be hard to identify (Hogg, 1993), therefore in accordance with previous studies (Aerts 

et al., 2001; Bragazza et al., 2007) the stem section 2-4cm beneath the capitulum (i.e. 

growing tip) was used to represent freshly deposited Sphagnum litter stored in the 

acrotelm. Vegetation samples consisted of all above-ground live plant shoot material. 

Within each 400 cm
2 

sampling area, a peat core (5 cm diameter, 15 cm depth) was 

extracted manually. In total, 144 samples (48 peat, litter and vegetation) were collected and 

analysed for total C and total N in February 2011. An additional 192 peat cores were 

similarly collected to assess seasonal and spatial variability of microbial community 

composition: 48 peat cores were collected throughout 2011 in February (winter), April 

(spring), July (summer) and October (autumn) 2011. Peat was then homogenised and a 

sub-sample was taken and stored at -20°C prior to extraction of microbial biomarkers.  

The total C and nitrogen (N) content of peat, litter and vegetation were evaluated from 0.1 

g homogenised and oven-dried (105 °C) sub-samples. Samples were analysed using a 

LECO Truspec CN Analyser (LECO, USA), with furnace temperature at 950 °C. Results 

were calibrated against three Ethylenediaminetetraacetic acid (EDTA) standard samples 

that were run every twenty peat, litter or vegetation samples. Peat pH was measured using 

a ratio of 1:2.5 (v:v) fresh peat at room temperature to deionised water, and a Hanna 211 
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pH meter with a two-point calibration (Emmett et al., 2008). Dry bulk density (BD) was 

measured (Carter, 1993) and used, together with the dry weight and total C and N contents 

of peat, to calculate the amount of C and N (g m
-2

) for the surface 15 cm layer of peat. 

Litter C and N stocks (g m
-2

) were also calculated, by using the litter dry weight, total C 

and N contents and depth of the litter layer. Water table level (mm) was measured at each 

PFT plot at one block at each site, recorded every 30 minutes, using a Level TROLL 500 

(Insitu, USA) from the end of March 2011 onwards. The mean water table level for all 

plots at each time point was subtracted from the water table level for each plot at each time 

point, in order to calculate the deviation from the mean water table level. Water table level 

deviation was calculated for each PFT and site, in each season: spring (April 2011), 

summer (July 2011) and autumn (October 2011).  

Soil microbial community composition was assessed by extraction of phospholipid fatty 

acids (PLFAs) from 0.5 g sub-samples of ground freeze-dried peat, using procedures based 

on the Bligh and Dyer (1959) method modified and described by Bardgett et al. (1996), 

Frostegård et al. (1991) and White et al. (1979). Extracted PLFAs were quantified by gas 

chromatography using an Agilent Technologies 6890N GC with a flame ionisation 

detector. An external standard containing 0.1 µg each of the following compounds in 1 µl 

of hexane: C16:0 (Methyl palmitate), C18:0 (Methyl stearate), C21:0 (Methyl 

heneicosanoate) and C23:0 (Methyl tricosanoate), was run once per day and compared 

with previous chromatograms to ensure consistency in instrument performance. 

Identification of PLFAs was achieved by first identifying peaks by gas chromatography 

mass spectrometry (GC-MS) and then using relative retention times, which were compared 

to an internal standard of C19:0 (Methyl nonadecanoate) to calibrate between peak areas 

and PLFA concentrations.  As described by (Frostegard, 1993), fatty acid nomenclature 

was used. A number of the 23 identified fatty acids were assigned to different microbial 

groups, as described below. PLFAs of terminal and mid-chain branched, cyclopropyl 

saturated and monosaturated fatty acids (i15:0, a15:0, 15:0, i16:0, 16:1ω9, 16:1ω7 t, i17:0, 

a17:0, 17:0, cy17:0, 18:1ω7 and cy19:0) were considered indicative of bacteria where 

i15:0, a15:0, i16:0, i17:0 and a17:0 were gram-positive bacteria (gram +ve) and 16:1ω7 t, 

cy17:0, 18:1ω7 and cy19:0 were gram-negative bacteria (gram -ve). The PLFAs 18:1ω6 

and 18:2ω6, 9 were taken to represent saprotrophic and ectomyhorrhizal fungi (Kaiser et al 

2010, De Deyn et al 2011). Total PLFA concentration was calculated from all identified 

PLFAs (those listed above and 14:0, 16:1, 16:1ω5, 16:0, 17:1ω8, 7Me-17:0, br17:0, 

br18:0, 18:1ω5, 18:0, 19:1).  The ratio of fungal to bacterial PLFAs (F:B) and the ratio of 

gram-positive bacterial PLFAs to gram-negative bacterial PLFAs (gram +ve:gram -ve) 
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were taken to represent the relative abundance metrics of these groups. The ratio of fungal 

biomass C to bacterial biomass C (F:B biomass C) was calculated by applying a 

conversion factor of 27.4 to F:B (Waring et al., 2013). The conversion factor was 

calculated from an average of empirically determined conversion factors from five studies 

(Bezemer et al., 2006; Bouillon et al., 2004; Joergensen and Wichern, 2008; Keinänen et 

al., 2002; Klamer and Bååth, 2004) and used to convert fungal and bacterial PLFA 

concentrations to their biomass C equivalents. The conversion of fungal and bacterial 

PLFA concentrations to their biomass C equivalents facilitates the comparison of PLFA 

data with SIR (substrate-induced respiration with specific inhibitors) and microscopy (i.e. 

quantification of strained hyphae and bacterial cells) data sets. 

2.2.1   Statistical analysis  

Two-way ANOVA was performed using SAS V9.1, Enterprise Guide 4.0 and followed by 

Tukey’s test post-hoc analyses to test the hypotheses that abiotic and biotic peatland 

properties would vary spatially and relate to differences in PFT. The significance of site 

and PFT was tested on: (1) total C, total N, C:N, C stock, N stock, dry bulk density and pH 

in peat; (2) total C, total N, C:N, litter layer depth, C stock, N stock of litter and (3) total C, 

total N and C:N of vegetation. Normality of data was checked before analysis and 

appropriate transformations were applied if necessary. A linear mixed-effects (LME) 

model and Tukey’s test post-hoc analysis was performed to detect if season, site and PFT 

significantly controlled water table level, using the R language and environment for 

statistical computing (R Development Core Team 2011) and several contributed packages 

(Hothorn et al., 2008; Pinheiro et al., 2011). Plot ID was used as a random effect to account 

for the repeated measures.  

Repeated measures ANOVA was performed using SAS V9.1, Enterprise Guide 4.0 and 

followed by Tukey’s test post-hoc analyses to test the hypothesis that microbial community 

composition would vary with season, location within the wind farm and PFT-derived 

differences in physical and chemical peat properties. The significance of site, season and 

PFT was tested on total PLFAs, total fungal, total bacterial, F:B, F:B biomass C, gram-

positive bacteria, gram-negative bacteria, gram-positive bacteria:gram-negative bacteria  in 

peat. Plot ID was used as a random effect to account for the repeated measures. All PLFA 

data were log-transformed before final analysis, except for F:B, F:B biomass C and gram-

positive bacteria. The Pearson’s correlation coefficient was calculated to give a measure of 

the relationship between C:N of peat and F:B biomass C. Data was log-transformed before 

analysis.  
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To further test the extent to which the entire profile of identified PLFAs for each peat 

sample were explained by abiotic variables (water table, pH, bulk density, litter depth, peat 

N, peat C, peat C:N, litter N, litter C, litter C:N, veg N, veg C, veg C:N) for each season 

was determined using distance-based redundancy analysis (db-RDA), a form of regression 

analysis that is used to model multivariate response data (Borcard et al., 2011a). Hellinger 

transformation was chosen as the most appropriate (Borcard et al., 2011b) and applied to 

each individual PLFA value, for use as the response variable in db-RDA. Variance 

partitioning followed each db-RDA in order to elucidate the relative effects of the abiotic 

variables on the identified PLFAs for each peat sample. Abiotic variables used to explain 

winter, spring, summer and autumn PLFA data were pH, bulk density, litter depth, peat N, 

peat C, peat C:N, litter N, litter C, litter C:N, veg N, veg C, veg C:N. Water table data was 

only available for spring, summer and autumn; therefore a separate db-RDA using 

deviation from mean water table level and the aforementioned abiotic variables was used 

to explain PLFA data for those three seasons. Correlation, db-RDA and variance 

partitioning was performed using the R language and environment for statistical computing 

(R Development Core Team 2011) and several contributing packages (Dray et al., 2009; 

Oksanen et al., 2006) 

Throughout the text, ‘significant’ is referred to if p < 0.05.  

2.3  Results 

2.3.1   Peat properties 

ANOVA analyses show that total C content, C:N, bulk density, pH and C stocks varied 

significantly across the peatland (Table 2.1). Total C content was significantly lower at site 

1 than at sites 2, 3 and 4 (Figure 2.1). There was no overall effect of site on total peat N 

content (Table 2.1). Peat C:N ratios were significantly higher at site 4 than at site 1 (Figure 

2.1). Bulk density was significantly greater at site 1 than at sites 2, 3 and 4, with no 

differences between sites 2 and 4 (Figure 2.2); whilst site 4 had significantly higher peat 

pH than site 3 (Figure 2.2). Peat C stock and N stocks were greater at sites 1 and 3 than at 

sites 2 and 4 (Figure 2.3). Peat properties did not vary with PFTs, with the exception of N 

stock (Table 2.1) which was significantly greater in peat sampled beneath graminoids than 

bryophytes (Figure 2.3). There were no statistically significant interactions between 

sampling site location and PFTs. Together these results show that there were spatial 

differences in the peat physicochemical properties and that PFTs were only related to peat 

N stocks of the parameters studied.  
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2.3.2   Litter properties 

There was an overall effect of site on litter depth, total C content and C stock (Table 2.1). 

The litter layer was significantly deeper at site 1 than at sites 2 and 3 (Figure 2.5). Total C 

content was significantly greater at sites 3 and 4 than at sites 1 and 2 (Figure 2.4), but litter 

C stocks were significantly lower at site 2 that at site 3 (Figure 2.5). Total litter N content, 

C:N and N stocks did not vary with site (Table 2.1), but post-hoc testing indicated that C:N 

was higher at site 4 than at site 2 (Figure 2.4). PFT was found to influence all litter 

measurements, and there was a significant interactive effect of PFT and site on litter depth 

(Table 2.1). The litter layer was significantly deeper beneath areas of shrub and graminoid, 

than bryophyte; with differences between PFTs more evident at sites 2 and 4 (Figure 2.5). 

Total C content was greatest in shrub litter, less in graminoid, and lowest in bryophyte 

(Figure 2.4). Total N content was higher and C:N ratio lower in shrub litter, than graminoid 

and bryophyte litters (Figure 2.4). Graminoid litter C stock was greater than in both 

bryophyte and shrub litters, whilst graminoid N stock was only significantly higher than 

bryophyte (Figure 2.5). These results show that all litter properties measured here were 

influenced by PFT, whereas only some spatial differences and interactions between 

sampling site location and PFTs were observed.   

2.3.3   Vegetation properties 

Variability in plant total C content, total N content and C:N was related to both PFT and 

site (Table 2.1). Total C content was significantly higher at site 2 than at sites 1 and 3, and 

in shrub vegetation compared to bryophyte and graminoid vegetation (Figure 2.6). Total N 

content of plant samples was lowest at site 3 and highest for site 1, with significantly 

greater graminoid N content than bryophyte and shrub (Figure 2.6). The variability in plant 

C:N with site and PFT was dissimilar to both C and N concentrations separately, with 

greatest C:N in plants at site 3 and smallest C:N in graminoids (Figure 2.6). Overall, 

variability in plant properties was related to both PFT and location across the peatland, but 

no statistically significant interactions were observed between them (Table 2.1).  

 

 

 

 



 

26 

 

 

 

 

 

Table 2.1: Two-way ANOVA results showing site, PFT and site*PFT effects on BD = bulk 

density (g cm
-3

), C% = total C content, N% = total N content, C:N = ratio of total C and 

total N, C stock (g C m
-2

 to 15 cm), N stock (g N m
-2

 to 15 cm) and LD = litter depth (cm). 

Two-way ANOVA:  Site PFT Site * PFT 
 

 F(3,48) p F(2,48) p F(6,48) p 

Peat 

BD 46.57 <.0001 1.17 0.3229 0.51 0.7987 

pH 4.84 0.0122 1.25 0.3091 1.00 0.4574 

C% 27.92 <.0001 1.95 0.1665 0.61 0.7172 

N% 2.20 0.1050 1.29 0.2873 0.56 0.7586 

C:N 22.84 <.0001 1.07 0.3536 0.65 0.6886 

C stock 19.42 <.0001 2.16 0.1301 0.74 0.6229 

N stock 39.50 <.0001 4.17 0.0235 0.84 0.5447 

        

Litter 

 

C% 112.09 <.0001 25.18 <.0001 1.50 0.2058 

N% 0.95 0.4253 4.88 0.0133 1.43 0.2303 

C:N 1.99 0.1327 3.67 0.0354 1.33 0.2677 

LD 6.99 0.0002 25.07 <.0001 2.40 0.0310 

C stock 3.66 0.0197 10.22 0.0002 1.56 0.1865 

N stock 1.57 0.2134 5.51 0.0072 0.68 0.6698 

        

Vegetation 

C% 8.28 0.0003 46.94 <.0001 0.33 0.9193 

N% 11.09 <.0001 10.94 0.0002 1.19 0.3343 

C:N 10.97 <.0001 12.16 <.0001 1.26 0.2995 
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Figure 2.1: C:N, total C content and total N content for peat from each site and PFT. 

Data are means ± standard error. B = bryophyte, G = graminoid, S = shrub. Letters 

below legends denote pair-wise significant differences between PFT. Letters on graphs 

indicate pair-wise significant differences between sites.  
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Figure 2.2: Peat bulk density and pH from each site and PFT. Data are means 

± standard error. B = bryophyte, G = graminoid, S = shrub. Letters below 

legends denote pair-wise significant differences between PFT. Letters on 

graphs indicate pair-wise significant differences between sites.   
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Figure 2.3: C stock and N stock for peat from each site and PFT. Data are 

means ± standard error. B = bryophyte, G = graminoid, S = shrub. Letters 

below legends denote pair-wise significant differences between PFT. Letters 

on graphs indicate pair-wise significant differences between sites.   
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Figure 2.4: Total C, total N and C:N of litter from each site and PFT. Data are means ± 

standard error. B = bryophyte, G = graminoid, S = shrub. Letters below legends denote 

pair-wise significant differences between PFT. Letters on graphs indicate pair-wise 

significant differences between sites.   
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Figure 2.5: Litter depth, C stock and N stock for litter from each site and PFT. Data are 

means ± standard error. B = bryophyte, G = graminoid, S = shrub. Letters below legends 

denote pair-wise significant differences between PFT. Letters on graphs indicate pair-wise 

significant differences between sites.   

 

b 

a 
a 

ab 

0

10

20

30

40

L
it

te
r 

la
y
er

 d
ep

th
 (

cm
) 

B G S

ab 

b 

a ab 

0

200

400

600

800

1000

1200

1400

C
 s

to
ck

 (
g
 C

 m
-2

) 

B G S

a 

a 

a 

a 

0

5

10

15

20

25

30

1 2 3 4

N
 s

to
ck

 (
g
 N

 m
-2

) 

Site 

B G S

  b      a      b 

b      a     ab 

b     a      a 



 

32 

 

 

 

 

 

 

Figure 2.6: Total C, total N and C:N of vegetation from each site and PFT. Data are means 

± standard error. B = bryophyte, G = graminoid, S = shrub. Letters below legends denote 

pair-wise significant differences between PFT. Letters on graphs indicate pair-wise 

significant differences between sites.    
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2.3.4   Water table level 

Repeated measures ANOVA analyses showed that season and site had a significant effect 

on the water table, as did PFT, which had the greatest influence overall (Table 2.2). 

Significant interactions between season, site and PFT also had effects on the water table, 

which were equivalent in order of magnitude to the main effects of season and site (Table 

2.2). Post-hoc tests revealed seasonal variability in water table level, observed as high 

water tables in autumn, lower water tables in spring and then summer (Figure 2.7). The 

position of the water table was different across the peatland, being lowest at site 2, and 

rising towards the surface at site 4, then site 3, to reach its highest overall position at site 1 

(Figure 2.1). The biggest change in water table was observed with PFTs, with lowest and 

highest water tables measured in peat beneath shrub and bryophyte, respectively (Figure 

2.7).  

The mean water table at sites 1 and 3 was at or above the peat surface in summer and 

autumn, whilst in spring it remained below the surface at all sites (Figure 2.7). However, 

the position of the water table in spring was more variable across the peatland, than later in 

the year (Figure 2.7). For example, the variability in water table position was 

approximately three times larger in spring, than in summer and autumn, and was observed 

to deviate by approximately 150 mm above and below the mean water table level across 

the peatland. In summer and autumn, the water table in peat beneath shrub at each site, 

apart from site 2, was lower than the overall average i.e. drier, whereas bryophyte and 

graminoid water tables were often wetter (Figure 2.7). However, variability between PFTs 

was not the same in spring, as graminoid water tables were lower than those below shrub at 

sites 1 and 2 (Figure 2.7).  

These results show that there were strong spatial and seasonal controls on water table, with 

significant interactions between time of year and location across the peatland affecting the 

amount of variation observed. PFTs had the strongest effect on the water table, and 

contributed to the variability in water table levels seen across the peatland through 

interactions with both site and season.    
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Table 2.2: Repeated measures ANOVA results showing season, site, PFT 

and their interactive effects on depth to water table (mm).  

Repeated measures ANOVA: df F p 

Season 3 4079.0 <.0001 

Site 3 7992.8 <.0001 

PFT 2 763874.4 <.0001 

Season*Site 9 7529.2 <.0001 

Season*PFT 6 6285.1 <.0001 

Site*PFT 6 1137.2 <.0001 
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Figure 2.7: Mean water table level (mm) (i) beneath each PFT at each site (1, 2, 3 and 4) 

in spring, summer and autumn 2011. Average deviation from the mean water table level 

(ii), for each PFT, site and season. Legend letters indicate pair-wise significant 

differences between seasons, and separately for PFT. Letters on graph (i) indicate pair-

wise significant differences between sites.  
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2.3.5   Peat microbial community 

Results from repeated measures ANOVA analyses of microbial community abundance and 

composition (i.e. from PLFAs) show that both site and season had a significant effect on 

all measures (Tables 2.3, 2.4 and 2.5), and, that PFTs accounted for differences in variance 

of peat fungal to bacterial (F:B) ratios (Tables 2.3 and 2.6). There were significant 

interactions between site and season with effects on F:B and ratios of gram +ve to gram –

ve bacteria (Tables 2.3, 2.7 and 2.8). No significant interactive effects of site and season 

were observed upon other PLFA groups (Table 2.3), and there were no significant 

interactions with PFT (Table 2.3). 

The concentration of total PLFAs was significantly higher at site 4 than at sites 3, 2 and 1, 

the latter of which exhibited the lowest average total PLFA concentration in autumn and 

winter (Figure 2.8). Bacterial and fungal PLFAs showed a similar spatial variability to total 

PLFAs, and on average, site 4 had the highest abundance of fungal and bacterial PLFAs in 

spring (Tables 2.9 and 2.10). The ratio of fungi to bacteria was significantly lower at sites 

1, 2 and 3 than at site 4 (Figure 2.9), a pattern most strongly observed in spring and 

autumn, and broadly reflected in the total concentrations of gram positive bacteria, gram 

negative bacteria, and ratio of gram +ve to gram -ve bacteria across all seasons (Tables 

2.11, 2.12 and 2.13).  

Total PLFAs were significantly more abundant in spring than in summer and winter 

(Figure 2.8). Bacterial PLFAs showed the same pattern as total PLFAs, with abundance in 

autumn also greater than when measured in summer and winter (Table 2.9). Similarly, the 

concentrations of fungal PLFAs in autumn were significantly greater than in summer 

(Table 2.10). A different pattern emerged for F:B, with increased dominance of fungi over 

bacteria in winter compared to spring and summer (Figure 2.9). There was evidence of a 

significant interaction between site and season for F:B (Table 2.3), observed as a greater 

proportion of fungal to bacterial PLFAs at site 2 in winter, compared with site 3 in winter 

and sites 1, 2 and 3 in spring, summer and autumn (Figure 2.9 and Table 2.7). 

Concentrations of gram +ve PLFAs were significantly greater in spring and autumn than in 

winter (Tables 2.5 and 2.11), whereas the abundance of gram -ve PLFAs was significantly 

lower in summer and autumn than in spring (Tables 2.5 and 2.12). The interactive effect of 

site and season was significant for the ratio of gram +ve to gram -ve bacteria (Table 2.3). 

In winter the dominance of gram +ve bacteria over gram -ve bacteria was significantly 

lower than in spring, summer and autumn (Tables 2.8 and 2.13), with the most marked 

differences observed between seasons for sites 1 and 2. 
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The ratio of fungal to bacterial PLFAs was significantly different with PFT (Table 2.3), 

being greater in shrub-derived peat than both graminoid- and bryophyte-derived peat 

(Figure 2.9 and Table 2.6). F:B biomass C also varied significantly with PFT, being greater 

in shrub-derived peat than graminoid-derived peat (Tables 2.3 and 2.6), together with the 

main and interactive effects of site and season (Table 2.3).  

Across the peatland and for each PFT, ratios of fungal biomass C to bacterial biomass C 

were consistently above 4.0 in winter and autumn; but were as low as 0.5 in spring and 

summer (Figure 2.10). F:B biomass was higher in winter than in spring, summer and 

autumn (Figure 2.10 and Table 2.5), and at site 4 compared to sites 1 and 3 (Figure 2.10 

and Table 2.4), with the same interaction between season and site observed as F:B PLFAs 

(Table 2.7). There is more variability in F:B biomass C at sites 1, 2 and 4 than at site 3, 

which shows bryophyte, graminoid and shrub F:B biomass C to be closely clustered with 

similar ratios of C and N  (Figure 2.11). A moderate positive correlation between F:B 

biomass C and peat C:N was observed (r = 0.51, p = 0.0002, n = 46) (Figure 2.11).  

PFT did not influence the variability of any other microbial measures and there were no 

significant interactive effects of PFT with site or season (Table 2.3). These results show 

that the overall trends were: (1) greater abundance of PLFAs at site 4 and in spring; (2) 

increased dominance of fungi in winter, at site 4 and beneath shrub; (3) larger gram +ve 

bacterial communities at site 4 with respect to gram -ve bacteria, with overall dominance 

diminishing in winter.   
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Table 2.3: Repeated measures ANOVA showing season, site, PFT (plant functional type) and their interactive effects on peat biotic 

characteristics: total PLFA (total PLFA concentration) = µg g
-1

 dwt soil, fungi = total fungal PLFA, bacteria = total bacterial PLFA, F:B = ratio 

of fungal to bacterial PLFA, F:B biomass C = ratio of fungal biomass C to bacterial biomass C, gram +ve bacteria = gram-positive bacteria 

PLFA, gram –ve bacteria = gram-negative PLFA, gram +ve:gram –ve = ratio of gram-positive bacterial to gram-negative bacterial PLFA.  

Repeated measures ANOVA: Season Site PFT Season*Site Season*PFT Site*PFT 

Community F p F p F p F p F p F p 

Total PLFA 6.35 0.0005 16.50 <.0001 0.88 0.4203 0.67 0.7387 0.98 0.4397 10.5 0.4024 

Fungi 4.35 0.0060 22.65 <.0001 3.02 0.0570 1.01 0.4372 0.54 0.7792 0.90 0.4987 

Bacteria 9.10 <.0001 14.19 <.0001 0.60 0.5237 0.75 0.6648 1.14 0.3458 1.00 0.4336 

F:B 13.88 <.0001 11.65 <.0001 5.63 0.0057 5.22 <.0001 1.09 0.3706 0.60 0.7324 

F:B biomass C 13.78 <.0001 11.38 <.0001 5.75 0.0068 5.16 <.0001 1.00 0.4323 0.58 0.7444 

Gram +ve bacteria 12.57 <.0001 13.96 <.0001 0.84 0.4381 1.20 0.3047 1.06 0.3884 1.12 0.3607 

Gram –ve bacteria 7.99 <.0001 18.37 <.0001 0.59 0.5599 0.98 0.4636 1.08 0.3806 1.11 0.3685 

Gram +ve:gram –ve 24.07 <.0001 7.15 0.0004 0.01 0.9874 8.19 <.0001 1.18 0.3208 0.24 0.9623 
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Table 2.5: Pair-wise comparisons of microbial community composition (PLFAs) 

between each season, analysed by one-way ANOVAs and Tukey’s test post-hoc 

analyses. 

Measure of microbial community 
Season 

Winter Spring Summer Autumn 

Total PLFA b a b ab 

Fungi ab ab a b 

Bacteria a b a b 

F:B a b b ab 

F:B biomass C b a a a 

Gram +ve bacteria a b ac bc 

Gram –ve bacteria ab a b bc 

Gram +ve:gram –ve a bc b c 

 

Table 2.4: Pair-wise comparisons of microbial community composition (PLFAs) 

between each site, analysed by one-way ANOVAs and Tukey’s test post-hoc analyses. 

Measure of microbial community 
Site 

1 2 3 4 

Total PLFA a a a b 

Fungi a ab b c 

Bacteria a a a b 

F:B a bc ab c 

F:B biomass C c ab ac b 

Gram +ve bacteria a a a b 

Gram –ve bacteria a a a b 

Gram +ve:gram –ve a a a b 
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Table 2.6: Pair-wise comparisons of microbial community composition (PLFAs) 

between each peat PFT, analysed by one-way ANOVAs and Tukey’s test post-hoc 

analyses. 

Measure of microbial community 
Peat PFT 

B G S 

Total PLFA a a a 

Fungi a ab b 

Bacteria a a a 

F:B a a b 

F:B biomass C ab a b 

Gram +ve bacteria a a a 

Gram –ve bacteria a a a 

Gram +ve:gram –ve a a a 
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Table 2.7: Pair wise comparisons between site and season, for F:B and F:B 

biomass C.  

  Season 

  Winter Spring Summer Autumn 

S
it

e 

1 ab c cd bcd 

2 a bcd bcd bcd 

3 bcd bcd bcd bd 

4 ab ab ab ab 

 

 

 

Table 2.8: Pair wise comparisons between site and season, for gram +ve:gram -ve.  

  Season 

  Winter Spring Summer Autumn 

S
it

e 

1 ab cdefg g cdefg 

2 a cfg fg bcdef 

3 bcdef cfg cdfg cdfg 

4 abde bcde abe abde 
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Figure 2.8: Seasonal total PLFAs at each site (1, 2, 3 and 4) and peat PFT (B = 

bryophyte, G = graminoid, S = shrub). Letters below legends denote pair-wise 

significant differences between sites. Pair-wise comparisons between season and peat 

PFT for total PLFAs are shown in Tables 2.5 and 2.13. Data are means ± standard error. 
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Table 2.9: Total bacterial PLFA concentration (µg g
-1

 dwt soil) at each peat 

PFT plot (B = bryophyte, G = graminoid, S = shrub) at each site. Mean 

values ± standard error. 

 Total Bacterial PLFAs 

Site PFT 
Season 

Winter Spring Summer Autumn 

1 B 46.74±9.04 102.87±18.17 40.57±7.10 60.90±14.11 

G 42.88±8.37 98.16±29.94 66.67±16.69 76.55±22.85 

S 37.55±9.23 

 

81.92±32.22 

 

50.54±0.87 

 

67.54±21.98 

 

2 B 43.40±9.92 82.76±19.00 44.37±6.21 78.84±15.97 

G 59.54±10.27 69.20±29.13 55.31±11.14 71.95±13.73 

S 60.35±11.66 

 

61.56±13.29 

 

49.67±7.58 

 

70.21±8.46 

 

3 B 44.99±16.69 117.28±16.97 68.83±3.23 73.81±8.81 

G 76.24±22.05 78.37±15.41 42.89±13.71 73.53±16.22 

S 103.90±32.85 

 

113.51±31.01 

 

76.30±4.60 

 

77.99±10.77 

 

4 B 66.23±2.60 127.17±46.42 75.96±18.17 137.99±23.93 

G 154.76±24.04 152.46±25.59 120.37±19.25 125.32±33.94 

S 91.54±9.38 141.08±16.04 103.93±11.15 160.04±34.33 
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Table 2.10: Total fungal PLFA concentration (µg g
-1

 dwt soil) at each peat PFT plot (B = 

bryophyte, G = graminoid, S = shrub) at each site. Mean values ± standard error.  

 Total Fungal PLFAs 

Site PFT 
Season 

Winter Spring Summer Autumn 

1 B 14.97±3.57 13.83±5.70 7.57±1.45 13.49±2.90 

G 14.09±3.22 9.37±3.08 11.89±2.81 17.08±5.33 

S 14.54±4.35 

 

13.01±2.89 

 

9.91±0.36 

 

15.96±5.26 

 

2 B 16.96±5.22 16.40±2.72 12.95±4.55 19.79±4.69 

G 21.13±4.27 16.64±7.73 11.51±3.09 15.67±1.67 

S 33.66±8.59 

 

13.54±3.69 

 

10.20±2.01 

 

20.80±2.83 

 

3 B 12.06±4.87 24.31±6.76 19.54±2.75 21.44±3.22 

G 20.74±8.37 17.70±6.14 11.88±4.31 23.54±5.75 

S 28.18 ±12.44 

 

37.07±10.69 

 

21.34±1.38 

 

22.93±5.02 

 

4 B 21.04±1.79 25.92±11.83 24.12±7.03 39.10±6.58 

G 48.25±4.28 46.12±11.40 46.25±8.35 36.76±8.57 

S 32.85±6.08 58.52±6.89 35.05±5.59 55.38±4.55 
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Figure 2.9: Seasonal F:B at each site (1, 2, 3 and 4) and peat PFT (B = bryophyte, G = 

graminoid, S = shrub). Letters below legends denote pair-wise significant differences 

between sites. Pair-wise comparisons between season, peat PFT and the interaction of 

season and site for F:B are shown in Tables 2.4, 2.5 and 2.11. Data are means ± 

standard error. 
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Table 2.11: Total gram +ve bacterial PLFA concentration (µg g
-1

 dwt soil) at 

each peat PFT plot (B = bryophyte, G = graminoid, S = shrub) at each site. 

Mean values ± standard error. 

 Total Gram Positive Bacterial PLFAs 

Site PFT 
Season 

Winter Spring Summer Autumn 

1 

B 18.82±2.96 48.27±7.55 23.45±3.72 29.96±6.34 

G 18.04±3.52 49.36±14.77 37.82±8.45 37.36±10.36 

S 16.02±4.46 

 

42.33±16.22 

 

29.12±0.65 

 

33.99±10.22 

 

2 

B 17.94±5.03 44.87±10.68 25.72±4.11 39.44±7.93 

G 24.82±6.83 37.26±14.46 31.52±6.79 35.99±6.71 

S 24.53±5.49 

 

32.69±6.37 

 

28.75±477 

 

34.01±4.87 

 

3 

B 21.94±8.66 66.26±12.44 37.26±0.58 39.35±5.41 

G 38.62±10.78 45.12±7.56 23.20±9.00 35.93±7.95 

S 51.83±15.44 

 

56.01±14.69 

 

43.57±4.80 

 

39.43±4.72 

 

4 

B 31.63±2.76 56.70±16.85 34.18±10.22 66.91±13.22 

G 69.55±8.69 77.58±10.73 48.87±6.49 58.24±15.34 

S 42.20±5.24 62.05±5.59 44.81±2.83 73.93±17.02 
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Table 2.12: Total gram -ve bacterial PLFA concentration (µg g
-1

 dwt 

soil) at each peat PFT plot (B = bryophyte, G = graminoid, S = shrub) 

at each site. Mean values ± standard error. 

 Total Gram Negative Bacterial PLFAs 

Site PFT 
Season 

Winter Spring Summer Autumn 

1 B 27.29±5.97 52.98±10.51 16.44±3.15 30.02±7.80 

G 24.17±4.94 47.54±14.76 28.08±8.30 38.25±12.32 

S 20.89±5.45 

 

38.21±15.48 

 

20.32±0.32 

 

32.60±11.66 

 

2 B 24.82±5.21 36.82±6.01 18.21±2.06 38.29±7.94 

G 33.90±3.86 30.94±14.15 23.05±4.35 34.91±7.09 

S 34.90±7.21 

 

27.63±7.04 

 

20.49±2.96 

 

35.25±4.09 

 

3 B 22.42±7.89 48.58±5.06 31.57±2.65 33.40±3.77 

G 36.61±11.23 31.79±7.55 19.62±5.94 36.59±8.70 

S 50.73±17.11 

 

55.91±16.32 

 

32.63±3.20 

 

37.37±6.13 

 

4 B 33.83±0.52 70.03±30.41 41.78±8.23 69.50±11.32 

G 83.08±16.48 72.69±14.08 71.50±12.76 65.65±18.89 

S 48.13±4.49 76.55±11.59 59.12±8.45 84.63±17.63 
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Table 2.13: Ratio of gram +ve and gram -ve bacterial PLFA at each peat 

PFT plot (B = bryophyte, G = graminoid, S = shrub) at each site. Mean 

values ± standard error. 

 Gram Positive:Gram Negative Bacterial PLFAs 

Site PFT 
Season 

Winter Spring Summer Autumn 

1 B 27.29±5.97 52.98±10.51 16.44±3.15 30.02±7.80 

G 24.17±4.94 47.54±14.76 28.08±8.30 38.25±12.32 

S 20.89±5.45 

 

38.21±15.48 

 

20.32±0.32 

 

32.60±11.66 

 

2 B 24.82±5.21 36.82±6.01 18.21±2.06 38.29±7.94 

G 33.90±3.86 30.94±14.15 23.05±4.35 34.91±7.09 

S 34.90±7.21 

 

27.63±7.04 

 

20.49±2.96 

 

35.25±4.09 

 

3 B 22.42±7.89 48.58±5.06 31.57±2.65 33.40±3.77 

G 36.61±11.23 31.79±7.55 19.62±5.94 36.59±8.70 

S 50.73±17.11 

 

55.91±16.32 

 

32.63±3.20 

 

37.37±6.13 

 

4 B 33.83±0.52 70.03±30.41 41.78±8.23 69.50±11.32 

G 83.08±16.48 72.69±14.08 71.50±12.76 65.65±18.89 

S 48.13±4.49 76.55±11.59 59.12±8.45 84.63±17.63 
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Figure 2.10: Seasonal F:B biomass C for each PFT (B = bryophyte, G = graminoid, S = 

shrub) and site (1, 2, 3 and 4). Letters below legends denote pair-wise significant 

differences between sites. Pair-wise comparisons between season, peat PFT and the 

interaction of season and site for F:B biomass C are shown in Tables 2.4, 2.5 and 2.11. 

Data are means ± standard error. 
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Figure 2.11: Mean F:B biomass C and mean peat C:N for each site and PFT (B = 

bryophyte, G = graminoid, S = shrub).  

The db-RDA models of microbial community composition in winter (F (12, 35) = 3.898, p 

<.001) and autumn (F (12, 35) = 3.2148, p <.001) showed that a combination of peatland 

properties explained just over half of the modelled variance. Variance partitioning 

indicated that 59% of the modelled variation in the winter model (57%) was explained by a 

combination of peat properties (bulk density, pH, peat C%, peat N% and peat C:N) (Table 

2.14), with bulk density, peat C:N and pH determined to be significant by forward 

selection (Table 2.15). In describing microbial community composition in autumn, peat 

properties explained 82% of the modelled variation (52%), with peat C:N the most 

significant explanatory variable (Table 2.14). The model which explained the greatest 

proportion of variance was the summer model (F(12,28) = 13.14, p <.001), with variance 

partitioning and forward selection indicating that 83% of the modelled variance (85%) was 

explained by peat properties, of which peat C% and bulk density were significant (Table 

2.15). The spring model (F (12, 35) = 2.2151, p <.001) explained less modelled variation 

(43%) than winter, summer and autumn models. Variance partitioning showed that litter 

properties (litter depth, litter C%, litter N% and litter C:N) explained 77% of the modelled 

variation in the spring db-RDA (Table 2.14), and forward selection identified litter C% to 

be the sole significant explanatory variable of spring microbial community composition 

(Table 2.15).  
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To investigate the explanatory power of water table in addition to chemical peat, litter and 

vegetation properties in predicting seasonal and spatial microbial community composition, 

db-RDA models for spring, summer and autumn were repeated with the addition of water 

table deviation data. Deviation from the mean water table was not selected as a strong 

predictor of seasonally and spatially changing PLFA concentrations (Table 2.16). 

However, total C content of litter and vegetation and C:N of peat were consistently 

selected as the most significant variables for explaining the variation in seasonal microbial 

community composition across all wind farm sites (Table 2.16). This echoes the results 

from the first set of db-RDA models (Table 2.15). A db-RDA modelling approach 

demonstrated that the most commonly identified peatland properties selected to explain 

variation in the size and composition of the soil microbial community were total C content 

of litter and the ratio of C to N in peat. However, the peatland properties that explained the 

most variation in the measured microbial metrics changed with season: peat bulk density, 

litter total C content, peat total C content and peat C:N were shown to be the strongest 

predictors of the microbial community in winter, spring, summer and autumn, respectively. 
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Table 2.14: Results of variance partitioning carried out on individual PLFA concentration 

data following redundancy analysis (Table 2.9) to determine the proportions of variance 

explained by biochemical peat, litter and plant properties.   

Season PLFA community 
Proportion of variance explained 

Peat Litter Plant 

Winter 

Total PLFA 0.242 0.115 0.050 

Bacteria 0.087 0.154 0.051 

Fungi 0.043 0.122 0.108 

     

Spring 

Total PLFA 0.025 0.125 0.013 

Bacteria 0.005 0.111 0.016 

Fungi 0.025 -0.049 0.009 

     

Summer 

Total PLFA 0.283 0.055 0.003 

Bacteria 0.304 0.042 0.001 

Fungi 0.297 0.056 -0.016 

     

Autumn 

Total PLFA 0.125 0.041 -0.014 

Bacteria 0.089 0.083 0.008 

Fungi 0.006 -0.006 -0.052 
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Table 2.15: Redundancy analysis results showing the biochemical peatland properties 

which cause significant differences in individual PLFA concentrations for all sites and 

PFT plots in winter (February 2011), spring (April 2011), summer (July 2011) and 

autumn (October 2011). Water table data was not available for winter (February 2011) 

and therefore was not included in this analysis.  

Season Variable F p 

Winter 

Bulk density 13.58 0.001 

Litter C% 3.82 0.002 

Litter C:N 3.37 0.011 

Veg C% 3.98 0.007 

Peat C:N 3.13 0.012 

pH 2.09 0.044 

    

Spring 

Litter C% 12.32 0.001 

Peat C:N 2.69 0.014 

Veg C:N 2.47 0.018 

    

Summer 

Peat C% 59.90 0.001 

Bulk density 15.48 0.001 

Litter C% 7.39 0.002 

    

Autumn 
Peat C:N 14.71 0.001 

Litter C% 12.54 0.001 
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Table 2.16: Redundancy analysis results showing the biochemical and physical peatland 

properties which cause significant differences in individual PLFA concentrations for all 

sites and PFT plots in spring (April 2011), summer (July 2011) and autumn (October 

2011). Water table data was included in this analysis because it was available for spring, 

summer and autumn (April, July and October 2011).  

Season Variable F P 

Spring 

Litter  C% 12.32 0.001 

Peat C:N 2.68 0.008 

Veg C% 2.46 0.020 

    

Summer 

Litter C% 12.01 0.001 

Veg C% 3.41 0.007 

Peat C:N 2.68 0.022 

    

Autumn 

Litter C% 21.38 0.001 

Peat C:N 6.12 0.001 

Veg C% 5.22 0.001 
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2.4  Discussion 

The aim of this study was to determine the spatio-temporal variability in abiotic and biotic 

properties of a blanket bog peatland at Black Law Wind Farm. Given the anticipated site 

and PFT-induced variability in physicochemical peat properties (hypotheses 1 & 2) and the 

known influence of these properties on C cycling processes, it was expected that the 

seasonal soil microbial community composition and size would also differ across Black 

Law Wind Farm (hypothesis 3). These results demonstrate that all peat physicochemical 

characteristics and microbial groups (Tables 2.1, 2.2 and 2.3) were significantly affected 

by site, with the exception of peat and litter total N contents, litter C:N and litter N stock 

(Table 2.1). The variables soil pH, bulk density, peat, litter and vegetation C contents, peat 

C:N and vegetation C:N were not only significantly different with site (Table 2.1) but also 

explained the most variation in the size and composition of the soil microbial community 

(Table 2.15). PFT was a strong driver of differences in peatland physicochemical 

characteristics (Tables 2.1 and 2.2), but also played a small role in determining differences 

in spatially and seasonally changing PLFA concentrations, owing to increased dominance 

of fungi relative to bacteria in in shrub-derived peat (Figure 2.9). Season was also a key 

control over water table and microbial community size and composition (Tables 2.2 and 

2.3), with water tables nearer the peat surface in autumn (Figure 2.7), a spring-time 

increase in microbial community concentration (Figure 2.8) and a greater proportion of 

fungi relative to bacteria in winter (Figure 2.9).   

2.4.1   Spatial and seasonal effects 

The strongest driver of change in the peat properties studied was site, relative to the effects 

of season (Tables 2.2 and 2.3); this supports the principle that peatland C cycling varies 

more spatially than over time (Waddington and Roulet, 2000). For example, Waddington 

and Roulet (2000) observed a six-fold difference in CO2 and CH4 exchange between years, 

but there was up to 25 times difference in the net fluxes from areas of contrasting 

topography (i.e. hummocks and hollows). Nevertheless, seasonal changes in soil microbial 

communities are still central to the cycling of C in peatlands (Bardgett et al., 2005; 

Dinsmore et al., 2009; Fenner et al., 2005). Dinsmore et al. (2009) observed a clear 

temporal effect on CH4 emissions but no consistent changes between sites dominated by 

different PFTs, and attributed seasonal differences to the activities of aerobic and 

anaerobic microbes in the growing season and winter season. Fenner et al. (2005) also 

found that there was a pronounced seasonality, and observed the optimum activity of C 

cycling enzymes to shift with soil temperature.  
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There were significant differences in the physicochemical properties of surface peat, litter 

and vegetation between sites across the peatland (Table 2.1), which confirmed the second 

hypothesis. Peat C:N and pH were highest at site 4, whereas bulk density, peat C and N 

stocks and litter layer depth were greatest at site 1 (Figures 2.1, 2.2, 2.3 and 2.5). Litter C 

content and C stocks were lowest at site 1 and site 2, respectively (Figures 2.4 and 2.5). 

Vegetation C was higher at sites 2 and 4, whilst vegetation N and C:N were lowest and 

greatest at site 3, respectively (Figure 2.6).  

The peat bulk density, pH, total C and N contents at this wind farm peatland are 

comparable to those reported in studies investigating land use effects on peatlands, as well 

as peatlands that are neither developed nor disturbed. Across a range of undisturbed, 

drained and tree/shrub-dominated ombrogenous bogs in Finland, total N content was 0.5 – 

1.0% and soil pH measured 3.7 – 3.9 (Silvola et al., 1996); these values are similar to those 

shown in Figures 2.1 and 2.2. In the surface 25 cm of peat at a bog in Minnesota, the 

overall average pH was the same as in this study i.e. 4.1 (Keller et al., 2004). Keller et al. 

(2004) also report peat total C content to be 42.2%, which falls within the range of values 

observed across the bog at Black Law Wind Farm (Figure 2.1). In Lower Saxony, 

Germany, the bulk density of peat ranged from: 0.06 – 0.21 g cm
3
 in undisturbed 

peatlands, 0.08 – 0.15 g cm
3
 in forested peatlands and 0.21 – 0.28 g cm

3
 in peatlands 

converted to grasslands (Brake et al., 1999); these values are most similar to the peat bulk 

density at sites 2, 3 and 4 (Figure 2.2).  

However, at a peatland in northern England with a long history of grazing and burning, the 

mean C stocks in the surface peat (20 cm deep) ranged from 3000 g C m
-2

 in grazed and 

burnt areas, up to 5500 g C m
-2

 in grazed and unburnt sites (Garnett et al., 2000). A later 

study, also at the same peatland in the Moor House National Nature Reserve (NNR), 

observed C stocks of a similar size as Garnett et al. (2000), an average C:N of ~37 and N 

stocks of ~1300 g N m
-2 

(Ward et al., 2007). Despite similar C:N ratios at Black Law 

(Figure 2.1), C stocks were higher and N stocks were lower than those observed by Ward 

et al. (2007) (Figure 2.3). Not only were there differences in the biochemical properties of 

the peat, but litter C:N was up to 1.5 times larger at the Black Law peatland than at Moor 

House NNR (Figure 2.4), and the C and N stocks in the litter layer were of an order of 

magnitude larger (Figure 2.5) (Ward et al., 2007). As for vegetation C:N, grazed and burnt 

peatland sites had slightly higher values than those reported in this study for the same PFTs 

(Figure 2.6) (Ward et al., 2007).   
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The breakdown of the microbial community into broad functional groups, determined by 

PLFAs, also revealed some strong spatial and seasonal patterns (Table 2.3) to support 

hypothesis 3. Site 4 was characterised by higher total concentrations of PLFAs than sites 1, 

2 and 3 (Figure 2.8). The soil microbial community changed with fungi increasing in 

relative abundance compared to bacteria, notably in spring, from site 1 to 4 (Figure 2.9). 

Spring is characterised by higher total PLFA concentrations than summer and winter 

(Figure 2.8). However, in Swedish boreal peatlands, the variation in PLFA composition 

was found to be negligible over the growing season (Sundh et al., 1997). In other studies, 

microbial communities have been known to acclimate to prevailing external conditions and 

shift with changing environmental parameters associated with season (Fenner et al., 2005; 

Freeman et al., 2001). In northern upland peatlands, Fenner et al. (2005) found that a 

thermal optimum in microbially-mediated C cycling processes coincided with the highest 

ambient soil temperatures, and Freeman et al. (2001) observed increased enzyme activity 

in more aerated peat. However, some microbes can survive in a dormant state when 

conditions are outside of their normal range for growth (Atlas, 1988), and can then 

proliferate once optimum conditions return (Ranneklev and Bååth, 2001). Peat may 

therefore possess a ‘microbial memory’, to allow growth and activity to prevail when 

possible. The adaptation to seasonal shifts in environmental conditions, together with the 

potential for ‘microbial memory’, could explain why a spring-time maximum in total 

PLFA concentrations is observed. Therefore, this may reflect environmental conditions 

that are favourable for microbial communities i.e. a deeper spring-time water table (Figure 

2.7) could promote increased activity of the soil decomposer community (Freeman et al., 

2001). However, in forested peatlands in Finland, a spring-time increase in bacterial 

biomass was observed but total microbial biomass decreased with a drop in the average 

water tables (Mäkiranta et al., 2009). Nevertheless, spatio-temporal shifts in total microbial 

biomass and the relative abundance of microbial functional groups are also likely to be a 

result of differences in temperature (Pietikåinen et al., 2005; Ranneklev and Bååth, 2001), 

C and nutrient availability (Bossio et al., 1998; Schadt et al., 2003) or even predation of 

microbes (Wynn-Williams, 1982).  

Many studies observe temperature to be the main driver of microbial activity (Lipson et al., 

2002; Mäkiranta et al., 2009; Pietikåinen et al., 2005) and community composition change 

(Bossio et al., 1998; Lipson et al., 2002; Pregitzer et al., 1997). In this study, higher F:B in 

the winter microbial community relative to the summer community was observed, and has 

been reported previously, owing to the adaptation of fungi to colder temperatures 

(Pietikåinen et al., 2005), the utilisation of more complex structures (i.e. cellulose) (de 
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Boer et al., 2005) and the reduction in root exudates (Mäkiranta et al., 2009). In dry alpine 

meadow and tundra ecosystems, the soil microbial biomass reached its annual peak in 

winter, under snow, with fungi accounting for most of that increase in biomass (Lipson et 

al., 2002; Schadt et al., 2003). The availability of C substrates has also been linked to 

seasonal changes in the relative size of microbial groups in soil communities (Bossio et al., 

1998), with increases in fungi due to a greater abundance of dead plant material in winter 

(i.e. harder to decompose litter material) while live roots and the supply of their exudates 

(i.e. easier to utilise substrates) increase in summer and favour bacteria (Schadt et al., 

2003). Soil respiration rates have also been associated with differences in soil microbial 

community in spring, due to the decreasing importance of readily available organic matter 

as a determinant of the soil microbial community later in the growing season (Bossio et al., 

1998) and due to a post-spring increase in predation of microbes by nematodes and 

protozoans (Wynn-Williams, 1982). These are possible explanations for the spring to 

summer decrease in soil microbial community size observed in this study (Figure 2.8).  

Bulk density, pH, total C and C:N of peat, litter and vegetation were selected to best 

predict the variation within PLFA profiles of each peat sample (Table 2.15). The 

proportion of variance explained by peat, litter and vegetation variables was different for 

total PLFAs, fungal PLFAs and bacterial PLFAs in each season (Table 2.14), so it is 

difficult to identify which of the selected variables would consistently predict microbial 

community composition throughout the year. Other studies have also shown the effects of 

soil chemical characteristics on microbial community structure. At a cutover peatland 

undergoing restoration, redundancy analysis found peat bulk density, pH and water table to 

be significant in explaining seasonal variation in PLFAs (Andersen et al., 2010), whereas 

total N content and total C content were also used to best explain variability in the 

microbial community at a successional peatland gradient (Mitchell et al., 2010). A large 

proportion of the variation in bacterial community composition was also found to be 

caused by pH (Fierer et al., 2009; Lauber et al., 2008), and changes in fungal community 

composition were most closely correlated with nutrient status (Lauber et al., 2008) and 

C:N (Fierer et al., 2009). The moderate positive correlation between peat C:N and F:B 

biomass C across the peatland at Black Law Wind Farm (Figure 2.11), supports the 

relationships between soil C:N and F:B observed in other studies. For example, C:N 

declined along a successional gradient from shrub moorland to birch woodland, which 

coincided with a decrease in soil F:B (Mitchell et al., 2010). F:B has also been observed to 

increase from rich to poor fens, with fungal activity differing by more than a factor of five 

and bacterial activity by less than a factor of two (Myers et al., 2012). There are a number 
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of possible mechanisms that may explain this: (1) C:N could directly constrain the soil 

microbial community owing to the different nutrient demands of the fungal and bacterial 

energy channels (Bardgett and Wardle, 2010; De Deyn et al., 2008) i.e. the production of 

extracellular enzymes and transport proteins by recalcitrant C users (fungi) demands more 

N than the activities of labile C users (bacteria), and means that fungi are less common in 

more N-limited soils (Allison et al., 2011; Treseder et al., 2011), (2) fungal activity is 

likely to be low in rich peatland sites i.e. with low C:N, due to increased competitive 

ability of bacteria (Myers et al., 2012), (3) C:N may serve to represent the combined 

effects of multiple drivers such as pH and the quantity and quality of organic matter inputs 

from plant litter and root exudates (Fierer et al., 2009) and (4) higher F:B may lead directly 

to higher soil C:N, given the wider C:N of fungal biomass (Guggenberger et al., 1999).  

Water table is often studied, due to its spatial and seasonal effects on C cycling and 

response to land use change and local to global scale climate change (Ise et al., 2008; 

Lafleur et al., 2005; Weltzin et al., 2000). Site and season were significant factors for water 

table depth (Table 2.2), with the position of the water table highest in autumn and for sites 

1 and 3 (Figure 2.7). However the change in water table depth i.e. the deviation in water 

table level from the mean across all PFTs, sites and seasons, was not identified as a 

significant control over spatially and seasonally changing soil microbial communities 

(Table 2.16). Contrary to this study, water table depth or soil moisture has previously been 

identified as an important driver of differences in the size and composition of the soil 

microbial community (Andersen et al., 2010; Dinsmore et al., 2009; Jaatinen et al., 2007; 

Mäkiranta et al., 2009; Mitchell et al., 2010), with fungi generally better adapted to low 

moisture conditions. At this wind farm peatland, other factors such as soil temperature or 

the availability of substrates to microorganisms could be stronger than the effect of water 

table upon the soil microbial community size and structure. Another explanation could be 

that PFTs buffer the effect of the water table upon the soil microbial community by 

responding differently to water table change. Sphagnum mosses have been reported to be 

most sensitive to the short-term draw-down of the water table, with almost complete 

cessation of their physiological activities (Riutta et al., 2007). On the other hand, shrub 

CO2 exchange hardly changed, but contributed twice as much to the CO2 exchange than 

sedges, under lower water table levels (Riutta et al., 2007). This demonstrates that water 

table position affects PFT-induced differences in CO2 exchange, and therefore has the 

potential to influence other plant processes (i.e. production of root exudates) that would 

affect the overall size and relative proportion of microbial groups within the soil 

community (Schadt et al., 2003). Therefore, the indirect effects of water table-induced 
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changes in PFTs might be stronger determinants of differences in the microbial community 

than direct effects of water table position.  

2.4.2   Plant functional type effects 

As confirmation of hypotheses 1 and 3, PFT was a significant factor in determining 

differences in the physicochemical properties of peat, litter and vegetation (Tables 2.1 and 

2.2) and changes within the soil microbial community (Table 2.3). The total concentrations 

of microbes were not significantly different between PFTs, but shifts in the relative 

abundance of fungi and bacteria were detected i.e. more fungi beneath shrub (Table 2.3). 

Ward et al. (2007) found that the peat decomposer community was not as sensitive to land 

use-induced changes in vegetation community composition as expected, whereas previous 

studies in boreal ecosystems have shown measures of microbial community to respond to 

the manipulation of PFTs i.e. the removal of shrubs and mosses (Wardle and Zackrisson, 

2005). However, whilst PFT does not affect the overall abundance of microbes, PFTs do 

play an important role in the composition of the microbial community at this wind farm 

peatland. In turn, PFT-induced changes in the microbial community composition might 

influence C cycling, due to altering the dominance of particular functional groups (de Boer 

et al., 2005; Fisk et al., 2003; Waring et al., 2013). For example, Fisk et al. (2003) 

measured greater microbial activity in sites dominated by shrubs and Sphagnum moss than 

in sedge-dominated sites. Furthermore, patterns of substrate utilisation differed between 

shrub/Sphagnum and sedge sites, and this suggests that different assemblages of 

microorganisms mediated C fluxes in shrub/Sphagnum peat. In this study there were higher 

ratios of fungal to bacterial PLFAs in shrub-derived peat (Figure 2.9), possibly owing to 

the greater C content of shrub litter and vegetation observed (Figures 2.1 and 2.6) 

(McGuire et al., 2010; Treseder et al., 2011) and possibly greater abundance of 

mycorrhizae (Talbot et al., 2008). Another explanation could be that there were higher 

concentrations of lignin and phenolic compounds in shrub litter (Ward et al., 2009), which 

would select for microbes with a greater ability to utilise recalcitrant soil organic matter, 

and generate a bias towards the more conservative, fungal-based energy channel (Bardgett 

and Wardle, 2010). As seen by (Bardgett and Wardle, 2010), greater inputs of graminoid 

litter and rhixoexudates to peat can promote a bacteria-dominated microbial community, 

which might explain the relatively low F:B ratios observed in graminoid peat (Figure 2.9). 

Whereas symbiotic relationships between bryophyte mosses (i.e. Sphagnum) and N-fixing 

cyanobacteria (DeLuca et al., 2002) might be one mechanism that could lead to a relatively 

low abundance of fungi to bacteria in bryophyte peat (Figure 2.9).  
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Plants are a major source of C substrate for the soil microbial community, the form of 

which will vary with PFT (Ward et al., 2009). PFT-induced differences in litter and 

vegetation properties (Table 2.1) were found to explain variation within the soil microbial 

community (as tested by db-RDA) (Tables 2.14, 2.15 and 2.16), which indicates that the 

differences in the quality of plant inputs to the soil (i.e. C and N content) between each 

PFT might be one mechanism behind differences in the soil microbial community. In a 

study of a cutover peatland, Artz et al. (2007) acknowledged that such changes in below-

ground C availability can drive differences in the diversity of fungal communities. 

However, because the original plant PFT signature can become progressively weaker as 

decomposition occurs i.e. from litter to peat (Grayston, 1998; Orwin et al., 2006), this 

might account for the minimal effects of PFT on biochemical peat properties and the soil 

microbial community (Tables 2.1 and 2.3). Furthermore, the influence of PFT on the soil 

microbial community could be obscured by other stronger controls on the microbial 

community i.e. soil chemistry, temperature and moisture (Mäkiranta et al., 2009; Mitchell 

et al., 2010). By measuring the soil microbial community in the surface 15 cm of peat, it is 

possible that the portion of soil microbial community that is most likely to be affected by 

small-scale variation in soil chemistry and climate was sampled. Therefore, the effects of 

soil chemistry and climate may exceed those of PFT. The lack of PFT effects on PLFA 

groups (apart from F:B) and chemical peat properties could also be a result of greater 

patchiness in vegetation at Black Law than at other blanket bogs such as Moor House, 

Upper Teesdale, where PFT modulated the response of GHG fluxes to climatic change 

(Ward et al., 2013).  

Research was undertaken on a wind farm site, to study the effects of a new land use change 

for peatlands. This work revealed spatio-temporal differences in peat, litter and vegetation 

physicochemical properties and the soil microbial community across a wind farm hosting 

peatland, which were comparable with those in undisturbed peatlands and peatlands 

subjected to other more common land uses i.e. drainage and forestry, but less so with 

grazed and burnt peatlands. The bulk density and pH of peat, together with the total C 

content and C:N of peat, litter and vegetation were identified as the strongest controls over 

the soil microbial community. However, PFT may be better suited to predicting the soil 

microbial community than one-off measurements of soil properties and chemicals, because 

relatively slow growing vegetation types represent a better long term proxy of climate, soil 

chemistry and land use, than soil characteristics alone (Mitchell et al., 2010). The 

differences in the peatland properties observed here cannot be directly attributed to a wind 

farm microclimate effect, but do suggest that wind farm-induced changes in the plant 
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community composition could have important implications for surface storage and flux of 

C in peatlands hosting wind farms.  

2.5  Conclusions 

This research aimed to assess the spatio-temporal variation in aboveground and 

belowground peatland properties for each PFT, at a peatland hosting a wind farm. As 

expected, site was a dominant factor for changes in peat, litter and plant physicochemical 

properties, while PFT effects were found for all measured litter and vegetation properties, 

but only peat N stock. The position of the water table and the size and composition of soil 

microbial communities did vary seasonally, but there were stronger spatial differences 

observed i.e. between PFTs or across the peatland. Peat variables were strongly correlated 

with soil microbial community composition across all sites in winter, summer and autumn, 

whereas litter variables explained the most variation in spring-time soil microbial 

communities. This supports the interpretation that variation in microbial community 

composition for each PFT and across all sites and seasons was primarily related to peat 

characteristics: bulk density, pH, total C content and C:N (Table 2.15). While PFT did 

affect the composition of the microbial community, there were no PFT-induced differences 

in microbial abundance. However, litter and vegetation total C content and C:N were 

selected to explain a significant amount of variation within the seasonally and spatially 

changing soil microbial community. Therefore, peat, litter and vegetation chemical 

characteristics can all serve as key determinants of soil microbial communities, but the 

observed interactions of site with season and PFT suggest that complex feedbacks to 

environmental change are to be expected. Furthermore, the causes and consequences of 

these results need more consideration. Studying wind farm-induced microclimate effects of 

small-scale temperature change on peatland C cycling and understanding how plant 

functional traits influence decomposition rates are important.  

The variation found in aboveground and belowground peatland properties across Black 

Law Wind Farm supports the need for spatially distributed designs that incorporate PFTs 

and seasonal sampling, when understanding peatland C cycling and storage. In order to 

improve the capacity to predict ecosystem response to global climate change, land use 

change and even land use-induced microclimate change, future field studies should control 

for PFT and spatio-temporal variability in physical, chemical and biological peatland 

properties.  
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Chapter 3 

 

Microclimate and plant functional type controls on peat greenhouse gas fluxes 
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3.1  Introduction 

Northern peatlands play an important part in global carbon (C) cycles (Sulman et al., 

2013), however climate change (Ward et al., 2013) and land use change (Armstrong et al., 

2014; Ostle et al., 2009) increase the vulnerability of currently vast peatland C stores. The 

principal consequences of climate change and land use change in peatlands include 

alterations in air and soil temperature and water table depth, which are known to strongly 

regulate the release of greenhouse gases (GHG) and determine rates of C sequestration in 

peatlands (Davidson and Janssens, 2006; Sulman et al., 2013). In addition, changes in plant 

community composition have also been observed which are likely to mediate C cycle 

responses to climate and land use change (Gallego-Sala and Prentice, 2012; Ward et al., 

2013), but the relative importance and mechanisms underlying these effects are unclear 

(Carney and Matson, 2005; Ward et al., 2013; Weltzin et al., 2000). Northern peatlands are 

subjected to natural cycles of temperature and moisture conditions (seasonal, diurnal and 

inter-annual). For example, soil temperatures have been found to range from -4°C to 16°C 

(Fenner et al., 2005; Worrall et al., 2004) and water tables can fluctuate between the peat 

surface and up to 45 cm below (Bubier et al., 2003; Holden and Burt, 2003) across a range 

of tundra and temperature peatlands. The relatively small microclimate changes predicted 

as a result of global climate change (i.e. 1.7 – 4.4°C rise in air temperature, together with 

fluctuating precipitation) (IPCC, 2013) and land use change (i.e. water table >50 cm below 

the surface in drained sites) (Price et al., 2003) are likely to affect C cycling, but effects 

could be relatively small. However, this has not been tested experimentally, and the direct 

effects of microclimatic change and interactions with typical peatland plants are poorly 

understood.  

Temperature and water table level regulate peat respiration and decomposition processes 

(Briones, 2009; Clark et al., 2009; Rydin et al., 2006), and resultant carbon dioxide (CO2) 

and methane (CH4) emissions (Bardgett et al., 2008; Ward et al., 2009). Relatively small 

temperature and water table changes have been observed to significantly affect ecosystem 

functioning, for example a mean 1°C annual increase in temperature raised respiration by 

up to 60% in Arctic blanket peatland (Dorrepaal et al., 2009), whilst a warming of 1
o
C  

increased CH4 fluxes by 80%, 8% and 75% under raised, control and lowered water tables 

respectively (Turetsky et al., 2008). Greater GHG emissions with warming (4 to 24
o
C) in 

peat cores with high and low water table levels (near surface to 36 cm below) are also 

observed under controlled laboratory conditions (Aerts and Ludwig, 1997; Blodau et al., 

2004; McKenzie et al., 1998; Scanlon and Moore, 2000; Waddington et al., 2001). Shifts in 



 

65 

 

peatland water table levels alter the balance between aerobic and anaerobic conditions 

influencing biological processes in the peat. Aerobic conditions favour peat CO2 emissions 

and inhibit CH4 emissions (Estop-Aragonés, 2011; Öquist and Sundh, 1998), whilst 

anaerobic conditions decrease CO2 emissions and increase CH4 emissions (Glatzel et al., 

2004; Moore and Dalva, 1997).  

Plant community composition effects on C cycling are less understood. In blanket 

peatlands dominant plant functional types (PFTs) are bryophytes (e.g. Sphagnum sp., 

feather mosses), shrubs (e.g. Calluna vulgaris, Vaccinium sp.) and graminoids (e.g. 

Eriophorum vaginatum, sedges, and rushes). The regulatory roles of PFTs in peatland C 

dynamics (Ward et al., 2012). These functional traits determine the quality and quantity of 

C inputs entering the soil (Bardgett et al., 2013), resulting in changes to the chemical 

composition of peat (Ward et al., 2009) and the form and function of the soil microbial 

community (Artz, 2009; Read et al., 2004).  Ultimately, PFT-induced differences in soil 

microbial composition will modulate the magnitude of GHG emissions (De Deyn, 2011; 

Hector et al., 2000; Ward et al., 2010, 2007).  

Effects of PFT on GHG emissions have been observed in the field and laboratory. Areas 

occupied by graminoids had higher GHG fluxes than adjacent shrub dominated blanket 

peat (Greenup et al., 2000; McNamara et al., 2008; Ward et al., 2013) and mesocosms 

containing sedges had significantly higher fluxes of CH4 compared to those without (Green 

and Baird, 2013). It is known that graminoids and shrubs differ in the rate that they allocate 

C belowground (Ward et al., 2012, 2009). These differences are expected to affect the 

quality and quantity of root exudates released to the soil and thereby alter the composition 

and activity of microbial communities (Bardgett et al., 2013; De Deyn et al., 2008), for 

example peat beneath shrub is likely to have a  greater abundance of mycorrhizal fungi 

than under graminoids (Read et al., 2004). Plant root symbioses and the  presence of 

recalcitrant litter (which has increased C:N and concentrations of phenolic compounds) 

have been found to explain the association of fungi with shrubs (Freeman et al., 2001; 

Myers et al., 2012; Smith and Read, 2010). Bacteria dominate in moss- and sedge-derived 

peat (Winsborough and Basiliko, 2010) due to more easily decomposed litter (Ward et al., 

2010) and peat containing smaller proportions of recalcitrant material (Myers et al., 2012). 

Bryophyte mosses play an important role in peatland CH4 cycling, through their close 

association with methanotrophic bacteria (Kip et al., 2010) whereas graminoids provide 

conduits for passive gas transfer from the peat to the atmosphere with their aerenchymous 

tissues (Artz et al., 2007; McNamara et al., 2008; Moore et al., 2007; Pietikåinen et al., 
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2005) and stimulate methanogenic bacteria due to the provision of labile substrates (i.e. 

acetate) through their deep roots (Ström et al., 2012). Fungi are known to have slower and 

more efficient use of C than bacteria (Rousk and Bååth, 2007; Six et al., 2006), so the ratio 

of fungi to bacteria in the soil microbial community beneath dominant PFTs can affect the 

storage and flux of C in peatlands (Waring et al., 2013). As a result of PFT-induced 

changes in abiotic and biotic soil conditions, a plant legacy effect can therefore exist within 

the soil and play an important role in regulating GHG emissions.  

Rarely are the effects of temperature, water table and PFT on GHG fluxes examined 

together (Couwenberg et al., 2011; Green and Baird, 2012; Ward et al., 2009) and PFT 

interactions with microclimatic changes in temperature and water table remain unknown. 

This represents a significant gap in knowledge that needs to be addressed to improve 

understanding of the mechanisms that regulate peatland biogeochemical cycling. The 

objective of this study was, therefore, to assess the sensitivity of peat GHG fluxes to small-

scale changes in temperature and interactions with water table level and PFT to enable 

better predictions of the role of microclimate change and plant community composition on 

peatland C cycling. A multi-factorial microcosm experiment was designed to test the 

interactive effects of temperature and water table, on CO2 and CH4 fluxes from peat 

sampled from under three different PFTs. In this study, the hypotheses were: (1) small-

scale changes in temperature and water table level would interact to differentially affect 

peat CO2 and CH4 fluxes, with effects being more pronounced at high and low temperature 

and water table levels, (2) the legacy of plant species traits upon peat abiotic and biotic 

properties would result in differences in GHG fluxes, with greater CH4 fluxes from 

graminoid peat due to the supply of labile C substrates into the peat, (3) the influence of  

PFT on peat GHG fluxes would be strongest at the start of the incubation, with temperature 

and water table treatments dominating PFT legacy effects as labile C substrate depletion 

occurred over time. 

3.2  Methods  

To address the hypotheses of this study, peat cores were taken in May 2011 from a blanket 

bog at Black Law Wind Farm, Lanarkshire, Scotland (Figure 1.1, Chapter 1). One hundred 

and eight intact cores (PVC pipe, 11 cm diameter, 30 cm depth) were taken from beneath 

three dominant plant species (i.e. Calluna vulgaris, Eriophorum vaginatum and Sphagnum 

capillifolium) each being representative of shrub, graminoid or bryophyte PFTs. 

Vegetation was removed from the core surface area prior to collection to control for 

differences in initial plant biomass and future growth. Instead, this study examined the 
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legacy of PFT effects within the upper layer of peat - the portion of depth profile most 

sensitive to abiotic change and most productive of GHGs (Strack et al., 2008). To reduce 

the influence of spatial variation, cores were all collected within an area of approximately 

10 m
2
. Whilst minimising disturbance to the peat, cores were extracted manually, wrapped 

in polythene and transported to the laboratory. Bases were fixed to all of the cores using 

silicone adhesive sealant. A drainage tube was inserted near the base of each cylinder and 

fixed up the length of the microcosm to facilitate water table measurements. Cores were 

kept at 4°C prior to the commencement of the experiment. Supplementary peat samples 

(PVC pipe cores, 5 cm diameter, 15 cm depth) were taken from the sampling location to 

quantify peat bulk density, pH, total C content, total nitrogen (N) content, C:N, C stock, N 

stock and soil microbial community composition beneath each PFT (see section 2.2, 

Chapter 2).  

A fully factorial experiment was established comprising three temperatures, three water 

table levels, three PFTs replicated four times. Incubation temperatures were above mean 

annual temperature (8°C) at Black Law wind farm and within a 4°C range (12, 14, and 

16°C). The temperature range was chosen in order to simulate conditions at the field site 

during summer (i.e. a period of increased GHG uptake and release), as well as small-scale 

temperature changes which could result from global climate change and land use change. 

The global mean surface temperature is projected to rise by 2-4 °C by the end of the 21
st
 

century, according to the Representative Concentration Pathway (RCP) 8.5 (IPCC, 2013). 

Wind farm microclimate effects have also been observed to change surface air temperature 

by 0.7-3.5 °C (Armstrong et al., 2014b; Baidya Roy and Traiteur, 2010).  

Thirty six peat cores were placed into each of three controlled temperature rooms. At each 

temperature, 12 peat cores from each PFT were randomly assigned a water table level 

treatment. Water table levels were adjusted to below the surface of each core with depth 

ranges chosen that are typical of the water table dynamic range at this site (Waldron et al., 

unpublished raw data): low (25 cm depth), intermediate (15 cm depth) or high water table 

level (5 cm depth).  

Water table levels were manipulated with the addition of deionised water during a two 

week adjustment period, and maintained throughout the experiment. Deionised water was 

used in preference to rainwater to control for variable nutrient inputs. Peat cores were 

incubated for 322 days, with CO2 and CH4 emissions measured six times at 7, 35, 154, 223 

and 322 days after the start of the experiment. To measure CO2 and CH4 flux rates, an 

opaque chamber (12 cm diameter, 10 cm height) was attached to the top of each core with 
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silicone adhesive sealant (mean headspace volume was 642.14 cm
3
). Headspace gas 

samples (10 ml) were collected through a rubber septum in each chamber lid, using a 20 ml 

syringe fitted with a 0.5 mm needle, flushed three times with headspace gas before filling.  

Gas sampling was at four time points, immediately after sealing the lid and then at three 10 

minute intervals. All gas samples were stored in pre-evacuated 3 ml exetainers (Labco, 

UK) and analysed for CO2 and CH4 concentration on a Perkins Elmer AutosystemXL GC 

with FID and methaniser. Full details of GC conditions are described in (Case et al., 2013). 

Results were calibrated against two certified gas standards of 500 and 4000 ppm CO2, 1 

and 10ppm CH4. Gas fluxes (CO2 and CH4) were calculated from the change in chamber 

concentration, air temperature and chamber volume and area measurements (Holland et al., 

1999).  

3.2.1   Statistical analysis  

One-way ANOVA was performed using SAS V9.1, Enterprise Guide 4.0 to test the 

significance of PFT on biochemical characteristics of peat, followed by Tukey’s test post-

hoc analyses. Normality of data was checked before analysis and appropriate 

transformations were applied if necessary. This analysis was conducted in order to test the 

hypothesis that a plant functional type legacy in peat can affect biochemical properties, and 

in turn influence GHG fluxes.  

Repeated measures ANOVA was performed using SAS V9.1, Enterprise Guide 4.0 to test 

the hypotheses that PFT legacy effects in peat and small-scale changes in temperature and 

water table would result in differences in GHG fluxes over the incubation period. The 

significance of temperature, water table level and PFT over time was tested on CO2 and 

CH4 fluxes, followed by Tukey’s test post-hoc analyses. Data were checked for normality, 

with natural log transformations applied to CO2 and CH4 data before final analysis.  

Throughout the text, ‘significant’ is referred to if p < 0.05.  

3.3  Results 

3.3.1   Biochemical peat properties  

Bulk density, pH, total C content, total N content, C:N, C stock, N stock and measures of 

microbial community composition and size are shown in Table 3.1. One-way ANOVA 

analyses show that these peat properties were not significantly different with PFT at the 

sampling site (Table 3.1).  



 

69 

 

3.3.2   CO2 fluxes 

Average CO2 flux response to temperature, water table and PFT ranged between 0.05 and 

1.96 CO2 – C g m
-2

 d
-1

. Temperature and water table significantly affected CO2 fluxes, 

with an interaction between them (Table 3.2). CO2 fluxes increased with rising temperature 

and lowering of the water table, with this response being strongest at the warmest 

temperature (Figure 3.1). 

PFT did not significantly affect CO2 fluxes analysed across the 11 month experiment 

(Table 3.2), but there were significant positive interactions between temperature and PFT 

at day 0 (F (2,626) = 3.75, p = 0.0076), day 7 (F (2,626) =3.10, p = 0.0198) and day 35 (F (2,626) 

= 3.82, p = 0.0067), with additional interactions between water table and PFT at day 7 (F 

(2,626) =4.64, p = 0.0020) (data not shown). Interactive effects of temperature, water table 

and PFT had the greatest impact upon CO2 fluxes from graminoid and bryophyte cores, 

which increased by a greater magnitude than shrub CO2 fluxes at the warmest temperature 

and lowest water table.  

There was a significant interaction between time and temperature (Table 3.2), with CO2 

fluxes decreasing over time by a larger extent at lower temperatures. For instance, at day 0 

average CO2 fluxes at the lowest temperature were approximately 26% greater than at day 

322, whereas emissions at the warmest temperature were approximately 10% greater at day 

0 than at day 322 (data not shown). Effects of water table varied significantly over the 

course of the experiment, with the effect of time decreasing CO2 fluxes by a greater degree 

under high water tables. Average CO2 fluxes were approximately 60% greater with high 

water tables at day 0 than at day 322, while emissions at day 0 from low water tables were 

approximately 17% greater than at day 322 (data not shown).   
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Table 3.1: Biochemical peat properties for each PFT (B = bryophyte, G = graminoid, S 

= shrub). BD = dry bulk density (g cm
-3

), C% = total C content, N% = total N content, 

C:N = ratio of C% and N%, C stock =  g C m
-2

 to a depth of 15 cm, N stock =  g N m
-2

 

to a depth of 15 cm, total PLFAs = total PLFA concentration (µg g
-1

 dwt soil), fungi = 

total fungal PLFAs, bacteria = total bacterial PLFAs, F:B = ratio of fungal to bacterial 

PLFAs, gram +ve = gram-positive bacterial PLFAs, gram –ve = gram-negative 

bacterial PLFAs, G +ve:G –ve = ratio of gram-positive bacterial to gram-negative 

bacterial PLFAs. Data are means ± standard error.  One-way ANOVA results showing 

the effect of PFT:  ns = not significant, * = p < 0.05, ** = p < 0.01 and n = 4 per PFT. 

 

 

 PFT 

 B G S 

BD 0.10 ± 0.02 
ns 

0.11 ± 0.05 
ns 

0.10 ± 0.02 
ns 

pH 4.06 ± 0.06 
ns

 4.14 ± 0.10 
ns

 4.07 ± 0.07 
ns

 

C% 40.84 ± 1.06 
ns 

40.51 ± 1.36 
ns 

40.30 ± 0.79 
ns 

N% 0.99 ± 0.08 
ns

 1.03± 0.05 
ns

 1.00 ± 0.09 
ns

 

C:N 42.32 ± 3.85 
ns 

39.42 ± 2.23 
ns 

40.99 ± 2.63 
ns 

C stock 
6159.15 ± 

1190.45 
ns

 
6719.40 ± 

950.10 
ns

 
5812.33 ± 

1101.10 
ns

 

N stock 141.92 ± 17.83 
ns 

169.67 ± 19.60 
ns 

149.61 ± 40.83 
ns 

Total 

PLFAs 
101.61 ± 21.85 

ns
 132.23 ± 23.66 

ns
 155.18 ± 31.64 

ns
 

Fungi 16.96 ± 5.22 
ns 

21.13 ± 4.27 
ns 

33.66 ± 8.59 
ns 

Bacteria 43.40 ± 9.92 
ns

 59.54 ± 10.27 
ns

 60.35 ± 11.66 
ns

 

F:B 0.40 ± 0.08 
ns 

0.35 ± 0.02 
ns 

0.55 ± 0.08 
ns 

Gram +ve 17.94 ± 5.03 
ns

 24.82 ± 6.83 
ns

 24.53 ± 5.49 
ns

 

Gram –ve 24.82 ± 5.21 
ns 

33.90 ± 3.86 
ns 

34.90 ± 7.21 
ns 

G +ve:G -ve 0.72 ± 0.14 
ns

 0.70 ± 0.17 
ns

 0.73 ± 0.11 
ns
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3.3.3   CH4 fluxes 

Temperature, water table and PFT all significantly affected CH4 emissions with 

interactions between these parameters and also with time (Table 3.3). At low water tables, 

increasing temperature had no effect upon CH4 fluxes. However, CH4 fluxes at 

intermediate and high water tables did vary with temperature, but there was no consistent 

trend. CH4 fluxes were low in all PFT treatments at 14°C, whereas CH4 fluxes did vary 

significantly with PFT at 12°C and 16°C. A greater magnitude of change from low to 

intermediate to high water tables in graminoid and bryophyte CH4 fluxes was observed at 

16°C (Figure 3.2), but the largest degree of change in shrub CH4 fluxes with each 10 cm 

increase in water table level occurred at 12°C (Figure 3.2).  

CH4 fluxes were low in all PFT treatments, but overall were greater for graminoid than 

bryophyte and shrub (Figure 3.2). CH4 fluxes at intermediate and high water tables were 

significantly higher than those measured at low water tables, with a greater magnitude of 

change in graminoid CH4 fluxes from low to intermediate to high water tables compared 

with bryophyte and shrub (Figure 3.2).  

Overall, average CH4 fluxes decreased significantly over time with significant interactions 

between temperature, water table and PFT (Table 3.3 and Figure 3.3). CH4 fluxes at the 

beginning of the experiment varied significantly with temperature, water table and PFT. 

However, a significant reduction in CH4 fluxes was observed after day 7, a trend which 

was seen across all treatments (Figure 3.3). The effect of time decreased graminoid CH4 

fluxes by a greater magnitude at 16°C, 12°C and at high water table levels (Figure 3.3). For 

bryophyte and shrub, time had little effect upon CH4 emissions across all temperature and 

water table treatment ranges, as CH4 emissions overall were very low in these PFT 

treatments (Figure 3.3).  
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Table 3.2: Main and interactive effects of time, temperature, water table 

and PFT on CO2 fluxes (CO2 -C g m
-2

 d
-1

) analysed by repeated 

measures ANOVA. D = sampling days within the 322 day experimental 

period, T = temperature (°C), WT = water table position (cm below the 

surface of peat core) and PFT = plant functional type. Df = degrees of 

freedom, F = F value and p = p value.  

Repeated measures ANOVA: df F p 

D 5 21.49 <0.0001 

T 2 64.00 <0.0001 

WT 2 30.34 <0.0001 

PFT 
  

ns 

D*T 10 4.30 <0.0001 

D*WT 10 3.28 0.0004 

D*PFT 
  

ns 

T*WT 4 4.97 0.0008 

T*PFT 
  

ns 

WT*PFT 
  

ns 
 

 

 

Figure 3.1: CO2 fluxes from all cores across the 4°C temperature range for 

each water table (WT) level treatment: low = -25 cm, intermediate = -15 

cm, high = -5 cm. Letters indicate pair-wise significant differences between 

temperature and water table level treatments. Data are means (averaged for 

PFT) ± standard error. CO2 flux expressed as CO2 - C in g m
-2

 d
-1

.  
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Table 3.3: Main and interactive effects of time, temperature, water table and PFT 

on CH4 fluxes (CH4-C g m
-2

 d
-1

) analysed by repeated measures ANOVA. D = 

sampling days within the 322 day experimental period, T = temperature (°C), WT 

= water table position (cm below the surface of peat core) and PFT = plant 

functional type. Df = degrees of freedom, F = F value and p = p value. 

Repeated measures  ANOVA: df F p 

D 5 14.64 <0.0001 

T 2 8.74 0.0003 

WT 2 17.81 <0.0001 

PFT 2 10.32 <0.0001 

D*T 10 2.98 0.0013 

D*WT 10 7.25 <0.0001 

D*PFT 10 3.12 0.0008 

T*WT 4 3.24 0.0146 

T*PFT 4 3.01 0.0210 

WT*PFT 4 3.99 0.0046 
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Figure 3.2: CH4 fluxes from cores of each PFT: i) bryophyte, ii) graminoid and iii) shrub, across the 

4°C temperature range for each water table level treatment: low = -25 cm, intermediate = -15 cm, 

high = -5 cm. Letters indicate pair-wise significant differences between temperature treatments. Data 

are means ± standard error. CH4 flux expressed as CH4 - C in g m
-2

 d
-1

.  
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Figure 3.3: Mean CH4 flux over 322 day experimental period, showing effects of 

temperature (°C), water table (WT) position (low = -25 cm, intermediate = -15 cm, 

high = -5 cm) and PFT (bryophyte, graminoid and shrub). Error bars are standard 

error. CH4 flux expressed as CH4 - C in g m
-2

 d
-1

. 
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3.4  Discussion 

This multi-factorial microcosm experiment elucidates the effects of changes in peatland 

microclimates on C cycling, by investigating the interactive effects of temperature, water 

table and PFT on both CO2 and CH4 emissions from peat. Results demonstrate that small 

changes in temperature and water table were the dominant controls on CO2 fluxes (Table 

3.2), whereas CH4 fluxes reflected significant interactions between PFT, temperature and 

water table (Table 3.3).  

3.4.1   Microclimate effects 

In support of the first hypothesis, significant differences in both CO2 and CH4 fluxes were 

found between each 2°C change in temperature and 10 cm decrease in water table (Figures 

3.1 and 3.2), with significant interactions between temperature and water table affecting 

both CO2 and CH4 fluxes.  

Temperature and water table were shown to be major controls for CO2 (Figure 3.1), with 

larger increases in CO2 flux occurring at the highest temperature and lowest water table, 

than at lower temperatures and higher water tables. CO2 fluxes at 16°C were 1.8 times 

greater under low water tables than under high water tables. This magnitude of change is 

similar to the 2.5 times greater CO2 production observed at warmer temperatures, under 

aerobic conditions compared to anaerobic (Moore and Dalva, 1997). At 12°C, and with 

water table depths ranging from 0 – 30 cm, CO2 fluxes at drained and forested 

ombrogenous and minerogenous bogs also increased with lower water table levels, but 

were of an order of magnitude greater than measured in this study (Silvola et al., 1996).  

An increase in soil microbial activity with lowered water tables is a common response in 

previously saturated soils (Kirschbaum, 2004), with the stimulation of heterotrophic 

decomposition and hydrolytic enzyme activity (Bubier et al., 2003; Freeman et al., 2001). 

Water table position has previously been found to be the strongest control on peat CO2 

fluxes (Laine et al., 2007). However, in this study small differences in temperature had the 

greatest relative effect on CO2 fluxes (Figure 3.1), which is in agreement with the effects 

on peat respiration observed with an average 1°C rise in temperature (Dorrepaal et al., 

2009; Ward et al., 2013). However, whilst respiration may rise with small-scale increases 

in temperature under controlled conditions, the net effect on CO2 flux may not be the same 

under field microclimate conditions due to reduced oxygen availability caused by high 

water tables or CO2 uptake by the living plant surface (Chivers et al., 2009; Ward et al., 

2013).  
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Temperature was also a principal driver of differences in CH4 fluxes (Figure 3.2), however 

there was no linear relationship between temperature and net methane fluxes observed in 

some studies (Dunfield et al., 1993). The response of CH4 emissions to the small increases 

in temperature imposed here, were more complex than initially hypothesised, with greater 

graminoid CH4 fluxes at 12°C than at 14°C and 16°C on average (Figure 3.2). CH4 fluxes 

are expected to increase with atmospheric warming under a range of water table scenarios, 

as a result of the heightened temperature sensitivity of CH4 production compared with 

methanotrophy (Dunfield et al., 1993). Therefore, CH4 production is expected to increase 

proportionately more than CH4 oxidation under a warmer climate. However, this study 

suggests that this may not always be the case.  

Differences in CH4 fluxes were observed between high and low water tables. Peat cores 

with the largest water-logged, anaerobic zone produced average CH4 fluxes (0.1037 CH4-C 

g m
-2

 d
-1

) three orders of magnitude higher than those from cores with a larger aerated zone 

(0.0002 CH4-C g m
-2

 d
-1

) (Figures 3.2 and 3.3). The observation that highest CH4 flux rates 

are found with minimal aerobic zones is not unusual (Bellisario et al., 1999; White et al., 

2008), yet the magnitude of this effect is lower than previously observed (Moore and 

Dalva, 2001).  

CH4 fluxes from low water tables were inhibited and less sensitive to changes in 

temperature and PFT (Figure 3.2). Under aerobic conditions the inhibition of CH4 

production is caused by the restricted activity of anaerobic methanogens, an expected 

effect of prolonged oxygen exposure (Estop-Aragonés, 2012). Although higher 

temperatures support increased methanogenesis (Dunfield et al., 1993), this study shows 

that low water tables have the ability to offset increased emissions through a greater 

capacity for oxidation. As a result, the interacting strengths of these responses can cause 

variability in emissions (Dijkstra et al., 2012).  

The mechanism of increased substrate use at warmer temperatures and the important 

interaction with water table level may explain why CH4 fluxes here are greater at 12°C 

than 16°C for graminoid and shrub cores with high water tables (Figure 3.2). This partially 

supports the first hypothesis and suggests that an increase in water table can have a greater 

effect on CH4 fluxes than warming (Dijkstra et al., 2012; Turetsky et al., 2008). However, 

temperature is an important factor in regulating the activity of methanogens (Frenzel and 

Karofeld, 2000; Williams and Crawford, 1984) and is also strongly interrelated with water 

table level because heat diffusion in peat is controlled by water (Bubier and Moore, 1994). 

Therefore, the significant interaction between water table and small-scale temperature 
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change reported here is important, indicating that these relationships can exist and exert 

influence over GHG production under microclimate changes (i.e. 2°C temperature change 

and 10 cm water table adjustment).  

3.4.2   Plant functional types 

Changes in climate and vegetation are known to independently exert control over 

ecosystem C dynamics (De Deyn et al., 2008; Dorrepaal et al., 2009), but rarely are PFT 

effects on CO2 and CH4 emissions examined in conjunction with environmental variables 

such as water table or temperature (Hooper et al., 2000; Kardol et al., 2010; Ward et al., 

2013), and seldom are the sub-surface PFT effects on GHG fluxes considered instead of 

the living plant surface.  

Peat abiotic and biotic properties were not significantly different between the three PFTs at 

the start of the experiment (Table 3.1). Graminoid cores emitted CO2 fluxes of a greater 

magnitude than bryophyte and shrub, but these differences were not significant overall 

(Table 3.2). However, the second hypothesis is partially confirmed because graminoid peat 

emitted significantly more CH4 than other PFTs across all water table and temperature 

treatments (Figure 3.2). Furthermore, this study revealed that CH4 fluxes were more 

strongly regulated by PFT than small-scale warming (i.e. increases of 2°C or 4°C) (Table 

3.3), an observation also noted with a 1°C warming in the field (Ward et al., 2013). 

Graminoid cores emitted 17 and 5 times more CH4 than shrub and bryophyte cores 

respectively, with no significant difference between CH4 fluxes from bryophyte and shrub 

cores (Figure 3.2). Strong relationships between graminoid species and CH4 emissions 

have been observed previously by (Couwenberg et al., 2011; Greenup et al., 2000), with 

greater CH4 fluxes from graminoid>bryophyte>shrub dominated peat (Green et al., 2011; 

Moore and Dalva, 1997; Waddington et al., 1996; Whiting and Chanton, 1993). Higher 

CH4 fluxes from graminoids may be explained by the functional traits of this species. 

Graminoids have more easily decomposed litter and increased quality and quantity of root 

exudates that will enhance methanogenic bacterial activity, whilst the presence of 

aerenchymous tissue in graminoids will provide a by-pass for CH4 through the 

methanotrophic ‘processing’ of the aerobic peat layer (Green and Baird, 2012). Despite no 

significant PFT-induced differences in C:N and total PLFAs in peat (Table 3.1), it is 

possible that the quality of C compounds (Cornwell et al., 2008) and detailed differences in 

microbial composition and diversity (Artz et al., 2007) could result in abiotic and biotic 

conditions that also control GHG fluxes. CH4 fluxes have also been affected by PFT 

outside of the growing season (Ward et al., 2013), which indicates that PFT-induced 
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differences in microbial activity and peat physicochemical conditions determine 

differences in GHG emissions during periods of inactive growth: evidence to support the 

existence of plant legacy effects in peat that are observed in this study.  

In support of the third hypothesis, some significant interactions of PFT with temperature 

and water table were observed to affect initial CO2 (data not shown) and CH4 fluxes 

(Figure 3.3). The supply of root exudates might be the mechanism behind the short-lived 

PFT-induced differences in GHG fluxes observed at the start of the experiment, due to 

providing a pool of labile C that is rapidly respired (Bradford et al., 2008; Freeman et al., 

2004). Without living plants to replenish the labile C pool (Davidson and Janssens, 2006), 

microbial activity will be limited by the quality and quantity of root exudates that remain 

in the peat from beneath each PFT.  

Atmospheric warming, as a result of climate change, is expected to be greatest at northern 

latitudes (Weltzin et al., 2000), with significant effects on ecosystem function mediated 

through climate-driven changes in plant community composition (Walker et al., 2006; 

Weltzin et al., 2000). Higher CH4 emissions are expected with climate change, from the 

loss of oxidising peat produced by the Sphagnum methanotroph consortium in favour of 

vascular plants i.e. graminoids and shrubs (Gallego-Sala and Prentice, 2012). However, the 

increased sensitivity of graminoid GHG fluxes to the interactive effects of temperature and 

water table observed in this study implies a resilience of bryophyte and shrub peat to 

changes in abiotic environmental variables. These results confirm the second hypothesis 

that the legacy of plant species traits on peat will result in differential GHG fluxes from 

peat. It is now important to improve the fundamental understanding of these responses by 

investigating the relationship between plant species traits and peat abiotic and biotic 

properties. For example, by investigating the litter chemistry and nutrient stoichiometry of 

peat under different PFTs alongside more detailed analysis of microbial community 

composition and diversity. This will enable us to understand how changes in above-ground 

plant community composition will interact with longer-term legacy effects on peat abiotic 

and biotic properties to determine soil C cycling under future climate change. 

3.5  Conclusions 

Peatland microclimates are expected to alter as a consequence of climate change and land 

use change (Armstrong et al., 2014b; Ward et al., 2013). Given the capacity for GHG 

fluxes to be affected by small-scale changes in temperature and water table depth as shown 

here, future monitoring of peatland microclimatic changes is essential to understanding C 
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cycling processes. The known variability in C cycling between PFTs during active growth 

(Ward et al., 2013), together with the PFT legacy effect on peat GHG emissions observed 

in this study, demonstrate that future studies should also control for both above and 

belowground PFT effects. Whilst the underlying causes of the results reported in this study 

require further investigation, the findings indicate that peat microclimate changes and the 

relative proportion of each PFT within the plant community can act as independent or 

interactive modulators of peatland GHG fluxes. Better evidence of the magnitude of direct 

and indirect microclimate change effects on peat C cycling is required in order to predict 

the size and direction of C storage change, especially as long term changes in relative 

abundance of PFT groups might become more important. 
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Chapter 4 

 

Plant functional type controls on litter decomposition rates in peatlands  
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4.1  Introduction 

The rate of litter decomposition affects the balance and storage of carbon (C) in terrestrial 

ecosystems, and ultimately influences the cycling of C at the global scale (Wang et al., 

2014). In view of this, factors affecting litter decomposition have been studied extensively 

(Aerts, 1997; Butenschoen et al., 2011; Clarkson et al., 2014; Couteaux et al., 1995). Three 

main factors govern decomposition dynamics: (1) conditions of the decomposition 

environment, such as soil temperature, aeration and moisture availability (Clarkson et al., 

2014), (2) litter quality characteristics, such as initial nutrient concentrations, lignin content 

and C:N (Hoorens et al., 2002), (3) composition and abundance of the decomposer 

community e.g. the ratio of fungi to bacteria (F:B) and total microbial biomass (Myers et 

al., 2012). 

In northern peatlands, the formation of blanket bog peat is a direct result of very low rates 

of decomposition (Belyea, 1996). The accumulation of large organic C stocks in these 

ecosystems is attributed to the inhibition of soil microbial activity, caused by the 

combination of cool temperatures, high water tables and slow to decompose plant litters 

and organic matter substrates (Moore et al., 2007). The plant species that produce these 

litters have distinct functional traits, which are used to classify the species by ‘plant 

functional type’ (PFT) groups (Chapin et al., 1996; Cornwell et al., 2008; De Deyn et al., 

2008). There is a well-established relationship between plant litter species identity and its 

decomposition (Aerts, 1997), a relationship that can also be applied to litters from different 

PFTs (Cornwell et al., 2008). Bryophytes (e.g. Sphagnum sp., feather mosses), shrubs (e.g. 

Calluna vulgaris, Vaccinium sp.) and graminoids (e.g. Eriophorum vaginatum, sedges and 

rushes) are three dominant peatland PFTs that determine differences in C cycling due to 

their functional dissimilarities (Ward et al., 2009). Bryophytes produce litter with poor 

organic matter quality and low N concentrations, shrub litter has high C:N and is rich in 

lignin, and both litter types contain phenolic compounds that are known to inhibit 

decomposition (Hättenschwiler and Vitousek, 2000; Read et al., 2004; Turetsky, 2003). 

Relative to shrubs and bryophytes, graminoids have a high leaf nitrogen (N) content and 

contain less recalcitrant C compounds, increasing the decomposability of their tissues 

(Dorrepaal et al., 2005).  

Litter PFT can also influence the underlying peat, along what is increasingly known as the 

decomposition continuum across the litter-soil interface (Ball et al., 2014; Clymo et al., 

1998; Wardle et al., 2004). The PFT of litter to which the peat is exposed to has the 
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potential to influence the quality and quantity of C inputs entering the soil (Bardgett et al., 

2013), resulting in changes to the chemical composition of peat (Orwin et al., 2006; Ward 

et al., 2009) and the form and function of the soil microbial community (Ayres et al., 2006; 

Read et al., 2004; Wardle, 2002). Therefore, as a function of surface litter resources, a PFT 

legacy effect can exist within the soil and determine rates of decomposition (Ayres et al., 

2006; Ball et al., 2014; Carrillo et al., 2012). It has been proposed that the legacy effect of 

a PFT and its litter in soil can favour the decomposition of that litter type, an effect referred 

to as ‘home-field advantage’ (HFA). HFA decomposition has been observed in a number 

of studies (Ayres et al., 2009b; Freschet et al., 2012; Gholz et al., 2000; Perez et al., 2013; 

Vivanco and Austin, 2008), but rarely are the effects of HFA on litter decomposition 

explored in peatlands. The aforementioned studies suggest that it is the selection of a soil 

microbial community, most efficient at decomposing a particular PFT litter, which 

produces the positive feedback on decomposition i.e. greater rates of litter mass loss at 

‘home’. If microbial communities are indeed more efficient at decomposing litter from the 

plant species above them, microbial community composition should vary spatially with the 

location of specific plant types, a pattern that has already emerged in peatlands (Artz, 

2009; Trinder et al., 2009). Differences in plant litter traits could also affect the likelihood 

of HFA decomposition. HFA is likely to be more important for low quality litters with 

reduced nutrient availability (Osanai et al., 2012; Vivanco and Austin, 2011), whereas high 

quality litter containing compounds relatively easy to degrade might be expected to have 

little or no HFA, since most microbial communities will contain biota capable of 

decomposing those compounds rapidly (Ayres et al., 2009a). However, studies that have 

found no evidence of HFA support the view that HFA decomposition is highly dependent 

on the experimental system, the presence of living plants and the time given for effects to 

manifest (Gießelmann et al., 2011; St. John et al., 2011).  

 

Mean global temperatures are expected to increase with climate change, with affects most 

evident at high latitudes and high altitudes (IPCC, 2013). Warming has often been found to 

increase litter decomposition (Hobbie, 1996; Kirwan and Blum, 2011; van Meeteren et al., 

2008), due to an increase in microbial activity (Aerts, 2006; Allison and Treseder, 2011). 

However, some studies suggest that the acceleration of decomposition caused by warming 

may be offset under drier conditions (Butenschoen et al., 2011; Gavazov, 2010) or by 

altered plant community composition and litter quality inputs (Cornelissen et al., 2007). 

Decomposition processes in northern peatlands are therefore likely to be affected by 

climate change, through direct shifts in soil temperature or moisture availability (van 
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Meeteren et al., 2008), and indirect impacts on the soil microbial community (Aerts and 

Ludwig, 1997; Hobbie, 1996), or the relative abundance of PFTs (Aerts, 2006; Hobbie, 

1996). Land use pressures on peatlands are also important to consider when assessing litter 

decomposition rates. The effects of common peatland activities such as forestry, sheep 

grazing, game bird breeding and extraction for fuel have been analysed at length, with 

evidence showing that development and disturbance can increase C loss from these 

ecosystems (Garnett et al., 2000; Maljanen et al., 2003; Nieminen, 2004; Turetsky et al., 

2002; Ward et al., 2007). Wind farms are a relatively new peatland land use, due to the 

growing demand for renewable electricity generation and the typically high wind speeds 

experienced in these upland areas. Lower C stocks and capacity for C sequestration are 

unavoidable effects of wind farm construction on peatands (Ostle et al., 2009; Smith et al., 

2014), due to peat excavation and drainage (Freeman et al., 2001; Silvola et al., 1996). The 

impacts of wind farm construction on Scottish peatlands have been calculated (Nayak et 

al., 2010), however the operational effects of wind farms still need to be considered in 

order to construct a full C life cycle analysis of this peatland land use (Armstrong et al., 

2014b; Ostle et al., 2009). There is evidence to suggest that wind farms can alter near 

surface temperatures (Baidya Roy and Traiteur, 2010; L. Zhou et al., 2012), which could 

manifest changes in soil temperature and water table level (Armstrong et al., 2014b). But 

currently, wind farm microclimates and their effects on peatland C cycling remain 

unknown.  

A spatial assessment of litter decomposition at Black Law Wind Farm (Lanarkshire, 

Scotland) was conducted, with the aim of understanding the effects of PFT legacies on 

litter mass loss at a peatland hosting a wind farm, and with the broader view to determine 

how PFTs might play a significant part in mediating effects of climate change in peatlands. 

Assuming that PFT legacy affects litter quality and soil microbial community composition 

and activity, it was hypothesised that (1) decomposition of PFT litters will be greater in 

peat under the same PFT (HFA). Moreover, HFA will be greater for more recalcitrant 

shrub-derived litter compared to more labile graminoid litter (hypothesis 2). In addition, it 

was hypothesised (3) that whilst environmental controls (i.e. water availability and 

temperature) will strongly influence litter decomposition, measures of litter and peat 

chemistry will explain more variation in litter decomposition rates. To test these 

hypotheses, litter bags containing litter from each PFT were buried across the peatland and 

retrieved after one year. The relatively short duration of this study means that only early 

stages of decomposition i.e. the loss of most labile compounds from litters would be 

observed. Therefore, findings cannot be used reliably to inform predictions of long-term 
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litter mass loss i.e. during the breakdown of more recalcitrant compounds (Latter et al., 

1998; Prescott, 2005). 

4.2  Methods 

4.2.1   Determining litter decomposition  

A fully factorial experimental field design comprising four blocks and three PFT plots 

(bryophyte, graminoid and shrub) was replicated at four sites across blanket bog peatland 

at Black Law wind farm (Figures 1.1, 1.2 and 1.3, Chapter 1). At each of the 48 PFT plots, 

litter bags comprised of litter from each PFT (144 in total) were placed beneath the litter 

layer in March 2012. Litter bags were retrieved after 386 days, in April 2013.   

Litter decomposition was determined using mass loss determinations (Graças et al., 2005). 

Litter from each PFT was collected in October 2012 within a sampling area of 

approximately 10 m
2 

to reduce the influence of spatial variation. Calluna vulgaris leaves 

that had already lost their green colour were collected, together with brown shoots to 

which they were loosely attached. Senesced Eriophorum vaginatum leaves were collected 

by loosely shaking and raking the plant by hand, to gently separate the leaves that were no 

longer green. Identification of decomposed Sphagnum litter can prove difficult (Hogg, 

1993), therefore in accordance with previous studies (Aerts et al., 2001; Bragazza et al., 

2007) the stem section 2-4cm beneath the growing tip (i.e. capitulum) was harvested and 

used to represent Sphagnum litter that had been freshly deposited and subsequently stored 

in the acrotelm. 

Litter was air-dried to remove excess surface moisture and sub-samples were oven-dried at 

105°C to ascertain the moisture content and dry weight equivalent of each PFT. Litter bags 

were prepared by putting 0.50 g of air-dried litter in polyethylene litter bags (5 mm wide, 5 

mm long) with a mesh width of 1 mm, a mesh size chosen to reduce loss of litter from the 

bags (Aerts et al., 2012). In addition, this mesh size was selected to ensure that decomposer 

micro-organisms and micro-invertebrates could access the litter samples in the bags (Aerts 

et al., 2012; Swift et al., 1979). After retrieval, soil particles and extraneous litter and roots 

were removed from the litter bags. Litter bags were dried at 105°C until there was no 

further weight loss and the final weight noted. The actual weight loss over the 

experimental period was calculated as a percentage of the initial mass of air-dried litter, 

calibrated to oven-dried mass. Litter decomposition is reported as percentage litter mass 

remaining (% of initial dry mass) and percentage litter mass loss (% initial dry mass) is 

used for the calculation of home field advantage.  



 

86 

 

4.2.2   Calculating home field advantage and disadvantage 

Home field advantage (HFA) and disadvantage (HFA) of litter decomposition is calculated 

using a method developed by (Clarke and Norman, 1995) and adapted by Ayres et al. 

(2009). A HFA or HFD value is calculated for each PFT and is expressed in the units of 

measurement (% mass loss). HFA and HFD are calculated using the following equations: 

      (          )   (          )                                                                    

      (          )   (          )                                                                      

    
              

    
                                                                                              

                                                                                                                  

Lowercase letters (b, g, s) indicate bryophyte, graminoid and shrub litters. Uppercase 

letters (B, G, S) indicate bryophyte, graminoid and shrub peat. ADH is the additional 

decomposition at home for the species indicated by the lowercase letter. HDD and ADD 

refer to home and away decomposition differences, respectively. DL is a measure of 

decomposition (in this case % mass loss of litter). TH represents the total HFA for all 

species combined. NS indicates the number of species. If ADHb > 0, bryophyte litter 

decomposed faster than expected when at home (i.e. HFA); if ADHb = 0, bryophyte litter 

decomposition at home occurred at the expected rate (i.e. no HFA); if ADHb < 0, 

bryophyte litter decomposition at home occurred slower than expected (i.e. home field 

disadvantage, HFD). The ADH for each PFT was calculated at each site (with block 

replicates).  

4.2.3   Peat and litter properties 

Water table depth and soil temperature at 5 cm depth were recorded from March 2012 to 

April 2013. Water table depth (mm) was recorded every 30 minutes at each PFT plot at 

one block at each site, using Level TROLL 500 (Insitu, USA). Soil temperature (°C) at 5 

cm depth was recorded every 30 minutes, beneath each PFT plot at three blocks at each 

site using Onset Hobo Pendant temperature loggers (Onset, USA). The mean water table 

level for all plots at each time point was subtracted from the water table level for each plot 

at each time point, in order to calculate the deviation from the mean water table level. 

Water table level deviation was calculated for each PFT and site, over 1 year (March 2012 
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– April 2013). The same method was used to calculate the deviation in soil temperature 

from the mean.  

The initial biochemical composition of each PFT peat and litter was assessed. Peat total C 

content, total N content, C:N, pH and dry bulk density data from section 2.3.1, Chapter 2 

will be used here in the statistical analysis of percentage remaining litter, in order to test 

the influence of physical and chemical peat properties on litter decomposition. Total C 

content, total N content and C:N were measured in four litter samples from each PFT, 

using the same method for peat samples described in section 2.2, Chapter 2. Total 

phosphorus (P) content was determined after ashing and acid digestion, using ICP-OES 

(Inductively Coupled Plasma – Optical Emission Spectroscopy; Sciantec Analytical, UK) 

(Boss and Fredeen, 1999). Phytate P content was determined after ferric chloride (FeCl3) 

precipitation and acid digestion, using ICP-OES (Sciantec Analytical, UK). Available P 

content was determined by subtracting phytate P content from total P content. From this 

data, C:P and N:P were determined using the total content of C, N and P.  

Stepwise chemical digestion in an Ankom 220 Fibre Analyser (Sciantec Analytical, UK) 

was used to quantify hemicellulose, cellulose and lignin litter fractions (Van Soest, 1994). 

Hemicellulose-like substances were extracted from the Neutral Detergent Fibre (NDF; 

comprised of hemicellulose, cellulose, lignin and mineral ash) with hot acid detergent 

solution to leave the Acid Detergent Fibre (ADF; comprised of cellulose, lignin and 

mineral ash) (Van Soest and Wine, 1967). Cellulose-like substances were extracted by cold 

digestion with 72% sulphuric acid (H2SO4), with the remaining residues representing the 

Acid Detergent Lignin (ADL; comprised of lignin and mineral ash) (Van Soest and Wine, 

1967). Hemicellulose content was determined by subtracting the ADF from the NDF, and 

cellulose content was determined by subtracting the ADL from the ADF. From this data, 

lignin:N was calculated as a traditional indicator of litter quality (Cadisch and Giller, 

1997). The total fibre content of litter (LCH = lignin + cellulose + hemicellulose) was also 

calculated, as it has previously been shown to be a powerful predictor of decomposition 

dynamics (Vaieretti et al., 2005).  

4.2.4   Statistical analysis 

All statistical analysis in this chapter was performed using the statistical package R, 

version 2.14.0 (The R Project, 2012), with the exception of data used from section 2.2.1, 

Chapter 2. All data were checked for normality before final analysis. Throughout the text, 

‘significant’ is referred to if p < 0.05.  
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Two-way ANOVAs were performed using SAS V9.1, Enterprise Guide 4.0 to test the 

hypothesis that chemical properties of peat would vary with location within the wind farm 

and with PFT (see section 2.2.1, Chapter 2). Linear mixed-effects (LME) models were 

performed to detect if environmental peat properties i.e. soil temperature and water table 

level varied with month, site and PFT. LME models used plot ID as a random effect to 

account for the repeated measures and were followed by Tukey’s test post-hoc analyses. 

Soil temperature and water table level data was used from April 2012 to March 2013, on 

account of missing data in March 2012 and April 2013.  

In order to test the hypotheses that litter decomposition would vary with peat and litter 

PFT, one-way ANOVAs were used to test the significance of PFT on the chemical 

properties of litter used in litter bags and followed by Tukey’s test post-hoc analyses. In 

addition, three-way ANOVA was performed to test the significance of site, peat PFT and 

litter PFT on percentage litter mass remaining, followed by Tukey’s test post-hoc analyses. 

The Pearson’s correlation coefficient was calculated to give a measure of the linear 

dependence between the litter mass remaining and all peat and litter physicochemical 

properties.  

In order the test the hypothesis that home-field advantage would occur i.e. decomposition 

of PFT litters would be greater in peat under the same PFT, a two-way ANOVA was used. 

The significance of site and PFT on additional mass loss at home (HFA) and away (HFD) 

was tested, followed by Tukey’s test post-hoc analyses. T-tests were used to test if 

additional mass loss at home and away was significantly different to zero. 

To test the hypothesis that environmental, physical and chemical peatland properties would 

influence litter decomposition, a linear mixed effects (LME) model was used to investigate 

how properties of peat and litter improved predictions of percentage litter mass remaining. 

A LME model of litter mass remaining was constructed, including data from all four sites 

across the peatland. Block was included as a random effect and peat and litter properties 

were specified as fixed effects. Properties of peat included in the model were: total C 

content, total N content, C:N, pH, bulk density (data used from section 2.3.1, Chapter 2), 

deviation from mean soil temperature and deviation from mean water table level. 

Properties of litter used were: total C content, total N content, C:N, total P content, 

available P content, C:P, N:P, hemicellulose, cellulose, lignin, lignin:N and LCH. The 

initial model, including all fixed effects, could not be used due to the presence of co-linear 

variables and complexity induced by the number of variables. To determine the fixed 

effects that were the source of these problems, each fixed effect variable was removed 
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from the model in turn. The following fixed effect variables were removed permanently 

from the model: litter C:N, total P content, available P content, C:P, C:N, hemicellulose, 

cellulose, lignin, lignin:N and LCH. All remaining variables were included in the initial 

model with non-significant variables removed manually in a systematic, step-wise process 

to achieve the best goodness of fit with fewest factors, assessed by selecting the model 

with the lowest Akaike’s Information Criterion (AIC).  If removal of a non-significant 

variable increased the AIC value, the variable was retained in the refined model. Peat total 

C content, peat total N content, bulk density, deviation from mean soil temperature and 

deviation from mean water table level were removed during model refinement. Once the 

final model was reached a liner model was fitted, removing random effects, in order to 

assess the significance of each term in the model. The adjusted R
2 

of the fitted model was 

calculated and compared with the adjusted R
2 

of models fitted with each variable removed 

in turn. The relative contribution of each variable in explaining the variance of the model 

was then calculated as a percentage of the total variance explained. 

4.3  Results 

4.3.1   Peat chemistry 

For total C content, total N content, C:N, pH and bulk density of peat across the peatland 

see section 2.3.1, Chapter 2.  

4.3.2   Water table  

Water table varied significantly across the wind farm, and beneath each PFT (Table 4.1). 

There were statistically significant interactions between site and PFT, together with time, 

but these were not as large as the individual influence of PFT. The position of the water 

table (reported as mm below the peat surface, data not shown), in 2012 decreased 

significantly each month from April (~35 mm) to June (~70 mm) and then rose 

significantly each month to December (~9 mm), with the exception of August. In 2013, 

depth to the water table increased significantly from January (~40 mm), to February and 

then March (~62 mm). Water table position varied across the wind farm transect, and was 

significantly lower at site 2 (50.68 ± 67.78 mm) than at sites 3 (46.30 ± 38.14 mm), 4 

(31.73 ± 32.36 mm) and 1 (29.82 ± 78.61 mm): water table level increased towards the 

peat surface in that order. At all sites, apart from site 3, the standard deviation of the water 

table level was larger than the mean, which suggests that the water table at those sites was 

more variable with PFT and over time. The mean water table level was nearer to the 

surface of the peat beneath bryophytes (26.11 ± 59.45 mm), and was significantly lower 
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beneath graminoids (30.05 ± 64.56 mm) and shrubs (62.73 ± 41.13 mm). As with site, the 

standard deviation of the water table level beneath bryophytes and graminoid was greater 

than the mean, indicating that shrub water table levels were less variable across the wind 

farm and study period. The water table level remained below the surface of the peat 

throughout most of the year, but did reach the surface on occasion. For example, pools of 

water up to ~73 mm deep on average were measured at site 1 beneath graminoid in 

November. 

At sites 1, 3 and 4, the water table beneath bryophytes was either above i.e. wetter or the 

same as the mean water table level across all sites for the duration of the experiment 

(Figure 4.1). Peat beneath bryophytes at site 2 tended to be drier than the mean water table 

level in the summer of 2012 i.e. by ~76mm in June, with the exception of July, and in 

January-April 2013 (Figure 4.1). The water table level beneath graminoids was more 

variable than beneath bryophytes and shrubs (Figure 4.1), with water table levels at site 1 

observed to be ~100 mm above and ~150 mm below the mean (Figure 4.1). Graminoid 

water table levels at site 2 were also drier than average in spring and summer, with the 

difference most evident in August 2012 (Figure 4.1). Deviation from mean water table 

level beneath graminoids at sites 3 and 4 followed the same pattern throughout the study 

period, and were wetter i.e. above average in spring and summer, and got progressively 

drier towards the end of 2012, before rising again in January-April 2013. The water table 

beneath shrub was much less variable than beneath graminoid and bryophyte, with sites 1, 

3 and 4 remaining lower than the mean water table level from April 2012-2013 (Figure 

4.1). At site 2, the shrub water table level was generally similar to, or wetter (i.e. in June-

July 2012 and the first three months of 2013) than the mean (Figure 4.1).   

These results show that the level of the water table was (1) highest in winter and beneath 

bryophytes, (2) lowest in summer months and beneath shrubs, (3) the position of the water 

table was nearest the peat surface at site 1, and furthest from it at site 2, owing to the 

variability in water table beneath bryophytes and graminoids. 
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Table 4.1: Linear mixed effects model results showing month, site, PFT 

and their interactive effects on soil temperature and depth to water table 

(mm).  

Repeated measures ANOVA: df F p 

T
em

p
er

at
u
re

 

Month 11 289034.17 <0.0001 

Site 3 336.24 <0.0001 

PFT 2 226.53 <0.0001 

Month*Site 33 671.92 <0.0001 

Month*PFT 22 25.26 <0.0001 

Site*PFT 6 199.24 <0.0001 

     

W
at

er
 t

ab
le

 

Month 11 3852.80 <0.0001 

Site 3 3071.56 <0.0001 

PFT 2 15432.12 <0.0001 

Month*Site 33 568.26 <0.0001 

Month*PFT 22 222.08 <0.0001 

Site*PFT 6 5174.71 <0.0001 
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Figure 4.1: Deviation from mean monthly water table level (mm) beneath 

each PFT, at each site, from March 2012 to April 2013.  
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4.3.3   Soil temperature 

Soil temperature varied significantly between sites and PFTs, but the largest influence was 

attributed to that of time (Table 4.1). Interactive effects of site, PFT and time were also 

observed, but their influence was relatively small compared to the individual effect of time 

(Table 4.1).  Soil temperature (data not shown) increased significantly every month from 

April 2012 (~6.3°C) to August 2012 (~14.0°C), after which it decreased significantly every 

month until December 2012 (~1.6°C), with temperatures in early 2013 being slightly but 

significantly warmer (by up to ~1.2°C). Soil temperature was significantly higher at sites 1 

and 4, than at sites 2 and 3, but only by ~0.2 °C. A similar magnitude of temperature 

change was observed between PFTs, with ~0.13°C higher soil temperatures beneath 

bryophytes than beneath shrubs.   

In bryophyte peat, the soil temperature at site 1 was observed to be ~1°C cooler than the 

mean soil temperature of all sites in summer and ~1.1°C warmer than the mean for all sites 

in winter (Figure 4.2). Bryophyte soil temperature at sites 3 and 4 followed a similar 

pattern to each other, and were ~0.4°C warmer and cooler in the summer and winter 

months, respectively (Figure 4.2). At site 2 the temperature of bryophyte peat was not as 

variable, but did remain warmer than the mean for most of the year, apart from in 

November 2012 (Figure 4.2). For graminoid peat, the same trends in deviation from mean 

soil temperature in bryophyte peat were observed for sites 1, 3 and 4 over the study period 

(Figure 4.2), but were slightly smaller i.e. +0.6°C in winter and -0.8°C in summer at site 1 

for graminoid, rather than ±1°C for bryophyte at site 1 (Figure 4.2). Deviation in 

graminoid and bryophyte peat temperature at site 2 was of a similar size, but was ~0.2°C 

cooler in spring-summer 2012 for graminoid rather than +0.2°C for bryophyte over the 

same time period (Figure 4.2). Deviation from the mean soil temperature across all sites 

and months for shrub peat reflected the patterns observed for graminoid and bryophyte, but 

the range in variability was reduced and site 2 was ~0.4°C cooler in spring-summer 2012 

rather than -0.2°C and +0.2°C for graminoid and bryophyte peat, respectively (Figure 4.2).  

In summary, soil temperature was highest beneath bryophyte and lowest beneath shrub, 

reaching a maximum in summer and minimum in winter. However, beneath each PFT, the 

soil temperature at site 1 was cooler than the overall mean in summer and warmer in 

winter. The opposite was observed for the soil temperature at sites 3 and 4, whilst the soil 

temperature at site 2 tended to not be as variable.  
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Figure 4.2: Deviation from mean monthly soil temperature (°C) beneath 

each PFT, at each site, from March 2012 to April 2013.  
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4.3.4   Chemical properties of litter 

All litter properties varied significantly between PFTs, apart from litter lignin:N (Table 

4.2). Total C content of litter increased from bryophyte to graminoid litter, and was highest 

in shrub (Table 4.3). Graminoid litter N content was significantly higher in bryophyte and 

shrub litters (Table 4.3). The opposite was observed for C:N, with bryophyte litter C:N 

significantly higher than both shrub and graminoid (Table 4.3). Graminoid litter also had 

highest concentrations of total P, greater than shrub but not bryophyte; whereas available P 

was higher in graminoid litter than in both shrub and bryophyte litters (Table 4.3). C:P and 

N:P were both significantly higher for shrub litter, but were lowest for graminoid and 

bryophyte litters, respectively (Table 4.3). Hemicellulose, cellulose and lignin content were 

highest in graminoid, bryophyte and shrub, respectively (Table 4.3). The total fibre content 

(LCH) was lowest in graminoid, increasing in shrub and highest in bryophyte (Table 4.3), 

a trend that was reflected in lignin:N. The lignin:N of bryophyte and shrub litters indicate 

that they are slower to decompose, as more recalcitrant litters have lignin:N close to 40 

(Kirschbaum, 2013) (Table 4.3). Whereas litters of intermediate decomposability are 

characterised by a lignin:N of 15 (Kirschbaum, 2013), which suggests that graminoid litter 

is more labile than shrub and bryophyte (Table 4.3). However, differences in lignin:N 

between PFTs were not significant (Table 4.2).  

4.3.5   Litter decomposition  

The amount of decomposition varied between litters from different PFTs, but there were no 

overall or interactive effects of site and peat PFT (Table 4.4). Significantly more litter 

remained in bryophyte litters bags after one year of decomposition, than both shrub and 

graminoid litter bags (Figure 4.3). Graminoid litter bags contained the least amount of litter 

at the end of the experiment (Figure 4.3), owing to increased decomposition of this litter 

PFT compared to bryophyte and shrub. The differences in decomposition observed 

between litters of different PFT origin were consistent, regardless of peat PFT (Figure 4.3) 

and site. There were no significant interactions between litter PFT and peat PFT, but the 

interaction with site was close to significant, suggesting that there may be some spatial 

variability within litter decomposition (Table 4.4). 
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Table 4.2: Differences in litter properties between each PFT. Litter properties were 

analysed by one-way ANOVA with PFT as the main factor. Pair-wise comparisons were 

performed by Tukey’s HSD (shown in Table 4.3).  

Property 
One-way ANOVA 

df F p 

L
it

te
r 

Total C 2 1118.53 <0.0001 

Total N 2 364.37 <0.0001 

C:N 2 112.30 <0.0001 

Total P 2 32.25 <0.0001 

Available P 2 24.68 0.0002 

C:P 2 38.68 <0.0001 

N:P 2 62.85 <0.0001 

Cellulose 2 14.16 0.0016 

Hemicellulose 2 71.32 <0.0001 

Lignin 2 9.43 0.0062 

Lignin:N 2 1.93 0.2010 

LCH 2 95.35 <0.0001 
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Table 4.3: Properties of each PFT litter. B = bryophyte, G = graminoid and S = shrub. LCH = total fibre content (lignin + cellulose + 

hemicellulose). Data are means ± standard error. Pair-wise comparisons of litter properties for each litter PFT, analysed by one-way 

ANOVAs and Tukey’s HSD tests (all one-way ANOVAs were significant at p < 0.01, with the exception of Lignin:N, see Table 4.2).  

 

Litter property 

Litter PFT 

B G S 

Mean ± SE Tukey HSD Mean ± SE Tukey HSD Mean ± SE Tukey HSD 

Total C 43.49±0.07 c 47.64±0.15 a 51.79±0.14 b 

Total N 0.61±0.03 c 1.61±0.03 a 1.30±0.02 b 

C:N 71.84±3.48 c 29.64±0.42 a 39.92±0.80 b 

Total P 0.05±0.05 a 0.08±0.00 a 0.05±0.00 b 

Available P 0.05±0.01 b 0.08±0.00 a 0.04±0.00 b 

C:P 807.83±62.72 c 562.54±20.07 a 1035.76±2.72 b 

N:P 11.43±1.29 c 19.00±0.79 a 25.98±0.48 b 

Hemicellulose 13.80±0.98 c 20.08±0.82 a 7.03±0.40 b 

Cellulose 44.60±5.30 b 23.42±1.93 a 23.25±0.31 a 

Lignin 20.81±5.45 a 23.16±1.69 a 39.44±0.44 b 

Lignin:N 34.14±8.94 - 14.40±1.05 - 30.36±0.34 - 

LCH 79.24±0.75 c 66.66±0.68 a 69.71±0.58 b 
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Table 4.4: Three-way ANOVA results showing significant factors and their 

interactions for mass of litter remaining (% initial dry mass) after 1 year of 

decomposition. PFTP = plant functional type of peat and PFTL = plant 

functional type of litter. Df = degrees of freedom, F = F value and p = p 

value. 

Three-way ANOVA: df F p 

Site 3 0.40 0.7500 

PFTP 2 0.20 0.8188 

PFTL 2 131.02 <0.0001 

Site*PFTP 6 0.86 0.5270 

Site*PFTL 6 2.06 0.0634 

PFTP*PFTL 4 0.25 0.9065 
 

 

 

 

 
Figure 4.3: Litter mass remaining after 1 year for each litter PFT and peat PFT. B = 

bryophyte litter, G = graminoid litter, S = shrub litter. Letters indicate pair-wise significant 

differences between mass remaining of each PFT litter, tested by one-way ANOVA with 

Tukey’s HSD test. Data are means (averaged for site) ± standard error.  
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4.3.6   Litter decomposition and properties of peat and litter 

Percentage litter mass remaining was significantly correlated with chemical properties of 

litter but not peat (Table 4.5). Litter decomposition increased with increasing litter total C 

and N contents, hemicellulose, C:P, N:P and available P, as indicated by the negative 

correlations with remaining litter mass (Table 4.5). The opposite was observed for litter 

C:N, cellulose, total fibre (LCH), lignin:N and total P, which were positively correlated 

with litter mass remaining (Table 4.5). The strongest relationships were observed with 

litter total C content and lignin:N, with more litter mass loss with high C and low lignin:N.  

The linear mixed effects model showed that chemical properties of litter improved 

predictions of litter decomposition more so than peat chemistry (Table 4.6). Peat pH, peat 

C:N and litter total N content explained 0.58%, 1.76% and 5.54% of the model variance 

(Table 4.6), whilst the contribution of litter total C content was much higher at 65.40% 

(Table 4.6). The best fit model indicates that both peat and litter chemical properties 

influence percentage remaining litter mass at Black Law Wind Farm, but it is litter total C 

content which has the greatest influence on spatial and PFT-induced differences in litter 

decomposition. 

 

4.3.7   Home-field advantage and disadvantage of litter decomposition 

A significant interaction between litter PFT and site was observed for HFA and HFD litter 

decomposition (Tables 4.7 and 4.8), but the main effect of litter PFT was stronger (Table 

4.7). Additional mass loss of bryophyte litter on bryophyte peat was observed, with 

significant differences from zero at sites 1, 2 and 3 suggesting that HFA did occur in 

bryophyte litter bags across the peatland (Figure 4.4). In contrast, HFD was observed in 

graminoid litter bags, with significantly lower percentage mass loss of graminoid litter on 

graminoid peat than expected at all sites (Figure 4.4). Positive values of additional mass 

loss of shrub litter on shrub peat were observed, but they were not significantly different 

from the amount of decomposition expected (Figure 4.4). In summary, HFA was observed 

for bryophyte litter but not for shrub or graminoid, graminoid litter had HFD 

decomposition and additional mass loss of litter was only significantly different between 

each PFT at site 3 (Table 4.8 and Figure 4.4).  
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Table 4.5: Pearson’s correlation between the mass of litter remaining (% initial dry mass) 

and peat and litter properties. Temp = deviation from mean soil temperature over the year, 

water table = deviation from mean water table level over the year, df = degrees of freedom 

and r = Pearson’s correlation coefficient.  

Variable df r p value 

P
ea

t 

pH 142 0.03 0.5923 

Bulk density 142 0.04 0.3734 

Total N 142 0.06 0.6899 

Total C 142 -0.03 0.6338 

C:N 142 -0.09 0.3177 

Temp 142 0.08 ns 

Water table 142 -0.04 ns 

     

L
it

te
r 

Total N 142 -0.46 <0.0001 

Total C 142 -0.77 <0.0001 

C:N 142 0.38 <0.0001 

Lignin 142 0.04 0.9915 

Cellulose 142 0.58 <0.0001 

Hemicellulose 142 -0.43 <0.0001 

LCH 142 0.70 <0.0001 

Lignin:N 142 0.77 <0.0001 

C:P 142 -0.47 <0.0001 

N:P 142 -0.75 <0.0001 

Total P 142 0.30 <0.0001 

Available P 142 -0.64 <0.0001 
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Table 4.6: Linear mixed effects model to determine the relationship between litter mass 

remaining (% initial dry mass) and peat-litter abiotic properties across Black Law Wind 

Farm. Temperature = deviation from mean soil temperature over the year, water table = 

deviation from mean water table level over the year and - = variable not present in refined 

model.  The relative contribution (%) of each variable in explaining model variance was 

calculated as % difference in adjusted R
2
 comparing the full refined model and the model 

with each variable removed. 

Variable 
Mass remaining 

%Adj.R
2
 p 

P
ea

t 

Temperature - - 

Water Table - - 

pH 0.58 0.2313 

Bulk density - - 

Total N - - 

Total C - - 

C:N 1.76 0.0382 

   

L
it

te
r 

Total N 5.54 0.0003 

Total C 65.40 <0.0001 

C:N - - 

Lignin - - 

Cellulose - - 

Hemicellulose - - 

LCH - - 

Lignin:N - - 

C:P - - 

N:P - - 

Total P - - 

Available P - - 
 

 

 

 

Table 4.7: Two-way ANOVA results showing significant factors and their 

interactions for additional mass loss at home and away (% initial dry mass) 

after 1 year of decomposition. PFTL= plant functional type of litter. Df = 

degrees of freedom, F = F value and p = p value. 

ANOVA: df F p 

Site 3 0.60 0.6196 

PFTL 2 73.29 <0.0001 

Site*PFTPL 6 2.89 0.0209 
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Table 4.8: Pair-wise comparisons of additional mass loss at home 

and away for the interaction between litter PFT and site.  

 

Litter PFT 
Site 

1 2 3 4 

B ab a ab abc 

G de d d cde 

S bce abce bce bce 

 

 

 

Figure 4.4: Additional litter mass at home and away for each litter PFT at each site across 

the wind farm transect. Positive values correspond to greater than expected litter mass loss 

at home (i.e. HFA), while negative values correspond to lower than expected litter mass 

loss at home (i.e. HFD), and asterisks indicate significant differences from zero (p < 0.05). 

B = bryophyte litter, G = graminoid litter, S = shrub litter. Letters indicate pair-wise 

significant differences between the additional mass loss of each PFT litter, tested by one-

way ANOVA with Tukey’s HSD test. Pair-wise comparisons of additional mass loss at 

home for each PFT for interaction between site and PFT are shown in Table 4.8. Data are 

means ± standard error. 
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4.4  Discussion 

4.4.1   Controlling factors for litter decomposition 

Litter PFT was a significant factor in determining differences in the amount of litter 

decomposition, which supports the third hypothesis and the common view that litter traits 

are the predominant controlling factor for litter decomposition (Aerts, 1997; Butenschoen 

et al., 2011; Cornwell et al., 2008; Pérez-Harguindeguy et al., 2000).  

Bryophyte litter decomposed more slowly than shrub and graminoid litters, the latter 

decomposing the most in 1 year (Figure 4.3). These findings reflect those of other short 

term peatland ecosystem studies that observed low rates of decomposition in bryophyte 

communities. For example, in temperate fens and bogs, shrub and graminoid litter 

decomposition rates were faster than Sphagnum moss litter (Aerts et al., 1999). Similar 

results were observed in a peat microcosm experiment, which compared the decomposition 

rates of litters derived from the same PFTs, in the Alaskan tundra: 90% Sphagnum litter 

mass remained after 21 weeks, whereas 75% litter mass remained for Eriophorum 

vaginatum (Hobbie, 1996). The findings of this study showed a similar trend to that 

reported by Hobbie (1996) (Figure 4.3), but mass loss was greater on account of the study 

duration (i.e. 55 weeks instead of 21 weeks). A long-term litter bag experiment conducted 

on the Moor House National Nature Reserve in the Northern Pennines focussed on the 

decay rates of Eriophorum vaginatum and Calluna vulgaris litters. After 1 year, 

Eriophorum had 74% remaining leaf litter mass and the shoots and stems of Calluna 

vulgaris had 84% and 92%, respectively (Latter et al., 1998). While shrub litter was slower 

to decompose than graminoid litter, the amount of mass remaining in this study (i.e. ~36% 

for graminoid and ~57% for shrub) was smaller (Figure 4.3).  

Graminoid plant material is typically reported to have a higher N content and proportion of 

labile C (Myers et al., 2012; Ström et al., 2012). In agreement, graminoid litter in this study 

had higher total N and P contents, available P content and proportion of hemicellulose 

compared to other PFT litters (Table 4.3). These chemical litter properties increase litter 

decomposability by providing a source of nutrients and simple C compounds for soil 

decomposers to utilise, selecting for a faster C cycling, more bacterial-dominated microbial 

community (Myers et al., 2012). Conversely, litters with high lignin:N and low 

hemicellulose content i.e. shrub (Table 4.3) are more recalcitrant and decompose more 

slowly (Cornwell et al., 2008; Trinder et al., 2009). The presence of secondary metabolites 

in high concentrations and the low quality (i.e. high C:N) of bryophyte litter, as seen here 
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(Table 4.3), are often recognised as the underlying causes for low bryophyte litter mass 

loss (Aerts et al., 1999; Cornelissen et al., 2007). The observed PFT effects upon litter 

quality and decomposition (Tables 4.2 and 4.4) indicate that PFT can influence and 

therefore determine short-term litter decay rates. However, Latter et al. (1997) found that 

the differences observed between the mass loss of graminoid and shrub litters after 1 year 

were not evident 22 years later; therefore caution must be taken when interpreting the 

findings of this study, because short-term observations will differ from longer-term 

responses. 

Litter decomposition did not differ between sites across the peatland at Black Law Wind 

Farm (Table 4.4), despite spatial differences in environmental variables known to affect 

decomposition, such as water table level (Figure 4.1 and Table 4.1), soil temperature 

(Figure 4.2 and Table 4.1) and peat chemistry (see section 2.3.1, Chapter 2). Instead, 

spatially-consistent measures of litter chemistry (i.e. litter C and N contents) were found to 

be more important than spatially variable peat properties (i.e. peat pH and C:N) to best 

explain the differences in litter decomposition (Table 4.6).  

Temperature can be used to predict litter decomposition (Butenschoen et al., 2011; Hobbie, 

1996; Osono et al., 2011). In this study, however, soil temperature neither correlated 

significantly nor explained variation in percentage litter mass remaining (Tables 4.5 and 

4.6). During the decomposition period, soil temperature varied significantly between sites 

and in the peat beneath different PFTs, by less than 1.2°C on average (Figure 4.2). Soil 

temperature was highest beneath bryophytes, but litter from that PFT decomposed the 

slowest. However, bryophyte litter decomposed more rapidly in its home environment, 

which could be attributed to warming effects enhancing soil microbial decomposition of 

more recalcitrant C sources (Hilasvuori et al., 2013). Responsiveness of litter 

decomposition to temperature increases of between 0.7 and 1.2°C has been observed 

previously, with significantly higher litter mass loss (~50%) with warming than without 

(~45%) after 4 years of field incubation (Aerts et al., 2012). In other studies with larger 

temperature increases (>4°C), higher decomposition rates of 5 - 18% more mass loss were 

recorded (Cornelissen et al., 2007; Hobbie, 1996).  This implies that the decomposer 

community was not insensitive to the small-scale temperature changes observed across the 

peatland at Black Law Wind Farm, but that the response size reflected the magnitude of the 

temperature increase. Alternatively, the response to temperature could be masked by soil 

moisture availability due to changes in water table depth.  
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Water table was spatially variable, across the peatland and with PFT, but its relationship 

with the amount of litter mass loss was not significant (Tables 4.5 and 4.6). However, clear 

correlations with water table and litter decomposition rates have been observed previously, 

with a more saturated environment generally slowing the rate of litter decomposition in 

northern peatlands (Moore et al., 2006; Moore, 2007). However, in drained peatlands, both 

Laiho et al. (2004) and Lieffers (1988) attributed relatively slow decomposition rates to 

lowered water tables and therefore moisture stress. Whereas, at a Swedish raised bog, 

species decayed more rapidly in the unsaturated layer of peat compared to the 

intermittently or permanently saturated layers (Johnson and Damman, 1991), owing to 

greater potential for litter mass loss with increased peat aeration (Belyea, 1996). More 

recently in New Zealand, a 5 year litter bag study examining the decomposition rates at a 

restiad peatland found that the water table had varying effects on different litters at 

different sites (Clarkson et al., 2014). Litter decomposition rates decreased with increased 

saturation, irrespective of site, species or litter chemistry (Clarkson et al., 2014). Another 

study also found water table to be the principal factor controlling decomposition rates 

(Bridgham and Richardson, 2003), although litter chemistry was also important. On the 

basis of observations at other peatland sites, it is surprising that the water table at Black 

Law wind farm did not significantly affect litter decomposition.  

Decomposition rates measured in another 1 year peatland litter bag study were found to be 

dependent on the combination of litter quality, abiotic conditions and decomposer activity 

(Belyea, 1996). Whereas, Scheffer et al. (2001) and Szumigalski and Bayley (1996) 

observed litter type to exert a greater effect on decomposition than the variation in 

environmental conditions among or within peatland. In this study, litter decomposition was 

found to be almost entirely dependent on litter quality, with few effects of peat chemistry 

(Tables 4.5 and 4.6). Differences in litter quality and nutrient availability are known to be 

important for the decomposition of different PFT litters in peatlands (Ward et al., 2010), 

and their influence upon litter mass loss rates has been examined widely. Litter 

decomposition of different PFTs in a peat microcosm experiment had a stronger 

relationship with litter C quality than with litter N concentrations (Hobbie, 1996), and also 

explained the most variability in litter decomposition at Black Law Wind Farm (Table 4.6). 

Similarly, Wang et al. (2014) found litter quality to be of significant importance, but with 

litter N and P concentrations affecting litter decomposition rates the most; other studies 

have used initial N and lignin litter concentrations to predict litter decomposition 

(Butenschoen et al., 2011; Hobbie, 1996; Osono et al., 2011). Lignin:N showed the 

strongest positive relationship with the percentage remaining litter mass (Table 4.5), 
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indicating the likelihood that litters with low N or high lignin contents would decompose 

more slowly. Although lignin:N was not significantly different between PFTs (Table 4.2), 

it was higher for bryophyte and shrub litters than graminoid (Table 4.3). Futhermore, litter 

bags containing litter with lower lignin:N were lighter at the end of the experiment (i.e. 

graminoid), than those containing litters with higher lignin:N (i.e. shrub and bryophyte) 

(Figure 4.3). However, there are limitations to using measures of litter quality to predict 

litter decomposition. Prescott et al. (2004) showed the initial nutrient concentrations of 

litter to be closely related with the first year decomposition rate of litter, but found that as 

litter decomposition progressed, the relationship weakened. Another more recent study also 

suggests that in the early stages of litter decomposition (i.e. loss of labile litter 

compounds), the initial litter quality controls the rate of litter decomposition (Bray et al., 

2012). In the later stages of decay (i.e. loss of recalcitrant litter compounds), the 

composition of the microbial community will play a greater role in controlling litter 

decomposition rate than litter quality (Bray et al., 2012).  

Despite there being no significant influence of peat PFT on litter decomposition observed 

after 1 year (Table 4.4), it might be expected to become more important with time via PFT 

legacy effects on physicochemical characteristics of the peat and in turn, the composition 

and size of the microbial community. Carrillo et al. (2012) found strong short-term (i.e. 

within 28 days) plant legacy effects on N dynamics and early stage C dynamics, owing to 

the litter input history to soil. Therefore, the effects of peat PFT (i.e. peat chemistry, 

temperature and moisture) could have contributed to differences in litter decomposition at 

the start of this experiment, but were not evident after 1 year due to the overriding effects 

of litter chemistry. Moreover, this might explain how HFA and HFD decomposition was 

observed despite the absence of an interaction between peat PFT and litter PFT.  

4.4.2   PFT determines home-field advantage and disadvantage 

The occurrence of home-field advantage (HFA) and disadvantage (HFD) decomposition 

was controlled by the composition of the litter bags, but not by the decomposition 

environment. HFA decomposition was only observed for bryophyte litter, an effect seen 

across the peatland, at sites 1, 2 and 3. Unlike bryophyte litter, shrub litter did not 

decompose more when buried ‘at home’ in peat beneath shrub plants, neither did it 

experience greater mass loss when ‘away’, as was the case for graminoid litter. As a result 

of its recalcitrant characteristics (i.e. high lignin concentration), it is surprising that shrub 

litter did not experience greater mass loss at home. However, bryophyte litter did have 

lower N content than shrub, so was more likely to experience HFA as a result of increased 
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competition for resources within the microbial community (Osanai et al., 2012; Vivanco 

and Austin, 2011).  

HFA decomposition was limited to just one PFT group, therefore this study’s findings only 

partially uphold the expectations that (1) HFA can occur in peatlands (hypothesis 1), (2) 

HFA will be evident for more recalcitrant litters (hypothesis 2). Higher decomposition 

rates have been observed when litters decompose in their native environment (Ayres et al., 

2009b; Vivanco and Austin, 2008), but strong positive HFA effects are not common 

(Ayres et al., 2006; Carrillo et al., 2012), such as those shown in this study for bryophyte 

litter. In agreement with other studies, this study found that decomposition of high quality 

litter (e.g. graminoid with low C:N) did not show any HFA effects. However, it was not 

hypothesised that graminoid litter decomposition would have HFD. Greater mass loss for a 

high quality litter in a low quality environment (i.e. high C:N in the surrounding peat and 

litter) might arise from nutrient transfer and exposure to more favourable decomposition 

conditions (Gartner and Cardon, 2004; Hättenschwiler et al., 2005). At Black Law Wind 

Farm there were no PFT-induced differences in peat chemistry, which suggests that 

graminoid HFD decomposition could be attributed to (1) the warmer soil temperatures 

beneath bryophytes, (2) the lower water table levels beneath shrubs and (3) increased 

microbial activity as a result of graminoid litter N inputs to a more nutrient-deprived 

decomposer community.    

Ayres et al. (2006) found that plant species did not encourage the development of soil 

microbial communities that specialised in decomposing their litter rapidly. It is possible 

that the importance of microbial community composition in decomposition increases as 

labile substrates are lost, with HFA and HFD effects becoming more clear and consistent 

over longer timescales. By measuring decomposition rates for longer than 1 year, the 

additional breakdown of more recalcitrant substrates (i.e. lignin) could reveal HFA and 

HFD effects that were not evident during earlier stages of litter decomposition. Observed 

differences in HFA suggest that the chemical properties of litter can affect the magnitude 

of preferential litter decomposition upon peat of the same PFT origin. Furthermore, the 

interaction between litter PFT and site suggests that the control of litter chemistry over 

HFA decomposition is spatially variable, perhaps due to wind farm-induced changes in the 

peat i.e. soil temperature and water table. However, the absence of an interaction between 

litter PFT and peat PFT indicates that HFA is driven primarily by the litter inputs, and not 

by PFT induced differences in soil chemistry.  
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Overall, these results show that despite HFA, bryophyte litters still decompose slowly. 

Graminoid litter decomposition was faster than the other PFTs over 1 year, particularly 

when placed in an environment different to its origin (HFD). Predicted shifts in plant 

community composition as a result of climate change are likely to favour the growth of 

vascular plant species (Gallego-Sala and Prentice, 2012). Therefore, if graminoids were to 

establish themselves on peat that had previously received litter inputs from shrubs or 

bryophytes, rates of litter decomposition and associated soil C losses to the atmosphere 

might be expected to increase. If the proportion of shrubs within the plant community was 

to increase instead, rates of shrub litter decomposition in areas previously dominated by 

graminoids or bryophytes are likely to remain the same i.e. no HFA or HFD.  

Climate- and land use-induced changes in plant community composition could have 

important implications for litter decomposition rates in peatland ecosystems, by altering 

litter inputs, the decomposition environment and likelihood of HFA and HFD effects. 

Thus, despite the absence of a temperature effect on litter decomposition in this study, the 

influence of temperature on the future composition of each PFT within the plant 

community may in turn have an impact on litter decomposition and peat formation.   

4.5  Conclusions 

This study highlights the importance of plant functional traits in short-term decomposition 

processes in peatlands and demonstrates that HFA and HFD effects have the potential to 

influence litter mass loss. The work reported here also provides further evidence that 

graminoid litter decomposes faster than that of shrub and bryophyte, and that bryophyte 

communities are important in maintaining low rates of decomposition. This is important as 

the relative proportions of dominant PFTs in peatland plant communities are expected to 

shift with climate change, with vascular species such as graminoids predicted to dominate 

as bryophytes decline in blanket bogs (Gallego-Sala and Prentice, 2012). Climate and land 

use change effects on plant community composition could therefore have important 

implications for litter decomposition rates in peatland ecosystems, by altering litter inputs, 

the decomposition environment and the likelihood of HFA and HFD.   

Other studies have examined the importance of PFT litter type (Cornwell et al., 2008; 

Trinder et al., 2009; Ward et al., 2009) and HFA on rates of decomposition (Ayres et al., 

2009b, 2006; Freschet et al., 2012). This study uniquely investigates PFT quality, HFA, 

HFD and the interactions between them in a northern peatland. The results demonstrate 

that peatland C cycling is strongly influenced by biotic controls, which will interact with 
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climate to promote the decomposition of more labile litter types. Further examination of 

PFT, HFA and HFD effects under both field and laboratory conditions is required, over 

timescales that encompass later stages of decay and with the incorporation of PFT litter 

mixing to better represent realistic conditions within the ecosystem (Harguindeguy et al., 

2008). 
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Chapter 5 

 

Plant functional type and microlimatic controls on litter decomposition 
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5.1 Introduction 

Northern peatlands are a particularly important component of the global carbon (C) cycle, 

accumulating vast quantities of C due to low rates of litter decomposition (Limpens et al., 

2008). Decomposition in these ecosystems is limited by low pH, low temperatures, 

functionally limited decomposer communities, oxygen limitation and chemically complex 

substrates with generally low nitrogen (N) content (Freeman et al., 2001; Moore et al., 

2006). However, any changes that alleviate the current constraints on decomposition could 

result in peatlands becoming a net source of C, rather than remaining as a net C sink 

(Gorham, 1991; Moore et al., 2006). Climate change due to greenhouse gas (GHG) 

emissions is predicted to raise mean global temperatures by 1-3.5°C in the next 50-100 

years with above-average increase at high latitude and high altitude regions (IPCC, 2013). 

Wind farm-induced microclimate change can also have similar effects on ground-level 

temperature, by increasing night-time temperatures (Armstrong et al., 2014a; Zhou et al., 

2012), which is of particular concern due to the ever-increasing construction of wind farms 

upon peatlands (Smith et al., 2014). Increases in temperature associated with climate 

change and wind farm microclimate change may affect rates of decomposition in peatlands 

(Armstrong et al., 2014b), through direct and indirect effects upon the soil environment 

and the quality and quantity of litter inputs (Aerts, 1997; Fierer et al., 2005), resulting in 

increased litter mass loss and emissions of CO2 from the soil to the atmosphere (Cox et al., 

2000; Fierer et al., 2005). 

Peatland plant species are often grouped by functional similarity, to capture plant type 

differences at the ecosystem level (Chapin et al., 1996). Bryophytes (e.g. Sphagnum sp., 

feather mosses), shrubs (e.g. Calluna vulgaris, Vaccinium sp.) and graminoids (e.g. 

Eriophorum vaginatum, sedges, and rushes) are the three dominant plant functional type 

(PFT) groups in peatland ecosystems, with litters that differ in their decomposability due to 

low concentrations of N (i.e. bryophyte), high C:N and lignin content (i.e. shrub), the 

presence of phenolics (i.e. bryophyte and shrub) and labile C compounds (i.e. graminoid) 

(Dorrepaal et al., 2005; Read et al., 2004; Ward et al., 2009). The functional traits of these 

three PFT groups may establish a legacy within the soil over time, by conditioning the 

biochemical properties of the underlying peat to the PFT of the surface litter resources 

(Ball et al., 2014; Carrillo et al., 2012; Wardle et al., 2004). As a result, PFT legacies have 

the potential to change soil C dynamics by altering rates of litter mass loss and CO2 

emissions through facilitating a home-field advantage (HFA) or home-field disadvantage 
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(HFD) (Ayres et al., 2009b; de Toledo Castanho and de Oliveira, 2008; Vivanco and 

Austin, 2008).  

Soil community composition has been observed to vary among areas dominated by 

different PFTs (Ayres et al., 2006; Ward et al., 2009). In shrub-derived peat, fungi 

dominate due to the presence of recalcitrant organic matter (OM), whereas bacteria thrive 

in moss- and sedge-derived peat as a result of labile C provision (Myers et al., 2012; Ström 

et al., 2012; Ward et al., 2009; Winsborough and Basiliko, 2010). Therefore, the ratio of 

fungi to bacteria (F:B) beneath dominant PFTs can affect the rate of litter decomposition 

and resultant release of CO2 (Waring et al., 2013), with local adaptation of microbial 

communities resulting in faster rates of decomposition. Greater rates of respiration, a 

measure of decomposition, have been reported when soil microbes and litter from the same 

‘home’ ecosystem were incubated together, indicating that differences in soil community 

composition among ecosystems can cause decomposition-related HFA (Strickland et al., 

2009). Differences in plant litter traits could create differences in the magnitude of HFA, 

with high quality litter experiencing little or no HFA since being readily decomposed by 

most microbial communities (Ayres et al., 2009). In support of this, relatively labile litter 

has been found to decompose to a similar degree between different ecosystems, but 

recalcitrant litter decomposes substantially faster at home than away (Hunt et al., 1988). 

Microclimate may also have an interactive effect with litter quality and adaptation of 

microbial communities (de Toledo Castanho and de Oliveira, 2008; Vivanco and Austin, 

2008), resulting in greater HFA with small-scale increases in temperature.  

Relatively small increases in temperature have been observed to have significant effects on 

ecosystem functioning, with an average 1°C annual increase in temperature rising rates of 

respiration by up to 60% in Arctic blanket peatland (Dorrepaal et al., 2009) and greater 

GHG emissions from warmed peat cores under controlled laboratory conditions (Aerts and 

Ludwig, 1997; Blodau et al., 2004; McKenzie et al., 1998; Scanlon and Moore, 2000; 

Waddington et al., 2001). Research on single species litter decomposition dynamics has 

shown correlations with temperature (Blair, 1990; Hättenschwiler et al., 2005; Hector et 

al., 2000), but the effects of small-scale temperature changes on litters of different quality, 

in monoculture or in mixture, requires further investigation. Most ecosystem C models 

assume that the temperature sensitivity of decomposition is identical for all types of soil 

OM (Burke et al., 2003).  

Temperature sensitivity is often reported as a Q10, the factor by which respiration rates (i.e. 

rates of decomposition) will alter in response to a 10°C change. Lloyd and Taylor (1994) 
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predicted that soil respiration in regions where temperatures are low would be more 

sensitive to changes in temperature, as a result of large quantities of OM previously 

inaccessible to microorganisms becoming available under warmer conditions. In support of 

this, soil and litter respiratory Q10 values were reported to be ~4.5 at 10°C and ~2.5 at 20°C 

(Kirschbaum, 1995) and the temperature sensitivity of peat respiration was high (i.e. 4.8) 

when incubated at typical temperatures experienced in the Scottish uplands (0 – 15°C) 

(Chapman and Thurlow, 1998). Furthermore, Hamdi et al. (2013) found significantly 

higher temperature sensitivities for tundra and peatland soils, than those associated with 

forest and grassland soils. However, the Q10 values in peat soils are known to be highly 

variable (i.e. 4.6 – 9.4) (Chapman and Thurlow, 1998; Christensen et al., 1999; Mikan et 

al., 2002), which indicates that other environmental controls mediate the temperature 

response of microbial activity. In addition, the Q10 of microbial decomposition can vary by 

up to 40% depending on the recalcitrance of the soil and the complexity of C compounds 

in the decomposing material (i.e. the type of litter and extent of litter decomposition) 

(Dalias et al., 2001). Fierer et al. (2005) predicts that the decomposition of lower quality C 

substrates (i.e. more recalcitrant shrub litter) will be more sensitive to changes in 

temperature than the decomposition of higher quality C substrates (i.e. graminoid litter), a 

pattern that was detected later by Conant et al. (2008b) in a soil incubation study. In 

contrast, (Christensen et al., 1999) observed lower temperature sensitivity to increased OM 

recalcitrance. Therefore, the  temperature sensitivity of labile and more recalcitrant OM is 

inconclusive, with studies reporting the  temperature sensitivity of labile OM 

decomposition to be more, less than, or  equivalent to that of more resistant OM (Briones 

et al., 2014; Conant et al., 2008b; Craine et al., 2010; Davidson and Janssens, 2006; Jones 

et al., 2003).  

Temperature sensitivity of decomposition is dependent on litter quality, but because the 

quality of litters in mixture can differ to those in monoculture, the effects of litter mixing 

on decomposition has increasingly become a subject of research in the last several years 

(Gartner and Cardon, 2004; Harguindeguy et al., 2008; Hoorens et al., 2010, 2002). In 

natural ecosystems, litter from different species returns to the ground and forms a mixture, 

with the effect of litter mixing on decomposition likely controlled by the species involved. 

Therefore the decomposition of any given litter type may be influenced by the presence of 

other litter types. Experimental evidence suggests that where several species grow and 

shed their litter in close proximity, there are interactions between litters of different species 

decomposing together (Blair, 1990; Gartner and Cardon, 2004; Hoorens, 2003; McTiernan 

et al., 1997).  
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Some studies show that when litter species are in mixture, the properties relating to 

decomposition appear to be additive, such that a mixture behaves as expected based on the 

average influence of the individual species involved (Ball et al., 2008; Wardle et al., 1997). 

Alternatively, other studies have found non-additive dynamics that differ from those 

expected based on the monocultures, either positively or negatively (Ball et al., 2009; 

Chapman and Newman, 2010; Gartner and Cardon, 2004). For example, while 

monocultures of labile litter high in nutrients and low in structural compounds tend to 

provide a better resource for decomposers and support a larger decomposer community 

biomass, plant litter in mixture may support a more diverse decomposer community than a 

monoculture (Chapman and Newman, 2010; Wardle et al., 2006). Positive non-additive 

effects might arise due to rapidly decaying litters releasing nutrients, which can stimulate 

the decay of nearby recalcitrant litters (Ayres et al., 2009b; Vivanco and Austin, 2008). 

Negative non-additive effects could be caused by competition and microbial release of 

inhibitory substances from more recalcitrant litters, such as phenolics and tannins (Gartner 

and Cardon, 2004; Hector et al., 2000), leading to antagonistic interactions that prevent or 

reverse any positive mixing effects (Hättenschwiler et al., 2005). However, studies have 

found that interactions between litter species are often short-lived because chemical 

interactions are most likely to occur in the initial stages of litter decomposition 

(Hättenschwiler et al., 2005).  

Research on single species litter decomposition dynamics has shown correlations with 

chemical properties of the soil and litter, especially the N content, C:N and concentration 

of lignin (Blair, 1990; Hättenschwiler et al., 2005; Hector et al., 2000). Studies have also 

investigated the response of single species litter decomposition to climate change 

(Cornelissen et al., 2007; Fierer et al., 2005; Luo et al., 2010), however it has become clear 

that single species litter decomposition may not adequately represent natural ecosystems 

(Gartner and Cardon, 2004; Hättenschwiler et al., 2005). Decomposition dynamics in litter 

mixtures have been observed to deviate from those of single species litters, such that 

differences of 20-30% between observed and expected mass loss are not uncommon (Ball 

et al., 2008; Gartner and Cardon, 2004; Hättenschwiler et al., 2005; Hoorens, 2003). In 

addition, the measured amount of CO2 production from litter mixtures is often greater, but 

not always, than the predicted fluxes calculated from single litter CO2 fluxes (Gartner and 

Cardon, 2004; Hättenschwiler et al., 2005).   

Interactions between litters are usually studied between species, but more information on 

interactions amongst PFTs is needed in order to improve estimates of decomposition rates, 

and their temperature sensitivity, at the ecosystem level (Hoorens et al., 2010). Species 
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level studies indicate that interactions between litters are highly idiosyncratic (i.e. positive, 

negative, or neutral), which can be attributed to differences in the properties of litters 

within the mixtures (Ball et al., 2008; Hättenschwiler et al., 2005). At the PFT level, 

positive and negative interactions can balance each other so that interactions are not 

significant (Hoorens et al., 2010); therefore an overall additive effect indicates that the  

decomposition of PFT mixtures would equal the sum of the average decomposition rates of 

the contributing PFTs (Hoorens et al., 2010). 

Depletion of northern peatland C stocks could result from altered litter decomposition and 

GHG emissions, caused by small-scale changes in temperature arising from land use 

change and climate change. Litter decomposition and GHG fluxes are strongly regulated 

by temperature (Bardgett et al., 2008; Carlson et al., 2010), but also by plant and soil 

properties that determine C cycle responses to climate and land use change (Gallego-Sala 

and Prentice, 2012; Ward et al., 2013). Some knowledge is available on the potential 

responses of litter mass loss to climate warming (Cornelissen et al., 2007; Fierer et al., 

2005; Luo et al., 2010). To accurately assess the impacts of future climate change on 

terrestrial C dynamics, the factors that control temperature sensitivity of litter 

decomposition need to be better understood (Fierer et al., 2005).  

In this study the influence of warming on the interactions between plant litter diversity and 

peat PFT legacy, and their effects on respiration and litter decomposition rates, were 

examined. It was hypothesised that: (1) temperature will be a stronger driver of litter 

decomposition and heterotrophic respiration than the PFT of the litter or underlying peat, 

(2) temperature sensitivity of litter decomposition and heterotrophic respiration will 

decrease with increasing litter and peat quality, (3) monoculture litters will decompose 

differently on peat derived from each PFT, with HFA decomposition likely to occur for 

low quality litter such as that from bryophytes, (4) non-additive effects of litter mixing will 

occur, with high quality litter promoting the decomposition of low quality litter in litter 

mixtures. To test these hypotheses a multi-factorial microcosm experiment was designed to 

investigate the interactive effects of temperature and litter species diversity, on litter 

decomposition and heterotrophic respiration from peat sampled from under three different 

PFTs. By investigating litter mixtures, the aim of this study was to improve understanding 

of the consequences of plant community composition change, i.e. the relative proportion of 

each PFT within the ecosystem, as a result of global and land use change effects on 

peatland ecosystems.   
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5.2  Methods 

5.2.1   Determining litter decomposition 

Peat cores were taken in October 2012 from a 10 m
2
 sampling area of blanket bog at Black 

Law Wind Farm (Figure 1.1, Chapter 1), using the same method as described in section 2.2 

of Chapter 2. Two hundred and eighty eight intact cores (PVC pipe, 5 cm diameter, 15 cm 

depth) were taken in total, with ninety six from beneath each PFT. Live vegetation was 

removed and senesced litter from bryophytes, graminoids and shrubs was collected prior to 

peat coring. Shed Calluna vulgaris leaves were collected, and leaves that had not been 

shed but had lost their green colour were harvested with the brown shoots to which they 

were attached. Eriophorum vaginatum leaves were collected by loosely shaking the plant 

and separating the senesced leaves by hand. Decomposition of Sphagnum litter is difficult 

to identify (Hogg, 1993), however in accordance with previous studies (Aerts et al., 2001; 

Bragazza et al., 2007), the stem section 2-4cm beneath the capitulum (i.e. growing tip) was 

used to represent freshly deposited Sphagnum litter stored in the acrotelm.  

In order to ascertain the initial biochemical characteristics of peat and litter, 15 additional 

peat cores (PVC pipe, 5 cm diameter, 15 cm depth) were taken from the same core 

collection area. Total C content, total N content and microbial community composition 

were assessed using methods described in section 2.2 of Chapter 2. Four air-dried plant 

litter samples of each litter PFT, in monoculture and mixtures (Table 5.1), were also 

analysed for total C content and total N content.    

 

Table 5.1: Litter bag treatments comprised of no litter, single litters 

of each PFT and each mixed combination of the three PFTs.  

Litter bag treatment Mixing ratio 

N No litter - 

B Bryophyte - 

G Graminoid - 

S Shrub - 

BG Bryophyte + Graminoid 1:1 

BS Bryophyte + Shrub 1:1 

GS Graminoid + Shrub 1:1 

BGS Bryophyte + Graminoid + Shrub 1:1:1 
 



 

117 

 

 

A fully factorial experimental design comprising three temperatures, three peat PFTs and 

eight litter bag treatments was established. Incubation temperatures of 12, 14 and 16 °C 

were selected in order to simulate small scale temperature changes. At each temperature, 

thirty two peat cores from each peat PFT were randomly assigned a litter bag treatment, i.e. 

each core was overlain by a litter bag. At each temperature, there were four replicates of 

each peat core PFT and litter bag treatment combination.  

Field moisture levels in the peat cores were maintained gravimetrically, and litter bags kept 

moist, with the regular addition of deionised water. Deionised water was used in 

preference to rainwater collected from Black Law Wind Farm to control for variable 

nutrient inputs. Peat cores were incubated for 363 days, in order to capture slow 

decomposition.  

Litter decomposition rates were determined using the litter mass loss method (Graças et al., 

2005). Litter bags contained a total of 0.5 g of air-dried litter and were assembled using 

polyethylene mesh (litter bags: 5 cm
2
, mesh width: 1 mm) (see section 4.2.1. of Chapter 4). 

The first set of litter bags contained no litter and the second, third and fourth sets of litter 

bags contained litter of just one individual species, from each of the three PFTs (Table 

5.1). All other litter bags comprised a mixture of the three PFTs, in equal proportions by 

weight (Table 5.1). Litter bags were removed from the cores after 363 days and the amount 

of litter mass remaining was calculated as a percentage of the initial dry litter mass (see 

section 4.2.1. of Chapter 4).  

CO2 emissions were measured six times at 0, 56, 119, 174, 230 and 363 days after the start 

of the experiment. To measure respiration rates, peat cores (with litter bags still in place) 

were transferred into an airtight chamber (1567 cm
3
), which was attached to an EGM-4 

portable infrared gas analyser (IRGA). The enclosure time for respiration measurements 

was 300 seconds with a measurement taken every four seconds. The records were 

examined and fluxes calculated from the gradient of the [CO2] with time (
    

  
)  and 

converted into a flux using chamber volume in (V, m
3
), temperature (T, °K), chamber 

footprint (A, m
2
) and the molar mass of CO2 in g mol

-1
 (M, 44.01 for CO2, reporting as 

CO2-C ) (Holland et al., 1999).  

5.2.2   Temperature sensitivity 

In order to determine the temperature sensitivity of percentage litter mass loss and CO2 

emissions, an exponential van’t Huff function was used to describe the relationship 
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between litter mass loss and CO2 emissions with temperature (Eqn. 1) (Yiqi and Zhou, 

2010). R refers to the heterotrophic respiration rate (mg CO2 - C m
-2 

h
-1

) or mass loss (% 

initial dry litter mass) at a given temperature, T is temperature (° C), α is R at 0 °C and β is 

the temperature response co-efficient.  

 

                                                                                                                                                   

 

Q10 values were calculated using the temperature response co-efficient (β) in the following 

relationship (Eqn. 2). 

 

       
                                                                                                                                          

 

5.2.3   Home field advantage and disadvantage 

The HFA or HFD of percentage litter mass loss and CO2 emissions was determined using a 

method proposed by Ayres et al. (2009), outlined in section 4.2.2. of Chapter 4. HFA or 

HFD of each peat PFT was calculated for cores with litter bags containing single species, 

at each temperature.  

5.2.4   Mixed litter interactions 

Interactions between PFT litters in mixtures were determined by first calculating the 

expected mass remaining (Eqn. 3) (Hoorens et al., 2010), based on the remaining mass of 

single PFT litter bags of the component litters, which were incubated at the same 

temperature and on the same peat PFT. Interactions can be used to determine whether there 

was an additive or  non-additive effect of litter mixing (Hoorens et al., 2010).  

R refers to the remaining mass of PFT litter in the single-PFT litter bag and M refers to the 

initial dry litter mass of a litter PFT in the mixture. The suffixes indicate which particular 

PFT is referred to: B = bryophyte, G = graminoid and S = shrub. Interaction strength was 

calculated as shown in Eqn. 4. When observed mass remaining (O) was lower than 

expected (E) the interaction was positive and when it was higher the interaction was 

negative (Hoorens et al., 2010). 
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Expected mass remaining =  

       
         

  +
       

         
 

       
         

                                                           

 

Interaction strength =  

   
 

 
                                                                                                                                                   

 

5.2.5   Statistical analysis 

All statistical analysis was performed using the statistical package R, version 2.14.0 (The R 

Project, 2012) and all data were checked for normality before final analysis. Throughout 

the text, ‘significant’ is referred to if p < 0.05.  

To identify differences in peat and litter quality that are hypothesised to influence litter 

decomposition and CO2 emissions, the significance of PFT on biological and chemical 

properties of peat cores, single litters and litter mixtures was tested using one-way 

ANOVAs followed by Tukey’s test post-hoc analyses.  

A linear mixed effects (LME) model was used to further investigate the role that 

temperature and PFT-derived differences in peat and litter properties have in determining 

litter decomposition. A LME model of litter mass remaining was constructed for all peat 

cores at each temperature. Replicate was included as a random effect and biochemical 

properties of peat and litter were specified as fixed effects. Chemical properties included 

C:N, total C content and N content of peat and litter. The measures of microbial 

community composition used were total PLFAs, bacterial PLFAs, fungal PLFAs, F:B, 

gram positive (gram +ve) PLFAs, gram negative (gram –ve) PLFAs and gram +ve:gram -

ve. The initial model including all fixed effects could not be used due to problems with 

complexity and the presence of co-linear variables. To determine the source of these 

problems, each fixed effect variable was removed from the model in turn. The following 

fixed effect variables were removed permanently from the model: peat C:N total PLFAs, 

bacterial PLFAs, fungal PLFAs, F:B, gram +ve PLFAs, gram -ve PLFAs, gram +ve:gram -

ve. The final model and the relative contribution of each variable in explaining the 

variance of the final model was achieved by following the procedure outlined in section 

4.2.4. of Chapter 4. An LME model was also used to investigate how the relative 

abundance of microbial functional groups in peat and chemical properties of peat and litter 
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improved predictions of CO2 emissions. A LME model of CO2 emissions was constructed 

for all peat cores at each temperature. Replicate was included as a random effect and 

biochemical properties of peat and litter were specified as fixed effects. The parameters 

included and model refinement is the same as the % litter mass remaining LME model 

above.   

In order to test the hypothesis that temperature would be a stronger driver of litter 

decomposition (% litter mass remaining) than peat PFT and litter PFT, a three-way 

ANOVA was performed and followed by Tukey’s test post-hoc analyses. Linear mixed 

effects (LME) modelling was performed to examine the interactive effects of temperature, 

peat PFT and litter PFT on CO2 emissions over the duration of the experiment, in order to 

test if the hypothesised effects for litter mass loss were the same for heterotrophic 

respiration rates. Core ID was used as a random effect to account for the repeated measures 

made over the course of the 363 day incubation. Tukey’s test post-hoc analyses were used 

to allow multiple comparisons to be made between treatments and sampling points.  

To test the hypothesis that the temperature sensitivity of litter mass loss would be 

influenced by peat PFT and litter PFT, a two-way ANOVA was used and followed by 

Tukey’s test post-hoc analyses. Two-way ANOVA was also used to test the hypothesis that 

PFT litters (in monoculture) would decompose differently on peat derived from each PFT. 

The significance of temperature and litter PFT on additional mass loss at home (HFA) or 

away (HFD) was tested, and followed by Tukey’s test post-hoc analyses and t-tests to test 

if additional mass loss at home was significantly different to zero. LME models and 

Tukey’s test post-hoc analyses were also used to examine the interactive effects of 

temperature and litter PFT on additional CO2 emissions at home (HFA) and away (HFD) 

over the duration of the experiment. T-tests were used to test if additional mass loss at 

home or away was significantly different to zero. In both instances, core ID was used as a 

random effect to account for the repeated measures. 

It was hypothesised that non-additive effects of litter mixing would occur, with high 

quality litter promoting the decomposition of low quality litter in mixtures. A three-way 

ANOVA and Tukey’s test post-hoc analyses were performed to test the significance of 

temperature, peat PFT and litter PFT on the interactions strengths between litters in each 

PFT mixture. T-tests were also performed, to test if the interaction strengths were 

significantly different to zero. LME models were also used to examine the interactive 

effects of peat PFT and litter PFT on temperature sensitivity of CO2 emissions over the 

duration of the experiment, followed by Tukey’s test post-hoc analyses. 
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5.3  Results 

5.3.1   Biochemical properties of peat and litter 

ANOVA analyses showed that all biochemical peat properties varied significantly between 

PFTs, with the exception of total N content and F:B (Table 5.2). Peat total C content was 

significantly higher in graminoid peat than in bryophyte and shrub peat, whereas the 

opposite was found for C:N and the ratio of gram +ve to gram -ve bacterial PLFAs (Tables 

5.2 and 5.3). The concentration of total PLFAs, bacterial PLFAs, gram +ve and gram -ve 

bacterial PLFAs were all significantly lower in bryophyte peat, than in graminoid and 

shrub peat (Tables 5.2 and 5.3). However, for fungal PLFAs, concentrations were only 

higher in shrub peat than in bryophyte peat (Tables 5.2 and 5.3).  

PFT was found to affect the total C content, total N content and C:N of litter (Table 5.4). 

The total C content of litters in monoculture increased significantly from bryophyte to 

graminoid to shrub litter (Tables 5.4 and 5.5). Litter mixtures containing bryophyte litter 

had significantly lower total C content than shrub litter alone, and in combination with 

graminoid litter (Tables 5.4 and 5.5). Furthermore, litter mixtures containing shrub had 

significantly higher total C content than the combination of bryophyte and graminoid litters 

(Tables 5.4 and 5.5). Litter total N content was also lowest in bryophyte litter, whilst 

graminoid litter in monoculture and in combination with shrub litter had higher 

concentrations of N that all other litters (Tables 5.4 and 5.5). In monoculture, C:N was 

lowest in graminoid litter and highest in bryophyte litter. Litter C:N of shrub, the 

bryophyte and graminoid mix, and the all litters mix was (1) significantly higher than 

graminoid litter alone and in combination with shrub and (2) significantly lower than in 

bryophyte litter and the mixture of bryophyte and shrub litters (Tables 5.4 and 5.5).  
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Table 5.2: Biochemical properties of peat cores collected from beneath each PFT. S = shrub, G = 

graminoid, B = bryophyte. Peat properties were analysed with one-way ANOVA with peat PFT as 

the main factor. S = shrub, G = graminoid, B = bryophyte. Symbols indicate significant differences 

between peat PFTs for each peat property: ns = not significant, * = p < 0.05, ** = p < 0.01. Data are 

means ± standard error.  

Property 
Peat PFT 

B G S p 

P
ea

t 

Total C 44.01±1.88 50.19±0.57 44.83±1.09 0.0026 

Total N 2.04±0.09 1.97±0.09 2.03±0.03 0.7220 

C:N 21.59±0.29 25.72±1.71 22.14±0.58 0.0026 

Total PLFAs 78.32±13.48 179.43±13.97 179.60±9.06 0.0001 

Total fungi 7.14±1.40 18.63±6.33 27.94±2.17 0.0170 

Total bacteria 42.47±7.66 91.38±7.26 88.79±4.15 0.0003 

F:B 0.17±0.01 0.21±0.07 0.31±0.01 0.1840 

Total gram +ve 21.90±4.03 43.06±3.35 45.31±2.48 0.0008 

Total gram –ve 19.90±3.58 47.18±4.23 42.04±1.85 0.0008 

Gram +ve:gram-ve 1.10±0.02 0.92±0.05 1.08±0.04 0.0123 
 

 

 

Table 5.3: Pair-wise comparisons of peat properties between each peat PFT, 

analysed by one-way ANOVA and Tukey’s HSD test. 

Peat property 
Peat PFT 

B G S 

Total C b a b 

Total N a a a 

C:N b a b 

Total PLFAs b a a 

Total fungi b ab a 

Total bacteria b a a 

F:B a a a 

Total gram +ve b a a 

Total gram -ve b a a 

Gram +ve:gram -ve b a b 
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Table 5.4: Properties of litter used for the single and mixed PFT litter bag treatments. Litter properties were analysed 

with one-way ANOVA with litter PFT as the main factor. S = shrub, G = graminoid, B = bryophyte. Data are means ± 

standard error. 

Property 

 Litter PFT – single and mixed litter bag treatments  

 B G S BG BS GS BGS p 

Total C 

 

43.49±0.07 47.64±0.15 51.79±0.14 45.11±0.09 47.73±0.12 49.76±0.11 47.06±0.13 <0.0001 

Total N 

 

0.61±0.03 1.61±0.03 1.30±0.02 1.16±0.02 1.05±0.01 1.47±0.02 1.23±0.01 <0.0001 

C:N 

 

71.84±3.48 29.64±0.42 39.92±0.80 38.98±0.70 45.33±0.73 33.82±0.59 38.14±0.24 <0.0001 
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5.3.2   Litter decomposition  

Temperature exerted a greater influence on litter decomposition than peat PFT, but the PFT 

composition of litter had the largest effect overall, contrary to the first hypothesis (Table 

5.6). Litter bags at 12°C lost more mass than those at 14°C and 16°C (Figure 5.1). Litter 

bags containing graminoid litter had less mass remaining, compared to litter bags 

comprised of bryophyte and shrub litter monocultures, and their litters in combination 

(Figure 5.1). The PFT legacy in peat was found to affect litter decomposition (Table 5.6), 

but post-hoc testing did not reveal any differences between the mass loss of litter bags that 

decomposed on peat derived from bryophyte, graminoid or shrub.  

There was a significant interaction between temperature and litter PFT (Table 5.6). 

Decomposition of graminoid and shrub litters in monoculture, as well as all three PFT 

litters in combination, did not vary significantly between temperatures (Figure 5.1 and 

Table 5.7). However, at 14°C and 16°C, the remaining litter mass was  significantly higher 

in litter bags comprising bryophyte litter alone, mixtures of bryophyte with graminoid and 

shrub, and the combination of graminoid and shrub litters (Figure 5.1 and Table 5.7). There 

was also an interactive effect of peat PFT with litter PFT, which was weakly significant, 

but indicates the potential for greater than expected litter mass loss on peat derived from 

the same PFT (Tables 5.6 and 5.7).  

Statistical modelling to examine the relationships between microbial and chemical metrics 

as determinants of the remaining mass of litter after 363 days of decomposition identified 

litter total C content, litter C:N and total N content of both peat and litter as the only 

significant terms retained in the model (Table 5.8). The % remaining litter mass was best 

predicted using litter C:N, which explained the most attributed variance in the model 

(Table 5.8), but also indicates that litter chemistry can influence litter decomposition at 

temperatures relevant to northern peatlands.  
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Table 5.5: Pair-wise comparisons of litter properties between each litter 

bag treatment, analysed by one-way ANOVA and Tukey’s HSD test.  

Litter property 
Litter PFT 

B G S BG BS GS BGS 

Total C f c e a c d b 

Total N e d c ab c d ac 

C:N e c a a b d a 
 

 

 

Table 5.6: Three-way ANOVA results showing significant factors and their 

interactions for litter mass remaining (% initial dry litter mass). T = 

temperature (°C), PFTP = plant functional type of peat, PFTL = plant 

functional type of litter. Df = degrees of freedom, F = F value and p = p 

value. 

 

Three-way ANOVA df F p 

T 2 25.67 <0.0001 

PFTP 2 3.19 0.0436 

PFTL 6 47.77 <0.0001 

T*PFTP 4 0.24 0.9139 

T*PFTL 12 2.62 0.0030 

PFTP*PFTL 12 1.81 0.0494 
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Figure 5.1: Mass remaining of single and mixed PFT litters on each PFT peat core, at 12 °C, 14 °C 

and 16 °C. Letters indicate pair-wise significant differences between the remaining mass of PFT 

litter treatments. Pair-wise comparisons of remaining mass for each litter PFT at each temperature, 

and on each peat PFT, are shown in Table 5.7. Data are means ± standard error. 
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Table 5.7: Pair wise comparisons between litter PFT and each temperature (T), and each 

peat PFT (PFTP), for percentage remaining litter mass.  

   Litter PFT – single and mixed litter bag treatments 

   B G S BG BS GS BGS 

T
 (

°C
) 12  aceg bdf aeg b bdf bf bdf 

14  a bdf aceg cde aceg bcdf cdef 

16  a bdf ag bcdf cdeg bcdef bdf 

          

P
F

T
P

 B  ab c ab cde abcde cd c 

G  a c abe c cde c c 

S  ab cd abde cde bcde c bcde 
 

 

Table 5.8: Linear mixed effects model to determine the relationship between 

litter mass remaining (% initial dry litter mass) and properties of peat and litter. 

Symbol - = variable not present in refined model. The relative contribution (%) 

of each variable in explaining model variance was calculated as % difference in 

adjusted R
2
 comparing the full refined model and the model with each variable 

removed.  

Variable 
Litter Decomposition 

%Adj.R
2
 p 

Peat C content - - 

Peat N content 2.16 0.0489 

Peat C:N - - 

Total PLFA - - 

Total fungi - - 

Total bacteria - - 

F:B - - 

Total gram +ve  - - 

Total gram –ve  - - 

Gram +ve:gram -ve - - 

Litter C content 4.16 0.0064 

Litter N content 7.19 0.0004 

Litter C:N content 8.63 0.0001 
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5.3.3   Temperature sensitivity of litter decomposition 

Temperature sensitivities of litter mass loss determined as Q10 values ranged between 0.03-

2.71 with a mean of 0.77 and a median of 0.66. Q10 values tended to be higher on 

graminoid peat, than on bryophyte and shrub peat (Figure 5.2). Trends suggest that mass 

loss of single graminoid and shrub litters had higher temperature sensitivities than when 

mixed with other PFTs, and increased the temperature sensitivity of bryophyte litter when 

combined (Figure 5.2). The effects of peat PFT and litter PFT on the temperature 

sensitivity of litter decomposition were not significant, however, there was a significant 

interaction between them (Table 5.9). This interaction was observed as higher Q10 values 

for shrub litter on graminoid peat, than on bryophyte or shrub peat. Hypothesis 2 predicts 

that the decomposition of more recalcitrant organic material would be more sensitive to 

changes in temperature than the decomposition of more labile matter. However, findings 

here do not support this ‘quality vs. temperature sensitivity’ hypothesis.  

 

 

 
Figure 5.2: Temperature sensitivity of litter mass loss (% initial dry mass), determined by 

Q10 values, for each peat PFT and litter bag PFT treatment combination. Mean values ± 

standard error. 
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Table 5.9: Two-way ANOVA results showing significant factors and their 

interactions for temperature sensitivity of litter mass loss (determined by 

Q10 values). PFTP = plant functional type of peat, PFTL = plant functional 

type of litter: single and mixed litter bag treatments. Df = degrees of 

freedom, F = F value and p = p value. 

Two-way ANOVA: df F p 

PFTP 2 0.17 0.8417 

PFTL 6 2.17 0.0583 

PFTP*PFTL 12 2.05 0.0347 
 

 

5.3.4   Home field advantage of litter decomposition 

The amount of additional mass loss of a litter on peat derived from the same PFT (HFA) 

and from a different PFT (HFD) was significantly affected by litter PFT, and the 

interaction between litter PFT and temperature (Table 5.10). Hypothesis 3 was partly 

confirmed as bryophyte and shrub litters both experienced HFA, whereas graminoid litter 

mass loss did not increase on graminoid peat (i.e. HFD decomposition occurred) (Figure 

5.3). The additional mass loss of bryophyte and shrub litters at home were not significantly 

different to each other, but were both greater than graminoid. At 12°C shrub litter was 

observed to have HFA, whereas bryophyte litter did not. At 14 °C and °16 C however, 

significantly more bryophyte mass loss on bryophyte peat was observed (HFA) and not for 

shrub (Table 5.11). A 2 - 4°C rise in temperature did not significantly affect the respective 

HFA and HFD decomposition of shrub and graminoid litters, despite the increase in 

graminoid HFD observed with increasing temperature (Figure 5.3).  
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Table 5.10: Two-way ANOVA results showing significant factors and their 

interactions for additional mass loss at home (HFA). T = temperature (°C) and PFTL = 

plant functional type of litter. Df = degrees of freedom, F = F value and p = p value. 

Two-way ANOVA df F p 

T 2 0.05 0.9501 

PFTL 2 38.36 <0.0001 

T*PFTL 4 6.38 0.0010 
 

 

 

 

Figure 5.3: Additional litter mass at home for each litter PFT (B = bryophyte litter, G = graminoid 

litter, S = shrub litter) at each incubation temperature. Asterisks indicate significant differences from 

zero (p < 0.05). Letters indicate pair-wise significant differences between the additional mass loss of 

each single PFT litter. Pair-wise comparisons between each temperature and peat PFT for additional 

mass loss at home are shown in Table 5.11. Data are means ± standard error. 
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Table 5.11: Pair wise comparisons between each temperature and 

litter PFT, for additional mass loss at home. 

  Litter PFT 

  B G S 

T
em

p
er

at
u
re

 (
°C

) 

12 abd ab c 

14 c a bcd 

16 cd a bcd 
 

 

 

5.3.5   Interactions between litters 

Peat PFT influenced the strength of interactions in litter mixtures, but contrary to 

expectations, litter PFT did not (Table 5.12). Overall, temperature exerted the most control 

over the interaction strengths (Table 5.12), which were in general relatively low (i.e. close 

to zero) (Table 5.13). Higher values were observed at 12°C and 16°C than at 14°C, and on 

graminoid peat compared to shrub peat (Table 5.13). There was a significant interaction 

between temperature and peat PFT (Tables 5.12 and 5.14), with higher interaction 

strengths at 12°C and 16°C on bryophyte peat. Positive interactions were observed for all 

PFT litter mixtures, peat PFTs and temperatures, apart from bryophyte peat at 14°C (Table 

5.13). Only 13 significant interactions occurred out of a possible 36, with over half of these 

occurring at 12°C (Table 5.13). The highest number of interactions occurred on bryophyte 

peat, and the least on shrub (Table 5.13). More significant interactions were observed for 

mixtures containing bryophyte and shrub litters than those comprised of graminoid litter 

(Table 5.13), that is, the presence of shrub and bryophyte litter accelerated the 

decomposition of other litters in mixture more so than graminoid litter did. The premise 

that high quality litter would promote the decomposition of low quality litter in mixtures 

(hypothesis 4) was not found, and instead the opposite occurred.  
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Table 5.12: Three-way ANOVA results showing significant factors and their interactions 

for interaction strength of litters in mixture. T = temperature (°C), PFTP = plant functional 

type of peat and PFTL = plant functional type of litter. Df = degrees of freedom, F = F 

value and p = p value. 

Three-way ANOVA df F p 

T 2 12.16 <0.0001 

PFTP 2 4.52 0.0130 

PFTL 3 1.04 0.3790 

T*PFTP 4 8.78 <0.0001 

T*PFTL 6 1.15 0.3400 

PFTP*PFTL 6 1.26 0.2840 
 

 

 

Table 5.13: Mean interaction strength values ±standard error (SE) in the PFT litter 

mixtures, on bryophyte, graminoid and shrub peat, at 12°C, 14°C and 16°C. Interactions in 

bold are significantly different from zero (p <0.05). Mixtures contained litters from each 

PFT: B = bryophyte, G = graminoid, S = shrub.  

Peat 

PFT 

PFT litter 

mixture 

Temperature 

12°C  14°C  16°C 

Mean SE  Mean SE  Mean SE 

B
ry

o
p
h
y
te

 BG 0.21 0.03  -0.06 0.08  0.06 0.05 

BS 0.19 0.03  -0.02 0.03  0.18 0.04 

GS 0.14 0.09  -0.03 0.05  0.13 0.02 

BGS 0.26 0.01  -0.06 0.04  0.26 0.04 

G
ra

m
in

o
id

 BG 0.13 0.04  0.14 0.02  0.20 0.07 

BS 0.17 0.06  0.15 0.04  0.16 0.06 

GS 0.16 0.01  0.13 0.06  0.02 0.05 

BGS 0.11 0.04  0.17 0.09  0.14 0.06 

S
h
ru

b
 

BG 0.14 0.05  0.08 0.06  0.06 0.06 

BS 0.17 0.02  0.02 0.05  0.12 0.03 

GS 0.15 0.05  0.06 0.01  0.07 0.02 

BGS 0.00 0.08  0.02 0.03  0.14 0.06 
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Table 5.14: Pair wise comparisons between each temperature and 

peat PFT, for interaction strength in litter mixtures. 

  Peat PFT 

  B G S 

T
em

p
er

at
u
re

 (
°C

) 

12 a ab ab 

14 c a bc 

16 a ab ab 
 

 

5.3.6   Heterotrophic respiration 

CO2 emissions ranged from 5.04 – 198.12 mg CO2-C m
-2 

h
-1

, with a mean of 68.17 mg 

CO2-C m
-2 

h
-1

 and a median of 63.59 mg CO2-C m
-2 

h
-1

. Similarities with litter 

decomposition were observed, as repeated measures ANOVA analysis showed significant 

differences in CO2 emissions with temperature, litter PFT and peat PFT (Table 5.15). CO2 

emissions increased from 12°C to 14°C, and were highest at 16°C (Figure 5.4). CO2 

emissions were higher from cores with litter bags containing a mixture of bryophyte and 

shrub litters, than from cores i) without litter, ii) with litter bags comprised of graminoid 

litter alone and iii) in combination with shrub litter (Figure 5.4). Overall, the PFT legacy 

effect on peat exerted the most influence on CO2 emissions, with measured fluxes 

increasing from bryophyte to shrub, to graminoid peat (Figure 5.4). However, there was an 

interesting interaction between temperature and peat PFT (Table 5.15), which showed CO2 

emissions from graminoid peat to increase with each 2°C rise in temperature, which was 

not the case with shrub or bryophyte peat (Figure 5.4 and Table 5.16). By subtracting the 

amount of CO2 measured from peat cores without litterbags, it allowed the additional CO2 

emitted from the decomposing litter to be observed more clearly (Figure 5.5). Overall, the 

litterbags were contributing additional CO2 to the amount already being emitted from the 

peat cores. In some cases this was not always observed, for instance graminoid peat cores 

at 12 °C emitted more CO2 in the absence of litter (Figure 5.5).  

Overall, there was a significant decline in CO2 emissions over time (Figure 5.6 and Table 

5.15). CO2 emissions at the beginning of the experiment and after 56 days were not 

significantly different, but were significantly higher than CO2 emissions at day 119, 174, 

230 and 363 overall. CO2 emissions at day 230 were significantly lower than those 

measured at any other point during the incubation (Figure 5.6). There was a significant 
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interaction between time and temperature (Tables 5.15 and 5.17). Overall, CO2 emissions 

at 16°C remained higher than those at 12°C for the duration of the experiment, but CO2 

emissions at 14°C were not consistently higher or lower than 12°C or 16°C. Effects of peat 

PFT on CO2 emissions also varied significantly with time (Tables 5.15 and 5.17), with the 

reduction in CO2 emissions from graminoid peat cores larger than that from bryophyte and 

shrub-derived peat from day 56 to day 230.   

The dominant factors driving the differences in observed CO2 emissions were identified 

using statistical modelling, which examined the relationships between microbial and 

chemical metrics as determinants of CO2 emissions. Total C and N content of litter and 

peat were the only significant terms remaining in the model (Table 5.18). CO2 emissions 

were best predicted using litter terms, with total litter C content explaining the most 

attributed variance in the model (Table 5.18).   
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Table 5.15: Linear mixed effects (LME) model of CO2 emissions (mg CO2 – C m
-2

 h
-1

). 

D = days since start of experiment, T = temperature (°C), PFTP = plant functional type 

of peat, PFTL = litter plant functional type treatment. Df = degrees of freedom, F = F 

value and p = p value. 

LME: Repeated Measures ANOVA df F p 

D 5 25.39 <0.0001 

T 2 44.59 <0.0001 

PFTP 2 77.18 <0.0001 

PFTL 7 4.12 0.0003 

D * T 10 3.27 0.0004 

D * PFTP 10 8.01 0.0004 

D * PFTL 35 0.94 0.5704 

PFTP * PFTL 14 1.58 0.0852 

T * PFTP 4 4.10 0.0031 

T * PFTL 14 1.60 0.0803 
  

 

 

Table 5.16: Pair wise comparisons between each temperature and 

peat PFT, for CO2 emissions. 

  Peat PFT 

  B G S 

T
em

p
er

at
u
re

 (
°C

) 

12 b c ac 

14 ab d f 

16 ac e df 
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Figure 5.4: CO2 emissions from cores of each peat PFT with litterbags comprised of no 

litter (N), bryophyte litter (B), graminoid litter (G) and shrub litter (S), in monoculture and 

mixtures, incubated at (i) 12°C, (ii) 14°C and (iii) 16°C. Letters indicate pair-wise 

significant differences between CO2 emissions from each litter bag treatment. Pair-wise 

comparisons of CO2 emissions between each peat PFT and each temperature are shown in 

Table 5.16. Mean data (averages taken from 6 sampling dates over 1 year) ± standard error.  
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Figure 5.5: Difference in CO2 emissions from PFT cores without and with litterbags comprising 

bryophyte (B), graminoid (G) and shrub (S) litter, in monoculture and mixtures, at (i) 12 °C, (ii) 

14 °C and (iii) 16 °C. Mean data±standard error (averages over 6 sampling dates in 1 year).  
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Figure 5.6: CO2 emissions from (i) bryophyte, (ii) graminoid and (iii) shrub peat cores, 

incubated for 1 year at 12°C, 14°C and 16°C. Letters indicate pair-wise significant 

differences between CO2 emissions at each temperature. Pair-wise comparisons of CO2 

emissions for each sampling day, temperature and peat PFT are shown in Table 5.17. 

Data is averaged across all litter bag treatments ± standard error.   
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Table 5.17: Pair wise comparisons between each sampling day and each temperature 

(T), and each peat PFT (PFTP), for CO2 emissions.   

   Days since start of experiment 

   0 56 119 174 230 363 

T
 (

°C
) 12  abde adcd ae ae e ae 

14  bcf bcdf bcdf bcdf ae ade 

16  f f bcdf bcdf abde cf 

         

P
F

T
P

 B  bgh ab a ac c ab 

G  de d def def abg efh 

S  bfgh efgh bfgh bfgh befgh ab 
 

 

Table 5.18: Linear mixed effects model to determine the relationship between CO2 

emissions and peat-litter properties. Symbol - = variable not present in refined 

model. The relative contribution (%) of each variable in explaining model variance 

was calculated as % difference in adjusted R
2
 comparing the full refined model and 

the model with each variable removed.  

 

Variable 

CO2 fluxes 

%Adj.R
2
 p 

Peat C content 23.52 <0.0001 

Peat N content 23.50 <0.0001 

Peat C:N - - 

Total PLFA - - 

Total fungi - - 

Total bacteria - - 

F:B - - 

Total gram +ve  - - 

Total gram –ve  - - 

Gram +ve:gram -ve - - 

Litter C content 96.93 0.0001 

Litter N content 95.06 <0.0001 

Litter C:N - - 
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5.3.7   Temperature sensitivity of respiration 

The Q10 values ranged from 0.02-13.98, with a mean of 2.95 and a median of 1.92. 

Overall, there were no effects of peat and litter PFT, or time, but there were significant 

interactions between them (Table 5.19). However, post-hoc tests did not reveal any 

significant differences between the Q10 values of CO2 emissions for litter treatments, over 

the duration of the experiment. Q10 values tended to increase over time for CO2 emissions 

from graminoid peat and decrease for shrub peat (Figure 5.7), but there was no discernible 

pattern in the temperature sensitivity of bryophyte peat respiration rates over time. 

Therefore, the anticipated heightened sensitivity of CO2 emissions from more recalcitrant 

organic matter to changes in temperature (hypothesis 2) was not found.   

 

Table 5.19: Linear mixed effects (LME) model results showing significant factors and their 

interactions for temperature sensitivity of CO2 emissions (Q10 values). D = days since start 

of experiment, T = temperature (°C), PFTP = plant functional type of peat, PFTL = litter 

plant functional type treatment. Df = degrees of freedom, F = F value and p = p value. 

LME: Repeated Measures ANOVA df F p 

D 5 0.18 0.9706 

PFTP 7 2.91 0.0612 

PFTL 2 1.40 0.2169 

D * PFTP 35 3.34 0.0040 

D * PFTL 10 1.73 0.0076 

PFTP * PFTL 14 0.72 0.7513 
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Figure 5.7: Temperature sensitivity of CO2 emissions, determined by Q10 values, for each 

peat PFT and each sampling day for 1 year. Letters beneath the legend indicate pair-wise 

significant differences between the Q10 values of each peat PFT, whilst letters on the graph 

denote significant differences between peat PFT and sampling day. Mean values (averaged 

over litter PFT) ± standard error. 
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5.3.8   Home field advantage and disadvantage of respiration 

The occurrence of HFA and HFD decomposition, measured as the amount of additional 

CO2 emissions from litters on peat derived from the same or a different PFT, was 

controlled predominantly by the composition of the litter bags and the interaction with time 

(Tables 5.20 and 5.21). There were only a few occasions where additional CO2 emissions 

were significantly different from zero (HFA apparent): on day 0, 56 and 363 at 14 °C for 

shrub and graminoid litter (Figure 5.8). However, three significant cases of HFD also 

occurred (Figure 5.8). HFD values for graminoid litter at day 0 at 14 °C, and for bryophyte 

litter at day 56 at 14 °C and 16 °C indicate that CO2 emissions for these litters near the 

beginning of the incubation decomposed preferentially on peat derived from a different 

PFT (i.e. ‘away from home’).  

 

Table 5.20: Linear mixed effects (LME) model results showing significant factors and 

their interactions for additional CO2 emissions at home and away. D = days since start of 

experiment, T = temperature (°C), PFTL = litter plant functional type treatment. Df = 

degrees of freedom, F = F value and p = p value. 

LME: Repeated Measures ANOVA df F p 

D 5 0.28 0.9244 

T 2 0.13 0.8763 

PFTL 2 23.74 <0.0001 

D * T 7 0.81 0.5829 

D * PFTL 10 3.25 0.0010 

T * PFTL 4 1.34 0.2602 
 

 

 

Table 5.21: Pair wise comparisons between each sampling day and each 

litter PFT (PFTL), for additional CO2 emissions at home and away.   

   Days since start of experiment 

   0 56 119 174 230 363 

P
F

T
P

 B  ab a ab ab abc ab 

G  abc c abc bc abc abc 

S  bc abc abc abc abc abc 
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Figure 5.8: Mean additional CO2 emissions at home (± standard error) for 

each single litter PFT (B = bryophyte litter, G = graminoid litter, S = shrub 

litter) at 12°C, 14°C and 16°C, over 363 days. Asterisks indicate significant 

differences from zero (p < 0.05). Letters indicate pair-wise significant 

differences between PFT litters. Pair-wise comparisons between sampling 

day and litter PFT are shown in Table 5.21. Mean data is not shown for (i) 

day 363, (ii) day 230 and (iii) day 230 due to missing replicates.  
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5.4  Discussion 

5.4.1   Drivers of decomposition 

It was hypothesised that decomposition would vary with PFT, due to differences in litter 

chemistry and biochemical peat properties, but that changes in temperature would exert the 

most control overall (Aerts, 2006). However, as observed in Chapter 4, PFT was found to 

be the most important control on litter mass loss and heterotrophic respiration rates. Litter 

bags containing graminoid litter lost more mass than those containing shrub and bryophyte 

litters, in monocultures and in mixtures (Figure 5.1), whereas respiration rates were 

greatest from cores with litter bags containing a mixture of bryophyte and shrub litters 

(Figure 5.4). In a short-term field decomposition study, greater rates of decomposition 

have previously been observed for shrub litter (Ward et al., 2010), with higher weight loss 

and rates of respiration for litter mixtures dominated by shrub than graminoid litter. The 

low decomposability of bryophytes compared to vascular plants is a general phenomenon, 

and is attributed to the low quality of this litter type (Aerts et al., 1999; Ward et al., 2010). 

These findings support the growing opinion that differences in litter decomposability often 

correspond well with the classification of PFTs based on plant traits (Li et al., 2013; 

Strakova et al., 2011; Ward et al., 2010). However, there can be considerable overlap 

among PFTs so that decomposition is not always significantly different for a specific litter 

and its adjacent litter(s), as seen by Pérez-Harguindeguy et al. (2000) and Quested et al. 

(2003). Furthermore, decomposition may not always be different for litters in contact with 

peat derived from different PFTs. Despite a weakly significant effect, the PFT legacy in the 

underlying peat did not produce marked differences in litter bag mass loss, whereas for 

respiration, PFT composition differences in peat had a stronger effect on CO2 emissions 

than the species composition of litter bags. Higher respiration rates were measured from 

graminoid-derived peat (Figure 5.4), a pattern also observed in section 3.3.2, Chapter 3. 

This is consistent with an interpretation that more labile substrates are available in the peat 

beneath this PFT. Without living plants to replenish the labile C pool (Davidson and 

Janssens, 2006), microbial activity will be limited by the quality and quantity of root 

exudates that remain in the peat cores. Therefore, differences in the quality and quantity of 

root exudates entering the soil from different PFTs are likely to affect rates of respiration 

(De Deyn et al., 2008). Further, CO2 emissions from shrub-derived peat remained 

relatively steady over the 363 day incubation period, a time over which graminoid and 

bryophyte peat CO2 emissions declined more rapidly (Figure 5.6). This implies that the 

more recalcitrant shrub-derived peat undergoes slower depletion of C substrates and 
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supports the idea that peat of different qualities release CO2 at different rates under 

increased temperatures (De Deyn et al., 2008).  

In addition, the interaction between peat and litter PFT that facilitated increased CO2 

emissions from bryophyte and shrub litter bags on graminoid compared to on bryophyte or 

shrub peat (Figure 5.4) may arise due to nutrient transfer. A relatively high quality peat 

(i.e. graminoid-derived peat) could enhance the decomposition rate of poor quality litters 

(i.e. shrub and bryophyte litters) (Hättenschwiler et al., 2005) as a result of preferential 

exploitation of the high quality peat by decomposer organisms, and so eventually lead to a 

nutrient transfer to the low quality litter. In turn, transferred nutrients would hypothetically 

increase the decomposition of the low quality litter (Hättenschwiler et al., 2005) and 

therefore increase CO2 emissions.  

The chemistry of the litter inputs and the underlying peat were most important in 

determining differences in decomposition, with the concentration of C and N in peat and 

litter explaining the most variation in litter mass loss and resultant CO2 emissions. While 

these properties only explained a small proportion of the modelled variation in the amount 

of remaining mass in litter bags (i.e. between 2 – 9%), they accounted for more of the 

variability in CO2 (i.e. between 24 - 97%). In both instances though, chemical 

characteristics of litter explained up to four times more modelled variation in 

decomposition and respiration rates than properties of peat. The quality of litter and the 

surrounding soil has been used often in making predictions of decomposition rates (Gartner 

and Cardon, 2004; Hobbie, 1996). Recent decomposition studies have found stronger 

relationships between decomposition rates and initial N content than with C:N (Wang et 

al., 2014; Ward et al., 2010), which was true of CO2 emissions in this study, but not litter 

mass loss. In addition to concentrations of C and N in litter, compounds such as lignins and 

tannins may also be good indicators of litter decomposition (Jiang et al., 2013). Chemical 

properties that increase litter decomposability can also select for a microbial community 

that is suited to the fast decomposition of more labile litters (Myers et al., 2012). For 

instance, graminoid-derived peat had higher total bacterial PLFAs than shrub or bryophyte-

derived peat (Table 5.2). In contrast, slow decomposing litters (i.e. shrub and bryophyte) 

are associated with a more fungal-dominated (e.g. shrub-derived peat) or small (e.g. 

bryophyte-derived peat) microbial community (Table 5.2), known for slower turnover rates 

of C because of the low quality of those litter types (Gartner and Cardon, 2004; Latter et 

al., 1998; Rousk and Bååth, 2007) 
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The heterogeneity created by mixing different litter types may also change soil decomposer 

activities and indirectly affect litter decomposition, by affecting the ratio of fungi to 

bacteria and thus the ability of the decomposer community to degrade lower or higher 

quality litter mixtures (Hector et al., 2000), but microbial metrics were not identified as 

playing an important part in decomposition in this study (Tables 5.8 and 5.18). A more 

detailed analysis of microbial composition and diversity, and community comparisons 

made before and after decomposition, could identify important regulators of peat 

respiration and litter mass loss (Artz et al., 2007). 

Although temperature was a significant factor in both cases, litter decomposition and rates 

of respiration responded differently to incubation at 12°C, 14°C and 16°C. For instance, 

more litter decomposition occurred in cooler conditions (Figure 5.1), whilst CO2 emissions 

increased with warming (Figure 5.4). Respiration rates declined over the course of the 

experiment, which suggests that litter mass loss may have become increasingly limited by 

the availability of labile substrates. In view of this, it could be assumed that faster rates of 

decomposition occurred at 16°C initially. In turn, rapid breakdown of litter could have 

depleted the pool of available labile substrates in the peat, which then reduced the rate at 

which decomposition could be sustained under warmer conditions (Kirschbaum, 2013). At 

lower temperatures (12°C and 14°C), rates of initial decomposition may have been slower 

than at 16°C, leaving a larger pool of labile substrates to facilitate further decomposition 

over longer periods of time. Therefore, litter bags at 12°C could be expected to undergo 

more decomposition than at 14°C and 16°C. However, the response of litter decomposition 

to temperature seen in this laboratory study was not observed under similar conditions in 

the field. At a sub-arctic bog, small increases in litter decomposition rates were evident 

over a 4 year period under rising temperatures relevant to moderate climate change 

scenarios (i.e. 0.7 – 1.2°C) (Aerts et al., 2012). Other studies that examined the effects of 

larger increases in temperature (i.e. greater than 4°C) found substantial increases in litter 

decomposition rates (Cornelissen et al., 2007; Hobbie, 1996). The rise in CO2 emissions 

with each 2°C increase was not surprising, given the known relationship between 

temperature and GHG fluxes (Bond-Lamberty and Thomson, 2010) and the effects of 

small-scale increases in temperature on peat respiration under controlled conditions in the 

laboratory (Chapter 3) and in the field (Dorrepaal et al., 2009; Ward et al., 2013).   

The effect of temperature change on decomposition may depend on the quality of the 

decomposing litter and underlying peat (e.g. Conant et al., 2008; Kirschbaum, 2013). In 

this study, the decomposition of shrub litter was more sensitive to changes in temperature 

when on graminoid-derived peat (Figure 5.2) but broadly PFT-induced differences in litter 
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and peat quality did not control differences in Q10 values for CO2 emissions (Table 5.19), 

and so the temperature sensitivities of labile and more resistant OM are similar.  

For example, short-term responses of 
13

CO2 fluxes derived from younger vs. older soil OM 

(Conen et al., 2006), models of different soils incubated at a range of temperatures (Rey 

and Jarvis, 2006), laboratory incubation data (Fang et al., 2005) and field experimental 

data (Luo et al., 2001) all show that there was no significant change in temperature 

sensitivity with decreasing OM lability. However, in a subarctic peatland, the temperature 

sensitivity of recalcitrant OM was greater than when OM contained more labile 

compounds (Dorrepaal et al., 2009). Other investigations using different approaches, such 

as adding compounds of differing lability to soil or by incubating soil OM components 

separately, also suggest that resistant soil OM or OM-depleted soils may be more sensitive 

to temperature than soils that have more labile or are less OM-depleted (Conant et al., 

2008a; Fierer et al., 2005; Leifeld and Fuhrer, 2005). In this study, CO2 emissions from the 

graminoid-derived peat appeared to become more temperature sensitive over time (Figure 

5.7), but not by a significant degree, most probably owing to the exhaustion of the labile 

OM pool. It is apparent that across a range of environmental conditions and experimental 

approaches, labile OM decomposition has the potential to be more, less or equally sensitive 

to changes in temperature than more resistant OM.  

5.4.2   Litter and peat interactions 

While it is clear that the primary factors that control decomposition rates are litter quality 

and temperature (Aerts, 1997; Cornwell et al., 2008), home-field advantage has been 

recognised as a secondary factor controlling decomposition. Few studies have explored the 

effect of HFA on litter decomposition in peatlands, despite studies of other ecosystems 

reporting higher decomposition rates when litters decompose in their native environment 

(Ayres et al., 2009b, 2006; Strickland et al., 2009; Vivanco and Austin, 2008). In this 

study, findings show that litters from different PFTs in peatlands have the potential to 

decompose with HFA, and HFD, but changes in temperature do not control this.  

There was a weakly significant interaction between litter PFT and peat PFT on litter mass 

loss, but not for CO2 emissions. This indicates that the likelihood of HFA or HFD was low. 

Bryophyte and shrub litters decomposed more rapidly when in contact with bryophyte- and 

shrub-derived peat, respectively (Figure 5.3); the opposite was observed for graminoid 

litter and peat. However, these trends were not the same as with CO2 emissions. Figure 5.8 

shows that additional fluxes of CO2 were measured from shrub litter on shrub peat at the 

start of the experiment, but never from bryophyte litter on bryophyte peat. Rather, 
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bryophyte litter respiration rates were greater on peat derived from other PFTs (i.e. at day 

56) (Figure 5.8), whereas additional CO2 emissions from graminoid litter were measured 

on peat derived from all PFTs (Figure 5.8). The average amount of additional CO2 

emissions at home did not deviate significantly away from zero on more than six 

occasions, across the temperature range (Figure 5.8). It is therefore likely that the effects of 

HFD offset HFA, which produced ‘no effect’ on average. The majority of significant HFA 

and HFD-influenced CO2 emissions were observed within the first 56 days of the 

incubation, which suggests that the effect of HFA or HFD was short-lived and limited by 

the availability of labile substrates. It was hypothesised that the legacy of a particular PFT 

in peat would affect the microbial community, with adaptation in the abundance and 

composition of the microbial community increasing the ability of decomposer organisms to 

rapidly colonise and start decomposing litters from the same PFT. However, the findings 

reported in this study do not provide convincing evidence of this occurring.  

In another relatively short-term study, plant species did not encourage the development of 

soil microbial communities that specialised in decomposing their litter rapidly (Ayres et 

al., 2006). A decomposer community is relatively unlikely to be dominated by both fungi 

and bacteria (Wardle, 2002). Therefore, the HFA-HFD hypothesis might not account for 

the range of litter quality and decomposability occurring in ecosystems at small spatial 

scales (i.e. between PFTs in peatlands) (Freschet et al., 2012). Moreover, changes in litter 

structure and chemistry during decomposition could result in a litter becoming more 

similar to another litter, which would allow an ‘away’ soil microbial community to 

decompose it rapidly, thus producing no home-field advantage effect. However, in 

experiments using litters from forest, herbaceous and grassland species, HFA increased 

with decreasing litter quality (Ayres et al., 2009b; Strickland et al., 2009; Wardle et al., 

2003). Therefore, high quality litter might be expected to have little or no HFA, due to the 

lack of competition within the microbial community for resources. Furthermore, this 

relationship will become clearer when there is a greater dissimilarity between litter types 

and possibly larger compositional differences within the soil community (Strickland et al., 

2009). Not only that, but a more comprehensive assessment of litter quality, including the 

abundance and composition of phenolic compounds, might be necessary to accurately 

predict HFA and HFD for different litter types (Ayres et al., 2006).  

The initial litter quality can control the early stages of litter decomposition (i.e. loss of 

labile litter compounds (Bray et al., 2012; Prescott et al., 2004), but the composition of the 

microbial community has more influence over decomposition rates in the later stages of 

decay (i.e. loss of recalcitrant litter compounds) (Bray et al., 2012). Therefore, it is possible 
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for HFA and HFD effects to become more apparent and consistent with time, as labile 

substrates are lost and the role of the microbial community becomes more important. 

Similarly, the effects of changing the decomposition microclimate (i.e. warmer 

temperatures) might become more pronounced in HFA or HFD with time due to adaptation 

of microbial communities.  

The influence of HFA on decomposition has been reported to be comparable in magnitude 

to the effect of litter interactions in mixtures (Gartner and Cardon, 2004; McTiernan et al., 

1997; Wardle et al., 1997). In this study, there were non-additive effects of litter mixing on 

litter mass loss, but less than half of the possible interactions between mixed litters were 

significant (Table 5.13). On average, the interaction strengths did not deviate much from 

zero (Table 5.13), which indicates that the presence of positive interactions were most 

likely to be counterbalanced by negative interactions, leading to a more neutral effect 

overall. Therefore, it can be surmised that the effects of HFA, HFD and interactions 

between mixed litters on decomposition were similar, in that these factors had relatively 

limited influence over the amount of litter mass loss. Nevertheless, more significant 

positive interactions occurred in mixed litter bags containing shrub and bryophyte litters, 

than with graminoid litter. It is surprising that bryophyte and shrub litters would promote 

the decomposition of other litters in mixture, owing to their slow decomposition as single 

litters (Figure 5.1), and because the species associated with these PFTs have traditionally 

been thought to have a negative effect on decomposition (van Breemen, 1995; Verhoeven 

and Toth, 1995). Significant interactions in litter mixtures containing Sphagnum were also 

found by Hoorens et al. (2002). An explanation for the positive interaction associated with 

Sphagnum could be that the water retaining properties of Sphagnum litter may provide 

more constant favourable conditions for decomposition (i.e. remaining moist) (Hoorens et 

al., 2002; Wardle et al., 2003). The differences between observed and expected weight loss 

of mixed litters at a peatland in the Moor House National Nature Reserve (NNR), in 

northern England, were greatest for litter mixtures dominated by shrub than by bryophyte 

or graminoid litters (Ward et al., 2010). The acceleration of decomposition associated with 

shrub litter in mixtures may arise from increased resource competition within the soil 

decomposer community, owing to the initial low quality of the litter. Non-additive rates of 

decomposition for mixed litters in agroforestry systems and Mediterranean maquis 

shrubland increased when component litters had contrasting N contents (Marco et al., 

2011; Wang et al., 2014). However, Wang et al. (2014) also found that litter decomposition 

was also enhanced when two litters, both with low N, were mixed. There have been few 

reports of increased mass loss in mixtures comprised of low quality litters (Montané et al., 



 

150 

 

2013), but these findings indicate that  the synergistic effect of mixing different types of 

litter together is not limited to mixing litter types with high N, at least in the first year of 

decomposition (Wang et al., 2014).  

A range of litter mixing effects on decomposition processes has been reported in the 

literature, ranging from negative (Hansen, 2000; Li et al., 2013) to neutral (Blair, 1990) 

and to positive (Bardgett and Shine, 1999; Hector et al., 2000; Jonsson and Wardle, 2008; 

McTiernan et al., 1997); indeed both positive and negative effects of litter mixing have 

sometimes been detected in the same study (Duan et al., 2013; Jiang et al., 2013; Wardle et 

al., 1997). A limitation of these studies, including this one, is that the litter from the 

component species of the mixture were not separated from one another at the end of the 

experiment, so it is impossible to determine how the species present influenced the 

decomposition of each litter, rather than just the overall decomposition of the mixture.  

The decomposition of litter mixtures depends on the balance of stimulatory and inhibitory 

effects of different species properties. Therefore the relative amount of the component 

species can affect the magnitude of the non-additive effect in litter mixtures (Marco et al., 

2011; Ward et al., 2010). The litter mixing ratio (1:1) used in this study only reflects one of 

the many possible mixing ratios that could occur in the field. A more complete exploration 

of litter mixing effects should include multiple harvests and mixing ratios, as different litter 

decomposition phases may show opposing trends with litter species evenness and diversity  

(McTiernan et al., 1997; Ward et al., 2010). 

Results from this study support the collective opinion that plant functional traits, 

specifically those of litter, are the principal factors that control litter decomposition rates 

(Aerts, 1997; Butenschoen et al., 2011; Cornwell et al., 2008; Pérez-Harguindeguy et al., 

2000). PFT effects should be acknowledged to be as important as temperature, if not more 

so, in predicting future changes in litter decomposition and resultant respiration rates. The 

significant effect of temperature change on litter mass loss and heterotrophic respiration 

rates reported here is still important, by indicating that decomposition rates are different 

under microclimatic conditions (i.e. 2 - 4°C warming). Vegetation composition has been 

shown to be a strong control over CO2 emissions with approximately 1°C warming (Ward 

et al., 2013), and highlights how important actively-growing vegetation can be in 

controlling GHG exchange. In view of this, the interactive effects of PFT with temperature 

for litter mass loss and CO2 emissions observed in this study demonstrate that plant 

functional traits of a species, its litter and the peat upon which it grows and decomposes, 

are also important in determining decomposition, respiration rates and therefore net CO2 
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emissions. However, the limited effects of HFA, HFD and interactions between litters on 

decomposition at the PFT level has important implications for predicting decomposition in 

peatlands (Hoorens et al., 2010).  

5.5  Conclusions 

By using two measures of decomposition, namely litter mass loss and respired CO2, this 

study demonstrates the effects of PFT on decomposition processes. Not only that, but 

evidence shows that these decomposition processes are likely to be sensitive to peatland 

microclimates, which could result from climate change or land use change (i.e. wind 

farms) (Armstrong et al., 2014b; Ward et al., 2013).  

By showing that graminoid litter decomposed faster, but that non-additive interactions 

between shrub and bryophyte litter contributed towards higher CO2 emissions, this study 

adds to the growing body of evidence that highlights the importance of PFTs in peatland C 

cycling (Cornwell et al., 2008; De Deyn et al., 2008; Trinder et al., 2009; Ward et al., 

2009). PFT litters showed both HFA and HFD decomposition, on account of the quality of 

the underlying peat and litter inputs, but not microclimatic changes in temperature. This is 

important as the relative proportions of dominant PFTs in peatland plant communities are 

expected to shift with climate change, with vascular plant species (i.e. graminoids and 

shrubs) predicted to dominate over bryophytes (Gallego-Sala and Prentice, 2012). Climate 

change and land use change effects on plant community composition could therefore have 

important implications for litter decomposition rates in peatland ecosystems, by altering 

litter inputs, the decomposition environment and the likelihood of HFA and interactions 

between adjacent litters.   

In this unique study, the interactive effects of PFT and microclimate on early stages of 

decomposition were examined. Therefore, findings from this work must be carefully 

considered in projections of long term effects of peatland microclimate change and the 

relative proportion of each PFT within the plant community. Future studies focusing on 

peatland decomposition would benefit from exploring the mechanisms of interaction in 

litter mixtures, by examining nutrient transfer with isotopic labelling, particularly in the 

field and in the long term, to enable accurate predictions of litter decomposition under 

climate change and land use-induced microclimate change scenarios.  
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General discussion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

153 

 

6.1  Overview 

Vast quantities of C are stored in northern peatlands; therefore these ecosystems represent 

a large proportion of the global terrestrial C budget. Peatlands are particularly sensitive to 

climate and land use change, and their role in the global C cycle can change from acting as 

a net sink of C to a net C source when disturbed (Dise, 2009; Dise and Phoenix, 2011). 

Functionally, the links between aboveground communities, belowground communities and 

peatland C cycling processes have been well-established (Bardgett et al., 2008; Gorham, 

1991; Wardle et al., 2004). However, there are still knowledge gaps regarding the 

sensitivity of peatland carbon cycling processes and the role that PFTs play in mediating 

the response of peatland ecosystem functions to climate and land use changes i.e. wind 

farm developments.  

Further, as a result of climate change and the continued developments of onshore wind 

farms on peatlands, the need to understand the dynamics of peatland C stores is ever-

increasing. The impact of operational wind farms on near surface atmospheric conditions 

has attracted attention from the scientific community (Armstrong et al., 2014a; Baidya Roy 

and Traiteur, 2010; L. Zhou et al., 2012), however the effects of operational wind farms on 

the C balance of peatlands are uncertain.  

In my doctoral research, I examined the influence of PFTs on environmental, biological, 

physical and chemical peatland properties, and the role of PFTs in regulating peatland 

carbon cycling at a wind farm, and under controlled microclimatic conditions. This was to 

test an overarching hypothesis that peatland PFTs, and their interactions with a wind farm-

induced microclimate, explain abiotic and biotic peatland properties and C cycling 

processes. This hypothesis was generated as it addressed several areas where the scientific 

community lack knowledge. In this discussion I will draw out the important findings and 

consider the implications of climate change and land use change on the C balance of 

peatlands, taking into account changes in PFT abundance within the peatland plant 

community (Gallego-Sala and Prentice, 2012; Jassey et al., 2013).  

6.2  Composition of aboveground and belowground communities 

The relationship between the aboveground (plant) and belowground (microbial) 

communities and physicochemical peatland properties at Black Law Wind Farm was 

examined in Chapter 2. Results showed that PFT significantly influenced the relative 

abundance of fungi and bacteria. Of the observed peatland properties, peat bulk density, 

peat C:N and the total C content of peat, litter and vegetation were found to significantly 
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explain variance in a spatially changing microbial community, which is consistent with 

other research that was not from a wind farm peatland (Andersen et al., 2010; Fierer et al., 

2009; Mitchell et al., 2010). The C content of litter was significantly different between 

PFTs and provided a consistent seasonal control on the belowground community. Peat 

physicochemical properties appeared to be the dominant factor influencing the abundance 

and composition of the microbial community throughout the year; however this was not 

the case after accounting for variability in the height of the water table. Once seasonal 

changes in water table level were considered, physicochemical properties of litter became 

more influential than peat on the overall abundance and relative proportion of different 

microbial groups. In this study, microbial communities were more sensitive to changes in 

the quality and quantity of litter inputs than to changes in the physical or chemical 

characteristics of the soil environment, a response found in other peatlands (Strakova et al., 

2011), but still one we have little information for. However, this study did not take into 

account inputs of C from roots, or fully consider the effects of nutrients (e.g. phosphorus 

(P) and potassium (K)) on the microbial community. Inputs of labile C, via rhizodeposition 

and root turnover, provide significant flows of C belowground from both vascular plants 

(Crow and Wieder, 2005; Ström et al., 2005) and bryophytes (Fenner et al., 2004). 

Therefore, the contribution of root-derived inputs of labile C from different plant 

functional types to peat, could affect the composition of the belowground decomposer 

community. Similarly, nutrients have an important role in shaping the plant community 

composition, which in turn affects peat microbial community composition and 

decomposition processes. Increased nutrient availability would be expected to increase 

microbial activity and growth (Bragazza et al., 2012a), and has been shown to significantly 

change the plant community composition by increasing the proportion of vascular plants at 

sites previously dominated by Sphagnum – in turn this could alter microbial community 

composition (Berendse et al., 2001). As a result, the findings of this study and their 

interpretation may be different if the effects of roots and nutrients on microbial community 

composition had been explored.  

From the understanding gained from this study, shifts in the spatial distribution of PFTs 

within the plant community, caused by climate or land use-induced changes in the water 

table, could affect the composition of the microbial community to a greater extent than the 

direct effects of altering the position of the water table. For example, a land use- or 

climate-induced increase in the extent of the acrotelm is likely to promote the growth of 

vascular plants such as shrubs and graminoids, instead of non-vascular plant types like 

bryophytes (Gallego-Sala and Prentice, 2012; Jassey et al., 2013). Shrub dominance would 
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be expected to favour a more fungal-rich, slower C cycling, microbial community (Read et 

al., 2004), whereas if graminoids became more abundant a more bacterial-dominated, 

faster C cycling, decomposer community might be more prevalent (Bardgett and Wardle, 

2010).      

The results presented in Chapter 2 are consistent with findings by Andersen et al. (2013), a 

study that also demonstrates the importance of vegetation and physicochemical 

characteristics to soil organisms in disturbed peatlands. In addition, the importance of PFT 

as a regulator of physical, chemical and biological peatland properties (Chapter 2) supports 

the view that the composition of the aboveground community can be used to improve 

predictions of the belowground community composition and activity (Mitchell et al., 

2010). If this is so, PFTs could be used as an integrative proxy of climate, land use and 

physicochemical soil properties. By affecting the quality of litter and also the relative 

abundance of fungi and bacteria, PFTs therefore have the capacity to affect the 

decomposition of OM in peatlands. 

6.3  Plant functional types and their role in peatland C cycling 

Through a survey of peat properties at the field site (Chapter 2), PFTs were shown to 

create a legacy in the peat formed from these PFTs, producing peat with some distinct, 

physicochemical and biological properties. To investigate the influence of PFTs and their 

legacy in peat, together with microclimate change on peatland C cycling processes, 

laboratory research in Chapters 3 and 5 examined the interactive effects of PFT and 

controlled microclimatic conditions on GHG emissions. The experiments showed that a 

PFT legacy influenced GHG emissions from peat. Higher CO2 and CH4 fluxes were 

measured from graminoid-derived peat (Chapter 3), under increases in temperature and 

water table level that are predicted to arise from climate change or land use change. The 

results of this research are consistent with the findings from a mesocosm study conducted 

by Green and Baird (2012) and the PFT effects observed by Greenup et al. (2000) and 

Marinier (2004) in the field: these studies found GHG emissions to be greatest from 

graminoids. In a second experiment investigating PFT effects on litter decomposition, 

heterotrophic respiration rates were also higher from graminoid-derived peat, providing 

further evidence that this PFT contributes towards the flux of C from the soil to the 

atmosphere more so than the other two dominant peatland plant types. The importance of 

graminoids on GHG emissions has been previously attributed to the living plant surface; 

however this research provides additional support to show that PFTs (i.e. graminoids) can 
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influence CO2 and CH4 fluxes in the absence of live vegetation through legacy effects 

within the peat.  

The role of PFTs and microclimate change in regulating litter mass loss was examined in 

the field (Chapter 4) and in the laboratory (Chapter 5), to further test the hypothesis that 

PFT is a significant factor driving the rates of peatland C cycling processes under 

microclimatic conditions. Specifically, litter PFT had a greater influence on litter mass loss 

than the PFT legacy in the underlying peat, observed in situ at the wind farm and under 

laboratory-controlled air temperatures. Decomposition of bryophyte and shrub litters 

occurs more slowly than graminoid litter (Chapters 4 and 5). In addition, the C content and 

C:N of litter explains the most variance in litter mass loss.  

These findings contribute towards the growing body of evidence that plant functional trait 

differences are the principal controls on litter decomposition (Cornwell et al., 2008; 

Freschet et al., 2012). In this research, litter types not only decompose at different rates due 

to the direct effects of litter quality on decomposition, but as a result of the indirect effects 

of interactions between litter quality and peat quality. This, in turn, could influence the 

likelihood of a home-field advantage (HFA) or home-field disadvantage (HFD) 

decomposition response. Bryophyte litter decomposed more rapidly beneath the bryophyte 

litter layer (Chapter 4) and on bryophyte-derived peat (Chapter 5): an indication of HFA. 

In contrast, HFD was observed for graminoid litter mass loss in both the field (Chapter 4) 

and laboratory (Chapter 5).  

In the context of climate and land use change, HFA and HFD decomposition could have 

important implications for peatland C cycling and storage. The composition of the plant 

community in peatlands is expected to change with increases in temperature (Gallego-Sala 

and Prentice, 2012; Jassey et al., 2013), to favour the growth of vascular plants that are 

more suited to warmer, drier conditions. Shifts in the distribution of PFTs over small 

spatial scales could lead to plant species growing on peat previously receiving the bulk of 

its inputs from another species. For shrub litter, this would not lead to significant changes 

in mass loss (Chapters 4 and 5). For graminoid litter, decomposition would accelerate if 

this PFT advanced into areas formerly dominated by bryophytes or shrubs (Chapters 4 and 

5). The main variables (i.e. light and moisture) that can result in peatland plant community 

composition change, such as a shift from bryophyte to vascular plants, are expected to 

play-out over decades. However, Dieleman et al. (2014) and Weltzin et al. (2003) suggest 

that ecosystem shifts in peatlands due to changes in temperature and water table may occur 

much more quickly. A rapid shift (i.e. over 1 year) in plant community composition was 



 

157 

 

observed, as a result of increased temperature (by 4 - 8°C) decreasing Sphagnum and 

increasing graminoid abundance (Dieleman et al., 2014). Over a period of 5 years, 

increased temperature and decreased water table level increased the cover of shrubs at an 

area of bog by 50%, and decreased the cover of graminoids by 50% (Weltzin et al., 2003). 

Therefore, HFA and HFD have the potential to affect peatland C sequestration rates over 

years to decades, and thus within the lifetime of an operational wind farm (i.e. 

approximately 25 years).  

Bryophyte and shrub litters typically decompose slowly in monocultures (Chapters 4 and 

5). Interestingly, synergistic effects of mixing bryophyte and shrub litters on mass loss 

were reported in Chapter 5. Currently there is limited understanding of litter mixing effects 

on litter decomposition rates in peatlands. The findings of this research add to those 

reported by Ward et al. (2010), who observed the greatest differences between observed 

and expected mass losses were for mixtures containing shrub litter. Within a framework of 

changes in the plant community, whether climatic and land use change-induced, my 

research supports the supposition that the decomposition rates of bryophyte and shrub 

litters would increase if the litter layer consisted of these litter types in combination.  

These combined experiments (Chapters 4 and 5) represent an important experimental 

contribution to the work on plant-soil interactions in peatlands as I demonstrate for the first 

time that HFA and HFD decomposition can occur in peatland ecosystems. Additionally, 

my research improves the understanding of PFT effects on the decomposition of litter 

mixtures and monocultures.  

6.4  Peatland ecosystem function: what difference does microclimate change make? 

The effects of small-scale changes in climate on GHG emissions from peat were explored 

explicitly in Chapters 3 and 5. From the mesocosm experiments, we now know that 

microclimatic changes have the capacity to affect GHG fluxes from peat, with small 

alterations in air temperature (2-4 °C) affecting CO2 emissions (Chapters 3 and 5), and 

modest adjustments in water table level (10-20 cm) influencing CH4 emissions (Chapter 3). 

The increase in CO2 emissions with a 2-4 °C increase in temperature shows that peatland 

microclimates arising from land use change or climate change could affect C cycling 

processes. Previous studies have demonstrated that increasing air temperatures by 

approximately 1 °C can accelerate short-term (plant) and longer-term (peat) respiration in 

the field (Dorrepaal et al., 2009; Ward et al., 2013). However, as Ward et al., (2013) 

observed, whilst the rate of respired CO2 may increase with small-scale increases in 
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temperature, the effect on CO2 emissions may not be the same when taking into account 

plant community composition, plant productivity and water table variability. This research 

shows that CH4 emissions and litter mass loss were influenced more by water table level 

and PFT than microclimatic changes in temperature, respectively (Chapters 3 and 5). Total 

C content of litter was found to explain more variation in the microbial community 

(Chapter 2) and litter mass loss (Chapter 4) than microclimatic factors, such as water table 

level and soil temperature. Therefore, this research indicates that the effects of climate or 

land use-induced temperature changes on peatland C cycling processes would be mediated 

by the composition of the plant community. This supports previous research on non-wind 

farm peatlands where litter type was found to affect the activity of aerobic decomposers 

more than the water table regime, and warming effects on GHG fluxes were moderated by 

the plant community (Strakova et al., 2011; Ward et al., 2013).  

Considering the results presented and discussed in this thesis, the indirect effects of 

warming (i.e. as a result of global climate change or wind farm-induced microclimate 

change) on the dominance and distribution of PFTs would be expected to affect C storage 

in peatlands more so than the direct effects of rising temperatures on the processes that 

control decomposition of OM and the subsequent release of GHGs.  

6.5  Future work 

In the context of land use and climate change, this research improves the understanding of 

peatlands and the roles that PFT and microclimatic differences in temperature and water 

table level play in C cycling processes. Changes in plant community structure, as a result 

of climate change or land use change, have the potential to influence the C balance of 

peatlands through interactions between the peat matrix and the changing quality of litter 

inputs.  

To further develop this research, it would be valuable to understand how temporal changes 

in labile substrates and microbial communities influence decomposition in peatlands 

(Bardgett et al., 2005; Bray et al., 2012; Kirschbaum, 2013), and how these biochemical 

changes could favour rapid decomposition of litter beneath different plant species (HFA 

and HFD), and interactions in litter mixtures over the short-term (i.e. days to weeks) and 

long-term (i.e. over decades). In addition, it would be important to ascertain how 

interactions between PFT litters respond to different litter mixing ratios and microclimatic 

differences in both temperature and water table level.  
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Identifying the sensitivity of GHG flux and decomposition rates to smaller microclimatic 

changes in temperature (i.e. increases of 0.2 °C) are key to understanding the response of 

peatland C stocks to wind farm-induced microclimates (Armstrong et al., 2014a). In this 

study, peatland properties and C cycling processes were measured within the wind farm 

along a transect oriented with the main axis of the wind farm and dominant wind direction, 

as the wind turbine-induced microclimate effect was hypothesised to increase along the 

transect. However, as a result of a concurrent study at Black Law Wind Farm that was 

completed towards the end of my PhD, we now understand that wind farm effects on 

ground-level climate are associated with individual wake effects of operational turbines 

(Armstrong et al., 2014a), rather than a cumulative effect of wind turbine wakes within a 

wind farm (i.e. the microclimate effect does not increase towards one end of the wind 

farm). Therefore, future field-based assessments of peatland C cycling sensitivity to wind 

farm microclimate effects would benefit from establishing sampling transects within 

individual turbine wake zones. 

Future research that incorporates these suggestions would provide the understanding 

required to improve predictions of future peatland C stock sensitivity, with respect to the 

direct and indirect effects of land use change and climate change.  

Furthermore, many land biosphere and global C cycle models do not currently take into 

account the effects of asymmetric diurnal warming on ecosystem functioning and 

terrestrial C cycling (Potter et al., 1993; Sitch et al., 2003). Night-time warming of the land 

surface is an effect associated with wind farm-induced microclimates (Armstrong et al., 

2014a) and climate change (Karl et al., 1991). Night-time warming is expected to affect 

carbon assimilation by plants, due to enhanced autotrophic respiration and stimulation of 

photosynthesis through decreased risk of frost (Peng et al., 2013). The effects of land use 

change and climate change on asymmetric diurnal warming are small; nevertheless small 

shifts in temperature have the potential to influence plant community composition, and 

thus the cycling of C. However, the significance of wind farm-induced microclimates on 

peatland C cycling under changing climate projections remains uncertain (Armstrong et al., 

2014b). The effects of night-time warming on plant productivity and C sequestration need 

to be quantified, particularly in sensitive C stores such as peatlands. This will enable 

terrestrial ecosystem models to capture the response of vegetation to asymmetric diurnal 

temperature changes produced by operational wind farms and global climate change.  
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6.6  Conclusions 

Changes in land use and climate are important in determining the C balance of peatlands, 

by influencing abiotic and biotic factors and their interactions that drive C cycling 

processes. The effect of wind farm-induced microclimatic conditions on peatland 

ecosystem functioning represents a significant gap in knowledge. The aim of this research 

was, therefore, to investigate the sensitivity of peatland C cycling processes, including 

GHG emissions and decomposition, to hosting a wind farm, notably small-scale changes in 

temperature and water table level associated with a hypothesised wind farm-induced 

microclimate.   

Findings provide evidence of the role of PFTs in influencing peatland ecosystem 

processes, such as increased respiration and decomposition of peat and litter derived from 

graminoids. Small-scale increases in temperature (2-4 °C) and water table (10-20 cm) were 

identified as the most important drivers of increases in CO2 and CH4 emissions, 

respectively, but were mediated by a PFT legacy in peat (Chapters 3 and 5). However, 

temperature and water table were secondary to PFT in controlling decomposition, which 

was primarily driven by differences in litter C content and C:N (Chapters 4 and 5). This 

thesis provides new information about the interactions between litter quality and peat 

quality. For example, litter decomposition in peatlands can exhibit a home-field advantage 

or disadvantage depending on the PFT origin of litter (Chapters 4 and 5). In addition, 

synergistic non-additive effects on litter mass loss of mixtures, comprised of more than one 

slow decomposing litter type, can occur (Chapter 5). 

Whilst C cycling processes in peatlands are strongly influenced by biotic controls, these 

controls will interact with microclimatic conditions to regulate decomposition. The 

implications of this research are that climate and land use change effects on plant 

community composition could influence C cycling processes by altering: (1) the quality of 

litter inputs to peat; (2) the abiotic and biotic characteristics of the decomposition 

environment; (3) the likelihood of home-field advantage and home-field disadvantage 

decomposition; and (4) interactions between different litter types in litter mixtures. The 

findings presented in this thesis contribute to the existing knowledge of aboveground and 

belowground communities in peatlands, and their key controls on C cycling. Particularly 

important here is that the study site has been subjected to a significant land use change (i.e. 

wind energy generation) and yet the system functioning is broadly comparable to peatlands 

either undisturbed or with far less disturbance. The simplest interpretation here is that with 

time, a response to such disturbance becomes secondary. Despite similar biogeochemical 
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functioning to other peatlands, there is an undeniable increase in CO2 emissions with 

microclimatic increases in air temperature observed in the laboratory. This needs to be 

further explored in the field and then incorporated into estimates of wind farm impacts on 

C dynamics of peatlands, contribute to the full life-cycle based calculation of wind farm C 

payback time (Nayak et al., 2010) and ensure the effects of siting wind farms on sensitive 

ecosystems are fully considered before development. By identifying the association of 

PFTs with peat and litter quality, soil microbial community composition, GHG emissions 

and litter decomposition, this research recognises the significant role that peatland PFTs 

have in responding to climate and land use change.  
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