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Abstract 

Streptococcus pneumoniae is a common commensal of the human upper 

respiratory tract flora living peacefully without causing any harm to the host in 

normal conditions. S. pneumoniae can cause serious life threatening diseases in 

certain circumstances and usually affects children, the elderly and 

immunocompromised people. S. pneumoniae is a highly transformable pathogen 

and newly emerging antibiotic resistant strains are becoming commoner. 

Developing multi-drug resistant strains is a serious threat to the community, and 

the available drug treatment and vaccines do not provide full protection. Some 

newer strategies such as harnessing the immunological response to S. 

pneumoniae must be adopted to overcome this invasive pathogen. 

The human immune system has evolved in a way to successfully detect, 

isolate and eliminate invading pathogens. It provides a generalised and rapid 

response during invasion of infectious agents and is usually enough to stop 

infections. Normally immunological and inflammatory responses against invading 

pathogens and foreign antigens are under strict control. However, they are 

potentially dangerous and may cause autoimmune diseases. 

Autophagy is an emerging pathway associated with the innate immune 

system. It has an important role in infection control and maintains a fine balance 

in inflammatory responses to protect the host from harmful effects. Autophagy 

is basically a homeostatic pathway for degradation of unwanted protein 

aggregates at a cellular level, but has an important role in innate immunity. 

Autophagy-related (Atg) proteins have a crucial role in the body’s immune 

system and take part in innate and adaptive immunity. This pathway is 

considered to prevent the body’s immune system from attacking self-tissues and 

suppression of the auto-immune inflammatory responses. 

In this thesis I present that infection with S. pneumoniae strain D39 WT 

and its pneumolysin deficient counter-part D39 ΔPly induces autophagy in 

primary murine bone marrow derived macrophages and human neutrophils in-

vitro and in- vivo. We confirmed autophagy by a classical marker protein LC3 

through immunofluorescence and western blot. The associated inflammasome 

activation in S. pneumoniae infection has an inhibitory effect on autophagy 
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induction as was observed using WT and pneumolysin deficient strains. Similarly 

inflammasome inhibition with pharmacological and genetic methods up-regulates 

autophagy in S. pneumoniae infection. 

I also present here that autophagy is associated with phagocytosis and 

intracellular killing of S. pneumoniae and both these pathways are used as 

innate immune mechanisms for clearing infection. Previous research links 

autophagy and phagocytosis, and the phagocytosed microbe is targeted to the 

lysosome for degradation and killing. Our findings here in this thesis demonstrate 

that these pathways are also influenced by the virulence factors of S. 

pneumoniae. Pneumolysin have some inhibitory effects on autophagy induction 

and phagocytosis which may be a direct effect or indirectly through the 

inflammasome activation. 

Next, I present here a novel extracellular killing pathway in human 

neutrophils, the neutrophil extracellular traps generation or NETosis. S. 

pneumoniae infection induces NET generation, that is autophagy-dependent and 

can be inhibited by blocking autophagy pharmacologically or genetically. NET 

generation is morphologically the same in S. pneumoniae D39 WT and D39 ΔPly 

but pneumolysin helps in pathogen escape from NET entrapment which is a novel 

finding and needs further exploration. 

I present here the role of different pattern recognition receptors in S. 

pneumoniae induced autophagy signalling. S. pneumoniae infection induces 

autophagy independent of TRIF, MyD88, TLR4, TLR2 and NOD2 pathways. P38MAP 

kinase was also explored and has no association with autophagy induction in S. 

pneumonia infection. Autophagy induction in S. pneumoniae infection may be 

associated with some unknown signalling pathway which needs further 

exploration.  
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1.1 Streptococcus pneumoniae 

S. pneumoniae is a fastidious oval or club shaped pathogen, occurring 

singly, in pairs or short chains. It is an inhabitant of the normal flora of the 

human upper respiratory tract (Gray et al., 1980). Normally it lives as a 

commensal in the pharynx along with other microbes and causes no harm to the 

host, but unfortunately in some circumstances can cause a number of diseases 

ranging from otitis media to severe life threatening conditions e.g. pneumonia, 

meningitis, septicaemia and sinusitis (Cartwright, 2002, Cornick et al., 2011). 

S. pneumoniae is currently the leading cause of invasive bacterial disease 

in children under 5 years and in elderly people. It is more prevalent in the 

developing world (Rudan et al., 2008, O'Brien et al., 2009). It is responsible for a 

considerable economic burden. According to the World Health Organization 

estimates in 2005, around 1.6 million people died of these diseases every year 

including children with a mortality of almost 0.7 to 1 million (WHO, 2008). 

Treatment options for pneumococcal diseases are limited because of 

emerging new strains which are resistant not only to the traditional antibiotics 

but also to second-line drugs such as chloramphenicol, Tetracycline and 

Sulphonamides (Bouza et al., 2005). S. pneumoniae is a highly transformable 

organism, which enables it to develop resistance against antimicrobial drugs by 

producing new resistant strains. Recent studies demonstrate that S. pneumoniae 

is becoming less susceptible to treatment throughout the world. Its resistance is 

increasing at an alarming rate with the emergence of multi- drug resistant (MDR) 

strains (Zhanel et al., 2003, Song et al., 2004, Lee et al., 2001). 

The growing threat of pneumococcal diseases and the emergence of MDR 

strains is a big problem worldwide. Polyvalent polysaccharide vaccines (PPV) 

were successful in the beginning to combat common serotypes causing invasive 

pneumococcal diseases, but gradually a decline has appeared in the 

effectiveness of these vaccines due to the emerging new strains (Brueggemann 

et al., 2007). Polyvalent conjugate vaccines (PCV) provide full protection from 

the vaccine serotypes but transformable pneumococci may switch their genes to 

non-capsular serotypes and allow the microbe to escape vaccine-induced 

immunity (Hsieh et al., 2008). 
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1.1.1 S. pneumoniae infections 

S. pneumoniae infections are of two types; invasive and non- invasive. 

Invasive pneumococcal infections involve a major organ for example meningitis, 

bacteraemia, pneumonia and septic arthritis, whereas non-invasive infections 

remain outside the major organs for examples bronchitis, otitis media and 

sinusitis. 

1.1.1.1  Meningitis 

Inflammation of the brain and spinal cord protective membranes along 

with invasion of cerebrospinal fluid (CSF) as a result of pneumococcal infection 

is called pneumococcal meningitis. It is a serious life threatening condition and 

is characterized by a range of symptoms including headache, stiffening of the 

neck, seizures, and coma which can lead to death. Mortality ranges from 16 - 

37%, with residual neurological sequelae in 32- 50 % (Ostergaard et al., 2005, 

Kastenbauer and Pfister, 2003). Pneumococcal meningitis is the second largest 

cause of bacterial meningitis in the United Kingdom. 

S. pneumoniae invades the blood stream and gains access to the 

meninges. Meningitis is generally preceeded by initial pneumococcal infection 

elsewhere, in about 30 % of cases of acute otitis media and about 18 % cases 

with pneumonia (Ostergaard et al., 2005). S. pneumoniae also has the ability to 

invade and infect the central nervous system directly through the olfactory 

neurons (van Ginkel et al., 2003). 

1.1.1.2  Bacteraemia 

Bacteraemia is a condition in which bacteria gain access to the blood 

stream by any means and invade normally sterile sites i.e. blood and CSF. Non-

invasive pneumococcal infections may lead to bacteraemia, which can lead to 

sepsis and death. Bacteraemia can develop independently without prior non-

invasive pneumococcal diseases. It has been shown that bacteraemia is the most 

common type of invasive pneumococcal disease worldwide (Laterre et al., 2005, 

Myers and Gervaix, 2007). 
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1.1.1.3  Pneumococcal pneumonia 

Pneumococcal pneumonia is characterized by inflammation of the lung 

parenchyma with consolidation and exudation into the alveolar spaces which 

blocks gaseous exchange between the lungs and bloodstream. S. pneumoniae is 

the most common bacterium that causes community acquired pneumonia in 

children and is responsible for up to 35 % of cases in adults.  It is responsible for 

approximately 11-12 % of all childhood deaths, mostly in developing countries 

(Moine et al., 1995, O'Brien et al., 2009). 

The organism colonises the nasopharynx and spreads directly to the 

respiratory tract through airways. S. pneumoniae can also penetrate epithelial 

surfaces and produces bacteraemia and other invasive diseases. Important 

predisposing factors of pneumococcal pneumonia are extremes of age, 

pulmonary, cardiac, hepatic or neurological diseases, smoking, cancer, HIV, 

diabetes, alcohol abuse, recent hospitalization and previous pneumonia 

(Dockrell et al., 2012, Cardozo et al., 2008). 

1.1.1.4 Acute otitis media 

Acute otitis media is a common pneumococcal infection and is relatively a 

benign problem. It is characterized by pneumococcal growth in the middle ear 

and is a common disease of children.  Infections are generally transmitted 

through the colonization of the nasopharynx. Its incidence is 10.85 % acute and 

4.7 % chronic otitis media of which almost 51 % of cases occur in children under 

5 years. Each year 21,000 people die worldwide due to complications of otitis 

media (Hausdorff et al., 2002, Monasta et al., 2012). 

1.1.1.5 Sinusitis 

Inflammation of the para-nasal sinuses is commonly caused by an allergic 

response or viral infection. A small proportion of sinusitis cases progress to 

secondary bacterial infection. S. pneumoniae causes acute purulent sinusitis in 

children and adults along with some other gram positive and gram negative 

bacteria (Brook, 2011). 
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1.1.1.6 Other pneumococcal infections 

S. pneumoniae is also responsible for some relatively less important 

clinical conditions. Generally non- typable pneumococci are considered to cause 

pneumococcal conjunctivitis (Williamson et al., 2008). S. pneumoniae also 

causes inflammation of the endocardium, which may involve the heart valves 

and inter-ventricular septum, showing the invasive nature of S. pneumoniae 

(Tsang et al., 2013). Some rare diseases like cerebral abscess are also caused by 

S. pneumoniae (Belodu et al., 2013). 

1.1.2  Virulence factors and toxins of S. pneumoniae 

1.1.2.1 Pneumolysin (Ply) 

Pneumolysin (Ply) is an important toxin of S. pneumoniae belonging to the 

pore-forming toxin group and plays an important role in the pathogenesis of 

disease. Ply can lyse host cells through its action on the cholesterol component 

of the cell membranes in the tissues coverings of pulmonary and cerebral 

surfaces. It can attack the immune system of the body and disrupts functions of 

the immune molecules as well as induce necrosis and apoptosis of the immune 

cells (Marriott et al., 2008, Molloy, 2011).  

Ply is a strong inducer of inflammasome activation leading to the release 

of inflammatory cytokine IL-1β from different murine and human inflammatory 

cells (Shoma et al., 2008, Littmann et al., 2009). It also has inhibitory effects on 

monocyte degranulation and induction of IL-1β and TNF-α secretion to prevent 

pneumococcal clearance from the infection site (Houldsworth et al., 1994). Ply 

can activate the complement system in the host through classical pathway by 

binding the Fc portion of IgG (Mitchell et al., 1991). Ply along with other 

virulence factors PspA and PspC helps in nasopharyngeal colonization of S. 

pneumoniae (Ogunniyi et al., 2007).  

Ply interacts with Toll-like receptor 4 (TLR4) and induces innate immune 

response against S. pneumoniae (Malley et al., 2003) but can also activate NLRP3 

inflammasome independent of the TLR4 pathway (McNeela et al., 2010). The 

role of Ply and its associated inflammasome activation will be studied in this 

thesis. 
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1.1.2.2 S. pneumoniae capsule 

S. pneumoniae has a capsular covering composed of polysaccharide and 

the available polyvalent vaccines are based on it. The capsule helps to protect S. 

pneumoniae from phagocytosis, action of opsonins and the activity of 

complement system (Hyams et al., 2010). Over 90 capsular serotypes of S. 

pneumoniae have been recognised. The capsular polysaccharide consists of 

multiple sugar side chains attached to a sugar backbone. The monosaccharides 

include α or β-D-glucose, D- galactose, L- rhamnose and N-acetyl-α or β-D-

glucosamine.  

Sequencing of the capsular locus (cps) has revealed its genetic diversity 

and the genes lie between the dexB and aliA genes with sizes from 10,337 base 

pairs in serotype 3 to 30,298 base pairs in serotype 38. Analysis of the cps loci 

also show multiple enzyme classes including 40 groups of polysaccharide 

polymerases, 13 flippases, and a large number of transferases responsible for 

variable expression of different components of the capsule (Bentley et al., 

2006). 

S. pneumoniae can switch capsular type by horizontal gene transfer. It is 

the transfer of genes between organisms via a bacteriophage or plasmid, which 

might have a positive or negative effect on their virulence. S. pneumoniae 

escapes from the effects of vaccines by horizontal gene transfer (Hiller et al., 

2010, Kelly et al., 1994). Almost 70 % of invasive diseases are caused by 6 - 11 

serotypes and 7 serotypes (1, 6A, 5, 14, 6B, 19F, 23F) are more common globally 

(Johnson et al., 2010). In this thesis we studied highly virulent capsular serotype 

2 strain D39, which is most frequently used in current pneumococcal studies 

(Lanie et al., 2007). 

1.1.2.3 S. pneumoniae surface protein A (PspA) 

Pneumococcal surface protein A (PspA) is a choline binding protein and a 

good candidate for protein based vaccines. It is a variable protein and inhibits 

bacterial uptake by complement mediated phagocytosis (Arulanandam et al., 

2001, Ren et al., 2012). PspA protects S. pneumoniae by preventing deposition 

and activation of the complement system of the host. It binds to lactoferrin and 



29 
 
protects S. pneumoniae from killing by apolactoferrin (Mukerji et al., 2012, 

Shaper et al., 2004), and also helps in nasopharyngeal colonisation  (Ogunniyi et 

al., 2007). 

1.1.2.4 S. pneumoniae surface protein C (PspC) 

PspC is a highly variable choline binding protein present on the surface of 

S. pneumoniae and may have a role in the development of sepsis (Iannelli et al., 

2004). PspC is an important virulence factor required for nasopharyngeal 

colonisation and multiplication of the S.pneumoniae in lung tissue (Balachandran 

et al., 2002, Ogunniyi et al., 2007). 

1.1.2.5 Other pneumococcal proteins 

There are multiple other pneumococcal surface proteins and molecules 

which add to the virulence of S. pneumoniae (reviewed by Mitchell and Mitchell, 

2010). The pneumococcal pilus mediates bacterial binding to the cells and 

induces inflammatory response. There are multiple (Leucine-Proline & 

Threonine-Glycine) LPXTG-anchored surface proteins including hyaluronidases, 

neuraminidases, and serine proteases. Hyaluronidases are secreted by most of 

pneumococcal isolates which break down the hyaluronic acid and aid in the 

bacterial spread, colonization and pulmonary inflammation. Neuraminidase 

cleaves N-acetylneuraminic acid from glycolipids, lipoproteins and 

oligosaccharides on cell surface which directly damage the host tissues or 

unmask binding sites of the bacterium aiding in colonisation. Serine proteases 

are also important and aid in tissue damage and facilitate bacterial growth 

(Mitchell and Mitchell, 2010). Adherence and virulence factor A (PavA) is another 

important protein associated with adherence and colonisation of S. pneumoniae 

(Pracht et al., 2005). 

1.2 Immune defences against S. pneumoniae 

The immune system of the body detects dangerous stimuli and eliminates 

invading pathogens. It consists of two subsystems; the innate immune system 

and the adaptive immune system, both working in tandem to protect the body 

efficiently. Generally the immune system tolerates some foreign antigens such 

as dietary components, environmental antigens and commensal and mutualistic 
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bacteria, and an immune response against these antigens would be dangerous to 

the body tissues. 

1.2.1 Innate immune system 

The innate immune system is the first line of defence against invading 

pathogens, and is usually sufficient to clear infection. It provides a robust early 

response to different pathogenic stimuli. It provides a generalised protection 

against all types of dangers. Innate immunity includes a range of processes 

against diverse pathogens such as viruses, bacteria, fungi and parasites. The 

important features of innate immune system are barriers at different levels such 

as anatomic, physiologic and chemical barriers, generalised inflammatory 

response, cellular response and phagocytosis by macrophages and neutrophils, 

complement system and synthesis of antimicrobial products. 

1.2.1.1 Mucosal immunity against S. pneumoniae 

The nasopharyngeal mucosal surfaces prevent the entry of S. pneumoniae 

into the body as first line of defence. A breach in the mucosal integrity can 

provide a route of entry for the pathogens. Mucosal surfaces and respiratory 

mucous secretion prevent microbes from entering in to the body (Boyton and 

Openshaw, 2002). Mucus traps the invading microbe and expels it from the 

respiratory airways.  

S. pneumoniae entrapment in the luminal mucus is the first defence 

mechanism faced during entry into the nasopharynx to colonise. Capsular S. 

pneumoniae are resistant to the mucosal clearance. The polysaccharide present 

in mucus contains negatively charged sialic acid which repels the polysaccharide 

capsule of S. pneumoniae (Nelson et al., 2007). 

1.2.1.2 Nasopharyngeal colonisation of S. pneumoniae 

S. pneumoniae is transmitted via aerosol or respiratory droplets from one 

individual to another. On arrival in to the nasopharynx, S. pneumoniae 

establishes viable colonies on the surface in favourable conditions which 

continues until cleared by the host innate immune responses. In this colonisation 
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period, viable bacteria can be cultured from nasopharyngeal samples (Bogaert et 

al., 2004).  

Predisposing factors for colonisation includes smoking, low immunity and 

some prior viral infections especially influenza virus. Following colonisation of 

the nasopharynx, S. pneumoniae can spread to various sites locally causing otitis 

media and sinusitis while its aspiration can lead to pneumonia, meningitis and 

septicaemia (Bogaert et al., 2004). 

On entering into the nasopharynx, S. pneumoniae traverses the mucus 

barrier and binds to the apical surface of the respiratory tract epithelium. 

Virulence factors of S. pneumoniae aid in the process of colonisation. The 

capsule provides protection from negatively charged mucus polysaccharides and 

S. pneumoniae stains lacking capsule are expelled easily with mucus due to their 

greater binding (Nelson et al., 2007). Virulence factors help S. pneumoniae to 

invade the superficial tissues during mucosal attachment and colonisation (Briles 

et al., 2005). PspA binds to mucosal apolactoferrin to prevent killing of S. 

pneumoniae and aid in colonisation (Shaper et al., 2004).  

PavA described earlier, also binds with fibronectin and aid in colonization 

of S. pneumoniae (Pracht et al., 2005). Structural abnormalities in the airways 

for example chronic obstructive pulmonary disease (COPD) can lead to 

pneumococcal spread and colonisation of the bronchial tree (Patel et al., 2002). 

Beside the mucus trapping of S. pneumoniae, the host immune system 

adopts multiple strategies to prevent colonisation. Mucosal epithelium 

constitutes the first barrier and the induction of IgA antibodies prevents 

colonisation of S. pneumoniae. Mucosal immunisation with certain Lactobacillus 

strains can induce IgA antibodies (Oliveira et al., 2006). Moreover some soluble 

mucosal antimicrobial peptides including lysozyme and β-defensin-2 act 

synergistically and inhibit S. pneumoniae colonisation and infection (Lee et al., 

2004). 
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1.2.1.3 Inflammation  

Inflammation is a nonspecific response of the body to any type of injury 

such as cellular damage, infection and irritation. The word inflammation is 

derived from a Latin word “inflammasio” meaning, to set on fire. Generally 

inflammation is marked by five cardinal signs: redness, swelling, increased 

temperature, pain and loss of function described by Cornelius Celsus and Rudolf 

Virchow. Elevated cellular metabolism increases blood flow with vasodilatation 

and release of inflammatory mediators with extravasation of fluids. 

Inflammation is aimed to clear the injurious agent and start healing but in some 

circumstances it may progress to chronic inflammation(Puchta et al., 2014) . 

During S. pneumoniae nasopharyngeal colonisation, the host immune cells 

release inflammatory mediators which lead to inflammation and activation of 

other inflammatory cells including macrophages and lymphocytes. The severity 

of inflammatory response depends upon the virulence of S. pneumoniae strain 

(Puchta et al., 2014). Alveolar macrophages and epithelial cells play important 

role in initiating the host response against S. pneumoniae. The release of pro-

inflammatory cytokine in S. pneumoniae infection depends upon p38 MAP Kinase 

which is a potential molecular target to modulate overwhelming lung 

inflammation (Xu et al., 2008).  

A previous study demonstrates that S. pneumoniae induced inflammasome 

activation and the release of inflammatory mediators are related to more 

complication in bacterial meningitis. ASC and NLRP3 inflammasome knock-out 

mice showed decreased systemic inflammatory responses and there was 

decreased bacterial growth as compared to wild type mice (Geldhoff et al., 

2013). This indicates that inflammation might have no effect in the clearance of 

invading pathogens and it suppresses bacterial clearance by other immune 

mechanisms including autophagy. 

1.2.1.4 Pattern recognition receptors (PRRs) involved in S. pneumoniae 
infection 

When pathogens cross the first line of defence, a variety of innate 

immune cells are activated in the body by specialised molecules and receptors. 

Pattern-recognition molecules or receptor (PRRs) recognise pathogen-associated 
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molecular patterns (PAMPs) and initiate a signalling cascade. PAMPs are highly 

conserved small molecular motifs released by the microorganisms while danger-

associated molecular patterns (DAMPs) are non-infectious nuclear and 

cytoplasmic cell products, which can initiate immune responses (Ferrero-Miliani 

et al., 2007, Matzinger, 2002, Janeway Jr, 1992).  

Pathogens can escape the immune system by changing their PAMPs; 

however, the immune system recognises their essential structure. PAMPs include 

peptidoglycans, LPS, flagellin and pathogen related sugars while DAMPs include 

double stranded DNA and uric acid from tissue damage (Martinon et al., 2009, 

Martinon et al., 2006). 

PRRs were first identified in plants and they are classified according to 

their location, function, ligand specificity or some other aspects. Different cell 

types such as macrophages, monocytes, neutrophils, dendritic cells and 

epithelial cells express PRRs (Martinon et al., 2009). PRRs may be cell surface 

and endosome related i.e. Toll-like receptors (TLRs) or soluble pentraxins and 

cytosolic i.e. Nod like receptors (Martinon et al., 2009). Cell surface PRRs 

include Toll-like receptors (Akira et al., 2006), and C-type lectins (CLRs) (Brown, 

2006) while cytosolic PRRs include NLRs, RIG like helicases RLRs (Nakhaei et al., 

2009) and some DNA sensors (Hornung et al., 2009, Fernandes-Alnemri et al., 

2009).  

Some researchers believe that PRRs are not actual receptors, and they 

name them (PRMs) pattern recognition molecules (Hausdorff et al., 2002). This 

thesis includes investigation of some TLRs and NLRs in autophagy induction and 

hence they are discussed in detail. The schematic representation of basic 

structure of TLRs and NLRs is shown in (Fig. 1.1).  
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Figure 1.1 Schematic representation of basic structure of PRRs 

A basic structure and different parts of PRRs is shown: TLR; Toll-like receptor, LRR; 

Leucine-rich repeat domain, TIR; Toll-interleukin-1 receptor (TIR) domain, CLR; C-type 

lectin receptor domain, ITAM; Immunoreceptor tyrosine-based activation motif, RLR; 

Rig-I-like receptor, CARD; Caspase recruitment and activation domain, Helicase; 

helicase domain, NLRP; NOD-like receptor protein, PYD; Pyrin domain, NACHT; NAIP 

(neuronal apoptosis inhibitor protein), CIITA (MHC class II transcription activator), HET-E 

(incompatibility locus protein from Podospora anserina) and TP1 (telomerase associated 

protein), NLRC; NLR family card domain containing protein, NAIP; Neuronal apoptosis 

inhibitory protein domain, BIR; Baculovirus inhibitor of apoptosis repeat, DAI; DNA-

dependent activator of interferon regulatory factor, AIM2; Absent in melanoma 2 

protein, HIN200; Haemopoietic expression, interferon-inducibility nuclear localization 

200 domain, Z= Z-DNA binding domain, figure adapted from (Bryant and Fitzgerald, 

2009).  
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1.2.1.5 Toll- like receptors (TLRs) involved in S. pneumoniae infection 

TLRs are cell membrane and endosomal PRRs and play an important role 

in innate immunity. TLRs were discovered as homologues of Drosophila Toll 

protein which mediates an immune response in adult Drosophila (Medzhitov et 

al., 1997). They are type-1 trans-membrane proteins present in macrophages, 

monocytes, neutrophils and endothelial cells. TLRs have an extracellular 

leucine- rich repeat domain (LRR) which senses pathogens and transmits signals 

through the cytoplasmic Toll-interleukin-1 (IL-1) receptor (TIR) domain (Akira 

and Takeda, 2004). The TIR domain acts as a platform for downstream signalling 

which recruits and interacts with adaptor proteins containing a TIR- domain i.e. 

myeloid differentiation  primary response gene (Myd88), and TIR domain-

containing adaptor inducing IFN-beta, TRIF (Ishii et al., 2008, Lord et al., 1990). 

MyD88 is a universal adaptor protein used by different TLRs except TLR3 

(Arancibia et al., 2007). These adaptor proteins ultimately lead to the activation 

of transcription factor nuclear factor kappa-B (NF-kB), activator protein AP-1 

and interferon regulatory  factor IRF (Martinon et al., 2009). The Myd88 pathway 

controls inflammatory responses while the TRIF pathway mainly mediates type-I 

interferon (IFN) responses (Kawai and Akira, 2006). 

Currently, around 13 mouse and 10 human TLRs have been identified. Cell 

membrane TLRs include 1, 2, 4, 5, 6, and 10, while endosomal TLRs are 3, 7, 8, 

9 (Akira et al., 2006). TLRs located at the cell surface sense cell wall 

components of bacteria, fungi and viral proteins while those associated with 

endosomes recognize viral DNA and RNA (Kumar et al., 2009). 

S. pneumoniae infection is associated with the activation of multiple 

TLRs. The cell wall component lipoteichoic acid (LTA) activates TLR2 leading to 

induction of inflammatory responses and activation of coagulation pathway in 

vivo which was amplified by treating with a TLR4 ligand (Dessing et al., 2008). 

Pneumolysin was previously believed to induce inflammasome activation 

independent of TLR4. A study by Malley et al. demonstrated that TLR4 activation 

is involved in Ply induced innate immune responses and the release of 

inflammatory cytokines from murine macrophages (Malley et al., 2003).  
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Another important receptor TLR9 (associated with endosomes) is 

activated by pneumococcal DNA containing un-methylated CpG motifs. S. 

pneumoniae induced TLR9 activation is involved in enhancement of phagocytosis 

and early clearance of bacteria from the lower respiratory tract (Albiger et al., 

2007). 

TLR2 activation is also believed to play an important role during S. 

pneumoniae colonisation by impairing the integrity of epithelial barrier and 

enhancing pneumococcal translocation across the epithelium (Clarke et al., 

2011). A single pathogen can activate several TLRs leading to the most 

appropriate immune responses against that particular pathogen. Similarly a 

single TLR could be activated by multiple pathogens including bacteria, viruses, 

fungi and parasites. In this project we studied the role of TLR2 and TLR4 in S. 

pneumoniae induced autophagy. The schematic representation of basic structure 

of TLRs is shown in (Fig. 1.1). Different TLRs, their associated adaptor proteins 

and activating PAMPs are shown in (Table 1.1).  
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                                    Cell membrane associated TLRs 

TLR                   Activating PAMPs Adaptors 

TLR1/2 Bacterial and Mycobacterial tri-acyl lipopeptides MyD88, 

TIRAP 

TLR2 Bacterial: porins from Neisseria 

Lipoarabinomannan from Mycobacteria 

Viral: Hemagglutinin from measles virus 

Fungi: Phospholipomannan from Candida 

MyD88 

TIRAP 

TLR4 Bacterial: LPS from Gram (-) bacteria 

Fungi: Mannan from Candida 

Virus :Envelope proteins from RSV 

Trypanosoma: Glycoinositolphopholipids 

MyD88 

TIRAP 

TRAM 

TRIF 

TLR5 Bacterial flagellin  MyD88 

TLR6/2 Bacteria: lipoteichoic acid from Streptococcus 

Saccharomyces cervisiae: zymosan 

Mycoplasma: lipopeptides 

MyD88 

TRIF 

TLR11 Uropathogenic bacteria: Profilin like molecules 

from toxoplasma gondii 

MyD88 
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                                Endosomal TLRs 

TLR3 Virus: polyinosinic: polycytidylic acid ( Poly I:C) 

double stranded RNA, 

Reovirus:  ssRNA from West Nile Virus 

TRIF 

TLR7 Bacteria: RNA 

Virus: ssRNA from Influenza virus and vesicular 

stomatitis virus 

MyD88 

TLR9 Bacteria: CpG-DNA motifs. Viral dsDNA from 

Herpes Simplex Virus and murine Cytomegalovirus 

Plasmodium: Hemozoin 

MyD88 

TLR8 Probably inactive in mice MyD88 

TLR12 Toxoplasma profilin MyD88 

TLR13  Bacterial RNA  MyD88 

Table 1.1 Mouse TLRs with their PAMPs and adaptor proteins 

TLR; Toll-like receptor, MyD88; Myeloid differentiation primary response gene, TRIF; 

TIR- domain-containing adapter-inducing interferon-β, TIRAP; Toll-interleukin 1 

receptor (TIR) domain containing adaptor protein, TRAM; TRIF-related adapter 

molecule, adapted from (Kumar et al., 2009, Blasius and Beutler, 2010, Hochrein 

and Kirschning, 2013).  
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1.2.1.6 NOD- like receptors (NLRs) involved in S. pneumoniae infection 

Nucleotide- binding oligomerization domain (NOD)- like receptors (NLRs) 

are extensively studied cytosolic microbial sensors . Presently 23 NLRs have 

identified in humans and 34 in mice (Bryant and Fitzgerald, 2009). Nod1, the 

first identified NLR is a homologue of C. elegans protein (CED-4), a regulator of 

apoptosis (Inohara et al., 1999).  

When activated, Nod1 and Nod2 start activation of receptor-interacting 

protein2 (RIP2) caspase-like apoptosis-regulator protein kinase (RICK) via CARD 

interactions leading to NF-kB activation (Tattoli et al., 2007). Nod1 (NLRC1) and 

Nod2 (NLRC2) detect muropeptides from bacterial peptidoglycans. Nod1 is 

activated by meso- diaminopimelic acid (meso-DAP) found predominantly in 

Gram-negative bacteria while Nod2 is activated by muramyl dipeptides (MDP) 

from all bacteria (Girardin and Philpott, 2004, McDonald et al., 2005). 

NLRs are multi-domain proteins with a C-terminal leucine - rich repeat 

(LRR), a central nucleotide domain and an N-terminal effector domain (Fig.1.1). 

The C-terminal LRRs sense ligands from pathogens via an unknown mechanism. 

Most LRRs have 20-30 amino acids with 2 or more repeats forming a horse shoe 

shaped molecule with tandem repeats of a β-strand and -helix (Bella et al., 

2008, Song et al., 2014). The oligomerization of central NACHT (NAIP; neuronal 

apoptosis inhibitor protein, CIITA; MHC class II transcription activator, HET-E; 

incompatibility locus protein from Podospora anserina and TP1; telomerase-

associated protein) domain is important for the activation of NLRs which form 

active multimeric complexes such as the Nod signalosome and inflammasome 

(Franchi et al., 2012, Faustin et al., 2007). 

The N-terminal effector domain divides NLRs into different sub-families 

i.e. NLRC which contains a caspase recruitment domain (CARD), NLRP contains a 

pyrin domain (PYD) and the NAIP contains three baculovirus inhibitors of 

apoptosis protein repeat domains (BIRs). The N-terminal domain mediates signal 

transduction to their targets such as activation of caspases and NF-kB, and has a 

death domain (DD) and the death effector domain DED which form homologous 

dimers and trimmers to bind receptors to the adaptors and recruit other CARD or 

PYD containing proteins (Park et al., 2007, Bonardi et al., 2012). 
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Currently, five NLR subfamilies have been described and each has a 

specific molecular structure. NLRP is the largest with 14 genes in the human 

genome (Proell et al., 2008, Ting et al., 2008, Tschopp et al., 2003). NLRP1-3 

proteins are present in the inflammasome complexes while NLRC subfamily 

contains NOD1,-2 and NLRC3-5 (Proell et al., 2008, Ting et al., 2008, Martinon 

and Tschopp, 2005). NLRA, NLRB and NLRX are the remaining subfamilies which 

contain immune regulatory proteins class-II transcriptional activator domain 

(CIITA), neuronal apoptosis inhibitory protein domain (NAIP) and NLRX1 

respectively (Ting et al., 2008). 

These NLRs have important functions and lead to inflammasome 

activation and production of pro-inflammatory cytokines (Wen et al., 2013). 

Peptidoglycan from S. pneumoniae is sensed by Nod2 which on activation 

releases inflammatory mediator by immune cells. This role of Nod2 is required 

for the S. pneumoniae clearance (Davis et al., 2011). Pneumolysin activates 

NLRP3 inflammasome in S. pneumoniae infection which induces protective 

immunity against respiratory infections (McNeela et al., 2010). 

The schematic representation of basic structure of different NLRs is 

shown in figure 1.1. Different NLR subfamilies in humans and mice, their 

nomenclature and structure are shown in (Table 1.2). In this project we studied 

the role of Nod2 in autophagy induction.   
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NLRs 

Subfamilies 

Nomenclature 

    (Mouse) 

Nomenclature 

   (Human) 

   Structure 

NLRA CIITA CIITA CARD– AD– NACHT– NAD- LRR 

NLRB NAIP a-g NAIP BIR- BIR- BIR- NACHT- LRR 

NLRC Nod1 Nod1 CARD- NACHT- NAD- LRR 

       - Nod2  Nod2  CARD- CARD- NACHT- NAD-LRR 

       - NLRC3 NLRC3 CARD- NACHT- NAD- LRR 

       - NLRC4 NLRC4 CARD- NACHT- LRR 

       - NLRC5 NLRC5 CARD- NACHT- LRR 

NLRP NLRP1a  NACHT- NAD- LRR- FIIND-CARD 

  NLRP1 PYD- NACHT- NAD- LRR- FIIND-

CARD 

 NLRP2 NLRP2 PYD- NACHT- NAD- LRR 

 NLRP3 NLRP3 PYD- NACHT- NAD- LRR 

 NLRP4 a-g NLRP4 PYD- NACHT- NAD- LRR 

 NLRP5  NACHT- NAD- LRR 
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  NLRP5 PYD- NACHT- NAD- LRR 

 NLRP6 NLRP6 PYD- NACHT- NAD- LRR 

  NLRP7 PYD- NACHT- NAD- LRR 

  NLRP8 PYD- NACHT- NAD- LRR 

 NLRP9 a-c NLRP9 PYD- NACHT- NAD- LRR 

 NLRP10 NLRP10 PYD- NACHT- NAD 

  NLRP11 PYD- NACHT- NAD- LRR 

 NLRP12 NLRP12 PYD- NACHT- NAD- LRR 

  NLRP13 PYD- NACHT- NAD- LRR 

 NLRP14 NLRP14 PYD- NACHT- NAD- LRR 

NLRX NLRX1 NLRX1 X- NACHT- LRR 

 

Table 1.2 Different NLRs subfamilies and their structure  

NLRP; NOD-like receptor protein, CIITA; Class-II transcriptional activator domain, AD; 

Acidic activation domain, NAD; Nicotinamide adenine dinucleotide, LRR; Leucine-rich 

repeat domain, NOD; Nucleotide-binding oligomerization domain, CARD; Caspase 

recruitment and activation domain, PYD; Pyrin domain, NACHT; NAIP (neuronal 

apoptosis inhibitor protein), CIITA (MHC class II transcription activator), HET-E 

(incompatibility locus protein from Podospora anserina) and TP1 (telomerase associated 

protein), NLRC; NLR family card domain containing protein, NAIP; Neuronal apoptosis 

inhibitory protein domain, BIR; Baculovirus inhibitor of apoptosis repeat, adapted from 

(Jacobs and Damania, 2012, Martinon et al., 2009, Ting et al., 2008).  
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1.2.1.7 Caspases 

Caspases are cysteine-aspartate proteases secreted as a pro-form and 

then proteolytically activated. The activated enzyme subunits are named 

following their molecular size i.e. (caspase-1 p10 & p20). Currently, 13 

mammalian and 11 human caspases have been identified that play essential 

biological roles in inflammation and apoptosis (Cohen, 1997, Earnshaw et al., 

1999).  

Caspases are classified according to their role in apoptosis and 

inflammation. Caspases associated with apoptosis are caspase-3, -6, -7, -8 and -9 

(in mammals) and inflammatory caspases are caspases-1, -4, -5, -12 (in humans) 

and caspase-1, -11 and -12 (in mice) while caspase-2, -10 and -14 could not be 

categorized (Martinon et al., 2009). 

Caspases involved in apoptosis are further classified into initiator caspases 

i.e. (caspase-8 and -9) and executioner caspases i.e. (caspase-3, -6, and -7). The 

initiator caspases have an N-terminal death-fold domain like NLR-proteins which 

is required for the C-terminal activation. The initiator caspases are activated 

through different platforms i.e. caspase-9 is activated by the apoptosome at the 

onset of apoptosis while the executioner caspases are activated by initiator 

caspases (Martinon et al., 2009). Caspases are activated via inflammasome 

activation to process and activate different cytokines. 

1.2.1.8 Interleukin-1β (IL-1β) 

The Interleukin-1 (IL-1) family plays a central role in inflammation and 

consists of 11 cytokines. IL-1α and IL-1β were the first to be discovered among 

all members of this family and possess strong pro- inflammatory properties. 

Interleukin-1 receptor antagonist (IL-1Ra), another member of IL-1 family is a 

regulator for pro-inflammatory activity of IL-1α and IL-1β by blocking their 

binding sites. These cytokines bind to IL-1receptor type-1(IL-1RI) followed by 

recruitment of the co-receptor IL-1 receptor accessory protein (IL-1RAcP) which 

form (IL-1 + IL-1RI + IL-1RAcP) complex (Dinarello, 2011).  

This complex initiates a signal for the recruitment of adaptor protein 

MyD88 to the Toll-IL-1 receptor (TIR) domain similar to the TLR signalling 
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pathway. Inflammasome activation therefore leads to TLR-like receptor 

activation and phosphorylation of several  kinases which translocate NF-κB to 

the nucleus and starts a cascade of inflammatory cytokines (Dinarello, 2011). 

The data presented in this thesis will concentrate on IL-1β released from 

inflammasome activation in S. pneumoniae infection, so we will focus on this 

cytokine. 

Interleukin-1β is an important and powerful pro-inflammatory cytokine 

and a key initiator of pro- inflammatory reactions during tissue injury. It is 

produced by a variety of cell types in the body but most research studies focus 

on innate immune cells including blood monocytes, macrophages and dendritic 

cells (Ferrero-Miliani et al., 2007). IL-1β production is stimulated by either 

PAMPs or DAMPs and involves multiple steps. It is synthesized as pro-IL-1β and 

then activated to the mature and biologically active form by the action of 

caspase-1, and subsequently released to the extracellular milieu. 

Researchers have suggested five different pathways for the release of IL-

1β i.e. exocytosis of secretory lysosomes, shedding of microvesicles from plasma 

membrane, shedding of IL-1β containing exosomes, export through specific 

membrane transporters or release after cell lysis. The exact mechanism of IL-1β 

production is not known and further exploration may help in development of 

strategies against inflammatory and autoimmune diseases (Eder, 2009). 

IL-1β produces multiple systemic effects on the central nervous system, 

vascular system, metabolism and blood. These effects include fever, increased 

sleep, anorexia, hypotension, neutrophilia, increased leukocyte adherence, 

release of adrenocorticotrophic hormones (ADH), release of neuropeptides and 

hepatic proteins (Dinarello, 1988).  

The systemic effects are due to the induction of cyclooxygenase type-2 

(COX-2), type-II phospholipase A and inducible nitric oxide synthase (iNOS) 

mediated by IL-1β release. IL-1β is also believed to mediate inflammation in 

periodic fever syndrome caused by mutations in the NLRP3 gene and treatment 

with IL-1inhibitor relieves disease symptoms (Dinarello, 2009, Hoffman et al., 

2004). 
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1.2.1.9 The Inflammasomes in S. pneumonia infection 

Inflammasomes are large multi-protein complexes in the cytoplasm 

formed by NLR proteins and caspases i.e. caspase-1, PYCARD (ASC), NALP and 

caspase-11. Inflammasomes are activated by microbial ligands and metabolic 

stress which leads to proteolytic activation of pro-inflammatory cytokines, 

including IL-1β and IL-18 through the activation of caspase-1 (Martinon et al., 

2002, Tsuchiya and Hara, 2014).  

After the discovery of NLRP1 as the first inflammasome, several other 

inflammasomes have been recognized in the recent years. Four inflammasomes 

including NLRP1, NLRP3, NLRC4 and AIM2 have been studied extensively 

(Martinon et al., 2007). Some of the NLRs including neuronal apoptosis inhibitory 

protein (NAIP) and Nod2 are also involved in pathogen sensing and form 

complexes but the exact mechanism is not known (Leavy, 2011, Franchi et al., 

2008). 

Inflammasome activation mainly depends upon the adaptor proteins. The 

apoptosis-associated speck- like protein containing a CARD (ASC) is an adaptor 

protein which is recruited to the NLRP proteins via PYD-PYD interactions, and is 

essential for inflammasome formation (Srinivasula et al., 2002, Martinon et al., 

2002). The CARD domain of ASC adaptor protein interacts with the CARD domain 

of caspase-1 leading to its activation and inflammasome formation. Similarly 

NLRC4 inflammasome also uses ASC protein as an adaptor and recruits pro-

caspase-1 directly via CARD-CARD interactions, but the exact mechanism is 

unknown (Poyet et al., 2001). 

Inflammasomes respond to different signals and microbial ligands 

including PAMPs and DAMPs. The NLRP3 inflammasome is activated by a variety 

of signals including bacterial ligands and toxins, danger signals, muramyl 

dipeptide (MDP) and viral DNA. Similarly AIM2 (absent in melanoma 2) is a sensor 

for the double stranded cytoplasmic DNA which results in inflammasome 

formation together with ASC and caspase-1. Both NLRP3 and AIM2 

inflammasomes activate apoptosis and pyroptosis via adaptor protein ASC 

(Martinon et al., 2009, Sagulenko et al., 2013). 
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When activated, the inflammasome activates pro-caspase-1 by increased 

proteolysis. The activated caspase-1 then processes the inflammatory cytokines 

pro-IL-1β and pro-IL-18. Activation of these pro-inflammatory cytokines is an 

important process which starts an inflammatory response. Secretion of mature 

IL-1β requires two signals. Firstly activation of TLRs leads to the transcription of 

the IL-1β gene and production of pro-IL-1β. Secondly the accumulated inactive 

pro-IL-1β is then activated following the activation of NLR proteins and 

activation of inflammasome and caspase-1. In addition to cytokine maturation, 

inflammasome activation also leads to a type of cell death called pyroptosis 

which means death due to the release of pro-inflammatory cytokines (Eder, 

2009, Fink and Cookson, 2005). 

Inflammasome activation is important in S. pneumoniae infection. 

Previous research demonstrates that ASC inflammasomes including NLRP3 and 

AIM2 are essentially required for the caspase-1 activation during S. pneumoniae 

infection. Caspase-1 activation was significantly decreased in AIM2 knockdown 

and knockout mice while partially impaired in NLRP3-/- macrophages in infection 

with S. pneumoniae. Furthermore, ASC -/- mice were more susceptible to S. 

pneumoniae infection with impaired inflammatory response and lower IL-1β and 

IL-18 production (Fang et al., 2011). 

Previous studies also demonstrate that inflammasome activation during S. 

pneumoniae infection is due to its virulence factor pneumolysin. IL-1β secretion 

by S. pneumoniae infection and by Ply treated dendritic cells was shown to 

require the NLRP3 inflammasome. This indicates the importance of Ply during 

inflammasome activation and the inflammatory response. Furthermore, NLRP3 

was also required for protective immunity against respiratory infection with S. 

pneumoniae which adds significantly to our understanding of the interactions 

between Ply and the immune system (McNeela et al., 2010). 

The pneumolysin deficient strain was unable to activate caspase-1 and 

induce production of inflammatory cytokines, when macrophages were 

stimulated with S. pneumoniae D39 WT and D39 ΔPly. Cell stimulation with 

recombinant Ply induced inflammasome activation and the release of 

inflammatory cytokines. Ply toxin released by S. pneumoniae activates the TLR4 

pathway to activate the inflammasome and caspase-1 which leads to production 
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of inflammatory cytokines (Shoma et al., 2008). The influence of S. pneumoniae 

induced inflammasome activation on autophagy, phagocytosis and NETosis is 

studied and presented in this thesis. 

1.3 Macrophages and the mononuclear phagocyte 
system 

Macrophages and mononuclear phagocytic cells are the first line of 

defence, described by Elie Metchnikoff in the 19th century. Macrophages are 

present in almost every tissue of the body. They are large myeloid origin cells 

that display stellate morphology and are characterized by the presence of 

pseudopodia, nonspecific esterases and phagocytic granules which give them a 

foamy appearance. 

Macrophages are effector cells of the innate immune system and play a 

wider role in the body. They are highly efficient phagocytes and help in 

maintenance of the tissue homeostasis through the clearance of damaged and 

apoptotic cells generated during the process of wear and tear. Phagocytosis of  

dead material also helps in organogenesis and macrophages are highly 

concentrated at embryonic development sites to clear the huge number of dead 

cells (Hopkinson-Woolley et al., 1994). 

Macrophages are also involved in wound healing during tissue injury. They 

perform some tissue specific functions i.e. liver macrophages (Kupffer cells) help 

in toxin removal from the circulation, alveolar macrophages engulf and 

eliminate inhaled antigenic particles, and bone macrophages are essential for 

bone remodelling. Macrophages secrete soluble mediators which help in tissue 

homeostasis and maintenance of enzymes, cytokines, chemokines, glycoproteins 

such as fibronectin and arachidonic acid derivatives (Takemura and Werb, 1984). 

Macrophages are located near the epithelial surfaces in most of the 

tissues and detect microbial ligands i.e. PAMPs and DAMPs through their PRRs. 

The invading pathogens are phagocytosed by macrophages, degraded and finally 

eliminated from the body. 
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1.3.1 Identification of macrophages 

Macrophages are identified by protein markers on their surface as shown 

in table 1.3. In mouse macrophages, the best and commonly used marker is 

F4/80, and a monoclonal antibody directed specifically against this protein is 

used for identification (Austyn and Gordon, 1981). Murine macrophages express 

some other markers as well. Human macrophages do not express F4/80 

predominantly and this marker is useful in human eosinophils (Hamann et al., 

2007). Some CD markers are useful to characterize human macrophages e.g. 

CD68 and CD14. 

1.3.2 Activation of Macrophages 

Macrophages are activated by any disturbance in tissue homeostasis which 

leads to phenotypic and functional changes in the cells. Macrophages are 

activated by two different pathways. 

1.3.2.1 Classical pathway for macrophage activation (M1) 

In the classical pathway, macrophages sense PAMPs released by Gram 

positive and Gram negative bacteria. This triggers the release of pro-

inflammatory cytokines and chemokines including IL-1, IL-6, IL-12, IL-23, TNF-α, 

CXCL9 and CXCL10 (Mosser and Edwards, 2008, Murray and Wynn, 2011). 

Classically activated macrophages also generate reactive oxygen species (ROS) 

and nitric oxide (NO) which further enhance the killing of pathogens. ROS 

production is mediated by NADPH oxidase, while  NO is produced by inducible NO 

synthase (iNOS) from L-arginine (Wink et al., 2011).  

They also express major histocompatibility complex (MCH) class-II and co-

stimulatory molecules which allow them to act as antigen presenting cells and 

induce T helper type-1 and T helper-17 responses (Krausgruber et al., 2011). 

1.3.2.2 Alternate pathway of macrophage activation (M2) 

This pathway was originally described in 1990. Macrophages are activated 

by cytokines produced by type-2 helper (Th-2) cell responses i.e. IL-4 and IL-13 

instead of an interferon- (IFN-) Th-1 response (Stein et al., 1992). These 



49 
 
macrophages contribute in tissue repair. Th-2 cells cytokines  including IL-4, IL-

13, IL-25 and IL-33 promote activation of different transcription factors such as 

Kruppel-like factor-4 (KLF4), signal transducer and activator of transcription 6 

(STAT6), the nuclear receptors including peroxisome proliferator- activated 

receptors (PPAR-δ) and (PPAR-γ) (Gordon and Martinez, 2010, Sica and 

Mantovani, 2012). 

These macrophages also express some specific markers i.e. arginase-1 

(Arg1), IL-4R etc. (Gordon and Martinez, 2010) and chemokines such as CCL24, 

CCL22, CCL18, CCL17, CCL14, and CCL13. Arginase-1 expression in mouse 

macrophages promotes the production of ornithine and polyamines which make 

these M2 macrophages highly efficient in wound healing and elimination of 

parasites (Martinez et al., 2009). They also secrete immunosuppressive cytokine 

IL-10 and tumour growth factor-β (TGF-β) which help in tissue repair 

(Fairweather and Cihakova, 2009). 

1.3.3 Macrophage host defence during S. pneumoniae infection 

Macrophages response to bacterial infections mainly involves the up-

regulation of genes encoding cytokines during M1 polarization. These up-

regulated genes encode indoleamine- pyrrole 2-3 di-oxygenase and nitric oxide 

synthase 2 (NOS2) involved in antimicrobial activity. However prolonged M1 

polarization in some condition can lead to self-tissue injury. M2 activated 

macrophages play an important role in the resolution of inflammation by 

producing anti-inflammatory mediators (Benoit et al., 2008). 

Macrophages detect invading pathogens, releasing chemical mediators to 

the blood and body fluids and initiate a strong signal to other immune cells. 

They are more efficient phagocytes than other immune cells and phagocytose 

invading pathogens including S. pneumoniae (Robertson et al., 1939). Innate 

immune response to pneumococcal infection activates macrophages via the 

classical pathway as reviewed by (Gordon et al., 2013).  

Macrophage activation takes place following interaction with 

pneumococcal PAMPs or stimulation by natural killer (NK) cells leading to ROS 

production. Ply released during S. pneumoniae infection functions via TLR2 and 
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TLR4 as described earlier. Macrophages can also be activated by IFN-γ released 

by CD4+ lymphocytes. This mode of activation results in increased expression of 

major histocompatibility complex class-II (MHC-II), antigen presentation, 

phagocytosis, and microbial killing functions of macrophages. This is important 

in pulmonary defence against pneumococci (Gordon et al., 2013).  

When macrophages are stimulated with S. pneumoniae infection, nitric 

oxide (NO) is produced. Ply acts on macrophages and induces the release of IFN-

 which then activates iNOS and NO production. Furthermore, Ply knockout S. 

pneumoniae was unable to produce NO during macrophage infection. NO is an 

essential element in macrophage antimicrobial activity but may cause host-

induced tissue injury, hypotension and shock. Similarly macrophages with 

knockout of IFN-γ receptors or interferon regulatory factor 1(IRF-1; a 

transcription factor) are also unable to express iNOS and NO production (Braun 

et al., 1999). 

A previous study demonstrated that ply released in S. Pneumoniae 

infection of macrophages induces pro-inflammatory cytokines IL-1α, IL-1β, and 

IL-18 while there is no effect on TNF-α and IL-12p40 (Shoma et al., 2008). Along 

with the release of pro-inflammatory cytokines, S. pneumoniae infection also 

induces other immune responses in macrophages including phagocytosis, 

microbial killing and apoptosis. Different macrophage receptors including 

complement receptors, Fc receptors, platelet-activating factor receptors, 

scavenger receptors, and toll-like receptor (TLR) complexes which recognize S. 

pneumoniae. Opsonisation of S. pneumoniae via Fc receptors up-regulates 

bacterial phagocytosis (Dockrell et al., 2001).  

In this thesis we study the induction of autophagy, phagocytosis and the 

associated inflammasome activation in murine BMDM infected with S. 

pneumoniae.  
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Marker Gene Expression/ Comments 

F4/80 Emr1 Expressed on most tissue macrophages in mouse. 

Limited usefulness in humans for eosinophils 

CD11b Itgam Expressed on all myeloid cell types including neutrophils 

CD11c Itgax Expressed on monocytic- derived cells including 

macrophages, but typically associated with DCs 

CD68 Cd68 Expressed on all mouse and human macrophages 

Useful for IHC. It has limited usefulness 

CD163 Cd163 Expressed on most tissue macrophages, Useful for IHC 

including human paraffin embedded tissues 

CSF1R Csf1r Expressed on all monocytic- derived cells including 

macrophages and osteoclasts 

MAC2 

galectin 3 

Lgals3 Useful for IHC 

LY6C Ly6c1 Expressed on monocytic myeloid cells. Useful when used 

together with LY6G to determine relative number of 

granulocytes and monocytes 

LY6G Ly6g Expressed on granulocytes. Useful when used with LY6C 

to determine relative number of granulocytes and 

monocytes. 

IL- 4Rα Il4rα Expressed on most macrophages but also lymphocytes 

and other cell types responsive to IL-4 and IL13 

Table 1.3 Cell surface markers and genes expressed by tissue macrophages 

CD; Cluster of differentiation, CSF1R; Colony stimulating factor 1 receptor, MAC2; 

Macrophage galactose- specific lectin 2,  LY; lymphocyte antigen, adapted from 

(Murray and Wynn, 2011).  
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1.4 Human polymorphonuclear neutrophils 

Polymorphonuclear neutrophils (PMN) or simply neutrophils make up 

approximately 40- 75 % of all white blood cells in mammals and they are one of 

the principal effectors cells of the immune system. Neutrophils spend most of 

their life span in circulation and are the first leukocytes recruited to the site of 

any breach in the body’s defence. Neutrophils develop in the bone marrow and 

are exported to the blood stream on maturity. Their major function is protection 

from invading pathogens. In normal conditions, the lifespan of neutrophil is 

approximately 4.5 days, if not activated by inflammation (Nathan, 2006, Pillay 

et al., 2010). 

Neutrophils were first described by Elie Metchnikoff, a Russian biologist 

(Nobel laureate in medicine, 1908) in 1882, when he inserted rose thorns into 

starfish larvae and found that wandering mesodermal cells accumulated at the 

puncture site. He named these cells phagocytes and described the larger cells as 

macro-phagocytes, or macrophages, and the smaller as micro-phagocytes, now 

known as granulocytes, of which the most numerous are the neutrophils (Segal, 

2005). Later on neutrophils were further discussed and characterized by Nobel 

laureate Paul Ehrlich, who realized the potential importance of the neutrophil 

granules in the inflammatory process. 

Pathogen invasion is detected by tissue resident macrophages and then 

signalled to circulating neutrophils. Neutrophils are rapidly recruited to the site 

of infection and start their actions including phagocytosis, degranulation and 

neutrophil extracellular traps (NETs) generation to control the invading 

pathogen. These leukocytes adopt a diverse array of strategies to provide 

protection against a broad range of  pathogens by limiting their spread 

(Papayannopoulos and Zychlinsky, 2009). 

Structurally neutrophils have multi-lobed (2-5) nuclei and are divided into 

segmented and banded types. The nuclear structure allows easy emigration of 

neutrophils through narrow junctions between endothelial cells. They have 

multiple cytoplasmic pink staining granules containing different potent 

molecules through which they communicate with the macrophages and dendritic 
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cells for killing and lysis of pathogens. Sometimes these molecules can become 

dangerous causing injury to the host tissues. 

1.4.1 Functions of neutrophils 

Neutrophils are the first cells to be recruited to the site of infection 

through a process called chemotaxis and provide the first line of defence against 

invading pathogens. 

1.4.1.1  Neutrophil chemotaxis 

Chemotaxis is a process used by the leukocytes in which they crawl 

towards the infection site in response to certain chemicals. Chemo-attractant 

molecules are released by pathogens that induce rapid changes in the neutrophil 

shape which results in cell orientation to migrate up a gradient of attractant 

molecules to the site of infection (Bourne and Weiner, 2002). This help in the 

accumulation of neutrophils at the site of infection. 

1.4.1.2 Neutrophil phagocytosis and Intracellular Killing 

Elie Metchnikoff described neutrophil phagocytosis, as a process of 

endocytosis where solid particles including microorganisms are taken up by these 

cells. On arrival at the site of infection, neutrophils bind and internalize the 

invading microbes by a receptor-mediated process called phagocytosis. The 

microorganism is trapped in a vacuolated structure called a phagosome which 

undergoes maturation and fuses with the intracellular granules containing a 

variety of antimicrobial factors for clearance (Steinberg and Grinstein, 2007).  

The contents of the phagosome are then subjected to several potent 

antimicrobial molecules i.e. antimicrobial peptides, reactive oxygen species 

(ROS) and some hydrolytic enzymes which kill and degrade the phagocytosed 

microbe. Microbial killing and degradation inside the phagosome is important to 

prevent their release into the cytosol and surround tissue (Brinkmann et al., 

2004). 
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1.4.1.3 Neutrophil extracellular microbial killing 

When neutrophils are activated, they kill pathogens using different 

controlled strategies. They have an array of antimicrobial mechanisms, including 

antimicrobial proteins, release of reactive oxygen species neutrophil 

extracellular traps which are used to kill microbes. 

1.4.1.4 Neutrophil granules 

Neutrophils contain four types of granules which release their toxic 

contents at specific times for microbial killing (Amulic et al., 2012). 

Primary azurophilic granules are the first to appear during neutrophil 

maturation. They are the largest peroxidase positive granules and stain with 

azure A. They contain myeloperoxidase (MPO), defensins, lysozyme, bacterial 

permeability-increasing protein (BPI), and some serine proteases including 

neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (Amulic et al., 

2012). 

The secondary granules are smaller, MPO negative and are formed after 

azurophilic granules. They contain glycoprotein, lactoferrin and lysozymes. The 

third class consists of the smallest gelatinase granules. They are also MPO 

negative and contain few antimicrobial molecules, but mainly act as storage 

location for the metalloproteases i.e. gelatinase and leukolysin. Most of the 

granular proteins play a potent role in microbial killing (Amulic et al., 2012). 

A fourth class of neutrophil granules family consists of the secretary 

granules which appear during the last stage of maturation. These granules do not 

bud from the Golgi apparatus but instead are formed through endocytosis and 

contain plasma derived proteins such as albumen (Amulic et al., 2012). 

1.4.1.5 Neutrophil antimicrobial proteins 

Neutrophils produce some proteins which act directly or indirectly as 

antimicrobial molecules. Three different categories of neutrophil antimicrobial 

proteins have been described i.e. cationic peptides which bind to microbial 

membranes and alter their membrane functions, enzymes which directly destroy 
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microbes and chelating proteins which deprive microbes from essential 

nutrients. Neutrophil antimicrobial proteins are shown in (Table 1.4).  
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Proteins/peptides          Antimicrobial mechanism 

Cationic peptides 

α-defensins 

(human neutrophil 

peptides)  

HNP-1, -2, -3, -4 

-Permeabilize membrane bilayers which contain 

negatively charged phospholipids 

-Inhibit DNA, RNA as well as protein biosynthesis 

-Inhibit bacterial cell wall synthesis 

LL-37 A trans-membrane pore-forming protein 

BPI (permeability 

increasing protein) 

Increases bacterial permeability and hydrolysis of 

bacterial phospholipids by binding to LPS 

Histones Its mechanism of action is unknown  

Proteolytic enzymes 

Lysozyme Degradation of bacterial cell wall 

Proteinase-3 (PR3) It has an independent non proteolytic mechanism and 

binds to the bacterial membrane 

Neutrophil elastase 

(NE), 

Cathepsin G (CG) 

Cleaves bacterial virulence factors and outer membrane 

proteins independent of a proteolytic activity by binding 

to the membrane 

Azurocidin Bind to the bacterial outer membrane independent of a 

proteolytic activity 
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Metal chelators 

Lactoferrin -Bind to iron, an essential bacterial nutrient and alter 

bacterial activity 

-Releases LPS from the cell wall by binding with lipid-A 

part of LPS and increases membrane permeability 

Calprotectin Sequesters manganese and zinc leading to alteration in 

bacterial growth 

Table 1.4 Directly acting neutrophil proteins and their antimicrobial actions 

adapted from (Amulic et al., 2012).  
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1.4.1.6 Reactive oxygen species 

Neutrophils activation produce reactive oxygen species (ROS) through a 

process called the respiratory burst. ROS are important for the antimicrobial 

activity of neutrophils. Defective ROS production in chronic granulomatous 

diseases leads to poor antimicrobial action of neutrophils (Amulic et al., 2012). 

1.4.1.7 Neutrophil Extracellular Traps (NETs) 

Neutrophils were previously considered to kill microbes via phagocytosis 

and secretion of antimicrobial molecules and free radicals. A novel strategy of 

trapping and killing microbes, the neutrophil extracellular trap (NET) generation 

was identified by Brinkmann and his co-workers when they treated neutrophils 

with phorbol myristate acetate (PMA), interleukin 8 (IL-8) and lipopolysaccharide 

in vitro (Brinkmann et al., 2004).  

A NET consists of neutrophil nuclear material along with granular and 

cytoplasmic proteins released into the cytosol. NETs are thought to limit the 

spread of microbes and promote the effectiveness of neutrophils by limiting 

diffusion of protein molecules from the infection site. This also prevent the host 

tissues from damage by the granular proteins (Papayannopoulos and Zychlinsky, 

2009). 

NETs are associated with neutrophil elastases and histones which can be 

used as identification markers. An individual NET is approximately 15 nm in 

diameter, derived from the unfolded chromatin components. Scanning electron 

microscopy revealed that NET threads have globular components and multiple 

threads wound up to make a 100nm diameter cable, and several cables form a 

complex web-like structure. Experiments on NETs have shown that they are 

flexible structures and surround the neutrophils from whom they originate 

(Brinkmann et al., 2004). 

Studies demonstrate that TLRs may play important role in NET generation. 

Stimulation of neutrophils with intact pathogen produced more NETs as 

compared to stimulation of a single TLR. Furthermore, NET generation is an 

active process and require the release of ROS. On stimulation, neutrophils are 
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converted into motile phagocytes with higher oxidative burst in the first hour 

(Fuchs et al., 2007). 

 There are few nuclear changes in the first hour but their chromatin 

remodels into active and inactive parts and lose its lobular appearance later on. 

After almost 2 hours the nuclear membrane dissolves allowing the chromatin to 

mix with other components of the cell. Simultaneously the granules in the 

neutrophils are dissolved and at about 3 hours, the mixture of chromatin and 

granules is released into the extracellular environment (Fuchs et al., 2007). 

1.4.1.8 Mechanisms of neutrophil microbial killing 

Neutrophils use oxygen-independent and oxygen-dependent mechanisms 

for killing pathogens. In the oxygen-independent method, neutrophils release 

antimicrobial cationic proteins and peptides i.e. BPI, defensins, and cathelicidins 

into the phagosome containing pathogen (Lehrer and Ganz, 1999). These 

molecules bind directly to the microbe and disrupt their cell membrane integrity 

to cause death.  

In the oxygen- dependent method, NADPH oxidase and myeloperoxidase is 

produced which leads to production of the potent antimicrobial superoxide 

anions hydrogen peroxide (H2O2) and hypochlorite (HOCl) (Segal, 2005). Electron 

transfer occurs from the cytoplasmic NADPH to oxygen on the inside of 

phagosome to produce superoxide and other free radicals (Segal and Abo, 1993).  

Mutations in the genes encoding NADPH oxidase complex in chronic 

granulomatous disease (CGD) lead to severe life threatening infections due to 

inability of neutrophils to kill microorganism through these free radicals 

(Heyworth et al., 2003). Free radicals oxidize proteins and DNA of microorganism 

and kill them. On completion of phagocytosis and microbial digestion neutrophils 

undergo apoptosis mediated by caspases (Fadeel et al., 1998).The neutrophil 

apoptotic bodies are quickly removed by macrophages to shorten the 

inflammatory process (Serhan and Savill, 2005). 
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1.5 Autophagy 

Autophagy, derived from Greek words meaning “self- eating”, was coined 

by Deter and de-Duve for the first time almost 50 years ago. They described this 

ancient homeostatic process according to their observations in experiments on 

rat hepatocytes perfused with a hormone glucagon (Deter and De Duve, 1967).  

Autophagy-related (Atg) proteins are responsible for this important 

pathway and their molecular machinery, the Atg genes have been identified in 

the yeast, with their orthologues well conserved in the eukaryotes (Heath and 

Xavier, 2009). Atg proteins form functional complexes to control this important 

pathway and degrade large cellular components, protein aggregates and 

pathogens which cannot be degraded by the Ubiquitin-proteasome pathway 

(Deretic et al., 2009b, Virgin and Levine, 2009). 

Previously autophagy was considered as a process for cell survival during 

starvation, but recent studies link this pathway to many pathological conditions 

including microbial infections, inflammatory diseases, cancers, 

neurodegenerative diseases and ageing (Mizushima et al., 2008). Autophagy is 

activated during cellular starvation and growth factor deprivation as an 

adaptation process and involves lysosomal degradation of cellular components 

and protein aggregates (Levine, 2005). 

It is interesting that despite abundant extra-cellular nutrients, 

deprivation of growth factors in the cells can activate autophagy for their ATP 

production from the intracellular substrate, highlighting the importance of 

autophagy for sustaining viability and cell survival during starvation and growth 

factor withdrawal (Lum et al., 2005). This pathway also plays an important role 

during birth and nutrient deprivation due to placental disruption (Levine, 2005). 

Autophagy and Atg proteins are important for their crucial role in 

infection, immunity and inflammation. The role of autophagy in both innate and 

adaptive immunity has been recognized at different levels ranging from highly 

specialized immunologic effector and regulatory function (type-I immunophagy) 

to generic homeostatic influence on immune cells (type-II immunophagy). The 

concept of understanding the relation of autophagy with immunity is that it is an 
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evolutionary ancient microbial clearance mechanism for the defence of 

eukaryotic cells against intracellular pathogens. Different receptors and proteins 

involved in autophagy are also linked to immune systems and they form the link 

between these two processes (Deretic, 2006). 

Autophagy plays an important role in infection control and is thought to 

be the only effective mechanism for removal of intracellular pathogens. Studies 

have demonstrated that different microbial ligands trigger autophagy and 

autophagy-related pathways through the activation of PRRs on the cell surface 

and cytoplasm i.e. TLRs and NLRs (Delgado et al., 2008, Saitoh et al., 2008). 

Another molecule, the inhibitory complement receptor CD46, a type-1 

glycoprotein, expressed by nucleated cells in humans can bind to multiple 

pathogens, and is thought to be direct inducer of autophagy in microbial 

infections (Meiffren et al., 2010). 

The discovery of Atg proteins helped in understanding the relationship 

between autophagy, immunity and Inflammation in the last decade. The 

autophagy pathway maintains a balance between the beneficial and harmful 

effects of the host response to infection, and is implicated in either the 

pathogenesis or response to a wide variety of diseases including chronic 

bacterial and viral infections (Kundu et al., 2008).  

Autophagy proteins function both in induction and suppression of immune 

and inflammatory responses. Similarly, immune and inflammatory signals also 

function in both induction and suppression of autophagy pathway (Levine and 

Kroemer, 2008). 

1.5.1 Molecular mechanism of autophagosome formation 

The most important feature of autophagy is autophagosome formation. It 

is a double membrane-bound compartment for sequestering cytosolic materials 

through a distinct process. Autophagosome membrane formation is a complex 

process controlled by multiple Atg proteins. The exact mechanism and source of 

autophagosome membrane formation is not clearly understood. It is believed to 

initiate with the isolation membrane followed by elongation and autophagosome 
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formation surrounding the cytosolic components. On closure, the autophagosome 

fuses with lysosome to form mature autophagosome (Fig. 1.2). 

1.5.1.1 Initiation 

The first important event in autophagosome formation is induction or 

nucleation. It is initiated by the formation of isolation membrane or phagophore. 

The exact mechanism is not known but recent research demonstrates that 

endoplasmic reticulum (ER) and mitochondria may provide membrane (Tooze 

and Yoshimori, 2010). According to some studies, plasma and nuclear 

membranes may also contribute to autophagosome membrane formation but no 

evidence is available for specific markers of these structures (Hailey et al., 

2010, Ravikumar et al., 2010). 

Mammalian target of rapamycin (mTOR), a serine/threonine kinase plays 

an important role in autophagy. Inhibition of mTOR activity leads to autophagy 

induction in eukaryotic cells. This is mediated by Atg1 in yeast and Ulk1 (Unc-51-

like kinase) and Ulk2 in mammals (Chan et al., 2007). The mTOR substrate 

complex i.e. (ULK1/2, ATG13, focal adhesion kinase family-interacting protein 

200 (FIP200), retinoblastoma1-inducible coiled coil protein1 (RB1CC1) and 

ATG101) is translocated from cytosol to the endoplasmic reticulum or other 

nearby structures (Itakura and Mizushima, 2010). This leads to recruitment of 

Class-III phosphatidylinositol-3-kinase complex i.e. (VPS34, VPS15 or p150, beclin 

1 and ATG14) to the ER (Matsunaga et al., 2009). 

The class-III PI3K complex produces phosphatidylinositol-3-phosphate (PI3P) 

leading to recruitment of the effector molecules i.e. double FYVE-containing 

protein 1 (DFCP1) and WD repeat domain phospho-inositide-interacting (WIPI) 

proteins. DFCP1 is found diffusely on the ER and golgi complex. It translocates to 

the site of autophagosome membrane formation in a PI3P-dependent manner 

and starts omegasome (Ω-like structure) formation (Axe et al., 2008). WIPI-2 

protein is the major form of WIPI family which promotes the development of 

omegasome to form isolation membrane and autophagosome (Polson et al., 

2010). 
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1.5.1.2 Elongation 

The phagophore elongation leads to autophagosome formation which 

requires Atg proteins. Beclin-1 with class-III PI3K complex not only plays an 

important role in vesicle nucleation, but may also help in autophagosomal 

elongation. The elongation process is controlled by two protein conjugation 

systems. The Atg-12 is conjugated with Atg-5 and then to Atg-16L1 which 

continues from the initiation site. LC3 (Atg8) is conjugated with phosphatidyl-

ethanolamine (PE) at its C-terminus. This lipid modification is denoted as a 

change from LC3 I to LC3 II (Fujita et al., 2008, Matsunaga et al., 2009). 

Both these conjugation processes are controlled by Atg7, Atg3 and Atg10. 

Atg7 acts like E1 enzyme of ubiquitin system, and Atg3 and Atg10 acts like E2 of 

the ubiquitin system and localize to the developing autophagosome. The Atg12-

Atg5 complex has an important role in LC3 lipidation. The LC3-PE complex is 

believed to help in autophagosome elongation and can be detected within the 

membranes and lumen of autophagosome (Fujita et al., 2008, Matsunaga et al., 

2009).  

Atg4 is another important protein identified to help in LC3 conjugation. 

Atg4B cleaves a peptide at the C-terminal of LC3 and processes LC3 I to LC3 II. 

Similarly another protein, formin-binding protein-1-like (FNBP1L) is thought to 

be an Atg3 interacting protein and helps in autophagosome formation (Huett et 

al., 2009). 

Activating molecule in Beclin1-regulated autophagy (Ambra1) and 

ultraviolet irradiation resistance-associated gene (UVRAG) also associate with 

the PI3K complex and regulate the process of autophagy (Liang et al., 2006, 

Fimia et al., 2007, Liang et al., 2008). UVRAG-Beclin1-VPS34 complex functions 

as a promoter for the autophagosome maturation, but the same complex with 

the addition of another protein rubicon (Rubicon-UVRAG-Beclin1-VPS34) 

suppresses autophagosome maturation (Liang et al., 2008). 

1.5.1.3 Closure and maturation 

Autophagosome closure and fusion with the lysosome is less well 

understood as compared to the early stages. Researchers believe that 
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autophagosomal maturation also requires Atg proteins. Vacuole-membrane 

protein1 (VMP1) is an ER-associated multi-spanning protein. It interacts with 

beclin1 and functions in the later stages of autophagosome formation (Itakura 

and Mizushima, 2010, Tian et al., 2010). After closure, the autophagosome is 

transferred to the peri-nuclear region of the cell for fusion with the lysosome. 

This process is controlled by microtubules and a motor protein called dynein 

(Kimura et al., 2008).  

The Atg12-Atg5 and Atg16 complex dissociates from autophagosome after 

closure but the LC3 remains attached. It is presumed that LC3 also plays an 

important role in closure and fusion of autophagosome (Noda et al., 2009). When 

the autophagosome outer membrane fuses with the lysosome, it forms mature 

autophagosome leading to lysis and degradation of the autophagosome contents 

with the lysosomal enzymes.  
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Figure 1.2 Schematic representation of Autophagy pathway 

Autophagosome formation starts with induction, the isolation membrane expands 

surrounding the cargo. Mature autophagosome is formed after closure and fusion with 

the lysosome. Each step in this pathway is controlled by Atg protein complexes, figure 

adapted from (Kirkegaard et al., 2004).  
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1.5.2 Role of autophagy in Infection 

1.5.2.1  Autophagic degradation of pathogens 

Autophagy was considered a non-selective bulk degradation pathway in 

the past. Now it is quite clear that autophagy can degrade invading pathogens in 

selective manner. Pathogens are taken up and degraded inside a double 

membrane autophagosome, a process called xenophagy. Autophagy can also 

restrict pathogen invasion independent of autophagosome formation (Gomes and 

Dikic, 2014). The exact mechanism of xenophagy and its membrane dynamics is 

not known but pathogen killing and degradation process has been investigated 

up to some extent.  

Cytoplasmic vacuoles containing internalized bacteria are quite similar to 

the autophagosome and use the same autophagy machinery (Atg proteins). The 

diameter of the bacteria containing vacuole is larger than the autophagosome. It 

is formed by Rab7 dependent fusion of small isolation membranes in the 

cytoplasm (Yamaguchi et al., 2009, Hyttinen et al., 2013). The Rab proteins 

belong to Ras-like GTPase superfamily involved in various stages of autophagy. 

Rab7, Rab8B, and Rab24 control maturation of autophagosome (Ao et al., 2014). 

It is believed that ubiquitin-p62 dependent and independent molecular 

mechanisms may have role in targeting microbes to the vacuolar compartments 

in the cytosol. The p62 adaptor protein targets microbes for autophagy i.e. in 

Shigella flexneri infection the phagocytosed pathogen breaks the phagosome to 

get access to the cytosol. The broken vacuole membrane remnants contain 

polyubiquitinated proteins which recruit p62 and LC3 proteins. It is then 

targeted for autophagic degradation. This vacuole membrane rupture by an 

invading bacterium acts as a signalling node for autophagy (Dupont et al., 2009). 

The LC3 protein in combination with another adaptor, the nuclear dot 

protein 52 (NDP52) also plays an important role in clearance of Salmonella and 

restricts its invasion and intracellular replication (Thurston et al., 2009). A lipid 

second messenger, di-acylglycerol (DAG) is also necessary for microbial 

autophagy. It localizes to the phagosome prior to autophagy and mediates the 

functions of protein kinase C in Salmonella induced autophagy (Shahnazari et 



67 
 
al., 2010). A microbial sensor protein, the self-ligand cell-surface receptor 

(SLAM) has a dual function. It acts as a microbial sensor and co-stimulatory 

molecule for autophagy in gram negative bacterial infection. Slamf1 regulates 

the activity of NOX2 enzyme and maturation of the phagosome. It recruits Vps34 

producing PI3P and facilitates phagosome-lysosome fusion (Ma et al., 2012). 

Recent studies demonstrate that autophagy functions as an innate 

defence mechanism in mycobacterial infections. Mycobacterial autophagy is 

induced through the activation of PRRs especially TLRs. T helper cell responses 

play an important role. Th1 cytokines activate autophagy while Th2 cytokines 

inhibit it. Immunity-related GTPases were found to play important role in 

Mycobacterial autophagy (Deretic et al., 2009a). Human genetic studies also 

provide evidence that IRGM, a human immunity related GTPase-1 (Irgm-1) 

orthologue is important for the regulation of autophagy-dependent clearance of 

Mycobacteria (Singh et al., 2006). 

Autophagy not only plays important role in bacterial infection but also 

viral, protozoan and parasitic infections. Selective autophagy of viruses is 

exactly the same as cellular protein aggregates. In Drosophila, a mutation in Atg 

genes increased susceptibility to viral and bacterial infection.  Atg5 gene knock-

out animals were found more susceptible to Sindbis virus infection of central 

nervous system (Orvedahl et al., 2010). Infection of human fibroblasts with 

cytomegalovirus (HCMV) resulted in autophagy induction and increased lipidation 

of LC3 protein. This demonstrates the importance of autophagy as a cellular 

response to early virion and foreign DNA in  human cells (McFarlane et al., 

2011). 

1.5.2.2 Autophagic survival of pathogens 

Pathogens have developed different strategies to protect themselves from 

immune responses and autophagy. Listeria monocytogenes, a gram positive 

pathogen escapes from phagosome by lysing phagosomal membrane with its 

pore-forming toxin listeriolysin. It replicates in the cytoplasm and can spread to 

surrounding tissues (Pareja and Colombo, 2013). A recent study demonstrated 

that autophagy in infection with Salmonella typhimurium facilitated replication 
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of pathogen. A subset of Salmonella associated with autophagy components p62 

and LC3 replicated  very quickly in Hela cells (Yu et al., 2014). 

Autophagy proteins are believed to play important role in viral replication 

but the exact mechanism is not clear. Atg proteins may have some role in 

remodelling ER membrane or fusion of multi-vesicular bodies. One possibility is 

that Atg proteins may provide membrane for viral replication or translation 

machinery. Infection of a hepatocarcinoma cell line (Huh7) with hepatitis C virus 

showed that its replication is dependent on Beclin-1, Atg4B, Atg5 and Atg12 

proteins. Knock down of these proteins decreased replication of hep-C virus 

(Dreux et al., 2009). Similarly intracranial injection of Dengue virus 2 (DV2) to 6 

days old mice induced autophagy which led to increased viral replication. 

Treatment with rapamycin enhanced the disease symptoms and viral replication 

while 3MA inhibited autophagy and down regulated viral replication (Lee et al., 

2013). 

Inhibition of autophagy with 3MA or Atg7 knock down in Huh7 cell line 

decreased replication of hepatitis B (DNA) virus. (Sir et al., 2010). RNA viruses 

like coronavirus, measles virus, HIV and hepatitis C virus  use immunity 

associated GTPase M (IRGM) to interact with Atg proteins and induce formation 

of a double membrane ER-derived vesicle for their replication (Grégoire et al., 

2011). Thus autophagy induction is not always protective to the host, because 

some pathogens might use this pathway for their own benefit. 

In this thesis, we demonstrate autophagy induction in S. pneumoniae 

infection which is a novel finding. The exact molecular mechanism of autophagy 

induction in this extracellular pathogen is not known and requires further 

investigation. 

1.5.3 Role of autophagy in immunity 

Autophagy and Atg proteins play an important role in inflammation, 

immunity and antigen presentation. Autophagy balances the beneficial  and 

harmful effects of immune system and provide protection from autoimmunity 

(Levine et al., 2011).  
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Recent research links autophagy with innate immunity through its effects 

on inflammasome activation. Autophagy down regulates inflammasome 

activation by an unknown mechanism. Some direct interaction between Atg 

proteins and inflammasome components may be present. Autophagy induction in 

macrophages reduces serum level of inflammatory cytokine (IL-1β) which 

demonstrates its association with inflammasome. IL-1β production may be 

controlled by two separate mechanisms i.e. targeting pro-IL-1β for lysosomal 

degradation and regulating NLRP3 inflammasome (Harris et al., 2011). 

Autophagy and innate immunity overlap each other at molecular level. 

There are multiple connections between autophagy and innate immune system 

through different proteins and receptors including IL-1β, high mobility group B1 

protein (HMGB1), TLRs, NLRP4, NLRC3, NLRC4 and RLRs. Autophagy adaptor 

protein, sequestosome 1/p62- like receptors (SLRs) are a category of PRRs. They 

facilitate autophagic elimination of pathogens as well as serving as a platform 

for immune signalling. SLRs play important role in autophagy against 

intracellular microbes including Salmonella, Shigella, Listeria, Mycobacterium 

tuberculosis, HIV-1 and Sindbis virus (Deretic, 2012). 

Autophagy is also linked with phagocytosis, an innate immune process for 

the elimination of invading pathogens and apoptotic cells. A proteomic analysis 

of phagosomal membrane from macrophages demonstrated that phagosomal 

proteins are association with TLR signalling, secretory processes, and autophagy. 

The induction of autophagy changed several proteins in the phagosomal 

membrane fraction and demonstrated a relationship (Shui et al., 2008). 

Autophagy is also associated with clearance of dying apoptotic cells during 

programmed cell death. Autophagy inhibition by knock down of Atg5 gene is 

associated with defective clearance of apoptotic bodies (Qu et al., 2007). 

Autophagy has an important role in adaptive immunity. Antigens are 

loaded onto major histocompatibility complex class II (MHC II) molecules in 

dendritic cells and cross-present to CD8+ T lymphocytes. Autophagy is also 

essential for homeostasis and cell survival of T lymphocytes and modulates 

selection of some clones of CD4+ T cells in thymus. B-lymphocytes also need 

autophagy for their development at specific stages in the bone marrow (Puleston 

and Simon, 2014). 
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 Autophagy plays a role during self-antigen presentation in the thymic 

epithelium to MHC II molecules and is believed to participate in the delivery of 

these molecules. Genetic knock down of Atg5 in thymic epithelial cells  can lead 

to abnormal selection of certain MHC II T-cell specificities (Nedjic et al., 2008). 

These finding suggest that autophagy induction control multiple innate and 

adaptive immune functions. Further work is needed to study the molecular basis 

of relationship with immune system. 

1.5.4 Role of autophagy in inflammatory and autoimmune 
diseases 

Inflammatory and autoimmune diseases are very common worldwide. A 

defect in autophagy pathway may lead to multiple inflammatory and 

autoimmune diseases. Genome-wide association studies have linked autophagy 

genes i.e. ATG16L1 with Crohn’s disease (CD). It is a chronic inflammatory bowel 

disease caused by a defect in the innate immunity against enteric pathogens. 

Invasive strains of E.coli have been consistently isolated from patients with CD. 

They are considered to play an important role in the pathogenesis of CD 

(Henderson and Stevens, 2012). 

Some studies associate multiple autophagy genes including ATG16L1 and 

immunity-related GTPase- M (IRGM) to inflammatory bowel diseases. An innate 

immune receptor Nod2 is believed to induce autophagy. Nod2 interacts with 

ATG16L1 which indicates the importance of this protein in autophagic clearance 

of pathogens (Fritz et al., 2011).  

Another study demonstrates that Nod1 and Nod2 both are necessary for 

autophagic response against invading pathogens. They recruit ATG16L1 to the 

bacterial entry site of plasma membrane. Mutations in Nod2 and ATG16L1 genes 

inhibit autophagosome formation. This indicates that autophagy proteins play an 

important role in the development of CD (Travassos et al., 2010). 

Autophagy pathway also plays an important role in the pathogenesis of 

systemic lupus erythematosus (SLE). This is a multifactorial autoimmune disease 

affecting multiple systems of the body. The exact pathogenesis of SLE is not 

clearly understood. Multiple genome-wide association studies demonstrate that 
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genetic variants of Atg5 gene show strong association with this disease. This 

indicates that autophagy may play important role in the pathogenesis of SLE 

which needs further investigation (Zhou and Zhang, 2012). 

Autophagy also plays an important role in generation of functional and 

self-tolerant CD4+ T cells stock. Autophagy is required for the MHC class-II 

molecules on the thymic epithelial cells in mice to generate self-tolerant T cells. 

Genetic interference with autophagy in thymic epithelial cells leads to abnormal 

selection of some MHC II restricted T cells which results in severe colitis and 

multi-organ inflammatory diseases in mice (Nedjic et al., 2008). 

Autophagy also controls energy balance of the body. Obesity is a 

physiological stressor to ER in the β-cell of pancreas which my lead to 

dysfunction and insulin resistance. Mice with β-cell-specific Atg7 knock-out 

developed severe diabetes which suggested that autophagy-deficient β-cells 

cannot cope with increased metabolic stress. Autophagy also plays an important 

role in hypothalamic control of appetite, energy expenditure, and body weight. 

Any defect in autophagy may contribute to metabolic disorders including 

diabetes (Quan et al., 2013). Thus autophagy is an important pathway that not 

only controls body homeostasis but also infections, inflammatory and 

autoimmune conditions.  
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1.6 Project Aim, Objectives and Implications 

As described in the above sections, S. pneumoniae is a common human 

pathogen and a major cause of multiple life threatening diseases in children and 

elderly. The recent increase in the MDR strains of S. pneumoniae may need some 

newer treatment strategies. Autophagy is a potential target for development of 

a new treatment option to eradicate this pathogen. This project will identify 

autophagy induction in S. pneumoniae infection and its association with other 

immune mechanisms. Our main focus is the clearance of pathogen from the body 

through innate immune system without any harm to the host. 

1.6.1 Aim 

The overall aim of this project is to investigate the induction of autophagy 

in S. pneumoniae infection and the influence of autophagy manipulation on 

associated inflammasome activation and antimicrobial mechanisms. Autophagy 

induction could possibly be used as a newer strategy for tempering the harmful 

inflammatory responses during infection which may eliminate microbes by a non-

inflammatory process. 

1.6.2 Objectives 

The following is a list of specific objectives of this project; 

i. To explore autophagy induction in S. pneumoniae infection using primary 

murine BMDMs, human neutrophils and a mouse model. 

ii. To find the relationship between autophagy and inflammasome activation, 

and assess the influence of autophagy induction on inflammasome 

activation. 

iii. To study the induction of phagocytosis and associated intracellular killing 

of S. pneumoniae by primary murine BMDMs and human neutrophils. 

iv. To assess the role of autophagy in phagocytosis of S. pneumonia by 

neutrophils. 
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v. To investigate the role of S. pneumoniae virulence factors in induction of 

phagocytosis in murine BMDMs and human neutrophils. 

vi. To investigate neutrophil extracellular trap (NET) generation in S. 

pneumoniae infection. 

vii. To investigate the role of autophagy in NET generation following S. 

pneumoniae infection. 

viii. To explore the influence of S. pneumoniae virulence factor pneumolysin in 

NET trapping of microbes. 

ix. To explore the role of different PRRs and adaptor proteins in autophagy 

induction with S. pneumoniae infection. 

1.6.3 Implications 

The treatment of pneumococcal diseases is a challenge in resistant cases. 

Autophagy induction could potentially prove useful in treating this important 

human pathogen through enhancing its clearance by innate immune cells. 

Reinforcing autophagy may help in decreasing the hazards of S. pneumoniae 

induced inflammatory response. 
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2 Materials and Methods  
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2.1 Materials 

2.1.1 Mouse strains used in this study 

2.1.1.1 C57BL / 6 and BALB /c mice 

C57BL/6 and BALB/c mice were purchased from Harlan (Bicester, UK) and 

maintained in the University of Glasgow Biological services facilities under Home 

office UK guidelines. Mice were used aged 6-12 weeks and weight approximately 

20-25 grams. 

2.1.1.2 C3H/ HeNHsd and C3H/ HeJolaHsd-TLR4 Lps-d mice 

These are lipopolysaccharide (LPS) hypo-responsive TLR4-defective and 

control strains of mice purchased from Harlan (Bicester, UK). Mice were 

maintained in the University of Glasgow Biological services facilities under Home 

office, UK guidelines. Mice were used aged 6-12 weeks and weight approximately 

20-25 grams. 

2.1.1.3 Atg7 -/- (Atg7 gene knock out) mice 

Femurs from these mice were kindly gifted by Dr. K. Simon, University of 

Oxford, UK. 

2.1.1.4 TLR4 -/- (Tlr4 gene knock out) mice 

Femurs from these mice were kindly gifted by T. Mitchell, University of 

Glasgow. 

2.1.1.5 Myd88 -/- (Myd88 gene knock out) mice 

Femurs from these mice were kindly gifted by Prof D. Gray, University of 

Edinburgh. 

2.1.1.6 TRIF -/- (Trif gene knock out) mice 

Femurs from these mice were kindly gifted by Professor C. Bryant, 

University of Cambridge. 
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2.1.2 Cell Culture 

2.1.2.1 J774A-1 cell line 

This is a murine macrophage cell line which was stored long- term in 

cryovials (Alpha lab ltd, Cat. LW3532, UK) placed in liquid nitrogen. Thawing of 

the cryovials was performed quickly. Cryovials were transferred in dry ice in to 

37˚C water bath for a minute shaking slowly. When about 80 % thawed, the cell 

suspension was quickly transferred to RPMI 1640 medium (Sigma Aldrich, 

Cat.R8758, USA).  

The medium was supplemented with 2mM L- glutamine (Invitrogen, 

Cat.no.25030, USA), 10 % heat inactivated filtered fetal bovine serum 

(Invitrogen, Cat. no.15561020, USA), 100 µg/ ml Streptomycin, and 100IU/ ml 

Penicillin (Sigma Aldrich, Cat. P0781 USA). Cells were incubated at 37 ˚C, 5 % 

CO2
 in 25 cm2 vented culture flasks (Sigma Aldrich, Cat. 430639, USA). 

The RPMI 1640 medium was changed after 24 hours incubation to remove 

the non-adherent dead cells and traces of dimethyl sulfoxide (DMSO) from the 

storage medium. To maintain culture, cells were split at around 80-90% 

confluence and transferred to larger tissue culture flasks (Sigma Aldrich). About 

6-8 hours before infection, cells were washed three times with 1X PBS 

(Invitrogen, Cat.14190-094, USA). Cells were re-suspended in complete RPMI 

1640 medium without antibiotics (Penicillin & Streptomycin) to remove any 

traces of antibiotics. 

Cell culture was maintained throughout in incubator at 37˚C temperature 

and 5 % CO2. Cells were seeded at a concentration 1×106 cell/ ml/ well of 12 

well plates (Sigma Aldrich, Cat. 3513 USA) in complete RPMI 1640 medium. When 

the cells were fully adherent, they were washed once and then infected 

according to the required multiplicity of infection (MOI) and time course. 

2.1.2.2 L929 cell line 

The murine cell line L929 was used for monocyte-colony stimulating factor 

(M-CSF) production. M-CSF is required for growth of primary macrophages. These 

cells produce M-CSF in cell culture when grown in flasks containing media.  
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L929 cells aliquots were grown from cryostock in 25 cm2 tissue culture 

flasks (Sigma Aldrich, Cat. 430639, USA) in RPMI 1640 medium. The medium was 

supplemented with 2mM L-glutamine, 10 % heat inactivated filtered fetal bovine 

serum, 100 µg/ ml of Streptomycin and 100 IU/ ml Penicillin.  

When the cells were around 80-90 % confluent, the medium was washed 

out and the adherent cells were treated with 0.05 % Trypsin with EDTA (Sigma 

Aldrich, Cat. T3924, USA) just to cover the cells. The culture flask was incubated 

for (5-10) min at 37˚C until most of the adherent cells had detached. Complete 

RPMI 1640 media was added to stop the action of trypsin. The cell suspension 

was spun at 1500rpm for 5-7 minutes and the pellet was re-suspended in fresh 

RPMI 1640 medium without antibiotics. 

When culturing to obtain M-CSF, cells were split into large 150 cm2 tissue 

culture flasks (Sigma Aldrich, Cat. 430825, USA) and incubated at 37˚C, 5 % CO2 

for 7-8 days following full confluency. After incubation, the cell supernatant was 

taken off and sterile filtered with 0.2 µm, 25 mm diameter syringe filter 

(Sartorius, Cat. 16534). It was then stored at -20˚C temperature until used for 

culturing of primary bone marrow derived macrophages (BMDMs). 

2.1.2.3 Storage and long term maintenance of cell lines 

Cell lines from the above groups were cryopreserved for long term 

maintenance using liquid nitrogen. Cryopreservation of cells was performed 

when the cells were at maximum growth rate and confluent. Cells were grown to 

maximum number, treated with 0.05 % Trypsin with EDTA (Sigma Aldrich, Cat. 

T3924, USA) to detach and then washed twice with RPMI 1640 medium. After 

centrifugation, the pellet was re-suspended in complete RPMI medium 

supplemented with 20 % FBS.  

The cells were counted with haemocytometer, and viability confirmed 

with Trypan blue (Sigma Aldrich, Cat.  T8154, USA) (Legrand et al., 1992). The 

cell suspension was supplemented with 5-10 % of dimethyl sulfoxide (DMSO). The 

concentration of cells in storage medium was adjusted to 1X106 cells/ ml/ vial 

and stored at -20°C for one hour. The vials were then transferred to -80°C for 

overnight and finally stored and maintained in liquid nitrogen for future use. 
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2.1.2.4 Primary Murine bone marrow derived macrophages 

Different strains of mice were used for the isolation of primary bone 

marrow derived macrophages (BMDMs). All animals used in this study were kept 

and maintained according to the Glasgow University Institutional and National 

(UK Home Office and European Union) guidelines. 

BMDMs were isolated using a modified method described by (Lutz et al., 

1999, Manzanero, 2012) for generation of bone marrow dendritic cells and 

macrophages. Briefly, mice were sacrificed by cervical dislocation or CO2 

inhalation. Femurs and tibias were dissected out aseptically. Muscles, cartilages 

and both ends of the bones were dissected.  

The bone marrow was flushed with complete RPMI 1640 medium using 5 

ml syringe (Becton Dickinson, Cat. 302187, Spain) and 25G 1” needle (BD 

Microlane, 3, Cat. 300600, Spain). Bone marrow was then suspended in RPMI 

medium and mixed by gentle pipetting to obtain mononuclear phagocytic 

precursor cells. To remove tissues and debris, the cell suspension was passed 

through a sterile nitex mesh (Cadisch Sons, London, UK). 

Cells were then cultured in complete RPMI 1640 medium. It was 

supplemented with 10 % heat inactivated filtered FBS, Streptomycin (100 µg/ 

ml), Penicillin (100 IU/ ml), L-glutamine (2mM), M-CSF 10ng/ ml (Peprotech, 

Cat. 315-02, UK) in 9 cm petri dishes (Sterilin, Cat. 24998, UK). Cells 

concentration was maintained at 3×106 cells/ petri dish/ 10ml of medium. In 

some experiments, we used sterile filtered supernatant from L929 cell line 

instead of commercial M-CSF at 20 % of the RPMI 1640 medium used for cell 

growth.  

Petri- dishes with cultured cells were incubated at 37˚C, 5 % CO2 and 

grown for 6-9 days before they were ready to use. Fresh complete RPMI 1640 

medium was added on the fourth day of incubation to feed the growing cells. 

Under these conditions, the resultant cell population was > 90 % macrophages 

when confirmed by staining with the macrophage marker F4/80 (Fig. 2.1; 

experiment performed by Dr Majid Jabir).  
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Figure 2.1 Primary murine BMDMs surface marker F4/80 staining 

Murine BMDMs were analysed for the F4/80 marker using purified anti-mouse F4/80 

antibody (Biolegend, Cat. 122602 USA). This is a marker for mature mouse macrophages 

(Leenen et al., 1994). The anti-F4/80 staining was compared with its isotype antibody 

by flowcytometry (FACS). Cells were gated based on the forward and side scatters. 

These results show that > 90 % of cells were F4/80 positive. Experiment performed by 

Dr Majid Jabir.  
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2.1.2.5 Human polymorphonuclear neutrophils (PMN) isolation 

Human neutrophils were isolated from fresh venous blood obtained from 

healthy volunteers using a modified method adapted from (Nauseef, 2014). All 

procedures were performed under Glasgow University Institutional ethical 

approval. 

Briefly neutrophil isolation was performed by dextran sedimentation 

method. This method separated leukocytes from erythrocytes. Hypotonic lysis 

was performed for the residual erythrocytes. Finally Ficoll-Paque sedimentation 

was performed for separation of neutrophils from the rest of leukocytes. Blood 

and neutrophils were maintained on ice most of the time to prevent neutrophil 

activation. The purity of neutrophils using this method was > 90 % with minimum 

activation. 

Blood was collected aseptically and mixed with (ACD) acid- citrate 

dextrose (Sigma Aldrich) at (9:1) ratio in 50 ml centrifuge tubes (Sigma Aldrich, 

Cat. 210261, USA). The tubes were gently inverted several times to mix and 

prevent clotting of the blood. 8 ml of the blood was transferred to 15 ml 

centrifuge tubes (Sigma Aldrich, Cat. 188271, USA). Then 4 ml (50 % of the blood 

volume) from pre-prepared 6 % sterile filtered Dextran (Sigma Aldrich, Cat. 

31392-10MG, USA) in 0.9 % NaCl (Merck, Cat. 1.06404.500) solution was added 

into 8 ml of ACD mixed blood. The tube was inverted gently 10-15 times to 

ensure adequate mixing.  The tubes were then left to stand for 45- 60 minutes at 

room temperature. 

Next, the yellowish supernatant was collected in a 15 ml centrifuge tube 

and spun at 1150 rpm for 12 min at 4˚C without brake. The supernatant was 

discarded in this step and the pellet was re-suspended in 2 ml of ice-cold PBS. 

The residual RBCs were lysed by a rapid hypotonic shock by adding 6 ml of 

ddH2O for 20-30 seconds. The tonicity of cell suspension was quickly restored by 

adding 0.6 M Potassium Chloride (KCl) solution (Sigma Aldrich, Cat. P9333-500G). 

The cells suspension was centrifuged again at 1300 rpm for 7 min at 4˚C with full 

brake.  
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Finally, the cell pellet was re-suspended in 3 ml of PBS and layered slowly 

drop-by-drop over 3 ml of Ficoll- Paque plus (GE Healthcare, Cat. 17-1440-02, 

UK) in 15ml centrifuge tubes. The tube was spun at 1500 rpm for 30 min at 4˚C 

using no brake. Next, the pellet containing neutrophils was re-suspended in 

complete RPMI 1640 medium containing 10 % heat inactivated human serum. Cell 

concentration was determined using a haemocytometer. The neutrophil purity 

was confirmed by rapid Romanowski staining before using for experiment. 

2.1.2.6 Neutrophil cytospin and Rapid Romanowski staining 

Cytospin and Romanowski staining of human neutrophils were performed 

after cell isolation. Approximately 2x105 cells were washed with PBS and re-

suspended in 200μl of cold 1 % BSA- PBS buffer. Clean glass slides and filters 

were placed into appropriate slots in the cytospin centrifuge. 100μl of cell 

suspension was added to the cytospin wells and spun at 500 rpm for 4-5 minutes. 

Cells were transferred to glass slides (VWR, Cat. 631-0113, UK) by cytospin 

(Shandon Cytospin II, centrifuge, USA). Filters were removed carefully without 

contacting the smear on the slides. The slides were then air dried and stained. 

Neutrophils were stained with rapid Romanowsky stain (TCS Bioscience, 

Cat. HS705, UK), according to the manufacturer’s instructions. Briefly, slides 

were flooded with solution “A” (Cat. HS705A; methanol fixation), for 30 

seconds. Washed gently with tap water and then flooded with solution “B” (Cat. 

HS705B; acidic eosin dye) for 30 seconds. The slides were washed again and 

finally flooded with solution “C” (Cat. HS705C; methylene blue polychrome) for 

30 seconds. The excess dye was removed by washing once again, edges of the 

slides were mopped off with tissue paper and air dried.  

The slides were examined under a light microscope. The percentage of 

neutrophils in all experiments was maintained throughout at > 90 % of all cells 

(Fig. 2.2).  



82 
 

 

 

Figure 2.2 Rapid Romanowski staining of human neutrophils 

Human neutrophils were isolated and cytospin performed. Cells were stained with rapid 

Romanowski stain. Cell purity was confirmed by counting cells in different views during 

light microscopy. Neutrophils purity was maintained at > 90 % in all experiments.  
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2.1.2.7 Optimisation of siRNA dose with siGLO green transfection indicator 
in murine BMDMs 

Transfection of siRNA into BMDMs was optimised using siGLO Green 

transfection indicator (Thermoscientific, Dharmacon RNAi Technologies, Cat. D-

001630-01-05, UK). Hi-Perfect transfection reagent (Qiagen, Cat. 301704, UK), 

was used according to the manufacturer’s instructions. 

Briefly, cells were plated at a density of 0.5 x 106 cells/ well of a 12-well 

plate in 500 μl complete RPMI 1640 culture medium. Transfection indicator 

siGLO Green was diluted in 90µl RPMI 1640 medium using different 

concentrations. Then 10µl of Hi-perfect transfection reagent was added to the 

mixture. It was gently mixed and then incubated at room temperature for 20 

minutes to form complexes of transfection indicator and reagent. The siGLO 

Green and Hi-Perfect transfection reagent mixture was then added to the 

appropriate wells of a 24-well culture plate containing murine BMDMs. The plate 

was incubated at 37°C and 5 % CO2 for 24-72 hours. 

siGLO Green is a fluorescent oligonucleotide that localises to the nucleus 

of the mammalian cells. Fluorescent transfection signal was visualized and 

quantified using flowcytometry (FACS). The best results obtained showed 

transfection efficiency greater than 94 % (Fig. 2.3).  
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Figure 2.3 Optimisation of siRNA transfection with siGLO Green transfection 

indicator in murine BMDMs 

Transfection of siGLO Green was performed using different conditions and time courses 

as shown. siGLO Green (20nM & 40nM) along with 10μl of Hi- perfect transfection 

reagent were incubated for 24, 48 and 72 hours. Transfection efficiency was highest at 

48 hours incubation with 20nM siGLO Green transfection indicator and 10µl Hi- Perfect 

transfection reagent.  
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2.1.2.8 Optimisation of siRNA dose with siGLO green transfection indicator 
in human neutrophils 

Neutrophils were washed and re-suspended in Gene pulser electroporation 

buffer (Bio-Rad Laboratories, Cat. 165-2676, CA) at approximately 5 x106 cells/ 

ml. Different concentrations (10 nM- 100 nM) of siGLO Green transfection 

indicator (Thermoscientific, Cat. D-001630-01-05, UK) were added to each 350 µl 

of cell suspension in small eppendorf tubes and gently vortexed. 

The cell suspension along with siGLO Green transfection indicator was 

then transferred to 0.4 cm electrode gap sterile Gene- Pulser electroporation 

cuvettes (Bio-Rad, Cat. 165-2088, CA), keeping on ice. Electroporation of human 

neutrophils was performed using X-cell Gene- Pulser machine (Bio- Rad, 

Canada). The electroporation cuvettes were placed one-by-one in the shock pad 

and pulsed at the following settings; 

1. Capacitance 1000 µF, Resistance 1000 Ohm and Voltage 250 v. 

2. Capacitance 500 µF, Resistance 1000 Ohm and Voltage 250 v. 

Cells were quickly washed with and re-suspended in complete RPMI 1640 

medium after electroporation. The medium was supplemented with 10 % heat-

inactivated human serum and GM-CSF (10ng/ ml). The cells were incubated at 

37˚C, 5 % CO2 overnight.  

The siGLO Green fluorescent signal was then quantified using flow 

cytometry (Fig. 2.4). The best results were obtained with 100 nm transfection 

indicator with the 1000 µF capacitance; these conditions were used for all 

transfections of neutrophils by electroporation.  
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Figure 2.4 Optimisation of siRNA transfection with siGLO Green transfection 

indicator in human neutrophils 

Human neutrophil electroporation was performed under the indicated conditions. siGLO 

Green (10 nM –100 nM) was added in electroporation buffer and X-cell gene pulser 

machine was used at two different settings i.e. Capacitance (500 µF or 1000 µF), 

Resistance 1000 (Ohm) and Voltage 250 (v). Cells were pulsed and then incubated 

overnight at 37˚C and 5 % CO2. Transfection was observed by flow cytometry. The best 

results obtained with 100 nM siGLO Green, 1000 µF capacitance, 1000 Ohm resistance 

and 250 volts were followed throughout neutrophil transfection.  
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2.1.2.9 7- AAD viability staining of neutrophils 

Neutrophil viability was determined by 7-Aminoactinomycin D (7-AAD) 

after electroporation and overnight incubation. It is a fluorescent compound 

which can be detected by flow- cytometry (FACS) in fluorescence channel 3. The 

stain strongly binds to DNA of dead cells. It cannot penetrate membranes of the 

living cells, which makes it a useful live/dead cell marker. Living cells are visible 

as 7-AAD low cells and the dead cell takes high amount of stain.  

Cells were washed and re-suspended in FACS buffer. 5 μl of 7-AAD stain 

solution (BD Pharmingen, Cat. 559925, UK) was added to the cell suspension for 

approximately 10-15 minutes. The cells were analysed on the FACSCalibur. 

Unstained cell suspension was used as negative control.  
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Figure 2.5 7AAD staining of human neutrophils after electroporation 

7-AAD staining was performed for neutrophils after electroporation and Atg5 gene 

transfection to confirm their viability. Cells were left un-transfected (stained basal), 

unstained control or stained (control siRNA and Atg5 siRNA) and then visualized with 

flow cytometer. 7-AAD stained dead cells were determined and cell viability was 

maintained at > 80 % after electroporation. It was comparable in all experiments in both 

control and Atg5 siRNA.  



89 
 

2.1.3 Bacterial cultures 

2.1.3.1 Streptococcus pneumoniae 

S. pneumoniae strains were kindly gifted by Dr Alexandra Macpherson, 

Institute of Infection, Immunity and Inflammation University of Glasgow. 

Bacteria were grown on sterile blood agar plates and used for infection. 

The blood agar plates were freshly prepared using petri-dishes (Thermo-

Scientific) and blood agar base (Sigma Aldrich, Cat. 70133-500G, USA). Blood 

agar base was thoroughly mixed in dH2O, heated and sterilized. It was then 

supplemented with 5-10 % de-fibrinated horse blood (H&O Laboratories Ltd, Cat. 

DHB100, Scotland). Approximately 20-25 ml of the agar- blood mixture was 

transferred into each petri-dish and air dried in the culture hood. 

Bacteria were streaked on the blood agar plates from frozen stock and 

grown overnight. Purified isolated colonies were transferred to sterile brain 

heart infusion (BHI) broth (Oxoid, Cat. CM1135). Bacteria were incubated in the 

water bath at 37˚C for about 6 - 8 hours until grown to the mid-log phase (OD600, 

0.4-0.6). 

After confirming the OD, bacteria were centrifuged at 3500g and 4˚C for 

20 minutes, and the pellet washed twice with sterile PBS. The bacteria were re-

suspended in ice-cold complete RPMI 1640 medium without antibiotics (Penicillin 

& Streptomycin). The bacteria were then used for infecting cells according to 

the required multiplicity of infection (MOI). 

2.1.3.2 D39 WT 

D39 WT is encapsulated virulent strain of S. pneumoniae which is used in 

laboratory experiments. The genome of this stain has been sequenced (Lanie et 

al., 2007). We used this strain for most of our in-vitro and in-vivo experiments in 

comparison to its pneumolysin deficient counterpart. 

2.1.3.3 D39 ∆Ply 

D39 ∆Ply is deficient in pneumolysin toxin. Its virulence is less as 

compared to D39 WT strain. 
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2.1.3.4 Confirmation of S. pneumoniae 

S. pneumoniae was further confirmed by colony morphology, alpha 

haemolysis on the blood agar, Gram staining and Optochin sensitivity test. To 

confirm D39 ∆Ply strain from D39 WT, we performed haemolysis activity assay to 

observe the action of associated pneumolysin. 

2.1.3.5 Gram staining 

Before transferring bacteria from blood agar into the BHI, a few single 

colonies were transferred to a glass slide (Tissue-Tek, Ca. 9545) with a sterile 

loop along with a drop of dH2O. Bacteria were mixed thoroughly with a wooden 

stick to make a thin circular smear about 1.5 cm and left to air-dry. The slide 

was passed through a Bunsen burner flame a few times to accelerate drying and 

enhance adhesion of the bacteria to the slide.  

The following steps were followed for gram staining; 

First, the slide was flooded with Gram crystal violet stain (Becton 

Dickinson & Co. BD, Cat. 212525, USA) for 60 seconds. The slide was gently 

rinsed with a slow stream of tap water using a plastic water bottle to wash away 

the excess stain. The slide was flooded with stabilized Gram iodine (BD, Cat. 

212542, USA) for 60 seconds and rinsed with tap water.  

Next, the slide was flooded with acetone decolouriser (BD, Cat. 212527) 

for 4-5 seconds and quickly washed as above. Counterstain was applied using a 

basic dye, safranin solution (BD, Cat. 212531, USA) for 60 seconds. The excess 

solution was washed off with tap-water and the slide was air dried.  

Finally, the slide was examined under light microscope (Leitz, Germany) 

using oil immersion lens (OEL) with (10x100) magnification. Gram positive purple 

stained S. pneumoniae colonies were confirmed. 

2.1.3.6 Optochin sensitivity test 

Optochin sensitivity is one of the important characteristics of S. 

pneumoniae. It differentiates S. pneumoniae from other α-haemolytic 
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streptococci (Fenoll et al., 1994). Ethyl hydrocupreine hydrochloride (Optochin) 

is a chemical substance toxic to S. pneumoniae while other α-haemolytic 

streptococci are rarely sensitive to it. 

Optochin impregnated discs (Sigma Aldrich, Cat. 74042-50DISKS-F, USA) 

were placed in blood agar plates streaked with bacteria and incubated 

overnight. The next day, bacterial growth was observed. There was a clear zone 

of growth inhibition around the optochin disc due to diffusing chemical to blood 

agar. This confirmed S. pneumoniae as α-haemolytic bacterium sensitive to 

optochin. 

2.1.3.7 Haemolysis activity assay 

S. pneumoniae (D39 WT & D39 ∆Ply) were grown on the blood agar 

overnight. Single colonies were transferred into 10 ml of sterile filtered BHI and 

grown for 6- 8 hours up to mid-log growth phase (OD600 0.4- 0.6). The bacterial 

suspension was spun down at 3500g for 15- 20 min, washed three times and re-

suspended in sterile ice-cold PBS. Bacteria were sonicated using (Soniprep- 150, 

Henderson Biomedical Ltd, UK) for 30 seconds 4- 5 times, keeping on ice. They 

were again spun down at 3500g for 15- 20 minutes. The supernatants were 

collected from both strains and stored on ice. 

Next, erythrocyte solution was prepared by diluting 1.8 % v/v of horse 

blood in PBS. It was spun down at 500g for 7 min and the supernatant was 

discarded. Cells pellet was re-suspended in PBS after washing 3-4 times carefully 

to remove any lysed cells and residual haemoglobin. 

The bacterial culture supernatant was serially diluted into a 96- well plate 

in duplicate using PBS.10 mM of (DTT) Di- thiothreitol (Melford laboratories Ltd, 

Cat. mb1015, UK) and 0.1 % FBS were added to a total volume of 100µl/ well. 

The first well was taken as a 2x dilution of supernatant and assay diluent and 

prepared down to 1: 406 dilutions. 100 µl of erythrocyte suspension was added 

to each supernatant dilution, mixed well and incubated at 37˚C for 60 minutes. 
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Control was prepared by adding dH2O into erythrocyte suspension. It lyses 

red blood cells (100 %) by hypotonic shock. Control was added into the 

appropriate well as 100 %, 50 % and 0 % concentration. 

The plate was then centrifuged at 3000g for 5 min to remove any 

erythrocytes. The supernatant was transferred to another plate and OD was 

measured at 591 nm. The highest OD in D39 WT was almost equal to the top 

standard and the highest OD in D39 ∆Ply was less than 50 % of the top standard 

at 1.8 % of erythrocyte solution.  
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2.2 Methods 

2.2.1 Cell viability assay 

Macrophages (cell line and primary murine BMDMs) were grown for 7-8 

days. They were detached from petri-dish using cell scrapers (Greiner bio-one, 

Cat. 541070, Germany) or treated with 0.05 % Trypsin with EDTA (Sigma Aldrich, 

Cat. T3924, USA). Cells were collected, re-suspended in complete RPMI 1640 

medium and mixed by gentle pipetting.  

Cell viability was determined using Trypan blue (Legrand et al., 1992). 

This dye is taken up by the dead cells. Approximately 50 µl of the cell suspension 

was mixed with equal volume of 0.04 % (w/v) Trypan blue (Sigma Aldrich, 

Cat.T8154, USA) in PBS.  

The cells and dye mixture was incubated at 37°C for 5- 7 minutes. The 

number of viable cells was counted per 100 cells using a haemocytometer 

(Superior, Germany). Cell viability in all assays was maintained at > 85 % of all 

cells and throughout different cell types. The viabilities of the cells used in 

experimental work remained comparable throughout all time points. 

2.2.2 S. pneumoniae CFU counting and bacterial dose 
optimisation (MOI) 

S. pneumoniae D39 WT and D39 ΔPly were grown in BHI for 6-8 hours at 

37˚C. 10 ml bacterial suspension was taken at mid-log phase (OD600, 0.4- 0.6) in 

15 ml centrifuge tube for each strain. Bacteria were spun at 3500g for 15- 20 

min at 4˚C. The pellet was washed 2- 3 times with ice-cold PBS and re- 

suspended in 10 ml PBS. Serial dilutions of bacterial suspensions were made 

using a sterile 96- well plate. 10 µl of each bacterial suspension was plated in 

triplicate onto blood agar from each dilution. Plates were incubated at 37˚C 

overnight. 

Colony counting was performed the next day. The adjusted numbers of 

bacterial counts were approximately 100 million/ ml (1X108) in both strains. 

Colony counting was performed at three different occasions and the mean was 

used for infecting the cells. 
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To infect the cells with appropriate multiplicity of infection (MOI) and 

time course, we prepared a ready to use bacterial suspension. 10 ml of original 

bacterial suspension was spun at 3500g, 4˚C for 15- 20 minutes. The pellet was 

washed three times and then re-suspended in 1 ml of complete RPMI 1640 

without antibiotics. 1- 20 μl of this bacterial suspension was used for infection 

which provided an MOI of 1- 20. The best results were obtained at an MOI of 10 

with less cytotoxicity. 

Similarly we used different time courses (1 hour – 8 hours). The best 

results were obtained at 4 hours incubation with less cytotoxicity. 

2.2.3 Immunofluorescence, slide preparation and fluorescent 
microscopy 

Cells (BMDMs) were grown and then seeded in to Lab-TekTM chamber slides 

(Thermoscientific, Cat.177399, USA) in RPMI-1640 complete medium without 

antibiotics. Cell were incubated at 37˚C, 5 % CO2 for an hour and then infected 

as described. After the required infection and treatments, cells were washed 3 

times with sterile PBS and fixed. 

Cells were fixed in 4 % paraformaldehyde (VWR, Cat. 30525-89-4, UK) in 

PBS for 30- 45 minutes at room temperature. Fixed cells were washed 3 times 

with PBS and then permeabilized in 0.2 % Triton X-100 (Sigma Aldrich, Cat. 9002-

93-1, USA) in PBS for approximately 20 minutes at room temperature. Cells were 

washed three times with PBS. Cells were then blocked with 10 % normal goat 

serum (NGS) in PBS (Sigma Aldrich, Cat. G9023, USA) for approximately 60 

minutes. 

Cells were then incubated with primary antibody i.e. 1.25 µg/ ml rabbit 

polyclonal anti LC3 antibody (Abgent, Cat. AP1802a, USA) in 10 % NGS in PBS for 

60 minutes at room temperature. In some conditions primary antibody was 

incubated overnight at 4˚C. Cells were washed three times with PBS for 5 

minutes and incubated with secondary antibody i.e. 1µg/ ml Alexa Fluor-488 

conjugated goat anti- rabbit IgG (Invitrogen, Cat. A11034, USA). Cells were 

washed again three times with PBS. The chambers of the slides were removed, 
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and cover slips mounted using Vectashield mounting medium with DAPI (Vector 

Laboratories, Cat. H1500, USA). 

Slides were viewed using a Zeiss Axiovert S100 microscope (Germany) 

using Open Lab software (PerkinElmer). In some of experiments, slides were 

viewed with laser confocal microscope (Carl Zeiss, Germany) using Meta 510 

software. Pictures were taken from different sites of the slides randomly and 

LC3 puncta were quantified using Image J (NIH, Maryland, USA) software. All 

results show values of mean number of puncta per cell in pictures taken. At least 

60 cells were analysed for each result. 

2.2.4 Neutrophil activation, NET staining and immunoblotting 

Purified human neutrophils were suspended in RPMI 1640 medium. A 24-

well tissue culture plate (Corning, Cat. 3524) was prepared by putting sterile 13 

mm (no. 1, 5 1) round glass cover slips (VWR, Cat. 631-0150, USA) into the wells 

of the plate. Approximately 2x105 cells were seeded into each well in 500μl of 

complete RPMI 1640 medium (Sigma Aldrich, Cat. R8758 USA) containing 2 % heat 

inactivated human serum. 

Cells were infected with bacterial strains according to the required 

multiplicity of infection (10 MOI). Phorbol-myristate acetate (PMA; Invivogen, 

Cat. 16561-29-8) was used at 1µg/ ml as positive control to stimulate cell for 

NETs generation. The plate was incubated at 37°C and 5 % CO2 for 4 hours. 

Next, cells were fixed in approximately 300 µl of 4 % paraformaldehyde 

(PFA; Alfa Aesas, Cat. 43368, USA) in PBS for about 60- 90 minutes. Cover slips 

were carefully removed from the plate wells using curved needle and fine 

forceps. It was inverted on a drop of PBS on parafilm sheet covering a test tube 

stand. The coverslips were then transferred to further drops of PBS after 5 

minutes to wash three times. 

The coverslips were incubated on a drop of 0.5 % Triton- X 100 (Sigma-

Aldrich, Cat. 9002-93-1, USA) for 15 minutes. Washed as above and then blocked 

in 10 % NGS (Sigma Aldrich, Cat. G9023, USA) for 30 min at room temperature. 

The blocked cells were then incubated with primary antibodies: anti-histone H2B 
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(Abcam, Cat. Ab1790 UK) and anti-neutrophil Elastase (Abcam, Cat. Ab21595 UK) 

for 60- 90 minutes at room temperature in a humidified chamber. The antibodies 

were diluted in blocking buffer (1: 50). Coverslips were washed as above and 

then incubated with secondary antibody, Alexa Flour 488 goat anti rabbit IgG 

(H+L) antibody (Invitrogen, Cat. A11034, USA) diluted (1: 500) in blocking buffer. 

The antibody was incubated for 60-90 minutes at room temperature using a 

humidified chamber in the dark. 

Finally, cover slips were washed and transferred onto glass slides on a 

drop of Vecta-shield mounting medium with DAPI (Vector Laboratories, Cat. 

H1500, USA). Cover slips were sealed to the glass slides with nail polish. Slides 

were air dried and examined for NETs under fluorescent or confocal microscope 

using oil immersion lens. 

2.2.5 Bacterial staining in the NETs and confocal microscopy 

S. pneumoniae strains were stained before using for infection. Bacteria 

were washed with PBS to remove any serum and stained with 40µM cell 

proliferation dye eFluor 450 (eBioscience, Cat. 65-0842, USA) for 15 minutes 

according to the manufacturer’s instructions. Bacteria were washed twice and 

re-suspended in RPMI 1640 medium containing serum to stop the staining 

reaction. 

Neutrophils were stimulated with the required multiplicity of stained 

bacteria to induce NETs generation. Cover slips were fixed with 4 % PFA, blocked 

with 10 % NGS and incubated with primary and secondary antibodies (Table 2.1) 

as before. Finally cells were washed, incubated with SYTOX orange nucleic acid 

stain (Invitrogen, Cat. S11368, USA) diluted in PBS (1:10,000) for 15 minutes 

keeping in dark. Cover slips were mounted with Fluoromount-G (eBioscience, 

Cat. 00-4958-02) and sealed with nail polish.  

The slides were viewed with laser confocal microscope (Carl Zeiss, 

Germany) using Meta 510 software. DAPI, FITC and Cy3 channels were used to 

view the slides. Pictures were analysed with LSM software. 
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2.2.6 Western blot analysis 

Western blot analysis was performed for different proteins according to 

the manufacturer’s instructions. Briefly, cells were infected and treated 

according to the requirements of experiment. Cells were washed with ice- cold 

PBS and then lysed with ice-cold RIPA lysis buffer (Thermo Scientific, Cat. 

89900, USA) for 30 min keeping on ice. Protease inhibitor cocktail EDTA-free 

(Roche, Cat. 04693159001, Germany) was added to the lysis buffer. Cell lysates 

were collected in ice-cold eppendorf tubes and spun down. Supernatants were 

collected for western blot analysis. 

2.2.6.1 Determination of protein concentration in cell lysates 

Protein concentration of samples was determined using Micro BCA Protein 

Assay kit (Pierce proteins, Thermoscientifc, Cat. 23235, USA) according to the 

manufacturer’s instructions. Proteins were adjusted to equal concentrations 

across different samples. The volume required for each sample was then 

calculated using Microsoft Excel. 

2.2.6.2 Sample preparation and SDS Gel Electrophoresis 

Cell lysates were mixed with NuPAGE lithium dodecyl sulphate (LDS) 

sample buffer (Invitrogen, Cat. NP0007, USA). NuPAGE sample reducing agent 

(Invitrogen, Cat. NP0004, USA) was added to LDS (1: 10). Samples were heated 

with LDS at 70˚C for 15 minutes.  

Approximately 25µg each sample was loaded on to precast Nu-PAGE Bis-

Tris gels (Invitrogen, Cat. NP0322, NP0341, USA). Gels were placed in X Cell 

SureLock electrophoresis cell (Invitrogen, USA) using 1x NuPAGE MES SDS running 

buffer (Invitrogen, Cat. NP0002). Electrophoresis was performed at a voltage of 

100 volts and 125 mA current for 120-150 minutes until the blue dye reached the 

base of the gel. 

2.2.6.3 Protein transfer to membrane using transfer tank 

Proteins were transferred from Gel to nitrocellulose or polyvinylidene 

difluoride (PVDF) membrane after separation by electrophoresis. Hybond- P (GE 
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Healthcare, Cat. RPN303F, UK) membrane was placed with Gel in the transfer 

cassette according to the manufacturer’s instructions. 

Protein transfer was performed using a transfer Tank (Hoefer 

Incorporation, Cat. TE22, USA) and 1X NuPAGE transfer buffer (Invitrogen, Cat. 

NP0006-1, USA). Transfer buffer was supplemented with 20 % methanol (Fisher 

chemicals, Cat. M/4000/PC17, UK). Protein transfer was performed at a voltage 

of 30v and 125 mA current for 2 hours. 

2.2.6.4 iBLOT transfer system 

In some experiments, protein transfer was performed using a rapid dry 

blotting system, the iBlot gel transfer device (Invitrogen, Cat. IB1001UK). The 

device was pre-set for 6-7 minutes transfer time. The gel was quickly transferred 

into the iBlot gel transfer stack containing a nitrocellulose membrane 

(Invitrogen, Cat. IB301001). Protein transfer was performed according to the 

manufacturer’s instruction. This is a quick protein transfer method which 

require only 6-7 minutes. 

2.2.6.5 Visualizing protein of interest and blot stripping 

The presence of protein bands on the blot were observed by Ponceau’s 

solution (Sigma Aldrich, Cat. P7170, USA) and then washed. The blot was 

blocked with 5 % skimmed milk (Marvel, Cat. 92962, Ireland) in PBS for 60 

minutes. It was incubated with primary antibody (Table 2.1) as indicated for 60-

90 minutes at room temperature or overnight at 4°C according to the 

manufacturer’s instructions.  

The unbound primary antibody was washed three times with PBS-T 

(Phosphate buffer saline + 0.5 % Tween 20). The blot was then incubated with 

secondary antibody (Table 2.1) as indicated for 60 - 90 minutes at room 

temperature. The unbound secondary antibody was washed as above.  

The blot was subjected to immunoblotting using Enhanced 

Chemiluminescence (ECL) kit (GE Healthcare, Cat. RPN2209, UK) according to 

the manufacturer’s instructions. Proteins were visualized by exposure to 

photographic film. 
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To look for other proteins of interest, the blot was subjected to re-

probing using Restore plus Western Blot Stripping Buffer (Thermoscientific, Cat. 

46430, USA) according to the manufacturer instructions. Briefly, the blot was 

washed with PBS- T and incubated in stripping buffer for 15 minutes. It was 

washed again with PBS-T and blocked again with 5 % skimmed milk for 60 

minutes at room temperature. The blot was incubated with primary and 

secondary antibodies as above. Finally it was subjected to immunoblotting with 

Enhanced Chemiluminescence (ECL) kit and then visualized as above. 

2.2.7 Enzyme linked Immunosorbent Assay (ELISA) 

The concentration of inflammatory cytokines i.e. IL-1β in cell culture 

supernatant was determined by ELISA using a kit (R & D, Cat. DY401, USA) 

according to the manufacturer’s standard protocol. 

ELISA flat bottom 96- well plates (Coring Costar, Cat. 9018, USA) were 

coated with 50 µl capture antibody at concentration 4 µg/ ml diluted in PBS. The 

plate was sealed and incubated overnight at room temperature. The plate was 

washed five times with wash buffer (PBS + 0.05 % Tween 20). It was blocked with 

1 % (BSA) bovine serum albumen (Sigma Aldrich, Cat. A7030-50, USA) in PBS for 

60-90 minutes at room temperature. The plate was washed as above and then 

50µl of standards and samples applied to the appropriate wells. Standards were 

added with a top standard of 1000 pg/ml and serially diluted (1:2) down to 10 

times of the original concentration. The plate was sealed and incubated for 2 

hours at room temperature. 

The plate was washed again and incubated with detection antibody at a 

concentration of 2.5µg/ ml. It was diluted in reagent diluent (0.1 % BSA, 0.05 % 

Tween 20 in Tris- buffered saline, pH 7.4) and incubated for 2 hours at room 

temperature. In the next step after washing, the plate was incubated with 

Streptavidin-HRP. It was used at 1: 200 dilution in reagent diluent for 20 minutes 

at room temperature keeping in the dark. 

Finally after further washing, TMB Micro-well Peroxidase substrate 

solution (KPL, Cat. 52-00-00,USA) was added for approximately 20 minutes at 

room temperature in the dark. The reaction was then stopped by adding 25µl of 
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TMB stop solution (KPL, Cat. 52-58-04, USA). The plate was read at 570 nm using 

a Tecan sunrise plate reader and analysed by Magellan and MS Excel software. 

TNF-α concentration in the cell culture supernatants was measured by 

ELISA kit (eBiosciences, Cat. 88-7324-22, USA) according the manufacturers 

standard protocol, essentially as for IL-1β. 

To determine the concentrations of IL1β and TNFα in the cell 

supernatants of human neutrophils, ELISA kits (eBiosciences, USA) were used 

according to the manufacturer’s instructions.  

2.2.8 Flow cytometry (FACS) 

Flow cytometry was performed to determine viability and optimization of 

the siRNA transfection. All procedures were performed according to the 

manufacturer’s standard protocols. Briefly cells were treated, washed and re-

suspended in FACS buffer (PBS+ 1 % Fetal bovine serum). Analysis of the cells 

was performed using a FACSCalibur flow cytometer (BD) or CyAn ADP (Beckman 

Coulter). Flow cytometry data was analysed with Flowjo software (Tree Star 

Incorporation). 

2.2.9 siRNA transfection in primary murine BMDMs 

siRNA transfection of murine BMDMs was performed using Hi-Perfect 

transfection reagent according to the manufacturer’s instructions. Briefly, 

control siRNA and siRNAs to different genes were obtained from 

Thermoscientific, Dharmacon RNAi Technologies, UK. On-target plus SMART pool 

of different siRNAs were introduced in to the cells with Hi-Perfect transfection 

reagent (Qiagen, Cat. 301704, UK). The siRNA dose was adjusted through 

optimization with siGLO Green as discussed earlier (Fig. 2.3). 

Cells were plated at a density of 0.5 x 106 cells/ well of a 12-well plate in 

500 μl of complete RPMI 1640 medium. siRNA was diluted in RPMI medium and 

mixed with Hi-Perfect transfection reagent. It was incubated for 20 minutes at 

room temperature to allow it to make complexes of siRNA and transfection 

reagent. siRNA along with transfection reagent was then added to the cells drop-
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wise swirling the plate slowly. The plate was incubated for 48 hours at 37˚C and 

5 % CO2.  

After transfection, the cells were processed and treated according to the 

requirements of individual experiment. 

2.2.10 Human neutrophil electroporation 

Human neutrophils were washed and re-suspended in electroporation 

buffer (BIO-RAD, Cat. 165-2676, USA) at a concentration of 5 x 106 cells/ ml. 

Electroporation was performed according to a modified protocol used by Dr 

Schaff from Bio-Rad (Schaff, 2008). 

ON-Target plus human Atg 5 (9474) siRNA SMART pool (Thermoscientific 

RNAi technologies, Cat. L-004374-00-0005) and control siRNA were used at 

optimized concentrations. siRNA was slowly mixed in the buffer containing cells 

and then transferred to 0.4 cm Gene Pulser cuvettes (BIO-RAD, Cat.165-2088) in 

300 μl buffer/ cuvette. Electroporation was performed using the Gene Pulser X-

cell electroporation system (BIO-RAD, USA) with resistance of 1000 ohm, voltage 

250 V, capacitance 1000 µF and exponential decay pulse. 

Immediately following electroporation, the cells were spun at 1100 rpm 

for 7 minutes. The cells were washed with and re-suspended in ice-cold 

complete RPMI 1640 medium containing recombinant human GM-CSF (10 ng/ ml) 

and incubated overnight. The next day, cells were washed and infected 

according to the requirement of experiments. 

2.2.11 Gentamicin protection assay 

Gentamicin protection assay was performed to determine viable 

intracellular bacterial counts. Murine BMDMs were infected with the indicated 

multiplicity of infection (MOI) and incubated at 37°C and 5 % CO2 for 1-4 hours. 

Cells were washed three times with RPMI 1640 medium to remove bacteria. 

Next, cells were incubated in RPMI 1640 medium containing gentamicin 

(100μg/ ml) for a further 90 minutes to kill the extracellular bacteria. Cells were 

then washed 2-3 times with RPMI 1640 medium and lysed with 0.1 % Triton X 
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100. Viable internalized bacteria were enumerated by colony counting after 

culturing on blood agar plates overnight (Vaudaux and Waldvogel, 1979, 

Arlehamn et al., 2010). 

2.2.12 Neutrophil phagocytosis and killing assay 

Neutrophil phagocytosis and killing assay was performed using a 

modification of methods described by (Hampton and Winterbourn, 1999). 

Briefly, human neutrophils were isolated according to the protocol 

discussed earlier. Cells were re-suspended in centrifuge tubes at 1X106 cells/ ml 

in complete RPMI 1640 medium containing heat inactivated human serum. Cells 

were infected with S. pneumoniae at 10 multiplicity of infection (MOI) and 

incubated at 37°C and 5 % CO2. The same numbers of bacteria were grown in a 

second tube in complete RPMI 1640 medium as a control. 

The tubes were rotated end to end slowly and 1 ml of infected neutrophils 

and bacterial suspension were collected at different time points (0 - 120 min). 

Infected neutrophils were centrifuged at 100g for 5 minutes. The supernatant 

containing bacteria was collected in a tube and the neutrophil pellet was 

washed twice with PBS to remove any extracellular bacteria. The above 

procedure was repeated during each time point. 

Next, infected neutrophils were re-suspended in 1 ml of PBS containing 

0.05 % (w/v) saponin (Sigma Aldrich, Cat. 47036-50G-F, USA) on ice. Saponin lyse 

neutrophils and does not affect the viability of bacteria at this concentration 

(Hamers et al., 1984). The cell lysates were homogenized by gentle pipetting, 

serially diluted and incubated on the blood agar overnight. The number of 

bacteria in each sample from control, supernatant and cell lysates was 

enumerated by colony counting. 

The same protocol was followed for different strains of S. pneumoniae 

and for cells pre-treated with 3MA and for siRNA transfected cells. 

The data were analysed using an Excel spread sheet as described by 

Parker et al and available from: 
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(http://www.otago.ac.nz/christchurch/research/freeradical/assays/index.html) 

The neutrophil uptake and killing assay was analysed using a two-step 

kinetic model that separates uptake of bacteria and their subsequent killing 

within the neutrophil. The spread sheet calculates the rate constants for these 

separate processes as kp, the rate of phagocytosis, and kk, the rate of killing. 

2.2.13 LDH cytotoxicity assay 

Lactate dehydrogenase (LDH) assay was performed to determine the 

cytotoxicity of bacterial infection during experiments. LDH is a soluble cytosolic 

enzyme present in eukaryotic cells. It is released into the culture medium due to 

cell lysis. The increase in LDH activity in the culture supernatant of infected 

cells is proportional to the number of lysed cells. It appears as red colour from a 

reaction cocktail, and is measured at 490 nm using a spectrophotometer. 

Cells were incubated in RPMI 1640 medium lacking Phenol red (Invitrogen, 

Cat. 11835-030, UK). LDH release was measured using CytoTox-96 cytotoxicity 

assay kit (Promega, Cat. G1781, USA). It quantitatively measures LDH enzyme. 

Assay was performed on the cell supernatants using 96 well plates (Corning, Cat. 

3799) according to the manufacturer’s instructions. Control was prepared by 

treating cells with 1 % Triton X 100 (Sigma Aldrich, Cat. T8787, USA) and 

incubated for 60 minutes at 37°C and 5 % CO2 (Legrand et al., 1992). Fresh 

controls were prepared for each experiment. 

The data was presented as bar graphs according to the following formula; 

[(OD of the sample / OD of the standard) X 100]. Sample data from such a 

calculation are shown in Figure 2.6. The LDH released by infected cells was 

maintained at < 20 % in all experiments.  

http://www.otago.ac.nz/christchurch/research/freeradical/assays/index.html
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Figure 2.6 LDH (Cytotoxicity) Assay of murine BMDMs infected with S. 

pneumoniae 

Bar graph showing % LDH released by murine BMDMs. Cells were left uninfected (Basal), 

treated with Rapamycin (25μg/ ml) and infected with S. pneumoniae strains D39 WT and 

D39 ΔPly for 4 hours. The LDH release was compared with positive control (Cells treated 

with 1 % Triton- X100).  
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2.2.14 Animal model used in this study (in vivo experiments) 

Animal model experiments were designed to test my in vitro observations. 

An intraperitoneal (i.p) infection model was used.  

Initially, bacterial dose was optimised using six mice in 3 groups of (n= 2) 

per group. 5, 10, 20 million bacteria/ animal were injected to find the most 

effective dose. Female C57BL/6 mice aged 7- 8 weeks were obtained from 

Harlan UK and used in this model. 1 x 107 bacteria per animal gave the most 

effective onset of infection. 

Mice were randomly divided into six groups (n=3 per group). Mice from the 

three control groups were injected (i.p) with sterile PBS, rapamycin alone (1.5 

mg / kg body weight) or 3-MA (30 mg / kg of body weight) (Harris et al., 2011, 

Kim et al., 2012). Experimental groups were all injected (i.p) with S. 

pneumoniae strain D39 WT (1X107) alone and in addition in separate groups with 

rapamycin 1.5 mg / Kg body weight or with 3-MA 30 mg / Kg body weight. The 

infected mice were left for 6 hours. 

Blood and peritoneal lavage were collected after infection and analysed. 

Peritoneal lavage was analysed for bacterial colony counting. Macrophages in the 

peritoneal lavage were analysed for autophagy by western blotting. Serum and 

peritoneal lavage were analysed for inflammatory cytokines by ELISA and protein 

concentration.  
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Table 2.1 Antibodies used in this study along with working concentration 

Antibody Manufacturer Catalogue  

number 

Application Working 

conc. 

Purified Rabbit 

polyclonal 

antibody Pab, 

LC3 antibody 

(APG8B) (N-

term). 

Abgent (USA) AP 1802a IF 1.25µg/ ml 

LC3  Antibody, 

Autophagosome 

marker 

Novus 

Biological (UK) 

NB100-

2220 

WB 

FACS 

1µg/ ml 

 

Anti-Atg5 

Antibody. 

Novus 

Biological (UK) 

NB110-

53818SS 

WB 0.5µg/ ml 

Alexa flour 488 

goat anti- rabbit 

IgG (H+L). 

Invitrogen 

(USA) 

A11034 IF 

FACS 

1µg/ ml 

 

Alexa flour 568 

goat anti- mouse 

IgG (H+L). 

Invitrogen 

(USA) 

A11031 IF 

 

1µg/ ml 

Rabbit 

immunoglobulin  

fraction (solid-

phase absorbed) 

(Negative 

control) 

 

Dako, 

(Denmark) 

 

X0936 

IF 

FACS 

 

 

1.25µg/ ml 

 

Monoclonal Anti-

β-Tubulin 

antibody 

produced in 

Sigma-Aldrich 

(USA) 

T8328 WB 1µg/ ml 
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mouse 

Anti-rabbit IgG 

HRP- linked 

antibody. 

Cell signalling 

technology 

(UK) 

7074 WB 1: 2000 

Anti-Mouse IgG 

HRP- linked 

antibody. 

Cell signalling 

technology 

(UK) 

7076 WB 1: 2000 

Anti-

pneumococcal 

surface protein-A 

Antibody  

(Anti-PspA) 

Abcam UK ab63330 Opsonizing 

bacteria for 

WB and 

Phago-

cytosis 

8μg/ ml 

Capture Antibody 

(ELISA) 

R and D 

system (USA) 

80134 ELISA 4µg/ ml 

 

Detection 

Antibody. 

R and D 

system (USA) 

80135 ELISA 600ηg/ ml 

 

Caspase -1 p10 

(M-20) Antibody. 

Santa Cruz 

biotechnology 

(UK) 

sc-514 WB 1µg/ ml 

Caspase -1 (A-19) 

Antibody. 

Santa Cruz 

biotechnology 

(UK) 

sc-622 WB 1µg/ ml 

Rabbit polyclonal 

to IL-1 β 

antibody 

Abcam (UK) ab9722 WB 1µg/ ml 
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Rabbit polyclonal 

anti-TRIF 

antibody 

abcam (UK) ab13810 WB 1μg/ ml 

Monoclonal Anti-

FLAG, M2, Clone 

M2. 

Sigma (USA) F1804 

 

WB 1µg/ ml 

Mouse Anti-rabbit 

IgG .mAb (HRP 

conjugate). 

Cell signalling 

technology 

(UK) 

5127 WB 1: 2000 

Capture Ab 

purified anti- 

mouse TNF –α. 

eBioscience 

(UK) 

14-7423-

67A 

ELISA 1: 250 

Detection Ab 

Biotin-conjugate 

anti-mouse TNF –

α polyclonal. 

eBioscience 

(UK) 

13-7341-

67A 

ELISA 1: 250 

Capture Ab 

purified anti-

human IL-1β. 

eBioscience 

(UK) 

14-7018-68 ELISA 1: 250 

Detection Ab 

Biotin-conjugate 

anti-human IL-1 β 

TNF –α polyclonal 

eBioscience 

(UK) 

33-7016-68 ELISA 1: 250 

Purified mouse 

IgG2a, Isotype 

control 0.5mg/ml 

BD Pharmingen 

(UK) 

553459 NETs 1μg/ ml 

Anti-TLR2 

antibody 

Invivogen 

(USA) 

mabg-

mtlr2 

For blocking 

TLR2 

1μg/ ml 
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 receptors   

Human Anti- 

neutrophils 

Elastase Antibody 

Abcam (UK) Ab21595 IF (NETs) 1: 50 

Anti-histone H2B 

antibody 

Abcam (UK) Ab1790 IF (NETs) 1: 100 
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Table 2.2 siRNA controls used in this study 

siRNA Catalogue number Manufacturer 

Transfection indicator 

(siGLO green) 

D-001630-01-05 Dharmacon RNAi 

Technology, USA 

ON-Target plus-NON-

Targeting pool       

(control siRNA) 

D-001810-10-05 Dharmacon RNAi 

Technology, USA 
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Table 2.3 siRNA used in this study 

Mouse siRNA Cat. number/ 

Manufacturer 

Target sequences in the pool 

 

LC3b 

L-040989-01-0005 

Dharmacon RNAi 

technology USA 

5´-ACUAUGGUGCGAUCAGUAA-3´ 

5´-CAUCCUAAGUUGCCAAUAA-3´ 

5´-GGAUAUAGCUCUAAGCCGG-3´ 

5´-CUAAUAAAGGCACAACGAA-3´ 

 

Atg5 

L-064838-0005 

Dharmacon RNAi 

technology USA 

5´- GCAUAAAAGUCAAGUGAUC-3´ 

5´- CCAAUUGGUUUACUAUUUG-3´ 

5´- CGAAUUCCAACUUGCUUUA-3´ 

5´- UUAGUGAGAUAUGGUUUGA-3´ 

 

Caspase-1 

L-048913-00-0005 

Dharmacon RNAi 

technology USA 

5´- GAAUACAACCACUCGUACA-3´ 

5´- GCCAAAUCUUUAUCACUUA-3´ 

5´- GGUAUACCGUGAAAGUGAA-3´ 

5´- GCAUUAAGAAGGCCCAUAU-3´ 

Ticam-1 

(Trif) 

L-055987-00-0005 

Dharmacon RNAi 

technology USA 

5´-GAUCGGUGCAGUUCAGAAU-3´ 

5´-GAACAGCCUUACACAGUCU-3´  

5´-GGAAAGCAGUGGCCUAUUA-3´ 

5´-GAGAUAAGCUGGCCUCCAU-3´ 
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Human siRNA   

Atg5 (9474) L-004374-00-0005 

Dharmacon RNAi 

technology USA 

5’-ACAAAGAUGUGCUUCGAGA-3´ 

5’-UGACAGAUUUGACCAGUUU-3´ 

5’-GCAGAACCAUACUAUUUGC-3´ 

5’-GGCAUUAUCCAAUUGGUUU-3´ 
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Table 2.4 Solutions, Buffers, chemicals, drugs and other material and 

equipment used in this study 

Solutions / Buffers etc. Catalogue number Manufacturer 

Albumin Standards for 

detection of protein 

concentration in cell lysates 

23209 Pierce, Thermo-

scientific, USA 

Bovine serum albumen A7030-50 Sigma Aldrich, USA 

Brain Heart Infusion (BHI) CM1135 Oxoid, USA 

(Thermoscientific) 

Bafilomycin A1 ( Drug) B1793 Sigma Aldrich, USA 

Caspase-1 inhibitor  

Z-YVAD-FMK 

ALX-260-154-R020 Enzo Life Science, USA 

Calbiochem, SB203580 (EMD 

Millipore) 5 mg 

559389 Merck, Kga A, Germany 

Cell proliferation dye 

(500µg) (eFlour 450) - for 

bacterial stain 

65-0842-85 eBioscience, USA 

De-fibrinated Horse Blood DHB100 E&O Labs Ltd, Scotland 

Dried skimmed milk 92962 Marvel, Ireland 

Dimethyl sulfoxide (DMSO) D5879-500G Sigma Aldrich, USA 

Dextran from leuconostoc 

spp. 

31392-10g Sigma Aldrich, USA 



114 
 

E64d (drug) BML- PI107-0001 Enzo Life sciences, USA 

ECL protein detection Kit: 

Lumigen P5-3 reagent A, 

Lumigen P5-3 reagent B 

 

RPN 2132 V1 

RPN 2132 V2 

 

GE Healthcare, UK 

ELISA KIT (Mouse IL-1 beta/ 

IL-1F2 DuoSet, 5 Plate) 

DY401-05 R & D System, USA 

ELISA substrate solution 

(R&D) 

DY999 R & D System, USA 

ELISA stop solution  

2N H2SO4 (R&D) DY994 R & D System, USA 

Human IL-1β ELISA Ready-

SET – Go 

88-7010 eBioscience, USA 

Fetal Bovine serum 15561020 Invitrogen, USA 

Gene - Pulser 

Electroporation buffer 

165-2676 Bio - Rad Laboratories, 

USA 

Human GM-CSF 

(Recombinant) 

300-03 PeproTech, USA 

HRP- Streptavidin 

Horseradish Peroxidase 

Conjugate. 

43-4323, Invitrogen, USA 

Hi - Perfect Transfection 

Reagent 

301705 Qiagen, USA 

Inoculating loop 18388-500EA Sigma Aldrich, USA 
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KCl (Potassium Chloride) P9333-500G Sigma Aldrich, USA 

LDH cytotoxicity assay kit 

LDH Assay Buffer. 

Substrate mix 

 

G 180 

G 179 

 

Promega, USA 

LDS (Loading) buffer,  4X 

(Nuphage) 

NP0007 Invitrogen, USA 

Murine M-CSF 315-02 PeproTech, USA 

Micro BCA Reagent, A  240 

ml 

23231 Pierce, USA 

Micro BCA Reagent, B 240ml 23232 Pierce, USA 

Micro BCA Reagent C, 12ml 23234 Pierce, USA 

MES SDS Running Buffer 20X NP0002 Invitrogen, USA 

Normal goat serum (NGS) G9023 Sigma Aldrich, USA 

Nuphage sample reducing 

agent 10 X 

NP0004 Invitrogen, USA 

Nuphage MES SDS , Running 

Buffer 20X 

NP0002 Invitrogen, USA 

Nuphage Transfer buffer 

20X for western blotting 

NP0006-1 Invitrogen, USA 

NOVEX BT GEL 12 % 1.0MM NP0341BOX Invitrogen, USA 
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10W 

NOVEX BT GEL 4-12 % 

1.0MM 10W 

NP0321BOX Invitrogen, USA 

NOVEX BT GEL 12 % 1.0 MM 

12W 

NP0342BOX Invitrogen, USA 

Optochin discs 74042-50 Sigma Aldrich, USA 

Phosphate buffer saline 14190-094 Gibco, Life 

technologies, UK 

Protease inhibitor cocktail 

tablet (Complete mini 

EDTA-free) 

04693 159 001 Roche, Germany 

Pepstatin A P5318 Sigma Aldrich, USA 

Para- formaldehyde (PFA) 43368 Vwr (Alfa Aesar), USA 

Ponceau S solution (stain) P7170, USA Sigma Aldrich, USA 

Pam3 CSK4 1mg / ml- used 

100ng/ ml 

112208-00-1 Invivogen, USA 

Rapid Romanowski stain 

pack 

HS705 TCS Biosciences Ltd. 

Buckingham, UK 

Rapamycin BML-A275-0005 Enzo life- sciences 

incorporation UK 

RIPA Buffer (Pierce TM) 89900 Thermoscientific, USA 
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Mammalian cell lysis buffer 

Sample reducing agent 10X NP0004 Invitrogen, USA 

Stop solution for LDH assay G 183 Promega, USA 

Stripping buffer (Restore 

Plus Western blot) 

46430 Thermoscientifc USA 

siRNA buffer 5X B-002000-UB-100 Dharmacon, UK 

Sterile RNAse - free water 

for siRNA Buffer dilution 

B-002000-WB-100 Dharmacon, UK 

7-AAD viability stain 420404 Bio- Legend, USA 

SYTOXTM Orange, 5mM 

Solution (Nucleic acid stain) 

S11368 Invitrogen, USA 

Tween- 20 P2287 Sigma Aldrich, USA 

Trypan blue stain T8154 Sigma Aldrich, USA 

Triton X-100 9002-93-1 Sigma Aldrich, USA 

3-methyladenine M9281-100MG Sigma Aldrich, USA 

Vectashield Mounting 

medium with DAPI. 

H –1500 Vector, USA 
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2.3 Statistical analysis of data 

All experiments in this study were repeated independently at least three 

times. Statistical analysis of data was performed using GraphPad Prism 5 

software and Microsoft Excel. 

Data are presented in the form of bar and line graphs and expressed as 

mean, ± standard deviation (SD) or ± standard error of the mean (SEM).  

Mean is the average number of different observations during an 

experiment. In statistics, mean and expected values are used for one measure of 

the central tendency obtained from different observations.  

Standard deviation measures the amount of variation or dispersion of data 

points from the average. A low standard deviation indicates that the data points 

are very close to the mean (expected value), while a higher SD indicates that 

the data points are far apart from the mean value. 

SEM is the standard deviation of means of different samples drawn from a 

certain population. It takes into account the values of SD and the sample size. It 

is an indication of how well the mean of a certain sample estimates the mean of 

a population. The SEM can provide a rough estimate of the interval in which the 

population mean is likely to fall. SEM decreases with an increase in the sample 

size. 

Unpaired t-test, also known as student’s t-test, was performed to make 

comparison between two groups at one time point assuming unequal variances. 

Unpaired t-test is applied to two independent groups. It compares the means of 

two groups and calculates the mean difference, if it is a positive or negative 

value. This test is used to determine if two sets of data are significantly 

different from each other or equal. It is applied if the data is normally 

distributed. The criterion for statistical significance was taken as p < 0.05 (2 

sided). 

Two way analysis of variance (ANOVA) was used for complex grouping of 

data. It is used for more than two groups, because multiple t-tests may result in 
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increased chance of incorrectly rejecting a true null hypothesis (a type1 error). 

It can be used for several groups whether the means of data are equal or not. 

Comparison between groups over time was performed by 2 way ANOVA using 

GraphPad Prism and statistical significance was taken as p value < 0.05 in each 

case. 

Figures were prepared using Image J (NIH), LSM, Photoshop CS6 software 

and Microsoft Power Point.
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3 Infection with S. pneumoniae induces 

autophagy in primary murine bone marrow 

derived macrophages (BMDMs)  
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3.1 Introduction 

Macrophages are one of the most important cells in the body and form the 

first line of defence against infection. They are present in almost all body 

tissues. They provide strong immunity by eliminating invading pathogens through 

different strategies. Macrophages are large myeloid origin cells characterized by 

the presence of pseudopodia, nonspecific esterases and phagocytic granules. 

They are one of the principal effector and regulator cells of the innate immune 

system and play a much wider role in the body (Hopkinson-Woolley et al., 1994). 

Macrophages are mainly associated with generalized immunity. The also 

provide help in adaptive immunity via antigen presentation. They are considered 

large phagocytes maintaining tissue homeostasis by engulfing damaged and 

apoptotic cells and foreign bodies. They also detect invading pathogens, release 

chemical mediators to blood and body fluids, and initiate a strong signal to other 

immune cells. They are more efficient phagocytes than other immune cells and 

can phagocytose invading pathogens including S. pneumoniae. There is a strong 

relationship between autophagy and phagocytosis by macrophages.  The 

autophagy protein LC3 is recruited to the phagosome forming a phagolysosome 

which kills pathogens through lysosomal degradation (Robertson et al., 1939, 

Sanjuan et al., 2007). 

Invading  pathogens also activate the inflammasome in macrophages 

which is a cytoplasmic platform for the activation of caspase-1 and processing of 

pro IL-1β and IL-18 to their active forms (Franchi et al., 2012). Inflammasome 

activation and autophagy induction are both important pathways in host 

defence. The effects of the inflammasome activation on the induction of 

autophagy are not clearly understood.  

Autophagy induction is shown to down regulate inflammasome activation 

through the sequestration of defective mitochondria (mitophagy). This inhibits 

the release of mitochondrial DNA and reactive oxygen intermediates required for 

the activation of NLRP3 inflammasome (Sun et al., 2014). Similarly autophagy 

proteins are also associated with inflammasome activation and innate immunity 
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in multi-cellular organisms. They directly interact with multiple immune 

signalling molecules (Deretic et al., 2009, Saitoh and Akira, 2010). 

S. pneumoniae is an extracellular pathogen with multiple virulence 

factors and toxins. Pneumolysin (Ply) is one of the most important virulence 

factors of this pathogen. Ply is believed to activate the NLRP3 inflammasome in 

macrophages and dendritic cells (Shoma et al., 2008, McNeela et al., 2010). 

These innate immune cells attack and kill S. pneumoniae but the bacterium is 

capable of adopting strategies to escape its killing. Virulence factors and toxins 

play a vital role in the protection of S. pneumoniae. Virulence factors enable S. 

pneumoniae to cause persistent infection (Campoy and Colombo, 2009) and 

complete its infectious cycle. 

We hypothesized that S. pneumoniae infection induces autophagy in 

primary murine BMDMs and that this pathway is associated with phagocytosis and 

inflammasome activation which has not been previously demonstrated. To test 

our hypothesis, we infected primary murine BMDMs with S. pneumoniae strain 

D39 WT and D39 ΔPly (pneumolysin deficient strain). We observed the effects of 

S. pneumoniae strains on autophagy induction, phagocytosis and inflammasome 

activation.  

We used these encapsulated virulent strains and demonstrated a different 

pattern of autophagy induction in each strain. D39 strain of S. pneumoniae 

belongs to serotype 2 virulent group, which is completely sequenced (Lanie et 

al., 2007). D39 strain of S. pneumoniae is a classic representative of this invasive 

human pathogen. 

We used different techniques to demonstrate autophagy induction in 

primary murine BMDMs including immunofluorescence and western blot analysis. 

We used different time courses of infection and observed the effects of 

incubation time. We also observed the effect of S. pneumoniae strains at 

different multiplicities of infection (MOI). During each experiment, we observed 

cytotoxicity by measuring the LDH released during infection and maintained at a 

low level. 
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Our study revealed that autophagy is induced in infection with S. 

pneumoniae in primary murine BMDMs through a process involving multiple 

autophagy proteins including Atg8 (LC3), Atg5 and Atg7. These are important 

proteins and classical markers of autophagy. These autophagy proteins form 

complexes and function in association with other Atg proteins during 

autophagosome formation (Chew and Yip, 2014). Furthermore, autophagy 

induction in S. pneumoniae infection was also studied indirectly via chemical 

inhibition or genetic knock-down of autophagy genes. 

We further studied phagocytosis in primary murine BMDMs infected with S. 

pneumoniae. We also demonstrated the effect of autophagy on phagocytosis of 

S. pneumoniae. We studied the influence of pneumococcal virulence factors 

pneumolysin and antibodies to pneumococcal surface protein A (PspA) on 

phagocytosis of S. pneumoniae. Next, we studied inflammasome activation in 

association with autophagy induction in murine BMDMs. We found that inhibition 

of autophagy by pharmacological and genetic methods up-regulated 

inflammasome activation. We also demonstrated that inhibition of the 

inflammasome by pharmacological or genetic methods increased autophagy in S. 

pneumoniae infection.  

To find how autophagy is triggered by an extracellular pathogen to the 

interior of the cell, we studied different cell surface and cytoplasmic receptors. 

Research demonstrates that not only TLR4 but other TLR family members are 

also involved in autophagy but our experiments on Tlr4 -/- mice revealed that 

this pathway is not associated with autophagy induction in S. pneumoniae 

infection.  

Similarly we also studied the effect of TRIF and MyD88 pathways which is 

believed to recruit Beclin 1 into TLR signalling complex and induce autophagy in 

macrophages (Shi and Kehrl, 2008). Our results demonstrated that knock out of 

TRIF and MyD88 did not affect autophagy induction following infection with S. 

pneumoniae. This showed that there might be some other pathway involved in 

autophagy induction in S. pneumoniae infection.  

Next, we investigated TLR2 pathway which is known to induce autophagy 

in Staph. aureus (Fang et al., 2014). We blocked TLR2 receptors in primary 
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murine BMDMs and then infected with S. pneumoniae. Inhibition of TLR2 did not 

affect autophagy induction in S. pneumoniae infection. We also studied the role 

of the intracellular pattern recognition receptor NOD2. Its activation is believed 

to induce autophagy in macrophages (Homer et al., 2010). We stimulated 

macrophages with muramyl dipeptide (MDP) and its control (MDPc). MDP is a 

peptidoglycan from gram positive and gram negative bacteria activating NOD2. 

Our results demonstrated that there was no autophagy induction following MDP 

stimulation of macrophages.  

Next, we studied the effect of p38MAP kinase which is believed to induce 

autophagy (Matsuzawa et al., 2014). We treated murine BMDMs with p38 MAP 

kinase inhibitor and then infected with S. pneumoniae. We found that 

S.pneumoniae induced autophagy in in both inhibitor treated and untreated 

cells. This demonstrated that p38MAP Kinase is not involved in autophagy 

induction in murine BMDM with S. pneumoniae infection. 

All our experiments presented in this chapter provide useful information 

for understanding this important pathway associated with the innate immune 

system and infection control. S. pneumoniae infection especially multi-drug 

resistant strains are difficult to treat. They could possibly be controlled with 

some treatment strategies based on autophagy induction and our study might 

prove helpful.  
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3.2 Results 

3.2.1 Autophagy induction in primary murine BMDMs infected 

with S. pneumoniae using immunofluorescence (IF) and 

western blot (WB) techniques 

S. pneumoniae has not previously been shown to induce autophagy in 

macrophages. We determined the induction of autophagy with two different 

strains of S. pneumoniae (D39 WT and D39 ΔPly) in primary murine BMDMs. We 

confirmed our results with IF and WB techniques using different incubation 

conditions and treatments. Autophagosome formation was observed in murine 

BMDMs by immunofluorescence (Fig. 3.1a) and the conversion of LC3 I to its 

lipidated form LC3 II (Fig. 3.1c).  

Our results clearly demonstrated a marked increase in the absolute 

amount of LC3 II relative to β- tubulin following infection, to levels observed in 

positive control rapamycin, a classic inducer of autophagy. Moreover, the ratio 

of LC3 II to β- tubulin following infection with S. pneumoniae was slightly 

greater in these experiments with D39 ΔPly, a pneumolysin deficient counterpart 

of the D39 strain (Fig. 3.1d). 

During the time and dose course experiments we observed that both 

strains of S. pneumoniae induced autophagy which could be detected as early at 

1 hour incubation and increased with time to about 4 hours incubation. Although 

we got the same signal at incubations more than 4 hours but the cytotoxicity of 

infection was increased when observed by LDH assay (discussed in material and 

methods section).  
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Figure 3.1 Autophagy induction in primary murine BMDMs following S. 

pneumoniae infection 

(a) Immunofluorescence was performed for LC3 protein levels in untreated (Basal) 

murine BMDMs as negative control, treated with Rapamycin (50μg/ ml) as positive 

control of autophagy and infected with S. pneumoniae strains D39 WT and D39 ΔPly at 

an MOI of 10 for 4 hours. Fluorescent microscopy was performed to visualize LC3 (green) 

and nuclear (DAPI, blue) staining. Scale bar is 50 µm. 

(b) Numbers of LC3 puncta /cell (counted in 60 cells in different views). Columns show 

mean; error bars are SEM. Asterisks indicate statistical significance from basal: *, p < 

0.05; ** p < 0.01; *** p < 0.001. 

(c) Western blot analysis of LC3 I and LC3 II proteins in murine BMDMs. Cells were left 

unstimulated (B), treated with Rapamycin (R; 50μg/ ml) as positive control of autophagy 

and infected with S. pneumoniae strains D39 WT and D39 ΔPly at an MOI of 10 for the 

time indicated. The same blot was stripped and re-probed for β- tubulin protein as 

loading control as shown in panel. 

(d) Densitometry measurement of the ratio of LC3 II/ β- tubulin (three representative 

blots from independent experiments). Asterisks denote level of significance from basal 

as shown in (b).  
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3.2.2 Autophagy induction in primary murine BMDMs infected 

with S. pneumoniae is dose dependent 

Next, we determined the relationship between the infecting dose of 

bacteria and the induction of autophagy by repeating these experiments using 

different multiplicities of infection (MOI), as shown in Figure 3.2. We found that 

there was a relationship between MOI and induction of autophagy. However, the 

data show that at MOI below 5 there was minimal induction of autophagy and 

that a MOI of 10 was required to produce a significant increase in autophagy, as 

shown by the increase in relative amounts of LC3 II. This suggests that there is a 

threshold of about an MOI of 5, below which no autophagy is produced.  
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Figure 3.2 Dependence of autophagy on multiplicity of infection (MOI) in 

primary murine BMDMs 

(a) Representative western blot images of LC3 II protein using primary murine BMDMs 

infected with S. pneumoniae at different MOIs. Cells were left uninfected (B), treated 

with Rapamycin (R; 25μg/ ml) or infected with S. pneumoniae strains D39 WT and D39 

ΔPly at MOI of 1, 2, 5 and 10 as shown. 

(b) Densitometry analysis of LC3 II/ β-tubulin (two independent experiments). Columns 

are mean values; error bars are SEM. Asterisks show level of significant difference from 

basal: * p < 0.05; ** p < 0.01.  
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3.2.3 Monitoring autophagy flux with lysosomal inhibitors 

To determine if infection with S. pneumoniae increases flux through the 

autophagocytic pathway, lysosomal proteases were inhibited with E64d and 

Pepstatin A or by preventing fusion of autophagosomes with lysosomes using 

Bafilomycin A1 (Tanida et al., 2005, Yamamoto et al., 1998). Conversion of LC3 I 

to LC3 II (lipidation) is not affected by these drugs and the LC3 II accumulates as 

the various drugs block LC3 II degradation.  
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Figure 3.3 Cell cytotoxicity assay (% LDH released by the cells) 

Representative bar graph from cell supernatant assayed for LDH released in two 

different experiments. Supernatant from cells treated with and without E64d and 

Pepstatin A and then left untreated (B), treated with Rapamycin (R) and infected with 

S. pneumoniae D39 WT and D39 ΔPly. The cytotoxicity was compared with cells treated 

with 1 % Triton- X100 (control). The columns are means of % LDH released and error bars 

are SEM.  
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3.2.3.1 Autophagy flux using lysosomal inhibitors E64d and Pepstatin A 

The lysosomal degradation of LC3 was blocked by pre-treating primary 

murine BMDMs with E64d and Pepstatin A (Tanida et al., 2005). Cells were then 

infected with S. pneumoniae strain D39 WT and D39 ΔPly without changing 

culture medium containing lysosomal inhibitor drugs. This increased the amount 

of LC3 II produced following infection as shown in (Fig. 3.4). This indicated that 

autophagy flux was increased in the infected cells, although the increase in LC3 

II levels in the presence of E64d and pepstatin A was not large though it was 

reproducible (Fig. 3.4b). 

Importantly under these conditions, there was not any significant increase 

in cell death due to cytotoxicity of the drugs. This was measured by the release 

of lactate dehydrogenase (LDH) from both treated and untreated cells as shown 

(Fig.  3.3).  
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Figure 3.4 Lysosomal inhibitors of autophagy E64d and Pepstatin A increased 

accumulation of autophagy flux. 

(a) Representative western blot analysis of LC3 I and LC3 II levels in primary murine 

BMDMs pre- treated as indicated with E64d (10µg/ ml) and Pepstatin A (10μg/ml) and 

compared to untreated cells infected with S. pneumoniae. Cells were left un-stimulated 

(Basal), treated with Rapamycin (Rapa; 25μg/ml), or infected with S. pneumoniae 

strains D39 WT and D39 ΔPly at an MOI of 10 for 4 hours in the presence (+) or absence 

(-) of inhibitor drugs. 

(b) Densitometry analysis of LC3 II/ βtubulin from (two independent experiments). 

Columns are mean values; error bars are SEM. These results indicate that there is some 

increase in autophagy flux in cells treated with lysosomal inhibitor drugs but the results 

are non- significant (ns).  
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3.2.3.2 Autophagy flux with lysosomal inhibitor Bafilomycin A1 

Bafilomycin A1 is another specific inhibitor of the late phase of autophagy 

pathway which blocks fusion of the autophagosome with lysosome (Yamamoto et 

al., 1998). Primary murine BMDMs were pre-treated with Bafilomycin A1 and 

then infected with S. pneumoniae D39 WT and D39 ΔPly as shown in (Fig. 3.5). 

Bafilomycin A1 treatment increased the amounts of LC3 II produced following 

infection, indicating an increase in autophagocytic flux.  
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Figure 3.5 Inhibition of lysosomal degradation by Bafilomycin A1 increases 

levels of LC3 II 

Representative western blot analysis of LC3 II levels in murine BMDMs pre- treated with 

Bafilomycin A1 (50nM) as indicated. The cells were then left un-stimulated (Basal), 

treated with Rapamycin (Rapa; 25μg/ ml), or infected with S. pneumoniae D39 WT and 

D39 ΔPly (10MOI) for 4 hours with (+) or without (-) inhibitor drug.  
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3.2.4 Effects of antibodies to pneumococcal surface protein A 

(PspA) on autophagy induction with S. pneumoniae 

infection 

Pneumococcal surface protein A (PspA) is an important virulence factor of 

S. pneumoniae expressed by all capsular serotypes and exposed on the surface. 

It is believed to inhibit complement activation and thus prevents the clearance 

of  S. pneumoniae by host immune cells (Tu et al., 1999).  Previously it has been 

demonstrated that blocking PspA by genetic knock down or by anti-PspA 

antibodies enhances phagocytosis of S. pneumoniae (Ren et al., 2012). The 

effect of antibodies to this virulence factor on autophagy induction has not been 

demonstrated.  

Our aim was to find the effect of antibody to PspA on the induction of 

autophagy in primary murine BMDMs following pneumococcal infection. S. 

pneumoniae strain D39 WT and D39 ΔPly were pre-treated with anti-PspA 

antibody and then used for infection of primary murine BMDMs. Autophagy 

induction was observed by Western blot analysis of LC3 II levels (Fig. 3.6). 

Autophagy was slightly enhanced in cells infected with anti-PspA antibody 

treated S. pneumoniae as compared to untreated bacteria but this increase was 

non-significant.  
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Figure 3.6 Effects of anti-PspA antibody on autophagy induced by S. 

pneumonia infection 

Representative western blot analysis of LC3 II levels in primary murine BMDMs infected 

with S.pneumoniae D39 WT and D39 DPly pre-treated with anti-PspA (1µg/ ml) and 

compared with untreated bacteria. Cells were left un-stimulated (B), treated with 

Rapamycin (R; 25μg/ ml), as positive control of autophagy or, infected with S. 

pneumoniae strains D39 WT and D39 ΔPly (10 MOI; 4 hours) in the presence (+) or 

absence (-) of anti-PspA antibody. 

(b) Densitometry analysis of LC3 II/ β-tubulin from (two independent experiments). 

Columns are mean values; error bars are SEM. These results indicate that there is a non-

significant (ns) difference between the two groups.  
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3.2.5 Blocking autophagy pathway by chemical and genetic 

methods in murine BMDMs 

Next, we studied the functional effects of autophagy in primary murine 

BMDMs by inhibiting the process using chemical inhibitors of this pathway and 

siRNA knock down of different autophagy genes. We also used gene knockout 

animals to study the induction of autophagy with S. pneumoniae infection. 

Under these conditions, there was not any significant increase in cell death due 

to cytotoxicity of 3MA or siRNA as measured by the release of LDH from both 

treated and untreated cells (data not shown). 

3.2.5.1 Autophagy inhibition with 3-methyladenine (3MA) 

Primary murine BMDMs were treated with 3MA, a pharmacological agent 

known to block autophagosome formation by inhibiting class- III 

phosphatidylinositol-3-kinase (PI-3K III). Cells were pre-treated with 3MA (Seglen 

and Gordon, 1982, Wu et al., 2010) and then infected with S. pneumoniae 

strains D39 WT and D39 ΔPly.  

Immunofluorescence and western blot techniques were performed on 3MA 

treated and untreated cells. Fluorescent microscopy was performed to observe 

LC3 puncta and cell lysates were analysed by western blot for LC3 I and II 

isoforms.  As shown in (Fig. 3.7), 3MA produced a marked inhibition of 

autophagy, in both assay of LC3 puncta formation, and in inhibiting the 

formation of LC3 II.  
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Figure 3.7 3-MA inhibits autophagy in primary murine BMDMs 

(a) Representative immunofluorescence images of LC3 puncta in primary murine BMDMs. 

Cells were left uninfected (Basal), treated with Rapamycin (25µg/ ml) or infected with 

S. pneumoniae strains D39 WT and D39 ΔPly at an MOI of 10 for 4 hours in the presence 

or absence of 3MA (10mM). Cells were stained with and anti-LC3 antibody (green) and 

DAPI to visualize the nuclei (blue). Scale bar is 50 µm. 

(b) Quantification of average number of LC3 puncta present per cell (counted in 60 cells 

in different views) following treatments and infections as indicated. * shows significant 

decrease in puncta/ cell in 3-MA treated cells, (p < 0.05). 

(c) Western blot analysis of LC3 I and LC3 II proteins in primary murine BMDMs pre-

treated with 3-MA and infected with S. pneumoniae. Cells were left uninfected (B) or 

treated with Rapamycin (R; 25µg/ ml) or infected with S. pneumoniae strains D39 WT 

and D39 ΔPly at an MOI of 10 for 4 hours in the presence (+) or absence (-) of (10mM) 

3MA. 

(d) Densitometry analysis of the autophagy signal in primary murine BMDMs treated with 

3MA and without treatment. Columns are mean values of LC3 II determinations; error 

bars are SEM. Asterisks indicates significant reduction in autophagy in cells treated with 

3MA as compared to untreated cells: **,  p < 0.01; ***, p < 0.001 (3 independent 

experiments).  
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3.2.5.2 Autophagy knock down in murine BMDMs using siRNA to Lc3b gene 

Autophagy is dependent on multiple autophagy-related (Atg) proteins. LC3 

(Atg8) is one of the most important autophagy protein (Tanida et al., 2008) and 

a classical marker for the autophagosome formation. Knock down of Lc3b gene 

has been demonstrated to down regulate autophagy in many different types of 

cell. We studied the effect of Lc3b knock down in primary murine BMDMs using 

control siRNA and LC3b siRNA.  

Cell viability was determined with Trypan blue after 48 hours of 

transfection (discussed in material and method section). This showed that > 80 % 

of the cells were alive after transfection and incubation for the indicated time. 

With the siRNA treatment, very effective knock down of LC3b was achieved (Fig. 

3.8). Although useful for further studies, we wished to show which other 

autophagy genes were involved.  
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Figure 3.8 S. pneumoniae induced autophagy in primary murine BMDMs is LC3 

dependent. 

(a) Representative western blot analysis from lysates of primary murine BMDMs treated 

with control siRNA and Lc3b siRNA and probed for LC3 I and LC3 II proteins as indicated. 

Cells were left uninfected (B), treated with Rapamycin (R; 25µg/ ml) or treated with 

control siRNA and Lc3b siRNA and then left uninfected (B) or infected with S. 

pneumoniae strains D39 WT and D39 ∆Ply at an MOI of 10 for 4 hours. The blot was 

stripped and re- probed for β- tubulin protein as a loading control. 

(b) Densitometry analysis of the autophagy protein LC3 II in primary murine BMDMs 

knocked down for Lc3b gene and control. Columns are the means of LC3 II 

determinations; error bars are SEM. Asterisks showing significant reduction of LC3 II 

protein in Lc3b knock down cells, p < 0.05 (2 independent experiments).  
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3.2.5.3 Autophagy knock down in primary murine BMDMs using siRNA to 

Atg5 gene 

Autophagy related-5 (ATG5) protein is one of the classical markers of 

autophagy and Atg5 gene knock down can block the autophagy pathway. 

Following knockdown of Atg5 gene, we infected cells with S. pneumoniae strain 

D39WT and D39∆Ply and followed the progression of autophagy (Fig. 3.9). We 

found that knock down of ATG5 significantly inhibited autophagy following S. 

pneumonia infection. Note the band detected by the Atg5 antibody is in fact the 

conjugate between ATG5 and ATG12 that forms following the induction of 

autophagy, accounting for the increase in the signal when autophagy is increased 

e.g. after rapamycin treatment or pneumococcal infection.  
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Figure 3.9 S. pneumoniae induced autophagy is Atg5 dependent.  

(a) Representative western blot analysis from lysates of primary murine BMDMs treated 

with control siRNA and Atg5 siRNA genes and probed for the proteins as indicated. Cells 

were left uninfected (B), treated with Rapamycin (R; 25µg/ ml) or transfected with 

control and Atg5 siRNA and then left uninfected (B) or infected with S. pneumoniae 

strains D39 WT and D39 ∆Ply at an MOI of 10 for 4 hours. The blot was stripped and re-

probed for Atg5 protein to look for the efficiency of knock down and for β-tubulin 

protein as a loading control. 

(b) Densitometry analysis of the autophagy protein LC3 II in primary murine BMDMs 

knocked down for Atg5 gene. Columns are the means of LC3 II determinations; error 

bars are SEM. Asterisks showing significant reduction of LC3 II in Atg5 gene knock down 

cells, * is significant difference from control siRNA, p < 0.05 (2 independent 

experiments).  
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3.2.5.4 Autophagy is dependent on Atg7 in primary murine BMDMs using 

Atg7 -/- mice. 

Autophagy related-7 (ATG7) protein is important in the classical 

autophagy pathway. To explore the role of this protein in autophagy induced by 

S. pneumonia, we studied this pathway in macrophages derived from animals 

with selective deletion of the Atg7 gene (Vav-Atg7 -/-). Macrophages were grown 

from WT and Vav-Atg7 -/- mice and infected with S. pneumoniae strain D39 WT 

and D39 ΔPly.  

Western blot was performed for LC3 I and II using cell lysates from both 

groups of mice. As shown in (Fig. 3.10a), knock out of the Atg7 gene effectively 

inhibited autophagy following infection, as assayed by the conversion of LC3 I to 

II. Thus, autophagy following S. pneumoniae infection of primary murine 

macrophages is dependent on Atg5 and Atg7, genes that form part of the 

classical autophagy pathway.  
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Figure 3.10 S. pneumoniae induced autophagy is Atg7 dependent. 

(a) Representative western blot analysis of LC3 protein from cell lysates of primary 

murine BMDMs of WT and Vav-Atg7 -/- mice. Cells were left uninfected (B), treated with 

Rapamycin (R; 25µg/ ml) or infected with S. pneumoniae strains D39 WT and D39 ∆Ply 

at an MOI of 10 for 4 hours. The blot was stripped and re-probed for β-tubulin protein as 

a loading control. 

(b) Densitometry analysis of the autophagy protein LC3 in primary murine BMDMs from 

WT and Atg7 gene knock-out mice. Columns are the means of LC3 II determinations; 

error bars are SEM. Asterisks showing significant reduction of LC3 II protein in Atg7 gene 

knock-out mice as compared to the wild-type mice, p < 0.05 (2 independent 

experiments).  



146 
 

3.2.6 Phagocytosis (internalization) of S. pneumoniae by primary 

murine BMDMs 

Next, we explored the relationship between induction of autophagy 

following S. pneumonia infection and phagocytosis of the microbe. Macrophages 

are large phagocytes and they have the ability to phagocytose invading 

pathogens. This is an important process and is regulated by a complex 

mechanism to prevent damage to the host tissues from uncontrolled 

phagocytosis. Macrophages have evolved a restricted number of phagocytic 

receptors such as mannose receptors for the recognition of conserved motifs 

from invading pathogens, and discriminate from self-tissues (Aderem and 

Underhill, 1999). Pathogens use different strategies to alter their phagocytosis 

by the innate immune cells – for example, the S. pneumoniae capsule protects it 

from phagocytosis. Immune cells can recognize pathogens, inactivate their 

virulence factors and then engulf them. 

We set out to explore the effects of autophagy on phagocytosis following 

infection as well as the influence of the virulence determinant pneumolysin on 

this process. We used strains D39 WT and D39 ΔPly and followed their 

phagocytosis by primary murine BMDMs. Cells were infected with bacteria, 

treated with gentamycin to kill the extracellular bacteria (Vaudaux and 

Waldvogel, 1979) and the internalized live bacteria were grown and counted as 

discussed in the material and methods section. S. pneumoniae CFU counts were 

calculated at different time points (Arlehamn et al., 2010). 

To demonstrate the relationship between autophagy and phagocytosis, we 

also studied S. pneumoniae phagocytosis in primary murine BMDM with 

abrogation of autophagy by 3MA and Lc3b gene knock down. 

3.2.6.1 Comparison of S. pneumoniae strains D39 WT and D39 ΔPly 

phagocytosis by murine BMDMs 

Primary murine BMDMs were infected with S. pneumoniae strain D39 WT 

and D39 ΔPly. Extracellular bacteria were killed with gentamicin (100µg/ ml) for 

90 minutes. The phagocytosed live bacterial CFU were counted in the lysates of 

cells at different time points.  
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Figure 3.11 S. pneumoniae strain D39 WT is resistant to phagocytosis when 

compared to its pneumolysin deficient counter-part 

Representative line graph showing numbers of live phagocytosed S. pneumoniae at 

various times after infection. Primary murine BMDMs (1X106) were infected with S. 

pneumoniae strains D39 WT and D39 ΔPly at an MOI of 10 at time zero. After 1, 2 and 4 

hours of S. pneumoniae infection, the samples were treated with gentamycin for 90 

minutes to kill extracellular bacteria and viable bacteria were then enumerated. CFU 

counts in the lysates were plotted in triplicate as the mean value; error bars are SEM. ** 

indicates a significant difference between the two groups when analysed by 2 way 

ANOVA (p<0.01).  
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There was a significant difference between the numbers of S. pneumoniae 

strain D39 WT and D39 Ply phagocytosed by murine BMDMs over time as is 

shown in (Fig. 3.11). Both strains of bacteria accumulated steadily over time in 

the macrophages, but the numbers of D39 Ply recovered were always 

significantly higher. 

3.2.6.2 S. pneumoniae phagocytosis by primary murine BMDMs is up-

regulated by blocking pneumococcal surface protein A (PspA) 

We wished to explore the influence of opsonising antibody on the progress 

of phagocytosis and autophagy following infection. S. pneumoniae D39 WT were 

pre-treated with anti-pneumococcal surface protein A (anti-PspA) for 30 

minutes. Primary murine BMDM were infected with S. pneumoniae treated with 

anti-PspA and without treatment.  

Extracellular bacteria were killed with gentamycin (100µg/ ml) for 90 

minutes and phagocytosed live bacterial CFU were counted in the cell lysates. 

CFU counts were compared in cells infected with S. pneumoniae treated with 

and without antibody to PspA (Fig. 3.12).  
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Figure 3.12 Antibody to PspA up-regulates phagocytosis of S. pneumoniae by 

murine BMDMs 

Representative line graph showing number of phagocytosed live S. pneumoniae 

over time. Primary murine BMDMs (1X106) were infected with S. pneumoniae strain D39 

WT pre-treated with anti-PspA (1µg/ ml) for 30 minutes or without treatment, at an MOI 

of 10 for (1, 2 and 4) hours. After 1, 2 and 4 hours of S. pneumoniae infection, the 

samples were treated with gentamycin for 90 minutes to kill extracellular bacteria and 

viable bacteria were then enumerated. CFU counts in the lysates were plotted in 

triplicate with mean and SEM. Asterisks indicate significance between the two groups 

when analysed by 2 way ANOVA (p < 0.05).  
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This shows that antibody to PspA up-regulates phagocytosis of S. 

pneumoniae. There was also some increase in the autophagy signal when S. 

pneumoniae was pre-treated with this antibody as shown in (Fig. 3.6). 

3.2.6.3 Effect of 3MA on phagocytosis (internalization) of S. pneumoniae by 

primary murine BMDMs 

Next, we explored the relationship between autophagy and phagocytosis 

using 3-MA to inhibit the autophagocytic pathway. Primary murine BMDMs were 

pre-treated with 3-MA and then infected with S. pneumoniae D39 WT. 

Extracellular bacteria were killed with gentamicin (100µg/ ml) for 90 minutes 

and phagocytosed live bacteria were counted in the cell lysates. CFU counts 

were compared in cells treated with and without 3-MA as shown (Fig. 3.13).  
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Figure 3.13 3-MA down regulates phagocytosis of S. pneumoniae by murine 

BMDMs 

Representative line graph showing counts of phagocytosed live S. pneumonia over time. 

Primary murine BMDMs (1X106) were left untreated and treated with 3-MA (10mM) for 60 

minutes. The cells were then infected with S. pneumoniae strain D39 WT at an MOI of 

10. After 1, 2 and 4 hours of S. pneumoniae infection, the samples were treated with 

gentamycin for 90 minutes to kill extracellular bacteria and viable bacteria were then 

enumerated. CFU counts in the lysates are plotted as means of triplicates; error bars 

show SEM. ** indicates a significant difference between cells treated with and without 

3-MA when analysed by 2 way ANOVA, (p < 0.01). 

These data show that inhibition of autophagy with 3-MA significantly 

reduces the uptake of S. pneumoniae by BMDMs. This suggests that autophagy 

plays a part in the phagocytosis of this microbe.  
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3.2.6.4 Phagocytosis of S. pneumoniae by primary murine BMDMs 

transfected with siRNA Lc3b  

Next, we inhibited autophagy by knock-down of Lc3b gene using siRNA and 

determined the effect of this process on phagocytosis of live S. pneumoniae. 

Primary murine BMDMs were transfected with control siRNA or Lc3b siRNA for 48 

hours and then infected with S. pneumoniae at 10 multiplicity of infection for 1, 

2 and 4 hours. Extracellular bacteria were killed with gentamicin (100µg/ ml) for 

90 minutes and phagocytosed live bacteria were counted in the cell lysates. CFU 

counts of S. pneumoniae were compared in cells transfected with control siRNA 

and Lc3b siRNA as shown (Fig. 3.14).  
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Figure 3.14 Autophagy gene Lc3b knock down in murine BMDMs down-

regulates phagocytosis of S. pneumoniae 

Representative line graph showing counts of phagocytosed live S. pneumoniae. Primary 

murine BMDMs (1X106) were transfected with control siRNA and Lc3b siRNA for 48 hours 

and then infected with S. pneumoniae at an MOI of 10. After 1, 2 and 4 hours of S. 

pneumoniae infection, the samples were treated with gentamycin for 90 minutes to kill 

extracellular bacteria and viable bacteria were then enumerated. CFU counts in the 

lysates were plotted as means of triplicates; error bars are SEM. * indicates a significant 

difference between phagocytosis of cells transfected with control and Lc3b siRNA when 

analysed by 2 way ANOVA, (p < 0.05). 

 

The data show that as with chemical inhibition of autophagy with 3-MA, 

abrogation of autophagy by genetic means with siRNA to Lc3b also significantly 

reduced the phagocytosis of live S. pneumonia. This supports the conclusion that 

autophagy has a role in the phagocytosis of this organism by macrophages.  
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3.2.7 Relationship of autophagy with inflammasome activation 

As discussed in the Introduction, autophagy and inflammasome activation 

are both important in the innate immune system. A number of studies have 

shown that autophagy can down-regulate activation of the NLRP3 

inflammasome, as outlined in the Introduction (Saitoh et al., 2008, Nakahira et 

al., 2011). Additionally, the inflammasome has been shown to inhibit autophagy 

following infection with Pseudomonas aeroginosa (Jabir et al., 2014). We wished 

to explore the relationship, if any, between autophagy and inflammasome 

activation following infection of primary murine BMDMs with S. pneumoniae. 

3.2.7.1 Inflammasome activation by S. pneumoniae D39 WT and D39 ΔPly 

First, we determined if infection with S. pneumoniae could induce the 

production of IL-1 by primary murine BMDMs and the influence of pneumolysin 

on this production. Primary murine BMDMs were infected with S. pneumoniae 

strains D39 WT and D39 ΔPly. The cell supernatants were analysed for IL-1β and 

TNF- production (Fig. 3.15). IL-1 β levels were higher after infection with S. 

pneumoniae strain D39 WT as compared to the D39 ΔPly, a strain lacking 

pneumolysin (Fig. 3.15a). TNF- levels were not significantly different in both 

groups as shown in (Fig. 3.15b).  
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Figure 3.15 Inflammasome activation by S. pneumoniae strains D39 WT and 

D39 ΔPly 

(a) Bar graph showing inflammatory cytokine interleukin-1 beta (IL-1β) levels released 

from primary murine BMDMs. Cells were left un-stimulated (Basal), or infected with D39 

WT and D39 ΔPly for 4 hours. *** indicates a highly significant decrease in the level of IL-

1β secretion by S. pneumoniae strain D39 ΔPly as compared to D39 WT, p < 0.001. Bars 

are means of triplicates of IL-1β determinations; error bars are SEM. 

(b) As (a) but inflammatory cytokine TNF- released by primary murine BMDMs. Bars are 

means of triplicates of TNF- (pg/ ml) determinations; error bars are SEM. ns, non-

significant difference between the strains of S. pneumoniae 

These data confirm the results of McNeela et al who showed that 

pneumolysin activates the NLRP3 inflammasome independent of TLR4 following 

S. pneumoniae infection (McNeela et al., 2010).  
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3.2.8 Effects of inflammasome activation on autophagy induction 

in primary murine BMDMs 

S. pneumoniae strains D39 WT and D39 ΔPly both induce autophagy but 

this is more pronounced in the pneumolysin deficient strain. We hypothesized 

that this might be the effect of pneumolysin itself or the associated 

inflammasome activation. Pneumolysin is responsible for inflammasome 

activation and production of inflammatory cytokines in S. pneumoniae infection 

(Shoma et al., 2008).  

We studied the effect of inflammasome on autophagy induction by 

blocking of caspase-1 using a specific inhibitor or knock down of caspase-1 gene. 

Caspase-1 inhibitor Z-YVAD-FMK (fluoromethyl-ketone) is a selective and 

irreversible caspase-1 inhibitor (Slee et al., 1996). It blocks caspase-1 activation 

by inflammasome following microbial infection. Similarly we also tested the role 

of caspase-1 specifically by knocking down casapase-1 gene using siRNA and 

observed its effects on autophagy induction with S. pneumoniae infection. 

3.2.8.1 Effects of casapase-1 inhibitor Z-YVAD-FMK on autophagy induction 

in murine BMDMs infected with S. pneumoniae 

Further to establish that the IL-1 release produced from murine BMDMs 

after infection was due to inflammasome activation, we tested the dependence 

of this cytokine production on the activity of caspase-1. First, primary murine 

BMDMs were pre-treated with the caspase-1 inhibitor Z-YVAD-FMK. The cells 

were then infected with S. pneumoniae D39 WT at an MOI of 10. Western blot 

was performed for procaspase-1 and activated caspase-1 (p10) from cell lysates 

of inhibitor treated and untreated cells. The blot was stripped and re-probed for 

LC3 autophagy protein and β- tubulin proteins as shown (Fig. 3.16).  
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Figure 3.16 Autophagy is up-regulated in the presence of the caspase-1 

inhibitor Z-YVAD-FMK in murine BMDM infected with S. pneumoniae 

(a) Primary murine BMDMs were infected with S. pneumoniae at an MOI of 10 for 4 hours 

in the presence (+) or absence (–) of the capsase-1 inhibitor Z-YVAD-FMK (10µM). The 

panels show western blot of pro-caspase-1, the activated caspase-1 p10 subunit, 

autophagy protein LC3 II and β-tubulin as a loading control. 

(b) Densitometry analysis of LC3 II/ β-tubulin (two independent experiments). Columns 

are mean values; error bars are SEM. Asterisks indicates significant difference in 

autophagy induction in cells pre-treated with Z-YVAD-FMK (+) and untreated (-), p < 

0.05. 

(c) ELISA for IL-1β on cell supernatants form primary murine BMDMs infected with S. 

pneumoniae as indicated in the presence (+) or absence (-) of the caspase-1 inhibitor Z-

YVAD-FMK (10µM). Columns are means of three independent determinations; error bars 

are SEM. Asterisks indicates significant difference between the IL-1β levels in the 

presence (+) and absence (-) of the inhibitor, p < 0.001.  
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This experiment demonstrates that inhibition of caspase-1 activity results 

in an inhibition of the production of IL-1. It also demonstrates that infection 

with S. pneumoniae produces activation of caspase-1, as shown by the 

appearance of the p10 fragment of the activated casaspe-1 following infection 

(Fig. 3.16a). This too is inhibited by the caspase-1 inhibitor.  

Thus, these data confirm that release of IL-1is accompanied by 

activation of the inflammasome. The experiment also shows that when the 

inflammasome is inhibited, the amount of autophagy also increases. Thus, this 

suggests that activation of the inflammasome results in inhibition of the 

autophagocytic pathway. 

3.2.8.2 Autophagy induction in caspase-1 knock-down murine BMDM 

infected with S. pneumoniae. 

To confirm these findings, we analysed the effect of knock down of 

caspase-1 with Caspase-1 siRNA on infection of primary murine BMDMs with S. 

pneumonia. Western blot was performed for procaspase-1 and activated 

caspase-1 proteins from lysates of control and knock down cells. The blot was 

stripped and re-probed for LC3 and β- tubulin proteins.  
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Figure 3.17 Caspase-1 gene Knock down in primary murine BMDMs up-

regulates autophagy in S. pneumoniae infection 

(a) Primary murine BMDMs were transfected with control siRNA and caspase-1 siRNA and 

then infected with S. pneumoniae D39 WT at an MOI of 10 for 4 hours. The panels show 

western blot of procaspase-1 and caspase-1 p10 subunit. The blot was stripped and re-

probed for LC3 II autophagy protein and β-tubulin as a loading control. 

(b) Densitometry analysis of LC3 II/ β- tubulin (two independent experiments). Columns 

are mean values; error bars are SEM. Asterisks indicates significant difference in 

autophagy induction in both groups, (p < 0.05). 

(c) ELISA for IL-1β on cell supernatants from primary murine BMDMs. Cells were 

transfected with control siRNA and caspase-1 siRNA and then infected with S. 

pneumoniae. Columns are means of triplicate of IL-1β determinations; error bars are 

SEM. Asterisks indicate significant differences between the IL-1β levels in the control 

and caspase-1 knock down cells, p < 0.001.  
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The results of this experiment were similar to those seen using the 

chemical inhibitor of caspase-1. The caspase-1 siRNA produced an excellent 

reduction in the amount of pro-caspase-1. This inhibited IL-1 release to 

virtually background levels. We also observed an increase in the degree of 

autophagy following infection when the inflammasome activation was blocked. 

Again, this suggests that activation of the inflammasome following infection with 

S. pneumoniae results in an inhibition of autophagy. 

3.2.9 Influence of autophagy inhibition on inflammasome 

activation in S. pneumoniae 

To study the effect of autophagy with inflammasome activation in S. 

pneumoniae infection, we inhibited autophagy in primary murine BMDMs by 

treating with 3MA or by knock down of the Lc3b and Atg5 genes or using Atg7 

gene knock-out mice. Cells were then infected and analysed for IL-1β 

production. 

3.2.9.1 Influence of autophagy inhibitor 3-MA on inflammasome activation 

Autophagy was inhibited in primary murine BMDMs by treating them with 

3-MA. The cells were then infected with S. pneumoniae D39 WT for the indicated 

time. Supernatants from cells infected with S. pneumoniae in the presence or 

absence of 3-MA were analysed for the inflammatory cytokine IL-1β (Fig. 3.18).  
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Figure 3.18 Activation of the Inflammasome by S. pneumoniae infection in 

primary murine BMDM pre-treated with 3MA 

Representative bar graph showing IL-1β levels produced by primary murine BMDM pre-

treated with 3-MA and then infected with S. pneumoniae. Cells were left un-infected 

(Basal), or infected with S. pneumoniae strain D39 WT at an MOI of 10 for 4 hours in the 

presence or absence of 3-MA. *** indicate a significant difference between 3-MA treated 

and untreated cells, p < 0.001. Bars are means of IL-1β triplicate determinations; error 

bars are SEM. 

These data suggest that inhibition of autophagy increases the activation 

of the inflammasome following infection with S. pneumoniae.  
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3.2.9.2 Influence of genetic knock down of autophagy on inflammasome 

activation in S. pneumoniae infection 

Further to investigate the effect of inhibiting autophagy on inflammasome 

activation, we examined the effect of knock down of the Lc3b and Atg5 genes 

using siRNA. We observed IL-1 production in these LC3b and Atg5 gene knock 

down cells following infection with S. pneumoniae. Supernatants from cells 

transfected with control siRNA and Lc3b or Atg5 siRNA were collected after 

infection with S. pneumoniae, and then analysed for inflammatory cytokine IL-1β 

production (Fig. 3.19).  
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Figure 3.19 Inflammasome activation is up-regulated by knock down of 

autophagy genes LC3b and Atg5 in murine BMDMs 

(a) Representative bar graph showing IL-1β levels released by primary murine BMDM 

knocked down for Lc3b gene and then infected with S. pneumoniae. Transfected cells 

were left un-infected (B), or infected with S. pneumoniae strain D39 WT at an MOI of 10 

for 4 hours. ** indicate a significant difference between two groups, p < 0.01. Bars are 

means of triplicate of IL-1β determinations; error bars are SEM. 

(b) As (a) but primary murine BMDMs with Atg5 gene knock down. * indicates a 

significant difference between the two groups, p < 0.05. Bars are means of triplicate IL-

1β determinations; error bars are SEM. 

 

The experiment shows that with knock down of either LC3b or ATG5, 

there is a significant increase in inflammasome activation and release of IL-1 

following S. pneumoniae infection. This is in agreement with the data obtained 

from treating cells with 3-MA and supports the conclusion that autophagy acts to 

limit inflammasome activation following infection with S. pneumoniae.  
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3.2.9.3 Inflammasome activation in primary murine BMDMs from Vav-Atg7 -/- 

mice infected with S. pneumoniae 

Next, we explored the effect of a lack of ATG7 on inflammasome 

activation following infection of primary murine BMDMs with S. pneumoniae. 

BMDMs were grown from WT and Vav-Atg7 -/- mice and then infected with S. 

pneumoniae at an MOI of 10. Supernatants from infected cells were analysed for 

IL-1β (Fig. 3.20).  
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Figure 3.20 Inflammasome activation is up-regulated in Vav-Atg7 -/- primary 

murine BMDMs infected with S. pneumoniae. 

Representative bar graph showing IL-1β levels released by primary murine BMDM from 

wild type and Vav-Atg7 -/- mice. Cells were left un-stimulated (B), or infected with S. 

pneumoniae strain D39 WT at an MOI of 10 for 4 hours. * indicates a significant 

difference between both groups. Bars are means of IL-1β triplicate determinations; 

error bars are SEM, p < 0.05. 

Levels of released IL-1β were significantly higher in the BMDMs from the 

Vav-Atg7 -/- mice. Thus, data from this experiment confirm our previous 

observations. It supports the conclusion that autophagy acts to inhibit 

inflammasome activation following S. pneumoniae infection.  
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3.2.10 The role of TIR-domain-containing adapter-inducing 

interferon-β (TRIF) in autophagy induction 

We wished to determine the intracellular signalling pathways involved in 

autophagy induction following infection with S. pneumoniae. The data presented 

above shows that inflammasome activation inhibits autophagy induction 

following S. pneumoniae infection. In P. aeruginosa infection, our laboratory has 

previously shown that caspase-1 limits autophagy by cleavage of the signalling 

adaptor TRIF (Jabir et al., 2014).  

We hypothesized that the TRIF pathway may be involved in S. pneumoniae 

autophagy induction as well, which would also explain the reduction in 

autophagy following inflammasome induction by S. pneumoniae. Thus, we tested 

induction of autophagy by S. pneumoniae infection in primary murine BMDMs 

following knock down of TRIF with siRNA. Western blot was performed for TRIF 

and LC3 proteins as shown (Fig. 3.21).  
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Figure 3.21 Autophagy induction following infection with S. pneumoniae is 

not dependent on TRIF pathway. 

(a) Representative western blot image from primary murine BMDM transfected with 

control siRNA and Trif siRNA and then infected with S. pneumoniae D39 WT at an MOI of 

10 for 4 hours. Western blot was performed for TRIF protein and then stripped and re-

probed for LC3 II autophagy protein and β- tubulin as a loading control. 

(b) Densitometry analysis of LC3 II/ β- tubulin (two independent experiments). Columns 

are mean values; error bars are SEM. The results shown here are non-significant (ns) and 

there is no difference in autophagy induction in the cells transfected with control siRNA 

and Trif siRNA.  
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The siRNA for Trif achieved a good degree of knock down of the TRIF 

protein following infection (Fig. 3.21a). Baseline levels of TRIF in uninfected 

cells in the presence of control siRNA were rather low, but this probably reflects 

a lower amount of total protein in this lane as judged by the - tubulin loading 

control. Knock down of TRIF by this means did not produce any reduction of 

autophagy following infection with S. pneumoniae. This suggests that TRIF is not 

an intermediate in initiation of autophagy following infection with this 

pathogen. 

3.2.10.1 Autophagy induction in primary murine BMDMs from Trif -/- mice 

infected with S. pneumoniae 

We further investigated the role of TRIF pathway by using Trif -/- mice. 

Autophagy induction was studied in primary murine BMDMs derived from Trif -/- 

mice infected with S. pneumoniae. Cells were grown from wild type and Trif -/- 

mice and then infected with S. pneumoniae strains D39 WT and D39 ΔPly. 

Western blot was performed for LC3 autophagy protein as shown (Fig. 3.22).  
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Figure 3.22 TRIF is not required as adaptor protein for autophagy induction 

in murine BMDMs infected with S. pneumoniae. 

Representative western blot image using lysates of primary murine BMDM of wild type 

and Trif -/- mice treated as indicated. Cells were left uninfected (B), treated with 

Rapamycin (R; 25μg/ ml) as positive control of autophagy and infected with S. 

pneumoniae D39 WT or D39 ΔPly at an MOI of 10 for 4 hours. Western blot was 

performed for LC3 autophagy protein and then stripped and re-probed for β- tubulin as 

a loading control.  

This experiment showed that autophagy proceeded to the same degree 

even in cells lacking TRIF. This confirms our observations with knock down of 

TRIF by siRNA, that this intermediate is not required for induction of autophagy 

following S. pneumoniae infection.  
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3.2.11 Autophagy induction in murine BMDMs from Myd88 

knock-out mice infected with S. pneumoniae 

TRIF is a signalling intermediate from TLR3 and TLR4. We demonstrated 

that TRIF is not involved in S. pneumoniae induced autophagy (Fig. 3.21, 3.22). 

Next, we investigated the involvement of another important pathway, Myd88, in 

autophagy induction with S. pneumoniae infection. Myd88 is involved in 

signalling from all other Toll-like receptors.  A variety of TLR agonists that use 

Myd88 have been found to induce autophagy in macrophages (Shi and Kehrl, 

2008).  

We used primary murine BMDMs from WT and Myd88 -/- mice and infected 

with S. pneumoniae strains D39 WT and D39 ΔPly. Western blot was performed 

for LC3 protein as shown (Fig. 3.23).  
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Figure 3.23 MYD88 is not required for autophagy induction in murine BMDMs 

with S. pneumoniae infection. 

(a) Representative western blot image from the lysates of primary murine BMDM of WT 

mice and Myd88 -/- mice. Cells were left uninfected (B), treated with Rapamycin (R; 

25μg/ ml) as positive autophagy control or infected with S. pneumoniae D39 WT and 

D39 ΔPly at an MOI of 10 for 4 hours. Western blot was performed for LC3 protein and 

the blot was stripped and re-probed for β-tubulin as loading control.  

(b) Densitometry analysis of LC3 II/ β-tubulin (two independent experiments). Columns 

are mean values; error bars are SEM. The results are not significant (ns) with no 

difference in autophagy induction in both groups. 

These results show clearly that autophagy following infection with S. 

pneumoniae is not affected by the lack of MYD88. Thus, given the lack of 

involvement of TRIF as well in the induction of autophagy by S. pneumoniae, 

suggest that TLRs are not involved in any way with induction of autophagy by 

this microbe.  
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3.2.12 Role of TLR4 in autophagy induction in primary murine 

BMDMs in infection with S. pneumoniae 

To confirm and extend these findings, we investigated the specific role of 

TLR4 in autophagy induction by S. pneumoniae. TLR4 serves as a sensor for 

autophagy induction which is mediated through TRIF when stimulated with LPS 

(Xu et al., 2007) or MyD88. We used TL4 defective and TLR4 -/- mice strains for 

autophagy induction and found that TLR4 is not used as a sensor for autophagy 

following S. pneumoniae infection. 

3.2.12.1 Autophagy induction in primary murine BMDMs from C3H/HeJ 

(Lps-d) mice in S. pneumoniae infection 

First, we used primary murine BMDMs from TLR4-defective LPS hypo-

responsive mice strains. Cells from LPS responsive C3H/HeNHsd (control) and LPS 

hypo-responsive C3H/HeJOlaHsd-Tlr4-Lps-d mice strains were infected with S. 

pneumoniae strains D39 WT and D39 ΔPly. Western blot was performed for LC3 

autophagy protein from cell lysates of both strains of mice after S. pneumoniae 

infection as shown (Fig. 3.24).  
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Figure 3.24 Autophagy induction is not affected in TLR4- defective LPS hypo-

responsive murine BMDMs in infection with S. pneumoniae 

(a) Representative western blot image from the lysates of primary murine BMDM of 

C3H/HeNHsd (control) and C3H/HeJOlaHsd-Tlr4 Lps-d strains of mice. Cell were left 

uninfected (B), treated with rapamycin (R; 25μg/ ml ) as positive autophagy control or 

infected with S. pneumoniae D39 WT and D39 ΔPly at an MOI 10 for 4 hours. Western 

blot was performed for LC3 autophagy protein and then stripped and re-probed for β-

tubulin as loading control. 

(b) Densitometry analysis of LC3 II/ β- tubulin (two independent experiments). Columns 

are mean values; error bars are SEM. The results shown here are non-significant (ns) 

with no difference in autophagy induction in both groups. 

The results show that there was no difference in the induction of 

autophagy following S. pneumoniae infection in the cells from control and TLR4 

defective mouse strains. Thus, this confirms that TLR4 signalling is not involved 

in autophagy induction following this infection.  
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3.2.12.2 Autophagy induction in primary murine BMDMs from Tlr4 -/- 

infected with S. pneumoniae 

To further investigate the role of TLR4 in autophagy induction by S. 

pneumoniae infection, we infected primary murine BMDMs from Tlr4 -/- mice. 

Western blot was performed for LC3 autophagy protein as shown (Fig. 3.25). 

 

Figure 3.25 Role of TLR4 in autophagy induction in primary murine BMDMs 

infected with S. pneumoniae 

Representative western blot image from the lysates of primary murine BMDM from WT 

mice and Tlr4 -/- mice infected with S. pneumoniae. WT cells were left uninfected (B), 

treated with rapamycin (R; 25μg/ ml) as positive autophagy control and infected with S. 

pneumoniae D39 WT and D39 ΔPly at an MOI 10 for 4 hours. TLR4 -/- cells were left un-

infected (B) treated with LPS (100ng/ ml) or infected as WT cells. Western blot was 

performed for LC3 protein. The blot was then stripped and re-probed for β- tubulin as a 

loading control. There is no difference in the autophagy induction between both groups 

of mice as shown. 

 

These experiments again showed that a lack of TLR4 did not affect the 

degree of autophagy following S. pneumoniae infection.  
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3.2.13 Role of TLR2 in autophagy induction in murine BMDMs 

infected with S. pneumoniae 

We next investigated whether TLR2 had a specific role in autophagy 

induction following S. pneumoniae infection. TLR2 mediates autophagy induction 

following infection with Listeria monocytogenes, an intracellular gram positive 

pathogen (Anand et al., 2011). TLR2 receptors are present on innate immune 

cells and respond to lipid containing PAMPs i.e. lipoteichoic acid released from 

pathogens.  

We tested the effect of TLR2 by treating primary murine BMDMs with a 

neutralising anti-TLR2 antibody, Pam3CSK4 and Isotype control antibody. 

Pam3CSK4 is a tri-acylated lipopeptide ligand of TLR2 (Jin et al., 2007) which 

was used as control. Autophagy was induced in pre-treated primary murine 

BMDMs with S. pneumoniae D39 WT and D39 ΔPly infection. Western blot was 

performed for LC3 autophagy protein as shown (Fig. 3.26).  
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Figure 3.26 TLR2 is not required for autophagy induction in murine BMDMs 

infected with S. pneumoniae 

(a) Representative western blot image from primary murine BMDM pre-treated as 

indicated and then infected with S. pneumoniae. Cells were left un-treated (B), treated 

with Rapamycin (R; 25μg/ ml) as positive control of autophagy or with Pam3CSK4 

(100ng/ml). Next, cells pre-treated with anti-TLR2 antibody (1μg/ ml), or mouse IgG2a 

isotype control antibody (1μg/ ml) for 60 minutes were then left uninfected (B) or 

infected with S. pneumoniae strains D39 WT and D39 ΔPly at an MOI of 10 for 4 hours. 

Western blot was performed for LC3 autophagy protein. The blot was then stripped and 

re-probed for β- tubulin as loading control. 

(b) Densitometry analysis of LC3 II/ β- tubulin (two independent experiments). Columns 

are mean values; error bars are SEM. The results are non-significant (ns) and there is no 

difference in autophagy induction in TLR2 blocked cells and ligand activated cells.  
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This experiment showed that treatment of cells with a neutralizing 

antibody to TLR2 had no effect on the induction of autophagy induced by S. 

pneumoniae. This excluded a direct role of TLR2 in signalling induction of 

autophagy following this infection. 

3.2.14 Role of NOD2 in autophagy induction in primary murine 

BMDMs 

Given the lack of involvement of the TLRs in autophagy induction 

following pneumococcal infection we sought involvement of other innate 

signalling pathways. To explore involvement of the intracellular peptidoglycan 

sensor NOD2, we used the ligands muramyl dipeptide (MDP) and its control 

(MDPc). Muramyl dipeptide is a peptidoglycan constituent from bacteria. It is 

recognized by NOD2 in innate immune cells (Girardin et al., 2003). We treated 

primary murine BMDMs with MDP and its control MCPc for 6 - 24 hours to observe 

their effects in induction of autophagy. Western blot was performed for LC3 

protein as shown (Fig. 3.27).  
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Figure 3.27 NOD2 has no role with the induction of autophagy in primary 

murine BMDMs 

Representative western blot image from the lysates of primary murine BMDM treated 

with NOD2 ligand. Cells were left untreated (B), treated with rapamycin (R; 25μg/ ml) 

as positive autophagy control or treated with MDP or MDPc (5, 10, 20 and 50μg/ ml) for 

24 hours. Western blot was performed for LC3 autophagy protein. The blot was then 

stripped and re-probed for β-tubulin as a loading control.  

These data show that addition of the NOD2 ligand, muramyl dipeptide 

does not induce autophagy in primary murine BMDMs. Thus, NOD2 is unlikely to 

be involved in autophagy induction by S. pneumoniae.  
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3.2.15 Influence of a P38MAP Kinase Inhibitor on Autophagy 

induction in primary murine BMDMs infected with S. 

pneumoniae 

We next investigated the effect of an inhibitor of mitogen activated 

protein kinase p38 (p38-MAPK) on autophagy induction following S. pneumoniae 

infection. This pathway activates transcription factor NF-kB, and has been shown 

to be involved in autophagy induction (Matsuzawa et al., 2014). We blocked this 

pathway by treating primary murine BMDMs with SB203580, a specific inhibitor of 

p38MAP kinase. We then tested whether this affected the induction of autophagy 

in primary murine BMDMs infected with S. pneumoniae strains D39 WT and D39 

ΔPly.  

Cells were pre-treated with SB203580 and then infected with S. 

pneumoniae strains or treated with LPS to compare its effects. Western blot was 

performed for LC3 protein as shown (Fig. 3.28)  
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Figure 3.28 P38-mitogen activated protein kinase inhibitor has no effect on 

autophagy induction in murine BMDMs infected with S. pneumoniae 

Representative western blot image from the lysates of primary murine BMDM treated 

with SB203580 and then infected with S. pneumoniae. Cell were left uninfected (B) and 

treated with rapamycin (R; 25μg/ ml) as positive autophagy control. Next, cells were 

pre-treated with 5, 10, 20, & 50 μΜ of SB203580 for 60 minutes and then infected with 

S. pneumoniae D39 WT and D39 ΔPly at an MOI 10 for 4 hours or treated with LPS as a 

control. Western blot was performed for LC3 proteins and then stripped and re-probed 

for β-tubulin as a loading control. 

SB203580 had no effect on the induction of autophagy by S. pneumonia 

D39 WT and D39 ΔPly. Thus, p38MAP Kinase is unlikely to be involved in 

triggering autophagy induced by this infection.  
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3.3 Discussion and Conclusion 

3.3.1 Discussion  

We show here that S. pneumoniae induces autophagy in primary murine 

macrophages following infection. It has not previously been demonstrated in 

infection with this pathogen. We clearly demonstrated the induction of 

autophagy in infection with S. pneumoniae strains D39 WT and D39 ΔPly in 

murine BMDMs in a time and dose dependent manner (Fig. 3.1- 3.5). Although 

the signal tended to be stronger in the pneumolysin deficient strain, this 

difference was not significant and the absolute difference between the strains 

was not huge. 

We further studied autophagy in S. pneumoniae infection by blocking this 

pathway by different chemical and genetic methods. It was demonstrated here 

that 3-MA an autophagy inhibitor (Seglen and Gordon, 1982, Wu et al., 2010) 

blocked this pathway in murine BMDMs infected with S. pneumoniae (Fig. 3.7). 

We also demonstrated that genetic knock down of the autophagy genes Lc3b and 

Atg5 (Tanida et al., 2008, Walczak and Martens, 2013) inhibited autophagy 

induction by S. pneumoniae infection (Fig. 3.8, 3.9).  

Similarly the effect of Atg7 was studied (Komatsu et al., 2007) and its role 

was demonstrated in autophagy induction by using Vav-Atg7 -/- mice. S. 

pneumoniae infection was unable to induce autophagy in Atg7 knock-out murine 

BMDMs as compared to WT (Fig. 3.10). All these observations confirmed our 

hypothesis that infection with S. pneumoniae induces autophagy and that this 

follows a classical pathway. 

We have also shown here that autophagy in murine BMDMs is associated 

with phagocytosis of S. pneumoniae. Phagocytosis and internalization is also 

affected by the virulence factor pneumolysin which may be due to the down-

regulation of complement deposition (Yuste et al., 2005). Phagocytosis of the 

pneumolysin deficient strain was higher as compared to the WT (Fig. 3.11).  
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We also demonstrated that inhibiting autophagy with pharmacological 

agent 3-MA or genetic knock down of Lc3b gene attenuated phagocytosis of 

S.pneumoniae by murine BMDMs (Fig. 3.13, 3.14). This shows that autophagy and 

autophagy genes are required for the phagocytosis. 

Similarly we have successfully demonstrated a relationship between 

autophagy and the inflammasome. We demonstrated here that inhibiting 

autophagy by a chemical method using 3-MA or genetically using siRNA or gene 

knock-out mice resulted in an increase in inflammasome activation following 

infection with S. pneumoniae (Fig. 3.18- 3.20). This demonstrated that 

inflammasome and autophagy are associated mechanisms in the innate immune 

system.  

Similarly when we inhibited inflammasome by blocking casapae-1 with its 

specific inhibitor Z-YVAD-FMK (Slee et al., 1996) or by caspase-1 siRNA 

transfection, autophagy was up-regulated (Fig. 3.16, 3.17). These observations 

demonstrated that autophagy and inflammasome influence on each other. The 

mechanism by which inflammasome activation acts to limit autophagy is not 

clearly understood. 

Next, we also studied different pathways and receptors to find how the 

autophagy signal is transferred to the interior of the cell from an extracellular 

pathogen. We have shown here the roles of TRIF, Myd88 (Piras and Selvarajoo, 

2014), TLR4 (Xu et al., 2007) and TLR2 (Fang et al., 2014) pathways (Fig. 3.21- 

3.26). We found that none of these pathways are associated with autophagy 

induction in S. pneumoniae infection.  

We also studied the role of NOD2 using muramyl dipeptide (Girardin et 

al., 2003), a bacterial peptidoglycan (Fig.3.7), and found that it does not induce 

autophagy in murine BMDMs. It may be that extracellular addition of this ligand 

alone is ineffective in producing intracellular effects and further studies using 

transfection reagents to enhance intracellular delivery will need to be 

performed. 

Similarly p38MAP kinase was studied by blocking with inhibitor (SB203580) 

and observed its activity with S. pneumoniae infection and LPS activation (Fig. 
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3.28). It was demonstrated that this enzyme is not involved in S. pneumoniae 

induced autophagy in murine BMDM. 

All data shown here in this chapter provide important information 

regarding autophagy induction in S. pneumoniae infection. Manipulation of this 

emerging immune signalling pathway could possibly treat this important 

pathogen. Further work may be required to study different PRRs and find the 

exact pathway involved in transfer of the autophagy signal from this 

extracellular pathogen to the interior of the cell. 

3.3.2 Conclusion 

In conclusion, the results shown here in this chapter demonstrate that 

infection with S. pneumoniae, an extracellular Gram positive pathogen induces 

autophagy in primary murine BMDMs which is a novel finding. Virulence factors 

of S. pneumoniae affect autophagy induction directly or through inflammasome 

activation. When we block autophagy, inflammasome activation is up-regulated 

while blocking inflammasome activation enhances autophagy following S. 

pneumoniae infection. 

It is now clear that in normal conditions the inflammasome might have a 

controlling effect on autophagy induction and that autophagy maintains a fine 

balance in inflammasome activation. We also demonstrated that autophagy acts 

to increase phagocytosis. The mechanism of this effect is not clear.
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4 In vivo Studies of Autophagy following S. 
pneumoniae Infection  
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4.1 Introduction 

S. pneumoniae infection induces autophagy as was observed in our in-

vitro study presented in this thesis earlier. We wished to further extend our 

study to analyse this pathway in an in vivo mouse model. 

Previous studies demonstrate that bacterial infection can induce 

autophagy in vivo. Pharmacological reinforcement of autophagy increases the 

clearance of pathogens while its inhibition leads to persistent infection (Junkins 

et al., 2013). Studies from our laboratory using in vivo infection models with 

Pseudomonas aeruginosa have also shown that autophagy can be observed in 

vivo. This was also shown that pharmacological manipulation of this process can 

influence the outcome of infection and the degree of inflammation produced 

(Jabir et al., 2014). Autophagy induction in S. pneumoniae infection has not 

been studied in vivo.  

Here, we set out to determine if autophagy could be observed in an in 

vivo model of S. pneumoniae. We used an intraperitoneal (i.p) infection model 

in mice and observed the effects of S. pneumoniae. Pulmonary infection in a 

mouse model is difficult to study since the onset is over 24 – 48 hours with 

variation in timing between animals. This would necessitate prolonged 

administration of drugs to alter the level of autophagy with consequent 

problems in toxicity. 

 Intraperitoneal infection is a convenient model to determine the 

presence and role of autophagy after infection, although it is an infrequent site 

of infection with S. pneumoniae. The onset of infection after i.p. inoculation is 

rapid and synchronous between animals, allowing the effects of drugs to alter 

the degree of autophagy to be studied much more easily.  
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4.2 Results 

4.2.1 Autophagy induction in in vivo mouse model of S. 
pneumoniae infection 

We used a mouse model of S. pneumoniae infection to observe autophagy 

induction. We also demonstrated the effects of autophagy inducer and inhibitor 

drugs. C57BL/6 mice were randomly distributed in to six groups (n= 3) mice 

each. The groups were designated as control groups (n= 3) and study groups (n= 

3). The control groups were injected i.p. with sterile PBS, Rapamycin or 3MA 

(Harris et al., 2011, Kim et al., 2012) while the study groups were injected with 

D39 WT (1x107) alone, or together with Rapamycin or 3MA. Mice were left for 6 

hours and observed for vital signs during this time. Blood and peritoneal lavage 

were then collected from mice aseptically and analysed for autophagy, 

phagocytosis and inflammasome activation. 

First, the cell lysates were analysed for autophagy induction by 

immunoblotting of LC3 autophagy protein (Fig. 4.1). This showed that infection 

increased the proportion of LC3 II in the peritoneal lavage cells. The addition of 

3-MA inhibited S. pneumoniae induced autophagy markedly. Rapamycin on its 

own also induced an increase in LC3 II as expected. When added in addition to 

infection, there was a very minor increase in the amount of LC3 II.  
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Figure 4.1 3MA inhibits S. pneumoniae induced Autophagy in vivo 

Representative western blot from cells (macrophages) from peritoneal lavage of mice 

infected with S. pneumoniae alone, with Rapamycin or 3MA. 

Mice were injected (i.p.) with PBS (5 ml), Rapamycin (1.5 mg/ kg), 3MA (30 mg/ kg) as 

control or infected with S. pneumoniae D39 WT (1X107) alone, with Rapamycin or with 

3MA for 6 hours. Peritoneal lavage was then collected and cell lysates were analysed for 

LC3 proteins by western blot. The blot was stripped and re-probed for β-tubulin protein 

as loading control.  
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4.2.2 Role of autophagy in S. pneumoniae clearance during in 
vivo infection 

We next investigated the role of autophagy in S. pneumoniae clearance by 

the peritoneal macrophages and other scavenger cells in vivo. Previous studies 

demonstrate that bacterial clearance during Pseudomonas aeroginosa infection 

is increased by pharmacological reinforcement of autophagy while inhibition of 

this pathway decreases the clearance (Junkins et al., 2013). 

4.2.2.1 Autophagy up-regulated the clearance of S. pneumoniae in vivo 

Mice were infected with S. pneumoniae alone and along with Rapamycin 

or 3MA. Peritoneal lavage was collected and plated on blood agar to grow the 

extracellular bacteria. S. pneumoniae CFU counts from control and test groups 

of mice were performed to observe the effect of autophagy as shown (Fig. 4.2).  
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Figure 4.2 Inhibition of Autophagy increased CFU of S. pneumoniae in the 
peritoneal lavage 

Representative bar graph of the CFU counts in peritoneal lavage from mice infected 

with S. pneumoniae D39 WT alone and with Rapamycin or 3MA. 

Mice were injected with PBS, or infected with S. pneumonia (D39 WT; 1X107), D39 with 

Rapamycin (D39 + R; 1.5 g/ kg) and D39 with 3MA (D39 + 3MA; 30 mg/ kg) for 6 hours. 

Peritoneal lavage was analysed and bacterial CFU counts performed. The bars show 

means of CFU counts in in three different mice and error bars are SEM. Asterisks 

indicate significant difference from infection alone (p < 0.05) in the groups. 

The results show that inhibition of autophagy with 3-MA produced a small 

but significant increase in the numbers of bacteria recovered from the 

peritoneal cavity. Rapamycin produced a small but significant decrease in the 

numbers of recovered bacteria. These results suggest that autophagy enhances 

clearance of the organism in vivo in this infection model.  
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4.2.2.2 Effect of autophagy on phagocytosis of S. pneumoniae 

Mice were infected with S. pneumoniae alone and along with Rapamycin 

or 3MA as above. Peritoneal lavage was collected in centrifuge tubes and spun 

down at 100g for 5 minutes. The cell pellet was washed three times and re-

suspended in PBS. Cells were lysed with 0.1 % Triton- X100 and the lysates were 

analysed for viable bacterial counts through colony counting. 

 

Figure 4.3 Autophagy up-regulates phagocytosis of S. pneumoniae in vivo 

Representative bar graph of the CFU counts from lysates of peritoneal lavage cells from 

mice infected with S. pneumoniae D39 WT alone and with Rapamycin or 3MA. 

Mice were injected with PBS, or infected with S. pneumoniae (D39 WT; 1X107), D39 with 

Rapamycin (D39+R; 1.5 mg / kg) and D39 with 3MA (D39+3MA; 30 mg / kg) for 6 hours. 

Cells were collected from peritoneal lavage and the lysates were analysed for bacterial 

CFU counts. The bars show means of CFU counts in in three different mice and error 

bars are SEM. The results are non-significant (ns). 

 

The results show that re-enforcement of autophagy with Rapamycin 

produced a small non-significant increase in the numbers of bacteria recovered 

from the peritoneal lavage cell lysates. 3MA produced a small decrease in the 

numbers of recovered bacteria. These results suggest that autophagy enhances 

clearance of the S. pneumoniae in vivo in this infection model – this needs 

further confirmation. 
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4.2.3 Influence of autophagy in S. pneumoniae induced 
inflammasome activation in vivo 

In in vitro experiments, we demonstrated previously that autophagy 

induction down-regulated inflammasome and vice versa. Next, we investigated 

the role of autophagy induction in S. pneumoniae induced inflammasome 

activation in this in vivo model. Mice were infected with S. pneumoniae alone or 

with Rapamycin or 3MA. Blood was collected from mice and serum samples were 

analysed for the inflammatory cytokines IL-1β and TNF- by ELISA as shown (Fig. 

4.4).  
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Figure 4.4 Autophagy induction down regulates cytokine production in in 

vivo infection with S. pneumoniae 

(a) Representative bar graph of IL-1β in serum of mice infected with S. pneumoniae 

with and without Rapamycin or 3MA. Mice were injected with PBS (5 ml), Rapamycin 

(Rapa; 1.5 g/ kg), 3MA (30 mg/ kg) or infected with S. pneumoniae alone (D39; 1X107) 

or D39 and Rapamycin (D39 Rapa) or D39 and 3MA (D39 3MA) for 6 hours. Bars are means 

of IL-1β determinations from three mice and error bars are SEM. ns, not significant. 

(b) As (a) but for TNF-. * indicates a significant difference in Rapamycin (D39 Rapa) 

form D39 alone when analysed by unpaired t- test, (p < 0.05) 

 

This experiment shows that although there was activation of the 

inflammasome by infection in vivo, the levels of IL-1 produced were rather low. 

The addition of rapamycin or 3-MA did not produce any significant differences in 

the levels of IL-1β. TNF- production after infection was more robust, and did 

show a drop in the presence of rapamycin. Although suggesting that increasing 

autophagy might thus limit TNF production. These results require further 

confirmation.  
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4.2.4 Influence of autophagy on protein content of peritoneal 
fluid in S. pneumoniae infection 

We also determined the protein content of peritoneal lavage from mice 

infected with S. pneumoniae alone and with Rapamycin or 3MA (Fig. 4.5). This is 

an indication of the degree of inflammation within the peritoneal cavity. The 

results show a marked increase in the protein content of peritoneal fluid 

following infection. This was increased significantly by the inhibitor of 

autophagy, 3-MA. 

 

Figure 4.5 Autophagy inhibition increases protein content of peritoneal fluid 

in S. pneumoniae infection 

Representative bar graph of protein content in the peritoneal lavage of mice infected 

with S. pneumoniae alone or with Rapamycin and 3MA. Mice were treated and infected 

as shown. Bars show mean of 3 individual determinations; error bars are SEM. ** 

indicates a significant difference form D39 infected mice alone (p < 0.01). ns, not 

significant.  
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4.3 Discussion 

Although the experiments contained within this chapter are best viewed 

as an initial study, they do show that autophagy can be observed in vivo. These 

observations suggest that there may be important biological roles for this 

pathway in the host defence and inflammation. 

The peritoneal infection model was a potent stimulus to induction of 

autophagy in cells accumulating within the peritoneal cavity. The resident 

population of cells in this location are macrophages. There will be an influx of 

neutrophils following infection with S. pneumoniae. So it is most likely that the 

results we obtained are from a composite of these cell types. In further studies, 

the cell types present would need to be quantified, ideally using cell surface 

markers and flow cytometry. 

Pharmacological manipulation of the autophagocytic response was also 

successful. 3-MA was a potent inhibitor of autophagy. Rapamycin was an 

effective inducer of autophagy on its own (Fig. 4.1), although it did not enhance 

to any great degree the amount of autophagy following infection. In further 

studies, additional inhibitors and inducers of autophagy could be used to 

strengthen the conclusions of the studies. 

Our in vitro experiments have shown that inhibiting autophagy reduced 

the uptake of viable S. pneumoniae, suggesting that autophagy was important in 

promoting phagocytosis. The results shown in (Fig. 4.2, 4.3) suggest that this is 

also true in vivo. In the presence of 3-MA there was an increase in the numbers 

of bacteria recovered from the peritoneal cavity and some decrease in the 

numbers of internalized bacteria. However, further experiments would be 

required to substantiate these conclusions. 

We also examined the influence of infection and autophagy on 

inflammatory cytokine production. Intraperitoneal infection produced increase 

in serum levels of both IL-1 and TNF-Manipulating autophagy with 3-MA and 

rapamycin did not produce a large effect on the production of these cytokines. 

The variation in the levels measured was also rather large. IL-1 levels were also 
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not high, again making interpretation difficult. Further work measuring these 

cytokine levels over time and at later time points will be required.
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5 Infection with S. pneumoniae induces 
autophagy, phagocytosis and neutrophil 
extracellular traps in human neutrophils  
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5.1 Introduction 

Polymorphonuclear neutrophils are the first line of defence against 

infection and provide strong immunity to the body by eliminating invading 

pathogens using multiple strategies. They are the most abundant cells amongst 

leukocytes and are one of the principal effectors of the immune system 

(Kolaczkowska and Kubes, 2013). 

Previously, neutrophils were believed to kill pathogens through 

phagocytosis and secretion of antimicrobial molecules but recently a newer 

mechanism of trapping and killing invading pathogens called neutrophil 

extracellular traps (NETs) has emerged. This has links with phagocytosis and 

possibly the autophagy pathway (Brinkmann et al., 2004).  

When neutrophils are activated by some invading pathogens, they 

commence killing of pathogens by activation of phagocytosis and release of 

molecules from their intracellular granules. This then leads to release of their 

nuclear material to form a mesh-like structure – a neutrophil extracellular trap 

(NET) -  through a process called (NETosis) which is  used for trapping and killing 

pathogens (Brinkmann et al., 2004). 

The main function of neutrophil leukocytes is to combat invading 

pathogens (Nathan, 2006). When pathogens invade, they are first detected by 

resident tissue macrophages and some other sentinel cells, which then initiate a 

signal to circulating neutrophils by releasing chemical mediators into the blood 

and body fluids. Neutrophil leukocytes are then activated and rapidly recruited 

to the site of infection where they start phagocytosis, degranulation and release 

of chemical mediators, NET formation and possibly autophagy in response to 

infection. 

NETs released by neutrophils are composed of de-condensed nuclear 

material and antimicrobial proteins which can entrap and kill multiple invading 

pathogens including bacteria, fungi and parasites (Papayannopoulos and 

Zychlinsky, 2009). Neutrophils have a short life span and die quickly during 

infection when they are activated, and NET generation may contribute to this 

early death (Pillay et al., 2010). 
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Recent research has suggested a relationship between autophagy and NET 

formation by neutrophils. Enhancing autophagy with rapamycin, an inhibitor of 

mammalian target of rapamycin (mTOR) accelerated NET formation when 

neutrophils were treated with a microbial component (fMLP) formyl-methionyl 

leucyl phenylalanine (Itakura and McCarty, 2013). This could be a direct action 

of mTOR as an inhibitor of NETosis or could indicate that autophagy per se is 

essential for NET formation. 

We hypothesized that neutrophil activation with S. pneumoniae induces 

phagocytosis, autophagy and NET formation, and that autophagy may be a 

requirement for NET formation. We have already demonstrated autophagy 

induction in primary murine BMDMs and in this section we present studies using 

human neutrophils infected with different strains of S. pneumoniae.  

The induction of autophagy, phagocytosis and NETosis and their 

relationship was demonstrated using different techniques and different 

incubation conditions. We further investigated the relationship of these 

pathways with inflammasome activation in response to S. pneumoniae infection.  
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5.2 Results 

5.2.1 Autophagy induction in human neutrophils infected with S. 
pneumoniae using immunofluorescence (IF) and western 
blot (WB) techniques 

First, we set out to determine whether infection of human neutrophils 

induced autophagy. We used purified human neutrophils and following infection 

stained them for LC3 and quantified the numbers of autophagocytic puncta 

formed (Fig. 5.1a and b). This showed that infection with both D39 WT and D39 

Ply induced autophagy, similar to the results seen with the positive control, 

rapamycin. This was confirmed by immunoblotting for LC3 following infection 

(Fig. 5.1c). The ratio of LC3 II to tubulin increased significantly (Fig. 5.1d) 

following infection with both D39 WT and D39 Ply, confirming that infection of 

human neutrophils by S. pneumoniae induced autophagy. 

We further demonstrated that there is an increase in LC3 II flux through 

the autophagocytic pathway by repeating western blot in the presence of 

inhibitors of lysosomal degradation (Fig. 5.3, 5.4). This further increased the 

amounts of LC3 II following infection, showing that the increase in observed LC3 

was due to greater flux through the autophagocytic pathway. This data showed 

increased conversion of LC3 I to LC3 II in cells pre-treated with lysosomal 

inhibitors such as Pepstatin A, E64d, and Bafilomycin A1. These inhibitors 

prevent loss of LC3 II during lysosomal degradation by preventing fusion between 

autophagosome with lysosomes.  
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Figure 5.1 Autophagy induction in human neutrophils infected with S. 

pneumoniae. 

(a) Immunofluorescence was performed for LC3 protein levels in untreated (basal) 

neutrophils as negative control, treated with Rapamycin (50μg/ ml) as positive control 

of autophagy and infected with S. pneumoniae strains D39 WT and D39 ΔPly at an MOI of 

10 as indicated. Fluorescent microscopy was performed to visualize LC3 (green) and 

nuclear (blue) staining. Scale bar is 50μm. 

(b) Bar graph showing numbers of LC3 puncta/ cell (counted in 60 cells in different 

views). Columns show mean; error bars are SEM. Asterisks indicate statistical 

significance from basal (p < 0.05). 

(c) Western blot analysis of LC3 I and LC3 II proteins in human neutrophils left 

unstimulated (B), treated with Rapamycin (R; 50μg / ml)  as positive control of 

autophagy and infected with S. pneumoniae strains D39 WT and D39 ΔPly at an MOI of 

10 as indicated. The same blot was stripped and re-probed for β- tubulin protein as 

loading control as shown. 

(d) Densitometry measurement of the ratio of LC3 II/ β- tubulin for two different 

representative blots from independent experiments. Asterisks indicates statistically 

significant difference from basal,* indicates p < 0.05 and ** indicates p < 0.01.  
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As shown in Figure 5.1, autophagy was effectively induced in human 

neutrophils following infection with S. pneumoniae, as assayed by both the 

appearance of LC3 puncta (Fig. 5.1a) and conversion of LC3 I to II (Fig. 5.1c). 

Autophagy signal is higher in pneumolysin deficient strain indicating a 

relationship with inflammasome activation as shown by immunoblotting for LC3 

protein (Fig. 5.1d). 

5.2.2 Dependence of autophagy on multiplicity of infection 

Next, we determined how autophagy induction depended on the 

multiplicity of infection. Neutrophils were infected with either D39 WT or D39 

Ply at different MOIs and then assayed for the content of LC3 II (Fig. 5.2). At an 

MOI of 10, both these strains produced a significant increase in the ratio of LC3 II 

to β- tubulin, indicating an increase in autophagy.  
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Figure 5.2 Dependence of autophagy on multiplicity of infection 

(a) Representative western blot image of LC3 (Atg8) protein using human neutrophils 

infected with S. pneumonia at different MOIs. Cells left uninfected (B), treated with 

Rapamycin (R; 25μg / ml) or infected with S. pneumoniae strains D39 WT and D39 ΔPly 

as shown. 

(b) Densitometry analysis of LC3 II/ β- tubulin (two independent experiments). Columns 

are mean values; error bars are SEM. ** indicates significant difference from basal, p < 

0.01, (ns) non-significant. 

 

As shown in the (Fig. 5.2b), columns of LC3 II relative to β- tubulin, 

autophagy induction following infection with S.pneumoniae is dependent on 

multiplicity of infection, as assayed by the conversion of LC3 I to LC3 II. 

Autophagy induction is non- significant at an MOI of 2 and 5 but there is 

significant increase at an MOI of 10 using S. pneumoniae strains D39 WT and D39 

ΔPly as shown.  
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5.2.3 Autophagy flux is increased following infection of 
neutrophils with S. pneumoniae 

To determine if infection with S. pneumonia increased flux through the 

autophagocytic pathway, lysosomal proteases were inhibited with E64d and 

Pepstatin A or by preventing fusion autophagosomes with lysosomes using 

bafilomycin A1. Importantly under these conditions, there was not any 

significant increase in cell death due to cytotoxicity of the drugs as measured by 

the release of lactate dehydrogenase (LDH) from both treated and untreated 

cells (data not shown). 

5.2.3.1 Increased autophagy flux measured using lysosomal protease 
inhibitors E64d and Pepstatin A 

The lysosomal degradation of LC3 protein was blocked by pre-treating 

neutrophils with E64d and Pepstatin A (Tanida et al., 2005) for 60 minutes. The 

cells were then infected with S. pneumoniae strains without changing media as 

shown in Figure 5.3. This increased the amount of LC3 II produced following 

infection when analysed by western blot. This indicated that autophagy flux was 

increased in the infected cells.  
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Figure 5.3 Infection with S. pneumoniae increases autophagocytic flux in 

human neutrophils 

Representative western blot analysis of LC3 I and LC3 II levels in human neutrophils pre-

treated as indicated with E64d (10µg/ ml) and Pepstatin A (10μg / ml) as compared to 

untreated cells. Cells were left un-stimulated (B), treated with Rapamycin (R; 25μg/ 

ml), or infected with S. pneumoniae strains D39 WT and D39 ΔPly (10 MOI; 4 hours) in 

the presence (+) or absence (-) of E64d and Pepstatin A. 

 

The increase in autophagy signal indicated that autophagy flux was 

increased in cells treated with lysosomal inhibitor drugs.  
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5.2.3.2 Autophagy flux using lysosomal inhibitor Bafilomycin A1 

Bafilomycin A1 is an inhibitor of the late phase of the autophagy pathway. 

It blocks fusion of the autophagosome with the lysosome (Yamamoto et al., 

1998). Cells were pre-treated with Bafilomycin A1 (50 nM) for 60 minutes and 

then infected with S. pneumoniae. As shown in Figure 4.4, bafilomycin A1 

treatment increased the amounts of LC3 II produced following infection, 

indicating an increase in autophagocytic flux. 

 

Figure 5.4 Infection with S. pneumoniae increases autophagocytic flux in 

human neutrophils 

Representative western blot analysis of LC3 protein levels in human neutrophils pre-

treated with of Bafilomycin A1 (50 nM) as indicated. Cells were then left un-stimulated 

(B), treated with Rapamycin (Rap; 25μg / ml), or infected with S. pneumoniae D39 WT 

(10 MOI) for the indicted times with (+) or without (-) inhibitor drug. 

The observed autophagic flux is increased in infected cells pre-treated 

with this inhibitor drug.  
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5.2.4 Blocking autophagy by chemical and genetic methods 

Next, we studied the functional effects of autophagy by inhibiting the 

process using chemical inhibitors and siRNA knock down. Under these conditions, 

there was not any significant increase in cell death due to cytotoxicity of 3MA or 

siRNA as measured by the release of lactate dehydrogenase from both treated 

and untreated cells (data not shown). 

5.2.4.1 Autophagy inhibition by 3-methyladenine (3-MA) 

Purified human neutrophils were treated with 3-MA, a pharmacological 

agent known to block autophagosome formation by inhibiting class-III 

phosphatidylinositol-3-kinase (PI-3K III). Neutrophils were pre- treated with 3MA 

(10mM) for 60 minutes (Seglen and Gordon, 1982, Wu et al., 2010) and then 

infected with S. pneumoniae. 

Immunofluorescence and western blot techniques were performed on 3MA 

treated and untreated cells. Fluorescent microscopy was performed to observe 

LC3 puncta and cell lysates were analysed by western blot for LC3 I and II 

isoforms. As shown in figure 5.5, 3-MA produced a marked inhibition of 

autophagy, in both assay of LC3 puncta formation, and in inhibiting the 

formation of LC3 II.  



207 
 

 

Figure 5.5 3-Methyl-adenine inhibits autophagy in human neutrophils 

(a) Representative immunofluorescence images of LC3 puncta in human neutrophils. 

Cells were left uninfected (Basal), treated with Rapamycin (Rapa; 25µg / ml) or 

infected with S. pneumoniae strains D39 WT and D39 ΔPly at an MOI of 10 for 4 hours in 

the presence  or absence  of  3MA. Cells were stained with anti-LC3 (green) and (DAPI) 

to visualize the nuclei (blue). Scale bar is 50μm. 

(b) Quantification of average number of LC3 puncta present per cell from three 

independent experiments (counted in 60 cells in different views) following treatments 

and infections as indicated. ** shows significant decrease in the number of puncta in 

cells treated with 3-MA, p < 0.01. 

(c) Western blot analysis of LC3 I and LC3 II proteins levels in human neutrophils 

uninfected (B) or treated with Rapamycin (R; 25µg/ ml) or infected with S. pneumoniae 

strains D39 WT and D39 ΔPly (10MOI) for 4 hours in the presence (+) or absence (-) of 

(10 mM) 3-MA. 

(d) Densitometry analysis of the autophagy signal in neutrophils treated with 3MA and 

without treatment. Columns are means of LC3-II/ β- tubulin determinations; error bars 

are SEM. ** denotes significant reduction in autophagy signal in cells treated with 3MA 

as compared to untreated cells, p < 0.01 (2 independent experiments).  
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5.2.4.2 Autophagy knock down using siRNA to Atg5 gene 

Autophagy-related (Atg) proteins are responsible for autophagy and 

genetic knock down of essential Atg genes can down regulate autophagy. The 

Atg5 autophagy gene in neutrophils was knocked down by electroporation with 

Atg5 siRNA. Viability was determined by 7-AAD staining and maintained at > 80 % 

after overnight incubation as shown in figure 2.5 in material methods section. 

Cells were then infected with S. pneumoniae. Immunofluorescence for LC3 

puncta and western blot analysis for LC3 I and II was then performed.  
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Figure 5.6 S. pneumoniae induced autophagy is Atg5 dependent  

(a) Representative immunofluorescence images of LC3 puncta in neutrophils treated as 

indicated. Cells were left uninfected (Basal), treated with Rapamycin (Rapa) or infected 

with S. pneumoniae strains D39 WT and D39 ΔPly at an MOI of 10. Cells were stained 

with anti-LC3 (green) and DAPI to visualize nuclei (blue). 

(b) Quantification of LC3 puncta present per cell (counted in 60 cells in different views) 

following treatments and infections as indicated. Asterisks represent significant 

difference between control siRNA and Atg5 siRNA, p < 0.005. 

(c) Representative western blot analysis from lysates of neutrophils treated with siRNA 

for Atg5 and probed for the proteins as indicated. Cells were left uninfected (basal), 

treated with Rapamycin (25µg/ ml) or infected with S. pneumoniae strains D39 WT and 

D39 ∆Ply at an MOI of 10. The blot was stripped and re-probed for β- tubulin protein as 

a loading control. 

(d) Densitometry analysis of LC3 signal. Columns are the means of LC3 II 

determinations; error bars are SEM. The asterisks showing significant reduction in Atg5 

knock down cells, p < 0.05 (2 independent experiments). 

 

As shown in figure 5.6, knock down of Atg5 effectively inhibited 

autophagy following infection, as assayed by both the appearance of LC3 puncta 

and conversion of LC3 I to II. Efficient knock down of Atg5 was confirmed by 

immunoblotting for the Atg5 protein (Fig. 5.6c). 

Note that the ATG5 protein is covalently conjugated to ATG12 on the 

induction of autophagy, and that the signal shown in the immunoblot is the band 

that represents this ATG5-ATG12 conjugate. This is thus only a signal under 

conditions where autophagy is induced with rapamycin or infection. When 

treated with siRNA to Atg5 this signal is considerably attenuated.  
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5.2.5 Relationship of autophagy with inflammasome activation 

Next, we determined the relationship between induction of autophagy 

and activation of the inflammasome following infection. 

5.2.5.1 Inflammasome activation by S. pneumoniae D39 WT and D39 ΔPly 

Neutrophils were infected with S. pneumoniae strains D39 WT and D39 

ΔPly and then analysed for inflammatory cytokine IL-1β production (Fig. 5.7). IL-

1 β levels were significantly higher after infection with S. pneumoniae strain D39 

WT as compared to the D39 ΔPly strain lacking pneumolysin. Thus, 

inflammasome activation in neutrophils is dependent on pneumolysin, as found 

in murine BMDMs.  
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Figure 5.7 Inflammasome activation by S. pneumoniae strains D39 WT and 

D39 ΔPly  

Bar graph showing inflammatory cytokine interleukin-1β (IL-1β) levels released from 

neutrophils left un-stimulated (Basal), or infected with D39 WT and D39 ΔPly for the 

times indicated. Asterisks indicate highly significant levels of inflammasome activation 

(IL-1β) in neutrophils stimulated with strain D39 WT as compared its pneumolysin 

deficient counterpart. Bars are means of triplicates of IL-1β (pg / ml) determinations; error 

bars are SEM, p < 0.001.  
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5.2.5.2 Influence of autophagy on inflammasome activation by S. 
pneumoniae  

To explore the relationship of autophagy with inflammasome activation, 

autophagy in neutrophils was inhibited by treating them with 3MA or by knock 

down of the Atg5 gene using siRNA. Cells were then infected and analysed for IL-

1β production (Fig. 5.8). When neutrophils were treated with the chemical 

inhibitor 3-MA, there was a significant increase in the amount of IL-1released 

from the cells (Fig. 5.8a).  

However, knock down of the essential autophagy gene Atg5 produced a 

significant increase in the amount of IL-1released (Fig. 5.8b). This was similar 

to the results seen when autophagy was inhibited in BMDMs. We believe that this 

disparity in the results obtained with 3-MA and siRNA to Atg5 most likely reflects 

a non-specific effect of 3-MA on the neutrophils ability to process pro-IL1and 

that the more specific inhibitory effects of siRNA knockdown of ATG5 suggest 

that as with BMDMs, autophagy normally acts to limit IL-1release following S. 

pneumoniae infection.  
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Figure 5.8 Inflammasome activation by S. pneumoniae strains D39 WT and 

D39 ΔPly in neutrophils knocked down for autophagy 

(a) Representative bar graph showing interleukin-1β (IL-1β) levels produced by 

neutrophils left un-stimulated (Basal), or infected with S. pneumoniae strain D39 WT for 

4 hours in the presence or absence of 3-MA (10 mM). Asterisks indicate a significant 

difference between 3MA treated and untreated cells. Bars are means of IL-1β levels in 

triplicate determinations; error bars are SEM, p < 0.01. 

(b) As (a) but in cells transfected with control siRNA or Atg5 siRNA. Asterisks indicate a 

significant difference between IL-1β levels produced by these groups. Bars are means of 

triplicates of IL-1β determinations; error bars are SEM, * p < 0.05, ** p < 0.01.  
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5.2.6 Phagocytosis and killing of S. pneumoniae by human 
neutrophils 

Human neutrophils have the ability to phagocytose and kill invading 

pathogens. Phagocytosis of S. pneumoniae strains D39 WT and D39 ΔPly by 

neutrophils was demonstrated at different time points according to the method 

described by (Hampton et al., 1994, Hampton and Winterbourn, 1999), as 

described in the Materials and Methods. This technique allowed the 

determination of the rates of uptake and killing of the microbe by neutrophils 

following incubation with S. pneumoniae.  
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5.2.6.1 Comparison of phagocytosis and killing of S. pneumoniae strains 
D39 WT and D39 ΔPly by human neutrophils 

First, we measured the rates of phagocytosis and killing of S. pneumoniae 

D39 WT and D39 Ply by human neutrophils (Fig. 5.9). 
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Figure 5.9 Phagocytosis and killing of S. pneumoniae strains D39 WT and D39 

ΔPly by human neutrophils 

S. pneumoniae strains D39 WT and D39 ΔPly were grown alone in medium as control or 

with neutrophils infected at a MOI of 10. 

(a) CFU count of S. pneumoniae D39 WT in complete medium alone (circles), or in cell 

supernatant (squares) and cell lysates (triangles) from infected neutrophils at different 

time points. CFU counts shown are the mean of triplicates for each time point; error 

bars are SEM. 

(b) As (a), but with S. pneumoniae D39 ΔPly. 

(c) Comparison of ln (extracellular bacteria) over time for S. pneumoniae strains D39 

WT (circles) and D39 ΔPly (squares).  

(d) Calculated values for kk at indicated time points for S. pneumoniae D39 WT. Points 

are means of triplicate determinations; error bars are SD. Dotted line shows the mean 

value across all time points. 

(e) As (d), but for the S. pneumoniae strain D39 ΔPly. 
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The analysis of these data allows the rates of phagocytosis and 

intracellular killing for the two strains to be derived. The rate of phagocytosis is 

calculated from the slope of the graphs shown in Figure 5.9c. The calculated 

rate constant of phagocytosis, kp, for D39 WT was 0.0149 min-1 (95 % confidence 

limits 0.0120 – 0.0178) and for D39 ΔPly was 0.0217 min-1 (95 % confidence limits 

0.0169 - 0.0266). This difference was significant when the data were compared 

using a non- linear regression best fit model (p < 0.016).  

Thus, the rate of phagocytosis of the D39 ΔPly strain was significantly 

higher than the D39 WT strain, indicating that Ply reduces the rate of 

phagocytosis by human neutrophils. The rate constant for intracellular killing 

was calculated at each time point, as described in the Methods section and 

shown for the two strains in Fig 5.9d and e. The mean value for all the time 

points was 1.381 min-1 (sem 0.115) for the D39 WT strain and 0.639 min-1 (sem 

0.135) for the D39 ΔPly strain, a significant difference (p < 0.0031, two-sample t 

test).  

Thus, intracellular killing was significantly slower in the D39 ΔPly strain, 

suggesting that Ply acts to accelerate intracellular killing. This is considered 

further in the discussion.  
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5.2.6.2 Effects of blocking autophagy on the phagocytosis and killing of S. 

pneumoniae by human neutrophils  

Autophagy in neutrophils was inhibited using 3MA and colony counts of 

extra- and intra- cellular bacteria determined as before (Fig. 5.10). 
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Figure 5.10 Effect of 3-MA on phagocytosis and killing of S. pneumoniae strain 

D39 WT by human neutrophils 

S. pneumoniae strains D39 WT were grown alone in medium as control or with 3MA 

treated and untreated neutrophils infected at an MOI of 10. 

(a) CFU count of S. pneumoniae D39 WT in complete medium alone (circles), or in cell 

supernatant (squares) and cell lysates (triangles) from infected neutrophils at different 

time points. CFU counts shown are the mean of triplicates for each time point; error 

bars are SEM. 

(b) As (a) in the presence of 10 mM 3-MA. 

(c) Comparison of ln(extracellular bacteria) over time in cell supernatant without 3-MA 

(circles) or in the presence of 3-MA (squares). 

(d) Calculated values for kk at indicated time points for S. pneumoniae D39 WT grown in 

neutrophils without 3MA treatment. Points are means of triplicate determinations; error 

bars are SD. Dotted line shows the mean value across all time points. 

(e) As (d), but for growth in 3-MA treated neutrophils  
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The analysis of these data allow the rates of phagocytosis and 

intracellular killing in the presence and absence of 3-MA to be derived. The rate 

of phagocytosis is calculated from the slope of the graphs shown in Figure 5.10c. 

The calculated rate constant of phagocytosis, kp, for cells grown in medium 

alone was 0.01646 min-1 (95 % confidence limits 0.0109 to 0.0220) and in the 

presence of 3-MA was 0.0104 min-1 (95 % confidence limits 0.00851 to 0.0124). 

This difference was significant when the data were compared using a non-linear 

regression best fit model (p < 0.0001). 

Thus, the rate of phagocytosis in the presence of 3-MA was significantly 

lower than the control value, indicating that when autophagy is inhibited the 

rate of phagocytosis of S. pneumoniae by human neutrophils is significantly 

reduced. The rate constant for intracellular killing was calculated at each time 

point, as described in the material and methods section and shown for the two 

strains in Fig. 5.10d and e. The mean value for the control at all the time points 

was 0.954 min-1 (sem 0.0738) and in the presence of 3-MA was 1.612 min-1 (sem 

0.0503), a significant difference (p < 0.0001, two-sample t- test).  

Thus, intracellular killing was significantly faster in the presence of 3-MA, 

suggesting that autophagy acts to limit intracellular killing. This is considered 

further in the discussion.  
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5.2.6.3 Effect of Atg5 knock down on the phagocytosis and killing of S. 
pneumoniae by human neutrophils 
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Figure 5.11 Phagocytosis and killing of S. pneumoniae D39 WT by human 

neutrophils knocked down for (Atg5) autophagy gene. 

As Figure 5.10, but comparing rates of phagocytosis and killing in cells in the presence 

and absence of siRNA to Atg5. 

 

We then inhibited autophagy by using knock down of Atg5 using siRNA and 

assayed the effects on uptake and killing of S. pneumoniae by human 

neutrophils. 

The analysis of these data allows the effects of Atg5 knock down on the 

rates of phagocytosis and intracellular killing to be derived. The rate of 

phagocytosis is calculated from the slope of the graphs shown in Figure 5.11c. 

The calculated rate constant of phagocytosis, kp, for cells grown with control 

siRNA alone was 0.01437 min-1 (95 % confidence limits 0.0118 to 0.0169) and in 

the presence of the Atg5 siRNA was 0.0104 min-1 (95 % confidence limits 0.00904 

to 0.0118). This difference was significant when the data were compared using a 

non-linear regression best fit model (p = 0.0053). 

Thus, the rate of phagocytosis when Atg5 was knocked down was 

significantly lower than the control value, indicating that when autophagy is 

inhibited the rate of phagocytosis of S. pneumoniae by human neutrophils is 

significantly reduced. The rate constant for intracellular killing was calculated 

at each time point, as described in the Materials and Methods section and shown 

for the two conditions in Figure 5.11 d and e. The mean value for the control 

siRNA at all the time points was 1.006 min-1 (sem 0.100) and in the presence of 

Atg5 siRNA was 1.890 min-1 (sem 0.134), a significant difference (p = 0.0007, 

two-sample t- test).  

Thus, intracellular killing was significantly faster when Atg5 was knocked 

down, suggesting that autophagy acts to limit intracellular killing. This is a very 

similar result to that seen when autophagy was inhibited using 3-MA. These 

results are considered further in the discussion.  
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5.2.7 Neutrophil extracellular trap (NET) generation by human 
neutrophils following infection with S. pneumoniae 

5.2.7.1 S. pneumoniae induces NETs 

Purified human neutrophils were re-suspended in RPMI medium containing 

human serum and infected with S. pneumoniae strains D39 WT. NET generation 

was assessed by staining preparations of cells for the neutrophil protein 

neutrophil elastase and for DNA using DAPI, as outlined in the Materials and 

Methods section. PMA was used as a positive control, as it is known to induce 

NET formation (Brinkmann et al., 2004). 

Following S. pneumoniae infection, we observed classical NET generation 

by human neutrophils, with the appearance of long strands of nuclear material 

decorated with neutrophil elastase (Fig. 5.12a) which was visualized from 1 hour 

and increased after 4 hours incubation. This was identical in appearance to NETs 

formed following administration of PMA.  Quantification of NET formation 

showed a highly significant rise in their formation following either PMA or 

pneumococcal infection (Fig. 5.12b).  
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Figure 5.12 Human neutrophils generate NETs in infection with S. 

pneumoniae. 

(a) Immunofluorescence image of neutrophils left untreated (Basal), treated with PMA 

(1µg/ ml) or infected with S. pneumoniae D39 WT at a MOI of 10 for 4 hours as 

indicated.  Cells were stained with anti-neutrophil elastase antibody (green) and the 

nuclear material with DAPI (blue). Scale bar is 50µm. 

(b) Number of neutrophils producing NETs per 100 of total cells in 3 different views with 

treatments as indicated; columns show mean and error bars are SEM. The asterisks show 

significant difference (p < 0.01, unpaired t- test) from basal.  
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5.2.8 Inhibition of autophagy attenuates NET generation in human 
neutrophils following infection with S. pneumoniae 

Recent research has shown that NET generation in neutrophils has some 

association with autophagy through the mTOR pathway (Itakura and McCarty, 

2013), but the exact mechanism is still unknown. We hypothesized that 

inhibition of autophagy by chemical or genetic methods might block NET 

generation by human neutrophils. 

5.2.8.1 Blocking autophagy with 3MA down regulate NETs generation 

When autophagy was inhibited using 3-MA, NET generation in neutrophils 

following infection with S. pneumoniae was significantly down regulated (Fig. 

5.13). This suggests that induction of autophagy is required for NET generation 

following infection.  
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Figure 5.13 NET generation in human neutrophils following infection is down 

regulated by inhibition of autophagy with 3MA. 

(a) Representative immunofluorescence image of human neutrophils infected 

with S. pneumoniae D39 WT at an MOI of 10 in the presence or absence of 3-MA. 

Cells were stained as in Figure 5.12a. 

(b) Number of neutrophils producing NETs per 100 of total in 3 different views with 

indicated treatments as in Figure 5.12b. ** indicates a significant difference from 

untreated cells (p < 0.01, unpaired t- test).  
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5.2.8.2 Knock down of Atg5 inhibits NET generation following infection 

Further to explore the relationship between autophagy and NET 

formation, we inhibited autophagy by knock down of Atg5 using siRNA. Following 

inhibition of autophagy by this means, NET formation following infection was 

again significantly down regulated (Fig. 5.14). 

 

Figure 5.14 Autophagy gene Atg5 knock down in human neutrophils down-

regulates NETs generation in infection with S. pneumoniae. 

As Fig 5.13b, but using knock down of ATG5 with Atg5 siRNA or control (C siRNA) as 

indicated with treatments and infections as shown. ** indicates a significant difference 

(p < 0.01, unpaired t- test) from control siRNA.  



229 
 

5.2.8.3 Effects of pneumococcal virulence factor pneumolysin on NETs 
trapping of bacteria. 

To investigate whether pneumolysin has an effect on bacterial trapping by 

NETs, bacterial strains D39 WT and D39 ΔPly were pre-stained with vibrant Blue 

and then used to infect neutrophils.  NET formation was then visualised as 

before and the numbers of bacteria entrapped in the NETS enumerated (Fig. 

5.15). Significantly more of the D39 ΔPly bacteria were present in NETs 

compared to the D39 WT. This indicates that pneumolysin attenuates bacterial 

trapping by NETs.  
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Figure 5.15 NET trapping of S. pneumoniae D39 WT and D39 ΔPly in human 

neutrophils 

(a) Immunofluorescence image of human neutrophils left untreated (Basal) or infected 

with S. pneumoniae D39 WT and D39 ΔPly (stained blue) at an MOI of 10 for 4 hours. 

Cells were stained with anti-neutrophil elastase antibody (green) and Sytox orange 

nucleic acid stain (red). 

(b) Bacterial counts (blue stained dots) of S. pneumoniae D39 WT and D39 ΔPly were 

taken at multiple views and mean SEM of counts were calculated per NET from different 

experiments. Columns are means of three independent views; error bars are SEM. 

Asterisks indicates a significant difference from D39 WT, p < 0.05 (unpaired t-test).  
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5.3 Discussion and conclusion 

Autophagy induction in human neutrophils following infection with S. 

pneumoniae was clearly demonstrated in vitro (Fig. 5.1 – 5.4). There was a 

stronger induction of autophagy with S. pneumoniae strain D39 ΔPly compared to 

D39 WT. This suggests that pneumolysin and associated inflammasome activation 

may affect autophagy induction in infection with this pathogen. Although this 

difference was not significant, the absolute difference between the strains was 

not huge. Pneumolysin is required for inflammasome activation following 

infection, and this may be responsible for the down regulation of autophagy. 

Equally, another mechanism may be responsible. 

We have shown here that autophagy plays an important role in the ability 

of human neutrophils to kill S. pneumoniae. Calculations from the kinetic 

analysis of killing by neutrophils suggests that when autophagy is inhibited there 

is a reduction in the rate constant for phagocytosis, kp but increase in the rate 

constant of intracellular killing, kk (Fig. 5.10 and 5.11). This would imply that 

autophagy is required for efficient phagocytosis of S. pneumoniae, but slows 

intracellular killing.  

Phagocytosis is known to have a relationship with autophagy. The study of 

(Sanjuan et al., 2007) found that LC3 was rapidly recruited to phagosomes which 

were then targeted to lysosomes, leading to formation of a phagolysosome and 

enhanced killing of the ingested organism. Interestingly, this occurred 

apparently without formation of the typical double-membrane autophagosomal 

structure. This process has been termed LC3- assisted phagocytosis. 

The results presented here seem to suggest an alternative mechanism is 

operating. In our experiments, autophagy increased the efficiency of 

phagocytosis of the pneumococcus. Given that it is an extracellular bacterium 

that is able to cause pathological effects, this difference in phagocytic rate is 

the most important in controlling of infection. Once internalised by neutrophils, 

even if the bacteria are not killed, they are not able to cause further damage. 

Autophagy also seemed to result in a diminution of intracellular killing. 

This could be because bacteria contained within autophagocytic vacuoles slow 
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down the direct entry of phagocytosed organisms into the lysosomal degradation 

pathway. It may also be because of an inhibitory effect of phagocytosed 

microbes on killing such that when phagocytosis is slowed, killing can proceed 

more rapidly. 

The results reported here also link autophagy with a novel mechanism in 

neutrophils for pathogen killing called NETosis, the generation of a mesh-like 

structure formed of nuclear material for trapping and killing bacteria 

(Brinkmann et al., 2004). S. pneumoniae strains D39 WT and D39 ΔPly induced 

NET generation, which was similar in both strains (Fig. 5.12). We made two 

novel observations relating to the role of NETs in killing of S. pneumonia.  

Firstly, the formation of NETS within neutrophils following infection was 

dependent on the autophagy pathway, since 3-MA and Atg5 knock down 

significantly inhibited NET formation (Fig. 5.13 and 5.14). Previous studies have 

suggested that autophagy is essential for NETosis induced by PMA. Typical 

autophagocytic vesicles are observed during the induction of NETs and inhibiting 

autophagy with wortmannin prevented NET formation (Remijsen et al., 2011).  

We extend these observations to show that autophagy is essential for NET 

formation following infection with S. pneumoniae. The exact role for autophagy 

in NET formation is not clear. A role for autophagy in NET formation may also 

account for the reduction in apparent phagocytosis when autophagy is inhibited, 

since under these conditions there will be fewer NETs and thus reduced 

extracellular killing. 

Secondly, pneumolysin inhibited the entrapment of bacteria within the 

NETs (Fig. 5.15). It is not yet clear exactly what actions of pneumolysin are 

important in evading capture by NETs. In general, pneumolysin acts on 

membranes to form a pore structure, accounting for its cytolytic activity. 

Although NETs induced by bacteria with and without pneumolysin appeared 

morphologically similar, it may be that alteration of the membrane structure of 

neutrophils by pneumolysin prevents effective NET formation allowing the 

bacteria to escape entrapment. Further work will help define the molecular 

mechanisms by which pneumolysin evades NETs. 
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To conclude, S. pneumoniae different strains activate and induce 

autophagy, phagocytosis and NETosis in human neutrophils which were 

demonstrated in this chapter. These finding clarified that autophagy is not only 

induced in murine BMDMs and some cell lines but can also be activated in human 

neutrophils which are important defence cells.
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6 General Discussion and Conclusions  
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6.1 Discussion 

S. pneumoniae is a significant human pathogen causing invasive disease in 

young children, elderly and immunocompromised people. Traditionally 

pneumococcal diseases are treated with antibiotics or prevented by 

pneumococcal vaccines. According to the NHS, pneumococcal conjugate vaccines 

(PCV) are effective against 13 serotypes while pneumococcal polysaccharide 

vaccines (PPV) provide protection from up to 23 serotypes in 50-70 % of severe 

diseases. The emerging resistant strains of S. pneumoniae can be difficult to 

treat and alternative antimicrobial strategies are required in high risk 

individuals. 

Autophagy is a conserved degradation pathway which has emerged as a 

potential new strategy for the control of a variety of microbial infections. This 

pathway has a potential role in treating many inflammatory and infectious 

diseases. Reinforcing autophagy with the use of rapamycin increases the 

clearance of certain microbes in vitro and in vivo (Junkins et al., 2014). 

Induction of autophagy in S. pneumoniae infection may help prevent lengthy 

antibiotic treatments and emergence of new multi-drug resistant strains. 

The main hypothesis of my study was that S. pneumoniae infection 

induces autophagy. We tested this hypothesis in vitro and in vivo, and the 

results presented in this thesis indicate that S. pneumoniae infection induced 

autophagy in primary murine BMDMs, human neutrophils and in a mouse model. 

We further studied autophagy in S. pneumoniae infection by inhibiting it 

pharmacologically with 3-methyladenine (3MA). It blocks autophagosome 

formation through the inhibition of type III phosphatidylinositol 3-kinases (PI3K 

III) required in the early stage of autophagosome formation. Inhibition of PI3K III 

by 3MA has been shown to inhibit starvation-induced autophagy (Lum et al., 

2005).  

Our results here showed that 3MA is also able to block S. pneumoniae 

induced autophagy as detected by immunofluorescence and western blot 

techniques. Many drugs including 3MA induce cell death at doses used for 

inhibition of autophagy (Sheng et al., 2013), but in our experiments the cell 

viability measured by LDH release was similar in murine BMDM and human 
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neutrophils treated and untreated with 3MA. We further confirmed autophagy 

induction in S. pneumoniae infection by studying of different Atg genes knock 

down and autophagy knock-out mice. 

We used two strains of S. pneumoniae D39 WT and D39 ΔPly (a 

pneumolysin deficient strain) and hypothesized that pneumolysin or associated 

inflammasome activation may down regulate autophagy induction. Pneumolysin 

intact and deficient strains were first confirmed by haemolysis activity assay and 

then used for infection. 

Our results demonstrated that autophagy induction was present in both 

D39 WT and D39 ∆Ply strains of S. pneumoniae. The pneumolysin intact strain 

consistently induced a weaker signal as compared to its pneumolysin deficient 

counterpart, although the absolute difference between these strains was not 

huge. This effect of ply on the autophagy induction may be direct or due to the 

associated inflammasome activation. Pneumolysin is a pore-forming toxin and 

important virulence factor of S. pneumoniae which activates the inflammasome 

and induces the release of inflammatory cytokines (Shoma et al., 2008). 

To further confirm the effect of inflammasome and associated casapase-1 

activation, we manipulated inflammasome activation and observed its effects on 

the induction of autophagy in murine BMDMs infected with S. pneumoniae D39 

WT. We first inhibited inflammasome activation by blocking caspase-1 with an 

irreversible inhibitor Z-YVAD-FMK (Slee et al., 1996) or genetic knock down by 

siRNA transfection.  We observed a significant increase in autophagy with S. 

pneumoniae infection when the activation of the inflammasome was blocked. 

The exact mechanism of autophagy up-regulation with inflammasome inhibition 

is not clearly understood. 

Next, we studied the effect of autophagy on inflammasome activation. 

Autophagy was inhibited pharmacologically with 3MA or genetically with siRNA 

transfection. Inhibition of S. pneumoniae induced autophagy up-regulated 

inflammasome activation. The exact mechanism by which autophagy induction 

inhibits inflammasome activation is not clearly understood. One possibility could 

be a direct interaction between autophagy proteins and inflammasome 

components, or may be an indirect inhibition of the inflammasome activity via 
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autophagic sequestration of mitochondria (Sun et al., 2014) and suppression of 

mitochondrial ROS required for inflammasome activation, or autophagic 

degradation of PAMPs and danger signals that are required for inflammasome 

activation. In the latter model, autophagic degradation of mutant superoxide 

dismutase, linked to a disease Amyotrophic-lateral-sclerosis has been proposed 

to limit the activation of caspase-1and IL-1β production (Meissner et al., 2008). 

All these findings indicate that both autophagy and inflammasome maintain a 

fine balance during infection. 

Next, we studied phagocytosis of S. pneumoniae by murine BMDM and 

human neutrophils. We hypothesized that autophagy may influence phagocytosis 

of S. pneumoniae. A previous study demonstrated that LC3 was rapidly recruited 

to phagosomes targeted to lysosomes and then leading to phagolysosome 

formation. Ingested microorganisms are killed without the formation of a double 

membrane autophagosome through this process of LC3-associated phagocytosis 

(Sanjuan et al., 2007). We investigated the role of autophagy in phagocytosis 

and found that its inhibition with 3MA or knock down with siRNA transfection 

down regulated phagocytosis of S. pneumoniae in both murine BMDM and human 

neutrophils. 

We also investigated the role of S. pneumoniae virulence factors in 

phagocytosis. Previous studies demonstrate that inhibition of virulence factors 

enhance pneumococcal clearance and phagocytosis (Quin et al., 2007). Our study 

here also shown the same results and found that inhibition of Ply up-regulated 

phagocytosis of S. pneumoniae which may be a direct effect or due to the 

associated inflammasome and complement activation. Furthermore, 

pneumolysin appears to aid the bacterium in avoiding killing by the innate 

immune cells. 

We further investigated a novel mechanism in neutrophils for 

extracellular trapping and killing pathogens called neutrophil extracellular traps 

or NETosis (Brinkmann et al., 2004). Previous studies have indicated that 

autophagy is essential for phorbol myristate acetate (PMA) induced NETosis, and 

inhibiting autophagy with wortmannin prevented NET formation (Remijsen et al., 

2011).  
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We hypothesized that NETs induced in S. pneumoniae infection may have 

a link with autophagy induction. We tested NET generation in infection with S. 

pneumoniae strains D39 WT and D39 ΔPly and found that both strains induced 

morphologically similar NETs. We made two novel observations relating to the 

role of NETs in killing of S. pneumonia.  

Firstly, NETs formation following infection with S. pneumoniae were 

dependent on the autophagy pathway, since 3MA and Atg5 gene knock down 

significantly inhibited NET generation. The exact role of autophagy in NET 

formation is not clearly understood. 

Secondly, we also found that pneumolysin inhibited the entrapment of S. 

pneumoniae D39 WT within the NETs. In general, pneumolysin is a pore-forming 

cytolytic toxin (Marriott et al., 2008) and its exact action in evading capture of 

S. pneumoniae by NETs is not clearly understood. Further work is needed to 

understand the exact molecular mechanisms by which pneumolysin evades NETs. 

Next, we studied the role of some TLR signalling pathways in autophagy 

induction with S. pneumoniae infection. TLRs are a major class of trans-

membrane receptors in the mammalian innate immune system. They detect 

pathogen-associated molecular patterns (PAMPs) and trigger signal transduction 

cascades to neutralize danger by the invading pathogen (Piras and Selvarajoo, 

2014).  

Firstly, we investigated the role of major adaptors proteins of TLR 

signalling in autophagy induction with S. pneumoniae infection. There are two 

major adaptors that bind to the TLR intracellular domain i.e. the myeloid 

differentiation primary response protein (MyD88) and TIR- domain-containing 

adapter-inducing interferon-β (TRIF) which upon activation lead to an 

inflammatory cascade and release inflammatory cytokines (Piras and Selvarajoo, 

2014).  

We inhibited TRIF and MyD88 using siRNA transfection or gene knock-out 

mice and then induced autophagy in BMDMs infected with S. pneumoniae strains 

D39 WT and D39 ΔPly. Our results demonstrated that autophagy induction in S. 

pneumoniae infection is independent of the key adaptor molecules TRIF and 
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MyD88. S. pneumoniae may use some unknown pathway to invoke intracellular 

response for autophagy induction. 

To further expand our understanding of the TLRs, we investigated the role 

of TLR4 which is believed to be activated by LPS and associates with both TRIF 

and MyD88 pathways for induction of inflammatory cytokines and type-1 

interferon secretion (Bell, 2008). TLR4 is also believed to serve as a sensor for 

autophagy induction through adaptor protein TRIF when stimulated with LPS (Xu 

et al., 2007). 

We first investigated autophagy induction in macrophages from TLR4-

defective (C3H/HeJ) mice having a mutation in the Lps gene. Macrophages from 

the control and mutated strains of these mice both induced autophagy in S. 

pneumonia infection when followed by the conversion of LC3 I to LC3 II.  

To further extend these observations, we used TLR4 -/- mice and induced 

autophagy in BMDMs with S. pneumoniae infection. We found that TLR4 -/- mice 

induced autophagy exactly the same way as WT mice when infected with S. 

pneumoniae strains D39 WT and D39 ΔPly. Our results indicated that autophagy 

induction with S. pneumoniae infection is independent of TLR4 pathway and 

some other unknown pathway may be used by this pathogen. 

Next, we also studied the role of TLR2 in autophagy induction. Previous 

studies have demonstrated that TLR2 is necessary for efficient clearance of S. 

pneumoniae colonisation and is critical for induction of autophagy and 

phagocytosis in S. aureus (van Rossum et al., 2005, Fang et al., 2014). We 

blocked TLR2 in murine BMDMs and induced autophagy with S. pneumoniae 

infection compared to an important TLR2 ligand Pam3CSK4. 

We found that autophagy was induced equally in TLR2 blocked cells and 

its isotype control when stimulated with S. pneumoniae strains D39 WT and D39 

ΔPly when compared with Pam3CSK. These observations indicated that TLR2 

pathway is not used by S. pneumonia for autophagy induction and some other 

unknown signalling pathway may be used which needs further exploration. 
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To further extend our search for the PRR signalling in S. pneumoniae 

induced autophagy, we studied the role of an intracellular PRR NOD2 which 

recognizes molecules containing a specific structure muramyl dipeptide present 

in peptidoglycans from certain bacteria (Girardin et al., 2003). We activated 

NOD2 using muramyl dipeptide (MDP) and its control (MDPc) for 6-24 hours. Our 

results demonstrated that autophagy was not induced in murine BMDMs in cells 

treated with MDP and MDPc. This indicated that NOD2 has no role in autophagy 

induction. 

Next, we investigated another potential pathway and looked for the 

effect of a Mitogen-activated protein kinase (P38-MAPK) in autophagy induction 

with S. pneumoniae infection. P38-MAP kinase pathway is involved in regulation 

of inflammasome and production of inflammatory cytokines (Yang et al., 2014). 

This pathway is also believed to induce autophagy in response to IFN- in 

macrophages (Matsuzawa et al., 2014). 

We blocked p38MAP kinase with its specific inhibitor SB203580 and 

autophagy was induced with S. pneumoniae D39 WT and D39 ΔPly, and LPS. 

Autophagy induction was not affected in cells blocked with p38MAP kinase 

inhibitor when infected with S. pneumoniae D39 WT and D39 ΔPly. This indicated 

that this pathway has no role in autophagy induction with S. pneumoniae 

infection. 

Finally we studied autophagy pathway in an in vivo mouse model and 

found that S. pneumoniae infection induced autophagy which was up-regulated 

by Rapamycin and inhibited by 3MA. Furthermore autophagy induction was 

associated with increased clearance of S. pneumoniae from the peritoneal cavity 

while blocking this pathway decreased the clearance of bacteria.  

Next, we also studied inflammasome activation in vivo and found that S. 

pneumoniae induced autophagy has some inhibitory effect as shown by the 

decrease of inflammatory cytokines in serum and protein content of peritoneal 

lavage. Furthermore, autophagy inhibition produced the opposite effects and 

inflammsome was up-regulated. 
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These findings confirmed our hypothesis both in vitro and in vivo. 

Autophagy and inflammasome maintain a fine balance which could be 

manipulated and used for controlling S. pneumoniae infections. 

6.2 Conclusion  

In conclusion, this thesis demonstrates that S. pneumoniae induces 

autophagy both in vitro and in vivo. Autophagy induction is a novel finding in S. 

pneumoniae infection. Both D39 WT and D39 ΔPly strains of S. pneumonia 

induced autophagy and phagocytosis in murine bone marrow derived 

macrophages and human neutrophils. There was a clear difference in the 

autophagy signal and phagocytosis induced by both these strains. Pneumolysin 

deficient strain induced stronger autophagy and phagocytosis as compared to the 

wild type strain. This indicates that pneumolysin might have some effect on 

these immune pathways besides the inflammasome activation against invading 

pathogens. 

When the inflammasome was chemically or genetically inhibited, 

S.pneumoniae induced autophagy was up-regulated. This suggests that 

pneumolysin induced inflammasome activation normally inhibits autophagy. 

Similarly, autophagy inhibition by chemical methods and siRNA knock down 

produced an inhibitory effect on the inflammasome activation. These findings 

indicate that both these immune pathways maintain a fine balance, and 

disturbance in any of these pathways may lead to abnormal immune responses 

against invading pathogens. 

Autophagy inhibition in murine BMDMs and human neutrophils down 

regulated phagocytosis, which indicates an association between these two 

pathways. We found that autophagy plays a regulatory role in bacterial 

phagocytosis and clearance rather than early internalisation of S. pneumoniae. 

Both autophagy and phagocytosis are intracellular killing pathways for the 

elimination of invading pathogens.  Our data shows that autophagy increases 

phagocytosis of S. pneumoniae, but decreases its killing. The exact mechanism is 

not clearly understood but once the microbe is phagocytosed, its chances of 

spread decreases which explains the importance of these pathways. When 

autophagosome and phagosome fuses with the lysosome to form autolysosome 
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and phagolysosome, the internalised microbe is then degraded by the action of 

lysosomal proteases. 

Furthermore, our data shows that activation of neutrophils with S. 

pneumoniae induces neutrophil extracellular traps (NETs) generation. NETs are 

used as an extracellular microbial trapping and killing strategy by the activated 

neutrophils. We found that S. pneumoniae induced NET generation depends on 

autophagy. When we blocked autophagy by chemical method or genetic knock 

down, S. pneumoniae induced NET generation was down regulated. This 

indicates that this extracellular microbial killing mechanism works in association 

with the intracellular pathways. This explains that these intracellular and 

extracellular microbial killing strategies of the immune cells are activated by 

sensing microbial PAMPs, which function in association for the host defence. 

It is possible that different pathogens may react differently to the 

autophagy pathway and will show different patterns of its activation. However 

autophagy could play different roles with different types of pathogens and 

different cells. Our study herein represents the evidence for autophagy 

induction by S. pneumoniae, an extracellular gram positive bacterium. This 

suggests that this ancient defence mechanism plays a role against extracellular 

pathogens as well. 

Thus, S. pneumoniae could be used as a model pathogen to investigate 

the impact of autophagy on different important protective cellular events such 

as phagocytosis, NETosis, destroying the microbial virulence factors, killing 

bacteria and finally clearance of microbes for the host defence. Study of 

autophagy pathway in neutrophils may also prove helpful to investigate the 

neutrophil- induced inflammatory diseases 
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Figure 6.1 Schematic representation of autophagy, phagocytosis and NETosis 

Invading pathogens are internalised and taken up by endosome or autophagosome. 

Autophagosome and phagosome then fuses with the lysosome to form autolysosome and 

phagosome respectively. Invading pathogen is then degraded by the release of lysosomal 

proteases. 

Neutrophils are activated by the invading pathogens which release neutrophil 

extracellular traps from the nuclei. NETs then trap and kill invading microbes 

extracellularly, figure adapted from (Ham et al., 2011). 

 

6.3 Future Plans 

The following studies may help in investigating autophagy in S. pneumoniae 

infection. 

i. Investigating autophagy and associated pathways in vivo. 

ii. Investigating the role of different autophagy inducer and inhibitor drugs in 

S. pneumoniae induced autophagy in vivo. 
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iii. Study of pharmacological manipulation of S. pneumoniae induced 

autophagy and its therapeutic benefits. 

iv. Study of multiple PRRs and their role in S. pneumoniae induced autophagy 

v. Study of autophagy in different pathogenic and non-pathogenic S. 

pneumoniae strains 

vi. Study of the molecular mechanisms involved in inflammasome down-

regulation with autophagy induction and vice versa. 

vii. Investigating the role of S. pneumoniae induced autophagy in innate and 

adaptive immunity. 

viii. Exploration of molecular mechanisms of autophagy, phagocytosis and 

NETosis to further link these important immune pathways. 
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