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Abstract 

Non-compressible haemorrhage from within the torso and junctional regions 

constitutes the leading cause of potentially preventable death on the 

battlefield. It can be defined as haemorrhagic shock arising from injury to 

named torso vessels, pulmonary parenchyma, high grade solid organ injury 

and/or disruption of the bony pelvis. 

Data from the US Department of Defence Trauma Registry demonstrate a torso 

injury rate of 12.7% with 17.1% of casualties exhibiting torso injury and shock. 

The overall mortality is 18.7%, with major arterial injury and pulmonary injury 

identified as independent predictors of mortality on multivariate analysis. The 

UK Joint Theatre Trauma Registry reports similar findings with the greatest 

burden of mortality occurring prior to hospital admission (75.0%), a rate that has 

remained unchanged over a decade of war. Injury from improvised explosive 

devices (IEDs) in particular are associated with non-compressible haemorrhage, 

frequently causing traumatic lower extremity amputation in combination with 

torso injury. 

Contemporary surgical strategy relates to early operative haemorrhage control in 

patients presenting with shock. In patients sustaining a circulatory arrest, 

resuscitative thoracotomy and aortic cross clamping can be used to control 

inflow and increase cardiac afterload. The UK experience over 5 years at Camp 

Bastion demonstrated a mortality of 78.5%, with greatest survival observed in 

patients with the shortest time to thoracotomy. In patients sustaining lower 

extremity amputation following IED injury, 1 in 5 require a laparotomy for 

proximal vascular control, with less than half requiring further intra-abdominal 

intervention. There is a pressing need for a haemorrhage control and 

resuscitation adjunct in non-compressible haemorrhage that can be deployed 

prior to or as an adjunct to operative haemorrhage control.  

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a technique 

that can occlude the aorta without the need for an operating theatre. It is an 

experimental technique, so its effect on survival and physiology is unknown. In a 

porcine model of uncontrolled pelvic haemorrhage, infra-renal REBOA was shown 
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to be as effective as chitosan gauze in the setting of normal coagulation. 

However, REBOA was associated with a significantly greater survival in a 

coagulopathic setting. Similar results were obtained when using a porcine model 

of abdominal haemorrhage in conjunction with thoracic REBOA. In both studies, 

balloon occlusion demonstrated a significant improvement in systolic blood 

pressure and other haemodynamic measures compared to the no-occlusion 

control groups. 

Having demonstrated a survival and haemodynamic benefit in uncontrolled 

haemorrhage models, the metabolic and inflammatory consequences of thoracic 

REBOA were characterised in further detail using a porcine model of controlled 

hypovolaemic shock. Occlusion for 30 and 90 minutes was associated with a 

significant lactate burden when compared to animals undergoing shock alone. 

However, following resuscitation with blood and intravenous fluid, normal 

physiology was restored within 6 hours. The inflammatory sequelae were studied 

following 30, 60 and 90 minutes of shock and occlusion. Increasing occlusion 

time resulted in an escalating release of interleukin-6 which manifest clinically 

as an increase in ARDS and need for vassopressor support. 

In order to develop a fluoroscopy free REBOA system, a series of human studies 

were undertaken to examine the relationship between an external measure of 

torso height and aortic length in order to guide insertion length. A retrospective 

examination of computed tomography in male trauma patients demonstrated a 

correlation between torso height and aortic length. This was confirmed by a 

prospective study which was also used linear regression to develop equations 

predictive of insertion length. 

Finally, the UK Joint Theatre Trauma Registry was used to determine the need 

for REBOA in a population of UK military personnel injured over 10 years of 

conflict. Of 1317 severely injured patients 70.2% had no indication, 11.2% had a 

contra-indication and 18.5% had an injury pattern indication for REBOA. Of those 

with an indication for REBOA, 66 (27.0%) patients died en-route to hospital and 

29 (11.9%) died in-hospital. 

In conclusion, non-compressible haemorrhage constitutes a significant burden of 

potentially preventable battlefield mortality. REBOA is a technique that can be 
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used in the thoracic or infra-renal aorta as a haemorrhage control and 

resuscitation adjunct, prior to operative haemorrhage control. While associated 

with a significant survival advantage in models of uncontrolled haemorrhage, it 

is associated with a significant metabolic penalty, although with resuscitation 

this can be ameliorated successfully. 
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Chapter 1: Introduction 

The UK and US military have been engaged in continuous combat operations for 

over a decade, involving deployments in Iraq and Afghanistan. This has come at 

a significant cost in terms of personnel: in the period from 2001 to 2013, there 

have been 626 UK and 6788 US combat deaths (1). As a consequence, there has 

been a concerted effort to better characterise mortal injury patterns in order to 

drive improvements in clinical care that will reduce battlefield mortality. 

One of the first studies to systematically examine the cause of battlefield death 

was by Holcomb et al. who reviewed the autopsy findings of special operations 

forces personnel killed early in the wars in Afghanistan and Iraq, between 2001 – 

2004 (2). A panel of experts reviewed the clinical records of fatalities and 

categorised them as non-survivable (severe head or cardiac injuries) or 

potentially survivable (haemorrhage, tension pneumothorax and airway 

obstruction). Of the 82 patients examined, 16 were deemed potentially 

survivable, with the greatest burden of death from exsanguination (81.3%). 

This study went on to divide bleeding patients into two groups based upon 

whether they can be controlled by compression or not in the pre-hospital 

setting. Compressible haemorrhage is from anatomical regions such as the 

extremity, where bleeding can be controlled by simple manual pressure or 

tourniquet application (3). Non-compressible haemorrhage encompasses the 

torso and junction regions such as axillae and groin. Over half of the deaths 

considered potentially preventable were due to non-compressible bleeding 

arising from within the torso (2). 

These findings have been reaffirmed by a recent study by Eastridge et al. who 

used the same methodology as Holcomb, but applied to 10 years or 4596 US 

military deaths (4). A quarter of deaths (24.3%) were identified as having a 

potentially survivable injury, of which 90.9% were due to haemorrhage. The 

largest focus was truncal (67.3%) followed by junctional (19.2%) and extremity 

(13.5%) sources. Importantly, nine out of 10 deaths occurred prior to admission 

to a hospital. 

Strategies to control compressible sources of haemorrhage have seen great 

development over the last decade, with numerous types of bandage, novel 
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haemostatic compound and tourniquet being developed and deployed (5). This 

has seen a significant reduction in the mortality rate from compressible 

haemorrhage (3). 

However, non-compressible haemorrhage has not seen the same level of 

innovation despite a pressing need for a haemorrhage control and resuscitation 

adjunct for use in the pre-hospital setting. Resuscitative Endovascular Balloon 

Occlusion of the Aorta (REBOA) is a recently described technique which may 

fulfil this requirement (6). 

REBOA uses aortic balloon occlusion to provide inflow control and cardiac 

afterload support in haemorrhagic shock (3). It can either be inserted 

prophylactically in patients at risk of haemorrhage and then inflated in the event 

of a deterioration, or as a substitute to open cross clamping in the moribund 

patient. REBOA is designed as a proactive manoeuvre, which can be inserted in 

austere circumstances, providing a physiological bridge to definitive 

haemorrhage control.  

The clinical use of this technique was first described in the 1950s (7), with 

further reports in the 1980s (8,9). Despite some favourable outcomes, 

technological limitations relating to arterial access, balloon construction and 

placement meant its adoption was not widespread. However, following the 

evolution of endovascular surgery and the experience with aortic balloon 

occlusion during endovascular aneurysm repair, many of these constrains can be 

overcome (10).  

To facilitate REBOA deployment, the aorta has been characterised into three 

functional zones: zone I extends from the origin of the left subclavian to the 

coeliac trunk, zone II is from the coeliac trunk to the lowest renal artery and the 

infra-renal aorta constitutes zone III (6). Zone I and III serve as "landing zones" 

for occlusion in specific injury patterns. Zone I occlusion provides resuscitation 

in circulatory arrest and control for abdominal exsanguination and zone III 

occlusion is for ileo-femoral junctional pelvic haemorrhage. 
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1.1 Thesis Aims and Objectives 

The aim of this thesis is to use UK and US military trauma registries to 

characterise patterns of injury associated with non-compressible haemorrhage. 

Following this, current surgical strategies used in non-compressible haemorrhage 

and their outcomes will be examined, also using these registries. This will be 

followed by a programme of experiments using large animal models of controlled 

and uncontrolled haemorrhage in order to assess the efficacy of REBOA in 

hypovolaemic shock and its associated metabolic consequences. Finally, a 

mixture of human and animal studies will be used to demonstrate the 

development and clinical need for a fluoroscopy free REBOA system. 

 



 4 
 

Chapter 2: The Epidemiology of Non-Compressible Torso 
Haemorrhage in the Wars in Iraq and Afghanistan 

2.1 Introduction 

Vascular injury with concomitant haemorrhage is the leading cause of potentially 

preventable death in both civilian and military trauma patients (2,4,11-17). 

Studies from the wars in Afghanistan and Iraq have suggested that up to 80% of 

potentially survivable patients expire as a result of exsanguination (15,16). 

These studies categorise bleeding broadly in this context as compressible or non-

compressible depending upon whether the haemorrhage control measures can be 

applied soon after the point of injury. 

Compressible haemorrhage originates from extremity injury and can be managed 

by direct application of pressure or a tourniquet. The reemphasis on wartime 

tourniquet use has increased survival from compressible extremity haemorrhage 

to greater than 90% (5,18-20). In contrast, methods to manage bleeding from 

sites within the torso, recently referred to as non-compressible torso 

haemorrhage (NCTH) (2), remain largely limited to the use of conventional 

operative techniques (3). 

Until recently, despite the intuitive use of the term "non-compressible", NCTH 

has lacked a consistent definition with which to characterise the epidemiology of 

this morbid injury complex. US and UK military surgeons have proposed a 

definition of NCTH which includes vascular disruption within the thorax, 

abdomen and pelvis, linked to physiological indices of shock and/or the need for 

operative haemorrhage control (3). 

The objective of this study was to characterise the prevalence of NCTH in a large 

population of wartime casualties using this contemporary definition. In that 

context, an additional objective was to characterise the mortality of this injury 

pattern within a population of combat wounded and identify sites of vascular 

disruption within the torso associated with the highest mortality. 
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2.2 Methods  

This study was conducted under approval from the US Army Medical Research 

and Material Command Institutional Review Board. The investigation used the 

Department of Defence Trauma Registry (DoDTR) to examine the prevalence of 

non-compressible torso haemorrhage between 2002 and 2010. The DoDTR is 

housed within the US Army Institute of Surgical Research (ISR) and is used by the 

Joint Trauma System (JTS) as a process improvement tool to benchmark trauma 

care (21). Patient data is entered on all US service personnel injured while on 

operations, who are admitted to a Medical Treatment Facility (MTF). In this 

context, the prevalence of NCTH was examined in troops who survived to 

receive care at an MTF and not those who died as a result of wounds prior to 

reaching medical treatment, also referred to as killed in action (KIA) (22). 

2.2.1 Definition of Non-compressible Torso Vascular Injury and 
Haemorrhage 

Using Abbreviated Injury Scale (AIS) Scores, the JTTR was queried for US service 

personnel sustaining an injury within one of four categories (Table 2.1): 

Category I Main axial torso vessel; Category II: Grade 4 or 5 solid organ (liver, 

kidney or spleen) injury (23); Category III: Massive haemothorax from pulmonary 

parenchymal injury; and Category IV: Open ring pelvic fractures with vascular 

disruption. Within Category I, the injuries were subdivided into major and minor. 

Major arterial injury was defined as that to the aorta or named primary branch 

vessel (e.g. celiac, superior mesenteric or renal artery) whereas minor injury 

was defined as that to any tertiary arterial branch (e.g. gastric, gluteal, gonadal 

arteries). Venous injuries were similarly defined as major or minor based on the 

vena cava as the primary axial vessel. Because of their high lethality in the 

wartime setting, cardiac injuries were not included in the definition of NCTH 

(3). 

  



Chapter 2: The Epidemiology of Non-Compressible Torso Haemorrhage in the Wars in 
Iraq and Afghanistan 

6 

 
 

 

 

 

Table 2.1: Definition of non-compressible torso haemorrhage 

Non-Compressible Torso Haemorrhage is defined as vascular disruption in 
one or more of: 

1) Named axial torso vessel 

PLUS 

Concomitant 
Shock*; or 

Immediate 
Operation 

2) Solid organ injury ≥ grade 4 (liver, kidney, 
spleen) 

3) Thoracic cavity (including lung) 
4) Pelvic fracture with ring disruption 

* defined as a systolic blood pressure < 90 mmHg 
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For purposes of the study, two groups were formed from the overall cohort. The 

non-compressible torso injury (NCTI) group consisted of casualties who were 

identified as having sustained one or more of the anatomical vascular injury 

categories by the DoDTR search. In contrast, the NTCH group consisted of 

patients identified within the overall cohort who also had a physiological 

indicator of shock and/or the need for operative haemorrhage control. 

Shock was defined as a blood pressure of <90mmHg on admission to a Role III 

Medical Treatment Facility (equivalent to a US level one trauma centre). The 

need for operative haemorrhage control was defined as the need for an 

immediate laparotomy, thoracotomy or pelvic fixation, identified by ICD-9 

procedure codes. Information collected included demographic, injury and 

physiologic data as well as 30-day mortality.  

2.2.2 Statistical Analysis 

The demographic data, mechanism of injury, admission physiology, injury 

pattern and mortality was compared between the NCTI and NCTH groups. 

Continuous variables were compared using the Student t-test or Mann-Whitney 

log rank test; categorical variables were compared using the chi-squared test. 

The injury pattern subdivisions were compared between survivors and non-

survivors in the NCTH group. Any univariate comparison within the NCTH group 

where p≤0.20 was included in a step-wise logistic regression in order to identify 

independent predictors of mortality. The strength of the logistic regression 

model was examined by the area under the receiver operator characteristic 

curve. Analysis was performed using SPSS 19 software (IBM®, New York).  

2.3 Results 

Of 15,209 battle injuries reported within the JTTR during the study period, 

12.7% (n=1936) sustained an injury within one or more of the categories defined 

in Table 2.1. The majority of patients (97.6%; n=1920) in the overall cohort were 

male and the mean age (± standard deviation) was 25.8 ± 6.6 years. The mean 

ISS of the overall cohort was 26.0±12.6 with 57.0% (n=1122) of patients injured 

by blast, 26.1% (n=514) by gunshot and the remainder by blunt mechanisms (e.g. 

helicopter or vehicle crash). Of patients in the overall cohort 17.1% (n=331) met 
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physiological and/or operative criteria indicating active haemorrhage (Table 2.1) 

and formed the NCTH group. The remaining 1605 patients formed the NCTI 

group. 

When comparing the NCTI and NCTH groups (Table 2.2), there were more males 

in the NCTH group (p=0.043), who also had sustained significantly more blast 

related injuries (p<0.001). The NCTH group also had a lower mean admission SBP 

(a selection criteria), a lower GCS and higher mean ISS (p<0.001). When 

comparing severe injury per body region (defined as an AIS≥3), the NCTH group 

had a greater proportion of abdominal and extremity injury than the NCTI group 

(p<0.001). 

Among the NCTI group, the most common injury involved the pulmonary 

parenchyma (53.1%) followed by a solid organ injury (21.3%), named torso vessel 

(16.0%) and finally complex pelvic fracture (12.3%) (Figure 2.1). The most 

commonly injured solid organ was the spleen (10.5%) followed by liver (6.7%) 

and kidney (3.9%). 

A similar distribution of injuries was observed within the NCTH group, although 

the relative proportions were greater, with the exception of pulmonary injury 

(41.7%). Solid organ injury occurred in 29.3%, named vessel injury in 25.7% and 

pelvic injury in 15.1%. Again the spleen was the most commonly injured solid 

organ (12.4%) followed by the liver (10.0%) and kidney (15.1%) (Figure 2.1). 

In terms of operative intervention, consistent with an increased injury severity, 

a greater number of interventions were performed on the NCTH group (Table 

2.2). Over half of the NCTH group required tube thoracostomy or laparotomy, 

compared to less than half in the NCTI group. There was a ten-fold increase in 

the need for thoracotomy in the NCTH group compared to the NCTI group. The 

greater injury burden is also reflected in the mortality, with the NCTH group 

sustaining more than twice the number of deaths than the NCTI group (18.7% vs. 

8.8%; p<0.001).  

 

  



Chapter 2: The Epidemiology of Non-Compressible Torso Haemorrhage in the Wars in 
Iraq and Afghanistan 

9 

 
 

 

 

 

Table 2.2: demographic, mechanism, admission physiology, injury pattern, 
operative intervention and mortality of patients with non-compressible torso 
injury (NCTI) vs non-compressible torso haemorrhage 

 Parameter NCTI NCTH P value 
n 1605 331  
male, % (n) 1560 (97.2%) 328 (99.1%) 0.043 
age, mean ± SD 25.8 ± 6.6 25.8 ± 6.4 0.851 
    
GSW, n (%)  435 (27.1%) 79 (23.9%) < 0.001 
Explosion, n (%) 892 (55.6%) 230 (69.5%)  
Other, n (%)  278 (17.3%) 22 (6.6%)  
    
SBP/mmHg, mean ± SD 134 ± 24.8 82.7 ± 26.1 < 0.001 
GCS, mean ± SD 12.0 ± 4.4 6.6 ± 4.9 < 0.001 
GCS < 8, n (%) 319 (19.9%) 183 (55.3%) < 0.001 
ISS, mean ± SD 25.1 ± 12.2 30.1 ± 13.3 < 0.001 
    
Head/Neck AIS ≥ 3, n (%)  317 (19.8%) 77 (23.3%) 0.148 
Face AIS ≥ 3, n (%) 76 (4.7%) 11 (3.3%) 0.259 
Chest AIS ≥ 3, n (%) 1115 (69.5%) 223 (67.4%) 0.452 
Abdomen AIS ≥ 3, n (%) 609 (37.9%) 183 (55.3%) < 0.001 
Extremity AIS ≥ 3, n (%) 718 (44.7%) 206 (62.2%) < 0.001 
External AIS ≥ 3, n (%) 52 (3.2%) 17 (5.1%) 0.090 
    
Torso Vessel Injury, n (%) 257 (16.0%) 85 (25.7%) < 0.001 
Chest Injury, n (%) 853 (53.1%) 138 (41.7%) < 0.001 
Solid Organ Injury, n (%) 342 (21.3%) 97 (29.3%) < 0.001 
Pelvic Injury, n (%) 197 (12.3%) 50 (15.1%) 0.010 
    
Laparotomy 336 (20.9%) 215 (65.0%) < 0.001 
    Thoracotomy 41 (2.6%) 67 (20.2%) < 0.001 
Pelvic Ex-Fix 64 (4.0%) 37 (11.1%) 0.057 
Tube Thoracostomy 643 (40.1%) 185 (55.9%) < 0.001 
    Mortality 142 (8.8%) 62 (18.7%) < 0.001 
Abbreviation: NCTI – Non-Compressible Torso Injury, NCTH – Non-
Compressible Torso Haemorrhage, GSW – Gun Shot Wound, SBP – 
Systolic Blood Pressure, GCS – Glasgow Coma Score, AIS – Abbreviated 
Injury Scale. 
     



Chapter 2: The Epidemiology of Non-Compressible Torso Haemorrhage in the Wars in 
Iraq and Afghanistan 

10 

 
 

 

 

Figure 2.1: The incidence of specific injury complexes for patients with non-
compressible injury and haemorrhage as a percentage 

 

Table 2.3: Comparison of injury patterns in patients with NCTH, survivors vs 
non-survivors 

Injury Type Survivor Non-Survivor P value 
n 269 62  
Major Arterial 25 (9.3%) 16 (25.8%) < 0.001 
Minor Arterial 13 (4.8%) 4 (6.5%) 0.603 
Major Venous 23 (8.6%) 11 (17.1%) 0.032 
Minor Venous 8 (3.0%) 2 (3.2%) 0.917 
Pulmonary Injury 103 (38.3%) 35 (56.5%) 0.026 
Liver 23 (8.6%) 11 (17.7%) 0.349 
Spleen 38 (14.1%) 3 (4.8%) 0.032 
    Kidney 13 (4.8%) 4 (6.5%) 0.817 
Pelvic Fracture 42 (15.6%) 8 (12.9%) 0.591 

 

Table 2.4: Multivariate regression analysis of significant univariate 
parameters for mortality in patients with NCTH 

Parameter Odds Ratio 95% Confidence 
Interval 

P Value 

Major Arterial Injury 3.38 (1.17 - 9.74) 0.024 
Pulmonary Injury 2.23 (1.23 - 4.98) 0.050 
Splenic Injury 0.82 (0.67 - 0.98) 0.047 
Systolic Blood Pressure 0.97 (0.96 - 0.99) < 0.001 
Glasgow Coma Scale 0.92 (0.83 - 1.00) < 0.001 
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Table 2.3 represents a comparison of the injury pattern of survivors compared 

with non-survivors within the NCTH group. There are a greater proportion of 

major arterial, major venous and pulmonary parenchymal injuries in non-

survivors. In contrast, the survivor group had a higher percentage of splenic 

injuries, with no difference between the other solid organs or pelvic injuries. 

When univariate parameters had a p≤0.20, they were entered into a multivariate 

logistic regression to determine factors associated with mortality (Table 2.4).  

The following parameters were entered into the model: admission systolic BP, 

admission GCS, major arterial, major venous, pulmonary and splenic injury. 

Systolic blood pressure and GCS were significant physiological parameters 

(p<0.001). In terms of injury pattern, major arterial and pulmonary injuries were 

significantly associated with mortality, whereas survival from NCTH was 

significantly associated with splenic injury. The area under the ROC curve was 

0.774. 

2.4 Discussion 

This study utilises a new definition of non-compressible torso haemorrhage based 

on specific anatomic, physiologic and procedural indices reflective of 

haemorrhage. Findings from this study demonstrate that 12.7% of wounded in 

combat sustain an anatomical injury pattern that is at risk for NCTH, and of 

these, 17.1% had evidence of ongoing haemorrhage. Casualties with this injury 

pattern and indicators of non-compressible haemorrhage have twice the 

mortality compared to those with the at risk injury pattern alone. Major arterial 

and pulmonary are the injury patterns associated with the highest mortality 

while injury to the spleen is associated with survival. 

This current study confirms and extends the work of Holcomb et al. who 

published one of the first studies to recognise the importance of uncontrolled 

truncal haemorrhage (2). The autopsy findings of 82 special operations forces 

personnel killed early in the wars in Afghanistan and Iraq, between 2001 - 2004, 

were reviewed by a panel of experts and judged as non-survivable (e.g. lethal 

head or cardiac wounds) or potentially salvageable. While there were subjective 

aspects to the methodology of this study, it was one of the first studies to 
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specifically use the term "non-compressible truncal haemorrhage", although it 

was not specifically defined. Truncal haemorrhage was found to be the cause of 

death in 50% of patients judged to have sustained potentially survivable injuries. 

Kelly at al used a similar methodology to analyze 997 US military deaths that 

occurred within two time periods: 2003-2004 and 2006 (15). Haemorrhage was 

the leading cause of death in those with otherwise survivable injuries and 

accounted for 87% and 83% of deaths during these respective periods. Airway 

problems, head injury and sepsis constituted the remaining causes of death. 

Interestingly, these figures remained unchanged when Eastridge et al. expanded 

this analysis to US military personnel who died of wounds 2001-2009 (16) and all 

deaths 2001-2011 (4). While lethal head injury was the dominant pattern of 

trauma in the non-survivable cases; haemorrhage again accounted for 80-90% of 

potentially survivable deaths with truncal haemorrhage accounted for 48-67% 

deaths in these analyses. 

The publication of these studies provided an important characterisation of 

battlefield injury and illustrated the high and early lethality of NCTH in those 

who could have otherwise survived their injuries. These studies are largely 

responsible for the institution of tourniquets and other Tactical Combat Casualty 

Care manoeuvres, many, of which have been shown to improve survivability 

following wartime injury (5,20). The current study extends these findings to 

enable a characterisation of the contribution of specific injury patterns within 

the umbrella of NCTH. 

The finding that pulmonary injury followed by major vascular injury contributes 

the greatest to the mortality burden is supported by several clinical studies 

examining the incidence of haemorrhage in particular organ systems (17,24). 

Propper et al. examined wartime thoracic injury from 2002-2009 (24). The 

authors found that thoracic injury of any type occurred in 5% of wartime 

casualties, with a mean ISS of 15 and crude mortality of 12%. The most common 

thoracic injury pattern in Propper’s study was pulmonary contusion (32%), 

followed by haemopneumothorax (19%). 
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In a separate study, White et al. reported the incidence of vascular injury in US 

troops between 2002-2009 (17). The authors of this study observed a specific 

vascular injury rate of 12% (1570 of 13 075) which was 5 times higher than that 

described in previous wartime reports. Large vessel injury accounted for 12% of 

the torso vascular injuries in White’s study, with iliac, aortic and subclavian 

vessels being the most commonly injured. These findings were later extended to 

a comparison of military patients to a propensity matched cohort from the 

national trauma databank (25). For non-compressible arterial injury, the military 

had a significantly lower mortality compared to a civilian population (10.8% vs. 

36.4%; p=0.008). 

The low mortality associated with splenic injury in this study is not surprising in 

comparison to other injury patterns. While the control of splenic haemorrhage 

can be challenging, definitive haemorrhage control via splenectomy is relatively 

more straightforward in contrast to the complex management of torso vascular 

or pulmonary haemorrhage. Recently, Zonie and Eastridge reported 10 years of 

wartime splenic trauma management with a series of 393 patients with only 11 

out 36 deaths due to uncontrolled splenic haemorrhage (2.8%) (26). 

This study has a number of limitations, inherent to any retrospective study from 

a combat zone. The US DoDTR is designed as a performance improvement tool 

and not as a clinical record; thus it cannot be viewed as such. However, injury 

pattern data is collected prospectively, and frequently updated, although this 

does not include cause of death. A further consideration is that data collection 

commences upon admission to a medical treatment facility and thus patient 

initially treated at lower echelons of care may not have been included.  

2.4.1 Conclusions 

Ultimately, NCTH has been identified as a significant burden of mortality in 

patients sustaining battlefield injury, with highest mortality found in axial vessel 

and pulmonary injury. Novel methods of haemorrhage control and resuscitation, 

which can be initiated in the pre-hospital setting, are required to reduce the high 

mortality of this injury pattern.  
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Chapter 3: Injury Pattern and Mortality of Non-
Compressible Torso Haemorrhage in UK Combat 

Casualties 

3.1 Introduction 

Haemorrhage is the leading cause of potentially preventable death on the 

battlefield, with the torso identified as the primary focus in 80% of cases 

(2,4,15,16). Deaths from extremity haemorrhage now constitute a minority of 

deaths due to the effective pre-hospital use of haemorrhage control adjuncts 

such as tourniquets (5,18,19). 

These observations have generated renewed interest in non-compressible torso 

haemorrhage (NCTH) which is the disruption of a named axial vessel or vessels 

within the pulmonary parenchyma of the chest, the solid organs of the abdomen 

or those of the bony pelvis (3). This definition has recently been applied to a US 

population of wartime injured who survived to medical treatment facility (MTF) 

admission (defined as a NATO role III facility) and identified vascular and 

pulmonary injury as the most mortal injury complexes (27). The in-hospital 

mortality rate of patients sustaining NCTH was 18.7%, which is considerably 

greater than the overall in-hospital mortality (or died of wounds rates), of 4.8%, 

demonstrating the lethality of NCTH (28). 

Furthermore, a recent US Joint Trauma System study reviewed 4596 US military 

deaths and identified that nine out of ten battlefield deaths occurred prior to 

MTF admission (4). Using previously established criteria to define catastrophic 

injury, 24.3% of the cohort were considered potentially survivable, of which 

haemorrhage constituted 90.9% of deaths. The torso constituted the largest 

source of haemorrhage (67.3%), followed by junctional (19.2%) and extremity 

(13.5%). 

It is unclear whether the injury pattern of patients with NCTH who die in the 

pre-MTF phase of care is different to patients surviving to MTF admission. This is 

important to understand in order to direct research strategies into the pre-

hospital management of NCTH. The aim of this study is to examine a complete 
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population of patients with NCTH, injured in wartime, in order to characterise 

the injury pattern pre- and post- MTF admission. 

3.2 Methods 

This study was conducted with the approval from the Royal Centre for Defence 

Medicine (RCDM) Academic Unit. The prospectively collected UK Joint Theatre 

Trauma Registry (JTTR) was used to retrospectively identify all UK military 

personnel sustaining NCTH between August 2002 through July 2012 in Iraq or 

Afghanistan. 

NCTH was defined using a previously published definition based upon anatomical 

injury accompanied by physiological or procedural indices of shock (3). 

Anatomical - injury to a named torso vessel, pulmonary injury (massive 

haemothorax or hilar), grade 4 or more solid organ injury (liver, kidney or 

spleen), or pelvic fracture associated with ring disruption and haemorrhage. 

Named torso vessel was further sub-divided into major/minor arteries/veins 

depending on whether they were a direct branch/tributary of the aorta/IVC. 

Physiological - a systolic blood pressure less than 90 mmHg or procedurally - the 

need for an immediate laparotomy, thoracotomy or pelvic fixation in order to 

control haemorrhage. 

The UK JTTR is a performance improvement tool which captures clinical data on 

casualties admitted to UK MTF's (29). In the case of UK personnel, this includes 

data from the point of wounding through to discharge from a UK mainland 

hospital facility. Patients who died prior to reaching an MTF are classified as 

Killed in Action (KIA) and patients who survive to admission, but ultimately 

succumb to their injuries, are termed Died of Wounds (DOW). Surviving patients 

are considered Wounded in Action (WIA). Post-mortem data from patients who 

are KIA and DOW is also entered into the UK JTTR, permitting the comprehensive 

analysis of a population of wartime injured. This system of classification enables 

the calculation of Case Fatality Rates (CFR), a metric of lethality, expressed as a 

percentage: CFR = [KIA + DOW] / [KIA + DOW + WIA] (22). 
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Information retrieved from the JTTR included patients demographic data, month 

of injury, injury pattern, outcome, cause and location of death. The 2005 

Military Abbreviated Injury Scale (AIS) Scores (30) were used to calculate both 

the Injury Severity Score (ISS) (31) and the New Injury Severity Score (NISS) (32). 

In patients surviving to MTF admission, admission systolic blood pressure (SBP), 

heart rate (HR), Glasgow Coma Scores (GCS) and any operative intervention was 

also retrieved. 

3.2.1 Statistical Analysis 

Initially, the demography of the KIA, DOW and WIA groups was compared using 

chi squared tests for categorical data and analysis of variance (ANOVA) for 

continuous data. In patients surviving to hospital, admission physiology and rates 

of operative intervention was compared.  CFR data were then presented based 

on operational theatre, temporal trend and NCTH injury domains (named vessel, 

pulmonary, solid organ injury and pelvic injury). The injury pattern was 

compared between the following patient groups: patients surviving to admission 

(WIA + DOW) versus patients dying prior to admission (KIA) and survivors (WIA) 

versus non-survivors (KIA + DOW). Multivariate analysis was then used to control 

for multiple injuries in order to identify which injury patterns were most lethal. 

3.3 Results 

Over the 10 year study period, 296 patients were identified from the UK JTTR 

having sustained NCTH (Table 3.1). The majority of patients (n=222, 75.0%) had 

died prior to MTF admission and were classified as KIA. Of the 74 patients 

(25.0%) surviving to admission, there were 43 WIA and 31 DOW generating an 

overall CFR for NCTH of 85.5%. The distribution of gender, age, theatre of 

operations (Iraq vs Afghanistan) and mechanism of injury between the WIA, DOW 

and KIA groups were similar (p > 0.05). However, there was a significant increase 

in injury burden observed across the WIA, DOW and KIA groups respectively, as 

measured by both ISS and NISS (p < 0.001). 

Of the patients admitted to hospital, those who survived presented with a higher 

median (interquartile range) systolic blood pressure (108 (43) vs. 89 (46); p = 

0.123) and GCS (14 (12) vs. 3 (0); p < 0.001) (Table 3.1). In terms of operative 
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intervention, resuscitative thoracotomy was used significantly more in the DOW 

group (51.9% vs. 9.5%; < 0.001), although thoracotomy, laparotomy and pelvic 

fixation was used similarly between the WIA and DOW groups (p > 0.1) 

When examining the location of the 253 deaths, the majority (87.7%) occurred in 

the pre-MTF setting, with 7.9% in the emergency/operating room and 4.3% in the 

intensive care unit (Figure 3.1). In terms of cause of death, while all patients 

had sustained NCTH, it was not the primary focus of injury in all patients. Torso 

haemorrhage accounted for 60.1% of deaths, but central nervous system (CNS) 

disruption (brain or spinal cord injury) accounted for 30.8%, total body 

destruction (severe blast injury) for 5.1% and multi-organ failure for 4.0% (Figure 

3.2). 

The CFR was independent of operation theatre with a rate of 89.7% for Iraq and 

84.5% for Afghanistan (p = 0.407) (Table 3.2). When analysing the temporal trend 

across the decade of study, the cohort was divided into three equal tertiles 

(n=99) covering the following time periods: August '02 - May '08, May '08 - Dec '11 

and Dec '11 to July '12. The CFR demonstrated a decreasing trend of 90.9%, 

83.3% and 81.6% across the respective groups, but this did not achieve statistical 

significance (p = 0.155).  

When comparing the CFR of the major anatomical NCTH domains, vascular injury 

is significant higher when compared to non-vascular injury (p < 0.001), but 

remains similar for the remaining domains (p > 0.1). 
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Table 3.1: General demographic characteristics, trauma scores, admission 
physiology and operative intervention of patients with NCTH 

 Survivors Non-Survivors  
 WIA DOW KIA p 
n 43 31 222  
Male, n (%) 43 (100%) 31 (100%) 218 (98.2%) 0.509 
Age, median (IQR) 23 (8) 23 (8) 26 (9) 0.088 
Theatre of Operations     

Iraq, n (%) 6 (10.3%) 3 (5.2%) 49 (84.5%) 0.160 
Afghanistan, n (%) 37 (15.5%) 28 (11.8) 173 (72.7%)  

Mechanism of Injury     
Explosion, n (%) 27 (62.8%) 21 (67.7%) 155 (69.8%) 0.789 
Gun Shot, n (%) 13 (30.2%) 9 (29.0%) 52 (23.4%)  
Other, n (%) 3 (7.0%) 1 (3.2%) 15 (78.9%)  

Trauma Scores     
ISS, median (IQR) 26 (21) 57 (33) 75 (18) < 0.001 
NISS, median (IQR) 34 (28) 75 (18) 75 (0) < 0.001 

Physiology     
Systolic Blood Pressure 108 (43) 89 (46) n/a 0.123 
Heart Rate 100 (52) 100 (128) n/a 0.025 
Glasgow Coma Score 14 (12) 3 (0) n/a 0.001 

Operative Intervention     
Resus Thoracotomy, n (%) 4 (9.5%) 14 (51.9%) n/a < 0.001 
Thoracotomy, n (%) 7 (16.7%) 4 (14.8%) n/a 0.838 
Laparotomy, n (%) 27 (64.3%) 15 (55.6%) n/a 0.468 
Pelvic Ex-Fix, n (%) 9 (21.4%) 5 (18.5%) n/a 0.769 

Abbreviations: WIA - Wounded in Action; DOW - Died of Wounds; KIA - Killed in Action 
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Table 3.2: The casualty fatality rate for the overall cohort, operational 
theatre, time and non-compressible torso haemorrhage anatomical domain 

  CFR p 
 Overall 85.5%  
Operational Theatre    
 Iraq 89.7% 0.407 
 Afghanistan 84.5%  
Time Period    
 Aug 2002 - May 2008 90.9% 0.155 
 May 2008 - Dec 2011 83.8%  
 Dec 2011 - July 2012 81.6%  
NCTH Domain    
 Vascular 93.0% < 0.001 
 Pulmonary 85.9% 0.534 
 Solid Organ 90.0% 0.124 
 Pelvis 88.4% 0.210 
Abbreviations: CFR - Case Fatality Rate; NCTH - Non-Compressible Torso 
Haemorrhage 
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Figure 3.1: Location of death 

Abbreviations: ED/OR – emergency department/operating room, ICU – Intensive care 
unit, Pre-MTF – pre-medical treatment facility. 

 

 

 

Figure 3.2: Cause of death 

Abbreviations: CNS – central nervous system disruption, TBD – total body disruption, 
MOF – multiple-organ failure, NCTH – non-compressible torso haemorrhage  
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In terms of injury pattern using a AIS≥3 as a marker of severe injury, as 

previously alluded by the ISS and NISS scores, there is a globally higher injury 

burden in non-survivors (Table 3.3). The biggest contributors to mortality on 

univariate analysis are severe head (7.0% vs. 39.9%; p<0.001) and chest (46.5% 

vs. 80.6%; p<0.001) injuries. This pattern is broadly similar when comparing 

patients who survived to MTF admission (WIA + DOW) versus those who died pre-

MTF (i.e. KIA). 

When considering the four major NCTH anatomical domains, vascular injury was 

the most lethal (30.2 vs. 68.0%; p<0.001) when comparing survivors with non-

survivors. This is also apparent in the MTF versus no-MTF admission comparison, 

with the addition that a greater proportion of solid organ injuries die prior in the 

field (28.4% vs. 39.6%; p=0.053). When analysing the NCTH sub-domains in 

greater detail, major arterial and liver injury are identified in both groups as 

significant contributors to mortality. 

In order to adjust for multiple interactions, injury parameters which had a p<0.2 

on univariate testing of survivors versus non-survivors were entered into a 

logistic regression. The following parameters were used to build the regression 

model: severe head, neck, major arterial, minor arterial, pulmonary hilar, liver 

spleen and extremity injury (Table 3.4). Several independent predictors of 

mortality in NCTH were identified and presented using odds ratios and 95% 

Confidence Intervals. Major arterial and pulmonary hilar injury were the most 

lethal NCTH domains with a lesser contribution from liver trauma. Severe head, 

neck and extremity injury were major non-torso domains of injury. 
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Table 3.3: Injury pattern, survivors versus non-survivors. 

 Survivor Non-Survivor p MTF No MTF p 
n 43 253  74 222  
AIS ≥ 3       

Head 3 (7.0%) 101 (39.9%) < 0.001 13 (17.6%) 91 (41.0%) < 0.001 
Face 0 (0) 19 (7.5%) 0.087 1 (1.4%) 18 (8.1%) 0.040 
Neck 1 (2.3%) 42 (16.6%) 0.010 2 (2.7%) 41 (18.5%) < 0.001 
Chest 20 (46.5%) 204 (80.6%) < 0.001 39 (52.7%) 185 (83.3%) < 0.001 
Abdomen 27 (62.8%) 181 (71.5%) 0.280 51 (68.9%) 157 (70.7%) 0.769 
Upper Extremity 3 (7.0%) 74 (29.2%) 0.001 10 (13.5%) 67 (30.2%) 0.005 
Lower Extremity 17 (39.5%) 151 (59.7%) 0.014 36 (48.6%) 132 (59.5%) 0.107 

NCTH Domains       
Vascular 13 (30.2%) 172 (68.0%) < 0.001 31 (41.9%) 154 (69.4%) < 0.001 
Pulmonary 11 (25.6%) 67 (26.5%) 0.901 18 (24.3%) 60 (27.0%) 0.648 
Solid Organ 11 (25.6%) 98 (38.7%) 0.124 21 (28.4%) 88 (39.6%) 0.053 
Pelvic 11 (25.6%) 84 (33.2%) 0.322 24 (32.4%) 71 (32.0%) 0.525 

NCTH Sub-
Domains 

      

Major Arterial 5 (11.6%) 152 (60.1%) < 0.001 17 (23.0%) 140 (63.1%) < 0.001 
Minor Arterial 4 (9.3%) 7 (2.8%) 0.059 7 (9.5%) 4 (1.8%) 0.003 
Major Venous 6 (14.0%) 55 (21.7%) 0.243 11 (14.9%) 50 (22.5%) 0.158 
Minor Venous 1 (2.3%) 5 (2.0%) 0.881 2 (2.7%) 4 (1.8%) 0.634 
Pul Hilar 1 (2.3%) 26 (10.3%) 0.071 4 (5.4%) 23 (10.4%) 0.249 
Pul Parenchyma 10 (23.3%) 48 (19.0%) 0.513 14 (18.9%) 44 (19.8%) 0.507 
Renal 6 (14.0%) 38 (15.0%) 0.856 10 (13.5%) 34 (15.3%) 0.706 
Liver 4 (9.3%) 73 (28.9%) 0.008 12 (16.2%) 65 (29.3%) 0.032 
Spleen 3 (7.0%) 42 (16.6%) 0.104 4 (5.4%) 41 (18.5%) 0.005 
Pelvic 11 (11.6%) 84 (33.2%) 0.322 24 (32.4%) 71 (32.0%) 0.525 

All values are n with percentage in parentheses 
Abbreviations: MTF - Medical Treatment Facility; AIS - Abbreviated Injury Score; NCTH - Non-
Compressible Torso Haemorrhage; Pul – Pulmonary. 

 

Table 3.4: Logistic regression 

Injury Region OR 95% Confidence Interval p 
Head 6.46 1.78 - 23.42 0.005 
Neck 9.00 0.98 - 82.35 0.052 
Major Arterial 16.44 5.50 - 49.11 < 0.001 
Minor Arterial 0.430 0.081 - 2.30 0.324 
Pulmonary Hilar 9.61 1.06 - 87.00 0.044 
Liver 6.00 1.71 - 21.04 0.005 
Spleen 3.78 0.73 - 19.58 0.114 
Extremity 4.22 1.72 - 10.34 0.002 
Hosmer-Lemeshow Statistic = 3.448, p = 0.841, df = 7 
AUC = 0.892 
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3.4 Discussion 

This study is the first to comprehensively examine a population of wartime 

injured (including pre-MTF fatalities) using a contemporary definition of NCTH. 

The current study has demonstrated that 9 out of 10 deaths in patients with 

NCTH occur in the pre-MTF phase of care, although the in-hospital mortality is 

also substantial. Furthermore, while NCTH directly contributes to the bulk of 

deaths, there are other primary foci, the largest of which is concomitant CNS 

injury. The independent predictors of mortality from torso injury were major 

arterial, pulmonary hilar and liver injury. 

The current study confirms and extends the findings from a number of studies 

analysing data from the wars in Iraq and Afghanistan. Holcomb et al. first coined 

the specific term "non-compressible truncal haemorrhage" in a cause of death 

analysis of 82 US military personnel killed between 2001 and 2004 (15). The 

cohort was reviewed by an expert panel, and patients were judged as having a 

potentially survivable or non-survivable injury. Of the potentially survivable 

deaths, 67% were due to haemorrhage originating from the torso, only amenable 

to surgical control in the OR. This landmark study provided a fresh perspective 

on classifying the cause of death from haemorrhage, which was largely based on 

the method of pre-MTF control. As experience from the war evolved, deaths 

from "tourniquetable" haemorrhage have decreased due to improved pre-MTF 

haemostasis, specifically the deployment of haemostatic gauze and tourniquets 

(5,18).  

This approach to classifying haemorrhage was expanded upon in a study by Kelly 

et al. who compared the cause of death in US military personnel killed during 

two time periods (15). The rates of truncal haemorrhage did not differ across 

the time periods and accounted for the majority cause (50%) of potentially 

survivable deaths. This has been further confirmed most recently by Eastridge et 

al. who examined the cause of death in US forces over 10 years of war (4). In 

total, there were 4596 fatalities, with 87.3% occurring in the pre-MTF phase of 

care. There were 976 potentially survivable deaths of which 67.3% were as a 

consequence of truncal haemorrhage. 
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The cause of in-hospital combat-related death has also been examined within a 

clinical context, looking for opportunities for improvement. Martin et al. 

examined 151 deaths admitted to an MTF where haemorrhage was the leading 

cause of non-expectant death (33). There were 76 non-expectant deaths, with at 

least one opportunity for improvement identified in 59 patients (78%). The 

largest region noted for improvement was in pre-hospital transport time and pre-

hospital haemorrhage control. These findings add clinical context to the results 

from the current study, where the pre-hospital environment was the most 

common location of death. 

Following these consistent findings, military surgeons from the UK and US set out 

to formalise a definition of NCTH in terms of anatomical and physiological 

parameters in order to be able to characterise this highly lethal, yet potentially 

survivable, injury complex. Morrison and Rasmussen proposed the definition used 

in the current study, which was designed to be inclusive of all major foci of torso 

haemorrhage, yet exclusive to patients presenting with shock or the need for 

immediate haemorrhage control (3). This definition was designed to be practical 

and to enable the comparison of populations or interventions used in the 

management of NCTH. 

This definition has been applied by Stannard et al. to US military personnel 

admitted to MTFs over an 8 year period (27). They identified an incidence of 

12.7% of patients sustaining the anatomical injury pattern, with 17.1% of those 

patients demonstrating evidence of shock or the need for urgent haemorrhage 

control. Following adjustment using multivariate analysis, the most mortal injury 

complexes were major arterial injury (OR 3.38; 95% CI: 1.17-9.74) and 

pulmonary injury (OR 2.23; 95% CI: 1.23-4.98). 

The current study extends these findings to include a military population who 

died in the pre-MTF phase of care. Almost 9 out of 10 deaths occur prior to MTF 

admission and again, major arterial injury and pulmonary hilar injury were 

identified as independent predictors of mortality, along with traumatic liver 

injury. It is useful to know that the NCTH injury patterns are consistent across 

populations that die pre- or post-MTF admission as this has implications for 

future haemorrhage control and resuscitation strategies. Importantly, any novel 
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device or treatment can be tested and refined in an MTF, prior to projecting 

forward, with the knowledge that although overall injury severity may increase, 

the major injury patterns are similar. 

A further important finding from the current study is from the cause of death 

analysis. While all patients had sustained NCTH, death from uncontrolled 

haemorrhage only accounted for 60.1% of the primary cause of death. In almost 

a third of cases, CNS injury was graded as more severe than the haemorrhagic 

component, further supported by the regression finding that severe head injury 

was a strong independent predictor of mortality. While many of these patients 

likely sustained an unsurvivable CNS injury, this highlights the multi-system 

nature of modern combat injury and the need for a pre-MTF haemorrhage 

control strategy that includes a neuro-protective component. The current 

paradigm of hypotensive resuscitation in haemorrhage may compound secondary 

brain injury in patients with concomitant neuro-trauma. 

The current study has a number of important limitations to note. Despite the 

largest burden of mortality occurring in the pre-MTF phase of care, little is 

known regarding the physiology or care rendered during this crucial time. 

Furthermore, despite a population of almost 300 patients, due to the volume of 

poly-trauma, it is difficult to analyse sub-groups in isolation. Regression was 

used to overcome the issue of multiple injuries; however, it is conceivable that 

some lesser injuries may be overshadowed by the dominant injury patterns. 

3.4.1 Conclusions 

This study demonstrates that the majority of patients sustaining NCTH die in the 

pre-MTF phase of care. Major arterial, pulmonary and liver trauma are 

independent predictors of mortality. Injury pattern does not change significantly 

between patients surviving to MTF admission compared to patients dying prior to 

MTF admission, although overall injury burden does increase. The majority cause 

of death is from uncontrolled haemorrhage, although CNS disruption is an 

important contributor. Future haemorrhage control and resuscitation strategies 

must be forward deployed and incorporate a neuro-protective component in 

order to reduce the mortality from NCTH. 
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Chapter 4: Prevalence of Torso and Head Injuries in 
Casualties with Traumatic Lower Extremity Amputations 

Caused by Improvised Explosive Device Injury 

4.1 Introduction 

Traumatic lower extremity amputation caused by improvised explosive devices 

(IEDs) has become the signature injury of the conflict in Afghanistan (Figure 

4.1). Media sources report that IED strikes accounted for 42.4% of fatalities in 

2007, rising to 58.4% in 2010 (34). United States military casualty statistics 

record 209 major limb amputations for operations in Afghanistan between 2001 

and September 2010 (35) and British records show 163 amputations and 32 

significant multiple amputations (survivors only) between 2006 and September 

2010 (36). The initial treatment of these injuries is focused on controlling 

haemorrhage. Distal amputations are managed with tourniquets, but when 

injuries are too proximal to permit the application of tourniquets, operative 

control of the femoral or iliac vessels, or even aorta, may be required. Pelvic 

fractures are managed with extraperitoneal packing and external fixation. 

Subsequent treatment includes the debridement of necrotic and contaminated 

tissue, and the management of associated injuries. Even if performed 

concurrently by several surgeons, operative treatment may take several hours. 

Concern regarding clinically occult torso and intracranial injury has led to a 

practice of “intra-operative” CT scanning, once vascular control has been 

attained. This approach has been rationalised as a contracted damage control 

sequence, comprising initial haemorrhage control and restoration of physiology, 

followed by secondary survey and imaging, and immediate further surgery, such 

as debridement, completion of amputations and formation of stomas.  
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Figure 4.1: A proximal bilateral above-knee traumatic amputation, which 
necessitated immediate laparotomy for vascular control, and associated 
upper limb injuries. The patient had no thoracic or brain injury. 
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The prevalence or severity of associated torso and neurological injuries in 

combat casualties with traumatic lower extremity amputations is not known. If 

uncommon, of little immediate consequence, or clinically obvious from the 

outset, a strategy of deferring cross-sectional imaging until the end of the 

procedure might be more appropriate. We therefore decided to conduct a study 

of torso and neurological injuries associated with traumatic lower extremity 

amputations inflicted by IEDs, to guide clinicians managing this complex and 

devastating injury complex. 

4.2 Materials and Methods 

This study was conducted using the prospectively recorded UK Joint Theatre 

Trauma Registry (JTTR). Registry data are mined from clinical records and – in 

the case of fatal injury – post-mortem reports, supplemented by discussions with 

the forensic pathologist. Injury pattern reporting is thus comprehensive, and 

case ascertainment is complete. Permission for the study was obtained from 

Joint Medical Command and Her Majesties Coroner, Oxfordshire. 

A retrospective search was performed to identify all UK service personnel who 

sustained a lower extremity amputation, proximal to the ankle, following an IED 

strike in Afghanistan between Jan 2007 and December 2010. The Role 3 (UK) 

Medical Treatment Facility at Camp Bastion, Afghanistan, receives the majority 

of combat casualties from the Helmand region. It has a multinational staff 

consisting of General and Orthopaedic Trauma Surgeons, Anaesthetists, 

Intensivists and Emergency Medicine Physicians. Extracted data included 

demographic details, injury severity scoring, level of traumatic amputation, 

associated injuries, operative interventions and 28-day mortality. 

Levels of traumatic amputation were classified using Abbreviated Injury Scale 

(AIS) coding as hind-quarter (HQ) when at the hip or buttock level, above knee 

(AK) and below knee (BK) (31). Patients were classified as killed in action (KIA) 

where death occurred at scene, died of wounds (DOW) if attended hospital, but 

ultimately died, and wounded in action (WIA). This enabled the calculation of 

the casualty fatality rate (CFR = [KIA + DOW] / [KIA + WIA + DOW]) for IED 

injuries overall, and by amputation type (22). AIS scores were also used to 
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describe injury pattern (31). Severe injury was defined as an AIS ≥ 3. Data were 

analysed by group, using ANOVA for continuous and chi squared tests for 

categorical variables. Risk ratios were generated for severe head, chest and 

abdominal injury and the need for laparotomy, per highest level of amputation. 

4.3 Results 

Over a four year period, there were 656 IED casualties: 138 (21.0%) were KIA, 31 

(4.7%) DOW and 487 (74.2%) were WIA, translating into an overall IED CFR of 

26%. Of these 656 casualties, 169 sustained 278 traumatic lower extremity 

amputations: 69 were KIA, 16 DOW and 84 were WIA.  

4.3.1 Injury patterns 

The demographics, injury severity and injury patterns of the three groups are 

summarised in Tables 4.1, 4.2 and 4.3. Those who were killed in action had 

suffered a higher injury burden – both in terms of lower extremity injury extent, 

and associated abdominal, thoracic and neurological injuries – than those who 

died of wounds, or those who survived (Tables 4.2 and 4.3). As expected, more 

proximal lower extremity amputation levels were associated with reduced 

survival: 12 (7.1%) casualties suffered bilateral hindquarter amputations, all of 

whom died. Unilateral hindquarter amputation, plus another lower level 

amputation, was sustained by 27 (16.0%) of patients, 2 (1.2%) of whom survived 

to 28 days. The bilateral above-knee amputation level is the point where more 

patients survive to reach hospital as demonstrated by the halving in CFR (Table 

4.2). The relative risk of dying as a result of hindquarter, above-knee and below-

knee traumatic amputation compared to any lower extremity amputation, and 

the association between traumatic amputation level and associated injuries to 

other body regions, is shown in Table 4.4.  
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Table 4.1: Baseline characteristics of study cohort, by outcome group 

 Total KIA DOW WIA 

P 
(KIA vs 
DOW vs 

WIA) 

p 
(DOW vs 

WIA) 

n 169 69 16 84   

Median Age, (IQR) 24.0 (7.0) 24.5 (9.0) 27.0 (8.0) 24.0 (5.0) 0.219 0.149 

Male, n (%)  168 (99.4%) 68 (98.6%) 16 (100%) 84 (100%) 0.482 n/a 

Median ISS, (IQR) 41 (43) 75 (21) 46 (23) 29 (12) < 0.001 < 0.001 

Median NISS, (IQR) 66 (30) 75 (0) 71 (18) 45 (23) < 0.001 < 0.001 

Median RTS, (IQR) 0 (6.38) 0 (0) 0 (5.97) 6.9 (3.80) < 0.001 0.003 
Abbreviations: KIA – Killed in Action, DOW – Died of Wounds, WIA – Wounded in Action, IQR – 
Interquartile Range, ISS – Injury Severity Score, NISS – New Injury Severity Score, RTS – Revised 
Trauma Score 
 

 
 
Table 4.2: Distribution of amputation levels, by outcome group, and casualty 
fatality rate 

Amputation 
Type 

CFR 
(%) 

Total 
n (%) 

KIA 
n (%) 

DOW 
n (%) 

WIA 
n (%) 

p 
(KIA vs 
DOW vs 

WIA) 

p 
(DOW 

vs 
WIA) 

 
HQ / HQ 100% 12 (7.1%) 11 (15.9%) 1 (6.3%) 0 (0.0%)   
HQ / AK 93% 14 (8.3%) 13 (18.8%) 0 (0.0%) 1 (1.2%)   

HQ / BK 86% 7 (4.1%) 5 (7.2%) 1 (6.3%) 1 (1.2%)   

HQ / -  100% 6 (3.6%) 5 (7.2%) 1 (6.3%) 0   

AK / AK 40% 40 (23.7%) 11 (15.8%) 5 (31.1%) 24 (28.6%) < 0.001 0.022 

AK / BK 35% 20 (11.8%) 4 (5.8%) 3 (18.8%) 13 (15.5%)   

AK / -  55% 20 (11.8) 10 (14.5%) 1 (6.3%) 9 (10.7%)   

BK / BK 41% 22 (13.0%) 5 (7.2%) 4 (25%) 13 (15.5%)   

BK / -  18% 28 (16.6%) 5 (7.2%) 0 (0.0%) 23 (27.4%)   
Abbreviations: KIA – Killed in Action, DOW – Died of Wounds, WIA – Wounded in Action, HQ – 
Hindquater, AK – Above Knee, BK – Below Knee, CFR – Casualty Fatality Rate 
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Table 4.3: Distribution and severity of associated injuries, by outcome group 

AIS Region Total KIA DOW WIA 

p 
(KIA vs 
DOW vs 

WIA) 

p 
(DOW 

vs WIA) 

Median Head AIS, (IQR) 0 (2.0) 2 (6.0) 0 (3.5) 0 (0) < 0.001 0.004 

Head AIS ≥ 3, n (%) 37 (21.9%) 29 (42.0%) 4 (25.0%) 4 (4.8%) < 0.001 0.006 

Median Chest AIS, (IQR) 0 (3.0) 3.0 (4.0) 0 (2.0) 0 < 0.001 0.023 

Chest AIS ≥ 3, n (%) 49 (29.0%) 41 (59.4%) 3 (18.8%) 5 (6.0%) < 0.001 0.084 

Median Abdominal AIS, (IQR) 2.0 (4.0) 4.0 (3.0) 4.0 (2.5) 1.0 (2.0) < 0.001 < 0.001 

Abdominal AIS ≥ 3, n (%) 70 (41.4%) 49 (71.0%) 12 (75.0%) 9 (10.7%) < 0.001 < 0.001 
Abbreviations: KIA – Killed in Action, DOW – Died of Wounds, WIA – Wounded in Action, IQR – Interquartile 
Range, ISS – Injury Severity Score, NISS – New Injury Severity Score, RTS – Revised Trauma Score, AIS – 
Abbreviated Injury Score, HQ – Hindquater, AK – Above Knee, BK – Below Knee, CFR – Casualty Fatality 
Rate 
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Table 4.4: Mortality and relative risk of death, and prevalence and relative 
risk of associated severe head, chest or abdominal injury, pelvic fracture, 
and need for laparotomy (by highest amputation level, with reference to all 
casualties who have sustained any battlefield lower extremity amputation). 

 n HQ AK BK 
n  39 80 50 

  n (%) RR  
(95% CI) 

n (%) RR  
(95% CI) 

n (%) RR  
(95% CI) 

Death 85 37 (94.9%) 31.6 
(7.3,137.0) 

34 (42.5%) 1.0 
(0.5,1.8) 

14 (28.0%) 0.3 
(0.2,1.6) 

Head AIS ≥ 3 37 15 (38.5%) 3.1 
(1.4,6.8) 

16 (20.0%) 1.4 
(0.7,3.0) 

6 (12.0%) 0.4 
(0.2,0.9) 

Chest AIS ≥ 3 49 25 (64.1%) 7.9 
(3.6,17.4) 

16 (20.0%) 0.8 
(0.4,1.5) 

8 (16.0%) 0.3 
(0.2,0.7) 

Abdominal AIS ≥ 3 70 28 (71.8%) 5.3 
(2.4,11.7) 

28 (35.0%) 0.8 
(0.4,1.4) 

14 (28%) 0.7 
(0.4,1.3) 

Unstable Pelvic 
Fracture 

52 19 (48.7%) 2.8  
(1.3,5.9) 

23 (28.8%) 1.0 
(0.5,2.0) 

10 (20.0%) 0.9 
(0.5,1.8) 

Need for 
Laparotomy* 

39 3 (7.7%) 2.5 
(0.4,15.4) 

25 (31.3%) 2.0 
(0.9,4.8) 

11 (20.0%) 0.3 
(0.1,0.7) 

Abbreviations: HQ – Hindquater, AK – Above Knee, BK – Below Knee, AIS – Abbreviated Injury Score, RR – 
Relative Risk 
* Excluding KIA 
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4.3.2 Management 

Of the 100 casualties (DOW + WIA) who were not killed in action, twelve did not 

have a palpable central pulse on admission. Nine underwent resuscitative 

thoracotomy (Figure 4.2). The injury patterns of the remaining 88 patients are 

shown in Table 4.5. Six suffered severe (AIS ≥ 3) traumatic brain injuries. Only 

one required craniotomy, for a clinically obvious penetrating brain injury. The 

remaining five patients had sustained closed head injuries, which required no 

operative intervention. Five patients sustained a severe (AIS ≥ 3) thoracic injury; 

four developed pulmonary contusions and one sustained a flail chest, but none 

required a thoracotomy. 

Of the three patients who survived resuscitative thoracotomy; two had sustained 

bilateral above-knee amputations and one bilateral below-knee amputations. 

None had suffered serious head or torso injury. Of the six patients who died 

despite resuscitative thoracotomy; five had sustained unstable pelvic fractures, 

four had a high grade solid abdominal organ injury, three had severe blunt head 

injuries and one had a superior vena cava injury. The three patients who only 

underwent CPR all had unstable pelvic fractures with bilateral below and above 

knee amputations and died of their wounds. 

4.4 Discussion 

This study adds to our understanding of current injury patterns in combat 

casualties who sustain traumatic amputations as a result of the evolving IED 

threat in Afghanistan.  Analyses of previous conflicts have predominantly focused 

on the role of amputation in the management of the mangled extremity 

following landmines and unexploded ordinance (37,38). Similar analyses have 

been performed in civilian patients exposed to landmines (39,40). These injuries 

are generally limited to a unilateral below-knee extremity and not comparable 

to the frequent bilateral, transfemoral level amputations seen in Afghanistan, 

and described in this current study. 
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Figure 4.2: Flow diagram of cohort selection 

Abbreviations: KIA – killed in action, ERT – emergency resuscitative thoracotomy, CPR – 
cardiopulmonary resuscitation. 
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Table 4.5: Injury pattern in patients with a central pulse (Laparotomy vs No-
Laparotomy). 

 Total Lap No-Lap p 
n 88 34 54  
Demographic     
Median Age, (IQR) 24.0 (6.0) 25.0 (8.0) 24.0 (4.0) 0.162 
Male, n (%)  88 (100%) 34 (100%) 54 (100%) N/A 
Injury Severity     
Median ISS, (IQR) 29 (14) 33 (13) 26 (11) < 0.001 
Median NISS, (IQR) 45 (23) 57 (19) 41 (26) < 0.001 
Median RTS, (IQR) 6.38 (3.75) 4.09 (2.29) 7.84 (3.75) < 0.001 
Associated injuries     
Median Head AIS, (IQR) 0 (0) 0 (0) 0 (0) 0.531 
Head AIS ≥ 3, n (%) 6 3 3 0.554 
Median Chest AIS, (IQR) 0 (0) 0 (0.5) 0 (0) 0.022 
Chest AIS ≥ 3, n (%) 5 5 0 0.004 
Median Abdominal AIS, (IQR) 1.0 (2.0) 2.0 (2.0) 0 (2.0) < 0.001 
Abdominal AIS ≥ 3, n (%) 14 11 0 < 0.001 
Amputation Type     
HQ / BK, n (%) 1 0 1 (1.9%) 0.055 
AK / AK, n (%) 26 14 (41.2%) 12 (22.2%)  
AK / BK, n (%) 15 6 (17.6%) 9 (16.7%)  
BK / BK, n (%) 13 7 (20.6%) 6 (11.1%)  
AK / - , n (%) 10 4 (11.8%) 6 (11.1%)  
BK / - , n (%) 23 3 (8.8%) 20 (37.0%)  

Abbreviations: IQR – Interquartile Range, ISS – Injury Severity Score, NISS – New Injury 
Severity Score, RTS – Revised Trauma Score, AIS – Abbreviated Injury Score, HQ – 
Hindquater, AK – Above Knee, BK – Below Knee. 
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More relevant, in terms of wounding mechanism, is a case series from Iraq, 

comprising 18 patients exposed to close proximity blast injury from IEDs (41); 4 

patients were dead on arrival, 5 had long bone fractures, 2 penetrating head 

injuries and 1 laparotomy. However, no patients sustained traumatic 

amputation, suggesting a different type of IED threat to that experienced in 

Afghanistan. 

Our results confirm that traumatic lower extremity amputation caused by IED 

strikes is associated with high mortality, which broadly correlates with the 

extent of the traumatic amputation (HQ vs AK vs BK). Our study also confirms 

that these injuries are frequently associated with other, often severe injuries to 

the abdomen, thorax and head. However, most of these injuries occur in those 

killed in action. In casualties who survive to the Role 3 facility at Camp Bastion, 

thoracic and traumatic brain injuries which are not clinically obvious, and thus 

require CT for diagnosis, appear to be rare. This finding has important 

implications for practice: Casualties who require laparotomy, either for proximal 

vascular control, or clinically obvious abdominal injuries, and who have no 

apparent thoracic or head injuries on clinical examination or plain chest x-ray, 

do not require “intra-operative” CT scanning. Instead, these patients should 

have CT scan on completion of their surgery, en route to the intensive care unit. 

4.4.1 Conclusions 

Injury from IEDs constitutes a significant threat to coalition forces in 

Afghanistan. Highest amputation level can serve as a surrogate marker of injury 

severity. “Intra-operative” CT appears to have little value and may unnecessarily 

prolong surgery. 



 37 
 

Chapter 5: Resuscitative Thoracotomy following Wartime 
Injury 

5.1 Introduction 

Resuscitative thoracotomy (RT) is performed on trauma patients who have either 

no central pulse or are peri-arrest (42,43). It is a dramatic manoeuvre, intended 

to facilitate the release of pericardial tamponade, control massive haemorrhage 

and air-leaks, or allow open cardiac massage and aortic control, in order to 

restore spontaneous circulation. RT has been thoroughly evaluated in civilian 

practice, with best survival rates observed in penetrating trauma to the thorax 

(8.8% to 33.0%), with least favourable outcomes noted in blunt injury (0.5% to 

1.4%) (44-48). 

Despite a significantly different wounding pattern, currently UK and US military 

Clinical Practice Guidelines (CPG's) are largely based upon civilian practice due 

to a limited evidence base (49,50). Military patients are predominantly injured 

by explosive and high energy gunshot mechanisms (51). These wounds are often 

sustained in austere circumstances with lengthier pre-hospital evacuation times 

in comparison to civilian Emergency Medical Service (EMS) systems (52). 

However, within these constraints, there have been a number of reports of 

successful outcomes following RT in the combat environment (53), but only a 

single large series reporting 101 consecutive combat-related RTs performed 

between 2003-2007 with an overall survival rate of 12% (54). Specifically, there 

is limited data on the location and timing of cardiac arrest in combat wounded 

undergoing RT.  

Since 2006, the UK Defence Medical Service (DMS) has been providing trauma 

care in Helmand Province, Southern Afghanistan at the Role 3 Hospital in Camp 

Bastion. Within this time there have been significant developments in combat 

casualty care, such as balanced resuscitation strategies, forward critical care 

and the use of tourniquets. The UK and US military has incorporated such 

developments into a paradigm of damage control resuscitation (DCR) beginning 

at the point-of-wounding through to discharge (55). The aim of this study is to 

analyse survival, and the causes and times of death in patients undergoing RT 
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within the context of modern battlefield resuscitation. This study aims to inform 

clinicians dealing with the complex decision making surrounding RT in the 

pulseless combat trauma patient. 

5.2 Methods 

A retrospective cohort study was performed on consecutive admissions to a Field 

Hospital in Southern Afghanistan following approval from the United Kingdom's 

Joint Medical Command Academic Unit and the United States Army's Institute for 

Surgical Research. All patients, both local nationals and NATO personnel, in 

circulatory arrest (i.e. no palpable central pulse), undergoing resuscitative 

thoracotomy (RT) were identified using the UK Joint Theatre Trauma Registry 

(JTTR). We defined RT as thoracotomy performed in hospital, in a pulseless 

patient, with the intention to restore spontaneous circulation. 

Data retrieved included the mechanism and severity of injury, admission 

physiology, blood product use, surgical interventions, survival up to 30 days and 

causes of death. We were specifically interested in the location of the arrest (in 

the field, during evacuation or in the Emergency Department (ED)) and time 

from circulatory arrest to thoracotomy, where available. Admission respiratory 

rate, systolic blood pressure and Glasgow Coma Scale (GCS) were used to 

generate a Revised Trauma Score which is inversely proportion to survival (56). 

The Abbreviated Injury Scale was used to describe injury pattern and calculate 

an Injury Severity Score (ISS) and New Injury Severity Score - the greater the 

score, the greater the injury burden (31). A severe injury to a body region was 

defined as an AIS score of 3 or greater. 

The UK JTTR records the complete follow-up for all UK military patients, 

however, the day of discharge accounts for the last day of follow-up for all other 

patients. Thus, in order to maximise cohort follow-up, all US patients were 

identified and cross referenced with the US Joint Theatre Trauma Registry. This 

enabled the 30-day follow-up of UK and US patients admitted to Camp Bastion.  

The cohort was divided into survivors and non-survivors. Comparisons were made 

using the chi-squared test for categorical data and differences in means assessed 

using t-test's or Mann-Whitney rank-sum test for continuous variables. 
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5.3 Results 

Between April 2006 and March 2011, there were 8402 consecutive trauma 

admissions to the Role 3 Hospital, Camp Bastion following combat related injury. 

Of these patients, 65 (0.7%) underwent RT following circulatory arrest. The 

arrests occurred in the field in 10 (15.4%) patients, during evacuation in 28 

(43.1%) and in the ED in 26 (40.0%). The mean (± SD) age was 25 ± 7 with one 

female patient within the cohort. There were 19 (29.2%) local nationals, 28 

(43.1%) UK military, 14 (21.5%) US military, and four (6.2%) from other NATO 

countries. The mean (± SD) RTS was 1.25 ± 2.0, ISS was 34 ± 20 and NISS was 47 ± 

21 in the overall cohort. Of the 65 patients, return of spontaneous circulation 

(ROSC) was achieved in 33 (51%) patients but was not sustained in 19 (57.7%) of 

those; the overall survival rate was 14 (21.5%). 

The age, gender distribution and mechanism of injury were similar in the 

survivor and non-survivor groups (Table 5.1). There is an inclination towards a 

greater injury burden and severity in the fatalities, however, no parameter 

achieves statistical significance (Table 5.1). Of note, there were no severe head 

injuries in the survivor group with nine (17.6%) in the non-survivor group. 

Survivors proportionally tended to have less severe thoracic injury (p = 0.352), 

with a greater proportion of severe extremity injury (p = 0.253). 
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Table 5.1: Demographic and injury pattern data of patients undergoing 
resuscitative thoracotomy at The Role 3 Hospital, Camp Bastion 

 Dead Alive P 
n 51 14  
Demographic Data    

Age/years, mean ± SD 25.6 ± 7.6 23.6 ± 5.4 0.314 
Male, n (%) 50 (98.0%) 14 (100.0%) 1.000 

Mechanism of Injury    
GSW, n (%) 22 (43.1%) 5 (35.7%) 0.618 
Explosion, n (%) 29 (56.9%) 9 (64.3%)  

Trauma Scoring    
Mean ISS 36.0 ± 22.1 27.3 ± 7.6 0.636 
Mean NISS 47.5 ± 22.9 43.4 ± 12.9 0.419 
Head AIS ≥ 3, n (%) 9 (17.6%) 0 0.090 
Neck AIS ≥ 3, n (%) 2 (3.9%) 0 0.452 
Chest AIS ≥ 3, n (%) 29 (56.9%) 6 (42.9%) 0.352 
Abdominal AIS ≥ 3, n (%) 18 (35.3%) 5 (35.7%) 0.977 
Extremity AIS ≥ 3, n (%) 21 (41.2%) 9 (64.3%) 0.253 
RTS, mean ± SD 0.98 ± 1.82 2.67 ± 2.32 0.126 

Injury Burden    
Number of Injuries, mean ± SD 6.6 ± 5.8 5.6 ± 2.3 0.596 
Number of Regions Injured, mean ± 
SD 

2.8 ± 1.6 2.6 ± 1.4 0.960 

Injuries Per Body Region, mean ± SD 2.3 ± 1.8 2.3 ± 0.7 0.202 
Number of Severe* Injuries, mean ± 
SD 

1.6 ± 1.0 1.4 ± 0.5 0.888 

GSW, Gunshot Wound; ISS, Injury Severity Score; NISS, New Injury Severity Score; 
AIS, Abbreviated Injury Scale; RTS, Revised Trauma Score. *Severe injury is defined 
as an AIS Organ Score ≥ 3. 
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Comparing survivors with non-survivors, there was no difference in the time 

(minutes) from incident to hospital admission (70.0 ± 28.5 vs. 72.0 ± 35.4; p = 

0.741). However, the time from loss of pulse to thoracotomy was significantly 

less in the survivor group (6.15 ± 5.8 vs. 17.7 ± 12.63; p < 0.001). The longest 

time between circulatory arrest and thoracotomy in a patient to survive to 30 

days was 24 minutes. None of the 10 patients who arrested in the field ever had 

their cardiac output restored, whilst of the 29 patients who arrested en-route, 

13 (44.8%) had a transient ROSC with three (10.3%) 30-day survivors. There were 

26 patients who arrested in the ED, 20 (76.9%) of whom had their cardiac output 

restored; however, it was only sustained in 11 (42.3%) patients to 30-days (Table 

5.2).  

At thoracotomy, open cardiac massage was used significantly less in patients 

who survived to 30 days (64.3% vs. 92.2%; p 0.007) - of the five patients 

undergoing thoracotomy without cardiac massage, their hearts were considered 

contractile but empty at pericardiotomy. Aortic control - either cross clamping 

or manual compression - was employed similarly in both groups, to enhance 

cerebral and myocardial perfusion. One survivor required release of a cardiac 

tamponade and repair of the right ventricular outflow tract following 

fragmentation injury and ED arrest. Several thoracic haemorrhage control 

manoeuvres (pulmonary tractotomy, non-anatomical lung resection, vascular 

repair) were employed in both groups evenly. A greater proportion of survivors 

required a concomitant laparotomy for haemorrhage control in the abdomen 

although this only trended towards statistical significance (57.1% vs. 31.4%; p = 

0.077). Table 5.3 includes a summary of operative procedures within the groups. 

There were significantly more blood products utilised in the resuscitation of 

patients who ultimately survived (p < 0.001; Table 5.3). The mean FFP:PRBC 

ratio was also higher in the survivor group (0.9 ± 0.1 vs 0.7 ± 0.4; p = 0.051). 

There was no significant difference in the use of Tranexamic acid or 

Recombinant Factor 7a. 
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Table 5.2: Location of circulatory arrest, presenting cardiac rhythm and 
timeline data of patients undergoing resuscitative thoracotomy at Camp 
Bastion 

 Dead Alive P 
n 51 14  
Circulatory Arrest Location    

In the Field, n (%) 10 (19.6%) 0 0.001 
Evacuation, n (%) 26 (51.0%) 3 (21.4%)  
Emergency Department, n (%) 15 (29.4%) 11 (78.6%)  

Arrest Rhythm    
Asystole, n (%) 7 (13.7%) 0 0.002 
Pulseless Electrical Activity, n (%) 18 (35.3%) 13 (92.9%)  
Ventricular Fibrillation, n (%) 2 (3.9%) 0  
Unknown, n (%) 24 (47.1%) 1 (7.1%)  
ROSC at any time, n (%) 19 (37.3%) 14 (100.0%) < 0.001 

Timeline Data/Mins    
Incident to Admission, mean ± SD 70.0 ± 28.5 72.0 ± 35.4 0.741 
Time from Arrest to Thoracotomy, mean ± SD 17.7 ± 12.63 5.54 ± 3.8 < 0.001 

Abbreviations: ROSC, Return of Spontaneous Circulation 
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Table 5.3: Operative maneuvers and resuscitation data of patients 
undergoing resuscitative thoracotomy at Camp Bastion 

 Dead Alive P 
n 51 14  

Surgical Intervention    
Cardiac Massage, n (%) 47 (92.2%) 9 (64.3%) 0.007 

Aortic Control, n (%) 51 (100.0%) 12 (85.7%) 0.682 
 Lobectomy, n (%) 2 (3.9%) 2 (14.3%) 0.153 

Release of Tamponade, n (%) 0 1 (7.1%) 0.054 
Bronchial Repair, n (%) 1(2.0%) 0 0.597 
Vascular Repair, n (%) 2 (3.9%) 1 (7.1%) 0.611 

Laparotomy, n (%) 16 (31.4%) 8 (57.1%) 0.077 
Resuscitation    

PRBC, mean ± SD / units  10.3 ± 12.2 36.1 ± 38.6 < 0.001 
FFP, mean ± SD / units 7.8 ± 10.9 33.1 ± 32.3 < 0.001 

Cryoprecipitate, mean ± SD / units 0.45 ± 1.14 2.79 ± 2.97 < 0.001 
Platelets, mean ± SD / units 0.81 ± 1.84 5.29 ± 5.36 < 0.001 

Fresh Whole Blood, mean ± SD / units 0 2.5 ± 5.7 0.003 
Tranexamic Acid, n (%) 9 (17.6%) 3 (21.4%) 0.711 

Recombinant Factor 7a, n (%)  10 (19.6%) 6 (42.9%) 0.090 
Abbreviations: PRBC, Packed Red Blood Cells; FFP, Fresh Frozen Plasma. 
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The majority of deaths (45 patients or 88.2%) occurred intra-operatively with a 

mean time from admission to death of 33 ± 33 minutes. Only 13 (28.9%) of these 

patients had ROSC, although none were sustained for a significant period of 

time. All 45 patients died from haemorrhage and irretrievable cardiovascular 

collapse, although nine patients had also sustained a severe head injury. 

Nineteen patients were successfully resuscitated, achieving sufficient 

cardiovascular stability to be transferred to the ICU. Ultimately, three patients 

died within 24 hours following refractory hypotension, fulminate multi-organ 

failure and coagulopathy. Two patients had sustained hypoxic brain injuries, 

dying on post-operative days 1 and 2 respectively. The mean time from 

admission to death in patients surviving to ICU was 19.8 ± 26.8 hours. 

Of the remaining 14 patients, one local national was discharged ambulatory from 

intensive care on day 14 and onwards to a local Afghan facility on day 22. Seven 

UK and six US patients underwent strategic aeromedical evacuation to their 

respective countries for continued care, with follow-up available for all patients 

to 30-days. 

5.4 Discussion 

We report a series of 65 patients undergoing emergency resuscitative 

thoracotomy for circulatory arrest following combat injury with 14 survivors 

(21.5%). The majority of survivors arrested in the ED, with a minority occurring 

during medical evacuation. No patient arresting in the field achieved a return of 

spontaneous circulation and no patient with a severe head injury survived 

beyond 24 hours. Of the patients in whom cardiac output was restored long 

enough to be transferred to the ICU, a quarter ultimately died of either 

physiological exhaustion or hypoxic brain injury within three days of injury. In 

the remaining 14 patients, 13 have been followed-up to 30 days and one local 

national to discharge at 22 days. 

This registry study is limited by its retrospective nature in that we may not have 

identified all eligible patients and are unable to report detailed neurological 

outcomes. We are also unable to comment on the use of cardio-pulmonary 

resuscitation in the field as this pre-hospital data is not recorded within the 

JTTR. However we are confident that we have captured all relevant cases by 
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extensive cross-checking databases with operating surgeons.  Additionally, we 

have derived causes of death from the registry data, which is not as 

comprehensive as a formal autopsy.   

Factors associated with survival, in the civilian literature, include injury pattern 

and length of warm ischaemia (42,43). Survival rates have been reported as high 

as 38% in subgroup analyses of patients who presented with thoracic stab wounds 

and tamponade (57-59). However, a review by the trauma sub-committee of the 

American College of Surgeons (44) identified an overall survival rate of 7.8% in 

7035 thoracotomies: 11.2% for penetrating and 1.6% for blunt injury. Best results 

have been found in patients with cardiovascular collapse from cardiac 

tamponade following isolated cardiac chamber injury (59,60). Time between 

arrest and restoration of cardiac output is variable in survivors (61), although a 

maximum of 30 minutes is generally accepted (45,62). 

However, military trauma is significantly different from civilian in both 

mechanism and anatomical wounding pattern (51). In the current conflict, there 

is a preponderance towards blast injury and high energy transfer ballistic injury 

yielding heavily contaminated wounds with substantial tissue destruction (16). 

Thus, the civilian experience of RT has limited applicability to military wounded. 

The evidence for the use of resuscitative thoracotomy in the military is currently 

limited to case series (53) and cohort studies (54,63). 

Our results are comparable to the best civilian outcomes, despite an injury 

pattern dominated by extra-thoracic injury and exsanguination. These outcomes 

have been achieved by several components related to the treated population 

and system of treatment. Firstly our patients were generally young and fit with a 

significant physiological reserve permitting a degree of resilience to major 

insults. In terms of care, the treatment of patients commenced at the point of 

wounding, which while in this cohort did not prevent any patients arresting, it 

may have extended time with a spontaneous circulation. Furthermore, upon 

admission to the Field Hospital, all patients received aggressive DCR to restore 

volume and achieve surgical haemostasis, combined with field critical care. 



Chapter 5: Resuscitative Thoracotomy following Wartime Injury 46 
 

 

 

The largest series to date looks at the outcomes following emergency 

thoracotomy from a US combat support hospital in Iraq in 2003-2007 (54). Edens 

and colleagues reported a 12% survival rate in a consecutive series of 101 

patients injured by all mechanisms (blunt and penetrating). There were no 

survivors in the seven patients injured by a blunt mechanism. The primary 

location of wounding was the thorax (40%), abdomen (30%), extremities (22%) 

and the head/neck (2%). 

Our series extends these findings to the Afghan theatre although there are 

differences in injury pattern and resuscitation. We report a higher proportion of 

patients with severe extremity injury (46.2%), which is characteristic of the 

dismounted complex blast injury, a signature injury of the war in Afghanistan 

(Figure 5.1) (64). Patients who are hypovolaemic from a severe limb injury may 

be more likely to achieve a ROSC if the circulating volume is rapidly restored. 

Our study reports more than twice the average PRBC (36U versus 15U) and four 

times the average FFP (33U versus 7U) used per survivor than in Edens’ study. 

Balanced resuscitation is associated with improved outcomes (65). 

Our results are further complimented by a prospective observational study of 52 

patients with military traumatic circulatory arrest at Camp Bastion performed by 

Tarmey and co-workers (63). They reported 14 (27%) patients exhibiting ROSC, 

although only sustained in 4 (8%). RT was performed in 12 patients, including the 

4 who survived to discharge. The majority of deaths (79%) occurred within an 

hour and the longest duration of arrest associated with survival was 24 minutes. 

It is important to note that our study overlaps with their work, although we have 

only examined the sub-group of patients undergoing resuscitative thoracotomy. 

They concluded that despite higher ISS scores than contemporary civilian studies 

and the high prevalence of exsanguination, outcomes were similar. They 

identified short arrest times, presence of electrical activity and cardiac 

movement on ultrasound to be associated with successful resuscitations. 

Unfortunately, we are unable to report the role of ultrasound and although we 

do not know the presenting rhythm of 38.5% of our cohort, 92.9% of survivors 

were in a PEA rhythm.  
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Figure 5.1: A typical example of a patient sustaining a dismounted complex 
blast injury with bilateral traumatic lower extremity amputation 
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The UK and US military have both published CPG's for the use of RT, of which we 

are able to comment on the penetrating component of the guidelines. The UK 

DMS CPG starts with an assessment for the presence of "signs of life" - absence in 

the field suggests that RT is futile contra- indicated in such circumstances (49). 

The guideline goes on to suggest that RT should only be performed if it can be 

accomplished within 5 minutes from the loss of "signs of life". The US military's 

CPG is similar, but specifies that RT should only be performed within 10 minutes 

from the loss of a pulse in patients without an isolated head injury (50).  

Our data largely support these guidelines which recognise the time critical 

nature of RT and the futility in the presence of head injury and arrest in the 

field. However, the data presented suggest that the time limits proposed within 

current CPG's are too conservative - the longest time from arrest to RT in a 

survivor within this series was 24 minutes. Clearly military surgeons are 

performing RT beyond these times - this may be due to a lack of pre-hospital 

information or the exercising of clinical judgment. We would suggest amending 

the UK and US CPG's to increase the length of time to 30 minutes within which 

RT may be of benefit to pulseless combat casualties. 

However, it is important to recognise the dynamic nature of warfare, especially 

when in an expeditionary phase. Our data demonstrate that ROSC was possible in 

half of our patients, but only sustained in a fifth, requiring significant operative 

and critical care resources. These outcomes were achieved in a mature facility, 

with significant resources and personnel and may not extend to further forward 

austere locations. 

The importance of a short arrest time would suggest that earlier pre-hospital 

thoracotomy (PHT) may be sensible. The facility for PHT exists within the DMS 

on the Medical Emergency Response Team (MERT) aeromedical platform and 

several have been performed with no survivors to date (UK JTTR, unpublished 

data). A previous analysis suggested that military wounding is not amenable to 

such an approach due to the multi-cavity nature of high energy transfer military 

projectiles (66). Our study highlights the importance of haemostatic 

resuscitation in military circulatory arrest - it is likely that a thoracotomy 

performed without aggressive DCR, is probably limited in its effectiveness. 
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We have reported 3/19 (16%) patients who had a sustained ROSC, but died of 

fulminate multiple organ failure in ICU. These types of patients, who ultimately 

die despite correction of their physiological instability, are becoming 

increasingly recognised as a specific sub-group. Recently the term 

"exsanguination shock" has been used to describe this group; however, the 

mechanism of this process remains elusive (67). Undoubtedly, there are 

multiple, complex cellular processes evolving in these severely injured patients, 

which if understood may assist in directing the future care of trauma patients. 

5.4.1 Conclusions 

Resuscitative thoracotomy is a procedure that surgeons deployed in conflict 

zones need to be comfortable performing as appropriate application can yield 

unexpected survivors. Survival rates are similar to well performing civilian 

centers, although the injury pattern is significantly different. Haemorrhage is 

the leading cause of arrest, often from abdominal and extremity trauma, with 

head injuries carrying a very poor prognosis. Short arrest times and in-hospital or 

en-route arrest locations are associated with greater survival. RT for patients 

arresting at the point-of-wounding appears to be futile. Survivors require 

significant operative, critical care and transfusion resources. 
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Chapter 6: Utilisation and Complications of Operative 
Control of Arterial Inflow in Combat Casualties with 
Traumatic Lower Extremity Amputations Caused by 

Improvised Explosive Devices 

6.1 Background 

Traumatic lower extremity amputation from Improvised Explosive Devices (IEDs) 

blasts has become the one of the most complex, challenging injuries faced by 

military surgeons in Afghanistan (68). Survival is largely dependent upon prompt 

haemorrhage control, which in the setting of distal amputation can usually be 

accomplished with tourniquets. However, as the amputation level ascends, 

haemorrhage control becomes more challenging, both in the pre-hospital and 

hospital setting. The case fatality rate for high transfemoral bilateral 

amputation exceeds 90% and junctional bleeding accounts for 20% of overall 

combat deaths from haemorrhage (15,68). 

Several devices, pneumatic and mechanical, have been developed for the pre-

hospital control of junctional haemorrhage; in contrast, hospital control has 

evolved little beyond conventional operative management. In general, the 

current approach is to obtain control of the terminal aorta or proximal iliac 

segments via an intra- or extra-peritoneal approach. The use of laparotomy is 

further rationalised, as there may also be a need to concomitantly manage intra-

abdominal hollow or solid organ injury. 

However, the use of proximal control, the incidence of intra-abdominal injuries 

and complications has yet to be characterised in a population of wartime 

injured. The aim of the study is evaluate the use of immediate operative control 

of arterial inflow and its complications. 

6.2 Methods 

This study was approved by the Royal Centre for Defence Medicine (RCDM) 

Academic Unit.  All patients who sustained a traumatic lower extremity 

amputation and required supra-inguinal vascular control were identified from 

the UK Joint Trauma Registry (JTTR). The search used a combination of body 
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region and surgical procedures coding to identify patients injured between July 

2008 and December 2010. The UK JTTR is a prospective registry recording data 

on casualties who trigger trauma team activation (29). 

Data on patient demographics, injury severity and patterns, mechanism of 

injury, timeline, admission physiology, blood products and surgical procedures 

were retrieved. Overall injury burden was quantified using the Injury Severity 

Score (ISS) and New Injury Severity Score (NISS) (31). The Abbreviated Injury 

Scale (AIS) was used to classify anatomical injury patterns. A severe injury was 

defined as an AIS ≥ 3 (56). 

Patients’ charts were reviewed to identify the method of supra-inguinal vascular 

control and complications that arose. In cases where multiple levels of control 

were used, data on all vessels were collected. Extra-peritoneal approach (EP) 

was defined as control of the iliac vessels via midline or Pfannenstiel incisions 

without breach of the peritoneum. Intra-peritoneal (IP) approach was defined as 

control of vessels via the midline laparotomy incision that opened the 

peritoneum. 

Patients were categorised as survivors or fatalities (30 day mortality) and all 

statistical analyses performed using SPSS 19 software (IBM®, New York).  T-tests 

were used for continuous data, Mann-Whitney rank-sum test for ordinal data and 

categorical data were analysed using chi-squared test. 

6.3 Results 

Between July 2008 and December 2010, 260 patients were identified as having 

sustained traumatic lower extremity amputations, of which 51 also required 

proximal control (Figure 6.1). The majority (80.4%) of patients had intra-

peritoneal control.  Both groups (IP versus EP) were comparable in age and all 

patients were male (Table 6.1).  Mortality was higher in the IP group than in the 

EP group, although this result was not statistically significant (29.3% vs 10.0%; p 

= 0.210).   
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Figure 6.1: Flow diagram of the cohort selection 

 

Table 6.1: Baseline characteristics and injury pattern of patients requiring 
proximal control 

 IP control EP control P value 
n 41 10  
Gender (%) 41 (100) 10 (100) - 
Age (years)* † 25 (6) 28 (5) 0.448 
Fatalities 12 (29.3) 1 (10.0) 0.210 
Trauma Scores    
Median ISS (IQR) 30 (14) 30 (12.5) 0.090∞ 
Median NISS (IQR) 54 (17) 54 (17) 0.777∞ 
Median RTS (IQR)* 4.09 (2.29) 4.09 (3.20) 0.981∞ 
Injury Pattern    
Head AIS ≥ 3 3 (7.3) 0 (0) 0.378 
Chest AIS ≥ 3 5 (12.2) 1 (10) 0.847 
Abdomen AIS ≥ 3 14 (34.1) 0 (0) 0.030 
Upper Extremity AIS ≥ 3 8 (19.5) 5 (50) 0.047 
Lower Extremity AIS ≥ 3 41 (100) 10 (100) - 
Values in parentheses are percentage unless otherwise stated.  
*Missing data in 17 patients. ISS, Injury Severity Score; NISS, New 
Injury Severity Score; RTS, Revised Trauma Score; TRISS, Trauma 
Injury Severity Score; AIS, Abbreviated Injury Score. IP, intraperitoneal; 
EP, extraperitoneal.  Intraperitoneal versus extraperitoneal (chi-square 
test, except ∞ Mann-Whitney Rank sum test). 
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6.3.1 Trauma Scoring and Injury Pattern 

The overall median ISS was 30 and NISS was 54.  There were no significant 

differences in ISS, NISS, RTS and TRISS between the IP and EP groups (Table 6.1).  

In the analysis of AIS body region scoring, the IP group had sustained a greater 

proportion of severe abdominal injury (p=0.03) and upper extremity trauma 

(p=0.047) compared to the EP group.  All groups had a similar distribution of 

lower extremity injuries, reflective of the inclusion criteria. 

The distribution of the levels of bilateral lower extremity amputees in the IP and 

EP group were similar with the majority of patients had sustained at least one 

transfemoral amputation (Table 6.2). In the IP group, a significantly greater 

proportion of patients had pelvic fractures compared to EP group (43.9% vs 10%; 

p = 0.047). 

6.3.2 Type of Vascular Control 

Eight patients initially required aortic control, which was released once more 

distal control had been established in five cases.  In the IP group (n=41), the 

majority (73.2%) patients had bilateral control along the length of their iliac 

segments, and unilateral control in 19.6%.  Right sided iliac segment control was 

more common in IP group (12.5% vs 7.3%).  In the EP group (n=10), half of the 

patients had bilateral control of iliac segments, followed by 30% that had left 

sided control.   There is no statistical significance observed in the various 

lateralities (Table 6.3, Figure 6.2).  
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Table 6.2: Amputation pattern in patients requiring proximal control 

 
IP control 

EP 
control P 

n 41 10  
Amputation Number    
Single lower extremity 5 (12.2) 1 (10) 0.448 
Bilateral lower extremity 28 (68.3) 6 (50)  
Triple 7 (17.1) 4 (40)  
Quadruple 1 (2.4) 0 (0)  
Lower Extremity Amputation 
Configuration 

   

Bilateral PTF 9 (22) 1 (10) 0.561 
Bilateral DTF  9 (22) 3 (30)  
Bilateral BK 2 (4.9) 0 (0)  
Unilateral PTF + Other 11 (26.8) 5 (50)  
Unilateral DTF + Other 5 (12.2) 0 (0)  
Others 5 (12.2) 1(10)  
Values in parentheses are percentage unless otherwise stated. IP, 
intraperitoneal; EP, extraperitoneal.  PTF, proximal transfemoral; DTF, distal 
transfemoral; TK, through knee; BK, below knee.  Others include: single PTF, 
single DTF, single TK, single BK, TK/BK.  Intraperitoneal versus 
extraperitoneal (chi-square test). 

 
 
 
 
 
 

 

Figure 6.2: Line drawing of the pelvic vasculature with relative proportions 
of the regions used for control 
Values in parentheses are percentage.  IP, intraperitoneal; EP, extraperitoneal.  *Multiple 
vessels allowed for.  CIA, common iliac artery; IIA, internal iliac artery; EIA, external iliac 
artery. 
 

  

*Aorta, n = 8 (15.7%) 

*CIA, n = 27 (52.9%) 

*EIA, n = 17 (33.3%) 

*IIA, n = 13 (25.5%) 

Aorta only, n = 3 (5.9%) 
Right Iliac only, n = 7 (13.7%) 
Bilateral Iliacs, n = 35 (68.6%) 

Left Iliac only, n = 6 (11.8%) 
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Table 6.3: Breakdown of vessel control 

 IP control EP control P 
n 41 10  
Laterality    

Right iliac segment 
only  

5 (12.2) 2 (20) 0.155 

Left iliac segment only  3 (7.3) 3 (30)  
Bilateral iliac 
segments  

30 (73.2) 5 (50)  

Aorta control only  3 (7.3) 0 (0)  
Named vessels    

Aorta controlled  8 -  
In isolated  3 (37.5) -  
No CIA control 17 (41.5) 7 (70) 0.026 
Right CIA 4 (9.8) 0 (0)  
Left CIA 1 (2.4) 2 (20)  
Bilateral CIA 19 (46.3) 1 (10)  
No IIA control 30 (73.2) 8 (80) 0.012 
Right IIA 0 (0) 2 (20)  
Left IIA 3 (7.3) 0 (0)  
Bilateral IIA 8 (19.5) 0 (0)  
No EIA control 31 (75.6) 3 (30) 0.002 
Right EIA 1 (2.4) 3 (30)  
Left EIA 1 (2.4) 2 (20)  
Bilateral EIA 8 (19.5) 2 (20)  

Values in parentheses are percentages. IP, intraperitoneal; EP, 
extraperitoneal.  Intraperitoneal versus extraperitoneal (chi-square test). 
CIA, common iliac artery; IIA, internal iliac artery; EIA, external iliac 
artery.   
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The common iliac artery (CIA) was the most common vessel controlled in the IP 

group; amongst the 19 patients (46.3%) that had bilateral CIA control, one 

patient subsequently had bilateral internal iliac artery (IIA) control. In the EP 

group, one patient (10%) had bilateral CIA control.  The control of the IIA was 

utilised more commonly via the IP approach compared to EP (p=0.012).  External 

iliac artery (EIA) was the most common vessel controlled via the EP approach.  

(Table 6.3, Figure 6.2) 

6.3.3 Indications of Abdominal Surgery 

In the cohort of patients who had IP control, the indication for laparotomy was 

mainly for proximal control (46.3%) followed by haemodynamic instability 

(29.3%) and clinical suspicion of intra-abdominal injuries (24.6%).  Hollow organ 

intervention was performed in 13 of the laparotomies, mainly for formation of 

colostomy (Table 6.4).  Solid organ haemorrhage control manoeuvres such as 

liver packing or splenectomy was performed in four patients in this cohort. Over 

half of the patients only had proximal control from the laparotomy, 41.5% of 

patients had proximal control and other intra-abdominal intervention (Table 

6.4). 

One negative trauma laparotomy was performed in the IP group, with initial 

suspected abdominal injury hence laparotomy which showed no intra-operative 

findings, however the patient proceed to have IP proximal vascular control for 

superficial femoral artery and vein through and through injury. 

Three patients underwent a laparotomy in the EP group; one patient had EP 

vascular control followed by computed tomography (CT), which demonstrated 

free air and the patient proceeded to a laparotomy which was negative. The 

remaining two patients in this group underwent formation of colostomy.  

6.3.4 Complications 

One patient, who had undergone IP control, suffered an injury to the common 

iliac vein, which was repaired. There were no other immediate complications 

reported.   
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Table 6.4: Abdominal surgery: indications and interventions 

 
 Laparotomy 

n 41 
Indications  

Proximal Control 19 (46.3) 
Haemodynamic Instability 12 (29.3) 
Clinical Suspicion 10 (24.4) 
Imaging Directed 0 (0) 

Interventions  
Proximal Control 40 
Solid Organ 4 
Hollow Organ 13 
Vascular Repair 1 

Category  
Proximal Control, in isolation 23 (56.1) 
Proximal Control, plus intervention 17 (41.5) 
No Proximal Control, intervention only 0 (0) 
Non-Therapeutic Laparotomy 1 (2.4) 

Values in parentheses are percentage unless otherwise 
stated. 
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6.4 Discussion 

This study reports a consecutive series of 51 patients with traumatic lower 

extremity amputation in wartime who required supra-inguinal inflow control. 

The majority (80.4%) of patients had their peritoneum explored through a 

midline laparotomy and over half (56.1%) of patients undergoing laparotomy 

required no other abdominal intervention.     

Traumatic amputation in wartime carries a significant burden of mortality: 40.8% 

of patients die prior to hospital admission, with an in-hospital mortality of 16.0% 

(68). Haemorrhage constitutes the leading cause of death - bilateral proximal 

hindquarter amputations are almost universally fatal, decreasing to a case 

fatality rate of 18.0% for unilateral below-knee amputations (68). 

The mortality from isolated extremity injury has decreased, largely attributed to 

the introduction of tourniquets (18,19). However, ileo-femoral junctional and 

pelvic bleeding remains highly lethal (4,15) and challenging to manage (69,70). 

The devastating soft tissue injury associated with perineal blast injury often 

results in the disruption of vessels in hard to reach places. For example, gluteal 

artery haemorrhage is difficult to control by direct means, such as gauze 

packing, thus proximal control of the internal iliac becomes a key haemostatic 

manoeuvre. There is a higher mortality in the IP group, compared to the EP, 

although this does not achieve statistical significance, likely due to a lack of 

power within the study. 

The war in Afghanistan has become characterised by the use of IEDs, which are 

associated with high, often bilateral, lower extremity amputations, and pelvic 

and genital injuries. This constellation has been termed the "Dismounted 

Complex Blast Injury (DCBI)" as it is generally sustained by military personnel on 

foot (71). Care in-hospital consists of concomitant resuscitation and 

haemorrhage control (69,70), often necessitating General and Orthopaedic 

surgeons working synchronously, as well as massive transfusion and haemostatic 

resuscitation, administered by the anaesthetic team.  Most of the vascular 

injuries in our cohort were blast related, with disruption of lower extremity 

vasculature, where the use of proximal control is used to control bleeding and 

facilitate amputation. 
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The current study demonstrates that proximal control is felt necessary in one in 

five patients who sustain a traumatic lower extremity amputation, and appears 

to be associated with few complications. A greater number of patients had 

proximal control achieved by an intra-peritoneal route, which may reflect the 

rapidity with which infra-aortic control can be achieved. Furthermore, over half 

of these patients do not require any other abdominal intervention, which asks 

the question if control can be achieved by less invasive means. 

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a recently 

described endovascular concept where a compliant balloon is placed in the aorta 

to support central pressure while also providing inflow control (6). Infra-renal 

balloon occlusion has been demonstrated to improve survival from pelvic 

haemorrhage in both animal and clinical studies (72,73). Such an approach may 

become more feasible as endovascular capabilities become more common place 

in deployed operations (74). 

The current study has a number of limitations that are important to recognise. 

The retrospective nature of this study's methodology may mean that not all 

eligible patients were identified and that use of proximal control has been 

underestimated. Furthermore, we are unable to comment on whether supra-

inguinal vascular control was clinically necessary or not. We are also unable to 

collect reliable and consistent data on the time of control required and its 

effectiveness.  It is also well known that documentation of complications is poor, 

so despite a comprehensive chart review, not all morbidity may have been 

captured.  

Despite these limitations, this study provides insight into the utilisation of 

proximal control in wartime.  One in five patients with a traumatic amputation 

requires laparotomy for proximal control, which appears to be associated with 

little morbidity. However, over half of patients require no other intra-abdominal 

intervention, suggesting that less invasive techniques of proximal control may 

have a role in the future.  Further prospective study is required to determine the 

need and effectiveness of proximal control in couple with exploration of novel 

methods of pre-hospital and hospital haemorrhage control. 
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Chapter 7: Aortic Balloon Occlusion is Effective in 
Controlling Pelvic Haemorrhage 

7.1 Introduction 

Vascular disruption with concomitant haemorrhage is the leading cause of 

potentially preventable death following military and civilian trauma (14-16). 

Vascular injury within the pelvis and proximal femoral region is particularly 

challenging, as it exists within a junctional zone between the torso and the 

extremities (75,76). In this anatomic location, pelvic and proximal femoral 

vascular injury is not readily amenable to direct pressure or tourniquet 

application and generally requires control to be obtained within the abdomen.  

The issue of vascular control in the setting of pelvic and junctional femoral 

haemorrhage has become particularly relevant to surgeons treating patients 

injured by improvised explosive devices (IEDs) (68). Frequently these patients 

have sustained bilateral high lower extremity amputations with pelvic disruption 

and present in extremis requiring significant resuscitation and immediate 

operation (70). Often, the first surgical manoeuvre required is occlusion of the 

terminal aorta through a laparotomy in order to reduce bleeding and enhance 

central aortic pressure. 

An alternative method of aortic control is the use of endovascular aortic balloon 

occlusion, a technique which has been used in the setting of elective and 

emergent aneurysm repair for many years (10,77). When used in the trauma 

context, this technique has been termed resuscitative endovascular balloon 

occlusion of the aorta or REBOA (6). The technique of REBOA does not require an 

operative room (OR) and has been used to salvage patients with pelvic trauma 

who are too unstable to move from the emergency room (ER) (72). Recently, 

three aortic zones have been proposed for consideration with the use of REBOA. 

Zone I: an occlusion zone of the descending thoracic aorta; Zone II: a non-

occlusion zone consisting of the paravisceral aorta; and Zone III: an occlusion 

zone of the infrarenal aorta (6). The aim of this study is to evaluate the 

effectiveness of Zone III REBOA in a porcine model of pelvic arterial 

haemorrhage. 
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7.2 Materials and Methods 

7.2.1 Study Overview 

This study protocol was approved by the Institutional Animal Care and Use 

Committee (IACUC) and was undertaken at an accredited facility (Lackland Air 

Force Base, San Antonio, TX) under the supervision of licensed veterinary staff. 

Female Yorkshire swine (Sus Scrofa), aged between 5-6 months, weighing 

between 75-100 kg were studied. Animals were physically fit and free of 

pathogens having undergone a quarantine and acclimatisation phase in the 

facility 7 days prior to the protocol. 

The study consisted of two phases, each comparing the effectiveness of the 

haemostatic interventions Combat Gauze and Zone III REBOA (Figure 7.1). In 

Phase I, the clotting profile was unaltered and included a control group with no 

intervention (NI) and a Combat Gauze™ (CG) and a Zone III REBOA (REBOA) 

group. Phase II of the study was performed in the setting of an induced 

dilutional coagulopathy testing the effectiveness of Combat Gauze (CG-C) and 

Zone III (REBOA-C). 
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Figure 7.1: Schematic representation of experimental groups and timelines 

  

Phase I: Normal Clotting 

Phase II: Coagulopathy 

Base Line 
Measurements 
(BLM) and Surgery 

BLM 
and 
Surgery 

Induction of 
Dilution 
Coagulopathy 

Haemorrhage 
45 seconds 

Haemorrhage 

No Intervention (NI) 
180 minutes 

Combat Gauze (CG) 
180 minutes 

Resuscitative 
Endovascular Balloon 
Aortic Occlusion 
(REBOA) 180 minutes 

Combat Gauze (CG) 
180 Minutes 

Resuscitative 
Endovascular Balloon 
Aortic Occlusion 
(REBOA) 180 minutes 

End of Study 
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Following induction of anaesthesia, all groups were entered into three 

consecutive stages of the protocol: injury (distal iliac artery injury), 

haemorrhage (45 seconds) and haemostatic intervention (180 mins). Following 

the haemostatic intervention phase the animals were euthanised for post-

mortem analysis and the terminal aorta harvested for histological examination. 

7.2.2 Animals Preparation 

Following cannulation of an ear vein, anaesthesia was induced with intravenous 

Ketamine and maintained with Isoflurane (range: 2 - 4%) following oro-tracheal 

intubation and mechanical ventilation. All animals underwent cannulation of the 

internal jugular vein and common carotid artery with a large bore cannula 

through a midline surgical exposure using a modified Seldinger technique. This 

permitted large intra-venous volume infusion using a Belmont fluid infuser and 

transduction of the arterial cannula enabled continuous blood pressure 

monitoring. Throughout the protocol, heart rate (HR), blood pressure (BP), end 

tidal carbon dioxide (CO2), core temperature (rectal) and urine output (UOP) 

were continuously monitored. Maintenance intravenous fluid was infused through 

the ear-vein with Lactated Ringers Solution at a rate of 100ml/hr as soon as 

practicable. Prior to commencement of the injury stage, baseline blood tests 

were drawn from the arterial line and physiological measurements recorded. 

7.2.3 Induction of Dilutional Coagulopathy 

The technique used has been described in a previous publication (78) and was 

utilised in Phase II of this study. Following pre-peritoneal surgical exposure, the 

iliac artery is cannulated with a 14 F sheath. This enabled the removal of 60% of 

the animals circulating volume at a rate of 60 ml/min. This is accompanied by 

concomitant replacement with a colloid (Hextend™) at the same rate and 

volume. The animal does not undergo any active warming in order to exacerbate 

the coagulopathy. All blood tests and baseline monitoring are repeated post-

dilution with a target INR of between 1.4 and 1.6. 

7.2.4 Surgical Injury and Haemorrhage 

A standard model of non-compressible junctional pelvic arterial haemorrhage 

was developed. A midline incision was used to access the right sided pre-

peritoneal space. Using blunt dissection, the distal external iliac artery was 



Chapter 7: Aortic Balloon Occlusion is Effective in Controlling Pelvic Haemorrhage 64 
 

 

 

identified and controlled with silastic vessel loops. The vessel was dissected free 

of adventitial tissue 5 cm proximal to the distal bifurcation. Following proximal 

and distal control, a small arteriotomy was performed to enable the deployment 

of a 6 mm arterial punch to create a standard arterial defect. All clamps and 

loops were then removed to permit 45 seconds of uncontrolled arterial 

haemorrhage. Blood was evacuated from the wound by surgical suction applied 

to the periphery of the wound (as not to disrupt any clot formation) into 

graduated containers to record volume. 

7.2.5 Haemostatic Intervention 

Common to all groups was a IV bolus of 500 ml of colloid (Hextend™) following 

the conclusion of the haemorrhage stage. Subsequent IV fluid administration 

with Lactated Ringers Solution at 100 ml/min (to a maximum of 10l) is triggered 

when the MAP is less than 65 mmHg. Recordings of all physiological parameters 

were made at 15 minute intervals throughout the protocol. The NI group 

underwent no further intervention. 

The CG and CG-C groups underwent packing of the wound with Combat Gauze 

(packaged as a 3 inch by 12 foot roll) and the application of pressure for 2 

minutes. At the end of 2 minutes, should bleeding have persisted around or 

through the gauze, it was replaced with a new roll of Combat Gauze™. A 

maximal of 2 rolls was permitted and the wound was left undisturbed after the 

second roll. Surgical suction was applied to the periphery of the wound to record 

losses. 

The REBOA and REBOA-C groups had a 0.035' wire pre-positioned in the left 

femoral artery following an ultrasound guided puncture and Seldinger insertion. 

A Cook® Medical Coda® Balloon Catheter was mounted on the wire, but not 

advanced beyond the skin of the animal. An angiogram was obtained to ensure 

correct wire position and to delineate the aortic anatomy. Following conclusion 

of the haemorrhage stage, the wire was advanced into the aorta and the balloon 

catheter delivered into the region of the terminal aorta and inflated to 

resistance under fluoroscopic guidance. 

The experiment was concluded at 180 minutes post haemorrhage or sooner if the 

animal died (defined as a MAP < 20 mmHg and ET CO2 < 15 mmHg). At the end-
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of-study point, final laboratory blood samples were drawn and physiological 

recordings made. Total blood loss was calculated from the volume in the surgical 

suction reservoir and weight of surgical sponges and combat gauze (if used). 

7.2.6 Study End-Points 

The primary end point of the study was mortality within 180 minutes. Secondary 

end-points were the MAP at 15, 60 and 180 mins, rate of haemorrhage (ml/min), 

volume of resuscitation fluid, measures of acidosis and tissue ischemia (pH, BE 

and lactate) and evidence of histological damage to the terminal aorta. 

7.2.7 Statistical Analysis 

Data were analysed using SPSS® 19.0 (SPSS, Chicago, Illinois, USA). Chi-square 

tests were used to compare categorical data, analysis of variance (ANOVA) and t-

tests for normally distributed continuous variables and Mann-Whitney rank-sum 

tests for non-normally distributed variables. Kaplan-Meier rank-sum test in 

conjunction with survival plots were used for survival analysis. 

7.3 Results 

Thirty-eight consecutive animals were entered into the investigation; 3 model 

development and 35 study animals. All animals had similar pre-injury physiologic 

and laboratory indices (Table 7.1) except for weight. The animals in the NI group 

where heaviest with animals in the GC group the lightest. There was no 

difference among groups when comparing the volume of blood loss during the 45 

second haemorrhage phase (p = 0.366). 

In Phase I (normal coagulation profile) the rate of haemorrhage (ml/min) during 

the intervention phase was greatest in the NI group (822 ± 415 ml/min) 

compared to the REBOA (9.5 ± 12.1 ml/min) and the CG groups (0.2 ± 0.4 

ml/min) (Table 7.2). All of the animals in NI died within 15 min with no deaths in 

either the CG or AB groups (Figure 7.2). During the Phase I experiments, there 

was no difference between the MAP (mmHg) in the CG vs REBOA groups at 15 

mins (70 ± 4 vs 70 ± 11; p = 0.955), 60 mins (71 ± 7 vs 63 ± 15; p = 0.209) or 180 

minutes (71 ± 9 vs 56 ± 27; p = 202) (Figure 7.4).  
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Table 7.1: Baseline characteristics of study groups 

 NI CG REBOA CG-C REBOA-C P 
n 7 7 7 7 7  
Weight / Kg 93.1 ± 

10.7 
71.7 ± 7.2 74.5 ± 

10.8 
86.3 ± 3.9 75.9 ± 

12.5 
0.001 

Female 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 1.000 
       
MAP / mmHg 67 ± 11 61 ± 12 59 ± 7 66 ± 18 59 ± 7 0.569 
HR / beats per min 85 ± 21 85 ± 17 69 ± 10 82 ± 18 81 ± 8 0.287 
ET CO2 / mmHg 35 ± 4 40 ± 2 38 ± 4 36 ± 4 37 ± 4 0.167 
Temp / oC 36.0 ± 3.7 37.8 ± 0.5 36.4 ± 1.4 36.1 ± 2.1 35.8 ± 3.1 0.723 
       
pH 7.46 ± 

0.06 
7.31 ± 0.04 7.45 ± 

0.03 
7.48 ± 
0.04 

7.44 ± 
0.04 

0.400 

Base Excess 1.8 ± 2.8 3.1 ± 2.5 2.6 ± 1.4 3.7 ± 2.1 6.1 ± 6.4 0.222 
Lactate / mmol/L 2.0 ± 1.6 2.1 ± 1.6 1.7 ± 1.7 1.0 ± 0.3 1.6 ± 0.3 0.583 
Haemoglobin / g/dL 10.2 ± 1.3 10.0 ± 0.7 10.2 ± 0.8 10.0 ± 0.5 9.0 ± 0.7 0.090 
Hemtocrit 32.0 ± 3.7 31.5 ± 2.0 32.2 ± 2.3 31.5 ± 1.7 28.7 ± 2.1 0.076 
Platelet Count / 1010/L 271 ± 51 318 ± 72 308 ± 80 359 ± 37 312 ± 34 0.126 
PT / Seconds 13.8 ± 0.5 13.6 ± 0.3 28.5 ± 0.3 13.6 ± 0.4 14.0 ± 0.5 0.518 
aPTT / Seconds 32.7 ± 8.8 31.1 ± 3.9 31.8 ± 7.5 30.6 ± 5.0 30.0 ± 9.2 0.965 
INR 1.0 ± 0.1 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.1 ± 0.0 0.070 
Fibrin / mg/dL 187 ± 30 193 ± 26 210 ± 40 218 ± 24 173 ± 14 0.042 
Abbreviations: NI - No Intervention, CG - Combat Gauze, REBOA - Resuscitative Endovascular 
Balloon Aortic Occlusion, MAP - Mean Arterial Pressure; HR - Heart Rate; ET CO2 - End Tidal 
Carbon Dioxide; PT - pro-thormbin time; aPTT - activated partial thromboplastin time; INR - 
International Normalised Ratio. 
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Figure 7.2: Kaplan-Meier survival curve of animals with no coagulopathy. 
Treated with either no intervention (NI), combat gauze (CG) or resuscitative endovascular 
balloon occlusion aortic (REBOA) 

 

Figure 7.3: Kaplan-Meier survival curve of animals with dilution 
coagulopathy 
Treated with either combat gauze (CG-C) or resuscitative endovascular balloon occlusion 
aortic (REBOA-C) 
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The REBOA group required an apparent but not significantly higher resuscitation 

rate and total volume during the protocol than the CG group. At the termination 

of the protocol the CG group had a higher BE (5.5 ± 1.2 vs 2.2 ± 5.6; p = 0.040) 

and lower INR (1.0 ± 0.0 vs 1.2 ± 0.3; p = 0.040) than the REBOA group (Table 

7.2). 

Similar and effective coagulopathy during Phase II of the study was confirmed 

with INR measurements post-dilution in the CG-C (INR 1.4 ± 0.3) and REBOA-C 

(1.5 ± 0.3) groups (p=0.507). There were no differences between the baseline 

physiologic or laboratory measurements (Table 7.2) or the post-dilution 

measurements (Table 7.3) in either the CG-C or REBOA-C groups during Phase II 

of the study.  

Mortality during Phase II of the study was 71.4% (5 of 7) in the CG-C group 

compared to 0.0% in the REBOA-C group (p=0.010) (Figure 7.3). The REBOA-C 

group required a larger volume of IV fluid than the CG-C group (p = 0.073), 

however, when comparing the rate of administration, the REBOA-C group 

required a significantly lower rate of infusion (47±18 vs. 257 ± 237; p 0.037) 

(Table 7.3). 

During Phase II of the study, the MAP at 15 mins was greater in the REBOA-C 

(71±12) than the CG-C and group (28±31; p=0.005) a finding that was sustained 

through to the end of the protocol (Figure 7.5). There was no difference in the 

histological appearance of the terminal aorta between any of the groups. 

7.4 Discussion 

This study describes a novel translatable model of pelvic vascular injury resulting 

in a consistent rate of haemorrhage and mortality. Findings from this study 

demonstrate that in the setting of normal coagulation, Zone III REBOA is equally 

effective at controlling haemorrhage as manual pressure with a known topical 

haemostatic agent (Combat Gauze™) but results in greater resuscitative fluid 

requirements. In the setting of dilutional coagulopathy, Zone III REBOA provides 

better haemorrhage control, improved central aortic pressure and lower 

mortality than the established topical haemostatic agent. In this model, Zone III 

REBOA was technically feasible and resulted in no adverse aortic injury.  
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Table 7.3: Physiological and laboratory indices post induction of dilutional 
coagulopathy 

 CG-C REBOA-C P value 
n 7 7  

Physiology    
MAP 75 ± 14 88 ± 13 0.103 
HR 101 ± 21 129 ± 28 0.055 
ET CO2 33 ± 3 38 ± 4 0.032 
Temp 35.1 ± 2.3 35.4 ± 0.3 0.737 

    
Laboratory    

pH 7.44 ± 0.04 7.40 ± 0.02 0.058 
Base Excess 1.7 ± 1.8 2.0 ± 0.4 0.718 
Lactate / mmol/L 6.5 ± 9.5 2.9 ± 0.4 0.383 
Haemoglobin / g/dL 3.2 ± 0.7 2.9 ± 0.7 0.339 
Haematocrit 10.7 ± 2.2 9.5 ± 2.3 0.358 
Platelet Count / 1010/L 109 ± 30 79 ± 30 0.086 
PT / Seconds 17.9 ± 2.4 18.9 ± 3.0 0.507 
aPTT / Seconds 18.8 ± 2.3 17.9 ± 1.3 0.351 
INR 1.4 ± 0.3 1.5 ± 0.3 0.507 
Fibrin / mg/dL 89 ± 27 78.9 ± 27 0.491 

Abbreviations: CG - Combat Gauze, REBOA - Resuscitative 
Endovascular Balloon Aortic Occlusion, MAP - Mean Arterial 
Pressure; HR - Heart Rate; ET CO2 - End Tidal Carbon Dioxide; PT - 
pro-thrombin time; aPTT - activated partial thromboplastin time; INR - 
International Normalised Ratio. 
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Figure 7.4: Mean MAP in animals with normal coagulation 
Undergoing treatment with either no intervention (NI), combat gauze (CG) or resuscitative 
endovascular balloon occlusion aortic (REBOA) 

 

 

 

Figure 7.5: Mean MAP in animals with dilution coagulopathy 
Undergoing treatment with either combat gauze (CG-C) or resuscitative endovascular 
balloon occlusion aortic (REBOA-C) 
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Findings from the current study confirm and extend previous work by White et 

al. who utilised a porcine model of haemorrhagic shock (79) to demonstrate the 

superiority of Zone I REBOA to emergency thoracotomy in class IV shock (80). 

Animals that underwent Zone I REBOA had a higher pH, lower lactate and 

required less fluid and inotropic support during resuscitation than animals 

undergoing thoracotomy and aortic clamping. These findings are further 

supported by the recent work by Avaro et al. who demonstrated that 40 minutes 

of Zone I occlusion increased the 2 hour survival of animals in hypovolaemic 

shock compared to those treated with saline (7/16 vs 0/9; p = 0.03). All studies 

demonstrated an improvement in mean blood pressure following REBOA. 

Importantly, the current study is the first to examine Zone III occlusion in the 

context of a specific vascular injury model. 

Interestingly, REBOA has been previously examined by studies undertaken in the 

1950s and 1970s, although in a less formalised manner (15,16). Studies 

undertaken in dogs found that Zone I occlusion in shock was associated with a 

rise in central blood pressure and a reduction in traumatic abdominal 

haemorrhage (81,82). However, the technique was not recommended for 

practice due to the high incidence of hind limb paralysis in survived subjects, 

although this could be eliminated with the use of hypothermia (83). 

The current study also extends the findings from groups which have studied the 

effectiveness of the procoagulant topical haemostatic agent Combat Gauze™ in 

porcine models of femoral arterial injury (78,84-86). Results from the current 

investigation demonstrate that the haemostatic effect of CG is present even in 

the setting of an injury to a larger artery such as the iliac. Furthermore, this 

study confirms the observation by Kheirabadi et al. that the effectiveness of CG 

is reduced in the setting of a dilutional coagulopathy (78). Dilutional 

coagulopathy reduces all components required in the circulation to form a stable 

clot: red blood cells, platelets, coagulation factors and fibrinogen (Table 7.2). 

As such, dilutional coagulopathy effectively eliminates the procoagulant action 

of the Kaolin which is impregnated into the GC with the intent of activating the 

prothrombin complex. 
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Importantly, the current study supports the clinical findings from a study 

describing the use of zone III REBOA. Martinelli and co-workers described a series 

of 13 patients with pelvic fracture following blunt injury who were in refractory 

hypovolaemic shock with a mean systolic blood pressure of 41 ± 26 mmHg (72). 

Blind deployment of a balloon catheter to effect Zone III REBOA resulted in a 

significant increase in SBP (70 mmHg; p = 0.001). The mean ISS of the cohort was 

48 ± 15.5 and had an overall survival rate of 6/13 (46%). The clinical report from 

Martinelli and the current study are the first report on the specific effectiveness 

of Zone III REBOA. However, the utility of endovascular balloon occlusion as a 

pre-emptive or resuscitation adjunct has been demonstrated in the elective and 

emergent repair of abdominal aortic aneurysms (10,77). A recent technical note 

from this group provided a fuller description of the technique of compliant 

balloon selection, insertion, inflation, deflation and removal while proposing a 

series of aortic zones (or landing sites) in order to facilitate the consistent use 

and reporting of REBOA (6). 

The current study has limitations worth noting. Foremost, the two methods of 

haemorrhage control used in this study, CG and REBOA, have inherent 

differences and may not be fully comparable. As a topical haemostatic, CG is 

designed to be applied with an element of manual pressure to a junctional or 

extremity soft tissue wound while endovascular balloon control works under the 

premise of halting inflow from within the vessel proximal to the site of bleeding. 

The model of injury in the current study was to the distal iliac artery located 

within the pelvis and therefore not inherently suited (i.e. not directly accessible 

or compressible) for CG application in the clinical setting. However, because the 

technique of REBOA for haemorrhage control is in early stages of re-evaluation 

and may be well suited for instances of junctional iliac or femoral injury, its 

comparison in this model against a known standard such as GC is sensible. In this 

context, REBOA and CG should not be viewed as mutually exclusive forms of 

haemorrhage control but instead complimentary. It is the authors’ viewpoint 

that improvements in haemorrhage control will require not one but a 

combination of techniques (e.g. tourniquets, manual pressure with and without 

haemostatic agents and endovascular balloon control) to manage a wide array of 

complex injury patterns.  
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Another limitation relates to the artificial nature of the induced coagulopathy. 

Specifically, the model of coagulopathy in this study may not be as severe as 

that which is encountered clinically following vascular injury and shock. As such 

the effectiveness of REBOA in the current study may not reflect its usefulness in 

the setting of more profound physiologic derangement in the clinical setting. 

Finally, as an initial study examining the feasibility of REBOA this study did not 

make observations during a survival phase. Consequently any adverse effect of 

Zone III REBOA on the distal circulation of the hind limbs was not accounted for 

in this study. Despite these limitations, this set of experiments was based on 

established models and demonstrated Zone III REBOA to be effective compared 

to a recognised standard. As such, the current report provides an important 

foundation from which to perform additional study of this technique including 

observations in a survival model.   

7.4.1 Conclusions 

In the setting of normal coagulation, Zone III REBOA is equally effective at 

controlling haemorrhage as manual pressure with a known topical haemostatic 

agent but results in greater resuscitative fluid requirements. In the setting of 

coagulopathy, Zone III REBOA provides improved control of bleeding, higher 

central aortic pressure and lower mortality than the established topical 

haemostatic agent. In the current model, Zone III REBOA had high rates of 

technical success and resulted in no adverse aortic injury. The technique of Zone 

III REBOA should be further developed as an adjunct to manage non-compressible 

pelvic and junctional femoral haemorrhage. 
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Chapter 8: Physiologic Tolerance of Descending Thoracic 

Aortic Balloon Occlusion in a Swine Model of 
Haemorrhagic Shock 

8.1 Introduction 

Vascular disruption within the torso with concomitant haemorrhage remains a 

leading cause of death in military and civilian trauma (2,13,15,16,87). Patients 

often present in extremis with profound cardiovascular collapse. Occlusion of 

the thoracic aorta can be used to improve after-load, supporting the myocardial 

and cerebral circulations (88), while controlling arterial inflow to the distal 

circulation where vascular disruption has occurred. This is most commonly 

performed via a thoracotomy and aortic cross-clamp; however, this technique 

requires significant resources and yields few survivors (43,47,89). Recognition of 

these limitations has motivated investigators to explore other methods of 

achieving aortic occlusion earlier and by less invasive means (6,9,72). 

One such alternative is endovascular balloon occlusion, which is practiced by 

vascular surgeons to control the inflow of abdominal aortic aneurysms during the 

placement of stent-grafts (10,77). Interestingly, the use of balloon occlusion of 

the aorta in trauma is not a new concept having been reported as early as the 

1950’s during the Korean War (7), but has never gained widespread acceptance. 

With refinements in surgical technology and improved critical care, this 

technique is now being revisited clinically (72). 

A recent publication from our group has characterised the method of insertion of 

resuscitative endovascular balloon occlusion of the aorta (REBOA) for trauma 

patients (6). The authors described 3 aortic zones: I - left subclavian to celiac 

trunk, II - celiac trunk to the lowest renal artery and III - the infrarenal aorta. 

Zone I occlusion was described as optimal for torso haemorrhage and zone II for 

pelvic and lower extremity haemorrhage. However, while REBOA appears to 

have clear application for haemorrhage control in patients in extremis, the 

physiological sequelae following balloon deflation after extended periods of 

aortic occlusion remain un-quantified. The aim of this study was to assess the 

physiological tolerance of Zone I REBOA for 30 and 90 minutes compared to 



Chapter 8: Physiologic Tolerance of Descending Thoracic Aortic Balloon Occlusion in a 
Swine Model of Haemorrhagic Shock 

76 

 
 

 

untreated class IV shock in a survivable porcine model of controlled 

haemorrhage. 

8.2 Materials and Methods 

8.2.1 Study Approval and Overview 

Institutional Animal Care and Use Committee (IACUC) approval was obtained in 

accordance with all applicable laws, regulations and policies. Procedures were 

performed at an accredited facility (Lackland Air Force Base, San Antonio, TX) in 

compliance with IACUC policies and under the supervision of a licensed 

veterinary staff. Female Yorkshire–Landrace crossbred swine (John Albert, 

Cibolo, TX) (age range, 5–6 months; weight range 70-90 kg) were housed at the 

facility 7 days before the protocol to allow for quarantine and acclimation. 

There were 4 study groups, each with 6 animals: 30 mins of shock and Zone I 

REBOA (30-REBOA), 30 mins of shock alone (30-Shock), 90 mins of shock and 

Zone I REBOA (90-REBOA) and 90 mins of shock alone (90-Shock). Animals were 

exposed to 5 study phases: surgical preparation, haemorrhage, intervention, 

resuscitation and critical care phases (Figure 8.1). Physiological and biochemical 

parameters were recorded throughout the protocol and animals were euthanised 

at the end of the 48 hour critical care phase where necropsy was performed, 

gross pathology assessed and tissue was taken for histology. 

8.2.2 Preparation of Animals 

Following cannulation of an ear vein, anaesthesia was induced with intravenous 

Ketamine to facilitate oro-tracheal intubation and mechanical ventilation where 

anaesthesia was maintained with Isoflurane (range: 2 - 4%). All animals 

underwent cannulation of the common carotid artery, and the internal and 

external jugular veins by midline surgical exposure using a modified Seldinger 

technique. This permitted transduction of the carotid arterial catheter to enable 

carotid-flow monitoring, intra-venous fluid replacement via the internal-jugular 

catheter and measurement of cardiovascular indices via a Swan-Ganz catheter in 

the external-jugular. 
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Figure 8.1: Flow diagram of the study protocol 

  

Preparatory Phase 

Induction of general anesthesia and 
placement of lines. Baseline physiological 

and biochemical measurements 

Haemorrhage Phase 

Controlled haemorrhage of 35% of 
circulating volume over 20 minutes to 

Class IV Shock 

Intervention Phase 

30-REBOA 

30 minutes of 
Resuscitative 

Endovascular Balloon 
Occlusion of the Aorta 

30-Shock 

30 minutes of 
haemorrhage 

shock 

90-REBOA 

90 minutes of 
Resuscitative 

Endovascular Balloon 
Occlusion of the Aorta 

90-Shock 

90 minutes of 
haemorrhage 

shock 

Resuscitation Phase 

Resuscitation with shed blood, intra-
venous fluid and inotropes 

Critical Care Phase 

Sedation, ventilation, ongoing 
resuscitation and intropic support. 
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The right brachial artery was operatively exposed and a cannula was 

fluoroscopically guided into the aortic arch to measure central aortic pressure. 

The right iliac artery was exposed via retroperitoneal approach and cannulated 

with a 15 fr sheath to permit a controlled haemorrhage and access for 

endovascular aortic balloon placement. The animals’ cranium was also trephined 

to permit the placement of a brain oximeter (Licox; Integra NeuroSciences, 

Plainsboro, NJ). 

At the conclusion of surgical procedures and catheter placements, baseline 

laboratory and physiological recordings were performed. Throughout the 

protocol, heart rate (HR), mean central aortic pressure (MCAP), brain 

oxygenation (PbrO2), carotid flow (CF), end tidal carbon dioxide (CO2), core 

temperature (rectal), and urine output (UOP) were continuously monitored. 

8.2.3 Haemorrhage (30 minutes) 

To achieve a controlled haemorrhage and class IV shock, a method for blood and 

volume estimation and rate of haemorrhage was used as previously described 

(79). In brief, over 20 mins, 35% of total blood volume (total porcine 

intravascular volume: 66 ml/kg) was withdrawn through the sheath in the iliac 

artery; half of this volume was taken over 7 mins and the remaining over 13 

mins. As swine possess a contractile spleen and can readily autotransfuse in 

response to haemorrhagic shock, animals were subjected to ongoing 

haemorrhage at a rate of 0.15ml/kg/min for an additional 10 minutes to ensure 

class IV shock was maintained. Shed blood was stored in citrated bags (Terumo, 

Japan) for later transfusion during the resuscitation phase. If mean arterial 

pressure (MCAP) decreased below 30 mm Hg, haemorrhage was stopped until 

arterial pressure was consistently greater than 30 mmHg, and then the 

haemorrhage was resumed until completion. 

The start of the haemorrhage phase was considered time zero; the reference 

points for all other experimental timings. The 30 min time period also served to 

simulate the pre-hospital time, prior to admission to a trauma centre. At the 

conclusion of the haemorrhage phase, labs were drawn and physiological 

recordings made. 
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8.2.4 Intervention (30 or 90 minutes) 

Following the haemorrhage phase, animals were randomised into one of four 

groups: 30-Shock, 30-REBOA, 90-Shock or 90-REBOA. Animals in either REBOA 

group underwent aortic occlusion with an endovascular balloon (Coda Balloon; 

Cook Medical Inc, Bloomington, IN), inflated distal to the left subclavian artery 

orifice under fluoroscopic guidance. Successful occlusion was confirmed by loss 

of an arterial waveform from a catheter transduced distal to the balloon. 

Animals in the shock groups were observed throughout their study period (30 or 

90 minutes) without any intervention taking place.  

8.2.5 Resuscitation (6 hours) 

A 6 hour resuscitation phase began immediately subsequent to the intervention 

phase with animals receiving transfusion of previously shed whole blood. 

Following withdrawal of the iliac arterial sheath (with or without balloon), the 

artery was ligated and the midline incision closed. The resuscitation strategy 

differed slightly between the REBOA groups and the shock groups. 

Resuscitation in the REBOA groups was initiated 10 minutes prior to the end of 

30 or 90 minute intervention period. Whole blood was slowly infused until the 

MCAP was raised by 25%, to avoid precipitous cardiovascular collapse, prior to 

deflation of the aortic balloon. The aortic balloon deflation was accomplished 

incrementally over a 3-minute period and the remainder of the blood was given 

after complete deflation. The resuscitation in the shock groups began 

immediately upon completion of the 30 or 90-minute period of shock with whole 

blood.  

Blood pressure was titrated to a goal mean pressure of 60 mm Hg using 1 litre 

intravenous fluid boluses once the previously collected whole shed blood was 

exhausted. When animals failed fluid challenges, norepinephrine was 

administered for haemodynamic support. Norepinephrine doses were titrated to 

maintain the targeted MCAP. 

8.2.6 Critical Care (48 hours) 

The final component of the protocol was a 48 hour critical care phase where the 

animals remained sedated (Isofluane, Ketamine and Midazolam) and 



Chapter 8: Physiologic Tolerance of Descending Thoracic Aortic Balloon Occlusion in a 
Swine Model of Haemorrhagic Shock 

80 

 
 

 

mechanically ventilated. The haemodynamic support commenced during the 

resuscitation phase was continued and was designed to replicate the support 

that trauma patients would receive in the intensive care unit post damage 

control surgery. Blood samples were taken and physiological parameters 

recorded throughout this phase. At conclusion of the ICU phase, the animals 

were euthanised and underwent necropsy and gross pathology. Tissue samples 

from brain, spinal cord, liver, lung, heart and kidney were collected for 

histological analysis.  

8.2.7 Study End Points 

Study end-points were separated into three categories: perfusion, organ 

dysfunction and resuscitation requirements. Markers of perfusion included mean 

central aortic pressure (MCAP), cerebral oxygen partial pressure (PBrO2) and 

lactate measurements. These samples were taken from the brachial arterial line 

at Q15 minutes until 2 hours and then Q30 minutes until the end of the 

resuscitation phase, then at 24 and 48 hours. 

Markers of cardiac, renal, hepatic and muscle dysfunction were analysed at 24 

and 48 hours and included cardiac Troponin I (cTnI), Aminotransferases, Blood 

Urea Nitrogen (BUN), Creatinine, Potassium and Creatine Kinase. Brain, spinal 

cord, heart, lung, kidney and liver were also examined histologically at the 

conclusion of the study. Tissues were examined by a Veterinary Pathologist and 

subjectively graded as having no, minimal, mild, moderate, marked or severe 

necrosis using a nominal scale of zero to five. Resuscitation requirement 

consisted of total norepinepherine dose and total volume of intra-venous fluid 

(blood and crystalloid) administered over 48 hours.  

8.2.8 Statistical Analysis 

Statistical analyses were performed using SAS Version 9.2 for Windows (SAS 

Institute, Cary, North Carolina) and R Version 2.13.1 (R Foundation for Statistical 

Computing).  Continuous data were tested with a mixed effect repeated 

measures analysis of variance (ANOVA).  Nominal data were tested with 

contingency tables using Fisher's exact test and ordinal data were tested with 
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the Kruskal-Wallis test.  The Bonferroni method was used to correct the level of 

significance for post hoc multiple comparison tests to investigate effects. 

8.3 Results 

8.3.1 Baseline Characteristics and Mortality 

The baseline characteristics of the 4 study groups (n = 6 / group), are shown in 

Table 8.1. Time zero occurred at the start of the haemorrhage phase, and serves 

as the reference point for all reported time points and values. There was no 

significant difference in weight or volume of haemorrhage (per kg) used to 

induce shock. Measures of perfusion and organ function were also similar 

amongst the groups. There were two deaths: one animal died in the 30-Shock 

group during the haemorrhage phase and another animal in the 90-Shock group 

died during the resuscitation phase. Necropsy did not identify an obvious cause 

of death, although cardiovascular collapse was thought likely. 

8.3.2 Measures of Organ Perfusion 

Immediately post haemorrhage, all four groups had a similar mean MCAP (±SD) of 

33±8 mmHg, indicating class IV shock had been attained (Figure 8.2). In the 30 

minute arm, the 30-REBOA group had a significantly greater MCAP upon initiation 

of aortic occlusion (91±16 vs 31±4; p<0.001) compared to the 30-Shock group. 

The MCAP remained significantly elevated throughout the intervention phase in 

the 30-REBOA group compared to the 30-Shock group. This observation was also 

recorded in the 90 minute group where the MCAP was significantly greater in the 

90-REBOA compared to the 90-Shock group (89±22 vs 38±13; p=0.001). This 

increased MCAP was maintained throughout the 90 minute intervention phase in 

the REBOA group. In all groups, the MCAP's returned to their respective baselines 

during the resuscitation and critical care phases. 
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Table 8.1: Baseline characteristics 

 30-Shock 30-REBOA 90-Shock 90-
REBOA 

p 

N 6 6 6 6  
Weight/Kg 79.3±4.3 81.3±7.5 87.5±6.7 88.0±11.3 0.171 
Female, % (n) 6 (100.0%) 6 (100.0%) 6 (100.0%) 6 (100.0%) n/a 
Haemorrhage, 
ml/Kg 

21.7±4.0 24.6±2.3 23.2±3.1 25.8±0.7 0.104 

      
MCAP, mmHg 73±11 68±11 67±17 72±8 0.752 
HR, bpm 83±8 80±4 82±17 76±15 0.775 
PBrO2, mmHg 53±37 49±51 43±25 56±24 0.937 
Temp, ℃ 36.4±1.0 35.3±0.9 36.2±0.9 35.6±0.9 0.230 
pH 7.49±0.04 7.47±0.04 7.47±0.04 7.44±0.05 0.387 
Lactate, mmol/l 0.9±0.3 1.3±0.4 1.3±0.5 1.2±0.4 0.355 
      
Troponin, ng/ml 0.00±0.00 0.00±0.00 0.22±0.53 0.00±0.00 0.413 
AST, U/L 29.5±6.1 36.8±4.9 34.5±5.2 39.0±7.4 0.068 
LDH, U/L 437±138 395±117 309±58 339±80 0.170 
BUN, mg/dL 11.2±2.0 10.2±2.4 12.3±7.6 11.5±4.6 0.884 
Creatinine, mg/dL 1.6±0.3 1.4±0.2 1.7±0.6 1.7±0.4 0.613 
K+, mmol/l 4.4±0.3 4.3±0.2 4.6±0.7 4.6±0.5 0.548 
CK, U/L 1176±624 1051±452 1131±396 1121±253 0.971 
Values are mean ± SD unless otherwise stated. 
Abbreviations: REBOA – Resuscitative Endovascular Balloon Occlusion of the Aorta, 
MCAP – Mean Central Aortic Pressure, HR – Heart Rate, AST – Aspartate 
Transaminase, LDH – Lactate Dehydrogenase, Blood Urea Nitrogen, CK – Creatine 
Kinase. 
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Figure 8.2: Mean Central Aortic Pressure measurements against time 
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The partial pressure of brain tissue oxygenation (PBrO2) was noted to increase 

significantly from post-haemorrhage levels in both the REBOA groups (p<0.001), 

but not in either of the shock only groups. There was a significantly greater 

PBrO2 in the 90-REBOA compared to the 90-Shock group (66±35 vs 30±14; 

p=0.042); however, despite a rise in the 30-REBOA PBrO2 compared to the 30-

Shock, there was no statistically significant difference (45±37 vs 22±17; p=0.225) 

(Figure 8.3). 

There was a significantly elevated lactate concentration measured in the REBOA 

groups compared to the shock alone groups at 15 minutes into the intervention 

phase (Figure 8.4). This rise in lactate peaked at 75 minutes in the 30-REBOA 

and at 150 minutes in the 90-REBOA group. Lactate levels were no longer 

elevated, when compared to the shock only groups, by 150 minutes in the 30-

REBOA and 320 minutes in the 90-REBOA group. 

8.3.3 Measures of Organ Dysfunction 

There was no difference in cTnI measurements across all four groups at either 24 

or 48 hrs (Table 8.2 and Table 8.3).We observed a statistically significant rise in 

AST level in the 30-REBOA group compared to the 30-Shock at 24 hrs, although 

there was no detectable difference by 48 hrs (Table 8.2). The 90-REBOA group 

had a greater AST level at both 24 and 48 hours, although it was not statistically 

significant (Table 8.3). 

LDH was noted to rise in all groups at 24 hours but began to decrease by 48 hrs. 

The reduction in LDH between the 24 and 48 hr time points was significantly 

greater in the Shock groups than in the REBOA groups. 

There were no significant differences detected in Creatinine level amongst all 

groups; however, BUN was noted to be significantly higher in the 30-Shock group 

than the 30-REBOA group by 48 hrs. This trend was reversed by 90 minutes 

group, where the 90-REBOA group had a significantly greater BUN than the 90-

Shock by 48 hrs. There was no difference in potassium or CK measurements by 

48 hrs in either group. 
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Figure 8.3: Cerebral Oxygenation measurements against time 

 

 

 

 

Figure 8.4: Lactate measurements against time 
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Table 8.2: Markers of end-organ dysfunction for the 30 minute groups 

 24 Hours 48 Hours 
 30-Shock 30-REBOA P 30-Shock 30-REBOA P 

Troponin, 
ng/ml 

0.09±0.10 0.28±0.24 0.114 0.04±0.05 0.13±18 0.288 

AST, U/L 288±70 560±180 0.011 379±224 641±329 0.165 
LDH, U/L 1924±391 2625±623 0.058 1462±175 2427±702 0.016 
BUN, mg/dL 21.2±3.1 18.2±2.6 0.110 22.4±2.9 18.2±1.8 0.016 
Creatinine, 
mg/dL 

0.9±0.4 1.1±0.4 0.266 0.9±0.4 1.1±0.4 0.363 

K+, mmol/l 3.5±0.3 3.6±0.3 0.610 3.8±0.4 3.6±0.2 0.340 
CK, U/L 23804±6651 39881±8161 0.006 36032±27750 45545±17359 0.504 
Abbreviations: REBOA – Resuscitative Endovascular Balloon Occlusion of the Aorta, 
AST – Aspartate Transaminase, LDH – Lactate Dehydrogenase, Blood Urea Nitrogen, 
CK – Creatine Kinase. 

 

 

 

Table 8.3: Markers of end-organ dysfunction for the 90 minute groups 

 24 Hours 48 Hours 
 90-Shock 90-REBOA P 90-Shock 90-REBOA P 

Troponin, ng/ml 0.60±1.14 0.38±0.49 0.681 0.16±0.30 0.19±0.27 0.852 
AST, U/L 879±131 1292±466 0.089 1006±173 1360±330 0.060 
LDH, U/L 8462±5453 9693±4487 0.690 7468±4724 9673±5501 0.499 
BUN, mg/dL 24.2±7.3 28.0±2.6 0.263 24.8±7.3 37.3±5.3 0.009 
Creatinine, mg/dL 1.7±0.3 1.8±1.1 0.847 1.2±0.2 1.5±0.6 0.400 
K+, mmol/l 4.1±0.6 4.6±1.1 0.344 4.0±0.5 4.2±0.5 0.559 
CK, U/L 85706±33920 76580±41352 0.703 78334±30713 58797±27659 0.296 
Abbreviations: REBOA – Resuscitative Endovascular Balloon Occlusion of the Aorta, AST – Aspartate 
Transaminase, LDH – Lactate Dehydrogenase, Blood Urea Nitrogen, CK – Creatine Kinase. 
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Histologically, there was no significant difference in the numerical rates of 

necrosis, inflammatory infiltrates or oedema observed in cerebral, spinal cord or 

myocardial tissue amongst the four groups (Figure 8.5). There was a suggestion 

of greater renal damage and regeneration in the 90-REBOA group compared with 

the 90-Shock group, though neither achieved statistical significance. There was, 

however, significantly higher observed rate of centrilobular liver necrosis in the 

90-REBOA group compared with the 90-Shock group. Significant necrosis was not 

observed in any other group’s organs (Figure 8.5). 

8.3.4 Resuscitation Requirements 

Cumulative intravenous fluids (IVF) and vasopressor requirements during the 

resuscitation and critical care phases are shown in Table 8.4. The 90-REBOA 

group required a greater mean total fluid (ml) resuscitation than the 90-Shock 

group (2667±931 vs 1000±1225; p = 0.034). The total mean dose of 

Norepinepherine (mg) was also greater in the 90-REBOA group (2381.2±2316.3 vs 

494.2±1171.7; p=0.068), although this only trended towards significance. There 

was no difference in IVF and norepinepherine dose between the 30 minute 

groups. 

8.4 Discussion 

This study characterises the physiological sequelae of Zone 1 REBOA in the 

setting of class IV shock compared to shock alone for either 30 or 90 minutes. 

Following the controlled haemorrhage, both REBOA groups had a significantly 

greater central aortic pressure and cerebral oxygen delivery than in shocked 

animals alone. This was achieved at the expense of a greater lactate rise 

observed following balloon deflation, as a consequence of visceral and lower 

extremity reperfusion. However, lactate measurements returned to control level 

by 150 mins in the 30-REBOA group and 320 mins in the 90-REBOA group. There 

was also evidence of limited organ dysfunction following 90 minutes of REBOA 

which manifested as an elevated indices of renal dysfunction and histological 

evidence of centilobular liver necrosis. 
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Figure 8.5: Representative histological samples of brain, spinal cord, liver 
and kidney tissue from all groups  
The 90-REBOA liver sample shows centrilobular necrosis and the kidney sample shows 
some tubular debris. All remaining samples were unremarkable. 

 

Table 8.4: Total resuscitation requirements 

 30 Minute Groups 90 Minute Groups 
 30-Shock 30-REBOA p 90-Shock 90-REBOA p 

IV Fluid, ml/24hrs 400±652 833±817 0.336 1000±1225 2667±931 0.034 
Norepi Dose, mg/24hrs 0.0±0.0 57.6±91.0 0.176 494.2±1171.7 2381.2±2316.3 0.068 
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This study confirms and extends the findings of earlier work performed by our 

group and by others (80,90). White et al. demonstrated that the physiological 

burden of Zone I REBOA was significantly less than that of resuscitative 

thoracotomy in a porcine model of 50 minutes of haemorrhagic shock (80). 

Animals treated with REBOA were less acidotic with a lower serum lactate, 

requiring less resuscitation than animals treated with thoracotomy and aortic 

cross clamping. 

Avaro et al. examined the role of Zone I REBOA in a porcine model of 

uncontrolled splenic haemorrhage compared to resuscitation with normal saline 

in combination with damage control surgery (DCS). The use of REBOA, followed 

by DCS, significantly increased mean arterial pressure and the proportion of 2 

hour survivors while reducing overall haemorrhage and resuscitation volumes. 

When examining the REBOA groups that underwent either 40 or 60 minutes of 

occlusion, 40 minutes appeared to be optimal by incurring a lower lactate and 

potassium than the 60 minute group. 

These studies prompted the current study to examine the temporal profile of the 

physiological burden incurred with REBOA. Ultimately, while there are 

physiological penalties, as also described by other investigators, the current 

study demonstrates that these can be ameliorated with proficient resuscitation 

and critical care, yielding zero mortality from re-perfusion injury in the REBOA 

groups by 48 hours.  

The physiological burden must be weighed against the improvements seen in 

central aortic pressure and brain oxygenation - indices of vital importance in 

trauma patients presenting in extremis. This is especially important in patients 

who have sustained concomitant traumatic brain injury (TBI). REBOA may be 

able to preserve cerebral perfusion in the context of haemorrhage, although it is 

unclear whether this would reduce the effects of secondary brain injury, or 

dangerously raise intra-cranial pressure. 

Clinical experience with Zone I REBOA is currently limited despite the concept's 

genesis over half a century ago. The first published report was by Hughes who 

deployed it in two combat casualties during the Korean War (7). Despite both 
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patients succumbing to their wounds, he felt it effective in restoring blood 

pressure and controlling intra-abdominal haemorrhage. Interestingly, this report 

pre-dated Ledgerwood’s original description of the pre-laparotomy thoracotomy 

and aortic clamping in patients with a tense haemoperitoneum and shock (91). 

The largest case series of Zone I REBOA comes from Gupta and co-workers who 

in 1989 deployed the technique in 21 patients in cardiac arrest or profound 

shock (9). Haemorrhage control was achieved in 11 patients, although ultimately 

only seven survived to be discharged. Failure was most commonly seen in major 

venous injuries and patients in cardiac arrest - challenging injury complexes for 

any surgeon. 

The current study demonstrates the importance of resuscitation and organ 

support post REBOA use; however, there are a number of limitations to note. 

The animal model of shock consisted of a controlled haemorrhage; rather than 

an organ injury per se. This may reduce the inflammatory component and 

sequelae seen in trauma patients immediately post-injury. However, the study 

was designed to examine the physiological response to shock, thus a survivor 

model was essential where the volume of haemorrhage could be precisely 

controlled. While the study was able to demonstrate a difference in measures of 

perfusion; it could not demonstrate a statistical difference in organ dysfunction, 

which may relate to insufficient study power. 

Furthermore, there were also important differences in the methods of 

resuscitation between the REBOA and shock alone groups. The "pre-loading" of 

blood, ten minutes prior to balloon deflation was essential to avoid precipitous 

cardiovascular collapse following balloon deflation, as noted in the model 

development phase of the study. While this may appear to favour the REBOA 

group, it is important to note that the balloon remained inflated for the full 

duration of the intervention phase and as already noted, a survival model was 

essential in order to study the physiological changes. As shed blood was the only 

oxygen carrying fluid available, it is also likely that animals were under 

resuscitated and the use of further blood would have reduced the inotropic 

support required. 
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8.4.1 Conclusions 

Zone I REBOA can be used for up to 90 minutes in a porcine model of class IV 

shock without mortality as a consequence of the reperfusion injury. REBOA incurs 

a significant physiological burden, although this can be ameliorated with 

resuscitation and critical care. Central aortic pressure and cerebral oxygen 

delivery is significantly improved by the use of REBOA. Further study is required in 

a model of uncontrolled torso haemorrhage in order to further assess the clinical 

potential of REBOA. 
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Chapter 9: The Inflammatory Sequelae of Aortic Balloon 
Occlusion in Haemorrhagic Shock 

9.1 Introduction 

Haemorrhage remains the leading cause of potentially preventable death in 

civilian (11,12) and military (2,4) trauma, with a significant proportion occurring 

prior to hospital admission (92,93). Haemorrhages arising from the non-

compressible regions in the torso and junctional regions have been consistently 

identified as particularly lethal with a mortality of 18-50% (27,94,95). 

Definitive haemorrhage control and resuscitation is crucial to survival from 

exsanguinating injury (96). Despite advances in damage control resuscitation 

(97), the majority of torso haemorrhage control interventions require hospital-

based facilities. However, the delivery of such care is both time dependent and 

capability-driven; a patient must survive long enough to access such a facility. 

Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) is a proactive 

haemorrhage control adjunct designed to sustain vital perfusion until definitive 

haemostasis can be achieved (3,6). In the setting of non-compressible torso 

haemorrhage (NCTH), a balloon is inflated in the thoracic aorta. This augments 

cardiac afterload improving myocardial and cerebral perfusion while 

simultaneously controlling arterial inflow. Importantly, unlike resuscitative 

thoracotomy and aortic clamping, REBOA can be initiated without the need for 

general anaesthesia and applied in resource poor environments. 

Translational large-animal work and early clinical series have shown REBOA to 

have significant promise as a bridge to definitive haemostasis (72,98-100). 

However, this technique is known to incur a lactate penalty that is proportional 

to the length of occlusion. While up to 90 minutes of occlusion has been 

demonstrated to be survivable in a swine model of haemorrhagic shock, the 

systemic inflammatory response and the cardiopulmonary sequelae have yet to 

be characterised (99). The aim of this study is to quantify the inflammatory 

response to different occlusion times and their effect on cardiopulmonary 

function. 
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9.2 Methods 

9.2.1 Overview 

This study represents the analysis of previously unpublished data from three 

experimental groups (30-REBOA, n=6; 60-REBOA, n=8 and 90-REBOA, n=6) drawn 

from two previously published studies (99,100). These two studies shared a 

common experimental design but realised different end-points. All experiments 

were conducted at a single accredited large animal facility under the supervision 

of an Institutional Animal Care and Use Committee supported by licensed 

veterinary staff. All animals were in good health and housed for at least 7 days 

prior to study enrolment to allow for acclimation. 

Female Yorkshire swine (Sus scrofa) weighing 70-90kg were entered into a study 

protocol consisting of 5 phases: animal preparation, induction of haemorrhagic 

shock (30 mins), balloon occlusion (30, 60 or 90 mins), resuscitation (6 hours) 

and critical care (48 hours) (Figure 9.1). Indices of haemodynamic performance 

were recorded throughout the study, along with blood sampling at specific time 

points. Animals were euthanised at the end of the critical care phase and 

necropsy performed.  

9.2.2 Animal Preparation 

General anaesthesia was induced using IV ketamine and maintained followed 

orotracheal intubation with isoflurane (range 2 – 4%). Animals were ventilated 

using a volume controlled mode of 6 – 8 ml/kg with an FiO2 of 40-80% sufficient 

to maintain an SpO2 of >96%. Surgical exposure and cannulation of the common 

carotid, internal and external jugular vein was performed via a midline neck 

incision. This facilitated invasive blood pressure monitoring, IV fluid 

resuscitation and the placement of a Swan-Ganz catheter. A 14 Fr sheath was 

placed in the external iliac artery via a retroperitoneal surgical exposure in the 

30-REBOA and 90-REBOA groups, whereas this was accomplished in the 60-REBOA 

group by an ultrasound guided percutaneous technique. 
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A cerebral oximetry probe (LICOX, Integra Life Sciences, Plainsboro, NJ) and 

carotid flow probe (Transonic Systems Inc., Ithaca, NY) were also placed; the 

data from these devices have been reported previously and will not be discussed 

further. 

9.2.3 Induction of Haemorrhagic Shock (30 mins) 

Class IV haemorrhagic shock was induced using a standardised technique 

previously described (79). Over 20 mins, 35% of the animal’s blood volume (total 

porcine blood volume: 66 ml/kg) was removed from the iliac arterial sheath: 

half over 7 minutes and the remaining over 13 minutes. As the swine has a 

contractile spleen, animals underwent a further haemorrhage of 0.15 ml/kg/min 

for 10 minutes to minimise the effect of autotransfusion. Whole blood was 

collected in citrated bags for re-infusion during the resuscitation phase. 

9.2.4 Balloon Occlusion (30, 60 or 90 mins) 

Following the conclusion of the controlled haemorrhage, REBOA was performed 

for either 30, 60 or 90 minutes. A stiff Amplatz wire was passed through the 14 

Fr sheath into the thoracic aorta guided by fluoroscopy. A Coda® balloon 

catheter (Cook Medical, Bloomington, IN) was advanced to the midpoint of the 

thoracic aorta using an “over the wire” technique and inflated with a mixture of 

saline and contrast medium observed under fluoroscopy. 

9.2.5 Resuscitation (6 hrs) and Critical Care (48 hrs) 

Fluid resuscitation was initiated 10 minutes prior to commencing balloon 

deflation at the end of the occlusion period (30, 60 or 90 minutes). Shed whole 

blood was slowly infused in order to raise the Mean Arterial Pressure (MAP) by 

around 25%. This was to avoid precipitous cardiovascular collapse once balloon 

deflation was commenced, which was performed gradually over 3 minutes in 

parallel with the rapid infusion of shed whole blood. Once the balloon was fully 

deflated, the catheter and wire were withdrawn from the sheath. 

Whole blood resuscitation continued and was titrated to a MAP of 60 mmHg. 

Once these reserves were exhausted, boluses of 1.0 L of 0.9% Saline were used 

to achieve the target blood pressure. When animals became refractory to fluid 

challenges, an infusion of norepinephrine was commenced at 4 µg/h and titrated 
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to a MAP of 60 mmHg. Animals were also transitioned from inhaled isoflurane to 

intravenous ketamine and midazolam sedation once considered sufficiently 

stable. 

9.2.6 Study End-Points, Data Collection and Analysis 

The primary outcome of this study related to the rise in the pro-inflammatory 

cytokines: Interleukin-6 (IL-6) and Tumour Necrosis Factor Alpha (TNF-α). Serum 

samples were analysed using an Enzyme Linked Immunosorbent Assays (ELISA) 

technique.  IL-6 and TNF-α were run on porcine-specific kits obtained from R&D 

Systems (Minneapolis, MN).  Plates were set-up following manufacturer's 

instructions, read on a BIO-TEK Synergy H4 microplate reader and data analysed 

using GEN5 software from Bio-Tek. 

Secondary outcomes related to measures of inflammation-mediated 

cardiopulmonary dysfunction manifest as failure of vascular tone and the 

development of Acute Respiratory Distress Syndrome (ARDS). Failure of vascular 

tone was quantified by the need for vasopressor medication (norepinephrine). 

Evidence of ARDS was made using the Berlin definition which describes a mild, 

moderate and severe pattern based upon an PaO2:FiO2 ratio of 201-300, 100-200 

and <100 mmHg respectively (101). A pulmonary arterial wedge pressure (PAWP) 

of less than 18 mmHg was used as an objective measure of the absence of 

cardiac failure and histologic evidence of pulmonary oedema was used in lieu of 

chest radiography. 

Indices of haemodynamic performance (Cardiac Output – CO, Systemic Vascular 

Resistance – SVR, MAP and PAWP) were recorded continuously throughout the 

study. Inflammatory cytokines were measured at 8 hours and 24 hours. At the 

end of study, animals were euthanised, lungs removed, weighted and submitted 

for blinded histologic evaluation by a veterinary pathologist. 

Data were analysed using SPSS v20.0 (IBM, Chicago, Il). Chi2 tests were used to 

compare categorical data and analysis of variance (ANOVA) with post-hoc testing 

for continuous variables using a Bonferroni correction. 
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9.3 Results 

9.3.1 Baseline Characteristics and Induction of Haemorrhagic Shock 

There was no significant difference in baseline measures of weight, 

haemodynamic or metabolic parameters between the 30-REBOA, 60-REBOA or 

90-REBOA groups (Table 9.1). The induction of shock was successful, with all 

animals tolerating the controlled haemorrhage well, achieving their predicted 

volume. Importantly, all animals demonstrated an appropriate tachycardia along 

with profound hypotension consistent with severe hypovolaemic shock (Table 

9.1). There was no unexpected mortality during the study protocol. 

9.3.2 Haemodynamic Performance and Resuscitation 

All groups responded to aortic occlusion with a substantial rise in MAP, which 

was sustained throughout each groups’ respective occlusion period (Figure 9.2A). 

A similar trend was noted with the SVR which demonstrated a modest increase 

during the haemorrhage phase, but more than doubled following aortic balloon 

occlusion (Figure 9.2B). This is in contrast to CO which decreased during the 

haemorrhage phase entering a plateau during the balloon occlusion phase 

(Figure 9.2C). It was only during the resuscitation phase did the CO increase, 

achieving similar values to the baseline recordings. 

At the end-of-study, there was no difference amongst the groups in the final HR, 

MAP, SV, CO, MPAP, PAWP, temperature, pH or lactate measurements (Table 

9.2). The SVR was significantly elevated in the 90-REBOA group when compared 

to the 60-REBOA group (1189 ± 391 vs. 623 ± 113; p = 0.024). There were no 

differences in cardiac Troponin-I measured at 8 and 24 hrs (Table 9.2). 

Regarding fluid resuscitation, all animals had their previously shed whole blood 

returned. The 60-REBOA group went on to receive a larger volume of crystalloid 

than the 30-REBOA group (12014 ± 6699 vs. 6535 ± 2517; p = 0.043) and the 90-

REBOA group (12014 ± 6699 vs. 10341 ± 7231; p = 0.089) although the latter was 

not statistically significant (Table 9.2). 

  



Chapter 9: The Inflammatory Sequelae of Aortic Balloon Occlusion in Haemorrhagic 
Shock 

98 

 
 

 

 
 
Table 9.1: Baseline characteristics of the three study groups and physiology 
following a 35% controlled haemorrhage  
Data is presented as mean and standard deviation or proportions (percentages). 

 
 30-REBOA 60-REBOA 90-REBOA p* 

n 6 8 6  
Weight, Kg 81.3 ± 7.5 77.5 ± 5.9  88.0 ± 11.3 0.143 
Female, % 6 (100.0%) 8 (100%) 6 (100.0%) n/a 
Haemodynamic     

HR, bpm 80 ± 4 81 ± 8 76 ± 15 0.647 
MAP, mmHg 68 ± 11 65 ± 10 72 ± 8 0.447 
SV, ml/min 91 ± 15 97 ± 22 73 ± 25 0.138 
CO, l/min 7.2 ± 1.3 7.9 ± 1.6 6.4 ± 1.2 0.190 
SVR, dynes.sec/cm5 683 ± 120 607 ± 91 918 ± 125 < 0.001 
MPAP, mmHg 17 ± 6 17 ± 4 20 ± 3 0.419 
PAWP, mmHg 11 ± 6 11 ± 4 12 ± 3 0.785 
FiO2:PaO2 Ratio, mmHg 507 ± 130 467 ± 33 430 ± 188 0.571 

Metabolic     
Temp, ℃ 35.3 ± 0.9 34.9 ± 1.3 35.6 ± 0.9 0.437 
pH 7.47 ± 0.04 7.50 ± 0.03 7.44 ± 0.05 0.032 
Lactate, mmol/L 1.3 ± 0.4 0.8 ± 0.2 1.2 ± 0.4 0.052 

Haemorrhage     
Predicted Volume, mL 2145 ± 197 2072 ± 174 2323 ± 300 0.144 
Actual Volume, mL 1996 ± 193 1942 ± 278 2264 ± 283 0.082 
HR Post-Haemorrhage, 
mmHg 

151 ± 26 167 ± 15 140 ± 23 0.073 

MAP Post-Haemorrhage, 
mmHg 

31 ± 4 35 ± 8 38 ± 13 0.433 

Abbreviations: REBOA – Resuscitative Endovascular Balloon Occlusion of Aorta; 
HR – Heart Rate; MAP – Mean Arterial Pressure; SV – Stroke Volume; CO – 
Cardiac Output; SVR – Systemic Vascular Resistance; Mean Pulmonary Arterial 
Pressure; PAWP – Pulmonary Arterial Wedge Pressure 
*Statistical Test – Analysis of Variance. 
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Figure 9.2: The haemodynamic performance of swine undergoing a 
controlled haemorrhage (35% circulating volume) and 30, 60 or 90 minutes 
of REBOA 
Data is plotted as mean value. A. Mean Arterial Pressure – MAP; B. Systemic Vascular 
Resistance – SVR; C. Cardiac Output – CO. 
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Table 9.2: End of study resuscitation volumes, haemodynamic indices, 
metabolic and troponin measurements following 30, 60 or 90 minutes of 
aortic balloon occlusion.  
Data is presented as mean and standard deviation. 

 
 30-REBOA 60-REBOA 90-REBOA p* 

n 6 8 6  
Haemodynamic     

HR, bpm 79 ± 18 102 ± 28 92 ± 10 0.163 
MAP, mmHg 78 ± 13 68 ± 14 86 ± 9 0.057 
SV, mL/min 75 ± 22 87 ± 22 57 ± 6 0.129 
CO, L/min 5.5 ± 1.6 6.0 ± 2.5 5.0 ± 1.0 0.765 
SVR, dynes.sec/cm5 977 ± 176 623 ± 113 1189 ± 391 0.003 
MPAP, mmHg 18 ± 7 21 ± 3 26 ± 6 0.096 
PAWP, mmHg 13 ± 7 10 ± 4 13 ± 9 0.666 
FiO2:PaO2 Ratio, mmHg 516 ± 122 412 ± 124 313 ± 137 0.043 

Metabolic     
Temp, ℃ 37.8 ± 1.3 37.8 ± 0.5 36.9 ± 1.2 0.268 
pH 7.46 ± 0.02 7.40 ± 0.10 7.43 ± 0.04 0.298 
Lactate, mmol/L 0.5 ± 0.1 0.6 ± 0.2 0.6 ± 0.1 0.440 

Cardiac Troponin-I     
8 hrs, ng/mL 0.65 ± 0.46 0.87 ± 0.72 0.96 ± 0.80 0.719 
24 hrs, ng/mL 0.28 ± 0.24 0.44 ± 0.38 0.38 ± 0.49 0.759 

Total Fluid Resuscitation     
Whole Blood, mL 1996 ± 193 1942 ± 278 2264 ± 283 0.082 
Crystalloid, mL 6535 ± 2517 12014 ± 6699 10341 ± 7231 < 0.001 

Abbreviations: REBOA – Resuscitative Endovascular Balloon Occlusion of Aorta; HR – 
Heart Rate; MAP – Mean Arterial Pressure; SV – Stroke Volume; CO – Cardiac Output; 
SVR – Systemic Vascular Resistance; Mean Pulmonary Arterial Pressure; PAWP – 
Pulmonary Arterial Wedge Pressure. 
*Statistical Test – Analysis of Variance. 
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9.3.3 Inflammatory Cytokines 

There was no difference in baseline IL-6 (Figure 9.3A; p = 0.095) or TNF-α 

(Figure 9.4A; p = 0.597) within the three groups. There was no significant 

increase in IL-6 compared to baseline value for the 8 and 24 hr samples in the 

30-REBOA group. By contrast, both the 60-REBOA and 90-REBOA groups saw a 

rise in IL-6 (pg/mL) at 8 hrs compared to baseline values: 289 ± 258 vs. 10 ± 5; p 

= 0.018 and 630 ± 348; p = 0.007 respectively. This had returned to baseline in 

the 60-REBOA group by 24 hrs (36 ± 36 vs. 9 ± 6; p = 0.083), but was still 

elevated in the 90-REBOA group (89 ± 45 vs. 19 ± 20; p = 0.028). 

When examining between groups at 8 hrs the 90-REBOA group has a significantly 

elevated IL-6 compared to the 30-REBOA group (630 ± 348 vs. 53 ± 37; p = 0.003) 

(Figure 9.3B). At 24 hrs IL-6 in the 90-REBOA group was significantly greater 

when compared to both the 30-REBOA and 60-REBOA groups: 89 ± 45 vs. 16 ± 15; 

p = 0.006 and 89 ± 45 vs. 36 ± 36; p = 0.040 respectively (Figure 9.3C).For TNF-α, 

there was no significant elevation across the time points or amongst the groups 

(Figure 9.4A-C). 

9.3.4 Cardiopulmonary Dysfunction 

There was no statistical difference in either the total dose of norepinephrine or 

proportion of animals requiring vasopressor support. These measures did 

however demonstrate a trend towards a stepwise increase in the vasopressor 

requirements across the 30-REBOA, 60-REBOA and 90-REBOA groups. This was 

demonstrated by total dose (mg) of norepinephrine administered (0.06 ± 0.09 vs. 

1.16 ± 2.58 vs. 2.38 ± 2.31; p = 0.183) and the proportion of animals requiring 

vasopressor support (2 (33.3%) vs. 4 (50.0%) vs. 5 (83.3%); p = 0.205) respectively 

(Figure 9.5A and B). 
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Figure 9.3: Interleukin-6 measurements (mean and standard error) following 
30, 60 and 90 minutes of haemorrhagic shock  
A. Baseline, B. 8 hours and C. 24 hours. *ANOVA, **post-hoc testing between groups. 

 

 

 

Figure 9.4: Tumour Necrosis Factor Alpha measurements (mean and 
standard error) following 30, 60 and 90 minutes of haemorrhagic shock  
A. Baseline, B. 8 hours and C. 24 hours. *ANOVA. 
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Figure 9.5: Total dose of norepinephrine (mean and standard deviation) and 
the proportion of animals requiring vasopressor support (percentage)  
A. Total Dose and B. Proportion. *ANOVA. 

 

 

Figure 9.6: Measures of pulmonary congestion. 
A. Lung weight per body weight (mean and standard error) and B. Incidence of Acute 
Respiratory Distress Syndrome. *ANOVA, **post-hoc testing between groups. 

  



Chapter 9: The Inflammatory Sequelae of Aortic Balloon Occlusion in Haemorrhagic 
Shock 

104 

 
 

 

There was a significant stepwise increase in the wet lung weight to body weight 

ratio between the three groups (10.8 ± 2.5 vs. 13.0 ± 3.4 vs. 16.8 ± 2.7; p = 

0.008) (Figure 9.6A). The lung weight ratio of the 90-REBOA group was 

significantly greater than the 30-REBOA group; p = 0.006. The inverse of this 

trend was observed in the end-of-study FiO2:PaO2 ratio which reduced as 

occlusion time increased (Table 9.2). The 90-REBOA FiO2:PaO2 ratio was 

significantly less than that of the 30-REBOA group (313 ± 137 vs. 516 ± 122; p = 

0.040) (Table 9.2). 

The incidence in ARDS trended towards an increase across the groups (p = 0.052) 

(Figure 9.6B). No animals in the 30-REBOA group had an FiO2:PaO2 ratio 

suggestive of ARDS. There were 3 (37.5%) animals in the 60-REBOA group with a 

reduced FiO2:PaO2 ratio and histology (Figure 9.7A and B) consistent with mild 

ARDS. There were 4 (66.7%) animals in the 90-REBOA group with evidence of 

ARDS: two with mild and two with medium grade ARDS. 

9.4 Discussion 

The current study is the first characterisation of the systemic inflammatory 

response following aortic balloon occlusion and haemorrhagic shock. As the 

occlusion time increased, a greater release of IL-6 as measured at 8 and 24 hrs 

was observed. This was associated with a trend towards an increase in 

vasopressor use and incidence of ARDS, which was unrelated to cardiac function 

as measured by a normal end-of-study PAWP and CO. The relationship between 

occlusion time and inflammatory sequelae is important in the understanding of 

the critical care challenges faced by the post-REBOA patient. 

The current study is an examination of previously unpublished data amalgamated 

from three groups from two previously published studies (99,100). Markov et al. 

examined 30 and 90 minutes of haemorrhagic shock with and without balloon 

occlusion (99). Those investigators explored the influence of occlusion on 

measures of perfusion and demonstrated superior central pressures with balloon 

occlusion. This was associated with a significant metabolic burden as measured 

by serum lactate; however, with suitable resuscitation, this returned to baseline 

levels within 6 hours of occlusion.  
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Figure 9.7: A representative histological section of an animal that underwent 
90 minutes of REBOA  
Haematoxylin and Eosin Stain, 10x Magnification. A. Diffuse severe alveolar oedema. B. 
Bronchial exudates. These features, in conjunction with an FiO2:PaO2 ratio less than 300 
mmHg, are suggestive of Acute Respiratory Distress Syndrome.  
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Scott et al. used an occlusion time of 60 minutes with which to evaluate a novel, 

self-centring, low-profile, prototype REBOA catheter compared to a conventional 

balloon system (100). This demonstrated the reproducibility of fluoroscopy-free 

placement while examining the consequence of 60 minutes of occlusion. This 

also reaffirmed the favourable haemodynamic performance of balloon occlusion 

in shock upon central perfusion. 

The lactate burden reported in these studies demonstrates that REBOA was 

associated with a significant ischemia-reperfusion injury. The current study is 

able to explore this phenomenon in more detail, both using molecular markers, 

as well as clinically relevant secondary endpoints. Importantly, by using a similar 

methodology in earlier studies, this has been achieved without the need for 

further animal experimentation. However, due to the nature of how the current 

study was constructed, there are some important limitations to discuss. 

Several secondary endpoints did not achieve statistical significance, specifically, 

the total dose and proportion of animals requiring vasopressor support. The 

finding that the majority (80%) of animals undergoing 90 minutes of occlusion 

required vasopressor support is clinically very important, although not reflected 

statistically. This likely relates to sample size. 

Furthermore, there are some subtle differences in methodology between the 

groups. Iliac arterial access was obtained percutaneously in the 60-REBOA group, 

whereas an operative approach was used in the 30 and 90-REBOA groups. The 

latter approach could increase soft tissue injury and artificially add to the 

inflammatory release, although the data presented here does not suggest that to 

be the case.  

It is also important to discuss the resuscitation employed, which was 

predominantly crystalloid-based following the infusion of shed whole blood. A 

more “haemostatic” resuscitation (i.e. more blood products and less synthetic 

fluid) would have been preferable; however, this would have required a porcine 

blood bank and the complexities inherent to such a capability. This is important, 

as significant crystalloid use has been associated with an increase in ARDS in 

trauma patients (102). However, the IL-6 increase did not correlate with 
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resuscitation volumes, suggesting that shock and aortic occlusion time 

contributes more to the generation of the systemic inflammatory response.  

There was a greater volume of fluid resuscitation administered to the 60-REBOA 

group, which is surprising in the context of a common resuscitation protocol. 

This is likely reflective of differences between laboratory staff who performed 

the experiments. It appears that the investigators in 60-REBOA group were more 

liberal in their fluid administration. 

Finally, the current study does not include “control” groups consisting of 

hypovolaemic shock without REBOA or normovolaemia with REBOA. This was 

deliberate, as the aim of the study was to explore the inflammatory burden 

associated with increasing occlusion times, not the effect of shock or REBOA 

alone. The effect of shock is already well characterised in the literature and the 

use of REBOA in normovolaemia is not a clinically realistic scenario. Importantly, 

as REBOA is already in limited clinical use (98), it is crucial to examine relevant 

models. 

Cytokines are well established mediators of inflammation and their excessive 

release is associated with multiple organ failure following trauma and sepsis 

(103-105). The results noted in the current study support and extend the 

literature relating to cytokine release and traumatic injury. IL-6 and TNF-α has 

been noted to be elevated in both haemorrhage and tissue injury, although 

different mechanisms and time courses prevail (106,107). 

TNF-α has been associated with an early rise at 45 minute, persisting up to 4 

hours in haemorrhage, whereas although IL-6 rises similarly, it tends to persist 

for longer and is more associated with tissue injury (106). This may explain the 

discrepancy in trend between IL-6 and TNF-α in the above study. Unfortunately, 

due to the post-hoc way in which the current study is constructed, serum for 

analysis from early post-REBOA time points is unavailable. Further study is 

required to assess the role of other cytokine at different time points. 

Within the context of the current study, IL-6 has been linked to the development 

of ARDS (108-112). Several small animals studies have demonstrated that IL-6 
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produced in response to haemorrhage induces the sequestration of polymorphic 

neutrophils in the pulmonary capillary beds (113,114). Interestingly, no animal in 

the current study demonstrated severe ARDS, suggesting that this may be a self-

limiting phenomenon although further investigation is required. 

REBOA is a proactive method of circulatory support designed to salvage patients 

with end-stage hypovolaemic shock, bridging their physiology until definitive 

haemorrhage control. It is now being gradually introduced into clinical practice 

with formalised protocols established in several civilian and military trauma 

systems. A number of successful case series have already been published 

regarding the use of this novel adjunct clearly demonstrating the favourable 

haemodynamic profile of REBOA in haemorrhagic shock (72,98). 

However, as the use of REBOA increases in clinical practice, clinicians need to be 

aware of the association between occlusion time and inflammatory burden. 

While clearly providers need to strive for the minimum occlusion time possible, 

the reality is that some patients with complex injuries will push that envelope. It 

is important that the use of REBOA does not simply transition the place of death 

from the Emergency Department to the Intensive Care Unit. It will be vital to 

anticipate the critical care needs of all patients who undergo REBOA, but 

especially so for those with extended occlusion time of 60 minutes and beyond. 

Several promising lines of research have opened up that could potentially be 

combined with REBOA systems to help ameliorate the inflammatory burden of 

occlusion in shock. Technologies that can eliminate pro-inflammatory mediators, 

such as haemoadsorption filters (115), could be included within an extra-

corporeal circuit merged with a REBOA system. Equally, a perfusion capable 

REBOA catheter (116) could be used to prophylactically deliver an anti-

inflammatory perfusate such as a statin suspension (117). 

9.4.1 Conclusions 

The current study reaffirms that in severe haemorrhagic shock, REBOA can help 

sustain central perfusion, despite a low cardiac out, by increasing systemic 

vascular resistance. Importantly, there appears to be minimal direct cardiac 

injury as a result of this haemodynamic mechanism. There is a proportional 
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relationship between the length of shock and the resultant pro-inflammatory IL-

6 release. This is associated with a trend towards an increase in vasopressor use 

and the incidence of ARDS, suggestive of a clinically important systemic 

inflammatory response. Clinicians must anticipate the need for organ support 

when managing patients where REBOA has been employed as a haemorrhage 

control adjunct. 
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Chapter 10: Use of Resuscitative Endovascular Balloon 
Occlusion of the Aorta (REBOA) in a Highly Lethal Model 

of Non-Compressible Torso Haemorrhage 

10.1 Introduction 

Haemorrhage is the leading cause of potentially preventable death in trauma 

accounting for 90% of military (4) and 26-40% of civilian (11,12) deaths. Non-

compressible torso haemorrhage (NCTH) is vascular disruption to axial torso 

vessels, solid organs, pulmonary parenchyma and/or the bony pelvis, when 

accompanied by shock (3). This injury complex constitutes the great burden of 

haemorrhage-related deaths in both military (27,95) and civilian (94) trauma 

with mortality rates of 43% and 42% respectively. Importantly, many patients 

exsanguinate prior to definitive haemorrhage control, either dying prior to 

hospital admission or in the emergency department (4,92,93). 

Patients with NCTH, especially those presenting in extremis, require 

resuscitation and haemorrhage control (96). Thoracic aortic occlusion is a 

manoeuvre that addresses both by augmenting cardiac afterload and providing 

torso inflow control (3). This can be a life-saving intervention in patients with 

end-stage haemorrhagic shock; however, it is generally performed as part of a 

resuscitative thoracotomy (RT) as a reactive manoeuvre following the loss of a 

central pulse. As a consequence, the survival rate following circulatory arrest 

and RT is dismal, with rates in military and civilian practice of between 0.5 - 20% 

(44,54,59,118). A preferable solution is the proactive use of aortic control, 

expanding the physiological window of salvage, thereby bridging critical 

physiology to definitive haemorrhage control. 

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a technique 

which provides proactive circulatory support in a hypotensive patient at risk of 

cardiovascular collapse (6). The effectiveness of REBOA has been established as 

a resuscitative adjunct in the setting of ruptured abdominal aortic aneurysm, 

another pathology characterised by uncontrolled haemorrhage (119). Despite its 

usefulness in this setting, the use of REBOA in end stage haemorrhagic shock 

from trauma has not been well characterised. The aim of this study is to 
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examine the impact of REBOA on mortality as an adjunct to damage control 

resuscitation (DCR) in the setting of catastrophic torso trauma. 

10.2 Methods 

10.2.1 Study Design and Overview 

This study was undertaken at an American Association for Laboratory Animal 

Science accredited large animal research facility following protocol approval by 

the Institutional Animal Care and Use Committee. The study used Male 

Yorkshire-Landrace swine (Sus scrofa) weighing between 70 and 90 kg, which 

were housed at the facility for 7 days, under the supervision of licensed 

veterinary staff, prior to experimentation. 

At total of 24 animals were divided into three groups which are named 

continuous REBOA (cREBOA), intermittent REBOA (iREBOA) and no REBOA 

(nREBOA). These groups were then entered into a study protocol consisting of 5 

phases - Preparation, Injury, Intervention, Damage Control Surgery and Critical 

Care (Figure 10.1). 

10.2.2 Preparation 

Following induction with ketamine, animals were intubated and ventilated with 

oxygen (FiO2 0.3) and isoflurane (1.5 - 4.0%) sufficient to maintain general 

anaesthesia. Large bore 8.5 Fr sheaths were placed in both external and right 

internal jugular veins to permit placement of a pulmonary artery catheter and 

establish central venous access. A transonic flow-probe was placed around the 

left carotid artery (Transonic Systems Inc., Ithaca, NY) and the right carotid 

artery was cannulated for invasive blood pressure monitoring. Infra-

diaphragmatic arterial access was also secured in both femoral arteries to 

permit blood sampling and REBOA deployment. 

As swine possess a contractile spleen that can readily autotransfuse in response 

to haemorrhagic shock, a splenectomy was performed through a small upper 

midline laparotomy. Prior to closure of the abdomen in three layers, three 12 

mm and one 5 mm laparoscopy ports were placed under direct vision to 

facilitate subsequent laparoscopy during the injury phase. 
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10.2.3 Injury 

This injury was designed to replicate a lethal Grade V liver injury and is based on 

a previously described model which utilises a laparoscopic liver resection 

method (120). Carbon dioxide was insufflated in order to attain a 12 mmHg 

pneumoperitoneum; concomitantly, the FiO2 was titrated to 0.21 to simulate 

atmospheric conditions. The left lobe of the liver was divided using laparoscopic 

scissors, following a line 2 cm medial to the hilum, in order to resect 

approximately 80% of the left lobe. The goal was to accomplish the transection 

within 2 minutes, following which the pneumoperitoneum was rapidly 

evacuated, the ports removed and the skin wounds closed. The animal then 

underwent a 10 minute free bleed period in which no treatment was 

administered.  

10.2.4 Intervention 

At the conclusion of the 10 minute free bleed period, all animals had a 0.035” 

Lunderquist® (Cook Medical, Bloomington, IN) wire placed into the thoracic aorta 

under fluoroscopic guidance through the sheath in the right superficial femoral 

artery. Animals in the cREBOA and iREBOA groups had a 14Fr Coda® Balloon 

(Cook Medical, Bloomington, IN) placed over the wire through this sheath into 

the thoracic aorta. The balloon was positioned cephalad to the diaphragm and 

inflated with contrast medium (Figure 10.2). Animals were transitioned to an 

FiO2 of 100% and received 250 mL boluses of IV colloid (Hextend™) if Mean 

Arterial Pressure (MAP) decreased to less than 50 mm Hg, up to total of 1500 ml. 

For the animals in the cREBOA group, the aorta was occluded continuously for 60 

minutes. Animals in the iREBOA group had the balloon gradually deflated over 

the course of one minute with the balloon completely deflated for 60 seconds; 

early re-inflation was performed if the MAP decreased to less than 30mm Hg. 

The balloon was deflated at both 20 and 40 minutes after initial inflation of 

balloon. The animals in the control group (nREBOA) only received colloid boluses 

(Hextend™) during the 60 minute intervention phase. 
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Figure 10.1: Experimental design 

  

 

Animal Preparation 
• Induction/Intubation 
• Vascular Instrumentation 
• Open Splenectomy 

Injury (10 mins) 
• Laparoscopic liver resection 
• Free bleed period 

Intervention (60 mins) 
• Allocation to 1 of 3 groups 
• Colloid bolus of 250 ml if SBP < 50 mmHg 
• Maximum pre-hospital fluid of 1500 ml 

Damage Control Surgery (60 mins) 
• Trauma laparotomy 
• Definitive hemorrhage control (liver packing) 
• Whole blood resuscitation 

Critical Care (3 hours) 
• Ongoing resuscitation with whole 

blood, crystalloid, norepinephrine 
• Active warmining 
• Ventilation 

cREBOA 
• Continuous 
   occlusion 

iREBOA 
• Intermittent occlusion 
• Deflation for 1 minute 

     at 20 and 40 minutes 

nREBOA 
• No occlusion 

control group 



Chapter 10: Use of Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) 
in a Highly Lethal Model of Non-Compressible Torso Haemorrhage 

114 

 
 

 

 

 

  

Figure 10.2: Fluoroscopy image of resuscitative endovascular balloon 
occlusion of the aorta 
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10.2.5 Damage Control Surgery 

Following the 60 minute intervention phase, the 3 groups of animals underwent 

concomitant whole blood (WB) resuscitation and damage control surgery. 

WB was banked from non-study animals, stored in citrated bags, refrigerated for 

up to one week, with a unit comprising approximately 500 ml. Provision was 

made for the availability of between 6 and 8 units of WB per study animal. A 

Belmont Rapid Infuser (Belmont Instrument Corporation, Billerica, MA) was used 

to warm and administer the WB through a large bore central venous catheter. 

Resuscitation was titrated to a MAP of 60 mmHg and a haemoglobin of 10 g/dl. 

Hypocalcaemia, as measured by arterial blood gas sampling, was treated with 1g 

IV infusions of Calcium Chloride solution. 

The damage control laparotomy was performed in the 3 groups via a full midline 

incision and the first surgical manoeuvre was application of the Pringle 

manoeuvre (clamping of the hepatic artery and portal vein) and manual control 

of the cut edge of the liver.  The haemoperitoneum was evacuated and the 

volume of evacuated blood recorded. Definitive liver haemostasis was then 

achieved through a combination of selective vessel ligation, diathermy and 

multi-axial packing. 

Once hepatic haemorrhage control was obtained and a sufficient volume of WB 

had been infused to achieve a MAP consistently greater than 70 mmHg, balloon 

deflation was commenced. This was performed by the incremental withdrawn of 

1-2 mL over five to ten minutes. The balloon was re-inflated in response to 

hypotension or liver haemorrhage. Once balloon deflation and liver haemostasis 

was complete, a Foley catheter was placed in the urinary bladder and the 

midline wound closed. 

10.2.6 Critical Care 

Post-operatively, resuscitation was continued in a critical care environment. 

Further WB and crystalloid were used to maintain a MAP of 60 mmHg or greater. 

Animals refractory to volume repletion were administered norepinephrine for 

haemodynamic support. Hyperkalaemia was treated with intravenous insulin 

administration and 50% Dextrose. Active re-warming was performed using a 
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forced air heating blanket (Bair Hugger™, Arizant Healthcare Inc, Eden Prairie, 

MN). The end of study (EOS) was 6 hours post injury at which point the animals 

were euthanised according to institutional protocol.  

10.2.7 Study End Points 

The primary end point of this study was mortality which was defined as the 

onset of asystole on electrocardiography. Secondary end points were divided 

into measures of haemodynamic performance, metabolic burden, laboratory 

parameters of organ function and resuscitation volumes. 

Haemodynamic parameters included systemic SBP, pulmonary SBP, cardiac 

output (CO; L/min), central venous oxygen saturation (SVO2; %), and carotid flow 

rates (CFR; mL/min) were measured throughout the study. Metabolic burden was 

quantified by pH and lactate measured at 30 minute intervals. Laboratory 

parameters of organ function included potassium (K+), blood urea nitrogen 

(BUN), creatinine, hepatic aminotransferases and cardiac Troponin I (cTnI). 

Inflammatory burden was measured using Interleukin-6 (IL-6), Tumour Necrosis 

Factor Alpha (TNF-α) and Interleukin-8 (IL-8) assays. Laboratory and cytokine 

assays were measured at baseline (BL) and EOS. Total volumes and doses of 

intravenous fluids (blood, crystalloid, and colloid) and drugs (norepinephrine, 

calcium and insulin) were collated at the EOS. Following euthanasia, the liver 

was excised with measurements obtained of total liver mass, resected liver 

mass, and total mass of the left lobe. 

10.2.8 Statistical Analysis 

Data were analysed using SPSS v20.0 (IBM, Chicago, Il). Chi2 tests were used to 

compare categorical data, analysis of variance (ANOVA) and t-tests for 

continuous variables. Log rank test in conjunction with Kaplan-Meier survival 

plots were used for survival analysis.   

10.3 Results 

10.3.1 Baseline Characteristics and Splenectomy 

Baseline characteristics are presented in Tables 10.1, 10.2 and 10.3 Physiological 

baseline values were statistically similar across the groups, with the exception of 
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heart rate (HR, bpm) which was significantly higher in the nREBOA group 

compared to the cREBOA and iREBOA groups (98 ± 22 vs. 77 ± 16 and 75 ± 12; p = 

0.030) (Table 10.1). There were no differences in laboratory baseline values 

(Table 10.3). 

There was no difference in the time taken to perform the splenectomy across 

the three groups with an overall mean time (mins) of 29 ± 14 (Table 10.1). 

Splenic weight was also consistent amongst the groups, with a mean weight (g) 

of 535 ± 150. There was no difference in post-splenectomy haemodynamic or 

laboratory parameters (Table 10.3). 

The liver injury was accomplished within 2 minutes in all animals, resecting a 

consistent segment of the left lobe across the groups, with a mean overall 

weight (g) of 286 ± 71 and percentage (%) resection of 75.0 ± 7.5 (Table 10.1). 

10.3.2 Haemodynamic Performance 

Following liver injury, all animals underwent a precipitous cardiovascular 

collapse during the 10 minute free bleed period (Figure 10.3). Systolic blood 

pressure (SBP, mmHg) at the end of free bleed period for the cREBOA, iREBOA 

and nREBOA groups was 31 ± 14, 48 ± 28 and 28 ± 17 respectively; p = 0.125 

(Figure 10.3A). 

The initiation of balloon occlusion in the cREBOA and iREBOA groups during the 

intervention phase resulted in restoration of SBP to values significantly higher 

than baseline (79 ± 12 vs. 107 ± 19; p = 0.015 and 85 ± 9 vs. 117 ± 20; p = 0.023 

respectively). However, the SBP in the nREBOA control group continued to 

decrease with all animals progressing to asystolic cardiac arrest by 25 minutes of 

the intervention phase (35 mins post-injury) (Figure 10.3A). 

A similar trend was observed for pulmonary SBP, SVO2 and carotid flow among 

the groups (Figure 10.3B, D and E). Following a significant decrease in each 

parameter during the free bleed period, the deployment of REBOA resulted in 

the restoration of supra-normal values; this was not observed in the nREBOA 

group. 
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Table 10.1: Baseline physiology, splenectomy, liver injury, operative and 
resuscitation data. Values are mean and standard deviation 

 cREBOA iREBOA nREBOA p value* 
n 8 8 8  
Weight, kg 74.4 ± 2.1 76.5 ± 6.6 79.8 ± 3.7 0.079 
Baseline Physiology     

Heart Rate, bpm 77 ± 16 75 ± 12 98 ± 22 0.030 
Systemic SBP, mmHg 79 ± 12 85 ± 9 91 ± 18 0.262 
Pulmonary SBP, mmHg 22 ± 6 24 ± 3 26 ± 5 0.309 
Carotid Flow, mL/min 318 ± 75 360 ± 82 473 ± 324 0.335 
CVP, mmHg 8 ± 3 10 ± 2 12 ± 6 0.426 

Splenectomy     
Operation Time, mins 31 ± 8 32 ± 20 21 ± 8 0.328 
Weight of Spleen, g 559 ± 195 510 ± 123 536 ± 140 0.821 

Liver Injury     
Total Liver, g 1529 ± 216 1553 ± 283 1664 ± 322 0.592 
Left Lobe, g 373 ± 36 358 ± 77 405 ± 101 0.122 
Resection, g 273 ± 31 244 ± 59 309 ± 82 0.117 
Resected Lobe, % 74 ± 6 74 ±8 78 ± 8 0.397 

Operative     
Total Haemoperitoneum, mL 3285 ± 813 3005 ± 865 2767 ± 614 0.419 
Pringle Time, mins 18 ± 5 12 ± 3 n/a 0.095 
Total Intra-Operative REBOA 
Time, mins 

20 ± 9 15 ± 8 n/a 0.293 

REBOA Re-inflations, n (%) 2 (25.0%) 4 (50.0%) n/a 0.608 
Trauma Laparotomy Time, mins 36 ± 11 32 ± 8 n/a 0.611 
Need for Re-Laparotomy, n (%) 1 (12.5%) 1 (12.5%) n/a 1.000 
Resuscitation Fluids and Drugs     
Intervention Phase Colloid, mL 569 ± 493 813 ± 438 1144 ± 306 0.039 
Critical Care Phase Crystalloid, mL 1922 ± 

1745 
1392 ± 
1534 

n/a 0.529 

Whole blood, units 6.8 ± 2.9 7.9 ± 3.6 n/a 0.561 
Norepinephrine, mg 4.7 ± 12.3 3.2 ± 7.8 n/a 0.774 
Calcium, g 10.8 ± 5.1 10.3 ± 8.7 n/a 0.892 
Insulin, units 3.8 ± 7.4 5.0 ± 7.6 n/a 0.744 
50% Glucose, mL 32 ± 41 21 ± 44 n/a 0.615 
Abbreviations: REBOA – Resuscitative Endovascular Balloon Occlusion of the Aorta, c – 
continuous, i – intermittent, n – no. 
*Analysis of Variance 
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Throughout the 60 minute intervention phase, the cREBOA and iREBOA groups 

both maintained SBP following the initial elevation post injury. This is in contrast 

to CO, which decreased during the injury phase in the cREBOA and iREBOA 

groups to 3.2 ± 1.3 and 5.1 ± 1.2 respectively (Figure 10.3C). CO made little 

recovery during the intervention phase decreasing to the lowest value of 2.5 ± 

0.5 at 30 mins in the cREBOA group and 4.6 ± 1.6 at 10 mins in the iREBOA 

group. Following resuscitation during the damage control surgery phase, CO 

increased to levels higher than baseline, with a peak of 7.6 ± 2.5 at 110 mins in 

the cREBOA group and 7.7 ± 1.3 at 150 mins in the iREBOA group. All indices of 

haemodynamic performance were maintained through to the EOS.  

10.3.3 Metabolic Burden 

Throughout the free bleed and intervention phase, there was an increase in 

lactate and a commensurate decrease in pH (Figure 10.4). In the nREBOA group, 

the lactate peaked at 14.4 mmol/l prior to the demise of the last animal in the 

group at 35 minutes post injury. The lactate trend was similar for both the 

cREBOA and iREBOA groups with peaks of 13.7 ± 2.2 at 90 mins and 13.5 ± 3.3 at 

105 mins respectively. Similarly, the lowest pH occurred at 105 mins for both the 

cREBOA and iREBOA groups with measurements of 7.17 ± 0.09 and 7.17 ± 0.10. 

Lactate measurements continued to decline from their peak measurement 

during the critical care phase to a lowest measurement at 4.5 hrs of 7.7 ± 2.4 

and 6.6 ± 2.9 for the cREBOA and iREBOA groups. The pH peaked at this time 

point with values 7.39 ± 0.83 and 7.31 ± 0.13 respectively. The EOS values saw a 

small increase in lactate to 9.0 ± 4.5 and 7.8 ± 4.5 and a decrease in pH of 7.22 

± 1.45 and 7.28 ± 0.18 for the cREBOA and iREBOA groups. 

10.3.4 Laboratory Parameters 

A comparison of BL and EOS laboratory parameters for the cREBOA and iREBOA 

groups is presented in Table 10.2. Measures of haemoglobin, clotting time 

(Prothrombin and Partial Thromboplastin Time) and fibrinogen did not differ 

between BL and EOS. There was a significant decrease in platelet count 

observed between BL and EOS samples in the iREBOA group (292 ± 119 vs. 152 ± 

98; p = 0.027). 
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Figure 10.3: Haemodynamic response to balloon occlusion  
As measured by A. systemic systolic blood pressure (SBP), B. pulmonary SBP, C. cardiac 
output, D. mixed central venous oxygen saturation, E. carotid flow. Data is plotted as 
mean values. 
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Figure 10.4: Metabolic changes in response to balloon occlusion  
As measured by A. pH and B. lactate. Data is plotted as mean values. 
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An increase was observed in laboratory measures of end organ damage including 

renal, hepatic and cardiac parameters. BUN increased significantly in the 

cREBOA and iREBOA groups to 12.0 ± 1.6 and 11 ± 3.2 respectively. A similar 

trend was observed in creatinine. There was a non-significant increase in ALT 

across both groups and a significant rise in AST in the cREBOA group (20 ±9 vs. 

403 ± 133; p = 0.001). Significant cardiac troponin-I increases were also 

observed, greatest in the cREBOA group (0 vs. 2.9 ± 1.5; p = 0.005) but also in 

the iREBOA group (0 vs. 1.8 ± 1.5; p = 0.033). 

10.3.5 Inflammatory Burden 

Only data from the cREBOA and iREBOA groups are presented as no animal in the 

nREBOA group survived to the EOS (Table 10.2). There was no difference in 

baseline measurements between the cREBOA and iREBOA groups for IL-6, TNF-α 

or IL-8. A significant increase from BL to EOS was noted in IL-6 measurements in 

both the cREBOA (32 ± 14 vs. 1188 ± 279; p = 0.001) and iREBOA (36 ± 26 vs. 227 

± 296; p = 0.003) groups. 

While an increase in EOS compared to BL TNF-α and IL-8 was observed, it was 

not significant in either group (Table 10.2). In terms of EOS values between the 

groups, cREBOA had a incurred a greater IL-6 (1187 ± 279 vs. 834 ± 287; p = 

0.084), TNF-α (205 ± 92 vs. 110 ± 36; p = 0.063) and IL-8 (329 ± 505 vs. 227 ± 

296; p = 0.708) release than the nREBOA group, although again, none achieved 

statistical significance. 

10.3.6 Operative Intervention and Resuscitation 

Damage control surgery was performed in the cREBOA and iREBOA groups as no 

animal in the nREBOA group survived beyond the intervention phase (Table 

10.2). Total Pringle time was similar between the cREBOA and iREBOA groups (18 

± 5 vs. 12 ± 3; p = 0.095) as was the intra-operative REBOA time (min) (20 ± 9 vs. 

15 ± 8; p =0.293). Emergent re-inflation was required for two animals in the 

cREBOA and four in the iREBOA groups, predominantly for control of 

hypotension. All laparotomies were performed within the allocated 60 minutes 

with an overall mean time of 35 ± 10 mins. 
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Both groups received similar volumes of WB and crystalloid. Insulin and 50% 

dextrose was used in five animals to treat a K+ greater than 5.5 mmol/l, two 

required 50% dextrose for hypoglycaemia and inotropic support was necessary in 

five cases. One animal developed a tension pneumothorax which was treated 

with tube thoracostomy. 

There were two unplanned re-laparotomies. One animal in the cREBOA group 

had a rising lactate despite resuscitation and re-exploration identified global 

small bowel ischemia which improved following withdrawal of the REBOA 

catheter from the thoracic aorta. The second re-laparotomy occurred in an 

iREBOA animal, in response to haemodynamic instability and falling haemoglobin 

suggestive of ongoing bleeding. There was evidence of gross coagulopathy with 

no surgically remedial solution; despite exhaustion of WB reserves, the animal 

survived to the end of study. 

10.3.7 Mortality 

There were 11 early deaths from exsanguination that occurred during the 

intervention phase (Figure 10.5). All of the nREBOA animals died within 35 

minutes of injury. Deployment of REBOA was unable to salvage two animals in 

the iREBOA group (11 and 15 mins post-injury) and one animal in the cREBOA 

group (12 mins post-injury).  

There was one intra-operative death in the iREBOA group (80 minutes post 

injury). This animal tolerated balloon deflation during the intervention phase 

poorly, requiring emergent re-occlusion during both attempts. The animal 

displayed gross haemodynamic instability ten minutes prior to damage control 

laparotomy, deteriorating into cardiac arrest with pulseless electrical activity 3 

minutes prior to damage control surgery. Despite aggressive resuscitation 

attempts, including internal cardiac massage and rapid whole blood infusion, 

there was no return of spontaneous circulation. One death was observed during 

the critical care phase in the cREBOA group (5 hours post injury). This animal 

developed cardiogenic shock refractory to inotropic support. 
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Figure 10.5: Survival following balloon occlusion 
Log Rank Test, p = 0.001. 
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The overall survival for the cREBOA, iREBOA and nREBOA groups to EOS was 

75.0%, 62.5% and 0.0% respectively. A pairwise log rank (Mantel-Cox) comparison 

between the groups demonstrated a significant difference in survival when 

comparing nREBOA to cREBOA (p = 0.001) and nREBOA to iREBOA (p = 0.007). 

There was no difference comparing cREBOA to iREBOA (p = 0.572). 

10.4 Discussion 

The current study examines the effectiveness of REBOA as a haemorrhage 

control adjunct in a highly lethal porcine model of non-compressible torso 

haemorrhage. It is the first study to evaluate this adjunct in conjunction with 

modern damage control resuscitation (DCR). REBOA was used to successfully 

salvage 13/16 (81.3%) animals from imminent circulatory arrest and to sustain 

the circulation of 12/16 (75.0%) animals until definitive haemorrhage control. 

This is in contrast to the control animals, all of whom died of rapid 

exsanguination. Furthermore, the current study also examined outcomes 

between intermittent and continuous occlusion, in an effort to assess whether 

transient reperfusion reduced the metabolic or inflammatory burden. No 

difference was detected in these outcomes between the continuous and 

intermittent REBOA groups. 

This study confirms and extends previous work characterising the haemodynamic 

and metabolic sequelae of balloon occlusion in haemorrhagic shock. White et al. 

used a porcine model of controlled haemorrhage to demonstrate that REBOA had 

a comparably favourable haemodynamic profile to open clamp occlusion of the 

thoracic aorta, but resulted in less of a metabolic burden than resuscitative 

thoracotomy (80). Markov et al. used a similar model to evaluate the physiologic 

tolerance of 30 and 90 minutes of occlusion (25). A lactic acidosis was incurred 

with both occlusion times, greatest in the 90 minute group, but ultimately 

survivable with the restoration of normal physiology following balloon deflation. 

Most recently, Scott et al. used an occlusion time of 60 minutes with which to 

assess the performance of a newly developed, self-centring, low-profile, 

prototype REBOA catheter (100). Results from that study demonstrated the 

reproducibility of blind or fluoroscopy-free placement, with physiological results 
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that complemented Markov’s work. While this body of literature demonstrates 

the haemodynamic advantages of REBOA and the survivability following balloon 

deflation, more clinically relevant models of uncontrolled haemorrhage have 

been required to assess the practical application of REBOA. 

Avaro et al. used a porcine model of open splenic trauma, resuscitated with 

saline,  to evaluate a control group with 40 or 60 mins of REBOA followed by 

splenectomy (90). The control group all exsanguinated within 80 minutes of 

injury and 9/12 (75.0%) of the 60 minute group died upon balloon deflation due 

to metabolic derangement. All animals in the 40 minute group in the Avaro study 

survived, suggesting that 40 minutes constitutes an optimum physiologic 

threshold for resuscitative aortic occlusion. 

The current study builds on Avaro’s work, by incorporating DCR (including whole 

blood administration) that successfully extends this physiological threshold to 60 

minutes. This approach results in a greater overall survival (68.8%), despite a 

longer occlusion time and a more lethal model. The combination of WB 

resuscitation, prompt correction of electrolyte derangement, active warming 

and haemodynamic support can successfully ameliorate the metabolic 

consequences of balloon deflation and reperfusion. 

However, it is important to acknowledge that the current study’s resuscitation 

was by no means comprehensive. Whole blood reserves were limited and 

adjuncts such as Tranexamic Acid (121) or specialised blood products like 

cryoprecipitate (122) were not employed. This was reflected by the ongoing 

acidosis during the critical care phase which is frequently corrected intra-

operatively using contemporary DCR (97). 

There are further limitations that are important to discuss. The use of 

intermittent REBOA was an attempt to permit a degree of ischemic pre-

conditioning that would enhance resilience to the reperfusion injury. The time 

of one minute was used, as during the model development phase, it was clear 

that animals would not tolerate prolonged deflation without resuscitation. It is 

likely that the period of minute is too brief and therefore conclusions relating to 
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the iREBOA group should be cautious. Further work examining techniques to 

ameliorate reperfusion injury should be explored. 

The use of REBOA has not been limited to animal studies, with the earliest 

reported human use during the Korean War in 1953 by Lt Col Hughes (7). He 

described two casualties with exsanguinating truncal injuries, both of whom 

responded to balloon occlusion, but ultimately died of their wounds. Despite its 

attractions, balloon occlusion was surpassed by the experience of open clamp 

occlusion which became the standard of care (91). 

Resuscitative aortic balloon occlusion was explored again in the 1980s; however, 

success was limited by patient selection and insertion technique (8,9). The 

majority of patients were either in established cardiac arrest or moribund and 

the method of arterial access was generally by cut-down, frequently 

unsuccessful. REBOA may be most successful as a proactive intervention (i.e. 

aortic pressure monitoring with capacity to inflate a balloon) in patients with a 

spontaneous circulation, at risk of circulatory arrest. 

Following the refinement of both catheter technology and Seldinger insertion 

techniques during the 1990s, along with the developments in trauma 

resuscitation, the re-evaluation of this technology is a logical step (6). Brenner 

and colleagues recently report a series of 6 trauma patients, injured by a 

mixture of blunt and penetrating trauma treated using REBOA as an adjunct to 

DCR (98). The mean admission SBP was 59 ± 27 mmHg which was increased to 

114 ± 20 mmHg following the deployment of REBOA. While one patient died of 

traumatic brain injury and another of multi-organ failure, there were no REBOA 

related complications. Ultimately, this adjunct was used as a haemostatic and 

resuscitative bridge to definitive haemorrhage control, incurring no haemorrhage 

related mortality. 

Resuscitative endovascular balloon occlusion of the aorta can temporise 

exsanguinating haemorrhage and restore life-sustaining perfusion, bridging 

critical physiology to definitive haemorrhage control (i.e. surgical haemostasis). 

In the current study, intermittent compared to continuous REBOA offered no 

additional benefit, although different schedules of occlusion should be explored 
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in future studies. Importantly, the physiologic penalty incurred by 60 minutes of 

occlusion could be ameliorated with aggressive DCR. Prospective observational 

studies of REBOA as a haemorrhage control adjunct should be undertaken in 

appropriate groups of human trauma patients. 

 

 



 131 
 

Chapter 11: Morphometric Analysis of Torso Arterial 
Anatomy with Implications for Resuscitative Aortic 

Occlusion 

11.1 Introduction 

In the setting of haemorrhagic shock, maintenance of central aortic pressure is 

critical to sustain myocardial and cerebral perfusion until resuscitation can be 

initiated and bleeding controlled (96). Resuscitative aortic occlusion at locations 

between the origin of the left subclavian artery and the aortic bifurcation can be 

a life sustaining procedure, which maintains central pressure and mitigates distal 

haemorrhage (3). Currently this manoeuvre is achieved with an aortic clamp at 

the time of thoracotomy or laparotomy or with an endovascular balloon 

introduced through the femoral artery (6,42). 

Despite the potential for resuscitative aortic occlusion to sustain life and control 

haemorrhage there is little quantitative information on the morphometry of the 

aorta or the iliac or femoral arteries. Morphometry, in this context, refers to the 

diameters at various locations along the aorta and distances between the 

femoral vessels and major aortic side branches. The current understanding of 

torso arterial anatomy is mostly based on cadaveric dissection and medical 

illustration. Even when computed tomography (CT) provides detailed arterial 

measurements, the imaging is per individual and obtained post injury. For 

significant advances to occur in the management of haemorrhage, including the 

use of resuscitative aortic occlusion, a more complete knowledge of aortic and 

access vessel morphometry is necessary. 

The common use of CT following injury has resulted in repositories of imaging 

data in trauma populations (123,124). These collections of data include imaging 

of the aorta, iliac and femoral arteries stored on systems with software to 

perform detailed vessel diameter and centre line length measurements. 

Structured collection and analysis of torso arterial measurements from large 

numbers of CT imaging studies may allow the quantification of morphometric 

norms. Knowledge of such norms prior to injury stands to facilitate new 

techniques in resuscitation and haemorrhage control without the need for 

fluoroscopy. 
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The objective of this study is to quantify torso arterial morphometry in a trauma 

population using a volume of archived CT images. An additional objective is to 

characterise the correlation of arterial lengths or distances with a novel measure 

of torso extent. 

11.2 Material and Methods 

Following Institutional Review Board approval, consecutive trauma patients over 

a 12 month period, who underwent CT scanning, were retrospectively identified 

from the Wilford Hall United States Air Force Medical Center database (Lackland 

Air Force Base (San Antonio), Texas). For inclusion, CT scans were those 

performed on male patients between the ages of 18 and 45. All CT scans were 

contrast-enhanced, 64-slice continuous examinations of the chest, abdomen, 

pelvis and femoral vessels. 

The individual scans were loaded on to a CT workstation running Volume 

Viewer™ software (General Electric, Waukesha, WI). Three-dimensional 

reconstructed angiograms permitted the measurement - in millimetres (mm) - of 

the distance between vessel origins and diameters (Figure 11.1).  

The aorta was divided into and examined as three previously described zones 

(Figure 11.2) (6). Aortic Zone I extended from the origin of the left subclavian 

artery to the celiac trunk. Aortic Zone II extended from the celiac trunk to the 

origin of the lowest renal artery and the infra-renal aorta (lowest renal to the 

aortic bifurcation) comprised Aortic Zone III. 
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Figure 11.1: A. CT 3-D rendering of the aorta, iliac and femoral arteries; B. Same 
image with superimposed centre line measurements 
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The centre line length (mm) of each zone was measured and the luminal 

diameter of the aorta at the proximal and distal most extent of each of the 

zones was recorded. Additionally, the distance from left and right common 

femoral artery at the midpoint of the femoral head to the aortic bifurcation and 

the origin of the left subclavian artery was recorded. The common femoral 

artery landmark was chosen as a plausible site for arterial access. For purposes 

of the study the external measure of torso extent was defined as the straight 

line distance (mm) from the suprasternal notch of the manubrium to the mid-

pubic symphysis, parallel to the patient’s cranio-caudal axis. 

CT images were examined by a single reader, with 10 scans reassessed de novo 

and measured at different sessions to assess intra reader variability. Data were 

collected in an Excel spreadsheet (Microsoft, Redmond, Washington, USA) and 

imported to SPSS version 20 (IBM®, New York) for analysis. Distances and 

diameters were reported as medians, accompanied by interquartile range and 

maximum/minimum values for distribution. Scatter plots were generated 

plotting aortic zone length against torso extent or height and a best fit line was 

drawn using linear regression analysis. The correlation of determination (R2) was 

reported as measures of the strength of the linear regression. 

11.3 Results 

Two hundred male patients underwent CT imaging following traumatic injury 

between April 1, 2009 and March 31, 2010. There were 112 (56%) exclusions with 

102 (51%) removed because of a low quality contrast bolus or a non-contiguous 

chest, abdomen, pelvis and femoral imaging. Eight scans (4%) were excluded due 

to inadequate anatomic exposure and 2 (1%) were excluded due to abnormal 

vascular anatomy. The final cohort comprised 88 patients with a mean (±SD) age 

of 28±4 years and a median (interquartile range or IQR) torso extent or height of 

521mm (500-536).  
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Figure 11.2: Line drawing demonstrating the three aortic zones 

  

 

 

 

Aortic Zone I 

Aortic Zone II 

Aortic Zone III 



Chapter 11: Morphometric Analysis of Torso Arterial Anatomy with Implications for 
Resuscitative Aortic Occlusion 

136 

 
 

 

11.3.1 Distances or Lengths 

The distances (mm) from skin to the left or right common femoral artery (CFA) 

was similar, with a median distance of 35mm and IQR of 29-41mm Table 11.1. 

The distance from the CFA to the aortic bifurcation was longer by 30 mm on the 

right than the left side. The median (IQR) distance for the right and left were 

197mm (182-213) and 206mm (195-219) respectively. The total length of the 

aorta from the left subclavian to the aortic bifurcation was 340mm (323-360). 

Aortic zone I was the longest with a median length of 211mm (202-223). The 

length of Zone III was 97mm (91-103) and the length of Zone II was 33mm (28-

38). 

11.3.2 Diameters 

The diameters of the left and right CFA were the same measuring 8mm (7-9) 

(Table 11.2). Aortic diameter was the smallest (14mm (13-15)) at the 

bifurcation. Aortic diameter increased to 15mm (14-16) at the lowest renal 

artery, 18mm (16-19) at the celiac trunk and 21mm (20-23) at the level of the 

left subclavian artery (Table 11.2). 

11.3.3 Linear Regression 

Length measurements of the descending aorta were plotted against the 

measurements of torso extent or height (Figure 11.3) and linear regression was 

used to apply a best fit line. An R2 of 0.454 demonstrated torso extent alone was 

able to explain over 45 percent of the variability in aortic length. This method 

was repeated for the individual aortic zones (Figure 11.4) with both aortic zone I 

and zone III resulting in an R2 of 0.294 and 0.212 respectively indicating other 

explanatory variables may be involved  Zone II had a low R2 of 0.065 suggestive 

of a poor linear relationship to torso height.  
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Table 11.1: Measurements of key vascular distances 

Distance (mm) Minimu
m 

25th 
Percentile 

Media
n 

75th 
Percentile 

Maximu
m 

Aortic Zone I 96 202 211 223 260 

Aortic Zone II 16 28 33 38 129 

Aortic Zone III 66 91 97 103 123 

Left CFA to AB 146 182 197 213 241 

Right CFA to AB 163 195 206 219 244 

Skin to Left CFA 10 29 35 41 76 

Skin to Right CFA 11 29 35 40 78 

Abbreviations and definitions: Aortic Zone I - left subclavian to celiac trunk; Aortic Zone 
II - celiac trunk to lowest renal artery; Aortic Zone III - lowest renal artery to aortic 
bifurcation; CFA - common femoral artery; AB - aortic bifurcation. 

 

 

Table 11.2: Vessel diameters at key vascular landmarks. 

Diameter (mm) Minimum 25th 
Percentile Median 75th 

Percentile Maximum 

Aorta at Left SCA 16 20 21 23 27 

Aorta at CT 12 16 18 19 23 

Aorta at LRA 11 14 15 16 19 

Aortic Bifurcation 10 13 14 15 18 

Left CFA 5 7 8 9 11 

Right CFA 4 7 8 9 12 

Abbreviations and definitions: SCA - subclavian artery; CT - celiac trunk; LRA - lowest renal 
artery; CFA - common femoral artery. 
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Figure 11.3: Scatter plot of torso height against descending aortic length 
with accompany best fit line. 

 

 

Figure 11.4: Scatter plots of torso height against the three aortic zones with 
accompany best fit lines 
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11.4 Discussion 

This study is the first to report numerical characterisation of the aorta, iliac and 

femoral arteries using stored CT images of male trauma patients. Additionally, 

this analysis reports the morphometric measures of three clinically relevant 

aortic zones and demonstrates a correlation between aortic length and torso 

height. This capability has largely come about due to scanning techniques and 

software originally designed for the planning of endovascular intervention, but 

the commonality of CT imaging in trauma extends the applicability (123,124). 

This study compliments our group’s previous work in torso trauma, where the 

aorta has been characterised into three zones (6). Zone I extends from the origin 

of the left subclavian artery to the celiac trunk and has a median length of 211 

mm. Zone II is from the origin of the celiac trunk to the lowest renal artery and 

has the smallest median length of 33 mm. The infra-renal aorta is Zone III and is 

97 mm in median length. 

Aortic Zones I and III were described as regions of occlusion, in order to achieve 

inflow control and afterload support of patients in extremis with NCTH (6). Zone 

I is the suggested region of occlusion for patients with abdominal exsanguination 

and/or circulatory collapse/arrest. Zone III occlusion provides terminal aortic 

control for patients with exsanguinating pelvic and/or inguino-femoral junctional 

haemorrhage. Zone II or the para-visceral segment, is a zone of no-occlusion and 

is conveniently the shortest zone. 

Aortic occlusion can be achieved by a number of methods - open and 

endovascular. Open aortic cross clamping following resuscitative thoracotomy is 

well described in both military (118) and civilian (125) settings. However, this is 

only generally possible in appropriately resourced facilities, and is often 

performed as a reactive manoeuvre following the loss of a central pulse and is 

associated with poor outcome (42,118). 

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is a minimally 

invasive, proactive technique designed to be used in patients with haemorrhagic 

shock, that can support the circulation until definitive haemorrhage control (6). 



Chapter 11: Morphometric Analysis of Torso Arterial Anatomy with Implications for 
Resuscitative Aortic Occlusion 

140 

 
 

 

Critical to this adjunct is correct balloon placement, of which radiographic 

imaging may not always be possible. Morphometric analyses, such as the one 

presented in the current study, will help guide the deployment of such devices. 

This study has a number of important limitations relating to design, population 

and technical issues. This study is retrospective in nature, which may mean that 

not all eligible patients were identified; although, by using a computerised 

radiology database, rather than case records, this should be minimal. The 

current study also only examined a male population which limits the reported 

findings to men, as women do have morphological differences. The male gender 

was chosen as there were insufficient female subjects available for an 

adequately powered analysis. The analysis of this relatively homogeneous 

population has the effect of producing a narrow interquartile range of values. 

However, the study population is reflective of most trauma populations which 

are dominated by young men. 

The biggest limitation is that 56% of the originally identified cohort were 

excluded - the majority (91%) due to poor contrast quality. It is unclear whether 

this introduces a bias to the distribution of measurements. It may be the case 

that a larger sample size, with fewer exclusions, will improve the strength of the 

linear regression. 

11.4.1 Conclusions 

The current study is the first numerical characterisation of aortic zones 

demonstrating correlation to torso height, using a CT data repository. First, this 

demonstrates both the feasibility and limitations of this methodology, which 

may be applicable to other morphometric analyses. Second, these results permit 

the application of numeric planning to future resuscitative interventions for 

NCTH. This has particularly relevant to the emerging use of endovascular 

technology, which is an exciting new development in torso haemorrhage control. 

Further study in a broader population, that includes female torso anatomy, is 

warranted in order to develop the application of morphometric analysis in torso 

trauma. 
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Chapter 12: Prospective Evaluation of the Correlation 
between Torso Height and Aortic Anatomy in Respect of 

a Fluoroscopy Free Aortic Balloon Occlusion System  

12.1 Introduction 

Haemorrhage is the leading cause of potentially preventable death in military 

trauma (2,15,16).  The majority of haemorrhagic foci originate in non-

compressible regions such as the torso and junctional zones (groin and axilla), 

accounting for 86.5% of haemorrhage related combat deaths (4). Furthermore, 

almost nine out of 10 deaths occur in the pre-hospital setting (4). Current 

management is reliant on operative haemorrhage control which is contingent on 

patients surviving to hospital admission (3). Even then, many patients arrive in 

extremis with circulatory collapse, where reactive manoeuvres such as 

resuscitative thoracotomy and aortic cross clamping yields few survivors (118). 

Resuscitative endovascular balloon occlusion of the aorta (REBOA) provides 

inflow control and afterload support to patients with circulatory collapse from 

haemorrhage (6). It can either be inserted prophylactically in patients at risk of 

haemorrhage and then inflated in the event of a deterioration, or as a substitute 

to open cross clamping in the moribund patient (80). REBOA is designed as a 

proactive manoeuvre, which can be inserted in austere circumstances, providing 

a physiological bridge to definitive haemorrhage control.  

The clinical use of this technique was first described in the 1950s (7), with 

further reports in the 1980s (8,9). Despite some favourable outcomes, 

technological limitations relating to arterial access, balloon construction and 

placement meant its adoption was not widespread. However, following the 

evolution of endovascular surgery and the experience with aortic balloon 

occlusion during endovascular aneurysm repair (10,77), many of these constrains 

have been overcome. The use of REBOA in traumatic haemorrhagic shock is 

currently being revisited clinically using “off-the-shelf” devices (98), but there is 

also active research into trauma-specific catheters (100). 

To facilitate REBOA deployment, the aorta has been characterised into three 

functional zones: zone I extends from the origin of the left subclavian to the 
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celiac trunk, zone II is from the celiac trunk to the lowest renal artery and the 

infra-renal aorta constitutes zone III (Figure 12.1) (6). Zone I and III serve as 

"landing zones" for occlusion in specific injury patterns. Zone I occlusion provides 

resuscitation in circulatory arrest and control for abdominal exsanguination and 

zone III occlusion is for ileo-femoral junctional haemorrhage (3). 

Current technology requires fluoroscopy for precision placement, which limits 

the deployment of REBOA systems in the pre-hospital or emergency department 

setting. Unassisted blind insertion is fraught with potential complications, 

varying from aortic arch placement precipitating cerebral ischemia to iliac 

artery occlusion inadequately controlling inflow. 

A potential solution to aid fluoroscopy free placement is to use an external 

anatomical measure to predict internal vascular length. A linear relationship has 

been previously demonstrated between aortic length and torso height (126). The 

aim of this study is to develop predictive models of REBOA insertion distance, 

based upon an external measure of torso height (EMTH) correlated with internal 

vascular distance. The accuracy of which will then be assessed using prospective 

EMTH data, collected in a realistic clinical setting. 

12.2 Methods 

This prospective observational study was performed following approval from the 

UK Royal Centre for Defence Medicine Academic Unit and the US Medical 

Research and Material Command. The study was conducted at the Combat 

Support Hospital in Camp Bastion, Helmand Province, Southern Afghanistan. This 

hospital is unique in the theatre of Afghanistan as it is a joint UK and US facility, 

staffed by clinicians from each nation’s military amongst others. It is also the 

busiest coalition medical facility in the region, providing comprehensive trauma 

care for both military and civilian patients (127). The infrastructure includes two 

64-slice CT scanner, in addition to an emergency department, operating suite 

and critical care facilities (123). Data were collected over two time periods (July 

2011 - September 2011 and November 2011 - January 2012), during the 

deployments of two authors (AS and JJM).  
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Figure 12.1: Line drawing demonstrating the three aortic zones.  
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12.2.1 Study Population 

A non-random, non-consecutive (convenience) sample of male patients aged 

between 18 and 50 years, who underwent contrast enhanced CT imaging of the 

chest, abdomen and pelvis as part of their care, were included in the study. A 

convenience sample was used, rather than consecutive patients, due to the brisk 

operational tempo and single handed nature of the data collection. Nation status 

was dichotomised into patients of Afghan origin (military or civilian) termed 

"Host National", and the remaining patients were termed "Coalition Military". 

Enemy combatants were not included in the study. 

Once patients had been identified as requiring CT imaging, an external measure 

of torso height (EMTH) was recorded prior to discharge. This was performed 

using a tape measure, held parallel to the subject’s cranio-caudal axis, to obtain 

the distance from the jugular notch to the pubic symphysis (Figure 12.2). All 

tape measurements were performed by one of two individuals (AS or JJM) to the 

nearest centimetre (cm). 

Using a CT workstation, the centre line distances from the left and right 

common femoral artery (CFA), at the level of the mid-point of the femoral head, 

to several key aortic landmarks (bifurcation, take off of the lowest renal artery, 

celiac and left subclavian) were calculated. This technique takes into account 

vessel tortuosity and angulation providing for precision measurements. The CFA 

landmark was chosen as a possible site of arterial access for the insertion of a 

REBOA system. The EMTH was also repeated using the CT callipers on the sagittal 

view of the scout film. All CT measurements were to the nearest millimetre 

(mm). 

12.2.2 Statistical Analysis 

Initially, the measurements of key vascular landmarks and torso height by CT 

and tape measure were reported for the entire cohort. Specifically, the distance 

from the left and right CFA insertion points to the mid-points of zones I and III 

were calculated. These distances represent the insertion length required for a 

REBOA system to occlude the aorta at the mid-point or "landing zone" of each 

respective zone. 
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Figure 12.2: Landmarks demonstrating the external measure of torso height 
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Following this, a 20% sample of the study group was selected at random and used 

as a development cohort to generate linear regression models of insertion using 

the CT EMTH as the dependant variable. Model group 1 included both insertion 

length and nation status (Host National or Coalition Military) as covariates, 

whereas model group 2 only utilised insertion length. Models were generated for 

insertions through both left and right CFAs and for the mid-points of zones I and 

III; 4 in total. The strength of each regression model was presented using the 

coefficient of determination adjusted for sample size (adjusted R2). Analysis of 

variance (ANOVA) was used to test the null hypothesis. Model group 3 consisted 

of a constant which was the median insertion distance for the population, 

without adjustment for any parameter. 

Following the development of the insertion models, the remaining 80% of the 

study group were used as a validation cohort. The tape EMTH was used in 

conjunction with the model equations, to generate predicted insertion lengths. 

These predicted lengths were then correlated with the observed lengths and the 

strength of the linear dependence reported using Pearson's correlation 

coefficient. Accuracy was also assessed by the proportion of subjects “landing” 

both within the zone and within the middle 60% of the zone. The latter was 

chosen, as this leaves a 20% safety margin at either end of the zone to 

accommodate a theoretical balloon "foot-print". Box and whisker plots were used 

to graphically demonstrate the accuracy of the models within the proximal and 

distal extent of the aortic zones, expressed as a proportion. 

Data were recorded and organised in an Excel spreadsheet (Microsoft®, 

Redmond, Washington, USA) and then imported into SPSS version 20 (IBM®, New 

York) which was used to perform the statistical analysis. Data which was not 

normally distributed was presented as medians, with 25th and 75th quartiles, 

minimum and maximum values. Statistical significance was defined as a p < 

0.01. 

12.3 Results 

Data were collected on 80 and 97 patients during the two time periods, 

providing a total cohort for analysis of 177 patients. The median (IQR) age of the 
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cohort was 23 (8) with 104 (58.8%) of Host National origin. There was no missing 

data. 

Table 12.1 provides a summary of the measurements of key vascular landmarks 

for the total cohort, measured in mm. The median distance from the right CFA 

to the aortic bifurcation was longer than from the left CFA by a distance of 5 

mm. Zone I was the longest of the aortic zones with a median (IQR) 

measurement of 222 (24), followed by zone III with 92 (15). Zone II was the 

shortest zone, with a median (IQR) distance of 31 (9). 

Correspondingly, the insertion length from the CFA to the mid-point of each 

zone was longer from the right side compared to the left. For occlusion of the 

mid-point of zone I, the median insertion from the right CFA was 423 (27) and 

from the left CFA was 418 (29). For zone III occlusion, the insertion distance was 

considerably shorter than zone I, with a median distance from the right of 232 

(21) and from the left of 228 (22). The EMTH by CT and tape measure were in 

similar agreement with respective values of 533 (34) and 540 (30). 

A 20% (n = 36) model development cohort was selected at random and compared 

to the remaining 80% (n = 141) model validation cohort for key measurements. 

There was no significant difference in EMTH values and respective insertion 

lengths (p > 0.01) between the groups using a Mann-Whitney rank sum test. 

Linear regression was used to develop several models to predict insertion length 

(Table 12.2). Model group 1 used the CT EMTH as the dependent variable and the 

zone insertion length and nation status as the independent variables. The models 

generated for zone I occlusion had adjusted coefficient of determination values 

of 0.803 and 0.824 for left and right insertions respectively. Zone III 

demonstrated a lower coefficient of determination with values of 0.613 and 

0.642 respectively. 
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Table 12.1: Measurements of key vascular landmarks (n = 177) 

Distance (mm) Minimum 25th 
Percentile Median 75th 

Percentile Maximum 

Vessel Lengths      
Left CFA to AB 116 174 182 194 223 
Right CFA to AB 121 178 187 199 242 
Left CFA to Lowest 
RA 179 264 275 287 312 

Left CFA to CA 198 296 307 319 357 
Left CFA to Left SCA 348 514 530 548 590 

Zone Lengths      
Zone I 141 209 222 233 255 
Zone II 16 27 31 36 70 
Zone III 63 84 92 99 123 

Insertion Lengths      
Right CFA Mid-Zone I 280 409 423 436 488 

Left CFA Mid-Zone I 277 404 418 433 468 
Right CFA Mid-Zone III 152 223 232 244 286 

Left CFA Mid-Zone III 148 218 228 240 268 
Torso Height      

Measured by CT 366 517 533 552 590 
Measured by Tape 370 530 540 560 610 

Abbreviations and definitions: CFA - common femoral artery; AB - aortic bifurcation; 
RA - renal artery; SCA - subclavian artery; Aortic Zone I - left subclavian to celiac 
trunk; Aortic Zone II - celiac trunk to lowest renal artery; Aortic Zone III - lowest renal 
artery to aortic bifurcation. 
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Table 12.2: Linear regression models, developed with and without regard to 
nation status, from 20% (n = 36) of the overall cohort. 

 Equation 
Adjusted 

Coefficient of 
Determination 

p-value 

*Model Group 1    
R CFA to Mid Zone I 

E(Y) = β0 + β1X1 + β2X2 

0.803 < 0.001 
L CFA to Mid Zone I 0.824 < 0.001 
R CFA to Mid Zone III 0.613 < 0.001 
L CFA to Mid Zone III 0.642 < 0.001 

**Model Group 2    
R CFA to Mid Zone I 

E(Y) = β0 + β1X1 

0.806 < 0.001 
L CFA to Mid Zone I 0.828 < 0.001 
R CFA to Mid Zone III 0.620 < 0.001 
L CFA to Mid Zone III 0.642 < 0.001 

***Model Group 3    
Any CFA to Mid Zone I 

E(Y) = median (insertion length) 
n/a n/a 

Any CFA to Mid Zone III n/a n/a 
*Model Group1 - Incorporates nation status as a covariate. 
** Model Group 2 - Developed with no regard to nation status. 
***Model Group 3 - Insertion to the median population zone insertion length. 
E(Y) = Predicted insertion length; X1 = Torso height; X2 = Nation status. 

 
  



Chapter 12: Prospective Evaluation of the Correlation between Torso Height and Aortic 
Anatomy in Respect of a Fluoroscopy Free Aortic Balloon Occlusion System 

150 

 
 

 

Model group 2 utilised the CT EMTH as the dependent variable and zone insertion 

length as the independent variable. The models in group 2 performed similarly 

to group 1, with the strongest models observed in zone 1 with adjusted 

correlation of determination values of 0.803 and 0.824 for right and left 

insertion respectively. Zone III models for the right and left insertion scored 

0.620 and 0.642 respectively. No correlation was determined for model group 3 

as the insertion distance was a constant: 418 for zone I and 229 for zone III. 

The tape EMTH from the validation cohort (n = 141) was used in conjunction with 

the 3 model groups to calculate predicted insertion distances (Table 12.3). 

Model group 1 demonstrated a good correlation for the zone I insertion with a 

Pearson's correlation of 0.740 for each side. This was reflected by 100% of 

predicted insertion lengths landing within zone 1 and almost 100% of patients 

within the middle 60% of the zone (Table 12.3 and Figure 12.3). For zone III 

insertion, Pearson's correlation was fell to 0.504 and 0.491 for right and left 

insertion, although all but one patient landed within the desired zone. When 

assessing accuracy to within the middle 60% of zone III, the left and right 

insertion were 89.4% and 90.0% accurate respectively (Table 12.3 and Figure 

12.4). 
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A similar pattern was observed for model group 2, albeit with a slightly higher 

Pearson's value across all zones (Table 12.3). Zone I scored 0.741 for both 

insertion sides, with a 100% and 99.3% accuracy for total zone and middle 60% 

zone accuracy respectively (Figure 12.3). Zone III achieved correlations of 0.523 

and 0.517 for the right and left insertion. This translated to 100% of patients 

landing within the zone and 90.8% and 92.9% of the right and left insertions 

landing within the middle 60% of the zone (Figure 12.4). 

Pearson's correlations could not be generated for model group 3 as this used a 

fixed insertion distance (Table 12.3). The majority of patients were landed 

within their desired zone: 99% for zone I and 98% for zone III. When assess the 

proportion of patients landing within the middle 60% of the zone, 97.9% accuracy 

was achieved for zone I and greater than 90% for zone III (Figures 12.3 and 12.4). 

12.4 Discussion 

The current study represents the first prospective evaluation of aortic 

morphometry in the development of a fluoroscopy free REBOA system for use in 

non-compressible haemorrhage. A strong correlation exists between torso height 

and torso arterial morphometry. This is important as torso height can be easily 

measured in the emergent setting and used to consistently predict the insertion 

length required for occlusion of aortic zones I and III by a REBOA system. A 

reliable and reproducible method to predict insertion length is essential in order 

to avoid incorrect placement, which could have potentially lethal consequences. 
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Figure 12.3: Box and whisker plot of the median, interquartile, maximum and 
minimum range of predicted placement within zone I, as a proportion of zone 
extent 

 

 

Figure 12.4: Box and whisker plot of the median, interquartile, maximum and 
minimum range of predicted placement within zone III, as a proportion of 
zone extent 
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This study is an extension of our group’s previous morphometric analyses 

characterizing the external-internal relationship between torso extent and aortic 

length. Stannard et al. retrospectively analysed a CT data repository of 200 

scans to identify a cohort of 88 which were suitable for inclusion (126). That 

study also examined a male only population and their reported median zones 

lengths are in agreement with the current study. Those investigators correlated 

descending aortic length with torso height (sternum to pubis) and described a 

correlation of determination of 0.454. Importantly, the current study represents 

a progression of Stannard et al.’s work by using a more robust prospective 

methodology. The acquisition of more data points and subjects has enabled the 

analysis of ethnicity and a more detailed mathematic exploration of the 

relationship between torso height and vascular length. 

Accurate placement is essential to avoid complications; occlusion proximal to 

zone 1 could cover the origin of one or both carotid arteries, theoretically 

precipitate an ischemic stroke and dangerously elevate cardiac afterload. 

Inadvertent zone II placement and occlusion of the celiac trunk or mesenteric 

arteries could induce visceral ischemia, adding to the patient’s metabolic 

burden. The concern with placement in an iliac artery is that contralateral 

inflow control is not established which could be driving pelvic or junctional 

haemorrhage. 

The current study yields some interesting results that are important to discuss. 

The finding that the inclusion of nation status as a covariate adds little to the 

accuracy of the models is at first surprising. However, military personnel are 

drawn from numerous ethnic backgrounds - Caucasian, Hispanic, African-

American, Samoan, and Nepalese - to name but a few. This means that the 

binary categorisation of nation status is likely an over simplification of a 

complex issue. To understand the impact of ethnicity on aortic morphometry, a 

much larger population, with more detailed ethnic origin data will be required. 

The current study reports three insertion models, two of which were derived 

from linear regression and third used the median population measurement as an 

insertion length. Interestingly, the use of population medians (model group 3) 

performed almost as well as either of the regression models. This result may 
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lead to the suggestion that the use of regression modelling is overly complicated 

and therefore redundant. However, while the cohort’s ethnicity may be fairly 

heterogeneous, their torso dimensions are relatively homogenous. For example, 

the interquartile range for torso height, zone I and III are only 35, 24, 15 mm 

respectively. This, combined with the relatively large lengths of the zones, 

means that insertion to the population median, without adjustment, will have a 

significant chance of accurate placement. 

However, the regression models are essential for guiding the placement of 

patients who lie out-with population norms. This is best demonstrated by 

examining the whisker range plots in Figures 12.3 and 12.4. While the majority 

of patients in model group 3 are within the zone boundaries, the range extends 

significantly out-with the proximal and in some cases, the distal extent of the 

zone. Following the use of regression in Model Groups 1 and 2, essentially all are 

within the zone boundary. 

Furthermore, it is important to acknowledge that the blind deployment of a 

REBOA system requires more than just an insertion equation; the catheter is 

required to remain with the aorta and be resistant to deviation down side-

branches. This challenge is being met with novel catheter designs that 

incorporate a low-profile construction with novel self-centring technology to 

ensure minimal deviation out with the aorta during insertion (100). 

The current study has a number of limitations that are important to understand. 

The reported dataset is limited and does not include other important factors 

which may affect torso measurements and arterial lengths, such as body habitus, 

gender and age. A larger number of subjects with a greater number of variables 

would allow for better modelling and more rigorous evaluation of predicted 

insertion lengths. Importantly, future populations must also be relatively 

heterogeneous in order to best understand the impact of variation. For example, 

the tortuosity of vasculature increases with age (128,129), something vital to 

understand for the successful deployment of REBOA systems in older patients. 

These limitations have largely come about due to the circumstances of the 

current studies data collection. Data were collected by two military surgeons, 
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deployed in an operational Combat Support Hospital and therefore the data 

parameters collected were minimalist. Furthermore, due to the nature of 

combat operations, the study population was male, with a bias towards patients 

in their second and third decades of life. 

Despite these limitations, this prospective observational study demonstrates the 

feasibility of this methodology in the development of a fluoroscopy free REBOA 

system. The relatively large size of zones I and III lend themselves well as 

functional zones of occlusion. The use of linear regression modelling has led to 

almost 100% accurate prediction of insertion distances. The influence of 

ethnicity on aortic morphometry requires further study along with additional 

variables such as age, body habitus and gender. 
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Chapter 13: A Novel Fluoroscopy-Free, Resuscitative 
Endovascular Aortic Balloon Occlusion System in a 

Model of Haemorrhagic Shock 

13.1 Background 

Haemorrhage is the leading cause of death in civilian and military trauma 

(2,4,11,12,15,16). In the military setting, 70% percent of deaths are due to 

exsanguination from truncal injuries, of which nine out of ten occur prior to 

hospital admission (4). The civilian experience is similar, with bleeding shown as 

a major contributor to trauma deaths and the leading cause of potentially 

preventable death (11,12). Non-Compressible Torso haemorrhage (NCTH) has 

recently been defined as haemorrhage arising from trauma to the torso vessels, 

pulmonary parenchyma, solid abdominal organs and disruption of the bony pelvis 

resulting in hypotension or shock (3,27). 

Haemorrhage leads to cardiovascular collapse and death unless myocardial and 

cerebral perfusion can be maintained. In the setting of NCTH resuscitative aortic 

occlusion mitigates haemorrhage and increases afterload and central aortic 

pressure until haemostasis can be achieved. For decades however this 

manoeuvre has required thoracotomy and aortic clamping relegating it as a 

reactive procedure performed after the loss of pulses (3). In the endovascular 

era there has been a reappraisal of resuscitative endovascular balloon occlusion 

of the aorta (REBOA) as an alternative to resuscitative thoracotomy (6). Unlike 

thoracotomy, REBOA is performed in a series of less invasive steps beginning 

with transfemoral arterial access and pressure monitoring. As such REBOA may 

facilitate a proactive approach to aortic control ready to support the central 

circulation of patients at imminent risk of cardiovascular collapse (6,80). 

Emerging animal evidence demonstrates the benefits of REBOA in shock, with 

occlusion time of up to 90 minutes generating a significant, but survivable 

metabolic penalty (90,99). However, today’s technology requires that this 

adjunct be performed with a large calibre balloon catheter passed over a wire 

through a large sheath. Additionally REBOA is currently constrained by the 

requirement of fluoroscopy to guide the wire and balloon positioning. 

Characteristics of existing technology limit the ability of this manoeuvre to be 
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performed in the emergent setting (6). The objective of this study is to report a 

new, low-profile REBOA system designed to be placed without fluoroscopic 

guidance. An additional objective is to compare this system to existing 

endovascular technology in accuracy of placement and effectiveness in 

supporting central aortic pressures upon balloon inflation. Finally, this study 

aims to characterise the physiologic consequence and survivability following 60 

minutes of aortic occlusion with these systems in a model of haemorrhagic 

shock.  

13.2 Methods 

13.2.1 Overview 

This study was performed at an accredited facility (Clinical Research Division, 

Lackland Air Force Base, TX) under supervision of a veterinary staff with 

Institutional Animal Care and Use Committee approval. Female Yorkshire swine 

(Sus scrofa), (70-90 kg) in shock were randomised in groups of 8 to either 

Conventional Balloon System (CBS) or Prototype Balloon System (PBS). The CBS 

consisted of commercially available devices including a stiff 0.035”Amplatz wire 

with an 8cm flexible tip (Cook Medical, Bloomington IN) and a 14Fr, 120cm 

Coda® Balloon (Cook Medical, Bloomington, IN).  

13.2.2 Fluoroscopy-free, endovascular aortic balloon occlusion system 

The Prototype Balloon System (PBS) was a fused wire and balloon catheter 

scheme (Pryor Medical, Arvada, CO) (Figure 13.1). This uni-body construct 

allowed the PBS to be passed through an 8 Fr femoral artery sheath into the 

abdominal aorta and positioned in the thoracic aorta using a “one-pass”, 

fluoroscopy-free method. The main body was 100cm, consisting of a semi-stiff 

0.035” core wire extending 20 cm beyond the trail end of the device. The lead 

or insertion end consisted of a curved or floppy tipped wire fused inside a 

compliant balloon catheter alleviating traditional “over the wire” insertion 

steps. At the insertion end of the PBS was a collapsible, self-centring, nitenol 

rail system (Figure 13.1A). This system was positioned between the wire tip and 

the compliant balloon for purposes of centring the system in the arterial lumen 

during advancement (Figure 13.1C).   
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Figure 13.1: A single component prototype balloon system 

A, Single component prototype balloon system (PBS) designed to be positioned and 
inflated without fluoroscopy. The lead or insertion end is a floppy tipped 0.035” wire fused 
to the compliant balloon catheter. A collapsible nitenol rail system is positioned between 
the floppy tip of the wire and the compliant balloon for the purpose of centring the system 
within the axial arterial lumen as the device is inserted and positioned. B, Photograph of 
the PBS having been inserted through an 8 French right femoral artery sheath. The 
syringe is filled with a mixture of contrast agent and saline for balloon inflation. C, 
Fluoroscopic image of the PBS inflated in the thoracic aorta with the floppy wire tip and 
flexible nitenol rail system proximal to the inflated balloon. 

  

A 

B 

C 
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13.2.3 Study Design and Baseline Phase 

The study had four phases: Baseline, Haemorrhage, REBOA and Resuscitation 

(Figure 13.2). After induction of anaesthesia with ketamine and isoflurane, 

animals underwent cannulation of the jugular vein through an open incision. The 

carotid artery was encircled with a transonic probe (Transonic Systems Inc., 

Ithaca, NY) to monitor flow. Ultrasound-guided access to the brachial artery was 

achieved using a microcatheter (Cook Medical, Inc., Bloomington, IN) which was 

advanced into the aortic arch for pressure monitoring. The femoral artery 

opposite the device sheath was cannulated for blood pressure measurement in 

the distal aorta. Ultrasound-guided access to the femoral artery (device side) 

was achieved and a sheath (8 or 14 French) was positioned. A cerebral oximetry 

probe (LICOX, Integra Life-Sciences, Plainsboro, NJ) was placed to monitor 

cerebral oxygenation.  

13.2.4 Haemorrhage Phase 

Haemorrhagic shock was established over a 30 minute period using a previously 

described method of rate and volume controlled haemorrhage (80,99). In brief, 

35% of blood volume (total circulatory volume of the pig calculated as 66 mL/kg) 

was withdrawn through the catheter in the femoral artery; half taken over 7 

minutes and the remaining half over 13 minutes. To avoid splenic 

autotransfusion animals were subjected to ongoing haemorrhage at a rate of 

0.15mL/kg/min for an additional 10 minutes to ensure haemorrhagic shock was 

maintained. Shed blood was banked in citrated bags for transfusion during the 

resuscitation phase. If mean arterial pressure (MAP) decreased below 30 mmHg, 

haemorrhage was stopped until the pressure was greater than 30 mmHg, at 

which point haemorrhage was resumed. 
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13.2.5 REBOA Phase 

Following haemorrhage, REBOA was performed with either the prototype or the 

conventional system. In the PBS group, devices were inserted through the 

femoral sheath (8 French) without fluoroscopic guidance (Figure 13.1). The 

depth of insertion was determined using an estimated external measure of torso 

extent which spanned a line from the inguinal crease to the mid-sternum. This 

distance was used as the estimated transfemoral insertion distance or depth for 

the PBS device. PBS devices were advanced to this depth or distance without 

fluoroscopy and inflated with a mixture of saline and contrast agent. Placement 

was confirmed with fluoroscopy and recorded as accurate if in the thoracic aorta 

(Figure 13.1). If resistance was met during insertion, the PBS was stopped and 

the catheter position checked with fluoroscopy; placement was not adjusted 

post-imaging. Inaccurate positioning was defined as placement of the PBS within 

a branch vessel of the aorta or in the abdominal aorta. In the CBS group, the 

Amplatz wire was advanced into the thoracic aorta through the femoral artery 

sheath (14 French) using fluoroscopic guidance. The wire was pinned in place 

while the Coda® balloon catheter was advanced into position in the thoracic 

aorta using conventional “over the wire” manoeuvres. The Coda® was inflated 

under fluoroscopic visualisation using a mixture of saline and contrast agent. 

13.2.6 Resuscitation Phase 

Following 60 minutes of REBOA with CBS or PBS, the balloon was deflated and a 

6-hour resuscitative phase initiated. Gradual balloon deflation was performed to 

avoid sudden cardiovascular collapse. Specifically, attention was given to blood 

pressure during and after balloon deflation with whole shed blood and 

vasopressor medications given to maintain a goal mean arterial pressure (MAP) of 

60mmHg or greater. After shed whole blood was transfused, 1L boluses of saline 

were administered to maintain MAP until a threshold of 20 cc/kg of crystalloid 

was reached. Persistent hypotension was treated with vasopressor 

norepinephrine starting at 4mcg/hr and titrated to MAP of 60mmHg; animals 

which were refractory and nearing cardiovascular collapse received a 10mcg 

bolus of norepinephrine until an infusion could be established. Following 

resuscitation, animals were transitioned from isoflurane to ketamine and versed 
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infusion and survived in an intensive care phase for 48 hours. At the conclusion 

of the Resuscitation Phase animals were euthanised and underwent necropsy. 

13.2.7 Data Acquisition, Timeline and Outcome Measures 

Systolic blood pressure (SBP), heart rate (HR), core temperature, partial 

pressure of brain oxygen (PBrO2) and carotid flow were monitored and 

circulating markers of perfusion and end-organ injury were measured. After 

baseline observations, data were recorded at 30, 45, 60 minutes and 3, 6, 24, 48 

hours post haemorrhage. The primary outcome measure was accurate, 

placement of either the CPS or BPS in the thoracic aorta. Secondary outcome 

measures included mortality, carotid flow, partial pressure of brain tissue 

oxygenation, central or mean arterial pressure, serum pH, base deficit, lactate, 

fluid volume and vasopressor requirement and histological analysis of aorta, 

heart, lung, kidney, brain and spinal cord. 

13.2.8 Statistical Analysis 

Data were analysed with SAS version 9.2 (SAS Institute Inc., Cary, NC). Normally 

distributed measures were compared with t-test while Wilcoxson rank-sum 

method was used for non-parametric measures. Proportions were compared by 

either chi-square or Fisher’s Exact as appropriate. For repeated measures, 

comparisons were conducted using a model with autoregressive first-order 

covariance structure treating time as a categorical factor. A p value less than 

0.05 was considered significant. 

13.3 Results 

13.3.1 Baseline Characteristics and Haemorrhagic Shock 

Sixteen animals were randomised to the PBS or the CBS group (n=8 per group) 

and baseline characteristics are shown in Table 13.1. There were no differences 

between groups with respect to weight, baseline vital statistics and laboratory 

values. The induction of class IV shock was achieved with a mean shed blood 

volume of 1904 ± 280 mL (predicted of 2058±160.4mL, p=0.17). At the end of 

haemorrhage phase, immediately prior to balloon inflation (t30), SBP was equally 

reduced in both groups (PBS vs. CBS; 46 ±7 vs. 46±11mmHg, p=0.91) and HR was 

equally elevated (PBS vs. CBS; 167±15 vs. 148±46mmHg, p=0.91).  
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13.3.2 Balloon Deployment, Inflation and Resuscitation 

Accurate balloon positioning and inflation rate was 87.5% in the PBS and 100% in 

the CBS group. One aberrant placement in the PBS group occurred when the 

device entered a right renal artery which had a cephalad angle or take-off at its 

origin from the abdominal aorta. REBOA resulted in similar increases in mean 

arterial pressure, carotid blood flow and partial pressure of brain oxygenation in 

the PBS and CBS groups while there was no increase in cardiac output following 

balloon inflation in either group (Figure 13.3). Balloon occlusion times were the 

same in PBS and CBS (77.0±11.3 vs. 70.3±12.3 min, p=0.30) as were times to 

complete balloon deflation (17.6±11.6 vs. 13.1±10.2 min, p=0.46). Animals in the 

PBS and CBS groups required similar volumes of saline over 48 hours 

(14,301±6,197mL vs. 12,014±6,699mL, p=0.46). Norepinephrine was the only 

vasopressor administered during resuscitation and there was no difference 

between PBS and CBS with respect to total requirements (5,733±8,129 mcg vs. 

1,157±2,579 mcg, p=0.21). 

13.3.3 Physiologic Derangement, Mortality and Histologic Examination 

During resuscitation the PBS and CBS groups demonstrated similar trends in 

serum lactate which peaked between 2 and 3 hours following balloon deflation 

and returned to normal by 24 hours and 48 hours (Figure 13.4). A similar trend 

was observed in serum pH between the PBS and CBS groups. Other measures of 

end-organ dysfunction were elevated 24 hours following balloon deflation (Table 

13.2). The same circulating markers remained elevated at 48 hours just prior to 

termination of the study with a higher potassium level in the CBS compared to 

the PBS group (7.7 ± 1.5 vs. 6.1 ± 3.3mmol/L, p=0.007) and a higher creatine 

kinase (CK) level in PBS than CBS (144,290 ± 138,363 vs. 68,876 ± 57,291U/L, 

p,0.001) (Table 13.2). Mortality was similar between groups (PBS vs. CBS; 25% vs. 

12.5%, p=0.50) with each of the deaths occurring during resuscitation due to 

cardiac arrest from physiologic disturbances. There were no histologic 

differences observed among end organs examined (brain, heart, kidney and 

spinal cord) in the PBS and CBS groups.  
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Table 13.1: Baseline measurements and haemorrhage volumes of the study 
groups  
(mean and standard deviation) 

Variable CBS Group PBS Group P 
n 8 8  
Weight (kg) 77.5  ±  5.9  78.5  ±  6.6  0.755 
Female 8 (100%) 8 (100%) n/a 
    
Physiological    

SBP (mmHg) 94 ± 37 81 ± 10 0.180 
MAP (mmHg) 65.1 ± 10.4 64.3 ± 6.4 0.895 
HR (bpm) 81 ± 8 93 ± 13 0.270 
Temp (℃) 34.9 ± 1.3 35.5 ± 1.2 0.300 
PBrO2 (mmHg) 18.7 ± 14.4 49.6 ± 78.4 0.209 
Carotid Flow (mL/min) 346.8 ± 

87.4 375.9 ± 87.8 0.548 

    
Lab Measures    

pH 7.50 ± 0.03 7.51 ± 0.05 0.853 
pCO2 (mmHg) 38 ± 4 38 ± 5 0.910 
pO2 (mmHg) 247 ± 47 209 ± 33 0.077 
K+ (mmol/L) 3.39 ± 0.02 3.36 ± 0.13 0.951 
Glucose (mg/dL) 84 ± 13.7 98.8 ± 27.2 0.526 
Lactate (mmol/L) 0.84 ± 0.15 1.18 ± 0.41 0.710 
Base Excess (mEq/mL) 6.45 ± 2.12 6.63 ± 1.20 0.917 
HCO3 (mmol/L) 30.4 ± 1.9 30.6 ± 1.3 0.929 
Hb (gm/dL) 9.4 ± 1.0 8.2 ± 1.1 0.076 

    
Haemorrhage    

Predicted Volume (mL) 2072 ± 174 2044 ± 156 0.741 
Actual Volume (mL) 1942 ± 278 1867 ± 294 0.609 
SBP Post Haemorrhage 
(mmHg) 

46 ± 11 46 ± 7 0.940 

HR Post Haemorrhage 
(mmHg) 

167 ± 15 148 ± 46 0.571 

Abbreviations: CBS, Conventional Aortic Balloon Occlusion System; 
PBS, Prototype Balloon System;  
p value less than 0.05 considered significant 
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Figure 13.3:  Haemodynamic measurements performed over the course of 
the study  
There was no difference in the haemodynamic response to REBOA between the 
prototype (PBS) and the conventional (CBS) groups. 

 
 

Figure 13.4: Serum lactate and pH over the course of the study  
There was no difference in lactate or pH between the prototype (PBS) and the 
conventional (CBS) groups. 
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13.4 Discussion 

This report describes a new resuscitative endovascular balloon occlusion system 

designed to be placed into the thoracic aorta without the aid of radiographic 

imaging. Findings demonstrate the feasibility of this uni-body system to be 

positioned and inflated in the thoracic aorta without fluoroscopy. REBOA using 

the new prototype results in increased central aortic pressure and cerebral 

perfusion which are equivalent to those observed with the use of existing 

endovascular technology. Finally, results from this study demonstrate that 60 

minutes of resuscitative endovascular balloon occlusion of the aorta with either 

system is associated with a recoverably metabolic acidosis and acceptable short-

term survival. 

13.4.1 Context of Previous Research 

This research confirms and extends a series of studies characterising temporary 

resuscitative aortic occlusion as a manoeuvre used in the setting of end stage 

haemorrhagic shock. In an experiment which compared the efficacy of 

resuscitative thoracotomy with aortic clamping to REBOA, White et al. 

demonstrated both approaches to be effective at restoring central aortic 

pressure and myocardial and cerebral perfusion (80). White and colleagues also 

demonstrated a more severe metabolic derangement during the recovery or 

resuscitation phase in the resuscitative thoracotomy group compared to the 

endovascular balloon occlusion group. 

Markov et al. recently characterised the ischemic threshold of REBOA in the 

setting of shock comparing 30 to 90 minutes of aortic occlusion in a 48 hour 

survival model (99). Using circulating markers, mortality and histology Markov 

demonstrated that 90 minutes of REBOA was survivable although it was 

associated with severe physiologic derangement and non-reversible end organ 

damage. In that same study Markov found that 30 minutes of REBOA was well 

tolerated, recoverable and required no additional organ support during the 

resuscitation phase. Based on these findings it was proposed that the maximum 

REBOA is 60 or fewer minutes (99). Findings from the current study confirm that 

60 minutes of REBOA with either the commercially available or the newly 
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designed device is recoverable in this model with a normalisation of acidosis 

within 24 hours of balloon deflation.  

Others have demonstrated the effectiveness of REBOA in the setting of 

uncontrolled haemorrhage and shock (90). Avaro et al. subjected pigs to splenic 

disruption and compared control animals to groups of 40 and 60 minutes of 

REBOA. Animals were resuscitated with normal saline and not shed whole blood 

for a two hour recovery phase. Avaro and colleagues demonstrated a mortality 

benefit in both REBOA groups compared to controls and all animals in the 40 

minute occlusion time group survived. From that study, the authors observed a 

more severe physiologic derangement in the 60 versus the 40 minute occlusion 

time group and postulated 40 minutes to be the maximum REBOA time. 

However, in contrast to the current study the Avaro report used normal saline as 

a resuscitation fluid which may have limited the resiliency of their cohorts to 

reperfusion injury and introduced conservative bias to their findings. 

13.4.2 Endovascular Technology for Proactive Aortic Control 

The most significant aspect of the current study is introduction of a new, low 

profile REBOA technology able to be positioned and inflated without 

radiographic imaging. To date, REBOA has been studied using commercially 

available balloons designed to be used in the setting of complex vascular 

operations with support of an operating room and fluoroscopy (8,119,130). As 

such, existing balloon technology is typically large diameter (12-14Fr) and better 

suited for the management age-related vascular disease. As an example, the 

compliant Coda® (Cook Medical, Bloomington, IN) balloon used in this study has a 

diameter of 32-40 mm and requires large sheath (14 French) access for 

placement. Although well suited for dilated or ectatic aortas in elderly patients 

with aneurysm disease, this device is too large to be routinely used for REBOA in 

younger trauma patients. Other occlusion balloons have similarly large diameters 

and require “over the wire” fluoroscopic guidance for positioning and inflation.   

In this context the Prototype Balloon System (Pryor Medical, Arvada, CO) 

represents technology designed with haemorrhage control and resuscitation for 

trauma as the originating premise. The most important characteristic of this and 

future technologies for REBOA in trauma is liberation from radiographic imaging.  
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Although a lower insertion profile is imperative, the ability to accurately 

introduce, position and inflate REBOA devices without fluoroscopy represents 

the paradigm shift which would allow this manoeuvre to be performed in urgent 

settings. If REBOA devices also included the ability to monitor central aortic 

pressure before, during and following inflation of the balloon, one could envision 

proactive access and control of the aorta in patients prone to cardiovascular 

collapse. In this context resuscitative aortic occlusion could move from a 

reactive and terminal operation to a proactive, less invasive manoeuvre.  Other 

favourable characteristics of future REBOA devices may include pressure 

regulated inflation to guard against aortic wall injury and catheters designed to 

resist balloon egress or ‘retreat’ with the return of central aortic pulse pressure. 

Although not all of these characteristics are present in the prototype used in this 

study, the current technology introduces the concepts and demonstrates 

feasibility in a live tissue model. 

13.4.3 Limitations 

This study has limitations worth considering. Foremost, the prototype balloon 

catheter in this study was designed for this translational model and these results 

do not necessarily translate to human aortic anatomy or shock physiology. It 

should be pointed out that one of the balloon insertions in the PBS group 

inadvertently entered a renal artery. While the renal arteries in the quadruped 

are directed cephalad and more easily accessed from a transfemoral approach, 

this aberrant placement should not be overlooked. Misplacement of the PBS in 

this one case underscores the preliminary nature of this prototype and suggests 

that a “self-centring” mechanism requires modification and further study.   

The results of this study were in a model with limited survival without 

assessment of lower extremity strength. As such the deleterious effects of 60 

minutes of REBOA may not have been fully ascertained. Although spinal cord 

ischemia was not present on histology, a longer survival would be required to 

examine the effects of REBOA on cord and extremity function. Another 

limitation is the controlled nature of haemorrhage and what was ostensibly 

artificial haemorrhagic shock. In this context the model did not assess REBOA in 

the most extreme cases of free haemorrhage but was chosen instead to assess 



Chapter 13: A Novel Fluoroscopy-Free, Resuscitative Endovascular Aortic Balloon 
Occlusion System in a Model of Haemorrhagic Shock 

171 

 
 

 

the technical deployment of these devices and basic haemodynamic 

consequences of balloon inflation. Future studies are underway in models of free 

haemorrhage and high mortality to assess life-saving benefits of these devices.  

13.4.4 Conclusions 

In conclusion, this study reports a newly designed resuscitative endovascular 

balloon occlusion system able to be placed without radiographic imaging. This 

uni-body system is able to be positioned and inflated in the thoracic aorta 

without fluoroscopy, although additional design and study is required to assure 

consistent positioning. Resuscitative endovascular balloon occlusion of the aorta 

with this prototype is an effective adjunct in this model, equivalent to existing 

endovascular technology. Future development of lower profile, fluoroscopy-free 

endovascular balloon catheters may allow for proactive aortic control in patients 

at risk for haemorrhagic shock and cardiovascular collapse. 
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Chapter 14: Resuscitative Endovascular Balloon 
Occlusion of the Aorta (REBOA): A Gap Analysis of 

Severely Injured UK Combat Casualties 

14.1 Introduction 

Haemorrhage is the leading cause of potentially preventable death following 

both civilian and military trauma (4,13). The last decade of war in Iraq and 

Afghanistan has seen significant innovation in the management of compressible 

haemorrhage – extremity bleeding amenable to control by simple pressure – 

which has translated to improved survival (5). However, bleeding from non-

compressible sites within the torso and junctional regions (groin and axilla) 

remains a significant cause of mortality (27,68,95). 

A recent review of 10 years’ of US military deaths identified 24.3% of casualties 

as having a potentially survivable injury, of which 90.9% were due to 

haemorrhage (4). The largest focus was truncal (67.3%) followed by junctional 

(19.2%) and extremity (13.5%) sources. Importantly, nine out of 10 deaths 

occurred prior to admission to a medical treatment facility (MTF). There is a 

pressing need for a haemorrhage control and resuscitation adjunct that can be 

deployed prior to MTF admission in order sustain life until definitive 

haemorrhage control can be attained. 

Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) is a technique 

which has demonstrated promise in both large animal and early clinical case 

series, as an adjunct that supports central perfusion and controls arterial inflow 

(6,73,98,131). Two functional aortic zones of occlusion have been described: 

thoracic (zone I) and infra-renal (zone III), for exsanguinating abdominal and 

pelvic haemorrhage respectively (6). 

 However, despite compelling evidence demonstrating the favourable 

haemodynamic profile of aortic occlusion in haemorrhage, it is unknown what 

proportion of combat casualties have an injury pattern and clinical course that 

would be amenable to REBOA deployment. The aim of this study is to evaluate 

10 years’ of consecutive UK combat casualties in order to identify patients that 

might have benefitted from REBOA. 
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14.2 Methods 

This study was conducted following approval from the Royal Centre for Defence 

Medicine Academic Unit. The prospectively collected UK Joint Theatre Trauma 

Registry (JTTR) was used to retrospectively identify all UK military personnel 

sustaining a severe combat injury in one or more body region, in Iraq or 

Afghanistan, between August 2002 and July 2012. Severe injury was defined as a 

military Abbreviated Injury Scale (AIS) score of three or greater in any AIS body 

region. The 2005 Military AIS Scores were used to calculate both the Injury 

Severity Score (ISS) and the New Injury Severity Score (NISS). 

The UK JTTR is a performance improvement tool which captures data on all 

casualties admitted to UK MTF's. It is most detailed in the case of UK military 

personnel, as the JTTR has visibility of this population from the point-of-

wounding to either discharge or post-mortem examination. Importantly, the 

JTTR includes data pertaining to casualties who do not survive to MTF admission, 

permitting the comprehensive analysis of a consecutive population of wartime 

injured. 

Suitability for REBOA was initially determined by injury pattern using AIS coding. 

Three categories were defined: indicated, contra-indicated and not-indicated 

(Table 14.1). In general terms, Zone I REBOA was deemed indicated in the 

setting of abdominal haemorrhage: high grade (AIS ≥ 4) solid organ, mesenteric 

disruption or injury to a named vessel proximal to the aortic bifurcation. Zone III 

REBOA was deemed indicated in pelvic/groin haemorrhage: pelvic fracture with 

ring disruption, traumatic amputation at/near the hip or injury to a named 

vessel proximal to the femoral segments. 

Contra-indication to REBOA was defined as a focus of non-compressible 

haemorrhage proximal to the zone of occlusion. This included thoracic aortic 

disruption, and arterial injury located within the superior mediastinum, neck 

and axillary regions. Patients with both an indication and contra-indication for 

REBOA were only included in the contra-indicated group and patients with 

neither were placed in the no-indication group. 	  



Chapter 14: Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA): A 
Gap Analysis of Severely Injured UK Combat Casualties 

174 

 
 

 

 

 

 

Table 14.1: Indications and contra-indication to for the use Resuscitative 
Endovascular Balloon Occlusion of the Aorta (REBOA) 

Indications Contra-Indications Zone I Zone III 
High Grade (AIS ≥ 4) 
Injury to: 

High Grade (AIS ≥ 4) Injury 
to: 

Non-Compressible 
Haemorrhage in: 

● Liver/Kidney/Spleen ● Pelvic Fracture with Ring 
Disruption 

● Superior 
Mediastinum 

● Mesenteric Disruption ● Named Pelvic Vessel Injury ● Axilla 
● Named Abdominal 
Vessel Injury 

● Traumatic Amputation 
at/near Hip ● Neck 

  ● Face 
Abbreviations: AIS – Abbreviated Injury Scale 
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Patients with an injury pattern indication for REBOA then underwent a detailed 

review of their registry record including examination of pre-hospital and in-

hospital free-text description fields. This enabled the identification of patients 

who had signs-of-life (SOL) at the point of wounding, but lost cardiac output en-

route to an MTF. This is important, as the purpose of this study is to identify a 

population where REBOA has a realistic window of opportunity for deployment. 

Patients with catastrophic wounding and cardiac arrest at the point of wounding 

will not benefit from REBOA. Categorisation of signs of life was deliberately 

conservative; in the absence of documentation to that effect, patients were 

assumed to have died at the point of wounding. 

The operative indications for patients undergoing thoracotomy and laparotomy 

were also retrieved. Thoracotomy indications were divided into three 

categories: thoracic haemorrhage control (control of bleeding vessels, lung 

parenchyma), non-haemorrhage control (control of air leaks, release of 

tamponade) and resuscitation (aortic cross clamping, cardiac massage). 

Laparotomy indications were similarly classified: abdominal haemorrhage control 

(packing, organ removal), non-haemorrhage control (management of hollow 

organ injury) and proximal control (control of lower extremity inflow via the 

abdomen). 

This permits not only an analysis of types of surgical manoeuvres required, but 

also the identification of a population of patients who only required arterial 

control in isolation. For example, patients with very proximal traumatic 

amputations can require a laparotomy to obtain vascular inflow control of the 

iliac arteries, but no other abdominal intervention. The intra-operative use of 

REBOA may have a role in avoiding cavity surgery for isolated arterial control 

(132). 

14.3 Results 

During the decade of war between August 2002 and July 2012, there were a total 

of 1317 UK military personnel who sustained one or more severe combat injury 

and were entered into the UK JTTR (Figure 14.1). This was associated with a 

high burden of injury as indicated by a mean ISS (SD) of 40 (27) and a mortality 
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rate of 569 (43.2%). In terms of injury pattern, 925 (70.2%) patients had no 

indication for REBOA, 148 (11.2%) had a contra-indication and 244 (18.5%) had an 

injury pattern that might have been amenable to REBOA. 

Of the 244 with an injury pattern indication for REBOA, 145 (59.4%) patients died 

prior to MTF admission – 79 patients were considered to have died at the point-

of-wounding and 66 died en-route to an MTF. Of the 99 admitted to an MTF, 29 

patients subsequently died of their injuries, with 70 survivors. The indicated 

zone of occlusion was consistent across these four groups (p = 0.791), with zone I 

indicated in 147 (60.2%) and zone III in 97 (39.8%) of the cohort (Figure 14.2). 

Only the patients who survived beyond the point-of-wounding (n = 165) will be 

analysed further and are considered in three groups: en-route deaths, MTF 

deaths and survivors. 

The gender, age and mechanism of injury were consistent across en-route 

deaths, MTF deaths and survivors (Table 14.2). The cohort could be 

characterised as largely male, in their mid-20s, predominantly injured by an 

explosive event. As per the selection criteria, there was a high preponderance of 

abdominal and lower extremity injuries across all three groups. There was a 

stepwise increase in injury burden across the groups as measured by both ISS and 

NISS (p < 0.001).  

Patients who died en-route to an MTF had the greatest injury burden, followed 

by MTF deaths, with survivors sustaining the lowest injury burden. This pattern 

was mirrored when considering anatomical injury pattern with patients dying en-

route sustaining a significantly greater proportion of severe head and chest 

injuries compared to the other groups. 
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Figure 14.1: Breakdown of the groups 

 

 

 

 

 

 

 

 

 

 

Figure 14.2: The numbers and proportions of patients requiring Zone I and 
Zone III occlusion 

  

All *Severely Injured UK Combat Casualties 
Aug 2002 to July 2012 

N = 1317 
Mean ISS (SD) = 40 (27) 

Mortality, N (%) = 569 (43.2%) 

Contra-Indications for REBOA 
n (%) = 148 (11.2%) 

Mean ISS (SD) = 66 (17) 
Mortality, n (%) = 135 (91.2%) 

No Indications for REBOA 
n (%) = 925 (70.2%) 

Mean ISS (SD) = 34 (26) 
Mortality, n (%) = 261 (28.2%) 

Indications for REBOA 
n (%) = 244 (18.5%) 

Mean ISS (SD) = 51 (21) 
Mortality, n (%) = 173 (70.9) 

No Signs-of-Life at Point-of-Wounding 
n = 79 

Mean ISS (SD) = 66 (15) 
Mortality, n (%) = 79 (100%) 

Signs-of-Life En-Route 
n = 165 

Mean ISS (SD) = 44 (19) 
Mortality, n (%) = 95 (57.6%) 
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Table 14.2: Demography, trauma burden and injury pattern compared 
between UK military casualties, with an indication for REBOA, who either die 
en-route, in-hospital or survived 

 Group 
p* En-route 

Deaths 
MTF Deaths Survivor 

n 66 29 70  
Demography     
Male, n (%) 66 (100.0%) 27 (93.1%) 69 (98.6%) 0.065 
Age/Yrs, Mean (SD) 26.2 (6.7) 26.0 (6.2) 25.5 (6.1) 0.828 

Mechanism of Injury     
Blast, n (%) 47 (71.2%) 21 (72.4%) 44 (62.9%) 0.804 
GSW, n (%) 15 (22.7%) 6 (20.7%) 19 (27.1%)  
Blunt, n (%) 4 (6.1%) 2 (6.9%) 7 (10.0%)  

Trauma Scores     
ISS, Mean (SD) 56.5 (16.4) 49.9 (15.4) 29.5 (12.2) < 0.001 
NISS, Mean (SD) 66.5 (12.3) 62.6 (12.8) 37.7 (16.7) < 0.001 

Injury Pattern     
Head, n (%) 25 (37.9%) 10 (34.5%) 6 (8.6%) < 0.001 
Face, n (%) 1 (1.5%) 1 (3.4%) 0 (0.0%) 0.346 
Neck, n (%) 1 (1.5%) 0 (0.0%) 0 (0.0%) 0.470 
Chest, n (%) 43 (65.2%) 16 (55.2%) 22 (31.4%) < 0.001 
Abdomen, n (%) 60 (90.9%) 2 (93.1%) 55 (78.6%) 0.056 
Upper Extremity, n (%) 22 (33.3%) 6 (20.7%) 2 (2.9%) < 0.001 
Lower Extremity, n (%) 51 (77.3%) 21 (72.4%) 35 (50.0%) 0.003 

Abbreviations: MTF – Medical Treatment Facility, GSW – Gun Shot Wound, ISS – 
Injury Severity Score, NISS – New Injury Severity Score. * Analysis of Variance 

 

Table 14.3: Hospital intervention data 

 MTF Deaths Survivors p* 
n 29 70  
Admission Physiology    
SBP, Mean (SD) 52 (54) 113 (38) < 0.001 
Pulse, Mean (SD) 65 (61) 103 (33) 0.011 
GCS, Mean (SD) 5 (4) 12 (5) < 0.001 

Indications for Thoracotomy    
Haemorrhage Control, n (%) 1 (4.3%) 1 (2.1%) 0.589 
Non-Haemorrhage Control, n (%) 0 (0.0%) 1 (2.1%) 0.679 
Resuscitation, n (%) 12 (52.2%) 4 (8.3%) < 0.001 
Resuscitation in isolation, n (%) 12 (52.2%) 4 (8.3%) < 0.001 

Indications for Laparotomy    
Abdominal Haemorrhage Control, n (%) 13 (56.5%) 35 (72.9%) 0.167 
Abdominal Non-Haemorrhage Control, n 
(%) 

5 (21.7%) 19 (39.6%) 0.137 

Proximal Control, n (%) 9 (39.1%) 11 (22.9%) 0.155 
Proximal Control in isolation, n (%) 3 (10.3%) 8 (11.4%) 0.592 

Pelvic Stabilisation    
External Fixation 5 (21.7%) 12 (25.0%) 0.763 

Abbreviations: MTF – Medical Treatment Facility, SBP – Systolic Blood Pressure, 
GCS – Glasgow Coma Scale. * Analysis of Variance 
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Of the 66 patients who died en-route to an MTF, reliable time of death was 
recorded in 36 (54.5%) patients with median (IQR) time of 75 (67) minutes. While 
all patients had a focus of non-compressible haemorrhage, traumatic brain injury 
(TBI) was felt to be the greater contributor to mortality in 19 (28.8%) patients. 

Of the 99 patients who survived to MTF admission (i.e. MTF deaths and 

survivors), pre-hospital time was available in 57 (57.6%) of cases, with a median 

(IQR) time of 61 (55) minutes. MTF deaths had a lower admission systolic blood 

pressure, pulse rate and Glasgow coma score compared to survivors (Table 14.3). 

Of the 29 MTF deaths, all had a focus of haemorrhage, but the primary cause of 

death was non-compressible haemorrhage in 14 (48.3%), TBI in 9 (31.0%) and 

multiple-organ failure in 6 (20.7%). 

The use of thoracotomy, laparotomy and pelvic fixation for haemorrhage control 

was employed similarly between fatalities and survivors (Table 14.3). However, 

resuscitative thoracotomy was used in a greater proportion of fatalities (52.2% 

vs. 8.3%; p < 0.001). Interestingly, within the 70 survivors, 4 (8.3%) required a 

thoracotomy and 8 (11.4%) required a laparotomy for aortic/iliac control in 

isolation, i.e. no other thoracic or abdominal intervention was required. 

14.4 Discussion 

This study is the first to examine a consecutive population of wartime wounded 

in order to evaluate the potential role of REBOA as a haemorrhage control and 

resuscitative adjunct. The current study demonstrates that one in five patients 

sustaining a severe injury have an injury pattern that is potentially amenable to 

this manoeuvre, although 79 (32.3%) had no signs-of-life at the scene and REBOA 

is unlikely to change their outcome. However, 89 (36.5%) of patients have a 

spontaneous circulation that deteriorates into circulatory arrest prior to, or upon 

MTF admission. REBOA may have utility in this group, by sustaining central 

perfusion until definitive haemorrhage control can be attained. 

Patients with critical bleeding require concomitant resuscitation and 

haemorrhage control (96). The last decade has seen significant advances in the 

field of resuscitation with formalised Damage Control Resuscitation (DCR) 

algorithms capable of correcting even profound physiological abnormality intra-

operatively (97). This has resulted in the lowest died-of-wounds rate in 
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contemporary conflict (28); however, this is dependent upon a casualty surviving 

to an MTF and it is now well established that the majority of deaths occur prior 

to admission (4,68,95). 

The fundamental problem is how to get an exsanguinating patient to definitive 

haemorrhage control before they undergo a circulatory arrest. Definitive 

haemorrhage control is generally achieved using either operative or angio-

embolic techniques (3). This requires trained personnel working with well-

maintained infrastructure, support by an appropriate logistical chain and as such 

is only really practical in a formal MTF. Clearly one solution is to move the MTF 

closer to the point-of-wounding; however, this is rarely practical in dynamic and 

kinetic military operations. An alternative solution is the deployment of an 

adjunct that can support the spontaneous circulation until definitive 

haemorrhage control. 

Aortic balloon occlusion, as achieved by REBOA, results in a haemodynamic 

profile which is highly beneficial to trauma patients as demonstrated in both 

animal (99,131) and human studies (98). Firstly, provided the haemorrhagic 

focus is perfused distal to the balloon, inflation will control arterial inflow 

slowing the rate of exsanguination. Second, the increase in afterload will 

enhance both myocardial and cerebral perfusion. This may be of particular 

importance in the setting of TBI where the maintenance of cerebral perfusion 

helps to reduce secondary brain injury. The current study reports that around a 

third of patients had sustained a TBI in addition to their haemorrhagic focus. 

However, this neuroprotective effect is strictly theoretical and currently there is 

no supporting human evidence. 

Furthermore, REBOA may have a role as a surgical adjunct by reducing the need 

for cavity surgery in patients requiring arterial control in isolation. The current 

study demonstrates that of the 70 patients who survived, 14 required a 

laparotomy or thoracotomy purely for proximal control of the aorta or iliac 

segments. The operating room use of REBOA could have theoretically eliminated 

the need for open surgery, reducing the associated physiological penalty. This 

has the greatest potential for patients sustaining a dismounted complex blast 
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injury where the control of pelvic and proximal extremity haemorrhage often 

necessitates a laparotomy (70,132). 

While the concept of REBOA may appear attractive, it is important to 

acknowledge the practical challenges involved in the deployment of this 

adjunct, especially in the pre-MTF setting. The main issues relate to obtaining 

arterial access and the “blind” insertion of a catheter system without 

fluoroscopic assistance. Arterial access in hypotensive patients is challenging and 

this step has limited the effectiveness of aortic balloon occlusion in the historic 

literature (9). However, with the refinement of endovascular technology and the 

availability of portable ultrasound imaging devices, the chances of successful 

arterial cannulation can be optimised (98). 

Furthermore, the risks of blind insertion are also being minimised with a number 

of technical innovations combined with an improved understanding of aortic 

morphometry. Novel REBOA systems have been designed that combine a low-

profile, uni-body construction with self-centring capability to maintain aortic 

travel (100). CT based morphometric analysis has permitted the characterisation 

of the internal-external relationship between the aorta and torso height 

(126,133)). This has enabled the development of equations that can reliably 

predict the insertion length required to occlude the desired aortic zone (133). 

With these challenges in mind, the deployment of a REBOA system is only really 

practical during the en-route phase of evacuation, where care can be delivered 

in a more permissive environment. Advanced medical retrieval (AMR) platforms 

such as the UK Medical Emergency Response Team and the USAF Tactical Critical 

Care Evacuation Team are ideally placed to deploy REBOA (134,135). 

These platforms already deliver a suite of advanced interventions such as drug 

assisted intubation, central venous access and the administration of blood 

products (135). Importantly, the skill-set required to perform these interventions 

is similar to those required to deploy a REBOA catheter. Clinicians need to be 

familiar and well-practiced with Seldinger vascular access techniques and the 

use of invasive monitoring. These practical skills need to be combined with 

prompt injury pattern recognition and decisive decision making (98).  
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Furthermore, the current study reports a median (IQR) time to death in patients 

with signs of life en-route, that expire prior to MTF admission of 75 (67) minutes. 

This, theoretically, may be a long enough window in which an AMR platform 

could retrieve a patient and deploy a REBOA system en-route to an MTF and 

definitive haemorrhage control. 

The current study has a number of important limitations that require discussion. 

The most important caveat is that the reported analysis is strictly theoretical. 

The reality is that the majority of patients who die prior to MTF admission have 

sustained a high burden of injury and that even with immediate operative 

intervention and resuscitation, salvage is not assured.  

Furthermore, the current study does not report comprehensive time of death 

data and it is unknown if the window for REBOA deployment is actually shorter 

than reported. However, within the deployed experience of the authors, these 

figures are not incongruous. 

It is also important not to overstate the case for REBOA as other mechanical 

adjuncts for resuscitation and haemorrhage control have come and gone. 

Pneumatic anti-shock garments (PASG) is such an example which generated 

much interest through the 1970s and 1980s, but ultimately, there has been no 

demonstrable reduction in mortality, length of stay hospital or ICU stay (136). A 

key difference with REBOA is that it combines both haemorrhage control and 

resuscitation, setting it apart from many other mechanical adjuncts. With these 

points in mind, the current study makes a compelling case for the pre-MTF 

deployment of REBOA in torso and pelvic haemorrhage. 

In conclusion, one-in-five severely injured UK combat casualties have a focus of 

haemorrhage in the abdomen or pelvic junctional region. This is associated with 

a high burden of mortality and there exists a discreet and definable group of 

patients that undergo exsanguination en-route to an MTF. These patients would 

theoretically benefit from the deployment of a REBOA system, ideally on board 

an AMR platform that is clinically well supported. The UK Defence Medical 

Service should explore the use of REBOA during the en-route phase of care for 
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patients with evidence of non-compressible haemorrhage that are at risk of 

exsanguinating prior to definitive haemorrhage control. 
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